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SUMMARY 

 Changes in the regulatory environment for the coal-fired power industry in the 

United States have driven the need to improve wastewater treatment and disposal practices, 

especially for wet flue gas desulfurization (FGD) systems. One option for treatment of 

FGD wastewater is the implementation of zero liquid discharge (ZLD). ZLD can be 

achieved through the coupling of brine concentrator or advanced membrane process with 

a solidification/stabilization (S/S) process. This S/S process could be achieved by co-

disposing the concentrated FGD brines with coal fly ash (CFA) and Portland cement (PC).  

 The results of the study indicate that the proposed process can immobilize many 

toxic metals. S/S using bituminous CFA (BCFA) achieved good retainment (average 

68−90%) of AsV, CdII, HgII and SeIV, in the toxicity characteristic leaching procedure 

(TCLP); however, poor retainment was observed for CrVI and SeVI. Sorption experiments 

using BCFA S/S solids showed good sorption of AsV, CdII, HgII and SeIV (average 

56−100%), but poor sorption of CrVI and SeVI. Meanwhile, CrVI and SeVI retainment could 

be enhanced by addition of FeSO4 (FS) to the S/S mixture, likely due to the reduction of 

these metals to lower oxidation states.  

 Compared to BCFA, S/S using sub-bituminous CFA (SCFA) resulted in higher pH 

in the S/S solids and final TCLP leachate, which increased the retainment of AsV, CdII and 

SeVI. Apart from the pH impact on the process, AsV retainment was likely improved by the 

high Ca content of SCFA and SeVI retainment improved by the incorporation of SeO4
2- in 

Friedel’s salt (AFm-Cl) by exchange with Cl-. Friedel’s salt was positively identified in the 

X-ray diffraction (XRD) diffractogram for the SCFA S/S solids, but not for the BCFA S/S 



 xv 

solids. Even so, reduction of SeVI with S/S is likely a better long-term strategy than SeO4
2- 

substitution in the AFm phase because of higher stability under long-term landfill pH 

conditions. The main new contribution from this section of the Work to scientific literature 

is the definition of the different Se immobilization mechanisms in the BCFA S/S solids 

with FS addition and the SCFA S/S solids.  

This work also evaluated the mass transport release of major elements (Ca2+, Cl-, 

Mg2+, Na+, and SO4
2-) and heavy metal oxyanions (As, Cr, and Se) from monoliths of the 

S/S solids produced by the above described process. This study evaluated the impact of FS 

addition to the S/S mixture on the long-term leaching behaviors. FS addition to the S/S 

process decreased the solid’s cumulative release and flux at shorter leaching times for the 

major components: Ca2+, Cl-, Mg2+, Na+, and SO4
2-; however, the cumulative release 

appeared to converge for all five species at longer leaching times. FS addition significantly 

decreased release of oxyanions As, Cr, and Se. The results indicate that FS addition could 

increase the likelihood of successful long-term disposal of S/S solids of concentrated FGD 

brines containing these heavy metal oxyanions. Leach XSTM modeling added additional 

evidence for the proposed leaching mechanisms for As and Se. The main new contribution 

from this section of the Work to scientific literature is the evaluation of the impact of a 

reductant on elemental release during a semi-dynamic tank leaching evaluation. 

The coal-fired power industry will also encounter solid waste management 

challenges from materials that are characteristically unlike traditional CFA. The most 

challenging materials could contain significant salt concentrations in the form of Ca2+, 

Mg2+, Na+, and Cl- which could potentially enhance metal leaching from BCFA. This work 

showed that metal leaching from BCFA was enhanced with salt addition, but this effect 



 xvi 

varied based on cation type and pH. Cationic metal (CdII, CrIII, MnII, PbII, and ZnII) leaching 

generally decreased with increasing pH. However, Cd and Zn did demonstrate amphoteric 

leaching patterns. Except for Pb due to Cl- complexation, cationic metal leaching at low 

pH was not impacted by salt addition due to high metal solubility. Cd and Mn leaching was 

enhanced at medium pH primarily due to Cl- complexation and Cr leaching increased 

primarily due to competitive cation exchange. Except for Mn, cationic metals were 

generally immobile due to low solubility even with salt addition at high pH. Mn leaching 

increased with MgCl2 addition at high pH due to competitive cation exchange. 

The leaching of AsO4
3- was highest at medium pH while SeO3

2- leaching increased 

with increasing pH. Salt addition did not impact Se leaching at low pH while As leaching 

increased primarily due to anion exchange with Cl-. Leaching of both As and Se was 

increased with salt addition at medium and high pH primarily due to anion exchange with 

Cl- (medium pH) and compression of the diffuse double layer (high pH); however, the 

results were also likely impacted by complexation and sorption with the cations to the CFA 

surface. A surface complexation model using PHREEQC was established to model As and 

Cd leaching at medium pH as these elements had the highest leaching increases with salt 

addition under the medium and high pH conditions which are environmentally relevant for 

BCFA landfills. The model demonstrated that As and Cd could be modeled utilizing the 

mechanisms described above. The main new contribution from this section of the Work to 

scientific literature is the evaluation of the impact of salt on metal leaching from BCFA. 
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CHAPTER 1.  INTRODUCTION 

1.1 SCOPE OF THIS WORK 

 This work evaluates the immobilization of heavy metals in co-disposed flue gas 

desulfurization (FGD) brines and coal fly ash (CFA) through solidification/stabilization 

(S/S) with Portland cement (PC). The proposed process is a zero liquid discharge (ZLD) 

strategy for FGD wastewater that includes the coupling of a brine concentrator or advanced 

membrane process for wastewater volume reduction followed by downstream S/S to 

produce a final solid material suitable for landfill disposal.  

Metal leaching from the S/S materials was evaluated through batch equilibrium 

tests including the toxicity characteristic leaching procedure (TCLP) and tests that evaluate 

metal leaching versus final leachant pH. The impact of FeSO4 (FS) addition to the S/S 

mixture to reduce CrVI and SeVI mobility and also form FeIII oxides for enhanced metal 

sorption was evaluated.  

The produced S/S solids were characterized utilizing X-ray diffraction (XRD) and 

X-ray fluorescence (XRF) analysis. XRD analysis allowed for the elucidation of metal 

immobilization mechanisms especially for Se through evaluation of the crystalline phases 

formed.   

The S/S solids were also subjected to semi-dynamic tank leaching tests which 

allowed for leaching to be evaluated for the solids as a monolith thereby taking into account 

diffusion in addition to solid-liquid partitioning. Based on the results of the semi-dynamic 

tank leaching tests, modeling by the LeachXSTM model (Seignette et al. 2014) was utilized 
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to elucidate mechanisms of contaminant immobilization. The model was also used to 

predict leachate quality from the S/S solid over an extended 20 years period in regards to 

pH trend and leaching of major components ( Ca2+, Cl- and Na+) and toxic metal oxyanions 

(AsV and SeVI).  

The impact of salts on metal leaching from CFA was also evaluated, considering 

that more salts may be sent to industry landfills due to increases of unconventional wastes 

with high salt content. For instance, the ZLD strategies for FGD wastewater will likely 

greatly increase salts (in the form of Ca2+, Mg2+, Na+, and Cl-) in the landfill. Unless these 

materials are disposed of in a separate cell in the landfill and segregated from other waste 

materials, conventional coal combustion residuals (CCRs) such as CFA in the landfill will 

be exposed to higher salt concentrations. Significantly increased metal leaching from CFA 

could result as a consequence of the salt exposure, but the knowledge of such a processes 

is still lacking. To address the knowledge gap, the impact of exposure to CaCl2, MgCl2, 

and NaCl at various pH on the leaching of metals from CFA was evaluated using batch 

equilibrium tests. Leaching under the high salt conditions was modeled utilizing 

PHREEQC (Parkhurst et al. 1999) to assist in elucidating the mechanisms of increased 

mobilization for the metals (As and Cd) that exhibited the highest increase in leaching upon 

salt exposure at environmentally relevant conditions for landfill leachate at coal-fired 

power plants (near neutral and high pH). XRD analysis was conducted to evaluate the CFA 

before and after the leaching experiment to determine if the crystalline structure of the CFA 

was impacted.  
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1.2 OUTLINE OF THESIS 

 The five chapters of this thesis include a general introduction of the topics followed 

by three chapters that describe three different specific research focuses and conclusions for 

the overall work. Chapter 1 provides an overview of FGD wastewater and treatment, ZLD 

strategies, S/S, CFA, salt impact on metal leaching, leaching procedures, and geochemical 

modeling.  

Chapter 2 assesses heavy metal immobilization in S/S solids produced through 

mixing simulated concentrated FGD brines with CFA, PC, and FS. Heavy metal (As, Cd, 

Cr, Hg, and Se) leaching was evaluated utilizing batch equilibrium leaching experiments 

including the TCLP (USEPA 1992a) and the USEPA Method 1313 (USEPA 2012). The 

produced S/S solids were also characterized utilizing XRD and XRF to determine the most 

likely Se immobilization phases.  

Chapter 3 evaluates leaching from the solids as monoliths utilizing the USEPA 

Method 1315 (USEPA 2013). Semi-dynamic tank leaching tests were utilized to evaluate 

the mass transport releases of Ca2+, Cl-, Mg2+, Na+, As, Cr, and Se. The impact of FS 

addition to the S/S mixture on contaminant release was evaluated through these leaching 

tests. Modeling utilizing LeachXSTM was conducted to enhance understanding of the 

release mechanisms for Ca2+, Cl-, Na+, As and Se and to predict the leachate composition 

over 20 years.   

Chapter 4 evaluates the impact of salts on the leaching of metals from bituminous 

CFA (BCFA). The USEPA Method 1313 (USEPA 2012) was utilized to evaluate metal 

leaching with modifications through the addition of CaCl2, MgCl2, or NaCl to the leachant. 
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The leaching evaluations for As and Cd were also modeled utilizing PHREEQC in the high 

salt environment.  

Chapter 5 provides the overall conclusions from the work. The Chapter also 

provides recommendations for future research directions on the topic.  

1.3 FLUE GAS DESULFURIZATION WASTEWATER 

Wastewater disposal from wet FGD systems is a major concern for the coal-fired 

power industry. The USEPA determined that most of the high metal concentrations 

involved in waste from coal-fired power plants  occur in  FGD  systems and hydraulic CFA 

transportation systems (USEPA 2009). Ca or Ca-Mg slurries are sprayed against the flue 

gas in wet FGD systems in order to remove SOx. However, in addition to SOx removal, 

heavy metals also partition from the gas phase (flue gas) to the aqueous phase and 

accumulate in FGD slurry (Huang et al. 2013a). FGD wastewater contains significant 

heavy metal (As, Cd, Cr, Hg, and Se) content and large salt (Ca2+, Mg2+, Na+, SO4
2-, and 

Cl-) content (USEPA 2009).  

FGD Modes of Operation. FGD scrubbers can operate in the modes of forced-

oxidation, natural-oxidation, or inhibited-oxidation (Blythe et al. 2008, USEPA 2009). 

Figure 1.1 (USEPA 2009) shows a schematic for a forced-oxidation wet FGD system. 

Forced-oxidation FGDs are currently the more common type and the USEPA has stated 

their expectation that most new FGD systems will be forced-oxidation systems (USEPA 

2009). In a forced-oxidation system (Figure 1.1), air is pumped through the FGD slurry in 

order to oxidize SO3
2- to SO4

2- which can then precipitate as CaSO4.2H2O (gypsum), a 
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beneficially utilized material that is incorporated in wallboard or utilized in agriculture 

(Blythe et al. 2008).  

 
Figure 1.1. Schematic of a forced-oxidation FGD system (USEPA 2009).  

Gypsum production is the major benefit of forced-oxidation FGD systems. 

Beneficial use of gypsum provides a revenue stream for the industry and also reduces waste 

disposal costs. However, one negative aspect of the forced-oxidation strategy is that Cr and 

Se can also be oxidized to their more mobile and toxic forms (CrVI and SeVI) along with 

SO3
2-, leading to more challenging FGD wastewater treatment problems. This work focuses 

particularly on the wastewater issues associated with forced-oxidation FGD systems. 

In the less common inhibited-oxidation FGD systems, SO3
2- is prevented from 

oxidizing through reductant addition (Blythe et al. 2008). These inhibited-oxidation FGD 
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systems produce an FGD sludge as the final product (Blythe et al. 2008). The produced 

sludge is usually  mixed  CFA and CaO or Ca(OH)2 to form a solidified pozzolanic material 

that is landfill disposed (Blythe et al. 2008). Negative aspects of this process are (1) lack 

of beneficial use for the residual, (2) management of the wet FGD sludge, (3) all of the 

FGD sludge must be disposed of, and (4) cost of the solidification process. However, the 

process has a large benefit in that the process does not oxidize SO3
2- and therefore does not 

likely generate Se and Cr in their more mobile and toxic states.   

Bituminous versus Sub-bituminous FGD systems. Significant differences exist 

between the FGD wastewater from bituminous and sub-bituminous coal-fired power 

plants. In the U.S., total sulfur contents of 2.7% and 0.7%  were reported by Edgar for 

bituminous coal and sub-bituminous coal, respectively (Edgar 1983). The USEPA has 

noted that the combustion of higher sulfur coals logically produces more SO3 in the flue 

gas that FGD systems must remove which results in higher FGD blowdown volumes to be 

treated (USEPA 2009). As a result, a larger mass of salt and metals must be disposed from 

a bituminous coal power plant FGD system compared to a sub-bituminous power plant. 

Approximately 48% of the coal produced in the U.S. is bituminous and 44% is sub-

bituminous, with 93% of the total coal produced utilized for energy production (USEIA 

2015b).  

FGD Wastewater Composition. Table 1.1 (USEPA 2009) demonstrates the 

complexity of FGD wastewaters. These example compositions are from four different FGD 

wastewater sources as part of a self-reporting study conducted by the USEPA (USEPA 

2009); however, the Ca2+ value was obtained from a different source as one was not 

provided by the USEPA report (Chapman et al. 2007). FGD wastewater typically contains 
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high total dissolved solids (TDS) content. With regards to anions, the FGD wastewater is 

dominated by Cl- with a significant amount of SO4
2- present. Ca2+ and Mg2+ are dominant 

cations in the wastewater followed by Na+. FGD wastewater also can contain significant 

concentrations of heavy metals including As, Cd, Cr, Hg, and Se as shown in Table 1.1.  

Logically, concentrated FGD wastewater (from evaporator or advanced membrane 

process) will contain higher salt concentrations (e.g. Ca2+, Mg2+, Cl-, etc.). The element 

concentrations shown in Table 1.1 could be increased by a factor of 10 to 15 after the 

concentration step. The final TDS could increase to an approximate range of 100,000-

300,000 mg/L. Most of the SO4
2- will likely be removed during the concentration step, 

through precipitation as CaSO4.2H2O. Hence, the dominant anion in the concentrated FGD 

brine will still be Cl-. 

Heavy Metals. Presence of heavy metals in FGD wastewater is a concern because 

these elements are toxic and can result in negative environmental impacts upon release 

(USEPA 2009). Exposure to As, which is bioaccumulative, poses the following potential 

negative impacts: (1) human liver problems, (2) increased bladder cancer risk, and (3) 

deformities in fish development (USEPA 2009). Hg is known to be bioaccumulative and 

“human exposure at levels above the MCL for relatively short periods of time can result in 

kidney damage” (USEPA 2009). Of the heavy metals, Se, which is bioaccumulative,  has 

the narrowest difference (360 µg/day) between acute toxicity in humans (400 µg/day) and 

human dietary requirement (40 µg/day) (USEPA 2009, Winkel 2012). Extended exposure  

for humans can “result in damage to the kidney, liver, and nervous and circulatory systems” 

(USEPA 2009).  
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Table 1.1. FGD wastewater compositions from four different sources (USEPA 2009). 

Metal Min. Conc. (µg/L) Max. Conc. (µg/L) 
Al 8,200 333,000 
Sb 4.1 23 
As 58 5,070 
Ba 110 2,050 
B 7,410 250,000 
Ca1  Typical Conc. ~ 5,000,000 
Cd ND (0.5) 302 
Cr 1.7 350 
Co 6.4 148 
Cu 12.8 456 
Fe 1,100 300,000 
Pb 14.7 252 
Mg 1,200,000 1,800,000 
Mn 339 5,460 
Hg ND (0.1) 872 
Mo ND (2) 250 
Ni 23.4 710 
Se 400 21,700 
Zn 33.1 1,060 

   
Component Min. Conc. (mg/L) Max. Conc. (mg/L) 
TDS 6,500 26,000 
SO4 780 4,100 
Cl 1,100 13,000 
Br 43 96 
NO3/NO2 ND (10.0) 270 

1 – This value was obtained from (Chapman et al. 2007) outside of the USEPA study.  

Se can be harmful to both birds and animals as exposure to high concentration of 

Se has been shown to be detrimental to bird egg hatching (Coefield 2009). The toxicity of 

Se was demonstrated in a famous Se contamination event occurred in the Kesterson 

Wildlife Refuge in California in the 1980s when a significant number of birds and fish died 

due to Se exposure from water (Coefield 2009).  
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Salts. Discharge of high TDS wastewaters can have negative environmental 

impacts including, but not limited to: osmotic imbalances, impacted cellular biochemistry 

of fish and macroinvertebrates, decreased ecosystem biodiversity, hypoxic salt layering 

within a lake, and increased metal leaching from sediments (Boelter 1992, Langen 2006, 

Nelson et al. 2009, Novotny 2010). In the past decade, state discharge limitations were 

implemented in Pennsylvania likely because of the activities of the upstream oil and gas 

industry (PSU 2009, Entrekin et al. 2011).  A very high TDS level for a fresh surface water, 

925 mg/L, was observed in the Monongahela River (Pennsylvania) in 2008 and this high 

TDS level was likely due to brine disposal associated with the upstream oil and gas industry 

(PSU 2009, Kargbo 2010). As a result of this high TDS level in the Monogahela River, a 

significant number of drinking water treatment plants (13) exceeded their secondary 

maximum secondary maximum contaminant levels (MCLs) for Cl- (PSU 2009). The 

natural gas industry had to reconsider disposal options for their brines and the industry 

moved toward deep-well injection (depending on availability) or S/S followed by landfill 

disposal.   

Potential for Water Reuse. FGD wastewater represents a potential source for 

water reclamation. It is well known that water scarcity and competition for water resources 

have become a significant issue for the thermoelectric power industry. Increased 

competition for freshwater sources is driven by (1) population growth, (2) increasing 

thermoelectric power demand, and (3) droughts and water shortages (Sovacool et al. 2009).  

The United States Geological Survey (USGS) estimated that the thermoelectric 

power industry is responsible for approximately 39% of freshwater withdrawals in the 

U.S.; however, the USGS estimated that the industry is responsible for just 3% of US water 
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consumption (USGS 1998, USGS 2004). Much of the freshwater withdrawn passes 

through power plant cooling systems and is discharged back to surface water. The 

agriculture, mining, and manufacturing industries are beginning to compete with the 

thermoelectric power industry for limited water sites and water scarcity is beginning to 

impact thermoelectric power plant site selection in the US (USDOE 2006, Feeley Iii et al. 

2008, Hightower et al. 2008, Koch et al. 2009, NETL 2009, Sovacool et al. 2009, Carter 

2010, Fthenakis et al. 2010, Chandel et al. 2011, Macknick et al. 2012, Scanlon et al. 2013, 

USDOE 2013, Spang et al. 2014, USDOE 2014).  

Sovacool et al. made predictions for projected population growth versus electrical 

demand in 2009 (Sovacool et al. 2009). Based on more recent data projections than 

Sovacool et al., the U.S. Census Bureau has estimated that U.S. population will increase 

significantly from 2015 (321 million) to 2030 (359 million) (USCB 2014). During a similar 

period, the U.S. Energy Information Administration (EIA) projects that electricity use will 

increase significantly from 2013 (3,836 billion kilowatt-hours) to 2040 (4,797 kilowatt-

hours) (USEIA 2015a).  

Increases in water demand from the thermoelectric power industry over the same 

period is difficult to estimate as it will depend on the thermoelectric power industries’ (1) 

fuel mix (nuclear, coal-fired, concentrated solar, or natural gas), (2) cooling water 

technologies (wet, dry, or hybrid wet-dry), (3) water recovery efforts, and (4) power plant 

operational conditions.   

At the same time that thermoelectric water demands and water scarcity is 

increasing, surface water storage capacity in the US has not grown significantly largely 
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due to negative environmental impacts associated with water reservoir construction 

(Hightower et al. 2008). All of the factors discussed above, work to make the 

thermoelectric power industry more vulnerable to water shortages and opposition to new 

power plant siting in water scarce areas. Any technology or strategy that enhances water 

reuse such as ZLD in power plants will be beneficial for the industry. 

1.4 FLUE GAS DESUFURIZATION WASTEWATER TREATMENT 

The USEPA recently released the proposed final revision to the Steam Electric 

Power Effluent Limitation Guidelines (ELG) which regulate FGD wastewater (USEPA 

2015). The revised guidelines include strict  discharge limits for existing FGD wastewater 

sources with maximum 30-day average limits of 8 µg/L, 356 ng/L, and 12 µg/L for As, Hg, 

and Se, respectively (USEPA 2015). Two potential pathways exist for FGD wastewater 

management - wastewater treatment and ZLD.  Figure 1.2 shows a comparison of the two 

disposal pathways under the proposed revision to the ELG guidelines. 

Proposed FGD wastewater treatment technologies include chemical precipitation 

coupled with reduction through biological or zero valent iron (ZVI) treatment. For purposes 

of the revised ELG, the USEPA defines the chemical precipitation process as “alkali-

sulfide process including multi-stage chemical injections to achieve hydroxide 

precipitation, iron co-precipitation, and sulfide precipitation” (Layman 2013). 

A hybrid-ZVI process successfully treated FGD wastewater for removal of As, Hg, 

SeIV, and SeVI (Huang et al. 2013a, Huang et al. 2013b). The solid residuals produced by 

this process, which were a thick Fe oxide based slurry, only failed the TCLP in a few 

instances for Cd (Huang et al. 2013b).  
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Figure 1.2. Disposal pathway comparison for FGD wastewater.  
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One of the major uncertainties regarding these two technologies (ZVI and 

biological reduction) is reliable performance under varied FGD wastewater conditions. 

FGD wastewater composition varies significantly by coal fuel type, water source, and 

facility operations. Regarding facility operations, a utility company may increase the cycles 

of concentration to their FGD systems to conserve water, subsequently increasing Cl- 

concentrations up to potentially 40,000 mg/L. Doubt exists on whether these two FGD 

wastewater technologies will perform consistently under varied conditions.  

1.5 ZERO LIQUID DISCHARGE STRATEGIES 

Figure 1.2 shows the ZLD pathway for FGD wastewater. This pathway has gained 

interest in the coal-fired power industry due to reliability in meeting the new ELG limits, 

elimination of an environmental wastewater discharge, and maximization of water reuse in 

power plants. Tong et al. noted that the appeal (on an environmental basis) of ZLD is the 

balance between water efficiency (limiting freshwater utilization) and protection of aquatic 

environments from discharge of pollutants due to elimination of wastewater disharge (Tong 

et al. 2016). Industries other than the coal-fired power industry are interested in ZLD and 

Tong et al. noted that global investment in ZLD technologies is currently approximately 

$100 M-$200 M (Tong et al. 2016).  

It is noted ZLD strategies for FGD wastewater do also pose long-term 

environmental risks for pollutant release to the environment (Tong et al. 2016). Solids 

stored in landfills can leach both metals and salts thereby negatively impacting the 

environment. A chance also exists of a large contaminant (heavy metals and salts) release 

during a period of inclement weather with heavy precipitation. This risk of a large 
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contaminant release does not exist on the same level of magnitude for the FGD wastewater 

treatment track. The ZLD process moves the disposal issue from a wastewater treatment 

problem to a long-term landfill disposal issue.  

As shown in Figure 1.2, the likely first step of any ZLD process is volume 

reduction. FGD wastewater has a high scaling potential due to high Ca2+ and SO4
2- content, 

as a result there are only a few volume reduction technologies that appear to be applicable 

for the proposed ZLD strategy. These volume reduction technologies include evaporators 

or advanced membrane processes such as dynamic shear enhanced membrane filtration 

(DSEMF), forward osmosis (FO), and membrane distillation (MD). All of these 

technologies are resistant to fouling and could potentially concentrate FGD wastewater to 

a level that make ZLD feasible.  

Dynamic Shear Enhanced Membrane Filtration. DSEMF systems force the 

creation of strong shear forces at the membrane surface which decreases fouling potential 

(Luo et al. 2012, Luo et al. 2013). Several methods exist to create this “high shear rate on 

the membrane by using a rotating disk, or by rotating or vibrating the membranes” (Luo et 

al. 2013). As a result of these dynamic processes, the shear rate is not dependent on the 

feed rate to the membrane (Jaffrin 2008, Luo et al. 2013).  

The high shear forces at the membrane surface decrease fouling due to particle 

deposition and allows for higher permeate fluxes to be maintained (Belfort et al. 1994, Luo 

et al. 2012, Luo et al. 2013). Through decreasing the accumulation of rejected solutes at 

the membrane surface, the concentration gradient is decreased between the membrane 

surface and bulk solution (Jaffrin 2008).  
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Several DSEMF technologies have reached commercial status including “DYNO 

filter (BOKELA), OptiFilter CR (Metso Paper), Rotary Membrane System (Spin TeK), 

single shaft disk filter (SSDF, Novoflow), vibratory shear-enhanced process (VSEP, New 

logic Research, Inc.), FMX vortex generating module (BKT Co. Ltd.)” (Luo et al. 2013). 

The VSEP system, which utilizes dynamic shear enhanced reverse osmosis (RO) for 

concentration, has been shown to successfully concentrate FGD wastewater on the pilot- 

and full-scale (Pakzadeh et al. 2014, Renew et al. 2016a). The BKT system, which utilizes 

dynamic shear enhanced nanofiltration (NF) combined with downstream conventional 

spiral wound RO, has been demonstrated to concentrate FGD wastewater on the pilot-scale 

(Pakzadeh et al. 2014).  

DSEMF technologies cannot concentrate FGD wastewater to the same TDS level 

of evaporators, FO, and MD. However, the technology could concentrate the wastewater 

to a lower final brine TDS level, perhaps 50,000-80,000 mg/L. In addition, the technology 

could serve a pre-concentration step for evaporators, FO, or MD.  

Evaporators. The utilization of thermal technologies such as evaporators and brine 

concentrators has a long history in utilization in ZLD strategies (Tong et al. 2016). ZLD 

has typically incorporated mechanical vapor compression (MVC) evaporators (Tong et al. 

2016). Evaporators are energy intensive as Tong and Elimelech have noted energy 

consumption in the range of 20 to 39 kWhe/m3 (feedwater volume) (Tong et al. 2016). 

Evaporators could be utilized to concentrate FGD wastewater up to a very high level, 

perhaps 300,000 mg/L TDS.  
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Forward Osmosis. FO is a technology of interest for FGD wastewater 

concentration. The FO process is driven by a gradient of osmotic pressure between a hyper-

saline solution and a wastewater separated by a membrane that is semi-permeable (Phillip 

2010, Pérez-González et al. 2012, Hickenbottom et al. 2013, Shaffer et al. 2015). Some of  

the hyper-saline solutions (also known as draw solutions) that have been utilized for FO 

include “sulphur dioxide, aluminium sulfate, fructose, ammonium bicarbonate, etc.” 

(Pérez-González et al. 2012). FO is known to be resistant to fouling that cannot be reversed 

that has been associated with high pressure processes such as RO (Mi et al. 2013, Tong et 

al. 2016). One of the negatives of FO is that the freshwater production requires draw 

solution regeneration (Hickenbottom et al. 2013, Stone et al. 2013). Regeneration of the 

draw solution requires RO or distillation which can be a costly processes (Hickenbottom 

et al. 2013, Stone et al. 2013). When distillation is utilized, the draw solution typically has 

a low boiling point to minimize energy use for solution recovery.  

Oasys Water, an FO manufacturer, has one full-scale application in Zhejiang 

Province, China (2016). This installation includes complete softening followed by pre-

concentration with RO and subsequent brine concentration with the FO unit (2016). The 

system concentrates FGD wastewater from “approximately 60,000 mg/L in the RO 

concentrate to 220,000 mg/L or higher“ in the FO (2016). It should be noted that this system 

requires complete softening which is expensive for both chemical use and solids 

management. Most utilities want to avoid complete pre-softening to avoid these costs and 

introduction of complexity to the process.  

FO has been successful in treating wastewaters other than FGD wastewater with 

high TDS content. In one study, a pilot FO unit successfully concentrated a produced water 
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(TDS = 73,000 ± 4,200 mg/L) from the oil and gas industry to a concentrated brine (TDS 

= 180,000 ± 19,000 mg/L) (McGinnis et al. 2013). It should be noted that there is a limit 

to the salinity of the wastewater for this technology because the TDS of the draw solution 

must be much higher than the wastewater or the osmotic pressure gradient cannot be 

maintained (McGinnis et al. 2013). As the difference in the salinity of the draw solution 

and the wastewater decreases, FO becomes less effective due to the decrease in chemical 

potential of the draw solution.   

Membrane Distillation. MD is a technology of interest for FGD wastewater as a 

brine concentrator. Vapor pressure difference between a clean permeate and a concentrated 

brine (separated by a hydrophobic membrane) drive the distillation process (Alkhudhiri et 

al. 2012). Surface tension (due to pore size) prevents the direct transfer of water across the 

membrane (Alkhudhiri et al. 2012). Only water vapor crosses the semi-permeable 

membrane from the concentrated brine to the permeate (Alkhudhiri et al. 2012). The vapor 

pressure gradient is created through maintaining a temperature difference between the 

concentrated brine and the permeate (Martinez-Diez 2001, Gryta 2002, El-Bourawi 2006, 

Sirkar 2009, Camacho L.M. 2013, Gryta 2013). Minimal pressure gradients are required 

by the MD process unlike RO (El-Bourawi 2006, Gryta 2013). Heat would have to be 

added for an FGD application because the water cools readily upon discharge from the 

FGD system.  

MD has been utilized to concentrate waters with high TDS contents. For example, 

in one research study, a NaCl solution was concentrated by MD from 34,000 mg/L to more 

than 240,000 mg/L (Gryta 2013). The brine was further concentrated to a TDS level of 

300,000 mg/L; however a significant degradation in performance was observed (Gryta 
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2013). The main drawbacks to MD is a slow flux compared to RO (MD is not pressure 

driven) and variation in concentrate properties such as salinity and temperature can 

significantly negatively impact the process (Arthur 2005, Alkhudhiri et al. 2012).  

Proposed ZLD Process. The concentrated brines from any of an evaporator or the 

advanced membrane processes could be S/S through mixing with a pozzolanic agent. The 

S/S process has a lower energy penalty than crystallization because it relies upon the 

pozzolanic reactions to consume the water content remaining in a wastewater following 

the volume reduction process. The S/S process also produces a less hygroscopic solid with 

better physical properties and enhanced chemical stabilization compared to a crystallized 

salt.   

Figure 1.3 shows a flow diagram for the proposed process for FGD wastewater 

from a coal-fired power plant that burns bituminous coal and utilizes a forced-oxidation 

FGD system. The concentrated FGD brine will be mixed with BCFA, PC, and FS. FS is 

added to enhance immobilization of As, Cr, and Se. The final product is an S/S solid that 

is suitable for landfill disposal.  

