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SUMMARY

A modified algorithm is developed which greatly improves the
efficiency of solving parabolic partial differential equations. The main
emphasis of the work is in solving a certain class of these problems, the
Fokker-Planck equations for systems operating in the presence of noise.
For mathematical convenience and to enhance the accuracy of the solutions,
the Fokker-Planck equations are expressed in terms of probability distri-
bution functions rather than probability density functions.

The modified algorithm combines an explicit finite difference
scheme and polynomial interpolation Iin such a way as to greatly reduce
the amount of information that has to be stored and the number of numeri-
cal operations required in order to obtain the solution to a Fokker-Planck
equation. For one-dimensional equations, at any time the modified algori-
thm stores the data at every Pth point in the grid of the standard expli-
cit scheme. In order to advance the solution forward in time, the ad-
ditional information required by the explicit method is generated by
fitting polynonials of order q to the stored data. Since data is stored
for every Pth grid point, it is only necessary to compute the solutions
at these points, It is shown that the modified algorithm is consistept,
convergent, stable, and has the same order of accuracy as the original
explicite scheme if q 2= 2.

The modified algorithm is tested and its parameters selected by
solving the Fokker-~Planck equations for several linear s&stems. This

approach is taken so that the theoretical solutions, which can be obtained
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for linear systems, can be compared to the numerical results. It is
shown that second order polynomial interpolation (q = 2) gives the best
results. A selection of P = 5 (store 1/5 of the data in each space
dimension) is made by observing the trade-offs between accuracy and the
amounts of computer time and storage required for different wvalues of P.

With the parameters selected {(q = 2, P = 5), the modified algori-
thm gives accurate solutions and yields large savings in computer time
and storage. The amount of savings in computer storage realized for one,
two, and three-dimensional equations is 80%, 96%, and greater than 997
respectively. The corresponding savings in computer time for one- and
two-dimensional problems is about 70% and about 80% respectively. The
savings in computer time for three-dimensional equations is conservatively
estimated to be in excess of 80%.

A three-dimension Fokker-Planck equation for a third order linear
system is solved using the modified algorithm. This example clearly
illustrates that the large saving in computer time and storage obtained
with the modified algorithm makes it possible for this method to solve
problems that would otherwise be impractical to solve.

The modified algorithm is used to obtain complete solutions to
the Fokker-Planck equations for a first and second order phase-locked
loop. The solutions, which are sought on modulo 27, are started from
initial conditions which are uniformly distributed and are run to steady
state, Results are obtained for several different sighal to noise
ratios. The steady state results for the first order loop agree with
the thecretical solutions and the steady state results for the second

order loop agree with a set of experimental solutions which appear in



xiii

the literature.

The modified algorithm is also used to solve Fokker-Planck equa-
tions for a first and second order gated phase-locked loop. This prob-
lem arises in a Time Division Multiple Access (TDMA) system which uses
Phase Shift Keyed (PSK) modulation and which reguires that phase co-
herence be maintained from burst to burst. The objective of these simu-
lations 1s to find the steady state variances of the phase errors of
the systems. 1t is observed that the steady state variances of the phase
errors for both the first and second order gated loops can be found
{(estimated for the second order loop) without obtaining complete solu-
tions to the Fokker-Planck equations. This is a helpful result since
solutions to these problems for systems with practical duty factors

require large amounts of computer time.



CHAPTER I

INTRODUCT LON

The Fokker-Planck equation originally evolved from the study of
Brownian motion. Brownian motion was first observed by Rebert Brown in
1828, and was first correctly explained by Albert Einstein in 1905.

In the ensuing twenty-five vears many scientists studying the area
(Smoluchowski, Fokker, Planck, Ornstein, Burger, Firth, et al,) realized
that the probability density function for the position of a particle
undergoing Brownian could be described by a parabolic partial differential
equation which became commonly known as the Fokker-Planck equatiom,

A major breakthrough in the Brownian motion problem was presented
by Uhlenbeck and Ornstein [29] in 1930. They arrived at the Fokker-
Planck equation by considering the equation of motion of the particle,
which is known as the Langevin equaticon., This was not mathematically
rigorous, and it was not until many years later that Doob [16], using
Ito calculus, justified the work mathematically.

Another major accomplishment appeared in 1931 when Kelmogorov [43]
presented Kolmogorov's forward and backward equations, The forward equa-
tion is more generally known as the Fokker-Planck equation. As their
names imply, the forward and backward equations are adjolnt equations,
the forward equation having to be solved forward in time, and the backward
equation in reverse time. The backward equation is of little use since a

solution of it would require boundary conditions that include a known



solution at an advanced time.

As it is used in this dissertation, the Fokker-Planck equation re-
lates the statistical properties of the state variables of a system to the
statistical properties of the inputs to the system and the characteris-
tics of the system, In particular, the Fokker-Planck equation is an n-
dimensional second order parabolic partial differential equation whose
solution is the joint probability density function of the n states of the
system., The development of the Fokker-Planck equation requires that
states of the system be a continuous vector Markov process {3%9]. This
requires that the system have a white noise input, Other considerations
restrict the noise inputs to be Gaussian white noise [10].

Consider the system illustrated in Figure 1. The state equatioms

of the system are

¥ = 8(,0,t) (1-1)

where the underscored variables are columm vectors with n components.
The input to the system, 7(t)}, is a columm vector whose components are
all Gaussian white noises (not necessarily stationafy).

Under mild conditions of continuity of the joint probability den-.
sity function of the states of the system and its first few derivatives,
the Fokker-Planck equation can be derived {10,19,6]. The Fokker-Planck

equation for a general nth order system, (1-1), is

bf(yl,. . .,yn,t/xl,. . .,xn,to)
bt

- (1-2)

{continued)
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Figure 1. General nth Order System
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where f(yl,. . .,yn,t/xl,. . .,xn,to) is the joint probability density
function of the state of the system conditioned on the initieal state of
the system, The coefficients Ci,j(yl" . .,yn,t) and Ci(yl,. . .,yn,t),
commonly called the moments of the Fokker-Planck equation, are defined by

lim E(ayi)

Ci(yl" . -syn:t) = A0 At ] (1'3)

and
. E{Ay.Ay.)
- lim i 7]
Cij(yl" * 'ayn:t) A0 At >

where E(ayi) is the expected value of the incremental change in Yy

A rigorous development of the Fokker-Planck equation requires
sophisticated theory of stochastic processes, 1In the current literature
the development of the Fokker-Planck equation is approached in a variety
of ways and with all different degrees of difficulty. Some of the more
rigorous and difficult works are those presented by Doob [18], Feller
[17]1, Dykin [4], Ite [21], and Gnedenko [20]. Some of the more easily
understood developments are those of Stratonovich [19], Bharucha-Reid
[10], Middleton {2], and Morgan [6].

In order to simplify notation, for the remainder of this work the

probability density function in Fokker-Planck equations will not be written



as being conditioned on the initial probability density of the states
of the systems., This is reasonable since it is obvious that the initial
probability density is required in order to solve the Fokker-Planck equa-
tion, Therefore, the conditioning on the initial state will be assumed
and will not be explicitly writtem as such.

In order to illustrate the Fokker-Planck equation, consider the

system shown in Figure 2. The state equation for this system is

x = = B{x,t) + T(t) . (1-4)

The input, T|{t), is Gaussian white noise with a power spectral height of

NO. The moments of the Fokker-Planck equation, defined by (1-3), are
_ lim E{Ax) _ _
€L = a0 at -~ BGGH, (1-5)
and

e o limEexD o
11 Ae=20 At z "

Therefore, the Fokker~Planck equation which describes the probability

density function of the state of the system, x(t), is

N 2
RUELE) & O @,y £(x,0)) + 32 TEGREL (1-6)
ot ox o

Phase-Locked Loops

A significant engineering application of the Fokker-Planck equation
is in the analysis of phase-locked loops in the presence of noise [8,9,

23]. The phase-locked loop is a very practical device having found a
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BC ,t) =

Figure 2, First Order System



variety of uses in recent years. They are used extensively in such appli-
cations as radar-tracking, missile guidance and navigation, and synchro-
nization and detection in phase-coherent communication systems, Phase-
locked loops are now to the point of being mass produced in modular form
for many everyday uses in communication systems.

The purpose of the phase-locked loop is to track the phase of a
received signal with a reference signal, The automatic phase control
system commoniy used is illustrated in Figure 3, The variables in and

related to Figure 3 are defined as:

VCG

voltage controlled generator,
Y2 A cos(a(t)) - received signal,

Jﬁf'Kl sin(6' () - reference signal,

K2 - frequency sensitivity constant of the VCG
(wVCG = wy + Kze(t)) R

wo - quiescent frequency of the VCG,

h{t) - impulse response of the linear filter,

P(t) ' - phase error (O(t) - 9'(t)).

The system attempts to adjust ¢'{t) until it is equal to 6(t). When this
is accomplished, the signals are sald to be phase-coherent or in phase-
lock.

The dynamic response of the phase-locked loop is described by

t
iﬁ‘é}l B d%ﬁg - @y - AKK, Joh(t-u) sin(@(u))du . (1~7)

This equation is somewhat simplified by letting



=, x(t) Linear
V2 A cos(8(t)) —> > Filter

e(t)

VCG

v2 K, sin(6'(t))

Figure 3, Phase-Locked Loop



K= KK, , (1-8)
B,(8) = B(t) - wyt ,
and 8,(t) = 8'(r) - O t .

When (1-8) is put into (1-7), (1-7) becomes the equation commonly used

to describe the phase-locked loop. It is

ap(t) _ del(t)
dt  ~  dt

t
- AK I h(t~u) sin(@(u))du . (1-9)
0

This equation suggests the general block diagram for the phase-locked
loop (illustrated in Figure 4).

The order of a phase-locked loop is defined as the order of the
differential equation describing the loop, (L-9). If the linear filter
in the forward path is an nth order filter, the system is an n+1°% order
phase-locked loop. The VCG adds the additional pole to the system.
Therefore, a first order phase-locked loop has no linear filter present.

Phase-Locked Loop in the Presence of Noise

A very interesting and difficult problem which has attracted a lot
of attention in recent years is the operation of phase-locked loops in
the presence of noise, Most communication systems are disturbed by ther-
mal noise, which is a zerc-mean wideband Gaussian process which has a
power spectral density that is nearly flat over the frequency range of
the receiving equipment (Gaussian white noise for all practical purposes).

Let the received signal be

2VA cos (8(t)) + M(r) , (1-10)
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A sin()

Linear
Filter

Figure 4,

Block Diagram of Phase-Locked Loop
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where 1j(t) is Gaussian white noise with a power spectral height of NO'

The diflerential cquation which now describes the dynamic response of

the phase-locked loop is

at T o (A sin(f(u)) + N'(u))h(t-v)du . (1-11)

In this representation it is assumed that, for mathematical convenience,
T|(t) has been passed through a symmetric wideband bandpass filter with
center frequency @4 {quiescent setting of VCG) and a flat passband which

passes only frequencies below 2w The result of this filteriug is

0’
N'(t). Due to the low pass filtering present in the phase~-locked loop,
N'(t) still looks like Gaussian white noise to the system. Figure 5 il-
lustrates the block diagram for the phase-locked loop in the presence
of Gaussian white noise. For the development of this model see Veterbi
[8].

Consider the operation of a first order phase-locked loop in the
presence of noise (illustrated in Figure 6). The noise, M'(t), is
Gaussian white noise with a power spectral height of N,. The differential

0

equation which describes the phase error of the system is

apee) _ 10
dt dt

t
- K r (A sin(@(t-u)) + 1" (t-u))6(u)du , (1-12)
"0

vhere 8(u) 1s the delta or impulse function. Therefore, (1-12) becomes

da. (t)
9%%51 =“T§E’“ - AK sin(#(t)) - KN'(t) . (1-13)
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The Fokker-Planck equation which describes thc.probability density

function of the phase erxror, $#{t), of the system is

2
RED.8) - . 2 (c,0,0) f(@,t))+$z (C,(8,t) £(8,£)) ,  (1-14)

where
dg, (t)
¢, 0,0 = MR EOD . L g sin@(e)) (1-15)
Lim E(Aﬂzz Yo
C208) = peso " ae T2 -

The general form of the Fokker-Planck equation for a second order
phase~locked loop in the presence of noise is that of (1-2) with n equal

to two.

Numerical Approaches to Solutions of Fokker-Planck

Equations

There is a very large amount of literature extending over many
vears on numerical solutions to partial differential equations (see,
for example, bibliographies by Finn {20] and Vichenevetsky [35]). Some
methods are quite general in that they apply to more than one type of
partial differential equation, while other methods are tailored to a
specific type of problem., In this section a summary of the more impor-
tant numerical methods that might be considered in seeking solutions to
Fokker-Planck equations are briefly examined.

Separation of variables [7], which is commonly used to solve simple
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problems, can be applied to some one-dimensional Fokker~Planck equations.
Howe [36] gives a good presentation of the separation of variables tech-
nique and shows how it can be implemented on an analog computer.

The Fourier Transformation [3] is another widely known method,
However, in general, this method is not applicable to the Fokker-Planck
equation. This is because the Fokker-Planck equation, except in the very
simplest cases, has variable coefficients,

Iterative methods are another scheme which can be used to solve the
Fokker-Planck equation., An iterative method goes through an iterative
process which betters an initially guessed solution until it converges to
the correct answer. Howe and Hsu [13] developed a formula that reduces
the partial differential equation to a coupled set of ordinary differen-
tial equations and solves each ordinary differential equation separately
and in sequential order. This process is lterated until the answer con-
verges, This technique has also been studied by 0'Dowd and Hammond [31].

Mayfield [27] and Lindsey [41] have recently introduced an iterative
method which assumes that the problem sclution takes a particular form,
When the assumed solution is put into the Fokker-Planck equation it re-
duces the partial differential equation to an integral equation. The
integral equation is a Voltera integral equation which can be solved by
successive approximations.

Point iterative methods, which are generally applied to elliptic
partial differential equations, arve also applicable. The better knowm
of these schemes are the Jacobi [l4], Gauss-Seidel [14], and successive-
overrelaxation [14,15] methods.

In recent years Russian numerical analysts have developed locally
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one-dimensional methods {5] for solving partial differential equations.
These methods separate an n-dimensional problem in such a manner that it
is equivalent to n one-dimensional problems.

A large and important class of methods used to solve parabolic
partial differential equations is finite difference schemes [1,5,14],
These methods approximate the partial derivatives of the function by
finite differences, thereby reducing a partial differential equation to a
series of algebraic equations, The most useful finite difference schemes
are the one step or single level algorithms., These schemes involve
values from only two time levels, t and t+At. The solutioﬁ at time t+At
is calculated using only the solution at time t. There are two general
categories of single level finite difference methods, implicit and ex-
plicit.

An explicit formula involves one value at the advanced time t+At.
Therefore, to get the solution at ttAt, it is only necessary to make N
(number of grid points in the space dimension) separate calculations.

An implicit method involves more than one grid point at the advanced
time t+At. Therefore, it is necessary to solve a set of N simultaneous
equations in order to cbtain the solution at t+At., One of the better
known implicit and explicit finite difference algorithms is discussed in
detail in Chapter 1I.

Alternating direction methods [14,5] are implicit methods which are
used in conjunction with certain differencing techniques, The original
implicit method is broken into more, but simpler, implicit equations by

introducing intermediate variables, The effort required to solve the
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simpler sets of equations, generally tridiagonal, is much less than that
required to solve the original set of equations,

The literature contains a large number of finite difference ap-
proximations for partial differential equations. No attempt is made to
enumerate these methods, For the most part, these methods were presented
without adequate consideration of stability, computer time, and computer
storage. Some other general methods, such as the method of lines [34,35],
multilevel algorithms [5], and parallel solutions [40] were not discussed
because they do not seem to offer any advantages to the type problem
being considered,

Comments on the Numerical Methods

Due to practical limitations on computer time and storage, complete
solutions (transient and steady-state) to one-dimensional Fokker-Planck
equations are rare, and complete solutions to higher-dimensional equa-
tions are nonexistent. Almost all previous work treats only the steady-

state solution.

Separation of variables can and has been used to solve a one-
dimensional Fokker-Planck equation which has coefficients that do not
depend on time (the solution is discussed in the next part of this
section), It is clear, however, that in the two-dimensional case, the
coefficients in the Fokker-Planck equation will in general prevent the
variables from being separable,

A method which on the surface seems to offer promise is the locally
one-dimensional method, Unfortunately, there is very little work, or

experimental results available to use in making a reasonable evaluation
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of the method. Mitchell [5] is very skeptical of the method. He does,
however, point ocut that this is just his personal conjecture.

