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SUMMARY

K-mer indices and de Bruijn graphs are important data structures in bioinformatics with

multiple applications ranging from foundational tasks such as error correction, alignment,

and genome assembly, to knowledge discovery tasks including repeat detection and SNP

identification. While advances in next generation sequencing technologies have dramati-

cally reduced the cost and improved latency and throughput, few bioinformatics tools can

efficiently process the data sets at the current generation rate of 1.8 terabases every 3 days.

The volume and velocity with which sequencing data is generated necessitate efficient

algorithms and implementation of k-mer indices and de Bruijn graphs, two central compo-

nents in bioinformatic applications. Existing applications that utilize k-mer counting and

de Bruijn graphs, however, tend to provide embedded, specialized implementations. The

research presented here represents efforts toward the creation of the first reusable, flexi-

ble, and extensible distributed memory parallel libraries for k-mer indexing and de Bruijn

graphs. These libraries are intended for simplifying the development of bioinformatics

applications for distributed memory environments. For each library, our goals are to cre-

ate a set of API that are simple to use, and provide optimized implementations based on

efficient parallel algorithms. We designed algorithms that minimize communication vol-

ume and latency, and developed implementations with better cache utilization and SIMD

vectorization.

We developed Kmerind, a k-mer counting and indexing library based on distributed

memory hash table and distributed sorted arrays, that provide efficient insert, find,

count, and erase operations. For de Bruijn graphs, we developed Bruno by leveraging

Kmerind functionalities to support parallel de Bruijn graph construction, chain compaction,

error removal, and graph traversal and element query.

Our performance evaluations showed that Kmerind is scalable and high performance.

Kmerind counted k-mers in a 120GB data set in less than 13 seconds on 1024 cores, and in-
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dexing the k-mer positions in 17 seconds. Using the Cori supercomputer and incorporating

architecture aware optimizations as well as MPI-OpenMP hybrid computation and over-

lapped communication, Kmerind was able to count a 350GB data set in 4.1 seconds using

4096 cores. Kmerind has been shown to out-perform the state-of-the-art k-mer counting

tools at 32 to 64 cores on a shared memory system.

The Bruno library is built on Kmerind and implements efficient algorithms for con-

struction, compaction, and error removal. It is capable of constructing, compacting,and

generating unitigs for a 694 GB human read data set in 7.3 seconds on 7680 Edison cores.

It is 1.4× and 3.7× faster than its state-of-the-art alternatives in shared and distributed

memory environments, respectively. Error removal in a graph constructed from an 162 GB

data set completed in 13.1 and 3.91 seconds with frequency filter of 2 and 4 respectively on

16 nodes, totaling 512 cores.

While our target domain is bioinformatics, we approached algorithm design and imple-

mentation with the aim for broader applicabilities in computer science and other application

domains. As a result, our chain compaction and cycle detection algorithms can feasibly be

applied to general graphs, and our distributed and sequential cache friendly hash tables as

well as vectorized hash functions are generic and application neutral.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The wide-spread adoption of next-generation sequencing (NGS) technologies in diverse

disciplines, ranging from basic biology and medicine to agriculture and even social sci-

ences, has resulted in the tremendous growth of public and private genomic data collections

such as the Cancer Genome Atlas [1], the 1000 Genome Project [2], and the 10K Genome

Project [3], and even clinical research and health care [4]. The ubiquity of NGS technology

adoption is attributable to increases in sequencing throughput and decreases in cost. For

example, one Illumina HiSeq X Ten system can sequence over 18,000 human genomes in a

single year at less than $1000 per genome, corresponding to approximately 1.6 quadrillion

DNA base pairs per year.

The volume and the velocity at which genomes are sequenced continues to push bioin-

formatics as a big data discipline. Efficient management and timely processing of bio-

logical sequence data using sophisticated bioinformatic algorithms and tools that support

data-driven computational tasks [5, 6] are essential for high throughput and low latency

analyses. Some foundational bioinformatics tasks include whole genome assembly [7, 8,

9], sequencing coverage estimation and error correction [10, 11, 12], variant detection [11]

and metagenomic analysis [13].

These challenges necessitate sophisticated algorithms and well implemented tools that

can scale to ever increasing NGS sequence data sizes. This research focuses on two specific

components that are central to many biological sequence analysis: k-mer indexing and de

Bruijn graph construction and traversal. We begin with a review of related works.
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1.1 Related Works

1.1.1 K-mer Indexing

Central to many bioinformatic tasks are k-mer (defined as a length k sequence) counting

and indexing, which is widely used in data processing tasks such as sequence alignment

[14, 15], NGS read error correction [11, 12, 16], NGS read alignment [17, 18, 19], and

de novo genome assembly [20, 7, 8, 9]. K-mer counting and indexing have found utility

in other applications such as sequencing coverage estimation [10] and single nucleotide

variant identification [11]).

K-mer Counting and indexing has been extensively investigated in the literature due to

its centrality in many bioinformatic algorithms. Most algorithms and software for k-mer

analysis target shared memory systems, and operate serially [10, 21, 22, 23, 24, 25] or use

multiple threads [26, 27, 28, 29, 30, 31, 32, 33]. To the best of our knowledge, Kmernator

[34] is currently the only stand-alone distributed memory k-mer counter available.

These software target different use cases and provide different interfaces and function-

alities. While k-mer indexing software [10, 22, 23] can be used for k-mer counting, the

converse may not hold true. A k-mer analysis software may also be designed for a specific

pipeline, e.g. assembly, and therefore provides only application-specific query interfaces

[31, 34], or only supports off-line queries [26].

In our review, we excluded tools that estimate abundance histograms only and do not

support count or position queries, such as KmerGenie [35] and KmerStream [36].

K-mer Counting

Jellyfish [26] is a popular in-memory k-mer counter and introduces a lock-free hash table

to support thread-level concurrent updates. It reduces memory consumption by using a

bijective hash function that allows the lower bits of a key to be reconstructed from its hash

bucket identifier, thus only the upper bits need to be stored. The memory usage is further
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minimized by widening the data type only when the k-mer frequency is high. KCMBT

[25] is an in-memory k-mer counter that employs cache efficient burst tries.

Out-of-core approach for reducing memory footprint includes the use of disks as exter-

nal memory. Tools in this group operate with separate partitioning and counting phases.

KAnalyze [28] counts k-mers in each input file block and stores the intermediate re-

sults, which are aggregated during the counting phase. DSK [27], MSPKmerCounter [24],

KMC 2 [31], KMC 3 [33], and Gerbil [32] assign k-mers to on-disk buckets during par-

titioning, and process each bucket individually during the counting phase. Counting is

accomplished in a majority of the tools mainly through incremental updates to hash tables,

while some adopted sorting and aggregation [33].

Probabilistic data structures such as Bloom filters and Count-min Sketch [37] have

also been used to reduce memory requirements. BFCounter [21] and Turtle [30] are two

examples using Bloom filters. JellyFish 2 [26] also provides an option to support this

technique. As Bloom filters can introduce false positives, a second scan of the k-mer

counts is necessary. Khmer [29] is a k-mer counter based on Count-min Sketch that, while

memory efficient, can overestimate k-mer counts.

A majority of the prior efforts focus on minimizing memory usage or efficient utiliza-

tion of multiple CPU cores, or both. Memory limitations may be addressed via succinct

data structures [26, 21, 30, 29] such as Bloom filters [38] and Count-min Sketch [37], via

disk-based algorithms [27, 31, 33, 32], or via distributed memory algorithms [39]. Effec-

tive utilization of available cores may be achieved via thread-safe updates [26, 21], or via

data partitioning followed by independent sequential computation. Partitioning may occur

on disk [27, 31, 33, 32], or in memory [31, 33, 30, 39].

K-mer Position Indexing

Besides k-mer counts, some works further trace the position of each k-mer occurrence

through string indexing data structures. Tallymer [10] and Gk-Array [22] are two tools
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based on enhanced suffix array [40] (an equivalent representation of suffix tree). Välimäki

and Rivals [23] extended Gk-Array by proposing a compressed representation based on

FM-index [41] that further improves memory efficiency.

Suffix trees and arrays are not well-suited for distributed-memory k-mer counting and

indexing. Distributed-memory suffix array construction has been demonstrated previously

[42]. However, distributed query processing requires O(log(n)) iterations of sequence

comparison, each iteration requiring communication with remote processors. Kmerind in-

stead stores k-mers in data structures that support local associative look-up or comparison-

based searches using k-mers as keys.

Distributed K-mer Counting and Indexing

The k-mer counting and indexing tools discussed in sections 1.1.1 target shared-memory

systems. Kmernator [34] is a hybrid MPI+OpenMP application that implements node- and

thread-level master-slave work assignment. However, Kmernator only supports FASTQ

files and canonical k-mers.

Distributed-memory assemblers often embed k-mer indexing and counting capability

for erroneous k-mer removal and de Brujin graph construction. Examples of such assem-

blers include ABySS [8], PASHA [43] and HipMer [9]. ABySS uses hash tables, PASHA

adopts a combination of hash tables and sorted vectors, while HipMer associates hash ta-

bles with Bloom filters. As these k-mer indexing and counting procedures are specialized

for assembly only, none of them provides general purpose indexing APIs.

1.1.2 De Bruijn Graph

Initially suggested during the era of Sanger sequencing [44, 45], de Bruijn graph based de

novo genome assembly approaches was popularized by Velvet [7] and have become the

mainstay of analyzing high-throughput short reads from next generation DNA sequencing

instruments. De novo genome assemblers based on de Bruijn graphs are more memory
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and computational efficient when compared to their overlap-layout-consensus graph based

alternatives.

Briefly, de novo genome assembly aims to reconstruct the true genomic sequence from

sequence fragments, called reads, produced by a genome sequencer. In the overlap-layout-

consensus approach, each read is aligned to every other read to construct a graph where

vertices are reads and edges indicate suffix-prefix overlaps, and the assembled genome is

obtained by finding a Hamiltonian path in the graph. In contrast, each vertex in a de Bruijn

graph represents a distinct k-mers in the read data set, and each edge represent a (k − 1)

overlap between two nodes. Assembly is theoretically obtained as a Euler tour of the graph.

Practically, the assembled sequences are obtained by first finding linear paths and then by

mapping reads to the linear paths to disambiguate between paths at branching points.

Most of de Brujin graph based assemblers employed this representation [46], such

as Velvet, ABySS [8], SOAPdenovo [47, 48], IDBA [49] and Meraculous [50]. In con-

trast, some assemblers such as SPAdes [51, 52], ALLPATHS-LG [53] and MaSuRCA [54]

adopted another representation by considering distinct k-mers as edges and (k − 1)-mers

as nodes. In this representation, each edge connects the two nodes that exactly match

its (k − 1)-length prefix and (k − 1)-length suffix, respectively. Sohn and Nam [46] re-

vealed that the latter approach tends to have fewer branching nodes than the former for

large genomes. For example, by constructing a de Bruijn graph from the human reference

genome, their example test with k = 45 showed that the former can have as much as two

folds more branches than the latter, as the former approach with k = 45 is conceptually

equivalent to the latter approach with k = 46. Regardless, both representations require

expensive computation and large memory space.

In terms of computational time, Gnerre et al. [53] reported that for human whole-

genome assembly, the multi-threaded ALLPATHS-LG took about 3 weeks wall-clock times

with 48 processors, in comparison with about 3 wall-clock days taken by the multi-threaded

SOAPdenovo [47] on the same hardware. As for memory consumption, existing assemblers
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targeting large genomes typically work well with < 512 GB shared memory for human

genome assembly [48, 55]. To improve speed, one commonly used approach is paralleliza-

tion via multi-threading in shared-memory computers or distributed computing on clusters.

To reduce memory overhead, recent efforts focus on using succinct data structures to real-

ize memory-efficient de Brujin graph representations (e.g. [56, 50, 48, 57, 58, 59]). While

memory efficient, these assemblers still suffer from long execution times [59], arguably

exacerbated by the overhead associated with the data structures.

Distributed Memory Genome Assemblers

A few parallel and distributed de novo assemblers have been developed based on de Brujin

graphs. ABySS [8] is the first work implemented using message passing interface (MPI),

which constructs a distributed-memory de Brujin graph structure by compacting all edges

per node into 8 bits with one bit indicating the presence or absence of one of the eight

edges in two directions. However, ABySS builds edges by checking all possible neighbors

per node, even if two k-mers are not adjacent in any input read. In this way, spurious

edges might be introduced. In addition, ABySS does not batch the communication during

traversal, thus suffering from high communication latency.

Ray [60] is a parallel and distributed de novo assembler with peer-to-peer communica-

tion at the core and implemented on a custom distributed computing framework.

PASHA [43] uses a similarly distributed de Brujin graph representation to ABySS,

but builds edges only from the adjacency information of k-mers in the input reads. This

assembler takes advantage of hybrid computing architectures consisting of shared-memory

multi-CPUs and distributed-memory clusters to overcome memory and speed constraints.

YAGA [61] constructs a distributed de Brujin graph represented as a collection of edges.

This algorithm implements a parallel list ranking approach to generate unitigs via path

walking.

SWAP-Assembler [62] introduced a multi-step bi-directed graph (MSG) and a small
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world asynchronous parallel (SWAP) computational framework to realize strong scaling

up to one thousand cores for human genome assembly. SWAP uses a lock-compute-unlock

mechanism to avoid conflicts when one edge is accessed by two simultaneous merge oper-

ations initiated by two processes.

HipMer [63, 9] is a parallelized version of Meraculous [50] and implemented using

MPI and Unified Parallel C (UPC) [64] for various assembly tasks. HipMer merges partial

unitigs from two processors by assigning both partial unitigs to one of the two processor

arbitrarily. The freed processor can then initiate unitig extension with a randomly selected

vertex. Initial unitig generation can also produce an oracle hash function, which can later

be used to map k-mers from the same unitig to the same processor, thus increasing data

locality and reduce communication volume. HipMer has been shown to scale to tens of

thousands of cores for human and wheat genome assembly.

Except for YAGA and SWAP-Assembler, the other parallel assemblers all provide end-

to-end de novo assembly by enabling contig scaffolding with the help of paired-end infor-

mation. Unlike other end-to-end assemblers that perform scaffolding using only paired-end

reads, HipMer relies on a reference genome to facilitate the determination of location and

orientation of unitigs on scaffolds.

Graph Compaction and Unitig Generation

De Bruijn graph based assemblers generally incorporate similar steps: including graph

construction, error removal, chain compaction and unitig generation, gap closing and unitig

generation, and extension through scaffolding using paired end information. The steps are

often formulated as a pipeline and which may even exist as a script.

Chain compaction identifies linear chains in a de Bruijn graph that can be traversed

unambiguously during assembly. A compacted chain corresponds to a genomic fragment

and can be succinctly represented as a sequence of characters, often referred to as a unitig

or a contig depending on the assembler used. Unitigs are used in subsequent assembly steps
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to form longer sequences, and can significantly reduces the size of the de Bruijn graph [7]

for later assembly steps.

Chain compaction is a significant performance bottleneck in the assembly process [43,

65]. Georganas et al. [63] reported that unitig generation, for which graph compaction is

a significant component, accounted for 58% and 78% of the total time for assembling the

human and wheat genomes respectively using the sequential Meraculous assembler. Their

work then focused on distributed memory parallelization of the construction and chain

compaction of de Bruijn graphs with significant improvements, such that scaffolding has

become the primary contributor of running time.

As chain compaction establishes the traversal order of chain vertices, it is related to the

classic list ranking problem: given a set of nodes that form a linked list and pointers to

their neighbors, compute the distance of each node from the end of the list. However, chain

compaction requires simultaneous identification and compaction of all chains in the graph,

while differentiating cycles. The presence of a cycle will cause a naı̈ve execution of the list

ranking algorithm to enter an infinite loop. Additional complexities arise for bi-directed

de Bruijn graphs, requiring special handling of bi-directed edges to avoid circular traversal

and inadvertent backtracking [66, 62, 61]. Nevertheless, assemblers often directly leverage

or conceptually adopt list ranking.

Sequentially, list ranking can be trivially computed, whereas parallel list ranking has

been a research topic in its own right. The first parallel list ranking algorithm was proposed

for the PRAM model by Wyllie [67], using N processors and logN iterations for a list of

size N , with total work of N logN . Wyllie’s algorithm relies on the strategy of pointer

jumping, where the pointer of each list node is updated to its neighbor’s pointer in each

iteration. Subsequent shared memory algorithms were made work-optimal (O(N) work)

using strategies including independent set removal and sparse ruling set. In independent

set removal, a random or deterministic subset of list nodes is selected and list ranked, then

the remaining list nodes are reinserted and the ranking updated. With sparse ruling set,
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multiple invocations of sequential list ranking are initiated from randomly selected “ruler”

nodes, and the sub-lists are merged when ranking encounters other ruler nodes.

These strategies were evaluated and summarized by Reid-Miller and Blelloch [68].

Subsequent shared memory algorithms reduced the total work to the optimal O(N) using

additional strategies including independent set removal and sparse ruling set [69, 70, 68].

Algorithms designed for distributed memory parallel list ranking follow the same basic

strategies [71, 72]. Dehne and Song [71] used randomized selection to produce independent

sets, while Sibeyn et al. [72] optimized a parallel list ranking implementation, incorporating

all three strategies, for the Intel Paragon system.

Parallel assemblers and tools employ primarily pointer jumping and sparse ruling set

approaches for chain compaction. YAGA [61] and SWAP [62] explicitly adopt list ranking

with pointer jumping. YAGA treats the bi-directed graph as directed, while SWAP tracks

the directions of traversal during list ranking.

ABySS [8], HipMer [63, 9] implicitly use the sparse ruling set strategy by choosing

random vertices as the the ruling set and “growing” each chain vertex by vertex. Zeng’s

algorithm [65] chooses end-of-chain vertices as the ruling set, while PASHA [43] used a

combination of both end-of-chain and random vertex selection.

ParBiConstruct [66] and BCALM 2 [59] support only the graph construction and chain

compaction steps. ParBiConstruct splits the vertices to transform the bi-directed graph into

a directed graph, then explicitly uses list ranking with pointer jumping, similar to YAGA

and SWAP, in distributed memory environments. BCALM 2 uses lexicographically mini-

mal substrings within k-mers to partition the k-mer set. Its chain compaction process there-

fore bears resemblance to the sparse ruling set approach. Except for YAGA and BALM 2,

these parallel assemblers require frequent fine grained communication.

While most of these assemblers support bi-directed de Bruijn graphs, where the double

stranded nature of DNA is explicitly modeled, they require special handling, such as edge

splitting [66, 62], to avoid circular traversal and inadvertent backtracking when processing
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bi-directed edges and vertices.

Circular Sequence Identification

Cycles arise naturally in genomic data, and are handled differently by each chain com-

paction and assembly tool. Georganas [63] and Zeng [65] traverse chains in parallel, but

extend each chain one vertex at a time. Both employ binary flags to indicate whether

vertices were previously visited thus avoiding circular traversals. However, this approach

cannot distinguish nor separate cycle vertex from chain vertices where multiple processors

may concurrently traverse a chain.

Kundeti [66] relies on strictly decreasing number of merged tuples, referred to as join

count, as tuples less than 2t away from a chain terminal do not need to be merged further

after iteration t. The algorithm terminates when the join count remains the same for two

consecutive iterations.

BCALM2 [59] explicit excludes cycles from its algorithmic discussion for the rationale

that circular sequences cannot be represented in its output.

1.1.3 Error detection and de Bruijn Graph Simplification

Graph simplification is useful for identifying and removing erroneous k-mers and resulting

erroneous local structures in the graph. A simple and ubiquitously implemented approach

is to filter the input k-mers by the number of their occurrence. This relies on relatively high

NGS sequencing coverage and low sequencing error rate, and is more difficult to apply to

sequencing output of non-uniformly sequenced genomes and in the case of metagenomics,

rare species. This approach is use by all surveyed software and algorithms.

In de Bruijn graphs, erroneous structure can also be identified by inspecting local graph

structures and associated metadata, including k-mer frequencies. These include bubbles,

dead-ends, and spurious links. Their identification, removal, and correction can be use-

ful for de novo genome assembly, and is implemented in Velvet, ABySS, and IDBA.
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SAGE [73], and HINGE [74] also explicitly identify and correct dead-ends and bubbles

but on string graphs and overlap-layout-consensus graphs. Most de Bruijn graph based as-

semblers therefore implicitly rely on the gap-closing step to avoid traversing the erroneous

structures.

1.2 Research Objective

A survey of existing tools and algorithms for bioinformatic sequence analysis, specifically

k-mer indices and de Bruijn graph implementations leads to several important observations.

First, the diversity of available algorithms and implementations affirms the importance

of k-mer indexing and counting as a foundational capabilities for bioinformatics appli-

cations and analysis tasks. The multitude of genome assemblers similarly indicates the

centrality of de novo genome assembly for bioinformatics sequence analysis.

Second, there is a distinct lack of reusable API and library implementation for integra-

tion into applications. Most of the surveyed algorithms and tools have implementations

that are focused on standalone invocation via a command-line interface, or integrated into

a specific application pipeline. SeqAn [75] represents an exception in this arena.

Third, efficient distributed memory parallel algorithms and implementations for k-mer

counting and indexing are practically non-existent, while distributed memory parallel de

Bruijn graph data structures and operations are closely embedded in each assembler, such

that efficient reuse in other applications is difficult.

Finally, the genome assembler and unitig generation implementations reviewed shared

similar processing stages including construction, error removal, chain compaction, unitig

generation, and scaffolding.

The combination of the second and third observations implies that it would be ineffi-

cient and potentially difficult to reuse existing tools, including k-mer counter and indices,

especially in a distributed memory application where tightly coupled communication and

computation are necessary.
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The observed common pipeline tasks for assembly suggests that abstracting and mod-

ularizing a standard set of tasks and associated primitive operations, such as graph query,

traversal, and filtering, is desirable and feasible. They serve as parallel building blocks

for current and future applications. Interestingly, little research effort has been previously

devoted to abstracting, modularizing and standardizing such primitive operations and tasks.

Common to both k-mer indexing tools and de Bruijn graph implementations are there-

fore the scarcity of reusable building blocks and even more so those with distributed mem-

ory system support. To address the big data challenge for biological sequence analysis,

it is increasingly necessary to leverage highly scalable distributed memory systems such

as clusters and supercomputers with expanded memory capability and computational re-

sources. High performance parallel k-mer indices and de Bruijn graph data structures and

associated graph operations can significantly improve the performance and scalability of

sequence data analysis, genome assembly and provide a common platform on which to de-

velop solutions to bioinformatics problems using highly optimized and mature k-mer index

and de Bruijn graph operation implementations.

The research presented embodies three high level aims:

1. Create the first reusable, flexible, and extensible distributed memory parallel libraries,

with simple API and optimized implementations, for k-mer indexing and de Bruijn

graphs for bioinformatics applications.

2. Develop efficient data structure and algorithms specifically for distributed memory

parallel k-mer counting and indexing

3. Develop efficient data structure for distributed memory parallel de Bruijn graphs, and

efficient algorithms for graph construction, compaction, traversal, and error removal.

Our contributions from this research includes efficient distributed memory algorithms

for k-mer counting and indexing as well as de Bruijn graph construction, compaction, and

error removal. Their implementations are presented in two parallel libraries, Kmerind and
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Bruno, that are generic, flexible, and reusable. Our evaluations on distributed memory

clusters as well as on large memory multi-core systems demonstrate their performance and

scalability against existing state-of-the-art k-mer counters and de Bruijn graph compaction

tool and assembler. In addition, we developed architecture-aware optimizations for hash

functions and hash tables that significantly improves the performance of operations in the

Kmerind library. Finally, we note that while our target domain is bioinformatics, we ap-

proached algorithm design and implementation with the aim for broader applicabilities in

computer science and other application domains.

The dissertation is organized as follows. In Chapter 2 we present Kmerind, a distributed

memory k-mer indexing and counting library. We describe its API design philosophy,

as well as the data structure, distributed memory algorithms, and implementation. We

then evaluate its performance in distributed and shared memory settings, and compare it to

existing, state-of-the-art counting tools.

In Chapter 3 we explore performance optimizations of k-mer counting under Kmerind,

including vectorization of hash functions, cache friendly and memory access efficient hash

table algorithms, and MPI communication and computation overlap strategies,

In Chapter 4 we describe the Bruno library’s design. We also present the graph con-

struction algorithm and discuss in detail the chain compaction and unitig generation algo-

rithms as well as cycle identification approaches. We conclude the chapter with a descrip-

tion of the 3 levels of graph operations supported by Bruno.

In Chapter 5 we present algorithms for detecting and removing errors based on oc-

currence frequency and local graph topology. We begin with a description of the type of

errors and the approach to filter (k + 1)-mers prior to construction. The algorithms for

identifying bubbles and dead-ends are then presented, followed by a description of chain

re-compaction to merge chains after graph modifications.

In Chapter 6 we present performance evaluation results for all de Bruijn graph oper-

ations in Bruno, namely graph construction, chain compaction, and graph cleaning. We

13



present the results of performance, scalability and parameter evaluations, and compare the

performance of compaction and unitig generation to those of the state-of-the-art distributed

memory assembler and unitig generation tool.

Finally, in Chapter 7 we briefly summarize our contributions, applicability of our al-

gorithms and implementations beyond bioinformatics, and future areas of research and

development.
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CHAPTER 2

K-MER COUNTING AND INDEXING

The broad applicability of k-mer counting and indexing have motivated the development

of a diversity of tools providing this capability. We present a generic in-memory k-mer

indexing and counting library, named Kmerind, to address both the performance and data

scaling challenges due to or arising from big biological sequence data analysis. In general,

the objectives of developing Kmerind include (i) realizing ready scaling of problem size

and/or performance with additional hardware resources, (ii) allowing easy configuration

and extension with user-specified data types and algorithms, and (iii) offering a consistent

set of application programming interfaces (APIs).

In Kmerind, these objectives are directly reflected by our algorithms, APIs, and imple-

mentation. Shared-memory computers are inherently limited by computational resources

including the number of processor cores and size of memory. We target distributed-memory

environments to support scaling to very large data sets, utilizing very large amounts of

memory, and recruiting substantial extra computational resources when performance is

paramount. Kmerind classes and functions are written as C++ templates, thus enabling

convenient creation of application-specific indices and easy customization of k-mer length,

alphabet, and functions associated with index operations. All Kmerind indices are built

upon the same set of basic operations, i.e. insert, find, count, and erase, with se-

quential semantics and parallel implementations. The target users, application developers,

can readily extend the capability of our library by adding new algorithms or optimizing the

implementations of existing components.
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2.1 Distributed Memory Algorithms

Kmerind’s algorithms are designed to be efficient in both computation and communica-

tion complexities. We leverage bulk-synchronous parallel communication primitives with

explicit synchronization semantics to enforce coarse grain synchronization that avoids con-

tention, reduces overhead, and encourages communication optimization by MPI. Specifi-

cally, Kmerind algorithms employ primitives defined in version 2 of the Message Passing

Interface (MPI) standard [76]. Kmerind does not use multithreading as thread-safety in-

curs additional overheads for this highly data parallel task. To minimize costly file system

access, Kmerind indices are memory resident for the duration of their use.

The number of processors used is denoted as p. Communication complexity is de-

scribed in terms of latency τ , bandwidth 1/µ, and message size m. Point-to-point commu-

nication, e.g. MPI Send, has complexityO(τ+µm), while collective communication, e.g.

MPI Alltoallv, has O(τ log(p) + µmlog(p)) assuming hypercubic permutation based

implementation.

The number of occurrences of a k-mer in a data set is referred to as its count or fre-

quency. We use the term distinct to describe k-mers with different character sequences, in

contrast to unique k-mers whose frequency is 1. The set of all k-mers is denoted by N ,

whose distinct k-mer subset is denoted by U . The set of input k-mers for an index opera-

tion is denoted by M . The subscripted versions Ni, Ui, and Mi denote the corresponding

subsets on processor i. The size of a set is represented by | · |. The average global and

per-processor k-mer frequencies are denoted by r = |N |/|U | and ri = |Ni|/|Ui|.

References to lines in algorithms use the formats ”Ax:y”, ”Ax:y,z” and ”Ax:y–z” for

efficiency, where x is the algorithm number and y and z are the line numbers.
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2.1.1 Distributed k-mer Parsing

Kmerind supports parallel file reading and k-mer parsing. Currently, FASTQ format, which

is primarily used for storing NGS sequence reads, and FASTA format, which is used for

sequence reads as well as whole genomes, are supported. We denote the sequence file as

F .

Figure 2.1: Parallel sequence file reading in distributed environment.

Parallel file reading and k-mer parsing proceeds in 3 steps, file partitioning, sequence

segmentation, and k-mer generation, as shown in Figure 2.1 and Algorithm 2.1. Paralleliza-

tion circumvents single machine limits. Each step maintains load balance across processors

and linear time complexity.

During file partitioning (Algorithm 2.1 lines 2–3), F is divided into approximately

equal partitions of |F |/p bytes and loaded in parallel into main memory as a character array

S. The sequence segmentation step (Algorithm 2.1 lines 5, 6, 15) employs linear-time,

format-specific logic to identify in S individual sequences, from which k-mers, positions,

and other data are extracted. For each segmented sequence, the k-mer generation step

(Algorithm 2.1 lines 8–14) extracts k-mers via a sliding window and stores the results in an

array to be used as input for the distributed index operations. When an unknown character

is encountered, one of three strategies is used: discard the sequence; discard the k-mer; or

replace the unknown with a known character such as “N”.
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Algorithm 2.1 Distributed k-mer Parsing
1: function PARSEKMERS(F , rank, p)
2: 〈start, end〉 ← |F |/p× 〈rank, rank + 1〉
3: S ← read file(F , start, end)
4: k-mers← empty array
5: InitSequenceSegmentation(S, rank, p)
6: seq← GetNextSequence(S, start, end)
7: while seq 6= empty do
8: for j ← 0, |seq| do
9: k-mer← (k-mer� 1)

10: k-mer← k-mer.append(seq[j])
11: if j ≥ k − 1 then
12: k-mers.append(k-mer)
13: end if
14: end for
15: seq← GetNextSequence(S, seq.end, end)
16: end while
17: return k-mers
18: end function

FASTQ Sequence Segmentation

Kmerind currently supports the common FASTQ format where each sequence record has

the form:

@{sequence identifier}

ATCG. . .

+{description}

quality score

A partition boundary may fall within a sequence record, in which case the record is as-

signed wholly to the first processor, while the second processor’s partition is shifted to align

with the first complete record. As the quality score line may begin with @ or +, identifying

the start of a record requires a 4-line context. During InitSequenceSegmentation

(Algorithm 2.1 line 5), each processor records the positions and first characters of the first 4

complete lines in S and calculates the starting position via Table 2.1. Partial record before
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the start of a partition is sent to the previous processor via MPI Send. We note that it is

unlikely for a record to span more than two processors, as FASTQ records are significantly

shorter than partition size.

Table 2.1: Lookup table for determining the position of the first complete record in a file
partition.

First Character
Line 1 2 3 4 Record Starts on

@ + Line 1

@ + Line 2

+ @ Line 3

+ @ Line 4

Once the partitions are aligned to start on the first full sequence record on each proces-

sor, sequences can be trivially segmented iteratively during GetNextSequence (Algo-

rithm 2.1 lines 6,15) by reading the next 4 complete lines from S. User supplied logic may

simultaneously compute other data including position and k-mer quality score.

FASTA Sequence Segmentation

Kmerind currently supports multi-FASTA format where each sequence record has the form:

>{sequence identifier}

ATCG. . .

GCTA. . .

As FASTA sequences in a file can vary greatly in number and length, FASTA file pars-

ing in Kmerind maintains exact block partitioning of size |F |/p with (k-1)-byte overlap to

promote load balance. During InitSequenceSegmentation (Algorithm 2.1 line 5),

each partition is scanned linearly and the starting and ending positions of each sequence

record are stored in a local array for application usage, such as generating k-mer positions.

Global sequence identifiers are computed via parallel prefix sum.
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A FASTA sequence, like FASTQ sequence, may be split between file partitions. How-

ever, since a FASTA sequence may contain a complete genome, it is more likely to span

multiple partitions. A partial sequence containing the header marker ”>” is referred to as

leading. The global identifiers and starting positions of the leading partial sequences are

propagated to the remaining partial sequences by initializing the identifiers and starting po-

sitions of non-leading partial sequences to 0, followed by updating using exclusive parallel

prefix scans with the max(·) operator. The ending positions are similarly propagated via

reverse parallel prefix scan with the min(·) operator. Complete sequences require updates

only to their global identifiers. We note that each partial sequence remains on the original

processor.

Sequences are then trivially segmented by iterating over the previously computed array

of sequence identifiers and starting and ending positions, and extracting the corresponding

characters from S, during GetNextSequence (Algorithm 2.1 lines 6,15).

Complexity Analysis

We denote the average sequence record length, including header and other data, as L. We

assume that that the time to process FASTA partition overlaps is negligible as k � |F |/p.

The file partitioning step (Algorithm 2.1 lines 2–3) requires O(|F |/p) space and time

for reading the file partition for both FASTA and FASTQ files. The k-mer parsing step

(Algorithm 2.1 lines 8–14) requires linear time and space,O(|F |/p), for parsing and storing

k-mers. No inter-processor communication is required.

For FASTQ files, the sequence segmentation step requires O(L) time for scanning for

the offset of the first complete sequence. Once found, moving the partial sequence to the

previous processor requires at most O(τ + µL) communication time and O(L) additional

space. Since L� |F |/p, this step has a negligible contribution to the overall time. Parsing

each sequence requires O(L) time. Parsing all sequences thus results in a complete linear

scan of the file partition in O(|N |/p) time, constant space, and no communication.
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For FASTA files, the sequence segmentation step initialization requires O(|N |/p) time

to parse all sequences and O(|N |/pL) space for storing the resultant objects. Updating

the partial sequences with global information involves 3 prefix scans over the first and last

sequence objects from each processor, thus requiring O(τ log(p) + µ log(p)) communica-

tion time, which are negligible as log(p) � |N |/p. Iterating over all sequence objects

during k-mer parsing incurs constant time and space overheads and no communication per

iteration.

For both FASTA and FASTQ file parsing, the overall time and space complexity is

O(|N |/p), and there is a negligible communication cost in both cases. We note that file

system performance can significantly affect the file partitioning step. Local file system

performance can benefit from the use of solid state drives (SSDs), while parallel file system

performance depends significantly on network bandwidth and file system configurations.

System level file caching also can have a strong impact on file partitioning performance.