1.6 SOLIDIFICATION/STABILIZATION 

S/S typically includes the mixing of wastes (liquids, sludges, brines, or solids) with 

PC, PC/CFA, CaO/CFA, or Ca(OH)2/CFA (Kameswari et al. 2001, Keller 2002, Batchelor 

2006, Qian et al. 2006, Singh 2006, Ramgobeen 2010). S/S utilizing PC was developed in 

the 1950s for stabilizing nuclear waste but the process was eventually expanded further for 

treating hazardous waste by the 1970s (Batchelor 2006). The process “has been identified 
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by the USEPA as the best demonstrated available technology for 57 regulated hazardous 

wastes” (Batchelor 2006).  

 
Figure 1.3. Proposed S/S technology. 
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2008, Mahlaba 2011c, Mahlaba 2011b, Mahlaba 2011a). Replacement of a portion of PC 

with CFA has been shown to increase the effectiveness of S/S mixtures through decreasing 

the permeability of the produced S/S solid (Connor et al. 1996, Batchelor 2006, Dhir 2006). 

CFA has been utilized in S/S mixtures to immobilize numerous waste streams which 

include significant heavy metal content including As, Cd, Cr, Hg, and Se (Solem-Tishmack 

et al. 1995, Akhter et al. 1997, Connor 1997, Kameswari et al. 2001, Pereira et al. 2001, 

Singh 2006, Kumpienem 2007). Cement-based S/S has been successfully utilized to treat 

municipal solid waste incineration (MSWI) fly ash (Lombardi 1998, Mangialardi 1999, 

Kamon et al. 2000, Keller 2002, Qian et al. 2006). 

Solidification. Solidification is important for achieving a successful S/S process. 

Solidification can increase waste strength and improve microstructure (Batchelor 2006). 

S/S removes free liquids from waste through pozzolanic reactions and the S/S blocks will 

have a lower surface area/volume ratio compared to CFA thereby significantly decreasing 

the surface area exposure to water in the landfill (Batchelor 2006). The produced S/S solid 

will also be less permeable than other materials such as CFA in the landfill; hence, water 

is more likely to flow around instead of through the material thereby decreasing leaching 

potential (Batchelor 2006).  

Stabilization. The goal of chemical stabilization is to decrease the mobility and 

toxicity of contaminants (Batchelor 2006). Contaminants in the dissolved phase are “free 

to diffuse down a pore to the external environment” (Batchelor 2006). Precipitation and 

adsorption are two important mechanisms of heavy metal immobilization in S/S (Batchelor 

2006). In addition, CFA contains a significant amount of FeIII  and AlIII oxides which can 

provide active sites for heavy metal sorption (Cornelis et al. 2008a, Garrabrants 2010). 
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Oxyanions can also be chemically incorporated into mineral phases such as Friedel’s salt 

or ettringite (Goñi et al. 2001, Baur et al. 2003b, Chrysochoou et al. 2006, Matschei et al. 

2007, Wu et al. 2010). pH has a significant impact on all of the above mentioned  

immobilization mechanisms. Typically S/S solids will have high pH due to the high CaO 

content.  

AsV. AsV can be stabilized in S/S through both precipitation and adsorption. 

Previous research has shown that Ca-AsV complex precipitation is involved in the AsV 

immobilization process with NaCaAsO4.7.5H2O being identified as the most likely 

dominant controlling phase (Akhter et al. 1997, Nishimura et al. 1998, Bothe Jr et al. 1999, 

Bothe et al. 1999, Moon et al. 2004, Cornelis et al. 2008a, Moon et al. 2008).  

The presence of FeIII in CFA can also could impact AsV immobilization through 

sorption. The Dzomback and Morel model showed that AsV sorbs readily to hydrous FeIII 

oxides at a high pH range of cement-based S/S (Cornelis et al. 2008a). Addition of FeII and 

FeIII to S/S mixtures has been shown to increase the immobilization of AsV (Miller et al. 

2000). Any FeII added to a S/S mixture is likely readily oxidized to FeIII.  

Cd. S/S utilizing PC has been shown to immobilize Cd through precipitation of 

Cd(OH)2 under high pH conditions (Akhter et al. 1990, Cartiedge et al. 1990). Previous 

researchers have also noted that Cd(OH)2 may be protected through microencapsulation in 

a calcium-silicate-hydrate (C-S-H) and/or a Ca(OH)2 matrix (Akhter et al. 1990, Cartiedge 

et al. 1990).    

CrVI. S/S utilizing PC has been shown in previous research to be effective in 

immobilizing CrIII, but not CrVI (Glasser 1997, Wang et al. 2000, Dermatas et al. 2003). 
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CrIII is less soluble than CrVI under the high pH conditions of S/S (Richard et al. 1991, 

Glasser 1997). However, previous researchers have noted that Cr(OH)3 precipitation is 

likely not the primary mechanism of CrIII immobilization and incorporation of CrIII in the 

Ca-AlIII-hydrate by replacing AlIII may be more important (Glasser 1997). Ca-CrIII-

hydrates have lower solubility than Cr(OH)3 under S/S conditions (Glasser 1997). The 

Dzomback and Morel model has also shown that CrIII is sorbs readily to hydrous FeIII oxide 

under the pH conditions of S/S (Cornelis et al. 2008a). 

Obviously, reduction of CrVI to CrIII could enhance Cr immobilization. FeII has been 

shown to reduce CrVI to CrIII  (Dermatas et al. 2003, Su et al. 2005). Addition of  FS to S/S 

mixtures greatly decreased CrVI leaching in previous research (Dermatas et al. 2003). Once 

CrVI is reduced to CrIII, CrIII can be incorporated in to the Ca-AlIII-hydrate phase, 

precipitated as Cr(OH)3 or adsorb to FeIII oxides.  

CrVI has also been noted to be stabilized in certain S/S conditions due anion 

exchange for SO4
2- in ettringite (Ca6Al2(OH)12(SO4)3⋅26H2O) (Batchelor 2006). However, 

ettringite only forms under certain S/S conditions.  

Hg. S/S has been shown effective in immobilizing HgII at concentrations levels 

below approximately 100 mg/kg which is within the scope of this work (Connor 1997). 

Previous researchers have noted that HgII can significantly sorb to SiIV and AlIII oxides in 

CFA (Rio et al. 2003). It has also been noted that HgII can precipitate as HgO in cement-

based S/S (McWhinney et al. 1990). It has also been hypothesized by other researchers that 

HgO precipitate can be microencapsulated in CaCO3, thereby enhancing immobilization 

(McWhinney et al. 1990). 



 23 

SeIV and SeVI. Se behaves differently based on the oxidation state (SeIV versus SeVI) 

in S/S matrices. The likely dominant immobilization phase for SeIV is CaSeO3 in S/S 

matrices as Baur and Johnson hypothesized that CaSeO3 controls SeIV solubility in cement 

materials where Ca2+ concentrations are on order of mM (Baur et al. 2003b). Reduction of 

SeVI to SeIV through the addition of chemical such as FS can enhance immobilization of Se 

as CaSeO3.  

The three most important cement minerals for heavy metal immobilization in S/S 

are monophase (Ca2(Al,Fe)(OH)6).X·xH2O), ettringite (Ca6Al2(OH)12(SO4)3⋅26H2O), and 

C-S-H (Keller 2002). Monophases are denoted by the shorthand AFm-X in cement 

chemistry where X is an anion and ettringite is denoted by the shorthand AFt-SO4 (Birnin-

Yauri et al. 1998, Renaudina et al. 1999, Goñi et al. 2001, Matschei et al. 2007, Guerrero 

et al. 2009, Balonis et al. 2010, Wu et al. 2010).  

Baur and Johnson studied the sorption of SeVI to the AFm-SO4, AFt-SO4, and C-S-

H by synthesizing these cement minerals and contacting them with SeVI in aqueous solution 

(Baur et al. 2003b). Baur and Johnson observed no appreciable SeVI sorption to C-S-H and 

weak/negligible SeVI sorption to AFt-SO4 (Rd = 0.03) (Baur et al. 2003b). The researchers 

did observe strong SeVI sorption to AFm-SO4 (Rd = 2.06) indicating that cement rich in 

AFm-SO4 would likely stabilize SeVI significantly (Baur et al. 2003b). In regards to AFm-

Cl, one study demonstrated that AFm-Cl effectively uptook SeVI from aqueous solutions 

through anion exchange by replacing Cl- (Wu et al. 2010). In general, the AFm phases have 

been shown significant affinity for immobilizing oxyanions such as SeVI through exchange 

for the anion (X) (Goñi et al. 2001, Chrysochoou et al. 2006, Matschei et al. 2007, Wu et 

al. 2010). 
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As mentioned previously, the AFm and AFt phases are similar in chemical formula 

and form readily in cement materials. Some of the properties that influence the formation 

of AFm phase over the AFt phase include the following – available Al2O3/SO4 molar ratio, 

pH, and temperature (Chrysochoou et al. 2006). The AFm phase is generally promoted 

over the AFt phase formation when the  Al2O3/SO4
2- molar ratios is greater than 1.0 

(Chrysochoou et al. 2006). The presence of SO4
2- promotes the formation of AFt-SO4 over 

the AFm phases (De Weerdt et al. 2011).  

Cl-. Formation of AFm-Cl has also been proposed to uptake Cl- in high salt waste 

(Lampris et al. 2009, Ramgobeen 2010, Lampris 2013). In one study, MSWI fly ash with 

a Cl- content of 130,000 to 220,000 ppm was S/S with the aim of immobilizing Cl- through 

AFm-Cl formation (Lampris et al. 2009). Over a 72 day tank leaching test, Cl- releases 

varied between 40% and 50% even with PC addition up to 50% (Lampris et al. 2009). The 

same author also reported general Cl- releases of 60% to 80% in tank leaching tests over a 

number of mixes and conditions in 64 days (Lampris 2013).  

FeSO4 Addition. One S/S stabilization strategy is FS addition to the mixture as a 

reducing agent (Connor 1997). This strategy has been utilized to stabilize CrVI 

contaminated waste (Connor 1997). FeII will likely be oxidized to FeIII in the S/S mixture 

and form FeIII oxides that have been shown to strongly sorb oxyanions including AsV, and 

CrVI under the pH conditions of cement-based S/S (Connor 1997, Cornelis et al. 2008a). 

Utilization of FS as the reductant in S/S has two distinct advantages: high solubility 

and availability as a waste product (Blanchard et al. 1981). FS is a waste product “produced 

in titanium dioxide manufacture and in steel pickling” (Blanchard et al. 1981). Hence, it is 
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likely that FS can be obtained at low cost. Even if waste FS is contaminated with heavy 

metals, FS is being utilized in a S/S process designed to immobilize heavy metals. The 

waste FS would be beneficially utilized and treated to a greater degree than its normal 

disposal process. Depending on how the proposed S/S technology is applied, the process 

could be considered the co-disposal of CFA, concentrated FGD wastewater, and waste FS.  

 The high solubility of FS allows for the reductant to be directly added to the S/S 

process. The dissolution of FS evenly distributes FeII throughout the S/S mixture. FS 

utilization does not require a separate reduction process upstream of S/S.  

1.7 COAL FLY ASH 

The U.S. produced approximately 48.4 million metric tons of CFA in 2013; 

however, approximately 21.2 million metric tons were beneficially utilized which left 27.2 

million metric tons for landfill disiposal (ACAA 2013). 48% of the mined coal in the U.S. 

is bituminous and 44% of the mined coal is sub-bituminous (USEIA 2015b). There exists 

a significant amount of CFA in the U.S. available for S/S processes. Depending on coal 

source and type, CFA can contain significant concentrations of metals including “Ag, As, 

B, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, and Zn” (Wang 2007a).  

CFA is one of the four coal combustion residuals (CCRs) (also including bottom 

ash, boiler slag-molten ash, and gypsum). CFAs are “spherical in shape” with a typical size 

“ranging in size from 0.01 to 100 μm” (Fatoba 2010). “Oxides Si, Al, Ca, and Fe” are the 

main inorganic components of CFA (Wang 2007a).   



 26 

 CFAs are classified as Class C or Class F by the American Society of Testing and 

Materials (ASTM) (ASTM 2012). Class F CFA is associated with “bituminous or 

anthracite coal” combustion while Class C CFA is associated with combustion of “sub-

bituminous or lignite coals” (Basham et al. 2007).  

CFA chemistry had a large impact on the S/S process. As mentioned above, sub-

bituminous CFA (SCFA, Class C CFA) is more reactive than bituminous CFA (BCFA) 

(Basham et al. 2007). Regarding the greater reactivity of SCFA versus BCFA, the most 

obvious difference between the two CFAs is the higher CaO content SCFA. SCFAs with 

CaO contents >20% can be classified as cementitious material (Papadakis 2000). The 

chemical composition of SCFA is closer to the composition of PC than BCFA (Papadakis 

2000). The high CaO content promotes pozzolanic reactions and increases the pH of the 

S/S mixture. CFA leachate pH is controlled by the dissolution of CaO and MgO which also 

occurs in the S/S process (Roy et al. 2011). Hence, SCFA will usually produce S/S solids 

with higher pH than BCFA.  

With regards to heavy metals, previous researchers have noted that As is present in 

CFA primarily as the oxyanion AsO4
3- (Goodarzi et al. 2001, Huggins et al. 2007, Goodarzi 

et al. 2008). As partitions to CFA from the flue gas majorly through sorption to Fe sites on 

BCFA and Ca sites for SCFA (Yudovich et al. 2005).  

Cd is typically associated with the CFA surface and is believed to be associated 

with aluminosilicates and metal oxides surfaces in CFA, although it may also be 

precipitated as Cd(OH)2 or CaCO3  (Jones 1995). Its leaching is limited at high pH due to 

the low solubility of Cd(OH)2.  
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The dominant Cr species in CFA is CrIII with Huffman et al. finding greater than 

95% CrIII of total Cr (Huffman et al. 1994, Huggins et al. 1999, Goodarzi et al. 2001, 

Goodarzi et al. 2008). Cr has been identified as residing mainly in the amorphous glassy 

aluminosilicate slag portion of CFA on both the surface and the entire CFA particle 

(Huffman et al. 1994, Jones 1995, Kim et al. 2004). 

Hg is present in flue gas as Hg0, HgP (Hg on particulate), and Hg2+ (Berry et al. 

2007, Feeley et al. 2009). HgP is easily removed through particulate collection devices 

(ESPs or baghouses) on the CFA. Hence, HgP is expected in the CFA (Feeley et al. 2009).  

Previous research has shown that the dominant Se species in CFA is the oxyanion 

SeO3
2- (Narukawa et al. 2005, Huggins et al. 2007, Wang et al. 2009). As with AsV, Se 

partitions to CFA from the flue gas majorly through sorption to Fe sites on BCFA and Ca 

sites for SCFA (Yudovich et al. 2005). 

1.8 SALT IMPACT ON BITUMINOUS COAL FLY ASH METAL LEACHING  

Implementation of the proposed S/S technology, or any known ZLD strategy, will 

greatly increase the salt mass disposed in coal-fired power industry landfills. If contact with 

salt increased metal leaching from CFA, negative environmental consequences would 

result. Little information exists on the impact of multiple cation Cl- salts on CFA metal 

leaching.  

Published scientific literature exists on impact of Cl- salts on metal mobility in soils, 

sediments, dredged materials, and organic matter in rivers (Doner 1978, Tyler et al. 1982, 

Christensen 1984, Pickering 1986, Khattak et al. 1989, Amrheln 1992, Bauske et al. 1993, 
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Paalman et al. 1994, Lützenkirchen 1997, Lores et al. 1998, Norrström et al. 1998, Kabala 

et al. 2001, Keon et al. 2001, Hatje et al. 2003, Millward et al. 2003, Bäckström et al. 2004, 

Guevara-Riba et al. 2005, Norrström 2005, Usman et al. 2005, Du Laing et al. 2007, Du 

Laing et al. 2008, Du Laing et al. 2009a, Du Laing et al. 2009b, Nelson et al. 2009, Acosta 

et al. 2011). Research on the impact of Cl- salts on metal mobility in the above referenced 

materials has centered on Cd, Cr, Cu, Ni, and Pb (Doner 1978, Tyler et al. 1982, 

Christensen 1984, Pickering 1986, Khattak et al. 1989, Amrheln 1992, Bauske et al. 1993, 

Paalman et al. 1994, Lützenkirchen 1997, Lores et al. 1998, Norrström et al. 1998, Kabala 

et al. 2001, Keon et al. 2001, Hatje et al. 2003, Millward et al. 2003, Bäckström et al. 2004, 

Guevara-Riba et al. 2005, Norrström 2005, Usman et al. 2005, Du Laing et al. 2007, Du 

Laing et al. 2008, Du Laing et al. 2009a, Du Laing et al. 2009b, Nelson et al. 2009, Acosta 

et al. 2011). In previous research on estuarine sediments, large increases in Cd leaching 

were observed due to Cl- complexation and/or competitive ion exchange with Ca2+, Mg2+, 

and Na+ (Du Laing et al. 2009b). Cl- salt content also significantly increased the mobility 

of other metals including Cr and Cu (Du Laing et al. 2009b). 

In the mining industry, hyper-saline solutions have been utilized to increase metal 

solubility through a Cl- leach processes to recover Ag, Cd, Cu, Ge, Ni, Pb, Sb, and Zn 

(Jonte et al. 1952, Duke et al. 1958, Reynolds et al. 1981, Winand 1991, Sinadinovic 1997, 

Senanayake 1998, Reddy 2005). A significant volume of scientific literature exists on 

utilization of Cl- hydrometallurgy to recover valuable metals from ores (Libuś et al. 1975, 

Pan et al. 1989, Bazarkina et al. 2010, Liu et al. 2011, Liu et al. 2012, Tian et al. 2012a, 

Tian et al. 2012b). 
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Cation Exchange. Competition for surface sorption sites between major cations 

(Ca2+, Mg2+, and Na+) and trace metals can likely impact CFA leaching. Previous research 

has shown that zeolites, which have high Si/Al ratios similar to CFA, favor sorption of 

divalent cations with lower hydration energies to active sites (Wingenfelder et al. 2005, 

Teutli-Sequeira et al. 2009). This research shows that cations with lower hydration energy 

will preferentially exchange for higher energy cations on active sites on the zeolite surface 

(Wingenfelder et al. 2005, Teutli-Sequeira et al. 2009). Researchers have noted 

electrostatic forces along with energy bonding both play a role in the cation preference for 

sorption on hydrous oxides  (Balistrieri et al. 1982, Paalman et al. 1994). Typically when 

comparing positively charged metals within the same valence state, typically the ion with 

the larger ionic radius will be preferentially sorbed to hydrous oxides (Paalman et al. 1994). 

It is apparent that the higher concentration of the major divalent cations (Ca2+ and Mg2+) 

and the potential to form higher energy bonds with active surface sites can increase trace 

metal leaching. 

Cl- Complexation. In Cl- hydrometallurgy, many cationic metals have been shown 

to complex with Cl- (Winand 1991). Researchers developed the “ following classification 

of strength of Cl- acceptors - AgCl > CuCl > PbCl2 > ZnCl2 > CuCI2 > FeCl3 > FeCl2 > 

NiCl2 > HCl, NaCl, KCl (C1- donors)” (Winand 1991). Cd is not in the classification 

because it is not a valuable recoverable metal. Cl- complexation moves Cd speciation 

“shifts towards CdCl+, CdCl2, CdCl3- and CdCl42-“ (Du Laing et al. 2008). Cl- complexation 

reduces activity (i.e. effective concentration) of cations in the and can promote cation 

mobility (Du Laing et al. 2009b).  
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Anion Exchange for Oxyanions. A previous study hypothesized anion exchange 

with Cl- for the increased mobilization of the oxyanion As from sediments during leaching 

tests with 1M MgCl2 addition (Keon et al. 2001). This process mobilized the ionically 

bound As from the sediment (Keon et al. 2001). 

1.9 LEACHING PROCEDURES  

 Toxicity Characteristic Leaching Procedure. The TCLP was utilized in this 

work. The TCLP is an equilibrium batch extraction test in which the initial pH of the 

leachant is defined (USEPA 1992a). The TCLP is a regulatory leaching test to determine 

whether a waste is non-hazardous or hazardous in the U.S. Acetic acid (CH3COOH) is 

utilized to adjust the initial pH of the leachant to either 2.88 or 4.93 depending on the pH 

of the solid  and  the liquid/solids (L/S) ratio for the test is 20 (USEPA 1992a, Halim 2004). 

The solids and liquids are extracted for 18±2 hours (USEPA 1992a). The solids must be 

less than 9 mm in size or be reduced in size prior to extraction (USEPA 1992a, Halim 

2004). 

 USEPA Method 1313. The USEPA Method 1313 (Liquid-Solid Partitioning as a 

Function of Extract pH for Constituents in Solid Materials using a Parallel Batch Extraction 

Procedure) is one of the methods within the leaching environmental assessment framework 

(LEAF) developed by Vanderbilt University (Garrabrants 2010). In contrast to the TCLP, 

the USEPA Method 1313 is a test defined by the final pH of the leachant not the initial pH 

of the leachant (Garrabrants 2010). The goal is to achieve a target pH in the leachant at the 

end of the extraction process (Garrabrants 2010). This target pH is achieved by adding 

inorganic HNO3 or NaOH to the leachant prior to the experiment (Garrabrants 2010). 
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Preliminary titration tests are conducted with the solid material before the experiment to 

determine the amount of acid or base added to the leachant to achieve the desired final pH 

(USEPA 2012). The required L/S ratio for the method is also 10 and the extraction time is 

24±2 hours (USEPA 2012).  

USEPA Method 1315. In addition to the crushed solid, batch leaching tests (TCLP 

and USEPA Method 1313), S/S solids in this work were evaluated in the cylindrical 

monolith form in a semi-dynamic, mass transport-based  leaching tests – the USEPA 

Method 1315 (Mass Transfer Rates of Constituents in Monolithic Materials Using a Semi-

Dynamic Tank Leaching Procedure) (USEPA 2013). The batch leaching tests are important 

for evaluating solubility phases controlling leaching at a certain pH; however, the semi-

dynamic, mass transport-based leaching tests can elucidate further understanding of 

contaminant release: (1) over a significant time period and (2) ”the result of diffusion 

through a tortuous pore network with aqueous partitioning at the solid–liquid interface” 

(De Windt et al. 2007, Garrabrants et al. 2014). 

In this method, solid monoliths are submerged in deionized water at a liquid to 

surface area (L/SA) ratio of 9 ± 1 mL/cm2 (USEPA 2013). Elemental diffusion is driven 

this process through concentration gradients “between the bulk contacting solution and the 

pore solution at the core of the monolith” (Garrabrants et al. 2014). Results from the 

USEPA Method 1315 are usually modeled with Equation 1.1 for radial diffusion from a 

cylinder into an infinite bath (USEPA 2013). 

M (mg
m2) = 2ρCo �

DOBS∙t
π

�
1
2
            (1.1) 
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In Equation 1.1, M is the mass released during leaching interval i (mg/m2); ρ is the 

density of the sample (kg/m3); Co is the contaminant concentration in the solid matrix 

(mg/kg); DOBS is the observed diffusivity (m2/s); and t is the leaching time (s) (USEPA 

2013). To overcome the limitations of Equation 1.1, it is proposed to compare the results 

of the USEPA Method 1315 experiments to a geochemical model of the system. 

Geochemical modeling will benefit the work by enhancing understanding of leaching from 

the S/S solid regarding: (1) chemical processes (including inside tortuous pore network), 

(2) mass transfer processes, (3) “competition between different dynamic processes” 

(chemical and mass transfer) (Tiruta-Barna 2008). 

1.10 GEOCHEMICAL MODELING 

Geochemical Speciation Models. Geochemical modeling has been widely utilized 

in numerous applications from hydrothermal system to modeling leaching from hazardous 

waste (USGS 2014). Speciation calculations are made by these models utilizing 

thermodynamic and kinetic principals (USGS 2014). Geochemical models typically take 

into account the following processes “mineral dissolution and precipitation, aqueous 

inorganic speciation and complexation, solute adsorption and desorption, ion exchange, 

oxidation–reduction or redox transformations, gas uptake or production, organic matter 

speciation and complexation, evaporation, dilution, water mixing, reaction during fluid 

flow, reactions involving microbial activity, and photoactivity” (USGS 2014). 

The USGS has developed several geochemical models including but not limited to 

WATEQ, SOMNEQ, and PHREEQC (Kharaka et al. 1973, Truesdell et al. 1973, USGS 

2014). WATEQ was developed to model water systems with the temperature range of 0-
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100 oC while SOLMNEQ’s temperature range extends up to 350 oC (USGS 2014). 

WATEQ utilizes Debye-Huckel utilizes the ion association method for calculations while 

SOLEMNEQ can utilize both the ion association and Pitzer method for calculations (USGS 

2014).  

PHREEQC, developed by the USGS, was utilized in this work for modeling 

described in Chapter 4 (Parkhurst et al. 2013). PhreePlot  was also utilized in order to 

optimize parameters and repeatedly and automatically run the program under a range of 

conditions (Parkhurst et al. 1999, Kinniburgh et al. 2010). In addition to the Pitzer method, 

the specific ion interaction theory (SIT) database is also included in PHREEQC. The SIT 

database was selected in this work’s modeling efforts due to the high ionic strength of the 

leaching experiments (0-5.5 M). The SIT has typically been utilized for ionic strengths 

approaching 3.5-4.0 M and the Pitzer model has been applied at extreme ionic strengths up 

to the “saturation of most salts” (Xiong 2006). Xiong noted that errors in activity 

coefficients calculated by SIT versus Pitzer model “is usually less than 10% at ionic 

strength up to 6–10 m at 25°C” (Xiong 2006). Hyks et al. noted that insufficient 

thermodynamic data is available to model a complex leaching system (Hyks et al. 2009). 

Due to the same issue regarding limited thermodynamic data availability, it was decided to 

utilize the SIT database for the modeling described in Chapter 4.  

Transport Models for Monolith Leaching. Geochemical models have been applied 

to evaluate leaching from S/S solids and cementitious materials including in semi-dynamic 

and dynamic leaching scenarios (Garrabrants et al. 2003, Halim et al. 2005, Tiruta-Barna 

et al. 2005, Malviya et al. 2006, De Windt et al. 2007, van der Sloot et al. 2007, Tiruta-

Barna 2008, Schiopu et al. 2009, Voglar et al. 2011, Seignette et al. 2014). De Windt et al. 
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conducted geochemical  and transport modeling for Pb release from a S/S monolith 

utilizing HYTEC (De Windt et al. 2007). Garrabrants et al. modeled 1-D leaching from a 

cement mortar utilizing an intermittent mass transport (IMT) model (Garrabrants et al. 

2003). Malviya et al. utilized Visual MINTEQ Version 2.3 to calculate geochemical 

speciation only in S/S solids, but the modeling did not included transport component 

(Malviya et al. 2006). Hamlin et al., Schiopu et al., and Tiruta-Barna et al. modeled 

leaching from cementitious materials or waste utilizing PHREEQC (Halim et al. 2005, 

Tiruta-Barna et al. 2005, Tiruta-Barna 2008, Schiopu et al. 2009).  

Applicable geochemical models can be divided into three categories as follows 

(Meeussen 2003, Tiruta-Barna et al. 2005, van der Sloot et al. 2007, Tiruta-Barna 2008, 

van der Sloot et al. 2012): speciation models with no transport capability – CHESS, EQ3/6, 

Geochemist’s workbench, MINTEQA2, and WATEQ4F; combined speciation and 

transport models - HYTEC, LeachXSTM (ORCHESTRA), and PHAST; and speciation 

models with limited transport capabilities – PHREEQC.   

LeachXSTM-Orchestra was developed by Vanderbilt University (Meeussen 2003, 

van der Sloot et al. 2012, Seignette et al. 2014). LeachXSTM software calculates 

adsorption/desorption to FeIII and AlIII oxides utilizing the Dzomback and Morel model 

(van der Sloot et al. 2012).  

With regards to leaching from monoliths, the Leach XSTM segments a solid 

monolith from the outside to the interior and calculates the local liquid and solid  

partitioning of each segment (Seignette et al. 2014). This same liquid-solid partitioning 

calculation is made at each time step due to changing conditions (Seignette et al. 2014). 
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The model simulates a well-mixed solution of a finite volume in contact with the monolith 

(Seignette et al. 2014).  
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CHAPTER 2.  IMMOBILIZATION OF HEAVY METALS BY 

SOLIDIFICATION/STABILIZATION OF CO-DISPOSED FLUE GAS 

DESULFURIZATION BRINE AND COAL FLY ASH 

2.1 ABSTRACT 

 Changes in the regulatory environment for the coal-fired power industry in the 

United States have driven the need to improve wastewater treatment and disposal practices, 

especially for wet flue gas desulfurization systems. One option for treatment of FGD 

wastewater is the implementation of zero liquid discharge (ZLD) treatment systems. ZLD 

can be achieved through the coupling of brine concentrator with a 

solidification/stabilization (S/S) process. This S/S process could be achieved by co-

disposing the concentrated FGD brines with coal fly ash (CFA) and Portland cement. S/S 

using bituminous CFA (BCFA) achieved good retainment (average 68−90%) of AsV, CdII, 

HgII and SeIV, in the toxicity characteristic leaching procedure (TCLP); however, poor 

retainment was observed for CrVI and SeVI. Separate experiments showed good sorption of 

AsV, CdII, HgII and SeIV (average 56−100%), but poor sorption of CrVI and SeVI, to S/S 

solids. Meanwhile, CrVI and SeVI retainment could be enhanced by addition of FeSO4 to 

the S/S mixture, likely due to reduction of these metals to lower oxidation states. Compared 

to BCFA, S/S using sub-bituminous CFA (SCFA) resulted in higher pH S/S solids and 

final TCLP leachate, which increased retainment of AsV, CdII and SeVI. Apart from the pH 

impact on the process, AsV retainment was likely improved by the high Ca content of SCFA 

and SeVI retainment improved by the incorporation of SeO4
2- in Friedel’s salt (AFm-Cl) by 

exchange with Cl-. Friedel’s salt was positively identified in the X-ray diffraction (XRD) 
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diffractogram for the SCFA S/S solids, but not for the BCFA S/S solids. Even so, reduction 

of SeVI plus S/S is likely a better long-term strategy than SeO4
2- substitution in the AFm 

phase because of higher stability under long-term landfill conditions.  

2.2 INTRODUCTION 

Changes in the regulatory environment for the coal-fired power industry in the 

United States have driven the need to improve wastewater treatment and disposal practices, 

especially for wet flue gas desulfurization (FGD) systems. Per the United States 

Environmental Protection Agency (USEPA), most contaminant loadings associated with 

coal-fired power plants result from wet FGD and ash handling systems (USEPA 2009). In 

a typical wet FGD system, Ca2+ or Ca2+-Mg2+ slurry is sprayed against the flue gas in order 

to remove SO2. Along with SO2, heavy metals are also removed from the flue gas and 

accumulate in the FGD slurry (Huang et al. 2013a). The resulting purge brines from FGD 

systems are complex wastewaters that contain significant concentrations of heavy metals 

including As, Ba, Cd, Cr, Hg, and Se (USEPA 2009), as well as high concentrations of 

salts in the forms of Ca2+, Mg2+, Na+, SO4
2-, and Cl-. Because the majority of wet FGD 

systems utilize Ca(OH)2 or CaCO3 as an alkaline sorbent (Blythe et al. 2008), most FGD 

wastewaters are dominated by Ca2+ as the major cation. The major anion in the wastewater 

is Cl- which is liberated during coal combustion.     