Iterative and finite difference methods are the ones commonly used
to solve parabolic partial differential equations. In theory these are
easily implemented on a computer; however, beth require excessive com-
puter time and storage. The iterative methods are particularly demanding
on storage since a complete time solution must be stored during the entire
simulation. For higher-dimensional equations, where computer storage be-
comes enormous, it is clear that finite difference schemes offer the best
approach to solving the problem.

Recent Solutions to the Fokker-Planck Equation

Almost all previous work on the Fokker~Planck equation for phase-
locked loops involves only the steady state solution. Lindsey [26], Viterbi
[8], Charles [26], Snyder [23], Holmes [37], and others have worked out
steady state results for first order, and in some cases, second order phase-
locked loops. Very recently results have begun to be obtained on transient
solutions to the Fokker-Planck equation. However, results have been ob-
tained only for the one-dimensional case.

Whitney [15] solved for the complete velocity distribution of a
particle in a slightly ionized plasma. However, physical considerations
of his problem permitted him to reduce a three-dimensional Fokker-Planck
equation to just a few uncoupled one-dimensional Fokker-Planck type equa-
tions., The type assumptions that Whitney made are not applicable to other
problems.

La Frieda (28] solved for the complete probability demsity fuunction
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ol the phase errov in lirst order tracking loops. lle used the separation
of variables technique to get the solution on the modulo 2m state space.
Dominiak and Pickholtz [12] also investigated the phase error in a
first order phase-lock loop. They reduced the Fokker-Planck equation to
a special case of a one~dimensional heat flow equation which had been
investigated at an earlier date by vonNeumann and Richtmyer [22]. The
reduced equation was solved by a standard finite difference method.
Transient solution curves are presented for several different signal to

noise ratios.
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CHAPTER 11

ESSENTTAL BACKGROUND

The purpose of this chapter is to present material which is
dravm on heavily in the development of this thesis. Two general topics
are discussed. The first is a finite difference approach to solving
parabolic partial differential equations. The second topic is techniques
for polyncmial interpolation between discrete functional values,

The emphasis of this chapter is on presenting the ideas and show-

ing how they are used and not on the mathematical developments,

Finite-Difference Equations

As noted in Chapter I, the finite-difference methods are among
the most successful approaches to numerical solution of partial differ-
ential equations. The use of finite differences reduces the partial
differential equation to a set of algebraic equations, Suppose the par-
tial differential equation has ntl independent variables; n state vari-
ables, X and time, t. The finite difference scheme divides the portion
of the space over which a solution is sought (al <x < bl’ a, £ %, < b2’
SRR = X, < bn’ 0= t < T) into discrete points by placing a grid,
or lattice, on it. Information about the solution is retained only at
the preselected grid points, A finite difference algorithm involves

approximating the function values and their derivativeé, as required by

the partial differential equation, by finite differences, Values for the
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solution are only obtained at the grid points. For a good reference see
Ralston and Wilf [1].

The finite diffevence formulation will be illustrated with a one-
dimensional problem., Consider the general, linear, one-dimensional,

second order, parabolic partial differential equation

LEUGE, £)) = U, (x,8) - a(x,t) U (x,t) - 2b(x,t) U (x,t) (2-1)

+ c(x,t) Ux,t) - d(x,t) = 0 ,

where a(x,t) > 0 and L is a differential operator, In {(2-1) partial de-
rivatives are denoted by the subscripts, For example, the second partial
derivative of U(x,t) with respect to x is denoted by Uxx(x,t). Similarly,
the first partial derivative of U(x,t) with respect to t is represented
by Ut(x,t).

The solution of (2-1) is sought on the semi-infinite strip
S:(A=x=3B, t>=0). (2-2)

If the terms of (2-1) are analytic functions on the region 5, the solution
of (2-1) is uniquely determined by specifying initial and boundary con-

ditions [45]). For instance, let

U(x,0) = g(x), A< x<B (2-3)
U{A,t) = hl(t)’ t>0
UGB,t) = hy(t), £>0 .

A grid defined by
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Sux pei g = A+ Jax, 1=0,1,2,0 . 05 € = mae, (2-4)

n=0,1,2,. , .,N) ,

where 4% =§-§-&, is placed on the strip S. This grid is illustrated in Fig-
ure 7. It is desired to solve for U(xj,tn) at each point on the grid.
This 1s accomplished by solving an appropriate set of finite difference
equations used to approximate the partial differential equation,

It is convenient to denote the dependent variable at the grid
points as

U(A + jAx, nat) = U? , (2-5)

and the approximation to the true solution as

V(A + jAx, nAt) = v;‘ . (2-6)

Note that in using this notation the subscript gives the space variable
index and the superscript gives the time variable index,

Finite difference equations are classified as either implicit or
explicit equations, Each explicit equation can be solved directly and
easily., This is neot the case for the implicit difference equations. At
a given time the implicit finite difference equations are a coupled set of
linear equations which have to be sclved simultaneously. Each method has
certain advantages and disadvantages,

In order to develop the finite difference method as a general ap-
proach which contains both the implicit and explicit methods, it is neces-
sary to have values of U(x,t) and its space derivatives at intermediate

values of time which do not correspond to grid points, This is accom-
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plished using linear interpolation in time. No such intermediate values
are required in the space dimension.

Using linear interpolation, the approximation to U(x,t) at

X = xj = A + jAx , (2-7)
Il T (nto)at,
is given by
V(A + jix, (n46)bt) = vg‘*’ = ev‘j’*l + (I-BJV? , (2-8)
where
0=8=<1,

Centered difference approximations are used to represent the de-
rivatives of the function with respect to the space variable, The time
derivative is represented by a forward difference approximation., The

resulting finite difference approximations are

Vit - Vi
(2-9)

? tnﬁe) = 2Aax% ’

u
x

]

4 2vn+0 + vn-l-e

VJ’+1 j j=1

L
o

Uxx(xj’ tn+e)

and Ut(xj, tn+e) it

These approximations are put into (2-1) in order to obtain the finite

difference equation which approximates the partial differential equation.
Combining (2-1), (2-9), and (2-8) the resulting difference equation

at a typical grid peoint is
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o2 all n+4 n-H)
at bU T AL, 220 At
Vi (co g0 ) 4 yrt (1 ro—lo— o n+6:’_\.t) (2-10)
i+l AX Ax ] AX
- rj”eat 'bl;-‘-eﬂt N a"Pae
+ v (- ) =V ( 1-6 + (1-8
j~1 Ax2 AX j+l (1-6) Ax2 (1-6) x

The initial and boundary conditions, (2-3), now become

V? = g(xj) ,0s 1= ) (2-11)
n _ .

VO = hl(tn) , >0
n

VJ = hz(tn) ,n=>0 .

The solution to (2-1) is approximated by the solution to the set
of difference equations defined by (2-10). There is one finite difference
equation which must be solved for each grid point on the lattice (see
Figure 7).

The initial condition, (2-11), gives the solution of (2-10) for
n=0 (corresponding to t=0). The solution for n=1 (corresponding to t=At)
can then be obtained using (2-10), In a like manner the solutions at all

the grid points for n=2 can be obtained using (2-10) and the solutions at
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n=1., In general (2-10) relates the solutions of the equations at n+l to
the solution at n.
If =0, (2-10) is called an explicit finite difference equation.

For this case (2-10) becomes

ol a a?at b?ﬂt o Za?at o
v =V (—J—z+--]——)+ .(1-—']——-c.{_\.t) 2-12
| LN ax Ax J ax? ] ( )
n v}
a_At b.at
+ v (—J—— - ) + d%at
J=1 N ax2 ax

Note that (2-12) expresses the solution at any point along the grid cor-
responding to ntl explicitly in terms of solutions along the grid line at

n. Therefore, given the solution values at n, Vn+1, for j=1,2, . . .,

i
J-1, can be determined directly,

In order to solve for the value at j on the n+l line, (2-12) shows
that three solution values on the line at n are required; j-1, j, and
jtl. The relationship of these four values is illustrated in Figure 8.
The values of the solution at the points marked by the boxes are neces-
sary in order to compute the solution at the point marked by the circle,
In this manner a scolution for all j=1,2, . . ., J-1 on the nt+l line can
be obtained from the complete solution (j=1,2, . . ., J-1) along the n
line and the boundary conditions. Therefore, starting with the initial

conditions, the explicit finite difference scheme provides a direct method

of progressing through a sequence of values of j and n in order to obtain
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a complete solution to (2-1).

If 8 % 0 in (2-10), the solution for a typical point on line n+l
is not related in a simple manner to solutions on the line n, and (2-10)
cannot be sclved directly. If, however, a set of equations is developed
for each V?+1 (j=1,2, . . ., J-1), the result is a coupled system of
linear equations which can be solved simultaneously. If 8 % 0 the algo-
rithm is called an implicit finite difference equation.

Before finite difference equations of either type can be solved,
suitable step sizes (Ax and At) must be selected. There are a number of
considerations which enter into such selections. The step sizes and the
ratio of the step sizes determine the accuracy of the method and whether
or not the algorithm is "stable," "convergent,’ and “consistent" [1].
Thése parameters, which characterize the algorithm, are defined and dis-
cussed below.

A difference scheme is consistent if the difference equations do
actually approximate the partial differential equation. Stated more pre-
cisely, the difference scheme is consistent with the partial differential

equation if

lim |L(U(x,t)) - L (U(x,t))| =0 . (2-13)
At , A%0 Ax,At
where L (U(x,t)) is the differential operator defined by (2-10).

Ax,At

The difference scheme is convergent if

lim |U(x,,t) -V} =0 . (2-14)
Ax, A0 3= J‘
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Convergence means that, for sufficiently small step sizes, the numerical
solution of the difference equations at each grid point is a close ap-
proximation to the exact solution of the partial differential equation at
the corresponding grid points.

The difference equations are stable if small errors introduced in
the solution remain bounded as computations progress to other points in
the grid.

Keller presents a rule [1], called the maximum principle, that shows
how to select step sizes. For (2-1), the maximum principle states that,

if Ax and At are chosen so that

1 + 8At c{x,t) >0 , {(2-15)

a(x,t) - ax|b{x,t)| 2 0,

and 1 - (1-8) (2 ﬁ£§ a(x,t) + At c(x,t)) 20,
x

then the algorithm, (2-10) is consistent, convergent, and stable.

It should be pointed cut that the maximum principle is not an if
and only if statement. That is, if the step sizes are selected in accord-
ance with the maximum principle, the algorithm will be consistent, con-
vergent, and stable. If, however, the step sizes are selected by some
other criterion which does not satisfy (2-15), the maximum principle
cannot be used to draw any conclusions. The choice of step sizes may or
may not cause the algorithm to be convergent, consistent, and stable,

A common measure of accuracy of a numerical scheme is the trunca-

tion error of the algorithm. This is a useful measure since solution
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errors go to zero as the truncation error goes to zero. The truncation

errvor is defined as

L) - L w=nr. - (2-16)

X,AL

For the terms in (2-1) and (2-10) the truncation errors are

n+8 . Un+9
_j+1 j-1 _ &x

U (oCnead - 7 25% 6 Uxux ©1-81) 2-171)

8(1-8 2
Al LSS CORLID

A AT

U (x.,t ) - T i+l j j-1 _ &x U .,6.)

XXT]7 040 &XZ 12 “xxxx 2’2

+ 8€1-9) ﬁtz U (§2,62) =T, ,

2 XXttt

Un+1 - Un 2
Ui i 1-20 1-30438
U, (ot e) - at =z At U (Ba.09) v X
2

where

X S8 sX,,,i=1,23

e <t ., 3=1,2,3

i

Inserting the truncation errors for each term in (2-10) the total trunca-

tion error becomes

Tp =Ty - aT, + 2b'r1 . (2~18)
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As can be scen from (2-17), in general this truncation c¢rrer is of order

axz and At, or symbolically
2
Tp = 0(ax") +0(at) . (2-19)
If, however, 8 is equal to one-half, the truncation error becomes

Ty = 0(ax2) + 0(at?) . (2-20)

For this special case the algorithm is known as the Crank-Nicholson

method [14].

General Comments on Implicit and Explicit Methods

For explicit methods, 6=0, the computations are quite simple and
easily performed. However, if the maximur principle is used to select Ax
and At, the total number of calculations will be large. This in turn re-
quires a large amount of computer time and storage.

If 8 # 0 the finite difference equations are implicit, To advance
the solution one step in time for this case requires the solution of a
coupled set of J-1 equations. The complete solution for one step in time
thug requires more work than a complete solution to advance one step for-
ward in time using an explicit method. However, implicit methods have
some very definite advantages.

For the completely implicit difference scheme, 8=1, (2-15) places

no restraints between At and Ax and requires only that

1 + At e(x,t) > 0 . (2-21)
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Therefore, the total computations required to reach some time t can be
made less than in the explicit case by cheoosing At sufficiently large.
However, as At is allowed to increase, the accuracy of the numerical
scheme decreases.

In the Crank-Nicholson method (8 = 1/2), a higher degree of accu-
racy appears to be obtained (O(axz) + 0(&t2)). For this method, equation
(2.15) restricts At to be no larger than twice the allowable At for the
corresponding explicit method,

The trade offs between the implicit and explicit algorithms involwve
the complexity in obtaining solutions and the time step size reguired in
order to have a stable scheme. For comparable accuracy, computer time,
and computer storage, it is not really clear which method should be used
to solve a one-dimensional partial differential equation. 1In genefal,
either method can be used to satisfactorily simulate one-dimensional prob-
lems,

However, for higher-dimensional parabolic partial differential
equations (two or more space variables), the implicit equations become
very difficult to handle. This is because the number of algebraic equa-
tions which must be solved simultaneously is very large. For higher-

dimensional problems the explicit scheme is preferable.

Polynomial Interpolation

In the development of the numerical method used in this thesis,
polynomial interpolation [24,25] is used in conjunction with an explicit
finite difference scheme to form a new algorithm. In this section the

mechanics of the polynomial interpolation scheme to be used are examined,
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The basic idea is to pass a polynomial through a known set of dis-
crete values of a function and use the value of this polynomial at other
points to approximate the value of the function there. For example, if

F(0) =1 and F(2) = 11, the linear approximating polynomial
F(x) =5x + 1 (2-22)

can be fitted to the known values. The value F({0.3) can then be approxi-

mated by
F(0.3) = 5(0.3) +1 =2.5. (2-23)

In general if n+l values of a functicon are known at a corresponding set
of argument values, an nth order polynomial can be fitted to these values.
This polynomial can then be used to approximate the function at any inter-
mediate values of its argument.

Isaacson and Keller [25] show that for any n+l values the nth order
interpolation polynomial exists and is unique., There are many methods of
computing the polynomial: Lagrange method, Newton's method, iterative
linear interpolation, forward and centered difference schemes, etc. Each
has its own particular advantages and characteristics. For instance, the
iterative linear interpolation methods are a class of methods for gener-
ating successively higher order interpolation polynomials. That is, if
another point of interpolation is added, then the new higher degree poly-
nomial is easily computed., However, regardless of how the nth order poly-
nomial is fitted to the n+l data points, the result is the same for all
methods.

The method uvsed in this thesis is an iterative linear method that
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uses a forward difierence scheme to fit an nth order polynomial to n+l
cqually spaced data points. The value ¢f the function is known at the

points

xj =x. + jax, j =0,1, . . ., n, {(2-24)

Let

X =X + hax , {2-25)

where h is a continuous variable such that
0O<h=<n. (2-26)

It is convenient to introduce the notation

no(h) =h , (2-27)
nl(h) = h(h~1) ,
nn(h) = h¢h-1) . . ., ¢h-n) , n= 2,3 .

The function nn(h) is a polynomial of degree n+l and is generally called
the (n+1)St factorial polynomial.
Forward differences are to be used in the approximation. Thase

differences are
aF(xO) = F(xl) - F(xo) . {2-28)
dPF (i) = Fxy) - 2F(x) + Flxy)

a3F(xO) = F(xy) - F(x) + H(x) - F(xy) , ete.
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In general

PF(xg) = 8" - AV MRy (2-29)

th . . ;
The n order polynomial which approximates the function over the

range of the data, (x_, x +nax), is

0° 70
Pn(x0 + hAx) = F(xo) * 0T AF(xO) + 5T 8 F(xo) (2-30)
n__,(h)

n-1

n
IR sl F(xo) >

0<h=<n.