2.1.2 Distributed Indices: Overview

Kmerind’s distributed k-mer indices are modeled as either hash maps or sorted arrays of

k-mers and associated data. In both cases the k-mer space is partitioned amongst the pro-

cessors so that an input k-mer for an index operation is deterministically assigned to and

processed by one and only one processor. We also considered look-up tables and suffix ar-

rays. While a distributed look-up table can enumerate the entire k-mer space as a 4k array

for small k, non-uniformity in k-mer distribution of the genome or read file can translate to

computational load imbalance. Suffix arrays and trees, while flexible and memory efficient,

are not well suited for distributed-memory queries as stated in Section 1.1.

Kmerind’s distributed hashed index is designed as a two-level hash map. The upper

level hash function maps k-mers to processor ranks uniquely and deterministically, while

the lower level consists of a local hash map for storing k-mers and associated data. Hash

function for each level is user definable and should be chosen to produce (1) uniformly dis-
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tributed hash values to ensure load balance across processors and minimize hash collisions

within local hash maps, and (2) uncorrelated upper and lower level hash values to avoid

clumping, where k-mers mapping to the same processors are assigned to the same map

buckets.

Kmerind’s distributed sorted index stores a k-mer and its associated data as a tuple in a

distributed, sorted array. A size p− 1 array of splitter k-mers, replicated on all processors,

maps a k-mer to its assigned processor via binary search.

User preference and application needs dictate the choice of hashed versus sorted in-

dices. Hashed index allows expected O(1) time access to the k-mers, at the expense of

extra space for empty map buckets and hash map overheads. Sorted index carries an addi-

tional logarithmic factor in time but requires only as much space as the k-mer data and can

be partitioned equally across processors for non-uniformly distributed k-mer set. A sorted

index may facilitate integration with an application’s native data structures and simplify

communication by avoiding extraneous copies.

Kmerind indices are further classified as uni- and multi- indices. Uni-indices store one

instance of each k-mer and associated data, for example for k-mer counting. Multi-indices

store multiple instances of each k-mer, for example to index k-mer’s positions.

Kmerind defined 4 basic operations that are categorized as update or query operations.

Update operations include insert and erase, where communication is one-way only.

Query operations, on the other hand, require round-trip communication and include count

and find operations.

We expand the set of notations with Ri, which denotes the results of a query operation.

Subscript “r” before a variable, e.g. rMi, denotes the remote copy of the variable, Mi, after

a collective communication such as MPI Alltoallv. Apostrophe, in M ′
i for example,

indicates that a variable has been locally permuted for a purpose such as bucketing prior

to collective communication. Note that permutation does not change the size of the array.

The local data store is denoted by C, with |C| = |Ni|. We further assume p is much smaller
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than |Ni|, |Mi|, and |Ri|.

2.1.3 Distributed Hashed Index

For each operation in a distributed hashed index, the input data is first assigned (map to processor)

then communicated to the target processor (distribute). The communicated data is

then processed locally on each processor, with results optionally communicated back to the

source processor. Figure 2.2 illustrates this process for insertion.

Figure 2.2: Inserting k-mers into the Kmerind’s distributed index.

Data Movement

Input data movement for an operation of a distributed hashed index begins with the map to processor

operation outlined in Algorithm 2.2, where, mapper is the upper level hash function. The

k-mers are first assigned to target processors using the upper level hash function (Algo-

rithm 2.2 lines 4–7). Both the assignments and the number of k-mers in each bucket

are saved simultaneously. The k-mers in the input array are then stably permuted (Al-

gorithm 2.2 lines 14–17) so that k-mers for the same processor occupy contiguous memory

as required by the communication primitives. The bucket assignment array is converted

into a source-to-target position mapping array (Algorithm 2.2 lines 8–13). The position

mapping array is used during permutation, and for inverse permutation if input data in the

original order is needed.
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Algorithm 2.2 Mapping k-mers to processors
1: function MAP TO PROCESSOR(Mi, mapper, p)
2: map← array of size |Mi|
3: counts← array of size p
4: for i← 0, (|Mi| − 1) do
5: map[i]← mapper(Mi[i]) mod p
6: counts[map[i]]← counts[map[i]] + 1
7: end for
8: offsets← exclusive prefix sum(counts)
9: for i← 0, (|map| − 1) do

10: rank ← map[i]
11: map[i]← offsets[rank]
12: offsets[rank]← offsets[rank] +1
13: end for
14: M ′

i ← array of size |Mi|
15: for i← 0, (|Mi| − 1) do
16: M ′

i [map[i]]←Mi[i]
17: end for
18: return 〈M ′

i , counts,map〉
19: end function

Once the k-mers have been assigned and arranged by target processors, the distribute

function sends k-mers and associated data to target processors using the collective personal-

ized communication primitive, MPI Alltoallv. A corresponding inverse distribute

function is defined to move k-mers and associated data back to their source processors, for

example to return query operation results. This is accomplished by first permuting the

counts array using MPI Alltoall to get the element counts in the received buckets,

then using the permuted counts and the k-mer array as argument for distribute.

COMPLEXITY ANALYSIS: The overall time complexity for map to processor is lin-

ear in the size of the input O(|Mi|), as each of the 3 for loops requires constant time

per iteration over |Mi| iterations. The local exclusive prefix sum requires O(p) time. The

total time and space complexities are O(|Mi|), assuming p � |Mi|. No communication is

incurred during this operation.

The complexity of the distribute function depends directly on the space and time

complexities of MPI operations, O(τ log(p) + µ|Mi| log(p)) time and O(|Mi| + |rMi|)
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space, linear in the size of the input and output.

Distributed Hashed Uni-Index

Kmerind’s distributed hashed uni-index allows a single value to be associated with each

k-mer, and supports update operations insert and erase, as well as query operations

count and find. For each query k-mer, at most one result value is returned. Therefore,

|Mi| = |Ri| and |rMi| = |rRi|

Algorithm 2.3 Distributed Hashed Index insert
1: procedure INSERT(Mi, C, mapper, p)
2: 〈M ′

i , counts〉 ← map to processor(Mi, mapper, p)
3: rMi← distribute(M ′

i , counts)
4: for x ∈ rMi do
5: v ← C.insert(x)
6: end for
7: end procedure

The algorithms for insert and count index operations are shown in Algorithm 2.3

and Algorithm 2.4, respectively, where Mi is an array of query k-mers on processor i, C

is the local container, and Ri contains the query results for processor i. In each algorithm,

the input is assigned and distributed to the target processors using map to processor

and distribute operations as described in Section 2.1.3. The target processors then

process the received k-mers and data locally (Algorithm 2.3 line 5, Algorithm 2.4 line 5).

The count algorithm returns the count results to the source processors via collective com-

munication using the inverse distribute operation.

The algorithms for erase and find are essentially identical, except the local hash

map operations at Algorithm 2.3 line 5 and Algorithm 2.4 line 5 are replaced with C.erase

and C.find, respectively. Duplicates in input may be removed before invoking the hashed

index operations to reduce subsequent communication volume and computational load.

COMPLEXITY ANALYSIS: We assume appropriate hash functions were chosen so that

data is distributed as uniformly as possible, |Mi| ≈ |rMi|, and that the local hash map has
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Algorithm 2.4 Distributed Hashed Index count
1: procedure COUNT(Mi, C, mapper, p, Ri)
2: 〈M ′

i , counts〉 ← map to processor(Mi, mapper, p)
3: rMi← distribute(M ′

i , counts)
4: for x ∈ rMi do
5: v ← C.count(x)
6: rRi.append(〈x, v〉)
7: end for
8: Ri ← inverse distribute(rRi, counts)
9: end procedure

expected O(1) access time per k-mer.

Update operations insert and erase requires O(|Mi|) space and time complexity

for map to processor (Algorithm 2.3 line 2, Algorithm 2.4 line 2), O(|Mi| + |rMi|)

space and O(τ log(p) + µ|Mi| log(p)) time for distribute (Algorithm 2.3 line 3, Al-

gorithm 2.4 line 3), and O(|rMi|) time and space for local hash map insertion and erasure

(Algorithm 2.3 line 5, Algorithm 2.4 line 5). Update operations have overall complexity

of O(|Mi| + |rMi|) in space, and O(τ log(p) + µ|Mi| log(p)) in communication time and

O(|Mi|+ |rMi|) in computation time.

The query operations count and find differ from the update operations by their

results handling, which requires O(|rRi| + |Ri|) space, and O(τ log(p) + µ|rRi| log(p))

communication time, and O(|rRi| + |Ri|) computation time. Since |rRi| = |rMi| and

|Ri| = |Mi| for uni-indices, the overall space and computation time complexity of the query

operations remains the same as those for the update operations, while the communication

time complexity becomes O(τ log(p) + µ(|Mi|+ |rMi|) log(p)).

Assuming equal input and distributed data partitioning, |Mi| = |rMi| = |M |/p, the

update and query operations then have space and computation time complexity linear in

the size of the input, O(|M |/p), and communication time complexity of O(τ log(p) +

µ|M |/p log(p)).
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Distributed Hashed Multi-Index

Kmerind’s hashed multi-index uses a local hashed multi-map to associate multiple values

to each k-mer. The local hashed multi-map implementation can affect the per-element

access time complexities, however. Kmerind’s choice of local hash multi-map is described

in Section 2.2.2. Here we assume that time complexity is expectedly O(1) for each local

multi-map access.

Kmerind’s hashed multi-index and uni-index share the same algorithm for update op-

erations, which processes each input k-mer regardless of multiplicity in the associated data

for each k-mer. For count operation, since exactly one count response is generated for

each query k-mer, the algorithm for uni-index’s count operation is adopted for the multi-

index count operation.

Unlike the uni-index find operation, however, |Ri| 6= |Mi| and |rRi| 6= |rMi| for the

multi-index find operation. Furthermore, rMi may contain replicated query k-mers from

different processors.

We assume equal partition for the distinct k-mers U in the indexed k-mers, |Ui| =

|U |/p. We further assume that the query k-mers M are sampled from the same distri-

bution as N and equal partitioning of M . Then Mj on processor j has expected size

|Mj| = r|U |/p, and the distributed input k-mer set on processor i has expected size

|rMi| = ri|U |/p, which implies that the intermediate results have size |rRi| = r2i |U |/p.

Assuming each input subset sent from processor j to i contains ri|U |/(p2) k-mers, then the

final results have size Σp−1
i=0 r

2
i |U |/(p2) = (|U |/p)(Σp−1

i=0 r
2
i )/p.

The second order dependence of |rRi| on ri implies that non-uniformity in frequency

distribution can quickly cause load imbalance in computation, memory usage, and commu-

nication for the uni-index query algorithm Algorithm 2.4.

Instead, Kmerind’s position index’s find operation uses Algorithm 2.5 that amortizes the

space and time requirements over p iterations. During each iteration, the query k-mers from

one source processor are processed. The query k-mers are first assigned and distributed
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Algorithm 2.5 Distributed Hashed Multi-Index find
1: procedure FIND(Mi, C, mapper, p, ri, Ri)
2: 〈M ′

i , counts〉 ← map to processor(Mi, mapper, p)
3: rMi← distribute(M ′

i , counts)
4: Bi ← empty array of size p
5: for j ← 0, (p− 1) do
6: rMij ← subset of rMi from processor j
7: for x ∈r Mij do
8: Bi[j]← Bi[j] + C.count(x)
9: end for

10: end for
11: Bi ← inverse distribute(Bi, counts)
12: c← sum(Bi)
13: Ri ← empty array of size c
14: for j ← 0, (p− 1) do
15: k ← (i+ j) mod p
16: rMik ← subset of rMi from processor k
17: T← empty array
18: for x ∈r Mik do
19: T.append( C.find(x) )
20: end for
21: T← Send(T, k)
22: Ri.append(T)
23: end for
24: end procedure

(Algorithm 2.5 lines 2–3). The total number of result tuples are counted and returned to the

source processor (Algorithm 2.5 lines 4–11) so that the result arrayRi can be allocated (Al-

gorithm 2.5 lines 12–13). We then iterate over each query k-mer subsetsMj→i by processor

rank j (Algorithm 2.5 lines 14–23), finding all results for a subset (Algorithm 2.5 line 19)

and sending the subset result immediately (Algorithm 2.5 line 21) before processing the

next subset. Non-blocking point-to-point communication (MPI Isend and MPI Irecv)

is used, which allows communication to overlap query processing computations.

COMPLEXITY ANALYSIS: Distributed hashed multi-indices have identical complexities

for the insert, erase, and count operations as those for the uni-indices (Section

2.1.3).

The find algorithm for the multi-index aims to minimize the intermediate memory
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requirement |rRi| = r2i |U |/p. Processing the query k-mer subsets of rMi iteratively re-

quires at most O(ri maxk(|rMik|)) space due to buffer reuse. Across all iterations, the

computation and communication time complexities are O(ri|rMi|) and O(τp + µri|rMi|)

respectively. The additional counting step has the same computation time as query process-

ing and negligible , therefore does not affect the overall complexity.

The overall complexity of the hashed multi-index find operation is dominated by the

subset query processing iterations, O(τp + µ|Mi| log(p) + µri|rMi|) for communication,

O(|Mi|+ri|rMi|) for computation, andO(|Mi|+|rMi|+|Ri|+ri maxk(|rMik|)) for space.

The algorithm avoids the quadratic intermediate result space requirement for highly re-

peated k-mers from O(ri|rMi|) to O(ri maxk(|rMik|)). Communication message sizes are

likely more balanced, and the bandwidth term is reduced from O(µ(|Mi|+ri|rMi|) log(p))

for collective communication to O(µ(|Mi| log(p) + ri|rMi|)) at the expense of increased

latency term to τp.

2.1.4 Distributed Sorted Index

Kmerind’s distributed sorted indices store <k-mer, value> tuples in a sorted array using

k-mer as key. A sorted array has a strict ordering by k-mer values, and tuples with identical

keys, such as those in multi-index, are arranged contiguously in the array. The sorted array

is partitioned as equally as possible across all processors. We further require that tuples

with identical keys reside on the same processor.

Data Movement

Leveraging these properties and requirements, and after an array has been sorted, we can

establish a surjective mapping from query k-mers to partitions of the sorted array, each

residing on a processor. A simple approach adopted by Kmerind is to use the last k-mer

from each partition as a splitter. Through binary search in the array of splitters of size

p− 1, a query k-mer can be uniquely and deterministically assigned to a processor.
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We adopt hashed index’s map to processor algorithm (Algorithm 2.2), with the

exception that line 5 is replaced with a binary search for the query k-mer’s insertion position

in the splitter array. The insertion position corresponds to the processor rank to which the

k-mer should be sent.

Subsequent to mapping, the query k-mers can be sent to the target processors via the

distribute and inverse distribute operations from Section 2.1.3.

COMPLEXITY ANALYSIS: The map to processor operation uses a binary search in

the splitter array for each k-mer. The splitter array is replicated on each processor and

requires p space. Overall time complexity is O(|Mi| log(p)), with log(p) from the binary

search. The distribute algorithm has identical time and space complexity as those for

the hashed index’s distribute operation.

Distributed Sorted Uni- and Multi-Indices

Data movement in Section 2.1.4 depends on the presence of the splitter array, which is

constructed during or after parallel sorting. The insert operation for distributed sorted

uni-index and multi-index employs parallel sample sort [77] with regular sampling to sort

the input k-mer array and produce the splitter array concurrently.

The erase, count and find operations for both the sorted uni- and multi-indices

employ the same algorithms as those for the hashed indices: Algorithms 2.3, 2.4, and 2.5.

The hashing map to processor operations (Algorithm 2.3 line 2, Algorithm 2.4 line 2,

Algorithm 2.5 line 2) are replaced with the binary search version described in Section 2.1.4.

The local hash map erase (Algorithm 2.3 lines 4–6), count (Algorithm 2.4 lines 4–7),

and find (Algorithm 2.5 lines 18–20) operations are likewise replaced with their sorted

array counterparts.

During the local erase operation (Algorithm 2.6), the query k-mers rMi are first

sorted so that binary search ranges in the indexed array can be reduced successively. For

each query k-mer, the matching range in the sorted array is identified (Algorithm 2.6
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Algorithm 2.6 Local erase for Sorted Index
1: procedure ERASE(rMi, C)
2: out pos← 0
3: start← 0
4: end← 0
5: rMi← sort(rMi)
6: for x ∈ rMi do
7: end← lower bound pos(C[start . . . |C|], x)
8: for i← start, (end - 1) do
9: C[out pos]← C[i]

10: out pos← out pos + 1
11: end for
12: start← upper bound pos(C[end . . . |C|], x)
13: end for
14: for i← start, (|C| − 1) do
15: C[out pos]← C[i]
16: out pos← out pos + 1
17: end for
18: end procedure

lines 7,12) then overwritten in the next iteration with the array elements between successive

matching ranges (Algorithm 2.6 lines 8–11, Algorithm 2.6 lines 14–17). After all query k-

mers are processed, the remaining non-matching array elements are moved forward. The

sorted array size is thus reduced.

Algorithm 2.7 Local count for Sorted Multi-Index
1: procedure COUNT(rMi, C, Ri)
2: start← 0
3: end← 0
4: Ri← empty array
5: rMi← sort(rMi)
6: for x ∈ rMi do
7: start← lower bound pos(C[end, |rMi|], x)
8: end← upper bound pos(C[start, |rMi|], x)
9: Ri.append(〈x, end - start 〉)

10: end for
11: end procedure

The local count algorithm (Algorithm 2.7) similarly sorts the query k-mers first. For

each k-mer in the query set, the matching range is computed via 2 binary searches (Al-
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gorithm 2.7 lines 7–8), then the count is computed from the range (Algorithm 2.7 line 9).

The local find algorithm differs only in that elements in the round range are copied to Ri

instead of computing the count (Algorithm 2.7 line 9).

COMPLEXITY ANALYSIS: For distributed sorted indices, k-mer frequency in the sorted

array affects the algorithm trivially and the complexity is increased by a factor of ri for the

terms related to the output data.

The insert operation for Kmerind’s distributed sorted indices has time complexity

equal to that of parallel sample sort [77]. The computation time is dominated by local

sorting O(|Mi| log(|Mi|)) assuming total sample size is negligible compared to input data

size, p2 � |Mi|, while communication complexity is O(τ log(p) + µ(p + |Mi|) log(p)).

Space required is primarily for communication buffers thus linear in input size, O(|Mi|).

The erase, count, and find operations have identical space and communication

complexities as those for the hashed uni- and multi-indices, bound by the total input and

output sizes. As the local query processing algorithms are specific to sorted arrays, the

computation complexities involves a scaling factor from searching the index data. Here we

assume that binary search is used with per-query complexity of O(log(Ni)).

For the erase operation, the computation complexity isO(|Mi| log(p)+|rMi| log(|Ni|)+

|Ni|). The first term is for assigning query k-mer to processors, the second for searching for

matching k-mers, while the third is for moving non-matching k-mers. The count opera-

tion has similar computation complexity, with the last term being |rMi| for computing the

size of the matching range for each query k-mer. For for both uni- and multi-indices, the

last term for the find operation is ri|rMi|, due to copying of all elements in the matching

range.

2.2 Implementation

We designed and implemented Kmerind as a distributed memory parallel library based

on the objectives listed in Section 1. Kmerind is a header only C++ library with a tiered
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architecture (Figure 2.3). It leverages C++ 11 language features, Standard Template Library

(STL) containers and algorithms, and MPI and the mxx [78] MPI wrapper library. Each

tier defines templated functions and class interfaces as well as default implementations to

allow functionality by composition and extension by specialization and inheritance, thus

providing Kmerind’s flexibility and extensibility.

Figure 2.3: Kmerind Library’s tiered architecture.

The Data Types layer defines alphabet and k-mer types and associated operations such

as k-mer reverse complement. The Operators layer defines transformations that facilitate

sequence segmentation and k-mer parsing. The parallel file reader and k-mer generator in

the Functions layers use these operators to parse files of different formats and generating

〈k-mer, value〉 pairs of various types.

The Distributed k-mer Indices layer contains k-mer indices, which are implemented as

light-weight wrappers for Distributed Containers. The distributed containers implement

algorithms described in Sections 2.1.3 and 2.1.4, and use local hash maps or sorted arrays

for local storage. Additionally, Kmerind provides maps that perform reduction on insertion,

an example being a counting map.

Where possible, the API presents sequential semantics for simplicity, and encapsulates

distributed memory implementation details.
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2.2.1 K-mer Representation

In Kmerind, k-mers are specified via length k and alphabet Σ. Kmerind allows arbitrary k

values, including even values. Three primary alphabets, DNA, DNA5, IUPAC DNA, and

their RNA equivalents, have been provided. The DNA alphabet consists of {A,C,G, T},

while DNA5 adds N to denote an unknown nucleotide. IUPAC DNA uses 16 characters

to represent the power set of the four DNA nucleotides, e.g. K represents either G or T .

Each alphabet also defines the complement mapping for its nucleotides and minimal bit

encoding for each character.

As DNA is double stranded, each k-mer x has a reverse complement x̄ on the opposite

strand, and a canonical representative, x̃, defined as the smaller of x and x̄.

Kmerind k-mers are compressed using character encodings with the minimal number

of bits b = dlog(|Σ|)e. For DNA, DNA5, and IUPAC DNA, the bit lengths are 2, 3, and 4

respectively. A k-mer is represented by kb bits in an array of machine words, with unused

bits in the most significant positions. Operations on k-mers have complexities that depend

linearly on k and the machine word size.

Rather than explicitly model double stranded k-mers, Kmerind accounts for the double

stranded nature in the indexing operations. Kmerind indices can manage and query each k-

mer as-is (single strand mode), convert each k-mer to canonical (canonical mode), or store

k-mer as is but accept x and x̄ as equivalent for queries (bimolecule mode). In bimolecule

mode, an index’s hash and comparison functions compute x̃ on demand.

SIMD Friendly K-mer Representation

The performance of k-mer reverse complement operation revcomp is critical and has been

vectorized using Single Instruction Multiple Data (SIMD) hardware instructions and SIMD

Within A Register (SWAR) [79] patterns where only x86 instructions are used.

The revcomp operation proceeds in two conceptual phases: character order reversal

and character complement. To reverse the order of characters, each word in a k-mer is
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byte-reversed, and each byte is then character-reversed. Machine words in a k-mer are

processed in linear order.

SIMD byte reversal uses the SSSE 3 or AVX 2 pshufb instruction with a look up table

of reversed positions, while SWAR byte reversal uses the x86 bswap instruction. SIMD

character reversal within a byte again uses pshufb but with a look up table of reversed

characters. SWAR character reversal employs bitwise mask-shift-or pattern to swap blocks

of characters within each bytes over log(8/b) iterations.

To accelerate character complement, the bit encoding of characters as defined by Σ

are chosen so that the complement of a character can be computed via simple vectorizable

functions. For the DNA5 and IUPAC DNA, the complement function is bit reversal, while

for the DNA alphabet, bitwise negation is used. Examples are given in Table 2.2.

Table 2.2: SIMD-friendly bit encoding for DNA, DNA5, and IUPAC DNA characters and
corresponding character complement method. For IUPAC DNA alphabet, not all characters
are shown.

Character Complement Complement
Char Bits Char Bits Method

D
N

A A 00 T 11
negate

C 01 G 10

D
N

A
5

gap 000 gap 000

bit reverse
A 001 T 100
C 011 G 110
N 111 N 111

IU
PA

C

gap 0000 gap 0000

bit reverse

A 0001 T 1000
C 0010 G 0100
R (A,G) 0101 Y (C,T) 1010
· · · · · ·
N 1111 N 1111

For encodings where complements are computable via bit-reversal, the character re-

versal mechanism is extended to compute reverse complement in one step. This approach

allows DNA5 revcomp to be implemented in the same way and with similar running time

as that for IUPAC DNA, despite the lack of byte-alignment.
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2.2.2 Local Hash Table

Kmerind’s distributed hash map implementation allows different local hash map implemen-

tations to be used. Kmerind incorporates Google SparseHash’s Dense Hash Map (referred

to as DHM) [80] as the default local hash table due to its performance. DHM uses open

addressing with quadratic reprobing, thus requiring 2 dedicated keys to identify empty and

deleted hash table slots. The choice of these keys depends on k-mer parameters and the

strand mode of the index as defined in Section 2.2.1. Table 2.3 summarizes the decision

tree for selecting the strategy to generate the empty key for DHM. Deleted key selection is

similar.

Table 2.3: Strategies for choosing k-mers as the empty key for DHM. Conditions listed are
checked successively row by row. If a condition is met, the strategy listed on that row is
used. Examples shown are 3-mers in ASCII or binary encoding.

Condition Strategy example

. DNA5 via unused encoding: 010 000 000 010

.. Has set highest unused bits 10 11 10 01
unused bits

. . . Is use un-canonical k-mer TTT
canonical index

. . .. all others split k-mer space
lower k-mer space map TTT
higher k-mer space map AAA

The general approach for choosing the empty and deleted keys is to identify invalid bit

patterns, such as unused character bit encoding in DNA5 or available padding bits in the

most significant word of a k-mer. For canonical-mode indices, un-canonical k-mers can

serve as keys. Failing both, the k-mer space can be partitioned between two DHMs with k-

mers from the opposite partition as keys. This last approach is extensible to the distributed

memory environment, where a processor’s k-mer space partition can provide keys for the

next processor’s DHM instance.

We extended DHM into a multimap in order to support distributed multi-maps. Dense
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Hash MultiMap, or DHMM, allows multiple values per k-mer key through indirection to

secondary arrays. DHMM stores singleton k-mers in one array, referred to as SA, and repli-

cated k-mers in an array of arrays, referred to as MA, where each inner array contains all

values associated to a particular k-mer. An internal DHM stores k-mer and array posi-

tion pairs, with the position value sign bit selecting SA or MA. Using positions instead of

pointers or iterators allows SA and MA to dynamically resize without costly internal DHM

rebuilds and improves cache utilization. Separate arrays for unique and replicated k-mers

minimizes the number of memory allocations for inner arrays of MA.

COMPLEXITY ANALYSIS: DHM has amortizedO(1) insert and expectedO(1) find,

count and erase time complexities as designed and implemented. Kmerind pre-allocates

the local hash table if possible to reduce memory allocation cost.

Insertion in DHMM requires amortized O(1) time as the SA and MA array as well as

the internal DHM may resize as needed. Counting requires constant time as the counts for

singleton k-mers are always 1, while the counts for repeated k-mers are the sizes of the

corresponding inner arrays. Deletion requires constant time since only the internal DHM

needs to be modified to mark an entry as deleted. To retrieve all values mapped to a k-mer,

DHMM requires time linear in the size of the output, on average O(r).

2.2.3 K-mer Count and Position Indices

Kmerind provides default count and position index implementations. The count index spec-

ifies 〈k-mer, count〉 as index elements, k-mer ∈ U . The count index is implemented us-

ing either the distributed hashed or sorted reduction map with + operator over the count

field. The default position index specifies 〈k-mer, position〉 as index elements, and is im-

plemented using the distributed hashed or sorted multi-map. In both cases, the user can

specify k, Σ, and index mode (canonical, single, bimolecule). In the case hashed map is

used, the upper and lower hash functions can be specified. Experiments use the default

implementations and the discussions refer to count and position indices directly.
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We note that while de-duplicating the query k-mers theoretically helps to reduce com-

munication, computation, and memory costs, its practical utility is limited for insert,

erase, and count operations. The expected number of replicated query k-mers on a

processor, (1/|U |)(|N |/p) = r/p, decreases with increasing p. For a typical whole genome

sequencing data set with 30× coverage and p = 32, we expect that most k-mers are locally

distinct. De-duplication is therefore only implemented for the find operation, where fru-

gal memory usage is more critical.

2.3 Experimental Results
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Table 2.4: Experimental data sets used for all evaluations. Where applicable, accession numbers for NCBI are provided.
Genome Size File File File Size Sequence Average

Id Organism (Mbases) Format Count (Gbytes) Count Read Length Source Accession

R1 H. sapiens 2,991 FASTQ 1 6.3 23,861,612 101 1000 Genome HG00096, NCBI SRR077487
forward only

R2 F. vesca [81] 214 FASTQ 11 14.1 12,803,137 352 NCBI SRA020125
R3 G. gallus 1,230 FASTQ 12 115.9 347,395,606 100 NCBI SRA030220
R4 H. sapiens 2,991 FASTQ 48 424.5 1,339,740,542 101 NCBI ERA015743

G1 H. sapiens 2,991 FASTA 1 2.9 84 – 1000 Genome reference GRCh37 –
G2 P. abies [82] 20,000 FASTA 1 12.4 10,253,694 – Congenie.org –

M1 1 7.6 33,195,888
M2 1 15.2 66,391,776 IOWA Continuous
M3 metagenome – FASTQ 1 30.4 132,783,552 101 Corn Soil ( Project 402461 ), –
M4 1 60.8 265,567,104 Joint Genome Institute
M5 1 121.6 531,134,208
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We examined the performance of Kmerind and compare it to those of a select subset of

existing k-mer indexing tools. Data sets used for the experiments are summarized in Table

2.4, and referenced by “Ids” in subsequent discussions.

Sequential and multi-threaded tests were conducted on the CompBio system at Georgia

Institute of Technology. CompBio contains four 2.1GHz Intel Xeon E7-8870v3 processors

with 45MB L3 cache, 1TB of DDR4 RAM, and RAID 1 file systems with rotating disks.

All tested software were compiled with GCC v5.3 and OpenMPI v1.10.2 if required.

Distributed-memory experiments were conducted on Iowa State University’s CyEnce

cluster. Each node contains two 2.0GHz 8-core Intel Xeon E5-2650 CPUs and 128GB of

RAM. The cluster has quad data rate (QDR) Infiniband interconnect and is supported by a

288TB Lustre file system with 1 MDS and 8 OSTs. All data files are stored on Lustre with

1MB block size and stripe count of 8. All test binaries were compiled with GCC v4.9.3

and MVAPICH v2.1.7.

For multi-threaded programs, we assigned one thread per processor core using numactl.

For MPI programs (Kmerind and Kmernator), we similarly assigned one MPI process per

core via mpirun. Assignments are evenly distributed amongst sockets and cluster nodes

if applicable. Henceforth, experimental results are discussed using the term “cores”.

Unless otherwise specified, the experiments were conducted in canonical mode with

DNA 31-mers. For hashed indices, the high and low bits of Google FarmHash outputs are

used as upper and lower hash functions, while DHM and DHMM are used as the local hash

tables for count and position indices respectively. Each experiment was repeated at least

three times, and the fastest time was reported as it most closely reflects system capabilities.

2.3.1 K-mer Operations

We benchmarked the SIMD accelerated k-mer reverse complement operation using the

CompBio system. Figure 2.4a summarizes the times to compute reverse complement of

one million DNA, DNA5, and IUPAC DNA k-mers for varying k using the x86 SWAR,
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DNA DNA 5 IUPAC DNA

15 31 63 95 127 15 31 63 95 127 15 31 63 95 127
0

1
0

2
0

k

tim
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 (
m

s)

swar ssse3 avx2

(a)

Alphabet SEQ SWAR SSSE 3 AVX 2 AUTO

DNA 29 1.8 2.4 3.6 1.9
DNA 5 49 6.2 2.3 3.2 2.3

IUPAC DNA 49 5.3 2.3 3.2 2.3

(b)

Figure 2.4: Time in milliseconds to reverse-complement one million k-mers of varied al-
phabets using SWAR, SSSE 3 or AVX 2 instructions for different k (a) and 31-mers (b).

SSSE 3, and AVX 2 revcomp implementations. Table 2.4b summarizes the times for

31-mers.

Overall the SIMD based revcomp implementation has a throughput of approximately

two microseconds per 31-mer, and scales linearly with the number of machine words in

the k-mer data structure. The computation time increases in fixed steps with word count

instead of with k directly. SWAR and SSSE 3 implementations were approximately 16×

and 21× faster than sequential (SEQ in Figure 2.4b). AVX 2 performed comparably to

the SSSE 3 for k up to 256 (data not shown) due to the additional overhead incurred when

moving bits between 128-bit data lanes.

Based on these observations, we defined an “AUTO” implementation that adaptively

chooses the optimal instruction sets at compile time based on k-mer parameters. For small

k, the SWAR algorithm is used, while for large k the SSSE 3 implementation is used.
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2.3.2 Distributed k-mer Parsing

Distributed file reading and k-mer parsing benchmarks were performed on the CyEnce

cluster. Three different file access mechanisms were evaluated: MPI-IO, memory mapping

(MMAP), and POSIX file access functions. Copies of the same files were used to isolate

the effects of file system caching. Parallel k-mer parsing of the R1 data set scaled nearly

linearly for up to p = 64, beyond which the network was likely saturated (Figure 2.5).

MPI-IO and MMAP mechanisms performed similarly given CyEnce’s configuration. For

32 and 64 cores, the POSIX mechanism showed an approximately 40% advantage.

0

10

20

16 32 64 128 256 512 1024

cores

tim
e

 (
s)

MMAP MPI_IO POSIX

Figure 2.5: Time in seconds to read and parse the R1 data set from disk into memory via
MPI-IO, POSIX, and memory mapping, using varying number of cores. The x-axis is in
logarithmic scale.

Table 2.5: Time in seconds to read a file from the Lustre file system using 128 cores, with
and without operating system file caching.

I/O Mechanism uncached cached speed up

MMAP 50.87 29.59 1.72
MPI-IO 57.65 13.26 4.35
POSIX 55.41 2.43 22.80

The time to read and parse the M4 data set using 128 cores was dramatically improved

when the file was previously cached (Table 2.5). Different I/O mechanisms benefited from

caching differently, with POSIX receiving a 22.8× speed up. The long uncached file read-

ing time and the short index construction time (Sections 2.3.4 and 2.3.5) suggest that re-

building a k-mer index from cached sequence data is likely preferable to loading a previ-

ously built index.
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In subsequent tests, we used POSIX and pre-populated file cache with a “warm up”

iteration. File reading times were excluded from the index construction and query times

for scalability experiments in Section 2.3.4, and included for comparisons to existing tools

in Section 2.3.5.

2.3.3 Effects of Index Parameters
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Figure 2.6: Parameters affecting the performance of Kmerind’s indices. Experiments were
conducted using 1024 cores on CyEnce and a Kmerind canonical hashing position index,
configured with Google farmhash and DHMM, for DNA 31-mers in the R1 data set.

Kmerind provides significant flexibility for users to configure the data structures and

algorithms through parameters and compositions. In this section, we briefly examine some

of the parameters and their impacts on performance. Figure 2.6 summarizes the index

operation performance for 4 common parameters. Alphabet, k, and strand-mode can be
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considered as application-driven parameters, while the local map choice is performance-

driven.

Among the 3 provided alphabets, DNA provides the best performance as it is compact

and allows simple bitwise operations (Figure 2.6a) where DNA 5 requires a more complex

character shifting algorithm during k-mer parsing from file. The bit length of encoded

character is inversely related to the performance of the index, as is the value k. Each short

read is parsed into L − k + 1 k-mers and large k results in fewer k-mers, thus reducing

running time (Figure 2.6b).
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(a) Upper Hash
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SELF MURMUR FARM

(b) Lower Hash

Figure 2.7: Hash function impact on performance of DNA 31-mer count and position in-
dices. “SELF” indicates that the k-mer is used as hash value directly. “MURMUR” and
“FARM” indicate MurmurHash3 and Google’s farm hash, respectively. Data set M3 was
processed using 1024 cores.