The two commonly employed wet FGD systems are forced-oxidation and inhibited-

oxidation systems. Forced-oxidation systems are more common and the USEPA expects 

the majority of new wet FGD systems installed in the future to be of this type (USEPA 

2009). In forced-oxidation systems, air is bubbled through the FGD slurry to oxidize CaSO3 
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to CaSO4·2H2O (gypsum), a product with commercial value. The oxidation of CaSO3 can 

also oxidize heavy metals, including Se and Cr to their more mobile and toxic forms 

(Batchelor 2006). Treatment of FGD wastewater from forced-oxidation systems can be 

particularly difficult to optimize.     

The USEPA recently released the proposed final revision to the Steam Electric 

Power Effluent Limitation Guidelines (ELG) which regulate FGD wastewater (USEPA 

2015). The revised guidelines include stringent limits on As, Hg, and Se release to the 

environment from FGD wastewater, resulting in increased treatment requirements. 

Treatment options for FGD wastewater include biological processes, Fe-based reduction, 

and zero liquid discharge (ZLD) strategies. ZLD options are particularly attractive to the 

coal-fired power industry due to the elimination of an environmental wastewater discharge 

and to the ability to recycle and reuse water in power plants. Potential ZLD technologies 

for FGD wastewater include falling film evaporators and crystallizers, wastewater spray 

dryers, brine concentrators, and advanced membrane processes (forward osmosis, 

membrane distillation, etc.). The residuals from each of these systems contain heavy metals 

and high salt concentrations that can be solidified/stabilized (S/S) through mixing with coal 

fly ash (CFA) and a pozzolanic agent to produce a final cementitous S/S solid residual.  

S/S consists of two processes: solidification (improving physical properties of 

waste) and stabilization (converting contaminants to less mobile and less toxic forms) 

(Batchelor 2006). S/S typically includes the mixing of wastes (sludges, brines, or solid 

waste) with Portland cement (PC), PC/CFA, CaO/CFA, or Ca(OH)2/CFA (Batchelor 

2006). The USEPA regards S/S as an established treatment technology for more than 57 

wastes (Paria et al. 2006, Mickley 2008).  
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We propose the co-disposal of concentrated FGD brines (e.g., from a brine 

concentrator) and CFA through S/S utilizing PC, as a ZLD disposal option for FGD 

wastewater. This approach has the advantages of achieving the benefits of ZLD with a 

lower energy penalty compared to crystallization, while co-handling two abundant 

materials generated together at coal-fired power plants. The focus of this study was to 

evaluate heavy metal immobilization efficacy in the final S/S solid. 

In this study, simulated concentrated FGD brines were prepared based on their 

expected composition from a bituminous coal-fired power plant that utilizes a forced-

oxidation FGD system. Note that bituminous coal contains more sulfur compared to sub-

bituminous coal. As a result, the bituminous coal-fired power plants generate flue gases 

that require more desulfurization than sub-bituminous power plants. As a result, the FGD 

wastewaters from bituminous power plants contain more heavy metals and salts and 

wastewaters from these plants are more challenging to treat.   

Simulated concentrated FGD brines were mixed with two types of CFA 

(bituminous and sub-bituminous coal) along with PC. The resulting S/S solids were cured 

and then subjected to the toxicity characteristic leaching procedure (TCLP) (USEPA 

1992a) to evaluate heavy metal (AsV, CdII, CrVI, HgII, SeIV, and SeVI) immobilization 

efficacy of the process. In some experiments, FeSO4 (FS) was added as a reductant to the 

S/S process. In addition, experiments on the sorption of heavy metals to the S/S solids were 

conducted. The produced S/S solids from the study were characterized by x-ray diffraction 

(XRD) and x-ray fluorescence (XRF) in order to gain mechanistic insight into heavy metal 

immobilization in the process.   
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2.3 EXPERIMENTAL SECTION 

2.3.1 Coal Fly Ashes 

Bituminous CFA (BCFA) was obtained from a coal-fired power plant in the 

southeastern United States. Sub-bituminous CFA (SCFA) was obtained from a separate 

coal-fired power plant also in the southeastern United States.  BCFA and SCFA metal 

concentrations were determined by completely digesting the solids and analyzing the 

liquids with inductively-coupled plasma mass spectrometry (ICP-MS) following USEPA 

Method 6020a (USEPA 2007). 

2.3.2 Simulated Brines 

All chemicals for preparation of the simulated brines were obtained from Fisher 

Scientific (Pittsburgh, PA) at reagent grade or higher. Simulated brines were produced by 

combining the following salts: Ca3As2O8, CaCl2.2H2O, CdCl2, HgCl2, MgCl2.6H2O, 

Mg(NO3)2.6H2O, MgSO4.7H2O, NaBr, NaCl, Na2CrO4, Na2HAsO4.7H2O, Na2SeO3, and 

Na2SeO4 in deionized water. The reagent grade deionized water was produced from a 

nanopure Millipore (Billerica, MA) water purification system. Simulated brines were 

prepared containing either SeIV or SeVI, but not both. Following mixing of the chemicals, 

the pH of the simulated brine was adjusted to 3.5 using HNO3, because the pH of FGD 

wastewater was expected to decrease from its near neutral value to the acidic range during 

evaporation due to Mg2+ precipitation as Mg(OH)2 or complexation as MgOH+. Salts were 

allowed to dissolve completely before the experiment was initiated, and no solids were 

visible in the brines. Table 2.1 shows the range of simulated brine composition utilized in 

the experiments. 
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Table 2.1. Composition of simulated FGD Brines used for S/S experiments. 
Composition Range (mg/L) 
TDS 140,000 - 264,000 
Ca2+  0 - 66,000 
Mg2+  4,000 - 12,000 
Na+ 3,000 - 75,000 
Cl-  60,000 - 120,000 
SO42- 0 – 6,000 
NO3- 375 - 85,000 
AsV 1.0 - 20.8 
CdII 0.4 - 23.5 
CrVI 0.9 - 32.8 
HgII 0.7 - 73.4 
SeIV 80.4 - 104.9 
SeVI 23.1 - 111.9 
Density 1,104 - 1,192 (g/L) 

           TDS = total dissolved solids 

HgII, SeIV, and SeVI concentrations were increased above what would be expected 

in a real concentrated FGD brine in order to evaluate the robustness of the process. Some 

simulated brines were prepared without heavy metal addition. S/S experiments were 

conducted utilizing these “metal-free” brines in order to determine the amount of heavy 

metals leaching from only CFA and PC in the high salt conditions.   

2.3.3 Solidification/Stabilization 

 Samples were S/S by mixing simulated brine, CFA, and PC. Type I/II PC was 

obtained from Home Depot in Acworth, Georgia. Preliminary experiments determined that 

the optimum ratio for S/S was approximately 60% CFA, 30% simulated brine, and 10% 

PC by mass, and the same ratio was utilized in subsequent S/S experiments. This ratio was 

varied slightly when FeSO4.7H2O (FS.7H2O) (from Fisher) was added to the mixture or 
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when simulated brine had a lower concentration of dissolved solids and the amount of 

water added (from the simulated brine) was decreased to control the water content.  

During the S/S process, CFA, simulated brine, and FS were first added to a bench-

scale mixer with a stainless steel bowl. The components were mixed for approximately 2 

min to allow chemical reduction to take place, and after the initial 2 min, PC was added to 

the mixture and mixing was continued for an additional 18 min. The resulting slurry was 

then poured into 76 mm (diameter) × 152 mm (height) cylindrical plastic concrete forms. 

The slurry was then allowed to cure for 13−28 days in a humid environment at room 

temperature. S/S experiments were conducted mostly with BCFA and selectively with 

SCFA. Although SCFA is a self-cementing ash and does not require PC addition to initiate 

the pozzolanic reactions, PC was added in the S/S experiments with SCFA to compare the 

impact of SCFA versus BCFA chemistry in the process.  

The formed S/S solids were crushed and subjected to the TCLP following the 

USEPA Method 1311 (USEPA 1992a). The TCLP leachate was digested and analyzed for 

heavy metal content according to the USEPA Method 200.8 utilizing an ICP-MS (USEPA 

1994a). Two of the S/S solid samples were subjected to leaching by the USEPA Method 

1313 (liquid-solid partitioning as a function of extractant pH using a parallel batch 

extraction procedure) (USEPA 2012). The TCLP and USEPA Method 1313 are both batch 

extraction procedures; however, USEPA Method 1313 differs from the TCLP in that it is 

a final extractant pH defined instead of an initial extractant pH defined. Preliminary 

titration tests were conducted to determine the amount of acid needed to adjust the final 

leachate pH to the desired level (targeted at 7.0 and 9.0 in this study) prior to the actual 

USEPA Method 1313 evaluation. Additional differences between the two leaching 
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methods included the use of an inorganic acid (HNO3) for USEPA Method 1313 versus 

organic acid (CH3COOH) for the TCLP, liquid-to-solid was lower for USEPA Method 

1313 (10) than the TCLP (20),  and extraction time for USEPA Method 1313 (24 ± 2 hours) 

was longer than that of TCLP (18 ± 2 hours). Generally, approximately 10 grams of solid 

was mixed with 100 mL of the extractant fluid with the amount of HNO3 required to 

achieve the final leachate pH in the USEPA Method 1313 evaluation. The leachate was 

digested before ICP-MS analysis according to the USEPA Method 200.8 (USEPA 1994a). 

2.3.4 Sorption Experiments 

The adsorbent material for the experiments was S/S solids prepared from BCFA 

(60%), simulated brine (30%) without heavy metal addition (i.e., heavy metal-free brine), 

and PC (10%), following the same S/S procedures described above with 13 days of solid 

curing time. The formed solid was crushed and ground so that the particles passed through 

a 170 Mesh Sieve (88-µm openings). 

Simulated brines were prepared at three different total dissolved solids (TDS) 

values as shown in Table 2.2. In addition to the simulated brines, sorption experiments 

were conducted utilizing deionized water for comparison and quality control. The pH of 

the brines and deionized water were adjusted to 3.5 with HNO3 prior to initiation of the 

sorption experiments.  

The sieved S/S solids (10 g) were contacted with 50 mL of the simulated brine or 

deionized water in 100-mL containers. Gentle stirring was provided by a magnetic stir bar. 

The S/S solids and the simulated brine were contacted for 48 h at room temperature. 
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Afterwards, the solid and liquid were separated by centrifugation. The supernatant was 

analyzed for heavy metals by the USEPA Method 200.8 (USEPA 1994a). 

Table 2.2. Compositions of simulated brines for sorption experiments. 

Composition 
Level 1 
(mg/L) 

Level 2 
(mg/L) 

Level 3 
(mg/L) 

TDS  65,000 130,000 261,000 
Ca2+ 9,000 18,000 37,000 
Mg2+ 4,000 8,000 17,000 
Na+  6,000 11,000 23,000 
Cl- 25,000 50,000 100,000 
NO3- 21,000 42,000 85,000 
AsV 1.5 - 2.2 1.6 - 2.2 1.8 - 2.5 
CdII 0.8 - 1.8 0.8 - 1.9 0.7 - 1.6 
CrVI 5.1 - 6.1 5.4 - 5.9 5.6 - 5.8 
HgII 23.7 17.6 15.3 
SeIV 88.3 91.5 84.1 
SeVI 87.4 - 95.2 85.1 - 91.8 84.0  - 93.6 

2.3.5 X-Ray Diffraction and Fluorescence Analysis 

BCFA S/S and SCFA S/S solids were crushed and ground to pass a 325 Mesh Sieve 

(45-µm openings). BCFA, SCFA, and PC were also passed through the same sieve. The 

crystalline phases of the CFAs, S/S solids, and PC were determined by powder X-ray 

diffraction (XRD) utilizing a PANalytical X-Pert Pro X-ray diffractometer (Almelo, The 

Netherlands) utilizing  Cu-Kα radiation. The XRD was operated at a voltage of 40 kV and 

a current of 40 mA. 2ϴ values ranging from 4o to 70o were evaluated. The XRD was 

operated at a voltage of 40 kV and a current of 40 mA. The step size was 0.02º and the time 

per step varied from 256-272 s/step. X-ray fluorescence (XRF) analysis was conducted for 

BCFA, SCFA, PC, and BCFA S/S solids utilizing a S8 Tiger Model from the Bruker 

Corporation (Karlsruhe, Germany). 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Solids Analysis 

Table 2.3 shows metal composition of the solids examined in this study determined 

by total digestion. As shown in Table 2.3, BCFA had higher Al (120,308 ppm) and Fe 

(67,145 ppm) contents than SCFA and PC (3,622–23,320 ppm for Al; 22,321–39,981 ppm 

for Fe), but lower Ca content (13,299 ppm versus 172,634–517,288 ppm). After S/S, the 

BCFA S/S solid had relatively high Ca content (95,961 ppm) due to the addition of the 

simulated brine and PC to the S/S mixture. Note that the BCFA S/S solid showed a much 

higher Si content (171,524 ppm) than BCFA, SCFA and PC (13,815–28,146 ppm). It is 

unlikely that the other three solids’ Si contents are as low as measured, but rather Si in the 

BCFA S/S solid was more easily mobilized during the digestion compared to the other 

three solids due to the BCFA S/S solid having undergone pozzolanic reactions.  

The BCFA, SCFA, and BCFA S/S solid contained higher concentrations of heavy 

metals (As, Cd, and Se) than PC. Table 2.4 and Figure 2.1 shows the XRF analysis of the 

solids. The amorphous SiO2 phase content was higher (38.5–54.3%) in BCFA, SCFA, and 

BCFA S/S solid than in PC (21.7%). The XRF results indicated that the SiO2 contents were 

comparable for BCFA, SCFA and BCFA S/S solid, which differed from the total digestion 

results in Table 2.3, but was consistent with expectation. SCFA, PC, and BCFA S/S solid 

had a higher CaO content (28.1–63.8%) than BCFA (1.6%). The contrast in CaO content 

between SCFA and BCFA is one of the most important differences between the two CFAs 

for S/S. Figure 2.1 shows that BCFA, SCFA, and BCFA S/S solid had a higher Al2O3 

content (18.2–25.2%) than PC (4.1%).  
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Table 2.3. Chemical composition of solids in this study. 
(a)  Bulk Elements 

Composition BCFA (ppm) SCFA (ppm) PC (ppm) BCFA S/S 
Solid (ppm) 

Al 120,308 23,320 3,622 98,313 
Ca 13,299 172,634 517,288 95,961 
Fe 67,145 39,981 22,321 35,079 
Mg 2,653 16,592 5,359 6,953 
K 16,228 <3,957 <3,804 12,357 
Si 13,815 28,146 12,773 171,524 

 
(b) Significant Elements (Concentrations > 100 ppm) 

Composition BCFA (ppm) SCFA (ppm) PC (ppm) BCFA S/S 
Solid (ppm) 

Ba 662 4,709 60 774 
B <193 537 <190 <200 

Cu 152 184 30 128 
Cr 141 63 104 127 
Pb 100 34 7 51 
Mn 219 226 433 163 
Ni 129 56 27 83 
Sr 31 155 <19 32 
Ti 7,912 8,585 1,838 5,971 
V 302 223 54 209 
Zn 243 95 250 98 

 
(c) Trace Elements (Concentrations < 100 ppm) 

Composition BCFA (ppm) SCFA (ppm) PC (ppm) BCFA S/S 
Solid (ppm) 

Sb 8 2 <1 4 
As 88 19 6 61 
Be 20 3 <1 15 
Cd 1 2 <1 4 
Co 50 23 5 41 
Mo 16 <1 <1 <1 
Se 7 14 <2 25 
Ag <1 <1 <1 <1 
Tl 4 <1 <1 2 
W 7 2 2 5 
U 18 7 1 9 
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Table 2.4. XRF analysis of solids in this study.  

Phase BCFA SCFA PC 
BCFA S/S 

Solid 

SiO2 54.3% 36.6% 21.7% 40.1% 

CaO 1.6% 28.1% 63.8% 26.4% 

Al2O3  25.2% 18.2% 4.1% 19.7% 

Fe2O3 11.9% 6.4% 3.7% 6.4% 

K2O 2.6% 0.4% 0.5% 1.7% 

Cl 0.2% 0.0% 0.1% 1.6% 

TiO2 1.6% 1.6% 0.4% 1.3% 

MgO 0.8% 6.3% 0.9% 1.2% 

Other 1.9% 2.4% 4.7% 1.7% 

 

2.4.2 Heavy Metal Retainment 

The effectiveness of the S/S process was evaluated by determining the % of mass 

of the heavy metal that was retained on the solid during the TCLP test using the equation 

(2.1):  

% 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  𝑀𝑀𝑀𝑀−(𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀)
𝑀𝑀𝑀𝑀

 ∗ 100  (2.1) 

MB was the mass of heavy metal in the simulated brine added to the S/S mixture; 

ME was the mass of heavy metal detected in the TCLP extract; and MFA was the amount 

of heavy metal detected in the TCLP extract from the S/S samples made with the heavy 

metal-free brine when available. The typical final TCLP leachate pH varied from 5.1 to 

7.8, depending on FS addition and brine composition. 
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Figure 2.1. XRF analysis of solids in this study. Note: the S/S solid was prepared from 
brine, BCFA, and PC. 

Figure 2.2 shows the typical heavy metal retainment by the S/S process. In general, 

good retainment was observed for AsV, CdII, HgII, and SeIV (average 68−90%). The 

addition of FS increased the retainment of AsV from an average 77% to nearly 100%. The 

retainment for CrVI was inconsistent; however, the addition of FS to the S/S mixtures 

increased and stabilized the retainment of CrVI from average 59% to 99%. The addition of 

FS to the S/S mixtures increased the retainment of SeVI from an average 16-46%. The 

retainment of each heavy metal is discussed individually below. 
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AsV. Previous research has shown S/S successful immobilizing AsV (Choi et al. 

2009). Ca-AsV complex precipitation is the likely dominant immobilization mechanism as 

these complexes are at low solubility at neutral and high pH (Nishimura et al. 1998, Bothe 

Jr et al. 1999, Cornelis et al. 2008a, Moon et al. 2008). NaCaAsO4.7.5H2O, 

Ca4(OH)2(AsO4)2·4H2O, Ca5(AsO4)3OH and Ca3(AsO4)·3(2/3)H2O have identified by 

previous researchers as important AsV precipitates in cement based S/S or waste mixed 

with lime with NaCaAsO4.7.5H2O as the likely most important phase (Akhter et al. 1997, 

Bothe et al. 1999, Moon et al. 2004, Moon et al. 2008). 

 
Figure 2.2. Typical retainment of heavy metals evaluated by TCLP in the S/S solids 
made from concentrated simulated brine, BCFA and PC at mass ratio of 3:6:1. Note: n = 
22 for AsV, CdII, and CrVI; n = 20 for HgII; n = 15 for AsV + FS, CrVI + FS, and SeVI +FS; 
n = 12 for SeVI; n = 6 for SeIV.   

The Ca-AsV complex precipitation mechanism agrees with the results of good AsV 

retainment shown in Figure 2.2. Ca is abundant in the S/S mixture through the high CaO 

content of PC and the high dissolved Ca2+ concentration in the simulated brine. PC addition 
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to the S/S process mixture significantly increased the pH, which favors Ca-AsV complex 

precipitation.   

Many Ca-AsV complex precipitates are not stable in the presence of atmospheric 

CO2 and will react with CO2 to form CaCO3 and soluble AsV (Akhter et al. 1997). This 

mechanism may explain the variability in the Figure 2.2 AsV retainment results as differing 

amounts of Ca-AsV complex precipitates may have reacted with CO2 to mobilize AsV, 

leading to the variable results. 

Addition of FeII and FeIII has been shown to increase the AsV retainment in S/S 

solids (Palfy et al. 1999, Miller et al. 2000, Choi et al. 2009). The Dzombak and Morel 

model indicated that AsV sorbs readily to hydrous FeIII oxides at a pH range in common 

with in common with cement-based S/S (Cornelis et al. 2008a). Miller et al. conducted a 

cement-based S/S treatment study for AsV contaminated soils with FS and Fe2(SO4)3 

addition (Miller et al. 2000). Addition of both FeII and FeIII in this study enhanced AsV 

immobilization in S/S with PC (Miller et al. 2000). In the current study, it is likely that FeII 

(from FS) was oxidized to FeIII in the S/S mixture enhancing AsV immobilization through 

sorption on the generated FeIII oxides, leading to better retainment (Figure 2.2).  

CdII. Cement-based S/S has been shown effective immobilizing CdII (Akhter et al. 

1990, Cartiedge et al. 1990). The dominant immobilization mechanism for CdII is 

precipitation of Cd(OH)2 under high pH conditions (Akhter et al. 1990, Cartiedge et al. 

1990). Previous researchers suggested that Cd(OH)2 precipitate can form the nuclei of 

crystallization for the mineral calcium silicate hydrate (C-S-H) (Akhter et al. 1990, 

Cartiedge et al. 1990). It is believed that Cd(OH)2 is protected by microencapsulation in C-
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S-H and/or Ca(OH)2 (crystalline portlandite) matrix (Akhter et al. 1990, Cartiedge et al. 

1990). The Cd(OH)2 precipitate would have some protection against the lower pH  

conditions of the TCLP leachant. The mechanism described above agrees with the good 

CdII retainment results shown in Figure 2.2.  

CrVI. Cement-based S/S has been shown to be effective immobilizing CrIII, but not 

CrVI (Glasser 1997, Wang et al. 2000, Dermatas et al. 2003). CrIII stabilizes more readily 

than CrVI due to the lower solubility of CrIII under the high pH conditions of S/S and a 

chemical incorporation process occurring during S/S (Richard et al. 1991, Glasser 1997). 

Glasser noted that Cr(OH)3 precipitation alone cannot account for CrIII immobilization in 

S/S matrices (Glasser 1997). Glasser indicated that chemical incorporation of CrIII in the 

Ca-AlIII-hydrate phase by replacing AlIII could play a larger role in CrIII immobilization in 

S/S  than Cr(OH)3 precipitation (Glasser 1997). The solubility of Ca-(CrIII, AlIII)-hydrates 

is lower than Cr(OH)3 under S/S conditions (Glasser 1997). In addition, results from the 

Dzombak and Morel model indicate that CrIII readily sorbed to hydrous FeIII oxides in the 

high pH conditions of S/S (Cornelis et al. 2008a).   

FeII has can reduce CrVI to CrIII (Dermatas et al. 2003, Su et al. 2005). Addition of  

FS to S/S mixtures greatly decreased CrVI leaching in previous research (Dermatas et al. 

2003) as well as in the current study (Figure 2.2). Thus, the mechanism of CrVI reduction 

by FS to CrIII is likely responsible for the improved CrVI retainment. The FeII from the FS 

will be oxidized to form FeIII oxides in the S/S solid which could enhance CrIII retainment. 

In some cases, CrVI retainment was increased above 100% with FS addition (Figure 2.2); 

this situation likely results from: (i) CrVI from the BCFA being reduced to CrIII, which 

could be incorporated in the Ca-AlIII-hydrate phase, precipitate as Cr(OH)3, or adsorb to 
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FeIII oxides (existing and new) and (ii) some of the CrIII originally from the BCFA could 

also be incorporated in the Ca-AlIII-hydrate phase or adsorb to newly formed FeIII oxides.  

HgII. S/S has been shown effective in immobilizing HgII at concentrations below 

100 mg/kg (Connor 1997). HgII concentrations (primarily from the simulated concentrated 

wastewater) in the S/S solids in this Work were quite low at 6.9-19.0 mg/kg. The HgII 

contributed from BCFA and PC to the S/S mixture was negligible (<0.2 mg/kg).  

Rio and Delebarre noted that HgII can sorb significantly to SiIV and AlIII oxides in 

CFA (Rio et al. 2003). In fact, the researchers indicated that the release of CaO from CFA 

in aqueous solution could enhance sorption by increasing the number of active sites for 

HgII to sorb (Rio et al. 2003). It is known CaO is released from CFA (particularly SCFA) 

in the cement hydration process (Detwiler 1997). However, as shown in Figure 2.1, BCFA 

contains only a 1.6% CaO compared to 28.1% CaO for SCFA, so not as many active sites 

would become available for BCFA as for SCFA. 

McWhinney et al. noted that HgII can precipitate as HgO in cement-based S/S 

(McWhinney et al. 1990). In addition,  precipitated HgO could be protected from water 

contact through microencapsulation with CaCO3, thereby enhancing HgII immobilization 

(McWhinney et al. 1990). A combination of the HgO precipitation and sorption to CFA 

mechanisms described above likely account for the good HgII retainment results shown in 

Figure 2.2.   

SeIV and SeVI. SeIV and SeVI behave differently in S/S (Cornelis et al. 2008a, 

Cornelis et al. 2008b). CaSeO3 precipitation is the likely dominant SeIV immobilization 

mechanism in S/S. Baur and Johnson hypothesized that CaSeO3 controls porewater SeIV 
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solubility in cement materials where Ca2+ concentrations are on the mM level (Baur et al. 

2003b). While evaluating the sorption of SeIV and SeVI to cement minerals, Baur and 

Johnson observed that CaSeO3 precipitated in solutions at SeIV concentrations above 

2.5×10-4 M and pH 9.01–9.33 (Baur et al. 2003b). Wang et al. demonstrated that SeIV 

leaching from CFA can be decreased by Ca(NO3)2 addition, which likely resulted in 

CaSeO3 precipitation (Wang et al. 2009). The data produced by Wang et al. implies that 

CFA SeIV leaching is controlled by CaSeO3 under high Ca2+ conditions (Wang et al. 2009). 

The likely dominant SeVI immobilization mechanism in S/S is chemical 

incorporation of SeO4
2- in the structure of the cement hydration products: ettringite 

(Ca6Al2(OH)12(SO4)3⋅26H2O) or monophase (Ca2(Al,Fe)(OH)6).X·xH2O) (Zhang et al. 

2003, Cornelis et al. 2008a, Moon et al. 2009, Wang et al. 2009, Wu et al. 2010). 

Monophases are denoted in cement chemistry by the shorthand AFm-X  where X is an 

anion which could include CO3
2-, Cl-, OH-, or SO4

2- and ettringite is denoted by AFt-SO4 

(Birnin-Yauri et al. 1998, Renaudina et al. 1999, Goñi et al. 2001, Matschei et al. 2007, 

Guerrero et al. 2009, Balonis et al. 2010, Wu et al. 2010). AFm-X in cement typically 

includes more AlIII than FeIII in the structure (Matschei et al. 2007). AFm-Cl is known as 

Friedel’s salt (Matschei et al. 2007). The AFm phase structure consists of positively 

charged Ca2[Al(OH)6]+ layers, producing a net charge imbalance (Goñi et al. 2001, 

Matschei et al. 2007). Anions (X) collect in the area between the Ca2[Al(OH)6]+ layers to 

balance the mineral’s charge (Goñi et al. 2001, Matschei et al. 2007). The exchange of 

interlayer anions with external anions is typically highly favored (Goñi et al. 2001, 

Matschei et al. 2007).  
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Baur and Johnson studied the sorption of SeVI to AFm-SO4, AFt-SO4, and calcium 

silicate hydrate (C-S-H) through mineral synthesis and contact with SeVI in aqueous 

solution (Baur et al. 2003b). The researchers observed no significant SeVI sorption to C-S-

H and weak SeVI sorption to AFt-SO4 (Rd = 0.03) (Baur et al. 2003b). The researchers 

observed strong SeVI sorption to AFm-SO4 (Rd = 2.06) indicating that cement rich in AFm-

SO4 would significantly immobilize SeVI  (Baur et al. 2003b). Through XRD analysis, Baur 

and Johnson determined that SeVI  sorption increased Ca2[Al(OH)6]+ layer spacing likely 

due to SeVI replacing SO4
2- (Baur et al. 2003b). Wu et al. demonstrated that AFm-Cl 

effectively and rapidly removed SeVI from aqueous solutions through SeVI exchanging for 

Cl- in the interlayers (Wu et al. 2010). In general, AFm phases have shown significant 

affinity for immobilizing oxyanions through anion exchange (Goñi et al. 2001, 

Chrysochoou et al. 2006, Matschei et al. 2007, Wu et al. 2010). 

AFt-SO4
2- and AFm-X stabilities are both pH sensitive (Chrysochoou et al. 2006). 

AFt-SO4 can form in the pH range of 11.0 to 13.0 (Chrysochoou et al. 2006), and begins 

to dissolve into CaSO4⋅2H2O and Al(OH)3 when pH drops below 10.5 (Chrysochoou et al. 

2006). AFm phases can form at pH values above 12.0 (Chrysochoou et al. 2006), and can 

dissolve when pH drops below 11.0 (Chrysochoou et al. 2006). 

In general, the experimental results for BCFA S/S in this study (Figure 2.2) agree 

with the existing scientific literature on SeIV and SeVI immobilization mechanisms in 

cement-based S/S. Good retainment was seen for SeIV but poor retainment for SeVI. If any 

SeVI were incorporated in the AFt or AFm phases in the BCFA S/S solids, a majority was 

probably dissolved in the lower pH conditions of the TCLP extractant.  
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FS addition increased SeVI retainment. As mentioned, the components were mixed 

for 2 minutes prior to PC addition so that the simulated brine could react with FeII at lower 

pH conditions. Reduction of SeVI (to SeIV) by FeII was thermodynamically favorable in the 

simulated brine pH conditions. It is believed that the dominant mechanism for enhanced 

SeVI retainment is reduction of SeVI to SeIV followed by precipitation as CaSeO3 in the high 

Ca and high pH conditions of the process. Adsorption to the generated hydrous FeIII oxides 

might contributed slightly to the overall immobilization of SeVI and SeIV (Cornelis et al. 

2008a). 

2.4.3 Impact of FeSO4 Addition 

Figure 2.3 shows the impact of FS dose added to the S/S mixture on the retainment 

of AsV, CrVI and SeVI. A general trend of increasing heavy metal retainment was observed 

with increasing FS addition and the resulting mechanisms are likely the same as those 

discussed in the previous sections.  

Notably, the addition of even a small quantity of FS increased the AsV retainment 

to nearly 100% (Figure 2.3). FS addition above 1% increased CrVI retainmnet to 

approximately 100% (Figure 2.3). The Figure shows that maximum SeVI retainment was 

achieved with the addition of 2% to 6% FS. Note that FS addition decreased the strength 

of the solid and this effect became pronounced when FS addition exceeded 3%. Thus, FS 

addition should be optimized to minimize SeVI leaching while maintaining the S/S solid 

strength.    
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Figure 2.3. Impact of FS addition to S/S mixture on heavy metal retainment. S/S was 
conducted on concentrated simulated brines, BCFA, and PC. 

2.4.4 Sorption Experiments 

To obtain insight on the propensity of heavy metals to sorb to S/S solids, separate 

sorption experiments were conducted. S/S solids for the sorption experiments were 

prepared using a heavy metal-free simulated brine, BCFA, and PC. The ground and sieved 

S/S solids were contacted with simulated brines containing heavy metals. The TDS of the 

simulated brines was varied from 65,000 to 261,000 mg/L. No FS was added to the sorption 

experiments. Equation 2.2 was utilized to calculate the percent heavy metal sorption to the 

solid: 

% 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  �1 −  𝑀𝑀𝑀𝑀−𝑀𝑀𝐹𝐹
𝑀𝑀𝑀𝑀

�  ∗ 100 (2.2) 
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MB was the mass of heavy metal in the brine solution in the sorption experiment; MD was 

the mass of heavy metal detected in the supernatant after the sorption experiment; and MF 

was the mass of heavy metal detected in the supernatant of the suspension with the heavy 

metal free simulated brine. 