The error or remainder term assocliated with this polynomial approximation
is

o (h) axn+1

R, (xy + %) = e FOD ey (2-31)

Xy < E < LS

The approximation (2-30) usually gives very good results near the
center of the interval over which the function is approximated, The ap-
proximation becomes progressively less accurate away from thé center of
the iﬁterpolating region. This is fairly obvious if the function ﬁn(h)
is plotted.

One interesting and not so obvious fact should be peinted ocut. It

is not generally true that higher degree interpolation polynomials yield
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more accurate approximations., In fact, for cquidistant points of inter-
polation, such as considered here, relatively low order polynomials give

the most accurate results [25].
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CHAPTER III
DEVELOPMENT OF THE MODIFIED ALGORITHM

Parabolic partial differential equations solved by the methods
discussed in the previous chapter require large amounts of computer time
and storage. This is particularly true for equations with two or more
space dimensions. With a finite difference scheme the function value has
to be calculated and stored for every grid point on the tn(n=1,2,. o )
line. Since most grids must contain a very large number of points in
order to give the required accuracy and stability, a large number of com-
puter operations and a large amount of computer storage are required.

The amount of computer time and storage required to solve multi-dimensional
problems is so large that very few solutions are attempted.

A modified algorithm for solving parabolic partial differential
equations is developed in this chapter. The modified method requires
much less computer time and storage while maintaining the same degree of
accuracy as standard finite difference schemes.

The modified algorithm combines an explicit finite difference
equation and polynomial interpelation. To solve a partiai differential
equation a grid is set up in the same manner as for an explicit finite
difference scheme. The modified method differs from the conventional one
in that on every line of the grid, for fixed n, the solution is calcu-

lated and stored at only one out of every P points. The non-stored values
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which are necessary in order to advance the solution to line n+l are
approximated by fitting polynomials to the stored values. The net effect
is an algorithm which stores and computes (l/P)th of the amount of data
as the original algorithm and yet maintains effectively the same grid
size as the original method.

The modified method is first developed for one-dimensional equa-

tions. The algorithm is then extended to two-dimensional problems of two

different types.

One-Dimensional Equation

To introduce the modified algerithm, consider the one-dimensional

parabolic partial differential equaticn
Ft(x,t) = a(x,t)Fxx(x,t) + 2b(x,t)Fx(x,t) s {3-1)

with the initial and boundary conditions

F{x,0) g(x)y, A< x<B {3-2)

F(A,t)

hl(t), t >0

F(B,t) = hz(t), t>0.

Although (3-1) is more specialized than (2-1), discusged in the previous
chapter, it is sufficiently general for present purposes,

*
The finite difference equation which approximates (3-1) is

%
The notation used in the remainder of the thesis is a modification

of that used in Chapter II. 1In all further work the discrete variable,
FE, is used to represent either the true value of the function or the ap-
proximate value of the function. Which is meant is obvious from its use.
For the most part F? is the approximate value of the function.
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The step sizes (Ax and At) are chosen to satisfy the maximum principle,.

The modified method computes and stores the solution values at
every Pth grid point, where P is an integer, rather than at every grid
point as in conventional methods. This is illustrated in Figure 9 with
P equal to five,

Consider the typical step of progressing from the line n to the
line n+l., As a result of the previous step the computed values of
F(xi,tn) are stored at every Pth grid point along the line n. It is de-
sired to compute F(xi’tn+1) at every Pth peint along the line n+l. In
order to use (3-3) to perform the calculations, additional values of
F(x,tn) are required. These values are obtained by using polynomial
interpolation between the stored values. Figure 10 illustrates the in-
formation required to compute the answer at every Pth point when P is
equal to five.

Only one third of the values necessary on line n in order to com-
pute solutions at every Pth grid peint on line n+l are stored. The ad-
ditional required values (represented by the boxes in Figure 10) are ob-~
tained by fitting polynomials to the stored values (represented by the
x's in Figure 10).

Figures 11 and 12 illustrate how second and third ordef polynomial

interpolations are used to regenerate the required data. These orders of
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polynomial approximations are studied in a later chapler bto determine
which gives the best results,

As in the conventional case, the new method can be used to compute
the complete solution, starting with the initial conditions at n=0 and

progressing to n=N.

Convergence, Stability, and Consistency

As was pointed out in Chapter II, in order for an algorithm to
be useful it must be convergent, consistent, and stable., These proper-
ties of the modified algorithm are investigated below.

Starting with the true sclutions at the stored points along line
n, the properties of the modified algorithm are investigated as computa-
tions progress. Figure 13 illustrates the procedure for P equal to five.
The stored values on line n (represented by the x's in Figure 13) are
assumed known exactly.

Consistency is the first property examined. Consistency means
that the truncation error of the differential operateor must go to zero

as the step sizes go to zere. That is

lim  |LF) - L (F}| = 0, (3-4)
Ax>0,4At-0 ax,4t
where L {F) is the modified differential operator.

Ax, At
The modified algorithm must first compute the additional information

required on line n (represented by the circles in Figure 13) in order to
use (3-3) to calculate solution values on line n+l (represented by the

triangle in Figure 13). The additional information is obtained by fitting
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Figure 13. Consistency, Convergence, and Stability Study
for the Modified Algorithm

43



46

pelynomials to the stored data, Since imitially it is assumed that the
stored data arc known exactly, the computed function values can be ox-

pressed as

= F2+l + ey (3-5)

where F. ., and F© , are the true values of the function and €, and €, are

i+l i-1
the polynomial interpolation errors. These error terms, given by (2-31) are

¢ = o=y | (3-6)

where Q is the order of polynomial interpolation used.

The modified finite difference operator (equation) for (3-1) now

becomes
n+l n I n
. R n Fiag ¥ 6p - 2 +F g ey -7
A%, At At i Ax®
n n
ettt " Fiate 0 af2te a2 &
i 2Ax Ax, At “i %2 i  Ax - ?
where L&x At is the original explicit finite difference operatoxr, (3-3).
H
Therefore, the truncation error of the modified algorithm is
. n 32 + Gl n 62 = el
T=17+a —s5—+b —— 3-8
i ax® i ax 3-8)

where 7 is the truncation error of the explicit finite difference method.
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The truncation error of the explicit finite difference scheme is

v o= 0(sx2) . (3-9)

Using (3-6), (3-8), and (3-9), the truncation error of the modified al-

gorithm can be expressed as
= 0(ax?) + 0=y + 0axd . (3-10)

Therefore, if a second or higher order interpolating polynomial is used,
the modified algorithm is consistent. |

If an even order polynomial interpolation is used, the second term
on the right side of (3-10) becomes 0(Ax%). This is demonstrated for
second order interpolation, Q = 2. The term on the right hapd side of

(3-8) which yields the O(QXQ-I) term in (3-10) is

n 3
ne2+31~a.Kﬁx

a,
L &xz .f_\.xz

# ey - FPenyy (-11)

where K is a constant (K = 4 for P = 5) and

X, o <e<x (3-12)

i-P i+p °

a < l < - L[]
Xi-p € *i4P
By the mean value theorem (assuming the fourth derivative exists and is

continuous)
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PP - FPe) = e - o) FPem (3-13)
el <7 6“ < € s

e-e'i(ZPﬂK.

Therefore

+
R €27 ¢
i axz

< |a] k' ax? 2 ey = oY) . (3-14)

Thus, from (3~10) and (3-14) it can be concluded that the modified algo-
rithm has the same truncation error as the original explicit finite dif-
ference method if Q = 2,

If Q = 2 Reller's proof [1] of stability and convergence can be
used directly, with the substitution of the modified truncation error,
to demonstrate the stability and convergence of the modified algorithm.

A study is made in Chapter IV to see which order interpolating

polynomial gives the best results,

Two-Dimensional Equation

In this section the method just developed for the numerical solu-
tion of one-dimensional problems is extended to two-dimensional para-
bolic partial differential equations. First, the algorithm is developed
for standard two-dimensional equations. Then the algorithm is extended
to a more complicated two-dimensional form which is useful in solving
two-dimensional Fokker-Planck equations,

Standard Two-Dimensional Parabolic Equatioms

Consider the two-dimensional parabolic partial differential equation
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Ft(xl,xz,t) - al(xl,xz,t) Fx xl(xl,xz,t) (3-15)

1

_az(xl,xz,t) szxz(xl,xz,t) - 2b1(xl,x2,t) Fxl(xl’XZ’t)

- 2b2(xl,x2,t) sz(xl,xz,t) + c(xl,xz,t) F(XL’XZ’t) = d(xl,xz,t) R

al(xl,xz,t) >0,

and

32(x1’x2’t) >0 .

The initial boundary conditions are given by

F(xl,xz,O) = g(xl,xz) s (3-16)
A<x1<B and C<x2<D
F(A,xz,t) = hl(xz,t) s t>0
F(B,x,,t) = h,(x,,¢) , t>0
F(xl,C,t) = h3@c1,t) . t>0

F(xl,D,t) = h4(x1,t) s t> 0.

An extension of the method developed in the previous section for ome-
dimensional problems is employed to solve {3-15).

In essence the procedure is as follows. The explicit finite dif-
ference equation approximating (3-15) is formed and a grid in the vari-

ables X1 Xgs and t is set up, Appropriate step sizes are chosen, A
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procedure analogous to that for one-dimensional equations is developed
which uses only (UP)2 of the data which would be required by the stand-
ard finite difference method ((l/P)th in each space dimension). As in
the one-dimensional case, the additional required data are obtained by
polynomial interpolation.

To develop the procedure for two-dimensions, let

n . .
Fij = F(A+1&xl, C+Jax2, nat) . {3-17)
In a similar manpner define
n . .
a = al(A+1ax1, C+JAx2, nAt) , (3-18)
ij
n . .
a, = az(A+1ax1, Cridx,, nat) ,
1]
n . .
bl.. = bl(A+1&xl, C+J&x2, ndt) ,
1]
bh = b,(A+isx,, C+jAx,, nAt) ,
2 2 1 2
ij
n . .
¢, = cl(A+1Ax1, C+jﬁx2, nAt) ,
1]
n . .
czij = CZ(A+1ﬂx1, Ctjix,, nat) .

The finite difference equation at a typical grid point then becomes
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n+l _ n n At n At) " 1e
Fi:j . [i"‘]-,j (dl. . 2 + b'l. . AX (3-19)
ij] axl i] 1
n n At n AL
+ F, . (a —5 - b )
+F (% 250 i)
3 1j 6% ij °%2
n n At n At S
+F, . (a L= -} 1
i,j-1 2ij Axg le sz)
no n At n At n n
+ Fi,j (1 231.. 5 232-- 5 + cij) + dij .
ij Axl ij sz

The cémplete grid containg the points (i,j,n) where n =_0,1,. . oy N3
i=1,2, ..., I+l; and j = 0,1,2, . . ., J+1.

Before solving (3-19) appropriate step sizes need to be selected,
The one-dimensional maximum principle, which was introduced in the pre-
vious chapter, is easily extended to higher-dimensional equations of the
form of (3-15). For general two-dimensional equations of the form of

(3-15), the maximum principle states that if

al(xl,xz,t) - &xlibl(xl,xz,t)] =0, (3-20)
a,(%,%,,t) - ﬂxz]bz(xl,xz,t)l =0,

1 - 8At c(xl,xz,t)l> o,

At

and 1 - (1—9)(231(xl,x2,t)
Ax

2
1

At
+ 2az(x1,x2,t) 5 + At c(xl,xz,t)) =20,
ﬂxz
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then the formula is consistent, convergent, and stable. Since an explicit

formula, 0=0, is being sct up to solve (3=13), the truncation errvor Is
2 2
T = 0(&xl) + O(axz) + 0(ae) ., (3-21)

On the plane n (corresponding to t = nit) solution values are
stored at only (1/P)2 of the grid points (1/P in each space dimension).
This is illustrated in Figure 14 for P=5. Only one fifth of the values
necessary on the plane n in order to compute solutions at every (1/P)2
grid points on plane ntl are stored. The additional required values
(represented by the circles in Figure 14) are obtained by fitting poly-
nomials to the stored values (represented by the x's in Figure 14),.

Notice that all the information to be generated falls in line with
either the vertically or horizontally stored data, This greatly facili-
tates the polynomial approximation techmique, Rather than having to fit
a two-dimensional polynomial to n2 points, it is only necessary to fit
two one-dimensional polynomials to n points [42]. That is, instead of
generating the entire two-dimensional surface, it is only necessary to
produce two lines in the surface.

Figure 15 illustrates how second order polynomials are used to
generate the additional required values, The values at (i,j+l,n) and
i,j=1l,n) are obtained by fitting a second order polynomial to the func-
tion values at (i,j+P,n), (1,3-P,n), and (i,j,n). The values at (i+l,

j,m) and (i-1,j,n) are obtained in a similar manner. With this information

n+l
i,j°

order to obtain a solution at every (1/P)2 grid point on the plane n+l,

(3-19) can be used to calculate F This procedure can be continued in
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Therefore, starting with the initial conditions at n=0, the above method
can be used to obtain a complete solution of (3-15).

More Complicated Two-Dimensional Problem

The problem considered in the previous section demonstrates the
approach used to solve two-dimensional parabolic partial differential
equations, However, as was wentioned earlier, it is desirable when deal-
ing with a two-dimensional Fokker-Planck equation to transform it into
an equation containing more complicated terms than are contained in
(3-15). In this section an equation is investigated which has all of the
type terms which are encountered in Fokker-Planck equationsj‘ The equa-

tion considered is

Ft(xl,xz,t) = al(xl,xz,t) Fxlxl(xl,xz,t) (3-22)

+ az(xl,xz,t) Fx2x2(xl’x2’t) + bl(xl,xz,t) Fxl(xl,xz,t)

X2

o
+ bz(xlsxzs t) sz(xlaxzst) + clcxl’xz:t) bxl (IC F(Kl,e,t)de)
o) 1
+ cz(xlsxzs t) bx2 (JC F(S ’xzs t)da) *

with initial and boundary conditions

F(xl,xz,O) = g(xl,xz) > A< Xy < B and C< x2'< D (3-23)

F(A,xz,t) = hl(xz,t) 5 t>0 (continuved)

*The additional terms appear if a two-dimensional Fokker-Planck equa-
tion is expressed in terms of the probability distribution function rather
than the probability density functiom.
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F(B,xz,t) = hz(xz,t) > t>0
F(xl,C,t) = ha(xl,t) ’ t>0
F(xlin’t) = h4(x1’t) 3 t > 0 -

Notice that the last two terms on the right of (3-22) are of a type not
present in (3-15),

X

1
Let [ Fleaxyitdde = 66y u3y00) (3-24)
A 2 1272
*2
and J'C F(xl,a,t)de = H(x]_’xz’t) .
Using (3-24), (3-23) becomes
F =a F +a,F +b F +b F +c. H +c¢,G . (3-25)
t 1 X X 2 X X, 1 %, 2 %, 1 Xy 2 X,

The normal explicit finite difference equation which approximates (3-25)

is

n+l n ( n At n At ) n ( n At n At D

¥, = F. , {a — 4+ b _— a — - b — (3 -26)
i,j i+1,j 1ij ﬂxi 11J Z&xl i-1,j lij &xi l].___.| 2ﬁx1

ij sz ij 2 ij ax ij 2
n n t n At
+ F, (l - 2&1 -3 - 2a —E)
i1 ij ox] 13 Ax,

(continued)
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n n At n n At
tHig 5 (clij 23::1) - Mg, (Clij 2&:;1)

n /' n At n ’ n At )
* 65,54 Kczij zax2> 61,5-1 f\“zij 28%,)

The numerical solution of (3-26) is approached in the same manner
as was done for (3-19). However, for (3-26) there are three functions
(F(xl,xz,t), G(xl,xz,t), and H(xl,xz,t))whOSe values have to be stored.
This is in contrast to only one function, F(xl,xz,t), for (3-19). As
was the case for the standard two-dimensional probleﬁ, function values
on plane n (for all three: F, G, and H) are stored for only (llP)2 of
the grid points,

The additional information required of each function in order to
use (3-26) to compute solutions on plane n+l is obtained by fitting poly-
nomials to the stored data.