Figure 2.6c shows the overhead for the bimolecule and canonical modes of operation.

Bimolecule mode requires canonicalization for the input k-mers as well as the indexed k-

mers, thus revcomp is applied at least twice for each k-mer during any operation. Canon-

ical mode requires canonicalization once for each input k-mer, while single-stranded mode

does not require any canonicalization, thus both perform better than the bimolecule mode.

For indices that use distributed hash map or multimap, different types of local hash

map can be chosen. As shown in Figure 2.6d, DHMM consistently outperforms STL’s

unordered multimap for all except for the erase operation. This is because unordered

multimap requires the use of linked lists within each bucket.

The choice of hash functions for Kmerind’s two-level distributed hash maps can have
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a strong impact on the performance. We evaluated three hash functions, Google FarmHash

(farmhash), MurmurHash3 (murmur3), and k-mer as hash value (self), on index in-

sertion at the upper and lower hash levels. In each case, the hash function of one level

is varied while the other level is set to use farmhash, The experiments were conducted

using 1024 cores and the M3 data set in single-stranded mode for DNA 31-mers.

Figure 2.7a shows that using self as upper hash function caused significant perfor-

mance degradation when compared to the results from farmhash and murmur3. This

degradation is attributable to severe load imbalance: while the standard deviations of

the number of k-mers assigned to each core were 2, 751 and 2, 806 for murmur3 and

farmhash respectively, for self the standard deviation reached 6, 662, 250. The stan-

dard deviations were 41, 786, 41, 160, and 7, 710, 595 for murmur3, farmhash, and

self based position indices, respectively. As points of reference, the average numbers

of k-mers per core were 7, 678, 665 for counting and 9, 007, 001 for position indexing.

For the lower level hash function, hash collision and computational overhead are the pri-

mary concerns. Figure 2.7b shows that self and murmur3 performed similarly for count

and position indices, while farmhash outperformed both, likely due to more uniform

hash value distribution than self and better computational efficiency than murmur3.

Based on the parameter evaluations, we recommend that, where application allows, a

hash map based Kmerind index be used with canonical DNA k-mers. The hash map should

be configured with farmhash or murmur3 as the upper level hash function, and DHM

or DHMM as appropriate for local storage using farmhash. Subsequent scalability and

comparison experiments were configured as per these recommendations.

2.3.4 Scalability

In this section the scalability of each position and count index operation is examined (Fig-

ures 2.8, 2.9). In strong scaling experiments, the total input data set size |M | is fixed while

p is increased to demonstrate an algorithm or software’s capability of using additional re-
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Figure 2.8: Strong scaling results for the insert, count, and find operations for the
hashing and sorting variants of Kmerind’s count and position indices, using canonical DNA
31-mers from data set M1.

sources to solve a problem faster. In weak scaling experiments, |M |/p is kept constant,

to show the ability of the algorithm and software to solve larger problems by using more

resources. Ideal strong scaling means that parallel execution time is 1/p times that of se-

quential execution, while ideal weak scaling translates to constant execution time regardless

of p. The count, find and erase operations used 1% of the indexed k-mers, sampled

randomly, as input. All experiments were performed using data sets M1–M5 on CyEnce.

Kmerind’s hashed count and position indices ingested the M1 data set in approximately

1 second, and the M5 data set in 12.9 and 16.6 seconds respectively using 1024 cores.

Retrieving the counts in the count index required 0.05 and 0.23 seconds for M1 and M5.

Retrieving the positions took 0.42 and 28.0 seconds for M1 and M5, respectively.

The sorted array version of the count and position indices ingested the M1 data set in

1.66 and 1.5 seconds using 1024 cores, and the M5 data set in 23.8 and 20.57 seconds

respectively. The position index performed better as count index required an extra integer

operation per insertion. Retrieving the counts for the M1 and M5 data sets required 0.15

and 1.43 seconds, while retrieving the positions took 0.89 and 54.61 seconds for M1 and
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M5, respectively.
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Figure 2.9: Weak scaling results for the insert, count, and find operations for the
hashing and sorting variants of Kmerind’s count and position indices, using canonical DNA
31-mers from data sets M1–M5.

Overall, the insert, count, and erase operations for both the hashed count and

position indices showed similar scaling behavior. Similarly, sorted count and position in-

dices exhibited same scaling trends for these 3 operations. The find operations for the

corresponding count and position indices showed significantly different scaling behaviors

as predicted in Sections 2.1.3 and 2.1.4. The erase operation times are not shown in

Figures 2.8 and 2.9 as they closely mirror the scaling behavior of the count operation.

Figures 2.8 and 2.9 further illustrate the performance characteristics of Kmerind’s sorted

and hashed indices. Hashed indices consistently and significantly outperformed the sorted

indices in time for the index operations, over 6× faster for find operations on count in-

dices. At the same time, sorted indices required significantly less memory during execution

by nearly a factor of 4 during count and position indices insert. This is particularly ap-

parent in the weak scaling experiment results (Figure 2.9). The memory advantage of sorted

indices decreased with core count for strong scaling as the overheads of local hash maps

became less evident (Figure 2.8). Note that sorted indices are designed towards a balance
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between lower memory requirement and acceptable performance and scaling, rather than

minimal space requirement.

Analysis of Scaling Behaviors
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Figure 2.10: Strong and weak scaling of internal steps in the find operation for
hashed count and position indices. The “map”, and “query” steps correspond to the
map to processor and distribute functions in Algorithms 2.3 and 2.5, while
“resp” corresponds to all remaining algorithmic steps after the distribute step.

We examine the find operations of the hashed position and count indices in more

detail to better understand the scaling behaviors that reflect the algorithmic and complexity

differences described in Sections 2.1.3 and 2.1.3.

In strong scaling experiments, find for count index reached minima at 512 cores.

Figure 2.10a shows that the presence of the minima is largely due to communication in the

“query” and to a lesser degree to the “resp” steps with complexity τ log(p)+µ(|M |/p) log(p).

For strong scaling, as p increases, the bandwidth term decreases at the rate of log(p)/p,

while the latency term increases at a rate of log(p). For large p > µ|M |/τ , latency domi-

nates.

Scaling of the find operation for k-mer position index is dominated by the “resp” step

with complexity (r|M |/p) + τp+ µ(r|M |/p) (Section 2.1.3). In contrast to a count index,

the “resp” step for the position index has significantly higher latency and computation

complexities. In addition, the average k-mer frequency r can increase the bandwidth term
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contribution for r > log(p), and highly repeated k-mers can introduce load imbalance

amongst cores that further causes the run time to scale sub-optimally.

Weak scaling experiments showed a slight increase of run time as p increased for the

find operation (Figure 2.10b) for the hashed count index. This is due primarily to the

“query” step. As the per-processor data size |M |/p is kept constant in weak scaling exper-

iments, both the latency and bandwidth terms in the communication complexity increase

with log(p).

The find operation in a position index scales linearly with p and r according to τp +

(µ+1)(r|Mi|) (Section 2.1.3). Assuming uniform sampling of a true k-mer distribution, r is

expected to increase with data set size, which scales with p for weak scaling experiments.

For data sets M1–M5, r values are 1.11, 1.17, 1.26, 1.37, and 1.54 respectively. Figure

2.10b illustrates this linear scaling behavior in the “query” and “resp” steps of the position

index find operation.

2.3.5 Comparisons with Existing Tools

We compared the performance of Kmerind hashed and sorted count indices to existing best-

in-class k-mer counting tools on shared- and distributed- memory systems. JellyFish 2 [26]

is the de facto standard k-mer counter. We also compared to several more recent, state-of-

the-art tools including KMC 2 [31], its successor KMC 3 [33], and Gerbil [32]. Kmernator

[34] is chosen as it is the only existing, stand-alone, distributed k-mer counter.

Shared-Memory Environment

The CompBio system was used for single-node, multi-threaded testing. Strong scaling

experiments were conducted with the 6.3 GB R1 data set using 4, 8, 16, 32, and 64 cores

for canonical DNA 15-, 21-, 31-, and 63-mers without filtering low frequency k-mers.

For Kmerind, we treated CompBio as a distributed-memory system. KMC 2, KMC 3,

and Gerbil were allocated 512 GB of main memory and set to memory-only mode where
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15 21 31 63 4 8 16 32 64

JellyFish 2 24.9 44.5 46.2 65.7 201.9 110.2 63.4 31.8 46.2
16.6 16.9 19.9 27.8 122.3 64.3 42.8 21.2 19.9

KMC 2 6.9 7.5 8.3 19.2 39.9 22.2 13.1 9.5 8.3
KMC 3 8.0 9.0 9.6 9.9 32.5 16.8 10.4 8.7 9.6
Gerbil 17.5 15.0 14.5 13.4 39.5 18.0 14.6 13.4 14.5

Kmerind SORT 7.7 10.1 9.4 9.4 79.6 43.8 26.0 14.0 9.4
7.0 8.1 7.2 6.7 77.7 40.1 22.7 12.1 7.2

Kmerind HASH 4.7 7.0 6.9 6.9 55.4 30.4 17.5 9.4 6.9
4.1 5.0 4.9 4.0 51.2 26.0 13.9 7.4 4.9

Figure 2.11: Strong scaling behavior for counting DNA k-mers in data set R1. Each plot
shows the times in seconds to count a fixed size k-mer (15, 21, 31, 63) on increasing
number of cores p (4, 8, 16, 32, 64) in a shared-memory system. The table shows the
total and counting-only (underlined) times for either fixed p or fixed k. For readability,
Kmerind’s sorted count index results are shown only in the table.

possible to minimize disk usage for intermediate results.

As disk subsystem configurations can vary drastically, we minimized the impact of

file I/O by leveraging the operating system cache (Section 2.3.2), and erasing output im-

mediately after each run due to an observed high overhead to overwrite files on ext4

file systems. For all software packages, we report the total running time including file

input and output. For Kmerind and JellyFish 2, we also report the counting-only times

which excluded result writing. We expect Kmerind’s primary application usage pattern

to involve constructing and querying in-memory indices, thus the scalability and absolute

performance of the counting-only times is of practical importance. Figure 2.11 shows the
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scalability of each software for each k value, while the embedded table shows the running

times for fixed p = 64 and varying k, and fixed k = 31 and varying p.
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Figure 2.12: The time in seconds to count Canonical DNA k-mers for increasing k (15, 21,
23, 27, 31, 39, 47, 55, 63, 65, 95, 127, 159, 191, 223, 255). JellyFish 2, KMC 3, Gerbil,
and Kmerind’s hashed count index were evaluated using data set R2 on 64 cores. Gerbil
failed for k > 191. JellyFish 2 times for k larger than 31 exceeded 150 seconds and are
excluded for readability.

Overall, Kmerind’s hashed and sorted count indices outperformed the existing tools at

high core counts, scaled nearly linearly with p, and behaved well with increasing k. Using

64 cores, Kmerind’s hashed count index completed counting 31-mers in R1 in 6.9 seconds

and 15-mers in 4.7 seconds, respectively 1.2× and 1.5× faster than the fastest existing

k-mer counter for these parameters (KMC 2) and 6.7× and 5.3× faster than JellyFish 2.

Kmerind’s sorted count index performed competitively against KMC 3, outperformed Ger-

bil and JellyFish 2, and was bested only by KMC 2. The relative performances at 32 cores

was more variable, with Kmerind outperforming Gerbil and JellyFish 2 by 43% and 238%

respectively, equaling KMC 2, and outperformed by KMC 3 by 8% for 31-mers. Kmerind’s

higher performance at high core count is attributable to our algorithmic design that avoids

fine-grained thread synchronizations. On the other hand, the overhead associated with

Kmerind’s communication and memory operations increases (as |M |/p for strong scaling)

with decreasing p, contributing to its lower performance relative to KMC 2, KMC 3, and
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Gerbil at low core counts.

The counting-only times of Kmerind’s hashed and sorted count indices showed near

linear scalability for up to 32 cores, beyond which the scalability decreased likely due to

MPI communication complexity. The file writing time, as the difference between total and

counting-only times, scaled sublinearly with p and remained approximately constant at 2

seconds for 32 and 64 cores. These observations suggest that Kmerind’s count index can

continue to scale beyond 64 cores, but may be limited by file system performance when

result writing is required. In contrast, Gerbil failed to scale beyond 16 cores for all k, while

KMC 2, and KMC 3 had very limited scalability for k ≥ 31 and p ≥ 16, indicating that

their performance bottlenecks may not be caused by file system limitations. JellyFish 2’s

counting-only times similarly suggest this hypothesis.

The dependence of KMC 2 on k value was particularly pronounced for k = 63, where

the counting time increased dramatically for all core counts tested. Kmerind, on the other

hand, showed relatively constant running time for k values of 21, 31, and 63, and a lower

running time for k = 15. This behavior is attributable to a balance between the widening of

k-mer representation from 32 bit to 128 bit, and the reduction in total k-mers in short-read

data sets (Section 2.3.3) with increasing k. For the R1 data set, the numbers of valid k-mers

were 2052-, 1909-, 1670-, and 906-million for k values of 15, 21, 31, and 63, respectively.

Gerbil’s reduction in running time is likely due to a similar cause, whereas KMC 2 and

JellyFish 2’s performance degradations suggest inefficiencies in k-mer parsing and com-

parison operations. We also note that while KMC 3 demonstrated significant improvement

over KMC 2 for k = 63, for low k KMC 2 actually performed better for most p values.

We further evaluated the effects of varying k up to 255 using the R2 data set on 64

cores, shown in Figure 2.12. The values were chosen with consideration of c++ primitive

type sizes. As KMC 3 was reported to significantly improve upon KMC 2’s performance

for high k values [33], we included KMC 3 only.

Figure 2.12 further illustrates Kmerind’s low sensitivity to increased in k. Kmerind
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counted 255-mers in a total of 94.4 second, 30.0 of which was for the counting-only time,

and was approximately 1.4× faster than KMC 3. At low k, Kmerind’s running times in-

creased in a step-wise manner corresponding to the widening of k-mer data structure. For

large k, the running time remained relatively constant as the data structure size growth was

countered by reductions in k-mer counts. JellyFish 2 was significantly slower than all eval-

uated software, and failed to count 255-mers. Gerbil performed similarly to KMC 3, but

failed for k > 191.

Table 2.6: Time in seconds to count canonical DNA 31-mers using 64 CPU cores. Under-
lined values represent the “counting-only” times.

Metagenomic Eukaryotic Assembled
M1 M2 M3 R2 R3 R4 G1 G2

JellyFish 2 133.4 207.5 321.8 127.8 347.3 1465.9 132.6 329.5
KMC 2 22.8 41.9 82.6 29.2 122.1 432.9 30.0 100.3
KMC 3 24.2 45.2 86.5 31.8 99.4 456.0 31.0 102.2
Gerbil 26.3 50.7 97.1 34.8 184.3 696.6 1235.8 153.1

Kmerind SORT 22.3 44.2 86.7 36.3 130.7 515.6 27.7 99.3
11.0 22.4 45.2 25.6 115.0 477.4 13.9 55.9

Kmerind HASH 16.8 32.4 63.0 24.0 77.9 270.5 21.0 70.6
6.6 13.2 26.0 14.5 63.1 236.1 9.3 31.4

Table 2.6 shows the performance of JellyFish 2, KMC 2, KMC 3, Gerbil, and Kmerind’s

hashed and sorted count indices for data sets of different sizes. All experiments used 64

cores to count canonical DNA 31-mers. The experiments with the metagenomic data sets

demonstrated that all tools except for JellyFish 2 scaled nearly linearly with data size.

KMC 2 was marginally faster than KMC 3 for all data sets except for R3, while Ger-

bil’s performance lagged behind KMC 2 and KMC 3. Gerbil’s performance for data set

G1 was unexpectedly but repeatably poor. Kmerind’s sorted index performed comparably

to KMC 3 for the metagenomic data sets and the assembled genomes, while the hashed

count index outperformed all existing tools for all tested data sets. Kmerind’s hashed index

counted the M3 data set in approximately 63.0 seconds, the R4 data set in 270.5 seconds,

the assembled human genome (G1) in 21.0 seconds, and the pine genome (G2) in 70.6

53



seconds. The hashed count index was therefore between 1.3× and 1.6× faster than KMC 2

and KMC 3.

Of the five existing tools tested, only JellyFish 2 includes a command line interface

to query the index. KMC 2 and KMC 3 provide an option to find intersection between

two indices, but they output the minimum counts for the entries in the intersection. We

queried JellyFish 2 and Kmerind hashed count indices using 1% of indexed k-mers on a

single core, as JellyFish 2 supports single-threaded queries only. JellyFish 2 completed

the query in 0.82 seconds while Kmerind was able to do so in 0.11 seconds. The results

are not directly comparable as JellyFish 2 requires loading the database file from disk, but

they are illustrative of the benefit of Kmerind’s in-memory index for on-line queries. This

point is further illustrated by Table 2.6, where the counting-only times of Kmerind’s hashed

count index is over 3× faster than KMC 2 and KMC 3 for the metagenomic and assembled

genome data sets, and approximately 2× for the read sets R2, R3, and R4.

Distributed-Memory Environment

While Kmerind performs well in shared memory environments with high core counts, its

performance advantages are further extended in a distributed memory environment. We

benchmarked index construction for Kmerind’s hashed and sorted indices and Kmernator

using data sets M1–M5 and 64 to 1024 cores on CyEnce.

Figure 2.13 shows both of Kmerind’s indices were consistently faster than Kmerna-

tor by at least a factor of 6× for strong scaling and 8× for weak scaling. Kmerind’s

hashed count index completed 31-mer counting for the M1 data set in 1.0 seconds us-

ing 1024 cores, and Kmerind’s hashed index showed approximately linear strong scaling

for up to 512 cores, beyond which the parallel efficiency decreased slightly. For weak

scaling, Kmerind’s hashed index showed a gradual increase of running time as core count

increased. In both cases, the behavior is attributable to the log(p) factor in the collective

all-to-all communication complexity. Kmerind’s sorted index was also consistently faster
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Core Count
time (s) 64 128 256 512 1024

Kmernator 76.0 40.0 34.0 30.0 6.0
(a) Kmerind SORT 16.6 8.6 4.6 2.5 1.7

Kmerind HASH 10.4 5.4 2.9 1.5 1.0

Kmernator 76.0 81.0 143.0 254.0 115.0
(b) Kmerind SORT 16.6 17.6 19.2 20.5 23.8

Kmerind HASH 10.4 10.7 11.5 11.8 12.9

Figure 2.13: Running times in seconds of Kmerind’s hashed and sorted indices and Kmer-
nator for counting canonical DNA 31-mer in strong and weak scaling distributed memory
settings. Data set M1 was used for strong scaling while sets M1–M5 were used for weak
scaling.

than Kmernator, but its scaling behavior was slightly worse when compared to the hashed

index, as expected. Kmernator showed a reproducible non-linear scaling behavior for 256

and 512 cores due to unknown cause.

2.4 Summary

In this chapter we introduced Kmerind, the first distributed memory k-mer indexing li-

brary. It is a generic, template based library with sequential semantics and efficient parallel

implementations. We described its API design philosophy and the operations supported.

We presented the bulk synchronous parallel algorithms behind the insert, find,

count and erase operation implementations, including uni-index with hash table and

sorted array back-ends, and algorithmic and implementation adaptation for multi-index.
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We also presented our SIMD vectorization approach for the k-mer reverse complement

operation, and the associated alphabet encoding modification that enabled vectorization for

DNA 5 k-mers.

We characterized the performance of Kmerind while varying parameters including k

and the alphabet. Kmerind’s performance and scaling were then demonstrated in the dis-

tributed memory and shared memory environments. We compared its speed to the current

state-of-the-art k-mer counting tools and showed that it performed equally well or better

at moderate to high core counts in shared memory environments, and it consistently out-

performed these tools for high k values.

In distributed memory, we showed that it out-performed the only existing distributed

memory k-mer counter. It demonstrated good scaling behavior for experiments involving

up to 1024 cores, counting a 120GB metagenomic data set in less than 13 seconds on 1024

Xeon CPU cores, and fully index the k-mer positions in 17 seconds. Querying for 1% of

the k-mers in these indices can be completed in 0.23 seconds and 28 seconds, respectively.
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CHAPTER 3

ARCHITECTURE AWARE OPTIMIZATIONS FOR K-MER COUNTING

The performance of Kmerind depend not only on efficient algorithms, but also on efficient

implementations that leverages the system hardware features as appropriate and commu-

nication patterns. While we have shown that Kmerind performs well compared to other

contemporary state-of-the-art software tools, there existed ample opportunities to improve

its performance.

In this chapter, we explore architecture aware approaches to improve performance of

Kmerind , including the use of SIMD hardware instructions, cache friendly hash table

algorithm, software prefetching, and tighter integration between hash table operations and

MPI communications.

The performance of a distributed hash table depends on the efficiencies of its communi-

cation algorithm and implementation and the operations of the local, sequential hash table.

The performance of the local hash table in turn depends in large part on how fast it can

hash and compare keys, and access the in memory data structure.

We optimized the distributed hash table implementation underlying the Kmerind li-

brary, with k-mer counting as its primary application use case. Distributed memory k-mer

counting has the characteristics that (1) many small k-mers, distributed across many cores

and nodes, are (2) communicated across the network, and stored in or queried against local

data structures that tend to be (3) memory latency- rather than compute-bound.

We address each of the characteristics, and make significant improvements to (1) the

MurmurHash3 hash function performance for batch-hashing small keys, such as k-mers,

through vectorization, (2) distributed hash table scaling behavior and communication over-

heads, and (3) sequential hash table performances through cache-friendly algorithm designs

that reduces memory access latency and bandwidth utilization.
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Applications and libraries that utilizes distributed hash tables such as our de Bruijn

graph library, Bruno, will benefit from the performance improvements presented here, pro-

vided they have similar characteristics as outlined above.

3.1 Preliminaries

We deviate slightly from the notations presented in Chapter 2 as a significant part of the

discussion focuses on sequential hash tables.

A k-mer γ is defined as a length k sequence of characters drawn from the alphabet Σ.

The space of all possible k-mers is then defined as Γ = Σk. Given a biological sequence

S = s[0 . . . (n − 1)] with characters drawn from Σ, the collection of all k-mers in S is

denoted by K = {s[j . . . (j + k − 1)], 0 ≤ j < (n− k)}.

K-mer counting computes the number of occurrences ωl, or frequency, of each k-mer

γl ∈ Γ, 0 ≤ l < |Σ|k, in S. The k-mer frequency spectrum F can then be viewed as a set

of mapping F = {f : γl → ωl}.

K-mer counting then requires first transforming S to K and then reducing K to F in Γ

space. We note that k-mers in K are arranged in the same order as S, while Γ and F typi-

cally follow lexicographic ordering established by the alphabet. The difference in ordering

of K and F necessitate data movement when computing F , and thus communication in

distributed environment.

We further note that the storage representation ofF affects the efficiency of its traversal.

While Γ grows exponentially with k, genome sizes are limited and therefore F is sparse

for typical k values. Associative data structures such as hash tables are well suited, which

typically support the minimal operations of construction (or insert and update) and query

of the k-mer counts.

We focus on efficient parallelization of data movements associated with the K to F

reduction in distributed memory environments, and on the design of efficient hash tables

for constructing and querying F .
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3.2 Sequential Hash Tables

In this section we focus on optimizing in-bucket element access for sequential hash tables.

We use the following notations. A hash table element is defined as a key-value pair w =

〈k, v〉. The table consists of B buckets. The id of a bucket is denoted as b. The hash

function associated with the hash table is H(·). For open addressing hash tables, the ideal

bucket id for an element w is bw = H(w.k)%B, to distinguish from the actual bucket

position where the element is stored. The probe distance r of an element is the number of

hash table elements that must be examined before a match is found or a miss is declared.

For open addressing with linear probing, the probe distance is r = b− bw.

3.2.1 Hash Table Collision Handling Strategies

Three factors affect sequential hash table performance: hash function choice, irregular ac-

cess to a hash table bucket, and element access within a bucket, namely search for matching

key. Hash function performance depends strongly on implementation and hardware capa-

bility, while the common perception is that hash tables are inherently cache inefficient due

to the irregular memory accesses rendering hardware prefetching ineffective.

Intra-bucket data access performance, on the other hand, is an inherent property of the

hash table design, namely the collision handling strategy. Collision occurs when multiple

keys are assigned to the same hash table bucket, necessitating multiple comparisons and

memory accesses. High collision rate therefore causes a deviation from the amortized

constant time complexity.

Hash table design and implementation has been studied extensively. Cormen et. al. [83]

described two basic hash table designs, chaining and open addressing. Briefly, chaining

uses linked list to store collided entries, while open addressing maintains a single array

and employs deterministic probing logic to locate an alternative insertion location when

collision occurs. Identical probing logic is used during query.
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Different probing algorithms exist. Cormen et. al. presented linear probing, where

the hash table is searched linearly for empty bucket for insertion. Linear probing is sen-

sitive to non-uniform distribution of the input, sub-optimal hash functions, high load, and

even insertion order, all of which affect hash table operation times. Strategies such as

quadratic probing and double hashing [83], Cuckoo hashing [84], HopScotch hashing [85],

and Robin Hood hashing [86] aim to address these shortcomings. In all these strategies

save Robin Hood hashing, key-value tuples from different buckets are interleaved. Hash

table operations thus also require comparisons with keys from other buckets, increasing the

average number of probes and running time.

The choice of collision handling strategy can affect memory access patterns for in-

bucket traversal. Double hashing, HopScotch, and quadratic probing introduce irregular

memory accesses, while linear probing and Robin Hood require only sequential memory

access, thus can benefit from hardware prefetching. They also maximize cache line utiliza-

tion and reduce bandwidth requirement.

3.2.2 Robin Hood Hashing

Algorithm 3.1 Robin Hood Hashing: insert
1: H() : hash function; 〈k, v〉 : key-value pair; Prh : array [0..B − 1] of key-value pairs

2: b← H(k) modulo B
3: p← b
4: while (p < B) AND Prh[p] is not empty do
5: b′ ← H(Prh[p].k) modulo B
6: if (p− b) > (p− b′) then
7: swap(〈k, v〉, Prh[p])
8: b← b′

9: else if (p− b) == (p− b′) AND (k == Prh[p].k) then return
10: end if
11: p← p+ 1
12: end while

13: Prh[p]← 〈k, v〉
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Robin Hood Hashing is an open addressing strategy whose objective is to minimize the

expected probe distance, and thus the insertion, and query times. It was first proposed by

Pedro Celis in his doctoral thesis [86]. We briefly describe the basic algorithms here.

During insertion, (Algorithm 3.1), a new element w swaps with element u in position

b if w has a high probe count than u, i.e. (b − bw) > (b − bu). The insertion operation

continues with the swapped element until an empty bucket is found, where the swapped

element is then inserted. This strategy results in the spatial grouping and ordering of table

elements by bucket ids, resembling sorting.

Query, or find operation in a Robin Hood hash table is similar algorithmically. Search

completes when an entry is found, the bucket is empty or when (b−bw) > (b−bu) indicates

that the end of the target bucket has been reached, thus the element is not found.

Deletion in a Robin Hood hash table first performs a search and then removes the found

element. Celis’ original algorithm uses tombstones to mark deleted entries and describes

an optimized algorithm for insertion after deletion. More recent implementations [87] uses

backward shift to maintain spatial coherence of bucket elements. The elements between

the deleted entry and the next empty position are shifted backward to fill the newly emptied

position.

3.2.3 Optimized Robin Hood Hashing

The “classic” Robin Hood hashing strategy spatially groups elements of a bucket together.

This reduces variance of r and eliminates interleaving of buckets, thus reducing the num-

ber of elements that must be compared and minimizing memory bandwidth requirement.

However, classic Robin Hood begins a search from the ideal bucket, bw. The elements in

the range [bw . . . (bw + r)] are expected to belong to buckets with ids b < bw. On average,

classic Robin Hood must access r elements, compute their hash values, and compare probe

distances, before arriving at the elements of the desire bucket. We can avoid the extraneous

work by storing the distances to the first bucket elements.

61



Data Structure

Our extended Robin Hood hash table, Trh, consists of the tuple 〈Prh[], Irh[]〉. Prh[] is the

primary one dimensional array that stores the elements of the hash table. Each element

in Irh[], Irh[b], consists of a tuple 〈 empty, offset 〉 >. The empty field indicates whether

bucket b is empty, while the offset field contains the probe distance from position b to the

first element of bucket b, which is then located at Prh[b+ Irh[b]]. In the case where Irh[b] is

empty and offset is not zero, Irh[b] references the insertion position for the first element

of bucket b.

Storing the probe distances in the Irh[] array avoids r hash function invocations and

Prh[] memory accesses. Consequently computation time and memory bandwidth utilization

are further reduced compared to classic Robin Hood. We assume that insertion occurs less

frequently than queries and therefore optimizations that benefit query operations, such as

the use of Irh[], are preferred over those for insertion. As r is expected to be relatively

small [86], a small data type, e.g. an 8 bit integer, can be chosen to minimize memory

footprint for Irh[] and to increase the cache-resident fraction of Irh[]. The sign bit of Irh[b]

correspond to empty while the remaining bits correspond to offset.

We note that the Irh[] array is essentially the FastForward array in Ankerl’s Robin Hood

Hashing implementation [88]. In that implementation, the FastForward array is coupled

to the “InfoByte” array that stores the reprobe distances. Since both need to be updated

during insertion and deletion for every bucket between between the ideal bucket and the

next empty slot, the benefits of each is nullified while 2× the memory must be used.

Insert Operation

The optimized Robin Hood hash table insertion algorithm is outlined in Algorithm3.2. The

range of the bucket in Prh[] is first computed in constant time in Line 3. Elements in the

bucket are then compared for match in Lines 4–8. If matched then the function terminates.

If a match is not found within the bucket, then the input element is inserted into Prh[] in the
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Algorithm 3.2 Optimized Robin Hood Hashing: insert
1: H() : hash function; 〈k, v〉 : key-value pair to insert; Trh : 〈Prh, Irh〉

2: b← H(k) modulo B
3: p← b+ Irh[b].offset; p1← b+ 1 + Irh[b+ 1].offset
4: while p < p1 do
5: if (Prh[p].k == k) then return
6: end if
7: p← p+ 1
8: end while
9: p← b+ Irh[b].offset

10: while p < B AND NOT (Irh[p] is empty AND Irh[p].offset == 0) do
11: swap(〈k, v〉, Prh[p])
12: p← p+ 1
13: end while
14: Prh[p]← 〈k, v〉; Irh[b].empty← FALSE
15: while b < p do
16: Irh[b+ 1].offset← Irh[b+ 1].offset +1
17: b← b+ 1
18: end while

same manner as in classic Robin Hood Hashing, i.e. via iterative swapping. Since elements

from bucket b+ 1 to p, where p after Line 13 references the last bucket to be modified, are

shifted forward, and their offsets Irh[(b+ 1) . . . p] incremented (Lines 15–18).

The number of Prh[] elements to shift and Irh[] elements to update can be significant,

up to O(log(B)) according to Celis. We limit this shift distance indirectly by using only 7

bits for the offsets in Irh[]. Overflow of any Irh[] element during insertion causes the hash

table to resize automatically.

The small number of bits used for offset values and the contiguous memory access

during the insert means that most of the updates can benefit from hardware prefetching and

few cache lines need to be loaded.

Find Operation

Query operations in the optimized Robin Hood hash table follows closely the first part of

the Insert algorithm (Algorithm 3.2 Lines 1–8).
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Erase Operation

Algorithm 3.3 Optimized Robin Hood Hashing: erase
1: H() : hash function
2: k : key to erase
3: Prh : array [0..B − 1] of key-value pairs
4: Irh : array [0..B − 1] of offsets

5: b← H(k) modulo B
6: p← b+ Irh[b].offset
7: p1← b+ 1 + Irh[b+ 1].offset

8: while p < p1 do
9: if (Prh[p].k == k) then

10: break
11: end if
12: p← p+ 1
13: end while
14: if p == p1 then return
15: end if

16: while p < B AND ( Irh[p].offset > 0) do
17: Prh[p]← Prh[p+ 1]
18: p← p+ 1
19: end while

20: b← b+ 1
21: while b < p do
22: Irh[b].offset← Irh[b].offset− 1
23: end while
24: Irh[p].empty ← TRUE

The erase algorithm in the optimized Robin Hood hash table employs the backward-

shift approach [87], namely that elements following the deleted entry are shifted backward

(Lines 16–19) to remove gaps in a bucket’s element range. We note that the offset array

range Ihr[(b + 1) . . . p] must be updated to reflect the shifted bucket start positions. Algo-

rithm 3.3 illustrates the algorithm for erasing a single element.

We further optimize the erase operation when used in batch mode. Rather than im-

mediately backward shift, we mark the element as deleted in a temporary array. After all
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input keys have been processed, we backward shift the remaining elements to compact the

buckets in Phr[], and recompute the offset array Ihr[].

