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SUMMARY 

The possibility of reducing the overall heat transfer rate to 

a surface by exploiting the reduction in heat transfer rates in regions 

of separated laminar flow is studied., A flat plate with a series of 

cavities located in the surface is considered. 

An implicit finite-difference method for solving the boundary-

layer equations for laminar, compressible flow is developed. This 

method describes the non-similar development of an arbitrary initial 

profile for either an attached boundary layer or a free shear layer. 

The compressible boundary-layer equations for a constant-pressure flow 

field are written in an equivalent incompressible form by introducing 

a coordinate transformation similar to that of Howarth and employing 

the Chapman-Rubesin viscosity-temperature relation. The implicit 

finite-difference method employed in this study requires a finite 

range for the normal coordinate. This condition is satisfied by a 

new transformation of the normal coordinate. This method yields 

results which compare well for problems whose solutions are available 

in the literature. 

The finite-difference method is applied to the evaluation of 

the local heat transfer rate to a flat plate with a series of cavities 

located in the surface. A sharp-cusp reattachment geometry is assumed, 

and various cavity spacings are considered. Local heat transfer rates 

for the separated-flow regions are calculated along the dividing stream

line. The local heat transfer rates exhibit the following two character

istics: 
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1. For a multiple-cavity configuration with a given ratio of 

cavity length to attached-flow length between cavities, the local heat 

transfer rates for the attached-flow regions downstream of each cavity 

correlate with those for a completely-attached flow. The correlation 

curves vary with cavity spacing, with the smaller cavity spacings 

resulting in higher local heat transfer rates. 

2. For a Prandtl number of 0.72, the local heat transfer rate 

for a free shear layer is essentially 56 per cent of that for an 

attached boundary layer for the same initial profiles. Thus the average 

heat transfer rate across a free shear layer is 56 per cent of that to 

an equivalent attached flow not only for the case of zero initial thick

ness (as determined by Chapman) but for the case of a finite initial 

thickness as well. 

These two characteristics of the local heat transfer rates are 

used to develop an approximate method for evaluating the heat transfer 

to a multiple-cavity configuration. This approximate method provides 

overall heat transfer rates for multiple-cavity configurations in good 

agreement with the results from the finite-difference method while 

requiring much less computational effort. The results from the approxi

mate method are slightly conservative, and the agreement improves as 

the number of cavities increases. 

Based on results obtained using the approximate method, the 

effect of multiple cavities is to reduce the overall heat transfer rate 

in comparison with a configuration with fewer cavities. For example, a 

two-cavity configuration can reduce the overall heat transfer rate by 

as much as 19 per cent more than a one-cavity configuration of the same 
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length. The reduction due to multiple cavities increases as the cavity 

spacing decreases. For a multiple-cavity configuration, the maximum 

reduction in overall heat transfer rate occurs when the cavities are 

as long as practicable and the cavity spacing is as small as possible 

consistent with the condition that the length of the attached-flow 

region following the final cavity be as short as possible. 

The effect of a blunt-cusp reattachment geometry on the heat 

transfer rate is explored using blunt: body theory and assuming that the 

flow approaching reattachment may be considered uniform. Sample calcu

lations demonstrate that, for values of the Mach number of interest 

for reattaching free shear layers, blunting increases the overall heat 

transfer rate in comparison with a sharp-edged geometry. This increase 

is small, however, for moderate bluntness ratios. 
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CHAPTER I 

INTRODUCTION 

Boundary-layer separation is a viscous-flow phenomenon which occurs 

in a number of supersonic flow probleims including base and wake flows, 

shock-boundary layer interactions, flow over cavities and steps, flow 

over deflected control surfaces, and flow past spiked bodies. The impor

tance of separation effects on the various aerodynamic parameters has 

resulted in many theoretical and experimental investigations of separated 

flows. In particular, much interest has been focused on the comparison 

of heating rates in separated-flow regions to those of attached flows for 

the laminar flow regime. 

Reviews of separated-flow phenomena have been presented by Kaufman, 

et al. (1), Nash (2), and Lykoudis (3). Only the previous research re

lated to the laminar, cavity-induced separations of concern for the present 

investigation will be considered herein. 

For a number of years the very low transition Reynolds number for 

laminar free shear layers in subsonic flow resulted in the treatment of 

such flows as laboratory phenomena of little practical interest. Chapman, 

Kuehn, and Larson (4) determined experimentally that the transition Reyn

olds number for the laminar free shear layer increases greatly with in

creasing supersonic Mach number, and that in hypersonic flow the laminar 

free shear layer can be almost as stable as an attached laminar boundary 

layer. This result stimulated interest in laminar separation problems for 
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hypersonic flow. Unfortunately, even for the laminar regime the complex 

nature of the recirculating flow in the separated region and the flow in 

the neighborhood of reattachment makes complete analysis of separated flows 

extremely difficult. 

In a theoretical analysis of heat transfer in separated-flow regions 

Chapman (5) introduced the concept of the dividing streamline which allowed 

the evaluation of the heat transfer to a region of separated flow without 

considering in detail the recirculating flow. The physical model employed 

by Chapman is illustrated in Figure 1. The separated region, or cavity, 

is treated as an isothermal, dead-air sink to which energy is transferred 

through the shear layer or mixing zone between the external stream and the 

essentially stagnant fluid in the cavity. Chapman's analysis of the free 

shear layer involved the following assumptions: 

1. The thickness of the boundary layer is zero at separation. 

2. The length of the reattachment zone is small compared with 

the length of the separated region. 

3. The pressure is constant along the free shear layer. 

4. The wall (i.e., the cavity floor) is isothermal. 

5. The low-speed air in the reverse-flow region is at wall 

temperature when drawn into the free shear layer. 

Assuming a uniform velocity profile at separation, Chapman obtained 

a similar solution to the equations of motion for the laminar, compressible, 

free shear layer. An energy balance for the system bounded by the cavity 

walls and the dividing streamline provides an expression for the total 

energy transfer to the separated region in terms of the conditions in the 

free shear layer along the dividing streamline. The analysis indicated that 
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Figure 1. The Physical Model Employed by Chapman. 
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for air (Pr = 0.72) the average heat transfer rate in a region of laminar 

separated flow was approximately 56 per cent of that which would occur 

with a corresponding attached laminar boundary layer. 

In studying the laminar base-flow region, Denison and Baum (6) ex

tended the Chapman solution of the compressible, laminar free shear layer 

to include the effects of a finite boundary-layer profile at separation. 

Their finite-difference solution using the Crocco coordinate system demon

strated the conversion of the initial profile to the asymptotic similar 

shear-layer profile of Chapman. Denison and Baum concluded that Chapman's 

similar profile could not be justified, in general, since for practical 

separated flows with initial boundary layers the free shear layer is far 

too short for Chapman's similar solution to be valid. 

The first experimental investigation based on the Chapman model 

was that of Larson (7). He measured the heat transfer to rectangular 

cavities in both two- and three-dimensional bodies and compared the re

sults with measurements on equivalent attached-flow bodies. From his 

measurements he concluded that for laminar flow Chapman's theory yielded 

accurate values for the average heat transfer rate to the separated region. 

Larson did not investigate the heat transfer rates downstream of reattach

ment, although he noted that the maximum local heat transfer rates along 

the cavity floor occurred in this region. 

Another experimental investigation which was concerned, in part, 

with the heat transfer characteristics of cavity-separated regions on the 

surface of cones was reported by Bogdonoff and Vas (8). Local heat trans

fer rates and pressure distributions were measured along the cavity floor 

and the region downstream of reattachment. The cavity depth was chosen to 
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guarantee that the free shear layer did not reattach to the cavity floor, 

but bridged the cavity. The pressures in the cavity were found to be 

essentially constant for thin boundary layers at separation. The heat 

transfer rate in the cavity region was found to give a reasonable check of 

the Chapman prediction. However, the authors concluded that the overall 

heat transfer to the cone-cavity model would not differ significantly 

from that of the basic cone with no cavity due to the increased heat trans

fer rates over the surface downstream of the cavity. 

A third experimental investigation of laminar separated flows is 

that of Nicoll (9). His investigation dealt exclusively with cavity-

induced separated flows and was a detailed extension of the work of 

Bogdonoff and Vas. The separated regions studied were annular cavities 

on 20 cones. Pressure distributions and local heat transfer rates over 

the floor of the cavity and over the region downstream of the cavity were 

measured for the following Mach numbers and Reynolds numbers based on con

ditions at the edge of the boundary layer: 

Mach number Reynolds number per inch 

6.46 5.9 x 105 

6.54 9.73 x io5 

6.61 13.38 x io5 

The cavity flows were found to be divided into three types: deep 

"open" flows, shallow "open" flows, and "closed" flows. "Open" flows 

are those in which the dividing streamline bridges the cavity, while for 

"closed" flows the free shear layer reattaches to the cavity floor„ For 

deep open flows the pressure is constant over most of the cavity floor, 

while for shallow open flows a pressure gradient exists along the floor of 
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the cavity. Nicoll concluded that the deep open cavity flows with constant 

floor pressure over 90 per cent of the cavity span (which closely approxi

mate the Chapman model) existed for cavity length-to-depth ratios (L/D) 

less than about seven. For L/D ratios between seven and twenty the flows 

were of the shallow open type, and for an L/D ratio somewhere between 

twenty and forty the transition from open to closed type cavity flows 

occurred. 

Nicoll's heat transfer rate measurements for the deep open cavities 

showed that the lowest local heat transfer rates occurred on the upstream 

portion of the cavity floor, reaching a minimum of 10 to 20 per cent of 

the attached-flow value, while the highest: local heating rates occurred 

in the vicinity of reattachment. Integration of the heat transfer rates 

over the floor of the cavity yielded average heat transfer rates in agree

ment with Chapman's theory. An integration of the heat transfer rates over 

the cavity floor and for one cavity-length downstream of reattachment 

indicated that the overall heat transfer rate was reduced about 10 per 

cent. Thus most of the reduction in heat transfer rate afforded by the 

separated-flow region was effectively countered by the increased heat 

transfer rates over the surface downstream: of reattachment. 

The reattachment geometry may be the most important single factor 

affecting the heating rates using cavity-separated flows. Some of the re

attachment configurations which may be envisioned are depicted in Figure 2. 

The difficulty of analyzing the reattachment region is evidenced by the 

fact that only one method has been published to date for calculating heat

ing rates at reattachment. Chung and Viegas (10) analyzed the inviscid, 

incompressible, rotational flow in a cavity with a shoulder reattachment 
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geometry (Figure 2(a)). Nicoll's experiments, which employed a shoulder 

reattachment geometry, indicated that the theory of Chung and Viegas 

overestimated the average heat transfer rate at reattachment by a factor 

of two. 

Holden (11) recently investigated two-dimensional separated flows 

with a ramp reattachment geometry similar to that illustrated in Figure 

2(b). His experiments showed that the maximum heat transfer rate near 

reattachment is strongly dependent on the reattachment angle. This 

indicates that a properly designed "glancing" reattachment may offer re

duced heating rates as compared with a shoulder reattachment. 

The two additional reattachment geometries illustrated in Figures 

2(c) and 2(d) utilize a cusp reattachment geometry. With the sharp-cusp 

reattachment of Figure 2(c), the flow below the dividing streamline is 

smoothly scooped off at reattachment. The shear flow above the dividing 

streamline can then be analyzed downstream of reattachment using constant-

pressure boundary-layer theory. For the more practical blunted-cusp geom

etry of Figure 2(d) the influence of the reattachment geometry extends over 

a small but finite portion of the free shear layer profile. In this case, 

the flow approaching reattachment may be considered uniform and the re

attachment flow may be approximated using blunt body theory. These two 

types of reattachment are considered in the present investigation. 

In summary, the reduction in heat transfer in regions of separated 

flow offers a method of reducing the local heat transfer rates to hyper

sonic vehicles. However, the open-type cavity flows which correspond to 

the Chapman model and which result in large reductions in the heat trans

fer rates occur for only a restricted range in the cavity length-to-depth 
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ratio (L/D). Furthermore, an attendant increase in the local heat trans

fer rates occurs in the region following reattachment. However, it 

appears that the overall heat transfer rate to a surface with a cavity 

may be reduced. The total reduction depends upon the magnitudes of the 

heat transfer rates at reattachment and the length of the surface 

following reattachment. If cavity depth were of no concern, the opti

mum heat transfer rate reduction would occur for the configuration of a 

single cavity spanning the region of interest. Unfortunately, the maximum 

cavity depth may be dictated by some physical restriction on the geometry. 

For example, skin thickness or structural integrity might dictate a 

certain maximum cavity depth. Coupled with the restriction on L/D, this 

determines a maximum cavity length which may be shorter than the region 

of interest. With this restriction in mind, one approach might be to 

place a series of cavities in the surface. The advantage of this approach 

depends upon the magnitude of the elevated heat transfer rates over the 

attached-flow regions between the cavities as well as the effectiveness 

of succeeding cavities in reducing the local heat transfer rates. 