In order to generate G(xl,xz,t) and H(xl,xz,t) it is necessary to
integrate F(xl,xz,t) in the appropriate directions. Simpson's rule [23],
which provides a tractable integrating algorithm with a high degree of

accuracy, is used. Let

M(xi) = Mi . (3-27)

Simpson's formula is
2 h WO (%)
J" MGx)dx = 3 (M + A+ M) - oo MO (), (3-28)
X
0

where
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< g < .
' B

The first term on the right of (3-28) is the approximation of the
integral, and the second term is the error term of the numerical integra-
tion. Therefore, the errors associated with the use of Simpson's rule in

determining G and H are

h5 PS&xi
an F (e} = F {e) , (3-29)
20 X % X X a0 xlxlxlxl
b 4 < g <X
10 12 *
and
5 Psax5
%5 KX XK ) 902 KK KX &) >
2527272 2727272
x2 < E <L x2 .
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CHAPTER IV

LINEAR SYSTEMS

The modified algorithm was tested by solving the Fokker-Planck
equation for several linear systems, This is done because the theoreti-
cal solution of such systems can be computed very easily when the input
is a Gaussian noise [38]. This permits accuracy studies to be made.
These studies are also used to determine how much storage should be re-
tained (what value should P be) and what order of polynomial interpola-
tion should be used in order to get the best results with the modified
algorithm.

The solution of the Fokker-Planck equation for a first order
Iinear system is studied first. As was done in the previous chapter, two
different second order systems are considered. The first second order
system has a Fokker-Planck equation which is a normal two-dimensional
parabolic partial differential equation. The second, and more compli-
cated, second order system considered has a Fokker-Planck equation of the

form of (3-22),.

First Order Linear System

The first order linear system considered is showm in Figure 16.

Its state equation is

£=-x+ () . (4-1)
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The input, T{t), is Gaussian white noise with a power spectral height of
four. The Fokker-Planck equation which describes the probability density

function, f£(x,t), of the output, x(t), is

£,(x,£) = (xE(x,8)) + £ (x,t) , (4-2)
£(x,0) = s(x) ,

f(-=,t)

o,

fl,t) = 0.

The function, g(x), is the initial probability.density of the output.
It is more convenient to work with the probability distribution

function, F(x,t), rather than with the probability density function,

f(x,t)., To do this, (4-2) can be changed to an equivalent equation in

terms of the distribution function by integrating (4-2) and using the

relationship between density and distribution functions., Integrating

(4-2)
~|: £,(e,t)de = J:(ef(e,t))ede +J: fee(e,t_)de . (4-3)
Using the relationship
£(x,t) = F_(x,t) , (4-4)
(4-3) becomes
J: F_ (e,t)de = f:(eFe(e,t:))sde +£ F (e t)de . (4-5)

Solving (4-5) yields
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X X X
Ft(e’t)ld» = Fxx(e,t)ldb + e:Fx(e,f:)|_'m . (4-6)
Since
lim _n bmf!x,tz _ lim n bm+1ng,t[ =g (4-7
Xt m O xodw - m+1 oo )
)4 ax
nz0 and mz0,
(4-6) becomes
Ft(x,t) = Fxx(x’t) + xe(x,t) . (4-8)

This equation is equivalent to (4-2) except that now the Fokker-Planck
equation is in terms of the probability distribution function, F(x,t).

The initial and boundary conditions for (4~8) now become

F(x,0) = G(x) = Ix gle)de , (4-9)
F(==,t) = 0 »
Flo,t) =1 .

There are several reasons for preferring to work with the Fokker-
Planck equations in terms of distribution functions, Since the distribu-
tion function is the integral of the density function, the distribution
function is a much smoother curve. Therefore, the numerical calculations
are more accurate when the equation with.the distribution function, (4-8),
is used. Notice that (4-8), the equation using the distribution function,

is a somewhat simpler equation than (4-2), the equation using the density
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function. It is true in general that one-dimensional Fokker-Planck
equations using distribution functions are slightly simpler in form than
the equivalent equations using density functions. Another important rea-
son for preferring to work with distribution functions is that later when
dealing with nonlinear systems the modified formulation makes the boundary
conditions easier to understand and apply.

In order to have a specific problem to work with, assume that the
initial condition, G(x), is the error function [3] resulting from a

. . . X . 2
Gaussian density function with zero mean and variance 94 That 1is

F(x,0) = G(x) = % + Erf (ﬁi) = Ix f(e)de , (4-10)
Q X
where 2
T %
1 0
f(e) = 7= ¢ . (4-11)
V2nc§

The theoretical solution to this problem, (4-8), with initial and
boundary conditions, {(4-9) and (4-10), is easily computed [38]. The dis-

tribution function of the output, x(t), is

F(x,t) = & + Exf (5—("55) ) (4-12)
where
oz(t) =1+ 003 - 1)e-2t . (4-13)

In order to simulate (4-8) on a computer, the problem must have



finite boundaries. Such boundaries are easily selected with the aid of
the theoretical results, (4-12), The boundaries must be chosen such thét
all the probability mass lies within them, Since only Gaussian proba-
bilities are encountered, this is easily done. For example, let the
boundaries be at plus and minus four or five standard deviations, Let

these boundaries be designated as *b, Then the problem to be simulated

is
P (x,t) = E,_(x,t) + X (x,t) , (4-14)
X
F(x,0) = % + Erf (EE) ,
F(-b,t) = 0 ,
F(b,t) =1,

However, since the probability density function of the output is symmetri-
cal, it is only necessary to solve (4-14}) for -b < x < 0 . Therefore,

the boundary conditions of (4-~14) are replaced by

F(-b,t) = 0 , (4-15)

and F(0,t) = 0.5 .

The Fokker~Planck equation for this first order linear system is
used as a test problem for the modified algorithm. The problem is solved
using several different amounts of storage (different values for P) and
two different orders of polynomial interpolation in an effort to find
out which values give the best results, These results of these runs are
compared to the theoretical solutions and to solutions obtained by using

the original explicit finite difference scheme, For this example, the
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modified algorithm is studied using interpolating polynomials of order
two and three* and for storage savings of 80 percent (P=5), 75 percent
(P=4), and 66,7 percent (P=3).

The complete results of these computed solutions are tabulated in
Appendix A**. Tables 1 and 2 summarize the average maximum and mean
square errors for the different polynomial interpolations. The errors
are averaged over the different values of P (3, 4, and 5). Table 1
gives results from short runs when the initial condition was the steady
state solution (summarized from Table 7 in Appendix A), Table 2 lists
the results from much longer runs when the initial conditions were such
that the solution had to diffuse (inward for half the rumns and outward
for the other half) to the steady state solution (summarized from Tables
8 and 9 in Appendix A),

Typical solutions from the above runs are illustrated in Figures

17 and 18. Figure 17 shows the results obtained when the modified algo-

2
0

order polynomial interpolation, Figure 18 illustrates the results ob-

rithm was used to solve (4-14) with P=5, o = 0,25, and using second

tained when the modified algorithm was used to solve (4-14) with P=5,

2

%

= 4, and using second order polynomial interpolationm,
Examining the maximum and mean square errors in Tables 1, 2, 7, 8,
and 9, it is seen that in all cases the best results were obtained when

second order polynomial interpolation was used, Therefore, in further

*
In Chapter II it was pointed out that the order of interpolating
polynomials for equally spaced data should he low,

*k
All computer programs were written in Fortran IV and were exe-~
cuted on a IInivac 1108 computer,
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Table 1. Average Errors As a Function of

P-- crg =1.0 (from Table 7 in

Appendix A)

Degree of Solution Average Average Mean
Approximating at te= Maximum Error Square Error
Polynomial % 10-3 % 10-10

Explicit Finite

Difference 0.025 Q.57 167
Scheme
2 0.025 0.213 206
3 0.025 1.033 2466

Table 2. Averape Errors As a Function of

P --og = 0.25 and 4.0 (from Tables

8 and 9 in Appendix A)

Degree of Solution Average Average Mean
Approximating at t= Maximum Error Square Error
Polynomial x 10-3 x 10-2
Explicit Finite
Difference 0.5 13.06 3.90
Scheme

2 0.5 9.86 3.01

3 0.5 21.42 15.70




Figure 17.

-2.5 ~2.0 -1.5 -1.0 -0.5 0

Solution of the Fokker-Planck Equation for the First

Order Linear System--Ax = 0.1, At = 0.005, og =0.25
(The solid curves are the computed solutions and the
circles represent the true solution at t = 0.5.)
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Figure 18.

Solution of the Fokker-Planck Equation for the First
Order Linear System--Ax = 0.1, At =0.005, ¢ = 4.0
(The solid curves are the computed solutions and the
circles represent the true solution at t =0.5.)
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calculations only second order polynomial interpolation is used.

The computer runs in this section indicate that the modified algo-
rithm can be used very successfully to solve one-dimensional parabolic
partial differential equations. For examble, examine in Tables 7, 8,
and 9 the results obtained when P was five and when second order poly-
nomial interpolation was used. For these particular cases the modified
algorithm gave the same results (comparable accuracy) as the explicit
fipite difference method while giving savings of 80 percent in computer

storage and about 70 percent in computer time,

Simple Second Order Linear System

The first second order linear system considered is a relatively
simple system. It is analyzed in order to determine how well the modi-
fied formula works for two-dimensional Fokker-Planck equations and to
try and determine what percentage of the values at the grid points should
be stored (what value P should be). Figure 19 illustrates the system

considered, The state equations for this system are

X = =% + ﬂl(t) s (4-186)

-

Xy = = Xy + ﬂz(t).

The inputs, ﬂl(t) and ﬂz(t), are identical, but independent, Gaussian
white noises with power special heights of four.

The Fokker-Planck equation representing (4-16) is
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+ 1 N
ﬂl(t) 3 X
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Figﬁre 19. BSimple Second Order Linear System
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[t(xl,xz,t) = (xlf(xl,xz,t))x 4+ f

(X s X )t) ("‘-17)
1 % 1°72

*1

00 R ) F L Geyoxpet)

f(xlsxzso) = g(xl’xz) >

f(“”:xzst) =0,
f(xls'm:t) =0,
fér,xz,t) =0,

£(x,=,t) = 0 .

The function f(xl,xz,t) is the joint probability demsity function of the
state of the system. Again it is more convenient to work with the equa-
tion in terms of the probability distribution function. Integrating

(4-17) with respect to X, and x, yields

Ft(xl,xz,t) = xIFxl(xl,xz,t) + Fxlxl(xl’KZ’t) (4-18)

zxz(xl’XZ’t) »

X, X

2,1
F(x,,%5,0) = 6Gx) = [ [ gG,e)d8de

+ XZsz(xl’XZ’t) + Fx

F(*”,Xz,t) =0,
F(Kl,'m,t) = 0 2
FK (m:xzst) =0,

1 (continued)
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F o(x),=t) =0 ,
2
F(e,o,t) =1 ,

where F(xl’XZ’t) is the joint probability distribution function of the
state of the system.

The last boundary condition in {(4-18) is extraneous. However, it
is consistent with the problem being considered. The joint probability
density function of the state variables of the system and all of the deri-
vatives of the density function must go to zero as any of the state vari-
ables approach infinity. Therefore, it is clear that the right hand side

of (4~18) goes to zero as x, and x, go to infinity. Since the initial

1 1
value of the distribution function is one as X and X, approach infinity,
its value, as X, and X, approach infinity, remains unity for all values of

time, This extranecus boundary condition is stated in both this and the

next example.

In order to solve {(4~18) on a computer, step sizes must be selected
and finite boundaries must be established. The maximum principle, (3-23),
gives adequate step sizes. Since the theoretical solution for this prob-
lem is easily computed, finite boundaries can be set up. Assume that the

initial condition is
* %2
P(x,,%,,0) = G(x, %)) = (% + Erf(—c-l—))(é + Erf(-&;—)) : (4-19)
0 0

For (4-18) and (4-19) the output distribution function is

F(x,,%,,t) = (% + Erf (c}l{%t)))(i + Erf.(U:%t))) s (4-20)

where

oi(t) -1+ (oi “1ye2t (4-21)

0 ’ {Continued)
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and
sty = 1+ (0 et
2 2

Since all the probability mass is contained within a relatively

small area, the finite boundaries are easily selected. For example, let

the boundaries be at plus and minus 4 or 5 standard deviations for each

of the random variables. Let these values be a;, b 20 and b, for the

1* @ 2

lower and upper bounds of % and Xy respectively. The initial and

boundary conditions for {(4-18) become
F(xl,xz,O) = G(xl,xz) , (4-22)
F(al,xz,t) =0 ,
F(xl,az,t) =0 ,

Fxl(bl’XZ't) = 0 >

[
=]

sz(xl,bz,t) =

F(bl,bz,t) =1 .

The funection G(xl,xz) is the same one defined by (4-19).

Since xl and x2 are independent and their density functions are

symmetric, the joint probability density function
E(x,%y0t) = £1(x ,t) £,(x,,8) (4-23)

is also symmetric. This can be used to reduce the area over which a so-

lution must be obtained. It is only necessary to obtain a solution on

a, s x;, 50 , (4-24)

82 5 x2 =0

The problem simulated on the computer is
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F_=x,F +F +x,F +F , (4-25)

F(xlaxzso) = G(xl:xz) ’
F(a]_’xz:t) =0,

F(xl,az,t) =0,

F(axl,xz,t) - F(O,xz,t) = F(O,xz,t) - F(-axl,xz,t) .

L}

F(xl,&xz,t) - F(xl,O,t) F(xl,O,t) - F(xl,-bxz,t).

The results of these computed solutions are tabulated in Appendix
A, Table 10 lists the results obtained when the initial condition was
the steady state solution. The results of these brief runs are all good,
even for the casés vhen P was very large (15, 20, 25), Table 11 lists
the results obtained when the solution had to diffuse outward to steady
state. Some qualitative comments about the latter runs are given in
Table 3.

Examining Tables 10 and 11, in Appendix A, it is seen that excel-
lent results were obtained when P was equal to five. Since P equal to
five gives good results and there are no other set criteria for the se-
lection of P, all further runs are made with P equal to'five and using
second order polynomial interpolation.

In another interesting computer run the original explicit finite

di fference scheme was used to try to solve (4-25) with
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Table 3. Qualitative Results for Simple Second Order
System (from Table 11 in Appendix A)

Amount of Qualitative Results
Storage
P=
5 Very good, errors are small.
10 Good, errors are an order of magnitude larger

than when P=5.

20 Hot so good, the diffusion process is observed
but the answer has fairly large errors.
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ax, = Ax, = 0.25 (4-26)

At = 0,0005 ,

and Ui = cg = 0,25 .
0 0

The values selected for the spatial step sizes do not satisfy the maximum
principle, (3-23), The results were that the algorithm was uanstable.

This is interesting since the modified method effectively used much

larger spatial step sizes (Tables 10 and 1l1) and obtained very good re- ;
sults, This points out what was stated previously, that the stability

of the ﬁodified algorithm is determined by the step sizes used in the

finite difference equation (ﬂxi) and not be the spacing between the stored

values (PAxi).

More Complicated Second Order Linear System

The problem solved in the previous section, (4-25), demonstrates
that the modified algorithm can be used very beneficially to solve two-
dimensional Fokker-Planck equations. However, the Fokker-Planck equa-
tions encountered later when dealing with second order nonlinear systems
are somewhat more compllicated than (4-25). Therefore, in this section a
linear system which has a Fokker-Planck equation that has every type term
that is encountered later is considered,

The system to be considered is illustrated in Figure 20, The in-
put, T(t), is Gaussian white noise with a power spectral height of four,

The state equations for this system are



n(t)

W=
[ ]
v

Figure 20.

Coupled Second Order Linear System
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] - [0 1] "] + 0] nCe) . (4-27)
X -1 - z 1

The Fokker-Planck equation which describes the joint probability density

[ L

function of the states of the system is

£,(x,2,t) = - x£_(%,2,t) + ((x42) £(x,2,0)) + £ _(x,2,t) , (4-28)

f(x,z,0) = g(x,2) ,

f(’m:z:t) =0,

f(x,-m’t) 0 »

f(m,z’t) 0 »

f(x,@,t) = 0 .

Upon integration with respect to x and z in order to get it in

terms of the distribution function, (4-28) becomes

Ft(X,Z,t) = (x+z) FX(X,Z,t) - XFZ(K,Z,t) + Fxx(xszst) (4-29)
X Z

+[ reeoe - [ F e .