Resize Operation

Algorithm 3.4 Optimized Robin Hood Hashing: up-size
1: H() : hash function
2: Prh : array [0..B − 1] of key-value pairs
3: Irh : array [0..B − 1] of offsets

. initialize new storage
4: newPrh ← array [0..2B − 1] of key-value pairs
5: newIrh ← array [0..2B − 1] of offsets

. count entries in each new bucket
6: for b← 0 . . . (B − 1) do
7: if NOT Irh[b].empty then
8: b′ ← H(Prh[b].k) modulo 2B
9: newIrh[b

′].offset← newIrh[b
′].offset+1

10: end if
11: end for

. transform counts into position offsets for each bucket
12: count← newIrh[0]
13: offset← 0
14: for b′ ← 1 . . . (2B − 1) do
15: newIrh[b

′ − 1].offset← offset . offset values allow for previous empty buckets
16: offset← max(offset + count - 1, 0)
17: count← newIrh[b

′].offset
18: end for

. copy elements from old storage to new
19: for b← 0 . . . (B − 1) do
20: if NOT Irh[b].empty then
21: b′ ← H(Prh[b].k) modulo 2B
22: newPrh[b

′ + newIrh[b
′].offset]← Prh[b]

23: newIrh[b
′].offset← newIrh[b

′].offset +1
24: newIrh[b

′].empty← FALSE
25: end if
26: end for

. shift offsets back by 1 position to get original offset.
27: offset← 0
28: for b′ ← 0 . . . (2B − 1) do
29: swap (offset,empty) with newIrh[b

′].(offset, empty)
30: end for
31: Prh ← newPrh

32: Irh ← newIrh
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Algorithm 3.5 Optimized Robin Hood Hashing: down-size
1: H() : hash function
2: Prh : array [0..B − 1] of key-value pairs
3: Irh : array [0..B − 1] of offsets

. initialize new storage
4: newPrh ← array [0..(B/2− 1)] of key-value pairs
5: newIrh ← array [0..(B/2− 1)] of offsets

. generate the counts for each new bucket
6: for b′ ← 0 . . . (B/2− 1) do
7: count← 0
8: if NOT Irh[b

′].empty then
9: count← count +Irh[b

′ + 1].offset +1− Irh[b
′].offset

10: end if
11: if NOT Irh[b

′ + (B/2)].empty then
12: count← count +Irh[b

′ + (B/2) + 1].offset +1− Irh[b
′ + (B/2)].offset

13: end ifnewIrh[b′].offset← count
14: end for

. compute offsets from the bucket counts
15: count← newIrh[0]
16: offset← 0
17: for b′ ← 1 . . . (B/2− 1) do
18: newIrh[b

′ − 1].offset← offset . offsets allow previous empty buckets
19: offset← max(offset + count - 1, 0)
20: count← newIrh[b

′].offset
21: end for

. copy the elements to new position
22: for b← 0 . . . (B/2− 1) do
23: if NOT Irh[b].empty then
24: b1← b+ 1
25: newPrh[b+ newIrh[b

′]]← Prh[b]
26: newIrh[b

′].offset← newIrh[b
′].offset +1

27: newIrh[b
′].empty← FALSE

28: end if
29: if NOT Irh[b].empty then
30: b1← b+ 1
31: newPrh[b+ newIrh[b

′]]← Prh[b]
32: newIrh[b

′].offset← newIrh[b
′].offset +1

33: newIrh[b
′].empty← FALSE

34: end if
35: end for

. shift offsets back by 1 position to get original offset.
36: offset← 0
37: for b′ ← 0 . . . (B/2− 1) do
38: swap (offset,empty) with newIrh[b

′].(offset, empty)
39: end for
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Hash table resize is an expensive operation that requires first allocating a new table,

potentially double in size, and then reinserting all existing elements in the table. As resizing

typically occurs when the table is nearly full, the number of elements to resize is also at its

maximum.

We have developed two algorithms for Robin Hood hash table resize, one for increasing

the size of the hash table, and one for decreasing the size. We maintain power-of-2 size

tables and therefore always up-size and down-size by a power-of-2. This design choice

simplifies mapping between old and new buckets, and in the downsizing case, allows us to

avoid hashing completely.

We observe that when the table doubles in size, an element in bucket bi is assigned to

either bucket b′i = bi or b′i+B = bi + B, where the bucket ids differ at the log(B) bit only.

The relative order of the elements are maintained within the first and second B buckets of

the resized hash table. The arrays in the original table, and the first and second B buckets

of the new hash table, can be traversed linearly and concurrently. The insertion order is

then in increasing bucket order thus avoiding the forward shift in the insertion algorithm.

In addition, the linear traversal encourages hardware prefetching.

Similarly, halving the table size merges elements from buckets bi and bi+B/2, i < B/2,

to the new bucket b′i = bi (Algorithm 3.5). In this case, it is not necessary to recompute

the hash values, and the algorithm also avoids forward shifts in the insertion algorithm, and

encourage hardware prefetching by linear traversal. Both algorithms readily generalize to

resizing by higher powers of 2.

3.3 Distributed Hash Tables

We represent F as a distributed memory hash table. This allows us to encapsulate the

parallel algorithm details behind the semantically simple insert and find operation

interfaces following the general approach of Kmerind.
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3.3.1 Kmerind Operations

In Chapter 2 we described Kmerind’s design as utilizing a two-level distributed hash table.

The first level maps k-mers to MPI processes using a hash function, while the second level

exists as local hash tables. Different hash functions are used at the two levels to avoid

correlated hash values which increases collision in the local hash table. The distributed

hash table evenly partitions Γ and therefore F across P processes. We assume that K as

the input is evenly partitioned across P processes.

Algorithm 3.6 Distributed Hash Table insert
1: H() : hash function; P : number of processes
2: T : sequential hash table; I[] : Input key-value array

3: M []← H(I[]) modulo P
4: I ′[]← radixSort I[] by rank M []
5: J []← distribute(I ′[])
6: insert J [] into T

The distributed hash table insertion algorithm proceeds in 3 steps, shown in Algo-

rithm 3.6. Query operation follows the same steps, except an additional communication

returns the query results to the source processes.

1. permute: The k-mers are assigned to processes via the top level hash function, and

then rearranged via radix sort based on the process assignment. The input is traversed

linearly, but the output array is randomly accessed. The first half of this step is

bandwidth and compute bound while the radix sort is latency bound.

2. alltoallv: The rearranged k-mers are communicated to the remote processes via

MPI Alltoallv personalized collective communication.

3. local compute: The received k-mers are inserted into the local hash table.
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Algorithm 3.7 MPI Alltoallv core communication algorithm
1: I[][] : Input key-value array, grouped by process rank
2: O[][] : Output key-value array, grouped by process rank
3: P : number of processes
4: r : rank of this process

5: for i← 0 . . . (P − 1) do
6: non-blocking recv O[(r + i) modulo P ][] from rank (r + i) modulo P
7: non-blocking send I[(r + P − i) modulo P ][] to rank (r + P − i) modulo P
8: end for
9: wait for all communication to complete

3.3.2 Communication Optimization

A typical MPI Alltoallv implementation internally uses point-to-point communications

over P iterations to distribute data from one rank to all others, as shown in Algorithm 3.7.

Its complexity is O(τP + µN/P ) where τ and µ are latency and bandwidth coefficients,

respectively, and N/P is the average message size for a processor. As P increases, the

latency term begins to dominate and scaling efficiency decreases. To manage the growth

of communication latency, we sought to overlap communication and computation, and to

reduce P with a hybrid multi-node and multi-thread distributed hash table.

Overlapped communication and computation

Algorithm 3.8 Alltoallv with overlapping computation
1: I[][] : Input key-value array, grouped by process rank; O[2][] : Output buffer
2: P : number of processes; r : rank of this process; C() : computation to perform
3: for i← 1 . . . (P − 1) do
4: non-blocking send I[(r + P − i) modulo P ][] to rank (r + P − i) modulo P
5: end for
6: for i← 1 . . . (P − 1) do
7: non-blocking recv O[(r + i) modulo 2][] from rank (r + i) modulo P
8: C(O[(r + i− 1) modulo 2][])
9: wait for non-blocking recv from rank (r + i) modulo P to complete

10: end for
11: C(O[(r + i− 1) modulo 2][])
12: wait for all non-blocking sends to complete
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We use overlapped communication and computation to hide some or all of the com-

munication cost. Rather than waiting for all the iterations of point-to-point communication

to complete, we allow computation to begin as soon as a point-to-point communication

completes (Algorithm 3.8). This approach also allows buffers to be reused across commu-

nication iterations, thus reducing memory requirements.

Query operations can similarly leverage overlapped communication and computation.

Once the computation is complete, a non-blocking send is issued, for which the matching

non-blocking receives can be posted in Lines 3–5.

Hybrid multi-node and multi-thread

With large P , the latency term dominates in the communication time complexity. Small

perturbation during execution due to communication overhead, load imbalance, or other

system noise, can potentially propagate and amplify through all ranks in MPI Alltoallv

and our overlapped version (Algorithm 3.8).

To ameliorate this sensitivity, we reduce P by assigning one MPI process per socket,

and for each process spawn as many threads as there are cores per socket. Each thread

instantiates its own local sequential hash table, and we partition Γ across all threads on

all processes. This approach maintains independence between local hash tables, thus inter-

thread synchronization is minimized. We enabled multi-threading for the permute and local

compute steps in the distributed hash table insertion algorithm, and the computation steps

(Lines 8 and 11) in Algorithm 3.8.

3.4 Implementation Level Optimizations

We have implemented the algorithm described in Sections 3.3 and 3.2 using C++ and MPI

primitives. Where appropriate, they are packaged as composable modules for Kmerind,

such that the functionalities can be composed as needed by the application. We leveraged

C++ 11 features as well as external libraries, including Google Dense Hash Map, Google
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Farm Hash, and MurmurHash3 Hash.

The k-mer counting application, and likely other big data analytic problems, are often

amenable to batch mode processing. We leverage this fact to enable vectorized hash value

computation, cardinality estimation, and software prefetching for irregular memory access

in the hash table.

3.4.1 Power of 2 bucket sizes

For Robinhood hash tables, we choose B and qrs as powers of 2. Size and bucket id related

computations can then be computed using single-cycle bitwise shift and and operations

rather than expensive division and modulo operations, which can use up to 95 cycles for

64 bit integers on Haswell, Broadwell, and Skylake CPUs [89]. Since these computations

often occur inside inner loops, the effects can be substantial.

3.4.2 Hash Function Vectorization

The choice of hash functions can have significant impacts for sequential and distributed

memory hash table performances. Uniform distribution of hash values improves load bal-

ance for distribute hash tables and thus the communication and parallel computation time,

and reduces collision rate thus sequential hash table performance. Computational perfor-

mance of the hash function itself is also important.

Cormen et. al. qualified “good” hash functions as those that satisfy the simple uniform

hashing assumption, that a key maps to a hash table bucket with probability 1/B, where B

is the number of hash table buckets. For sequential hash tables, uniform hashing minimizes

the collision rate, thus the time for insertion and query. In distributed hash tables, uniform

hashing minimizes the load imbalance between processors, thus the communication and

computation times. Simultaneously, absolute performance of the hash function impacts the

overall hash table operation performance as they are applied potentially multiple times for

each element.
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For k-mer counting, the keys to be processed are numerous and limited in size, rarely

exceeding 64 bytes in length and often can fit in 8 to 16 bytes. Well known and well

behaving hash functions such as MurmurHash3 and Google Farm Hash are designed for

hashing single long key efficiently, however. Integer hashing, on the other hand, does not

work well for larger k-mers.

We manually vectorized MurmurHash3’s x86 variants of 32- and 128-bit hash functions

using AVX and AVX2 SIMD instruction set. MurmurHash3, and in particular the x86

versions were chosen for their algorithmic simplicity and lower data dependencies. Farm

hash extensively utilizes SIMD instructions and therefore is too complex to re-vectorize for

short keys. Our vectorized MurmurHash3 hash functions computes 8 32- or 128-bit hash

values concurrently. All operations in our sequential and distributed hash tables batch-hash

the k-mers when the vectorized MurmurHash3 hash functions are chosen.

For a local hash table, where B is less likely to exceed 232, we also implemented a

CRC32 based hash function, directly invoking the built-in CRC32C hardware instruction

of the CPU. Transformation of this hash function into a family of hash functions would

require significant algorithm engineering. We note that while CRC32C shows reasonable

performance for our hash tables, its hash value distribution has not been rigorously eval-

uated. Consequently, we limit our use of the CRC32C hash function to only once in the

distributed hash table hierarchy in order to avoid clumping of the elements.

3.4.3 Cardinality Estimation

Hash table resizing can be an expensive operation, as elements are reinserted into the ex-

panded table. It is preferable to size the table as close to the final size as possible. We adopt

cardinality estimation of unique k-mers for resizing the table ahead of batch insertion.

We implemented HyperLogLog++ [90] as its use of 64-bit hash values supports larger

genomes and k values. We use batch mode vectorized MurmurHash3 hash function in

HyperLogLog++ updates, and reuse the hash values during hash table insertion. Further-
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more, since the estimator is invoked on data batch before insertion, any necessary hash

table resizing occurs while the table contains fewer elements, thus resizing becomes faster

as well.

We choose 12 as the default HyperLogLog’s precision value, corresponding to m =

4096 bins, which easily fit within L1 cache while still limit expected standard error to

at most 1/
√
m ≈ 1.56%. The number of bins also correspond to a medium cardinality

threshold of 20480. As a typical genome or read file contains millions of bases and similar

number of k-mers, it is unlikely that the medium and lower range correction is required. At

the upper end, large genomes, high k value, and large sequencer output can easier produce

over 232/30 or≈ 143 million unique k-mers. HyperLogLog++, rather than the original 32-

bit HyperLogLog [91] where the original 32-bit HyperLogLog algorithm requires a large

value correction.

We implemented a modified HyperLogLog++ algorithm [90] that maintains the 64-bit

hash compatibility while foregoing the medium cardinality range correction and the sparse

representation. We use the same hash function for the hash tables and for HyperLogLog++,

which allows us to reuse the computed hash values. The estimator has been integrated into

Robinhood hash tables.

3.4.4 Software Prefetching

While individual hash table insert and find operations incur irregular memory access, with

batch mode processing, future memory accesses can be computed thus software prefetching

can be employed to reduce or hide memory access latencies.

For each operation, we compute the hash values and bin ids bw in batch. The soft-

ware prefetching intrinsics are issued some iterations ahead of a bucket or bin’s actual use.

The number of iteration is referred to as the prefetch distance. In the Robinhood hashing

scheme, the arrays Prh[] and Irh[] are prefetched via this approach. The permute step of

distributed hash table operations likewise benefits from software prefetching.
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Thus we began with a problem that suffers from poor data locality requiring large

amounts of data to be read from memory, and formulated a new algorithm that improves

the data locality and reduces the memory IO requirement and used software prefetching

to convert the latency bound problem to bandwidth bound. We also vectorized hash table

computation and picked parameter values to prevent any expensive arithmetic operations.

3.5 Performance Evaluations

Table 3.1 details the data sets used in our studies. We compare our optimized implemen-

tation to the Kmerind that uses Google Dense Hash Map, Farm Hash, and MurmurHash3

hash, and other existing tools for k-mer counting.

The shared-memory experiments, including comparison to existing tools, were con-

ducted on CompBio, a single-node quad-socket Intel R© Xeon R© CPU E7-8870 v3 (Haswell)

system with 18 cores per socket running at 2.1 GHz and with 1TB of DDR4 memory. All

binaries were compiled using GCC 5.3.0 and OpenMPI 1.10.2. We conducted our multi-

node experiments on the Cori supercomputer (Phase I partition). Each Phase I node has

128 GB of host memory and a dual-socket Intel R© Xeon R© CPU E5-2698 v3 (Haswell) with

16 cores per socket running at 2.3 GHz. The nodes are connected with Cray Aries inter-

connect with Dragonfly topology with 5.625 TB/s global bandwidth. We use cray-MPICH

7.6.0 and ICC 18.0.0.

3.5.1 Hash Function Comparisons

We compare the performance of our vectorized implementations of MurmurHash3 32- and

128-bit hash functions with the corresponding scalar implementations for different key

sizes in Figure 3.1 using a sequential benchmark code. The keys were randomly generated

to simulate encoded DNA strings. As typical k values for k-mers are less than 100, our hash

function performance test used keys with power-of-2 lengths up to 64 bytes covering a k

value of up to 128 for DNA-IUPAC that requires encoding with 4 bits per base. Our vector-
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Table 3.1: Experimental data sets used for all evaluations. Where applicable, accession
numbers for NCBI are provided.

File File Size Accession/
Id Organism Count (GB) Source Notes

R1 H. sapiens 1 6.3 NCBI SRR077487
1000 Genome HG00096 forward reads only

R2 F. vesca [81] 11 14.1 NCBI SRA020125
R3 G. gallus 12 115.9 NCBI SRA030220
R4 H. sapiens 48 424.5 NCBI ERA015743
R5 H. sapiens 6 18 GAGE Human Chr14
R6 B. impatiens 8 151 GAGE Bumble Bee
R7 H. sapiens 1 (of 6) 324 NCBI SRP003680

G1 H. sapiens 1 2.9 1000 Genome GRCh37 assembled
reference assembly

G2 P. abies [82] 1 12.4 Congenie.org assembled

M1 1 7.6 IOWA Continuous
M2 metagenome 1 15.2 Corn Soil ( Project 402461 ),
M3 1 30.4 Joint Genome Institute

(a) Hash to 128 bits (b) Hash to 32 bits

Figure 3.1: Performance of SIMD vectorized MurmurHash3 hash functions, 3.1a for the
128 bit hash function, and 3.1b for the 32 bit hash function. The bars show time consumed
by AVX vectorized hash functions and hardware assisted CRC32-based hashing. The lines
show speedup of the AVX implementation over the scalar counterpart.
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ized implementations show up to 6.5x speedup over the respective scalar implementations.

As key size increases towards cache line size and beyond, the overhead of reorganizing

data across multiple cache lines for vectorization offsets any performance gains.

3.5.2 Hashing Schemes

Hash table parameters

The primary parameters for the hash table are the prefetch distance for memory access,

and the table load factor. In our Robinhood schemes (referred to as RH henceforth), all

hash table operations begin with accessing Irh[b] for bucket b, followed conditionally by

comparing Prh[b + Irh[b]] if the bucket is occupied. We chose the prefetch distances of

Prh[] as 8 empirically, and consequently set the prefetch distance for Irh[] at twice that.

The load factor is inversely proportional to memory requirement and throughput. We

experimented with multiple values of the load factor between 0.5 and 0.9 and found that the

throughput is nearly the same between values of 0.5 and 0.8 and reduces after that. Hence,

we picked the value of 0.8 to get nearly the best performance with minimum memory

requirement.

Sequential Comparison of various hashing schemes

Figure 3.3 compares the sequential performance of our hashing schemes with the other

prominent ones as table size grows. In order to isolate the comparison of only the hashing

scheme and not the hash function performance, we fixed the hash function across all the

hashing schemes. We picked MurmurHash3 128-bit as the hash function as source codes

of some of the hashing schemes are not designed to use a vectorized hash function.

In the insert plot, the sudden jumps in time consumed are due to hash table being

resized and correspond to the jumps in Figure 3.3c. For insert, RH bested RH Classic and

Densehash for all iterations, with speedups of up to 3× and 2.7×, respectively. For find,

RH achieve speedups of up to nearly 4× and 4.4× over RH Classic and Densehash, and
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Figure 3.2: Comparison of sequential performance of different hashing schemes. Dense-
hash refers to Google Dense Hash Map. RH Classic refers to the original Robin Hood
hashing scheme, and the implementation is courtesy of Martin Ankerl [88]. Speed up vs
Google Dense Hash Map for each hash table operation is shown as green bars with increas-
ing value downwards.

the times consumed showed only small dependence on hash table size and load compared

to RH Classic and Densehash. The memory consumption of RH, Google Dense Hash Map

and RH classic are relatively closer to each other with RH classic needing the least amount

in most cases.

3.5.3 Speedup with respect to optimizations on a single node

Figure 3.4 compares the performance of Kmerind (KI) with RH based hash tables as

various optimizations are enabled from left to right. For RH hashing scheme, each bar

shows the cumulative effect of all the optimizations up to that data point. The left-most

bar represents the performance using scalar MurmurHash3 128-bit hash function for both

Permute and Local compute stages and with software prefetching OFF. The next bar has

software prefetching turned ON. The subsequent bar additionally uses vectorized version

of MurmurHash3 128-bit hash function. The last bar additionally replaces vectorized Mur-

murHash3 128-bit hash function with CRC32C hash function for the Local compute stage.
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(a) Insert 4 M keys (b) Find 4 M existing keys (c) Memory Usage

Figure 3.3: Comparison of sequential performance of different hashing schemes as the table
size is increased incrementally by inserting randomly generated integer tuples 〈64-bit key,
32-bit value〉. Densehash refers to Google Dense Hash map and uses quadratic probing.
RH Classic refers to the original Robinhood hashing scheme [86], and the implementa-
tion is from https://github.com/martinus/robin-hood-hashing. In each
iteration, 4 Million keys are inserted and queried without clearing the hash tables.

The performance of Permute and Local compute stages improve with the use of software

prefetching and vectorization. Moreover, Local compute stage gets further accelerated with

the use of CRC32C hash function. Our best implementations for each operation achieve

a speedup of 2.4-2.6x over the previous Kmerind implementation that uses Google Dense

Hash Map.

3.5.4 Comparison to existing k-mer counters on a single node

Since majority of the existing k-mer counters are only built for shared memory systems,

here we compare our performance with existing k-mer counters on a single node, mapping

one MPI rank per core.

First, we compare the performance of these tools over a wide range of values of k

(Figure 3.5). Since file IO is an integral part of the k-mer counting algorithm of KMC3

78

https://github.com/martinus/robin-hood-hashing


(a) Insert (b) Find (c) Erase

Figure 3.4: Effects of optimizations on hash table operation performance on a single node.
M3 refers to MurmurHash3. The line plot shows speedup relative to the corresponding
operations in Kmerind with M3 128. # MPI ranks: 64, data set: R5.

Figure 3.5: Effect of varying k on total time to count k-mers in the F. vesca data set (R2).
The line plots with markers represent the total time spent by KMC 3, Gerbil (GB), and
Kmerind (KI). The bars indicate the total time used by RH The lines plots without markers
represent the time spent during counting by KI and RH exclusive of file I/O times. KMC3
and GB were run on CompBio with 64 threads, while RH and KI were run using 64 MPI
ranks.
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and Gerbil, we compare all the tools on total time. We also compare RH and KI on time

spent in just k-mer counting as these tools use file IO only to read input and write output.

For all values of k, our implementations are faster than the other tools. On total time, we

achieve up to 2x and 3.5x speedup over KMC3 and GB respectively. For the counting step

only, our implementations achieve up to 1.6x speedup over KI.

(a) Scaling (b) Efficiency

Figure 3.6: Comparison of strong scaling performance of KMC 3, GB, KI, and RH on a
single node. k is varied to show effects of changing key size. Parallel efficiencies are shown
for k = 31 only as the efficiency behaviors for the k-mer counters are similar for different
k values. data set: R1

Figure 3.6 compares the strong scaling performance of various tools on total time

inclusive of file IO. Since k-mer counting operation is throttled by file IO and memory,

these two factors play a key role in scaling within a node. KMC3 and GB show poor

scaling beyond 8 threads for GB and 16 threads for KMC3, achieving scaling efficiencies

of 0.21 and 0.17 at 64 cores respectively. This is attributable to heavy use of file IO by

these tools and synchronization costs. KI and RH scale significantly better. The scaling

of KI and RH appears low due to poor scaling efficiency of file IO (0.22-0.4 at 64 cores).

Note that optimizing file IO is beyond the scope of this paper.

Excluding file IO, RH and KI achieve scaling efficiencies of 0.56 and 0.68, respectively.
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While KI is significantly slower than RH at 64 cores, it achieves better scaling due to

significantly worse single core performance from a memory latency bound implementation.

Table 3.2: Comparison of time consumed (in seconds) by various k-mer counters on real
data sets. JF, KMC2, KMC3, and GB were run with 64 threads, while KI and RH were run
using 64 MPI ranks. The “Counting Only” rows exclude file IO time.

K M1 M2 M3 R2 R3 R4 G1 G2

JF 133.36 207.47 321.78 127.84 347.28 1465.86 132.65 329.45
KMC2 22.84 41.89 82.59 29.24 122.11 432.92 30.03 100.35
KMC3 24.20 45.16 86.47 31.80 99.41 455.96 31.03 102.15
GB 26.30 50.68 97.15 34.83 184.31 696.62 1235.82 153.09
KI 16.78 32.35 62.99 23.97 77.90 269.96 21.01 70.59
RH 15.74 30.59 57.55 21.13 66.34 239.59 18.17 61.68
JF Count 22.11 38.06 77.54 27.95 215.21 1201.46 14.74 63.93
KI Count 5.58 11.08 22.10 12.53 52.06 190.29 8.42 27.84
RH Count 4.67 9.21 18.24 9.67 40.58 160.69 5.73 22.12

Next, we compare the performance of these tools on a set of large scale data sets (Table

3.2). The results show that we obtained significantly better performance, achieving higher

speedups over existing tools for data sets with higher repeat factors. Since we set B to

the expected number of unique k-mers, higher repeat factor ensures smaller values of B.

This in turn means smaller hash tables and better data locality. For RH, since updating

an existing entry is a lot faster than creating a new one, higher repeat factors imply better

performance.

3.5.5 Multinode Scaling

We compare the strong scaling performance of KI with various RH in Figure 3.7. At lower

core counts, the notable benefit of overlapping Local compute and communication is evi-

dent. While hybrid MPI-OpenMP version does not perform as well due to a significantly

higher Wait time from large message size. At this stage, communication is network band-

width bound and a single communicating thread per socket is not sufficient to saturate the

network bandwidth and execution of non-communication part of MPI operations within a

socket is done serially. On the other hand, the hybrid version performs well at higher core
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Figure 3.7: Performance improvements of optimized Kmerind in distributed memory en-
vironment. Strong scaling using 16 to 128 nodes of Cori with R6 data set. NO and Ov
stand for non-overlapped and overlapped communication, respectively. For RH, the left-
most bar uses the best configuration from Figure 3 (with software prefetching, vectorized
MurmurHash3 128-bit for Permute and CRC32C for Local compute). The next 2 bars
additionally use overlapped compute and communication. The last bar additionally uses
multi-threading. The markers show the scaling efficiency of each configuration compared
to the run of the same configuration at 512 cores. For the +MT case, we use one MPI rank
per socket and # cores/socket as # OpenMP threads/rank. For all other cases, # MPI ranks
= # cores.

counts as the communication becomes network latency bound. In addition, in strong scal-

ing setting, the data size N/p decreases with increasing p, thus reducing the hash table size
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and improving cache hit rate. As a result, the hybrid version achieves super-linear scaling

in almost all cases. For the MPI-only version, Wait time is significantly higher at large

core-counts due to reasons discussed in Section 3.3.

Overall, we achieve significantly higher performance compared to KI, up to 2.6x and

4.4x for insert and find, respectively.

We performed similar scaling experiments with the 324 GB R7 human genome data set.

We achieve speedup over KI of up to 2.44x and 6.4x for insert and find, respectively. Insert

and find on 4096 cores completed in just 4.1 and 6.7 seconds respectively.

3.6 Summary

In this chapter we described some optimizations for the Kmerind library, targeting dis-

tributed k-mer counting.

We discussed our cache friendly batch-mode hash table that reduces memory access

latency and bandwidth usage through an improved Robin Hood hashing scheme. We lever-

aged the batch-mode characteristics to enable software prefetching to further reduce mem-

ory access latency.

We then described our strategy to reduce communication overheads through overlapped

communication and computation, and to reduce communication latency by decreasing the

MPI process count through intra-socket multi-threading.

We described our general approach for SIMD vectorization of MurmurHash3 hash

functions specifically for batch processing k-mers and other data types with short, fixed

sized byte arrays.

Effects of such optimizations are significant. Our AVX2 vectorized MurmurHash3

hash functions achieved up to 6.5× speedup for hashing small k-mers compared to the

scalar MurmurHash3 implementation. Our batch-mode optimized Robin Hood hashing

scheme out-performs Google Dense Hash Map by 2× for the insert operations and 4.8×

for the find operation. The communication and computation overlap, coupled with hybrid
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MPI-OpenMP implementation allowed effective scaling to 4096 cores and completing the

counting task for a 350 GB data set in 4.1 seconds.
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CHAPTER 4

DE BRUIJN GRAPH

De Bruijn graphs based assembly is currently the de facto approach for de novo assembly

of high throughput short sequencing reads. A high performance parallel de Bruijn graph

data structure and the associated graph operations can significantly improve the speed of

assembly and provide a common platform on which to compare diverse assembly algo-

rithms.

Although existing de Brujin graph based assemblers differ in terms of graph representa-

tion and specific assembly approaches, conceptually they share the same assembly pipeline.

Typically, the pipeline works in five major steps: (i) k-mer generation and de Bruijn graph

construction, (ii) graph simplification (e.g. tip removal), (iii) graph compacting by com-

pressing linear chains of unambiguously connected vertices, and (iv) contiguous sequences

(unitigs) generation via path traversal, and (v) gap closing and scaffolding unitigs relying

on the orientation and distance information from paired-end/mate-paired reads.

We present our work on a parallel de Bruijn graph library, Bruno, designed for dis-

tributed memory environments. The Bruno library is built on top of the distributed hash

tables and indices from the Kmerind library as defined in Chapter 2, and inherits the

Kmerind APIs, algorithm implementations, and bulk-synchronous model of computation

and communication to minimize communication latency, while allowing MPI to optimize

data movement. The following high level parallel operations are defined for the de Bruijn

graph: (1) construction; (2) linear chain compaction; (3) pure cycle detection; (4) error

detection and removal based on frequency and graph structures; and (5) foundational graph

operations to support queries, filtering, and traversal.

In this chapter, we describe Bruno’s support for the first three operations as well as

describing the API design as related to (5). In Chapter 5, error detection and removal is
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discussed.

We present an algorithm for constructing a de Bruijn graph from k-mers and their

flanking characters, representing edges. A fast parallel algorithm for bi-directed de Bruijn

graph chain compaction is then presented. Our algorithm compacts multiple chains in a

de Bruijn graph concurrently and independently using provably logarithmic rounds of bulk

synchronous communication. Our algorithm embodies the following contributions:

• The algorithm uses single-stranded paths and path canonicalization to account for

and directly operate on a bi-directed de Bruijn graph without graph transformations,

thus ensuring correctness and simplifying traversal logic.

• The algorithm compacts chains via bi-directional traversal, and uses a symmetric

path representation to allow local pointer doubling during each iteration and reduce

communication rounds.

• The algorithm simultaneously identifies cycle vertices during chain compaction with-

out incurring additional space, time, and communication complexity costs. With a

small constant overhead it can be extended to label cycle vertices.

4.1 Preliminaries

We explicitly model DNA molecules as double stranded. The sequence of nucleotides

on a single strand of a DNA sequence of length n is represented by a character sequence

s = s[0] . . . s[n− 1], drawn from the alphabet Σ = {A,C,G, T} and ordered along the

5′ to 3′ orientation of the strand. The complementary strand is represented by the reverse

complement sequence s = c(s[n− 1]) . . . c(s[0]) where c(•) represents the character com-

plement based on the mapping A ↔ T and C ↔ G. A DNA molecule can be represented

by the unordered tuple 〈s, s〉, or succinctly by the canonical sequence ŝ, defined as the

lexicographically smaller of s and s, ŝ = min(s, s). The lexicographically larger sequence

is denoted as š for convenience.
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Table 4.1: Table of notations
meaning example

s character sequence s = ATCGC
s reverse complement of s s = GCGAT

〈s, s〉 a DNA molecule 〈ATCGC, GCGAT 〉
m a k-mer in s m = ATC
m̂ canonical k-mer of m, m̂ = min(m,m) m̂ = ATC
m̌ non-canonical k-mer of m, m̂ = max(m,m) m̌ = GAT

〈m̂, m̌〉 a k-molecule 〈ATC, GAT 〉
m̈i j denotes the k-mer mj with the additional constraint mi = ATC ,

that it is on the same DNA strand as k-mer mi m̈i j = CGC
vi a vertex in a de Bruijn graph, vi ≡ 〈m̂i, m̌i〉 ≡ m̂i vi = ATC

(vi, vj) an edge (with k-1 overlap) in a de Bruijn graph between
vertices vi, vj in 5′-to-3′ order, (vi, vj) = (mi, m̈i j) (ATC, TCG)

Let a k-mer m be a length k substring of s. The definitions and properties for s and its

derivatives apply directly to a k-mer and its derivatives: reverse complement m, canonical

k-mer m̂, and k-molecule 〈m,m〉 ≡ 〈m̂, m̌〉. We define the set of distinct k-mers in a

sequencing read set R = {s} as Mk, and the set of distinct canonical k-mers as M̂k. We

similarly define (k+1)-mer, its derivatives, and the sets Mk+1 and M̂k+1. A (k+1)-mer can

be considered as the result of merging its k-mer prefix mp = m[0 . . . (k − 2)] and suffix

ms = m[1 . . . (k − 1)], both in Mk, on the same DNA strand, and by definition have a

length k-1 suffix-prefix overlap. Table 4.1 summarizes our notations.

4.1.1 Bi-directed de Bruijn Graph

A de Bruijn graph is a directed graph whose vertices are k-mers and edges correspond

to length k-1 suffix-prefix overlaps between k-mers such that the corresponding merged

(k+1)-mers exist in Mk+1. The later requirement is needed to ensure that both the overlap-

ping k-mers are from the same DNA read. The “directed” nature of the graph mirrors the

5′-to-3′ orientation of DNA, thus graph traversal also follows the 5′-to-3′ orientation. An

example is shown in Figure 4.1.

Similarly, a bi-directed de Bruijn graph G = (V,E) (Figure 4.2), first proposed by

Medvedev et. al. [92], is a directed graph with k-molecules as vertices, each vertex rep-
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Figure 4.1: An example simple de Bruijn graph. The direction of the arrows indicate the
direction of traversal.

Figure 4.2: An example bi-directed de Bruijn graph for the same sequence as in Figure
4.1. The top k-mer in each vertex is canonical, while red denotes the original k-mer from
the input sequence. Non-canonical k-mers are written in reverse lexicographical order
following the 5′ to 3′ nature of the strand. The direction of the arrows indicate the direction
of traversal.

Figure 4.3: The same de bruijn graph represented using the bi-directed edge notation. Each
edge is annotated with two triangles, indicating the strand used during traversal. The left
side of the box represents 5′ end of the canonical k-mer while the right side represents the
3′ end, and vice versa for non-canonical k-mers. The edges connect the 3′ end of the source
k-mer to the 5′ end of the target k-mer.
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resented by its canonical k-mer, thus V = M̂k. As each vertex contains two strands,

vx = 〈m̂x, m̌x〉, an edge between vertices vx and vy, denoted by (vx, vy) = exy ∈ E, cor-

responds to the (k-1) suffix-prefix overlap between a strand of vx and a strand of vy in the

5′-to-3′ orientation. Bi-directed de Bruijn graphs more closely model real DNA molecules

and more accurately account for k-molecule frequencies.

In the k-mer notation, the strand-specific length (k-1) suffix-prefix overlap between vx

and vy can occur in one of 4 ways: (m̂x, m̂y), (m̂x, m̌y), (m̌x, m̂y), or (m̌x, m̌y). These

corresponding commonly used bi-directed de Bruijn graph edge notation [66, 61, 62] and

is illustrated in Figure 4.3.

We note that (m̌x, m̂y) and (m̌x, m̌y) are equivalent to (m̌y, m̂x) and (m̂y, m̂x), respec-

tively, via reverse complement of the merged (k+1)-mers. We further note that an edge can

equally be represented by a (k+1)-molecule, and that edges continue to embody the 5′-to-3′

traversal orientation.

Bi-directed edges and the additional and necessary condition that a traversal enters and

exits a vertex via the same strand together ensure that overall traversal of successive ver-

tices and edges is via (k-1) suffix-prefix overlaps between k-mer strands in 5′-to-3′ order.