As Figure 2.4 shows, the sorption experimental results were similar to the S/S 

experimental results, i.e., good removal was seen for AsV, CdII, HgII, and SeIV (average 

56−100%) whereas poor removal was seen for SeVI and CrVI. These results were similar to 

the results of S/S without FS addition, indicating that the same main immobilization 

mechanisms described in the earlier section are likely operative in the observed results in 

Figure 2.2.  

Notably, Figure 2.4 shows a clear trend of decreasing HgII sorption with increasing 

TDS content of the simulated brine. This decrease in adsorption potential was likely due to 

Cl--complexation of HgII at the higher TDS values, which decreased the effective 

concentration thereby promoting HgII mobility to the liquid phase (Zhang et al. 2002). 

Comparatively, no similar trend of decrease in HgII retainment was seen for increasing 

TDS in the simulated brine in the S/S process (Figure 2.2). Zhang et al. found that 

increasing Cl- did not impact the efficacy of a S/S process for a Hg-containing brine 

utilizing activated carbon (AC) and cement (Zhang et al. 2002). The authors suggested that 

the S/S process efficacy was not affected due to formation of a gel membrane during the 

cement hydration process on the outside of AC pores preventing mobilization of Hg (Zhang 

et al. 2002). While the current experiments did not include AC,  McWhinney et al. indicated 

that precipitated HgO could potentially be protected from water (and therefore Cl-) contact 

in S/S solids due to microencapsulation with CaCO3 (McWhinney et al. 1990). 
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Figure 2.4. Sorption of heavy metals from brine solutions (TDS = 65K-261K mg/L) to 
the S/S solid. S/S solid was prepared from heavy metal-free simulated brine, BCFA and 
PC at mass ratio of 3:6:1. Note: For each TDS level, n = 6 for AsV, CdII, and CrVI; n = 4 
for SeVI; n = 2 for HgII and SeIV.  

2.4.5 Comparison of BCFA and SCFA in S/S 

BCFA and SCFA S/S were conducted to compare the impact of CFA chemistry on 

the process (Figure 2.5). The S/S experiments were conducted utilizing the same simulated 

brine but slightly different S/S recipes. The BCFA S/S mixtures were 30% simulated brine, 

60% BCFA, and 10% PC (ratio varied slightly to accommodate FS addition). The SCFA 

S/S mixture was 25% simulated brine, 65% SCFA, and 10% PC (ratio also varied slightly 

with FS addition). The recipe was adjusted because the initial SCFA S/S mixture appeared 

to have a water content that was too high. It is also noted that, although SCFA is a self-

cementing CFA, PC was added in the S/S mixture so that the impact of CFA chemistry on 

the S/S process could be compared. Figure 2.5 shows the final TCLP leachate pH for the 

S/S solids.  
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Figure 2.5. TCLP evaluation of heavy metal retainment by S/S with BCFA versus with 
SCFA. S/S was conducted by mixing simulated brine, BCFA and PC at mass ratio of 3:6:1, 
or by mixing simulated brine, SCFA and PC at mass ratio of 2.5:6.5:1. The ratio was 
slightly varied when FS addition was included.  

The results show that SCFA S/S was more effective than BCFA S/S immobilizing 

AsV without FS addition (Figure 2.5). Note that AsV retainment results in BCFA S/S in this 

set of experiments was atypically low (average 3.3%) compared to the typical retainment 

values observed (17.6-103.3%); nevertheless, the trend of SCFA S/S being more effective 

was still valid. The better performance of SCFA S/S was likely due to the higher SCFA 

CaO content compared to BCFA (28.1% versus 1.6%) which increased the pH. The final 

TCLP leachate pH for SCFA S/S solid was higher than the BCFA S/S solid (9.7 versus 

7.8) (Figure 2.6). Ca-AsV complexes are less soluble at the higher pH. In addition, more 

Ca was added to the S/S mixture with SCFA which also promoted Ca-AsV complex 

precipitation. With the addition of only 0.5% FS, AsV retainment increased to 

approximately 100% for the BCFA S/S  likely due to AsV sorption to produced FeIII oxides.  
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Figure 2.6. Final TCLP leachate pH of S/S solids made with BCFA versus with SCFA. 
The S/S samples were the same as those shown in Figure 2.4. 

SCFA S/S was more effective than BCFA S/S immobilizing CdII (Figure 2.5). The 

better performance of SCFA S/S was likely due to the higher pH of SCFA S/S, as CdII is 

insoluble as Cd(OH)2 at high pH conditions. Note the decreasing trend of final TCLP 

leachate pH with increasing FS addition for both CFA S/S processes, with the trend more 

pronounced for BCFA S/S than for SCFA S/S (Figure 2.5). As a result of this trend, CdII 

retainment decreased with increasing FS addition for more for BCFA S/S, from 85% (final 

leachate pH = 7.8) with no FS addition to 35% (final leachate pH = 6.4) with 1.7% FS 

addition.  

Figure 2.5 shows that neither the BCFA nor SCFA S/S was effective immobilizing 

CrVI. However, BCFA S/S with the addition 1.7% FS completely stabilized CrVI likely due 

to CrVI reduction to CrIII followed by CrIII incorporation into the Ca-AlIII-hydrate phase, 

sorption to produced FeIII oxides, or precipitation of Cr(OH)3. FS addition did not enhance 
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CrVI immobilization in SCFA S/S. As mentioned previously, during the first 2 min of the 

S/S process, the CFAs, FS, and simulated concentrated wastewater were mixed prior to PC 

addition. The S/S mixture pH during the first 2 min period was much higher for SCFA 

versus BCFA S/S. The higher pH for SCFA S/S during this initial period hindered the 

ability of FS to reduce CrVI (Connor 1997). 

Figure 2.5 shows that SCFA S/S was more effective than BCFA S/S immobilizing 

SeVI. We propose that two mechanisms likely contributed to these results. The first 

mechanism was SeVI incorporation into AFm phase structure. As mentioned, AFm-X can 

effectively immobilize SeVI by exchanging for the anion (X) in the interlayer structure. 

Since AFm phases form at higher pH values, the higher SCFA S/S conditions likely 

enhanced AFm phase formation and SeVI retainment (Chrysochoou et al. 2006). Although 

the AFm-SeVI may begin to dissolve at the lower pH conditions of the TCLP test 

(Chrysochoou et al. 2006), it is possible that the phase did not completely dissolve during 

the TCLP test, thus exhibiting significant SeVI retainment. Figures 2.5 and 2.6 shows that 

as the final TCLP leachate pH decreased for the SCFA S/S solids  so did the SeVI retainment 

likely due to more AFm phase dissolving and releasing SeVI.  

The second proposed SeVI immobilization mechanism was SeVI reduction by FS. 

Figure 2.5 shows that FS addition increased the SeVI immobilization for BCFA S/S. This 

result was observed although the final TCLP leachate pH decreased with increasing FS 

addition (Figure 2.6). Thus, the likely dominant SeVI immobilization mechanism was 

reduction to SeIV followed by CaSeO3 precipitation. With the addition of 1.7% FS to the 

BCFA S/S process, SeVI retainment was at the highest level, approximately 68%, for either 

CFA S/S process.  
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Further evidence for these two proposed immobilization mechanisms is provided 

by the results of the USEPA Method 1313 evaluation (USEPA 2012). The solids evaluated 

by this method included BCFA S/S solids with 1.7% FS addition and SCFA S/S solids with 

no FS addition. These were the solids with the highest SeVI retainment for each of the CFA 

S/S processes. By adjusting the final leachate pH for both S/S solids to be similar (both 

near 7.0 or 9.0), the impact of the SeVI controlling phases on retainment can be more 

directly compared. Note that the final leachate pH for one of the target pH 9.0 samples 

drifted slightly lower to 8.0; however, this sample is included as this pH is within range of 

interest (Figure 2.7).  

Figure 2.7 shows that SeVI retainment by the BCFA S/S solid was hardly impacted 

by lowering the final leachate pH from 9.0 to 7.0. In contrast, SeVI retainment by the SCFA 

S/S solid showed considerable decrease (59% to an average of 54.5%) with decreasing 

leachate pH. These results strongly suggest that Se release is controlled by two different 

phases in the SCFA S/S solid and BCFA S/S solid.  

The Figure 2.7 data supports AFm-SeVI solubility controlling Se release from the 

SCFA S/S solid and CaSeO3 solubility controlling Se release from the BCFA S/S solid. 

AFm-SeVI solubility is more pH sensitive than CaSeO3 in the pH range relevant to the 

USEPA Method 1313 evaluation (Page et al. 1983, Suryavanshi et al. 1996b, Glass et al. 

2000a, Glass et al. 2000b, Reddy et al. 2002, Baur et al. 2003a, Nishimura et al. 2007, 

Nishimura et al. 2009). 
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Figure 2.7. SeVI retainment by S/S with BCFA versus with SCFA evaluated using the 
USEPA Method 1313. The BCFA S/S solid was prepared by mixing simulated brine, 
BCFA, PC and FS.7H2O at mass ratio of 9.3:19.7:3.3:1.0. The SCFA S/S solid was 
prepared by mixing simulated brine, SCFA and PC at mass ratio of 2.5:6.5:1.0 without FS 
addition. 

Comparison between CaSeO3 solubility (experimental) versus pH graphs by 

Nishimura and Hata and AFm-SeVI solubility (thermodynamically modeled) versus pH 

graphs calculated by Baur and Johnson indicate that AFm-SeVI solubility increases at a 

higher rate with decreasing pH than CaSeO3 (Nishimura et al. 2007, Nishimura et al. 2009). 

Moreover, previous research has shown that Cl--containing minerals in cement such as 

AFm-Cl significantly release Cl- as pH decreases due to dissolution (Page et al. 1983, 

Suryavanshi et al. 1996b, Glass et al. 2000a, Glass et al. 2000b, Reddy et al. 2002). Reddy 

et al. observed that essentially 100% of the acid-soluble Cl- present in a cement material 

was released as the pH dropped from an initial value of 12.75 to 11.0 over 10 days; much 

of the acid-soluble Cl- in the cement material was expected to be present in AFm-Cl which 

would likely have a similar solubility to AFm-SeVI (Reddy et al. 2002).      
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2.4.6 X-Ray Diffraction Analyses 

Figure 2.8 shows the XRD patterns for BCFA, BCFA S/S solid, SCFA, and SCFA 

S/S solid. The XRD pattern of PC is shown in Figure 2.9. The recipe for the BCFA S/S 

solid was 24.4% simulated brine, 62.0% BCFA, 10.0% PC, and 3.7% FS. The recipe for 

the SCFA S/S solid was 25.0% simulated brine, 65.0% SCFA, and 10.0% PC. 

Figure 2.8 shows that the largest difference between the SCFA and SCFA S/S XRD 

diffractograms is the presence of Friedel’s salt (AFm-Cl) in the SCFA S/S solid. The 

presence of AFm-Cl was confirmed by the peaks at 2ϴ values of 11.3, 22.7, and 23.4, 

which match with the AFm-Cl XRD patterns in the databases of the International Center 

for Diffraction Data (Table 2.5) and in multiple previous studies (Renaudina et al. 1999, 

Goñi et al. 2001, Balonis et al. 2010). AFm phase formation in the SCFA S/S solid is 

logical. SCFA S/S mixture contains large quantities of the necessary chemical components 

for AFm phase formation-CaO and Al2O3. Both SCFA and PC contain a large CaO 

component as shown in the XRF analysis (Figure 2.1) and the XRD diffractogram (Figure 

2.8). In addition, the SCFA S/S solid pH is high due to the higher than BCFA due to this 

CaO content (Chrysochoou et al. 2006). Figure 2.8 shows that SCFA contains significant 

amount of tricalcium aluminate (3CaO·Al₂O₃ or C3A), and cements high in C3A are known 

to promote AFm phase formation due to high reactive Al2O3 content (Suryavanshi et al. 

1996a). The high Cl- content added from the simulated brine would promote Cl- as the 

major anion in the AFm phase as addition of NaCl and CaCl2 has been shown to enhance 

AFm-Cl fomation in cements (Suryavanshi et al. 1996a). 
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Figure 2.8. XRD patterns of SCFA, SCFA S/S solid, BCFA, and BCFA S/S solid. The 
SCFA S/S solid was made by simulated brine, SCFA and PC at mass ratio of 2.5:6.5:1. 
The BCFA S/S solid was made by simulated brine, BCFA, PC and FS at mass ratio of 
2.44:6.2:1:0.37. A, anhydrite; B, bassanite; C, calcium carbonate; C3A, tricalcium 
aluminate, Fe, iron oxide (Fe2O3); FrS, Friedel’s salt; G, gypsum; L, lime; M, mullite; P, 
periclase; Q, quartz. 

The main crystalline phases of SCFA included CaO (lime), CaSO4 (anhydrite), 

C3A, MgO (periclase) and SiO2 (quartz). The main crystalline phases for the SCFA S/S 

solids included AFm-Cl, CaCO3 (calcium carbonate), C3A, CaSO4.2H2O (gypsum), MgO 

and SiO2 (Figure 2.8 and Table 2.5). The results indicate that a portion of the CaO in the 
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SCFA is consumed during the cement hydration process as expected. In addition, a portion 

of the CaSO4 hydrated to form CaSO4.2H2O.  

 
Figure 2.9. XRD diffractogram for PC. CA, calcium aluminate; C2S, dicalcium silicate; 
and C3S, tricalcium silicate.  

The main mineral phases for BCFA were 3Al2O3. 2SiO2 (mullite), SiO2 (quartz) 

and Fe2O3 (iron oxide). The main mineral phases for the BCFA S/S solid were the same as 

for the BCFA with the addition of CaSO4.0.5H2O (bassanite) and CaCO3 (Figure 2.8 and 

Table 2.5). More Fe2O3 was observed in the BCFA S/S solid versus the BCFA; the 

increased presence of Fe2O3 is likely due to FS addition to the S/S mixture. A very small 

amount of AFm-Cl could be present in the BCFA S/S XRD diffractogram, but the peak at 

11.3 was not intense enough for positive identification.  
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Table 2.5. Peaks utilized to identify minerals in XRD diffractograms.  
(a)  SCFA 

Mineral 2ϴ for Identified Peaks (o) Reference PDF No.  

A 25.3 00-037-1496 
C3A 33.2 00-038-1429 
L 37.3 and 53.9 00-037-1496 
P 42.8 and 62.2 00-004-0829 
Q 20.7 and 26.5 00-033-1161 

 
(b) SCFA S/S Solid 

Mineral 2ϴ for Identified Peaks (o) Reference PDF No.  

C 29.3 00-005-0586 
C3A 33.2 00-038-1429 
FrS 11.3, 22.7, and 23.3 00-078-1219 
G 31.0 00-021-0816 
P 42.9 and 62.2 00-004-0829 
Q 20.8 and 26.5 00-033-1161 

 
(c) BCFA 

Mineral 2ϴ for Identified Peaks (o) Reference PDF No. 

Fe 33.1 and 35.6 01-072-6226 
M 16.4, 26.1, 35.2, 40.8, and 60.5 00-015-0776 
Q 20.7 and 26.5 00-033-1161 

 
(d) BCFA S/S Solid 

Mineral 2ϴ for Identified Peaks (o) Reference PDF No.  

B 14.7 01-074-2787 
C 29.3 00-005-0586 
Fe 33.1 and 35.6 01-072-6226 
M 16.4, 26.2, 35.2, 40.8, and 60.6 00-015-0776 
Q 20.7 and 26.5 00-033-1161 

Note - Reference XRD diffractograms are from the database of the International Center for 
Diffraction Data.  
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Fewer differences exist between the XRD diffractograms of BCFA and the BCFA 

S/S solid, compared to SCFA and the SCFA S/S solid (Figure 2.8). The most obvious 

difference between the two CFAs is the higher CaO content of SCFA. In addition, although 

BCFA has a larger total Al2O3 content (amorphous and crystalline) (Figure 2.1), SCFA 

could have larger reactive Al2O3 content due to most of the crystalline Al2O3 being present 

as C3A in SCFA versus inert, non-reactive mullite in BCFA. The greater SCFA reactive 

Al2O3 content promotes cement hydration reactions and AFm phase formation. 

2.4.7 Environmental Relevance 

The advantage of the AFm-SeVI solubility controlling mechanism is that no 

reductant addition is necessary. However, the AFm-SeVI mechanism may not be as robust 

under a landfill disposal scenario as the FS reduction mechanisms because landfill leachate 

pH will decrease over time. For alkaline CFA, the initial landfill leachate pH can range for 

10.5 to 11.0; however, geochemical controls can cause the leachate pH to decrease to a 

typical range of 8.0 to 9.0 over time due to the exhaustion of Ca and Mg oxides (Talbot et 

al. 1978, Roy et al. 2011). CaO will also be exhausted from the S/S solids over time and 

the pH will decrease and as leachate pH decreases, a significant amount of the AFm-SeVI 

may dissolve releasing SeVI to the environment. A better long-term disposal strategy for 

the S/S process may be SeVI reduction to SeIV followed by CaSeO3 precipitation which is 

less soluble than AFm-SeVI at environmentally relevant neutral pH conditions due to it’s 

higher thermodynamic stability.  
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2.5 CONCLUSIONS 

Overall, the evaluated S/S process achieved good retainment (average of 68−90%) 

for AsV, CdII, HgII, and SeIV. The addition of FS could enhance the retainment of AsV, CrVI, 

and SeVI. The addition of even a very small amount of FS increased the retainment of AsV 

to approximately 100% likely due to formation of FeIII oxides that are good absorbents for 

AsV. FS addition reduced brine’s CrVI to CrIII, which enhanced immobilization by 

incorporation of CrIII into Ca-AlIII-hydrate phase, sorption of CrIII to FeIII oxides, and 

precipitation of Cr(OH)3. Some of the CrVI from the CFA was also reduced and 

immobilized likely via the same mechanisms. The mechanism of enhanced immobilization 

of SeVI by FS addition was likely reduction to SeIV and CaSeO3 precipitation.  

The S/S results generally agreed well with the sorption experiment results, in which 

good sorption to the S/S solid was seen for AsV, CdII, HgII, and SeIV (average of 56−100%) 

while poor sorption was seen for CrVI and SeVI. The sorption experiments also revealed a 

decrease in HgII sorption with increasing TDS content of the brine due to the Cl--

complexation of HgII. 

Comparison between BCFA and SCFA S/S indicated that SCFA S/S solids had 

greater retainment of AsV, CdII, and SeVI compared to BCFA S/S solids. AsV retainment 

was likely enhanced by the higher pH and CaO content, CdII by better Cd(OH)2 stability at 

the higher pH condition, and SeVI by SeO4
2 substitution in the AFm phase produced at the 

higher pH, CaO content, and reactive Al2O3 content of SCFA S/S. Support for this 

proposed mechanism was provided by identification of AFm-Cl in the SCFA S/S solid 
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utilizing XRD.  XRD diffractograms showed that SCFA was more reactive in the S/S 

process than BCFA.  

However, utilization of thm-SeO4 stabilization mechanism may not be sustainable 

for safe long-term landfill disposal. Reduction of SeVI plus S/S may be a better long-term 

strategy than AFm substitution under environmentally relevant pH conditions.   
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CHAPTER 3.  MASS TRANSPORT RELEASE OF HEAVY METAL 

OXYANIONS FROM SOLIDIFIED/STABILIZED CO-DISPOSED 

FLUE GAS DESULFURIZATION BRINE AND COAL FLY ASH 

MONOLITHS 

3.1  ABSTRACT 

The United States (US) coal-fired power industry is facing increasing pressure to 

improve wastewater disposal practices. One of the most pressing waste disposal issues is 

the treatment of flue gas desulfurization (FGD) wastewater. Zero liquid discharge (ZLD) 

strategies are gaining significant interest in the industry and can include the coupling of a 

brine concentrator and solidification/stabilization (S/S) process. This current project 

evaluated the mass transport release of major components (Ca2+, Cl-, Mg2+, Na+, and SO4
2-

) and heavy metal oxyanions (As, Cr, and Se) from solids produced by this process utilizing 

a United States Environmental Protection Agency (USEPA) Method 1315 evaluation. This 

study evaluated the impact of FeSO4 (FS) addition to the S/S mixture on the process. FS 

addition to the S/S process decreased the solid’s cumulative release and flux at shorter 

leaching times for the major components: Ca2+, Cl-, Mg2+, Na+, and SO4
2-; however, this 

impact was only transient. FS addition significantly decreased release of oxyanions As, Cr, 

and Se. The results indicate that FS addition could increase the likelihood of successful 

long-term disposal of S/S solids of concentrated FGD brines containing these heavy metal 

oxyanions. Leach XSTM modeling added additional evidence for the proposed leaching 

mechanisms for As and Se.  
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3.2  INTRODUCTION 

The United States (US) coal-fired power industry is facing increasing pressure to 

improve wastewater treatment and disposal practices. One of the industry’s most important 

waste disposal issues concerns flue gas desulfurization (FGD) wastewater. The US 

Environmental Protection Agency (USEPA) recently released the proposed revision to the 

Steam Electric Power Effluent Limitation Guidelines (ELG) which regulate FGD 

wastewater treatment and includes limits for As, Hg, NO2
-/NO3

-, and Se (USEPA 2015). 

FGD wastewater is a complex and difficult to treat water matrix with significant 

heavy metal content (As, Cd, Cr, Hg, and Se) and large salt content (Ca2+, Mg2+, Na+, SO4
2-

, and Cl-) (USEPA 2009). Concern exists that currently proposed conventional treatment 

technologies may not reliably meet the proposed ELG limits. Zero liquid discharge (ZLD) 

strategies are gaining significant interest due to the certainty of meeting ELG limits, 

elimination of an environmental wastewater discharge, and potential water reuse 

maximization in coal-fired power plants.  

Any ZLD strategy for FGD wastewater will likely include volume reduction as a 

first step utilizing an advanced membrane or an evaporation process. The produced 

concentrated FGD brine from the volume reduction step will then likely be 

solidified/stabilized (S/S). S/S consists of two processes: solidification (producing a solid 

product with improved physical properties) and stabilization (converting a contaminant to 

its less mobile and less toxic forms) (Batchelor 2006). S/S typically includes mixing of 

wastes (liquids, sludges, brines or solid waste) with Portland cement (PC), PC/coal fly ash 

(CFA), CaO/CFA, or Ca(OH)2/CFA (Kameswari et al. 2001, Keller 2002, Batchelor 2006, 
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Qian et al. 2006, Singh 2006, Ramgobeen 2010). The process “has been identified by the 

USEPA as the Best Demonstrated Available Technology for 57 regulated hazardous 

wastes” (Batchelor 2006). It should be noted that although ZLD strategies have the 

advantage of producing no liquid discharge, this strategy greatly increases solid waste 

challenges as the FGD wastewater metals and salts must be successfully stabilized for the 

long term in an industry landfill.  

We previously demonstrated the promising success of this ZLD strategy producing 

stabilized S/S solids with low heavy metal leaching potential (Renew et al. 2016b). This 

work evaluated metal leaching through the toxicity characteristic leaching procedure 

(TCLP) (USEPA 1992a) and USEPA Method 1313 (liquid-solid partitioning as a function 

of extract pH using a parallel batch extraction procedure) (USEPA 2012). Our previous 

work demonstrates that S/S using bituminous coal fly ash (BCFA) can achieve good 

retainment (68-90%) for AsV, CdII, HgII and SeIV; however, good retainment for CrVI and 

SeVI oxyanions requires addition of a reductant such as FeSO4 (FS). FS reduces SeVI to 

SeIV, which is immobilized by forming CaSeO3 precipitate in the S/S solids; however, it’s 

challenging to increase the retainment efficiency above 60% without a significant addition 

of FS (>2% by weight) (Renew et al. 2016b).  

The current study focuses on leaching of the major components and heavy metal 

oxyanions from the S/S solids utilizing USEPA Method 1315 (Mass Transfer Rates of 

Constituents in Monolithic or Compacted Granular Materials Using a Semi-Dynamic Tank 

Leaching Procedure) (USEPA 2013). Unlike batch extraction methods (TCLP and USEPA 

Method 1313), USEPA Method 1315 can elucidate further understanding of contaminant 

release: (1) over a significant time period and (2) ”the result of diffusion through a tortuous 
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pore network with aqueous partitioning at the solid–liquid interface” (De Windt et al. 2007, 

Garrabrants et al. 2014). Leaching from solid monoliths rather than crushed solids are 

evaluated in this method which more closely resembles a leaching scenario for an actual 

S/S solid disposal process (USEPA 2013). Deionized water is the leachate for this method 

which results in pH conditions closer to an actual S/S disposal scenario compared to the 

TCLP which is designed to replicate a municipal solid waste disposal scenario (Garrabrants 

et al. 2014).  

The objective of this study was to evaluate the mass transport release of the major 

components (Ca2+, Cl-, Mg2+, Na+, and SO4
2-) and the heavy metal oxyanions (As, Cr, and 

Se) utilizing USEPA Method 1315. Little Cd leaching was observed in the experiments so 

Cd was not included in the study. The impact of FS addition on the mass transport release 

of the elements was evaluated. Parallel to the leaching experiments, Ca2+, Cl-, Na+, As, and 

Se leaching from the S/S solids was modeled utilizing the LeachXSTM software which 

provided insight into leaching mechanisms (Seignette et al. 2014).  

The S/S solids were produced by mixing BCFA, PC, and simulated concentrated 

FGD brine with increasing amounts of FS. This scenario chosen for these experiments 

represents the most challenging FGD brine disposal scenario for power plants that (1) 

utilize bituminous coal and (2) have forced-oxidation scrubbers. Because bituminous coal 

contains more sulfur than sub-bituminous coal, power plants that use this coal generate a 

larger volume of FGD wastewater with higher concentrations of heavy metals and salts 

(USEPA 2009). Approximately 48% of the coal produced in the US is bituminous and 44% 

is sub-bituminous (USEIA 2015b). As the name implies, forced-oxidation FGD systems 

bubble air through the FGD slurry to oxidize CaSO3 to CaSO4·2H2O (gypsum), a product 
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with commercial value. This process can also oxidize heavy metals, including Se and Cr 

to their more mobile and toxic forms making the produced brine more difficult to treat or 

manage.  

3.3 EXPERIMENTAL SECTION 

3.3.1 Materials 

CFA was obtained from a bituminous coal-fired power plant in the southeastern 

United States. PC was obtained from Home Depot (Cartersville, Georgia). Simulated 

concentrated FGD brine was obtained from a power company, and the composition is 

detailed Table 3.1. The simulated brine was analyzed for metals utilizing inductively 

coupled plasma-mass spectrometry (ICP-MS) (Series 7700, Agilent Technologies, Santa 

Clara, California) through a combination of USEPA Methods 200.8 and 6020a (USEPA 

1994a, USEPA 2007). The brine sample was digested by adding 5% HNO3/5%HCl and 

heating the sample for 1 h at approximately 95 oC. After cooling, the samples were 

analyzed utilizing ICP-MS. Anions were analyzed utilizing USEPA Method 300.0 by ion 

chromatography (IC) (Dionex ICS-5000 DP, ThermoFisher, Waltham, Massachusetts) 

(USEPA 1993). Ferrous sulfate (FeSO4.7H2O, FS) was obtained from Fisher Scientific 

(Pittsburgh, PA).    
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Table 3.1. Simulated FGD brine composition.  
(a) Bulk Elements 

Element Concentration (µg/L) 
Ca 33,664,945 
Mg 3,312,244 
Na 2,187,124 
K 745,440 
Si 110,445 
Sr 195,860 

(b) Trace Elements 
Element Concentration (µg/L) 
Sb 101 
AsV 1,916 
Ba 2,872 
B 4,676 
Cd 9,163 
CrVI 863 
Cu 292 
Fe 2,581 
Pb 28 
Hg 1,060 
Mo 16 
SeVI 17,971 
Ag 36 
Ti 45 

(c) Anions 
Element Concentration (mg/L) 
Br- 1.3 
Cl- 80,270 
F- < 0.5 
NO2- (as N) 581 
NO3- (as N) 50 
SO42- 245 
PO43- (as P) < 0.5 
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The simulated brine whose chemical content is shown in Table 3.1 contained high 

Ca2+, Mg2+, and Na+ concentrations (2,000-34,000 mg/L). The anion with the highest 

concentration was Cl- (80,000 mg/L). The brine also contained significant AsV, CdII, CrVI, 

HgII, and SeVI content with concentrations varying from 900-18,000 µg/L. As, Cr, and Se 

were added to the simulated brine at the highest oxidation state to simulate forced-oxidation 

FGD scrubber conditions. 

3.3.2 Solids Analysis 

CFA and PC were digested utilizing a modified version of the USEPA Method 

3052 (USEPA 1996b). In this modified method, 0.2 grams of the solid were digested in a 

10 mL mixture of 10%HF-20%HCl-20%HNO3-50%H2O. After the first stage of heating 

in the microwave assisted digester, 40 mL of water was added to the closed vessel and the 

mixture was heated again. Digestates were analyzed utilizing a combination of the USEPA 

Methods 200.8 and 6020a (USEPA 1994a, USEPA 2007).  

3.3.3 Solidification/Stabilization 

BCFA was mixed with the simulated brine and FS (if applicable) for 2 min in a 

benchtop mixer. Table 3.2 shows the formulations of the 4 mixtures in the project. After 2 

min, PC was added to the mixture and the mixture was homogenized for an additional 18 

min. The resulting cement slurry mixture was then poured into 7.62-cm diameter × 15.24-

cm (cut to a height of 9.52-12.54 cm) plastic forms. The S/S solid was allowed to cure for 

58-62 days. Table 3.3 shows the mass, surface area, and leachate interval volume for the 

monolith samples during the USEPA Method 1315 evaluation.   
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3.3.4 USEPA Method 1315 

Samples were placed in containers and on stands according to the requirements of 

USEPA Method 1315 (USEPA 2013). The leachant was deionized water. The monolith 

surface area to leachant volume for all samples was approximately 10.0 mL/cm2. The 

leachant was refreshed at cumulative leaching times of 0.08, 1.04, 2, 7, 14, 35, 49, 78, and 

119 days except that leaching for Mixture B was stopped after 49 days due to loss of a 

sample.  

Table 3.2. S/S mixtures. 

Mixture Simulated Brine  BCFA FS.7H2O PC 
A 26.20% 63.8% 0.0% 10.0% 
B 25.30% 62.9% 1.8% 10.0% 
C 24.40% 62.0% 3.7% 10.0% 
D 23.50% 61.0% 5.5% 10.0% 

 
Table 3.3. S/S solid mass, surface area, and interval leachate volume. 

Mixture  
Mass 

(grams) 
Surface Area 

(cm2) 
Leachate 

Volume (mL) 
Leachate Volume/Surface 

Area (mL/cm2) 
A 717 319 3,190 10.0 
B 860 342 3,420 10.0 
C 812 384 3,830 10.0 
D 834 391 3,910 10.0 

These leachate refreshment intervals differ somewhat from those suggested by 

USEPA Method 1315. Leachate samples were taken at the end of each interval through 

filtration utilizing 0.45-µm mixed cellulose ester (MCE) filters (Fisher Scientific). The 

conductivity, oxidation reduction potential (ORP), and pH of the leachate samples were 

immediately measured after filtration. The filtered leachate was also analyzed for metals 

utilizing a combination of the USEPA Methods 200.8 and 6020a or USEPA Method 200.8 
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with ICP-MS (USEPA 1994a, USEPA 2007). The filtered leachate samples for analysis by 

the combination of USEPA Methods 200.8 and 6020a were digested as described for the 

brine sample in Section 3.3.1 before ICP-MS analysis. When a few amount of the samples 

were measured by USEPA Method 200.8 only, the filtered leachate samples were digested 

and prepared per USEPA Method E200.2 (USEPA 1994b). The leachate samples were 

analyzed for Cl- and SO4
2- utilizing the USEPA Method 300.0 with IC (USEPA 1993). 