-3 -l

The two integrals in (4-29) are uniformly convergent; therefore, the order

of integration and differentiation can be reversed [44]. Doing this,

{(4-29) becomes

Ft(x,z,t) = (x+z) Fx(x,z,t) - sz(x,z,t) + Fxx(x,z,t) (4-30)

z
+ E?g JJ; F(§,z,t)dg - 2% - F(x,e,t)de .
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Let

2
Jx F(gazst)dg = F(X,Z,t) » (4'31)

-0
and

z z
I F(x,e,t)de = F(x,2z,t) .

When (4-31) is put into (4-30) it simplifies to
Ft(x,z,t) = (xt+z) Fx(x,z,t) - sz(x,z,t) (4-32)

p:% &
+ Fxx(x,z,t) + Fz(x,z,t) - Fx(x,z,t) .

The initial and boundary conditions now become

&
F(x,2,0) = G(x,2) = J Ix g(€,¢)dEde , (4-33)
F(=,z,t) =0 ,
F(x,=,t) =0,
F (e,2,t) =0,
FZ(K;”,t) =0,
and FE,=,t) =1,

Since the theoretical solution to (4-32) can be éomputed, finite
boundaries can be set up for the problem, Assume that the initial con-

dition for (4-32) is

F(x,2,t) = 6(x,2) = (& + Ert (E-z-;))(i + Exf (5-:;)) . (4-34)
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2 2 . . .
The quantities o and ¢ are the initial variances of the state variables
0 0

and are to be specified for the particular problem. In accordance with

Van Trees [38], the solution to (4-32) is

F(x,z,t) = Iz r f(€,¢,t)dEde , (4-35)

wit m

£(x,2,t) = ( L ) %
na_(t) 9,(t) V1 + r2(t)

(

2 2
(<} .4 ("' 2
2(1-r(t)) o

_ 2r(t)xz 4 -2
(t) ox(t)oz(t) ci(t)))

L B

For (4-33)
K.-K
cz(t) = 1+Kle £y Kze-t cos V3t + 3 _2 et sin V3t » (4-36)
x V3
K, =K
2 _ -t -t 6 5 -t .
Uz(t) = 1+Kae + Kse cos V3t + s e = sin V3t s
K. =K
ciz(t) = K7e-t + Kse-t cos Jgf + 33.8 e-t siny3t »
2
t
(® =5
X Z
where 2ﬂZ +02 -4
10 20
Kl =K, = 3 » {4-37)
02 - 232 + 1
1 2
K. = 0 0
2 3 ?

{continued)
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4 - 2% - 22
1 2
= 0 0
3 = 3 )
02 - 202 + 1
2 1
- 0 0
5 3 3
- 02 - 02 + 2
1 2
. 0 0
6 3 ’
az +02 - 2
Ly %
Kg =~ 177 3 ;
wl - w? .2
1 2
- o 0
9 = 3 .

With the aid of (4-35), (4-36), and (4-37) finite boundaries for
the problem can be established. For example, let the boundaries be at
plus and minus four or five standard deviations of each state variable,
Let these lower and upper bounds for x and z be a)s bl’ a, and b2, re-

spectively, Equation (4-33) now becomes
F(x,z,0) = G(x,t) , (4-38)
F(al,z,t) =0,
F(x,az,t) =0,
Fx(bl’z’t) =0,
Fz(x,bz,t) =0,

d
an F(by,by,t) = 1,
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The problem to be simulated on the computer is (4-32) with
initial and boundary conditions (4-38). The functiom G(x,z) is that
which is defined by (4-34).

In order to solve (4-32) numerically, adequate step sizes in the
space variables and time must be selected. The problem is no longer of
the form so that the maximum principle, (3-23), can be used to assure an
adequate selection, However, {(3-23) can be used to obtain a good guess
for the step sizes, The step size AxX is obtained from (3-23) by letting

the coefficient of Fxx be al(x t) and the coefficient of Fx be

l’xz,
2b1(xl,x2,t). The other step sizes are obtained by letting
Az = Ax (4=39)

I
4al(x1,x2,t)

AL =

The initial selection for step sizes is

Ax = Az = 0.04 , (4-40)

and At = 0,0004 ,

Using the values (4-40), (4-32) was solved when

oi =02 =0.25 . | (4-41)
0 24

The initial conditions are such that the solution had to diffuse outward
to steady state, The results were very good (tabulated in Table of 12 of

Appendix A).
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Since (4-32) lacks a second partial derivative with respect to z,
the development of the maximum principle suggests that the algorithm
should be stable for At twice as large as that given by (4-39). There-

fore, (4-~32) with conditions (4-41) was solved with

Ax = 2z = 0.04 , (4-42)

At = 0,0008 .

The results were as good as those obtained using the smaller time step
size, (4-40).

Solutions were run using the same space step sizes and successively
larger time step sizes until the algorithm became unstable., Some very
surprising results were obtained, The algorithm remained stable and accu~
rate until

At = Ax = Az , (4~43)

This is rather surprising considering the ratio of the step size selec-
tions which is generally recommended by the maximum principle. However,
two points should be remembered. First, the equation being considered,
{4-32), is not of the exact form for which the maximum principle holds.
Also, the maximum principle ensures all the desirable properties if the
step sizes are selected in accordance with its rules., If the step sizes
are selected by some other criterion, the maximum principle yields no
information, either good or bad, about the algorithm,

A summary of the runs discussed above is given in Table 12 (in
Appendix A). Note that all computer runs used the modified algorithm

with P equal to five (96 percent savings in storage) and with second order



polynomial interpolation. Simpson's rule was used to perform the numeri-
cal integrations in order to calculate g and %.

The error columns in Table 12 indicate that the calculated solutions
are very good, Actually, the true errors may be slightly better or worse
than is shown in Table 12, This is because the true solution was tabu-
lated to only four decimal places and the numerical calculations were
carried out to five decimal places, Notice that the errors in the calcu-
lated solution did not increase as At was increased from 0.000& to 0,002,
This would indicate that the error in the numerical algorithm might have
little dependence on the time step size, Several computer runs were made
to investigate this possibility further. The results of these ruﬁs are
tabulated in Tables 13 and 14, in Appendix A,

Notice that in both Tables 13 and 14 solutions are presented for
more than one time (in Table 13 solutions are presented for t = 0.2 and
t = 1.0). The accuracy of the solutions at different times should not be
compared, Only information about solutions at the same time should be
compared,

Tables 12, 13, and 14 illustrate conclusively that the time step
size, At, for equations of the form (4-45) can be many times larger than
that suggested by the maximum principle, These tables also suggest that
the errors in the numerical calculations are not a strong function of the
choice of At (s0 long as the algorithm remains stable). As a matter of
fact, many of the solutions using the smaller step sizes in time are less
accurate than those using larger time steps. For those cases the calcula-

tions using the smaller step sizes are accumulating larger roundoff errors
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due to more calculations, However, it was observed that in runs which
used values of At that were close to the maximum value for stability,
errors became much larger for long computer runs (Table 14 in Appendix A).
This indicates that the selection of At should be somewhat smaller (by a
factor of three) than the maximum possible walue for stability. Some of
the results listed in Tables 13 and 14 are summarized in Table 4,

Tables 15 and 16 list the results of runs which investigated the
accuracy of the numerical method as the space step sizes were varied,
Examining the errors in these tables it is obvious that changing the
space step sizes does drastically affect the accuracy of the numerical
results. As the spatial step sizes are increased the error in the solu-
tion is also increased,

Typical solutions for the marginal probability distribution func-
tions are shown in Figures 21 and 22, These marginal distributions are

easily obtained from the joint distribution function since

F)(x%,t) = F(x,b,,t) , (4-44)

Fy(2,t) = F(b;,z,t) .

Summary of Results for Linear Systems

The modified algorithm produced very goed results when used to
solve one- and two-dimensional Fokker-Planck equations. The best results
were obtained when a second order interpolating polynomial was used. It
was also decided to set P equal to five, These values gave as good re-
sults for the one-dimensional and simple two-dimensional problems as did

the explicit finite difference algorithm.



8o

Table 4. A Study of Accuracy As a Function of At (from Tables 13 and
14 in Appendix &)
Space Step Time Step Solution Maximum Mean Square
Sizes 5ize at t= Error Error
Ax = Az = At = % 10-3 x 10-10
0.04 0.0008 0.2 1.29 865.65
0.04 0.01 0.2 0.67 218.4
0.04 0.01 1.0 2.32 6631.6
0.04 0.02 1.0 2.4 6127.1 '
0.04 0.04 1.0 U N S T A B L E
0.1 0.002 1.0 7.52 85300
. 0.02 1.0 7.68 83800
0.05 1.0 8.07 81500




Figure 21.

Marginal Probability Distribution for the Coupled
Second OrderzLineaE System--F (x,t), Ax = 4z =0.1,
At =0.02, g, =0, = 0.25

] 0

(The solid curves are the computed solutions and

the circles represent the true solution at
t = 4.00)
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Figure 22,

88

Marginal Probability Distribution for the Coupled Second
Order Linear System--Fé(z,t), Ax = Az = 0.1, At = 0.02,
02 =02 =0.25

0 0

(The solid curves are the computed solutions and the
circles represent the true solution at t = 4.0.)
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The solution to the more complicated two-dimensional Fﬁkker-Planck
equation produced some very surprising and helpful results. It was found
that the time step size, 4t, could be much larger than that suggested by
the maximum principle, The algorithm remained stable so long as the time
step was smaller than the spatial step sizes, It was alsoc observed that
the errors in the numerical calculations were not very dependent on At
(so long as the algorithm remained stable). The accuracy of the algo-

rithm was practically a function of the spatial step sizes,.
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CHAPTER V
NONLINEAR SYSTEMS

A practical and important application of the Fokker-Planck equa-
tion is in the analysis of phased-locked loops in the presence of noise.
The solution of the Fokker-Planck equation for a phase-locked loop gives
the time varying probability density function of the phase error of the
system.

In this chapter the modified algorithm is first used to solve the
Fokker~Planck equations for a first and second order phase-locked loop.
The probability density and distyibution functions of the phase errors
are obtained and plotted as functions of time for sewveral signal to noise
ratios. The variances of the phase errors are also calculated and plotted
as functions of time.

The modified algorithm is then used to solve the Fokker-Planck
equations for a first and second order gated phase-locked loop. These
results simulate the statistics of the phase errors for phase-locked loops
operating in Time Division Multiple Access systems, The wvariances of the
phase errors are plotted as functions of time for several signal to noise

ratios.

First Order Phase-Locked Loop

The first order phase-locked loop and its equivalent block diagram
are illustrated in Figures 5 and 6 respectively. The input noise, T(t),

is Gaussian white noisé with a power spectral height of NO. The
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Fokker-Planck equation which describes the probability density function

of the phase error of this system (given by (1-14) and (1-15)) is

£.(8,6) = - ((8) () - AK sin(®) £(8,£)), (5-1)
. t

N0K2
+ T—' f¢¢(¢,t) -

The variables in and related to (5-1) are defined by (1-8).
It is assumed that the received signal is a constant sinusoid of

known frequency. That is

8(t) = wt +90, (5-2)
Bl(t) = (w-wo) t +GO,
and wo =v.

Using (5-2) and making the change of variables

T = AKt, (5-3)
{5-1) becomes
KN
£,(0,) = (sin(®) £(8,T)), + 7% £,,(3,7). (5-4)
The term
oo (5-5)

K
o
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is the signal to noise ratio in the first order loop [8]. Putting {5-5)

intoe (5~4) gives

. 1
£,(87 = (sin(@ £(8,T) 0 + 5 f,,(8,T . (5-6)

This is the form in which the Fokker-Planck equations for first order
phase-locked loops is generally presented.

The statistics of the phase error, ¢, are sought on modulo 27
[8] [41). This means that the phase error is always interpreted as being
between —m and +m. The process that this represents is the phase error
which would be indicated by a phase meter (illustrated in Figures 23 and
24). This is a very natural region on which to seek a sol@tion since
at any given instant the best that can be hoped for is to match the phase
of the reference signal toc the phase of the current cycle of the received
gignal.

Before a solution to (5-6)} can be found, adequate initial and
boundary conditions have to be apecified. These have to be established
from physical considerations of the sysfem. A logical set of conditions

which is generally used, (8] [41] [12], 1is
f(9,0) =g {(®) , -nLg=smn {5-7)
f(—ﬁ, T) = f(ﬁ’T) s
m
and I f(¢, Ddg =1 .
-7

The function g{¥) is an initial density function which has to be speci-

fied. No apriori knowledge is assumed for the initial phase error.
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Figure 23. Relationship Between the Phase Error
and the Modulo 27 Phase Error
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Figure 24. a) One Possible Phase Trajectory
b) Modulo 27 Phase Trajectory
c) Phase Trajectory for a System with an Absorbing
Boundary
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Therefore, g(?) is uniformly distributed. That is
g(¢) =1/2m, -msgsm . (5-8)

In order to solve for the statistics of the pﬁase error it is more
convenient to change (5-6) and (5-7) into equivalent equations in terms
of probability distribution functions., This is accomplished by integrat-
ing (5-6) with respect to ¢ (from -T to an arbitrary point ® =T), The

result is

F (6, = sin(9) Fy (¢,T) + % Fgp(® T ~ I(-7,T) , (5-9)

where F(@,T) is the probability distribution function of the phase error.
The function J(®, T) is the'probability current’ [41] at the point

®. The probability current is the amount of probability per unit time

passing through the point ®  For this particular problem, the probabil-

ity current is given by

= si 1
I = sin(e) £(8,1) + T LBV . (5-10)
Due to the symmetry of the problem being considered, it is clear that
the probability current on the boundaries is zero. Lindsey [41] arrives
at the same ceonclusion mathematically for the steady state case.
Therefore, the equation and boundary conditions, in terms of the

distribution function, which are equivalent to (5-6) and (5-7) are
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F (8,7 = sin (B Fg @, + ¢ F(8n (5-11)
F(g,0) = (¢ + m/2n , ~MT < psn
F(~n,1) = 0 ,

and F(m™T =1

The modified algorithm* was used to obtain a solution to (5—11)f*
The step sizes (A® and AT) used in the numerical calculations were
gselected s0 as to satisfy the maximum principle, (2-15). Due to the
symmetry of this problem it is only necessary to obtain a solution for
- ¢ < 0,

The steady state solutions to Fokker-Planck equations for first
order phase-locked loops are known {8] [41]. The theoretical steady

state solution of (5-6) subject to (5-7) and (5-8) is [8]

_ exp (a cos{®))
0 = =5 I_( , (5-12)

where IO(Q) is the zeroth order modified Bessel function of the signal

to noise ratio.

*
The details of the numerical solutions obtained in this chapter
are tabulated in Appendix B,

xk
The computer programs used to obtain the results in this chapter

are shown in Appendix C,
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Figures 25, 26, and 27 show the results obtained when the modi-
fied algorithm was used to solve (5-10) for signal to noise ratioé of
0.5, 1.0, and 2.0 respectively. The theoretical steady state results
are also indicated on the figures., The computed and theoretical steady
state solutions agree very closely. The maximum and mean square errors
for the computed steady state results are listed in Table 5,

Pickholtz and Dominiak [12] obtained transient solutions (numeri-
cally) to the Fokker-Planck equation for the first order phase-locked
loop (they solved {(5-6) subject to (5-7)). The modified algorithm was
used to obtain a solution to (5-10), with ¢ = 1, which could be differ~
entiated and compared to cne of their transient solutions. The two solu-
tions, which agree very closely, are shown in Figure 28,

The solutions to the Fokker-Planck equations for the phase-locked
loops are used to obtain meagures which evaluate the performances of the
systems. The most desirable resuilts would be information about the fre-
quency of skipping cycles for a given density function. Such results
would illustrate clearly how the phase-locked loop responds as a function
of time. While the procedure for the solution of this problem has heen
developéd [8] [45}, the actual numerical solution is quite a formidable
task. It requires the solution of a two-point boundary value problem
for each time which the frequency of skipping cycles is desired. The
same problem becomes considerably more difficult for second order pﬁase-
locked loops. For this case a one-dimensional partial differential
equation has to be solved for each point where the frequency of skipping
cycles is desired.

