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SUMMARY 

Cells transmit piconewton (pN) receptor forces to ligands in the extracellular matrix 

(ECM) and on the surface of adjacent cells. These forces regulate functions ranging from 

adhesion to clotting and the immune response. Whereas adhesion mechanics on rigid 

substrates are well characterized, understanding mechanotransduction at cell-cell junctions 

remains challenging due to a lack of tools. We develop and apply new classes of DNA-

based force probes to map and manipulate receptor forces on supported lipid bilayers 

(SLBs), planar membranes that mimic an adjacent cell. We use these probes to elucidate 

force balance in podosomes, which are multipurpose protrusive structures that form at cell-

cell and cell-ECM interfaces. Podosomes have a core-ring architecture, and previous works 

demonstrated that the podosome’s actin core generates nanonewton protrusive forces. 

However, the podosome’s contractile landscape remained poorly understood. In Aim 1 

(Chapter 3), we develop and apply Molecular Tension- Fluorescence Lifetime Imaging 

Microscopy to map integrin receptor forces and clustering on SLBs. We demonstrate that 

integrin receptors apply pN tension in podosome rings. We then introduce photocleavable 

probes to site-specifically perturb adhesion forces and apply rupturable DNA-based force 

probes to test the role of receptor tension in podosome formation and maintenance. These 

studies confirm a local mechanical feedback between podosome core protrusion and 

integrin receptor tension. In Aim 2 (Chapter 4), we evaluate structure and energy transfer 

across a library of DNA-based tension probes using spectroscopy and microscopy. We then 

demonstrate the functional implications of probe design on cellular imaging. This work 

expands our understanding of receptor forces in podosome mechanobiology and 

contributes new insight and tools for studying juxtacrine receptor interactions.  
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CHAPTER 1. INTRODUCTION 

Integrin receptors are heterodimeric transmembrane proteins that bind to a variety 

of ligands on the extracellular matrix and on neighboring cells18. Integrins form multiple 

classes of adhesions, and their bonds are strengthened by receptor activation under force19, 

20. The best characterized integrin-mediated adhesions are focal adhesions (FA), which 

serve as the major mechanical linkage between the cell and the ECM. FA exert lateral 

traction forces21 and have a fibrillar, layered architecture22. An additional class of integrin 

mediated adhesions are invadosomes, which consist of podosomes and invadopodia, 

podosome-like adhesions in cancer23. These structures contain many of the same adhesome 

proteins as FA, but they have a unique columnar architecture and carry out specialized 

functions (1.1.1)24. These adhesions are most commonly associated with cell-ECM 

junctions25, 26; however, podosome-like adhesions have also been identified at cell-cell 

junctions27, 28, 29 and on fluid biomimetic membranes called Supported Lipid Bilayers 

(SLBs)9. While many studies have quantified integrin forces in FA21, 30, 31, 32, these forces 

were not previously characterized in podosomes or on an SLB. To address this gap, we 

characterized podosome mechanics by quantifying and perturbing integrin receptor forces 

in podosomes formed on SLBs. To achieve this, we developed, optimized, and applied 

novel DNA-based force probes33 to elucidate integrin receptor mechanics with molecular 

specificity34. These probes have broad applications to the study of juxtacrine receptor 

mechanobiology. 

1.1 Podosome Mechanobiology 

 Podosomes in Cell Biology and Disease 
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Podosomes are multipurpose, actin-rich adhesions that play a critical role in cell 

migration, invasion, and mechanosensing35, 36, 37. Podosomes were first discovered in the 

1980s, when David-Pfety and Singer demonstrated that Rous Sarcoma Virus-transformed 

fibroblasts concentrated vinculin and α-actinin in puncta, rather than in focal adhesions38. 

These structures were later named ‘podosomes,’ because they colocalized with membrane 

protrusions that resembled cellular feet23, 39. Podosomes have since been shown to play a 

diverse role in cell biology, forming at both cell-cell and cell-matrix interfaces. 

Interestingly, podosomes both adhere to the matrix and release metalloproteinases to 

facilitate its degradation and remodeling40, 41. In osteoclasts, podosomes are required to 

form the sealing zone for bone resorption25, 42, and in platelets, podosomes support early 

adhesion to fibrinogen during blood clotting43. Podosomes in the immune system 

coordinate topography sensing and directional cell migration, diapedesis, and antigen 

scavenging27, 28, 44, 45. At cell-cell junctions between immature myoblasts or macrophages, 

podosome formation precedes cell fusion29, 46, 47.  

 Podosomes play a critical role in disease. Invasive podosomes called invadopodia 

facilitate cell migration and invasion in cancer by releasing exosomes containing matrix 

metalloproteinases23, 48, 49, and endothelial cell podosomes promote angiogenesis in tumors. 

Indeed, several studies are currently investigating anti-metastasis agents that target 

invadopodia formation50, 51. Podosomes are also indicated in several genetic diseases in 

which genes encoding actin-binding proteins are mutated. The best-studied case is Wiskott-

Aldrich Syndrome, which is caused by mutations in the WAS  gene and leads to impaired 

clotting and frequent infections52. This is hypothesized to result from cells’ failure to form 

podosomes when WAS protein (WASP) is mutant or deficient53, 54. An additional example 
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is Frank-Ter Haar Syndrome, which is caused by mutations in the gene encoding Tsk455. 

This protein is required for podosome formation, and patients suffer developmental defects 

and respiratory infections55, 56. Finally, podosomes can be dysregulated through viral 

infections. Many HIV patients suffer from reduced bone density, and this is hypothesized 

to result from enlarged podosomes with enhanced bone resorption capabilities that are 

found in HIV infected cells57. HIV also promotes increased macrophage migration through 

podosome-dependent migration modes58. Thus, given the vast importance of podosomes 

in cell biology and disease, it is critical to understand the fundamental molecular biology 

and regulation of these structures.  

 Podosome Structure and Mechanics 

Podosomes contain actin-rich puncta, which colocalize with adapter and adhesion 

proteins including integrin receptors, vinculin, Arp2/3, WASP, and cortactin23, 59. On 

deformable substrates such as adjacent cells, hydrogels, and ECM, actin puncta are sites of 

membrane protrusions that extend from the cell39, 60. Podosomes are best characterized at 

two-dimensional (2D) interfaces, which will be the focus of our work and discussion. In 

2D, podosomes have a modular core-ring structure (Figure 1). The podosome’s densely 

crosslinked actin core excludes adhesion proteins, which instead accumulate at the 

periphery of the core in the podosome ring61. The ring and core are connected through actin 

cables61, 62 and a capping structure63, 64, though the capping structure remains poorly 

characterized.  

Previous work demonstrated that actin core polymerization exerts pushing forces 

on the substrate. In our work, we demonstrate that integrin-mediated tensile forces in the 
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podosome ring oppose core protrusion (Figure 1). While podosomes act primarily as 

independent mechanosensors65, cells typically form multiple podosomes. Throughout their 

lifecycle, podosomes can split, fuse, and assemble into superstructures that coordinate 

podosome function25, 35, 61, 66, 67, 68. Individual podosomes within this network are connected 

by an actin cloud69. 

 

Figure 1 Podosomes Contain a Core-Ring Organization 

Confocal imaging of podosomes forming in DCs on glass. Actin puncta correspond to the 

podosome’s protrusive core, which is surrounded by a ring of adhesion proteins, including 

vinculin. In this dissertation, we demonstrate that the podosome ring applies tensile forces 

that oppose local actin protrusion. Adapted from Meddens, et. al.70 with open access 

permission from Creative Commons.  

 

1.1.2.1 Advanced Microscopy Reveals Podosome Ultrastructure 

Advanced imaging has facilitated podosome structural knowledge, which provides 

the basis for podosome mechanical models. In this section, we provide a review of these 

insights. In early structural studies, Transmission Electron Microscopy (TEM) elucidated 

the cell membrane at podosomes. On rigid substrates, podosomes protruded minimally but 

exhibited membrane puckering in between individual podosome cores60 (Figure 2A). In 
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contrast, podosomes forming on soft substrates protruded several microns from the cell 

body (Fig 2B). This behavior was consistent both on gelatin substrates and at cell-cell 

junctions27, 60, and protrusion depth was myosin II dependent60. At the T cell-antigen 

presenting cell (APC) junction, TEM revealed that the membrane-to-membrane distance 

was 15 nm at the base of the podosome core compared to 150 nm outside of this region27. 

Therefore, TEM suggested that podosome cores may exert pushing forces.  

By applying Scanning Electron Microscopy (SEM), Luxenburg revealed the actin 

structure of podosome networks (Figure 2C). This was previously visible as a diffuse 

network using fluorescence imaging69, however SEM allowed visualization of individual 

actin cables62, 71. Podosomes in osteoclast precursors appeared as dense, ~300 nm cores, 

which contained multiple actin fibers oriented perpendicular to the cell membrane. An 

additional population of actin radiated outwards from the core, extending up to 3 µm in 

diameter; these cables connected to the actin cloud, which surrounded the individual 

podosomes62.  Similar podosome actin structures have since been shown in dendritic cells 

(DCs) and in smooth muscle cells44, 72. Importantly, podosome connectivity appears to be 

cell-type specific. While mature osteoclasts and DCs both exhibited actin cables directly 

linking individual podosome cores, in immature osteoclasts, cables connected to the cloud 

but not to adjacent podosome cores44, 62, which could impact mechanosensing.  
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Figure 2 Electron Micrographs of Micrographs of Membrane Topography and Actin 

in Podosomes. 

(A, B) TEM images of podosomes in a DC on glass (A) and in T cell at a T cell-antigen 

presenting cell junction (B). Arrows indicate podosome cores. In A, lines indicate 

podosome rings, which experienced membrane ruffling. Scale Bar, 200 nm (A), 

unavailable (B). C. Scanning electron micrograph of podosomes in an osteoclast precursor 

cell reveal actin cores (1), actin cables (2), and the actin cloud (3). Adapted from 27, 60, 62 

with open access permission from Creative Commons and publisher permission.  

 

Podosome’s distinct actin populations are also visible in superresolution imaging, 

which have been useful in mapping podosome protein distribution and geometry61, 64, 65, 67. 

The first superresolved podosome images used Bayesian Localization Microscopy (3B) to 

map vinculin in podosome rings67. Compared to diffraction-limited images which had 

suggested a continuous podosome ring, 3B revealed a polygonal structure comprised of 6-

60 nm wide vinculin strands that intersected at 116-135 degree angles (Figure 3A)67, 73. In 

stabilized podosomes, these strands colocalized with talin, however disassembling 

podosomes lacked talin or showed talin at the podosome core73.  
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Figure 3 Superresolution Imaging of Podosome Protein Localization. 

(A) 3B superresolution images of vinculin in podosome rings. (B) dSTORM maps of 

integrin receptor, talin, and vinculin localization in podosomes. Integrin receptors and talin 

are dispersed outside the podosome core. Vinculin is clustered near the podosome core and 

aligned with actin cables. Adapted from 61, 67 with publisher permission and under Creative 

Commons open access licensing, respectively.  

To better understand the distribution of adhesion proteins in relationship to actin, 

van den Dries and colleagues conducted Dual-color Direct Stochastic Optical 

Reconstruction Microscopy (dSTORM) on DC podosomes61. In agreement with SEM data, 

podosome cores appeared as actin puncta with radiating actin cables. Adhesion proteins 

were localized to islets that were excluded from podosome actin cores. Interestingly, in 

these cells, talin and vinculin had differential organizations. αMβ2 integrin and talin islets 

were diffusely spread outside of podosome cores (Figure 3B), whereas vinculin islets 

localized specifically to a confined ring region and were densest near actin cables (Figure 

3B)61. Given this distribution and vinculin’s mechanosensitivity74, van den Dries and 

colleagues hypothesized that actin core polymerization may drive tension on actin cables, 

leading to vinculin ring recruitment61. Three-dimensional dSTORM of macrophage 
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podosomes revealed mechanically stretched talin in podosome rings, with the increasing 

end-to-end distance in regions closer to the podosome core65. Vinculin colocalized with 

stretched talin, and its binding height corresponded with talin stretching. Thus, while there 

appear to be some cell-type specific determinants of talin localization, these data further 

support the notion that the podosome core drives tension on the ring, which influences 

adhesion protein localization and structure (Figure 4).  

 
Figure 4 Graphical Model of Podosome Mechanics and Organization 

Model of podosome mechanics supported by imaging and mechanical measurements of 

podosome protrusion (1.1.2). Polymerizing actin cores exclude adhesion proteins and exert 

pushing forces on the membrane. Talin is stretched near the podosome core, and vinculin 

is recruited to actin cables under tension. Adapted from 61 under the Creative Commons 

Licensing agreement and with permission from and 65, Copyright (2017) American 

Chemical Society. 

 

Since 2018, two new superresolution microscopy papers have challenged the 

simple model of podosome core-ring structure with actin cables. Joosten and colleagues 

sequentially imaged podosomes with Airyscan Microscopy and SEM44. Their combined 

fluorescence and SEM data revealed an unexpected protein distribution and actin 

population. A newly observed actin network bridged nearby neighbors though cables that 

were sensitive to substrate roughness but not to pharmacological inhibition of actin 

polymerization. These cables connected individual podosome cores and were zyxin rich, 
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which was an unexpected observation, because zyxin was previously localized only to the 

podosome ring75.  

Following up on this work and concurrent with our manuscript (Chapter 3), van 

den Dries used superresolution imaging to analyze protein localization in relation to actin 

networks. Interestingly, this work not only differentiated actin cable subpopulations but 

also revealed multiple actin structures that overlapped the core and ring. This newest 

structural model divided podosome actin into four pools: The Protrusion Module (cPM), 

the peripheral Protrusion Module (pPM), ventral filaments, and dorsal filaments. The cPM 

and pPM contained branched and fibrillar actin, respectively. Crosslinking proteins that are 

strongly associated with actin cores, such as WASP and Arp2/3, localized to the cPM. The 

pPM enclosed the cPM and colocalized with proteins typically found in both podosome 

cores and rings, including α-actinin, vinculin, and capping proteins which are found over 

the core63. The protrusion modules connected to radiating actin cables. Ventral filaments 

surrounded the pPM and dorsal filaments connected actin cores44 near the capping region. 

Whereas adhesion proteins localized primarily to ventral filaments, myosin IIa motor 

protein localized primarily to the dorsal filaments, indicating a distinct spatial organization. 

On deformable substrates, actin dorsal filaments shortened, causing vinculin and zyxin to 

concentrate nearer to the podosome core. Myosin IIa localization was unaltered, suggesting 

it plays a minor role in mechanosensing64. These structural data fit with a model where 

podosome formation and ring protein recruitment are myosin IIa-independent9, 75. While 

for the purpose of this dissertation and the present podosome literature, we describe 

podosomes by their more classical core-ring structure, these new maps of podosome 

architecture can provide interesting mechanobiological insight. These maps support a 
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model of protrusion-mediated tension on lateral actin cables, which cause 

mechanosensitive protein recruitment 60, 64, 71, 75. The podosome structure adapts to 

substrate topography and stiffness, and the response is primarily mediated through the actin 

cytoskeleton. 

 
Figure 5 Updated Model of Podosome Actin Networks and Protein Localization 

Schematic of the updated podosome structural mechanics. Rather a classical core-ring 

structure, in this model, the podosome is divided into four actin networks with some 

overlap between the core and ring. Schematic reprinted from van den Dries, et. al.64 with 

permission under Creative Commons. 

1.1.2.2 Podosomes are Dynamic Mechanosensors and Mechanotransducers 

Podosomes sense and respond to substrate mechanics, and several studies have aimed 

to characterize podosome mechanobiology by combining biomaterials-based approaches 

with mathematical modeling, atomic force microscopy, and genetically encoded tension 

sensors65, 70, 75, 76, 77, 78. In this section we describe critical advances in this field, which set 

precedent to our research.  

Podosome formation is regulated by substrate properties. Cells tend to form more 

podosomes on stiffer substrates, and podosome formation on glass is enhanced and aligned 

on nanoscale scratches45, 70, 76, 78. The podosome’s stiffness response corresponds with force 

generation. In the first demonstration of the podosome as a mechanosensor and a 

mechanotransducer, fibroblasts were seeded on hydrogels with substrate stiffness from 2 
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to 6.5 kPa79. These cells formed large podosome belts, which exerted increasing traction 

forces with increased substrate stiffness (Figure 6A-C). When an RGD-coated magnetic 

bead was used to exert forces on the cell, the tractions measured under the podosome belt 

increased. While these data do not reveal the molecular basis of mechanotransduction and 

reveal only the forces exerted by a collection of podosomes, they suggest that podosomes 

do indeed exert traction forces.  

Using a clever Atomic Force Microscopy (AFM)-based method, Labernadie and 

colleagues later showed that podosomes also exert protrusion forces, which respond 

similarly to increasing stiffness76. In this method, called Protrusion Force Microscopy 

(PFM), cells form podosomes on deformable FORMVAR membranes (EM grids). The 

AFM cantilever traces over podosome-induced deformations, which are caused by actin 

polymerization. This allows mapping of protrusion height and can be used to back-

calculate the applied force. PFM reported that individual podosome cores deformed the 

membrane by up to 20 nm, which corresponded to nN protrusion forces. The magnitude of 
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force was higher on stiffer FORMVAR substrates (Figure 6D,E). 

 

Figure 6 Podosomes are Mechanotransducing Structures.  

(A) Podosome belt in a BHK cell labeled with mCherry-actin on a polyacrylamide 

hydrogel. Scale bar, 20 μm. (B) Traction force map of stress beneath the ring. (C) 

Quantification of cellular tractions as a function of substrate stiffness. (D) Representative 

protrusion force microscopy map depicts podosome-induced deformations. (E) 

Quantification of protrusive forces by PFM as a function of substrate stiffness. Note that 

the Y axis has been changed following collaborator correspondence with coauthors. (F) 

Interference-based maps of positive and negative stresses beneath a podosome-forming 

macrophage. (G) Multiplexed immunostaining and interference-based force measurements 

of podosomes. Arrows indicate vinculin-rich regions of tension. Figures adapted from 

literature76, 79, 80 with publisher and Creative Commons permission. 

 

Podosomes mechanics are highly dynamic and integrate adhesion, contractility, and 

polymerization. Individual podosome protrusiveness was reduced in cells treated with 

pharmacological inhibitors of actin polymerization, Rho Kinase, and myosin II, as well as 

in talin-, vinculin-, and myosin II- depleted macrophages65, 76. Interestingly, podosome 

protrusiveness76, Young’s modulus77, and actin content66 are all oscillatory. Oscillations 

are locally correlated and are regulated by myosin II, which, along with actin 

polymerization, also tunes ring protein recruitment 66, 71, 75. These observations lead to a 
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model in which  actin polymerization induces tension on the podosome ring, causing 

mechanosensory protein recruitment71, 75.  

Indeed, given the observation that individual podosomes exert protrusion forces, 

podosomes must also be under tension in order to achieve force balance 81.  Original 

traction force measurements support this notion but lack the spatial resolution to elucidate 

the contractile landscape of individual podosomes79. Bouissou and colleagues 

computationally demonstrated that ring tension is required by modeling an array of 

podosomes exerting pushing forces 65. Podosomal protrusions were only recovered when 

opposing tensile forces were distributed in rings surrounding each individual podosome. 

Tension at the periphery of the cell or spread diffusely across the cell-material interface 

was unable to support protrusion. This model was further supported by experimental 

evidence of protein stretching in podosome rings and by insertion of genetically encoded 

tension sensors in vinculin, which showed a slight increase in tension signal in proteins 

that were coupled to the cytoskeleton. However, tensions maps of these data were not 

published, making these results difficult to interpret.  

In the most sensitive measurements of podosome tension, Kronenberg, et. al. 

measured both podosome tension and protrusion in macrophages using interferometry80. 

In these cells, podosomes formed in a belt at the periphery of the cell or throughout the 

cell. Individual podosomes exerted protrusion forces, and spatial filtering revealed tension 

signal surrounded podosome cores and colocalized with vinculin (Figure 6F,G). While 

these data suggest podosome ring tension, they still lack sufficiently high resolution to 

understand the molecular mechanics of podosome force balance. Quantification of 

podosome protrusion forces using this method suggested that individual podosomes 
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applied ~10 pN, which is small relative to PFM measurements and to reports of individual 

actin filaments generating pN forces82. Thus, there remains a need for additional podosome 

force quantification.  

Models of podosome mechanics are confounded by the observation of podosomes 

on fluid interfaces. Yu, et. al. found that cells formed multiple podosomal adhesions on 

RGD-functionalized supported lipid bilayers (SLBs)9, 83. We review this work and the SLB 

literature extensively in Chapter 2 and in Figure 1584, but briefly, SLBs are planar 

membranes that are fluid in the XY-plane. When SLBs were patterned with gridlines that 

supported traction force generation, cells formed fewer podosomes9. Given that SLBs 

cannot support lateral traction forces16, 84, 85, 86, this was work was used as evidence that 

podosomes force balance may be independent of adhesion forces36.  

1.2 Biophysical Methods 

Our work leverages DNA mechanotechnology, fluorescence imaging, and SLBs. For 

a thorough introduction to and discussion of SLBs and DNA-based tension probes, we refer 

the reader to our literature review in Chapter 2, Sections 2, 3, and 5.  

 FLIM-FRET and Static Quenching 

An understanding of our probes requires a basic knowledge of Fluorescence 

Lifetime Imaging Microscopy (FLIM) and static versus dynamic quenching, including 

Forster Resonance Energy Transfer (FRET)87. Briefly, a fluorophore absorbs an incoming 

photon of wavelength, λ, and energy hv, causing the fluorophore to transition to the excited 

state. The fluorophore remains in the excited state for time, 𝜏, which is defined as the 
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fluorescence lifetime, before undergoing internal relaxations and returning to the ground 

state. The transition to the ground state can occur by variety of non-fluorescent mechanisms 

such as quenching or thermal relaxation or through the emission of a photon the form of 

fluorescence; the frequency of photon emission is described by the quantum yield.  

The fluorescence lifetime is an intrinsic property of a fluorophore, but it can be 

affected by local chemical environment including energy transfer88. In FRET, nonradiative 

energy transfer occurs between a donor and an acceptor fluorophore, leading to intensity-

based quenching and shortening of the fluorescence lifetime (Figure 7, Figure 8). This 

mechanism contrasts with static quenching. In static quenching, two fluorophores in close 

contact form a ground state complex that cannot be excited89, 90, 91. Thus, the fluorescence 

lifetime is constant. It is also possible to observe a combination of contact and FRET 

quenching92.  

 
Figure 7 Schematic of FRET versus Static Quenching 

Static quenched probes and FRET quenched probes differ in their mechanism of energy 

transfer and their fluorescence lifetime response to quenching. Note that this FRET relation 

does not apply in all scenarios92. Figure reproduced from 93 with publisher permission. 

 To measure the fluorescence lifetime, we employ FLIM, which couples Time 

Correlated Single Photon Counting (TCPSC) with confocal microscopy. In TCSPC, a 

megahertz (MHz) pulsed laser excites the sample at a sufficiently low frequency to detect 
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one or fewer photons per pulse. Reconvolution curve fitting of the photon arrival time 

versus the number of photon counts with the Instrument Response Function (IRF) permits 

quantification of the individual lifetime components and their relative contributions (Figure 

8A). The average intensity- (Int.) and amplitude-weighted (Amp.) fluorescence lifetimes92, 

which are discussed in Chapter 4, are calculated from resulting curve fits. Alternatively, it 

is possible to estimate 𝜏 using a FAST FLIM approach. Here 𝜏 is estimated by the center 

of mass of fluorescence decay per pixel (Figure 8B)94.  

 

Figure 8 Schematic of TCSPC and FLIM 

A. TCSPC reports the arrival time of incoming photons, which is used to determine the 

fluorescence lifetime. In FRET imaging, the overall brightness and lifetime are reduced. 

B. FAST FLIM imaging estimates the fluorescence lifetime per pixel by the barycenter of 

photon arrival time. FLIM image adapted from the Picoquant website. 

1.3 Dissertation Scope and Outline 
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This dissertation contributes and analyzes new tools for mapping and manipulating 

receptor forces specifically on fluid interfaces, while addressing key questions in the 

podosome literature. Whereas previous works have suggested a model of podosome force 

balance in which actin protrusion is opposed by podosome ring tension, methods to 

investigate this were indirect or limited in their spatial, mechanical, and molecular 

resolution66, 75, 80. Furthermore, it seemed that adhesion forces may be unnecessary in this 

force balance, because of the observation that podosomes form on SLBs 9, 95. Indeed, in 

2018 it was hypothesized that “regardless of ligand density, cells on DOPC [SLBs] are 

unable to exert force on the surface”85. In this dissertation we challenge this statement and 

bridge the resolution gap in podosome mechanobiology by combining DNA 

nanotechnology-based force probes with an SLB-podosome model to investigate force 

balance.  

Chapter 2 contains a detailed literature review84 on SLBs and their applications to 

adhesion mechanobiology. This provides important background information and context 

to the original research discussed in Chapters 3 and 4. We describe the role of pN forces in 

cell biology, the mechanics of SLBs, approaches to pattern and manipulate SLBs, and 

previously developed tools to measure receptor tension in these systems. We then discuss 

how these surfaces have been applied to study the role of adhesion forces in cell biology, 

including in nascent integrin adhesions and in podosomes. 

Chapter 3 discusses our work integrating DNA nanotechnology with SLBs to study 

podosome mechanobiology33. We introduce Molecular Tension – Fluorescence Lifetime 

Imaging Microscopy (MT-FLIM), which uses the fluorescence lifetime to directly report 

pN receptor forces on SLBs. We use MT-FLIM combined with Molecular Force 
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Microscopy21 (MFM) to demonstrate that integrin receptors apply pN vertical forces in 

podosomes on fluid substrates. We then introduce photocleavable probes (PC)to perturb 

the adhesion forces of podosomes and Tension Gauge Tethers96 (TGTs) to test importance 

of integrin forces in podosome formation. Our work demonstrates that actin polymerization 

and integrin tension act in a local mechanical feedback within podosomes. 

In Chapter 4, we focus on deepening understanding of DNA-based tension probe 

design. We analyze a library of 19 tension probe variants and characterize them using 

spectroscopy and imaging. We then apply a selection of these probes to image integrin 

forces in podosomes to better understand the advantages and disadvantages of design 

elements. The insights gained from this work will be informative to probe and experimental 

design for studying receptor mechanics on soft and fluid materials.   

In Chapter 5 we conclude with a summary of our advances. This is presented 

alongside a discussion of questions and future directions for biological investigation and 

for methodological development.  

 

 

  



 19 

CHAPTER 2. SUPPORTED LIPID BILAYERS TO PROBE CELL 

MECHANOBIOLOGY 

Adapted from Glazier and Salaita, BBA – Biomembranes, 2017. 

2.1 Abstract 

 Mammalian and bacterial cells sense and exert mechanical forces through the 

process of mechanotransduction, which interconverts biochemical and physical signals. 

This is especially important in contact-dependent signaling, where ligand-receptor binding 

occurs at cell-cell or cell-ECM junctions. By virtue of occurring within these specialized 

junctions, receptors engaged in contact-dependent signaling undergo oligomerization and 

coupling with the cytoskeleton as part biochemical signaling within cell junctions has 

advanced over the past decades, physical cues remain difficult to map in space and time. 

Recently, supported lipid bilayer (SLB) technologies have emerged as a flexible platform 

to measure and manipulate membrane receptor mechanotransduction, allowing one to 

mimic cell-cell junctions (Figure 9). Changing the lipid composition and underlying 

substrate tunes bilayer fluidity, and lipid and ligand micro- and nano-patterning spatially 

control positioning and clustering of receptors. Patterning metal gridlines within SLBs 

introduces corrals that confine lipid mobility and introduce mechanical resistance.  Here 

we review fundamental SLB mechanics and how SLBs can be engineered as tunable cell 
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substrates for mechanotransduction studies. Finally, we highlight the impact of this work 

in understanding the biophysical mechanisms of cell adhesion. 

 Highlights 

• SLBs functionalized with adhesion proteins form artificial junctions with cells.  

• Chromium barriers serve as diffusion gates and sites of mechanical resistance. 

• Molecular tension probes report pN forces on SLBs. 

• Cells adhered to stacked or patterned SLBs exhibit distinct phenotypes. 

2.2 Introduction 

Sensitivity to mechanical forces is a common feature that is shared by the vast 

majority of organisms ranging from bacteria to mammals. It is fundamental to 

developmental processes, disease, and normal physiology. Cells transduce mechanical 

forces into biochemical signaling events in a bidirectional manner through the process of 

mechanotransduction. Cell surface receptors and cytoskeletal proteins sense and exert 

 

Figure 9 SLBs Model Cell-Cell Junctions.  

Cells participate in contact-dependent juxtacrine signaling at cell-cell junctions. 

These can be modeled on planar SLBs. Diffusion barriers allow the investigation of 

receptor clustering, tension, and transport in these biomimetic platforms. Reproduced 

from 7 with permission from publisher.  
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piconewton forces, which influence downstream biochemical responses through a wide 

range of processes with different molecular mechanisms. For example, mechanical forces 

may change the rates of reactions by accelerating or decelerating bond lifetimes 97. Forces 

can also confine proteins, thus enhancing local concentration and binding interactions. 

Alternatively, forces can unfold specific protein domains, which exposes cryptic binding 

sites or activates functions which is common in stretch sensitive ion channels 74, 98, 99.  The 

implications of mechanical forces in cell signaling are vast. Mechanical forces regulate 

hearing, cell migration and adhesion, embryo development, lineage commitment, heart 

disease, cancer metastasis, and the immune response 100, 101, 102, 103, 104. Even small 

differences in molecular mechanics can lead to distinct outcomes. In the immune system, 

for example, piconewton (pN) differences in receptor mechanotransduction have been 

shown to attenuate downstream cell signaling 105, 106. Therefore, to engineer effective cell 

and material-based therapies, it is critical to understand how cells interact physically with 

their environment and how mechanical forces contribute to signaling.  

The most common model system to study these events is in adhesion, the process of 

cell-cell and cell-extracellular matrix attachment. In adhesion, cells transmit and sense the 

mechanical properties of neighboring cells and the extracellular matrix (ECM). Focal 

adhesions (FAs) structurally and mechanically link the cell and the matrix. These protein-

rich assemblies connect the actin cytoskeleton to integrin receptors which physically 

connect to the underlying matrix 22. Integrin receptors are dimeric proteins which can 

assume a folded low affinity state or an open, high affinity state. Integrins have been shown 

to pull on their ligands and exert traction forces, forces parallel to the plane of adhesion, 

on the matrix 30, 107, 108, 109. Cell-cell adhesions are more structurally and functionally 
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diverse, ranging from primarily mechanical linkages such as adherens junctions and 

desmosomes to tight junctions, which control transport between cells, and immune cell 

synapses, which bring cells in physical contact for the initiation of an immune response. 

Integrin receptors including the LFA receptor have also been shown to be key players in 

cell-cell adhesion, but the primary mediators of cell-cell adhesion are cadherin receptors, 

which form adherens junctions (AJs). Cadherins are tissue-specific calcium-dependent 

adhesion proteins that form dimers with adjacent (cis) and opposing (trans) cadherins. 

Cadherins indirectly link to the actin cytoskeleton, allowing force generation across cell-

cell adhesions 110, 111. In both cell-cell and cell-matrix adhesions, forces originate through 

the cytoskeleton. Actomyosin contractility is the primary mechanism of receptor-mediated 

forces, but actin also generates dynamic forces through treadmilling, the process of 

polymerizing and depolymerizing which exerts mechanical forces directly on the cell 

membrane 112, 113. Actin cytoskeleton remodeling can also drive receptor translocation in 

clustering, which reinforces adhesion 114. 