The purpose of this study is to investigate analytically the 

possibility of reducing the overall heat transfer rate to a surface by 

exploiting the reduction in heat transfer rates in regions of cavity-

induced separated flow. The effect of the elevated heating rates over 

the surface following reattachment is studied for the cusp reattachment 

geometry. A numerical method for evaluating the heat transfer rates in 

both separated and attached flows with non-similar velocity and tempera

ture profiles is first developed. This method is then used to investigate 

the possibility of reducing the overall heat transfer rate to a surface by 
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employing a series of cavities. The effects of the number of cavities and 

the spacing between cavities are both considered. 
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CHAPTER II 

THEORETICAL FORMULATION 

The complex nature of the recirculating flow in cavity-type 

separated flows makes the analysis of these flow fields extremely diffi

cult. The formidable problems associated with analyzing the entire 

separated flow field have led to the introduction of a number of simpli

fying assumptions. In the following paragraphs the physical model 

employed in the present analysis is presented, the assumptions inherent 

in the model are described, and the resulting limitations discussed. The 

governing equations are then derived in a form convenient for the numerical 

solution described in Chapter III. 

The Physical Model. 

The physical model for this study consists of a number of cavities 

located on the surface of a flat plate, and is depicted schematically in 

Figure 3. The cavities are assumed to be sufficiently deep to lie in the 

deep, open range described by Nicoll. The assumptions made here concern

ing the separated-flow regions closely parallel those used by Chapman in 

that the cavity is treated as an essentially stagnant region to which 

energy is transferred through the thin viscous layer separating the exter

nal flow and the fluid in the separated region. Specifically, the assump

tions of the present analysis are as follows: 

1. The pressure is constant along both the attached boundary 

layers and free shear layers. 
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2. The surface of the attached-flow regions and the floor of the 

cavities are at the same constant temperature. 

3. The low-speed flow in the cavity separation regions is at wall 

temperature when drawn into the free shear layer. 

4. The dividing streamline reattaches tangent to the cusped rear 

lip of each cavity with no rise in pressure. 

5. The Prandtl number Pr is constant (but not necessarily 1.0). 

6. The variation of viscosity with temperature may be described 

by 

L = C L 
v T 
e e 

7. The gas obeys the equation of state for a thermally perfect 

gas, i.e., 

p = pRT 

Assumption 1 is the same as made by Chapman and verified by the 

experiments of Nicoll for cavities in the deep, open regime. As a conse

quence of this assumption, the dividing streamline is a straight line from 

separation to reattachment. Assumption 2 is commonly used in attached 

boundary-layer flows, and its use for the cavity floors is equally appli

cable. Assumption 3 implies that the high-energy fluid from the shear 

layer which is turned into the cavity is accommodated to the wall temper

ature before being entrained into the shear layer. Assumption 4 eliminates 

the influence of reattachment geometry on the flow ahead of reattachment. 

This simplification permits the flow downstream of reattachment to be 
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analyzed by the system of parabolic equations used for constant-pressure 

boundary layers. Assumption 5 is commonly used for gases since the varia

tion of Prandtl number is very small over a wide range of temperatures„ 

The viscosity-temperature relation of assumption 6 is a good approximation 

over moderate ranges of temperatures and leads to an important simplifi

cation of the solution of the equations of motion (2). Assumption 7 is 

commonly used and is very accurate for gases over a wide range of tempera

tures * 

The present investigation is concerned with a comparison of the 

heat transfer rates to surfaces with and without cavities and not with 

absolute heat transfer rates. In making these comparisons, the effects of 

the assumptions concerning the gas properties tend to compensate. 

Derivation of the Governing Equations 

For laminar flow over a constant-pressure, attached-flow region 

and for the constant-pressure, laminar free shear layer, assuming that the 

layer affected by viscosity is thin, an estimation of the order of magni

tude of the various terms in the complete Navier-Stokes equations for 

viscous, compressible flow leads to the familiar Prandtl boundary-layer 

equations. The equations of continuity, momentum, and energy are first 

written in terms of physical coordinates. Next a transformation similar 

to that of Howarth is employed to express the equations in an equivalent 

incompressible form. The normal coordinate, which has an infinite range, 

is then transformed to a finite range to permit the use of the implicit 

finite-difference solution method described in a later chapter,. Finally, 

the transformation back to physical coordinates is discussed. 
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Physical Coordinates 

For the steady, compressible, laminar flow of a thermally perfect 

gas, using x as the distance along the surface or the dividing streamline 

and y as the normal distance from the surface or the dividing streamline 

as depicted in Figure 4, the boundary-layer equations may be written as 

follows: 

Momentum equation: 

3u , 3u 3 
pu — + pv — = •— 

3x 3y 3y 
_3u. 

3y 
(1) 

Energy equation: 

3h ̂  3h 1 3 
P U ^ + P V ^ 7 = PT 37 

f » b ] 3ll 

r*l 
+ y 3y j (2) 

Continuity equation: 

3(pu) . 3(PV) _ n 
3x By 

(3) 

For a thermally perfect gas the equation of state for a region of con

stant pressure is 

P 
(4) 

where the subscript r indicates some reference value. 

Within the assumptions of this analysis equations (1) through (4) 

apply to both the attached boundary layer and the free shear layer. The 

mathematical description of the two types of flow differs only in the 
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specification of the boundary conditions. 

For the attached boundary layers the boundary conditions are 

u = v = 0 , h == h at y = 0 
' w J 

u = u , h ~ h at y = 
e ' e J 

(5) 

where the wall enthalpy h is assumed constant and the subscript e 

indicates the value at the outer edge of the viscous layer. 

The boundary conditions for the free shear layer are 

u = 0 , h = h at y = -c 
w J 

\ 

v = 0 

u = u 

at y = 0 

h = h at y = °° 
e J 

J 

(6) 

In addition to these boundary conditions, the velocity and enthalpy 

profiles must be known at some initial station x = x due to the parabolic 

nature of the boundary-layer equations. Thus 

u(x,y) = UQ(y) 

v(x,y) = VQ(y) ^ at x = X Q 

h(x,y) = ho(y) 
/ 

(7) 

Transformation to Incompressible Plane 

Since the viscosity y and the density p are functions of tempera

ture, the continuity, momentum, and energy equations are coupled and must 
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be solved simultaneously in this form. This difficulty may be circum

vented by introducing a transformation of the coordinates similar to that 

of Howarth. The transformation used here is from (x,y) coordinates to 

(S,Y) coordinates where S and Y are defined by 

Y = 
/Re/C 

ry 

jo 

£_ dy 

s = ! 

(8) 

/ 

where L is some reference length, Re is the Reynolds number based on L 

and freestream properties 

Re = 
p u L 
e e 

and C is the constant in the Chapman-Rubesin viscosity-temperature 

relation 

y T 
c ̂ ~ 

y T 

e e 
The constant C is computed by matching the Chapman-Rubesin relation 

above and the more accurate Sutherland reflation given by 

1 + 0 
\/ T 1 + 6T /T 

at some reference temperature T . This results in the relation 
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1 + y T /T 

V T V T 1 + 0 T / T 
e r r e r 

(9) 

where 6 is an empirical constant equal to 0.505 for air. 

The transformation from (x,y) coordinates to (S,Y) coordinates 

is accomplished by employing the transformation relations 

d__ = 1 d_ 3Y_ _3_ 
3x L 3S 3x 3Y 

3y Lp V C *3Y 

and def in ing a stream funct ion i|; by 

pu = p 

pv = -p 

M. 
e 3y 

il 
e 3x 

(10) 

Applying the transformation relations to the definition of the 

stream function yields 

fWs« 3S L V Re (11) 

where 

P-. -Re ^ T 9Y v = •L— \ 7— v + L — u pe v C 3x 

Upon application of the transformation relations and using equation 

(10) the momentum equation in (S,Y) coordinates becomes 
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* * 2 * 
u ~ + v ~ = 7J~ (12) 

<3 Y 

where 

* u * v 
u = — , v = — 

u u 
Q. Q 

Similarly the energy equation in (S,Y) coordinates becomes 

where 

2 2 * * 2 * u * \ 

* ilL- + * ilL_ = L- ;ih
 + I± lu_ 

U 8S V BY Pr . v2 h BY 
c)Y e » ' 

h " h " 
e 

The continuity equation becomes 

(13) 

as - + 3Y~ = ° (14) 

Equations (12), (13), and (14) are in incompressible form in that 

the energy equation has been uncoupled from the continuity and momentum 

equations, thus permitting solution for the velocity profiles in (S,Y) 

coordinates independent of the energy equation. 

With velocity profiles provided by the solution of the momentum 

and continuity equations, the energy equation is a linear, second-order, 

partial differential equation. To reduce the number of computations re

quired later, the energy equation (13) may be separated into two equations 
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whose solutions may be obtained independent of u , h , and h . These 

solutions may then be superimposed to obtain the enthalpy profile for a 

number of values of u . h . and h . Introduce a new dependent variable 
e e w r 

H defined by 

H = 

* 
h - 1 

u2/h 
e e 

(15) 

Introduction of H into equation (13) yields 

* j>H + * _9H = 1_ 3̂ H 
U 3S V 3Y Pr ~ 2 ' 

c) Y 

I * \ 2 
du 

l3Y , 
(16) 

The boundary conditions for equations (12), (14), and (16) 

corresponding to equations (5) and (6) are as follows: 

Attached boundary layers: 

u = v = 0 H = 

* 
h - 1 
w  
u2/h 
e e 

at Y = 0 

(17) 

u = 1 , H = 0 at Y = «> 

Free shear layers: 

* 
u = 0 > 

•k 

h - 1 
H = - f — 

u /h 
e e 

•k 

h - 1 
H = - f — 

u /h 
e e 

* 
v = 0 

* 
u = 1 9 H = 0 

at Y = 

at Y = 0 

at Y = oo 

(18) 



22 

The initial conditions corresponding to equation (7) may be expressed 

as 

u*(S,Y) = u*(Y) 

v (S,Y) = v (Y) > at S = S 
o i o 

H(S,Y) = H Q(Y) 

(19) 

As formulated in terms of H, the energy equation (16) is explic

itly independent of u , h , and h , which appear only in the boundary 

conditions equations (17) and (18). It is now convenient to decompose 

equation (16) into two equations, each satisfying boundary conditions 

independent of u , h , and h . Since equation (16) is linear in H, the 

solutions of these two equations may be superimposed to satisfy the 

boundary conditions given by equations (17) and (18). 

Let H.. be the solution of the equation 

* 8H1 * 9Hi i 
U ^i" + v — = ?7 

A. 
9Y' 

9u 
8Y 

(20) 

with the following boundary conditions„ 

Attached boundary layers: 

H = 0 at Y = 0 

H = 0 at Y = 
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Free shear layers: 

H - 0 at Y - -co 

E1 - 0 at Y = ~ 

Let H„ be the solution of the equation 

* 3H2 A 3H2 32H2 
u — + v — = P 7 ^ T (21) 

with boundary conditions given by 

Attached boundary layers: 

H = 1 at Y = 0 

H2 = 0 at Y = 

Free shear layers: 

H2 = 1 at Y = -< 

H = 0 at Y = 

A solution of the energy equation may be constructed from a 

linear combination of H- and H , 

H = H1 + \H2 (22) 

where X is a function of u , h , and h such that the boundary condi-
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tions are satisfied. By requiring that the expression given by equation 

(22) be a solution of equation (16) satisfying the boundary conditions 

equations (17) and (18) the constant: X may be evaluated to give 

h - 1 

* - - § — 
uX 

and thus 

* 
h - 1 

H = H- + -~ H„ 1 u /h L 

e e 

Then from equation (15) the enthalpy h is given by 

2 
* u * 

h = 1 + r6- H- + (h - 1) H9 (23) 
h 1 w z 
e 

Equations (20) and (21) may be solved for H and H independent 

of u , h , and h . Then profiles of h for various values of u , h , and 
e* e w e* e' 

h may be computed from equation (23). 

Transformation to Finite Interval 

To permit application of the implicit finite-difference scheme 

discussed later, the interval of the normal coordinate must be finite. 

Previous solutions of the boundary-layer equations using the implicit 

technique have employed the Crocco transformation wherein the velocity 

u , which has a finite range, is used as an independent variable. 

(For example see Denison and Baum (6) and Kramer and Lieberstein (12).) 

For the present study another type of transformation was sought which 

would map the intervals 0 <_ Y < °° and -°° < Y < °° into finite intervals. 
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The transformation used here is from (S,Y) coordinates to (S,c) coordinates 

where z, is a new normal coordinate defined by 

C = tanh (aY) (24) 

and a is a dimensionless constant. The transformation defined by 

equation (24) maps the intervals 0 < Y < °° and -00 <' Y < °° into the 

intervals 0 <_ £ < 1 and -1 < £ < 1, respectively, as illustrated in 

Figure 5 for several values of a. 

The transformation to (S,C) coordinates is preferred in the pre

sent analysis for the following reasons: 

1. The transformation defined by equation (24) provides an 

explicit inverse relation between £ and Y whereas the in-

version of the Crocco transformation (i.e., from (S,u ) to 

(S,Y) coordinates) requires an integration. 