While not being as desirable as the frequency of skipping cycles,
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-, 25m -5 -.75m -1

Figure 25. Solution of the Fokker-Planck Equation for the First Order Phase-Locked
Loop--4¢ = T/40, AT = 0,0015, @ = 0.5. (The circles are the theoretical
steady state solution.}
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Figure 26. Solution of the Fokker-Planck Equation for the First Order Phase-Locked
Loop~~8® = T/40, &7 = 0.003, ¥ = 1.0. (The circles are the theoretical
steady state solution,)
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Figure 27, Sclution of the Fokker-Planck Equation for the First Order Phase-Locked
Loop=-A@¢ = /40, AT = 0,003, ¢ = 2.0. (The circles are the theoretical
steady state solution.)
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Table 5. Results of the Steady State Solution for a First

Order Phase-Locked Loop

Signal to Maximum Mean Square
Noise Ratio Error Error
o = x 10-3 x 10-3
0.5 1.25 0.063
1.0 3.2 0.392
2,234

2.0 8.83
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£(¢)

Figure 28, Comparison of a Transient Solution to the Fokker-
Planck Equation for the First-Order Phase-Locked
Loop With a Transient Solution that Appears in the
Literature—-A¢ = /40, AT = 0,002, o =1, (The
solid curves are Pickholtz and Dominiak's solution,
and the circles are the values obtained with the
modified algorithm.)
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the quantity commonly used to gauge the performance of a phase-locked

loop is the variance of the phase error. Figure 29 shows the variances
as functions of time for the processes that were jllustrated in Figures
© 25, 26, and 27. The steady state values of these variances agree very

closely with the theoretical results displayed by Viterbi [8]1.

Second Order Phase-Locked Loop

The Fokker-Planck equation for second order phase-locked loops
is a very formidable problem, for which to date, no exact theoretical
solutions or no complete numerical solutions have been presented.* In
this section the modified algorithm is used to obtain complete soclutions
to the Fokker-Planck equation for a second order phase-locked loop.
Results are obtained for several different signal to noise ratios.

The second order phase-locked loop is illustrated in Figure 30
vwhere the linear filter is first order. The transfer function of the

linear filter for the loop being considered is
L(h(t)) =1+2 . (5-13)

The equivalent block diagram for this system is illustrated in Figure
30. Again the noise input 1is Gaussian white noise with a power spectral
height of NO.

The dynamic response of this system is described by (1-7) with

the appropriate impulse response for the linear filter. It is again

*

Lindsey and Charles {[26] have presented some experimental density
and distribution functions for the steady state phase error of a second
order phase-locked loop.
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Figure 29,

{Seconds)

Variances of the Phase Errors for the First Order Phase-Locked Loop
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T (e

Gl(t) | A sin( )

wi—

Figure 30. Equivalent Block Diagram of the Perfect
Second Order Phase~Locked Loop
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assumed that the received signal is a constant sinusoid of known fre-

quency. Therefore,

él(c) =0 . (5-14)

Using (5-14) and the impulse response of the loop filter, the equation

which describes the operation of the system beccmes

é(t) = « KA sin(®(L)) + Tr(t)) {5-15)
t
- aAK I {(sin ($(u)) + 1'1"(1.1.))d'.1
i ]

Equation (5-15) is put in & more tractable form by using a change

of variables described by Viterbi [8]. Defining

¢ = €(t) +a &) , | (5-16)

(5-15) becomes
E(t) + ad(t) = - K(A sin(&(t) + ae(t)) + N(H (5-17)
t
- ak .[ {A sin(é(u) + ae(u)) + MN'(w))du .
3]

This equation can be separated into two equations which, to within an

arbitrary constant, have the same solution. These are
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e(t) = - R(A sin(é(e) + ae(t)) + ML) , (5-18)
and
. t .
at(t) = - ak | A sin(iw) + as(w) + Nwdu
Defining the variables
y, = €(t) (5-19)
and
y, = &8y,

the state equations describing the second order phase locked loop become

Yo = Yy s - (5-20)
and

. ' ¢
y, = - AK 51n(y1 + ayo) - k7

The two-dimensional Fokker-Planck equation which describes the joint

probability density function of the state variables defined in (5-20) is
ft(yo’yl’t) = - ylfyo(yopylst) (5-‘21)
*AK (sinlyy +y)) £0y,,y;.00)

1

KZN

Lo ]
£ (y ,y,,t)
4 ¥y¥q T© 1

+
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This Fokker-Planck equation is put in terms of the phase error
of the system, ¢, by relating the phase error to the state variables.

This relationship, given by (5-16) and (5-19), is

¢ = vy + ay_ . (5-22)

Let

z = ay - ' (5-23)

When these changes of variables are put into (5-21) it becomes
ft(¢,z,t) = a(z- @)(f®(¢,z,t) + £ (92z,t}) (5-24)

+ AR(sin(¢) f(¢,z,t))¢

KZNO
+ —r f®¢(¢,z,t)

"

The magnitude of the integrator gain, "a," must be large in order

for 1t to have a real effect on the system. More precisely, if "a"
is small compared to AK, the integrator has little influence on the

loop {8]. Under this condition the system behaves like a first order

phase-locked loop. Therefore, let

a = AK . {5~25)

Letting

]

T = AKt , (5-26)
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and using (5-25), (5-24) becomes

£.(6,2,7) = (z - ¢)(f¢(¢,z,7) + £ ($,2,T)) (5-27)

+ (sin(®) f(¢,z,T)%

KN
0

+—["K f¢¢(¢,z,’r) .

The signal to noise ratio in the second order loop is defined

as [8]
Y S T (5-28)
NOB]_ N (AE"‘&) NOK g
o

where B, is the loop noise bandwidth for the linearized system. There-
fore, the Fokker-Planck equation for the second order phase-locked loop

becomes

L(®Iz)¢) = - fT(Gb,z,‘T) + (Z —@(f®(¢,z,7) + fz(¢az)"r)) (5-29)

. 1
+ (sin(®) f(ﬁﬁ,z,'l‘))ch +§—Qf¢¢(¢,z,'f) =0 .

This equation is the desired final form of the Fokker-Planck equation in
terms of the joint probability density function.

At this point, a few remarks should be made about the system being
considered. Some of the physical characteristics of phase~locked loops

are defined in terms of the linearized form of the system (the loop
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becomes a linear system in the region where sin(®) =~ ¢). The differen-
tial equation describing the operation of (5-15) in the linear region

when there is no noise input is

$ + AKg + aAKg = 0 | (5-30)

Using the changes of variables defined by (5-25) and (5-26), (5-30)

becomes

¢ +¢+¢=0 s (5-31)

where the derivatives are now with respect to the normalized time vari-
able T, One important parameter to consider in the operation of a
second order phase-locked loop is the damping coefficient of the system,
The damping coefficient of the nonlinear system is interpreted as that
of the linear model. Therefore, for the system being considered, the

damping coefficient is

This is a very reasonable value for the second order system. Therefore,
the selection of a = AK was a good choice. Different damping coeffi-
cients can be obtained by selecting different wvalues for the integrator
gain. For example, if a =‘%? the damping coefficient becomes one.

It is desired to obtain the solution on modulo 21, Since the
phase error, ¢,.is always interpreted as being between +%and -% , it

is clear from {(5-16) and (5-23) that the other independent space wvari-

able, z, is also always between +1 and ~ 1,
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Again, before any solutions can be sought, it is necessary to
estuﬁlish adequate initint and boundary conditions. No apriorl know-
ledge is assumed about the phase error. Therefore, the initial condi-
tion is a uniform density function. The boundary conditions involve the
values of the probability current densities on the boundaries.

Due to the symmetry of this problem it is again clear that the
probability current on the boundary is zero (the probability current
across a boundary is the integral of the probability current density on
the boundary). The initial conditions which are used are that the

probability current densities on the boundaries are zero. That is

Jtn(-n,z,'r) = J¢(n,z,T) =0 {5-33)
Jz(é’—ﬂ’T) = JZ(Q"IT,‘T) = 0 ]
where
T4P.2,1) = (2 - ¢ + sin(e)) £(s,2,7) + o= £,(8r2,7), (5-34)

Jz(¢,zs'|') = (z = ¢) f(qj,z,'r)

The quantities J¢(®,z,f) and Jz(¢,z,T) are the probability current den-
sities in the ¢ and z directions respectively. Therefore, the problem

to be solved in terms of the probability density function is
£, (¢,2,7) = (z - (£,(8,2,7) + £ (,2,7)) (5-35)

1
+ (Sin(¢) f(Q,Z,'T))¢ +_ia' f¢¢(¢’zs7) »
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f(¢,z,0) = 1/4ﬂ2 , TS ST and - <z <M

JQ(—ﬂ,z,¢) =0 ,

J¢(ﬁvst) =0 ,

32(059'":‘1-) =0 *

and

Jz(¢,n,T) =0 .

Although it is clear that the probability currents at the bound-
aries are zero this does not necessarily mean that the probability
current densities on the boundaries are also zero. Therefore, a few
comments are in order about the possible physical interpretations of
these boundary conditions. There seem to be two possible physical
interpretations. The first is that this representation is the modulo
21 problem, However, Lindsey suggests that the solution to (5-35) is
the density function of the collection of trajectors which were
initially uniformly distributed within the prime interval aﬁd which
have remained strictly within the interval. That is, starting with an
ensemble uniformly distributed on - £ ¢ =7 and -m=gz =1, (5-35)
describes the density function of the sample paths which have remained
strictly within the boundaries. According to this interpretation any
trajectories which reach the boundary are removed from the ensemble

(Figure 24). There are physical arguments supporting either
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interpretation. These two interpretations appear to be very similar and
the results of each should be very close. Therefore, whichever is the
true interpretation, the results are a good indication of the phase
error of the second order loop.

In order to obtain numerical results it is desirable to trans-
form (5-35) into an equivalent equation in terms of the probability
distribution function. In order to obtain this formulation (5-35) is
integrated with respect to its two independent space variables. That

1g, referrving to (5-29) ,
z @
J I L(e,E,T)dedE = 0 . (5~36)
q Vem

The resulting equation is
FT(¢,Z,T) = (Z - ¢ + Sin(¢)) F¢(®329‘T) (5“37)

+(z-® F(,2,7) + Ela LIWCRR
¢ z

+ J’ F (€,z,1) de - f F (¢,€,7) de
-m? n®

¢ 2
- J J (e,-m,T) de - I J (-me,T) de .
-u ? o ®

Using (5-33), {(5-~37) becomes
F . ($,2,T) = {(z - ¢ + sin{¢)) F¢(¢,3,T) (5-38)

+ (z -9) FZ(Qﬁ,z,T) + -2:-l—0’ F(w((ﬁ,z,'r) {continued)
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+-J-an(e,z,T)de -

-
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zZ
| F (¢.e,1) de

The initial condition and half of the boundary conditions clearly

become

F(9,2,0) = >
4m

F(-m,2,T) = 0 ,

and
F(p,-n,7) = 0

The boundary conditions at ¢ = T and z

(5-33). 1In particular,

J,z
J, (m,e,T) de
-Ti ¢

)]
j Jz(e,ﬁ,¢)de

-TT

z+n

since Jé(n,z,T)

-ME£¢p=7 and -T=sz=n (5-39)

[(Z - ¢+ Sinq’) Fm((aszs'.r)

. L

2o

T have to be obtained from

= JZ(QSQH)T) =0

(5-40)

¢
F¢¢(¢,Z,T) = ‘J‘.UFQ&(Q,G"T) d€]¢=ﬂ=0 »

0
(-0 p,6mm+ [ F (e2,m de],_o=0 .

In summary, the equation to be simulated is

F¢,= (z -~ ¢ + sing) F¢ + (z - ¢) Fz

Ll

F(g,z,0) = S& (1)

4n2

]

@ z
35 Fap * f_andqj . I_HF¢dz ,

~T S @ =<1 and

(5-41)

-tT&z=mn

(continued)
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F(-—ﬂ,z,"r) =0 »
F(¢,'—1T,'T) =0 ,
- 1 z 1
| (z - ¢ + sin @) F¢ + 2o F¢¢ - J_HF¢dzJ¢=Tr =0 ,

and

- ¢ -
(2 - @) F + I_ﬂ deesjzzn =0

As was the case for the Fokker-Planck equation for the second order
linear system the step sizes used in the numerical solutions of (5-41)
can be larger than those suggested by the maximum principle. For the
most part the step sizes used were A¢ = Az = ©/50 and AT = 0.001 (for
complete details see Appendix B).

The modified algorithm was used to solve (5-41) for signal to
noise ratios of 0.41 (-3.87 db), 1.1 (0.41 db), 1.382 {1.41 db), and
2.76 (4.41 db). The results which were obtained are more striking when
presented in terms of the probability density function. Therefore, the
solutions are differentiated in order that they can. be plotted both in
terms of density and distribution functions. These results are shown
in Figures 31 through 38 (the details of these simulations are tabulated
in Appendix B).

These results are somewhat surprising in that the density functions
display a multimodel structure. Lindsey and Charles {26} obtained some
experimental steady state density and distribution functions for the
phase error of a second order phase-locked loop. Their results display

this same multimodel structure for low signal to noise ratios. They also
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£(¢)

Figure 31. Density Function of the Phase Error for the
Second Order Phase-Locked Loop--o= 0.4l
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F(3)

Figure 32, Distribution Function of the Phase Error
for the Second Order Phase-Locked Loop~-
o= 0.41
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Figure 33. Density Function of the Phase Error for the Second
Qrder Phase-Locked Loop--a = 1.1
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F(¢)

Figure 34. Distribution Function of the Phase Error
for the Second Order Phase-Locked Loop--
o = 1.1. (The circles are Lindsey and
Charles' experimental steady state results
for a second order system with a damping
ratio that is slightly different than that
which was uged for the numerical calcula-

tions. BSee the text.)
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Figure 35, Density Function of the Phase Error for the Second
Order Phase-Locked Loop~-o = 1.382
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F(g)

Figure 36. Distributed Function of the Phase Error
for the Second Order Phase-Locked Loop--

a = 1,382, (The circles are Lindsey and
Charles' experimental steady state results
for a second order system with a damping
ratio that is slightly different than that
which was used for the numerical calculations.
See the text.)
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£(¢)
0.6

Figure 37, Density Function of the Phase Error for the Second
Order Phase-Locked Loop—- o= 2.76
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F ()

Figure 38. Distribution Function of the Phase Error
for the Second Order Phase-Locked Loop~-~
v = 2.76, (The circles are Lindsey and
Charles' experimental steady state results
for a second order system with a damping
ratic that is slightly different than that
which was used for the numerical calculations.
See the text.)
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state that the mathematical analysis of the problem gives an indication
ol such a structure.

Although several of the solutions obtained with the modified
algorithm were for systems with the same signal to noise ratios as used
by Lindsey and Charles [26] to obtain their experimental solutions, the
steady state results of the two methods are not directly comparable. The
damping ratios of the systems for which the experimental and numerical
results were obtained are 0.707 and 0.5 respectively., However, the two
solutions should be, and are, close. The steady state distribution
functions for the two systems with the same signal to noise ratios are
very close, differing only slightly in the regions of low probability.

The variances as a functlon of time for two of the previous runs
are plotted in Figure 39. These graphs are for signal to noise ratios
of 1.1 (0,41 db) and 1.382 (1.41 db). The reason that only two of the
variances are plotted is that initially the variances were not obtained,
and it was necessary to completely rerun the problems in order to get
them. This involved so much computer time that only the variances for
the two middle signal to noise ratios were obtained.

Lindsey [41] presents a graph of approximate theoretical steady
state variances as functions of signal to noise ratios and system damp-
ing ratios for a second order loop. The steady state values for the

two variances shown in Figure 39 are consistent with the curves and data

Lindsey shows.

Gated Phase-Locked Loop

In this section the modified algorithm is used to solve the
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Figure 39. Variances of the Phase-Errors for the Second Order

Phase-Locked Loop--o= 1.1, o = 1.382.
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Fokker-Planck equations for a first and second order grated phase-locked
.1oop [46] [47]. This problem arises in a Time Division Multiple Access
(TDMA) system which uses Phase Shift Keyed (PSK) modulation and which
requires that phase coherence be maintained from burst to burst. The
data modulation on the carrier is assumed to be removed by the demod-
ulator and only the problem of carrier tracking is considered. The
variance of the phase error of the carrier is obtained and plottgd for
several different signal to noise ratios

The problem is setup the same as in the previous sections except

that now the input is

V2 A m(t) cos(wt) + T(r) , (5~42)

where m(t)} is a periodic gate function (Figure 40). The Fokker-Planck
equation, in terms of the distribution function, for the first ordef
phase-locked loop when the gate is on (m{t) = 1) is given by (5-9).
During that portion of the time frame when the gate is off (m{t) = 0)

the Fokker-Planck equation becomes
F (¢,7) = 1 F (9,7 {5-43)
T ¥ o, w L] L

Paul and Larimore [47] state that the assumption of burst to
burst coherence means that the time constant of the phase-locked loop
is larger than the time frame of the gated system (period of the gate
function). The time constant of the loop is interpreted as that of the
linearized system. In terms of the normalized time variable, T, the

time constant of the first order loop is unity. The time frame selected
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TDMA Time Frame

Figure 40. Gate Function for a TDMA System
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for this problem (in terms of the normalized time) is 0.5.