3.3.5 USEPA Method 1313 

The S/S solid samples were also subjected to leaching by the USEPA Method 1313 

at a target pH of 2.0±0.5 (USEPA 2012). This method was applied to determine the element 

concentration available for leaching. Preliminary titration tests were conducted to 

determine the amount of HNO3 needed to adjust the final leachate pH to 2.0±0.5. 

Approximately 2 g of solid was mixed with 20 mL of deionized water with HNO3 addition. 

Samples were tumbled for 24 hours. After filtering with a 0.45-µm MCE filter, the leachate 

was analyzed for metals utilizing ICP-MS through a combination of the USEPA Methods 

200.8 and 6020a (USEPA 1994a, USEPA 2007) and for anions utilizing the USEPA 

Method 300.0 with IC (USEPA 1993). Prior to ICP-MS analysis the filtered leachate 

samples were digested as described for the brine in Section 3.3.1.  

3.3.6 Establishment of LeachXSTM Model  

LeachXSTM Version 2.0.87 (Seignette et al. 2014) was utilized to model Ca2+, Cl-, 

Na+, As, and Se release from the S/S solid for Mixture A during the USEPA Method 1315 

evaluation. As and Se were selected for the model because these two heavy metals along 

with Hg are most associated with FGD wastewater and are part of the proposed final 
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revision to the ELGs. Cl- was selected as it is an important contaminant for FGD 

wastewater disposal due to it’s high content in FGD wastewater and high solubility. Ca2+ 

and Na+ were included in the model for calibration purposes and their high content in FGD 

wastewater.  

LeachXSTM-ORCHESTRA, developed by the Vanderbilt University (Meeussen 

2003, van der Sloot et al. 2012, Seignette et al. 2014).  Table 3.4 shows the geometric and 

physical parameters of the S/S solid that were input into the model.  

The S/S monolith column was divided into 20 sections that extended into the 

column structure. The existing mineral phases already present in the LeachXSTM model did 

not yield an acceptable match between observed and modeled data for As; hence, a new 

phase was added for As. A candidate phase, NaCaAsO4.7.5H2O, was selected for modeling 

purposes as this phase has been identified by previous researchers as the dominant AsV 

mobility in an As-contaminated soil S/S with cement kiln dust (CKD), in CFA spiked with 

As salts, and in kaolinite slurries treated with lime (Akhter et al. 1997, Bothe et al. 1999, 

Moon et al. 2004, Moon et al. 2008). No Log K values for NaCaAsO4.7.5H2O was found 

in literature so the Log K value was modeled utilizing Equation 3.1. 

NaCaAsO4.7.5H2O = Na+ + Ca2+ + AsO4
3- + 7.5H2O     (3.1) 

Through modeling, the Log K value for the above equation was varied until the 

modeled results closely matched the experimental results. The Log K value was found to 

be approximately 8.0. Although modeling does not prove that NaCaAsO4.7.5H2O was the 

controlling phase for As release, modeling verifies that the phase or phases controlling As 

release will have a similar solubility to the modeled solubility of NaCaAsO4.7.5H2O. 
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Table 3.4. Geometric and physical parameters for Mixture A S/S solid.  

Section 
Number 

Leach 
Surface 

Area (cm2) 

Skeletal 
Density 
(g/cm3) Depth (cm) 

Thickness 
(cm) 

Volume 
(cm3) 

1 319.1 2.3 0.020 0.020 6.2 

2 316.1 2.3 0.050 0.030 9.4 

3 311.5 2.3 0.084 0.034 10.6 

4 306.2 2.3 0.124 0.040 12.0 

5 300.2 2.3 0.169 0.046 13.5 

6 293.4 2.3 0.221 0.052 15.2 

7 285.6 2.3 0.282 0.060 16.9 

8 276.8 2.3 0.351 0.069 18.8 

9 266.9 2.3 0.430 0.080 20.8 

10 255.6 2.3 0.522 0.092 22.8 

11 243.0 2.3 0.627 0.105 24.8 

12 228.9 2.3 0.748 0.121 26.8 

13 213.2 2.3 0.888 0.139 28.5 

14 195.9 2.3 1.048 0.160 29.9 

15 176.8 2.3 1.232 0.184 30.6 

16 156.1 2.3 1.444 0.212 30.7 

17 133.8 2.3 1.687 0.243 29.6 

18 110.3 2.3 2.300 0.613 51.8 

19 61.0 2.3 3.000 0.700 28.0 

20 22.0 2.3 3.810 0.810 7.3 

With regards to leaching from monoliths, the Leach XSTM segments a solid 

monolith from the outside to the interior and calculates the local liquid and solid  

partitioning of this segment (Seignette et al. 2014). This same liquid solid partitioning 
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calculation is made at each time step due to changing conditions (Seignette et al. 2014). A 

well-mixed solution of a finite volume in contact with the external surface of the monolith 

is simulated in the model (Seignette et al. 2014). Model input included available element 

content, solid physical specifications (dimensions, surface area, skeletal density, porosity, 

tortuosity factor), refresh solution specifications (volume, chemical composition, and 

refreshment schedule), global aqueous Fickian diffusion coefficient, and any adjustments 

to the model’s mineral set.  

The porosity was estimated (not directly measured) by measuring the S/S solid 

mass for Mixture A after drying for 24 hours at 95 oC and immediately and also after 

submerging for 30 min under water. The porosity was estimated by comparing these two 

mass measurements to be approximately 35%. Tortuosity was utilized to calibrate the 

model and was set to 7. Tortuosity was varied to match the observed Cl- release as much 

as possible. Cl- was utilized for this calibration process due to it’s nonreactive and 

conservative nature.  

The chemical composition and volume (3,190 mL) for the extractant fluid, 

deionized water, was also specified in the model according to the models preset leachant 

composition which contained very little elemental composition (<3x10-5 µg/L for all 

elements). The refreshment schedule was specified to match the actual refreshment 

schedule for the leaching experiment. The global aqueous Fickian Diffusion coefficient 

(2.25x10-10 m2/s) input into the model was the maximum DOBS for nonreactive Cl- in the 

leaching experiments.   
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3.4  RESULTS AND DISCUSSION 

3.4.1 Elemental Content of Solids 

Table 3.5 shows metal composition of the solids examined in this study determined 

by digestion followed by ICP-MS analysis. The BCFA had a higher Al (114,000 versus 

20,000 mg/kg), Fe (77,000 versus 23,000 mg/kg), K (17,000 versus 4,000 mg/kg), Si 

(30,000 versus 5,000 mg/kg), and Ti (7,000 versus 1,000 mg/kg) than PC. PC had a higher 

Ca (427,000 versus 12,000 mg/kg) and Mg (18,000 versus 5,000 mg/kg) than BCFA. The 

Ca content is higher in PC due to the high CaO content typical of PC. BCFA and PC 

contained similar concentrations of Cd (1 mg/kg) and Cr (156-174 mg/kg). BCFA 

contained significantly higher concentrations of As (69 versus 7 mg/kg) and Se (10 versus 

1 mg/kg) than PC.  

Table 3.6 shows the total element composition of the S/S solids. The total element 

composition was calculated based on the mixture formula and the composition of the 

components shown in Tables 3.1 and 3.5. As expected, the solids have a high Ca (60,000-

61,000 mg/kg), Cl- (18,000-20,000 mg/kg), and SO4
2- (56-62 mg/kg).  

The SO4
2- concentration was likely underestimated due to SO4

2- not being measured 

in the BCFA and PC and these components could have contained Ca-SO4 precipitates. The 

solids contained significant oxyanion concentrations of As (46-48 mg/kg), Cr (128-133 

mg/kg), and Se (11-12 mg/kg).  
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Table 3.5. BCFA and PC chemical composition.  
(a) Bulk Elements 

Element BCFA (mg/kg dry) PC (mg/kg dry) 
Al 113,617 20,269 
Ca 11,852 427,361 
Fe 76,948 22,687 
K 16,965 4,134 
Mg 4,715 17,514 
Si 29,571 5,420 
Ti 6,569 1,294 

(b) Significant Elements 
Element BCFA (mg/kg dry) PC (mg/kg dry) 
Ba 762 87 
Cr 174 156 
Cu 116 94 
Mn 134 1,200 
Ni 118 40 
Zn 196 726 

(c) Trace Elements 
Element BCFA (mg/kg dry) PC (mg/kg dry) 
Ag 0.3 1.3 
As 69.3 7.3 
Be 16.2 < 0.6 
Cd 1.1 0.9 
Co 44.4 6.3 
Mo 24.7 7.1 
Pb 73.6 16.5 
Sb 5.9 3.9 
Se 10.2 0.6 
Tl 4.4 0.3 
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Table 3.6. Total elemental content of the S/S solids. 
(a) Bulk Elements 

Element 
Mixture A 

(mg/kg dry) 
Mixture B 

(mg/kg dry) 
Mixture C 

(mg/kg dry) 
Mixture D 

(mg/kg dry) 
Al 78,356 77,246 76,147 75,050 
B 164 162 159 157 
Ca 61,197 60,822 60,377 59,966 
Mg 5,835 5,761 5,685 5,611 
Na 2,623 2,576 2,528 2,481 
K 12,005 11,833 11,662 11,491 
Si 20,436 20,147 19,860 19,573 
Sr 504 497 490 482 

(b) Trace Elements 

Element 
Mixture A 

(mg/kg dry) 
Mixture B 

(mg/kg dry) 
Mixture C 

(mg/kg dry) 
Mixture D 

(mg/kg dry) 
Sb 4.4 4.3 4.3 4.2 
As 47.7 47.1 46.4 45.7 
Ba 520.8 513.4 506.0 498.6 
Cd 3.2 3.1 3.0 2.9 
Cr 133.1 131.4 129.8 128.1 
Cu 87.5 86.4 85.2 84.1 
Pb 51.1 50.4 49.7 49.0 
Mo 17.3 17.1 16.8 16.6 
Se 11.5 11.2 11.0 10.7 
Ag 0.3 0.3 0.3 0.3 
Ti 4,542.9 4,478.7 4,415.2 4,351.8 

(c) Anions 

Element 
Mixture A 

(mg/kg dry) 
Mixture B 

(mg/kg dry) 
Mixture C 

(mg/kg dry) 
Mixture D 

(mg/kg dry) 
Cl- 20,326 19,636 18,921 18,214 
SO42- 62.1 60.0 57.8 55.6 

3.4.2 Available Elemental Content Determined by the USEPA Method 1313 

The available elemental content is the mass concentration of the element that is 

available to leach under realistic  conditions (typically pH 2-13, L/S ratio = 10 mL/g-dry) 

(Kosson et al. 2014). Some of the element will be present in recalcitrant phases that are not 

available to leach under realistic conditions (Kosson et al. 2014). Table 3.7 shows the 
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available elemental content of the S/S solids as determined by the USEPA Method 1313 at 

pH 2.0±0.5. The available element content was calculated according to Equation 3.2: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑛𝑛 (𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘

)  =  𝐿𝐿𝐿𝐿×𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆

       (3.2) 

LC is the leached concentration detected in the leachate in µg/L; LV is the leachate 

volume in L; and SM is the dry solid mass in g. Due to the nature of the cement materials 

which generally form under high pH and dissolve at lower pH, it was assumed that the 

highest availability for most elements would be at low pH (2.0±0.5). It is noted that the 

final leachate pH for the USEPA Method 1313 evaluations were all within the required 

method pH range of 2.0±0.5. The final leachate pHs for Mixtures No. A-D were 2.1, 1.6, 

2.3, and 2.0, respectively. For bulk elements, Table 3.7 shows that the available Al content 

varied from around 5,000-10,000 mg/kg among the four Mixtures which represents 6-13% 

of the total Al Content (Table 3.6). Most of the Al content in the S/S solids was likely from 

BCFA as BCFA had a much higher Al content than PC (Table 3.5).  

Our previous research has shown that much of the crystalline Al in the BCFA and 

its S/S solid was present as mullite (2Al2O3.SiO2), which is difficult to break down except 

at low pH (Renew et al. 2016b). While the significant amount of Al was available at low 

pH as shown in the USEPA Method 1313 evaluation, it is not believed that much of the Al 

would be available under the higher pH conditions of the USEPA Method 1315 evaluation. 
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Table 3.7. Available elemental content of the S/S solids as determined by the USEPA 
Method 1313.  
(a) Bulk Elements 

Element 
Mixture A     

(mg/kg dry) 
Mixture B 

(mg/kg dry) 
Mixture C 

(mg/kg dry) 
Mixture D 

(mg/kg dry) 
Al 4,715 9,898 7,619 7,193 
B 145 130 110 111 
Ca 31,517 62,991 62,883 59,083 
Fe 1,604 7,688 4,459 4,728 
Mg 2,218 3,597 3,766 3,714 
Na 1,037 1,080 1,160 1,205 
K 1,261 2,285 2,050 2,162 
Si 6,751 18,215 12,371 10,600 
Sr 140 205 191 202 

(b) Trace Elements 

Element 
Mixture A     

(mg/kg dry) 
Mixture B 

(mg/kg dry) 
Mixture C 

(mg/kg dry) 
Mixture D 

(mg/kg dry) 
Sb 1.8 2.7 1.5 1.5 
As 17.0 44.3 20.1 6.2 
Ba 17.5 22.7 17.3 9.8 
Cd 3.4 3.3 2.7 3.0 
Cr 21.6 37.5 33.9 33.0 
Cu 19.8 27.2 27.2 26.0 
Pb 5.5 14.1 6.9 7.2 
Mo 4.2 10.5 3.8 0.7 
Se 7.4 8.7 4.5 1.2 
Ag 0.0 0.1 0.1 0.1 
Ti 78.2 407.7 174.9 85.5 

(c) Anions 

Element 
Mixture A     

(mg/kg dry) 
Mixture B 

(mg/kg dry) 
Mixture C 

(mg/kg dry) 
Mixture D 

(mg/kg dry) 
Cl- 21,783 22,215 20,374 21,474 
SO4

2- 6,731 15,248 16,029 18,783 
Note – Final leachate pH for Mixtures A, B, C, and D were 2.1, 1.6, 2.3, and 2.0, 
respectively.  
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Available Ca content was high and varied from around 32,000-63,000 mg/kg 

representing 52-100% of the total Ca in the S/S solid. The high Ca availability is due to the 

high Ca content of both the simulated brine and PC. Our previous work has shown through 

X-ray fluorescence (XRF) that most of the Ca is present in the S/S solids as CaO which is 

available for reactions (Renew et al. 2016b). Ca is also present in CFA and S/S materials 

as calcium-silicate-hydrate (C-S-H), Ca(OH)2, ettringite, monosulfate, CaSO4, 

CaSO4.2H2O as noted by other researchers (De Windt et al. 2007, Izquierdo et al. 2012). 

Cement phases such as ettringite and monosulfate are both pH sensitive (Chrysochoou et 

al. 2006). Ettringite starts to dissolve when pH drops below 10.5 and monosulfate can 

dissolve when pH drops below 11.0 (Chrysochoou et al. 2006).  

Available Fe content varied from approximately 2,000-8,000 mg/kg with a general 

trend of increasing with FS addition (Table 3.2) to the Mixture except for Mixture B. The 

available Fe from Mixture B was unexpectedly higher than those of Mixtures C and D, 

likely due to the particularly lower pH of the leachate for Mixture B.  

For trace elements, the available As content varied from 6-44 mg/kg which 

represents 14-94% of the total As content. Mixture B had the highest As availability (94% 

of total As content) compared to the other Mixtures (14-43% of total As content) likely due 

to the lower leachate pH conditions. The available Cd and Cr content was 3 mg/kg (90-

100% of total Cd content) and 22-38 mg/kg (16-29% of total Cr content), respectively. The 

available Se content varied from 1-9 mg/kg (11-78% of total Se content) with decreasing 

availability with increasing FS addition except for the lower final pH conditions of Mixture 

B.  
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For major anions, the Cl- available content (100% of total Cl- content) was similar 

for all Mixtures (20,000-22,000 mg/kg). The available SO4
2- content varied from around 

7,000-19,000 mg/kg with the logical increase in availability with increasing FS addition.   

3.4.3 Leachate pH 

Figure 3.1 shows the leachate pH as a function of cumulative leaching time (t). The 

minimum pH measured for all Mixtures occurred at 0.08 days with values between 7.4-

8.0. The pH increased with t to a maximum for most Mixtures at 35 days with values 

between 10.6-10.7. It is likely that the pH increased from 0.08-35 days due to increasing 

CaO dissolution according to Equation 3.3 (Roy et al. 2011): 

CaO + H2O = Ca2+ + 2OH-     (3.3)  

 

The dissolution of other Ca oxides in cement phases could also impact pH. After 

35 days, the pH decreased slightly with values of 10.0-10.7 at 119 days. This decrease was 

likely due to a decrease in available CaO content. The results indicate that an alkaline pH 

was maintained throughout the evaluation and FS addition did not appear to significantly 

impact leachate pH.   

3.4.4 Leaching of Major Components 

Calcium. Figure 3.2 shows the Ca2+ flux in mg/m2.s and Figures 3.3a-d show the 

nonaccumulated leached concentration (mg/L), cumulative mass release per solid surface 

area (mg/m2), DOBS (m2/s) versus FeII addition at 1.04 and 49 days, and the leached 

concentration versus pH.    
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Figure 3.1. Leachate pH results.  

 
Figure 3.2. Ca2+ flux. 
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Figure 3.2 shows that the flux varied from approximately 2.9-4.2×10-3, 0.31-1.1 × 

10-2, 0.11-1.2×10-2, and 9.4×10-2-1.1 × 10-2 mg/m2.s for Mixtures A-D, respectively. It is 

known that, when diffusion mainly controls element release from a cylindrical monolith, 

the cumulative release and flux are proportional to that of the radial diffusion from a 

cylinder in an infinite bath (USEPA 2013). Equation 3.4 calculates mass release due to 

radial diffusion from a cylinder in an infinite bath (USEPA 2013). 

M �mg
m2� = 2ρCo �

DOBS∙t
π

�
1
2     (3.4) 

M is the mass release during the interval in mg/m2; ρ is the density of the cylinder 

in kg/m3; Co is the available leaching content for the contaminant in mg/kg; DOBS is the 

observed diffusivity for the component in m2/s; and t is cumulative leaching time in 

seconds. For flux, Equation 3.4 is divided by the interval t with the resulting Equation 3.5 

(USEPA 2013).  

F ( mg
m2∙𝑠𝑠

) = 2ρCo �
DOBS

π∙t
�
1
2
    (3.5)  

F is the flux in mg/m2.s. Elemental flux primarily controlled by diffusion will be 

proportional to the flux as calculated by Equation 3.5 for radial diffusion from a cylinder 

in an infinite bath (USEPA 2013). For all cumulative release and flux graphs in this study, 

lines (labeled “Diffusion Control”) are shown to represent the cumulative release and flux 

under diffusion control as calculated by Equations 3.4 and 3.5 for Mixture A. For this 

calculation, the DOBS value was the highest value calculated for the element which always 
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occurred at t=1.08 days. DOBS can be calculated from Equation 3.4 for a known mass 

release.  

(a) (b)  

(c)  (d)  
Figure 3.3. (a) Leached Ca2+ concentrations, (b) cumulative Ca2+ release, (c) Ca2+ DOBS 
versus FeII addition at 1.04 and 49 days, and (d) leached Ca2+ concentrations versus pH. 

Figure 3.2 shows that the Ca2+ flux for Mixture A decreased at a higher rate than 

the diffusion control line. This trend could indicate that Ca2+ phase (calcium-silicate-

hydrate (C-S-H), CaO, Ca(OH)2, CaSO4, CaSO4.2H2O, etc.) aqueous solubility controlled 

release. The solid phase controls leaching of solubility controlled species through solid-

liquid partitioning (Garrabrants et al. 2012). Figure 3.3b also shows that the cumulative 

release pattern for Mixture A did not support diffusion-controlled Ca2+ release as the slope 

of the cumulative release pattern deviated from the diffusion control line. Figure 3.3d 

shows that the leached Ca2+ concentrations determined by USEPA Method 1313 and 1315 
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evaluations at similar pH had similar leached concentrations. This provides evidence that 

Ca2+ is near it’s solubility limit in the USEPA Method 1315 evaluation and therefore 

aqueous solubility is controlling release. The USEPA Method 1313 results for the BCFA 

S/S solid with 0.6% FS as described in Figure 2.7 of Chapter 2 (Renew et al. 2016b). It is 

noted that FS addition impacts the leaching and availability of the elemental species. 

However, it was believed that leaching from the S/S solids with 0.6% FS addition 

(described in Figure 2.7) does provide a useful general comparison to the samples in this 

study.  

Figure 3.2 shows that the flux for the Mixtures with FS addition were significantly 

less than Mixture A at t<1 days. At t>1 day, the Ca2+ flux for the Mixtures began to 

converge. As discussed below, Figure 3.9c shows that SO4
2- flux increased simultaneously 

with Ca2+ flux for the Mixtures with FS addition, which supports the hypothesis that Ca-

SO4 precipitates controlled Ca2+ release at low leaching times. Figure 3.3c shows that the 

DOBS decreased with increasing FeII addition at t=1.04 days; however, this trend is reversed 

at t=49 days with DOBS increasing with increasing FeII addition. As Ca-SO4 precipitates 

decrease in concentration due to dissolution, the impact of FS addition to the S/S mixture 

on Ca2+ release may significantly decrease. Figure 3.3b shows that Mixtures with FS 

addition have significantly lower cumulative release at lower leaching times; however, the 

cumulative release appeared to converge at higher leaching times. For Mixture A, 

approximately 31% of the available Ca2+ was released at 49 days.  

Chloride. Figure 3.4 shows that Cl- flux varied from approximately 6.1-6.8×10-4, 

0.4-2.4×10-2, 0.3-6.8×10-3, and 0.2-6.9×10-3 mg/m2.s for Mixtures A-D, respectively. The 
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flux results indicate that Cl- behaved as a highly soluble species. Cl- flux was very high for 

Mixture A at t<2 days and began to decrease significantly at t>2 days due to decreasing 

available Cl- content. A similar trend is shown for cumulative release in Figure 3.5b with 

Cl- rapidly releasing from Mixture A at lower leaching time but not at longer leaching time. 

The slope of the cumulative release pattern significantly decreased at larger leaching times. 

This rapid decrease is due to the depletion of available Cl-. Approximately 100% of the 

available Cl- has been released from Mixture A at t = 119 days.  

 
Figure 3.4. Cl- flux. 

Figure 3.4 shows that the Cl- fluxes for the Mixtures with FS addition were lower 

than Mixture A at t<10 days, and appeared to converge with Mixture A at higher leaching 

times. Figure 3.5c shows that the DOBS decreased with increasing FeII addition at t=1.04 

days; however, this trend is reversed at t=49 days with DOBS increasing with increasing FeII 

addition. Figure 3.5b shows that although the cumulative Cl- release was less for Mixtures 

with FS addition, the cumulative Cl- release for all Mixtures appeared to converge at high 
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leaching times. The impact of FS addition on Cl- release was only transient and greatly 

decreased at longer leaching times.     

Magnesium.  Figure 3.6c shows that the Mg2+ flux significantly decreased over 

time for all Mixtures. The Figure shows that the flux pattern generally decreased at a 

slightly higher rate than the slope of the diffusion control line. Mg2+ leaching from CFA is 

known to be controlled by hydroxide and carbonate phases (Izquierdo et al. 2012). 

However, Figure 3.6e shows that the USEPA Method 1315 leached Mg2+ concentrations 

are significantly less than the USEPA Method 1313 leached concentrations at 

approximately the same pH which indicates that Mg2+ is not at it’s maximum solubility in 

the USEPA Method 1315 evaluation. Hence, it is likely diffusion does play some role in 

Mg2+ release. Figure 3.6b shows that cumulative Mg2+ release pattern decreases at a 

slightly lower rate than the diffusion control line. For Mixture A, approximately 16% of 

the available Mg2+ was released at 49 days.  

Figure 3.6c shows that the Mg2+ flux was lower for Mixtures with FS addition at 

low leaching times. However, the fluxes began to converge at higher leaching times. A 

similar trend is shown for the cumulative Mg2+ release in Figure 3.6b. Figure 3.6d shows 

that at t=1.04 days, the DOBS decreases significantly with increasing FeII addition; however, 

this same trend is not seen when t=49 days. Hence, FS addition appears to only enhance 

Mg2+ stabilization at lower leaching times.  
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(a) (b)  

(c)  
Figure 3.5. (a) Leached Cl- concentrations, (b) cumulative Cl- release, and (c) Cl- DOBS 
versus FeII addition at 1.04 and 49 days.   
 

Sodium. Figure 3.7 shows that Na+ flux varied from approximately 0.25-1.7×10-4, 

4.1x10-2-6.2×10-4, 1.5x10-2-9.1×10-4, and 1.2x10-2-8.2×10-4 mg/m2.s for Mixtures A-D, 

respectively. This rapid decrease in flux suggests highly soluble species behavior. A similar 

trend is shown for cumulative release in Figure 3.8b. The cumulative release pattern slope 

significantly decreased at higher leaching times likely due decrease in available Na+. For 

Mixture A, approximately 60% of the available Na+ was from the solid when t = 49 days. 

Figure 3.8d provides further evidence for the highly soluble species hypothesis as the 

USEPA Method 1315 Na+ leached concentrations are less than the USEPA Method 1313 

leached concentrations at the same approximate pH range which indicates that Na+ is not 

at it’s maximum solubility in the USEPA Method 1315 evaluation. 
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(a) (b)  

(c)  (d)  

(e)  
Figure 3.6. (a) Leached Mg2+ concentrations, (b) cumulative Mg2+ release, (c) Mg2+ flux, 
(d) Mg2+ DOBS versus FeII addition at 1.04 and 49 days, and (e) leached Mg2+ concentrations 
versus pH. 
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Figure 3.7. Na+ flux. 

Figure 3.8c shows that the Na+ flux was lower for Mixtures with FS addition at lowt 

leaching times; however, the fluxes began to converge at higher leaching times. A similar 

trend is shown for the cumulative Na+ release in Figure 3.8b. Figure 3.8c shows that at 

t=1.04 days, the DOBS decreases significantly with increasing FeII addition; however, this 

same trend is not seen when t=49 days as DOBS increases with increasing FeII addition. 

Hence, FS addition appears to only enhance Na+ stabilization at shorter leaching times.  

Sulfate.  Figure 3.9c shows that SO4
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control SO4
2- release from CFA (Izquierdo et al. 2012). Figure 3.9c shows that the flux 
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higher leaching times which suggests solubility controlled release. In addition, Figure 3.9b 

shows that the slope of the cumulative release pattern for Mixture A was generally less 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.01 0.1 1 10 100

N
a 

Fl
ux

 (m
g/

m
2.
s)

Time (Days)

Mixture A Mixture B
Mixture C Mixture D
Diffusion Control



 99 

than the diffusion control line which provides evidence solubility controlled release. For 

Mixture A, approximately only 7% of the available SO4
2- was released at 119 days.  

(a) (b)  

(c) (d)  
Figure 3.8. (a) Leached Na+ concentrations, (b) cumulative Na+ release, and (c) Na+ DOBS 
versus FeII addition at 1.04 and 49 days, and (d) leached Na+ concentrations versus pH. 

Figure 3.9c shows that for t<1 day the SO4
2- flux was greater for Mixture A than 

the Mixtures with FS addition. This trend likely resulted from SO4
2- addition (in FS) 

promoting the precipitation of CaSO4 or CaSO4.2H2O and therefore decreasing SO4
2- 

release. This trend was overcome at t>1 day as the flux for all Mixtures approached similar 

values. The convergence of the fluxes was likely due to a lower portion of the SO4
2- being 

in the form of Ca-SO4 precipitates at t>1, thereby decreasing the impact of the FS addition. 

Figure 3.9d shows that there is decrease in DOBS with increasing FeII addition at t=1.04 

days; however, there is a significant difference t=49 days with DOBS increasing with 
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increasing FeII addition. The evidence from cumulative release pattern indicates that the 

impact of FS addition decreased over time.  Figure 3.9b shows SO4
2- release is higher for 

Mixture A than the other Mixtures at t<1 day; however, cumulative release for all Mixtures 

approached the same value at t>1 day likely for the same reason as described for the flux 

convergence. It appears that FS only had a slight impact on SO4
2- release and that impact 

decreased significantly at larger leaching times.    

(a) (b)  

(c) (d)  
Figure 3.9. (a) Leached SO4

2- concentrations, (b) cumulative SO4
2- release, (c) SO4

2- flux, 
and (d) SO4

2- DOBS versus FeII addition at 1.04 and 49 days. 

3.4.5 Leaching of Oxyanions 

Arsenic. The vast majority of As present in the S/S solids was expected to be AsV 

(AsO4
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2001, Huggins et al. 2007, Goodarzi et al. 2008). PC only contained 7 mg/kg dry of As and 

was only 10% of the S/S mixtures. Previous research has shown that Ca-AsV complex 

precipitation is the likely dominant S/S immobilization mechanism as these complexes 

have low solubility at neutral and high pH with NaCaAsO4.7.5H2O being the expected 

dominant phase in S/S (Nishimura et al. 1998, Bothe Jr et al. 1999, Cornelis et al. 2008a, 

Moon et al. 2008).  

  

Figure 3.10. As flux. 

Figure 3.10 shows that the As flux varied from approximately 3.4×10-5-3.2 × 10-7, 

5.1×10-6-2.4×10-7, 4.5×10-6-1.8×10-7, and 3.0×10-6-2.0 × 10-7 mg/m2.s for Mixtures A-D, 

respectively. The As flux pattern slope for Mixture A was generally less than the diffusion 

control line which implies solubility controlled release. Figure 3.11b shows that cumulative 

release pattern also implies solubility controlled release as the slope of the cumulative 

release for Mixture A was generally less than the diffusion control line. Further, Figure 
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3.11d shows that the leached As concentrations determined by USEPA Method 1313 and 

1315 evaluations at the same approximate pH range were similar which implies that As is 

near it’s solubility limit in the USEPA Method 1315 experiment. For Mixture A, 

approximately only 2% of the available As was released at 119 days.  

(a) (b)  

(c) (d)  
Figure 3.11. (a) Leached As concentrations, (b) cumulative As release, (c) As DOBS versus 
FeII addition at 1.04 and 49 days, and (d) leached As concentrations versus pH.   

Figure 3.10 shows that the flux was lower for Mixtures with FS addition especially 

at shorter leaching times. The same trend was seen in the cumulative As release pattern 

(Figure 3.11b) with higher cumulative As release for Mixture A versus those with FS 

addition. Although the likely primary As immobilization mechanism was Ca-AsV complex 

precipitation, the addition of FS likely enhanced As stabilization through sorption to 

produced hydrous FeIII oxides. The addition of FeII and FeIII has been shown to increase 
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the AsV retainment in S/S solids (Palfy et al. 1999, Miller et al. 2000, Choi et al. 2009). 

The Dzombak and Morel model indicates that AsV sorbs readily to hydrous FeIII oxides at 

a pH range in common with cement-based S/S (Cornelis et al. 2008a). Most of FeII from 

the added FS was likely quickly oxidized to FeIII in the S/S matrix. The addition of FS 

could also have reduced some of the AsV to AsIII; however, As reduction was not expected 

to significantly impact the leaching results as AsIII has been shown to sorb at least as readily 

as  AsV to hydrous FeIII oxides at above neutral pH conditions (Dixit et al. 2003). 