Adhesion sites are often modeled using ECM or cell-adhesion molecule modified 

substrates. Geometry and mechanics are adjusted by patterning immobilized ligands on 

substrates of varying rigidity, from sparsely crosslinked polymers to glass. However, the 

specific events in mechanotransduction remain fundamentally challenging to study. 

Whereas biochemical signaling can be manipulated by knock-down assays or by inhibitory 

drugs, mechanotransduction is linked to substrate rigidity and cannot easily be altered 

without fundamentally changing the system, including the density of ligands. Thus, despite 

the advances in scaffolding, the precise role of mechanical forces in adhesion assembly 

remains poorly understood.  
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Recently, several studies have attempted to bridge this gap by using supported lipid 

bilayer (SLB) technologies to spatially control the generation of mechanical forces 5, 6, 9, 12, 

95, 115. SLBs are biomimetic phospholipid membranes that self-assemble on planar glass 

substrates (Figure 10A).  They initially gained attention for their ability to form hybrid cell-

cell interfaces and have been particularly useful in modeling antigen-presenting cells to 

study immune cell synapse formation during T cell activation 116, 117. SLBs can be formed 

by either vesicle fusion, in which unilamellar vesicles adhere to the substrate, rupture, and 

fuse into a plane, or by Langmuir deposition, in which individual leaflets of the bilayer are 

sequentially added 118, 119, 120. A thin layer of water separates the glass from the lower 

leaflet, allowing both leaflets to maintain their fluidity 121 (Figure 10A). Lipids freely 

diffuse in the XY-plane, and the diffusion coefficient is controlled by the bilayer’s phase 4 

(Figure 10B). A high bending modulus confines diffusion to the plane of the substrate. 

Thus, the physical properties of SLBs closely mimic those of the plasma membrane, and 

cell-SLB interfaces recapitulate the fluid interface between adjacent cells that physically 

engage, serving as hybrid cell-cell junctions.  

An important advantage of the SLB platform is the ability to manipulate ligand 

mechanics to study mechanotransduction. Therefore, SLBs have recently emerged as a 

platform to probe receptor signaling events in both cell-cell and cell-matrix adhesion. 

Because fluid bilayers cannot support lateral traction forces, signaling pathways proceed 

in the absence of mechanotransduction in the direction tangential to the membrane. By 

adjusting the fluidity of the bilayers or by patterning barriers as sites of force generation, 

resisting forces can be selectively introduced 16, 122. In this review, we describe SLB 

biophysics and various methods to manipulate SLB mechanics and to measure signaling 
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outcomes. We present this material alongside a discussion of literature that applies this 

platform to characterize integrin and cadherin mechanotransduction. Note that a number of 

reviews have fully described the SLB technologies and their use in studying cell biology 

123, 124. Nevertheless, our focus is to emphasize recent work that pertains to the study of cell 

mechanobiology.  

 Receptor Mechanics 

In adhesion complexes, receptors serve as a mechanical linkage between the cell 

and the underlying matrix or an adjacent cell. Thus, these sites regulate signaling not only 

through binding, but also through force transduction. Mechanical forces adjust 

downstream cell signaling by modulating bond lifetime. For an idealized bond with a 

single energy barrier, the Bell model states that mechanical forces alter off rate, which 

reduces bond lifetime 97. In this scenario, bond lifetime, 𝜏, can be described as:  

 
𝜏 = 𝜏0𝑒

𝐸𝐴
𝑘𝑇 

(1) 

in which 𝐸𝐴 is the bond enegy, 𝜏0 is bond lifetime at zero external forces, 𝑘 is the 

Boltzmann constant, and 𝑇 is temperature. In the case of applied force, this equation is 

modified: 

 
𝜏 = 𝜏0𝑒

𝐸𝐴−𝛾𝑓
𝑘𝑇  

(2) 

In which 𝛾 is a structural parameter and 𝑓 is the force applied to the bond. Receptor-ligand 

interactions vary in their response to forces. While most bonds will display a reduced 

lifetime with the application of pN forces, certain receptors form catch bonds. Catch bonds 
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are an exception in which mechanical forces strengthen adhesion by lengthening bond 

lifetime. Many adhesion proteins, most notably the integrin family, have been shown to 

form catch bonds with their ligands 19, 125.  The general form of the Bell model can be 

applied to understand how forces drive the presentation of cryptic sites or the stabilization 

of weak interactions 

 Advantages of Supported Lipid Bilayers 

Many signaling pathways are contact-dependent and initiated at the cell membrane 

when a receptor interacts with a ligand presented on an opposing cell surface or ECM. 

Signaling responses are regulated in part by the biophysical properties of interaction, 

including bond lifetimes, receptor spatial organization, clustering, and mechanics at these 

interfaces 16, 122, 126, 127, 128, 129, 130. SLBs provide a convenient model to study and perturb 

these membrane-mediated interactions and signaling pathways.  

SLBs are a reductionist platform. Although the cell membrane includes a rich 

variety of proteins and lipids that segregate into complex domains, SLBs allow the isolation 

of a few receptors of interest to study receptor-receptor (cis) and receptor-ligand (trans) 

interactions. Furthermore, SLBs recapitulate the geometry of juxtacrine interactions, in 

which ligands and receptors are expressed on adjacent cells and physical contact between 

the cells is necessary to trigger signaling. Contact-dependent signaling pathways require 

surface anchoring of ligands and soluble ligand molecules often fail at initiating 

downstream receptor signaling cascades. For example, surface-bound ligands are required 

for integrin-mediated cell adhesion 131. T cell triggering requires surface presentation of 

antigen and the formation of a physical junction between the T cell and the antigen 

presenting cell 128, 132. By the incorporation of ligands or transmembrane proteins into an 
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SLB, the native 2D binding geometry can be sufficiently mimicked to initiate a 

downstream response.  

Although rigid surfaces can also be functionalized to present ligands in a planar 

geometry, SLBs offer a distinct advantage in their lateral fluidity, which permits clustering 

and transport 6. Super-resolution imaging reveals that many receptors exist in nanoscale 

clusters on the cell membrane prior to signaling 133. Upon receptor-ligand binding, 

hundreds to thousands of receptors associate together in microclusters, leading to signal 

amplification, increased specificity, and response-time coordination 134, 135. Whereas 

individual receptors typically are not connected with the cytoskeleton, clustered receptors 

can associate with the cytoskeleton, providing a direct linkage between the extracellular 

proteins and the cell’s force generating machinery. Thus, receptor clustering reinforces 

cytoskeletal coupling and strengthens the force of adhesion 136. In the case of unligated 

receptor clustering, cluster lifetime is reduced compared to the lifetime of ligand-bound 

receptor clusters 95. In many cases, clusters are actively transported across the membrane, 

their translocation corresponding to the amplitude of biochemical signaling 16, 122, 137. These 

mechanisms demonstrate the importance of ligated receptor lateral transport, which can 

only be captured on fluid substrates.  
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In addition, SLBs offer several experimental advantages. The bilayer’s 2D 

geometry permits quantitative analysis of receptor diffusion and oligomerization. These 

can be easily measured with fluorescence recovery after photobleaching (FRAP), 

 

Figure 10 Supported Lipid Bilayer (SLB) Design and Mechanics.  

(A) SLBs contain a bilayer separated from a rigid substrate by a thin layer of water. (B) 

Representative FRAP of labeled lipids illustrating SLB lateral fluidity. Lipids in SLBs 

freely diffuse within the plane on three representative substrates. Following 

photobleaching, diffusion causes photobleached lipids to be diluted and the average 

fluorescence to increase. The disappearance of a visible bleached region indicates total 

recovery and a fluid bilayer. (Reprinted with permission from 4. Copyright 2009, 

American Chemical Society). (C) SLB stiffness in comparison to tissue, hydrogels, and 

glass substrates. SLBs are anisotropic, behaving like fluids in the XY-plane, but stiffer 

than hydrogels in the Z-direction. Inspired by [146]. Reproduced from 7 by Author 

Rights. 
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fluorescence imaging, and fluorescence correlation spectroscopy (FCS) of tagged lipids or 

proteins 120. The planar geometry of cell-SLB interactions can also be easily imaged with 

total internal reflection microscopy (TIRF). In TIRF, an evanescent wave excites 

fluorophores in a thin ~150 nm slice at the surface, providing fluorescence images with 

improved signal-to-noise ratio compared to epifluorescence 138. Time-lapse TIRM images 

can be collected on time scales compatible with receptor transport and downstream 

biochemical signaling. 

2.3 Mechanics in Supported Lipid Bilayer Systems 

 Mechanics of Supported Lipid Bilayers 

2.3.1.1 Supported Lipid Bilayer Mechanical Characterization 

Bilayer mechanical properties are typically characterized by the compression 

modulus, 𝐾𝑎, the bending modulus, 𝐾𝑏, and the edge energy, Λ. 𝐾𝑎 describes the bilayer’s 

resistance to changing area, whereas 𝐾𝑏 measures the energy needed to curve a bilayer. 

Unilamellar SLBs and SLBs on rigid substrates are tightly confined to XY-plane. In these 

cases, 𝐾𝑏 is not a relevant parameter. However, fluctuations in the z-direction in stacked 

and cushioned SLBs depend on 𝐾𝑏. For small membrane deformations, 𝐾𝑎 and 𝐾𝑏 are 

linearly related, with 𝐾𝑏 scaling with bilayer thickness. 𝐾𝑎 exhibits phase-dependent 

behavior. Liquid disordered (lD) (fluid) SLBs have a low compression modulus of 0.12 

N/m. Liquid ordered (lo) regions of the bilayer behave stiffly for small deformations, with 

a compression modulus of approximately 1.1 N/m. When further deformed, lipid 

interactions are disrupted, which causes the SLB to behave as a soft material with a 

compression modulus of 0.05 N/m 139. Λ quantifies the bilayer’s resistance to pore 
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formation; it is the energy cost due to exposed fatty acid chains at a pore. Λ contributes to 

the bilayer’s ability to self-heal; positive edge energy indicates that pores will only form 

under the application of tension. Thus, Λ contributes to the stability of an SLB under 

receptor mediated forces. For 100 mol% DOPC SLBs, the edge tension, Λ per length, is 

27.7 pN 140.  

Deforming the SLB over a nanoscale pore using AFM allowed the measurement of 

an apparent SLB “spring constant” 141. In fluid and gel-phase membranes, the apparent 

“spring constant” was found to be 0.0039 N/m and 0.015 N/m, respectively. For pore sizes 

below 100 nm, the restoring force decreased with pore radius. For deformations between 4 

and 10 nm, the apparent “spring constant” was linearly related to surface tension and 𝐾𝑏 

141. The value of the apparent “spring constant” of an SLB is useful for quantifying local 

membrane deformations, specifically in the case of cell mechanotransduction on cushioned 

and multilamellar SLBs.  

Cell substrate mechanical properties are most commonly characterized by their 

Young’s Modulus, 𝐸, which measures the substrate stiffness and is defined as stress (force 

per area) over strain (deformation). As this parameter is not well defined for membranes, 

direct comparison of SLB mechanical properties with those of conventional polymer 

supports is not simple. SLBs are anisotropic materials, rigid in the z-direction and 

minimally resistive in the lateral direction (2.2.1). The stiffness of SLBs in the z-direction 

is reflective of the mechanical properties of the underlying support. To obtain the elastic 

response of an SLB in the z-direction, Picas, et. al. developed a novel AFM-based method, 

PeakForce-Quantitative Nanomechanics 142. SLBs on mica were oscillated vertically at 2 

kHz and allowed to contact an AFM tip. At a loading force of 200 pN, the z-direction 
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Young’s Modulus of SLBs was reported at 19.3 MPa for liquid phase and 28.1 MPa for 

gel phase SLBs 142. Gel phase SLBs were effectively stiffer than fluid phase SLBs at all 

loading forces. These measurements indicate that in the vertical direction, bilayers 

supported on mica are stiffer than many biological tissues and hydrogels (kPa) but softer 

than glass (GPa) (Figure 10C). In contrast, polyethylenimine supported DMPC bilayers 

closely mimicked the stiffness of cells. The underlying polymer swelled to create a ~15 nm 

cushion between the lower leaflet of the SLB and the underlying mica substrate, leading to 

an effective Young’s Modulus of 32 – 47 kPa 143.  

2.3.1.2 Lipid Extraction Under Force 

In addition to the properties governing the reversible deformation of an SLB under 

tension, it is important to consider the irreversible destruction of bilayers under mechanical 

forces. Apart from specialized biological functions such as endocytosis, membranes can 

only undergo a few percent strain before rupture. In the case of adhesion receptor 

mechanobiology, the more important parameter is the force of lipid extraction rather than 

whole membrane rupture. The location of detachment can be determined by the relative 

energy gradient at the bond. 

𝐹𝑏

𝐹𝑚
=  

2𝐸𝑏

𝐸𝑚

𝐿𝑚

𝐿𝑏
  

(3) 

In this equation, 𝐿𝑚 and 𝐿𝑏refer to lipid anchor and bond length, respectively, and 

𝐸𝑏 and 𝐸𝑚 are the energies of bond rupture and membrane failure, respectively. Given the 

case where the bond energies are similar, the likelihood of failure increases with 

hydrophobic tail length. Thus, given a constant bond length, the force of lipid extraction 

decreases with hydrocarbon chain length 144. Wong, et. al. calculated that pulling a PEG-
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lipid from the bilayer into an aqueous environment would require 23 pN 145. Leckband, et. 

al. measured an adhesion force of 80 pN required to an extract a lipid via biotin-streptavidin 

interaction 144. For mica-supported POPC bilayers, 50 pN was required to extract a single 

POPE lipid using AFM. Cholesterol extraction in phase-separated SLBs using both AFM 

and molecular dynamics simulations revealed that extraction requires more force in lo 

regions than in lD regions. Benchmark receptor forces are provided in Section 4.2. SLBs 

are generally sufficiently stable to withstand short-term applied forces (~ 1hr) by cells, but 

lipid extraction is noted at longer time scales. Yu, et. al. reported integrin endocytosis on 

SLBs and observed internalization 3 hrs following cell-substrate engagement 86. B cells 

could extract antigen on viscoelastic plasma membrane sheets, but not on supported lipid 

bilayers which were more tightly coupled to the substrate 146. 

 Frictional and Mechanical Forces on Membranes and Receptor-Ligand Complexes 

2.3.2.1 Diffusion and Viscous Drag in Supported Lipid Bilayers 

Diffusion in an SLB is considered in two regimes: diffusion of lipids and similarly 

small molecules and diffusion of proteins and other large molecules. Lipid diffusion 

requires sufficiently large free volume and sufficiently high energy to disrupt neighboring 

tail interactions. In an SLB the diffusion coefficient, D, is determined by phase and 

substrate-SLB coupling. For larger species, the bilayer is treated as a continuous viscous 

media. Diffusion is attributed to the net sum of forces due to collisions with lipid molecules 

and the resisting frictional force, viscous drag that is imparted by the membrane 147. The 

diffusion coefficient, 𝐷 , and frictional coefficient, 𝑓, are inversely related by the Einstein 

Relation: 
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𝐷 =

𝑘𝑇

𝑓
 (4) 

in which 𝑘 is the Boltzmann constant and 𝑇 is temperature. For an integral membrane 

protein in an SLB, 

 
𝑓 = 4𝜋𝜇ℎ𝑈 (𝑙𝑜𝑔

ℎ𝜇

𝛼𝜇′
− 𝛾)

−1

 (5) 

This assumes a cylindrical protein with radius 𝑎 in a bilayer of height ℎ. 𝜇 is the viscosity 

of the bilayer, 𝜇′ is the viscosity of the surrounding media (𝜇 ≫  𝜇′), 𝑈 is the proteins 

velocity, and 𝛾 is Euler’s constant 147, 148. 

Steric hindrance prevents direct transmembrane protein reconstitution in SLBs, so 

protein domains or ligands are more commonly tethered to lipid anchors. A useful model 

to quantify diffusion of tethered protein domains in SLBs is the the pleckstrin homology 

(PH) domain model, in which each PH domain attaches to single PIP3. Knight and Falke 

found that the PH domain protruded further into the surrounding media than into the SLB, 

but that the diffusion coefficient closely matched that of PIP3. This indicates that transport 

is regulated primarily by intra-membrane friction rather than by drag between lipid-

tethered proteins and the surrounding media 149, 150. These results logically follow from 

viscosity measurements, which suggest that SLBs are 200x more viscous than their 

surrounding aqueous environments 149.  

In more complex scenarios, the diffusion coefficient depended on protein-lipid 

interactions. The diffusion coefficient of multimers inversely scaled with the number of 
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bound lipids, and contributions of lipid binding and protein insertion into the hydrophobic 

core were additive for membrane penetrating proteins such that: 

 
𝐷 =

1

𝐹1,𝐿𝑖𝑝𝑖𝑑𝑁 + 𝑐𝑃
 (6) 

Here, 𝑁 is the number of bound lipids, 𝐹 is the frictional contribution of a single lipid, 𝑐 is 

a constant, and 𝑃 is the number of penetrating domains 151.  

  Typical diffusion coefficients for lipids in fluid and liquid-disorder SLBs are 1-4 

µm2/s and .1 µm2/s, respectively 152. The diffusion coefficient of 17 tethered protein 

domains with various degrees of lipid penetration ranged from .22 to 2.6 µm2/s. 

Corresponding frictional coefficients ranged from .39 for anti-biotin with only one lipid 

binding domain to 4.6 for a fusion construct with 6 bound lipids 151. Biswas, et. al. 

estimated that extracellular domains of E-cadherin on a fluid SLB experienced an average 

of .5 fN viscous drag during lamellipodial retraction 5.  

Although membrane-bound proteins only attach directly to one or few lipids, 

protein binding has been observed to alter lipid diffusion within a larger radius. Forstner, 

et. al. found that near the melting temperature, cholera toxin binding induced the formation 

of gel-phase islands in DMPC and DMOPC SLBs 153. Molecular dynamics simulations of 

Kv1.2 ion channel in DOPC bilayers suggest that this layer includes approximately 50-100 

lipids which diffuse with the protein 154. At reasonably low concentrations, diffusion 

coefficients of membrane-bound proteins are concentration independent 155. This rule 

breaks down when proteins are added in sufficiently high concentrations to form a 

monolayer 155, 156.  
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In cells, receptor-ligand transport is hindered by cytoskeletal barriers imposed on 

the bilayer. Spectrin forms a geometric mesh that supports the membrane, and actin can 

limit protein diffusion through the tether model, in which a protein is directly bound to the 

cytoskeleton, and the fence model, in which proteins diffusion is spatially limited by bulky 

cytoskeletal barriers 157, 158. Edinin, et. al. demonstrated that these barriers dynamically 

confine protein diffusion, and that the  mechanism of protein attachment to the membrane 

affects confinement 159. Transferrin receptors tagged with beads and dragged across an 

NRK cell membrane using optical tweezers required 0.25 - 0.8 pN trapping force to cross 

cytoskeletal boundaries. At lower forces, receptors escaped the optical trap, suggesting the 

cellular barriers winning in a tug-of-war. Barriers behaved elastically with a spring constant 

of 3pN/µm, causing escaped receptors to quickly return to their original position 157, 158. 

Similarly, E-cadherin dragged across the cell membrane with optical trap velocity of .6 

μm/sec followed the optical trap for .78 μm, where it began to lag behind the displacement 

of the trap. The receptor escaped the trap at 1.32 μm, corresponding to an optical trap force 

of .8 pN. Homogeneous SLBs cannot impart such forces on ligands and receptors, but 

several experimental techniques allow the experimenter to controllably pattern corrals 

(3.2.2), and these phenomena may affect receptor transport in the SLB-adhered cell.  

2.3.2.2 Effects of Membrane Tension 

Within both cells and cell-free systems, membrane tension has been shown to 

induce receptor-ligand transport. Smith, et. al. developed parallel fluid and non-fluid cell-

free systems to assess adhesion of mobile versus immobile integrins. Giant unilamellar 

vesicles (GUVs) containing RGD-functionalized lipids equilibrated on SLBs containing 

mobile or immobile embedded integrin receptors, and a 2-4 pN vertical force was applied 
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to the membrane using optical tweezers. Whereas immobile bonds stretched and ruptured, 

mobile linkages clustered beneath the GUV to resist detachment 160. In the fluid system, 

which contained more GUV-surface linkages, each bond experienced negligible force 

(0.2fN), and the remodeling response was attributed to thermodynamic requirements to 

reduce free energy rather than to mechanics. Nevertheless, this work illustrates the concept 

that membrane tension can passively drive receptor reorganization at a juxtacrine interface. 

Accordingly, membrane tension applied by micropipette aspiration was sufficient to cause 

membrane flattening and passive E-cadherin recruitment in EAhy cells 161.   

2.3.2.3 Force Generation by Cytoskeletal and Motor Proteins 

Cytoskeletal proteins and motor proteins exert forces on membranes and their 

associated receptors. The cytoskeleton has two primary mechanisms of active force 

generation, polymerization and contractility. Actin and microtubules polymerize against 

the membrane, generating forces through a ratchet model. Thermodynamic fluctuations 

cause a transient space between the filament and the bilayer, allowing the insertion of a 

subunit. The extending polymer exerts pushing forces against the membrane. Footer, et. al. 

demonstrated that 8 parallel actin bundles can exert 1 pN force on a rigid wall, and actin 

comets have shown persistent polymerization at resisting forces of 4.3 nN 162, 163. In 

podosomes, crosslinked actin polymerization against the membrane causes the cell to 

protrude into the substrate. These protrusions have been measured to exert an average of 

94 nN or Formvar sheets 9, 76.  

Actomyosin contractility directly pulls actin-bound receptors. Motor proteins 

including myosins walk along actin filaments, generating 3-4 pN per step per myosin head; 
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this actomyosin contractility is responsible for receptor tension and traction forces in many 

systems 164, 165, 166. A key question in the literature has been whether myosin can generate 

forces parallel to the membrane or only perpendicular. Long range traction forces are 

dissipated due to lipid diffusion, but recent work by Pyrpassopoulos, et. al. suggests that 

myosin motors can act in concert to generate low pN forces at a fluid interface 167. Thus, 

while motor proteins generate large traction forces on rigid substrates, in-plane force 

generation and maintenance at fluid interfaces are more transient and require high 

cooperativity.  

2.4 Supported Lipid Bilayer Technologies 

 Methods to Perturb Bilayer Mechanics 

2.4.1.1 Tuning SLB Composition to Control Lateral Diffusion 

The simplest way to manipulate SLB mechanics is to adjust lipid composition and 

packing. This can be accomplished by adjusting the degree of fatty acid unsaturation. 

Changes in phase are accompanied by changes in transport, both passive diffusion and 

active transport, due to the altered fluidity. Within an SLB, individual lipids interact via 

van der Waals interactions, and their packing determines SLB phase. Below the melting 

temperature, SLBs are in gel phase with the lipid hydrocarbon tails rigidly arranged. Above 

the melting temperature, fatty acids rotate about their C-C bonds and exhibit long range 

coordinated motion. Lipids with longer hydrocarbon chains exhibit improved packing and 

reduced free volume, leading to slower diffusion 2.     
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In studies of mechanotransduction, adjusting SLB fluidity has two primary 

consequences. First, the kinetics of the system are altered. In a system with decreased 

fluidity, ligated receptor transport across the cell-SLB interface is slowed, potentially 

allowing for nucleation or for additional signaling molecules to bind. In addition, a gel-

phase or crowded membrane with low fluidity permits the generation of resisting forces. 

In a fluid system, lateral forces cannot be applied because there is no resistance 5. An 

additional benefit of phase-controlled bilayers is the ability to better mimic the cell’s 

plasma membrane. SLBs provide a simplistic experimental platform, however they lack 

the complexity and richness of live cell membranes, which are separated into multiple 

domains and are comprised of hundreds of lipids and thousands of proteins. Adjusting the 

phase of a SLB can begin to capture the complexity of the plasma membrane and create a 

more physiologically relevant model.  

Cholesterol biosynthesis is tightly regulated in part to modulate membrane fluidity, 

thickness, and integral protein activity. This is mediated by cholesterol’s rigid ring 

structure inserting into the membrane. Cholesterol is hypothesized to straighten saturated 

lipids, allowing them to pack more efficiently. This effect on lipid-lipid interactions likely 

more directly modulates bilayer fluidity than the introduction of cholesterol-lipid 

interactions (Figure 11A) 2, 168. Accordingly, cholesterol is a common species used to 

modulate bilayers in vitro.  Cholesterol containing membranes exhibit three states, gel 

phase, liquid ordered (lo) (at high concentrations of cholesterol and below Tm), and liquid 

disordered (ld) (at high temperatures and low cholesterol concentrations). In the lo phase, 

lipids exhibit strong tail interactions like in the gel phase, however they retain high fluidity. 

Cholesterol’s effects on bilayers are dependent on lipid composition, temperature, and 
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cholesterol concentration. For example, DPPC membranes are homogenous at low 

concentrations of cholesterol and can exist in either the lo or gel state. At 10 mol% 

cholesterol, DPPC membranes phase separate into a cholesterol-depleted region and a 

cholesterol-rich liquid disordered region. However, the addition of 50 mol% cholesterol 

again gives rise to a homogeneous bilayer 169. Thus, great care must be taken when doping 

bilayers with cholesterol to achieve the desired effect. In SLBs, 25 mol% cholesterol in 

DOPC membranes has been shown to reduce the diffusion coefficient of lipids and 

anchored proteins 4-5-fold 127.  

As an alternate approach, SLB phase may be modulated by the addition of lipids 

with a bulky tail group (Figure 11B). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC) labeled with 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) emerged as a popular 

fluorescent probe in the study of membrane physiology; however differential scanning 

calorimetry revealed that as low as 1%, NBD-PC altered membrane physical properties 170. 

Interestingly, the placement of NBD on the hydrocarbon tail determined the effect on 

phase. Harnessing the artifacts introduced by NBD-PC, Biswas, et. al. used NBD-PC to 

generate partially fluid bilayers to study adherens junction formation (Figure 11B) 5.   

 Sterically crowding the membrane with protein alters SLB fluidity without 

significantly changing the lipid composition. SLB functionalization with streptavidin is 

achieved by doping in a small amount of biotinylated lipid, typically biotin-DPPE. In 

kinetics assays, streptavidin binding saturated at 4 mol% biotin-DPPE with two 

biotinylated lipids binding each streptavidin. At concentrations below 4 mol% biotin-

DPPE, streptavidin bound in a dose dependent manner. At 4 mol% biotin-DPPE, bound 

streptavidin forms a crystal monolayer 156, 171. Whereas SLBs with low streptavidin 
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coverage retained their fluidity, crowded streptavidin monolayers obstructed long-range 

diffusion 126. Thus, the long-range diffusion coefficient is reduced by increasing the density 

of streptavidin molecules on the SLB. This method is particularly useful for probing the 

effects of lateral transport on receptors. By comparing Notch activation in cells on fluid, 

nonfluid, and rigid surfaces, Narui and Salaita identified that the Notch/Delta pathway is 

mechanosensitive and responds nonlinearly to ligand fluidity 126. More recently, it was 

shown that platelets prefer to adhere to crowded membranes 172. A nonfluid interface for 

cell adhesion was also recently fabricated by covalently linking ECM proteins to fluid 

lipids 173.  

 Selection of lipids with a transition temperature close to physiological conditions 

allows manipulation of bilayer fluidity without significantly changing SLB chemical 

composition. For example, 1-myristol-2-palmityol-sn-glycero-3-phosphocholine (MPPC) 

has a melting temperature of 35°C, allowing the lipids to be switched between gel phase 

and liquid phase in a temperature range compatible with live cell imaging. Demonstrating 

this, Adreasson-Ochsner fabricated micron sized 3-dimensional wells coated with 

supported MPPC bilayers containing E-cadherin ligands on the walls and base of the well. 

A single cell could spread in each well, and the differences in adhesion could be observed 

on chemically identical bilayers different only in their lateral fluidity 174. A key nuance to 

this work is that the biology itself could be altered by the temperature change between fluid 

and non-fluid bilayers. However, given the small difference in temperature, these effects 

are likely minimal. The benefit to this method of adjusting phase is that it is ligand-

concentration independent. Whereas membrane crowding with streptavidin also typically 

affects ligand binding and density, a simple assay with SLBs below and above their melting 
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temperature avoids convolution with ligand presentation and circumvents the need to add 

a fluorescent lipid. 

2.4.1.2 Stacked and Cushioned Bilayers 

The physical properties of SLBs are closely linked with substrate mechanics and 

topology. SLBs are most often formed on silicon oxide glass, and a thin layer of water 

separates the lower leaflet from the glass. The exact effects of surface-lipid interactions are 

highly contested and preparation dependent, but evidence suggests that lipid-substrate 

coupling can cause uneven leaflet lipid composition, drag between upper and lower 

leaflets, altered surface tension, and reduced fluidity 175, 176, 177. According to the classic 

model developed by Evans and Sackmann, the frictional coefficient between the membrane 

and the substrate is inversely related to the thickness of the fluid layer of separation 178. 

Therefore, increasing the thickness of the fluid supporting the bilayer will increase the 

mobility of the SLB. This insight has motivated the development of cushioned and stacked 

bilayers. 

From a biomimetic standpoint, the effects of glass cannot be ignored. Whereas glass 

has a modulus on the order of GPa, atomic force microscopy measurements suggest that 

stiffness of the cell cortex which supports the cell membrane in vivo is one million times 

softer on the order of kPa 179. Accordingly, creating SLBs on soft cortex-like supports is 

desirable. Here we discuss two converging approaches using SLB technologies: stacked 

bilayers in which multiple bilayers are fabricated on top of each other and cushioned 

bilayers in which the SLB is formed on a polymer support (Figure 11C). These systems 

physically decouple the SLB from the glass substrate, offering the potential for improved 
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physiological relevance in cell studies. We anticipate these platforms to be extremely 

useful in elucidating the role of mechanics in cell signaling and cell differentiation.  

Several fabrication methods for stacked SLBs have been attempted with varying 

levels of success. Covalent linking of lipids by NHS/EDC chemistry generated stacked 

bilayers, but the upper bilayer exhibited slowed diffusion and only ~75% of the lipids were 

mobile. This was hypothesized to be the result of nanoscale discontinuities in secondary 

SLB coverage, which were revealed by AFM 180. Murray, et al. tethered biotinylated 

vesicles to streptavidin functionalized SLB and observed secondary bilayer formation at 

high vesicle concentrations. Diffusion was not significantly altered in the upper membrane 

compared to single layer SLBs 181. Stacked SLBs stabilized with multiple favorable 

interactions improved quality, and SLBs connected with two positively charged bilayers 

with cholesterol functionalized DNA demonstrated high fluidity. However, these 

membranes remained challenging to characterize 182.  

Recent advances have allowed the formation of homogeneous and heterogeneous 

SLBs with up to four layers. Zhu, et. al. demonstrated that the incorporation of 10% 

cationic or anionic lipids allowed the formation of homogeneous or patterned bilayers 183. 

In patterned bilayers, the addition of saturated 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC) induced charged lipid phase separation. Phase separated domains aligned in each 

layer but were contingent upon bilayer fluidity. Stacked phase separated domains were also 

reported in phosphatidylcholine, cholesterol, and sphingomyelin containing membranes 

184. Together these data suggest an underlying physical explanation for aligned phases 

beyond electrostatic interaction. Kaizuka and Groves suggest the possible role of surface 

tension in preferentially aligning gel domains 184. Patterned stacked bilayers require 
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mechanical characterization but will undoubtedly emerge as a powerful tool to study 

adhesion.    