The graph formulation and traversal based on these conditions prevent inadvertent back-

tracking and circular traversals due inconsistent use of strands [66]. The resulting assembly

represents the nucleotide sequence on a single DNA strand.

Previous works that compact chains in bi-directed de Bruijn graphs employ variants

of the list ranking algorithm, and adopt different strategies to ensure strand consistency.

Sparse ruling set based assemblers extend seed k-mers or k-molecules into chains (e.g.

[65, 43]). They often incur irregular memory access and require fine grained conditional

evaluation as they must track the current and matching strands during traversal. Pointer

jumping based algorithms either treat the graph as directed [61] or transform the graph, for

example by splitting vertices and edges by strand [66]. In these cases the advantages of

bi-directed de Bruijn graphs are not realized, while the graph transformation can increase

89



space and computation requirements. SWAP assembler [62] employs pointer jumping us-

ing bi-directed edges and explicitly tracks the involved strands, and therefore suffers from

the same fine-grained conditional evaluation overhead. In Section 4.2 we present our graph

data structures and algorithm for direct compaction of bi-directed graph chains without

these shortcomings.

4.2 Parallel Algorithm

Our parallel chain compaction algorithm supports compacting multiple bi-directed chains

concurrently in the presence of cycles in distributed memory environments. Chain com-

paction assumes that the graph has been constructed, and proceeds in three phases: chain

vertex identification, vertex ordering, and unitig generation. The first two phases are de-

scribed in this section while the last phase is described in Section 4.3.7.

4.2.1 Chain Vertex Identification

The in- and out-edges of a vertex v ∈ V are defined relative to its canonical k-mer repre-

sentation m̂ ∈ M̂k. Edge (vx, vy) is an in-edge for vy if m̂y is in the second position of the

corresponding k-mer pair, i.e., it is either (m̂x, m̂y) or (m̌x, m̂y). We denote the in-edge of

vy as ( m̈y x, m̂y), where m̈y x references the k-mer in vx that resides on the same strand as

the chosen k-mer in vy, m̂y. The out-edge of vy is similarly defined but with m̂y in the first

position of the pair. The in- and out-edges of vx are similarly defined.

For chain compaction, we define a chain vertex to have exactly one in-edge and one

out-edge, and a branch vertex to have multiple in-edges or out-edges. A terminal vertex is

then defined as either (type I) a vertex with exactly one in- or out-edge, or (type II) a chain

vertex with at least one edge to a branch vertex.

A chain C in G is defined as a sequence of vertices cj ∈ V , 0 ≤ j ≤ |C|, where |C| is

the length of the chain. We define c0 and c|C| to be terminal, the rest as chain vertices, and

(cj−1, cj) ∈ E for 0 < j ≤ |C|. The set of vertices from all chains is denoted by Vc, and
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the set of pairs (cj−1, cj) for all chains is denoted by Ec. Vc can be found as the union of

chain and terminal vertices in V , and Ec consists of their in- and out-edges. The set of all

chains is denoted by C. The goal of vertex ordering is to partition Vc by chain membership

and to compute each vertex’s position j in C for all C ∈ C.

4.2.2 Concurrent Compaction

We show that all chain vertices can be processed simultaneously to compact chains inde-

pendently of each other. A necessary and sufficient condition is that chains have disjoint

vertex and edge sets.

Lemma 1. Chains in G are disjoint.

Proof. We prove by contradiction. We first show that two chains C and C ′ have disjoint

vertex sets. Suppose vertex v is in both C and C ′ as ci and c′j respectively. This implies

one of three possibilities. Case 1: ci and c′j have distinct in-edges (or out-edges) in C and

C ′, then v is a branch vertex and cannot be in C or C ′. Case 2: Either or both ci and c′j are

terminal vertices. Without loss of generality, let ci be terminal. Then c′j has an edge not in

C that can extend C, therefore ci cannot be terminal. Case 3: ci and c′j have identical in-

and out-edges. In this case either there exists a different vertex in C and C ′ that satisfies

Case 1 or 2, or all vertices in C and C ′ satisfy Case 3 and therefore C and C ′ are identical.

Two chains therefore cannot share a vertex.

We next show that C and C ′ have disjoint edge sets. Since C and C ′ have disjoint

vertex sets, edges between vertices in C cannot also be in C ′, and vice versa. We now

show that no edge exists between vertices from the vertex sets of C and C ′. Without loss

of generality, let v be in C and v′ be in C ′ and (v, v′) be an out-edge of v. If v has an

out-edge in C, then (v, v′) is a second out-edge, thus v is a branch vertex and cannot be in

C. If v is a type I terminal vertex without an out-edge in C, then the existence of (v, v′)

contradicts v as a terminal vertex. If v is a type II terminal vertex without an out-edge in

C, then (v, v′) implies that v′ is a branch vertex, thus cannot be in C ′. Identical argument
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applies for in-edge of v. Therefore no edge in E connects C and C ′, and their edge sets are

disjoint. Consequently, chains in G are disjoint.

4.2.3 Path Modeling

The challenges faced by previous works when compacting chains in bi-directed de Bruijn

graphs stem fundamentally from the use of canonical k-mers to represent both vertices in an

edge, which ultimately translate to significant heuristics [66, 62] or potentially inaccurate

traversal [61].

We address the objective of maintaining strand consistency directly by using same-

strand k-mer as defined in Section 4.2.1. For subsequent discussions we focus on a single

chain, and refer to vertex positions in a chain by i, j, and l.

We define a canonical s-path (for singly linked path) using m̂j to denote a path from cj

to cl as:

p̂
+/−
jl = 〈m̂j, djl, m̈j l,+/−〉 (4.1)

where m̈j l is on the same strand as m̂j , djl is the distance between cj and cl, and the last

field is (+) if m̈j l is 3′ of m̂j and (−) otherwise. It follows that the out-edge of cj is part of

the path p̂+jl, and the in-edge is part of p̂−jl.

We define a canonical d-path (for doubly linked path) to denote a path from ci to cl

passing through cj in its canonical form m̂j:

p̂ijl = 〈 m̈j i, dij, m̂j, djl, m̈j l〉 (4.2)

where dij and djl are distances from cj to vertices ci and cl. The first k-mer in p̂+/−
jl and

the second k-mer in p̂ijl, and the vertices they represent, are referred to as central while the

remaining k-mers (or vertices) are considered distal. We emphasize that the distal k-mers

are on the same strand as a central k-mer. The d-path p̂ijl can be viewed as the composition

of p̂−ji and p̂+jl using complementary edge types (in/out) from cj . Non-canonical s-path p̌jl
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and d-path p̌ijl which arise during our algorithm execution are defined similarly using the

non-canonical k-mer m̌j of cj .

By indexing s- and d-paths via their canonical central k-mers, the distal same-strand

k-mers encode the relative orientations between d-paths and s-paths. A path containing a

distal k-mer m̌j is on the opposite DNA strand as an s- or d-path with canonical central

k-mer m̂j . To simplify strand switching during vertex ordering, we define the reverse

complement operations for s- and d-paths.

For a d-path, the reverse complement operation reverses of the order of the k-mers and

the distance fields, and then reverse complements each k-mer, i.e. pijl = 〈 m̈j l, djl,mj, dij, m̈j i〉.

For an s-path, the central and distal k-mer remain in their positions. The reverse comple-

ment operation inverts the binary flag and reverse complements the component k-mers, e.g.

p+jl = 〈mj, djl, m̈j l,−〉.

4.2.4 Vertex Ordering

During vertex ordering, each chain vertex is labeled with chain terminal identifiers and the

distances to the terminals. Our algorithm targets distributed memory environment that con-

sists of P processors, each with private memory. The total number of vertices is denoted by

N ,N � P , and the input data is initially distributed to the processors evenly,N/P . We use

collective communication as coarse grain synchronization between processors, and adopt

the pointer doubling approach to compact chains in logarithmic number of communication

rounds.

We define canonicalize(), which conditionally applies the reverse complement

operation to s- and d-paths based on whether their central k-mers are canonical. We also

define map() that assigns an s- or a d-path to a processor by the canonicalized central

k-mer, and send() that moves the path tuple to the assigned processor.

Algorithm 4.1 outlines the overall algorithm, while Algorithms 4.2, 4.3, and 4.4 detail

the steps involved. We refer to vertices by k-mers for specificity and consistency. A d-path
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Algorithm 4.1 Parallel Vertex Ordering
1: d-paths← make paths() ∀v ∈ Vc, e ∈ Ec

2: map(d-paths)
3: send(d-paths)
4: t← 0
5: while has active d-paths do
6: s-paths← make updates() ∀ local d-paths
7: canonicalize(s-paths)
8: map(s-paths)
9: send(s-paths)

10: update() local d-paths ∀ received s-paths
11: remove finished local d-paths
12: t← t+ 1
13: end while

referencing one terminal vertex has the corresponding distance field annotated with ∗, and

is referred to as semi-finished. A d-path that references two terminal vertices is considered

finished, and one that does not reference any terminal vertices is considered unfinished. A

d-path is active if it is either semi-finished or unfinished.

We begin by generating d-paths from the chain vertices and their associated edges (Al-

gorithm 4.1 line 1). The in- and out-edges (ci, cj) and (cj, cl) of vertex cj are combined to

form a d-path in the form of Expression 4.2. Wherever an in- or out-edge is missing, the

corresponding distal k-mer is set to be the same as the central k-mer and distance is set to

0 and marked as finished (Algorithm 4.2). The d-paths are distributed to processors based

on their canonical central k-mers via map() and send() collectively and synchronously.

Algorithm 4.2 make paths()

1: Given cj = 〈m̂j, m̌j〉 ∈ Vc and ( m̈j i, m̂j), (m̂j, m̈j l) ∈ Ec

2: if ( m̈j i, m̂j) = ∅ then
3: p̂ijl ← 〈m̂j, 0

∗, m̂j, 1, m̈j l〉.
4: else if (m̂j, m̈j l) = ∅ then
5: p̂ijl ← 〈 m̈j i, 1, m̂j, 0

∗, m̂j〉.
6: else
7: p̂ijl ← 〈 m̈j i, 1, m̂j, 1, m̈j l〉.
8: end if
9: return p̂ijl

We then iteratively compact until all chain d-paths are marked as finished. First, two
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s-paths are generated from the distal k-mers and the distances of each d-path (Algorithm

4.3). An s-path is marked as finished if either the source in- or out-distance is marked as

finished. The s-paths are canonicalized and sent to processors based on is “central” k-mers,

using the same processor assignment function as that for the d-paths in order to collocate

s-paths and d-paths by the same “central” k-mers.

Algorithm 4.3 make updates()

1: Given d-path 〈 m̈j i, dij, m̂j, djl, m̈j l〉
2: dil ← dij + djl
3: dli ← dij + djl
4: if dij is marked as finished then
5: mark dli as finished
6: end if
7: if djl is marked as finished then
8: mark dil as finished
9: end if

10: append 〈 m̈j i, dil, m̈j l,+〉 to s-paths
11: append 〈 m̈j l, dli, m̈j i,−〉 to s-paths

Each processor receives up to two s-paths for each of its d-paths, one for the 5′ distal

k-mer, and the other for the 3′ distal k-mer. The d-path is updated by replacing the appro-

priate distal k-mer and distance. (Algorithm 4.4). Once the updates are completed, d-paths

marked as finished are excluded from further processing. The process continues until all d-

paths corresponding to chain vertices are marked as finished, the mechanism through which

this is measured is described in Section 4.2.6.

Algorithm 4.4 update()
1: Given d-path 〈 m̈j i, dij, m̂j, djl, m̈j l〉
2: Given s-path 〈m̂x, dxy, m̈x y, f lag〉, m̂x ≡ m̂j

3: if flag == + then
4: update d-path to 〈 m̈j i, dij, m̂j, dxy, m̈j y〉
5: else if flag == − then
6: update d-path to 〈 m̈j y, dxy, m̂j, djl, m̈j l〉
7: end if

We make the following observations about our parallel chain compaction algorithm.

First, the algorithm labels and ranks along both DNA strands simultaneously. At comple-
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tion, each d-path has distal k-mers corresponding to both terminal vertices of a chain. Sec-

ond, d-paths for neighboring vertices may reference opposite strands of a chain molecule.

Prior to unitig generation, the d-paths are converted to use the strand on which the chain

representative k-mer resides, which is defined as the lexicographically smaller of the two

5′ terminal k-mers. We note that the algorithm applies to directed de Bruijn graph if ini-

tially the k-mers and (k+1)-mers are not canonicalized, and canonicalization of the d- and

s-paths are bypassed.

4.2.5 Correctness

We now show that our vertex ordering algorithm produces the correct results and in finite

time. By Lemma 1, We consider vertex ordering for a single chain.

Theorem 1. The parallel vertex ordering algorithm produces the ordered and labeled d-

path 〈 m̈j 0, d0j, m̂j, dj|C|, m̈j |C|〉 for vertex cj , 0 ≤ j ≤ |C|, from chain C.

Proof. The proof is by induction. Consider {cj} as the set of vertices on chain C, and c0

and c|C| as the chain’s terminal vertices. Let m̂j be the canonical k-mer associated with

vertex cj and let 0 ≤ i ≤ x ≤ j ≤ y ≤ l ≤ |C|.

Base Case: At t = 0, the terminal vertex c0 is represented by d-path p̂001 = 〈m0, 0
∗,m0, 1, m̈0 1〉

if m0 is canonical and p̂100 = 〈 m̈0 1, 1,m0, 0
∗,m0〉 otherwise, and similarly for c|C|. These

d-paths are marked as semi-finished. All other paths {p̂(j−1)j(j+1)}, 0 < j < d, are unfin-

ished.

Induction Hypothesis: At the end of iteration t − 1, t ≥ 1, vertex cj is associated with

p̂xjy. The distance dxj < 2t and m̂x ≡ m̂0 if dxj is marked as finished, and dxj ≡ 2t and

m̂x 6= m̂0 otherwise. Similarly, djy < 2t and m̂y ≡ m̂d if djy is marked as finished, and

djy ≡ 2t and m̂y 6= m̂d otherwise.

Induction Step: During iteration t, two s-paths 〈 m̈x i, dij, m̈x j,+〉 and 〈 m̈x j, dij, m̈x i,−〉

are generated from p̂ixj with dij = dix + dxj and same-strand k-mers relative to m̂j . After

canonicalization and communication, the s-path becomes 〈m̂i, dij, m̈i j, f lag〉, and is used

96



to update the d-path for ci to 〈 m̈i •, d•i, m̂i, dij, m̈i j〉 if flag ≡ +, and 〈 m̈i j, dij, m̂i, di•, m̈i •〉

otherwise. Similarly 〈 m̈x j, dij, m̈x i,−〉 updates d-path for cj .

Case 1: The distances dix and dxj are not marked as finished. By the induction hypoth-

esis, dix ≡ dxj ≡ 2t, and m̂i and m̂j do not represent terminal vertices. The distance dij

then is 2t + 2t = 2t+1 and is not marked as finished, and the updated d-paths for ci and cj

have distal k-mers that do not represent terminal vertices.

Case 2: One of dix and dxj is marked as finished. Without loss of generality, let dix be

marked finished. By the induction hypothesis, dix < 2t and dxj = 2t, m̂i is terminal and

m̂j is not. The new distance is then dij < 2t+1. The d-path for ci is updated with a distal

k-mer mj , which is not terminal and therefore dij is not marked as finished. The d-path for

cj , however, is updated with a terminal distal k-mer mi, thus dij is marked in this case. The

same logic applies when dxj < 2t instead.

Case 3: Both dij and djl are marked as finished. Then the algorithm does not update

this d-path further as it is finished with d-path 〈 m̈j 0, d0j, m̂j, dj|C|, m̈j |C|〉 by the induction

hypothesis.

Identical process generates s-paths from the d-paths pjyl, which are then used to update

p•jy and pyl• in the same manner.

Corollary 1. The parallel vertex ordering algorithm completes in dlog(|C|max)e iterations,

where |C|max is the length of the longest chain in G.

Proof. As shown in the proof for Theorem 1, during each iteration, at least one of the

distances in d-path 〈 m̈j i, dij, m̂j, djl, m̈j l〉 of vertex cj doubles in length to 2t+1, except

during the last iteration when all d-paths are marked finished. The longest chain with

|C|max edges has as its 3′ terminal vertex c|C|max with p̂i|C|max|C|max , whose 5′ distance field

is marked finished at iteration t = dlog(|C|max)e. Since our algorithm processes all chains

and their vertices concurrently, it completes in dlog(|C|max)e iterations.
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4.2.6 Cycle Detection

A special case occurs when a chain in the graph forms a cycle. As there are no terminal

vertices in a cycle, Algorithm 4.3 cannot mark any distances as finished and Algorithm 4.1

continues indefinitely. We therefore seek a mechanism to identify vertices on a cycle during

vertex ordering iterations.

Cycles arise naturally in genomic data, and are handled differently by each chain com-

paction and assembly tool. As a library, Bruno supports the identification and extraction of

cycle vertices for downstream application use. As stated in Section 1.1.2, HipMer, Zeng’s

assembly algorithm, and BCALM2 are unable to identify cycle vertices. ParBiConstruct

[66] defines its list ranking stopping criteria as the non-decreasing count of merged tuples,

which implicitly identifies cycle vertices.

This termination criteria is not suitable for the bidirectional traversal employed by

our compaction algorithm. Each d-path continues to merge with others until it encom-

passes the entire chain. The join count for one chain remains constant before iteration

t = dlog(|C|max)e, when the entire chain is compacted. To prevent premature termination,

at least one chain must be compacted completely during each iteration.

Instead, we use the number of unfinished d-paths in designing the stopping criterion in

the presence of cycles. We first formally describe the behavior of the d-paths for cycle and

chain vertices. We then describe their application to the design of the stopping criterion

and the formal identification of cycle vertices.

(a) Chain (b) Cycle

Figure 4.4: Illustration of d-path distances for chain (4.4a) and cycle (4.4b) vertices.
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Corollary 2. All cycle d-paths remain unfinished for all iterations of vertex ordering pro-

cess, and contain distances 2t at the start of iteration t.

Proof. The proof can be derived as a special case from the proof for Theorem 1. In the

absence of terminal vertices, all d-paths or cycle vertices are initialized as unfinished for

the Base Case. The Induction Hypothesis implies that all cycle d-paths are unfinished and

have distances 2t during iteration t. During the Induction Step, only Case 1 is applicable

and therefore all s-paths are marked as unfinished and the distances in the d-paths are

updated to 2t+1 for the next iteration.

Lemma 2. The number of unfinished d-paths on a chain strictly decreases to zero as vertex

ordering iterations progress.

Proof. Let {cj} be the set of vertices on chain C, 0 ≤ j ≤ |C|. By Corollary 1, dlog(|C|)e

iterations are required for vertex ordering. We initialize the corresponding d-paths accord-

ing to Algorithm 4.2. We now examine the unfinished d-path count for iteration t.

Case 1: For iterations 0 < t < dlog(|C|)e − 1, 2t ≤ |C|
4

. The d-paths for {cj | 0 ≤ j <

2t} are initially marked as semi-finished. The d-paths for {cl | l = j + 2t, 0 ≤ j < 2t}

are updated by s-path from {cj} to become semi-finished. Since 2t ≤ |C|
4

and l < |C|
2

,

the s-path updates do not cross the midpoint of the chain. The same logic applies for

{cj | (|C| − 2t) < j ≤ |C|} and {cl | (|C| − 2t+1) < l ≤ (|C| − 2t)} by symmetry.

During iteration t, d-paths in the ranges [2t, 2t+1) and (|C| − 2t+1, |C| − 2t] are updated

from unfinished to semi-finished, while the d-paths in range [2t+1, |C| − 2t+1] remain as

unfinished. Therefore the unfinished d-path count decreases by 2t+1 during iteration t.

Case 2: For iteration t = dlog(|C|)e − 1, |C|
4
< 2t ≤ |C|

2
. The d-paths for {cl | 2t ≤

l ≤ |C|
2
} are previously unmarked and are updated by s-paths from vertices {cj | 0 ≤ j ≤

|C|
2
−2t}. Similar argument applies to {cl | |C|2 ≤ l ≤ |C|−2t}. Therefore, all unfinished d-

paths in the range l ∈ [2t, |C| − 2t] are updated to finished or semi-finished. The unfinished

d-path count reduces to zero during this iteration.
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Case 3: Iteration t = dlog(|C|)e. All d-paths are previously marked as either semi-

finished or finished. The number of unfinished chain d-paths remains zero.

Since the number of unfinished d-paths decreases by 2t+1 during each iteration in case

1, reduces to zero during case 2, and remains zero during case 3, it strictly decreases to

zero.

Corollary 2 and Lemma 2 are illustrated in figure 4.4. We can infer that the total num-

ber of unfinished d-paths strictly decreases until only unfinished d-paths for cycle vertices

remain. Our algorithm leverages this behavior as the stopping criterion. We compute the

number of unfinished d-paths by counting d-paths with 2t in both distance fields. The to-

tal number is obtained via a global reduction. The algorithm terminates when the total

unfinished count remains constant. We note that this process identifies cycle vertices but

does not distinguish between cycles. Such requirement can be satisfied via an additional

connected components labeling step after vertex ordering. Alternatively, the lexicographi-

cally minimal k-mer seen during vertex ordering can be used to annotate vertices as a cycle

identifier, at the cost of a constant factor increase in communication volume, storage, and

computation time, without changing the algorithm complexity.

4.3 Implementation

We implemented our algorithm using C++ and MPI, and leveraged the mxx library [78]

as the C++ API wrapper for MPI and for parallel sample sort implementation. We used

the Kmerind k-mer indexing library [39] for its alphabet, k-mer, file I/O, count index, and

distributed hash tables implementations. The k-mers and (k+1)-mers are encoded using

2 bits per character. We store only canonical k-mers and (k+1)-mers, as they compactly

represent k- and (k+1)-molecules. Data located within a processor is referred to as “lo-

cal”. Distributed hash tables are used for storage, query, and communication of k-mers and

associated data, such as k-mer neighbors and distances. We use Google Dense Hashmap

for local storage and FarmHash for local hash table and to map k-mers to processors in
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map(). Two new operations were added to Kmerind indices, update and exists, to

facilitate Bruno implementation. They have algorithms and complexity similar to insert

and count, respectively.

Our implementation consists of 5 basic steps: file parsing, graph construction, chain

vertex extraction, vertex ordering, and unitig generation. The first two steps form the

construction phase, while the last three steps are referred to as the compaction phase. Error

detection and removal in the de Bruijn graph is described in Chapter 5. Section 4.2.4

focuses on the chain compaction step.

4.3.1 File Parsing

We begin by reading the read set files in parallel on P processors using the FASTQ and

FASTA file readers provided by Kmerind. Each processor receives approximately F/P

bytes, where F is the total file size. The file data is stored in a byte array in memory as our

implementation parses this data twice. During subsequent parsing, reads containing “N”

are ignored.

4.3.2 Graph Vertex and Edge Representation

A canonical bi-directed de Bruijn graph G consists of a distributed hash table with tuples

〈m̂, f〉, where m̂ is the canonical k-mer representing a vertex and serving as key in the

map, and f is the set of frequencies corresponding to each edge and the k-mer itself:

f = 〈fm̂A, fm̂C , fm̂G, fm̂T , fAm̂, fCm̂, fGm̂, fTm̂, fm̂〉

The frequency values correspond implicitly to the 5’ and 3’ edges by position,in the order

of 5’ A, C, G, T, followed by 3’ A, C, G and T edges. The final value fm̂ represents the k-

mer frequency. For applications that only require knowledge of the presence or absence of

an edge, f can be compacted into 8-bits and the k-mer presence in the hash table indicates
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overall presence. This representation is identical to that used by ABySS [8] and similar to

that in HipMer [63]. For applications that require knowledge of the edge frequency values,

f is a 9-tuple with elements of the unsigned integer type in user specified bit width.

4.3.3 Graph Construction

We define a compact representation for the edges of a vertex k-mer, denoted by e and

encoded in a single byte. The upper and lower 4 bits represent the incoming and outgoing

edge sets respectively, and each bit in a 4 bit group correspond to a letter in the DNA

alphabet, {A, C, G, T}. A bit is set if the concatenation of the k-mer and the alphabet letter

forms a (k+1)-mer in the read set.

To construct the graph, we locally parse the file data into tuples of the form 〈k-mer, e〉,

where at most 1 bit is set in each of the upper and lower 4-bit groups. Kmerind’s parsers

are used, to generate the tuples in linear time in a sliding window manner.

Graph construction then involves insertion of the array of 〈k-mer, e〉 into a distributed

hash table and updating the corresponding frequency fields where e has a bit set. We note

that if f tracks presence and absence, e and f can be combined via bitwise OR.

If the k-mer is canonical, then the tuple is inserted directly, otherwise the reverse com-

plement of the k-mer and e are inserted. The reverse complement of e is equivalent to the

reversal of the bits in e. As this process requires communication, the time complexity of the

graph construction under uniform k-mer distribution assumption is O(N/P + τp+ µN/p)

[39], where N is the total number of (k+1)-mers and τ and µ are latency and throughput

coefficients for communication. We promote uniform distribution via appropriate choice

of hash functions, such as MurmurHash and Google FarmHash.

4.3.4 Chain Vertex Extraction

After the graph is constructed, the chain vertices are extracted. We first identify ver-

tices with in- or out-degrees of at most 1 via a linear scan of the local graph hash table.
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The selected tuples 〈m̂j, e〉 are converted to d-paths 〈 m̈j i, dij, m̂j, djl, m̈j l〉 based on Algo-

rithm 4.2. The upper (and lower) 4 bits of e are converted to the corresponding alphabet

character and prepended (and appended) to the (k-1)-prefix (and -suffix) of m̂j to generate

m̈j i (and m̈j l). If none of the 4 bits are set, then the edge is considered absent in Ec. The

central k-mer in canonical form, m̂j , serves as hash key and the remaining fields as value.

The same hash function is used for the distributed graph and d-path hash tables to ensure

identical k-mer-to-processor assignment.

In the second step, we mark d-paths with distal k-mers that represent type II terminal

vertices by setting the corresponding distance to 0. We first select the branch vertices via a

local linear scan of the graph hash table. For each branch vertex mj , its incoming and out-

going edges are transformed to s-paths 〈 m̈j i, 0
∗, m̂j,+〉 and 〈 m̈j l, 0

∗, m̂j,−〉 respectively.

The s-paths are canonicalized and distributed as updates to the d-path hash table based on

their first k-mers. If the target k-mer does not exist in the d-path hash table, then the s-path

is ignored. Otherwise the distance dij or djl is set to zero depending on the orientation flag.

Certain k-mer parameters and input data can create vertices that satisfy the chain vertex

definition, yet require special care to handle. Five such vertex types are isolated, self cycle,

palindrome, shifted palindrome, and cycle vertices. The first 4 are illustrated in Isolated

vertices have in- and out-degrees of 0 and are trivial to detect and exclude. Cycle vertices

are identified using the approach described in Section 4.2.6. The edges of a self-cycle

vertex reference the vertex itself, and can be handled by the cycle detection process.

(a) Self Cycle (b) Palindrome (c) Shifted Palindrome

Figure 4.5: Examples of self cycles, palindrome and shifted palindrome. In 4.5b, the palin-
dromic sequence is ANT. Each of these local structures can result in cyclic traversal or
change in traversal directions.
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Palindrome arises when a k-mer is its own reverse complement. Similarly a (k+1)-mer

being its own reverse complement, for example “ACGT”, results in a shifted palindrome for

its prefix and suffix k-mers, “ACG” and “CGT”. The presence of these structures causes

the traversal direction to reverse. We treat these palindromic structures as branches and

exclude them from the d-path hash table, as well as marking their neighbors as terminal

d-paths.

4.3.5 Vertex Ordering

The vertex ordering process follows closely the steps outlined in Algorithms 4.3 and 4.4,

executed iteratively as described in Algorithm 4.1. The iteration begins with the construc-

tion of an array of pointers to unfinished and semi-finished d-paths in the d-path hash table

via a local linear scan.

During an iteration, the d-path hash table entries are accessed via the pointers in the ar-

ray and two s-paths are constructed for each d-path: 〈mi, dil, m̈i l,+〉 and 〈ml, dil, m̈l i,−〉.

The distances in the d- and s-paths are represented as a 32-bit signed integer, as a chain is

unlikely to contain more than than 231 vertices. The sign bit is used to indicate that the dis-

tal k-mer references a chain terminal vertex in its third field. The d-path hash table entries

are updated according to Algorithm 4.4 via local hash table queries.

At the end of the iteration, the local pointer array is linearly scanned and pointers to

finished d-paths are deleted. We perform a global reduction of the number of remaining

unfinished d-paths to determine if all chain vertices have been compacted. The vertex

ordering process terminates when the unfinished count across all processors reaches 0 or

stops decreasing, as discussed in Section 4.2.6.

4.3.6 Optimized Vertex Ordering

An optimization to our vertex ordering algorithm is based on the observation that during

an iteration t > 1, the d-paths within a distance of 2t of an chain terminal d-path are
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semi-finished and each will generate an s-path for updating the chain terminal d-path. The

chain terminal d-path is updated using the s-path with the maximum distance, which is

min(2t, |C|), |C| being the length of chain |C|. The remaining 2t − 1 s-paths produce

no useful result while requiring communication and computation. We therefore limit the

generation of s-paths from semi-finished d-paths: If a d-path is semi-finished, then it can

generate a chain terminal update s-path only if the sum of its distances is 2t+1.

This optimization reduces communication volume and computation by 2t − 1 for each

terminal d-path in each chain during each iteration t. The reduction in communication

volume per chain over the entire vertex ordering process is approximately Σ
log(|C|)
t=1 2 ∗ (2t−

1) = 4|C|−2−log2(|C|)−log(|C|), and the total communication reduction is ΣC∈C(4|C|−

2− log2(|C|)− log(|C|)), where C is the set of chains. We note that the minimum for the

expression 4|C| − 2 − log2(|C|) − log(|C|) for all |C| ≥ 1 occurs at |C| = 1. Therefore,

while the distribution of chain lengths affects the amount of communication reduction, the

optimization is beneficial for all chain length distributions.

4.3.7 Unitig Generation

After vertex ordering, each vertex cj has d-path 〈 m̈j i, dij, m̂j, djl, m̈j l〉 containing k-mers

of its chain’s two terminal vertices as m̈j i and m̈j l. Note that m̈j i is 5′ to m̂j and on the

same strand, and therefore it is a 5′ k-mer for the path. Similarly, m̈j l is the 3′ k-mer for

the path. We choose the lexicographically smaller of the two 5′ k-mers, i.e. m̈j l or m̈j l, as

the chain’s representative k-mer. The chain representative k-mer can be computed locally

for each d-path without communication.

We sort the chain d-paths with the chain representative k-mer as the primary key and

the corresponding distance as the secondary key to group d-paths by chain id, and to order

the d-paths within each chain. Parallel sample sort with bitonic sample sorting from the

mxx library [78] is used for this task. Each terminal vertex that represents a chain has its

complete k-mer written to a byte array, while for the remaining vertices on the chain the
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last character, or the reverse complement of the first character, is written to the byte array,

ordered by distance from the chain representative vertex. The byte array is then written to

disk via MPI-IO.

4.4 De Bruijn Graph Data Structure and API

To standardize and simplify interaction with de Bruijn graph, we define a set of founda-

tional operations for a distributed de Bruijn graph and its compacted chains. We first define

the data structures, and then discuss the operations at high level. For the remainder of this

document, we assume the hash table uses canonical k-mers as key, but it is not a require-

ment of the implementation.

4.4.1 De Bruijn Graph Data Structures

The de Bruijn Graph representation (Section 4.3.2) allows the frequencies of each edge and

vertex to be tracked. Traversal through a vertex enters through an in-edge and exists out of

an out-edge. Such a traversal correspond to a (k+2)-mer, potentially in the input sequence

data. Frequency of (k+2)-mers can therefore be related to the edge frequencies in a graph

vertex. While recording each (k+2)-mer frequency passing through a graph vertex can re-

duce some ambiguity during traversal through a branch vertex, 25 values must be stored

({A,C,G, T, ∅} × {A,C,G, T, ∅}) instead of 8 ({A,C,G, T} + {A,C,G, T}). Storing

only edge frequencies, corresponding to (k+1)-mer frequencies represent a balanced com-

promise.

The result of the chain compaction consists of a distributed hash table of d-paths (Eq.

4.2), each instance representing a chain vertex, its left and right neighbors, and correspond-

ing distances. The set of chains is denoted C. This hash table is referred to as a chain map.

The central k-mer serves as the hash table key, while the remaining fields are the mapped

values.

The chain map contains only topological information while G contains metadata in-
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cluding edge and k-mer frequency. The pair 〈G, {C}〉 is considered the compacted de

Bruijn graph. As G and C are distributed, we require both to use the same upper level

distribution hash function to ensure that frequency and topology information for a chain

vertex are co-located on the same processor in order to reduce communication.

Operations on G and C are approximately categorized into three levels based on the

required context of the operations. We note that all operations operate in batch in order to

minimize the impact of communication latency, which is incurred per distributed operation

invocation.

4.4.2 Level 1 Operations

Level 1 operations operate on individual vertices and edges in G and d-paths in C indi-

vidually. These include the basic Kmerind hash table operations that are random access in

nature: insert, find, erase, update, and exists.

Graph-specific specializations for the erase operation, erase verties, are pro-

vided for G. When a target vertex v is deleted, its out edges {〈v, u〉} are deleted as well.

To maintain consistency of the graph and correctness of traversal, the in-edge 〈v, u〉 in the

neighbor vertex u is also deleted. Similarly for the out-edges of v.

Additionally, for finding and modifying edges in G, we also define find edges and

erase edges operations. For these operations, the matching vertices are located first and

then the target edge frequencies in 〈m̂, f〉 are returned or modified. For C, the update

operation provides the same functionality for modifying the edges.

All of the Level 1 hash table operations except for insert include 3 variants. The

first accepts a vector of k-mers or k-mer edge pairs, and operate on matching vertices and

edges in the hash tables. The second variant accepts a user supplied predicate function

that is applied to all vertices and/or edges that satisfy the predicate. This variant does not

require communication. The third variant accepts the target vertex/edge vector as well as

the predicate function, and the matching vertices or edges that also satisfy the predicate are
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processed.

A set of simple predicates have been developed as part of the implementation of the

algorithms described in this work. These include predicated to identify chain and branch

vertices in G and terminal and internal chain vertices in C.

Finally, we consider parallel sorting with user-defined comparison operators as part of

the set of Level 1 operations. Sorting establishes an ordering based on pair-wise relation-

ship between vertices in G and C in order to facilitate higher level and application-defined

operations.

COMPLEXITY ANALYSIS: The hash table based Level 1 operations processes the input

in a single or a constant number of passes. Their complexities for computation and com-

munication therefore directly correspond to the Kmerind Hashed Uni-index complexities

outlined in Sections 2.1.3 and 2.1.3.