As the leaching time increased the difference in the flux between the Mixtures with 

and without FS addition decreased. Figure 3.11c shows that the DOBS decreased with 

increasing FeII addition at t=1.04 days; however, this trend is reversed at t=49 days with 

DOBS increasing with increasing FeII addition.  

It is clear that FS addition significantly decreased As release likely due to sorption 

to formed hydrous FeIII oxides. However, at longer leaching times, this impact was 

somewhat reduced though not as much for the major components.  

Chromium. CrVI was added in the simulated brine in the experiments. Research has 

reported that the dominant Cr species in CFA is CrIII, with Huffman et al. finding greater 

than 95% CrIII in CFA samples (Huffman et al. 1994). CrVI is much more mobile than CrIII; 

hence, the CrVI from the brine is likely to be much more mobile than CrIII from the CFA. 

The PC also contained a significant amount of Cr (156 mg/kg dry).  

Previous researchers demonstrated cement-based S/S to be effective in 

immobilizing CrIII, but not CrVI (Glasser 1997, Wang et al. 2000, Dermatas et al. 2003). 

CrIII has a lower solubility than CrVI under the high pH conditions expected in S/S (Richard 
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et al. 1991, Glasser 1997). In addition, Glasser noted that chemical incorporation of CrIII 

in the Ca-AlIII-hydrate phase by replacing AlIII likely plays the most important role in CrIII 

immobilization in Cr immobilization in S/S (Glasser 1997).  

Figure 3.12 shows that the Cr flux varied over time from approximately 4.8×10-6-

2.4×10-7, 1.6×10-6-2.0×10-7, 1.6×10-6-6.7×10-8, and 1.6×10-6-7.4×10-8 mg/m2.s for Mixture 

A-D, respectively. Cr flux for Mixture A appeared to decrease essentially proportional to 

the diffusion control line. Figure 3.13b shows that cumulative release pattern for Mixture 

A increased essentially proportional to the diffusion control line. Figure 3.13d shows that 

the leached Cr concentrations determined by USEPA Method 1313 were slightly higher 

than the USEPA Method 1315 evaluations at a similar pH range indicating that Cr is not at 

it’s maximum solubility. For Mixture A, approximately only 0.8% of the available Cr was 

released at 119 days. 

 
Figure 3.12. Cr flux.  
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(a) (b)  

(c)  (d)  
Figure 3.13. (a) Leached Cr concentrations, (b) cumulative Cr release (c) Cr DOBS versus 
FeII addition at 1.04 and 49 days, and (d) leached Cr concentrations versus pH.   

Figures 3.12 shows that Cr flux was lower for Mixtures with FS addition. Unlike 

for As, the Cr fluxes for the Mixtures did not significantly converge at larger leaching 

times. Figure 3.13c shows that the DOBS greatly decreased with increasing FeII addition at 

t=1.04 days (2.5x10-16-9.2x10-19 m2/s) and this trend continued at t=49 days with DOBS 

decreasing (1.4x10-15-5.1x10-17 m2/s) with increasing FeII addition. 

Figure 3.13b shows that the cumulative Cr release was also lower for the Mixtures 

with FS addition for all leaching times. FeII can reduce CrVI to CrIII, (Dermatas et al. 2003, 

Su et al. 2005) and thus FS addition to S/S mixtures greatly decreased CrVI leaching in 

previous research (Dermatas et al. 2003, Renew et al. 2016b). The mechanism of CrVI 

reduction by FS to CrIII is likely responsible for the reduced flux and cumulative release 
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for Mixtures B-D. The likely mechanism is: (i) CrVI in the S/S solid was reduced to CrIII, 

which could be incorporated in the Ca-AlIII-hydrate phase, precipitated as Cr(OH)3, and/or 

adsorb to FeIII oxides (existing and new); and (ii) some of the CrIII originally from the 

BCFA and PC could also be incorporated in the Ca-AlIII-hydrate phase or adsorb to newly 

formed FeIII oxides. FS addition shows significant promise for enhancing Cr stabilization 

in the S/S of concentrated FGD brines.  

Selenium. Se added to the mixture from the brine will be present as SeVI (as SeO4
2-

) as it was added in that form to concentrated brine. Previous research indicates that SeIV 

is generally present in CFA (Narukawa et al. 2005, Huggins et al. 2007, Wang et al. 2009).  

Se behaves differently based on oxidation state (SeIV versus SeVI) in S/S matrices. 

The likely dominant immobilization phase for SeIV is CaSeO3 in S/S matrices. Baur and 

Johnson hypothesized that CaSeO3 solubility controls SeIV release in cementitous materials 

where Ca2+ concentrations are significant (Baur et al. 2003b). 

SeVI immobilization in S/S matrices is more complex. Baur and Johnson studied 

the sorption of SeVI to the monosulfate (AFm-SO4), ettringite (AFt-SO4) and observed only 

strong SeVI sorption to AFm-SO4 (Rd = 2.06) (Baur et al. 2003b). However, our previous 

work did not detect AFm in S/S solids produced with bituminous CFA at significant 

quantities with XRD (Renew et al. 2016b). Therefore, these two phases probably do not 

dominate SeVI leaching in the S/S solids in this study. It could be that the more readily 

soluble CaSeO4 (Log Ksp = 4.77) is the most important phase for SeVI leaching (Séby et al. 

2001).  
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Figure 3.14 shows that the Se flux decreased from 2.2×10-5-6.0×10-7, 8.0×10-7-

4.6×10-7, 7.9×10-7-1.3×10-7, and 7.9×10-7-1.2×10-7 mg/m2.s for Mixtures A-D, respectively. 

The Se flux pattern for Mixture A appeared to be proportional to the diffusion control line 

showing the characteristics of a highly soluble species as would be expected for the 

available SeVI. Figure 3.15b shows that the cumulative Se release pattern for Mixture A 

increased proportionally to the diffusion control line, providing further evidence for 

diffusion-controlled SeVI release and highly soluble species behavior. Figure 3.15d shows 

that at similar pH the Se leached concentrations for the USEPA Method 1313 evaluation 

are significantly higher than the USEPA Method 1315 evaluation which implies that Se is 

not at it’s solubility limit. For Mixture A, approximately only 7% of the available Se was 

released at 119 days. 

 
Figure 3.14. Se flux.  
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The Se flux for Mixtures with FS addition were not proportional to the diffusion 

control line at t<10 days and the flux actually increased 0.08<t<2.0 days for Mixtures B, 

C, and D. The flux for all mixtures was generally proportional to the diffusion control line 

at t>2.0 days. The flux was less for Mixtures with FS addition likely due to the reduction 

of a portion of SeVI to SeIV followed by precipitation as CaSeO3. As leaching time 

increased, the difference in the flux between Mixture A and the Mixtures with FS addition 

became less, likely because the Se speciation differences between the Mixtures became 

less as the amount of available SeVI was decreased. Figure 3.15c shows that DOBS generally 

decreased with increasing FeII addition at t=1.04 days; however, at the highest FeII addition, 

the DOBS was higher than with no addition. At t=49 days, DOBS generally increased with 

increasing FeII addition. Figure 3.15b shows that the Se cumulative release was lower for 

the Mixtures with FS addition than Mixture A for the entire leaching experiment.  

The results from this leaching experiment indicate that Se behaved as a highly 

soluble species and was readily released with diffusion as the primary limiting factor. FS 

addition did decrease Se release from the S/S solids over the long term. 

3.4.6 LeachXSTM Modeling 

Figure 3.16a shows the modeled and observed pH results for Mixture A generally 

agreed. The observed pH values varied between 8.0-10.7 while the modeled pH values 

varied between 9.4-10.9. Both modeled and observed results shows that the pH remains 

alkaline throughout the entire leaching evaluation.  
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(a) (b)  

(c) (d)  
Figure 3.15. (a) Leached Se concentrations, (b) cumulative Se release (c) Se DOBS versus 
FeII addition at 1.04 and 49 days, and (d) leached Se concentrations versus pH.   

Figures 3.16b-d show the modeled cumulative release for Ca2+, Cl-, Na+, As, and 

Se, respectively. The results show that the model is more successful in obtaining good 

agreement between the observed and modeled results for the major components (Ca2+, Cl-

, and Na+) at longer leaching times. It appears that an initial “washing off” effect occurs 

for these major components that is difficult to model at short leaching times. These 

elements are present in the S/S solid with very high availability (Ca2+-31,517 mg/kg, Na+-

1,037 mg/kg, and Cl--21,783 mg/kg).    

Good agreement is observed between the modeled and observed As. As was input 

into the model as AsO4
3- and reduction was not considered because no FS (reductant) was 

0

5

10

15

20

25

0.01 0.1 1 10 100 1000

Se
 (µ

g/
L

)

Time (Days)

Mixture A
Mixture B
Mixture C
Mixture D

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

Se
 R

el
ea

se
 (m

g/
m

2 )

Time (Days)

Mixture A
Mixture B
Mixture C
Mixture D
Diffusion Control

0.0E+00

5.0E-14

1.0E-13

1.5E-13

2.0E-13

2.5E-13

3.0E-13

0.0E+00

5.0E-15

1.0E-14

1.5E-14

2.0E-14

2.5E-14

3.0E-14

3.5E-14

4.0E-14

4.5E-14

5.0E-14

0.0 0.4 0.8 1.2

D
O

B
S

(m
2 /s

) a
t t

 =
 1

.0
4 

D
ay

s 

FeII Addition to S/S Mixture (%)

t = 1.04 days (Left Axis)
t = 49 days (Right Axis)

D
O

B
S

(m
2 /s

) a
t t

 =
 4

9 
da

ys

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12

Se
 (µ

g/
L

)

pH

USEPA Method 1315

Mixture A - 1313

Mixture B- 1313

Mixture C - 1313

Mixture D - 1313

S/S Solid - 0.6% FS - 1313



 110 

added. NaCaAsO4.7.5H2O was modeled as the phase controlling As leaching as shown in 

Equation 3.1.  

(a) (b)  

(c)  (d)  

(e)  (f)  
Figure 3.16. Comparison of modeled and observed results (a) pH, (b) Ca2+, (c) Cl-, (d) 
Na+, (e) As, and (f) Se. 
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were also utilized in an attempt to model As leaching, including but not limited to 

Ca3(AsO4)2.2.25H2O (Log K = 21.1), Ca3(AsO4)2.3H2O (Log K = 21.4), 

Ca4(OH)2(AsO4)2.4H2O (Log K = -0.5), Ca5(OH)(AsO4)3 (Log K = 26.1). 

Inclusion of these phases did not provide a satisfactory fit between the observed 

and modeled values. As mentioned above, the developed model does not confirm that 

NaCaAsO4.7.5H2O is the controlling As phase. The model confirms that phase or phases 

are controlling As solubility with an As solubility similar to that modeled for 

NaCaAsO4.7.5H2O in this study.   

The LeachXSTM model also included modeling for AsV-substituted ettringite as a 

solid solution (Log K = 26.8). Modeling this phase did not provide an acceptable fit to the 

experimental results. The high available Al value (Table 3.7) for Mixture A drove the 

formation of ettringite-AsV in the model. However, no ettringite was detectable in the 

bituminous CFA S/S solids analyzed with XRD in our previous work (Renew et al. 2016b).  

Our previous research showed that much of the crystalline Al in the S/S solids was present 

as mullite (2Al2O3.SiO2) which is difficult to break down except at low pH (Renew et al. 

2016b). Hence, although a significant amount of Al is available at low pH, it is unlikely 

that a significant amount of Al would be available under the higher pH conditions of the 

leaching evaluation (8.0-10.7, Figure 3.1). Hence, the available Al was decreased to near 

0 mg/kg in the model.  

The available Se was entered into the model in the form of SeO4
2-. One of the phases 

added in the model was CaSeO4 (Log K = 4.77) (Séby et al. 2001). As shown in the 

experimental results, Se behaved primarily as a highly soluble species and release was 
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primarily limited only by diffusion in both the observed and modeled results. Note that a 

portion of the available Se is likely present as SeIV in addition to SeVI which may explain 

some of the differences in the modeled and observed results.  

Real Scenario Application. The developed model was utilized to evaluate long-term 

leaching from a 10 cm × 10 cm × 10 cm depth monolith over 20 years as depicted in Figure 

3.17. The block had the chemical composition of Mixture A. A conservative effective 

infiltration rate of 15 mm/year was assumed as contacting the solid. It should be noted that 

the scenario includes a low liquid to surface area (L/SA) ratio 0.005 L/100 cm2. One-

dimension diffusion was assumed for this model. The model results of leachate pH, Ca2+, 

Cl-, Na+, As, and Se are shown in Figures 3.18a-f.  

 

Figure 3.17. Real scenario application.  

The model indicated that leachate pH would rapidly increase to a maximum of 10.9 

then slowly decrease to 9.8 at the end of 20 years. Hence, over 20 years the leachate would 

remain alkaline, which is positive for the success of the S/S process as many cationic metals 

are less soluble at higher pH. 

10 cm x 10 cm x 10 cm 
(height) S/S block

10 cm x 10 cm x 5 cm 
(height) tank

Effective infiltration = 15 
mm/year; 

Flowrate = 150 mL/year

Leachate flowrate = 150 
mL/year

1-D diffusion



 113 

All elements shown in Figure 3.18 rapidly increased to a maximum concentration 

immediately and then slowly decreased to minimum stabilized concentration over 20 years. 

The leachate concentration for Ca2+, Cl-, Na+, As, and Se varied from 187-217 mg/L, 31-

368 mg/L, 1-17 mg/L, 5-63 µg/L, and 10-125 µg/L, respectively.  

(a) (b)  

(c)  (d)  

(e)  (f)  
Figure 3.18. Long-term modeling of leachate (a) pH, (b) Ca2+, (c) Cl-, (d) Na+, (e) As, and 
(f) Se. 
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  Figure 3.19 show the solid concentration profiles for these elements after 20 years. 

The Figure shows how the elements are depleted from the solid over 20 years. The results 

show that precipitation significantly impacted the As profile. It should be noted that if a 

higher L/SA was utilized, the blocks could be even more depleted of the elements.  

(a) (b)  

(c) (d)  

(e)  
Figure 3.19. Modeled solid concentration profiles at 20 years (a) Ca, (b) Cl, (c) Na, (d) 
As, and (e) Se. 
 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

0 0.02 0.04 0.06 0.08 0.1

C
a 

(m
g/

kg
)

Depth (Meters)

Concentration Profile at 20 Years

Initial Concentration Profile

0

5,000

10,000

15,000

20,000

25,000

0 0.02 0.04 0.06 0.08 0.1
C

l (
m

g/
kg

)

Depth (Meters)

Concentration Profile at 20 Years

Initial Concentration Profile

0

200

400

600

800

1,000

1,200

0 0.02 0.04 0.06 0.08 0.1

N
a 

(m
g/

kg
)

Depth (Meters)

Concentration Profile at 20 Years

Initial Concentration Profile

-5

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08 0.1

A
s (

m
g/

kg
)

Depth (Meters)

Concentration Profile at 20 Years

Initial Concentration Profile

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Se
 (m

g/
kg

)

Depth (cm)

Concentration Profile at 20 Years

Initial Concentration Profile



 115 

The results from the long-term modeling provide important insights for the coal-

fired power industry. The results indicate that the highest release of all elements will be 

immediate. Hence, any leachate treatment system for a landfill should be able to treat 

leachate with a high contaminant content immediately after installation. Addition of FS 

(not modeled) to the S/S mixture could also decrease As and Se leaching in the early period. 

Alkaline pH can be expected over the first 20 years. 

3.5 CONCLUSIONS  

This study provided insight on the mass transport release of major components and 

heavy metal oxyanions from S/S solids of concentrated FGD brines through a USEPA 

Method 1315 evaluation. Ca2+ and SO4
2- demonstrated the characteristics of solubility 

controlled release while Cl- and Na+ demonstrated characteristics of highly soluble species 

release. For oxyanions, AsV demonstrated the characteristics of solubility-controlled 

release while SeVI demonstrated the characteristics of high soluble species release. 

Diffusion appeared to control CrVI release, but only a small fraction of the available Cr was 

released. 

FS addition to the S/S process decreased the solid’s cumulative release and flux at 

shorter leaching times for Ca2+, Cl-, Mg2+, Na+, and SO4
2-, although the cumulative release 

and flux appeared to converge at longer leaching times. Hence, the impact of FS on the 

release of these major components was only transient. FS addition significantly decreased 

oxyanion (AsV, CrVI, and SeVI) release. FS addition can increase likelihood of successful 

long-term disposal of S/S solids containing significant concentrations of oxyanions 

including AsV, CrVI and SeVI.  Leach XSTM modeling added additional evidence for the 
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proposed leaching mechanisms for AsV and SeVI without FS addition. AsV leaching was 

successfully modeled utilizing NaCaAsO4.7.5H2O as the immobilization phase. Although 

the model does not confirm that NaCaAsO4.7.5H2O was the dominant phase, it confirms 

that a phase or phases with similar solubility as that modeled for NaCaAsO4.7.5H2O control 

As release.  

Model utilization in a real scenario for the S/S solid over 20 years indicated that the 

leachate pH could remain alkaline (pH>9.0). Ca2+, Cl-, Na+, As, and Se reached their 

highest leachate concentrations immediately.   
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CHAPTER 4.  SALT IMPACT ON METAL LEACHING FROM A 

BITUMINOUS COAL FLY ASH 

4.1 ABSTRACT 

The coal-fired power industry is encountering solid waste management challenges 

from materials that are characteristically unlike traditional coal fly ash (CFA). The most 

challenging materials could contain significant salt concentrations in the form of Ca2+, 

Mg2+, Na+, and Cl-. Meanwhile, new flue gas desulfurization (FGD) wastewater regulations 

may lead to implementation of zero liquid discharge (ZLD) approaches which could 

increase the mass of salt sent to industry landfills. Salt addition to industry landfills could 

have negative consequences including increased metal leaching from CFA. This study 

evaluated the impact of salts (CaCl2, MgCl2, and NaCl) on the leaching of metals (As, Cd, 

Cr, Mn, Pb, Se, and Zn) from a bituminous CFA (BCFA) at low to high pH conditions. 

The evaluation was accomplished by adding salts to the extraction fluid in the modified 

USEPA Method 1313 leaching tests of BCFA.   

In the presence of extra salts, metal leaching was enhanced, but this effect varied 

based on cation type and pH. With regards to the cationic metals, competitive cation 

exchange was the dominant mechanism for increased Cr and Mn leaching at medium pH.  

Cl- complexation appeared to be the dominant mechanism of increased leaching with salt 

addition for Pb and Mn at medium pH. For the oxyanions, salt addition increased As and 

Se leaching at medium and high pH conditions. At low pH, As leaching significantly 

increased at low pH with salt addition, while Se leaching did not significantly increase. 

The increased As leaching with increasing salt addition at medium pH could be modeled 
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based on: (1) competition between Cl- and AsO4
3- for hydrous FeIII oxide sorption sites; or 

(2) complexation and sorption of the cations (Ca2+, Mg2+, and Na+) with AsO4
3- to CFA 

surface sites. Modeling of Cd leaching increase by salt addition at neutral pH indicated that 

Cd leaching was controlled by (1) Cl- complexation, and (2) competitive cation exchange 

for active sites with Ca2+, Mg2+, and Na+.  

4.2 INTRODUCTION 

The coal-fired power industry is facing increasing solid waste management 

challenges from materials that are characteristically unlike traditional coal fly ash (CFA). 

The most challenging materials include those that contain significant concentrations of 

salts. These materials may include CFAs impacted by new air emission controls such as 

injection of CaBr2, Ca(OH)2, Na-based sorbents, and Na2CO3.NaHCO3.2H2O (trona). 

Previous work by the Electric Power Research Institute (EPRI) has indicated that trona 

injection for SOx control will increase CFA mass in landfills and the landfill leachate pH 

(Blythe et al. 2008). The CFA mass collected and potentially landfilled could increase by 

approximately 4-12% due to the presence of Na2SO4 and Na2CO3 mixed in with the fly ash 

(Blythe et al. 2008). Similar mass and and potentially pH increases can be expected with 

other Na-based sorbents. Dry sorbent injection of Ca(OH)2 for SOx control could 

potentially impact CFA disposal by increasing the mass through the addition of CaSO4, 

Ca(OH)2, CaCO3, and CaSO3 (Blythe et al. 2008).  

In addition, new flue gas desulfurization (FGD) wastewater regulations may lead 

to implementation of zero liquid discharge (ZLD) strategies which could increase the mass 

of salt sent to industry landfills. The FGD wastewater contains significant quantities of 
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heavy metals including As, Cd, Cr, Hg, and Se, and high concentrations of salts in the 

majority form of Ca2+, Mg2+, Na+, and Cl- (USEPA 2009, Huang 2013). The ZLD strategies 

for FGD wastewater will likely include a concentration step that will produce thick brines, 

at ~100,000 to 300,000 mg/L of total dissolved solids (TDS), from the wastewater by an 

advanced membrane or evaporation process. The produced concentrated brines could be 

solidified and stabilized with a polozolanic agent (e.g. CaO, Ca(OH)2, Portland cement 

(PC), etc.) to produce a final solid for landfill disposal (Renew et al. 2014, Renew et al. 

2016b).   

The addition of large quantities of soluble salts either through the generation of 

CFA impacted by Na- or Ca-sorbent injection or by the ZLD implementation of FGD 

wastewater could potentially increase leachate metal content at industry landfills.  

Depending on coal source and type, CFA can contain significant concentrations of metals 

including “Ag, As, B, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, and Zn” (Wang 2007a). The 

cations and anions of salts could potentially increase metal leaching from CFA as these 

ions percolate through the landfill. Associated negative consequences may include 

increased leachate treatment costs and release of toxic metals to the aquatic environment. 

Thus, it is important for the coal-fired power industry to better understand the 

environmental impact of disposal of high salt materials into industry landfills before these 

materials are widely introduced.    

Previous research has shown that high salinity conditions can increase metal 

mobility from estuarine sediments, soils and organic matter (Pickering 1986, Lores et al. 

1998, Kabala et al. 2001, Du Laing et al. 2009b, Nelson et al. 2009). Research into metal 

leaching from estuarine sediments has shown that metal mobility can be increased by both 
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Cl- complexation and competitive cation exchange (Du Laing et al. 2009b). For example, 

Cd-Cl complexes, which are stable, can decrease the activity dissolved Cd2+, thereby 

promoting desorption from sediments (Du Laing et al. 2009b). The increased Cd2+ mobility 

with increasing salinity could also result from the effect of competitive cation exchange 

(Du Laing et al. 2009b). With regards to competitive cation exchange, Ca-salt addition was 

shown to promote metal mobilization more than Na-salt addition due to more effective 

competitive cation exchange for sorption sites (Du Laing et al. 2009b). In addition, one 

study found that Cd, Cr, and Cu leaching from marsh sediments increased with increasing 

salinity while Ni and Pb mobility did not increase (Du Laing et al. 2009b). Another study 

showed that road salts significantly impacted the mobility of Cd and Cu from roadside soils 

in Eastern Washington, and addition of Mg-salts increased Cd mobility more than Na-salts 

(Nelson et al. 2009). Furthermore, increasing salinity was shown to decrease sorption 

potential for Zn, Cd, and Cr to dissolved organic matter (Lores et al. 1998). Comparatively, 

minimal research has been conducted on the impact of high salinity on metal leaching from 

CFAs. A couple of studies have noted that Cl- can increase Cd leaching from CFA likely 

due to Cl- complexation (Jones 1995, Izquierdo et al. 2012). However, relevant data 

concerning this issue is still scarce, and there is a lack of understanding of the associated 

mechanisms overall.  

To date, unfortunately no commercial solidification/stabilization (S/S) technology 

has been developed for effective limitation of salt mobility, especially Cl-, in industry 

landfills with a practical pozzolonic agent addition level (Lampris et al. 2009, Ramgobeen 

2010, Lampris 2013). Previous researchers noted that the formation of Friedel’s salt 

(CaO.Al2O3.CaCl2.10H2O), represented by AFm-Cl in cement chemistry shorthand, can 
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uptake Cl- in cement through chemical incorporation (Fu 1996, Renaudina et al. 1999, 

Rapin et al. 2002, Ramgobeen 2010). Lampris et al. reported the S/S of a municipal solid 

waste incineration (MSWI) fly ash containing a Cl- content from 130,000 to 220,000 ppm 

using PC with the aim of Cl- immobilization through AFm-Cl formation (Lampris et al. 

2009). In their 72-day tank leaching tests, the authors observed Cl- releases at 40% to 50% 

even with PC addition up to 50% of the S/S mixture (Lampris et al. 2009). Reddy et al. 

observed that approximately 100% of the available Cl- present in a cement material leached 

when the pH dropped from an initial value of 12.75 to 11.00 over 10 days; much of the 

available Cl- in the cement material was in the form of AFm-Cl (Reddy et al. 2002). Thus, 

one may expect that a significant portion of the soluble salts in the disposed new types of 

CFA and/or S/S mixtures may leach in industry landfills, which can increase salt exposure 

of existing materials in landfills and potentially impact their metal leaching.    

The objective of this study was to obtain a better understanding of the impact of 

various salts (CaCl2, MgCl2, and NaCl) on metal leaching from a bituminous CFA (BCFA), 

with both the impacts of the cations and Cl- being considered. BCFA was selected for this 

study over sub-bituminous CFA (SCFA) because: (1) bituminous coal plants are expected 

to produce a larger mass of high-salt residuals compared to sub-bituminous coal plants; (2) 

BCFA contains more trace metals than sub-bituminous CFA; (3) more BCFA is produced 

in the U.S.; and (4) BCFA has less beneficial reuse potential than SCFA. In the U.S., Edgar 

reported total sulfur values 2.7% and 0.7% for bituminous coal and sub-bituminous coal, 

respectively (Edgar 1983). The USEPA has noted that the combustion of higher sulfur 

coals logically produces more SO3 that FGD systems must remove resulting in higher FGD 

blowdown volumes (USEPA 2009). As a result, a larger mass of salt and metals must be 
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disposed from a bituminous coal power plant FGD system compared to a sub-bituminous 

power plant. As a result, a larger mass of salt and metals must be disposed from a 

bituminous coal power plant FGD system compared to a sub-bituminous coal power plant. 

Additionally, compared to sub-bituminous coal, bituminous coal contained higher 

concentrations of several metals including As (25 versus 3 ppm), Cd (1.6 versus 0.2 ppm), 

Cr (15 versus 7 ppm), Pb (22 versus 5 ppm), Se (4.6 versus 1.3 ppm), and Zn (53 versus 0 

ppm) (Edgar 1983). Higher trace metal content in the coal would result in higher trace 

metal content in the associated CFA. Approximately 48% of the coal produced in the U.S. 

is bituminous and 44% is sub-bituminous (USEIA 2015b). When also considering that 

bituminous coal has a higher ash content (6.6-17.4%) than sub-bituminous coal (6.6%), it 

is clear that more BCFA than SCFA is produced in the U.S (Edgar 1983). BCFA is also 

more likely to be landfilled than SCFA because SCFA has greater beneficial reuse potential 

in cementitious applications due to its stronger pozzolanic properties resulting from a high 

CaO content (Papadakis 2000).  

The evaluation was accomplished by adding the salts at different concentrations to 

the extraction fluid used in the USEPA Method 1313 (USEPA 2012) for the  leaching tests. 

The study included leaching evaluations for As, Cd, Cr, Mn, Pb, Se, and Zn. In addition, 

the leaching of As and Cd was modeled utilizing the geochemical program PHREEQC to 

facilitate the understanding of the leaching mechanisms (Parkhurst et al. 1999).  
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4.3 EXPERIMENTAL SECTION 

4.3.1 Materials and Chemicals 

CFA samples were obtained from a bituminous coal-fired power plant in the 

southeastern United States on two occasions (CFA-I and CFA-II). CaCl2.2H2O, 

MgCl2.6H2O, and NaCl were obtained from Fisher (Pittsburgh, PA). All salts were of 

American Chemical Society (ACS) grade. Trace metal grade HNO3 was obtained from 

Fisher.  

4.3.2 Solids Analysis 

CFA-I was digested utilizing the USEPA Method 3050B (USEPA 1996a). CFA-II 

was digested utilizing a modified version of the USEPA Method 3052 (USEPA 1996b). In 

this modified method, 0.2 grams of the solid were digested in a 10 mL mixture of 10%HF-

20%HCl-20%HNO3-50%H2O. After the first stage of heating in the microwave assisted 

digester, 40 mL of water was added to the closed vessel and the mixture was heated again. 

Salts were digested utilizing USEPA Method 3050B. Digestates were analyzed utilizing 

the USEPA Method 6020A (USEPA 2007) or a combination of the USEPA Methods 

6020A and 200.8 (USEPA 1994a).  

4.3.3 Leaching Procedures 

A modified version of  the USEPA Method 1313 (USEPA 2012) was the basis of 

the experimental approach to evaluate metal leaching. Prior to the leaching tests, the first 

step was to develop the required HNO3 doses to be added for the extractant fluid to achieve 

the target pH.   
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Based upon the pre-test titration results, samples were prepared by mixing 200 mL 

of extractant fluid (with necessary amounts of HNO3 added) with varied amounts of salt 

(CaCl2, MgCl2, or NaCl) in a high density polyethylene (HDPE) bottle. For each salt 

addition level, samples with a final target pH of low (~4.0), medium (~7.0), or high (~10.0) 

level were prepared for CFA-I. Some difficulty was encountered maintaining the high pH 

samples with CaCl2 and MgCl2 addition likely due to precipitation of Ca(OH)2 or Mg(OH)2 

or complexation of Ca2+ and Mg2+ with OH-. Only medium (~7.0) target pH samples were 

prepared for CFA-II. The three different salts were added at varied concentrations (0-2.2 

M) based on the cation concentration. The mixed samples were tumbled for 24 hours at 

room temperature. After tumbling, the solids and the liquids were separated utilizing 0.7-

µm, pre-acid-washed toxicity characteristic leaching procedure (TCLP) filters 

(Environmental Express, Charleston, SC). The filtrate was collected in a HDPE bottle and 

analyzed for metals. Prior to ICP-MS analysis, the filtered leachate from CFA-I samples 

was digested per USEPA Method SW3005A (USEPA 1992b). Filtered leachate from CFA-

II was digested by adding 5% HNO3/5%HCl and heating the sample for 1 h at 

approximately 95 oC. Both methods would sufficiently digest any metals in the solid phase 

in the filtrate.  

4.3.4 X-Ray Diffraction 

Quantitative crystallographic analysis was performed on a CFA sample from the 

same plant that CFA-I and CFA-II were collected using powder X-ray diffraction (XRD). 

The internal standard utilized was 10% corundum (Al2O3) which was mixed with the CFA 

sample. The CFA sample was placed on a zero background holder. The sample was 

analyzed in a Bruker (Billerica, MA) D2 Phase with Cu radiation (30 kV/10mA). The range 
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of the scan was 8o -70o with a step size of 0.0152º and a counting time of 1.5 s/step. Once 

the pattern was obtained, the data was analyzed using EVA software (Bruker) for the 

qualitative analysis and TOPAS software of quantitative analysis.  