 Polymer “cushioned” and tethered bilayers provide an alternative method to 

decouple the SLB from the underlying glass 185. These methods were developed with the 

goal of incorporating integral membrane proteins into SLBs; however they also offer 

potential for manipulating the mechanical microenvironment. Integral proteins 

incorporated into SLBs typically fail to maintain their fold and lateral mobility due to 

adsorption on the glass, steric hindrance to diffusion, and denaturation as proteins are 

dragged along the surface 186. Polymer cushions or tethers lift the SLB off the glass, not 

only cushioning the bilayer, but also creating space for diffusing integral proteins. Whereas 

cytochrome b5 and annexin V were both immobile in SLBs formed directly on glass, a 

combination of BSA passivation and polymer tether incorporation raised the highly mobile 

fraction to 75% 187, 188. Tethers must link the bilayer to the glass while not interacting with 

either the lipids or any incorporated proteins. In addition, the polymer of choice must be 

hydrophilic to support bilayer formation 187. Therefore, PEG and chitosan have been 

popular choices for polymer tethers and cushions. Sterling, et. al. also fabricated actin-

supported bilayers, in which the actin cushion attempted to better mimic the cortex; the 

results of this work emphasize that fluidity modulation is polymer specific 189. 

Alternatively, cushioning the SLB with a thin cellulose cushion has been used to generate 

homogeneous bilayers with mobile integrins 186. 

 A major challenge in integral protein orientation is directing protein orientation. 

When proteins are reconstituted in vesicles for fusion with SLBs, their orientation 

scrambles. This skews diffusion measurements, because proteins with reversed orientation 



 43 

can be immobilized or denatured if their large extracellular domain interacts with the 

support. In mechanotransduction studies, these proteins would fail to interact with their 

binding partners. Recent work by Richards, et. al. suggested that protein orientation can be 

controlled by incorporating integral proteins using cell blebs, small, isolated vesicles from 

mammalian cells. Because these originate from the plasma membrane, proteins were 

oriented in their natural arrangement. Thermodynamically favorable downwards rupture 

preserved receptor orientation when vesicles fused during SLB formation 190. 

Although the potential for polymer-cushioned bilayers as a platform to adjust the 

underlying substrate rigidity in mechanotransduction studies has not yet been explored, 

stacked and polymer-tethered bilayer technologies have been combined to generate robust 

surface-decoupled SLBs to study adhesion. Bilayers are linked by maleimide-thiol 

coupling of lipopolymer linkers 15. To date, this is the only stacked bilayer system that has 

been applied as a novel cell substrate. 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine 

(POPC) bilayers were alternately doped with 5 mol% 1,2-dieasteroyl-sn-gllycero-3-

phosphoethanolamine-N-[maleimide(polyethylene glycol)-200] (ammonium salt) (DSPE-

PEG2000-Mal) or 5 mol% 1,2-dipalmitoyl-sn-glycero-3phosphothioethanol (Sodium Salt) 

(DPTE). A sucrose gradient promoted the sinking and fusion of giant unilamellar vesicles 

and malemeide-thiol coupling linked the upper and lower leaflets of adjacent bilayers. In 

agreement with the Evans-Sackmann model, the diffusion coefficient increased and the 

viscous drag coefficient decreased for each additional layer178. Lipopolymer-linked stacked 

bilayers coated with laminin behaved both viscoelastically and plastically. Individual lipids 

and attached receptors were laterally mobile but beads containing preclustered receptors 

became immobilized when attaching to the multi-bilayers 17. Notably, AFM micrographs 



 44 

revealed that surface roughness increased with the addition of each layer; these effects were 

likely the result of decoupling between the upper bilayers and the glass 15.  

 Patterning to Control Receptor Mechanics 

2.4.2.1 Lipid and Ligand Patterning 

Ligand patterning is a powerful approach that has been widely applied in the study 

of adhesion and immune cell activation. On glass, block copolymer micelle 

nanolithography (BCML) allows the deposition of nanoparticles with precise control over 

particle density, ranging from 50 to 150 nm 191, 192. By decorating these particles with 

ligand, BCML has been used to identify the critical pMHC density required to support T 

cell spreading, as well as to study the crosstalk between cell migratory behavior and ligand 

 
Figure 11 SLB Phase and Diffusion Tuning 

(A) Cholesterol reduces SLB fluidity in DMPC (closed triangles), DOPC (circles), 

DEPC (open triangles) bilayers. Reprinted from 2with permission of publisher. (B) 

Representative FRAP data from fluid and partially fluid DPPC bilayers containing, 30% 

DOPC and 1% NBD-PC, respectively. In DOPC SLBs, fluorescence almost fully 

recovers in 4 minutes, but in SLBs containing NBD-PC, the photobleached region 

persists, indicating low fluidity. (Reprinted from5. Copyright 2015, National Academy 

of Sciences). (C) Schematics of tethered, cushioned, and stacked SLBs. Reproduced 

from 7 with permission from publisher. 
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presentation 192. To more closely mimic cell-cell interactions and to understand the role of 

ligand mobility, it is highly desirable to develop similar methods to control ligand geometry 

and density within supported lipid bilayers. 

Until recently, patterning within bilayers has been limited to the ability to pattern 

blocks of membrane. Several methods have been developed in which lipids are either 

selectively added or removed in patterns. In one such method, a supported lipid bilayer 

formed on chromium grids was physically peeled off using a scanning probe tip and then 

refilled 193. Alkaline conditions favored membrane removal. Neutralizing the pH promoted 

bilayer fusion and allowed these regions to be backfilled with a second lipid composition. 

SLB micro-voids could also be generated with deep UV illumination 194. In a widely used 

method, SLBs are patterned with a polydimethylsiloxane (PDMS) stamp. PDMS stamps 

are inked with SLBs, which are contact transferred to a glass substrate. Combining this 

method with BSA barriers, it was possible to form bilayers with a lipid concentration 

gradient. Following stamping, vesicles with a second composition of lipids were added on 

top of the printed SLB and allowed to mix within compartments 1, 195. The composition of 

the resulting membrane patches depended on the size of the stamp applied to each region 

defined by the BSA grid. Groves, et. al. achieved spatial control over HeLa and fibroblast 

cell adhesion on patterned SLBs by incorporating phosphatidylserine (PS), which promotes 

cell adhesion, into individual corrals on an SLB (Figure 12A) 1. Using these methods, it 

would also be possible to selectively anchor adhesion ligands within distinct regions of the 

SLB by controlling which patches contain functionalized lipids or lipid ligands, such as 

glycolipids, which are commercially available and can support cell adhesion 196. Examples 



 46 

include PIP, DNP, reactive lipids such as azide modified lipids and thiol reactive lipid 

headgroups.   

Another more common method to control the spatial arrangement of ligands within 

the supported lipid bilayer is by membrane protein photolithography. Optogenetic tools 

including caged and photoactivatable proteins are engineered with naturally occurring 

photoreceptors such as the LOV domain 197. By shining the appropriate laser on the 

engineered proteins, the experimenter can spatiotemporally control protein accessibility 

and activation. In one approach, these domains can be linked to the protein of interest and 

then cleaved using photoactivation, therefore allowing the experimenter to control which 

ligands are accessible and which ligands remain caged. Combining this system with the 

supported lipid bilayer-T cell synapse model, DeMond, et. al. controlled T cell blast 

spreading and activation 198. Membrane-bound MHC molecule IEK was loaded with MCC 

peptide fused to a light sensitive 6-nitroveratryloxycarbonyl (NVOC) blocking group. On 

bilayers with caged pMHC and ICAM-1 to support adhesion, T cell blasts crawled across 

the surface and failed to form Ts cell synapses. When the NVOC was cleaved with near-

UV light, pMHC was exposed, causing T cells to adopt a round shape and to form 

immunological synapses.  

Alternatively, light-sensitive linkers may be used to selectively remove ligands 

from the surface. Nakayama, et. al. developed a photoeliminative linker that can be used 

to both site-specifically add and remove proteins on a bilayer 199. A photoeliminative 4-(4-

(1-hydroxyethyl)-2-methoxy-5-nitrohenoxy)butanoic acid bridges a biotin group and a 

farnesyl group, which inserts into the bilayer. Prior to functionalization with streptavidin, 

biotin can be removed by UV-illumination through a patterned mask. Using a second round 
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of UV irradiation at later time points, the protein may be released from the bilayer, 

providing a model to study adhesion and diffusion. To date, photoactivation of ligands has 

only been applied to continuous bilayers. On corralled bilayers, photobleaching of 

individual squares allows the generation of detailed patterns and images; the fraction of 

photobleached species per corral corresponding to the fractional area of the square exposed 

to light (Figure 12B) 11. One can envision that combining these two methods could yield 

bilayers with precisely patterned ligands that maintain their lateral mobility but are 

confined to microscale patches.   

Immobilized ligands can be incorporated into an SLB using gold nanoparticles 

(AuNPs) or nanodots. Lohmüller, et. al.  used BCML to disperse AuNPs within the SLB 

plane. Ephrin A1 ligands were linked to AuNPs with thiolated DNA, and RGD was 

incorporated into the surrounding bilayer 200. Thus, cells could engage with both laterally 

mobile and immobile ligands. In an alternate strategy, ligands were attached to size-tunable 

organic nanodot arrays (STONAs) surrounded by an SLB (Figure 12C) 14. Beads deposited 

on a glass surface and coated in an aluminum mask of variable thickness determined 

STONA lattice spacing, ranging from 100 nm to 1800 nm. Following bead removal, a 

secondary aluminum-mask determined dot size, and nanodots were modified with 

biotinylated BSA for functionalization. An SLB was formed surrounding STONAs, giving 

rise to a ligand-island effect. T cells cultured on STONAs functionalized with anti-CD3 

exhibited increased TCR clustering compared to T cells on homogeneous bilayers with 

equivalent ligand concentrations, and the tightness of adhesion was found to increase with 

ligand density. An unexplored consequence of ligand immobilization on STONAs is the 

development of a resisting force, which allows receptors and the cytoskeleton to locally 
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apply tension. Simultaneous presentation of mobile ligands on the bilayer and immobile 

ligands on nanodot arrays will allow the relationship between ligand mobility and 

mechanics in cell signaling to be probed in parallel. 

2.4.2.2 Diffusion Barriers 

 

Figure 12 SLB composition and substrate patterning.  

(A) SLB composition controls HeLa cell adhesion. PS promotes HeLa cell adhesion, 

but few cells adhere on PS-free bilayers. Fluorescence image of SLBS (left). Phase 

contrast image of cell adhesion (right). (Reprinted from 1 with permission from 

publisher). (B) Photobleach printing on corralled bilayers demonstrates the ability to 

locally control SLBs. (Reprinted from 11 with permission from publisher. (C) STONAs 

containing nanodot-immobilized ligands embedded in an SLB; Representative image of 

T cells on a STONA patterned bilayer. Scale bars 4 um. (Reprinted from 14with 

permission from publisher). (D) Spatiomechanical mutation of receptor transport and 

phosphorylation on corralled bilayers. Levels of tyrosine phosphorylation correlates 

with ephrin-A1 radial transport. (Reprinted from 16 with permission of publisher).  (E) 

Diffusion barriers gate receptor transport and serve as sites of local force generation.  

Reproduced from 7 with permission from publisher. 
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SLBs formed on substrates that are patterned with grids that prevent lipid diffusion 

separate into non-mixing microdomains. While such partitioned ‘corralled’ bilayers were 

initially developed for lithographic and electrostatic patterning, they have also become an 

indispensable tool in mechanobiology 16, 201, 202, 203. Each individual region maintains its 

fluidity, but long-range diffusion is hindered by gridlines or by an energetic barrier to 

spreading. Thus, cell spreading and signaling on a corralled bilayer will be spatially 

mutated, and long-range receptor-ligand translocation is diminished (Figure 12D,E). In T 

cells, when a ligated receptor encounters a physical block, its speed is reduced and its 

translocation is deflected in an angle-dependent manner 204. Grid lines also serve as sites 

of mechanical resistance. Cells cannot apply traction forces on homogeneous SLBs 

because the fluid bilayer fails to mount a resisting force; however lateral forces can be 

applied at barriers 9, 16. In molecular mazes, which are similar to corralled SLBs, 

noncontiguous barriers are patterned onto glass, allowing the resulting bilayer to maintain 

its long-range fluidity while still presenting mechanical barriers 204. These biochemically 

homogeneous platforms provide a direct method to probe biochemical versus mechanical 

signaling. A key challenge with diffusion barriers is the convolution of the effects due to 

blocked receptor transport versus mechanical force generation. Indeed, both clustering and 

mechanics are altered, resulting in spatiomechanical mutation. The exact forces that 

diffusion barriers impart are also unknown. Future studies will address this question using 

ratiometric MTFM on SLBs containing barriers.  

 Isolated membrane patches can be formed by scratching, blotting, stamping, or 

microfabrication. In the earliest example, tweezers were used to draw boundaries on a 

coverslip. Although SLBs in basic conditions remained partitioned at the scratch marks, 



 50 

bilayers in neutral and acidic conditions healed within hours, making them incompatible 

for cell imaging 205. Following this work, Kung, et. al. formed BSA barriers by both the 

application of patterned BSA on a PDMS stamp and by removing lipids in a pattern using 

a PDMS stamp and then backfilling with BSA to generate walls 206. Surprisingly, distinct 

membrane patches could also be formed using microcontact printing in the absence of 

barriers. SLBs applied in blocks with PDMS stamps maintained their shape because of the 

energetic barrier to spreading on glass and disrupting lipid tail interactions 195. This method 

permits regions of ~5 μm to be fabricated. By using polymer-based lift off on silicon 

supported bilayers, Orth. et. al. were able achieve haptenated SLBs with 1 μm pattern 

precision 207. SLBs separated by metal grids provide an optimal platform for studying 

receptor and cytoskeletal mechanotransduction due to their rigidity and ability to support 

cellular forces. A glass substrate is etched and coated with polymeric photoresist. Electron 

beam lithography exposes a grid pattern, and metal walls are deposited with electron beam 

evaporation. Grids are typically composed of chromium but may also be aluminum or gold. 

The glass regions within the grid are exposed by sonication, and filled with an SLB formed 

by vesicle fusion 16, 201.  

2.5 Methods to Measure Receptor Forces at Fluid Interfaces 

 Molecular Tension on Supported Lipid Bilayers 

2.5.1.1 Ratiometric Tension Probes for Mobile Receptors 

Molecular tension fluorescence microscopy (MTFM, previously reviewed by 

Jurchenko and Salaita 208) is a method to optically image receptor mechanics at the living-

nonliving interface. Previously, this method has been applied to map T cell receptor, 
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epidermal growth factor receptor, and integrin forces with high spatiotemporal resolution 

8, 30, 31, 106, 208, 209, 210, 211. In MTFM, an immobilized probe molecule comprised of a flexible 

linker and flanked by a fluorophore-quencher pair presents a ligand to a receptor of interest. 

In the resting (dark) state, the flexible linker is in a collapsed state, and the fluorophore and 

quencher remain in close proximity. When a receptor binds to the ligand and applies pN 

tension, the linker extends, causing separation of the fluorophore and quencher, which is 

accompanied by a significant increase in fluorescence. The flexible linker may be made of 

DNA, polymer, or protein and is selected based on its force-extension relationship. State-

of-the-art probes yield greater than 100-fold increase in fluorescent intensity upon opening 

106.  

In typical MTFM, an increase in donor fluorescence serves as a quantitative 

reporter of quenching efficiency. This is valid because the immobilized probes have a fixed 

donor density and fluorescence intensity is directly proportional to quenching efficiency 

and quantum yield. When probes are attached to a fluid bilayer, the fluorescence intensity 

is proportional to probe density and quenching efficiency (force). Tension-mediate 

increases in donor fluorescence are convolved with increases in probe density due to 

ligated-receptor clustering (Figure 13A). Therefore, the application of MTFM to SLBs 

requires the separation of the signal contribution due to probe clustering versus probe 

opening.  

To address this problem, Ma, et. al. developed the first ratiometric MTFM probes, 

which allow the calculation of the contribution of signal due to tension, “tension density.” 

In this design, AuNPs are decorated with DNA tension probes and is attached to an SLB 

using biotin/streptavidin interaction. A second fluorophore is non-specifically attached to 
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the streptavidin, and this “density reporter” fluorophore directly reports probe surface 

density. An additional benefit to this probe is the high signal-to-noise ratio; donor 

fluorescence is dual quenched by the molecular quencher and by nanoparticle surface-

energy transfer (NSET) with the AuNP 8 (Figure 134B,C). Nowosad, et. al. published an 

alternate design in which the traditional MTFM probe is modified with a “density reporter” 

fluorophore on the hairpin strand. Tension is quantified by the “opening ratio” (Figure 

13D,E) 10. It would also be possible to achieve similar measurements by quantifying the 

“tension density” or FRET efficiency using DNA-FRET probes, which were previously 

applied to measure single receptor tension on glass 32. 

2.5.1.2 Genetically Encoded Tension Probes 

Although ratiometric MTFM is currently the only method to measure receptor 

mediated forces on a bilayer, other tension sensors could also be combined with SLBs to 

elucidate the role of fluidity in modulating the mechanics of accessory adhesome proteins. 

For example, Grashoff, et. al. introduced a genetically encoded tension sensor in 2014 212. 

This sensor contains two fluorescent proteins separated by a spider silk elastic domain, 

which measures pN tension across a protein. To date this probe has been inserted into a 

number of proteins including catenin, vinculin, α-actinin, and spectrin 110, 212, 213. 

Combining cells transfected with genetically encoded tension sensors with SLBs and 

ratiometric MTFM, researchers will gain a more complete understanding of the role of 

traction forces and lateral fluidity in regulating adhesome mechanics.  
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Figure 13 MTFM probes to map pN receptor tension at SLB-cell junctions.  

(A) On an SLB, fluorescence increases are attributed to both increased density (clustering) 

and probe opening (tension). Closed probe fluorescence is quenched. When receptors 

cluster or pull on probes, intensity increases. At F1/2, 50% probes will be open. (B) 

Nanoparticle-based ratiometric tension probes contain reporters for fluorescence and 

density. Closed probes are dual quenched by the BHQ molecular quencher and an AuNP 

and contain a second fluorophore on streptavidin. Labeled streptavidin serves as a probe 

density reporter. (C) Representative image of T cell tension and clustering. (D) Line scan 

of density reporter and tension reporter fluorescence. Scale bar 5 μm. (C,D reprinted from 
8with permission from publisher). (E) Ratiometric DNA tension probes containing a 

density reporter fluorophore on the hairpin strand. (F) Representative cell image of B cell 

receptors clustering and pulling on DNA tension probes. Scale bar 5 μm. (F reprinted 

from 10 with permission from publisher). Reproduced from 7 with permission from 

publisher. 
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 Tension Measurements on Supported Lipid Bilayers 

Integrin and cadherin molecule force maps have not yet been generated using 

ratiometric MTFM, but immune-cell receptor forces at the cell-SLB interface have been 

measured in both B and T cells. Both B and T cell receptors were capable of opening 

ratiometric tension probes on an SLB, but the measured tension was lower than that 

generated on glass. Ma et. al. reported T cell receptor tension of 4.7 pN on an SLB 8. In 

contrast, Liu, et. al. demonstrated the ability of potent T cell receptors to unzip a 56 pN 

tension gauge tether (TGT) on glass 106. Similarly, primary B cells could unfold a 

percentage of 7 pN probes on an SLB, but could not open 9 or 14 pN probes 10. On glass, 

primary B cells were capable of unzipping 56 pN TGTs 105. Importantly, MTFM measures 

the magnitude of tension rather than a force vector, and probe opening reflects net tension. 

On SLBs, where receptors cannot generate strong traction forces in the parallel to the 

bilayer, the majority of probe opening must be attributed to vertical forces. Thus, it is not 

surprising that tension measurements would be lower on an SLB compared to those on 

glass. 

Ratiometric MTFM probes provide a method to characterize the relationship 

between pN mechanical forces and clustering in a variety of juxtacrine and cell-matrix 

interactions. Although these measurements have not yet been made, existing measurements 

on rigid substrates allow us to bound the range of forces. Note that force measurements are 

dependent on method, loading rate, and specific interaction parameters, so there a great 

deal of variability. Single molecule techniques report integrin bond strengths ranging 0.1 - 

0.65 pN using magnetic tweezers to up to 100 pN using AFM and high loading rate.  

MTFM on glass suggests that integrins exert >100 pN forces; on 18 kPa elastomer 
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substrates, the force per focal adhesion was measured to be 5.5 nN/um 31, 214, 215, 216. 

Genetically encoded tension probes suggest that E-cadherin is under 1-2 pN constitutive 

tension, which increases at stressed cell-cell contacts. The AFM unbinding force for VE-

cadherin was 35-55 pN 110, 217.  

2.6 Mechanobiology of Adhesion Revealed Using Supported Lipid Bilayers 

 Lateral Fluidity Guides Cell Adhesion 

The relationship between cell spreading and substrate stiffness has been well 

established; substrate stiffness can influence their lineage commitment and morphology 218, 

219, 220. In general, cells spread best on stiffer substrates, which support high traction forces 

that allow the cells to form larger contact areas 218, 221. A related question is how cells 

respond to ligand mobility and tether flexibility. What are the effects of movable ligands 

versus rigidly anchored ligands? Many common substrates are limited in their ability to 

recapitulate the intrinsic flexibility of the ECM; therefore, these effects have been less 

studied than the stiffness response 222. Recently, several novel substrates and mathematical 

models have been developed to probe these effects. SLBs are particularly well-suited for 

this line of research, because of their easily tunable architecture, fluidity, and 

functionalization.  
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 Counterintuitively, increased fluidity does not always correspond with poor 

adhesion. Recall Smith, et. al.’s RGD-containing GUV’s that interacted with fluid and 

nonfluid receptors: receptor mobility increased the GUV’s ability to withstand external 

 

Figure 14: Cell adhesion on SLBs  

(A) HAE and hMSCs exhibit opposite adhesion trends on fluid and nonfluid SLBs, 

demonstrating the cell specificity of the response. Scale Bar 20 uM top, unspecified 

length, bottom. Reprinted from 3 and 13with permission from publisher. (B) Mechanical 

characterization of stacked bilayers demonstrates that thicker bilayers are more viscous 

(Reprinted from 15 with permission from publisher). (C) Myoblasts on laminin coated 

lipopolymer-stacked bilayers exhibit fewer stress fibers with increasing SLB stack size. 

(D) Myoblast morphology is dependent on stack thickness. Cell spreading decreases 

with multibilayer thickness. 50 μm x 50 μ m. (C,D reprinted from 17 with permission 

from publisher). (E) Depletion zones decrease in size on viscous SLBs. (Reprinted 

from [91] with permission from publisher). Figure reproduced from 7 with permission 

from publisher. 
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forces (2.2.1) 160. Whereas nonmobile bonds stretched under tension, mobile receptor-

ligand complexes reorganized under the GUV to distribute the forces 160. Beyond the  

 

special case of catch bonds, nonmobile interaction lifetime would be shortened according 

to the Bell Model 97.  

 To test the effects of ligand fluidity on adhesion, Garcia, et. al. incorporated three 

peptides into DOPC and DPPC supported lipid monolayers (SLMs) and monitored the 

attachment and spreading of HAE amniotic endothelial cells, as well as THP-1 and M07 

and hematopoietic progenitor cells. HAE cells and both hematopoietic progenitor cells 

lines displayed decreased adhesion frequency and spreading on DOPC SLMs compared to 

DPPC SLMs 223. DOPC and DPPC have the same headgroup, but DOPC is fluid at room 

temperature and DPPC is not, suggesting a preference for nonfluid bilayers. However, in a 

similar study using human mesenchymal stem cells (hMSCs), Kocer and Jonkheijm 

obtained opposite results (Figure 14A).  On both SLBs, hMSC adhesion frequency 

increased with ligand density, however, cells always spread better on fluid DOPC SLBs 

than nonfluid DPPC SLBs. This effect was most pronounced at high ligand densities, where 

cell area double on DOPC SLBs compared to that on DPPC SLBs. These results suggest 

that hMSC adhesion is enhanced with increased ligand interaction and binding avidity 

obtained through ligand clustering on a fluid SLB 224. Wong, et. al. probed hMSC 

differentiation substrates containing RGDs tethered to magnetic nanoparticles using PEG. 

Tethers were flexible at rest, but the application of a magnetic field restricted their 

flexibility. In contrast to SLB-culture, hMSCs exhibited increased spreading and focal 

adhesion assembly on less flexible tethers; these differences perpetuated over several days. 
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These diverging results can likely be attributed to increased mechanotransduction by 

magnetic actuation and differences in signaling associated with long range versus short 

range translocation 225. Attwood, et. al. found that human foreskin fibroblasts attached to 

RGD ligands on glass also preferred short tethers; increasing adhesion and cell area 

correlated decreasing tether length 226. 

 On lipopolymer-tethered stacked bilayers coated with a laminin network, cells 

exhibited reduced traction forces by both integrin and cadherin mediated adhesions with 

the addition of each plane 17, 115. SLB fluidity increased with the number of layers (Figure 

14B), and it was unusual that cells on a fluid SLB could generate any traction forces. These 

forces arose due to slowed cluster diffusion and leaflet coupling by lipopolymer tethers 17. 

Cell stiffness, spread size, and adhesion size were all reduced with increasing stack layer 

and fluidity (Figure 14C,D). This trend was unsurprising given that the addition of each 

layer reduced substrate stiffness, and compliant substrates cannot develop strong traction 

forces. However, traction forces associated with rigid substrates are still not incompatible 

with ligand mobility. Pompe, et. al. propose a model of friction-controlled traction forces, 

in which focal adhesions are motile, and the friction of adhesion movement generates 

traction forces 3.  

 In Vafaei, et. al.’s SLB-ECM hybrid system, Huh-7.5 cells remodeled the local 

environment through a combination of packing flexible ECM proteins and lipid diffusion. 

Collagen and fibronectin were covalently coupled to fluid SLBs. Following coupling, 

lipids remained fluid with a diffusion coefficient of ~1 um^2/s, but ECM proteins did not 

diffuse, so adhered cells could generate traction forces. Huh-7.5 cells spread on the ECM 

functionalized-SLBs with lower area and rounder morphology than on ECM-
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functionalized glass due to reduced effective stiffness of the SLB platform. After 3 hours, 

cells showed ECM enrichment under the cell and depletion surrounding the cell (Figure 

14E). As lipid fluidity was decreased with the addition of cholesterol, ECM depletion zones 

were also reduced, indicating that adhesion is modulated simultaneously by ligand 

flexibility and translation 173.  

 Kourouklis, et. al. took a synthetic approach to solving the same problem. Fluid 

amphiphilic block polymers containing RGD ligands were used to mimic the ECM, and 

fluidity was adjusted by changing the percent “lubricating” polymer, much like cholesterol 

composition could tune SLB fluidity 222. Interestingly, 3T3 cells behaved nonlinearly. Cells 

on intermediate-fluidity substrates were consistently rounder and smaller with sparser focal 

adhesions compared to cells on substrates of higher and lower fluidity. Kourouklis, et. al. 

suggest that at low fluidity, cells generated traction forces on the substrate and adhered 

primarily through focal adhesions. At high fluidity, traction forces diffused, but receptors 

reinforced adhesion through clustering 222. This result and corresponding model, along with 

Vafaei’s observation of enrichment allude to the cell-free case of adhesion strengthening 

through mobility.  

 Altogether these data indicate that the mobility response is specific. We propose 

that that it is regulated by a complex combination of fluidity and force sensing, molecular 

friction, adhesion mechanism, and cell and receptor-specific responses; the relationship 

between these factors is yet to be elucidated. Ligand lateral fluidity and flexibility are 

convoluted in many attempts to characterize this response. SLBs will be useful in 

separating the effects of these two parameters through phase tuning, corralling, and altered 

linker length.  
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 Mechanobiology of Nascent Integrin Adhesions 

While integrins and mature FAs have been extensively characterized using traction 

force microscopy (TFM), super resolution imaging, force probes, and single molecule force 

spectroscopy, nascent adhesions (NA) have been more challenging to study, because few 

methods have sufficient spatiotemporal and mechanical resolution to map their dynamics 

13, 22, 30, 107, 210. Recently SLBs have emerged as useful platform to probe NA formation and 

maturation into FA. Because fluid SLBs are traction force free, comparing the behavior of 

NAs on SLBs versus glass has allowed identification of the key biochemical and 

biomechanical signaling events in adhesion formation.  

Initial integrin clustering and activation are independent of substrate mechanics and 

lateral forces; but mechanotransduction is required for the development of mature FAs 

from NAs. On glass, NAs containing integrins, paxillin, zyxin, and vinculin formed as actin 

polymerization extended lamellipodia at the leading edge of the cell. These clusters grew 

to 0.2 μm2 and the majority rapidly disassembled as actin passed over the NA and further 

extended the lamellipodia. On average, NA persisted for ~1 minute 95, 227. A small fraction 

of NAs colocalized with actin and α-actinin tracks and matured rather than disassembling 

227. Nearly identical clusters formed on SLBs, but these NA persisted through the entire 15 

minute observation window. NA size was independent of ligand density and activation 

state and was consistent on glass and SLBs 95. NA formation on fluid SLBs and rigid glass 

indicated that NAs form independent of substrate rigidity. On fluid SLBs, mature adhesions 

failed to form without traction forces, but NAs stabilized due ligated integrin clustering. 

Further supporting this, myosin overexpression promoted NA maturation on glass, and 
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myosin inhibition inhibited NA maturation but did not interfere with normal assembly or 

 

Figure 15 Mechanotransduction in integrin and cadherin-mediated adhesion 

assembly.  

(A) Integrins form uniform-sized clusters on both glass and SLBs, indicating early 

cluster formation regardless of substrate mechanics. Scale bar 5 μm. (Reprinted from 

[24] with permission from publisher). (B) Time-lapse and kymograph (bottom right) of 

integrin cluster translocation on an SLB. Clusters are transported radially outwards 

before forming a tight contractile ring. Scale bar 5 μm. Reprinted from 6.Copyright 

2011, National Academy of Sciences). (C) Focal adhesion (left) and podosome (right) 

formation in fibroblasts on glass and SLBs, respectively. Scale bar 10 μm. (D) 

Podosomes form in the absence of traction forces on continuous SLBs but not on SLBs 

patterned with resistive chromium barriers. Scale bar 10 μm. (C,D reprinted from 9 with 

permission from publisher). (E) Hybrid adherens junctions form on partially fluid 

bilayers containing NBD-PC but fail to form on fluid bilayers demonstrating the 

importance of viscous drag. Scale bar 5 μm. (Reprinted from5. Copyright 2015, National 

Academy of Sciences). (F) Resistive barriers restrict cadherin transport and serve as 

sites of mechanotransduction, causing altered α-catenin activation (marked by α18). 

Scale bar 5 μm. (Reprinted from 12 with permission from publisher). Figure reproduced 

from 7 with permission from publisher. 
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disassembly 95. 

Cluster stabilization on SLBs allowed observation of previously undetected steps 

in NA recruitment and migration (Figure 15A,B) 6. On both continuous and corralled SLBs, 

integrin-RGD cluster growth coincided with focal adhesion kinase, talin, and paxillin 

recruitment and promoted actin polymerization over NAs, which caused clusters to initially 

move inwards in pairs 6. Several clusters associated with FHOD1, which was activated by 

Src family kinases to promote actin polymerization driving lamellipodia spreading and 

cluster outwards translocation 6, 228. This was the first observation of outwards cluster 

motion in adhesion, which is not visible on glass or polymer substrates. On glass, FHOD1 

signaling was required for polarized actin polymerization, traction force organization, and 

NA maturation 228. On SLBS, cells retracted following spreading, and clusters were again 

translocated inwards, driven by Myosin II. Vinculin associated with clusters, suggesting 

talin unfolding during retraction 6, 74. Cells on gridlines aggregated integrins on the outside 

of barriers and formed stable adhesions, and cells on continuous substrates clustered 

integrins in tight rings and became round. Further studies are needed to measure forces 

generated by Myosin II on an SLB and to investigate whether these forces are sufficient to 

drive integrin tension, but measurement of very weak and highly cooperative Myo1c forces 

on an SLB coated bead suggest that this behavior likely also requires many engaged 

myosins 167. 