We utilize parallel sample sort for distributed memory sorting. Its complexity is de-

scribed in Section 2.1.4

Example: Retrieve Branch Vertices

A branch vertex in G has more than 1 in-edge, or more than 1 out-edge. This criteria can

easily be implemented as a predicate function. Using the predicate function with the find

operation returns all branch vertices in G. Chain vertices can be identified similarly, and is

used for initial population of the chain map prior to compaction.

Example: Graph Traversal

Given a vertex inG, we can obtain the k-mers representing its neighbors locally by shifting

the vertex’s k-mer and prepending or appending single characters corresponding its neigh-

bors. The neighbor k-mers can then be used as input parameter for the distributed find

operation to retrieve the corresponding vertex and metadata, which further allows the ver-

tices at distance 2 to be constructed. The graph can therefore be traversed iteratively.
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Example: Compacted Graph Traversal

Compacted graph can be similarly traversed, with the advantage that the chain map can be

used to jump to the distal end of a chain. When a chain vertex is encountered in the G, the

chain map can be queried via the distributed find operation to retrieve the corresponding

d-path. The chain terminal k-mer can then be extracted from d-path in constant time and

used for further traversal in G.

4.4.3 Level 2 Operations

Level 2 operations focus primarily on individual compacted chains in G and C. As the ver-

tices in G and C are distributed, vertices on a chain can be scattered to multiple processors.

Level 2 operations therefore involves re-constructing spatial locality, or strict ordering, and

generating derived chain metadata after reconstruction. In addition to the two examples

listed below, generating a compressed representation of chains (Section 5.4.1) also is a

Level 2 operation.

Level 2 operations depend heavily on the Level 1 operations to query for matching

chain vertices in C and parallel sample sort with application-defined comparison operators

for vertex ordering. After the spatial locality or order has been established, a local linear

scan is sufficient for generating the derived data.

COMPLEXITY ANALYSIS: Query for matching chain vertices has the same complex-

ity as the distributed hash table query, and with global predicate it reduces to a local

hash table query with complexity O(N/p). Complexity of the parallel sample sort has

O(M log(M)) for the local sort and O(p log2(p)) for bitonic sort of the splitters, and

O(τ log(p) + µ|M | log(p)) for communication. Post-sorting processing has complexity

dependent on the operation at hand. Often times these are simple summary operations that

require only linear scans.
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Example: Unitig Generation

The unitig generation process described in Section 4.3.7 is a direct example of a Level 2

operation. It leverages parallel sorting, a Level 1 operation, to establish grouping (by chain)

and ordering (by distance to chain representative), and the emit strings corresponding to the

chains via a linear scan of the ordered vertex list.

Example: Summarizing Frequencies of Chains

To select or filter chains based on frequency, it is useful to summarize the frequencies of

the k-mers on the chains, for example with Gaussian distribution assumption. In this case,

the mean, standard deviation, minimum, and maximum can be computed.

The algorithm begins with extraction of chain vertices using the global predicate vari-

ant of the Level 1 find operation on G. The k-mers and their frequencies are are then

extracted and inserted into a local hash table with k-mer as key, each with a place holder

for the chain representative. The elements in the chain map are extracted and used to up-

date the chain representative k-mer fields in the local hash table. Vertices of the same chain

are grouped together with a parallel sort of the contents of the local hash tables, using the

chain representative k-mer for the comparison operator. Finally, a local linear scan is used

to summarize the k-mer frequencies for each chain.

4.4.4 Level 3

Level 3 operations include graph-wide operations that are designed to support specific class

of applications, such as assembly. Algorithms discussed in this chapter, including vertex

ordering, cycle detection, pre-construction error filtering, and those discussed in Chap-

ter 5 including bubble and dead end removal, are designated Level 3 operations. We note

that Level 3 operations may be composed from Level 1 and 2 operations, or may include

application-specific logic. The details of these operations are not repeated here.
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4.5 Summary

In this chapter we presented the de Bruijn graph construction and chain compaction algo-

rithms in the Bruno library.

We presented the chain compaction algorithm in detail, and proved its correctness, con-

vergence, and run time complexity. We formally showed that multiple chains in a de Bruijn

graph can be compacted concurrently, and introduced the same-strand k-mer notion for in-

termediate s- and d-paths, that, when coupled with path canonicalization, greatly simplify

the chain compaction process while ensuring traversal direction consistency in bi-directed

de Bruijn graphs. Our algorithm requires logarithmic rounds of bulk synchronous com-

munication, while our symmetric d-path representation allows pointer doubling between

communication rounds without additional remote queries. Finally, we presented a mech-

anism to detect the presence of vertices from cycles in de Bruijn graphs during the chain

compaction process, that can be further extended to label cycles with a small constant factor

computational, space, and communication overhead.

Finally, we present Bruno’s API design, consisting of 3 levels corresponding to opera-

tions on vertices and edges, chains, and the overall graph.
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CHAPTER 5

ERROR REMOVAL IN DE BRUIJN GRAPHS

The Bruno library currently supports parallel construction of de Bruijn graphs as well as

parallel chain compaction for short read sequences. Sequencing technologies are not per-

fect, however. The sequencing process may introduce errors in the sequence data, in the

forms of incorrectly called nucleotide bases (substitutions), missing nucleotide bases (dele-

tions), or extra nucleotide bases (insertions). The common observation is that short read

sequencers such as Illumina’s systems have an error rate of approximately 1%, majority of

which are substitutions, while long read sequencers such as PacBio and Oxford NanoPort

have error rates in the 15% to 20% range with the majority being insertions and deletions.

As k-mers are constructed using a sliding windows of size k, each occurrence of an

substitution error results in up to k erroneous k-mers. The erroneous k-mers affects the as-

sembly process in several ways. They introduce structures such as bubbles, dead ends, and

spurious links, thus affecting graph traversal and the correctness of the assembly output. In

addition, they can dramatically increase the size of the observed k-mer set M ′ compared

to the true distinct k-mers in the genome. The corresponding increase in the overall size of

the de Bruijn graph increases memory requirement, computation time, and communication

cost.

To allow the Bruno library to effectively serve as a core component of a parallel assem-

bler and sequence analysis tool, it needs to also support detection and removal of erroneous

k-mers and graph structures that are introduced by these erroneous k-mers. We focus pri-

marily on the detection and removal of the manifestations of short read sequencing errors,

primarily substitutions, in de Bruijn graphs.

In this chapter, we describe an algorithm to perform frequency based filtering to elimi-

nate erroneous edges and vertices from the de Bruijn graph during construction, as well as a
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communication- and work-minimizing alternative. We then describe the generic process of

defining, detecting, and removing erroneous graph structures. Subsequent to error removal,

the graph may require re-compaction. We describe an optimized chain re-compaction al-

gorithm with reduced communication message size and iterations.

5.1 Manifestation of Sequencing Errors

Erroneous k-mers gives rise to structures in the de Bruijn graph including spurious links,

bubbles, and dead ends. Velvet [7] and ABySS [8] describe these structures. Figure 5.1

shows examples of each structure.

(a) Deadend

(b) Bubble

(c) Spurious Link

Figure 5.1: Examples of topologies that may arise due to erroneous bases introduced by
the sequencer. In each case, erroneous k-mers are shown in red.

113



Dead-ends forms when an erroneous base is present in the first or the last k bases of

a read and the resulting k-mers deviates from the true genome sequence. Since the erro-

neous base is near the ends of a read, there may not exist k-mers that connect consequent

erroneous path back to the true genome sequence. The k-mer therefore forms a chain that

terminates at the last k-mer of the read.

Bubbles, on the other hand, consists of an alternative path with an erroneous base that

does reconnect to the true genome. Bubbles can form when an erroneous base occurs in the

middle L−2k bases of a read. The k-mers flanking the erroneous base are true k-mers from

the genome. The erroneous base therefore creates an alternative path, forming a bubble.

Spurious links can occur when a sequencing error produces a true k-mer by chance,

or when two dead-ends merge by chance. The true paths to which the dead-ends belong

are separate, and therefore spurious links erroneously connect two separate paths of the de

Bruijn graph.

More complex structures can arise from the presence of erroneous k-mers within a

graph neighborhood. Velvet [7] proposed “tour bus”, a breadth first search based algorithm,

in order to identify source error for complex bubble-containing structures.

We believe that such algorithm introduces complexity with limited benefits given cur-

rent next generation sequencer capabilities. Read lengths have increased by up to an order

of magnitude without increases in error rate. The longer reads provide longer range context

for the down stream gap closing and scaffolding tasks. As sophistication in error resolution

necessitate local neighborhood traversal, complex bubble resolution may be best handled

as part of the gap closing and scaffolding activities.

We believe that the combination of frequency-based filtering, dead-end and simple bub-

ble removal, and scaffolding can effectively identify and address the majority of errors in

the reads and the de Bruijn graph. Additionally, the Bruno library aims to provide generic,

reusable de Bruijn graph building blocks and operations. We therefore focus our efforts on

frequency-based filtering and dead-ends and simple bubbles detection and removal.
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5.2 Error Detection and Removal Strategies

Different strategies have been developed for detecting, removing, and even correcting se-

quencing errors in the context of genome assembly. Error correction in reads can be used

as a pre-processing step for assembly. Quake [11], Reptile [12], and Musket [16] are ex-

ample stand-alone read error correction tools. AllPaths-LG [53] incorporates its own pre-

assembly read error correction tool. The principal approach to these error correction tools

is based on k-mer frequency spectrum.

A second approach involves filtering the low frequency k-mers in the input during or

immediately after graph construction. A k-mer is inserted if its frequency is higher than a

user defined threshold. HipMer [9] uses a distributed bloom filter to remove low frequency

k-mers. Similarly ParBiConnect [66] and BCALM 2 [59] filters k-mer below a threshold.

Read error correction and absolute frequency thresholding may not be sufficient in iden-

tifying and removing erroneous k-mers, however. Bubbles, dead-ends, and spurious links

in the de Bruijn graph hint at the presence and location of erroneous k-mers. Coupled with

application specific heuristics, such as lengths of dead-ends and bubbles and the relative

edge frequencies at the branch nodes, sequences of erroneous k-mers in alternate paths can

be identified. ABySS [8] and Velvet [7] are two assemblers that explicitly identify and

correct these erroneous graph structures.

5.2.1 Bruno Library Error Detection and Removal

In this work we focus primarily on the detection and removal of the manifestations of

short read sequencing errors, primarily substitutions, in de Bruijn graphs. We limit the

scope of algorithmic investigation and implementation to this subset in order to maintain

flexibility and generality of the Bruno Library. The criteria used to define erroneous graph

structures is closely tied to the application requirements. Similarly, the decision to remove

or to correct, as well as the heuristics for correcting errors, are application specific. The
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Bruno library therefore focuses on providing only the common and necessary algorithms

and functionalities in the context of error detection and removal.

The Bruno library provides functionalities for finding and removing k-mers with low

absolute or relative frequencies. Spurious links are typically removed via k-mer frequency

thresholds ([7],[8]). Bruno also provide the capability of detecting and removing simple

bubbles and dead-ends. The application-specific definitions for erroneous graphs structures

can be encoded as modular predicate functions for the Bruno API, thus improving flexibility

and generality. Such definitions include the lengths of bubbles and dead-end chains, relative

frequencies of the chains in a bubble, etc. Once detected, the target structures can be

processed according to application requirements, for example merging bubbles or deleting

dead-ends, then modify the de Bruijn graph accordingly.

In the subsequent sections, we describe the algorithms for detecting errors based on

thresholds and de Bruijn graph structures. We also describe the erroneous k-mer and bubble

and dead-end removal processes and related algorithms to illustrate the capabilities of the

library. We note that while Bruno supports graphs that records the existence of edges, error

detection often requires frequency information. The discussion therefore presumes that

edge and k-mer frequencies are recorded in the de Bruijn graph.

5.3 Frequency-based Error Detection and Removal

As single base errors are expected to be infrequent, we also expect the resultant erroneous

k-mers to occur with low frequency in S. Identifying erroneous k-mer by frequency is

therefore a common operation for k-mer indices and de Bruijn graphs. As an edge in

the graph G connects two k-mers, filtering k-mers by frequency directly impact edge fre-

quency, which may be used by applications during graph traversal. It is therefore important

to maintain consistency of frequencies of edge and k-mers to the extent possible.

In Section 4.4.1 we introduced the de Bruijn graph data structure. A vertex in the graph

is represented by a k-mer and associated metadata, namely the k-mer and edge (k+1)-mer
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frequencies.

〈fm̂A, fm̂C , fm̂G, fm̂T , fAm̂, fCm̂, fGm̂, fTm̂, fm̂〉

The frequencies are computed by accumulating the number of occurrences of each edge

in the sequence data. As an edge (v, v′) consist of two k-mers with k − 1 overlap, it

corresponds to a (k+1)-mer in the input sequence. Similarly, two successive edges, sharing

a central k-mer, correspond to a (k+2)-mer in the input.

We begin our discussion by first expanding on the notation presented in Section 4.4.1.

Let fqm̂r denote the frequency of a (k+2)-mer, qm̂r, with canonical k-mer m̂ at the center,

and q is the 5’ character and r is the 3’ character of the (k+2)-mer.

The relationship between the (k+2)-mer, (k+1)-mer, and k-mer frequencies are:

fm̂ =
∑

q∈{A,C,G,T,∅}

∑
r∈{A,C,G,T,∅}

fqm̂r (5.1)

and

fqm̂ =
∑

r∈{A,C,G,T,∅}

fqm̂r, q ∈ {A,C,G, T, ∅} (5.2)

fm̂r =
∑

q∈{A,C,G,T,∅}

fqm̂r, r ∈ {A,C,G, T, ∅} (5.3)

Note that ∅ indicates empty character at the 5’ and/or 3’ character positions.

The additive nature of the frequency computation implies that given a set of (k+2)-mers

with identical central k-mer, the accumulated k-mer and (k+1)-mer frequencies are consis-

tent. However, this process also embodies a loss of context. Namely, it is not possible to

determine the (k+2)-mer frequencies that contributed to a particular (k+1)-mer’s frequency,

nor the (k+1)-mer frequencies that contributed to a k-mer’s frequency.

The consequence of this loss of context is ambiguity in the heuristics for maintaining

frequency consistency when one or more edge ((k+1)-mer) or vertex (k-mer) frequencies
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are changed. For example, when thresholding an in-edge (k+1)-mer frequency, it’s not

possible to exactly determine the changes necessary in the out-edge (k+1)-mer and the k-

mer frequencies in order to maintain consistency. Application-specific heuristics are often

used, but may introduce errors during graph traversal. Figure 5.2 shows one potential

scenario where consistency heuristics may be hard to devise.

(a) (b)

Figure 5.2: An example scenario where ambiguity is encountered when devising heuristics
for maintaining consistency after edge frequencies are modified. The dashed lines represent
(k+2)-mers. The labels x and y represent frequencies. The vertex “G” pre-filtering has
frequency x + y. Suppose x is lower than the frequency threshold, then post-filtering “G”
should have frequency y in 5.2a and x+ y in 5.2b. However, there is no way to distinguish
the (k+2)-mer contributions in the two cases and therefore no consistent strategy to adjust
the frequency of “G” accurately.

In the Bruno library, frequency-based filtering can be accomplished in two ways. The k-

mer and (k+1)-mer frequencies can be threshold by modifying the frequencies of the source

(k+2)-mers. This approach leverages the accumulation process to ensure consistency of

the final frequencies, but applies best during the graph construction process. We term

this approach “bottom-up”. In contrast, the “top-down” approach directly modifies the

edge and k-mer frequencies, relying on application-level heuristics to maintain frequency

consistency. While we prefer the “bottom-up” approach to ensure frequency consistency,

we recognize the need for and provide the “top-down” approach for frequency-based k-mer

filtering.
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5.3.1 Bottom-Up Frequency-based Filtering

By modifying the frequencies of (k+2)-mers and selectively removing the 5’ and/or 3’

characters, we can effect frequency-based filtering for vertices (k-mers) and edges ((k+1)-

mers).

To perform bottom-up filtering, we first construct a (k+1)-mers count index using

Kmerind [39]. The low frequency (k+1)-mers are deleted from the index via a local linear

scan. The input 〈k-mer, e〉 tuples from Section 4.3.3, corresponding to a (k+2)-mers in the

reads, are then modified based on the (k+1)-mers frequencies according to Algorithm 5.1.

Each 〈k-mer, e〉 is locally transformed into two (k+1)-mers, and the distributed (k+1)-

mers count index is queried for their existence. If a (k+1)-mer does not exist, i.e. has been

filtered, the corresponding 4-bit group in e is cleared. The existence of a (k+1)-mer can

be represented by as few as 1-bit during query result communication. Since the tuples are

generated in order of appearance in the reads, successive tuples share a common (k+1)-

mer. We therefore only query for the (k+1)-mers that are 3′ extensions of the k-mers in the

input tuples, and reuse the query results for the 5′ extension (k+1)-mers. Once the input

〈k-mer, e〉 tuples are modified, they are then inserted into the de Bruijn graph as described

in Section 4.3.3. The (k+1)-mer count index is deleted after graph construction to reduce

memory usage.

COMPLEXITY ANALYSIS: Bottom-up filtering inserts several steps to modify 〈k-mer, e〉

tuples prior to graph construction. Overall two rounds of communication are required with

message size N/p, where N is the total number of (k+1)-mers.

Construction of the (k+1)-mer count index requires O(N/p + τp + µN/p) time for

communication and computation. Removing low frequency (k+1)-mers require a linear

scan of the local hash table in O(U/p) time, where U is the number of distinct (k+1)-mers.

Generating the 3’ (k+1)-mers from the (k+2)-mers requiresO((N+|R|)/p) time, where

N+ |R| is the number of (k+2)-mers and |R| is the number of reads. Since we include both

the half (k+2)-mers at the 5’ and 3’ ends of each read, and each (k+2)-mer correspond to 1
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Algorithm 5.1 Bottom-up (k+1)-mer frequency filtering
1: function FILTER BY FREQUENCY(Pi = 〈k-mer, e〉 pairs, Ii = (k+1)-mer count index)
2: Qi← array of size |Pi|

. Extract the 3’ (k+1)-mers from (k+2)-mer input
3: for j ← 0, (|Pi| − 1) do
4: 〈l,m, r〉 ← Pi[j]
5: e← concat(m, r)
6:
7: Qi.append(canonical(e))
8: end for

. Query for (k+1)-mer frequencies
9: Ri ← Ii.exists(Qi)

. Modify (k+2)-mers based on (k+1)-mer frequencies
10: for j ← 0, (|Pi| − 1) do
11: if Ri[j] == 0 then
12: Pi[j].r← ∅
13: Pi[j + 1].l← ∅
14: end if
15: end for
16: return Pi

17: end function

(k+1)-mer except for the last half (k+2)-mer of the read.

Querying the (k+1)-mer index requires O(N/p+ τp+ µN/p) time for communication

and computation, and modifying the (k+2)-mers again requires O((N + |R|)/p) time.

5.3.2 Optimized Bottom-Up Frequency-based Filtering

The objective of Algorithm 5.1 is to filter out low frequency edges in the input 〈k-mer,

e〉 pairs. It requires communication with message size N/p to construct (one-way com-

munication) and query (round trip communication) the (k+1)-mer count index and at least

two linear scans of the input 〈k-mer, e〉 pairs to filter the low frequency edges prior to

construction of G.

In this section we propose an optimized algorithm for filtering low frequency edges

prior to G construction that reduces the communication to a single one-way communica-

tion with message size N/p, local frequency calculation in O(N/p) time, and filtering in

120



O(U/p) time, where N is the total number of 〈k-mer, e〉 pairs and U is the total number of

distinct 〈k-mer, e〉 pairs in the input data set.

We first observe that graph construction without frequency-based filtering involves file

parsing to generate the 〈k-mer, e〉 pairs, followed by insertion into essentially a distributed

hash table, with k-mer as key and a custom reduction operation to count the occurrences

of the edges encoded in e. Since the frequencies are accumulated using addition, which is

an associative operator, we can equivalently construct G from the frequencies of distinct

〈k-mer, e〉 pairs (or equivalently, (k+2)-mers).

In other words, we can first compute the frequencies of 〈k-mer, e〉 pairs in a count

index I2 , and then insert each element of I2 into G. If we further specify the top level

hash function of I2 to assign 〈k-mer, e〉 pairs to processors by k-mer, while using the entire

pair 〈k-mer, e〉 as key for the lower level local hash table, then all 〈k-mer, e〉 ((k+2)-mers)

sharing the same k-mer are grouped to the same processor, while the frequencies of each

distinct (k+2)-mer is counted separately. Later insertion into G are then local operation

since G uses k-mer for processor assignment.

We next leverage the relationships between (k+2)-mer, (k+1)-mer, and k-mer frequen-

cies. Given a set of distinct (k+2)-mers with a common central k-mer, and their frequencies,

we can compute the k-mer frequency as well as the 5’ and 3’ (k+1)-mer frequencies directly

using Equations 5.1, 5.2, and 5.3. If the (k+2)-mers are assigned to processors based on

the central k-mer, then computing k-mer and (k+2)-mer frequencies are completely local

operations, and independent of any other k-mer or (k+2)-mer frequencies.

The frequency of a (k+1)-mer, on the other hand, are associated with both its 5’ and

3’ k-mers and therefore the corresponding (k+2)-mers. Let mi−1,mi, mi+1, and mi+2 be 4

k-mers with successive k-1 overlaps. Then (mi−1,mi,mi+1) and (mi,mi+1,mi+2) are two

(k+2)-mers sharing a (k+1)-mer overlap, (mi,mi+1). Since the *(k+2)-mers are generated

via a sliding window on the input sequence, each (k+1)-mer occurs twice in two successive

(k+2)-mers.
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This “double” appearance conveniently allows us to compute the (k+1)-mer frequencies

locally from (k+2)-mer frequencies when they are partitioned using the central k-mer. One

special case exists, however. When a (k+1)-mer is identical to its reverse complement,

then its 5’ k-mer and the reverse complement of its 3’ k-mer are also identical. For de

Bruijn graphs that uses canonical k-mers as keys, the (k+1)-mer is counted twice and the

frequency value is exactly 2× the true value. In this case the (k+1)-mer frequency must be

reduced by half.

In summary, by assigning 〈k-mer, e〉 pairs to processor by k-mer, the content of count

index I2 can be locally inserted into G to construct the graph. The distribution groups

(k+2)-mers with the same central k-mer together, thus allowing k-mer and (k+1)-mer fre-

quencies to be computed completely locally. Using the accumulated frequencies instead of

the input 〈k-mer, e〉 pairs reduces the number of data elements to filter by frequency and

insert into G from N/p to U/p.

The optimized bottom-up frequency-based filtering algorithm is shown in Algorithm 5.2.

The 〈k-mer, e〉 is first inserted into the specialized count index to generate (k+2)-mer fre-

quencies. The local elements of the count index are then extracted and sorted using the

central k-mer in the comparison. Once sorted, each group of 〈k-mer, e〉 frequencies shar-

ing the same k-mer are summed, and the result used to modified the 〈k-mer, e〉 pairs, which

are then inserted locally into G.

COMPLEXITY ANALYSIS: The optimized algorithm invokes a single distributed count

index insert operation, with computation and communication complexity of O(N/p +

τp + µN/p) to produce U/p entries in the count index. The count index entries are then

sorted by the central k-mer in O(U/p log(U/p)) time. The sorted array is then processed in

groups sharing the same k-mer via a linear scan, and inserted locally into G. This filtering

and graph construction step requires O(U/p) time.
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Algorithm 5.2 Optimized Bottom-up Frequency-based Filtering and Graph Construction
1: function FILTER BY FREQUENCY OPT(Pi = 〈k-mer, e〉 pairs)
2: I2 i ← distributed 〈k-mer, e〉 count index,
3: top level hash by k-mer,
4: lower level hash table with 〈k-mer, e〉 as key.
5: I2 i.insert(Pi)
6: Qi ← local elements in I2
7: local sort Qi by k-mer in 〈k-mer, e〉
8: for each group of 〈k-mer, e〉 in Qi with same k-mer key do
9: compute k-mer frequency

10: compute (k+1)-mer frequencies for in-edges and out-edges
11:
12: Modify e in each 〈k-mer, e〉 in group based on k-mer, (k+1)-mer and 〈k-mer,

e〉 frequencies.
13: locally insert modified 〈k-mer, e〉 into G.
14: end for
15: end function

5.3.3 Top-Down Frequency-Based Filtering

This mechanism of node and edge filtering relies directly on the predicated variants of

Level 1 operations find and erase as described in Section 4.4. The user defines the

desired predicate function.

Both absolute and relative threshold can be applied to the graph edges, such that edges

with few occurrences, or those that have significantly lower frequencies when compared to

their peer at the same vertices, can be removed. To filter graph vertices, absolute threshold

can apply to k-mer frequencies as well.

As noted in Section 5.3, such modification of the graph can introduce inconsistencies

in the vertex and edge frequencies, thus affecting subsequent graph analysis and traversal.

We also note that spurious links can be identified and removed via this mechanism.

COMPLEXITY ANALYSIS Top-down frequency filtering applies a predicate function glob-

ally to select and/or erase edges and vertices. The selection process is applied to the local

hash tables, without communication, in O(|V |/p) time, where |V | is the total number of

vertices in the graphG. During removal, the vertices at both ends of each edge to be deleted
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must be updated. Since each vertex has at most 2|Σ| edges, and the target vertex of an edge

may reside on a different processor, distributed erase hash table operation from Kmerind

is used, with complexity O(|Σ|M/p + τp + µ|Σ|M/p), where M is the total number of

distinct vertices affected.

5.4 Graph Structure-based Error Detection and Removal

Graph structures that arise due to the presence of erroneous k-mers include bubbles and

dead-ends, both of which consist of chains with specific properties. Namely, dead-ends are

chains connected to the rest of the graph at only one end, while bubbles are chains that are

connected to the same branch vertices at both ends.

To detect bubbles and dead-ends, we therefore first need to find the terminal vertices of

the chains. Detection algorithms for dead-ends and bubbles in ABySS [8] and Velvet [7]

does so by iterating over chain vertices. As defined in Section 4.2.1, the set of chains in a

de Bruijn graph G is C, with each chain consisting of a set of vertices C ≡ {c ∈ V } and

with length |C|. Here we denote the union of vertex sets for all chains in C as Vc. Velvet

and ABySS therefore has computational complexity of O(|Vc|).

Traversal along a chain in a distributed memory setting potentially requires communi-

cation for each vertex visited, as successive vertices may reside on different processors. A

naive traversal strategy, such as that in ABySS, would require up to O(|C|max) rounds of

communication. For typical data sets the maximum chain lengths may reach 103 to 104 in

length, rendering such a traversal pattern inefficient.

Our bubble and dead-end detection algorithms instead operates on compressed chains.

As the primary criteria for deciding whether a chain is a bubble or a dead-end lies in how

the terminal vertices are connected to the rest of the graph. The approach relies on two

assumptions:

1. Chains in the graph has been previously compacted, for example using the algorithms

described in Chapter 4.
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2. The chain terminal vertices have sufficient associated metadata in themselves for

evaluation of any additional application-specific predicates.

The associated metadata may include length of the chain and frequencies of edges between

the termini and their 5’ and 3’ branch neighbors.

Under such conditions, bubble finding and dead-end detection require only examina-

tion of the chain terminal vertices with cardinality of |C|. We note that to find the chain

terminal vertices still requires scanning through all chain vertices with complexity O(|Vc|).

However, since each terminal vertex, represented as a d-path, has the identifier for its coun-

terpart at the opposite end of the chain, A single communication round with message size

|C| is sufficient to “traverse through the chain”.

We first present a compressed chain representation that facilitates predicate evaluations

on chains under the assumptions above. We also describe the algorithm for converting the

ordered vertices to this compressed structure. The algorithms for detecting the bubbles

and dead-ends are presented next, as well as the approach for removing them from the

graph. Finally, once these structures are modified in the graph, new chains may formed.

We describe an optimized algorithm for re-compacting the chains.

5.4.1 Compressed Chain Representation With Frequency Metadata

To detect the three types of erroneous topologies, we begin by first computing a compressed

representation of the chains along with summaries of their metadata. Generation of com-

pressed chain representation is summarizing activity, thus a Level 2 operation in the Bruno

Library.

Our compressed representation, c-path for chain-path, is defined as

〈 m̈j j−1,mj, m̈j l, m̈j l+1, djl, fqmj
, fmjr〉 (5.4)

where mj is the chain representative k-mer as defined in Section 4.2.4. The k-mers mj
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and m̈j l correspond to the two terminal vertices of a chain, while djl is the length of the

chain. The k-mer m̈j j−1 and m̈j l+1 are the 5’ and 3’ neighbors of mj and m̈j l, respectively.

The values fqmj
and fmjr correspond to the edge, or (k+1)-mer frequencies of the edges

represented by ( m̈j j−1,mj) and ( m̈j l, m̈j l+1). Positive values indicate that the edges exist,

while 0 indicates that the edge does not exist, and the corresponding k-mer is undefined.

All k-mers are on the same strand as as mj .

The information needed to populate the c-paths are contained in d-paths of the chain

terminal vertices, in chain map. Recall that d-paths are defined in Equation 4.2 as

p̂ijl = 〈 m̈j i, dij, m̂j, djl, m̈j l〉

For terminal vertex, at least one of dij and djl is 0. Suppose dij == 0, then m̂j is the

5’ terminal vertex. The k-mer m̈j i either represents a branch vertex, or is identical to m̂j if

m̂j) does not have a 5’ edge. The distance djl is then length of the chain, and m̈j l represent

the 3’ terminal vertex of the chain. The chain representative is the lexicographically smaller

of m̂j and the reverse complement the 3’ k-mer rc( m̈j l).

Similarly, if djl == 0, then m̂j is the 3’ terminal vertex. The k-mer m̈j l is either a

branch vertex or identical to m̂j . The value dij is the length of the chain, and m̈j i is the 5’

terminal vertex of the chain. The chain representative is the lexicographically smaller of

the reverse complement of the central k-mer rc(m̂j) and the 5’ k-mer m̈j i.

A d-path therefore has sufficient information to fill 3 of the 4 k-mers in a c-path, specifi-

callymj and m̈j l, and one of m̈j j−1 or m̈j l+1. The chain length djl can be directly populated

as well. The frequencies fqmj
, fmjr are present in G, provided that the frequency metadata

for each vertex is stored in the graph, and can be retrieved via queries for the vertices mj

and m̈j l.

The compressed chain representation generation algorithm leverages two properties.

First, two terminal vertex d-paths of a chain yield identical chain representative k-mers by
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definition, regardless of the distribution of the d-paths to the processors. This provides a

way to re-order the terminal vertices, or alternatively the corresponding c-paths.

Second, since G and C are stored in distributed hash tables with identical top level

hash function, the k-mers used as hash keys are identically distributed among the proces-

sors. Querying in G for edge frequencies of the central k-mer from a k-path therefore can

proceed locally without communication.

Algorithm 5.3 outlines the process to construct the c-paths for all chains in C. Subscript

i indicates the subset of data on processor i. We begin by iterating over all compacted chain

vertices in Vc, and selecting terminal vertices with 0 as one or both of the distance values.

The selected terminal vertex d-path is used to partially fill a c-path, including the edge

frequency retrieved from the local hash table in G.

The partially populated c-paths are then parallel sorted by comparing the chain repre-

sentative k-mersmj , with the objective of grouping the c-paths for the same chain together.

A linear scan then can be used to merge two successive c-paths with identical mj together,

forming complete c-paths that each represents a compressed chain.

We note that the first step in the algorithm conditionally operates on each chain vertex

and therefore can be implemented using Bruno’s Level 1 find operation coupled with

a transformation. The compressed chain representation generation is itself considered a

Bruno Level 2 operation.

COMPLEXITY ANALYSIS Identifying chain terminal vertices and converting the d-paths

to c-paths require O(|Vc|/p) time to scan through the input and produces 2|C|/p number

of c-paths, two for each chain. Since frequency value retrieval is local using a hash table,

2|C|/p local queries each with expected O(1) time for a query complexity of O(|C|/p).

Parallel sorting using distributed memory sample sort requires O(|C|/p log(|C|/p)) for lo-

cal computation and O(τp + µ(p + |C|/p)) time for communication. The final merge

requires 2|C|/p time. The algorithm, when compared to sequential traversal of chain ver-

tices, reduced the communication volume from O(|Vc|/p) to O(|C|/p) and the number of
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Algorithm 5.3 Construct Compressed Chain Representations
1: function TO COMPRESSED CHAINS(Vc, G)
2: Qi ← empty array for c-paths

. Construct partial c-paths from d-paths
3: for d-path v ∈ Vc do
4: if v.dij == 0 then . 5’ terminal
5: c← newc-path
6: if v.m̂j is chain representative then
7: copy k-mers in v to the first 3 k-mers in c
8: c.djl ← v.djl
9: c.fqmj

← G.find(v.m̂j) in edge frequency
10: else
11: copy k-mers in rc(v) to the last 3 k-mers in c
12: c.djl ← v.djl
13: c.fmjr ← G.find(v.m̂j) in edge frequency
14: end if
15: append c to Qi

16: else if v.dij == 0 then . 3’ terminal
17: c← newc-path
18: if rc(v.m̂j) is chain representative then
19: copy k-mers in rc(v) to the first 3 k-mers in c
20: c.djl ← v.dij
21: c.fqmj

← G.find(v.m̂j) out edge frequency
22: else
23: copy k-mers in v to the last 3 k-mers in c
24: c.dij ← v.dij
25: c.fmjr ← G.find(v.m̂j) out edge frequency
26: end if
27: append c to Qi

28: end if
29: end for
30: parallel sort Qi by chain representative v.mj

31: Q′i ← empty array for c-paths
32: for idx← 0, (|Qi| − 2) do
33: if Qi[idx].mj == Qi[idx+ 1].mj then . 2 partial c-paths for the same chain
34: c′ ← merge(Qi[idx], Qi[idx+ 1])
35: append c′ to Q′i
36: end if
37: end for
38: return Q′i
39: end function
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communications rounds to 1.

5.4.2 Dead-end Detection and Removal

Chains that are dead-ends have c-paths with exactly one zero-valued edge frequencies,

fqmj
or fmjr. Detecting such chains requires a local linear scan of the set of c-paths in

O(|C|/p) time. User specified predicates, such as a frequency threshold for the non-zero

edge frequency and/or chain length, can be applied during the linear scan.

The Bruno library provide separate operations for the detection of dead-end chains and

the removal of the chains. The detection operation returns the set of matching c-paths are

returned. An application can then apply further logic or transforms to the list of dead-end

chains.

Removal of dead-end chains involves severing the edge connecting the dead-end chains

from the rest of the graph and potentially removal of the chain vertices from the graph G

and the chain map C.