In addition, qualitative XRD analysis was conducted on CFA-II from samples 

collected on the TCLP filters after the USEPA Method 1313 extraction procedure with and 

without salt addition. The sample powders were analyzed using a PANalytical X-Pert Pro 

XRD (Almelo, The Netherlands). The XRD was operated at a voltage of 40 kV and a 

current of 40 mA. The range of the scan was 4o -70o with a step size of 0.02º and a time 

per step of 225 s/step. 

4.3.5 Surface Complexation Modeling 

PHREEQC Interactive Version 3.3.7 was utilized to develop surface complexation 

models for As and Cd leaching from CFA-I at near neutral pH. The specific ion interaction 

theory (SIT) database was utilized for thermodynamic information. PhreePlot was utilized 

to assist in parameter optimization and to repeatedly run the PHREEQC model utilizing a 

range of salt concentrations (Kinniburgh et al. 2010).   

The SIT database was selected in this work’s modeling efforts due to the high ionic 

strength of the leaching experiments (0-5.5 M). The SIT has typically been utilized for 

ionic strengths approaching 3.5-4.0 M and the Pitzer model has been applied at extreme 

ionic strengths up to the “saturation of most salts” (Xiong 2006). Xiong noted that errors 

in activity coefficients calculated by SIT versus Pitzer model “is usually less than 10% at 

ionic strength up to 6–10 m at 25°C” (Xiong 2006). Hyks et al. noted that insufficient 

thermodynamic data is available to model a complex leaching system (Hyks et al. 2009). 
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Due to the same issue regarding limited thermodynamic data availability, it was decided to 

utilize the SIT database for the modeling described this Chapter.  

Leaching Model for Arsenic. Tables 4.1 and 4.2 show additions that were made to 

the SIT database to develop the surface complexation models. The AsV surface 

complexation model was influenced by the work of van Der Hoek et al., who modeled As 

leaching based on Fe (hydr)oxide (van der Hoek et al. 1996). The As leaching results from 

this study seemed to be closer those in the study by van Der Hoek et al. with significant As 

leaching at near neutral pH more than the CFA leaching models developed by Wang et al., 

who based all leaching from three acid surface sites and had essentially no leaching at near 

neutral pH (van der Hoek et al. 1996, Wang 2007a, Wang et al. 2008). 

As sorption to weak hydrous ferric oxide (Hfo_wOH) sites is modeled. In order to 

simplify modeling, the Log K values for the Reaction (1) and (2) were assumed to be the 

same value in order to reduce the number of constants that needed to be modeled similar 

to the approach taken by Su and Wang (Su et al. 2011). The Log K values of these reactions 

were interpolated based on pH  from values  provided by van Der Hoek et al (van der Hoek 

et al. 1996). Reaction (4) hypothesizes that Cl- will compete for surface sites with As. 

Reactions (5) through (10) model complexation of Ca2+, Mg2+, and Na+ with As and 

sorption onto surface sites. Wang et al. noted that AsO4
3- is known to complex with Ca2+ 

and can potentially sorb to surface sites (especially as neutral species) (Wang 2007a). The 

proposed model hypothesizes that AsV will also complex with Mg2+ and Na+ and sorb to 

the surface of the CFA. In order to simplify the modeling process, the Log Ks for Reactions 

Nos. 5 and 6, 7 and 8, and 9 and 10 were assumed to have the same value. Modeled Log K 

values for the sorption of CaHAsO4 and Ca1.5(AsO4) to two CFAs by Wang were close in 
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value (1.9 versus  2.6, versus 2.1 and 3.0), hence, it was felt acceptable to assume this 

simplification step (Wang 2007a). 

Table 4.1. Changes of surface association reactions made to in SIT database. 

No. Reaction Log K  Reference 
 As Model   
1 Hfo_wOH + AsO4

3- + 3H+ = Hfo_wH2AsO4 + H2O 4.53 (van der Hoek et 
al. 1996) 

2 Hfo_wOH + AsO4
3- + 2H+ = Hfo_wHAsO4

- + H2O 4.53 (van der Hoek et 
al. 1996) 

3 Hfo_wOH + AsO4
3- = Hfo_wOHAsO4

3- 6.85 Modeled 

4 Hfo_wOH + Cl- = Hfo_wCl + OH- -5.20 Modeled 

5 Surface_OH + Ca2+ + AsO4
3- = Surface_CaAsO4 + OH- 2.40 Modeled 

6 Surface_OH + Ca2+ + H+ + AsO4
3- = Surface_CaHAsO4

+ + OH- 2.40 Modeled 

7 Surface_OH + Mg2+ + AsO4
3- = Surface_MgAsO4 + OH- 0.45 Modeled 

8 Surface_OH + Mg2+ + H+ + AsO4
3- = Surface_MgHAsO4

+ + OH- 0.45 Modeled 

9 Surface_OH + Na+ + AsO4
3- = Surface_NaAsO4

- + OH- 0.18 Modeled 

10 Surface_OH + Na+ + H+ + AsO4
3- = Surface_NaHAsO4 + OH- 0.18 Modeled 

 Cd Model   

11 β_OH = β_O- + H+ -8.11 (Wang 2007b, Su 
et al. 2011) 

12 β_O- + Cd2+ = β_OCd+ 12.13 Modeled 

13 β_O- + Ca2+ = β_OCa+ 9.80 Modeled 

14 β_O- + Mg2+ = β_OMg+ 9.00 Modeled 

15 β_O- + Na+ = β_ONa 7.60 Modeled 
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Table 4.2. Surface sites and properties of CFA for sorption modeling. 

Surface Site Site Densities (moles/g) Surface Area (m2/g) 

As Model   
Hfo_wOH 1.25x10-6 1.27 

Surface_OH 1.00x10-4 1.27 

Cd Model   

β_OH  1.80x10-5 1.27 

The maximum amount of Fe leached by CFA-I was assumed to be the amount of 

adsorbable Fe which was utilized to calculate the Hfo_wOH site density shown in Table 

4.2. The surface site density for Surface_OH was unknown, but a large site density was 

assumed as shown in Table 4.2. The main purpose of the Reactions (5) through (10) is to 

demonstrate the differences in complexation and sorption with Ca2+, Mg2+, and Na+, 

respectively. The CFA surface area was adopted from Yeboah et al., who had determined 

the surface area to be around 1.27 m2/g for CFA from the same coal-fired power plant 

where CFA-I and CFA-II were collected (Yeboah et al. 2014).  

The As model was operated under oxidizing conditions by fixing the pe of the 

reaction at a positive value so no reduction occurred. The available AsV (0.61 µg AsV/g 

CFA) in the model was calculated from the highest leaching value measured in the leaching 

experiment under neutral conditions in this study. Both As and Cd modeling assumed 

equilibrium conditions and the leachant pH was the same as experimentally observed.   

Leaching Model for Cadmium. The Cd leaching model was significantly 

influenced by modeling work by Wang et al. on CdII leaching from CFA (Wang et al. 2004, 

Wang et al. 2006, Wang 2007b, Wang et al. 2007, Wang et al. 2008, Wang et al. 2009, Su 
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et al. 2011). This work found that there were three acid surface sites that were associated 

with CFA leaching – α, β, and γ (Wang 2007b). The β sites are associated with Cd leaching 

(Wang et al. 2004, Wang et al. 2006, Wang 2007b, Wang et al. 2007, Wang et al. 2008, 

Wang et al. 2009, Su et al. 2011). The surface complexation reactions for the model are 

shown in Table 4.1. The model hypothesizes that Ca2+, Mg2+, and Na+ can compete with 

Cd2+ for β sites as observed for estuarine sediments (Du Laing et al. 2009b). The number 

of β site density was assumed to be similar to that measured for a Class F CFA by Wang 

et al. (Table 4.2) (Wang et al. 2004). The available Cd (0.52 µg Cd/g CFA) in the model 

was calculated from the highest leached Cd concentration measured under neutral pH 

conditions in this study.  

4.4 RESULTS AND DISCUSSION 

4.4.1 Analysis of CFA Solids 

Figure 4.1 shows the quantitative XRD results for a CFA sample that was collected 

from the same plant as CFA-I and CFA-II. Although it was collected at a different time 

than CFA-I and CFA-II, it was unlikely that the crystalline phases of the material changed 

over time since the coal fuel did not change. The main phases detected were indicative of 

bituminous CFA. The CFA was mostly amorphous (78.2%), and the crystalline phases 

from the highest to the lowest content by mass were quartz (SiO2), hematite (Fe2O3), 

diopside (MgCaSi2O6), trona, mullite (Al6Si2O13), and anyhydrite (CaSO4). 

Table 4.3 shows the metal analysis for the digested CFA-I, CFA-II, and dissolved 

salts in this study. It is noted that CFA-II was digested by a much stronger digestion method 

as described in the Experimental Section. Both CFA-I and CFA-II contained a similar 
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amount of Ca. The concentrations of Al, Fe, K, and Mg are higher in CFA-II than in CFA-

I. CFA-II also contained higher concentrations of trace metals (As, Ba, Cd, Cr, Mn, Pb, Se, 

and Zn). The presented results indicate that both CFAs had metal contents indicative of 

BCFA.   

The metal content results for the salts showed that the CaCl2
.2H2O salt contained 

slight contamination of Pb and As. Thus, the amounts of Pb and As added to the leaching 

experiments from this salt addition were subtracted in all calculations and graphs of leached 

concentrations in this study.  

 

Figure 4.1. Quantitative XRD analysis of CFA.  
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Table 4.3. Metal composition analysis for digested CFA-I, CFA-II, and salts. 
(a) Bulk Elements 

Composition 
CFA-I 

(mg/kg dry) 
CFA-II 

(mg/kg dry) 
CaCl2.2H2O 
(mg/kg dry) 

MgCl2.7H2O 
(mg/kg dry) 

NaCl 
(mg/kg dry) 

Al 29,200 113,617 < 34.4 < 34.4 < 27.9 
Ca 15,600 11,852 -- 47.6 < 50.0 
Fe 28,800 76,948 < 19.4 8.0 20.2 
K 2,580 16,965 5.6 < 5.7 52.4 

Mg 1,710 4,715 31.4 -- < 102.0 
(b) Significant Elements 

Composition 
CFA-I 

(mg/kg dry) 
CFA-II 

(mg/kg dry) 
CaCl2.2H2O 
(mg/kg dry) 

MgCl2.7H2O 
(mg/kg dry) 

NaCl 
(mg/kg dry) 

Ba 320 762 1.0 10.8 < 1.0 
Cr 71 174 < 0.3 < 0.3 < 1.3 
Cu 37 116 < 0.2 < 0.2 < 0.7 
Mn 72 134 < 0.2 < 0.2 < 0.7 
Ni 29 118 < 0.2 < 0.3 < 0.8 
Pb 31 73 0.1 < 0.3 < 1.4 
Zn 53 196 < 0.8 < 0.9  < 3.8 
(c) Trace Elements 

Composition 
CFA-I 

(mg/kg dry) 
CFA-II 

(mg/kg dry) 
CaCl2.2H2O 
(mg/kg dry) 

MgCl2.7H2O 
(mg/kg dry) 

NaCl 
(mg/kg dry) 

Ag 0.1 0.3 < 0.01 < 0.01 < 0.04 
As 25.6 69.3 0.13 < 0.07 < 0.3 
Be 6.3 16.2 < 0.7 < 0.8 < 0.6 
Cd 0.8 1.1 < 0.3 < 0.3 < 0.2 
Co 24.6 44.4 < 0.2 < 0.2 < 0.7 
Mo 24.3 24.7 < 0.4 < 0.5 < 1.9 
Sb 1.2 5.9 < 30.9 < 0.6 < 2.5 
Se 5.5 10.2 < 0.1 < 0.2 < 0.7 
Tl 0.8 4.4 < 0.19 < 0.2 < 0.8 
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Figure 4.2. As leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively. 

4.4.2 Leaching Results 

 Arsenic. Figure 4.2 shows that all salts increased As leaching from CFA-I at low 

pH, similarly from a minimum concentration of 17 µg/L to maximum concentrations of 

39, 44, and 40 µg/L for CaCl2, NaCl, and MgCl2, respectively. At near neutral pH (Figure 

4.3a), As leaching from CFA-I increased from an initial concentration of 30 µg/L to 

maximum concentrations of 46 and 60 µg/L with NaCl and MgCl2, respectively, whereas 

CaCl2 addition decreased As leaching. 
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(a)  

(b)  
Figure 4.3. As leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 

Figure 4.4 shows similar results for CFA-II with As leaching increasing from 4 

µg/L to a maximum concentration of 7 µg/L with MgCl2 addition, while CaCl2 addition 
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decreased As leaching. At high pH (Figure 4.3b), As leaching from CFA-I increased from 

minimal leaching to approximately maximum leached concentrations of 118, 181, and 49 

µg/L with CaCl2, MgCl2, and NaCl, respectively.   

 
Figure 4.4. As leaching results from CFA-II at medium pH. Note: Ca = CaCl2 addition and 
Mg = MgCl2 addition. The sample pHs with CaCl2 and MgCl2 added were 6.7-7.5 and 6.7-
7.4, respectively. 

With regards to heavy metals, previous researchers have noted that As is present in 

CFA primarily as the oxyanion AsO4
3- (Goodarzi et al. 2001, Huggins et al. 2007, Goodarzi 

et al. 2008). As partitions to CFA from the flue gas majorly through sorption to Fe sites on 

BCFA and Ca sites for SCFA (Yudovich et al. 2005). In general, As leaching from 

bituminous CFA is controlled by adsorption/desorption from Fe hydroxides and is heavily 

dependent on As speciation (Wang et al. 2009). 

Anion-exchange could drive AsO4
3- mobilization at low and medium pH. Keon et 

al. hypothesized anion exchange with Cl- as the main mechanism of enhanced As 
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mobilization during batch equilibrium leaching tests with MgCl2 addition in the range of 1 

M (Keon et al. 2001). The researchers noted that MgCl2 likely mobilized the ionically 

bound As (Keon et al. 2001).  

Anion exchange may not play a large role at higher pH, as the CFA surface becomes 

deprotonated and more negatively charged. While the XRF analysis in this study showed 

a major percentage of amorphous phase in CFA, our previous work on a BCFA sample 

showed SiO2, Al2O3 and Fe2O3 to be the major phases (Renew et al. 2016b). Considering 

the typical point of zero charges (pzc) for SiO2 (~2.2-3.5), Al2O3 (~9.5-10.0), and Fe2O3 

(~7.0), the CFA in this study is estimated to have a pzc around 5-6 (Mohapatra et al. 1997).  

While there may be a significant amount of positively charged sites for AsO4
3- to sorb to 

at low and medium pH, the number of these sites decreases as pH increases. The low pH 

results indicate that anion exchange for Cl- was likely the main mechanism of mobilization 

as leaching increased with increased Cl- concentration regardless of which type of cation 

addition.  

The medium pH results show that although anion exchange for Cl- may drive the 

process, other factors may be influencing the results as well. Wang noted that Ca2+ could 

potentially form complexes with AsO4
3- and these complexes could sorb to the CFA surface 

(Wang 2007a). Hence, it is possible that Ca2+ addition could limit leaching of As through 

this process This process could explain why Ca2+ addition at near neutral pH actually 

decreased As mobilization. It should be noted that per the pzc value for CFA, there are less 

positively-charged sites at medium pH compared to at low pH. Hence, this complexation 

process may be more important where less positively-charged sites exist for As to sorb. 

Keon et al. hypothesized that AsO4
3- could also potentially complex with Mg2+ (Keon et 



 136 

al. 2001). Although little information is available in literature on this topic, it is possible 

that Mg2+ and Na+ could also potentially complex with AsO4
3- and sorb to active sites. 

Differences in the affinity of Ca2+, Mg2+, and Na+ in complexing with AsV and the resulted 

complexes sorbing to the active sites could explain the differences in As leaching shown 

in Figure 4.3a. Furthermore, Ca-AsV precipitation could also play a role as these complexes 

begin to decrease in solubility under alkaline conditions (Masue et al. 2007). Nishimura 

and Robins reported Ca-AsV solubilities for CaHAsO4.H2O (average Log KSP = 3.23, pH = 

5.35-6.46), Ca3(AsO4)2.H2O (average Log KSP = 5.58, pH = 7.51-9.58), and 

Ca2AsO4OH.2H2O (average Log KSP = 1.29, pH = 12.02-12.48) (Nishimura et al. 1998). 

Less information is available in literature on the correlation between Mg3(AsO4)2 solubility 

and pH.  

 As mentioned above, the CFA surface becomes increasingly negatively charged 

due to deprotonation in the high pH range. As a result, anion exchange may not play as 

large a role at high pH due to repulsive forces between the anions and the CFA surface. 

Iyer proposed that elements leaching from the CFA surface must traverse the diffuse double 

layer (DDL) to reach the bulk solution with resistance present in the DDL (Iyer 2002). 

High ionic strength can compress the DDL around CFA and has been shown to increase 

leaching for at least some elements (Stanmore et al. 1992, Iyer 2002). It is possible that 

DDL compression due to high salinity conditions increased AsO4
3- leaching with divalent 

ions obviously compressing the DDL more than monovalent ions. This process could be 

the reason that addition of the divalent MgCl2 increased As leaching more than the 

monovalent NaCl. The reason that CaCl2 did not increase leaching as much as MgCl2 could 
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be because of the reasons described for the medium pH with Ca2+ addition limiting As 

leaching either through complexation and sorption or Ca-AsV phase precipitation.   

Cadmium. Figure 4.5 shows that salt addition did not significantly increase Cd 

leaching from CFA-I from an initial concentration of 56 µg/L under low pH conditions. At 

near neutral pH conditions for CFA-I (Figure 4.6a), all salts significantly increased Cd 

leaching from an initial concentration <method detection limit (MDL, 12.2 µg/L, graphed 

as 25% MDL) to maximum concentrations of 49 µg/L, 50 µg/L, and 44 µg/L with CaCl2 

MgCl2 and NaCl, respectively. Similarly, CaCl2 and MgCl2 addition both increased Cd 

leaching from CFA-II at near neutral pH as shown in Figure 4.7. 

 
Figure 4.5. Cd leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively. 
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(a)  

(b)  
Figure 4.6. Cd leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 

However, Cd leaching increases by the salts for CFA-II were not as dramatic as for 

CFA-I perhaps due to the larger Cd leached concentration for CFA-II versus CFA-I (38 
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µg/L versus <MDL) without salt addition. At high pH (Figure 4.6b), Cd leaching from 

CFA-I was not increased with salt addition except for the highest salt addition with CaCl2 

where the leached Cd concentration increased to 35 µg/L.   

Cd which is typically associated with the CFA surface is believed to be associated 

with aluminosilicates and metal oxides surfaces in CFA although it may also be 

precipitated as Cd(OH)2 or CaCO3 (Jones 1995). It’s leaching is limited at high pH due to 

the low solubility of Cd(OH)2. As typical for leaching of cationic metals from CFA, Cd 

leaches readily at low pH, but not at high pH (Izquierdo et al. 2012). At low pH, Cd 

leaching was not impacted by salt addition due to the high solubility of Cd2+. Essentially 

all of the Cd available to leach at low pH readily leached regardless of salt addition.  

 
Figure 4.7. Cd leaching results from CFA-II at medium pH. Note: Ca = CaCl2 addition 
and Mg = MgCl2 addition. The sample pHs with CaCl2 and MgCl2 added were 6.7-7.5 and 
6.7-7.4, respectively. 

At near neutral pH, it is apparent that Cl- complexation significantly increased Cd 

leaching. Cd leaching increased with Cl- concentration regardless of the cation type. As 
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mentioned earlier, Cd-Cl complexes are stable (Du Laing et al. 2009b). Cl- complexation 

moves Cd speciation “shifts towards CdCl+, CdCl2, CdCl3- and CdCl4
2-“ (Du Laing et al. 

2008). Cl- complexation reduces activity (i.e. effective concentration) of cations in the and 

can promote cation mobility (Du Laing et al. 2009b).  

A high pH, salt addition did not significantly increase Cd leaching due to the low 

solubility of Cd(OH)2 in this region. Izquierdo noted that Cd is essentially completely 

stabilized on CFA under alkaline conditions (Izquierdo et al. 2012). Only the highest Cl- 

addition overcame the insolubility of Cd(OH)2 under high pH conditions and increased 

leaching likely due to Cl- complexation.   

Chromium. Figure 4.8 shows that salt addition did not significantly increase Cr 

leaching from CFA-I under low pH conditions from an initial concentration of 119 µg/L. 

At near neutral pH conditions (Figure 4.9a), CaCl2 increased Cr leaching from CFA-I from 

an initial concentration of 11 µg/L to a maximum concentration of 60 µg/L, MgCl2 mildly 

increased Cr leaching to 18 µg/L , and NaCl had negligible effect. Figure 4.10 shows that 

for CFA-II under near neutral pH conditions, CaCl2 and MgCl2 addition increased Cr 

leaching from an initial value of 2.7 µg/L to maximum concentrations of 6.3 and 4.5 µg/L, 

respectively. Under high pH conditions for CFA-I (Figure 4.9b), only the highest CaCl2 

addition significantly increased Cr leaching from an initial concentration of approximately 

111 µg/L to a maximum concentration of 447 µg/L.  
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Figure 4.8. Cr leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively. 

The dominant Cr species in CFA is CrIII with Huffman et al. finding greater than 

95% CrIII of total Cr (Huffman et al. 1994, Huggins et al. 1999, Goodarzi et al. 2001, 

Goodarzi et al. 2008). Cr has been identified as residing mainly in the amorphous glassy 

aluminosilicate slag portion of CFA on both the surface and the entire CFA particle 

(Huffman et al. 1994, Jones 1995, Kim et al. 2004). 

It is apparent that the under low pH conditions, salt addition had no significant 

impact on Cr leaching because that element leaches readily at low pH as has been reported 

in literature (Izquierdo et al. 2012). All of the Cr available to leach readily did so regardless 

of salt addition.  
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 (a)  

(b)   
Figure 4.9. Cr leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 

Under near neutral pH, Cr leaching increased significantly with CaCl2 addition 

likely due to competitive cation exchange. It is apparent that the solubility of CrIII is low 
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enough that salt addition can make a difference. Competition for surface sorption sites 

between major cations (Ca2+, Mg2+, and Na+) and trace metals can likely impact metal 

leaching from CFA.  

Previous research has shown that zeolites, which have high Si/Al ratios similar to 

CFA, favor sorption of divalent cations with lower hydration energies to active sites 

(Wingenfelder et al. 2005, Teutli-Sequeira et al. 2009). This research shows that cations 

with lower hydration energy will preferentially exchange for higher energy cations on 

active sites on the zeolite surface (Wingenfelder et al. 2005, Teutli-Sequeira et al. 2009). 

Researchers have noted electrostatic forces along with energy bonding both play a role in 

the cation preference for sorption on hydrous oxides  (Balistrieri et al. 1982, Paalman et al. 

1994). Typically when comparing positively charged metals within the same valence state, 

typically the ion with the larger ionic radius will be preferentially sorbed to hydrous oxides 

(Paalman et al. 1994). 

It is apparent that the higher concentration of the major divalent cations (Ca2+ and 

Mg2+) and the potential to form higher energy bonds with active surface sites can increase 

trace metal leaching. It is apparent that the higher concentration of the major divalent 

cations (Ca2+ and Mg2+) and the potential to form higher energy bonds with active surface 

sites can increase trace metal leaching. Table 4.4 lists the ionic radius and Gibbs free energy 

of hydration for each of the cationic metals of interest in this study (Marcus 1991). The 

ionic radius of CrIII is low (0.062 nm) and the Gibbs free energy of hydration is high (-

4,010 KJ/mol) compared to Ca2+ (0.100 nm; -1,505 KJ/mol) (Marcus 1991). It is reasonable 

to hypothesize that Ca2+ would have high affinity for replacing CrIII as shown in the 

medium pH results.  
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Figure 4.10. Cr leaching results from CFA-II at medium pH. Note: Ca = CaCl2 addition 
and Mg = MgCl2 addition. The sample pHs with CaCl2 and MgCl2 added were 6.7-7.5 and 
6.7-7.4, respectively. 

Table 4.4. Ionic radius and Gibbs free energy of hydration for cations. (Marcus 
1991)  

Cation 
Ionic Radius 

(nm) 
Gibbs Free Energy of 
Hydration (-KJ/Mol) 

Ca2+ 0.100 -1,505 
Cd 0.095 -1,755 
CrIII 0.062 -4,010 
Mg2+ 0.072 -1,830 
MnII 0.083 -1,760 
Na+ 0.102 -365 
Pb 0.118 -1,425 
Zn 0.075 -1,955 

At high pH, there did not appear to be a clear trend of Cr leaching with regard to 

salt addition. Since nearly the same initial leached concentration was observed at high pH 

as observed at low pH, it is hypothesized that CrIII leaching increased at the highest CaCl2 

addition perhaps because of the breakdown of some amorphous glassy aluminosilicate 

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L
ea

ch
ed

 C
r 

C
on

ce
nt

ra
tio

n 
(µ

g/
L

)

Cation Concentration (M)

Ca Mg



 145 

layer increasing the quantity of CrIII available to leach. The harsher conditions at higher pH 

and with high salt addition could have resulted in this breakdown of the glassy phase. Cl- 

complexation at the very high Cl- addition could also have played a role. 

Manganese. Figure 4.11 shows that salt addition did not significantly increase Mn 

leaching from CFA-I under low pH conditions from an initial concentration of 2,000 µg/L. 

At near neutral pH conditions (Figure 4.12a), all salts increased Mn leaching from CFA-I 

with respect to Cl- concentration from an initial concentration of 455 µg/L. The Mn leached 

concentration reached maximums of 1,510, 1,310, 1,320 µg/L with CaCl2, MgCl2, and 

NaCl, respectively. For CFA-II under near neutral pH conditions (Figure 4.13), Mn 

leaching increased from an initial concentration of 774 µg/L to maximum concentrations 

of 924 and 1,038 µg/L with CaCl2 and MgCl2 addition, respectively. Under high pH 

conditions for CFA-I (Figure 4.12b), only MgCl2 addition significantly increased Mn 

leaching to a maximum concentration of 267 µg/L.    

   Mn is associated with the amorphous glassy aluminosilicate or the ferromagnetic 

portion of CFA (Izquierdo et al. 2012). Mn is known to be enriched on both the CFA 

surface and the overall CFA particle (Jones 1995). Similar to other cationic metals, Mn 

leaches at low pH and does not readily leach at medium and higher pH (Izquierdo et al. 

2012). Salt addition did not increase Mn leaching at low pH because all of the metal 

available to leach readily leached regardless of salt addition.  

Regarding Mn leaching at medium pH, Mn leaching increased similarly with 

increasing Cl- concentration regardless of the type of cation (Figure 4.12a). Previous 

research reported that Mn leaching from soils increased with salt addition through 
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competitive cation exchange (Khattak et al. 1989). However, previous research also 

showed that Mn formed Cl- complexes although they are known to be weak (Winand 1991, 

Du Laing et al. 2008). Our results strongly suggested that Cl- complexation likely played a 

significant role in increasing Mn leaching at medium pH. Even though Mn leaching with 

1.6 M Cl- addition by NaCl decreased compared to that with 0.6 M addition of Cl- (Figure 

4.12a), this result might be due to issues with detection of Mn by ICP-MS under highly 

saline conditions. Results with CFA-II also showed increased Mn leaching similarly with 

CaCl2 or MgCl2 addition, although the increase was not as pronounced as that for CFA-I 

(Figure 4.13). It should be noted that the initial Mn leaching concentration of CFA-II was 

higher than that of CFA-I (774 versus 455 µg/L).  

 

Figure 4.11. Mn leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively. 
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(a)  

(b)  
Figure 4.12. Mn leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 
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Figure 4.13. Mn leaching results from CFA-II at medium pH. Note: Ca = CaCl2 addition 
and Mg = MgCl2 addition. The sample pHs with CaCl2 and MgCl2 added were 6.7-7.5 and 
6.7-7.4, respectively. 

At high pH, Mg2+ addition enhanced Mn mobility through competitive cation 

exchange more than Ca2+ and Na+ from CFA-I. The Gibbs free energy of hydration for Mn 

is -1,760 KJ/mol which is higher than Ca2+, but lower than Mg2+ (Marcus 1991, 

Wingenfelder et al. 2005). However, the ionic radius of Mg2+ (0.072 nm) is smaller than 

that of Ca2+ (0.100 nm) and closer in size to that of Mn (0.083 nm) (Marcus 1991, 

Wingenfelder et al. 2005). It could be that Mg2+ can compete with Mn more effectively at 

high pH than Ca2+ for sorption sites due to the smaller size of Mg2+ compared to Ca2+. It is 

also noted that lower Mn leaching occurred at high pH compared to medium pH. It could 

be that competitive cation exchange was more important when less of the metal was 

available for leaching.  

Lead. Figure 4.14 shows that addition of CaCl2, MgCl2, and NaCl significantly 

increased Pb leaching from CFA-I from a minimal concentration to maximum 
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concentrations of 439, 248, and 324 µg/L, respectively. At near neutral pH (Figure 4.15a), 

only CaCl2 addition increased Pb leaching from CFA-I from a  minimal concentration to a 

maximum concentration of 237 µg/L, and this increase only occurred at the maximum 

CaCl2 addition concentration.  

Salt addition did not increase Pb leaching from CFA-II under near neutral pH 

conditions up to a Cl- concentration of 1.5 M which was less than the highest Cl- addition 

for CFA-I (data not shown). At high pH conditions for CFA-I (Figure 4.15b), CaCl2, 

MgCl2, and NaCl addition all decreased Pb leaching from an initial concentration of 43 

µg/L.  

 

Figure 4.14. Pb leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively.  
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 (a)  

(b)   

Figure 4.15. Pb leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 
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Pb is known to reside in the surface of CFA and is known leach sparingly over a 

wide pH range (Izquierdo et al. 2012). Cl- complexation is likely responsible for the 

dramatic increase of Pb leaching from CFA-I with increasing Cl- concentration (regardless 

of cation) under low pH conditions. Pb has been shown to strongly complex with Cl- in 

other studies (Winand 1991, Sinadinovic 1997). Previous research indicated that 

competitive cation exchange played a role in Pb mobilization from soils (Pickering 1986, 

Acosta et al. 2011). However, the previous study included salt additions only up to an ionic 

strength of 0.3 M which was much lower than in this study (up to 5.5 M), and thus could 

be the reason for the different major leaching mechanisms between the two studies. 

At medium pH conditions, Cl- addition minimally influenced Pb leaching from 

CFA-I for all three salts (CaCl2, MgCl2, and NaCl) except at the highest Cl- addition likely 

due to decreased PbCl2 solubility. PbCl2 solubility dramatically decreases in the pH range 

of 6.7-10.5 compared to at low pH (Pierrard et al. 2002). The addition of Cl- when the Pb 

solubility is low likely decreases Pb mobility through the common ion effect with PbCl2 

precipitation according to Le Châtelier's principle per Equation 4.1.(Winand 1991) 

PbCl2(s) = Pb2+ + 2Cl-  (4.1) 

Only at the very highest Cl- addition for the medium pH samples did the impact of 

Cl- complexation (decreased Pb2+ solution activity) likely overcame the decreased 

solubility of PbCl2. Pb leaching was below the MDL (<~3 µg/L) for CFA-II at medium pH 

with Cl- addition up to 1.5 M (data not shown).   

Under high pH conditions, Pb leaching decreased with all salt additions. This 

decrease in Pb leaching is likely due to precipitation as shown in Equation 4.1. This 
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precipitation effect was not overcome even at the highest Cl- addition unlike for the 

medium pH conditions.  