NA formation and migration required talin. Expression of the talin head domain 

rescued NA formation and motility, but NAs were slightly smaller than WT. Expression of 

the rod domain rescued NA formation but with less mobility. Talin rod domains can 

dimerize, which aided in clustering, but the full protein was required for full and motile 
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NAs 95. These results fit closely with Elosegui-Artola, et. al’s recent results that talin 

expression is required for stiffness-dependent NA maturation on rigid substrates 221. TFM 

revealed that on low stiffness substrates, fibroblast traction forces increased with rigidity 

independent of talin expression. On rigid substrates, traction forces increased with rigidity 

in talin-expressing cells and decrease with rigidity in talin-depleted cells 221. Talin head 

domain expression activated integrins in talin-depleted cells, but could not recover high 

traction forces on rigid substrates. The tail-domain alone also failed to rescue the stiffness 

response, which could only be recovered by expression of the entire protein. Thus, talin 

binding and unfolding are critical decision-making steps in mechanotransduction. On fluid 

substrates, talin regulates NA motility, whereas on non-fluid substrates talin regulates the 

loading-dependent stiffness response.  

Traction forces also impact the formation of podosome-like adhesions, mature FAs, 

and receptor internalization (Figure 15C) 9, 76. NAs in macrophages and fibroblasts on 

continuous SLBs ultimately transition into podosome-like adhesions in the absence of 

strong traction forces. NAs initially formed as described above, but adhesion proteins later 

segregated to a ring surrounding a core of polymerizing actin. These adhesions closely 

mimicked monocytic podosomes and transformed fibroblast’s invadopodia, which are 

protrusive structures. When fibroblasts spread on 1 μm line pitch corralled bilayers which 

could support traction forces, mature adhesions like those observed on glass substrates 

were recovered 9, 76, 95]. Yu, et. al. proposed a mechanotransduction pathway in which 

traction forces serve as a checkpoint in forming stable FAs and failure to mount traction 

forces leads to Class 1a phosphatidylinositide 3-kinase (PI3K) recruitment, which initiates 

a biochemical cascade resulting in podosome formation 9. Notably these studies suggest a 
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model of local rather than global integrin mechanotransduction. The introduction of 

barriers on SLBs altered local force generation and signaling 6, 16. When cells spanned the 

boundary of a continuous and corralled bilayer, they formed traction force stabilized FAs 

in the patterned region and podosomes in the continuous, fluid region (Figure 15D) 9.  

A subset of integrins were internalized on SLBs, but not on glass. After initial NA 

formation, integrin-β3 clusters colocalized with Dab2, an adaptor protein in clathrin-

mediated endocytosis. These NAs anti-colocalized with talin, indicating that recruitment 

of endocytosis machinery occurred downstream of mechanosensing. When actomyosin 

contractility was inhibited on glass, NA also colocalized with Dab2. Thus, failure to 

generate traction forces and stable FA can lead to integrin internalization 86.  

 Mechanobiology of Cadherin-Mediated Adhesion 

Cadherin mediated adherens junctions form at the cell-cell interface and are the 

main junctions responsible for tissue integrity. In adherens junctions, cadherins cluster in 

cis on the cell surface and bind to cadherins on the opposing cell surface through trans 

interactions. Several lines of evidence suggest that cadherins both transmit and respond to 

mechanical forces. AFM studies suggest cadherins can form both slip and catch bonds 

depending on binding configuration 125. Micropillar arrays deflected by cadherin-mediated 

forces demonstrated that cadherins apply traction forces to their substrate, but the unnatural 

spatial arrangement of cadherins in these studies obscures the physiological relevance of 

the results 229. Borghi, et. al. inserted genetically encoded spider silk tension sensors into 

the cytoplasmic tails of cadherin, allowing the first measurement of mechanical forces 

across adherens junctions. Their results revealed that membrane associated E-cadherin is 
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constitutively under tension and that tension is transmitted across adherens junctions 

through cadherins 110. However, as with FA, AJ formation has been challenging to probe. 

It was unclear how cadherins associated to form AJs, and how mechanical forces 

contributed to their assembly. Recently, SLBs have provided a platform to 

spatiomechanically resolve AJ and cadherin cluster formation, while also offering 

improved physiological relevance 5, 17, 86.  

Membrane technologies have been used for more than a decade to study cadherin-

mediated adhesion, but only recent works have successfully mimicked AJ formation. The 

earliest studies characterizing the mechanics of cadherin-mediated adhesion at a fluid 

interface employed simple cell-free systems 230, 231. Giant unilamellar vesicles (GUVs) 

were decorated with E-cadherin and allowed interaction with bilayers containing E-

cadherin.  Adhesion was observed by puckering in reflection interference contrast 

microscopy. Because cadherins bind weakly, vesicle adhesion to the bilayer required high 

concentrations of surface-presented E-cadherin 230. Adhesions withstood thermal 

fluctuations but ruptured under shear force, suggesting weak clustering at adhesion sites 

231.   

Inspired by SLB studies using a bilayer to mimic an antigen presenting cell, Perez, 

et. al. published the first model of cadherin-mediated adhesion at the living-nonliving 

interface. MCF-7 cells were adhered to an SLB containing glycosylphosphatidyl inositol 

(GPI)-linked cadherins (hEFG) 232. A small percentage of cells loosely attached and 

clustered hEFG, but the majority of cells could not spread without anchors. The 

incorporation of immobile 5 μm fibronectin islands within the bilayers permitted cell 

spreading and hEGF enhancement under the cell.  
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In 2015, Biswas, et. al. used phase tuning to develop the first SLB platform to 

support artificial AJ formation 5. 1% cells clustered cadherins into an AJs on highly fluid 

bilayers, but cells on partially fluid bilayers containing NBD-PC readily enriched E-

cadherins into AJs (Figure 15E). FCS revealed that cadherins on SLB diffused as 

monomers, suggesting they only associated during AJ formation. AJ formation was 

achieved by cluster coalescence during filopodial retraction. In both fluid and partially fluid 

bilayers, AJs formed in an all-or-nothing fashion; partial junctions were not observed. This 

observation together with the enhanced AJ formation on low fluidity SLBs suggest that 

adherens junctions require mechanical forces and kinetic nucleation to form. Very viscous 

SLBs generated resisting forces that could possibly support catch bonds across bound 

cadherins which would elongate bond lifetime. Low diffusivity promoted clustering and 

active nucleation, allowing junction formation to proceed. Within junctions, FRAP 

revealed that cadherins had low turnover and instead were immobilized within stable 

junctions 12. Surprisingly, mechanical resistance alone was insufficient to form adherens 

junctions. Although corralled bilayer gridlines slowed transport and served as sites of force 

generation, cells on fluid corralled bilayers failed to form AJs. Thus, long range lateral 

transport of receptors is required (Figure 15F) 5. This mechanism is in contrast with integrin 

adhesion, where forces at barriers locally determined the adhesion pathway. 

SLBs with reduced fluidity by the addition of high density poly-His E-cadherin 

ectodomain also supported AJ formation and were used to study α-catenin mechanobiology 

in cadherin-mediated adhesions 12. Cells spread on these SLBs exhibited two populations 

of cadherins that clustered during filopodial retraction: AJs at the cell periphery and 

cadherins loosely clustered in “central adhesions” underneath the cell. AJs and central 



 67 

adhesions both contained α- and β-catenin, but only AJs colocalized with actin, vinculin, 

and phosphorylated myosin light chain. Interestingly, the vinculin head domain and α18 

could bind both populations of α-catenin; this indicated that α-catenin was active both AJ 

and central adhesions, which was unexpected because activated α-catenin usually is bound 

to actin. Cells spread on SLBs with widely spaced chromium grids exhibited normal cluster 

formation, but spreading and cluster formation by filopodia, along with α18 binding, was 

reduced on narrow grids (Figure 15F). Thus, α-catenin activation required 

mechanotransduction during cell spreading and retraction to activate, but sustained forces 

were not necessary for it to maintain its open conformation in cadherin clusters 12.  

2.7 Conclusions and Future Directions 

Major breakthroughs in SLB technologies include the ability to precisely pattern 

fluid and anchored ligands, to incorporate properly oriented and fluid transmembrane 

proteins, to generate multiple stacked bilayers, and to measure mechanical forces at the 

cell-SLB interface using ratiometric tension probes 8, 10, 14, 15, 17, 115. Current studies of 

integrin and cadherin mediated adhesion using SLBs offer new insight into NA and AJ 

formation and demonstrate the power of spatiomechanical mutation using SLBs. By 

combining the techniques described in this review, we envision mechanically tunable cell 

substrates and sensors to probe specific signaling events in mechanotransduction. Hybrid 

adhesions consisting of immobilized ligands on STONAs and mobile ligands into the 

surrounding SLB will reveal the role of ligand mobility and transport in adhesion and 

cluster formation. Adjusting fluidity and stiffness while maintaining ligand density will 

deepen or understanding of how cells respond to ligand mobility versus substrate rigidity.  
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An open topic in the literature remains the dynamics of molecular mechanics: How 

do forces evolve in time and space across individual proteins, adhesion complexes, and the 

cell? SLBs provide a useful platform to approach this question, particularly relating to early 

events in adhesion formation. Ratiometric MTFM will track tension density evolution in 

spreading and retracting NAs and podosomes. Moving forward, fluorescence lifetime 

imaging may provide a simpler, concentration independent method to measure forces on 

an SLB. 

SLBs are notable for their reductionist approach to biological interfaces, however 

further advancements in SLB engineering will focus on the fabrication of more 

sophisticated and physiologically relevant mechanical niches. Very recently, Vafaei, et. al. 

introduced ECM functionalized SLBs to mimic very soft neural tissue. This method will 

allow the probing of mechanotransduction and gene expression in previously inaccessible 

regimes 173. The role of the glycocalyx remains poorly understood; decorating SLBs with 

glycolipids could offer a novel approach to explore its mechanical influence in juxtacrine 

signaling. Recent literature suggests that the glycocalyx is important regulating receptor 

clustering and FA assembly in cancer metastasis and in cell recognition in the immune 

system 233, 234, 235, 236. Incorporating ratiometric tension probes into SLBs mimicking the 

glycocalyx could provide direct evidence of how the glycocalyx influences 

mechanotransduction independent of cytoskeletal forces 233. 

Although Afensenkau, et. al. succeeded in culturing neurons on an SLB for nearly 3 

weeks, SLBs exhibited degradation during this timeframe that would prevent high quality 

molecular imaging 237. Therefore, SLBs can used to study initial adhesions, but they cannot 

yet serve as dual culture and imaging platforms for longer processes such as 
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synaptogenesis, stem cell differentiation, and embryo development. Further work is needed 

to optimize SLB stability for long-term studies. One approach has been to chelate calcium 

following SLB formation, but given the calcium dependence of many adhesion receptors, 

this unlikely to be a viable strategy for live cell studies 238. In addition, while SLBs capture 

the planar interface at the cell-cell or cell-ECM junction, cells behave differently in 2D and 

3D. Although 3D SLB-coated wells have been developed, these can only contain a single 

cell, not a cluster of cells that more accurately models tissue. More stable and 3D platforms 

are needed to understand mechanotransduction during development. 

Despite these challenges, SLBs can still offer improved physiological relevance to 

model cell-cell and cell-matrix interactions. We envisage that SLBs will be widely used as 

mechanically tunable substrates to spatiomechanically mutate and probe events in 

adhesion. Beyond adhesion, these techniques will also be useful for studying 

mechanotransduction pathways in immune cell activation and viral entry.  SLB 

technologies provide a sensitive and controllable toolset to study the link between physics 

and biology.  
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CHAPTER 3. DNA MECHANOTECHNOLOGY REVEALS THAT 

INTEGRIN RECEPTORS APPLY PN FORCES IN PODOSOMES 

ON FLUID SUBSTRATES 

Adapted from Glazier, et. al. Nature Communications, 2019. 

3.1 Abstract 

Podosomes are ubiquitous cellular structures important to diverse processes 

including cell invasion, migration, bone resorption, and immune surveillance. Structurally, 

podosomes consist of a protrusive actin core surrounded by adhesion proteins. Although 

podosome protrusion forces have been quantified, the magnitude, spatial distribution, and 

orientation of the opposing tensile forces remain poorly characterized. Here we use DNA 

nanotechnology to create probes that measure and manipulate podosome tensile forces with 

molecular piconewton (pN) resolution. Specifically, Molecular Tension-Fluorescence 

Lifetime Imaging Microscopy (MT-FLIM) produces maps of the cellular adhesive 

landscape, revealing ring-like tensile forces surrounding podosome cores. Photocleavable 

adhesion ligands, breakable DNA force probes, and pharmacological inhibition 

demonstrate local mechanical coupling between integrin tension and actin protrusion. 

Thus, podosomes use pN integrin forces to sense and respond to substrate mechanics. This 

work transforms our understanding of podosome mechanotransduction and contributes 

tools that are widely applicable for studying receptor mechanics at dynamic interfaces. 

3.2 Introduction  
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Podosomes are specialized acto-adhesive structures that coordinate a variety of 

cell-type specific processes ranging from forming the sealing-zone for bone-resorption in 

osteoclasts to facilitating migration and antigen scavenging in immune cells25, 27, 239, 240. In 

Wiscott-Aldrich Syndrome, cells fail to form podosomes, and patients experience frequent 

infections, impaired blood-clotting, and altered bone resorption43, 52, 53, 54. In HIV, however, 

numerous enlarged podosomes are associated with increased cell migration, macrophage 

tissue infiltration, and elevated bone degradation57, 58. Invadopodia, which are structurally 

similar to podosomes, facilitate cancer cell migration during metastasis23, 48, 241. Hence, 

podosome formation and regulation is critical to disease pathophysiology and homeostasis.  

Akin to the widely studied focal adhesions (FA), podosomes have been shown to 

exert mechanical forces and to respond to ECM stiffness24, 36, 76, 80, 242, 243, 244. Whereas FAs 

assemble into fibrillar micro-scale structures that apply contractile forces to the substrate24, 

30, 31, 210, 245, 246, podosomes assemble into a columnar architecture consisting of an actin 

core surrounded by a ring complex containing adhesome proteins including integrin 

receptors61. The actin core protrudes from the cell body, applying nN compressive forces 

onto the underlying substrate65, 75, 76. Given that a static cell cannot experience a force 

imbalance247, it is widely recognized that podosomes apply opposing tensile forces, with 

some disagreement as to the requirement for integrin adhesion forces26, 61, 65, 71, 75, 248, 249.  

Mathematical modeling suggests that these tensile forces are localized to the podosome 

ring65, and there are two lines of experiments that support this model. The first comes from 

biophysical measurements of talin extension243 and vinculin tension75 within podosomes. 

These measurements are indirect as they fail to map the molecular forces applied by the 

podosome itself. The second class of measurements reports bulk substrate deformations 
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using traction force microscopy (TFM). While TFM provides a direct measure of cellular 

stresses, the spatial and force resolution of the method precludes mapping the forces at the 

podosome ring complex. A more sensitive variant of TFM that is interferometry-based 

offers improved force sensitivity but still averages deformations of the substrate250 and thus 

cannot quantify receptor forces. To the best of our knowledge, no quantitative force maps 

have been reported validating the role of adhesion receptor mechanics in opposing actin 

protrusion and mechanically linking the substrate and the cytoskeleton within podosomes.  

Further confounding podosome mechanical models, recent results demonstrated the 

formation of podosome-like adhesions on supported lipid bilayers (SLBs)9, 83. SLBs are 

phospholipid membranes that self-assemble onto a glass slide. Lipids are confined in the 

z-direction but are laterally fluid84. Thus, on SLBs, podosomes are reported to form even 

in the absence of traction forces9, 85, which is confounding since podosomes apply 

compressive forces on the SLB.  

In this work, we employ DNA-based mechanotechnology tools to challenge the 

hypothesis that integrins cannot apply forces on fluid membranes and to investigate the 

role of integrin tensile forces in podosome mechanosensing. As a material, DNA offers the 

ability to map and perturb receptor forces with pN force resolution and sub-micron spatial 

resolution. We first quantify podosome-mediated depletion as a marker of actin core 

protrusion on SLBs. Next, we introduce Molecular Tension – Fluorescence Lifetime 

Imaging Microscopy (MT-FLIM), producing pN maps of integrin tension during receptor-

ligand clustering at the cell membrane. Previously, Molecular Tension Fluorescence 

Microscopy (MTFM) imaging on supported bilayers was carried out using ratiometric 

probes8, 10, but these induced artificial clustering or employed three-way energy transfer, 
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which hinder quantitative analysis. Moreover, we found that conventional MTFM probes30 

are static quenched and poorly suited for FLIM. Thus, we report a re-engineered DNA-

based FLIM-FRET probe that circumvents these problems. To better understand podosome 

tensile forces, we apply a recently developed force-orientation analysis technique to 

demonstrate that integrin forces are primarily perpendicular to the substrate. Treatment 

with pharmacological inhibitors showed that podosome tensile forces are a direct 

consequence of actin polymerization.  

Finally, we model pN integrin forces in podosomes and demonstrate that 

podosomes exert nN vertical forces on an SLB, in agreement with previously measured 

protrusion forces76. Our work offers receptor-level quantitative maps of integrin tension on 

fluid substrates and provides direct experimental evidence that podosomes are 

mechanosensors with local pN sensitivity. 

3.3 Results 

 Podosome actin content correlates with RGD-probe depletion 

Cyclic Arg-Gly-Asp-D-Phe-Lys (cRGDfK, RGD) peptides were tethered to the 

SLB through DNA oligonucleotides (Figure 17a, Table A 1,Table A 2, Figure A 1,Figure 

A 2,Figure A 3,Figure A 4). RGD-functionalized SLBs displayed a lateral diffusion 

coefficient of 1.41 ± 0.07 μm^2 s^-1 (Figure 16b)5. Within tens of minutes of culturing 

NIH 3T3 fibroblasts onto these substrates, we observed the formation of podosome-like 

adhesions9, 83. These adhesions were actin rich, excluded the RGD-DNA ligand (Figure 

16c) and were surrounded by vinculin and phospho-paxillin (Figure A 4). Since these 

podosome-like adhesions contained the key elements of podosomes9, we refer to these 
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structures as podosomes throughout this manuscript. The depletion of RGD-DNA was 

caused by pushing forces generated by the protrusive actin core9. Note that these forces 

exclude RGD-DNA but do not rupture the underlying SLB (Figure A 5), which is largely 

incompressible84, 251, 252. The f-actin rich core of podosomes was anti-localized with RGD-

DNA (Figure 16d), and increased actin content correlated with RGD depletion (Figure 

16e). Podosomes that depleted more RGD (measured by % decrease in fluorescence) also 

had larger depletion radii (Figure 16f). Given these data and the published finding that actin 

content and protrusion forces display similar behavior66, 75, we reasoned that RGD 

depletion serves as a suitable proxy for podosome protrusive forces on an SLB.  

 MT-FLIM maps pN receptor tension and clustering on SLBs 

To determine whether integrins apply tensile forces in podosomes on an SLB, we 

developed MT-FLIM to visualize receptor forces applied on fluid membranes. MTFM has 

permitted mapping of receptor forces on rigid substrates21, 30, 31, 106, 208, 210, 211, 253, 254 but is 

challenging to apply on fluid interfaces such as SLBs, because tension-signal and probe 

density are convolved as receptors cluster84. Two ratiometric approaches have aimed to 

address this problem. The first used 15 nm particles tagged with MTFM probes and a 

reference dye,8 but this leads to artificial clustering of receptors as they bind to the 

multivalent ligands presented by the nanoparticle, which may modulate integrin 

signaling255, 256. A later method leverages DNA-based MTFM probes tagged with three 

organic dyes10; however this probe likely experiences difficult to correct through-space 

energy transfer pathways between the three chromophores.   
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Figure 16 NIH 3T3 Fibroblasts form Protrusive Podosomes on SLBs 

(a) (Left) Schematic of the SLB podosome model. (Middle) Schematic of a single 

podosome at the cell-SLB interface across the black line. Podosomes exclude RGD-probes 

at their protrusive core. (Right) Zoomed-in schematic of a single DNA probe. (b) 

Representative images and mean intensity plot of RGD-DNA probes in a fluorescence 

recovery after photobleaching experiment. Data were normalized to the SLB intensity at t 

= 0 s. DNA probes had a diffusion coefficient of 1.41 ± 0.07 μm2 s^-1 (Mean + s.e.m., n = 

9 FRAPs, 3 experiments). (c) Representative podosome-forming cell on an SLB decorated 

with single-stranded DNA probes. Cells were transfected LifeAct to visualize actin cores. 

Scale bar, 5 μm. (d) Linescan analysis across the zoomed-in podosome in c. cRGD and 

actin intensity are normalized to the SLB background. (e,f) Scatter plots of actin intensity 

versus depletion (%) and depletion (%) versus depletion radius. All data were normalized 

by the brightest podosome per cell to account for varying LifeAct expression. (r = 0.657, 

0.604, N = 161 podosomes, 23 cells, 3 experiments). 
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We hypothesized that FLIM could be used to map receptor forces on fluid 

membranes, because fluorescence lifetime is sensitive to energy transfer but is independent 

of dye concentration88. We functionalized SLBs with FRET-based DNA tension probes 

containing binary DNA hairpins with a tunable F1/2 threshold and two linker arms; the F1/2 

threshold is defined as the force equilibrium at which 50% probes open (Figure 17)30. The 

bottom arm was hybridized to a biotinylated quencher strand containing an internal 

deoxythymidine BHQ1 modification. We selected this site for the quencher to ensure that 

the probe was FRET quenched, as absorbance spectroscopy demonstrated that 

conventional MTFM probes are static quenched and thus poorly suited for FLIM (Figure 

A 6). The upper arm of the DNA hairpin was hybridized to a Cy3B ligand strand containing 

cRGD. At rest, closed probes are FRET quenched, with a low fluorescence intensity and a 

short fluorescence lifetime. When integrin receptors bind and transport DNA tension 

probes into nascent integrin adhesions, the probes are clustered, causing an increase in 

fluorescence intensity. If the applied force equals or exceeds F1/2, then the DNA hairpin 

unfolds, causing an increase in both fluorescence intensity and fluorescence lifetime 

(Figure 17a).  

Because of the limited photon-budget257, 258 and the probes’ multiexponential 

fluorescence decay (Table A 3, Figure A 7a-c), we resorted to fit-free FLIM imaging in 

which the average lifetime is reported as the barycenter of photon arrival time. By this 

definition of average lifetime, multiexponential decays do not exhibit a linear relationship 

between average fluorescence lifetime and FRET efficiency92, 94. Therefore, we generated 

empirical calibration curves to relate the percentage of opened DNA probes to the 
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measured fluorescence lifetime (Figure 17b). This was achieved by imaging a small library 

 
Figure 17 Fibroblasts exert pN integrin tension in podosome rings on SLBs 

(a) MT-FLIM probes report clustering and tension. 1. In closed probes, donor 

fluorescence (Cy3B) is FRET quenched by BHQ1 quencher. 2. Receptor binding and 

clustering increases probe density and local intensity. 3. When integrin receptors apply 

tension above F1/2, MT-FLIM probes unfold, yielding a massive increase in both 

fluorescence lifetime and fluorescence intensity. Note that DNA hairpins are binary 

and thus are either in the open or closed conformation.  
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of SLBs presenting a mixture of opened and closed DNA probes (Figure A 7 d,e). We also 

characterized these SLBs using epifluorescence to determine probe quenching efficiency 

(Figure 17c) and measured intensity and fluorescence lifetime as a function of probe density 

(Figure A 8). We found a subtle decrease in probe lifetime with increasing probe density. 

However, this effect was minor compared to the effect of force-mediated hairpin opening. 

To map the podosome tensile landscape, we imaged F1/2 = 4.7 pN tension probe 

signal generated by podosome-forming fibroblasts on SLBs (Figure 17d). In the photon 

counts channel, we observed three populations of signal: negative signal corresponding to 

actin-mediated depletion at the podosome core, bright rings that surrounded the depletion 

zones, and bright puncta distributed across the cell-SLB junction, which we termed integrin 

clusters. Both clusters and podosome rings colocalized with β1 integrin, confirming that 

they were caused by integrin-mediated adhesions (Figure A 9). The fluorescence lifetime 

increased in podosomes, indicating that integrins mechanically unfolded DNA hairpins 

Figure 17

 
continued. (b) Average Cy3B fluorescence lifetime of 4.7 (dark blue line) and 19 (teal 

line) pN tension probes increases with increasing percent open probes. Fits (r2 = .999) 

were used to determine the percentage of probes opened by cells. Data represent the 

mean fluorescence lifetime from gaussian fitting of histograms ± 90% confidence 

interval. (error bars) across 2-3 SLBs per data point. (c) MT-FLIM probe intensity of 

4.7 (dark blue line) and 19 (teal line) pN tension probes increases linearly with open 

probe fraction. Probes are 78% quenched when folded (r2 = .995). Data represents the 

mean ± s.e.m. (error bars) across at least 3 SLBs.(d) Representative images of cells 

forming podosomes on linear, 4.7 pN and 19 pN MT-FLIM probes. Black pixels in 

the Av. Lifetime channel indicate pixels with < 25 photons or 𝜏 > 2.97 ns. Scale bar, 

5 μm, zoom-in scale bar, 0.5 μm.  (e) Average podosome fluorescence lifetime per cell 

on linear, 4.7, and 19 pN MT-FLIM probes. Teal solid lines represent the mean. 
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with F ≥ 4.7 pN. In contrast, the bright puncta outside of podosomes did not show changes 

in lifetime; thus integrin forces were <4.7 pN in these regions.  Using our calibration curves 

combined with the average lifetime maps, we calculated the percentage of opened probes. 

By combining these data with a mathematical framework, we also extracted the local probe 

density (A.1.2.1 Determination and interpretation of percentage of open probes and 

local probe density). To understand the limits of detection in low density regions, we 

analyzed MT-FLIM photon statistics (A.1.2.2 Discussion of MT-FLIM Photon 

Statistics, Figure A 10). Note that low photon count pixels, such as within depletion zones, 

produce less reliable lifetime values; these pixels were excluded according to lifetime and 

photon count cutoffs described in A.1.2.2 Discussion of MT-FLIM Photon Statistics 

(Figure A 11). Images represent the accumulation of signal over one minute, so there is 

some spatiotemporal averaging. Nevertheless, these images provide the first quantitative 

maps of integrin forces on an SLB and within podosomes. Moreover, our conclusions are 

generalizable: MT-FLIM imaging of Src-transformed mouse embryonic fibroblasts 

indicated that this spatial distribution of forces is also common in invadosomes and 

invadosome belts (Figure A 12).   

We next challenged podosomes using a more stable hairpin with F1/2 = 19 pN. 

Fluorescence lifetime increased in podosome rings but corresponded to a lower percentage 

of open probes. This suggested that a smaller subset of integrins apply F ≥ 19 pN compared 

to F ≥ 4.7 pN (Figure 17e,f). Control experiments employing a linear DNA duplex lacking 

a hairpin secondary structure exhibited nearly identical photon counts signal as the hairpin 

probes, showing regions of depletion and bright puncta. These regions did not exhibit 

significant changes in fluorescence lifetime. In addition, control experiments in which the 
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fluorophore-quencher pair and ligand were separated onto two independent co-presented 

DNA probes showed no change in fluorescence lifetime (Figure A 13). Together, these 

data confirm that changes in lifetime are due to integrin-mediated mechanical unfolding of 

the hairpin.  

To investigate the time-course of podosome mechanical force generation, we next 

collected timelapse MT-FLIM images of cell spreading and podosome formation (Figure 

17g, Figure A 14). Within 20 min of plating, cells formed dynamic integrin clusters which 

lacked detectable forces. Clustering was followed by tension and podosome-mediated 

depletion. Depletion was either preceded by tension (as shown) or occurred simultaneously 

with tension. Note that resolving the order of events with higher time resolution was 

difficult to achieve because of the 60 s FLIM acquisition time. Nonetheless, we found that 

integrin tension increased as podosomes became larger and more protrusive. Podosomes 

tended to move outward toward the cell periphery, and clusters grew by de-novo podosome 

formation at common nucleation sites or by splitting (Figure A 14). These time-resolved 

tension measurements show tight spatiotemporal coordination between podosome 

protrusive forces and tensile forces at the single podosome level. 

 Podosome forces are primarily vertical 

Given that SLBs cannot support lateral traction forces and that actin cores exert 

pushing forces on the substrate, we hypothesized that the integrin forces in podosome rings 

would be primarily oriented in the vertical direction. Alternatively, the protrusive 

podosome core could serve as a diffusion barrier16, 84 to support podosome lateral forces. 

To test this, we used Molecular Force Microscopy (MFM)21, a recently developed 
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fluorescence polarization-based method to quantify the direction of receptor-forces (Figure 

18a-d). Whereas MT-FLIM reports the magnitude of tension, MFM maps force orientation. 

DNA-based tension probes reorient in the direction of applied integrin forces.  In MFM, 

cyanine fluorophores are rigidly coupled to the DNA duplex259. Thus, integrin forces 

dictate both the orientation of the DNA tension probe and of its attached fluorophore. MFM 

utilizes excitation resolved polarization microscopy to measure the orientation of the 

fluorophore in order to deduce the strained-DNA orientation. MFM leverages mechano-

selection, in which only open probes contribute significantly to fluorescence and 

polarization signal, thereby suppressing the contribution of non-oriented closed probes. 

Accordingly, we substituted MT-FLIM probes for static quenched tension probes, in which 

the Cy3B fluorophore and BHQ1 quencher are in direct contact, thus offering mechano-

selection of the Cy3B signal (Figure 18a, Figure A 15a-b). Although these probes lack a 

density reporter, they provide a suitable proxy for integrin forces in this system, because 

podosome rings tended to show only minor enrichment in the MT-FLIM density channel 

(Figure 17d). We confirmed that the effects of clustering and dynamics were minor using 

linear MTFM probes (Figure A 15c-g). MFM fluorophore orientation measurements were 

validated using a membrane-bead standard as recently described21 (Figure A 16).  

MFM analysis of podosome rings suggested that forces were primarily vertical or 

disorganized (Figure 18b-d, Figure A 16g). The average podosome tilt angle per cell was 

21° ± 2° from vertical. In comparison, integrins in fibroblast FAs on glass exert forces with 

a tilt angle of 40° ± 2° 21. MFM has limited sensitivity to tilt angles less than 20° from the 
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normal and becomes more susceptible to noise for these small tilt angles. Therefore, these 

 

Figure 18 Integrins exert vertical forces in podosome rings  

(a) Schematic of MFM on an SLB. When an integrin receptor binds and applies forces 

above 4.7 pN, the probe unfolds and generates Cy3B fluorescence. Probes orient along 

the applied force vector, allowing determination of the tilt angle, θ, from the excitation 

polarization dependent Cy3B fluorescence. (b) Representative podosome MFM data 

after ~90 min cell spreading. Total tension is the maximum tension signal per pixel, 

which corresponds to the excitation polarization best aligned with the average per pixel 

Cy3B orientation. Podosome zoom-ins depict the normalized Cy3B fluorescence at four 

different excitation polarizations. (c) Computed tilt angle map for the cell shown in b. 

(d) Angular histogram of average podosome tilt angle per cell, θ. Vertical forces are 

indistinguishable within the ~20° cone, represented by the blue region (N = 25, 3 

experiments). 
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MFM results are consistent with podosome tension that is primary oriented normal to 

the SLB substrate21.  

To support our MFM result, we performed emission-resolved polarization 

measurements21 (Figure A 17). Here, any global organization in the lateral component of 

podosome forces within the ring will lead to bright nodes in fluorescence anisotropy. In 

agreement with a model of vertical force generation, we found no organized pattern in 

podosome fluorescence anisotropy.  This confirms MFM measurements, indicating that 

podosomes on SLBs lack an organized traction force component in the plane of the SLB.  