2. For the finite-difference solution using a mesh of equally-

spaced grid points in the ^-direction, the corresponding 

points along the Y-axis are more closely spaced near Y = 0 

where more accuracy is desired to calculate velocity and 

enthalpy gradients. Thus the transformation magnifies that 

portion of the normal interval which is of most interest, as 

does the Crocco transformation. 

3. For the shear layer calculations use of the Crocco trans

formation necessitates a separate solution to determine the 

velocity along the dividing streamline. As noted by Denison 

and Baum this solution also involves a starting problem at 

the separation point. In the (S,£) coordinate system employed 
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Figure 5. The Coordinate Transformation z, = tanh (aY) for Various Values of a, 

ro 
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here, the dividing streamline is located at t, = 0, which 

is one of the grid points in the finite-difference mesh, 

and thus no separate solution is required. 

Since £ is independent of S, the transformation from (S,Y) to 

(S,0 coordinates is accomplished by using the relations 

3 /n 2v 3 
3Y = a ( 1 " C } H 

— j = a (1 - c ) 
3Y 

-2C f 7 + (1 - C
2) ̂ -2 

9? ac 2 

Introduction of these relations into equations (12), (14), (20), and (21) 

yields the following set of equations: 

Continuity equation: 

* 5<C 

3u , e. 2, 3v n 

— +a(l - 5 ̂  — - 0 
(25) 

Momentum equation: 

u a(l " * F + **] ft (26) 

2 2 * 
, 2.- 2N 3 u 
+ a (1 - £ ) 

3C 
2 
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Energy equation: 

* 3 H i n u Is a (1 cVU%ff 
3H. 

(27) 

+ Za )̂i ! i + a 2 ( 1 _ c 2 ) 
3C 

I * 
3u 

[ 3 ? / 

* 3 H 2 2 
u ST = "a(1 " c > v* + ff 

3H. 

aT (28) 

? 2 
2 . n 2 / " 3^H0 

Pr _ r 2 
d i , 

The transformation does not alter the fact that the energy equations 

(27) and (28) are uncoupled from the momentum and continuity equations. 

The boundary conditions are expressed in (S,?) coordinates as follows: 

Attached boundary layers: 

u = v = 0 , H = 0 , H0 = 1 at £ = 0 

(29) 

u = 1 , H1 = H2 = 0 at C = 1 

Free shear layers: 

u = 0 , H = 0 , H = 1 at c = -1 

* 
v = 0 

u = 1 , H1 = H2 = 0 

at c = 0 > (30) 

at ? = 1 J 
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In addition, the initial profiles in (S,c) coordinates must be 

specified. These are 

\ 
JL JL 

u (S,C) = U Q(C) 

•k & 

v (S,C) = V Q(C) 

at S = S 

H1(S,C) = H1 (C) 
o 

H2(S,C) = H2 (c) 

(31) 

/ 

The Solution in Physical Coordinates 

The solution of equations (25) , (26), (27), and (28) yields ve

locity and enthalpy profiles in (S,c) coordinates. To obtain the profiles 

in the physical (x,y) coordinate system requires the inversion of the two 

transformations employed. 

From equation (24), the inverse of the transformation to (S,£) 

coordinates is simply 

\ 

Y = — In 
2a 

UrS. 
i -- c 

> 

s = s 
(32) 

The transformation from (S,Y) coordinates to (x,y) coordinates is 

accomplished with the inverse of equation (8), namely 
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fY 

y = 
/Re/C j 

^ d Y 
P /ReTc J0 

x = LS 

T dY 

(33) 

where, from equat ion (4) 

* T He 

T =\~r 
The constant C is evaluated from equation (9) using a reference tempera-

ture ratio T which corresponds to some mean temperature in the flow, 

One such temperature ratio which includes the effects of freestream and 

wall conditions and yields satisfactory results is the reference tempera

ture suggested by Eckert (13), namely 

* 1 T u 

T = ̂  + ̂  + 0.22 /F7 ~ 
r 2 2 h 

e 

(34) 

The relation between y and Y (equation (33)) involves the tempera-

•k 

ture ratio T whereas the solution of the energy equation is in terms of 

the enthalpy ratio h . For a thermally perfect, diatomic gas the rela

tion between h and T is given by 

h = C T + h. 
p int ra 

(35) 

where 

Ya R 

P Y " 1 a a 
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is the specific heat at constant pressure for the active degrees of 

freedom of the molecules (i.e., translation and rotation), y = 7/5, 
a 

and h is the temperature-dependent enthalpy contribution due to 

vibration and electronic excitation. Using 

int 
int 

the temperature ratio may be expressed as 

* e * * T - J - J - (h -h ± n t) 
Pa e 

(36) 

and therefore the transformation relations (33) become 

y = c T /Re/C p e J 

"k "k 
(h - h.nt) dY 

x = LS 
/ 

(37) 

For the special case of a gas with no vibration or electronic excitation 

or a gas with the vibrational energy fully excited (i.e., a calorically 

perfect gas), 

T = h 

and (33) becomes 

rY 

y = 
/Re/C 

h dY 

(38) 

x = LS 
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Substituting equation (23) into equation (38) yields the following rela

tions for transforming from (S,Y) coordinates to (x,y) coordinates 

/Re"7c 

u 

^r 
e 

H- dY + (h 
1 w 

x = LS 

- 1) H2 d Y 

(39) 

Thus, velocity and enthalpy profiles in (S,0 coordinates may be 

transformed to physical coordinates by using equation (32) and either 

equation (37) for a thermally perfect gas or equation (39) for a thermally 

and calorically perfect gas. 
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CHAPTER III 

METHOD OF SOLUTION 

The finite-difference solution of the equations derived in the 

preceeding chapter is treated in this chapter. First, the finite-

difference analog of the system of differential equations is derived, 

the solution procedure is described, and the stability of the numerical 

solution is explored. Second, the method of evaluation of the heat 

transfer in attached and separated flows is discussed. 

The Finite-Difference Solution 

The solution method employed in the present study is an implicit, 

finite-difference technique, wherein the governing partial differential 

equations are replaced by an equivalent set of partial difference equa

tions. The numerical solution of these difference equations will then 

approximate the solution of the differential equations provided certain 

stability and convergence criteria are satisfied. 

The method of finite differences is well developed for systems of 

linear partial differential equations. (For example see references (14) 

and (15).) More recently, the method of finite differences has been em

ployed in the solution of systems of non-linear partial differential 

equations using both explicit and implicit techniques. In particular, 

finite-difference solutions of the Prandtl boundary-layer equations for 

steady, laminar, compressible flow have been reported in references (12), 

(16), (17), (18), (19), and (20). 
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In the present study the implicit technique is favored over the 

explicit technique because the implicit technique offers the advantage 

of much less stringent stability requirements, although the numerical 

computations using the explicit technique are somewhat less involved. 

The stability characteristics of explicit and implicit finite-difference 

formulations have been discussed in reference (21), and the stability 

advantages of implicit schemes have been exploited, for example, in 

references (6) and (22)r 

Derivation of the Difference Equations 

The lattice shown in Figure 6 is used in the finite-difference 

approximations. The mesh points are. equally-spaced in the ^-direction. 

The finite-difference approximations for the partial derivatives appear

ing in the momentum and energy equations are similar to those used in 

reference (6). An average central difference approximation is used in 

the £-direction in order to enhance the stability of the solution (6), 

while a forward difference approximation is used in the S-direction. 

These finite-difference approximations are 

ig. =
 8i+1.1 gi..i 

9S AS 

*& 
9C 

8i+l.,1+l gi+l,j-l + 8i.j+l si,i-l 
4AC 

3C 2(AC) 
2 (gi+l,j+l " 2gi+l,j + gi+l,j-l + gi,j+l 

" 2gi,j + "LJ-^ 

\ 

(40) 
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Figure 6. The Finite-Difference Lattice. 
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where g is any of the dependent variables whose derivative appears in the 

momentum or energy equations, i is the S-index, j is the C-index, AS is 

the increment between stations i and i + 1, and Ac is the increment in 

the normal coordinate. 

Introduction of equations (40) into the momentum equation (26) 

leads to the following expression relating the unknown streamwise veloc

ities at station i + 1: 

Al(i'J)ui+l,j-l + A2(i»j)ui+l,j + A3(i'j)ui+l,j+l = B(i'j (41) 

where 

A1(i,j) = a(l - C) 
Vav + * * , a d - C2) 

. 4Af: 2(AC)2 

A2(i,j) = 

2 * 
|"a(l - C2)l Uav 
[ AC J AS 

A3(i,j) = a(l - ? ) 
v + 2aC 
av •_ 

4AC 
+ ad - e ) 

2(Ac)2 

B(i,j) = -A1(i,j)uijj_1 

* -, 
2u 

* t » •\ , av 
A2d.j) +-JJ- U. . 

1,J 

and 

-A3(i'J)ui,j+l 

u 

& "k 

av 
* v i + i . i + v i . i 
av 2 

(42) 
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The energy equations (27) and (28) assume a form similar to equation (41) 

above in difference form, namely 

C^i.j)^ 
i+l.j-l 

+ ^ ( i . j ) ^ + C3(i,j)Hl4 ^ ^ = D1(i,j) (43) 
"i+l.j "1+1, j+1 

C (i,j)H > C (i,j)H + C (i,j)H . D (i j) (44) 
1 i+l,j-l i+l,j i+l,j+l u2K±t2J K ' 

where 

C1(i,j) = a(l - C ) 
1 
4AC 

* , 2aC 
v + 
av 

Pr + q(i - c ) 

J 2Pr(A?) 

C2(i,j) 
1_ 
Pr 

a(l - r ) 
. AC 

u 
av 
AS 

C3(i,j) = a(l - c ) 4A£ 
* , 2aC 

v H- - — 
av Pr 

+ "a - n 
2Pr(A^)2 

D1(i,j) = -C1(i,j)H1^ 
i,j-l 

* -
2u 

n t • \ J_ av 
l.J 

- C (i,j)H 

2 * * * 
a(l - C )(U.,T „,- - u... . n + u. .,_ 

i+l.l+l i+l-i-l i.i+l 
4Ac 

u, J 
-,2 

and 

D2(i,j) -C1(i,j)H2 
i.j-l 

2u 
r. / • «\ JL av 
C 2 ( 1 ' J ) + "̂ r 

H? - C (i,j)H 
l.J l.J+1 

The finite-difference approximations employed for the continuity 

equation are slightly different from those used in the momentum and energy 

equations. Following the suggestion of Wu (17), the continuity equation 
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is evaluated at a point midway between the grid points i+l,j and i+l,j-l, 
* 

9u 
The derivative T7— at this point is taken as the average of the values 

0 D 

at i+l,j and i+l,j-l. Using a backward difference form, this becomes 

su* ui+i.i - "i.i
 + "i+i.i-i - V T - I 

3S *" 2AS 

* 
3 v 

Using a central difference approximation for T-— gives 

oQ 

* V — V 

3v i+1, j i+1,.1-1 
3? " A ^ The resulting finite-difference form of the continuity equation is 

(U... . - U. „ + U 0 | 1 c - - U. . T ) 
v* = v* ^ _ -AL. i+1irJ i|,j i+lii"1 ii.1-1' (45^ 
i+l,j i+l,j-l 2aAS 

, <C1 + C1-X>2 

As pointed out in references (17) and (23), the advantage of this form 
* 

3v is that it employs a central difference approximation for ~r—— which Is a 
dC, 

better approximation than a forward or backward difference approximation 

and, in addition, permits the direct calculation of v at each grid point 

provided that the value of v is known at one grid point and that u is 

known for all grid points at stations i and i+1. 

A slightly altered form of equation (45) is used for that portion 

of the shear layer below the dividing streamline, where the value of v 

is computed using the known value at the grid point just above. In-

creasing the j-index in equation (45) by one and solving for v0 1 . 

results in the relation 
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( " ^ 1 ., - " • j + U . , , . , . , - U . J L 1 ) 

v?., . - v ? + ^ _ i + 1 . l r i i l , i+1.ft1, U+JL (46) 
i + l , j i + l , j + l 2aAS (C. + C..J2 

!.. - —J 1±1 

Equations (41), (43), (44), (45), and (46) form a set of partial 

difference equations whose solution yields velocity and enthalpy profiles 

in (S,c) coordinates. 

Solution for the Velocity Profiles 

At each streamwise station S a lattice of N + 1 equally-spaced 

grid points j = 0,1,2,...,N is placed in the C-direction. With specified 

values of u and v and known profiles of u and v at some station i, 
av av 

equation (41) is written for the interior mesh points j = 1,2,3 N-l 

at the next station i+1 resulting in a system of equations in the unknown 

* 
u - . at the interior grid points. This system is completed by specifying 
1+-L»J 

* * 
the boundary values u. ... ~ and u . from the boundary conditions. Since 

this system is tridiagonal (i.e., the only non-zero elements in the co

efficient matrix are those along the main diagonal and the elements to 

either side of the diagonal elements), it may be solved rapidly using the 

equivalent of Gaussian elimination as described in reference (22). 

With values of u - . given by the solution of the system described 

above, the continuity equation (either equation (45) or (46)) is employed 

as an auxiliary equation to compute values of v. , . using v.,, n = 0 

(i.e., v = 0 at £ = 0). 