Selenium. Figure 4.16 shows that salt addition did not appreciably increase Se 

leaching from an initial concentration of 42 µg/L. At near neutral pH for CFA-I (Figure 

4.17a), MgCl2 significantly increased Se leaching from an initial concentration of 63 µg/L 

to a maximum value of 111 µg/L. NaCl addition increased Se leaching to a maximum of 

85 µg/L while CaCl2 addition decreased Se leaching to 55 µg/L. For CFA-II at near neutral 

conditions (Figure 4.18), MgCl2 addition increased Se leaching from an initial value of 16 

µg/L to a maximum concentration of 40 µg/L while CaCl2 addition only increased Se 

leaching to a maximum concentration of 26 µg/L. 

 
Figure 4.16. Se leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively. 
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(a)  

 (b)  
Figure 4.17. Se leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 
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Figure 4.18. Se leaching results from CFA-II at medium pH. Note: Ca = CaCl2 addition 
and Mg = MgCl2 addition. The sample pHs with CaCl2 and MgCl2 added were 6.7-7.5 and 
6.7-7.4, respectively. 

Under high pH conditions for CFA-I (Figure 4.17b), MgCl2 addition increased Se 

leaching from an initial concentration of 213 µg/L to a maximum concentration of 305 

µg/L while NaCl addition increased Se leaching to a maximum concentration of 324 µg/L. 

CaCl2 addition actually decreased Se leaching to minimum concentration of 162 µg/L.  

Previous research has shown that the dominant Se species in CFA is the oxyanion 

SeO3
2- (Narukawa et al. 2005, Huggins et al. 2007, Wang et al. 2009). As with As, Se 

partitions to CFA from the flue gas majorly through sorption to  Fe sites on BCFA and Ca 

sites for SCFA (Yudovich et al. 2005). 

Previous research has shown that SeO3
2- leaching is controlled by 

adsorption/desorption from Fe hydroxides in BCFA and is heavily dependent on Se 

speciation (Wang et al. 2009). The pKa values of H2SeO3 are 2.64 and 8.36 (Wang et al. 
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2007). Wang et al. hypothesized that Se leaching from BCFA increases when the pH drops 

below 2.6 because Se is present primarily as the H2SeO3 which does not sorb strongly to 

the positively-charged Fe hydroxides sites due to being present as a neutral compound 

(Wang et al. 2007).  

Wang et al. further noted that Se leaching from BCFA is typically at it’s lowest 

point between pH 2.6 and 7.0 due to Se being present as the charged HSeO3
- and SeO3

2- 

which can strongly sorb to the positively-charged Fe hydroxides (Wang et al. 2007). When 

the pH is increases to be above 7.0, the surface sites of BCFA become deprotonated and 

more of the negatively-charged HSeO3
- and SeO3

2- readily leach from the surface (Wang 

et al. 2007). 

The leaching results for the oxyanions SeO3
2- are somewhat similar to the results 

for the oxyanion AsO4
3-. It is believed that anion-exchange for Cl- could be important for 

Se mobilization as Keon et al. hypothesized that anion exchange with Cl- was a main 

mechanism of enhanced As mobilization in leaching tests with MgCl2 addition (Keon et 

al. 2001).  

No significant Se leaching increases by salts were observed at the low pH (3.6-4.5) 

experiments because Se was probably strongly sorbed to Fe hydroxides as Se was in the 

charged species HSeO3
-. Therefore, it was likely difficult for Cl- to compete with Se for Fe 

active sites due to Se species being charged. 

At medium pH, the results show that anion exchange for Cl- may drive the enhanced 

Se leaching with other factors influencing the results. It may be that SeO3
2- can complex 

with Ca2+ as Wang noted that Ca2+ can form complexes with AsO4
3- (Wang 2007a). 
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Although little information is available in literature, it is possible that Mg2+ and Na+ can 

potentially complex with SeO3
2- and sorb to active site. As with As, differences in the 

affinity of Ca2+, Mg2+, and Na+ in complexing with SeIV and the resulted complexes sorbing 

to the active sites could explain the differences in Se leaching as shown in Figure 4.17a. It 

should also be noted that CaSeO3 precipitation could also play a role as these complexes 

begin to decrease in solubility under alkaline conditions (Masue et al. 2007). Differences 

in the solubility of MgSeO3(s) (log K = 5.9 to 8.99) and CaSeO3(s) (Log K = 5.53 to 7.65) 

could also play a role in the different leaching results (Séby et al. 2001). Both phases have 

a significant range of published Log K values so there could be a difference in their 

solubility under the experimental conditions.  

The Se leaching results at high pH are likely driven by the same mechanisms as 

described for As. As mentioned above, the CFA surface becomes increasingly 

deprotonated with negative charge at higher pH and repels anions. The DDL compression 

due to high salinity is more significant with divalent ions than with monovalent ions. Both 

of the above effects increase SeO3
2- leaching. However, there is a complicating factor that 

the pH of the MgCl2 samples was less than the NaCl samples likely due to the precipitation 

of Mg(OH)2 or complexation of MgOH+. Hence, it is believed that although the greater 

compression of the DDL likely made it easier for Se to leach more with the addition of 

MgCl2 than NaCl, the lower final leachate pH with MgCl2 addition compared to NaCl 

addition likely decreased Se leaching in the MgCl2 samples compared to the NaCl samples 

as Se leaching increases win increasing pH in this region due to increasing negative charge 

of the CFA surface. Thus, it is possible that these two factors worked simultaneously and 

resulted in the similarly increased Se leaching with MgCl2 and NaCl addition.  The reason 
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that CaCl2 did not increase leaching at high pH could be because of the reasons described 

for the medium pH results either through complexation and sorption or CaSeO3 

precipitation.   

Zinc. Figure 4.19 shows that salt addition (regardless of cation) did not significantly 

impact Zn leaching from an initial concentration of 1,380 µg/L. At neutral pH for CFA-I 

(Figure 4.20a), Zn leaching was decreased from an initial concentration of 584 µg/L with 

all salt additions except at the highest CaCl2 addition where the leached Zn concentration 

reached a maximum of 885 µg/L at an added Cl- concentration of 4.4 M. CaCl2 and MgCl2 

addition also decreased Zn leaching from CFA-II under near neutral pH conditions from 

an initial leaching concentration of 722 µg/L with Cl- additions up to 1.5 M (Figures 4.21).  

Under high pH conditions (Figure 4.20b), all salts decreased Zn leaching from CFA-I from 

an initial leached Zn concentration of 633 µg/L.   

Zn is known to be primarily present on the CFA surface (Jones 1995). As shown in 

our results, Zn typically has an amphoteric leaching pattern with relation to pH but with 

generally higher leaching at low pH (Izquierdo et al. 2012). At low pH, Zn leaching was 

not affected by salt addition. This may be due to that (1) all of the Zn available to leach 

readily does so, and (2) Zn oxide, hydroxides, and hydroxychlorides are at their maximum 

solubility at high pH (Peulon et al. 1998). 
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Figure 4.19. Zn leaching from CFA-I at low pH. Note: Ca = CaCl2 addition, Mg = MgCl2 
addition, and Na = NaCl addition. The sample pHs with CaCl2, MgCl2, or NaCl added were 
3.6-4.5, 4.1-4.5, and 4.2-4.5, respectively.  
 

The results that moderate salt additions at moderate pH conditions decreased Zn 

mobility could be related to the lower solubility of Zn oxide, hydroxides, and 

hydroxychlorides at neutral to high pH (Reichle et al. 1975, Peulon et al. 1998). Zn 

hydroxychlorides can form according to Equation 4.2 (Peulon et al. 1998). 

Zn + xOH + yCl- = Zn(OH)xCly  (4.2) 

Zn hydroxychlorides have been shown to have Log K values between -13.4 and -

14.92 (Peulon et al. 1998). Under neutral to alkaline conditions, the solubility of these 

compounds could be exceeded under the conditions of this study. Per the common ion 

effect, Cl- addition from all three salts moved the reaction to the right in precipitating 

Zn(OH)xCly.  
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(a)  

(b)  

Figure 4.20. Zn leaching from CFA-I at (a) medium pH and (b) high pH conditions. Note: 
Ca = CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition.  Medium pH: pH 6.7-
7.6 (CaCl2), 6.8-7.6 (MgCl2), and 7.1-7.6 (NaCl). High pH: pH 8.0-9.9 (CaCl2), 8.1-9.9 
(MgCl2), and 9.9-10.1 (NaCl). 
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Figure 4.21. Zn leaching results from CFA-II at medium pH. Note: Ca = CaCl2 addition 
and Mg = MgCl2 addition. The sample pHs with CaCl2 and MgCl2 added were 6.7-7.5 and 
6.7-7.4, respectively. 

However, Zn does form Cl- complexes which would increase Zn solubility (by 

reducing free Zn2+ activity in solution) (Winand 1991, Peulon et al. 1998). A very high Cl- 

concentration (4.5 M) could overcome the common ion effect as shown by the results for 

the highest CaCl2 addition in Figure 4.20a.  

The same Zn leaching trend for the medium pH samples was also observed in the 

high pH experiments for CFA-I (Figure 4.20b), and there was no increased Zn leaching at 

the highst Cl- addition, likely due to even lower solubility of Zn oxide, hydroxides, and 

hydroxychlorides at high pH.  

Comparison of Metals. Figure 4.22 shows a summary of the leaching results in this 

study with 0.6 M of CaCl2 added to the extractant fluid. The composition of concentrated 

FGD wastewater brines is expected to be dominated by CaCl2. The Cl- concentration of 0.6 
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M is approximately 25% to 50% of the concentration that would be expected in a 

concentrated FGD wastewater brine. The results indicate that the metal leaching increases 

of most concern under environmentally relevant conditions (medium and high pH as 

expected in the landfill leachate of a coal-fired power plant landfill) include As, Cd, and 

Cr. As and Cd had the most striking leaching increases under environmentally relevant 

conditions.   

 
Figure 4.22. Factor of increased metal leaching from CFA-I for the addition of 1.21 M of 
Cl- as CaCl2. Note: When the concentration was less than the MDL, the concentration was 
assumed to be 25% of the MDL.  

4.4.3 Modeling Results 

Very limited information is available in literature on modeling the leaching 

behavior of metals in the presence of high salt concentrations. Modeling has previously 

been conducted on As and Cd leaching from CFA at different pHs and normal, low ionic 

strength conditions (van der Hoek et al. 1996, Wang et al. 2004, Wang et al. 2006, Wang 
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2007a, Wang 2007b, Wang et al. 2007, Wang et al. 2008, Wang et al. 2009, Su et al. 2011). 

However, no modeling efforts have been made to evaluate metal leaching from CFA with 

increasing salt concentrations. The closest similar modeling effort was conducted by Hyks 

et al. on contaminant leaching from municipal solid waste incineration (MSWI) air 

pollution control residues, in which the authors modeled results from column percolation 

tests for pH, alkalinity, and Al, Ba Ca, S, Si, and Zn releases from a high salt material (with 

122,000-173,000 mg/kg Cl-) (Hyks et al. 2009). The Cl- leachate concentrations reached as 

high as 100,000 mg/L (Hyks et al. 2009). However, no modeling of toxic metals such as 

As and Cd was made in this study. 

In this study, the modeling approaches done by the previous research on As and Cd 

leaching from CFA were adopted and modified to apply to the employed experimental 

conditions. The modeling results are shown in Figures 4.23 and 4.24.  

The modeled results show that an adequate fit with the experimental results could 

be achieved based on two assumed simultaneous mechanisms driving As leaching with 

increasing salt addition (Figure 4.23).  

The two mechanisms are: (1) competition between Cl- and AsO4
3- for hydrous FeIII 

active sorption sites, and separately (2) complexation of the cations (Ca2+, Mg2+, and Na+) 

with AsO4
3- and their adsorption to CFA surface sites. Although this model is a simple 

surface complexation model, the model identified that the proposed hypotheses are 

feasible.  
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Figure 4.23. As modeling leaching from CFA-I under medium pH conditions. Note: Ca = 
CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition. pH 6.7-7.6 (CaCl2), 6.8-
7.6 (MgCl2), and 7.1-7.6 (NaCl). 

 
Figure 4.24. Cd modeling leaching from CFA-I under medium pH conditions. Note: Ca = 
CaCl2 addition, Mg = MgCl2 addition, and Na = NaCl addition. pH 6.7-7.6 (CaCl2), 6.8-
7.6 (MgCl2), and 7.1-7.6 (NaCl). 
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The results also showed the potential differences in the complexation of AsO4
3- 

with the different cations (Ca2+, Mg2+, and Na+) and sorption the CFA active surface sites. 

The results showed the following preference for this process based on cation: Ca2+ (Log K 

= 2.4) >> Mg2+ (Log K = 0.45) > Na+ (Log K = 0.18) as shown in Table 4.1. 

Figure 4.24 shows that modeling of Cd leaching can achieve an adequate fit with 

the experimental results based on two simultaneous mechanisms. The model shows that 

Cd leaching is controlled by (1) Cl- complexation, and (2) competitive cation exchange for 

active sites with Ca2+, Mg2+, and Na+. Cl- complexation is the more important mechanism 

as there are fairly small differences for the active sites with the following preference as 

follows: Ca2+ (Log K = 9.8) > Mg2+ (Log K = 9.0) > Na+ (Log K = 7.8). However, 

competitive cation exchange definitely plays a role. The model shows that for an addition 

of 2 M NaCl, 0.07% of the dissolved Cd is speciated as Cd2+ versus 97.5% without salt 

addition. Similarly for 1 M addition of CaCl2, 0.05% of the dissolved Cd is speciated as 

Cd2+.  

4.4.4 XRD Analysis 

Figure 4.25 shows the XRD patterns for the CFA-II solids after leaching (final 

leahate pH = 6.7-7.5). The main mineral phases were 3Al2O3. 2SiO2 (mullite), SiO2 (quartz) 

and Fe2O3 (iron oxide). The results show that exposure to the salts did not break down the 

mineralogy of the solids. This observation adds support that surface processes anion 

exchange, cation exchange, and Cl- complexation are the likely mechanisms of increased 

metal leaching, not the breakdown of crystalline CFA phases by salt attack.  
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Figure 4.25. XRD patterns for CFA-II impacted by leaching with CaCl2 and MgCl2.  

4.5 CONCLUSIONS 

Contact of bituminous CFA with high salinity waste brines could increase metal 
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BCFA without salt addition, Cd and Mn leaching significantly decreased with increasing 

pH. Cd and Zn demonstrated amphoteric leaching patterns in regards to pH. Although Zn 

did demonstrate a slight amphoteric pattern, Zn leaching was higher at low pH compared 

to high pH. Pb demonstrated low leaching at low and medium pH conditions and moderate 

leaching at high pH conditions.  

Increasing salt addition did not impact Cd, Cr, Mn, and Zn leaching from BCFA at 

low pH because essentially all of the available cationic metal readily leached regardless of 

salt addition. Salt addition did significantly increase Pb leaching at low pH due to Cl- 

complexation. 

Under medium pH conditions, salt addition increased Cd and Mn leaching from 

BCFA due to Cl- complexation. CaCl2 addition increased Cr leaching due to competitive 

cation exchange with Ca2+, while MgCl2 and NaCl did not significantly increase Cr 

leaching. Moderate salt addition decreased Zn and did not impact Pb leaching at medium 

pH due to the low solubility of PbCl2 and Zn hydroxychlorides. For Pb and Zn, leaching 

only increased at medium pH at the very highest salt addition due Cl- complexation 

overcoming the low solubility of PbCl2 and Zn hydroxychlorides.  

At high pH conditions, salt addition did not increase Cd and Cr leaching from 

BCFA except at the highest salt addition. The low solubility of Cd and Cr hydroxides at 

high pH prevented leaching increases with salt addition. However, high Cl- addition 

overcame the low solubilities of Cd and Cr hydroxides through Cl- complexation. Mn 

leaching increased at high pH only with MgCl2 addition through competitive cation 
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exchange with Mg2+. Pb and Zn leaching decreased at high pH due to increasing 

precipitation of PbCl2 and Zn hydroxychlorides with increasing Cl- addition.  

In regards to oxyanions, AsO4
3- leaching was highest at medium pH and lower at 

low and high pH while SeO3
2- leaching increased with increasing pH. Increasing salt 

concentrations did no impact Se leaching at low pH likely because of the oxyanion being 

strongly sorbed to FeIII oxide sorption sites at low pH due to being present as negatively 

charged species. As leaching did increase at low pH due to anion exchange with Cl-. 

At medium pH, salt addition increased both As and Se leaching due to anion 

exchange with Cl-. However, As and Se leaching was also likely impacted by complexation 

and sorption with the cations (Ca2+, Mg2+, and Na+) which resulted in MgCl2 addition 

increasing leaching more than CaCl2 and NaCl addition. Precipitation of As and Se with 

the cations may also have played a role.  

At high pH, both As and Se leaching increased with salt addition. As the BCFA 

surface becomes more negatively charged at high pH, it is believed that salt addition could 

enhance As and Se leaching mainly through compressing the diffuse double layer (DDL) 

around the BCFA making it easier for the two oxyaions to leaching. The leaching results 

at this pH are also likely impacted by complexation and sorption with the cations as 

leaching is impacted differently with the addition of the CaCl2, MgCl2, and NaCl.  

A surface complexation model was established to model As and Cd leaching at 

medium pH as these elements has the highest leaching increases with salt addition under 

the low and high pH conditions which are environmentally relevant for BCFA landfill. The 

increased As leaching with salt addition at medium pH could be modeled based on: (1) 
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competition between Cl- and AsO4
3- for hydrous FeIII oxide sorption sites; and (2) 

complexation and sorption of the cations (Ca2+, Mg2+, and Na+) with AsO4
3- to CFA surface 

sites. Modeling of Cd leaching with increasing salt addition at neutral pH indicated that Cd 

leaching was controlled by (1) Cl- complexation, and (2) competitive cation exchange for 

active sites with Ca2+, Mg2+, and Na+ with Cl- complexation being the more important 

process.  
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CHAPTER 5.  CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

The results of the work show that the proposed process can successfully immobilize 

heavy metals (including SeVI) in a co-disposal process for FGD wastewater and bituminous 

coal fly ash (CFA) through solidification/stabilization (S/S). Bach equilibrium based 

leaching experiments showed that the S/S solids achieved good retainment (average of 

68−90%) for AsV, CdII, HgII, and SeIV. Immobilization of AsV, CrVI, and SeVI in the S/S 

solids could be enhanced through the addition of FeSeO4 (FS).  The addition of even a very 

small amount of FS increased the retainment of AsV to approximately 100% likely due to 

formation of FeIII oxides that are good absorbents for AsV. FS addition reduced the brine’s 

CrVI to CrIII, which enhanced immobilization by incorporation of CrIII into Ca-AlIII-hydrate 

phase, sorption of CrIII to FeIII oxides, and/or precipitation of Cr(OH)3. Some of the CrVI 

from the CFA was also likely reduced and immobilized via the same mechanisms. The 

mechanism of enhanced immobilization of SeVI by FS addition was likely reduction to SeIV 

and CaSeO3 precipitation. 

Comparison between bituminous CFA (BCFA) and sub-bituminous CFA (SCFA) 

S/S indicated that SCFA S/S solids had greater retainment of AsV, CdII, and SeVI compared 

to BCFA S/S solids. AsV retainment was likely enhanced by the higher pH and CaO 

content, CdII by better Cd(OH)2 stability at the higher pH conditions, and SeVI by SeO4
2 

substitution in the AFm phase produced at the higher pH, CaO content, and reactive Al2O3 

content of SCFA S/S. Support for this proposed mechanism was provided by identification 

of AFm-Cl in the SCFA S/S solid utilizing XRD. XRD diffractograms showed that SCFA 
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was more reactive in the S/S process than BCFA. However, it is not practical to utilize 

SCFA instead of BCFA in the S/S process due to the most difficult wastewater problems 

being present at bituminous coal-fired power plants. It would be expensive to transport the 

large SCFA quantity required for the S/S process to a bituminous coal-fired power plant. 

In addition, utilization of the AFm-SeO4 stabilization mechanism may not be sustainable 

for safe long-term landfill disposal. Reduction of SeVI with FS plus S/S may be a better 

long-term strategy than AFm substitution under environmentally relevant pH conditions. 

Semi-dynamic tank leaching tests also showed that FS significantly decreased AsV, 

CrVI, and SeVI cumulative release over the long term. FS addition increases the likelihood 

of successful long-term disposal of S/S concentrated FGD brines containing these toxic 

oxyanions. The results of these experiments also showed that FS addition decreased the 

cumulative release of the salts Ca2+, Cl-, Mg2+, Na+, and SO4
2-; however, cumulative release 

is only decreased at shorter leaching times. At longer leaching times, the cumulative release 

for these salts from S/S mixtures with and without FS addition converge. It is clear that 

while FS addition can enhance immobilization of the toxic heavy metal oxyanions over the 

long term, FS addition does not decrease the release of the salts Ca2+, Cl-, Mg2+, Na+, and 

SO4
2- over the long term. Additional strategies must be developed to limit leaching of salts. 

The adoption of FS addition to S/S mixtures for concentrated FGD wastewater 

brines would be positive development for the coal-fired power industry. FS addition can 

be added directly to the S/S process without requirement of a pre-treatment step. In 

addition, FS is a waste product from other industries and incorporation of this additive 

could be considered co-disposal for concentrated FGD wastewater, CFA, and FS. Metals 

present in the concentrated FGD wastewater, CFA, and FS will all be treated and metal 
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immobilization enhanced. For example, the CFA in the S/S mixture leaches less metals 

than non-treated CFA.  

 LeachXSTM was utilized to model the release of Ca2+, Cl-, Na+, AsV, and SeVI in 

the semi-dynamic tank leaching tests for the scenario of no FS addition. Modeling was very 

successful for pH and AsV and SeVI cumulative release, which added additional evidence 

for the proposed leaching mechanisms. SeVI release was controlled by the readily soluble 

phase CaSeO4. AsV leaching was successfully modeled utilizing NaCaAsO4.7.5H2O as the 

primary immobilization phase. Although the model does not confirm that 

NaCaAsO4.7.5H2O was the dominant phase, it confirms that a phase or phases with similar 

solubility as that modeled for NaCaAsO4.7.5H2O controlled As release.  

Modelling was also successful for Ca2+, Cl-, and Na+ at longer leaching times. The 

model did have some difficulty replicating the “wash-off” effect at low leaching times due 

to the extreme concentrations of these salts in the S/S solids.  

Model utilization in a real scenario for the S/S solid over 20 years indicated that the 

leachate pH would remain alkaline (pH > 9.0) which greatly benefits immobilization of 

cationic metals. Ca2+, Cl-, Na+, As, and Se reached their highest leachate concentrations 

almost immediately and leachate concentrations decreased significantly over time for these 

elements.  

Contact with the salts from concentrated FGD wastewater brines could increase 

metal leaching from conventional BCFA because of high salt content. This issue is 

important because the coal-fired power industry is considering several options for 

concentrated FGD wastewater disposal including direct mixing with CFA with no 
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pozzonalic reactions and landfilling soluble crystallized salts from FGD wastewater. Both 

of these options would significantly increase contact between CFA and high salinity 

leachant. In addition, even if the concentrated brines undergo S/S, the solids will still 

significantly leach salts. Furthermore, high salt materials for disposal are also being 

introduced into industry landfills through CFAs impacted by new air emission controls 

such as injection of CaBr2, Ca(OH)2, Na-based sorbents, and Na2CO3.NaHCO3.2H2O 

(trona). Hence, traditional BCFA may be exposed to significant salt concentrations in the 

future unlike the past.  

With regards to cationic metal (CdII, CrIII, MnII, PbII, and ZnII) leaching from BCFA 

without salt addition, Cd and Mn leaching significantly decreased with increasing pH. Cd 

and Zn demonstrated amphoteric leaching patterns in regards to pH. Although Zn did 

demonstrate a slight amphoteric pattern, Zn leaching was higher at low pH compared to 

high pH. Pb demonstrated low leaching at low and medium pH conditions and moderate 

leaching at high pH conditions.  

Increasing salt addition did not impact Cd, Cr, Mn, and Zn leaching from BCFA at 

low pH because essentially all of the available cationic metal readily leached regardless of 

salt addition. Salt addition did significantly increase Pb leaching at low pH due to Cl- 

complexation. 

Under medium pH conditions, salt addition increased Cd and Mn leaching from 

BCFA due to Cl- complexation. CaCl2 addition increased Cr leaching due to competitive 

cation exchange with Ca2+, while MgCl2 and NaCl did not significantly increase Cr 

leaching. Moderate salt addition decreased Zn and did not impact Pb leaching at medium 
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pH due to the low solubility of PbCl2 and Zn hydroxychlorides. For Pb and Zn, leaching 

only increased at medium pH at the very highest salt addition due to Cl- complexation 

overcoming the low solubilities of PbCl2 and Zn hydroxychlorides.  

At high pH conditions, salt addition did not increase Cd and Cr leaching from 

BCFA except at the highest salt addition. The low solubility of Cd and Cr hydroxides at 

high pH prevented leaching increases with salt addition. However, high Cl- addition 

overcame the low solubilities of Cd and Cr hydroxides through Cl- complexation. Mn 

leaching increased at high pH only with MgCl2 addition through competitive cation 

exchange with Mg2+. Pb and Zn leaching decreased at high pH due to increasing 

precipitation of PbCl2 and Zn hydroxychlorides with increasing Cl- addition.  

In regards to oxyanions, AsO4
3- leaching was the highest at medium pH and lower 

at low and high pH while SeO3
2- leaching increased with increasing pH. Increasing salt 

concentrations did no impact Se leaching at low pH likely because of the oxyanion being 

strongly sorbed to FeIII oxide sorption sites at low pH due to being present as negatively 

charged species. As leaching did increase at low pH due to anion exchange with Cl-. 

At medium pH, salt addition increased both As and Se leaching due to anion 

exchange with Cl-. However, As and Se leaching was also likely impacted by complexation 

and sorption with the cations (Ca2+, Mg2+, and Na+) which resulted in MgCl2 addition 

increasing leaching more than CaCl2 and NaCl addition. Precipitation of As and Se with 

the cations may also have played a role.  

At high pH, both As and Se leaching increased with salt addition. As the BCFA 

surface becomes more negatively charged at high pH, it is believed that salt addition could 
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enhance As and Se leaching mainly through compressing the diffuse double layer (DDL) 

around the BCFA making it easier for the two oxyanions to leach. The leaching results at 

this pH are also likely impacted by complexation and sorption with the cations as leaching 

is impacted differently with the addition of the CaCl2, MgCl2, and NaCl.  

A surface complexation model was established to model As and Cd leaching at 

medium pH as these elements has the highest leaching increases with salt addition under 

the mediaum and high pH conditions which are environmentally relevant for BCFA 

landfills. The increased As leaching with salt addition at medium pH could be modeled 

based on: (1) competition between Cl- and AsO4
3- for hydrous FeIII oxide sorption sites; 

and (2) complexation and sorption of the cations (Ca2+, Mg2+, and Na+) with AsO4
3- to CFA 

surface sites. Modeling of Cd leaching with increasing salt addition at neutral pH indicated 

that Cd leaching was controlled by (1) Cl- complexation, and (2) competitive cation 

exchange for active sites with Ca2+, Mg2+, and Na+ with Cl- complexation being the more 

important process.  

It is important for the coal-fired power industry to carefully consider the disposal 

of high salt materials including concentrated FGD wastewater materials and CFAs 

impacted by new air emission controls. It would be best to monofill these materials, both 

concentrated FGD wastewater residuals and new CFAs impacted by air emission controls. 

These materials should be segregated from traditional BCFA and other coal-combustion 

residuals (CCRs) that have been landfilled in the past.  
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5.2 RECOMMENDATIONS 

Due to the complexity of the proposed process and potential for significant negative 

environmental impact upon failure, much additional work needs to be conducted. As 

mentioned in this work, bituminous coal-fired power plants that utilize forced-oxidation 

FGDs are the most challenging scenario for ZLD treatment of FGD wastewater with SeVI 

being the most difficult metal to stabilize. This current work focused on reduction in order 

to stabilize SeVI in BCFA S/S solids. However, further optimization of mineral formation 

for BCFA S/S solids is needed including AFm-SeVI formation as observed for 

immobilization of SeVI in the SCFA S/S solids.  

In addition to heavy metal stabilization, work should be conducted on Cl- 

immobilization.  Due to high solubility, Cl- is extremely difficult to stabilize. As mentioned 

in this work, contact with high Cl- content leachate could increase metal leaching from 

CFA. The approach to Cl- stabilization could focus on two processes: (1) formation of low 

permeability solids, and (2) mineral optimization for maximum formation of AFm-Cl.  

A knowledge gap exists on the stability of AFm-SeVI and AFm-Cl phases under 

environmentally relevant landfill conditions. Although these phases can readily immobilize 

SeVI and Cl- under the high pH conditions of S/S, the stability of these phases in S/S solids 

as the leachate pH decreases over time is not known. Evaluations of the stability of these 

phases should be conducted including semi-dynamic tank leaching tests (USEPA Method 

1315) where the pH has been artificially decreased to simulate various disposal scenarios. 

In depth characterization of the solids both before and after these tank leaching tests should 

be conducted. This characterization could be similar to that conducted by Hockley et al. 
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where the researchers made concentration and mineralogy (XRD analysis) profiles for 

cement blocks exposed to seawater over the long term (Hockley et al. 1991). This 

characterization could lead to enhanced mechanistic insight  into leaching from S/S solids 

including processes such as pore refinement and moving boundary layers (Hockley et al. 

1991).  

The leaching and characterization insight developed from the above described 

evaluations could be utilized to strengthen the LeachXSTM model for leaching where AFm-

SeVI and AFm-Cl are important immobilization phases. The current LeachXSTM model 

includes AFt-Se phases, but does not include AFm-SeVI and AFm-Cl phases.  

The LeachXSTM model could be further enhanced to simulate leachate from a real 

landfill including disposal scenarios such as disposal (1) with other CCRs, and (2) 

separately than CCRs. It would also be beneficial for the industry, if the model could 

simulate extreme weather events such as large scale flooding of the landfill as a worst-case 

scenario event. 

It is also desirable to increase the scale of the leaching experiments to the pilot 

level. A pilot-scale landfill cell could be installed containing the BCFA S/S solids. 

Leaching from the cell could be evaluated over a significant time period perhaps 1-2 years 

to provide realistic leaching data for the industry.  

In general, future researchers should consider factors that will be important for the 

practical application of the S/S process investigated in this study for the coal-fired power 

industry. Such factors include but are not limited to pumping rheology, minimum and 

maximum strength requirements, and bleed water production. These factors have been 
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studied extensively in the U.S. mining industry albeit not for high salt materials and could 

provide useful insights.  

It is also proposed for researchers to investigate strategies for salt reuse form FGD 

wastewater ZLD residuals. If a concentrated brine was treated economically to a degree 

that all toxic metals were effectively removed, opportunities for salt reuse could open up 

including road salt and more importantly chemical feedstocks for the chlor-alkali industry. 

Although extensive treatment would be required, beneficial us of salt would prevent the 

accumulation of highly leachable salts in coal-fired power plant industry landfills and 

provide a potential new revenue stream for the industry.  

Further studies should also be conducted on the impact of salt on metal leaching 

from BCFA. These studies should include molecular spectroscopic studies using advanced 

techniques such as x-ray absorption spectroscopy to confirm the proposed mechanisms of 

increased metal mobilization. A greater insight into the impact of salt on metal leaching 

from CFA and other landfill materials outside of the coal industry is needed as applications 

of ZLD will only increase in the future for other industries.  
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