 Integrin forces are actin but not myosin IIa dependent 

To understand the mechanism of integrin force generation in podosomes, we treated 

cells with a panel of small-molecule inhibitors and quantified changes in 4.7 pN tension 

and core depletion size using MT-FLIM. We first treated cells with Y27632 to inhibit Rho 

kinase and found that integrin forces were not diminished (Figure 19a,b). Surprisingly, we 

observed an increase in the percentage of open probes and core depletion size (Figure A 

18a). To test whether this observation was caused by myosin II inhibition, we treated cells 

with blebbistatin (Figure A 19a-c). Although it was reported that blebbistatin releases 

tension on genetically encoded vinculin tension sensors in macrophages on immobile 

ligands61, we observed only a slight change in integrin tension (p = 0.0464).  Podosome 

core size was not affected (p = 0.3603). We further validated this result by knocking down 

MYH9, the myosin IIa head domain. No significant changes in podosome depletion or 

tension were observed when MYH9 was knocked down (Figure A 19d-h). Because 

actomyosin contractility was largely dispensable in generating tension in integrin receptors 
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on SLBs, we next treated cells with jasplakinolide, which is a potent actin stabilizer and 

polymerizer that causes reorganization of the cytoskeleton into disorganized aggregates77, 

260. Following 500 nM Jasplakinolide treatment for 8 min, core depletion area decreased, 

and integrin tension in podosome rings was reduced (Figure 19c,d, Figure A 18b). These 

data support a model in which actin polymerization in the podosome alone is sufficient to 

support integrin-based tension in the podosome ring complex. 

 Protrusion and tension engage in a mechanical feedback loop 

 
Figure 19 Actin polymerization drives integrin tension  

(a,c) Representative before and after MT-FLIM images of NIH-3T3 fibroblasts on 4.7 

pN MT-FLIM probes treated with 50 μM Y27632 or 0.5 μM Jasplakinolide, 

respectively. (b,d) Average percent open probes in podosomes per cell before and after 

drug treatment. Blue and red lines represent an increase or decrease in percent open 

probes per cell, respectively. Grey horizontal lines represent the median percent open 

probes. Statistics were performed with a two-tailed Wilcoxon matched-pairs signed 

rank test. At least 34 cells from 3 experiments were analyzed per condition. 

****P<0.0001. All scale bars, 5 μm. 
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We next sought to perturb podosome tension to determine how podosomes respond 

to external mechanical inputs (Figure 20a).  To achieve this goal, we engineered releasable 

MTFM probes by anchoring probes with a photocleavable (PC) biotin group (Figure 20a-

b). This PC modification allows for optical manipulation of integrin tension with high 

spatial and temporal resolution (Figure A 20). Cells were cultured on SLBs with PC probes 

for ~ 1 hr. Then, integrin ligands anchoring podosomes were severed with a 405 nm laser 

(Figure 20c). We anticipated that optical release of DNA probes would terminate integrin 

tension and cause rapid refolding of the DNA hairpin and re-quenching of tension signal 

in the podosome ring (Figure A 21). Upon 405 nm illumination of a 7 µm^2 podosome-

containing region, we tracked the changes in tension signal both at the site of photocleavage 

(proximal) and across the entire cell (distal) (Figure A 22). Although SLBs dissipate long-

range forces, we still wondered if it would be possible to observe global changes that were 

communicated intracellularly, such as through altered diffusion of adhesion proteins75. In 

severed podosomes proximal to photocleavage, we observed a massive loss of tension 

signal followed by a gradual remounting of tension (Figure A 21), which can be attributed 

to the replenishing of surface-bound ligands by diffusion. In contrast, podosomes distal to 

the site of photocleavage exhibited only a small reduction in tension signal.  

To quantify the changes in podosome protrusiveness upon loss of integrin tension, 

we synthesized PC probes lacking the quencher (Figure 20d). Here, Cy3B intensity is 

insensitive to tension, and changes in signal exclusively report DNA density. Hence, probe 

depletion radius provided a proxy for the change in protrusive forces applied by the 

podosome’s actin core.  We tracked individual podosomes before (-12 s) and after (29 s)  
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Figure 20 Loss of integrin ring tension causes local podosome retraction  

(a) To test how the podosome network responds to perturbations in podosome tension, 

probes were photocleaved under individual podosomes, and the proximal and distal 

responses were monitored. (b) Chemical structure of PCB, which was incorporated at 

the 5’ termini of 4.7 pN hairpins. (c) Cells were imaged before and after 5 sequential 

frames of probe photocleavage with a 405 nm laser. (d) Schematic of photocleavable 

protrusion probes. When the biotin anchor is cleaved with a 405 nm laser, the probe 

detaches from the bilayer and refolds, severing the podosome’s mechanical connection 

to the SLB. Cy3B intensity reports probe density, and therefore serves as a marker of 

core size.   
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photocleavage and found that core depletion radius was reduced proximal to photocleavage 

(-23.5 ± 17.0%). Distal to ablation, podosome radius was slightly reduced (mean = -4.9 ± 

13.8% change) (Figure 20e,f ,Figure A 23). Control experiments confirm that mechanical 

perturbations were largely responsible for the observed changes in signal, with 

phototoxicity contributing minimally at the 29 s time point (Figure A 21,Figure A 23). 

Note that at later time points, some cells do show some light-mediated podosome 

disassembly. These results confirm local mechanical feedback between integrin tension 

and actin protrusion as the primary mechanism of force balance in podosomes on SLBs in 

this 3T3 cell line and suggest that there may be a minor contribution of mechanical 

coupling across the podosome network. Other podosome-forming cell types such as 

myeloid cells may display different levels of podosome-podosome coupling.  

 Efficient podosome formation requires integrin tension 

Given podosomes’ tendency to shrink following loss of tension, we hypothesized 

that integrin forces are not only important for podosome maintenance but also for 

podosome initial formation and maturation. To test the hypothesis that integrin tension is 

required for the efficient formation of podosomes, we employed Tension Gauge Tethers 

(TGTs), which limit the magnitude of integrin forces96 (Figure 21). Here, TGT probes 

Figure 20 continued.  intensity reports probe density, and therefore serves as a marker 

of core size. (e) Representative images of cells and podosomes before (-12 s) and after 

(29 s) photocleavage. Proximal pink boxes indicate the entire region of photocleavage. 

Distal green boxes show a representative region across the cell. (f) Summary statistics 

showing the percent change in podosome radius as measured by Cy3B depletion in 

regions cleaved by the 405 nm laser (proximal) and all other regions of the cell 

(distal)..Statistics were performed using a two-way ANOVA (control groups in Figure 

A 23). At least 79 podosomes were analyzed per condition, 3. experiments. Outlier 

podosomes (median ± 3 median absolute deviations) were excluded.  ****P<0.0001. 

Scale Bar, 5 μm 
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consist of a Cy3B-labeled DNA duplex that is anchored to the SLB. Upon the application 

of integrin forces that exceed the tension tolerance (Ttol, defined as the threshold force 

leading to mechanical melting at the 2s time scale) of the probe, the duplex irreversibly 

ruptures. Thus, TGTs limit the maximum tension per receptor (Figure 21a). The Ttol value 

can be tuned by changing probe geometry. In the Unzipping Mode, the cRGD ligand and 

biotin are on the same terminus of the duplex, and Ttol = 12 pN. In the Shearing Mode the 

biotin anchor and the cRGD ligand are on opposite sides of the duplex, and Ttol = 56 pN 

(Figure 21b). TGT experiments are unique in that they present chemically identical 

substrates that differ in their molecular stiffness. Thus, these experiments could also be 

used to test whether mechanosensory podosomes have piconewton sensitivity. We 

hypothesized that podosomes would be sensitive to these pN changes in ligand stiffness 

and that 12 pN TGTs would hinder podosome formation.  
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Figure 21 Podosomes maturation requires F>12 pN integrin tension  

(a) Schematic depicting integrin-TGT interaction on an SLB. First, an integrin receptor 

binds to a TGT duplex on the SLB. Upon integrin forces > Ttol, the TGT irreversibly 

ruptures, creating a transient local concentration gradient. Probe density is replenished 

through diffusion, and the cycle repeats. (b) Ttol is set by relative orientation of the 

cRGD ligand and the biotin anchor. (c) Representative images of podosomes on TGTs. 

Scale bar, 5 μm. (d) Cell area on TGTs. Teal bars represent the median area. Statistics 

were performed with a Rank Sum Test. At least 332 cells were analyzed per condition, 

3 experiments. (e) Percentage of cells forming podosomes on TGTs. Bars represent the 

mean ± s.d. (error bars), and teal circles represent individual experiments. Samples were 

compared using an unpaired two-tailed Students T-Test. At least 76 cells were analyzed 

per surface, 3 experiments. (f) Scatter plot showing the number of podosomes per cell  
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On 56 pN TGTs, cells exhibited increased spreading area, and 8-fold more cells 

formed podosomes compared to SLBs with 12 pN TGTs (Figure 21c-e). Within podosome-

forming cells, the number of podosomes per cell and the mean depletion in podosomes 

were significantly reduced on 12 pN TGTs (Figure 21f,g). This data reveals that limiting 

integrin tension to a value of 12 pN produces weaker protrusive forces. Time-lapse imaging 

of cells cultured on TGT substrates revealed that cells formed podosome-mediated 

depletions regardless of Ttol, but podosomes tended to be smaller and more transient on 12 

pN TGTs compared to on 56 pN TGTs (Figure 21h). Thus, podosome growth and stability 

is directly regulated by integrin forces.  

3.4 Discussion 

Although previous works have suggested that podosomes function as independent 

mechanosensors, the nature of the mechanical linkage between the substrate and the 

cytoskeleton was unknown36, 65, 76, 79, 248. Our work demonstrates that podosome integrin 

receptors apply pN vertical tension to their ligands, and that these tensile forces are required 

for actin core polymerization. This is a significant departure from past works, which have 

used the SLB model as evidence that podosome formation occurs in the absence of 

Figure 21 continued. in podosome--forming cells on 12 versus 56 pN TGTs. Teal bars 

represent the median. Statistics were performed using a Rank Sum Test. At least 25 

cells were analyzed per condition, 3 experiments. Outliers more than 3 quartiles above 

the upper quartile were eliminated. (g)  Scatter plot showing the mean podosome 

depletion on 12 versus 56 pN TGTs. Teal bars represent the mean depletion. Statistics 

were performed using a two-tailed unpaired Students T-Test. At least 25 cells were 

analyzed per condition, 3 experiments. (h) Time-lapse images of podosome emergence 

and dissolution (12 pn) or maintenance (56 pN) on TGTs. Cells spread for 2 hours on 

TGTs prior to imaging for all panels, except in h, in which cells were imaged as they 

spread on the SLB. **p<0.01, ****p<0.0001.Scale bar, 5 μm. 
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adhesion forces and have stated that integrins cannot apply forces to ligands on fluid SLBs9, 

85, 95. Instead we observed the formation of integrin clusters95, followed by core and ring 

growth that coincided with at least 19 pN integrin tension in the ring. Clustered integrins 

not associated with podosomes on SLBs did not apply detectable forces. To contextualize 

podosome forces on SLBs, we used our data to parameterize a simple adhesion model 

(Figure 22a,b). Each individual podosome applied nN vertical tensile forces, which was 

the sum of pN integrin tension and was strikingly similar to the protrusion forces measured 

for podosomes on FORMVAR, which is non-fluid76.  

 A key question in the podosome literature is whether podosome tensile forces are 

generated directly from core polymerization or whether actomyosin contractility is 

required to generate tension in the ring26, 65, 71, 75. Our work validates a model (Figure 22c) 

of polymerization-induced tension on the ring, as integrin tension was abolished when actin 

polymerization was perturbed. Few works have reported podosome formation on substrates 

lacking ligand39, 45, leading to a hypothesis that the podosome architecture can sustain 

tension without receptor forces36. Our TGT data disagrees with this model, demonstrating 

that firm integrin adhesion is required to form stable and protrusive podosomes. In contrast 

to works performed on rigid substrates63, 70, 75, 261, our data support a model of local 

podosome force balance that is independent of myosin IIa contractility. Cambi, et. al. 

reported that myosin IIa inhibition led to increased actin core intensity by shifting the 

feedback between contractility and protrusion75. We observed a similar increase in core 

depletion area and tension signal with Rho kinase inhibitor. It will be important to identify 

which myosins play a role in this vertical force balance feedback on an SLB. An interesting 
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candidate is myosin 1, which has been shown to localize to podosome cores and to apply 

forces when anchored to a fluid membrane167, 262, 263.  

 
Figure 22 Podosome ring modeling estimates nN tensile forces. 

(a) Schematic and equation for modeled podosome tensile forces on an SLB. Modeled 

podosome consist of a 1 μm outer radius and a 0.3 μm inner radius. The actin core exerts 

protrusion forces on the SLB, and the integrin receptors in the adhesion ring apply 

tensile forces. Modeled podosomes were parameterized using data from Figure 17 and 

Figure A 18. Scale bar, 2.5 μm. (b) Plot of ring tensile forces as a function of the per 

receptor force, FInt.. The dashed line indicates total tensile forces assuming 1 probe per 

biotinylated lipid, and the black data point represents the minimum force predicted by 

MT-FLIM. Confidence intervals and error bars correspond to 0.5 to 2 probes per 

biotinylated lipid. (c) Model of podosome forces on an SLB. Individual podosomes 

exert protrusion forces on the SLB with the actin core, while integrin receptors tug on 

RGD ligands in the ring domain. Podosomes experience strong mechanical coupling 

between protrusive and tensile forces. This coupling is focused within a single 

podosome and is weak in-between podosomes. This equilibrium can be shifted through 

myosin or actin inhibition. Podosomes with more actin content have smaller depletion 

areas and exert less tension. Receptor clusters that are not associated with podosomes 

do not experience detectable forces. 
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Our results should be considered in the context of a few important caveats. While 

fibroblasts provide a robust model to study podosomes in vitro, to our knowledge, 

fibroblasts have not been shown to form podosomes in vivo. Another corollary point is that 

the mechanical properties and the stiffness of the substrate will likely influence podosome 

dynamics. While MT-FLIM quantitatively maps integrin tension on fluid substrates, this 

signal is subject to some spatiotemporal convolution, and fast changes in tension will be 

obscured during the one-minute acquisition. Furthermore, regions of low photon counts 

such as podosome depletion regions may be disproportionately affected by the diffraction 

limit. These issues will be addressed as superresolved and faster FLIM electronics become 

more widely available.  

Nevertheless, our work provides valuable mechanobiology tools and insight. SLBs 

offer a unique landscape to study the minimal mechanical machinery required for 

podosome formation, and DNA probes provide a powerful method to map and manipulate 

molecular forces.  While RGD ligands on an SLB are more mobile than in physiological 

ECM, their mobility can recapitulate degraded ECM86, which is relevant to podosome and 

invadosome biology25, 48.  During cancer cell invasion, cells alternate between periods of 

integrin and invadosome-mediated matrix degradation and migration248, 264. Thus, 

podosome retraction following adhesion photocleavage may provide a model to understand 

how changes in tension can regulate function. While MT-FLIM has some current 

limitations in its temporal resolution, this method offers a unique solution to mapping 

forces at fluid interfaces and is a departure from past methods in its incorporation of a 

parameter that uniquely reports forces and is not subject to intramolecular fluorescence 

crosstalk. Photocleavable probes provide a method to perturb individual adhesion 
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structures with minimal disruption to the cell body and without changing the extracellular 

environment78. Beyond podosome biology, MT-FLIM and photocleavable probes will be 

useful in studying immune cell interactions, Notch-Delta signaling, and adherens 

junctions5, 126, 265. Fluorescence lifetime is an improved indicator of density versus tension, 

and because hairpin probes unfold specifically under receptor tension, all measured forces 

can be attributed to integrins rather than to the vertical force balance vector that arises at 

the contact line between a liquid droplet applying pressure on a solid substrate266. In 

conclusion, we introduce and apply powerful DNA mechanotechnology tools to 

demonstrate the role and regulation of receptor forces on fluid substrates. 

3.5 Methods 

 Sample Preparation, Purification, and Characterization 

3.5.1.1 Probe Synthesis and Purification 

All oligonucleotides (Table A 1,Figure A 1) were custom synthesized by Integrated 

DNA Technologies, except for BHQ-1 modified oligos, which were custom synthesized 

by Biosearch Technologies. 100 μg cyclo [Arg-Gly-Asp-D-Phe-Lys(PEG-PEG)] (PCI-

3696-PI, Peptides International) was sonicated with 50 μg NHS-azide (88902, Thermo-

Fisher Scientific) in 10 μL dimethyl sulfoxide (MX1457-7, Millipore-Sigma) for 1 hour. 

The azide-modified cyclo [Arg-Gly-Asp-D-Phe-Lys(PEG-PEG)] peptide was purified via 

reverse-phase high performance liquid chormatograph (HPLC) with a Grace Alltech 

C18 column (0.75 mL min^-1 flow rate; Solvent A: Nanopure water + 0.05% 

trifluoracetic acid (TFA), Solvent B: acetonitrile (BDH83639.400, VWR) + 0.05% TFA; 

starting condition 90% A + 10% B, 1% per min gradient B) (Figure A 2a). Follwing 
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HPLC purification, products were dried in an Eppendorf Vacufuge plus). Subsequently, 

the azide-modified peptide was ligated to DNA oligos containing a 5’ hexynyl 

modification using copper-catalyzed azide-alkyne cycloaddition (CuAAC). Briefly, 5 

μL of 1 mM oligonucleotide was reacted for 1 hour with ~30 nmol azido-peptide in the 

presence of 10 mM sodium ascorbate, 1 mM copper sulfate, and 0.8 mM THPTA (1010, 

Click Chemistry Tools). The reaction was purged under N2. The product was purified 

using reverse-phase HPLC with an Agilent Advanced oligo column (0.5 mL min^-1 flow 

rate; Solvent A: 0.1 M TEAA, Solvent B: acetonitrile; starting condition: 90% A + 10% 

B, 1% per min gradient B). Oligos were conjugated to Cy3B NHS ester (PA63100, GE 

Healthcare) in a 10 μL reaction; 50 μg excess Cy3B-NHS was reacted with 2-5 nmols 

amine-modified DNA in 1x phosphate buffered saline (PBS) and 0.1 M sodium 

bicarbonate overnight. The product was purified using a P2 size-exclusion gel to remove 

excess dye prior to HPLC purification. Reverse phase HPLC was performed with an 

Agilent Advanced oligo column as described above (Figure A 2b-d). Final products were 

resuspended in Nanopure water. If significant excess dye remained for MT-FLIM 

strands, the DNA was repurified with an amicon filter (Amicon Ultra-0.5mL, 

Centrifugal Filters, Ultracel-3K) or with HPLC.  Starting material and final masses were 

confirmed using MALDI-TOF (Figure A 3,Table A 2).  

3.5.1.2 Mass Spectrometry 

Oligonucleotides in Nanopure water (18.2 M Ω, Barnstead Nanopure) were plated 

in a 1:1 vol/vol ratio with saturated 3-hydroxypicolinic acid (56197, Millipore-Sigma) in 

50% acetonitrile, 0.1% trifluoroacetic acid, and 5 mg mL^-1 ammonium citrate. Dried 

samples were massed with matrix-assisted laser desorption/ionization-time of flight 
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(MALDI-TOF) on a Bruker Daltronics ultraflex II TOF/TOF and analyzed using 

flexAnalysis 3.4. 

3.5.1.3 Small Unilamellar Vesicle (SUV) Preparation 

SUVs were prepared using a 10 mL LIPEX Extruder (Transferra Nanosciences, 

Inc.). Lipids were mixed in ~500 μL chloroform with 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) (850375C, Avanti Polar Lipids) as the base lipid. Biotinylated 

lipids were incorporated at 0.05-0.2 mol% 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(biotinyl) (Biotinyl Cap PE) (870282C, Avanti Polar Lipids). To 

directly tag the membrane in control experiments, N-(Fluorescein-5-Thiocarbamoyl)-1,2-

Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine, Triethylammonium Salt (FITC 

DHPE) (23304, AAT Bioquest) was incorporated at 0.1 mol%. Lipids were dried first by 

rotary evaporation and second by ultra-high purity N2. Lipid cakes were resuspended and 

sonicated in 3 mL nanopure water (final concentration, 2 mg mL^-1) prior to performing 

three freeze-thaw cycles. SUVs in Nanopure water were then extruded 10x through a 0.08 

μm polycarbonate filter (WHA110604, Whatman) supported by a drain disc 

(WHA230600, Whatman). SUVs were used within ~2 weeks. 

3.5.1.4 Supported Lipid Bilayer Preparation 

Planar supported lipid bilayers (SLBs) were prepared on either uncoated glass-

bottom 96 well plates (265300, Nunc or 82050-782, Greiner) or glass coverslips (48382 

085, VWR). Coverslips were washed and sonicated 3x in nanopure water followed by 

sonication in ethanol. Coverslips were dried at 90°C overnight and cleaned in piranha 

solution (3:1 sulfuric acid and 30% hydrogen peroxide; caution, piranha acid is 
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extremely corrosive and can explode if exposed to organic materials). Cleaned 

coverslips were washed 3x in nanopure water and were mounted into coverslip chambers 

in 1x phosphate buffered saline (PBS) for SLB formation. Alternatively, 96-well plates 

were etched for 1-3 hrs in 2.6 M sodium hydroxide and were washed with 10 mL 

nanopure water and 5 mL 1x PBS. SLBs were formed by adding SUVs to etched glass 

for at least 5 minutes and were washed in nanopure water and 1x PBS prior to the ~25 

min blocking with 0.1% bovine serum albumin, Fraction V (10 735 078 001, Roche 

Diagnostics GmbH). Unless otherwise stated, all experiments were carried out with 99.9 

mol% DOPC and 0.1 mol% Biotinyl-Cap PE. Blocked SLBs were washed with 5 mL 1x 

PBS and then saturated in 90-180 nM streptavidin (SA101, Millipore-Sigma) for at least 

45 min. Excess streptavidin was removed with 10 mL 1x PBS, and SLBs were incubated 

with 30 nM DNA for at least 45 min. Functionalized SLBs were washed in 10 mL 1x 

PBS and then buffer exchanged into hanks balanced salts (Millipore-Sigma) for all 

imaging. To stain the membrane, SLBs were shaken for 30 min at 240 rpm with 10% 

(v/v) 250 μg μL^-1 b-BODIPY FL C5-HPC (2-(4,4-Difluoro-5,7, Dimethyl-4-Bora-

3a,4a-Diaza-s-Indacene-3-Pentanoyl)-1-Hexadecaonyl-sn-Glycero-3-Phosphocholine 

(D3803, Thermo Fisher) or were incubated with 10% (v/v) 1.5μg mL^-1 1,1'-

dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine,4-

chlorobenzenesulfonate salt (DiD) (D7757, Thermo-Fisher) (DID). For MFM bead 

experiments, SLBs were assembled on 5 μm silica beads (SS06N, Bang Laboratories). 

100 μL of 1 mg mL^-1 beads were rocked with 100 μL of DOPC SUVs. SLB- beads 

were washed in 1x PBS and purified 3x with centrifugation (5 min, 2000 rpm). Purified 

SLB-beads were incubated with 5 μM 1,1′-dioctadecyl-3,3,3′,3′-
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tetramethylindocarbocyanine perchlorate (DiI) (468495, Thermo-Fisher) for 15 min. Free 

dye was removed by washing and pelleting 3x in 1x PBS (5 min, 2000 rpm) 21.  

3.5.1.5 DNA Hybridization 

DNA oligonucleotides in 1x PBS were heated to 90°C for 5 min and cooled at 25°C 

for 25 min in a 0.2 mL Thermowell tube. The ligand strand was added in 10% molar excess 

except for in absorbance spectroscopy and photocleavable experiments, in which strands 

were added in a ratio of 1:1:1. To chemically open tension probes, tension probes were 

hybridized with 10x molar excess complementary sequence (Figure A 6a).  

 Experimental Methods 

3.5.2.1 UV-Vis Spectroscopy 

Oligonucleotides (10 μL of 2.5 μM hairpin strand) were hybridized as described 

above to assemble closed tension probes in solution. Following hybridization, thermowell 

tubes were fit inside microcentrifuge tubes and dried in a vacufuge to <2.5 μL. The volume 

was adjusted to ~2.5 μL using nanopore water, corresponding to a final concentration of 

~10 μM in 4x PBS. Three absorbance spectra per sample were collected with a pathlength 

of 0.1 cm on a Thermo Scientific Nanodrop 2000c spectrophotometer. This process was 

repeated in the presence of 10x molar excess of the complimentary strand for each sample.  

3.5.2.2 Cell Culture and Transfection 

NIH 3T3 fibroblasts and Mouse Embryonic Fibroblasts stably transformed with SrcY527F 

(MYF) were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM) (B003K32, 
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Corning) with 10% Fetal Bovine Serum (USDAFBS, MidSci), 2.5 mM L-glutamine 

(G8540, Millipore-Sigma), 1x penicillin streptomycin (97063-708, VWR). Cells were 

incubated at 37°C in 5% CO2. Cells were passaged at ~80% confluency. NIH 3T3 

fibroblasts were gifted from colleagues at Emory University and were authenticated by 

IDEXX Bioresearch (Figure A 24). Cells were imaged in Hanks Balanced Salts (H1387, 

Millipore-Sigma), pH 7.4. MYF cells were stably transfected and gifted by Olivier 

Destaing. 

NIH 3T3 fibroblasts were transfected in a 3:1 ratio of Lifeact-mCerulean-7 (#54713, 

Addgene) and polyethylenimine (23966-1, Polysciences, Inc.) (1 μg mL^-1, pH 7) in 

Optimem for 24 hours prior to confocal imaging with the pinhole fully open.  To 

knockdown MYH9, NIH 3T3 fibroblasts were transfected with Lipofectamine RNAiMAX 

(13778030, Thermo Fisher) and SMARTpool: ON-TARGETplus MYH9 siRNA (D-

040013-00-0005, Horizon Dharmacon) or ON-TARGETplus Non-targeting Pool (D-

001810-10-05, Horizon Dharmacon) as a control. Transfection was performed according 

to the RNAiMAX manufacturers protocol in a 6-well plate. Total volume was 2 mL, and 

media was changed ~48 hours following transfection. 72 hours following transfection, cells 

were assayed for podosome formation on SLBs using MT-FLIM and were plated on glass. 

Knockdown was functionally validated by assessing stress fiber formation in transfected 

cells ~12 hours after plating. 

3.5.2.3 Immunostaining 

For staining on an SLB, NIH 3T3 fibroblasts were fixed and stained on 56 pN TGT 

probes following 2 hours cell spreading. Cells were fixed in 2-4% formaldehyde in 1x PBS 
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for 8-10 minutes. Cells were permeabilized for 3 min with 0.1% Triton X-100 and were 

blocked with BSA for 30 min. To characterize the relationship between FRET probe signal 

and integrin receptors in clusters and podosomes, cells were not permeabilized, and 

blocking was performed with a low concentration of BSA (0.01 – 0.1% w/v), as this best 

maintained the membrane and clusters. Staining was performed for 1 hour at room 

temperature with 1:1000 Alexa 488- Phalloidin (ab176753, Abcam), 1:50 Vinculin 

Antibody SF9 647 (sc-73614 AF647, Santa Cruz Biotechnology), 1:50 Phospho-Paxillin 

(Tyr1888) Polyclonal Antibody (PA5-17828, Thermo-Fisher) followed by 1:5500 Alexa 

Fluor 555 goat anti-rabbit (A21147, Thermo Fisher), or 10 μg/m Anti-Integrin β1  

Antibody, clone MB1.2 (MAB1997, Sigma-Aldrich), followed by 1:1000 Alexa Fluor 647 

goat anti-mouse IgG2b (γ2b) (Thermo-Fisher) as indicated. Staining on an SLB requires 

gentle and gradual buffer exchange to avoid disruption of cells and DNA on the membrane. 

For staining of NIH 3T3 cells on glass, cells were not permeabilized and were stained with 

Alexa 488-Phalloidin for 30 min. Immunostained cells were imaged using total internal 

reflection fluorescence microscopy (TIRFM).  

3.5.2.4 Drug Treatment 

Cells spread and formed podosomes on 4.7 pN MT-FLIM probes for ~1 hour prior 

to imaging and addition of drug dissolved in DMSO (final DMSO concentration ~0.1%). 

Cells were either treated with 500 nM Jasplakinolide (J7473, Thermo-Fisher) for 8 min, 

with 50 μM Y27632 dihyrdochloride (Y0503, Millipore Sigma) for 20 min, or with 50 

μM (-)-blebbistatin (B0560, Millipore-Sigma) for 30 min. Blebbistatin was first heated 

to 45°C in hanks balanced salts to improve solubility267. 
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3.5.2.5 Microscopy 

Epifluorescence and TIRFM were performed on a Nikon Eclipse Ti microscopes 

using the Nikon Elements 4.40.00 or 4.13.05 software and a 1.49 NA CFI Apo 100x 

objective. To maintain focus during timelapse experiments, a Nikon perfect focus system 

was used. TIRF images were collected with 80 mW 488, 561, and 647 nm lasers using a 

Chroma quad cube (ET-405/488/561/640 nm Laser Quad Band) or Chroma quad band 

C148022 and C-TIRF Cube C125986. RICM images were collected with Nikon cube 

97270, and epifluorescence images were collected with Chroma cubes 49004 and 

C121664. For emission resolved polarization imaging, the emission fluorescence was split 

into parallel and perpendicular channels using an Andor TuCam system with a wire grid 

polarizer (Moxtek, Andor: TR-EMFS-F03). Fluorescence was projected two Andor 

iXon Ultra 897 electron-multiplying charge-coupled devices. The polarization bias of the 

microscope (G-factor) was computed by taking the ratio of the parallel and perpendicular 

fluorescence emission of fluorescein in solution. To correct for the polarization scrambling 

effect of the objective, large numerical aperture corrections were applied to the raw 

fluorescence data as previously described268. To validate the ability of the microscope to 

measure systematic spatial variation in anisotropy produced by highly ordered 

fluorophores, the fluorescence anisotropy of 5 µm silica beads coated with DOPC 

supported lipid bilayers doped with DiI was measured (Figure A 16) 21. 

Fluorescence lifetime and confocal measurements were performed on a Nikon Ti 

Eclipse Inverted confocal microscope with a Plan Apo Lambda 60X/1.40 Oil objective and 

Nikon Elements 4.40.00. Focus was maintained during timelaspse imaging via a Nikon 

perfect focus system. The confocal microscope was equipped with a C2 Laser launch with 
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405nm and 561nm diode lasers, Nikon Elements software, and a Picoquant Laser Scanning 

Microscope Time Correlated Single Photon Counting (TCSPC) Upgrade with 

SymPhoTime 64 2.1.3813. TCSPC settings are summarized in Table A 3. FLIM samples 

were excited with a 20 MHz pulsed 514 nm laser, and 512 x 512 pixel images were 

collected at 0.5 frames-per-second with 0.08 or 0.14 μm/pixel and an average photon count 

rate of ~4-6% of the laser pulse rate. Light was filtered using a long-pass laser beamsplitter 

(H560 LPXR, Analysentechnik) and a 582/75 bandpass filter (F37-582, Semrock). Laser 

light that was reflected by the dichroic was blocked from an additional detector using a 

690/35 bandpass filter. Average fluorescence lifetime per pixel was calculated using the 

Fast FLIM algorithm in SymPhoTime. Only photons contributed by the long-pass detector 

(582/75) were considered in analysis. Photocleavable biotin experiments were performed 

on the confocal microscope as illustrated in Figure 20c. Cells were imaged to identify a 

region of interest (ROI) for photocleavage. Then, time lapse imaging was performed using 

the Nikon Elements Photostimulation Module. In phase 1, a 561 nm image was collected 

(-12 s). In phase 2, the ROI was photostimulated for 5 frames using a 405 nm laser (15%). 

In phase 3, the cell’s response was tracked every 30 seconds by imaging in the 561 nm 

channel (0 – 180 s).  