The problem was initially solved (see Appendix B for details)
with cthe time frame having a duty factor of 0.1 (m(t) =.1 one-tenth of
the time). Tt was cobserved that the steady state variances of the phase
errors of the gated loop were the same as those for the continucus loop
with signal to noise ratios of ten times those of the gated loop. 1In
other words, it was observed that steady state variances of the phase
errors for the two loops were the same if the systems received the same
amount of input signal energy per time frame. Figure 41 shows the com-
puted steady state variances for the gated system with a duty factor
of 0.1 and for signal to noise ratios of 2, 5, 10, 20, 30, and 40. The
computed steady state varlances for the continuous system with signal
to noise ratios of 0.1, 1, 2, 3, and 4 are also shown.

These results indicate that the solution for the continuous sys-
tem can be used to obtain the steady state variance for a gated first
order phase-locked loop. This is an interesting and helpful result since
the solution to the continuous system requires far less computer time
than the solution for the gated loop.

One further run was made to check this apparent relationship be-
tween the steady state variances of the phase errors of the two systems.
Figure 42 shows the steady state varlances computed for the phase errors
of the first order gated phase~locked loop with a duty factor of 0.05
and for signal to noise ratios of 10, 20, and 40, The steady state
variances for the continuous loop are also plotted for signal to noise
ratios of 0.5, 1, and 2. Again the steady state variances for the con-

tinuous and gated cases are the same if the input signal energy per
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Figure 41.

Comparison of the Steady State Variances of the
Phase Errors for the First Order Gated and Con-
tinuous Phase-Locked Loops—-Duty Factor = 0.1
{The solid curves are for the gated loop and the
dashed curves are for the continuous loop.)
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Figure 42. Comparison of the Steady State Variances of the

Phase Errors for the First Order Gated and Con-
tinuous Phase-Locked Loops--Duty Factor = 0.05
{The solid curves are for the gated loop and the
dashed curves are for the continuous loop.)
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time frame are the same for the two systems.

The computer times required for the solutions of the Fokker-
Planck equations for the gated and continuous loops to reach steady
state were examined to see if there was a direct relationship between
them. Although it did take wmuch more time for the gated loop to reach
steady state, the two times do not appear to adhere to a formula., In
general, for a duty factor of‘ﬁ s the time required for the gated loop
(with signal to noise ratio No} to reach steady state was somewhat less
than N times the time required for the continuous system(with signal to
noise ratiod) to reach steady state.

The second order gated phase-locked loop is setup as in the pre-
vious section except that the input to the system is given by (5-42).
The Fokker-Planck equation, in terms of the distribution function, for
the system while the gate function is on (m(t) = 1) is given by {5-41).
During that portion of the time frame when the gate function is off

(m(t) = 0) the Fokker-~Planck equation becomes
F".' (¢'Z:T) = (z ~ ¢) F¢(®,Z,‘T) : {5"41*)

+ (2 =@ F(gs2,7) ¥ 5 By (@,2,7)

¢ z
+f~ﬁFz(€)st) de - J‘_,ITF¢(®’€’¢) d€. .

IInless initial conditions can be obtained which are close to the
steady state solutions it is anticipated that the solutions to the Fokker-

Planck equation for the second order gated phase~locked loop will require
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very large amounts of computer time. Therefore, the second order gated
and continuous loops are investigated to see if a relationship similar
to the cne observed for the first order loops exists. However, it is
found (from several simulations) that the desired relationship does not
hold for the second order systems.

The problem is solved starting from an initial distribution which
is uniformly distributed., The time frame is again 0.5. For these simu-
lations the wvariances of the phase errors at the begimning of each time
frame vs. the number of time frames is plotted. Figure 43 shows the
results obtained for the second order gated loop with a duty factor of
0.5 and signal to noise ratios of 2.2 and 4. Figure 44 shows the results
obtained for a duty factor of 0.25 and for signal to noise ratios of 6
and 9.

These solution, which use large duty factors and fairly small sig-
nal to noise ratios, require large amounts of computer time (the longest
run took about 37 minutes of computer time). Even with the large savings
in computer time realized with the modified algorithm it is clear that
the computer time required to obtain a complete solution to the Fokker-
Planck equation for a second order gated loop with a practical duty
factor is completely prohibitive.

However, the variance of the phase error for the second order
gated system demonstrates a pattern which can be used to get a good
estimate of the steady state value without cbtaining the complete solu-
tion to the problem. The plots of the variances for both the continuous
and gated second order loops are very similar in shape. The variances

initially start at ﬂ2/3, rise to a peak valve, decrease, and then
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Figure 43. Variances of the Phase Errors for the Second

Order Gated Phase-Locked Loop--Duty Factor = 0.5
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Figure 44, Variances of the Phase Errors for the Second Order
Gated Phase-Locked Loop--Duty Factor = 0.25
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begin a decaying oscillation to steady state. Notice that the steady
state value for the variance is very close to the value of the first
distinct minimum in the plot.

Recognizing this pattern it is possible to éstimate the steady
state variance of the phase error without using tremendous amounts of
computer time. For example, from Figure 44, the steady state variance
for the second order gated loop with a duty factor of 0.25 and a signal

to noise ratio of 9 can be estimated to be about 2.4,
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CHAPTER VI
THREE-DIMENSIONAL FOKKER-PLANCK EQUATION

The amounts of computer time and storage required for standard
nﬁmerical solutions of higher-dimensional parabolic partial differential
equations are so enormous that such solutions have ﬁot been feasible.
The modified algorithm can be used to reduce the amounts of computer time
and storage required for such problems to the peoint where some higher-
dimensional equations can be solved quite easily. 1In this chapter the
modified algorithm is used to solve a three-dimensional Fokker-Planck
equation,

The partial differential equation considered is the Fokker-Planck
equation for the third order system illustrated in Figure 45. The three
inputs to the system are identical, but independent, Gaussian white
noises with power spectral heights of four, The state equations for the

system are

R
]

-x + Tll(t) 3 : (6-1)
-y + ﬂz(t) ’

-z + ﬂs (t) .

-]
[

and z

The Fokker-Planck equation which describes the'joint probability

density function of the states of the system is
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Figure 45. Third Order Linecar System
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L(x,y,z,t) = - ft(xsy’z:t) + (Xf(anazst))x + fxx(x:Yaz’t) (6-2)
@Y, 2, 0)y + £ (63,2,8) +(2E(6Y,2,0), +,(%,7,2,6) = 0 .
Again it is desirable to change (6-2) to an equivalent equation in terms
of the probability distribution function, This is accomplished by inte-

grating (6-2) with respect to its three independent space variables,

That is

2z Y
I r L(5,¢,E,t)dodedE . (6-3)

The resulting equation in terms of the joint probability distribution

function of the states of the system is
Ft(x,Yazst) = xe(x,y,z,t) + Fxx(x:Yszst) + YFy(st:z>t) (6-4)

+ FYY(K:Ysz:t) + ZFZ(K,Y,Z,t) + Fzz(an:zat) .

Defining notation similar to that used previously, let

I

F(xi,yj,zK,tn) = F(x0+1Ax,y0+J&y,zo+K&z,nﬁt) = Fin . {6-5)

Using (6~5), the explicit finite difference equation which approximatas

(6-4) is
il _ n e, BEY, o L. At ac i
Fisg ™ Fia, ik ("i 25z T ;z) +FiLK ( *i 2ax T Mz) (6-6)

(continued)
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3} At Bt) n ( At ﬂt)
+ F, . 5=+t =) +F, . 2 20 et e
i35+, \7i 2ay N 1,51,k \7 73 28y T 42

At n At At

n At '
TR (ZK 28z © 2&22) MRS k %k Zaz * g2

n At AL At
+r (1-285 285 L 5 B0y
ijK Ax? Ay Az?

An easy extension of the maximum principle to three dimensions yields an
adequate criterion for the selection of step sizes in order to solve

{6-6), For this particular problem the maximum principle becomes

Ix‘l‘l‘lﬂx
Ax < > » (6-7)
7]
&y = ——il—mu}—; s
|2 | maxe
bz = R
L
and At = .
2 2 2
2t 2t

All of the spatial step sizes will be chosen to be the same value. There-
fore, the last equation of (6-7) becomes

2
At < ﬂ—’f:- ) (6-8)

Let the initial condition for (6-4) be
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F(x,,2,0) = F(x,0) F(7,0) F(z,0) = (¥ + mef (Z)) x  (6-9)
X
0

(& + Erf (52—))(% + Erf (55—)) .

Yo )

In order to select step sizes for (6-6), finite boundaries must be estab-
lished for the problem, This is done easily since the theoretical solu-
tion to (6-4) with initial condition (6~9) is obtained readily {38]. This

solution is

F(x,y,z,t) = F(x,t) F(y,t) F{z,t) = (ﬁ + Erf E;%ES) X (6-10)
2 2
(# + et (oym)x* ¥ Bt (oz(c))) =
where
cﬁ(t) -1+ (ci - 1)e”2t (6-11)
0
o;(t) =1+ (cio - et
and

1+ (oi - e 2t

2
g ()
2 0

For the problem being considered let

() =g = J = 005 . (6-12)

Since the solution of (6+-4) is the product of three distribution

functions which correspond to zero mean Gaussian densities with variances
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that never exceed unity, boundaries for the problem are easily selected
such that all of the probability mass lies within them, Let the bound-

aries be set such that the solution of (6~4) is sought on

-5 x5, (6-13)

and -5<=z<5,

In accordance with the maximum principle, (6-7), the step sizes selected

for the numerical solution are

Ax = Ay = Az = 0.1 , (6-14)

At = 0.0005 .

As was the case in previous examples, the modified algorithm is te be
operated with P equal to five and using second order polymomial inter-
polafion.

A comparison of the computer time and storage required by the ex-
plicit finite difference scheme and the modified algorithm illustrates
quite dramatically the substantial reduction in these quantities. The
net effect of the reductions in time and storage is to make feasible,
numerical solutions which would otherwise be virtually impossible to
obtain.

With the selected step sizes, which are fairly large, rhe explicit

finite difference scheme requires

(100 + 1)° = 1,030,301
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spaces of computer storage for F(x,y,z,t). The corresponding amount of

storage required by the modified algorithm, with P=5, is only
(lg-o- + 1)3 = 9261

spaces. This large reduction allows a problem which would have required
storage far beyond core storage capability of any computer to fit easily
on any large scale general purpose computer, The machine on which this
program was executed (Univac 1108) has 192 K core storage, of which a
single program is allowed a maximum of 65 K. A portion of this allotted
storage must be used to store the computer program in machine language,
Due to the symmetry of this particular problem, it is only neces-

sary to solve {6=4) on

5=2x=0, {6=15)

5=y 0,

and S5=xz=0,
The solution of {(6-4) with initial condition (6-9) was obtained on the
range of (x,y,z) given in (6-15). The solution was 6btained over two
seconds of real time (which is essentially to steady state) in 12 minutes
of computer time. A comparable solution using a standard explicit finite
difference scheme is estimated to require in excess of 60 minutes of com-
puter time., Because of the large amount of computer time involved, this
figure was not checked empirically.

The results of this simulation, which are summarized in Table 6,

are very good, The tabulated results are for
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Table 6. Errors Obtained in the Solution of a Three-
Dimensional Fokker-Planck Equation

Solution at Maximum Mean Square
t = Error Error
x 10-3 x 10-6
0.5 5.56 6.17
1.0 3.16 2.17
1.5 2.36 1.36

2.0 2.1 1.12
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F(x,0,0,t) = 0.25 F(x,t), - 5=x=< 0, (6-16)

If the modified algorithm is used to solve even higher-dimensional
problems, the percentage of savings in computer time and storage over

the explicit finite difference scheme becomes even larger,
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

In this research a modified algorithm was developed whichefficiently

solves parabolic partial differential equations. The modified algorithm is
a consistent, convergent, and stable method which greatly reduces the

amounts of computer time and storage required to obtain solutions while

maintaining the same order of accuracy as the original explicit scheme. The
method was tested and its parameters selected by using it to solve the
Fokker-Planck equations for several linear systems. The modified algorithm
was then used to solve the Fokker-Planck equations for a gated and contin-
uous, first and second order, phase locked loop.

The parameters of the modified algorithm were chosen by solving the
Fokker-Planck equations for several linear systems as function of the de-
gsired parameters. The most accurate results were obtained from the simu-
lations that used second order polynomial interpolation (see Tables 7, 8,

and 9). It was also determined empirically that P = 5 (which means that

one—-fifth of the data in each dimension is stored) should be used.

The selection of P was made by observing the trade-offs between
accuracy and the amounts of computer time and storage required for dif~
ferent values of P. The larger the value of P, the larger the savings in
computer time and storage. The accuracy of the modified algorithm was
observed to remain comparable to that of the original explicit method for
values of P less than or equal to five. For larger values of P the accur~
acy of the method deteriorated quickly (see Tables 7, 8, 9, 10, and 11).
It should be noted, however, that not every value of P in the neighborhood

of five was investigated and it is possible that a P slightly larger than
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(ive (say six or seven) might be a better selection.

The amount of savings in computer time and storage that was rcallzed
with the modified algorithm agreed closely with what had been predicted
from operation counts. With the parameters selected for the modified
algorithm, the solutions cobtained for the one~dimensional Fokker-Planck
equation for the first order linear system were as accurate as the solutions
obtained using the original explicit scheme. The amount of savings real-
ized in computer storage and time for the one-dimensional problem were 807
and about 707 respectively (see Tables 7, 8, and 9). The percent savings
in computer storage and time becomes much larger for higher-dimensional
problems. For two-dimensional equations the savings in computer storage
and time are 96% and about 80% respectively (the saﬁings in computer time
was obtained empirically--Table 10).

Even though the Fokker~Planck equation for the coupled second order
linear system is not of the exact form for which the maximum principle
holds, it was initially used to obtain step sizes for the modified algorithm.
Surprisingly, it was observed that the time step size could be much larger
than the value suggested by the maximum principle. The algorithm remained
stable so long as the time step size was not larger than half the value of
the spacial step sizes. It was élso observed that accuracy of the algori-
thm did not strongly depend on the time step size, so long as the method
remained stable. The accuracy was primarily a function of the spacial
step sizes (see Tables 13, 14, 15, and 16). This is a very helpful result
since increasing the size of the time step decreases the amcunt of computer
time required in order to obtain a solution.

The simulation of the three-dimensional Fokker~Planck equation for

the third order linear system illustrated clearly that the modified
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alporithm can solve problems that would otherwise be impractical to solve
with the explicit scheme. The solution to this problem was easily cobtained
with the modified algorithm (see Table 6). A solution to the equation ob-
tained using the original explicit scheme would require a large amount of
computer time and an amount of computer storage many times larger than the
core capabilities of any large scale general purpose computer.

The modified algorithm was used to obtain complete solutions to the
Fokker-Planck equations for a first and second order phase-locked loop.

The solutions were started from initial conditions which were uniformly
distributed and were run to s teady state. Results were obtained for
several signal to noise ratios. The numerical and theoretical steady state
results for the first order loop agree very closely {see Table 17 and
Figures 25, 26, and 27). The steady state solutions for the second order
loop agree closely with experimental solutions to a very similar problem
presented by Lindsey and Charles [26].

The modified algorithm was also used to solve the Fokker~Planck
equations for a first and second order gated phase-locked loop. The ob-
jective of these simulations was to find the steady state variances of the
phase errors of the systems. Solutions for the first order gated system
were obtained for duty factors of 0.1 and 0.05 and for several signal to
noise ratios. It was observed that the steady state variances of the phase
error for the first order continucus loop and the first order gated loop
were the same if both systems received the same amount of signal energy
per TDMA time frame (see Figures 41 and 42). Therefore, the steady state
variance for the first order gated system can be obtained from a much
shorter calculation for the continuous loop or from a simple numerical

integration of the theoretical steady state density function for the
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continuous loop. This could be a useful result for the gated systems with
practical duty factors since numerical solutions for such problems would
require large amounts of computer time.,

The solutions to the Fokker-Planck equations for the second order
gated phase-locked loop presented formidable tasks. The relationship
which exists between the gated and continuous first order loops was found
not hold for the second order systems. Starting from initial conditions
which were uniformly distributed, two complete solutions were obtained
for the gated second order loop with a duty factor of 0.5, and two partial
solutions were obtained for the system with a duty factor of 0.25, These
solutions required large amounts of computer time (see Tables 21 and 22)
and made it obvious that a complete sclution for a second order gated
system with a realistic duty factor would be completely impractical to
obtain. Such a solution would require an astronomical amount of computer
time.