* * 
Since the expressions for u and v involve the unknowns 

av av 
* * 
u..- . and v. M . the system described is nonlinear, necessitating an 
l+l,j i+l,j 

iterative solution. In the present study the velocity profiles were ob-
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tained using the computational algorithm outlined below. 

* * 
a. With values of u. . and v. . known either from initial 

ifj i,J 

profiles or the solution at a previous station, set 

* * * * 
u = u. . , v = v. . 
av i,j av i,j 

* * 
b. Using these values of u and v evaluate the co-

° av av 
efficients in equation (41) and solve the resulting system 

* 
for approximate values of u. - .. 

* 
c. With these approximate values of u . . compute the 

1 •"-!-» J 

corres-
•k 

ponding values of v... . from equation (45) or (46). 
* * 

d. Compute new values of u and v using 
v av av ° 

u* . u i + i , j + u i t 1 v * . ^ i . i + v i , i 
u — 0 , v - « 
av 2 av 2 

* 
e. Repeat steps b, c, and d until successive values of u 

and v agree within some specified tolerance. All of the 
av 

results presented in this study were obtained by requiring 

* * 
that successive values of u and v agree to within one 

av av 
tenth of one per cent. 

f. When the condition of step e is satisfied proceed to the 

calculation of the next step. 

With the velocity profiles provided by the above procedure, the 

solution of equations (43) and (44) for the two enthalpy functions H. 

and H may be accomplished. 
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Solution of the Energy Equation 

Writing the two difference equations (43) and (44) for the in

terior grid points j = 1,2,3,...,N-1 yields two tridiagonal systems 

which are completed by specifying the boundary values H.. , H. , 
i+1,0 i+l,N 

H„ , and H„ . Note that the coefficient matrix is the same 
i+1,0 i+l,N 

for both systems, reducing the number of calculations somewhat. Since 

* * 
the coefficient matrix is constructed using u and v furnished by the 

av av 

solution of the momentum and continuity equations, no iteration is re

quired to compute H. and H . The Gaussian elimination procedure 

i+l,j i+l,j 
is also utilized in the solution of the system of equations for H. ̂•i+l.j 
and H„ 

i+l, j 
With profiles of H and H provided by the solution method des-

cribed above, the enthalpy ratio h may be computed from equation (23) 

* 
for given values of u , h , and h . Then with h known, the transfor-

° e e' w ' 

mation back to physical coordinates as described in Chapter II may be 

accomplished. 

Stability of the Finite-Difference Solution 

When the numerical solution of the finite-difference analog of a 

differential equation is used as an approximation to the solution of the 

differential equation, two questions arise concerning the accuracy of the 

solution. 

(1) Is the numerical solution of the difference equation stable 

with respect to roundoff errors, and 

(2) does the exact solution of the finite-difference equation 

converge to the solution of the differential equation as the 
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distance between grid points in the difference mesh is 

decreased? 

With the aid of certain assumptions, the stability of the momentum 

difference equation (41) used here may be analyzed. Such an analysis is 

presented in Appendix A. The analysis considers the linearized form of 

the momentum difference equation. The linearized form is obtained by 

assuming that the non-linear coefficients may be replaced by suitable 

average values which are constant over each interval AS. This assumption 

leads to the conclusion that the momentum difference equation is stable 

* 
for any step size AS, provided thai: the condition u > 0 is satisfied. 

•̂  av — 

In the present case this condition is always satisfied. 

The continuity difference equation is linear, and, with the 
* 

derivative T-T— specified from the stable solution of equation (41), 
d o 

•k 

roundoff errors in the calculation of v., ,., . are simply added at each 
i+l. J 

step. Since roundoff errors occur randomly, their sum is bounded, and 

the continuity difference equation is stable. 

The conditions for stability of the finite-difference equations 

for the enthalpy functions H and H are revealed by a comparison of these 

equations with the momentum difference equation (41). The form of equation 

(44) for H differs from that of the momentum equation (41) only in the 

appearance of the Prandtl number in the coefficients0 The results of the 

stability analysis presented in Appendix A applies directly to the solution 

for £L since the Prandtl number is always positive. The form of equation 

(43) for H differs from that of equation (44) only in the additional 

term involving the velocity derivative. Since the velocity field is 

specified from the solution of the momentum and continuity equations and 
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since a specified term does not affect the growth of error in the 

numerical procedure, the stability analysis of Appendix A also applies 

to equation (43). Thus the conditions for a stable solution for the 

enthalpy functions are the same as those for the solution for the veloc

ity profiles. 

While the question of convergence is not treated here, Hildebrand 

(23) asserts that existing evidence indicates that a finite-difference 

formulation which is stable is also convergent. 

Evaluation of the Heat Transfer 

Attached-Flow Regions 

The local heat transfer rate q for an attached boundary layer 

at station x is given by 

W x ) • a y j 
(47) 

y=0 

where q is the heat addition rate to the surface and k is the co-^att 

efficient of thermal conductivity 

C u 

Pr 

Substituting for k and transforming x and y to S and Y, equation (47) 

becomes 

Cy h / " — / . , 
(Q\ - e e "\ | R e $lL 

q a t t ^ b ; " LPr VC~ "3Y 

•k \ 

Y=0 

Equation (23) g ives 
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3h 
3Y Y=0 

3H. 

17 
Y=0 

+ ( h w " X ) 

3H, 

W Y=0 

so t h a t 

Cy h 

<WS> • "ifr 
Re 

r 2 u e 
h 

e 

3H 1 

Y==0 
+ (h - 1) 

w 

3H, 

W Y=0 J 
(48) 

The numerical solution of the. energy equation described previously 

is carried out without considering specific freestream and wall condi

tions. In like manner, the heat transfer rate may be written in a form 

which is valid for a number of freestream and wall conditions. For 

adiabatic conditions, q tt(S) = 0 and h = h so from equation (48) 

3H. 

1 3Y L = -(h -- 1) 
Y=0 aw 

3H, 

I 3Y~ 
Y=0 

Therefore 

W s ) 
p u (h - h ) 
e e w aw 

Re 1_ 
Pr 

3H, 

W (49) 
Y=0 

Define an average heat transfer rate to an attached-flow region 

by 

latt 
qatt(S) dS 
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Introducing equation (49) results in the expression 

qatt 
p u (h - h ) Ke e w aw 

V C Pr 

9H2 
dS (50) 

Y=0 

For comparison, expressions similar to equations (49) and (50) 

for the local heat transfer rate q and the average heat transfer 

rate q, . to a flat plate may be expressed from reference 2 as 

P u (h - h ) V C « /T 
e e w aw v Pr /S 

VRe = CL, q b l ( S ) ^ /Re 0.29575 ( 5 1 ) 

and 

q b l - t /ie~ 0.5915 ^ ( 5 2 ) 

p u (h - h ) V C Pr 
e e w aw u 

Separated-Flow Regions 

The evaluation of the heat transfer to regions of separated flow 

is not as straightforward as for attached flow. As a consequence of 

assuming that the influence of the cavity floor on the shear layer is 

negligible, the temperature gradient, and thus the local heat transfer 

rate, cannot be evaluated at the cavity floor. Thus, as noted by Chapman, 

an energy balance for the separated-flow region is required to evaluate 

the total heat transfer rate. 

For a closed surface ft, the conservation of energy for steady 

flow requires that 
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Rate of heat 
input across 

n 

Rate of work done 
by gas through 
normal pressures 
on ft 

Rate of work done 
by gas through 
tangential stresses 
on ft 

For a cavity of length x, the energy balance above for the closed 

surface consisting of the dividing streamline and the cavity walls 

yields the expression 

k 3y y=0 
dx - q 

sep 
lli 
3y /y=0 

('u)y=0 d x (53) 

where q is the average heat transfer rate to the cavity walls. nsep 

Transforming to S and Y results in the relation 

sep =-^ /C 
Re P u e e 

.§. I 9h 
Pr | [3Y J 

0 Y=0 

dS + u 
* 3u 
1 3Y" 

dS 
Y=0 

Substituting for 
3h 
3Y 

yields 
Y=0 

Lsep _ -. / C 
P u 
e e 

Re 

rs 
he * 

?7(hw - 1) 
3H, 

i 

\ 3Y 
dS 

Y=0 
(54) 

+ u 
* 3u _,_ 1 

U ~ +PT 
3H. 

W dS 
Y=0 
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The average heat transfer is expressed in the form of equation 

(50) in the following manner. Under adiabatic conditions q = 0 and 
° nsep 

h = h , thus 
w aw 

* 3u ^ 1 
u r^r- + 

3H. 

3Y Pr 9Y / 
dS = -

Y=0 

(h - 1) 
aw  

Pr 

3H, 

I 9Y" ' v-
dS 

Y=0 

Inserting this relation into equation (54) gives 

sep 
p u (h - h ) 
e e w aw 

Re 1_ 
Pr 

3H, 

W dS (55) 
Y=0 

Note that equations (55) and (50) are identical in form. This permits 

the calculation of the overall heat transfer to a combination of sepa

rated and attached flows by simply integrating 
3H, 

2 
I 9Y" / 

over the 
Y=0 

entire region, provided the wall and freestream conditions are the same 

and that h is the same for both attached and separated flows. Chapman's 
aw r 

theory predicts that the average recovery factor, and hence h , is 

essentially the same for both separated and attached flows, For Pr = 0.72^ 

the theory predicts a recovery factor r = 0.850. The recovery factor 

for an attached flow with Pr = 0.72 is r ~ v/p~r = 0.849. This difference 

is negligible and therefore h is assumed to be the same for both 
to ° aw 

separated- and attached-flow regions in the present study. Thus the 

average heat transfer rate q to a surface consisting of both separated-

and attached-flow regions may be written as 
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- h ) V C Pr 

'S / 3H. 

p u (h - h ) V C Pr I I 3Y 
e e w aw |Q Y = 0 

dS (56) 

While the local heat transfer rates along the cavity floor 

corresponding to equation (49) cannot be determined from this analysis, 

it is still possible to consider "local" rates in the sense that local 

gradients along the dividing streamline may be evaluated and a "local" 

heat transfer rate for shear layers q may be defined by 

qsep(S) -,/Re _ 1_ 
p u (h - h ) V C Pr 

3H 

iri (57) 
e e w aw Y=0 

It should be emphasized that equation (57) does not provide the local 

heat transfer rate along the cavity floor, since this is dependent upon 

the recirculating flow in the cavity. Nevertheless, equation (57) is 

a convenient expression. 

The desired result of this analysis is the comparison of the 

overall heat transfer rate to a surface with cavity-separated regions 

with that to an equivalent completely-attached flow. The advantage (or 

disadvantage) of employing the cavity-separated flow model is reflected 

in the ratio of overall heat transfer rates q defined by 

— "k n 

q = r 3- (58) 
q b l 

where q is given by equation (56) and q, 1 is given by equation (52). 

Equation (52) is used for this comparison rather than results from the 
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finite-difference solution since results presented in Appendix B show 

that the finite-difference results agree with equation (52) for values 

of S of interest here. 

In addition a ratio of local heat transfer rates q may be 

defined by 

q* - -i- (59) 
qbl 

where q = q ti_ for the attached-flow regions, q = q for the sepa-n ^att & * n nsep r 

rated-flow regions, and q - is computed from equation (51). 

Check of the Solution Method 

To investigate the accuracy of the numerical method and to 

establish a satisfactory grid size, the numerical solution was applied 

to problems whose solutions are available in the literature. Both the 

flat plate (Blasius) and the free shear layer problems were selected 

for this investigation since they possess velocity and enthalpy profiles 

which are similar to those of the present study. These investigations 

are discussed in detail in Appendices B and C, and the results are 

summarized here. 

The numerical solutions for both the flat-plate boundary layer 

and the non-similar free shear layers with finite initial thickness 

converged to the solutions given in the literature. Furthermore, the 

similar free shear layer profiles of Chapman are accurately preserved 

by the numerical solution. In a small region near where the boundary 

layer or free shear layer initiates, the numerical solutions differ 
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substantially from the exact solutions because of the large velocity 

and enthalpy gradients. The streamwi.se distance S required for the 

numerical solution to converge to an accurate solution is, of course, 

dependent upon the step sizes selected for the S and C coordinates. 

Comparisons in Appendix B show that the numerical results for the 

integrated heat transfer rates to a flat plate converge to within one 

per cent of the predictions of reference (2) at S = 10 if 

(1) the interval from S = 0 to S = 1 is subdivided into 100 

steps varying such that the step size is proportional to 

the square root of S, 

(2) the interval from c = 0 to r, = 1 (i.e., Y = 0 to Y = «) 

is initially subdivided into 25 equal steps and the 

transformation constant: a and the number of grid points 

adjusted to assure that: at least two grid points at any 

streamwise station are outside the boundary layer, and 

(3) the enthalpy gradient at c, = Y = 0 is evaluated using a 

parabolic curve fit. 