MFM21 experiments were performed on a custom-built system (Figure A 17a) 

consisting of a Nikon-T2 microscope with a 60x 1.49 NA objective (Nikon), a cleanup 

polarizer, half-wave plate, and a focusing lens (ThorLabs), an Obis 561 nm LS 150 mW 

laser (Coherent), and an ORCA-Flash 4.0 v3 CMOS camera (Hamamatsu) The half-wave 

plate was rotated by a motorized mount (PRM1Z8; ThorLabs) driven by the Kinesis 

software. The half wave plate was set in motion at 25 degrees/s (rotating the excitation 
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polarization by 50 degrees/s). Once the half wave place reached maximal rotational 

velocity, 73 images were taken at 50ms exposure time via Nikon Fast acquisition in Nikon 

Elements v5.1. Each 50ms exposure image contained the average fluorescence as the laser 

polarization rotates through 2.5 degrees of arc. 

 Molecular Tension – Fluorescence Lifetime Imaging Microscopy Calibration 

3.5.3.1 DNA Probe Fluorescence Calibration 

Closed and opened MT-FLIM probes were hybridized as described above and were 

combined in known ratios in solution immediately prior to incubation with SLBs. For 19 

pN probe calibration, a scrambled hairpin was used in opened samples to lower the ∆𝐺 

of hybridizaton210. SLB fluorescence intensity was measured using epifluorescence, and 

the background subtracted data were fit using linear regression to determine quenching 

efficiency (QE). 19 pN and 4.7 pN surfaces did not display statistically significant 

differences; thus, intensity data were combined for this calculation. For MTFM probes used 

in MFM and PCB experiments, QE was determined directly from background subtracted 

opened and closed images using the equation: 

 𝑄𝑢𝑒𝑛𝑐ℎ𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑄𝐸) = 100% ×
𝐼𝑂𝑝𝑒𝑛,𝐵𝑆−𝐼𝐶𝑙𝑜𝑠𝑒𝑑,𝐵𝑆 

𝐼𝑂𝑝𝑒𝑛,𝐵𝑆
                 (7) 

To determine the average fluorescence lifetime of MT-FLIM probes, surfaces containing 

0 – 100% open probes were imaged using the same conditions as in cell experiments. For 

each image, an average fluorescence lifetime histogram was produced from defect-free 

regions of interest (ROI) in the image. Histograms were generated in SymPhoTime and 

contained the default 400 bins across a range of range of 0 to 12.5 ns. The corresponding 
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ROI fluorescence decay had ~105 photons in the peak. Data were averaged across 2-3 

surfaces per condition, and the resulting calibration curves of average fluorescence lifetime 

versus percent open probes were fit to a biexponential (A.1.2.1) and used to generate look-

up tables. 

3.5.3.2 Probe Density Determination 

Relative probe density (clustering) per pixel was calculated according to the 

following equation: 

 
𝜌 =

𝐼 − 𝐷

𝐼𝑜 − 𝐷
1 − 𝑄𝐸 𝐅(𝜏) + (𝐼𝑜 − 𝐷)(1 − 𝐅(𝜏))

 
(8) 

Here 𝜌 is probe density, 𝐼 is the illumination profile corrected photon count, 𝐷 is dark 

counts, 𝐼𝑜 is the illumination profile corrected photon counts on the bilayer in the absence 

of the cell, 𝑄 is the quenching efficiency, and 𝐅(𝜏) is the percent of open probes. For SLBs 

with linear probes lacking a stem-loop structure, the percent open was assumed to be zero.  

 Analysis, Modelling, and Statistics 

3.5.4.1 Image Processing 

Image processing was performed in MATLAB 2018a (MathWorks) using semi-automated 

custom scripts unless otherwise stated. Nikon ND2 files were directly transferred into 

MATLAB using the Bioformats Toolbox. Linescans were generated in MATLAB or 

ImageJ, and kymographs were generated in FIJI using the MultiKymograph plugin. The 

diffusion coefficient,  𝐷, was calculated according to the following equation:8 
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 𝐷 = 𝑤2/4𝑡1
2⁄  (9) 

n which 𝑤 is the radius of the bleached region and 𝑡1
2⁄ is the time of 50% recovery 

determined by exponential curve fitting. MT-FLIM analysis methods are described in 

A.1.2.1, A.1.2.2, and Figure A 11. Photocleavable biotin timelapse experiments were 

processed as shown in Figure A 22. For LifeAct analysis, podosomes were identified by 

intensity-based thresholding of RGD depletion, and podosomes multiples were separated 

with a 2-pixel line. Clear single podosomes were selected by hand. For each cell, the data 

were normalized to the corresponding measurement from the podosome containing the 

brightest LifeAct signal. For time-lapse image analysis, podosome tracking was performed 

by hand starting with the final frame and selecting the center of each podosome or 

corresponding cluster until its emergence or the time-lapse start. To track clusters, images 

were thresholded based on size and lack of local depletion zone in MATLAB and then 

tracked using TrackMate in FIJI. Cluster tracking did not allow merging or splitting events. 

For TGT analysis, because some 12 pN podosomes were challenging to identify 

computationally, podosomes were counted and identified manually. To determine percent 

depletion, the centroid of each podosome was selected and dilated by 2 pixels. 

Fluorescence intensity was then quantified within the dilated region. Semi-automated 

analysis codes are available on the Salaita Lab GitHub page. MFM imaging was analyzed 

in MATLAB using published21 code that was modified to threshold podosome rings. The 

XY orientation of the force was given by the phase of the sinusoidal fluorescence variation, 

while the amplitude of the sinusoidal variation gave information about the Z orientation. 
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To determine the anisotropy from emission-resolved polarization images, large numerical 

aperture correction factors were applied in MATLAB268. 

3.5.4.2 Podosome Model 

To determine the net integrin tensile force exerted per podosome, 𝐅Pod, we modeled 

a podosome with an outer radius, 𝑅, of 1 μm and an inner depletion radius, r, of 0.3 μm 

(Figure A 18). Using the published value for the DOPC footprint within a membrane269, 

we calculated the approximate number of biotinylated lipids per square micron, 𝑙. Based 

on our MT-FLIM data and % depletion data, we assumed that probes have a relative 

oligonucleotide density, 𝑑 , of 0.5 – 2 probes per biotinylated lipid and that integrin 

receptors exert 𝐅Int up to 50 pN. Relative probe density, 𝜌,  in the podosome ring was 

assumed to be equal to that of the SLB background on average. To determine the 

magnitude of integrin forces in podosomes, we assumed 10% open probes per pixel, 𝑂, 

which was roughly equal to our measured data (Figure 17). Per receptor integrin forces, 

𝐹𝐼𝑛𝑡., were modeled from 0 to 50 pN. Thus,  

 𝐅Pod = [𝜋(𝑅2 − 𝑟2)](𝑙𝑑)(𝜌𝐅Int.𝑂) (10) 

We also plotted an experimental data point parameterized using the percent open data from 

Figure 17. Because MT-FLIM probes are binary, they can provide the minimum applied 

force per receptor but not the absolute force per receptor. For this data point we set 𝐅Int =

 𝐅1/2 with F1/2 equals 19 or 4.7 pN. This data represents the minimum force applied by a 

podosome on an SLB. For modeling of a hypothetical podosome with isometric tension for 

emission-resolved polarization measurements, we modeled a 1 μm structure exerting 
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inwards tensile forces with a tilt angle of 20 degrees (Figure A 17c). Codes are available 

on the Salaita Lab GitHub page. 

3.5.4.3 Statistics and Reproducibility 

Statistics were performed in MATLAB 2018a or in GraphPad Prism 7. For 

biological experiments, each experiment is defined as one flask or well of cells. For surface 

characterization, each experiment is defined as one SLB. Biological experiments were 

repeated at least three times, except for emission-resolved polarization imaging and 

immunostaining of β1 integrin with MT-FLIM probes and actin, which were repeated 

twice. Surface characterization was repeated at least twice per condition. For per-podosome 

data, only podosomes that were in clear focus easily distinguishable, and that met 

thresholding criteria were analyzed. P values are reported as ns P>0.05, *P < 0.05, **P < 

0.01, ***P < 0.0001, **** P < 0.0001. Detailed information on statistical tests, 

reproducibility, and outlier omission are listed in each figure caption.  
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CHAPTER 4. EVALUATION OF DNA-BASED PROBES FOR 

MAPPING RECEPTOR FORCES ON FLUID SUBSTRATES 

4.1 Abstract 

DNA-based tension probes offer the highest spatial resolution, force sensitivity, and 

molecular specificity for cellular tension sensing. Indeed, a number of different classes of 

DNA tension probes have been developed to measure molecular forces mediated by T cells, 

platelets, fibroblasts, B-cells, and immortalized cancer cell lines. While the chemical 

structure of fluorophore-oligonucleotide conjugates and molecular beacons are similar to 

that of DNA tension sensor, there remains subtle differences in design, surface 

immobilization as well as the need for cellular integration. Therefore, there remains a need 

for a more detailed spectroscopic analysis of DNA-based molecular tension probes for 

cellular imaging. More recent integration of DNA tension probes within hydrogels and 

phospholipid membranes and the nuances of their design, we conducted a broad analysis 

of DNA hairpin-based tension probes using absorption spectroscopy, fluorescence 

intensity and Fluorescence Lifetime Imaging Microscopy (FLIM). We find that tension 

probes are highly sensitive to their molecular design, including donor and acceptor spatial 

organization and pairing, DNA backbone structure, and conjugation chemistry. We 

demonstrate the impact of these design features using a supported lipid bilayer (SLB) 

model of podosome-like adhesions. Finally, we offer a series of recommendations, 

describing the pros and cons of FRET-based or static-quenching based probes when 

making measurements on fluid membranes and glass slides, thus providing a guide for the 

optimal design and application of DNA hairpin-based molecular tension probes. 
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4.2 Introduction 

Cells transmit piconewton (pN) receptor forces to ligands in the extracellular matrix 

(ECM) and on the surface of adjacent cells. These forces regulate a variety of biological 

functions270, including cell migration212, blood clotting245, 271, and the immune response106, 

272. Understanding the precise role of mechanical forces in cell biology requires 

quantitative, high-resolution force spectroscopy and imaging. Deformation-based 

approaches such as traction force microscopy (TFM) and micropillar array devices are 

commonly used and have allowed for the quantification of cellular forces as a function of 

material stiffness273, 274.  A limitation inherent to TFM and micropillar devices is their μm 

and nN spatial and mechanical resolution, along with the challenge of measuring the forces 

transmitted through orthogonal ligand-receptor pairs on the same cell surface. To address 

these limitations, our lab developed Molecular Tension Fluorescence Microscopy 

(MTFM)209. MTFM leverages DNA-based tension probes, which offer pN sensitivity and 

programmability, sub-micron spatial resolution, and molecular specificity34, 275, 276; this 

sensitivity and specificity have helped elucidate the role of T cell106, 253, B cell10, and 

integrin receptor30, 33, 245 mechanics in different biological processes.  

In our original DNA hairpin design, MTFM probes were comprised of a DNA 

hairpin (hairpin strand) flanked by a donor/acceptor pair; the probe is anchored to a surface 

at one terminus through an anchor/acceptor strand, while the second terminus presents a 

ligand (ligand/donor strand) (Figure 23A)30, 277. Typically, the acceptor is a dark quencher, 

leading to a high signal-to-noise ratio and facilitating probe and fluorescent protein 

multiplexing30. At rest, donor fluorescence is quenched. Upon the application of receptor 

forces above the F1/2 , which is defined as the equilibrium force that leads to a 50% 
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probability of probe unfolding, the hairpin opens. This leads to donor and quencher 

separation, causing a ~20-100-fold increase in donor fluorescence30, 106. Thus, these 

reversible DNA-based tension probes report mechanics using a real-time optical signal 

(Figure 23A).  

In conventional tension sensing, DNA probes are rigidly anchored to a glass 

substrate. Therefore, probe density is fixed and changes in fluorescence intensity can be 

attributed to probe unfolding. In other words, the fluorescence intensity of the donor 

 
Figure 23 DNA-Based Tension Probes Report Receptor Mechanobiology.  

(A) DNA-based tension probes consist of a DNA hairpin hybridized to two-arm 

sequences each containing a ligand or an anchor moiety. The ligand and anchor strands 

are labeled with a donor/acceptor pair, respectively. At rest fluorescence is quenched. 

Receptor forces above the F1/2 opening threshold lead to probe unfolding and an increase 

in donor fluorescence. (B) Advanced applications of molecular tension probes report 

receptor forces at cell-SLB, cell-cell, and cell-matrix interfaces (i). In these dynamic 

junctions, receptors can apply tension to DNA probes and can also spatially rearrange 

probes, through lateral transport (cell, SLB) or viscoelastic deformation (matrix) (ii). 
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linearly reports the density of probes that are mechanically unfolded experiencing F > 

F1/2.
30  

While this approach has been useful in mapping the forces applied by immune cell 

receptors and integrin receptors on glass21, 105, 106, measurements on more physiologically 

relevant fluid substrates present unique challenges because of ligand remodeling. 

Receptors can both laterally transport and pull on ligands84, leading to spatial 

reorganization on membranes, including supported lipid bilayers (SLBs), which mimic 

juxtracrine receptor interactions, and living cell-cell junctions. Furthermore, on 

viscoelastic hydrogels, receptor tension can cause local material deformations which alter 

ligand density278 (Figure 23B). Therefore, adapting molecular tension probes to mapping 

receptor forces and clustering on dynamic biomaterials requires additional fluorescence 

readouts that can decouple fluorophore density and fluorescence quenching efficiency. 

The most common method to measure forces with changing probe density relies on 

ratiometric intensity-based imaging. This was first demonstrated by Ma, et. al. when 

mapping T cell receptor forces8, and then by Nowosad, et. al. measuring B cell receptor 

forces on fluid membranes8, 10. In these approaches a third dye is incorporated, which serves 

as a probe density reporter. A similar approach was also used to measure cadherin tension 

and density in epithelial cell-cell junctions279, 280. A step toward measuring cellular forces 

in hydrogels, mechanofluorescent DNA hydrogels were generated by mixing Atto 488-

labeled DNA precursors with rupturable DNA duplex crosslinkers containing an Atto 

565/Iowa Black donor-acceptor pair. Hydrogel strain in response to externally applied 

forces was quantified by the ratio of decreasing Atto 488 to increasing Atto 565 

fluorescence intensity upon oligonucleotide stretching and duplex rupture, respectively281.  
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While ratiometric intensity-based measurements are advantageous in their 

accessibility and speed, their quantification and interpretation can be challenging. The need 

for engineering three dyes in a dynamic DNA structure is complicated because of three-

way energy transfer, intermolecular energy transfer, and spectral and autofluorescent 

bleed-through. Ratiometric measurements are also sensitive to noise and local fluorescence 

artifacts, and an additional challenge is that measurements require precise detector 

alignment and pixel registration to ensure suitable quantification282, 283. Furthermore, 

ratiometric approaches are poorly suited to multiplexing, which is essential in 

understanding mechanotransduction in context. 

Offering a direct readout of energy transfer, we recently developed Molecular 

Tension-Fluorescence Lifetime Imaging Microscopy (MT-FLIM). MT-FLIM measures 

receptor tension and clustering on SLBs using Time-Correlated Single Photon Counting 

(TCSPC)33. In our original MT-FLIM report, a Cy3B - BHQ1 FRET pair were attached to 

a DNA hairpin-based tension probe with 9 nucleotide (nt) separation. Changes in 

fluorescence lifetime, 𝜏, uniquely reported hairpin unfolding under receptor force, and an 

empirical calibration allowed quantification of the density of mechanically unfolded probes 

independently from probe clustering.  

In the simple case, a donor and acceptor fluorophore pair undergoing FRET have a 

FRET Efficiency, 𝐸 described by: 

 
𝐸 =  

1

1 +  (
𝑅
𝑅0

)6
 

(11) 



 113 

𝑅 is the distance between the donor and acceptor dyes and 𝑅0 is the Forster radius, which 

is a function of several variables including the dipole orientation factor, 𝜅2 and the spectral 

overlap integral, 𝐽. For randomly oriented dyes, 𝜅2 equals 2/3. In dye-labeled 

oligonucleotides, this relationship often breaks down due to dye-DNA interactions and 

linker chemistry, which shift 𝑘2 away from 2/3.259, 284 In rigidly anchored molecular tension 

probes, donor/acceptor pairs are typically placed in close proximity to maximize the 

quenching efficiency (QE) such that only open probes significantly contribute signal8, 10, 21, 

30, 281. However, at short distances, organic dyes often undergo additional quenching 

mechanisms such as Dexter energy transfer and static quenching. Static quenching on 

three-oligonucleotide complexes has been reported with up to 5 bp separation285. While 

tension probes are often assumed to be FRET quenched10, 106, 208, 281, this assumption is 

often incorrect for specific fluorophore-quencher pairs93, 286. Indeed, we recently reported 

that conventional MTFM probes employing a Cy3B donor and BHQ1 acceptor are static 

quenched33. While this is well established in the molecular beacon literature89, 93, its impact 

on tension imaging is less explored. Static quenched dyes form nonfluorescent ground-

state complexed, which offer advantages in intensity-based imaging and assays21, 287 but 

skew fluorescence lifetime data288. Nearby dyes separated by up to 8 bp can also experience 

short-distance fluorescence fluctuations289. Thus, to advance molecular mechanobiology 

through MTFM, there is a need for an empirical evaluation of DNA-based probes to 

understand how fundamental processes impact optimal imaging probe design. 
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Herein we characterized the spectral properties of a small library of DNA hairpin-

based tension probes. We first considered the impact of donor/acceptor pair and 

positioning, as well as DNA hairpin structure (Figure 24). We compared the absorption 

spectra, quenching efficiency (QE), and fluorescence lifetime of closed and open tension 

probes labeled with three donor/acceptor pairs: Cy3B/BHQ1, Alexa 488 (A488)/Cy3B, and 

A488/BHQ1. Each pair was assessed in three geometries (Figure 24A). In the adjacent (A) 

 

Figure 24 Summary of DNA Hairpin-Based Tension Probes Evaluated in this Study.  

(A) Tension probes were evaluated with three Donor/Acceptor pairs and 3 Donor/Acceptor 

geometries.  Abbreviations for each probe are provided in the chart. (B) Hairpins were tested 

with and without spacers flanking the three-way junction. Each spacer consisted of 3 Ts. (C) 

Probes were anchored using a single or dual biotin, thus perturbing the local surface 

concentration.  
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geometry which is the conventional tension probe design30, the donor and acceptor are 

conjugated to blunt ends of the probe’s arm sequences and are separated by the probe’s 

three-way junction (TWJ). In the dangling (D) geometry, the donor fluorophore is 

conjugated to a 5 nt overhang. In the separated (S) design, the acceptor is placed 9 nt away 

from the donor via a deoxythymidine modification. We were also curious to understand 

the impact of the probe’s TWJ structure. Unpaired bps increase TWJ stability290; therefore, 

in our original MTFM probe design, the DNA hairpin strand’s stem-loop was flanked by 

two spacer sequences containing (3T’s) separating it from the arms30. Given that tension 

probe TWJs contain a nick, we characterized the role of the 3T spacers on probe 

performance33, 291 (Figure 24B). Throughout our manuscript, we adopt a nomenclature as 

shown in Figure 24A with an added + or – symbol indicating presence or absence of 3T 

spacers. Thus, a probe containing Cy3B and BHQ1 in the separated geometry with spacers 

would be called S_Cy3B/BHQ1+ and a probe containing Alexa 488 and BHQ1 in the 

dangling geometry without spacers would be called D_A488/BHQ1-. We also investigated 

the impact of intra- versus intermolecular FRET in tension probe signal, by tuning the 

dimerization of probes using a single or dual biotin anchors (Figure 24C). Finally, we 

illustrated the impact of FRET probe design by imaging integrin receptor tension and 

clustering in a podosome model system using three differing probe families. We conclude 

with a series of recommendations to guide the use of DNA-based tension probes in various 

experimental settings. This work builds upon our development of MTFM and MT-FLIM 

and provides important insight into the optimal design of DNA-based tension probes to 

image molecular forces on soft and fluid materials. 

4.3 Results 
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 Absorbance Spectroscopy of Molecular Tension Probes in Solution 

We first were curious to determine which probes underwent FRET versus static 

quenching. Dyes undergoing static quenching are excitonically coupled and therefore 

exhibit distinct ground state energies; this results in perturbation of the absorbance 

spectra89, 91, 292. Through-space FRET, however, does not impact donor and acceptor 

fluorophore absorption. We therefore measured the absorption spectra of both closed and 

open tension probes (Figure 25, Figure A 26). For these experiments, only tension probes 

lacking spacer sequences were measured. First, closed probes (~2.5 M) were annealed, 

concentrated to ~10 M and then the absorption spectra were measured using a 

microvolume (Nanodrop) instrument in 4x PBS. Probes were then opened by annealing 

with 10-fold excess of an oligonucleotide complementary to the hairpin’s stem-loop, 

concentrated, and remeasured in the open conformation (Figure 25).  

The open and closed Cy3B/BHQ1 probes displayed two overlapping absorption 

peaks. The open and closed states of the adjacent and dangling probes displayed differing 

spectra; the relative absorption intensities of the two peaks were inverted. This is in contrast 

to the separate probe design which showed identical spectra in the open or closed geometry 

(Figure 25B). These results show that the Cy3B/BHQ1 probes are static quenched when 

the chromophores are in close proximity (A or D), but undergo FRET when separated by 

9 nt. Accordingly, probes exhibited a bathochromic shift in their absorption maximum 

when opened. This shift was also observed for D_Cy3B/BHQ1- probes, suggesting that 

static complex formation was largely unaffected by an overhang.  
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Figure 25 Absorption Spectroscopy Reveals Ground-State and Dye-DNA 

Interactions in Molecular Tension Probes. 

(A) Tension probes were measured in solution in the closed conformation, hybridized at 

95 C, and remeasured in the open conformation. (A) Representative absorption spectra of 

closed and open tension probes with varying donor/acceptor pairs and dye geometries. The 

representative absorbance spectra of Cy3B/9TBHQ1 is reproduced from 33 . Spectra 

represent the mean ± s.e.m. from 3-4 experiments. Outlier spectra (baseline ± 3 median 

absolute deviations) were omitted.  

  

Compared to Cy3B/BHQ1 probes, A488/Cy3B probes exhibited minimal chromic 

shifts in their absorption spectra (Figure 25), and the closed probe absorption spectra of all 

three donor/acceptor geometries was nearly identical. Both A_A488/Cy3B- and 

S_A488/Cy3B- probes exhibited a small absorption change at ~500 nm when comparing 
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their open and closed states. This was accompanied by a slight hypsochromic shift in the 

A488 absorption peak, which was more notable for S_A488/Cy3B-. Closed and open probe 

absorption spectra for D_A488/Cy3B- were identical. Because in all three donor/acceptor 

geometries, the open probe separation between Alexa 488 and Cy3B vastly exceeded 

reported distances for dye interactions, we determined that the observed shift in 

A_A488/Cy3B- and S_A488/Cy3B- absorption spectra could not be attributed to the 

formation of a ground state static complex. We hypothesized that these perturbations were 

instead caused by an A488-oligonucleotide interaction when A488 was conjugated to the 

blunt end of a nicked duplex, which was common to A_A488/Cy3B- and S_A488/Cy3B- 

but not D_A488/Cy3B. To test this hypothesis, we collected absorption spectra for closed 

and open probes that were labeled only with a donor or only with an acceptor (Figure A 

26). The absorbance spectra of tension probes containing A488 but not 5 nt A488 alone 

exhibited a 6 nm shift (p = 0.005) between closed and open probe absorption max, which 

supported our hypothesis that changes in the A_A488/Cy3B- and S_A488/Cy3B- spectra 

were caused by dye-DNA interactions that were not present when A488 was attached on 

an overhang.  

A488/BHQ1 probes followed similar trends to A488/Cy3B probes, with the only 

change in closed and open absorbance spectra being a slight blueshift in the absorption 

max of A_A488/BHQ1- and S_A488/BHQ1- (Figure 25B). These data indicated that 

A488/BHQ1 do not undergo static quenching in tension probes and rather suggest that 

A488 may interact with the complementary strand when chemically opened.  

 Fluorescence Imaging of Tension Probes on SLBs 
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We next wanted to compare the probes’ performance in fluorescence imaging. 

After annealing, closed and open probes were hybridized and attached to SLBs through 

biotin/streptavidin interaction and were imaged using both epifluorescence and FLIM. The 

fluorescence lifetime was measured using TCSPC and was reported using three metrics. 

The amplitude-weighted and intensity-weighted averages were calculated from 

fluorescence lifetime decay reconvolution fitting and differentially weight individual 

lifetime components in multiexponential decays. Typically the amplitude weighted average 

lifetime is used for FRET studies, because it correlates with the steady state fluorescence 

intensity; however this breaks down for more complex scenarios including the presence of 

static quenching and multi-state models92, 293. We also evaluated probes using the average 

lifetime obtained by curve fitting the FAST-FLIM average lifetime histogram, which 

approximates the intensity-weighted lifetime. The quenching efficiency (QE), which 

reports the energy transfer in open versus closed probes, was calculated using both the 

fluorescence intensity and the amplitude average lifetime. Unless otherwise specified, our 

manuscript refences the intensity-derived QE. These findings are summarized in Figure 26, 

Figure 27 Figure 28, Figure A 27, Figure A 28, and Table A 7. 

Cy3B/BHQ1 probes (Table A 7, Figure 26) were very sensitive to donor/acceptor 

radius and hairpin-probe geometry. A_Cy3B/BHQ1-, A_Cy3B/BHQ1+, and 

D_Cy3B/BHQ1- probes exhibited a ~98-99% QE (Figure 25A,D,G). Overhang 

incorporation in D_Cy3B/BHQ1+ reduced the QE to 95% (Figure 25D). Thus, these probes 

exhibited a 20- to 100-fold increase in fluorescence intensity upon opening. Across all three 

definitions of the average fluorescence lifetime, we observed reduction of the fluorescence 

lifetime in closed static quenched probes compared to open probes (Figure 25B,C,E,F). 
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During FLIM imaging, we observed that closed static quenched samples lacking a spacer 

had higher photon count rates at maximal laser power, indicating an increase in brightness. 

This increase was not statistically significant in our intensity-based data, likely due to the 

low fluorescence above the Electron Multiplying Charge Coupled Device (EMCCD) 

background with our imaging settings (Figure 25A,D). The increase in photon counts is 

reflected in the average lifetime histograms, in which histograms for static quenched probes 

lacking spacers had high variance compared to the lifetime (Figure 25B,E). Because open 

and closed probe count rates were held constant, this effect is also observed for this class 

of open probes despite their 100-fold increase in fluorescence intensity. We therefore 

conclude that spacers reduced static interactions between Cy3B and BHQ1B. Closed 

S_Cy3B/BHQ1- (MT-FLIM probes33), which completely eliminated static quenching were 

less quenched than static quenched probes (Figure 25G), but exhibited the shortest 

fluorescence lifetime (Figure 25C,F,I). In contrast to static quenched probes, FRET 

quenched probes exhibited a decrease in sensitivity and an increase in the closed 

fluorescence lifetime with the addition of spacer sequences flanking the DNA hairpin 

(Figure 25G,H,I); this is due to a larger radius between the Cy3B and BHQ1 pair at rest. 

Thus, S_Cy3B/BHQ1- probes offered the greatest lifetime contrast of Cy3B/BHQ1 probes.  
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Figure 26 Fluorescence analysis of Cy3B/BHQ1 probes on an SLB.   

(A, D, G) Epifluorescence intensities and quenching efficiencies of closed (C) and open 

(O) probes with (+) and without (-) spacers in the adjacent, dangling, and separated 

geometries. (B,E,H) FLIM decay curves and FAST FLIM histograms of closed (C) and 

open. Intensities were compared using a 2-way grouped ANOVA followed by a multiple 

comparison test. Quenching efficiencies were compared using an unpaired two-tailed 

students t-test. (O) probes with (+) and without (-) spacers in the adjacent, dangling, and 

separated geometries. Representative decay curves are averaged over five time bins. 

Normalized histograms represent the mean ± s.e.m. (C,F,I) Quantification of the average 

intensity-weighted (Int.), amplitude-weighted (Amp.), and FAST FLIM average lifetime 

(Hist.). The intensity- and amplitude-weighted lifetimes were derived from decay curve 

fitting. The FAST FLIM average lifetime was defined as the center of FAST FLIM 

histogram fit to a bi-gaussian. Statistics were performed using a 3-way grouped ANOVA 

followed by 2 multiple comparison tests to look at differences across all samples or at 

differences between groups but not fit methods. Experiments were repeated at least 3 times. 

P values are reported as ns P>0.05, *, § P < 0.05, **, « P < 0.01, ***P < 0.0001, ****, # P 

< 0.0001. 
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Tension-probe characterization was repeated for Alexa488/Cy3B and A488/BHQ1 

probes, which did not static quench. In A_A488/Cy3B, D_A488/Cy3B, S_A488/Cy3B, 

A_A488/BHQ1, and D_A488/BHQ1 probes, the QE decreased with the introduction of 

spacer sequences in the hairpin (Figure 27A,D, Figure 28A,D). While this trend was also 

observed for S_A488/BHQ1 probes, the presence of non-statistical outliers obscured this 

difference (Figure 28G). For the A488/Cy3B probe family, A_A488/Cy3B- offered the 

highest QE based on fluorescence intensity measurements. This massive donor quenching 

was reflected average amplitude-weighted lifetime but was not reflected in the intensity-

weighted or FAST-FLIM average lifetimes (Figure 27C). Furthermore, we found that 

quenched A488/Cy3B probes were extremely sensitive to acceptor photobleaching, 

making them challenging to image and quantify. To avoid acceptor photobleaching, the 

laser power was attenuated such that the photon count rate was ~1% of the laser pulse rate, 

which led to a relatively wide histogram distribution (Figure 27B, Table A 7). Quantified 

by the amplitude and FAST-FLIM average lifetime and in the context of this artifact, 

D_A488/Cy3B- probes thus offered the best lifetime sensitivity, despite their intermediate 

quenching efficiency of 84%. This sensitivity was closely followed by A_A488/Cy3B+ 

(Figure 27C-F). S_A488/Cy3B- had a shorter FAST-FLIM and amplitude average lifetime 

than A_A488/Cy3B probes but were ~5-fold less quenched. S_A488/Cy3B+ exhibited the 

lowest lifetime and intensity sensitivity (Figure 27G-I). A488/BHQ1 probes behaved 

similarly but were not subject to the bleaching artifact observed for A_A488/Cy3B probes. 

Thus, A_A488/BHQ1, D_A488/BHQ1, and S_A488/BHQ1 probes exhibited increasing 

closed fluorescence lifetime and decreasing quenching efficiency (Figure 28), which is the 

expected trend for a FRET pair separated by increasing radius. 
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Figure 27 Fluorescence analysis of A488/Cy3B probes on an SLB.   

(A, D, G) Epifluorescence intensities and quenching efficiencies of closed (C) and open 

(O) probes with (+) and without (-) spacers in the adjacent, dangling, and separated 

geometries. (B,E,H) FLIM decay curves and FAST FLIM histograms of closed (C) and 

open. Intensities were compared using a 2-way grouped ANOVA followed by a multiple 

comparison test. Quenching efficiencies were compared using an unpaired two-tailed 

students t-test. (O) probes with (+) and without (-) spacers in the adjacent, dangling, and 

separated geometries. Representative decay curves are averaged over five time bins. 

Normalized histograms represent the mean ± s.e.m. (C,F,I) Quantification of the average 

intensity-weighted (Int.), amplitude-weighted (Amp.), and FAST FLIM average lifetime 

(Hist.). The intensity- and amplitude-weighted lifetimes were derived from decay curve 

fitting. The FAST FLIM average lifetime was defined as the center of FAST FLIM 

histogram fit to a bi-gaussian. Statistics were performed using a 3-way grouped ANOVA 

followed by 2 multiple comparison tests to look at differences across all samples or at 

differences between groups but not fit methods. Experiments were repeated at least 3 times. 