Dead-end chains can be severed via the Level 1 distributed erase edges operation

with the chain-to-branch edges as the parameters. A linear scan and transform of the set

of dead-ends generates the required k-mer pairs, which are then used directly with the

erase edges operation.

To remove all dead-end chain vertices from G and C, a distributed hash table with all

chain representatives can be created. We then perform a distributed exists query using

the chain representative k-mer of each chain vertex in Vc. If the chain representative exists

in the temporary hash table, then the corresponding chain vertex is to be removed from C

via the local erase operation. The k-mers of the matched vertices are used as input for

G’s Level 1 erase node operation.

Dead-end detection is considered a Bruno Level 3 operation. Similar logic applies to

isolated chains, where both edge frequencies in a c-path are zero-valued.
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5.4.3 Bubble Detection and Removal

A bubble consists of two or more chains with non-zero edge frequencies fqmj
and fmjr in

each chain, and common first and last k-mers m̈j j−1 and m̈j l+1 for all chains involved. To

detect the presence of bubbles, we need to reorder the compressed chain c-paths based on

these k-mers.

The bubble detection algorithm proceeds in 2 steps. First the c-paths are parallel sorted

using the following comparator for establishing a custom less than relationship:

f(x, y) =


true, (x. m̈j j−1 < y. m̈j j−1) ∨ ((x. m̈j j−1 == y. m̈j j−1) ∧ (x. m̈j l+1 < y. m̈j l+1))

false, otherwise

where x and y are two c-paths being compared.

After sorting, c-paths with common first and last k-mers m̈j j−1 and m̈j l+1 are grouped

together. A linear scan through the sorted c-paths then identifies chains in a potential bub-

ble. Application-specific logic can be applied to the group of chains sharing the same

branch vertices. For example, the chains may additionally need similar lengths to qualify

as bubbles. Bubbles formed by erroneous k-mers and those formed from sequence vari-

ation such as single nucleotide polymorphism (SNP) can be differentiated at this point as

well by comparing the relative edge frequencies of the bubble chains.

The bubble detection operation returns the set of c-paths representing all chains in all

bubbles. Application specific logic can then be applied to the results, for example to correct

the erroneous chain by alignment and merging the paths. Removal of one or more chain

in a bubble can be accomplished following the same process as described in Section 5.4.2,

through the use of Bruno Level 1 erase edges and erase nodes operations.

The bubble detection algorithm is considered a Bruno Level 3 operation. Parallel sort-

ing has complexity O(|C|/p log(|C|/p)) for local computation and O(τp + µ(p + |C|/p))

time for communication. Comparison of successive c-paths in the sorted array to identify

130



chains sharing the same neighbor branch vertices requires O(|C|/p) time.

5.4.4 Graph Re-compaction

The deletion of edges and vertices corresponding to dead-ends and simple bubbles can

transform a branch vertex in to a chain vertex, and disconnect a chain terminal from its

branch neighbor thus forming a dead-end terminal. The change in graph topology implies

that existing chains that previously was separated by a branch vertex may now be merged

via a newly converted chain vertex. In this case, it is useful to re-compact the graph and

chains to reflect the new topology.

We note that in the error detection and removal process, no new edges are introduced,

thus no new branch vertices can form. Bruno operations only need to be concerned with

the addition of new chain vertices and not their removal.

Complete Graph Re-compaction

The Bruno library provides two different re-compaction mechanisms with different appli-

cabilities. The first directly applies the process outlined in Chapter 4. After the graph is

modified, the chain map C content is replaced with the current set of chain nodes in G, and

the vertices re-ordered using Algorithm 4.2.4.

The advantage of this approach is that it can be applied after most if not all types of

topological changes, for example splitting a chain. Its disadvantage lies in the compu-

tational and communication performance. Each invocation after graph modification re-

constructs the chain map, thus operating on |Vc| chain vertices with O(log(|C|max)) com-

munication rounds. If branch vertices are converted to chain vertices, |Vc| increases. If

chains merge, then |C|max potentially can increase as well.
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Hierarchical Graph Re-compaction

For topological modifications that are applied only at branch vertices and edges between

branch vertices and chain terminals, such as dead-end and bubble removal, we propose a

more efficient, hierarchical re-compaction algorithm.

The optimized re-compaction algorithm is based on the observation that vertex ordering

is an associative operation, and applies to the constrained scenario where the graph modi-

fication is applied after a previous chain compaction, and modifications are limited to only

removal of edges between chain terminal vertices and the associated branch vertices in G.

Lemma 3. Vertex ordering is an associative operation.

Proof. Let ci, cj , and cl be three chain vertices. Let dij , djl, and dil be the distances between

(ci, cj), (cj, cl), and (ci, cl) pairs in the final compacted chain. Without loss of generality

let cj lie on the vertex sequence from ci to cl. The distances then satisfies the relationship

dil = dij + djl.

The vertex ordering algorithm (Algorithm 4.1) updates the d-path of cl with a new distal

vertex m̈l i and new distance dil during in each iteration. Since the new distal vertex is

chosen to be vertex at exactly dil vertices from cl, the choice of the distal can be considered

a function of dil.

As the distance calculation is based on addition, and addition is an associative operator,

vertex ordering is an associative operation.

Corollary 3. Internal chain vertices can be updated using the d-paths of the previous chain

terminal vertices.

Proof. Let Ct be a compacted chain with ordered vertices at some time t. Let ct i and

ct l be terminal vertices of Ct . Let ct j be an internal chain vertex with d-path pt ijl =

〈 m̈j i, dij, m̂j, djl, m̈j l〉.

Without loss of generality let Ct be extended at time t+1 from the terminal ct l to the

new terminal vertex ct+1 q. The vertex ct l then becomes an internal vertex with d-path
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pt+1 ilq = 〈 m̈l i, dil, m̂l, dlq, m̈l q〉. The d-path for the internal vertex ct+1 j is correspondingly

pt+1 ijq = 〈 m̈j i, dij, m̂j, djq, m̈j q〉.

By Lemma 3, the vertex ordering operation is associative and pt+1 ijq can be computed

from its d-path at time t, pt ijl, and the updated d-path of vertex cl at time t+ 1, pt+1 ilq.

Graph modifications are limited to the removal of edges between the chain terminal

vertices and branch vertices in G with two possible effects to chain terminals. First, a

terminal vertex previous connected to a branch vertex may become disconnected. In this

case, no topological change occurs at this terminal vertex. Alternatively, a branch vertex

connected to a chain terminal vertex at time t may become a chain vertex itself at time t+1

as some of its edges are removed. In this the chain will be extended by the former chain

vertex.

Based on Corollary 3, chain internal vertices can be updated after the terminal vertices

have been updated with new connectivity information, for example from a separate chain

compaction and vertex ordering process involving only terminal vertices and any newly

formed chain vertices. This forms the basis for our optimized algorithm shown in Algo-

rithm 5.4.

The first step in the algorithm copies all terminal d-paths from C into an empty hash

table D while resetting the the terminal distances. Any recently modified vertices from G

are inserted into D if they are chains. Neighbors of current branches in G are then updated

in D.

The standard vertex ordering algorithm (Algorithm 4.1) is then applied to order and

compact the termini in the presence of newly converted chain vertices, thus extending and

merging teh chains.

Finally, the internal d-paths in C are updated with the distances and distal k-mers from

the d-paths in D, and the new D with new and updated vertices are merged back into C. We

note that this is enabled by the associativity of the vertex ordering operation. Additionally,

the internal d-path updates can be delayed until after the last pass in an iterative error
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Algorithm 5.4 Re-compact the chains in a modified graph
1: function RE COMPACT(C, G, modified vertices in G)

. Extract terminal vertices from compacted chains
2: D← terminal vertices in C
3: for d-path c ∈ D do
4: reset c distances: if 0, reset to 1.
5: else, mark as pointing to internal node
6: end for

. Check modified vertices and insert in D if chain
7: for v ∈ modified vertices in G do
8: if v is a chain vertex then
9: transform v into a d-path and insert in D

10: end if
11: end for

. Mark neighbors of branch vertics as terminal (Section 4.3.4)
12: Qi ← empty array of k-mers
13: for d-path c ∈ D do
14: append distal k-mer of c in Qi.
15: end for
16: Pi ← G.find(Qi)
17: for vertex v ∈ Pi do
18: if neighbor of v is in D then
19: Update D to mark matching d-paths as terminal.
20: end if
21: end for

. Re-compact the previous terminal vertices
22: Invoke Algorithm 4.1 with D

. Update previous internal vertices
23: Qi ← empty array of k-mers
24: for d-path c ∈ C do
25: append c’s distal k-mers to Qi.
26: end for
27: Hash table Ri ← D.find(Qi)
28: for d-path c ∈ C do
29: update c with d-paths in Ri.
30: end for
31: merge D into C, overwriting.
32: return C
33: end function

removal process, as long as all terminal vertices from the initial d-path set C are updated

during each invocation of Algorithm 4.1 within Algorithm 5.4.

One adjustment that is necessary for Algorithm 4.1 relates to cycle detection and thus
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the stopping criteria for the iterative vertex ordering algorithm. Cycles can occur after

dead-end and bubble removal.

In Section 4.2.6, potential cycle nodes are identified as having values 2t during itera-

tion t for both d-path distances dij and djl. As the distances in D are the chain lengths

from a previous compaction, this condition does not generally hold during re-compaction.

The core parallel list ranking algorithm (Algorithm 4.1) is agnostic of variations in vertex

lengths and therefore can be re-used.

We adopted an alternative stopping criteria for re-compaction: re-compaction stops

when the counts of semi-finished d-paths in D becomes zero, at which point all chain ver-

tices are marked as finished while the cycle d-paths remain as unfinished.

COMPLEXITY ANALYSIS The re-compaction algorithm reduces run time in two ways.

First, the iterative vertex ordering algorithm, Algorithm 4.1, which employs multiple round

of communication, uses a reduced message size, from |Vc|/p in the full compaction to the

number of terminal vertices plus up to 2 newly formed chain vertices per chain, totaling

4 ∗ |C|. Second, the number of communication rounds in Algorithm 4.1 is reduced from a

function of the maximum chain length after error removal pass t, O(log(| Ct |max)), to the

maximum number of chains to be merged, which is function of the overall graph topology.

The first step of Algorithm 5.4 locally extracts the existing terminal d-paths from C in

linear time O(|Vc|/p). Modified vertices in G are identified by k-mers from the dead-ends

and bubbles. At most 4 vertices are modified per chain. The k-mers are distributed to the

processors based on G’s hash function in O(|C|/p+ τp+µ|C|/p time. The corresponding

vertices are extracted from G locally in O(|C|/p) time and inserted into D. Let the set of

d-paths in D be Vd, which is o(|C|).

To mark the branch neighbors as terminal, the distal k-mers, which represent potential

branch vertices in G, are used to query and retrieve the vertices, and the results used to

update the d-path distances in D. The distal k-mer extraction and later terminal updates

require O(|Vd|) time, while communication and query require O(|Vd|/p + τp + µ|Vd|/p)
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time.

Algorithm 4.1 invocation uses requires rounds of communication equal to the maxi-

mum number of chains that at merge into a new chain, each iteration operating on at most

O(|Vd|/p) d-paths.

The final update requires a distributed query into D using the distal k-mers of the inter-

nal d-paths in C, and therefore has complexity equal to O(|Vc|/p+ τp+ µ|Vc|/p).

Overall, only the first step, where the terminal d-paths are extracted, and the last step,

where internal d-paths are updated, require processing all |Vc| chain vertices. These steps

only need to be executed once for a multi-pass error removal process. The remaining steps

all operate with the terminal vertices and their (formerly) branch neighbors, thus have data

size of |Vd| ≈ |C|, approximately equal to the number of initial chains. For the case

where the only edges modified are between chain terminal vertices associated branches,

Algorithm 5.4 is significantly more efficient in run-time complexity compared to the full

compaction algorithm.

5.5 Summary

In this chapter we described the error correction algorithms that identifies and removes er-

roneous structures based on frequency or local graph structures such as bubbles and dead-

ends. We presented an optimized algorithm to filter (k+1)-mers based on frequency during

graph construction that requires no additional communication rounds over graph construc-

tion, and performs the filtering in time proportional to the number of distinct rather than all

(k+2)-mers.

For graph-structure based error removal, we presented an algorithmic and library frame-

work that supports user-defined predicates. The predicates are applied to the compressed

chain representations of previously compacted chains to identify the chains that are poten-

tially erroneous. We showed how such a framework supports the detection of dead-ends

and bubbles.
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We also presented an optimized algorithm for re-compacting of chains post error re-

moval. The algorithm has run time proportional to the number of chains rather than the

number of chain vertices in the graph, and requires rounds of communication proportional

to the maximum number of chains merged. Iterative application of the erroneous struc-

ture detection and removal provide a mechanism for identifying and handling erroneous

structures in the graph.
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CHAPTER 6

DE BRUIJN GRAPH PERFORMANCE EVALUATION

In this chapter, we evaluate the work presented in Chapters 4 and 5. We assessed the

run-time performance of our algorithm in three aspects: (1) effects of parameters, (2) de-

tailed performance characterization, and (3) parallel scalability and comparison with state-

of-the-art existing tools in distributed and shared memory environments. In addition, we

examine the effects of input parameters, including value of k and frequency thresholds.

While such parameters are ultimately chosen based on application requirements and target

data characteristics, choices within allowable value ranges can have a significant impact on

computational performance and/or output quality.

In the following sections we evaluate the de Bruijn graph construction, compaction,

and error removal functionalities. Each section includes, as appropriate, performance char-

acterization, parameter studies and scalability results in distributed and shared memory

environments. We then compare the performance of Bruno’s construction and chain com-

paction to existing tools in both distributed and shared memory settings. Finally, we eval-

uate the quality of the generated unitigs, including effects of error removal with different

parameters.

6.1 Experimental Configuration

The data sets used for our evaluations are detailed in Table 6.1. All data sets contain NGS

paired end reads. Data set A is a subset of the Iowa cornfield soil metagenome data set from

the Joint Genome Institute project 402461. Data set B corresponds to reads associated with

human chromosome 14, and is obtained from the test data sets for HipMer. Data set E was

used by AllPaths-LG [53], and consists of sequencing output of two experiments in project

SRP03680 that led to data set D. Data set F, G, H, and I is from the GAGE project [93].
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Table 6.1: Data sets used for experiments. All data sets contain paired end reads in FASTQ format, and all reads are of DNA sequences.
Id Accession Organism Individual Sequencer No. Reads Read Len Size (GB)

A SRP081657 Iowa corn field soil metagenome subset
Genome

132,783,552 76 - 114 30.4
Analyzer II/IIx

B SRP003680 H. sapien
CEU HapMap NA12878

HiSeq 2000 62,220,801 101 10.0
Chr 14

C SRR2842672 H. sapien CHM1htert cell line HiSeq 2500 462,468,962 125 155.3
D SRP003680 H. sapien CEU HapMap NA12878 HiSeq 2000 2,873,524,171 101 694.8

E
SRX027713

H. sapien
CEU HapMap NA12878

HiSeq 2000 1,591,644,480 101 311.0
SRX027583 subset

F
SRR022868

S. aureus GAGE
Genome 1,294,104 101 0.29

SRR022865 Analyzer II 3,494,070 37 0.35

G
SRR081522

R. sphaeroides GAGE
Genome 2,050,868

101
0.47

SRR034528 Analyzer II 2,050,868 0.46

H SRP003680 H. sapiens GAGE, NA12878 HiSeq 2000
36,504,800

101
8.3

222,669,408 5.2
2,405,064 76-101 0.52

I
Keck Center

B. impatiens GAGE
Genome 303,118,594

124
98.3

Biotech. Center Analyzer IIx 129,118,270 42.5
Univ. Illinois 65,081,280 21.1
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Systems used in our experiments are detailed in Table 6.2. Parameter study and perfor-

mance characterization experiments were conducted on CyEnce at Iowa State University

and Swarm at Georgia Institute of Technology. Distributed-memory experiments were con-

ducted on Edison , a Cray XC30 supercomputer at the National Energy Research Scientific

Computing Center (NERSC), and Swarm . Shared-memory experiments were performed

on CompBio at the Georgia Institute of Technology using MPI with 1 core dedicated to

each process.

Table 6.2: Systems used for performance evaluations and comparisons.
System CompBio CyEnce Swarm Edison

CPU Xeon E7-8870 Xeon E5-2650 Xeon E5-2680 v4 Ivy Bridge
Cores 4× 18 2× 8 2× 14 2× 12

Memory 1TB DDR4 128GB DDR3 256GB DDR4 64GB DDR3
Network (Shared Mem) QDR InfiniBand FDR Infiniband Cray Aries
Storage RAID 5 Lustre, 8 OST GPFS Lustre, 24 OST

Compiler GCC 5.3 GCC 5.2 GCC 4.9.4 GCC 6.1
MPI OpenMPI MVAPICH MVAPICH Cray MPICH

1.10.2 2.1.7 2.3b 7.4.1

Each experiment was repeated at least three times. The maximum wall-times from all

processors were collected, and the minimum times amongst the repeats are reported as

they more closely represent the capabilities of the systems. Where applicable, input and

output files were striped across all available Lustre OSTs with default block size (typically

1 MB). Our code is compiled using compiler flags -O3 -march=native in order to

enable maximum SIMD support.

6.2 de Bruijn Graph Construction

We begin with evaluation of the de Bruijn graph construction process. In this section, we

examine the effects of k-value on construction speed and scalability. We also evaluate the

impact of the bottom-up frequency-based error filtering as it is applied during the construc-

tion phase. We then evaluate the performance and scalability of our communication and
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computation minimizing construction algorithm. For all experiments, the initial file read-

ing times were excluded in order to exclude any file system noise and changes in behavior

over time.

6.2.1 Parameter Studies

We evaluated the impact of varying parameters including k-mer length and frequency

threshold on graph construction performance.

k-mer Length

Table 6.3: Total number, in billions, of k-mers, (k + 1)-mers, and resulting graph vertices
and chain vertices, and the number of chains identified in data set E for k ∈ {15, 21, 31, 63}.

total
k k-mers (k+1)-mers vertices

15 51.25 50.79 0.38
21 48.48 48.02 2.32
31 43.86 43.40 2.55
63 29.09 28.62 2.74

We used 64 CyEnce nodes with a total of 1024 cores, data set E, and f = 2 for

k ∈ {15, 21, 31, 63}. We expect the number of distinct k-mers to increase with k with an

upper bound of max(|D|, 4k), where |D| is the target genome size. As k increases, the

number of k-mers parsed from each read, L − k + 1, where L is the length of a read, is

expected to decreases linearly. Similarly for (k+1)-mers. Table 6.3 summarizes the k-mer,

(k + 1)-mer, and graph vertex for data set E, which reflect these expectations.

The number of k-mers and (k + 1)-mers directly impact the performance of graph

construction. Figure 6.1a shows that the construction time decreased from 50.0 seconds

to 42.7 seconds as k increases from 15 to 63, due to decreases in the number of k-mers

and (k + 1)-mers. This is despite the fact that 63-mers require two 64 bit machine words

with concordant higher costs of representation, hashing, and comparisons when compared

to 15-, 21-, or 31-mers.
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(a) Varying k, Construction

(b) Varying frequency threshold f , Construction

Figure 6.1: Effects of varying k and filter frequency on the performance of graph construc-
tion for data set E on 1024 cores. (6.1a): The line shows the time for construction while the
bars show the number of k-mers and k + 1-mers, varying k and setting f = 2. (6.5a): The
line shows the time for construction while the bars show the number of chain vertices in
the graph, varying f and setting k = 31. (6.5b): the line and bars depict the same entities
as 6.5a.

Frequency Filtering Thresholds

We next examine the impact of varying the frequency threshold for excluding erroneous

edges as described in Section 5.3.1. We note that edges in the graph correspond to (k+ 1)-

mers in the read set. Thus erroneous vertices and edges are excluded as a consequence of

filtering the (k + 1)-mers. This study was conducted using 64 CyEnce nodes with a total
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of 1024 cores, data set E, k = 31, and frequency thresholds f ∈ {0, 1, 2, 3, 4, 8}. Note that

for f ∈ {0, 1} effectively all (k + 1)-mers are kept, and for f = 0 the filtering process is

bypassed.

Table 6.4: Total number, in billions, of filtered k-mers and (k + 1)-mers, and the resulting
graph vertices and chain vertices, and the number of chains identified in data set E for
frequency threshold f ∈ {1, 2, 3, 4, 8}.

filtered distinct filtered
f (k+1)-mers k-mers vertices

1 5.70 43.86 5.63
2 2.57 40.77 2.55
3 2.51 40.66 2.49
4 2.47 40.56 2.46
8 2.20 39.01 2.20

Table 6.4 summarizes the effects of varying frequency threshold for erroneous (k+ 1)-

mer filtering. Filtered distinct (k + 1)-mer refers to distinct (k + 1)-mers with frequency

greater than or equal to the specified threshold, whereas filtered k-mers refer to all k-mers

from the read set that are prefixes or suffixes in filtered (k + 1)-mers. The number of

(k + 1)-mers, distinct (k + 1)-mers, and k-mers for data set E and k = 31 are 43.40, 5.70,

and 43.86 billion, respectively. As expected, increasing f decreases the number of filtered

distinct (k + 1)-mers, filtered k-mer, and consequently graph vertices.

Since the runtime and complexity of frequency filtering and graph construction are

dominated by communication and processing of the unfiltered (k + 1)-mers and k-mers,

they are not significantly affected by the frequency threshold as the graph construction

time with frequency filtering, as shown in Figure 6.1a. The construction time remained at

approximately 61 seconds for f > 0. We note, however, that the filtering process imposes

a significant overhead such that bypassing filtering reduced graph construction time to 24.5

seconds.
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6.2.2 Optimized Frequency Filtering

In Section 5.3.2, we proposed an optimized algorithm for bottom-up frequency-based er-

ror removal. The algorithm minimizes communication as well as reducing the data size

during the actual filtering process. We compare the performance of the naı̈ve algorithm

(Algorithm 5.1) with the optimized algorithm (Algorithm 5.2).

We constructed the de Bruijn graph for data set H with k = 31 and frequency threshold

f = 4 on the CompBio and Swarm systems. On CompBio , we used from 4, 8, 16, 32,

and 64 cores. The MPI implementation used memory copy for data movement. We then

repeated the experiment on Swarm with 2, 4, 8, 16 and 32 nodes with 16 cores per nodes.

Here the MPI implementation used FDR Infiniband for communication. We also processed

data set I using 8, 16 and 32 Swarm nodes.
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Table 6.5: Performance of optimized bottom-up frequency-based filtering on construction time. The experiments were conducted using
k = 31, f = 4 on data set H

CompBio - data set H Swarm - data set H Swarm - data set I

cores naı̈ve optimized speedup cores naı̈ve optimized speedup cores naı̈ve optimized speed up
4 552.00 342.66 1.61 32 79.99 46.92 1.70
8 282.20 172.12 1.64 64 45.19 25.88 1.75
16 151.68 92.76 1.64 128 22.93 12.98 1.77 128 216.83 116.06 1.87
32 80.30 48.19 1.67 256 11.96 6.43 1.86 256 110.05 58.43 1.88
64 48.68 28.72 1.69 512 7.12 3.23 2.21 512 58.91 30.44 1.94
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Table 6.5 shows that on a shared memory system such as CompBio , Algorithm 5.2,

labeled “optimized” consistently outperformed the naı̈ve filtering algorithm by 61 to 69%.

The speed up is not strongly dependent on the core count in this case, suggesting that the

primary contribution to the speed up in the share memory case is the reduction in data

elements processed during filtering.

In distributed memory environment with data set H, we observed a more significant

speed up, between 70 and 121%. For lower core counts, the speed up was relatively con-

stant at just above 70%. With 256 and 512 cores, we reached 86% and 121% improve-

ment respectively, which may be the result of improved cache utilization with smaller per-

processor element count, and/or avoidance of communication with higher latency at larger

process count p. For data set I, the optimized algorithm compared to the naı̈ve algorithm

showed between 87 and 94% improvement.

6.2.3 Parallel Scalability

The experiments using data set H from Section 6.2.2 were also used for evaluating the scal-

ability of the graph construction algorithm with either the naı̈ve or the optimized frequency

filtering algorithms.

Figure 6.2 shows that graph construction with the naı̈ve bottom-up frequency filtering

scaled with 70% efficiency when the core count increased 16-fold from 4 to 64 on CompBio

and from 32 to 512 on Swarm . The parallel efficiency with the optimized filtering algo-

rithm improved only slightly than the naı̈ve version on CompBio , as the communication

takes place in memory. On Swarm , on the other hand, the optimized version performance

significantly better than the naı̈ve algorithm, maintaining over 90% efficiency. As stated in

Section 6.2.2, this is likely the combined result of cache efficiency and reduced communi-

cation.

The results shows that the optimized bottom-up frequency-based filtering performs sig-

nificantly better and can scale better than the naı̈ve approach. Subsequent experiments,
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(a) CompBio , Shared memory

(b) Swarm , Distributed memory

Figure 6.2: Scalability of graph construction algorithm, using the naı̈ve and optimized
bottom-up frequency-based filtering algorithms during construction time. The experiments
were conducted using k = 31, f = 4 on data set H. Bars depict construction and filtering
time (primary axis). Lines show parallel efficiency (secondary axis)

unless otherwise noted, used the optimized frequency filtering algorithm.
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6.3 Chain Compaction

We next evaluate the de Bruijn graph compaction process. We begin by characterizing

the dynamic behavior of our iterative chain compaction algorithm as it iteratively orders

the chain vertices. We next evaluate the performance of our communication minimizing

compaction algorithm. We then study the impact of k and f values on the performance of

our algorithm, and finally the scaling behavior of the compaction algorithm.

6.3.1 Performance Characterization

We first assess the progression of the chain compaction algorithm. For these experiments,

8 CyEnce nodes were used for a total of 128 cores. We specified data set A as input,

k = 31, and frequency threshold of f = 2. We include only time for chain compaction in

this analysis.

As described in Section 4.2, the chain compaction process has 3 primary steps: chain

vertex extraction, iterative vertex ordering, and collective unitig generation from chains.

The number of iterations used by vertex ordering is a function of the length of the longest

chain, while the performance of each iteration is determined by the number of unfinished

d-paths during that iteration.

Figure 6.3a shows the average number of semi-finished d-paths and unfinished d-paths

per core at the start of each vertex ordering iteration. As the iterations progress, d-paths

are marked as finished as chains are compacted. We note that the rate of change depends

on the distribution of chain lengths in the data set, in this case a significant number of d-

paths became finished during iterations 4 through 7. During iterations 9 through 12, only a

small number of active d-paths remain. The communication and computation are balanced,

as the standard deviation of the unfinished d-path counts represents less than 0.05% of the

active d-paths in each of the first 6 iterations, less than 0.5% in the first 9 iterations, and less

than 4.4% in all 12 iterations. The increased load imbalance during later iterations does not
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Figure 6.3: Detailed characterization of the chain compaction algorithm using data set A,
k = 31 and f = 2 on 128 cores. (6.3a): The average number of semi-finished chain d-
paths and unfinished d-paths per core during each iteration of vertex ordering. The line
shows the standard deviation of the number of active d-paths as a percentage of the average
active d-path count per core. (6.3b): Reduction of number of updates through selective
exclusion of unproductive s-paths. (6.3c): Improvements in vertex ordering execution time
per iteration. The “map” step rearranges data elements, the “send” step communicates the
data to the remote processes, while the “update” step performs the d-path updates locally.

significantly influence the total run time as the number of remaining active d-paths is small

compared to the initial counts, in this case between 4 and 5 orders of magnitude smaller in

iterations 10 through 12.
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6.3.2 Communication Reduction in Compaction

The number of s-paths correlate directly to the number of active d-paths. In Section 4.3.6

we outlined an approach to reduce communication volume during vertex ordering, by se-

lectively constructing s-paths only when they produce meaningful remote updates. In this

section we examine the effect of this optimization. We compare the performance of vertex

ordering iterations with and without optimization using data set A, k = 31, and f = 2, on

8 CyEnce nodes with a total of 128 cores.

Figure 6.3b shows that the optimization reduced the number of s-paths per core. The

maximum reduction occurred during iteration 5 at 3.1 million or 29.4%, and at least 1

million during iterations 3 through 6. The reduction in the number of s-paths impacts both

the communication volume as well as the computation required to perform remote updates.

Figure 6.3c shows the time required to assign (map()), distribute (send()) the s-paths to

processors, and to modify the chain d-paths based on received s-paths (update()). The

send() step, representing communication, required the largest amount of time in each

iteration, closely followed by the time for update(). In each iteration, the time used

for each step is reduced significantly, with the largest reduction of 1.84 seconds or 29.8%

during iteration 5.
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Figure 6.4: Chain compaction execution time in seconds on 128, 256, 512, 1024 cores,
comparing the naı̈ve and optimized implementations. The three steps of chain compaction
are separately depicted. Data set A was used with k = 31 and f = 2.
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The effect of this optimization on communication and consequently total running time

is assessed by extending the experiment from 8 to 16, 32, and 64 CyEnce nodes, with total

of 256, 512, and 1024 cores. Figure 6.4 shows the execution times for the chain vertex ex-

traction, ordering, and unitig generation steps as described in Section 4.3. While the chain

vertex extraction and output times remained unchanged, the iterative vertex ordering times

were reduced by 16.8%, 20.3%, 18.5%, and 16.7% for 128, 256, 512, and 1024 cores re-

spectively. Based on these results, all subsequent experiments employed this optimization.

6.3.3 Parameter Studies

As with graph construction, We evaluated the impact of parameters including k-mer length

and frequency threshold f on chain compaction performance. The effects of k on the

number of total and distinct k-mers as well as the number of graph vertices on data set E

are summarized in Table 6.3. Similarly Table 6.4 shows the number of k-mers and (k+1)-

mers post-filtering.

k-mer Length

We used 64 CyEnce nodes with a total of 1024 cores, data set E, and f = 2 for k ∈

{15, 21, 31, 63}. As graph vertices represent k-mers and edges (k+ 1)-mers, and the prob-

ability of multiple (k+1)-mers sharing the same k-prefix (or suffix) decreases with increas-

ing k, we expect the number of chain vertices to increase, the number of branch vertices to

decrease, and the lengths of the chains to increase while the number of chains to decrease.

Table 6.6 complements Table 6.3with the numbers of chain vertices and total chain counts

as k is varied for data set E.

The performance of chain compaction is influenced by both the total number of chain

vertices (Table 6.3) and the number of iterations t, which is related to the maximum chain

length by t = dlog(|C|max)e. Chain compaction of the de Bruijn graph for data set E

required 6, 12, 15, and 15 iterations for k = 15, 21, 31, 63, indicating that the length of the

151



Table 6.6: Total number, in billions, of graph vertices and chain vertices, and the number
of chains identified in data set E for k ∈ {15, 21, 31, 63}.

total chain chains
k vertices vertices

15 0.38 0.10 0.060
21 2.32 2.25 0.087
31 2.55 2.52 0.043
63 2.74 2.73 0.019
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Figure 6.5: Effects of varying k and filter frequency on the performance of chain com-
paction for data set E on 1024 cores. (6.5a): The compaction time (line) and chain vertex
count (bars) for varying k and fixed filter frequency f = 2. (6.5b): The compaction time
(line) and chain vertex count (bars) for varying frequency thresholds and fixed k = 31.

longest chain increased with k. As a consequence, the chain compaction times increased

with k, from 1.26 seconds for k = 15 to 41.7 seconds for k = 63, as shown in Figure 6.5.

Frequency Filtering Thresholds

We next examined the impact of varying the frequency threshold on computational perfor-

mance. This study was conducted using 64 CyEnce nodes with a total of 1024 cores, data

set E, k = 31, and frequency thresholds f ∈ {1, 2, 3, 4, 8}. Note that for f = 1 effectively

all (k + 1)-mers are kept.

Table 6.7 complements Table 6.4 with the numbers of chain vertices and chains in the

graph for each of the tested f values. The number of chains decreased as f is increased to
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Table 6.7: Total number, in billions, of graph vertices and chain vertices, and the number
of chains identified in data set E for frequency threshold f ∈ {1, 2, 3, 4, 8}.

chain
f vertices vertices chains

1 5.63 5.47 0.240
2 2.55 2.52 0.043
3 2.49 2.47 0.033
4 2.46 2.44 0.030
8 2.20 2.18 0.033

4, but increased at f = 8, likely due to linear chains being broken by the removal of lower

frequency edges.

Chain compaction performance improves as f increases, as shown in Figure 6.5b. The

time for compaction decreased from 44.4 seconds for f = 1 to 36.8 seconds for f = 2

as the number of chain vertices more than halved from 5.47 to 2.52 billion, even while the

iteration count increased from 11 to 15. Frequency thresholds of 2, 3, 4 did not significantly

impact compaction time, as they shared similar number of chain vertices and identical

iteration counts. Thus for data set E, a significant portion of the erroneous (k + 1)-mer

have cardinality of 1. At f = 8, the compaction time further reduced to 27.7 seconds as

both the chain d-path count reduced significantly and the iteration count reduced to 14,

again likely due to chain breaking.

6.3.4 Parallel Scalability

We evaluated the scalability of the chain compaction and unitig generation process in both

shared memory and distributed memory environments. Data sets H was used with param-

eters k = 31 and f = 4 on CompBio , using 4, 8, 16, 32, and 64 cores. Data set H was

compacted with the same parameters on Swarm using 2, 4, 8, 16, and 32 nodes and 16 of

28 cores on each node.

Figure 6.6 shows that the graph compaction process with communication optimized

compaction algorithm scaled well in distributed memory environment and relatively well in
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Figure 6.6: Strong scaling behavior of Bruno for compacting de Bruijn graphs for the data
set H using 4, 8, 16, 32, and 64 CompBio cores and 2, 4, 8, 16, and 32 Swarm nodes with
16 allocated cores each. The value of k was set to 31, while f = 4.

shared memory environments. On CompBio , dominant component is the vertex ordering

step, while vertex extraction and file writing each requiring some non-trivial amount of

time. The vertex ordering step has parallel efficiency that decreased with increasing p,

down to 0.62 at 64 cores when compared to 4 cores. We note that at 64 cores on both

CompBio and Swarm , the vertex ordering step required approximately the same amount

of time, 7.16 and 7.35 seconds, suggesting that network communication may not be a

significant contributor, and that memory access latency may be a more important factor

based on observations from Chapter 3.

Scaling efficiencies on Swarm remained closed to 1 up to 256 cores on 16 nodes, and

dropped to 0.89 for the 512-core experiments. This again suggest that the compaction pro-

cess is compute or memory access bound, and network impact is relatively small. The file

system performance for Swarm showed strong contention with more than 128-cores, even

with the use of MPI-IO. Subsequent experiments involving Swarm will therefore report
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explicitly write times to the GPFS file system.