Also, as shown in Appendix C, the velocities along the dividing stream

line agree within one per cent of the values of reference (6) at 

-2 
S = 10 if these step sizes are employed. Since the present study 

will consider geometries for which S ̂  10 these step sizes are used 

for computing the velocity and enthalpy profiles for the results pre

sented herein and the gradients at Y = 0 are evaluated using a parabolic 

curve fit. 

The use of a streamwise step interval AS which varies as the 

square root of S allows the use of small steps for small values of S 

streamwi.se
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where gradients are large while permitting relatively large steps in S 

for large S where the gradients are smaller. This is an advantage over 

the use of a constant value of AS, since a value AS small enough to 

provide accurate results for small S would require an excessive amount 

of computation for large values of S. 

When the edge of the viscous layer reaches the next-to-last 

grid point (corresponding to the last finite value of Y) as depicted 

in Figure 7, N is increased by 20 per cent to Nf and the transformation 

constant a is adjusted so that the Y-spacing for the first grid point 

(i.e., between j = 0 and j = 1) is unchanged. Thus, at least one 

additional grid point is located outside the viscous layer and the Y-

spacing for all the grid points other than the first is slightly re

duced. This assures that the numerical accuracy is at least maintained 

without excessively reducing the computing efficiency. 

Application to the Present Study 

The particular geometry chosen for the numerical study of the 

heat transfer rates to multiple-cavity configurations with sharp-cusp 

reattachment geometries is illustrated in Figure 8. Each cavity is the 

same length L, and each attached-flow region between cavities is of 

* 
length L . Various values of L = L /L are considered, and two cases a a 

are considered for the initial attached-flow length L , namely, L = L 
S S cl 

and L = L. The streamwise distance from the initial point of the 
s r 

surface is termed S. The distance downstream of the initial attached-

flow region divided by the cavity length is denoted S, and the dis

tance downstream of each reattachment point divided by the cavity 
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N - 1 6 

N -

Edge of 
viscous layer 

J = 

Note: The points in the Y-direction depicted here correspond to 
the equally—spaced grid points in the C-direction. 

Figure 7. Illustration of Alteration 
of Finite-Difference Mesh. 
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length is called S. These quantities are depicted in Figure 8. 

Based on the results of the check of the solution method, the 

following grid sizes are employed for this geometry: 

1. The finite-difference lattice starts with N = 25 at S = 0, 

and N is increased by 20 per cent whenever the edge of the 

viscous layer reaches the next-to-last grid point. 

2. The streamwise step interval AS is varied as the square 

root of the distance downstream of the reattachment point 

for attached boundary layers or the distance downstream 

of the separation point for free shear layers. 

Application of the numerical solution method used here to this 

geometry requires the specification of the initial profiles for the 

attached boundary layers and free shear layers originating from each 

of the separation and reattachment points. Uniform velocity and en

thalpy profiles are used for S = 0 with a discontinuity at £ = 0, 

where the velocity and enthalpy are given by the boundary conditions 

for attached boundary layers. At each separation point, the initial 

conditions for the free shear layer solution are determined in the 

following manner. The difference mesh for the interval -1 <_ z, <_ 0 

employs the same number of grid points as for the interval 0 <_ z, <_ 1. 

The values of the dependent variables at each of the grid points above 

C = 0 are taken from the solution for the. attached boundary layer at 

the separation point, while the values at the grid points for £ <_ 0 are 

given by the free shear layer boundary conditions at c, = -1. At each 

reattachment point, the initial conditions for the attached boundary 

layer solution are determined by using the values from the free shear 
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layer solution at that point for £ > 0. Thus the initial profile for 

each attached-flow region following a cavity is a discontinuous pro

file corresponding to the upper half of a free shear layer profile 

with the boundary conditions for attached boundary layers at £ = 0e 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Heat Transfer Results from the Numerical Solution 

The finite-difference solution method was applied to a four-

cavity configuration with sharp-cusp reattachment geometries like that 

depicted in Figure 8. Typical results for the local heat transfer 

rates are presented in Figure 9. For comparison, the local heat trans

fer rates to an equivalent completely-attached flow given by equation 

(51) are also shown. The reduced "local" heat transfer rates over 

each of the cavities are accompanied by elevated heat transfer rates 

over the attached-flow regions between the cavitiesa 

The results of Figure 9 are presented in Figure 10 in terms of 

the ratio of the local heat transfer rates to the heat transfer rates 

for the equivalent completely-attached flow, q (i.e., the ratio of 

the solid to the dashed line in Figure 9) , These results indicate the 

relative increase or decrease of the local heat transfer rates in 

comparison to a completely-attached flow. The form of the results over 

each of regions 1, 2, 3, and k in terms of q are remarkably similar. 

To investigate this similarity in the values of q for each region the 

local heat transfer rates for regions 1, 2, 3, and 4 were computed for 

L equal to 0,1, 0.25, 0,5, 1, and 2 using an initial attached-flow 

length L = L . These local heat transfer rates are presented in 
s a 

Figures 11 through 15 in terms of the parameter S, which is the dis-
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L = 0.1 
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Figure 11. Ratio of Local Heat Transfer Rates Downstream 
of Reattachment for L =0.1. 
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Figure 12. Ratio of Local Heat Transfer Rates Downstream 
of Reattachment for L* = 0.25. 
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L = 0.5 
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Figure 13. Ratio of Local Heat Transfer Rates Downstream 
of Reattachment for L* = 0.5. 
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L = 1 

Region 1 
Region 2 
Region 3 

. Region 4 
Pr = 0.72 

Figure 14. Ratio of Local Heat Transfer Rates Downstream 
of Reattachment for L » 1. 
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Figure 15. Ratio of Local Heat Transfer Rates Downstream 
of Reattachment for L = 2 . 
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tance downstream of each reattachment point divided by the cavity 

length, as shown in Figure 10. In each case the solution was carried 

out to large values of S following the fourth cavity. 

For each of the geometries considered, the values of q for 

the attached-flow surfaces downstream of reattachment converge to a 

single curve for the successive regions. The difference between curves 

is greatest for the region following the first cavity (region 1), while 

the curves for the subsequent regions converge rapidly with less than 

one per cent difference for regions 3 and 4. These results show that, 

for a given value of L , a single "correlation" curve of q versus S 

may be used to approximate accurately the local heat transfer rates to 

the surface downstream of a cavity without necessitating the solution 

of the boundary layer equations for the entire surface. This approxi

mation is used in the following section to compute the heat transfer 

rate to the attached-flow regions. In view of the rapid convergence of 

the results for the succeeding regions, the curves of q versus S for 

region 4 are taken as the correlation curves for each value of L „ The 

"k "k 
value of q for these correlation curves is denoted by q . These M J Hcor 

correlation curves for the various values of L are presented in Figure 

16, These results show that the local heating rates following re-

attachment are higher for the smaller values of L . This result is 

attributed to the fact that the free shear layer velocities at re

attachment for the smaller cavity spacings are higher and so the gradi

ents at and following reattachment are greater. This is illustrated in 
•k 

Figure 17 where the dividing streamline velocity ratio u, is presented 
* -k 

for L = 1, 0.5, and 0.1. The values of u, at reattachment are seen to 
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be greater for decreasing L . However, even for small L the velocity 

ratio u, is considerably below 0.587 corresponding to the fully-developed 

free shear layer profiles. The value of u at reattachment decreases 

significantly at successive reattachment points. 

The "local" heat transfer rates from the free shear layer solu

tions for cavities 2, 3, and 4 presented in Figures 11 through 15 also 

converge to a single curve. In addition, these curves are similar to 

the corresponding portion of the correlation curve. The similarity 

between the local heat transfer rates for the free shear layer and the 

corresponding local heat transfer rates for attached boundary layers 

was investigated in detail for L =: 1, Solutions for one, two, three, 

and four cavity configurations were carried out using the finite-

difference method. The computed results are presented in Figure 18. 

The solid lines represent the local heat transfer rates for the four-

cavity configuration. The dashed lines over each cavity represent the 

corresponding heat transfer rates which would exist if the flow were to 

remain attached. The ratios of these local heat transfer rates in the 

separated regions to the local heat transfer rates for the corresponding 

attached flows (i.e8, the ratio of the values of the local heat transfer 

rates for the solid and dashed curves of Figure 18) are presented in 

Figure 19. This ratio of local heat transfer rates is essentially 

constant over each cavity and only varies by about one per cent for the 

various cavities. These results show that, for Pr = 0.72, the local 

heat transfer rate across a free shear layer is between 56 and 57 per 

cent of that for an attached boundary layer with the same initial pro

file. Chapman's analysis (2) predicted that the heat transfer rate to 
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a separated-flow region for similar profiles was approximately 56 per 

cent of that to an equivalent attached-flow region for Pr = 0.72. These 

results demonstrate that this ratio is approximately valid for free 

shear layers with finite initial thicknesses. This probably explains 

the fact that experiments, which necessarily had finite boundary-layer 

thicknesses at separation, found good agreement with the heat transfer 

rates predicted by Chapman, 

The local heat transfer rates for the separated-flow regions 

presented in Figures 11, 12, 13, and 15 for L =0.1, 0.25, 0.5, and 

2 exhibit the same characteristics as the results for L = 1 . Thus 

the local heat transfer rate for a free shear layer is equal to approxi

mately 56 per cent of the value for a corresponding attached boundary 

layer for all values of L . 

In summary, the results from the numerical solution exhibit the 

following two characteristics: 

1. The local heat transfer rates downstream of reattachment 

for a given cavity spacing may be correlated with the local 

heat transfer rates to a completely-attached flow. 

2. The local heat transfer rates across a free shear layer with 

an arbitrary initial profile may be computed to a good 

approximation by taking 56 per cent of the local heat trans

fer rates to an attached boundary layer with the same 

initial profile. 

These two characteristics may be utilized to compute rapidly the overall 

heat transfer rate to a multiple-cavity configuration. The local heat 

transfer rates for an attached boundary layer may be calculated using 
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the correlation curves presented in Figure 16. The local heat transfer 

rates for the free shear layers may be approximated by taking 56 per 

cent of the corresponding value from these correlation curves. This 

method, hereafter termed the "correlation technique," is developed and 

used in the next section. 

Heat Transfer Results Using the Correlation Technique 

The correlation technique developed in this section is used to 

compare the heat transfer rate to that portion of the surface downstream 

of the initial attached-flow region (i.e., downstream of S = L ) to 
s 

the heat transfer rate to the corresponding portion of a flat plate with 

* 
completely-attached flow. Using q = q q, and substituting for q, , from 

equation (51), the average heat transfer rate q to this portion of the 

surface may be written 

g - i / M 0.29575 
p u (h - h ) V C Pr 

e e w aw y 

fS 

J L 
s 

* 
^ - dS (60) 
/s 

Using t h i s r e l a t i o n and s u b s t i t u t i n g for q, , from equa t ion (52 ) , equa

t i o n (58) becomes 

•s * 
-•k 

q = 
2( /S - SL~ ) (T s ' * L s 

3 - dS (61) 
/s" 

Let S be the distance downstream of the initial attached-flow region 

divided by the cavity length as illustrated in Figure 8, i.e., 
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S =• 

S - L 
£ 

L, 

Then, substituting this expression into equation (61) and using an 

initial attached-flow length L = L yields 
S 3 

_* 
q = 

2 (V S + L* -VL* ) J "Vs + L 
dS (62) 

For the first cavity (i.e., 0 <_ S <_ 1) , the value of q as given by 

the correlation is 0.56, so that for S > 1, equation (62) becomes 

2(0.56) 

q = 

VTT^-V7 ] + [ —^ dS 

2 (Vi7L*-V?") 
(63) 

Define 3 by 

i: 

= _9 
•k 
q cor 

where the values of 3 used in the correlation technique are 

1 for attached boundary layers 

0.56 for free shear layers 

Equation (63) then becomes 
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2(0.56) [VT77"-V?1 + 
_* 

S Q * 

— ^ dS 

1 V S + L 
q ; z=r—zzrr—^-^ (64) 

where q is given for each value of L by Figure 16. 

To investigate the accuracy of the correlation technique, equa

tion (64) was used to compute the overall heat transfer rates for one, 

two, three, and four-cavity configurations for a value of L = 1 . 

These results are presented in Figure 20. Results from the finite-

difference solution method for the same configurations are presented 

for comparison. The correlation technique over-estimates the heat trans

fer. This conservative feature of the correlation technique may be ex

plained by reviewing the local heat transfer rates in Figure 14. The 

correlation technique uses the curve for region 4 as the correlation 

curve. Since this curve lies above the curves for regions 1, 2, and 3, 

the overall heat transfer rate computed from the correlation curve for 

these regions is high. Since the difference between the correlation 

curve and the actual curve is greatest for region 1 (i.e., following 

the first cavity), the results for the overall heat transfer rate for 

the one-cavity configuration in Figure 20 shows the greatest difference 

for the two methods. The agreement: between the results for the two 

methods improves as the number of cavities increases. The results for 

the four-cavity configuration are only about one per cent higher than 

the results from the numerical solution. Thus, for multiple-cavity con

figurations, the correlation technique furnishes overall heat transfer 

rates in good agreement with the numerical results with much less 
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computational effort. 