P values are reported as ns P>0.05, *, § P < 0.05, **, « P < 0.01, ***P < 0.0001, ****, # P 

< 0.0001. 
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Figure 28 Fluorescence analysis of A488/BHQ1 probes on an SLB.   

(A, D, G) Epifluorescence intensities and quenching efficiencies of closed (C) and open 

(O) probes with (+) and without (-) spacers in the adjacent, dangling, and separated 

geometries. (B,E,H) FLIM decay curves and FAST FLIM histograms of closed (C) and 

open. Intensities were compared using a 2-way grouped ANOVA followed by a multiple 

comparison test. Quenching efficiencies were compared using an unpaired two-tailed 

students t-test. (O) probes with (+) and without (-) spacers in the adjacent, dangling, and 

separated geometries. Representative decay curves are averaged over five time bins. 

Normalized histograms represent the mean ± s.e.m. (C,F,I) Quantification of the average 

intensity-weighted (Int.), amplitude-weighted (Amp.), and FAST FLIM average lifetime 

(Hist.). The intensity- and amplitude-weighted lifetimes were derived from decay curve 

fitting. The FAST FLIM average lifetime was defined as the center of FAST FLIM 

histogram fit to a bi-gaussian. Statistics were performed using a 3-way grouped ANOVA 

followed by 2 multiple comparison tests to look at differences across all samples or at 

differences between groups but not fit methods. Experiments were repeated at least 3 times. 

P values are reported as ns P>0.05, *, § P < 0.05, **, « P < 0.01, ***P < 0.0001, ****, # P 

< 0.0001. 
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Given that all closed tension probes in our library exhibited multi-exponential 

decays (Figure A 27) and that S_Cy3BBHQ1- probes were previously shown to be more 

sensitive to changes in the percent open probes at low tension densities33, we hypothesized 

that probes may experience intermolecular FRET. In this case, Cy3B would not only be 

quenched by the internal BHQ1 but would also be quenched by dyes on proximal probes. 

In the absence of dye-dye interactions, FLIM is concentration-independent. However, 

when conjugated to an SLB though biotin/streptavidin interaction, two tension probes may 

be clustered on a single streptavidin molecule. To test the hypothesis, that streptavidin 

clusters probes and leads to intermolecular FRET, we imaged probes that were 

immobilized either using a single biotin on the 3’ terminus of the anchor strand or using a 

dual biotin attached to the 5’ terminus of the hairpin sequence (Figure 29A). Assuming that 

each streptavidin binds to two biotinylated lipids, streptavidin on a bilayer can bind only 

one tension probe attached with a dual biotin but can bind up to two tension probes attached 

with a single biotin. Observed differences in the QE and 𝜏 of these samples should reflect 

the extent of intermolecular quenching. We selected S_Cy3B/BHQ1- probes for analysis, 

because these probes were free from ground state and dye-DNA interactions, and because 

we previously characterized these probes on supported lipid bilayers with varying biotin 

concentration, which showed a slight concentration dependency33. For each 

immobilization strategy, we measured the fluorescence intensity and lifetime of bilayers 

presenting 0, 10, 20, and 100 % open probes. 
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SLBs presenting probes with a dual biotin were dimmer than SLBs presenting 

single-biotin labeled probes (Figure 29B). On 100 % open surfaces, single biotin SLBs 

were 56 ± 15 % brighter than dual biotin SLBs. Despite the lower intensity, QE was not 

significantly different between probes conjugated using a single or dual biotin anchor. 

Single and dual biotin were 79 and 76 % quenched based on linear regression; individual 

replicates were not statically significant. When probes were imaged using FLIM, we 

Figure 29 Streptavidin-Immobilized Tension Probes Undergo Intermolecular FRET. 

(A) Schematic of tension probes containing a single or dual biotin group used in this 

experiment. (B) Plot of percentage of open probes versus fluorescence intensity normalized 

to the single biotin 100% open intensity. The QE for each probe was reported as the slope 

of the corresponding linear curve fit. (C) Percentage of open probes versus FAST-FLIM 

average lifetime, determined through histogram analysis. (D) Model schematic of tension 

probes on an SLB during conventional imaging (with 3’-Biotin). ~50% of streptavidin 

molecules bind to two tension probes, which undergo both intra- and inter- molecular energy 

transfer.  
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observed that the open probe fluorescence lifetime was only slightly increased in dual 

biotin probes; however, SLBs presenting closed probes or a mixture of closed and opened 

probes exhibited an increase in fluorescence lifetime for probes conjugated through a dual 

biotin, which occupied both free sites on a streptavidin (Figure 29C). In all cases, the 

fluorescence lifetime fits of samples containing closed probes remained multiexponential, 

but the average fluorescence lifetime was increased (Figure 29C, Figure A 29). Combining 

our intensity data, which shows that single biotin SLBs are 56 ± 15 % (Mean ± SD) brighter 

than dual biotin SLBs when all probes are opened, with our FLIM data, which suggests 

that Cy3B on open probes is dequenched and that probes on 100% open surfaces are 

primarily non-interacting, we estimate that ~50 % of streptavidin molecules are occupied 

with two tension probes attached via a single biotin (Figure 29D). Despite the unchanged 

QE, we conclude that probes loaded onto a single streptavidin molecule undergo both 

intermolecular and intermolecular FRET based on the observed change in 𝜏 between single 

and dual biotin samples. 

 Tension Imaging of Podosome-like Adhesions with Varied Energy Transfer 

To demonstrate the impact of design features that affect energy transfer in tension 

probes, we selected a subset of probes to evaluate in cellular imaging. Probes were selected 

based on their transfer and structure, which we evaluated using NUPACK (Figure 26,  

Figure 27,Figure 28, Figure A 30). For this study, we chose to focus on probes without an 

overhang, which may introduce more degrees of flexibility, making cellular imaging results 

more challenging to interpret. S_Cy3B/BHQ1- (MT-FLIM) and + probes were selected as 

a reference and to demonstrate the impact of spacer sequences in FRET probes with large 

closed donor-acceptor radius. A_Cy3B/BHQ1- and + were selected to demonstrate 
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imaging using static quenched probes. Finally, we imaged cells using A_A488/BHQ1- and 

+. These probes both offered high lifetime sensitivity, while demonstrating the impact of 

QE, as A_A488/BHQ1- exhibits a ~20-fold increase in fluorescence intensity upon 

opening compared A_A488/BHQ1+, which only displays a ~6-fold increase in intensity. 

As a model of receptor mechanobiology with unfixed ligand density, we imaged 

podosome-like adhesions on an SLB. Podosomes are protrusive structures which consist 

of an actin core that physically excludes adhesion ligands and an adhesion ring, which 

surrounds the podosome core36, 61. Fibroblasts on SLBs form multiple podosome-like 

adhesions within ~1 hour spreading, which have been previously validated and 

characterized with immunostaining and MT-FLIM9, 33, 83. Integrin receptors on fibroblasts 

bind to cRGD-ligands on tension probes. Bound probes can be laterally transported, 

leading to a change in probe density and intensity, which is measured by photon counts. At 

forces above the F1/2 threshold, probes mechanically unfold, leading to an increase in 

fluorescence intensity that is coupled to an increase in the 𝜏 (Figure 30A). In podosome-

forming cells, regions of low intensity correspond to regions where a podosome core exerts 

pushing forces on the SLB and physically excludes probes. This is accompanied by the 

application of pN tension in the podosome ring, which causes an increase in fluorescence 

lifetime. Integrin receptors can also cluster ligands outside of podosome regions, leading 

to bright puncta without a measurable change in fluorescence lifetime33.  

For each sub-class of tension probe, we imaged cells on 4.7 pN probes with and 

without spacer sequences and linear control probes which lacked a stem-loop sequence but 

contained spacers as indicated (Figure 30B, C). For these experiments, it is important to 

consider that spacer sequences not only affect the TWJ but also may act as a small entropic 
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spring, which could affect the probe signal. Curve fitting and calculation of the amplitude 

average lifetime exhibited the largest shift in fluorescence lifetime, but we used the FAST 

FLIM average lifetime to analyze cell data. Compared to most genetically encoded tension 

sensors294, our probes offered a massive change in fluorescence lifetime. Furthermore, this 

approach could be easily integrated with quantitative intensity-based thresholding 

workflows to identify podosome regions in MATLAB (Figure A 34,Figure A 35,Figure A 

36). 𝜏𝐼𝑛𝑡. is typically the best parameter for FLIM-FRET because it reports the steady state 

lifetime. Here we found that it was poorly correlated with intensity-based imaging (Figure 

A 28), such that there was little advantage to its use. While our main figures report the 

change the in fluorescence lifetime in podosome regions, note that for DNA-based tension 

probes, the relationship between probe opening and fluorescence lifetime is not linear 

(Figure 29, Figure A 29)33. 

On 4.7 pN S_Cy3B/BHQ1- (MT-FLIM) and S_Cy3B/BHQ1+ probes (Figure 

30C,D, Figure A 34), cells exhibited an increase in fluorescence lifetime surrounding 

podosome core depletion regions. This change in fluorescence lifetime was accompanied 

by an increase in photon counts on S_Cy3B/BHQ1-. On S_Cy3B/BHQ1+ probes, the 

change in fluorescence lifetime was 0.51 ± 0.06 smaller than on S_Cy3B/BHQ1- probes, 

and there was only a slight increase in the fluorescence intensity in podosome rings. The 

small change in intensity can be attributed to the combined effects of changing probe 

density and lower quenching efficiency in these probes. Receptor clusters at the cell 

periphery were clearly observable in the photon counts channel on both S_Cy3B/BHQ1- 

and S_Cy3B/BHQ1+ probes; these clusters did not experience an increase in lifetime. On 

linear probes we observed some clustering surrounding podosomes. This signal was 
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dimmer than the bright rings typically observed in samples with unfolded 4.7 pN 

S_Cy3B/BHQ1- tension probes. Podosome regions displayed only a slight increase in 

fluorescence lifetime on linear probes, validating that changes in fluorescence lifetime 

were caused by mechanical unfolding of the stem-loop sequence. The incorporation of a 

spacer sequence in linear probes was statistically significant but effectively negligible. 
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Figure 30 Tension Probe Design Impacts the Cellular Read-Out 

(A) Schematic of integrin receptor and tension probe interactions on an SLB. Unbound 

probes are closed and undergo quenching. Integrin receptor binding and clustering leads to 

an increase in density and intensity (I). Alternatively, probes can be depleted, leading to a 
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loss of fluorescence (not shown). Upon integrin receptor forces above F1/2, the hairpin 

unfolds leading to an increase in intensity (I) and fluorescence lifetime (𝜏). (B) Cells were 

imaged on 4.7 pN tension probes with (+) or without (-) spacer sequences. As a control, 

cells were imaged on corresponding Linear probes, which lacked a stem-loop. (C, E, G) 

Representative images of NIH 3T3 cells imaged on SLBs containing the indicated tension 

probes. Statistics were performed using a 2-way grouped ANOVA followed by a multiple 

comparison test. Experiments were repeated at least 3 times. P values are reported as *< 

0.05, ****P < 0.0001. Scale bar, 5 μm 

 

Cells on A_Cy3B/BHQ1 (Figure 30E,F, Figure A 35) probes exhibited different 

tension probe signatures, due to static quenching. On A_Cy3B/BHQ1- and +, podosomes 

appeared as bright rings in the photon counts channel, which were accompanied by a 

smaller but significant increase in the fluorescence lifetime channel (0.19 ± 0.05 ns and 

0.62 ± 0.06 ns, respectively). A_Cy3B/BHQ1+ had a larger shift in lifetime compared to 

A_Cy3B/BHQ1-, because of the reduced contribution of static quenching, which made 

these probes more sensitive. Nevertheless, with both static quenched probes, while the 

average fluorescence lifetime increased over the background, the large variance in 

background lifetime still led to poor separation of signal and noise (Figure A 35). On both 

hairpins, clustering and probe exclusion in the podosome’s actin core were visibly 

suppressed, because of the nonfluorescent ground-state complex present in closed probes. 

The fluorescence intensity signal from linear probes was largely dominated by 

autofluorescence. Podosomes on linear A_Cy3B/BHQ1+ probes exhibited a characteristic 

ring pattern, but these rings were much dimmer than on surfaces presenting DNA hairpin 

probes. On linear A_Cy3B/BHQ1+ probes, rings exhibited a decrease in fluorescence 

lifetime compared to the background. This could be attributed to mechanical rupturing of 

static quenched complexes and a subsequent transition to a FRET quenching.  
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Finally, we imaged podosome-forming cells on A488/BHQ1 probes. These probes 

provided an example of tension signal on both highly and intermediate quenched FRET 

probes (Figure 28G,H, Figure A 28). On 4.7 pN A_A488/BHQ1- probes, the photon counts 

channel showed bright rings corresponding to adhesion rings. Podosomal depletion and 

receptor clustering were less obscured than on static quenched probes, but were still largely 

suppressed, due to the probes’ ~95% QE. With the highest lifetime sensitivity, resulting 

from the combination high FRET efficiency and a long A488 intrinsic lifetime, these 

probes offered the largest increase in fluorescence lifetime in podosome rings. With the 

incorporation of a spacer sequence, A_A488/BHQ1+ probes had a lower quenching 

efficiency, which allowed clear visualization of clustered and depleted probes in 

podosome-forming cells and still maintained a large dynamic range for tension mapping 

and quantification. In comparison to 4.7 pN probes, linear A488/BHQ1 probes had very 

little change in the photon counts signal surrounding podosomes. Note that we do not 

attribute this to meaningful change in probe behavior compared to S_Cy3B/BHQ1 probe 

signal but rather hypothesize this is caused by a slight difference in the sample specific 

length of incubation on the SLB. Meanwhile, although the change in podosome 

fluorescence lifetime on 4.7 pN probes was significantly higher than on linear probes, the 

change in podosome fluorescence lifetime on A_A488/BHQ1- was the largest in our data 

set for linear probes. This may be attributed to an increased sensitivity to rotational freedom 

and twisting in highly quenched FRET probes. The effect of entropic spring spacer 

sequences in A_A488/BHQ1+ linear probes was larger than that in S_Cy3B/BHQ1+ 

probes but was still small in comparison. Although linear A_A488/BHQ1- probes were 
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highly quenched, probe background was sufficient to obscure autofluorescence 

contribution observed in static quenched linear samples (Figure 30E,F).  

4.4 Discussion 

 Discussion of Probe Design and Spectroscopy 

Whereas several studies have focused on sm-FRET and dye-DNA interacions, few 

studies perform side-by-side spectroscopic and imaging measurements to understand the 

practical impact of molecular probe design for cellular imaging. Indeed, our lab has found 

that different biological systems require slightly different tension probe schematics to 

maximize signal30, 33, 106, 253. Our library here focused on DNA hairpin structure and energy 

transfer specifically in the context of DNA-based MTFM probes. Cy3B, A488, and BHQ1 

are commonly used in DNA-based tension probes, with Cy3B selected as the tension 

reporter for its photostability and quantum yield. Because Cy3B and BHQ1 are 

hydrophobic dyes and dye interactions are governed by a combination van der Waals and 

hydrophobic interactions91, 295. In this study we selected A488 to represent the more 

hydrophilic dyes. A488 offers excellent imaging properties and minimally stacks with 

DNA21, 296. Interestingly, in our absorption spectroscopy data (Figure 25), we did observe 

some dye-DNA interaction in open Alexa 488 probes lacking a 5T overhang. Since A488 

has a low anisotropy on DNA21, 296, we hypothesize that interaction is caused by proximal 

guanosine quenching by the 5’ end of the complementary sequence, which can alter 

absorbance in some cases297. 

Our three donor/acceptor spatial arrangements offered sequential perturbation of 

conventional tension probes. In the separated geometry, all tension probes were FRET 
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quenched. When the donor and acceptor dyes were separated only by the width of the DNA 

hairpin duplex in the adjacent geometry, Cy3B/BHQ1 probes were static quenched and 

A488/BHQ1 probes were FRET quenched. This observation was in agreement with our 

previous report that A_Cy3B/BHQ1+ probes are static quenched but S_Cy3B/BHQ1- 

probes are FRET quenched33. As expected, this observation was maintained for 

A_Cy3B/BHQ1- probes, which further reduce the donor/acceptor radius. Dexter 

quenching may also play a role in this geometry, but our methods were not able to 

distinguish these two mechanisms. Marras and colleagues reported that a 5 nt overhang 

maximized FRET while significantly decreasing static quenching between a donor-

acceptor pair at the terminus of a DNA duplex89. We therefore hypothesized that separation 

of the Cy3B and BHQ through a short overhang may reduce dye interactions. However, 

our results indicated that 5 nt was insufficient to remove ground state interactions in 

D_Cy3B/BHQ1- probes.  

The interpretation of our static quenched FLIM data required is counterintuitive. 

Static quenched samples do not typically display a change in fluorescence lifetime 

compared to the donor only sample, because only dequenched free dyes contribute to the 

fluorescence decay. We observed a slight decrease in the fluorescence lifetime of static 

quenched samples. This is especially confounding, because probe anchoring to the SLB 

requires hybridization to the quencher-modified strand. We explain these results through 

thermal fluctuations and hydrophobic interactions. Although the majority of closed probes 

are folded, quenched, and spectroscopically silent, a small fraction of probes will thermally 

breathe and generate fluorescence298. During hairpin breathing, the fluorophore and 

quencher are separated and contribute long-lifetime photons. When static quenched 
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complexes breathe, either due to bp breathing at the TWJ or due to the static complex’ 

intrinsic off rate, the static complex dissociates, but the Cy3B and BHQ1 remain in 

sufficiently close proximity to undergo FRET or Dexter Energy Transfer, leading to the 

contribution of a short fluorescence lifetime photons. A second contribution to long-

lifetime impurities is due to a small amount of free Cy3B  in the sample, which intercalates 

into the SLB90 and is not removed by wash steps. Finally, with few photon counts, 

quantification of dark, static-quenched samples may be influenced by the contribution of 

long-lifetime noise. Although fully dequenched probes and Cy3B molecules are rare, 

because dequenched Cy3B has a much higher quantum yield than FRET quenched Cy3B 

at this radius, long-lived fluorophores dominate the fluorescence decay, and only a small 

reduction in fluorescence lifetime is observed. This is in agreement with Sillen and 

Engelbourghs, who argue that the average fluorescence lifetime can change in a 

heterogeneous population with partial static quenching 92.  

It is notable that even for our purely FRET probes, the quenching efficiency 

calculated using fluorescence intensity versus the amplitude-weighted average 

fluorescence lifetime did not necessarily agree (Table A 7, Figure A 28). Even in cases 

where the quenching efficiencies did match, we caution against using these data without 

proper calibration and controls. Whether or not a amplitude-weighted lifetime and percent 

open probes are linearly related in our system requires additional investigation (Figure 29, 

Figure A 29). This discrepancy could arise from uncertainty 𝜏𝐴𝑚𝑝.,
299 nonradiative 

contributions to energy transfer300, or inconsistencies between the timescale of probe 

dynamics and the fluorescence lifetime301. 

 Recommendations for Cellular Imaging 
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While our previously reported MT-FLIM probes (S_Cy3B/BHQ1-) provided a 

suitable option to image receptor clustering and tension, A488/BHQ1 probes offer 

improved lifetime sensitivity due to A488’s long intrinsic lifetime. We also tested A488 

and Cy3B in combination as an example of a potential dual-labeled FLIM-FRET and 

ratiometric measurements. Although our probe A488/Cy3B probes were sensitive to 

photobleaching rendering them poor choices for FLIM with these conditions, these probes 

may be useful ratiometric intensity probes. With appropriate density optimization to 

maximize the SNR while minimizing photobleaching, these probes may offer potential for 

side-by-side intensity-based imaging and FLIM.  

Given the complexity of the dangling TWJ and the potential for geometric 

uncertainty, we more strongly recommend probes that lack this overhang. For 

donor/acceptor pairs that that tend to form static complexes and undergo dye interactions, 

we recommend probes where the donor and acceptor are in the separated geometry. For 

ensemble measurements with FRET pairs that do not static quench, maximal lifetime 

sensitivity may be achieved by attaching the dyes adjacent on the on the duplex. It is 

notable that this can lead to short-range dye-dye interactions. We did not explicitly tet these 

effects in our system, but they should be carefully considered in the context of the specific 

experiment at hand and are particularly important if transitioning to tension-sm-FRET 

experiments289, 302. For a more extensive discussion on FRET probe design and 

troubleshooting, we refer the reader to the recent review by Algar and colleagues286   

While modeling suggests that tension probes are slightly more stable with the 

incorporation of spacer sequences flanking the DNA hairpin (NUPACK Package, Figure 

A 30), the practical impact of this stability is likely minor. Estimated from previously 
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reported F1/2  measurements and calibrations30, 276, we hypothesize that tension probe 

ensembles may experience slight (~2 pN) broadening of the F1/2 transition. However, given 

the discrepancies that are observed between estimated and experimentally measured F1/2 

thresholds, this difference may be negligible30, 276. In static quenched probes, this effect 

would likely be further countered by the stabilizing effect of static complex formation 

between the donor and acceptor at the junction 89. Therefore, the impact of spacer 

sequences can be evaluated from an SNR perspective.  

For intensity-based imaging with static-quenched probes, we argue that spacers are 

largely negligible. It is possible that with optimized gain settings, the QE of these probes 

may be distinguishable, but we did not measure a significant difference in quenching 

efficiency, and neither probe was well-suited for FLIM (Figure A 33A-C). For FRET-based 

probes, the incorporation of spacer sequences should be decided based on the specific 

biological sample. For samples such as the podosome model applied here, it is desirable to 

maximize both positive and negative signal-to-noise ratio while maximizing lifetime 

sensitivity. For these cases, A488/BHQ1 probes with spacers offer the best imaging 

features. These probes are also optimal for samples in which receptor translocation and 

microclustering plays a critical role, such as the study of immune receptors303, because 

higher quenching efficiencies may reduce the ability to visualize spatial signaling in the 

absence of tension. In contrast, A488/BHQ1- may be useful for visualizing weak or 

transient forces, such as the forces applied by the PD-1 receptor106, 253. These highly 

quenched probes may also be advantageous for imaging forces applied to DNA-loaded 

hydrogels, in which volumetric tension probes may contribute high background.  
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Overall, our work highlights the significant impact of photophysics and nanoscale 

design on DNA-based tension probes. While previous works have provided a more 

quantitative framework of energy transfer and 3WJ structure in oligonucleotides on the 

single-molecule level, our results bridge the gap from single-molecule analysis to cellular 

and molecular imaging. Our data offer important insight for the future development and 

application of tension probes to image receptor tension on soft materials and fluid 

interfaces. This work is broadly applicable to FRET sensor design and may be useful in the 

optimization of nucleic acid-based probes for computing and light harvesting304, 305, 306.  

4.5 Methods 

 Sample preparation 

4.5.1.1 Probe synthesis and purification 

Oligonucleotides (Table A 6) were custom synthesized by Integrated DNA 

Technologies or Biosearch Technologies (BHQ1-modified oligonucleotides). Synthesis 

and purification were performed as previously described (Figure A 25) 30, 33. 100 μg cyclo 

[Arg-Gly-Asp-D-Phe-Lys(PEG-PEG)] (PCI-3696-PI, Peptides International) was reacted 

with NHS-azide (88902, Thermo-Fisher Scientific) in 10 μL dimethyl sulfoxide 

(MX1457-7, Millipore-Sigma) for 1 hour. The reaction was performed in a bath 

sonicator and was purified using reverse-phase high performance liquid chromatography 

(HPLC) on a Grace Alltech C18 column (0.75 mL min^-1 flow rate; Solvent A: 

Nanopure water + 0.05% trifluoracetic acid (TFA), Solvent B: acetonitrile 

(BDH83639.400, VWR) + 0.05% TFA; starting condition 90% A + 10% B, 1% per min 

gradient B). To generate cRGD ligand strands, alkyne modified oligonucleotides were 
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conjugated to the purified cRGD-azide performed with 10 mM sodium ascorbate, 1 mM 

copper sulfate, and 0.8 mM THPTA (1010, Click Chemistry Tools) under N2 for ~1 

hour. Amine-labeled oligonucleotides were conjugated to Cy3B-NHS ester (PA631000, 

GE Healthcare) in a 10 uL reaction containing 10% 10x PBS, 0.1 M sodium bicarbonate, 

and ~8x excess dye prior to initial purification on a P2 size-exclusion gel. Peptide and 

dye-labled oligonucleotides were purified using HPLC on an Agilent Advanced oligo 

column (0.5 mL min^-1 flow rate; Solvent A: 0.1 M TEAA, Solvent B: acetonitrile; 

starting condition: 90% A + 10% B, 1% per min gradient B). Alexa 488-labeled 

oligonucleotides were purchased pre-labeled. HPLC products were dried in an 

Eppendorf Vacufuge Plus and were experimentally validated. Labeled oligonucleotides 

with significant excess dye were repurified using HPLC or Amicon filtration (3kDA 

cutoff). 

4.5.1.2 Probe hybridization 

DNA in 1x PBS was heated to 90 C for 5 min and cooled to 25 C for 25 min in a 

0.2 mL Thermowell Tube to assemble tension probes. For surface experiments, the donor 

strand was added in 10% excess. To unfold tension probes, the complimentary strand was 

added at 10x excess. For absorption spectroscopy, which was performed in-solution, BHQ1 

samples lacked biotin. For SLB characterization, donor strands did not contain ligands. 

4.5.1.3 Supported lipid bilayer formation and functionalization 

Small unilamellar vesicles (SUVs) were prepared by mixing 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC) (850375C, Avanti Polar Lipids) and 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(biotinyl) (Biotinyl Cap PE) (870282C, Avanti Polar 
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Lipids) in known ratios in chloroform. Chloroform was removed using rotary evaporation 

followed by drying under ultra high purity N2. Lipids were resuspended in Nanopure water 

(2 mg/mL), sonicated, and freeze-thawed (3 cycles). Liposomes were extruded 10x through 

a 0.08 or 0.2 micron filter and drain disk. To prepare SLBs using SUVs, uncoated glass-

bottom 96 well plates (265300, Nunc) were base etched for ~1 hr in ~2.6 M NaOH and 

were washed with excess nanopure water and 1x PBS. 100 uL of 0.5 mg/mL liposomes in 

PBS were added for ~10 min to form an SLB. SLBs were washed with excess water and 

PBS and were stored for up to 24 hours in water at 4 C. SLBs were passivated with 0.01% 

bovine serum albumin, Fraction V (10 735 078 001, Roche Diagnostics GmbH) prior to 

incubation with ~180 nM streptavidin (SA101, Millipore-Sigma) for at least 45 min. SLBs 

were washed with excess 1x PBS and incubated in ~30nM DNA for at least 45 min prior 

to imaging. Imaging was conducted in 1x PBS (cell-free assays) or Hanks Balanced Salts 

(cell assays).  

 Characterization and application of DNA-based tension probes 

4.5.2.1 NUPACK modelling 

Base pair probabilities were using the freely available NUPACK package307 with 

dangle treatment applied. Probes were computationally hybridized at 0.5 μM (1x) and were 

analyzed at 25 C in 137 mM Na+, corresponding to 1x PBS. These conditions matched the 

conditions used to hybridize DNA prior to SBL functionalization.  

4.5.2.2 UV-Vis Spectroscopy 
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Tension probes were hybridized at 2.5 μM and concentrated to ~10 μM prior to 

measuring on a Thermo Scientific Nanodrop 2000c spectrophotometer with a 0.1 cm 

pathlength. Closed samples were rehybridized, concentrated, and measured with the 

complimentary sequence to obtain the open spectra.  

4.5.2.3 Microscopy 

Epifluorescence imaging was carried out on a using the Nikon Elements 4.40.00 

or 4.13.05 software and a 1.49 NA CFI Apo 100x objective equip with perfect focus. Insert 

cubes. Fluorescence lifetime imaging was performed on a Nikon Ti Eclipse Inverted 

confocal microscope with a Plan Apo Lambda 60X/1.40 Oil objective, Nikon Elements 

4.40.00, perfect focus, and a C2 laser launch. The microscope was updated with a 

Picoquant Laser Scanning Microscope Time Correlated Photon Counting (TCSPC) 

Upgrade with SymPhoTime 64 2.1.3813 software. FLIM samples were excited with a 20 

MHz pulsed 514 nm or 485 nm laser, and images were collected at 0.5 frames-per-second. 

Samples were imaged at 20 MHz with a photon count rate of ~5% of the laser pulse rate, 

except for highly quenched samples which were imaged at the maximum achievable 

photon count rate (Cy3B probes) or the maximum photon count rate that did not bleach the 

sample (A_A488/Cy3B-). Light was filtered using a long-pass laser beamsplitter (H560 

LPXR, Analysentechnik) or Insert 488 dichroic and a 582/75 bandpass filter (F37-582, 

Semrock) or insert 488 bandpass. Laser light that was reflected by the dichroic was blocked 

from an additional detector using a 690/35 bandpass filter. Surface characterization was 

performed with the pinhole fully opened. For cellular imaging, A_Cy3B/BHQ1 were 

imaged with an open pinhole to maximize light collection; all other samples were imaged 

with the pinhole optimized to 1.2 Airy Units.  
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 Cell culture 

NIH 3T3 fibroblasts were cultured in Dulbecco’s Modification of Eagle’s Medium 

(DMEM) (B003K32, Corning). Media contained 10% Fetal Bovine Serum (USDAFBS, 

MidSci), 2.5 mM L-glutamine (G8540, Millipore-Sigma), and 1x penicillin streptomycin 

(97063-708, VWR). Cells were incubated at 37°C in 5% CO2. Cells were authenticated 

by IDEXX Bioresearch. Note that while these surpassed the criteria for cell line 

validation308, they did show small genetic deviation. Nevertheless, we find these cells to 

be a robust mechanical model.  

 Analysis and Statistics 

Fluorescence lifetime decay traces were fit using reconvolution in SymPhoTime 64 

according to the equation:  

 
𝐼(𝑡) = ∑ 𝐴𝑛𝑒

−𝑡
𝜏𝑛⁄

𝑚

𝑛=1

 (12) 

Goodness of fit was evaluated by the chi-squared parameter. All curve fits had chi-squared 

> 2. Curves were fit with the minimum number of lifetimes to reduce sinusoidal residuals, 

while minimizing chi-squared. If additional lifetime components only corrected deviations 

near the IRF region, the lower lifetime fit was selected. All open probes were fit to 

monoexponential decays. Closed probes were fit to bi- or triexponential decays. Lifetime 

fits were performed on regions-of-interest (ROIs) containing ~103 - 104 photons in the 

decay peak. We found that this intensity was optimal to minimize the contribution of 

detector nonlinearities, which had prevented curve fitting of our MT-FLIM data in its 
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original report33. Curve-fit data were used to calculate the intensity and amplitude weighted 

average fluorescence lifetimes according to the following equations: 

 
< 𝜏 >𝐼𝑛𝑡.=  

∑ 𝐴𝑛𝜏𝑛
2

∑ 𝐴𝑛
 (13) 

 
< 𝜏 >𝐴𝑚𝑝.=  

∑ 𝐴𝑛𝜏𝑛

∑ 𝐴𝑛
 (14) 

The amplitude average lifetime was used to calculate the lifetime-based quenching 

efficiency: 

 
𝐸 = 100 ×  (1 −  

< 𝜏 >𝐴𝑚𝑝., 𝐶𝑙𝑜𝑠𝑒𝑑

< 𝜏 >𝐴𝑚𝑝. 𝑂𝑝𝑒𝑛
) (15) 

Note that this value poorly agreed with the quenching efficiency calculated from 

epifluorescence images, which can be expected for a system with mixed static quenching 

and probe dynamics92, 293. Statistical analysis and plotting were performed in MATLAB. 