However, the solutions for the second order gated loop also indicate
that good estimates of the steady state variances of the phase errors can
be made without cobtaining complete solutions to the problem. Figures 43
and 44 show that the variances of the phase errors exhibit a decaying
oscillatory pattern which make it possible to predict the steady state
variances at early stages of the solutions.

There are many interesting topics related to those which were studied
in this thesis which deserve further consideration., It is believed that
the polynomial technique which was used to modify the explicit finite
difference scheme can also be applied beneficially to other basic methods.

It is clear that this is the case for implicit finite difference schemes.
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The Fokker—-FPlanck equation is a general method of analyzing systems with
random disturbances. This equation has many interesting and important
applications, and solutions to it are sought in many areas. It is hoped
that the work in this thesis might be helpful in some other fields,

There is much additional important information which can be obtained
for phase-locked loops. One such quantity is the solution to the Fokker-
Planck for systems when it is assumed that the frequency of the transmitted
signal is not known exactly (mo # w in (5-2) and {5-14)). Another in-
teresfing problem is to consider the statistics of the phase errors of
loops for different types of received signals {an f.m., signal for instance).
An important and very difficult problem is the solution of Fokker-Planck
equations for higher order phase-locked loops (third order in particular).

Many of the important calculations for phase-locked loops require
large amounts of computer time. Therefore, it would be useful to per-
form scme parametric studies in order to try and establish some rules for
approximating desired information., One area where this could be very
helpful is in the study of the frequency of skipping of cycles for a sys-
tem. Another helpful area would be determining how long it takes the
variance of the phase error of a system, for a given initial density

funetion, to fall, and remain, below a certain level.
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APPENDIX A

This appendix contains the detalls of the numerical solutions of
the Fokker-Planck equations for the linear systems. The data contained

herein is from the solutions of equations (4-14), (4-25), and (4-30).



Table 7.

Resulits for One-Dimensional Linear System--Ax = 0.1, At = 0.005,

02 = 1.0, t = 0.025
0
Degree of Approx. Storage Computer Estimated Savings Savings in Maximum Mean Square
Polynomial Time in Computer Time Computer Error Error
(Low Estimate) Time .3 -10
(ms) A x 10 x 10
Classical Method N 450 - -——— 0.57 167
3 N/5 155 57 66 1.69 5350
2 N/5 158 68 65 0.32 405
3 N/4 175 46 61 1.0 1704
2 N/4 159 59 65 0.21 160
3 N/3 219 28 51 0.41 345
2 N/3 165 46 63 0.11 53

[4



Table 8.

Results for the Ome-Dimensional Linear System--Ax = 0.01, At = 0.005,

oy = 0.25, t = 0.5
Degree of Approx. Storage Computer Estimated Savings Savings in Maximum Mean Square
Polynomial Time in Computer Time Computer Error Error
(Low Estimate) Time 2 -4
(ms) (%) x 10 w 10
Classical Method N 419 -—— ---- 1.08 0.3079
3 N/5 151 57 64 3.59 4.25
2 N/5 186 68 56 0.28 0.0170
3 N/4 188 46 55 2,52 1.99
2 N/4 175 59 58 0.51 0.0750
3 N/3 204 28 51 1.67 0.7982
2 N/3 218 46 48 0.84 0.1698

£61



Table 9. Results for the One-Dimensional Linear System--Ax = (.01, At = 0.005,
cg = 4.0, t = 0.5
Degree of Approx. Storage Computer Estimated Savings Savings in Maximum Mean Square
Polynomial Time in Computer Time Computer Errox Error
(Low Estimate) 2 -4
{ms) (%) %) x 10 ¥ 10
Classical Method N 996 -—- -—-- 1.53 0.472298
3 N/5 342 57 66 1.83 0.94503
2 N/5 279 68 72 1.37 0.52648
3 N/4 391 46 61 1.66 0.754153
2 N/& 331 59 67 1.41 0.497814
3 N/3 640 283 36 1.57 0.685472
2 N/3 426 46 57 1.49 0.522899

61
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Table 10. Results for the Simple Second Order Linear System--
Ax, = Ax, = 0.05, At = 0.0005, 62 =02 = 1.0,
1 2 1y 2,
t = 0.0025
Storage Solution Computer Time Maximum Mean Square
Obtained on Required Error Error
< (x1 and xz) <  (ms) P 10‘5 % 10-10
N [-5,0] 6972 6.0 2.02
(explicit method)
N/9 [-5.1,0] 2445 1.0 0.0
N/16 [-6,0] 2159 0.0 0.0
N/25 [-5,0] 1467 1.0 0.12
N/100 [-5,0] 793 1.0 0.21
N/225 [-5.25,0] 552 4.0 1.45
N/400 [-5,0] 490 5.0 4.4
N/625 {-5,0] 298 6.0 5.63




156

Table 11. Results for the Simple Second Order Liﬂear System-~~
ax, = bx, = 0,05, 4t = 0.0005, c% =05 =0.25,

t = 0.5 0 0
Amount of Solution Computer Time Maximum Mean Square
Storage Obtained on Required Exrror Error
< (x1 and x2) < (ms) x 10-3 % 10-5

N
(explicit mecthod)

N/25 [-5,0] 24780 0.76 0.006

N/100 [-5,0] 7245 3.60 0.074

N/400 [-7,0] 3716 15.69 2.23
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Table 12, Results Obtained for the Coupled Second
Order System--~Ax = Qz 0.04, -5= x5,

5sz<5,0 =g 0.25, t = 0.8
X z

0 0
Time Step Computer Time Maximum Mean Square
Required Error Exrror
At = (ms) x 10-4 x 10-10
0.0004 127634 0.6 6.35
0.0008 59307 0.6 5.75
0,001 49597 0.6 5.2
0.0016 32019 0.6 5.6

0.002 24440 0.6 ' 6.1




158

Table 13, Stability and Accuracy Study as a Function of At
for the Coupled Second Qrder System--Ax = Az = (.04,
-55x$5,—5$z£5,02 =gc =0.25
ple z
0 0
Time Steps Solution at Computer Time Maximum Mean Square
Required Error Error
At = t = (ms) x 10-3 x 10-10
0.0008 0.2 152293 1.29 B66
0.0l 0.2 12301 0.67 218
0.01 1.0 61526 2.32 6631
0.02 1.0 28130 2.4 6127
0.04 1.0 --- U N S T A B L E
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Table 14. Accuracy Study as a Function of At for the

Coupled Second Order Systgm—-ﬁx2= Az = 0.1,

-6 x< 6, -6<z<6,0 =g = 0.25
% z
0 Q
Time Step Solution at Computer Time Maximum Mean Sqguare
Required Error Error
At = t = (ms) x 10-3 x 10°9
0.002 _ 1.0 66170 7.52 0.85
0.02 1.0 7270 7.68 0.84
0.05 1.0 3023 8.07 0.82
0.02 2.5 18165 11.67 1.74
0.05 2.5 7555 10.40 1.64
0,02 4.0 29081 12,63 2.58

0.05 4.0 12101 177.25 365.00




Table 15. Accuracy Study as a Function of Ax, Az, and At for the Coupled Second

Order System--cr2 =02 =0.25
X z0
Space Steps Time Step Solution at Solved on " Computer Time  Maximum  Mean Square
[xz,x ]X[zz,z ] Required Exror Error
AX = Az = At = t = u u (ms) x 10-3  x 10-10
0.04 0.01 0.2 [-5,51x[-5,5] 12301 0.67 218
0.1 0.002 0.2 [-6,61x[-6,6] 13224 6.30 411
0.04 0.01 0.6 [-5,5]x[~5,5] 36916 1.41 2099
0.1 0.002 0.6 {-6,6]x[-6,6] 39702 8.29 63800
0.04 0.01 1.0 [-5,5)xf-5,5] 61526 2.32 6632
0.1 0.002 1.0 [-6,61x[-6,6] 66170 7.52 85300

The £ and u subscripts indicate the lower and upper bounds on the respective variables,

091



Table 16. Accuracy Study as a Function of Ax and Az for the Coupled
Second Order System--At = 0.02, ci =0, = 0.25

0 0
Space Steps Solution at Solved on * Computer Time Maximum Mean Square
[xz,x }x[zz,z ] Required Error Error

AX = Az = t = he U (ms) x 10-3 x 10-3
0.04 1.0 [-5,5]x[-5,5] 28130 2.40 0.06
0.1 1.0 [-6,61x[-6,6] 7270 7.68 0.84
0.04 2.5 [-5,5]x[~5,5] 70325 1.19 0.02
0.1 2.5 [-6,6)x[-6,6] 18165 11.67 0.17
0.04 4.0 [-5,5)x[-5,5] 112520 2,46 0.09
0.1 4,0 [-6,61x[-6,6) 29081 12.63 2.58

%
The £ and u subscripts indicate thza lower and upper bounds on the respactive variables.

T9T
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APPENDIX B

This appendix contains the details of the numerical solutions
of the Fokker-Planck equations for the phase-locked loops. The data
contained herein is from the solutions of equations (5-11), (5-41),

(5-43), and (5-44).



Table 17. Results of the Fokker-Planck Equation for the Continuous
First Order Phase-Locked Loop--A¢ = w/40, AT = 0.003

SNR Solution Obtained Computer Time Steady State Maximum Steady Mean Square
o= to T = gec. Required (ms) Reached at State Errgr Steady State Error
App. T =sec. xX 10 X 1073
0.5 15 - 0.9 1.25 0.065
1 30 10034 2.0 3.2 0,392
2 15 5223 4.0 8.83 2.234

€91



Table 18, Results of the Fokker-Planck Equation for the Gated
First Order Phase-Locked Loop—-4¢ = /40, AT = 0,001,
Time Frame = 0.5, Duty Factor = 0.1

SNR Number of Cycles Computer Time Number of Cycles Required to Reéch
o = Obtained Required (sec.) Steady State (Approximate)
2 35 9.8 30
5 100 27.8 60
10 100 28.1 100
20 150 45.5 145
30 150 48.6 150
40 150 47.3 150

¥91



Table 19.

Rasults of the Fokker-Planck Equation for the Gated
First Order Phase-Locked Loop--4¢ = T/40, AT = 0.001,
Time Prame = 0.5, Duty Factor = 0.05

Number of Cyeles

SNR Computer Time Number of Cycles Required to Reach
o= Obtained Required (sec.) Steady State {(Approximate)

10 150 46.7 130

20 250 66.5 230

40 300 86,7 300

691



Table 20. Results of the Fokker~-Planck Equation for the Continuocus
Second Order Phase~Locked Loop--4¢ = 71/50.

SNR AT Solution Obtained Computer Time Approx. Time To Steady State
o = to T = sec. Required (min.) Reach Steady Value of
State T = sec. Variance

0.41

(-3.87 db) 0.005 8.0 3.24 2.5 -—
1.1

( 0.41 db) 0.001 12,0 22.18 3.8 2.09
1.382

( 1.41 db) 0,001 | 15.0 27.82 4.2 1.73
2.76

( 4.41 db) 0.001 8.0 16.46 8.0 -—

991



Table 21. Results of the Fokker-Planck Equation for the Gated
Second Order Phase-Locked Loop--Ag = T/50, AT = 0.001,
Time Frame = 0.5, Duty Factor

= 0.5

Number of Cycles Required to Reach

SNR Number of Cycles Computer Time

o= Obtained Required (min.) Steady State (Approximate)
2,2 30 25.47 27

4.0 35 30.33 31

191



Table 22,

168

Results of the Fokker-Planck Equation for the
Gated Second Order Phase-Locked Loop——0¢ = 1n/50,
A1 = 0,001, Time Frame = 0.5, Duty Factor = 0.25

SNR Number of Cycles Computer Time
o= Obtained Required (min.)
6.0 45 35.56

9.0 20 16.77
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APPENDIX €

This appendix contains a representative selection of the computer
programs used to obtain the numerical results for the phase-locked loops.
While not showing every program that was used, the four which are given
do generate éll the information presented in Chapter V. Each of these
programs uses the modified algorithm to obtain its results.

The first program generates the density function, distribution
function, and the variance of the phase error for the continuous (not
gated) first order phase-locked loop.

The second program generates the variance of the phase error for
the gated first order phase-locked loop.

The third program generates the density function, distribution
function, and variance of the phase error for the continuous (not gated)
second order phase-locked loop.

The fourth program generates the variance of the phase error for

the gated second order phase-locked loop.
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c - - - [ .. - . .

C FIRST DCRDER PHASE=LOCKED LOUP

C SNR=2

c SECOND ORDER POLYNOMIAL INTERPOLATION

E ONE FIFTH STORAGE

c . - . - [ - - s — - .
C*tt*****tt*#***#**t##****tt*#****#t*t**t***t*****t********t**

JIMENGION ANSW(15915) 4 ANS(10) /NANS(10),POLY(5},0(15,15)

XeVAR{19)
REA[ NANS .
1 FORM! T(1HO» 1Xp SHANG e 7X s 3415 7Xe3HO (39 7Xp IH 45, 7X» 3140 .6+
XTXe3ta290 TXr3HQ 037X 4HL 0051 6X e 6H1, 200 6X,4H1, 356X, 4H1,50)
2 FORMAT(1H o1XeI2,5X013(F10 5}
3 FORY2T () _
4 FORM:T(IH »7X511(F10,5))
20 FORMLT(IH oSOHR S x kg ke Rk K ¥ MR Mo bk Bk ik Rk g Rk kKKK )
21 FORM:T (LHO»1H )

22 FORMAT(1H »29HFIRST ORDER pHASE~LOCKED L0OOP)

23 FORM/ T (1H »SHSNR=2)

24 FORMAT(IH »37HSECOND ORDER POLYNUMIAL APPROXIMATION)

25 FORMAT (1H »17THONE FIFTH STQRAGE)

26 FORMAT(1H+s6H= PLI/8) =

27 FORMAT (1MO»21HDISTRIBUTIUN FUNCTLON)

.. €8  FORMAT(1HO:16HDENSITY FUNCTION?

29 FORMET (1HO» 1BHVARIANCE E(xx%2)=)
JELX=0,07853982 .

0Lt
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IF{POLY{1)=ANS(I))60,61,01
60 POLY(1)=ANS{1) '
61 CONTINUE
POLY(2)=FO0+1,2«0F0+0,12xVU2F0
X==3,1415927+]1%xPSTP
13 NANG (I+1)3POLY(2) % (AxSIN(X)+B)+ANS(T+1)xC+POLY (1) *(g=AxSIN(X))
B0 "1 [=1eKK
51 ANS (T )=NANS(I)
11 CONTINUE
VAz(,0
20 100 IT=14K»2
100 VAZVA+ANSIIT)#(3,1815927=(1T=1)4FSTP) 44,02 ANS{IT+1) . (
X3.1415927=-1T*PSTPI+ANS(IT45) 2 (3,1415927=(1T+1)»PSTP)
VAR (KKK)=VA&PSTP*4,0/3,0
WO 72 IT1eKK
72 ANSW{KKK» I)=ANS(T)
POLY(2)=0,12%ANS(2)
JIKKKe L) =POLY(2)
D0 75 I=1¢K
FO=aMS (I} .
DFO=aMS(TI+1)=ANS(])
V2FO=ANS (I+2}=ANS(1+41)=DFO
POLY(1)=F0+0.RxIF0=0,082xU2F0
- IF(PqLY(li-ANS(I))§0p81v61
80 POLY(1yzanNstly T T o
81 CONTINUE e .
POLY(2)2F0+1.240F0+0,12%02p0
7 D(KKK e I+1)=(POLY(2)=POLY(1))%E
FOZANS(KK=1)
UFOSANS(KK)=ANS (KK=1)
POLY{1)=FO0+0.8%DFQ
POLY(2)=F0+1.243F0
DUKKK o KK)S(POLY(2Y=POLY (1) )*E
71 CONTINUE
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