The correlation technique was employed to compute the overall 

heat transfer rate to a surface with four cavities for various cavity 

spacings. The results of these computations for L = 0.1, 0.25, 0.5, 

and 1 are shown in Figures 21 through 24. The results show the effects 

of both multiple cavities and cavity spacing on the overall heat trans

fer rates. 

The results in Figures 21 through 24 show that the overall heat 

transfer rate downstream of the first cavity is reduced by subsequent 

cavities. For example, from Figure 24 (L = 1) the ratio of overall 

heat transfer rate q for the two-cavity configuration at the end of 

the second cavity (i.e., S = 3) is 0.845. The value of q for the one-

cavity configuration at the same point (S = 3) is 0.972. Hence, the 

reduction in overall heat transfer rate (i.e., 1 - q ) at S = 3 is 

15.5 per cent for the two-cavity configuration as compared to 2.8 per 

cent for the one-cavity geometry. The effect of the successive cavities 

is smaller but still results in a reduction in overall heat transfer 

rate when compared to a geometry with fewer cavities. Similar results 

are obtained for the other values of L , with the reduction due to 

multiple cavities increasing as L decreases. 

The advantage of multiple-cavity configurations diminishes when 

the attached-flow region downstream of the last cavity is extensive. 

Thus, in a practical application, extensive attached-flow regions down

stream of the last cavity are to be avoided, and the end of the surface 

should be just downstream of the final cavity. With this in mind, the 

_* 
values of q of significance are the values at the end of each of the 
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cavities. These values represent the maximum reduction in the heat 

transfer rate attainable employing the present geometry. The dashed 

lines in Figures 21 through 24 represent the envelope of these values 

-•k 

of q . 

To illustrate the effects of cavity spacing for multiple-cavity 

geometries, the correlation technique was employed to compute the 

_* 
value of q at the end of each cavity for a multiple-cavity configura-

tion for L = 0.1, 0.25, 0.5, 1, and 2. The results of these computa

tions are presented in Figure 25. Each solid line represents the 

results for a given number of cavities. The dashed lines represent the 

envelope of the values of q for a given value of L , as shown in 

Figures 21 through 24. These results demonstrate the effect of both 

cavity spacing and the number of cavities. The smaller values of L , 

corresponding to larger ratios of separated to attached-flow areas, 

result in larger reductions in q , The reduction in q is not directly 

proportional to the area ratio, however, due to the higher local heat 

transfer rates to the attached-flow regions for smaller L . The smaller 

_* 
values of q occur for small S. Thus, if cavity-induced separated-flow 

regions are used to reduce the overall heat transfer rate to a given 

surface, the corresponding value of S should be made as small as 

practicable,, Since S depends upon the cavity length, this requires 

that the cavities be as long as possible, keeping in mind that the 

cavity flows must be of the deep, open type. 

For a specified cavity length (i.e., given S), the results in 

_* 
Figure 25 show that the minimum value of q occurs for the larger number 

of cavities (i„e., smaller L ). For example, for a value of S = 8, 
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— 7S 

these results predict the smallest value of q to be approximately 0.87 

for a seven-cavity configuration. The corresponding cavity spacing L 

is between 0.1 and 0.25. 

In summary, the results from the correlation technique demon

strate that, with the present sharp-cusp reattachment geometry, surfaces 

with multiple cavity-induced separated-flow regions experience a sub

stantial reduction in overall heat transfer rate. However, this re

duction is perhaps disappointing in comparison with the reduction poten

tial available in a completely-separated flow. Comparison with results 

from the numerical solution show that the correlation technique provides 

overall heat transfer rates that are slightly conservative. For a 

given surface length, the maximum reduction in heat transfer rate occurs 

when the cavities are as long as possible and the cavity spacing is 

chosen so that the largest number of cavities are used while keeping 

the length of the attached-flow region following the last cavity as 

short as possible. 

Effects of Initial Attached-Flow Length 

All of the results presented thus far have used an initial 

attached-flow length L which is equal to the length of the attached-
s 

flow regions between the cavities L . To investigate the effect of a 

different initial length L , the numerical solution procedure was applied 
to the geometries depicted in Figure 26. Two cases were considered, 

* 
namely, L = L and L = L, and for each case a value L =0.1 was used. 

J ' s a s 

Both one- and two-cavity configurations were employed. The overall heat 

transfer rates to the portion of the surface downstream of S = 0 are 
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presented in Figure 27. 

-* 
The lower values for q downstream of the cavities for Case 2 

(L = L ) are attributed to the fact that the cavities are located 
s a 

nearer the leading edge and thus in a region where the attached-flow 

local heat transfer rates are higher. Since the local heat transfer 

rates for the free shear layer are 56 per cent of the equivalent 

attached boundary layer values, the cavities located nearer the leading 

edge reduce the local attached-flow heat: transfer rates where they are 

higher, resulting in a greater reduction in the overall heat transfer 

_* 
rate. However, the results in Figure 27 show that the values of q at 

the end of each of the cavities varies only slightly for different 

initial attached-flow lengths. The effect of the initial length will 

continue to diminish with additional cavities. 

Effect of Blunted-Cusp Reattachment Geometry 

Since a sharp-cusp reattachment geometry would generally be im

practical, an analysis was made to explore the effect that cusp leading-

edge bluntness would have on the heat transfer results of the present 

analysis. This effect was explored by comparing the heat transfer rate 

to a blunted flat plate with that to a sharp-edge flat plate. The de

tails of this study are presented in Appendix D, and the results are 

summarized here. The analysis of Appendix D assumes that the leading-

edge thickness is small compared with the free shear layer thickness at 

reattachment (i.e., the flow is essentially uniform over a height equal 

to the leading-edge thickness), and that the leading-edge effects down

stream of the nose are equivalent to those for the flat plate. This 
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blunted-cusp reattachment geometry is illustrated in Figure 2(d). 

The calculations for a perfect gas with Pr = 1 and cold-wall 

conditions demonstrate that the Mach number of the flow approaching re

attachment (i.e., the Mach number at the dividing streamline) ranges 

from zero to about three for freestream Mach numbers ranging from zero 

to infinity. For the values of the dividing streamline velocities en

countered in the present results, a representative Mach number for the 

flow approaching reattachment is approximately 1.8. 

Employing the blunt body theory of reference (24) for a reattach

ment Mach number of approximately 1.8, the overall heat transfer rate 

to the nose of a blunted flat plate is approximately 25 per cent greater 

than that to a sharp-edged flat plate with the same surface length. 

This increases to only about 50 per cent in the limiting case of a fully-

developed free shear layer at reattachment (i.e., u, = 0.587) and a free-

stream Mach number approaching infinity, 

The effect of the degree of bluntness (i.e., the ratio of leading-

edge diameter to the length of the plate) on the overall heat transfer 

rate is estimated using the heat transfer rates for the blunt nose as 

obtained from the blunt body theory. The heat transfer rates for that 

portion of the blunt plate downstream of the nose are determined using 

an equivalent flat plate downstream of the blunt nose. The results of 

this analysis demonstrate that, for the typical reattachment Mach number 

of 1.8, a blunt plate with a ratio of nose thickness to plate length 

of 0.1 would have an overall heat transfer rate only about three per 

cent greater than a sharp-edged flat plate of the same length. Approxi

mately a six per cent increase would occur for the limiting case of a 
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fully-developed free shear layer with Ma -> °°. 

Another indication of the small effect of bluntness is illus

trated by the experimental values of the ratio of local heat transfer 

rates q downstream of reattachment measured by Nicoll (9). These 

results are presented in Figure 28. The geometries employed in the 

experiment were single-cavity configurations with initial attached-
L 

flow regions twice the cavity length (ice., -— = 2). The cavities 
Li 

employed shoulder reattachment geometries like those depicted in 

"k 

Figure 2(a)9 The correlation curve for L = 2 from the present re

sults for a sharp-cusp reattachment geometry is presented for compar

ison. In view of the difference in the reattachment geometries, the 

agreement is surprising. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The possibility of reducing the overall heat transfer rate to 

a surface by exploiting the reduction in heat transfer rates in 

regions of cavity-induced separated flows for laminar flow has been 

studied. An implicit finite-difference solution method has been 

developed for solving the constant-pressure laminar boundary-layer 

equations for compressible flow to obtain velocity and enthalpy pro

files for both attached boundary layers and free shear layers with 

arbitrary initial profiles. This solution method has been employed to 

calculate the heat transfer rate to a flat plate with a series of 

cavities located in the surface. The effects of the number of cavities, 

the cavity spacing, the length of the initial attached-flow region, and 

the reattachment geometry have been studied, 

The results of this investigation may be summarized in the 

following conclusions: 

1. The finite-difference solution procedure employed in the 

present analysis has been shown to provide a stable, accurate solution 

of the constant-pressure laminar boundary-layer equations for both 

attached boundary layers and free shear layers. The solution for the 

non-similar growth of the free shear layer with finite initial thickness 

offers an advantage over previous methods because the necessity of a 

separate solution for the dividing streamline location is eliminated. 
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In addition, the transformation of the normal coordinate to a finite 

interval employed here provides an explicit inverse relation in con

trast to the Crocco coordinate transformation which requires an inte

gration to invert. 

2. For a multiple-cavity configuration utilizing a sharp-cusp 

reattachment geometry with a given ratio of cavity length to attached-

flow length between cavities the distributions of local heat transfer 

rates for the attached-flow regions downstream of each cavity converge 

to a single curve when compared to an attached flow at the corresponding 

streamwise distance. These limiting curves are useful as approximate 

correlation curves which may be employed to estimate rapidly the heat 

transfer rates to surfaces containing cavities. 

3. The local energy transfer rate across the dividing stream

line for a free shear layer is essentially 56 per cent of that for an 

attached boundary layer at the corresponding location. This result 

indicates that the average heat transfer rate across a free shear layer 

is essentially 56 per cent of that to an equivalent attached flow not 

only for the case of zero initial thickness (as determined by Chapman) 

but for the case of a finite initial thickness as well. 

4. The correlation technique developed in this study provides 

overall heat transfer rates for multiple-cavity configurations in good 

agreement with the results from the finite-difference solution with much 

less computational effort. The results from the correlation are conser

vative, and the agreement improves as the number of cavities increases. 

5. The additional cavities downstream of the first cavity can 

significantly reduce the overall heat transfer when compared to a con-
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figuration with fewer cavities, with the reduction due to multiple 

cavities increasing as the cavity spacing decreases. 

6. Where multiple cavity-separated regions are employed to 

reduce the overall heat transfer rate to a given surface, the maximum 

reduction occurs when the cavities are as long as practicable and the 

cavity spacing is chosen so that the largest number of cavities is 

used consistent with the condition that the length of the attached-

flow region following the last cavity be as short as possible. 

7. Investigation of the effects of bluntness at reattachment 

using blunt body theory indicates that, for the typical reattachment 

Mach number of 1.8, a blunt plate with a ratio of nose thickness to 

plate length of 0.1 would have an overall, heat transfer rate only about 

three per cent greater than a sharp-edged flat plate of the same length. 

In summary, the results of this investigation demonstrate that 

multiple cavity-separated regions can reduce the overall heat transfer 

rate in comparison to an equivalent completely-attached flow. This 

reduction for the multiple-cavity configurations is perhaps disappointing 

in comparison to the potential heat transfer reduction for a completely-

separated flow. A study of the effects of bluntness indicate that 

blunting increases the heat transfer rate in comparison to a sharp-

edged geometry. However, this increase is small for moderate bluntness 

ratios. 

The present analysis has assumed that each of the cavities are 

sufficiently deep to be of the deep, open type. The type of cavity flow 

is dependent upon the flow detail in the cavity. Determination of the 

possible restrictions on the geometry necessary to guarantee the deep, 
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open type cavity flow must await the analysis of the recirculating flow 

in the cavity. One approach which merits study is the solution of the 

Navier-Stokes equations for the recirculating flow in the cavity coupled 

with a boundary-layer approach for the viscous-flow region outside the 

cavity. 

Further studies of the reattachment region are recommended since 

this region may be important from the standpoint of reducing the heat 

transfer rate. Both experimental and analytical investigations are of 

interest for various reattachment geometries. 



93 

APPENDIX A 

STABILITY ANALYSIS OF THE MOMENTUM EQUATION 

The stability of the finite-difference form of the momentum 

equation in (S,0 coordinates is investigated in this appendix. 

From equation (26) the momentum equation in (S,0 coordinates 

is given by 

u* 1 H ! . -a(i - c
2 ) ( v * + 2aC) | £ + a

2(l - ^ ^f- (A-l) 

Using the finite-difference approximations for equally-spaced grid points 

presented in Chapter III, the momentum equation may be replaced by the 

difference equation 

* * * * * * 
u.y1 . - u. 0 - A(u.., .... - u.,-. „ T + u„ 0]1 - u„ .1) (A-2' 
l+l,j i,j l+l, j+1 i+l.J-1 i,J+l i,J-l 

+ B(u. n . - 2u„... „ + u„.n . n + u0 . 
l+l,j+1 l+l,j l+l,j-1 i,J+l 

- 2u. . + u. . .,) 

where 

= . "<i ; c > M ( * + 2ac) 
, * AC av 
4u 
av 
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2 

= a
2(l - r2) AS 

a * ? 
2uav (A?) 

and u and v are given by equation (43). Equation (A-2) is simply 

equation (42) expressed in a slightly different form. 