6.4 Comparisons to Existing Unitig Generation Tools

In this section we compare Bruno library’s performance for de Bruijn graph construction

and chain compaction to HipMer [9] and BCALM2 [59], two state-of-the-art software tools

for distributed and shared memory environments, respectively. Only frequency-based error

removal is included, as they are the only error removal capabilities provided by HipMer

and BCALM2. All Bruno experiments include the times for reading the input, constructing

and compacting the graph, generating unitigs, and writing the unitigs to disk, in order to

mimic the behavior of HipMer and BCALM2. For both sets of experiments, the reported

construction time used the naı̈ve construction algorithm.

6.4.1 Distributed Memory Comparison

155



Table 6.8: Running times in seconds, scaling, and relative speed-ups of our chain compaction algorithm (CC) and the corresponding
phases of HipMer (HM) for data sets B (human chromosome 14) and D (human whole genome) on Edison . Scaling values are
calculated as the ratio between the times for experiments using the minimal number of cores for a data set, and the number of cores
used by the current run. Relative speed-ups between CC and HM are calculated as the ratio between HipMer’s times and those of our
implementation using the same number of cores.

Time (s) Scaling Speedup
Construct Compact Total Construct Compact Total HM/CC

Cores CC HM CC HM CC HM CC HM CC HM CC HM Constr. Comp. Total

B 96 28.1 83.0 8.3 21.4 36.4 104.4 1.0 1.0 1.0 1.0 1.0 1.0 3.0 2.6 2.9
192 14.5 42.7 4.3 11.6 18.8 54.3 1.9 1.9 1.9 1.8 1.9 1.9 2.9 2.7 2.9
384 7.2 21.7 2.2 5.4 9.4 27.1 3.9 3.8 3.7 4.0 3.9 3.8 3.0 2.4 2.9
768 3.8 13.9 1.4 3.5 5.2 17.4 7.3 6.0 6.0 6.1 7.0 6.0 3.6 2.6 3.3

1536 2.3 15.5 0.8 2.1 3.1 17.7 12.4 5.3 10.3 10.0 11.9 5.9 6.9 2.7 5.8

D 960 178.1 463.7 44.3 107.6 222.4 571.3 1.0 1.0 1.0 1.0 1.0 1.0 2.6 2.4 2.6
1920 87.7 217.9 23.1 62.5 110.8 280.4 2.0 2.1 1.9 1.7 2.0 2.0 2.5 2.7 2.5
3840 44.4 126.1 12.6 35.8 57.0 161.9 4.0 3.7 3.5 3.0 3.9 3.5 2.8 2.8 2.8
7680 23.8 88.6 7.3 26.9 31.1 115.5 7.5 5.2 6.1 4.0 7.2 4.9 3.7 3.7 3.7
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HipMer [63, 9] is a distributed memory parallel assembler that is currently state-of-the-

art in computational performance. Its chain traversal approach is similar to the sparse ruling

set strategy for list ranking. Chain compaction in HipMer, the “meraculous” step, proceeds

by each processor selecting a random seed k-mer and extending it. When two processors

try to extend the same chain, one processor yields ownership of the chain. This approach

can suffer from frequent communication of small messages and high synchronization costs.

We compare the performance and scalability of our algorithm, referred to as CC (for Chain

Compaction) to the equivalent step, “meraculous”, in HipMer (HM) version 0.9.4.1, using

data sets B and D. HipMer was compiled using Berkeley UPC (bupc-narrow) 2.22.3 with

default compilation flags. Parameters for HipMer were left as default, and shared memory

was used for communication between its graph construction (ufx) and the “meraculous”

steps in order to avoid file I/O. HipMer’s execution times are extracted from “ufx” and

“meraculous” log files. We adopted HipMer’s default k and k-mer frequency threshold

values for our algorithm: k = 51 and f = 4. The compressed chains were written to disk

to mirror HipMer’s behavior. For data set B, nodes ranging from 4 to 64 are used, while

for data set D, nodes ranging from 40 to 320 are used. With 24-cores per Edison node,

this corresponds to tests on processor cores ranging from 96 to 1536 for data set B and

from 960 to 7680 for data set D.

To ensure that the performance evaluation are comparable, we verified that each tool

operated on approximately the same size graph and produced approximately the same num-

ber of unitigs. For data set D, k = 51 and f = 4, HipMer produced 2.829 billion graph

vertices and 22.29 million unitigs for data set D, while Bruno’s graph construction and error

filtering processes produced 2.815 billion vertices and 22.20 million unitigs, representing

differences of 0.49% and 0.4%.

Table 6.8 shows the running times and scaling behavior of our algorithm and HipMer

for both data sets B and D. Our algorithm completed construction and compaction for the

human chromosome 14 read set (B) in 2.3 and 0.8 seconds on 1536 cores, with speedups
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Figure 6.7: Execution time and parallel efficiency for HipMer and our algorithm on 960
to 7680 cores, using Edison and data set D. The bars represent the execution times for
graph construction and chain compaction, while the lines show parallel efficiency for chain
compaction only.

of 12.4× and 10.3× relative to the 96-core runs, and overall speedup of 11.9×. Our im-

plementation therefore achieved a parallel efficiency of 0.64 for chain compaction and 0.74

overall when scaling from 96 cores to 1536 cores. While HipMer achieved similar speedup

and parallel efficiency for unitig generation, its speed up of 5.9× translates to overall par-

allel efficiency of only 0.37. Our algorithm was consistently between 2.4× and 2.7× faster

than HipMer for chain compaction and is at least 2.9× faster end-to-end for all core counts.

For the human read set (D), our implementation completed graph construction and chain

compaction in 23.8 and 7.3 seconds on 7680 cores, representing speed ups of 7.5× and

6.1× respectively when compared to the running times on 960 cores, and a total speedup of

7.2× with 8× more cores. Parallel efficiencies of our algorithm were 0.76 for chain com-

paction and 0.9 overall at 7680 cores. In contrast, HipMer achieved speed ups of 4.0× for

chain compaction and 4.9× overall, with a parallel efficiency of 0.5 and 0.61 respectively.

Our implementation is up to 3.7× faster than HipMer at 7680 cores, and at least 2.4× faster

for graph construction, chain compaction, and overall times for all core counts. Figure 6.7

further illustrates that our algorithm consistently out-performs HipMer in absolute time and

parallel efficiency as core count increases.
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6.4.2 Shared Memory Comparison

BCALM 2 [59] is the state-of-the-art shared memory chain compaction tool that uses lexi-

cographically minimal substrings within each k-mer to partition the k-mers. Partitions are

stored on disk, and are compacted independently and in parallel, after which the chains

from different partitions are merged. We evaluated our algorithm and BCALM 2 (BC)

on CompBio with data sets B and C. For our algorithm, we treated CompBio as a dis-

tributed memory system and assigned one MPI process per core. We adopted the parame-

ters used in [59], k = 55 and f = 3. The compressed chains were written to disk to mirror

BCALM 2’s behavior. In contrast to our algorithm, BCALM 2 does not explicitly construct

a de Bruijn graph. We therefore measure and compare the total execution times for both

BCALM 2 and our algorithm.

For data set C, both the Bruno graph construction process and BCALM 2 produced

2.65 billion graph vertices or input k-mers. Bruno’s compaction algorithm generated 17.84

million unitigs and identified 9.49 million branch k-mers. BCALM 2, on the other hand,

produced 23.69 million unitigs. We note that based on the algorithm description in the

BCALM 2 publication, a branch vertex may be output as a unitig by itself or merged with

a 5’ or 3’ neighbor unitig if the connection is unambiguous. Assuming uniform distri-

bution for in- and out-degrees of branch vertices, the probability of encountering branch

vertices with 1 in-edge and more than 1 out-edges, or 1 out-edge and more than 1 in-edges,

is 12/21 = 0.57. This implies that of the 9.49 million branch vertices reported by Bruno,

9.49 ∗ 0.57 = 5.4 million k-mers may be merged by BCALM2 into unitigs, while the

remaining 4.09 million branch vertices may be reported as standard-alone unitigs. Includ-

ing this estimate into Bruno’s unitig count we arrive at 22.93 million unitigs, compared

to BCALM 2’s 23.69 million unitigs. Given the simplistic statistical assumption, the dif-

ference in adjusted unitig counts plausibly indicate that BCALM 2 and Bruno produce

equivalent results.

Table 6.9 shows the running times and scaling behavior of our algorithm and BCALM 2,
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Table 6.9: Total running time, scalability, and speed up results for (CC) and BCALM 2
(BC) for data set B and C on CompBio . CCc represents time for chain compaction only.
For data set C, only the 64-core results are presented due to long running time. Scalability
values (CC, BC) are calculated by comparing to execution time of BCALM 2 and our algo-
rithm on 1 core. Speed-ups of our algorithm relative to BCALM 2 (BC/CC) are calculated
for the same number of cores.

Time (s) Scaling
Cores CCc CC BC CC BC BC/CC

B
:C

hr
14

1 677.2 2029.3 811.0 1.0 1.0 0.4
2 376.6 1152.1 459.1 1.8 1.8 0.4
4 180.5 566.7 279.3 3.6 2.9 0.5
8 91.1 289.5 192.5 7.0 4.2 0.7

16 48.7 156.2 144.8 13.0 5.6 0.9
32 25.6 81.4 122.9 24.9 6.6 1.5
64 15.3 47.7 116.8 42.6 6.9 2.4

C 64 1352.1 2290.3 3213.8 – – 1.4

as well as the speedup achieved by our algorithm relative to BCALM 2. Our algorithm

constructed the graph and compacted chains for data set B and C in 47.7 seconds and

38.2 minutes using 64 cores, approximately 2.4× and 1.4× faster than the corresponding

execution times of BCALM 2. Our algorithm scaled significantly better than BCALM 2,

achieving a 42.6× speed-up on 64 cores versus 1 core, representing a parallel efficiency

of 0.67. In contrast, BCALM 2 was only able to achieve a 6.9× speed up at the same

core count, or a parallel efficiency of 0.11. While BCALM 2 sports better performance

when using low core counts, our algorithm achieves similar performance using 16 cores

and outperforms BCALM 2 at higher core counts.

6.5 Graph Structure-based Error Detection and Removal

In contrast to frequency-based error detection and removal that is applied during construc-

tion, or post-construction but operates on vertices individually, graph structure-based error

detection such as bubble and dead-end removal require regional context in the graph. Our

algorithm depends on chain compaction to simplify access such contextual information
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about the graph.

In addition, application-specific criteria for detecting and removal bubbles and dead-

ends imply that the performance of the iterative, multi-pass error removal process neces-

sarily depend on application heuristics. For this evaluation, we devised a simple set of

heuristics for identifying and removing structural errors to illustrate the capability of the

Bruno library. These heuristics should not be considered definitive nor canonical.

For this evaluation, dead-ends are required to have a maximum length of k, while bub-

bles must have a minimum length of k. Additionally, for dead-ends, the point of connection

to the rest of the de Bruijn graph must have frequency equal or less than f+1, where f is the

frequency threshold applied during construction. Bubbles are modified if at last one chain

has an edge frequency of f+1 between the chain terminal vertex and its branch neighbor.

We perform a simple removal of the qualified chain. The graph is then re-compacted. The

detection/removal/re-compaction process repeat until no qualifying dead-ends or bubbles

can be found in the graph.

6.5.1 Performance Characterization

With the constraint that erroneous k-mer and structure removal maintains the integrity of

chains, i.e. chains are not split, the re-compaction algorithm (Algorithm 5.4) is designed

to compute the new chains in a hierarchical manner with O(|C|) vertices involved in the

iterative communication rounds and the total O(|Vc|) vertices accessed and updated only

outside the iterative process. We note that if the constraint does not hold, then the standard

compaction algorithm must be used.

We begin our evaluation by profiling the error removal process for data set I, using k =

31 and f = 2 running on 16 Swarm nodes each with 16 cores allocated to the application,

for a total of 256 cores. For this configuration, the data set required 5 error removal passes

to reach the state where no additional dead-ends and bubbles are found. Including the initial

compaction process, the vertex ordering operation was invoked 6 times.
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Inspecting the number of vertices ordered by the vertex ordering operation and the

number of communication iterations it required revealed that the naı̈ve re-compaction pro-

cess required significant time. Both quantities remain approximately the same, at 10 for

communication iterations, and approximately 3.3 million vertices per MPI process order

through each of the 5 error removal passes. The number of communication rounds actu-

ally increased by 1 when compared to the initial chain compaction run, as expected due to

chains merging and consequently larger maximum chain length.

The optimized re-compaction algorithm, on the other hand, showed a decrease of vertex

elements from 3.21 million per MPI process to 0.69 million, a reduction of 4.6×. We

note that the element count stabilized after pass 2 as there are significantly fewer modified

graph vertices. The required number of communication rounds reduced quickly from 9 to

2 within 3 error correction passes. Consequently, pass 5 of vertex ordering required only

0.27 seconds, compared to 8.31 seconds for the full compaction process, a reduction of

over 30×.

This reduction in the size of the input to the vertex ordering operation and its decreased

number of communication iterations per invocation were predicted in Section 5.4.4, and

demonstrated experimentally, as shown in Figure 6.8. Note that in Figure 6.8a, pass 6

involves counting dead-ends and bubbles, whose counts are 0, and therefore compaction

is not invoked in the naı̈ve case. For the optimized case, the re-compaction time actually

involves updating all the interval chain vertices in the initial compaction, and therefore

vertex ordering operation is not involved. Hence in Figure 6.8b pass 6 is not represented.

Instead, Figure 6.8b includes the vertex ordering invocation during the initial compaction

as a baseline for both the naı̈ve and optimize re-compaction cases.

Table 6.10 shows the time breakdown of each step and the total time for the multi-pass

error removal process, aggregated over all passes for k = 31 and f = 2. We observed that

the optimized re-compaction algorithm showed benefits for dead-end, bubble, and cycle

detection and removal steps, in addition to re-compaction, due to reduced input size. The
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(a) Per pass breakdown of times

(b) Per pass element count and communication rounds

Figure 6.8: Detailed characterization of error removal times for data set I, processed on 256
Swarm cores using k = 31 and f = 2. 6.8a shows the decomposition of time consumed
by each error removal pass, while 6.8b shows the time and sources of improvements for
the vertex ordering operation during the optimized re-compaction step vs the naı̈ve com-
paction operation. “Iter in pass” counts the number of communication rounds during an
error removal pass, while “element count” is the number of chain vertices used as input for
the vertex ordering operation.
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total speed up reached 2.83× for the optimized version, a significant contributor of which

was the re-compaction time, which was reduced from 49.4 seconds down to 11.4 seconds

with 4.3

Table 6.10: Comparison between the naı̈ve and optimized re-compaction algorithms. The
times are summarized over 5 passes of error removal. Each step in the error removal pro-
cess is reported, as is the total amount of times. Dead-ends, bubbles, cycles+isolated
refer to steps related to the removal of each of these types of erroneous structures. Re-
compaction includes the time taken to re-compute the compacted chains using the opti-
mized re-compaction algorithm, while during compress the compressed chain representa-
tion is generated. The total time and parallel efficiency are also reported. Data set I was
used, with k=31 and f=2. The experiments was performed on Swarm using 256 cores.

cycles+
dead-ends bubbles isolated re-compact compress total speed up

naı̈ve 4.23 6.26 0.31 49.35 0.94 61.08
optimized 3.91 5.89 0.27 11.37 0.17 21.61 2.83

For all subsequent experiments involving graph structure-based error removal, the op-

timized re-compaction algorithm is used.

6.5.2 Parameter Evaluation

In our demonstration configuration, the definition of bubbles and chains depend directly

on the frequency threshold chosen for the bottom-up frequency-based error filtering (se-

lecting chains with edge frequency below f+1), and indirectly on the resulting structure of

the graph. In this section we examine the performance impact of the frequency threshold

parameter on graph cleaning performance.

Frequency Filtering Thresholds

We examined the effects of varying the filtering threshold on the computational perfor-

mance of bubble and dead-end removal. For this set of experiments, we used 16 Swarm

nodes with 16 allocated cores each for a total of 256 cores. The experiments used data set

I with parameters k = 31 and frequencies f = {1, 2, 4}.
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Table 6.11 shows the total times over all error removal passes for each step, as well as

the time and the number of error removal passes used for the entire error removal process.

Figure 6.9 illustrates the time break-down by step for each of the removal pass.

Table 6.11: Times for the steps in multi-pass graph structure-based error removal for differ-
ent frequency threshold values. Dead-ends, bubbles, cycles+isolated refer to steps related
to the removal of each of these types of erroneous structures. Re-compaction includes the
time taken to re-compute the compacted chains using the optimized re-compaction algo-
rithm, while during compress the compressed chain representation is generated. The total
time and number of error removal passes used are also reported.

cycles+
f dead-ends bubbles isolated re-compaction compress total passes

1 15.57 23.31 1.75 50.97 0.55 92.15 4
2 3.91 5.89 0.27 11.37 0.17 21.61 5
4 0.87 1.27 0.08 2.90 0.02 5.15 3

Figure 6.9: Error removal times in seconds on 256 Swarm cores with frequency thresholds
of 1, 2, and 4. Each bar indicates the time taken by a error removal pass, decomposed into
the times for each step within the pass. Data set H was used with k = 31. Missing bars
indicate that error removal completed in the previous pass.

The number of error removal passes required depend on the frequency threshold chosen.
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With f = 2, 5 passes was needed, while f = 4 only 3 passes are required. This variation

is due to the fact that bottom-up frequency-based error removal during graph construction

already removed a significant number of erroneous k-mers that may create the erroneous

graph structures. With f = 1, edges were not removed through frequency-based filtering,

so the bubbles and dead-ends are removed solely based on their structural definition and a

rudimentary chain edge frequency filter of 2. The last pass includes a significantly longer

re-compaction time. As stated earlier, the initial internal chain nodes are updated to their

final state in this invocation. The number of elements updated is therefore significantly

higher at approximately the total number of initial chain vertices.

The overall effects of increasing the frequency threshold is dramatic, as the total times

as well as the times for each individual steps within the passes showed a 4 to 5-fold de-

crease for each increase in f tested. Since this parameter directly affects the quality and

correctness of the generated unitigs, and is an application specific parameter, we present

the results with the goal of estimating the run time contribution of graph structure-based

error removal, and not as a guidance for choosing f .

6.5.3 Scaling

We evaluate the scalability of the graph structure-based error removal algorithm using data

set H on the CompBio system and data set I on the Swarm system. The value of k is set to

31, while the frequency filter is set to f = 2. For experiments on the CompBio system, 4,

8, 16, 32, and 64 core are used, while those on the Swarm system, 8, 16, and 32 nodes each

with 16 allocated cores were used.

Figure 6.10 and Table 6.12 show the results of the experiments. We were able to com-

plete the error removal process for data set I in 3.9 seconds using 512 distributed memory

cores, and 2.1 seconds for data set H using 64 shared memory cores. We note that the error

removal process performance scaled sub-linearly as p increased. Overall parallel efficiency

decreased relatively quickly at the maximum tested core counts at between 0.54 and 0.56.
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(a) Scaling of error removal for data set H on CompBio

(b) Scaling of error removal for data set I on Swarm

Figure 6.10: Scaling behavior of the graph structure-based error removal process on shared
(CompBio ) and distributed memory (Swarm ) systems. Data sets H and I were used re-
spectively. Parallel efficiency for the re-compaction step and the error removal process
overall are shown as blue and green lines, respectively. The time is broken down into those
for different steps. k = 31 and f = {1, 2, 4}.

167



Table 6.12: Total times for graph structure-based error removal and scaling efficiency for
data sets H on CompBio and I on Swarm . The value of k is set to 31 and frequency is set
to 1, 2, and 4

Error Removal Time (s) Parallel Scaling Efficiency
f 1 2 4 1 2 4

C
om

pB
io

,H
4 440.36 56.80 17.90 1.00 1.00 1.00
8 227.25 29.00 9.53 0.97 0.98 0.94
16 123.37 15.82 5.34 0.89 0.90 0.84
32 67.05 8.56 3.00 0.82 0.83 0.75
64 40.75 5.45 2.01 0.68 0.65 0.56

Sw
ar

m
,I 128 176.21 38.40 8.37 1.00 1.00 1.00

256 93.06 21.95 5.18 0.95 0.87 0.81
512 53.49 13.13 3.91 0.82 0.73 0.54

This is likely due to the random memory access during vertex ordering and the relatively

high communication activities in that step. In addition, bubble and dead-end detection re-

quired parallel sorting, which has logarithmic complexity for the local sorting. Figure 6.10

shows that while vertex ordering was the majority contributor to the overall time, dead-end

and bubble detection and removal also required substantial fraction of the total time.

Finally, the timing results reiterates that the choice of f is important, and that using

a frequency filtering threshold that is larger than 1 is beneficial for computational perfor-

mance of the compaction and error removal process. As removal of erroneous k-mer is a

common pre-processing step, we recommend that f be set to some value larger than 1 but

in accordance with the application requirements.

6.6 Unitig Quality After Error Removal

Given a set of reads and value k, a de Bruijn graph can be deterministically constructed.

Chain compaction is a deterministic process, therefore the compacted chains can be ide-

ally determined based on teh graph structure alone, in the absence of any modifications

from frequency-based filtering, such as those described in Section 5.3, or structure-based

modifications including bubble and dead-end removal (Section 5.4).
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However, in the presence of such graph modifications, the resulting compacted chains

or unitigs will change. In this section we evaluated the quality, or more appropriately, infer

the correctness of the generated unitigs by comparing them to the corresponding reference

genomes.

We use data sets F, G, and H for this evaluation. These data sets are from the GAGE [93]

project and include reference genomes. The unitigs are generated using frequency thresh-

olds f = {1, 2, 3, 4, 8}. Each experiment is run with frequency filtering only, and with

frequency filter and bubble and dead-end removal. The experiments were conducted on

CompBio using 64 cores and the unitig files save in multi-FASTA files.

The QUAST [94] assembly quality measurement tool is used to assess the unitigs. In

evaluation, we are interested in assessing the correctness of the compaction, as well as the

efficacy of the frequency filtering and bubble and dead-end removal in increasing the unitig

lengths. For the first task, we are interested in the numbers of mis-assemblies, unaligned

unitigs, and whether the maximum aligned lengths match the maximum unitig lengths. For

the second task, we look for increases in N50 as well as an increase in the number of unitigs

over 500, 1000, and 5000 bps.

Table 6.13 shows the results of running QUAST. Related to the correctness of the gen-

erated unitigs, we observed that for all read sets and all frequency and error removal con-

figurations Bruno achieved 0 or 1 mis-assembly, and less than 10 unaligned unitigs for the

chromosome 14 data set. For bacterial data sets, there were no unaligned unitigs. The

maximum size of the aligned unitigs match the maximum unitig size exactly, indicating

that graph structure-based error removal is performing without errors. Coupled with the

low misalignment and unaligned counts, this observation suggests that most or all unitigs

were computed correctly.

With respect to increasing frequency filtering thresholds, we observed that the distri-

bution of unitig lengths increased with increasing f for H. sapiens chromosome 14 and

R. sphaeroides data sets. For S. aureus, increasing the frequency threshold to 8 actually
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decreased the overall unitig lengths. The choice of f therefore needs to be tailored for the

data set at hand, based on genome and sequencing coverage.

We observed also that there is a positive effect of structure-based error removal, but the

effect are non-uniform. For the human data set, we observed increases in unitigs larger

than 1000 and 5000, but the N50 value increased only slightly. Similar trend is present for

the two bacterial data sets.

Overall, the QUAST evaluation indicate that Bruno’s construction, compaction, and

error removal processes perform correctly. The choice of frequency threshold is therefore

critical, and should be assessed based on application requirements and data characteristics.

Generally, structure-based error removal improves the unitig lengths and therefore it is

recommended that this step be applied, provided that the criteria for identifying bubbles

and dead-ends are defined carefully.
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Table 6.13: Evaluation of unitigs generated after frequency-based filtering (freq) and topological structure filtering, including bubble,
dead-end, and cycle removals (freq + topo), for the human chromosome 14, R. sphaeroides, and S. aureus sequence data sets. QUAST
was used with default parameters.

# unitigs longer than specified base pairs unitig length #
f ≥ 0 ≥ 500 ≥ 1000 ≥ 5000 N50 Max Max Aligned Mis-assem Unaligned % Genome

H
.s

ap
ie

ns
ch

r1
4

fr
eq

2 9447756 122 0 0 553 827 827 0 0 0.065
3 3219547 20881 2130 0 695 3639 3639 1 6 13.855
4 2040068 35787 6552 3 793 5300 5300 0 4 26.555
8 1177994 47022 13752 25 965 9064 9064 0 3 40.633

fr
eq

+t
op

o

1 43930232 1 0 0 679 679 679 0 0 0.001
2 6713989 7743 252 0 616 2036 2036 1 6 4.589
3 2607266 33793 5544 2 770 5300 5300 1 6 24.454
4 1798014 41851 9605 8 861 7803 7803 0 5 33.119
8 1133617 47717 14756 37 997 9064 9064 0 3 42.273

R
.s

ph
ae

ro
id

es fr
eq

3 289150 85 0 0 558 889 889 0 0 1.041
4 129964 938 38 0 626 1532 1532 0 0 13.159
8 43187 2683 564 0 833 3062 3062 1 0 47.963

fr
eq

+t
op

o 2 625501 60 0 0 551 889 889 0 0 0.738
3 189116 1026 44 0 629 1722 1722 0 0 14.443
4 94141 2126 256 0 722 2056 2056 0 0 33.44
8 39279 2808 689 1 881 5007 5007 1 0 52.73

S.
au

re
us

fr
eq

2 255131 32 0 0 575 861 861 0 0 0.643
3 66705 2143 777 1 1049 5557 5557 0 0 72.096
4 40247 1703 1012 20 1848 8932 8932 0 0 87.236
8 45905 1605 422 0 926 4647 4647 0 0 50.285

fr
eq

+t
op

o 2 175793 2131 833 1 1097 5557 5557 0 0 74.669
3 51920 1396 967 70 2473 9754 9754 0 0 91.122
4 34056 1460 955 48 2335 12147 12147 0 0 89.933
8 44370 1607 425 0 927 4988 4988 0 0 50.48
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6.7 Summary

In this chapter we evaluated the performance of the graph construction, compaction, and

error removal algorithm implementations in the Bruno library. We showed that Bruno was

able to compact human-genome-size de Bruijn graphs in 7.3 seconds using 7680 cores on

a distributed memory system and in 22.5 minutes using 64 shared memory cores. It out-

performed two state-of-the-art assembly tools for shared memory and distributed memory

environments by 1.4× and 3.7× respectively including construction and compaction times.

Error removal in a graph constructed from an 162 GB data set completed in 13.1 and

3.91 seconds with frequency filter of 2 and 4 respectively on 16 nodes, totaling 512 cores.

Evaluation of the unitig quality suggest that the error removal process is correct and

produces only negligible number of mis-assemblies and unaligned unitigs, while qualita-

tively improves the unitig lengths.
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CHAPTER 7

CONCLUSION

As next generation sequencing become more affordable and ubiquitous, the downstream

sequence analysis increasingly require higher performance, lower latency, and better scal-

ability to handle the ever increasing volume of data at ever increasing generation rates.

Distributed memory systems provide such scalability in both computation resources and

memory space for data. Yet a significant number of bioinformatic tools remain bound to

single-node systems.

In this research, we sought to facilitate the adoption and increase the utilization of dis-

tributed memory environments in bioinformatics algorithms and applications, through the

development of high performance, distributed memory parallel algorithms and libraries for

k-mer indexing and counting, and de Bruijn graph and its operations. K-mer counting and

indexing are central to many bioinformatics applications such as de novo assembly, genome

mapping, and error correction, while de Bruijn graphs are central to de novo genome as-

sembly and thus is a critical first step in genomic data analysis.

We developed two distributed memory libraries, Kmerind for k-mer indexing, and

Bruno for de Bruijn graph operations, towards satisfying our research aims:

1. Create the first reusable, flexible, and extensible distributed memory parallel libraries,

with simple API and optimized implementations, for k-mer indexing and de Bruijn

graphs for bioinformatics applications.

2. Develop efficient data structure and algorithms specifically for distributed memory

parallel k-mer counting and indexing

3. Develop efficient data structure for distributed memory parallel de Bruijn graphs, and

efficient algorithms for graph construction, compaction, traversal, and error removal.
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Kmerind, to our knowledge, is the first generic k-mer indexing library for distributed-

memory environments. We designed Kmerind with a simple set of API with clear sequen-

tial semantics to facilitate adoption, and designed and implemented efficient distributed

memory parallel data structures and algorithms to support this API.

Bruno, to our knowledge, is the first generic de Bruijn graph library for distributed-

memory environments. It abstracts common functionalities useful for genome assembly

and other de Bruijn graph based applications, and provides construction, chain compaction,

and error removal operations on a de Bruijn graph. The API has been defined at 3 levels,

corresponding to operations on vertices and edges, chains, and whole graph. Through

composition of these operations, the graph can be traversed, and higher level operations

can be constructed.

In both libraries, the algorithm and implementations that support the APIs have been

designed for distributed memory from the ground up. In the case of Kmerind, architec-

ture aware optimizations have been applied to further improve the efficiency of the overall

algorithms.

Performance evaluations throughout this work have shown that Kmerind and Bruno

out-perform the current state-of-the-art tools for k-mer counting and de Bruijn graph con-

struction and chain compaction in both distributed and shared memory environments.

7.0.1 Broader Applicability

While Kmerind and Bruno target bioinformatic applications, the algorithms and implemen-

tations presented in this dissertation are significant to computer science and applicable to a

broader set of domains.

First, our model of linear chains in bi-directed de Bruijn graphs can be considered

as a generalization of doubly linked lists to allow nodes with reversed orientations. It

can alternatively be considered as a specialization of doubly linked lists with undirected

nodes and edges, of which linear chains in undirected graphs are an example. Our vertex
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ordering and re-compaction algorithms, when frame in such context, can be considered as

generalized list ranking or undirected graph compaction algorithms provided 1) the d-path

formulation that encapsulates k-mer representation is adapted to the graph formulation at

hand, and 2) an implicit but computable vertex and edge ordering can be defined.

Second, while our cycle detection algorithm currently serves as a stopping criterion for

the vertex ordering algorithm, it is useful in its own right when detecting cycle presence

is the primary objective. Cycles may also be labeled using the lexicographically minimal

k-mers seen during vertex ordering, as suggested in Section 4.2.6. Since doubling and

traversal occurs on each chain and cycle separately, cycle vertices would be labeled with

the minimal k-mers within each chain.

Extending this idea further, the vertex ordering and cycle detection algorithms can be

modified to detect and label cycles within a certain size range if we annotate each d-path

with the lexicographically minimal k-mers seen in the 5’ and 3’ directions. During iteration

t, the lexicographically minimal k-mer in the 5’ side of the d-path is the minimal k-mer

amongst the 2t k-mers 5’ to the vertex being examined, based on the associative property

of the minimum operation, and similarly for the 3’ lexicographically minimal k-mer. For

a vertex in a cycle of size |C| < 2t+1,the 5’ and 3’ lexicographically minimal k-mers are

identical as the d-path spans the entire cycle. This property allows each cycle of size |C| to

be detected and labeled during iteration t = log(|C|)− 1.

Our vertex ordering and cycle detection algorithms therefore has broad applicability

to graph analysis, as together they allow the detection and identification of cycles in a

graph, as well as classification of cycles by size, given a suitable definition of the d-path

abstraction and an associative operator for identifying minimal vertex id, both of which are

expected to be simple and direct.

Our optimized implementations are useful beyond our target k-mer counting and in-

dexing and de Bruijn graph use cases. The distributed memory hash tables in Kmerind

have been designed with generic templated API (Chapter 2). The key, hash function and
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comparison operations are customizable. They have already been applied as generic tu-

ple indices with integer keys. Similarly, the optimize Robin Hood hashing based hash table

(Section 3.2.3) is a generic templated implementation that can be used beyond k-mer index-

ing, provided the application can support batch mode hash table operations. The vectorized

MurmurHash 3 hash functions (Section 3.4.2) likewise is useful in general. The implemen-

tations are designed to work with short byte arrays. In testing, it has been shown to work

well with arrays of integers, each representing a key.

Finally, the Kmerind and Bruno libraries as a whole may have direct applications out-

side of the bioinformatics domain. N-gram modeling in computational linguistics, for ex-

ample, involves statistical analysis of languages and texts using the occurrences of n-grams,

which are defined similarly to k-mers, as signatures. A critical difference lies in the alpha-

bet size. While genomic sequences typically uses a small alphabet and therefore can be

represented compactly, natural language processing often has to be able to handle signifi-

cantly larger alphabet size, such as that for East Asian languages. Kmerind therefore may

be useful for n-gram modeling, provided the alphabet size does not become a critical lim-

iting factor.

7.0.2 Open Problems

The Kmerind and Bruno libraries have been designed for distributed memory k-mer count-

ing and indexing, and de Bruijn graph operations including construction, compaction, and

error removal. For these tasks, they have been shown to perform and scale well in shared

and distributed memory environments. However, there are several areas where future re-

search efforts should be directed.

One immediate area concerns Kmerind and Bruno’s integration with existing and novel

bioinformatics applications, as well as the continued evolution of its APIs and optimization

of their algorithms and implementations. As we encounter new use cases, the libraries may

need to be extended to address differences in data characteristics and application require-
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ments, for example to identify the presence of rare variants using de Bruijn graphs, and

usage in long-read analyses. A related investigation involves the development of language

bindings, for example with perl, python, or R.

A second aspect involves efficient memory utilization. While distributed memory com-

puting has allowed Bruno and Kmerind to leverage large compute and memory capacities

and to scale to larger data, scaling down to smaller systems is limited first and foremost

by the available memory. Memory efficient data structures have been studied extensively

for the k-mer counting problem in share memory environment, and frequent approaches,

as described in Chapter 1, include the use of disks as external memory and probabilistic

therefore inexact data structures such as CountMinSketch. The design and integration of

associative data structures that are performant, cache friendly, scalable to distributed mem-

ory, exact, yet memory efficient can have a significant impact on Bruno and Kmerind’s

adoption by applications that operate in shared memory environments.

The library APIs for Kmerind and Bruno have been designed for distributed but tightly

coupled systems, such as clusters. Meanwhile, the availability and low barrier of entry for

cloud based systems has prompted increased adoption of such models of computation in

bioinformatics. For similar reasons, the use of hardware accelerators such as GPUs have

become increasingly common. The mapping of Kmerind and Bruno APIs and algorithms

to such platforms can be useful in improving performance, simplifying usage, unifying

application development efforts, and increasing the libraries’ adoption. Evaluation of the

feasibility in mapping between the computation and communication models would be use-

ful.
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