* * 
Assuming that u and v in the coefficients A and B are 

av av 

constants which are prescribed from the previous iteration, equation 

* 
(A-2) is linear in the u. .. It may be shown that the truncation error 

i.J 
e„ . between the exact solution of (A-2) and the numerical solution 
i,J 

(which includes roundoff errors) satisfies the same difference equation, 

thus 

£.,T . - e. . = A(e.,1 ... - e.,- . - + e. . , - - e. . -) (A-3) 
i+l,J i,J l+l,j+1 l+l, j-1 i»J+l i.J-1 

+ B(e - 2e . + e + e. .... 
i+l,j+1 i+l,j i+l,j-1 i,j+l 

- 2e. . + e. . n) 
i,J ifj-l 

To investigate the behavior of the truncation error for successive 

steps in the S-direction, the method used by von Neumann and described in 

detail by O'Brien, et al. (24) is employed. In this method an arbitrary 

error distribution is assumed at some station S., and the growth or decay 

of this error is investigated. The Fourier decomposition of error is 

introduced by assuming an error distribution of the form 

e. . • eiKi egi (A-4) 
i.J 
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where 

~ 2 
(i) = -1 

Substitution of equation (A-4) into equation (A-3) yields an 

D 

expression for the error growth $ = e as follows 

-=-y = (A + B) elC + (B - A) e 1 ? - 2B 

Using the relations 

e = cos £ + I sin £ 

e = cos £ - l sin £ 

results in the following expression 

-̂ -y = -2B(1 - cos O + 2Ai sin £ 

Now employ the trigonometric identities 

2 f 
1 - cos 4 = 2 sin ~ 

sin t, = 2 sin •* cos -r-

to obtain 

— — = -4B sin •* + 4Ai sin •* cos — 
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Solving for cj> yields 

1 - 4B sin2 -| + 4Ai sin -| cos -| 

1 •+ 4B sin •» - 4Ai sin -| cos * 

Noting that for a complex number a + ib 

" 12 2 2 
a + ib == a + b 

the expression for cf> may be written 

2 2 
1 - 4B sin2 !• + 16 A2 I sin -| cos -| 

j 2_J | 2 2 ' 
2 . 2 

2 f 1 2/ P P 
1 + 4B sin -r\ + 16 A I sin — cos y \ 

(A-5) 

As stated by O'Brien, et al, a necessary and sufficient condition 

to insure that the error introduced at each step does not grow as S in

creases is 

|<j>| < 1 

An examination of equation (A-5) reveals that | <J> | <_ 1 for all B >_ 0 

and all A. Since B is given by 

2 
2 2 

_ a (1 - C) AS 
B = £ 2 

2uav (AC)2 

this implies that 

U> < 1 for u > 0 
i i _ a v — 
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In summary, assuming that the coefficients u and v in equation 

(A-l) are replaced by constants u and v , it may be concluded that 
av av 

the truncation error introduced at each step does not grow with subse-

quent steps in the S-direction if u £_ 0. With this assumption, the 

momentum difference equation is stable for any positive step size AS, 

and the step size is governed merely by the desired accuracy at each 

step. 
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APPENDIX B 

THE FINITE-DIFFERENCE SOLUTION OF THE LAMINAR, FLAT-PLATE 

BOUNDARY LAYER 

In this appendix the finite-difference solution procedure pre

sented in Chapter III is applied to the laminar, flat-plate boundary 

layer. The velocity and enthalpy profiles from the finite-difference 

solution are compared with solutions appearing in the literature. In 

addition, the wall shear stresses and the heat transfer rates computed 

by the difference solution are compared with solutions derived from 

similarity analyses. 

As noted in Chapter II, the equations in (S,Y) coordinates are in 

incompressible form. Thus the velocity profile u in (S,Y) coordinates 

may be compared directly with the familiar Blasius asymptotic profile. 

The Blasius solution is given in terms of a similarity parameter n, which 

in the present case is simply 

= ^~ 

The Blasius solution also provides an expression for the wall shear 

which, when expressed in the system used here, becomes 

[ iyL.1 = 0-332 
1 8Y 1 Y=0 " ^ 
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The finite-difference solution was carried out in the following 

manner. The velocity field was assumed uniform at S = 0 with a dis

continuity at Y = 0, that is 

u = 1 , v = 0 for S = 0 , Y > 0 

u = 0 , v = 0 for S = 0 , Y = 0 

A finite-difference mesh with N + 1 grid points (j = 0,l,2,.o.,N) 

equally spaced over the interval 0 <_ z, <_ 1 was employed. The stream-

wise step interval AS was varied as the square root of the distance 

from the leading edge S. This choice is based on the fact that the 

laminar boundary-layer parameters vary as a function of the variable 

n = Y//S. Hence, a streamwise step interval AS which varies as /s 

maintains an accuracy in the finite-difference formulation which is 

consistent with that obtained with a constant step interval in the 

direction normal to the streamwise direction. This variation permits 

small values of AS for small S, where streamwise gradients are large, 

while allowing relatively large values of AS for large S, where stream-

wise gradients are smaller. This is an advantage over the selection of 

a constant value for AS since a value AS small enough to yield an 

accurate solution for small S requires an excessive amount of calculation 

for large values of S. 

In the transformed coordinate system, the grid point j = N is at 

C = 1 which corresponds to Y = °°. Thus the grid point j = N - 1 located 

at C = 1 - A? corresponds to the last finite value of Y in the mesh as 
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depicted in Figure 29. Ultimately, as the solution progresses downstream 

the boundary layer will grow until it reaches the last finite value of Y 

at j = N - 1. When this condition occurs, the transformation constant a 

is changed (from a to a' in Figure 29) such that the new value of Y 

corresponding to the point j = N - 1 (i.e., Y(j = N - l,a')) is outside 

the boundary layer. Thus at least two grid points always lie outside 

the boundary layer, insuring uniform velocity and enthalpy profiles out

side the boundary layer. In order to maintain the numerical accuracy 

without excessively reducing the computing efficiency, the number of grid 

points is increased such that the spacing for the first grid point (in 

terms of Y) is unchanged. Correspondingly, all other grid spacings 

decrease slightly. For this study, each time this situation occurred, 

the value of N was increased by 20 per cent. The values of the dependent 

variables at each of the new grid points is determined by linear inter

polation. 

The velocity profile u from the numerical solution is compared 

to the Blasius similar profile in Figure 30. The numerical solution was 

carried out in 100 streamwise steps from S = 0 to S = 1, with the step 

-4 size varying from about 6 x 10 at the beginning to approximately 

_2 
2 x 10 at the end. The initial difference mesh employed N = 25 (i.e., 

26 grid points), and, with one interpolation being required in the interval 

the value of N at S = 1 was 30. 

The evaluation of the wall shear was accomplished by fitting an 

interpolating polynomial to the values of u at the grid points near 

Y = 0 and evaluating the derivative of the polynomial at Y = 0. The 

numerical results for a linear and a parabolic curve fit are compared to 
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Figure 29. Illustration of the Effect of the Transformation 
Constant a on the Values of Y corresponding to 
the Grid Points in the Finite-Difference Mesh. 
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Figure 30. Comparison of the Flat-Plate Velocity Profile from the 
Numerical Solution with the Blasius Similar Profile. 
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the Blasius solution in Figure 31. The fairly constant values of wall 

shear for small values of S from the numerical results are a consequence 

of the finite distance between the grid points. The maximum value of 

3u 
3Y 

which can be predicted from the finite-difference solution 
=0 

corresponds to the situation u = 1 for all grid points for which Y > 0. 

The results for both curve fits converge to the Blasius solution, with 

both curves differing less than one per cent from the Blasius solution 

for S >_ 2 x 10 . This point of convergence may be moved to a smaller 

value of S by decreasing the grid spacing. 

While the wall shear computed using the linear curve fit seems 

to approach the Blasius value more rapidly than that using the parabolic 

curve fit, the parabolic curve fit is employed in the present analysis 

for the following reason. The objective of this analysis is the integrated 

heat transfer to the surface. As will be shown later, the integrated 

values computed using the parabolic fit are more accurate than those 

computed using the linear fit. This is attributed to the more pronounced 

"overshoot" of the Blasius curve for the parabolic fit. The higher values 

of the derivative for this case tend to offset the low values of the 

derivative for small S when integrated over S. 

The enthalpy function profiles from the numerical solution using 

Pr = 0.72 at S = 1 are plotted versus u in Figure 32. Presented for 

comparison are the profiles given by Van Driest (25) for Pr = 0.725. The 

comparison is seen to be good. The differences are greatest for H , which 

varies most with Prandtl number. 

The local heat transfer rates calculated from the numerical solution 

are presented in Figure 33. The solid line is from Chapman (5), and the 
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Figure 31. Comparison of the Wall Shear Computed Using Linear and Parabolic Curve Fits 
with Blasius Value. 
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Reference (25), Pr = 0.725 

2 ) Numerical solution, Pr = 0.72 

H, 

Figure 32. Comparison of the Enthalpy Function Profiles for the Flat 
Plate from the Finite-Difference Solution with the Similar 
Profiles of Reference (25). 
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Figure 33. Comparison of Local Heat Transfer Rates Computed Using Linear 
and Parabolic Curve Fits with Similarity Solution. 
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two curves for the numerical results differ in the type of curve fit 
3H2| 

As in tne case for the wall shear, both employed to compute 

of the curves from the numerical solution converge to the solution from 

3Y <Y-0 

the similarity analysis. These results converge to the solid line for 

-2 
S = 3 x 10 . This point of convergence may be moved to smaller values 

of S by decreasing the grid spacing. 

The overall heat transfer rate to the flat plate was computed by 

integrating the local heat transfer rates from Figure 33, The integra

tion was performed using the trapezoidal rule, and the results for both 

the linear and parabolic curve fit are presented in Figure 34. The solid 

line is from Chapman (5). Here, the advantage of employing the parabolic 

curve fit is apparent. These results indicate that, with the number of 

grid points and the step size used here, the parabolic curve fit yields 

values of the overall heat transfer rate accurate within one per cent for 

-1 
S >_ 10 . For the present study, which is concerned with geometries for 

-1 
which S >_ 10 , the number of grid points and step size used in this 

analysis yields sufficient accuracy. Accurate values for the overall heat 

transfer rate for smaller values of S may be obtained by employing a 

smaller grid spacing. 
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Figure 34. Overall Heat Transfer Rate to a Flat Plate from the Finite-Difference 
Solution and Comparison with the Asymptotic Solution (Pr = 0.72). 
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APPENDIX C 

THE FINITE-DIFFERENCE SOLUTION OF THE LAMINAR FREE 

SHEAR LAYER 

In this appendix the finite-difference solution procedure pre

sented in Chapter III is applied to the laminar free shear layer. Two 

situations are considered. First, the non-similar growth of the free 

shear layer with finite initial thickness is studied. Second, the similar 

profiles of Chapman (5) are used as initial profiles and the solution 

carried out for a number of streamwise steps to investigate whether or 

not the finite-difference solution preserves the similar solution. 

The Laminar Free Shear Layer with Finite Initial Thickness 

For this study, a Blasius profile is used as an initial profile 

for a laminar free shear layer. A mesh of equally-spaced grid points in 

the interval -1 <_C <_ 1 was used with an equal number of grid points (N) 

above and below the dividing streamline (c = 0) . The dependent variables 

for the grid points above the dividing streamline were taken from the 

flat-plate solution at S = 1, while the values at each of the grid points 

below C = 0 were set equal to the boundary values at £ = -1. The solution 

was then carried out using a step size. AS which varied as the square root 

of S, where S is measured from the beginning of the free shear layer. The 

initial value of N was 30 (corresponding to the value at the end of the 

flat-plate solution) and was increased by 20 per cent whenever the edge of 
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the free shear layer reached the next-to-last grid point as in the flat-

plate solution. 

The results of this investigation appear in Figures 35, 36, 37, 

and 38, In Figure 35, the dividing streamline velocity distribution is 

compared with the results obtained by Denison and Baum (6) in terms of 

the distance parameter S which in the present study becomes 

S 
h*\2 

dU BY 
Y=0 
S=0 

The dividing streamline velocity u, is the velocity at the grid point 

located at c, = 0. The present solution converges to the results of 

Denison and Baum (6) at S = 5 * 10 . This point of convergence may 

be moved to a smaller value of S by decreasing the grid spacing. The 

excellent agreement demonstrates the utility of the present solution 

method, which does not require a separate starting solution as encoun

tered in the Crocco coordinate system^ (See reference (6).) 

The conversion of the flat-plate boundary-layer profiles into the 

asymptotic, similar shear layer profiles of Chapman is depicted in Figures 

36, 37, and 38, The profiles at successive stations downstream of separ-

ation are shown to approach the Chapman profiles as S increases, 

Numerical Study of the Similar Profiles of the Free Shear Layer 

Still another check on the solution method was performed by using 

the similar profiles given by Chapman as initial profiles for the finite-

difference solution procedure used in the present analysis. The tabu

lated profiles in reference 5 were input at S = 1 so that Y = n. Then 
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Figure 35. Dividing Streamline Velocity Distribution from the Finite-Difference Solution with 
Initial Blasius Profile and Comparison with Reference (6). 



112 

6 r 

-10 I 

Figure 36. Development of Velocity Profile for the Free Shear 
Layer from the Finite-Difference Solution with Flat-
Plate Profile at Separation. 
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Figure 37. Development of Enthalpy Function Profile Hi for the 
Free Shear Layer from the Finite-Difference Solution 
with Flat-Plate Profile at Separation, Pr = 0.72. 
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Figure 38. Development of Enthalpy Function Profile H~ for the 
Free Shear Layer from the Finite-Difference Solution 
with Flat-Plate Profile at Separation, Pr = 0.72. 
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the solution was carried out for a number of streamwise steps and the 

resulting profiles were plotted versus the similarity parameter n. The 

profiles of u , H , and H after over 500 streamwise steps are presented 

in Figures 39, 40, and 41. 

The excellent agreement indicates that the finite-difference 

solution preserves the similar profiles of Chapman, 
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Figure 39. Velocity Profile from the Finite-Difference 
Solution with Chapman Profile Used as Initial 
Profile, Pr = 0.72. 
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Figure 40. Enthalpy Function Profile H, from the Finite-
Difference Solution with Chapman Profile Used 
as Initial Profile, Pr = 0.72. 



118 

4 

2 

0 i 

0.2 0. 

^ -2 
ii 

c: 

-4 -

-6 

-8 

-10 -

Chapman 

Finite-difference 

1.0 

Figure 41. Enthalpy Function Profile H2 from the Finite-
Difference Solution with Chapman Profile Used 
as Initial Profile, Pr = 0.72. 



APPENDIX D 

INVESTIGATION OF THE EFFECTS OF BLUNTNESS ON THE 

HEAT TRANSFER RATE 

In this appendix the effects of a blunted-cusp reattachment 

geometry on the heat transfer rate are. explored using the blunt body 

theory of Lees (24). The analysis is based upon the assumption that 

the portion of the free shear layer profile affected by the blunt 

leading edge is small enough to allow the use of a uniform flow ap

proaching the reattachment point and that the leading-edge effects 

downstream of the nose are equivalent to those of a blunt flat plate. 

The range over which the dividing streamline Mach number may vary is 

first studied. Then Lees' theory is employed to calculate the heat 

transfer rate over the cylindrical leading edge of a blunted flat plate 

for representative values of the dividing streamline Mach number. 

Finally, the effects of the degree of bluntness is explored. 

The Range of Values for the Dividing Streamline Mach Number 

Since the Mach number of the approaching flow is required in the 

blunt body theory, it is necessary to determine the range of Mach 

numbers of interest for the reattaching free shear layers considered 

here. For simplicity, a perfect gas with Pr = 1 is assumed. 

The Mach number ahead of the blunted-cusp geometry is approxi

mated by the dividing streamline Mach number M . The range of values 
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of M, may be determined in the following manner. From Reynolds analogy, 

the local stagnation temperature T for a constant-pressure free shear 

layer is related to the local velocity by 

T - T 
o w u * 

T ~ = ~ = u 

o w e 

The stagnation temperature at the dividing streamline is thus given by 

"d * 
T ~ = Ud 
o 
e 

1 - w + w (D-l) 

For a perfect gas, the ratio of the dividing streamline Mach 

number and the freestream Mach number may be expressed in terms of the 

velocity ratio and the stagnation temperature ratio yielding 

u 
M,, \ 
Q 

M 

T 
J- o * e 
d T 

1 + T " 1 M2 1 - u 

9 T 

* e 
d T 

(D-2) 

As is common in hypersonic flow problems, "cold-wall" conditions are 

assumed, thus 

w 0 

Substitution of this relation into equation (D-2) yields the following 
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express ion for M : 

2 * 
u 

(D-3) Y - 1 2 * 
i + • L - r - - *r ( i - u.) 

2 e d 

The variation of the dividing streamline Mach number with the 

freestream Mach number as computed from equation (D-3) is presented in 

Figure 42. Results for y = 1.3 and 1.4 are shown. Two values of u, 

are considered. The case u, = 0.587 corresponds to the asymptotic 

similar free shear layer profile and represents the maximum dividing 

streamline velocity ratio. The case u, = 0.3 corresponds roughly to 

the lower limit encountered for the multiple-cavity geometries. The 

limiting values of M, for M = °° are indicated. 
d e 

These results demonstrate that the Mach number along the dividing 

streamline varies only over a restricted range. For a freestream Mach 

number varying from 5 to °°, the value of M, falls approximately in the 

range from 1.5 to 3.0. With this in mind, representative values of M 

in this range may be used in the blunt body theory to investigate the 

effects of bluntness on the heat transfer rate. 

Application-of Lees' Blunt Body Theory 

The blunt body theory of reference (24) is employed to compute 

the heat transfer rate to the cylindrical leading edge of a blunted 

flat plate depicted in Figure 43 and compare with the results for an 

equivalent sharp-edged flat plate. From reference (24), the local heat 

transfer rate to the surface of a blunt body q, is given by 
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Figure 42. Variation of the Mach Number Along the 
Dividing Streamline with the Freestream 
Mach Number (Pr = 1). 
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Figure A3. Geometry for the Blunted Leading Edge. 
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_ 0 l P o ' l 

/ 0). 

1 6 
dx 

(D-4) 

where 6 indicates the outer edge of the boundary layer, h is the total 

enthalpy, p ' is the stagnation pressure behind the bow shock wave at 

the stagnation point, and GO is defined by 

03 = 
RT 

The velocity u, in equation (D-4) represents the effective uniform 

velocity forward of the bow shock. Introduction of the Chapman-Rubesin 

viscosity-temperature relation along with the equation of state for a 

perfect gas into the definition of GO yields 

= C 

and equation (D-4) becomes 

<k = 

_ _ 2. 

0 . 5 Y | Pr"
 3-/^~"u6 " V ^ h I*". 

i' O O 0 \ r O / 

fx r \ f ux 1 

* - . 
6 dx 

0 l P o I u , 
d I 

/ u, 

\ud 
(D-5) 

U6 Pd 
For the sharp-edged flat plate, — = 1 and *—. = — , so that the 

u, p p 
d o ro 

local heat transfer to the flat plate qf is given by 
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0.5"\/f Pr ^ p6 u5 
o o 

u, h 
d s 

Lfp v£ 
(D-6) 

Taking the ratio of equation (D-5) and (D-6) leads to the expression 

V/ 
/ u , \ 

c 
l u d / 

'fp 
X 

0 

I u, 

o M d 
dx 

(D-7) 

Using modified Newtonian theory, the pressure distribution is 

given by 

2- = , = 1 - 1 - — . sin 
p o I 

(D-8) 

where 9 is the angle between the approaching flow and the radius vector 

from the center of curvature of the nose as shown in Figure 43. From 

reference (24), 

v 
u d i 

1 + 
(Yd " 1) Md 

1 - p ' 
I o 

'-1 
Y 

(D-9) 

where y is a mean value behind the shock. Substitution of equation (D-9) 

into equation (D-7) and using x = r6 yields 
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(D-10) 

where ^—t is given by equation (D-8). 
P° qb 
Equation (D-10) was employed to calculate values of over the 

qfp 
IT 

interval 0 <_ 6 <_ — . Then a mean value 

nose • q f P ' 

was found by numerical integration over this interval. These calcula

tions were carried out for four cases which were chosen to illustrate 

the effects of the Mach number of the approaching flow within the range 

of interest here. The four cases selected and the resulting values of 

q are summarized as follows: ^nose 

se Yd = Y p ' r o 
Md q 

nnos 
1 1.3 0 . 1 2.80 1.47 

2 1.3 0.2 1.92 1.26 

3 1.4 0 . 1 2.72 1.51 

4 1.4 0.2 1.87 1.27 

These results demonstrate the effect of blunting on the average heat 
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transfer rate. The higher values of M, approximate the upper limit for 

which the freestream Mach number approaches infinity. The lower values 

of M, represent an approximate mean condition for hypersonic free-

stream flows. Lower values of M, were not considered because of the 
d 

limitations of the modified Newtonian theory. These results show that 

the average heat transfer rate to the cylindrical leading edge of a flat 

plate is approximately 50 per cent greater than the average heat trans

fer rate to a sharp-edge flat plate with the same surface length for 

high hypersonic freestream Mach numbers, The difference in heat trans

fer rate decreases with decreasing freestream Mach numbers. At a condi

tion typical of the reattachments considered here, the difference is 
approximately 25 per cent. With typical values of q , the effect of r^ J f . r ^nose* 

the degree of bluntness (i.e., the ratio of leading edge diameter to 

the length of the plate) on the overall heat transfer rate may be 

estimated. 

Effect of Degree of Bluntness 

Consider the overall heat transfer rate to the three geometries 

depicted in Figure 44. Figure 44(a) illustrates a sharp-edged flat 

plate of length L. Figure 44(b) illustrates a flat plate of overall 

length L with a cylindrical blunt leading edge of radius r. Figure 

44(c) illustrates an equivalent sharp-edged flat plate which has the 

same overall heat transfer rate as the blunted plate of Figure 44(b). 

The overall heat transfer rate to the blunted plate (X may be 

expressed as the integrated heat transfer rate over the cylindrical 

Trr 
nose (i.e., 0 <_ x <_ T— ) plus the integrated heat transfer rate over 
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(a) Sharp-Edge Flat Plate. 

ur 
2 Lb 

(b) Blunted Flat Plate. 

eq 

eq 

L-r 

(c) Equivalent Sharp-Edged Flat Plate, 

Figure 44. Illustration of Geometries Employed to Investigate 
Effect of Degree of Bluntness on the Overall Heat 
Transfer Rate. 
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nr the remaining portion of the plate ( — <_ x <_ L, ) yielding 

% = 

TTr 

f 2 

qb dx = qb dx + qb dx (D-ll) 

iTr 

2 

For comparison, the overall heat transfer rate to the sharp-edged flat 

plate Q is given by 

!fp 
q dx 
fp 

(D-12) 

Equation (D-ll) may be rewritten in terms of qf in the 

following manner. From the definition of q it follows that 
nose 

Ttr 

2 

h 
q, dx = q 
b nose 

r _jrr_ 
2 

0 

qfp d x (D-13) 

The second term on the right hand siide of equation (D-ll) may be 

evaluated by assuming that the local heat transfer rate to the portion 

of the blunted plate downstream of the cylindrical nose is given by the 

value for an equivalent sharp-edged flat plate. As used here, equiv

alent signifies that the overall heat transfer rate to the portion of 

the sharp-edged flat plate 0 <_ x <_ X is equal to the overall heat 

transfer to the nose of the blunted plate, i.e., 
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Trr 

% dx 
eq 

q_ dx 
fp 

(D-14) 

The second term in equation (D-11) thus becomes 

% dx 

7TT 

2 

eq 

qfp d x (D-15) 

X 
eq 

Using L = L - r + X , substitution of equations (D-13) and (D-15) 

into equation (D-11) yields 

?rr 

b ^nose 

fL-r+X 

q dx + 
eq 

q dx 
fp 

eq 

Comparison of Q, and Qf leads to the expression 

f UL 
2 

L-r+X 

nose 
q„ dx + 
fp 

eq 
q,. dx 
fp 

X 
jsa. 

!fp 
qfp dx 

(D-16) 

Since the flat plate local heat transfer rate qf is proportional to 

— , the integrations in equation (D-16) may be carried out to yield 

b __ nose V 2 \/f + VTT r + X." -Yx 
eq eq 

AT 
(D-17) 
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Equations (D-13) and (D-14) may be combined to give an expression for 

X , i.e., 
eq' 

-2 ur 
X = q -r— 
eq nnose 2 

Using this relation in equation (D-17) yields 

(fP 
i 1 + " 

7T - 2 
— q 2 nnose 

i 

- 1 A 1 
L 

(D-18) 

where the thickness ratio — = -— . 

V d 
The variation of — — with the thickness ratio — for several 

Qfp L 

values of q is illustrated in Figure 45. For conditions typical of nnose & Jr 

the reattaching free shear layers of interest here, the blunt body 

theory yields a value for q of approximately 1.25. For this condi

tion a blunt flat plate of ten per cent thickness (i.e., — = 0.1) would 

experience an increase in overall heat transfer rate of only three per 

cent. For a freestream Mach number approaching infinity and with a 

fully-developed free shear layer profile at reattachment, this increase 

in heat transfer rate would reach a maximum of about six per cent for 

£-0.1. 
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1.12 ,-

'fp 

1.10 " 

1.08 -

1.06 _ 

1.04 -

1.02 _ 

1.0 
0 0.02 0.04 0.06 0.08 0.10 

L 

Figure 45. Effect of Thickness Ratio — on the Heat Transfer Rate 
for Several Values of q 

'nose 
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