Curve-fit ROIs were also used to generate FAST FLIM average fluorescence lifetime 

histograms, which represent the center-of-mass fluorescence lifetime weighted by the 

number of events. To obtain the average fluorescence lifetime from these data, histograms 

were fit to a curve in MATLAB according to the equation: 

 

𝑦 =  ∑ 𝑎𝑛𝑒
−(

𝑥−𝑏𝑛
𝑐𝑛

)
22

𝑛=1

 (16) 
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B1 was used for the Average Fluorescence Lifetime, and C1 was used as a measure of the 

peak width. Fluorescence intensity data was processed in MATLAB. Aggregates and holes 

in the SLB were omitted by standard-deviation based thresholding, and the average 

fluorescence intensity was calculated from the central region of the SLB. The quenching 

efficiency was calculated by the following equation:  

 
𝐸 = 100 ×  (1 −  

𝐼, 𝐶𝑙𝑜𝑠𝑒𝑑

𝐼, 𝑂𝑝𝑒𝑛
) (17) 

Absorbance data was processed in MATLAB. Curves were background corrected using 

the baseline absorbance between 720 and 750 nm and were normalized to the absorption 

at 490 or 559 nm for probes containing A488 or Cy3B as the donor, respectively. Cell 

image analysis was performed as illustrated in 

Figure A 31, 
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Figure A 32, and Figure A 33. The FAST FLIM average lifetime per pixel was used to 

calculate statistics on masked regions. At least three technical replicates were collected per 

experiment and at least three independent experiments were performed. Statistical tests and 

outlier testing were performed as described in figure captions. 
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CHAPTER 5. CONCLUSIONS 

5.1 Summary of Advances 

In this work, we developed, analyzed, and applied a novel approach to map forces 

on fluid interfaces and to perturb adhesion mechanics on a membrane. In our literature 

review in Chapter 284, we described the major mechanical parameters influencing SLBs 

and summarized state-of-the art approaches to adjust their properties. Our review 

contributed a new perspective through its side-by-side presentation of SLB mechanics and 

mechanobiology. Chapter 3 expanded the tools available to map and manipulate receptor 

forces on a membrane and applied these tools to elucidating the mechanism of force 

balance in podosomes 33. Whereas previous approaches to measure forces on SLBs applied 

ratiometric imaging8, 10, MT-FLIM contributed a novel and direct approach to mapping 

receptor clustering and tension using FLIM. FLIM was previously used to report forces 

across adhesion proteins using genetically-encoded sensors212, but our binary DNA 

hairpin-based FLIM-FRET tension probes were a departure in their direct quantification 

forces exerted by single receptors and the tension density (reported by percent open 

probes)33. Whereas previous studies applied patterning to spatially mutate cell and receptor 

mechanotransduction9, 16, 122, 309, 310, photocleavable probes and TGTs allowed us to 

dynamically perturb forces on the SLB. Photocleavable probes offered an approach for 

experimental perturbation of stable adhesions; TGTs served as responsive materials that 

ruptured under high cellular forces33. Through this work33 we demonstrated that integrin 

receptors not only apply pN forces on mobile ligands, which was previously unknown6, 85, 

86, and we expanded upon the model of the podosome as an independent mechanosensor65. 
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Our work experimentally demonstrates that podosomes apply pN integrin receptor tension 

to counter nN protrusion forces applied by the podosome core76, which was previously 

suggested through mathematical modeling, analysis of material deformations, and protein 

stretching61, 65, 75, 80 but lacked molecular resolution. The modular design of DNA-based 

force probes makes them adaptable for imaging forces in a variety of systems. To facilitate 

future applications of molecular tension probes, Chapter 4 explored the biophysical 

properties of DNA-based tension probes and evaluated the impact of probe design in a 

podosome model system. This work will be useful in informing future experiments, which 

apply DNA mechanotechnology275 to reveal the role of mechanical forces in a variety of 

receptor-ligand interactions at both cell-cell, cell-SLB, and cell-matrix interfaces.   

 Discussion of Biological Limitations 

While our work provides novel approaches to map and manipulate adhesion forces 

on an SLB, it is notable that these biological systems have some limitations. SLBs represent 

a reductionist platform to study cellular interactions, and our biological models consider 

only a subset of the many receptor-ligand interactions at play within these cellular 

junctions. Specifically, the use of cRGD ligands bias our findings toward the β3 class of 

integrin receptors311. In addition, while the SLB offers fluidity, the actual membrane is 

much more biophysically complex, and can undergo dynamic changes in stiffness in 

response to mechanical forces; these changes  are mediated by the actin cytoskeleton312. 

Finally, while fibroblasts provide a facile model of podosome-like adhesions6, it is notable 

that these cells have not been observed to form podosomes in vivo. In future, work, it will 

be important to also map receptor forces in podosome-forming immune cells. 
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5.2 Outstanding Questions and Directions in Podosome Mechanobiology 

Although the integration of biophysical probes, materials, and imaging have helped 

elucidate many features of podosome mechanosensing, there are several outstanding 

questions that require further investigation. The mapping of integrin receptor clustering 

and tension on fluid SLBs is interesting from a fundamental biophysics perspective and 

may provide insight into the mechanoregulation of podosomes formed at cell-cell 

junctions27, 28, 29. However, many podosomes form on stiff substrates62, and it has been 

shown that cells on stiffer substrates tend to form more podosomes with increased 

protrusiveness 76. How is integrin receptor tension regulated in podosome rings on non-

fluid materials? Future studies will measure podosome forces on glass and ultimately on 

hydrogels. Does receptor tension contribute to podosome coupling on materials that are 

permissive to lateral forces? How are forces regulated in 3D, and how are podosomes and 

invadopodia similar and different in their mechanisms of force balance? Notably, 

concurrent with our work which showed podosome retraction when integrin adhesion was 

photocleaved on a supported lipid bilayer, Ferrari and colleagues demonstrated that 

invadopodia mechanically bend collagen fibers in 3D313. Although this work suggested a 

mechanism of actin protrusion rather than tension, the authors similarly found that forces 

were dependent on actin but not myosin II. 

Protein stretching and superresolution imaging suggest that podosome ring tension 

may vary function of podosome radius65. Using newly developed Structured Illumination 

Microscopy – Molecular Tension Fluorescence Microscopy314, it will be interesting to 

directly test this hypothesis. Super-resolved tension imaging will also provide a new 
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approach to directly correlate podosome structure and force. These features will be 

important to distinguish in both podosomes and in related invadopodia.  

An additional area of investigation will be in understanding tension oscillations in 

podosomes. Podosomes on non-fluid substrates have been shown to undergo force and 

stiffness oscillations66, 70, 75, 77, 243; this remains unexplored on fluid materials and for 

receptor. Do integrin receptor forces oscillate in podosomes and do podosomes undergo 

force oscillations on SLBs and at cell-cell junctions? Future studies will apply multiplexed 

fluorescence imaging and MTFM to answer these questions. A current limitation of MT-

FLIM lies in its spatiotemporal resolution. Therefore, to study oscillations on fluid 

substrates, it will be necessary to apply ratiometric FRET probes or FLIM detectors with 

faster electronics, which are becoming increasingly commercially available. 

Podosome function is facilitated by structure, mechanics, and spatial organization, 

but current studies still only hint at how these relate. There is a need to develop new 

biomaterials and imaging probes to study the relationship between podosome mechanics 

and function, such as diapedesis, migration, bone resorption, in which environmental cues 

and mechanical cues could influence podosome structure and in turn tune mechanical force 

generation and the outcome. It is well known that podosomes and invadopodia release 

MMPs and that integrin adhesion and substrate stiffness modulate degradation in both 

invadopodia and podosomes49, 315, 316. Therefore, a major open question in the literature 

focuses on the role of receptor forces both in regulating MMP release and in responding to 

changes in the local matrix structure and adhesion 248.  

5.3 Additional Applications of DNA Mechanotechnology at Fluid Interfaces 
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Beyond podosome mechanobiology, our work has applications at a variety of cell-

cell interfaces. We expect these proteins to be integrated with cadherins and ICAM-1. With 

growing interest immunotherapy, there are vast applications of immune-modulating 

biomaterials and cell therapies. Therefore, it will be important to the understand the 

fundamental mechanics of immune cell receptors and their ligands. We anticipate that MT-

FLIM and photocleavable probes will be useful in revealing the mechanobiology of 

receptors such as the TCR and PD1. SLBs were recently applied to studying chimeric 

antigen receptors317, DNA mechanotechnology may be useful evaluating these engineered 

receptors. Future platforms will integrate our probes with surface patterning and diffusion 

tuning to further map, manipulate, and reveal cell forces. In addition, our FRET probes can 

be applied to measuring forces at cell-cell junctions and in hydrogels. Ratiometric DNA 

probes were recently used to quantify forces in epithelial sheets279; we hope to use our 

probes to study the forces between individual immune cells and within platelet clots. 

5.4 Novel Applications of DNA-Based Tension Probes and Time-Resolved 

Fluorescence 

Time-resolved fluorescence measurements of DNA-based force probes may allow 

for quantification of currently inaccessible parameters. Although podosome receptor forces 

have been shown to oscillate over tens of seconds76, it is currently unknown whether 

receptor forces oscillate or sample on short time scales. Ma, et. al. recently demonstrated 

that immune cells exert weak and short-lived forces253, but the temporal limit is unknown. 

Scanning Fluorescence Correlation Spectroscopy and smFRET measurements may be 

useful in revealing whether receptors experience transient force fluctuations. In addition, 

fluorescence lifetime imaging may ultimately help bring molecular mechanobiology in 
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vivo, since FLIM is concentration independent and is compatible with two-photon imaging, 

which increases tissue penetration318.  
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APPENDIX A. SUPPORTING INFORMATION 

A.1  DNA Mechanotechnology Reveals that Integrin Receptors Apply pN Forces in 

Podosomes on Fluid Substrates 

A.1.1 Probe Synthesis and Validation 

 

Table A 1 Oligonucleotide Sequences.  

Summary of oligonucleotides used in this study. Oligo ID is used to denote sequence in 

MALDI-TOF IDT = Integrated DNA Technologies, BT = Biosearch Technologies. 

Oligo  Purpose Sequence Source 

1 Hairpin Ligand 

Strand 

 5’-/5Hexynyl TTT GCT GGG CTA CGT GGC 

GCT CTT /3/AmMO-3’ 

IDT 

2 4.7 pN Hairpin 5'-GTG AAA TAC CGC ACA GAT GCG GTA 

TAA ATG TTT TTT TCA TTT ATA C AAG 

AGC GCC ACG TAG CCC AGC-3' 

IDT 

3 19 pN Hairpin 5’-GTG AAA TAC CGC ACA GAT GCG CGC 

CGC GGG CCG GCG CGC GGT TTT CCG 

CGC GCC GGC CCG CGG CGA AGA GCG 

CCA CGT AGC CCA GC-3’ 

IDT 

4 Linear (No 

Hairpin) 

 5'-GTG AAA TAC CGC ACA GAT GCG AAG 

AGC GCC ACG TAG CCC AGC -3' 

IDT 

5 4.7 pN Hairpin 

(Photocleavable) 

5’-/5PCBio/TT TGT GAA ATA CCG CAC 

AGA TGC GGT ATA AAT GTT TTT TTC ATT 

TAT ACA AGA GCG CCA CGT AGC CCA 

GC-3’ 

IDT 

6 4.7 

Complementary 

5’-GTA TAA ATG AAA AAA ACA TTT ATA 

C-3’ 

IDT 

7 19pN Scramble  5'-GTG AAA TAC CGC ACA GAT GCG TTT 

ATC GTC AAT ATA TAC GAT ATT TTT TAG 

AAT CTA GAT GTT AAC TTT TTA AGA 

GCG CCA CGT AGC CCA GC-3' 

IDT 

8 Scramble 

Complementary 

5’-AAG TTA ACA TCT AGA TTC TAA AAA 

ATA TCG TAT ATA TTG ACG AT-3’ 

IDT 

9 MT-FLIM 

Anchor/Quencher  

Strand 

5’-CGC ATC TG(I-TBHQ1) GCG GTA TTT 

CAC TTT/3Bio/-3’ 

BT 

10 Unlabeled Bottom 

Strand 

5’-CGC ATC TGT GCG GTA TTT CAC TTT-3’ IDT 

11 MTFM 

Anchor/Quencher 

Strand 

5’-/5BHQ1/CGC ATC TGT GCG GTA TTT 

CAC TTT/3Bio/-3’ 

BT 

12 MTFM Quencher 

Strand 

5’-/5BHQ1/CGC ATC TGT GCG GTA TTT 

CAC TTT-3’ 

BT 

13 Alkyne-Amine-

Biotin 

5’-/Hexynyl/CG CAT CTG TGC GGT ATT TCA 

C/iAmMC6T/TTT/3Bio/-3’  

IDT 

14 TGT Ligand 

Strand* 

5’-/5Hexynyl/GTG AAA TAG CGC ACA GAT 

GCG/3AmMo/-3’ 

IDT 
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15 12 pN TGT 

Anchor Strand 

5’-/CGC ATC TGT GCG GTA TTT CAC 

/iAmMC6T/ TT T /3Bio/-3’ 

IDT 

16 56 pN TGT 

Anchor Strand 

5’-/5Biosg/TTT/AmMC6T/CGC ATC TGT GCG 

GTA TTT CAC-3’ 

IDT 

17 4.7 (TTT) pN 

Hairpin** 

5'-GTG AAA TAC CGC ACA GAT GCG TTT 

GTA TAA ATG TTT TTT TCA TTT ATA C 

TTT AAG AGC GCC ACG TAG CCC AGC-3' 

IDT 

18 4.7 (TTT) 

Complementary**  

5’-AAA GTA TAA ATG AAA AAA ACA TTT 

ATA C AAA-3’ 

IDT 

* Note: TGT sequences in this work contain a single base pair mismatch (bolded) 

in the TGT Ligand strand (Oligo 14). Sequences used here are as written, however, for 

future studies, this mismatch should be corrected: G→C. Despite this mismatch, we 

proceeded with the interpretation of our data. Although to our knowledge, there is no model 

describing the impact of a mismatch on the tension tolerance, 𝑇𝑡𝑜𝑙, single molecule force 

spectroscopy suggests that only the termini of the duplex are critical to defining 𝑇𝑡𝑜𝑙 . 

According to the deGennes model319, 𝑇𝑡𝑜𝑙 is sequence independent and follows the 

equation: 

 
𝑇𝑡𝑜𝑙 = 2𝑓𝑐 [𝜒−1𝑡𝑎𝑛ℎ (𝜒

𝐿

2
) + 1] (18) 

2𝑓𝑐 is the tension tolerance per bond, L is the sequence length (bp), and 𝜒−1 is the number 

of force-bearing base-pairs at the end of a duplex. Measuring the  𝑇𝑡𝑜𝑙  of DNA duplexes 

using magnetic tweezers revealed that 𝜒−1 equals 6.8 base-pairs320. Therefore, although a 

mismatch at bp 9 will slightly reduce the duplex’s thermal stability, it will not significantly 

impact 𝑇𝑡𝑜𝑙.  

**Note: These oligos were used only in absorbance spectroscopy of static quenched 

probes, in accordance with Zhang, et. al30. All other experiments using 4.7 pN tension 

probes used Oligo 2.  
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Figure A 1 Chemical structures in oligonucleotide probes.  

Chemical structures for relevant DNA modifications. Cy3B and cRGDfK(Peg-PEG) were 

conjugated as described. 
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Figure A 2 HPLC chromatograms of modified oligonucleotides.  

(a-d) Chromatograms of cRGD and DNA probes. Oligos sequences are as shown in Table 

A 1. Grey, blue, and pink lines are for cRGD, DNA, and Cy3B, respectively. Product peaks 

are highlighted in yellow, and HPLC spectra for final products are marked**. Final 

products were validated by MALDI-TOF. The locations of the cRGD and Cy3B are 

indicated as 5’, 3’, or Int for internal modifications.  
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Figure A 3 MALDI-TOF spectra of oligonucleotides  

(a-e) Mass spectra of starting materials and final probe products 
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Table A 2 Summary of MALDI-TOF Results 

MALDI Sequencetarting or Product Calculated 

MW 

Difference 

(%) 

a. 1 Starting 7729.0 0.211 

a. 1 Product 9361.96 -1.134 

b. 13 Starting 8356.7 0.001 

b. 13 Product 9989.66 -0.986 

c. 14 Starting 6875.5 0.203 

c. 14 Product 7852.6 -0.392 

d. 15 Starting 7903.3 0.203 

d. 15 Product 8559.21 -0.392 
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A.1.2 Podosome Model Characterization 

 

 

Figure A 4 NIH 3T3 fibroblasts form podosomes on fluid RGD-oligonucleotides.  

(a) Schematic of unlabeled cRGD-functionalized DNA probes tethered to an SLB. (b) 

Immunostaining of podosome-forming NIH-3T3 cell stained with Phoso-Paxillin Tyr 118 

Polyclonal Antibody, Phalloidin-iFluor 488, and Vinculin Antibody SF647. (N=85 cells, 3 

experiments.) (c) Normalized linescan analysis of podosome in b. Blue, green, and purple 

lines represent pY118, vinculin, and actin, respectively. (d) Schematic of fluorescently-

tagged DNA probes presenting cRGD ligands on and SLB. (e) Immunostaining of 

podosome-forming NIH 3T3 cells (n=97, 4 experiments). Cells were stained with 

Phalloidin-iFluor 488 and Vinculin Antibody SF 647. (f) Normalized linescan analysis of 

podosomes in b. Blue, green, and purple lines represent dsRGD, vinculin, and actin, 

respectively.  
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Figure A 5 Podosome protrusion does not disrupt the SLB. 

(a,d,g) Schematic of oligonucleotide probes and membrane labels used in b and c, e and f, 

and h and i, respectively. (b,e,h)  Representative epifluorescence images of podosomal 

depletion as indicated by Cy3B-DNA depletion. The SLB beneath was labeled with FITC-

labeled lipids or stained with membrane intercalating dyes, as indicated. Fluorescence 

images are displayed normalized to the SLB background. (c,f,i) Average membrane 

fluorescence beneath podosome depletion regions versus the SLB background. Statistics 

were performed with a two-tailed Wilcoxon matched-pairs signed rank test (c,f) or a two-

tailed, paired Students T-Test (i). Teal bars represent the median (c,f) and the mean (i). 

P>0.05, **P<0.01, ****P<0.0001. Statistics were calculated on at least 26 cells, 3 

experiments. Outliers were excluded (median ± 3 scaled median absolute deviations).  
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A.1.3 Molecular Tension – Fluorescence Lifetime Imaging Microscopy 

 
Figure A 6 Absorption spectra of MTFM and MT-FLIM probes.  

(a) Tension probes were chemically unfolded by annealing with a strand complimentary to 

the stem-loop sequence (blue). (b,d) Schematic of conventional and MT-FLIM probes, 

respectively, in solution. (c,e) Absorbance spectra of closed (dark blue lines) and open (teal 

lines) conventional and MT-FLIM probes, respectively. Conventional MTFM probes 

exhibited a shift indicative of static quenching. Data represent the mean ± s.e.m. N = 3 

experiments. 

 

 

 

Table A 3 Summary of TCSPC Settings 

Setting Parameter 

TCSPC Resolution 25.0 ps 

TCSPC Mode T3 

Sync CFD Level -150 mV 

Sync Zero Cross -10 mV 

Sync Divider 8 

Detector CFD Level -45 mV 

Detector Zero Cross -10 mV 

Detector Offset 530 ps 
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Figure A 7 MT-FLIM probe calibration. 

(a) To open probes, hairpins were thermally annealed to a sequence complimentary to the 

stem-loop. (b,c) Representative fluorescence decay histograms for opened and closed 4.7 

and 19 pN tension probes, respectively. Closed probes exhibit a multiexponential decay (3 

experiments). The instrument response function (IRF, calculated in software) is shown in 

black. Photon counts are displayed on a logarithmic scale. (d,e) Representative average 

fluorescence lifetime histograms for SLBs with increasing percent open 4.7 and 19 pN 

tension probes, respectively. (2-3 experiments per condition). 
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Figure A 8 MT-FLIM probe density slightly reduces fluorescence lifetime.  

(a) Normalized fluorescence intensity of SLBs containing 0-20% open probes on SLBs 

with 0.05 – 0.2 mol% Biotinyl-Cap PE. (b) Average fluorescence lifetime on SLBs 

containing 0-20 % open probes on SLBs with 0.05-0.2 mol% Biotinyl-Cap PE. Light blue, 

yellow, and dark blue bars represent 0.05, 0.1, and 0.2 mol% Biotinyl-Cap PE, respectively. 

Red circles represent the means of individual experiments. Data points represent the mean 

of individual experiments. Bars bars represent the mean ± s.e.m (error bars), 3 experiments. 

Statistics were performed with an ANOVA followed by a multicomparison test comparing 

each data point to the corresponding 0.1 mol% Biotinyl-Cap PE data (yellow bars). ns 

P>0.05, *P<0.05, **P<0.01, ****P<0.0001.  
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Figure A 9 Podosome rings and integrin clusters contain β1 integrin.  

(a) MT-FLIM probes were used with intensity-based imaging, such that both clustering 

and opening events could cause an increase in fluorescence signal. (b) Representative 

images of podosome-forming cells show colocalization of β1 integrins with RGD clusters 

(solid lines) and podosome rings (dashed lines) in the probe channel. β1 integrins and actin 

were detected by Anti-Integrin β1 Antibody, clone MB1.2 followed by Alexa Fluor 647 

goat anti-mouse IgG2b (γ2b) and Alexa 488- Phalloidin, respectively. (c,d) Linescan 

analysis of podosomes (c) and clusters (d) shows good colocalization of β1 integrin and 

probe signal. Linescan locations are indicated in b. Green, blue, and purple lines represent 

actin, probe signal, and β1 integrin, respectively.  N = 16 cells, 2 experiments. Scale Bars, 

5 μm. 
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A.1.2.1 Determination and interpretation of percentage of open probes and local probe 

density 

The intensity of tension probe signal, 𝐼, measured as the number of photon counts 

per pixel, is a function of the local probe density, 𝜌, the fraction of open and closed probes, 

𝑂 and 𝐶, their per-probe photon count contributions, 𝑚 and 𝑛, and the dark counts, 𝐷.  

  𝐼(𝑂, 𝐶, 𝜌) = 𝜌(𝑚(𝑂) + 𝑛(𝐶)) + 𝐷 (19) 

Because probe opening is binary (probes are either open or closed), 𝑂 and 𝐶 are related 

such that: 

 𝑂 + 𝐶 = 1 (20) 

Assuming that in the SLB background, all probes are closed and the relative probe density 

is 1, we find that: 

 𝑄𝐸 =
𝑚 − 𝑛

𝑚
 (21) 

   𝑚 =
𝑛

1 − 𝑄𝐸
    (22) 

Rearranging (2) and substituting with (3)-(6), we find that probe density, 

 
𝜌 =  

𝐼(𝑂, 𝐶, 𝜌) − 𝐷

(
𝐼0 − 𝐷
1 − 𝑄𝐸

(𝑂) + (𝐼0 − 𝐷)(1 − 𝑂))
 (23) 

We obtained 𝑄𝐸 from the slope of the linear curve-fit epifluorescence images of titrated 

open and closed probes (Figure 2c). To determine 𝐷, we calculated the average number of 

photons per pixel on the second detector blocked with a 690 nm band-pass filter during 

calibration image acquisition. Since the average number of photons was less than 1 per 

pixel, we determined dark counts to be negligible. To determine 𝑂, the fraction of open 

probes per pixel, we used a 5%-open-interval look-up-table (LUT) generated from the 
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empirical calibration curve of percent open probes versus average fluorescence lifetime per 

pixel, 𝜏, (Figure 18b, Figure A 7d,e), which fit to the biexponential equation: 

  𝜏 = 𝑎𝑒𝑏𝑂 − 𝑐𝑒𝑑𝑂 (24) 

Here 𝜏 is the mean photon arrival time determined by the Fast FLIM algorithm in 

SymPhoTime 64. This metric provides the distance between the rise of the IRF and the 

center-of-mass of photon arrivals in a decay and does not require curve-fitting. This method 

has some disadvantages such as uncertainty due to uncertainty of time-zero and 

contribution of background photons; therefore, it is not typically the most quantitative 

metric to characterize a system and is typically used to give an initial real-time FLIM 

image. However, it has still proven useful as an estimate of the fluorescence lifetime in a 

variety of FLIM applications321, 322, 323. For our purposes, we found it to be a robust measure 

of the fluorescence lifetime of our tension-probe surfaces, in which empirically measured 

lifetimes were much more important than the physical processes giving rise to these exact 

lifetimes. When used with our calibration curve to convert the average fluorescence 

lifetime per pixel to the percentage of open probes per pixel, the precision is related to the 

number of photons in the calibration curve image, which we held at constant of 

approximately 105 photons in the peak of the fluorescence lifetime decay curve, as well as 

with the number of photon counts in the pixel of interest. The major sources of uncertainty 

in this metric comes from the width of the histogram used to generate the percentage of 

open probes look-up-table and uncertainty due to the computed IRF. Because we were 

concerned that dwell time could cause some probe melting and affect the fluorescence 

lifetime, we performed these measurements for all imaging conditions (0.14 and 0.08), but 

this effect was negligible. The constants 𝑎 − 𝑑 were as follows: 
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Table A 4 Percent Open Curve Fit Parameter 

Probe (pN) a b c d r2 

4.7  2.306 0.001 -1.166 -0.072 0.9996 

19  2.295 0.002 -1.21 -0.056 0.9992 

While we found the average fluorescence lifetime of probes on our SLBs to be consistent, 

it was important to minimize the free dye in solution, which could shift the lifetimes. We 

recommend that anyone using this method generate a calibration curve on their own 

instrument prior to data quantification. 

A.1.2.2 Discussion of MT-FLIM Photon Statistics 

A challenge in MT-FLIM interpretation was determining the cutoff between signal 

and noise. In our raw average fluorescence lifetime images, we observed an increase in 

fluorescence lifetime even in regions inside the podosome core depletion zone, where 

integrin receptors are excluded61. In very static podosomes in MT-FLIM (60x objective, 1 

min acquisition) and on conventional tension probes (100x objective, 500 ms exposure 

time) (Figure A 15), it was apparent that signal was contributed primarily by the adhesion 

ring. We attributed this effect to three factors: (1) Podosomes are micron-sized structures 

and are subject to the diffraction limit. Thus, high fluorescence lifetime photons from the 

ring could be collected in depletion regions. (2) Podosomes are dynamic structures. Any 

movement of the ring could cause slight blurring of signal. (3) Depletion regions have low 

signal-to-noise ratio (SNR) and are subject to influence by noise (detector shot noise and 

otherwise). We hypothesize that these three features together give rise to the appearance of 

tension in the podosome core. Considering a primarily depleted (dark) podosome core, 

some photon contribution from the ring will increase the photon count, but it will still be 
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much darker than the surrounding regions. However, assuming that most of these photons 

have a long fluorescence lifetime, the it will appear that the core region has a high 

percentage of open probes. This effect would be magnified by any movement or changes 

of the podosome ring or core structure during imaging. 

To determine which pixels were the most reliable, we performed an extensive 

analysis of MT-FLIM photon statistics. It is desirable to maximize photon counts, because 

the SNR equals √𝑛, where 𝑛 is the number of photons. Since each photon in a FLIM image 

is time-tagged, FLIM images can be subdivided into different frame widths. Images in 

Figure 17 were collected for 3 min, but we empirically selected an acquisition time of 60 s 

for analysis as a compromise between podosome dynamics and the need for a maximal 

photon count. To demonstrate this effect, we have subdivided a podosome image 

acquisition into time-bins (Figure A 10a,b).  To determine the tolerable minimum SNR, or 

photon count, we analyzed 𝜏 versus photons counts per pixel. From these data, we observed 

that some low photon pixels contributed long fluorescence lifetimes that were inconsistent 

with Cy3B’s fluorescence lifetime (data not shown). Using our calibration curves, we 

defined the maximum reasonable fluorescence lifetime per pixel to be 2.97 ± 0.04 ns (mean 

± s.e.m., 6 surfaces), which corresponds to one standard deviation above the average 

fluorescence lifetime of an SLB containing 100% open probes. Note that here the standard 

deviation describes the width of the histogram data rather than the variation of mean 

lifetime across experiments. 19 and 4.7 pN surfaces did not have a statistically significantly 

different fluorescence lifetime for open probes, so this 2.97 ± 0.04 ns lifetime applied to 

both data sets. To determine a photon count cutoff, we identified regions associated with 

the SLB background, clusters, and podosomes and plotted histograms of fluorescence 
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lifetime and photon counts per pixel for each of our hairpins (Figure A 10c,d). Since the 

average number of photons per pixel with  𝜏 > 2.97 in podosomes was 23 ± 12 photons 

(mean ± s.d.), we set the minimum SNR tolerance to 1:5. Therefore, in all MT-FLIM 

analysis, only pixels with 𝜏 < 2.97 ns and photon counts > 25 were considered.  

 

Table A 5 Photons per Pixel with 𝝉 < 2.97 ns 

 Linear 4.7 pN 19 pN 

SLB 

Background 

n/a 73 ± 14 n/a 

Clusters n/a n/a n/a 

Podosomes 16 ± 6 30 ± 18 22 ± 11 
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Figure A 10 Analysis of MT-FLIM photon statistics.  

(a) Representative 3-minute photon counts image of podosomes on 4.7 MT-FLIM probes. 

Scale bar, 5 μm. (b) Podosome zoom-in of white box in a subdivided into 7.5 - 180 s bins. 

For MT-FLIM analysis, 60 s image bins were used to maximize SNR while minimizing 

temporal blurring. Scale bar, 1 μm. (c) Representative 4.7 pN MT-FLIM image and maps 

of the background, clusters, and podosomes. Features were identified by intensity-based-

thresholding. Scale bar, 5 μm. (d) Histogram analysis of the average photon counts and 

fluorescence lifetime per pixel on MT-FLIM probes. Red, green, and blue histograms 

represent background, cluster, and podosome photons, respectively. (N = 48 Images, 3 

experiments). (e) Plot showing the noise-to-signal ratio versus photon counts. The red 

dashed line represents the 25-photon cutoff.   
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Figure A 11 MT-FLIM Analysis Flowchart.  

MT-FLIM images were read into MatLab using the BioFormats plugin. To account for the 

uneven confocal illumination profile, the raw photon counts data was corrected using an 

average illumination profile generated from SLBs lacking cells. For each cell, we selected 

an ROI containing the cell and a local background ROI, which was used to define the 

background photon counts and fluorescence lifetime. To identify podosomes, we first 

identified podosome cores as described in steps 1-4, above (*). Surface defects, such as 

holes in the SLB, were manually removed. To include the podosome ring region, we 

performed a 3-pixel dilation on podosome cores. Noisy pixels as determined in A.2.1.2. 

were excluded in the final masks (**). To determine the percentage of open probes and the 

relative probe density, we applied our empirical look-up table and Equation 8, which are 

described in detail and derived in A.2.1.1. Percent open and average fluorescence lifetime 

maps were multiplied by the final podosome mask, and statistics were performed on a per 

cell-level, unless otherwise stated. Scale bar, 5 μm. 
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Figure A 12 Invadosomes exert pN tension.  

Myf cells were seeded on SLBs presenting 4.7 pN (shown here) or 19 pN tension probes 

and imaged following ~1 hour cells spreading. Image depicts a full three-minute 

acquisition. Scale Bar, 5 μm. (N = 61 cells, 3 experiments).  
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Figure A 13 Tension probes unfold specifically under integrin-mediated forces.  

(a) DNA probes were co-presented on an SLB such that the ligand and FRET pair were 

either separated or presented on the same probe. To maintain ligand density, SLBs 

contained 0.2% biotinyl cap PE. (b) Representative images of podosomes on co-presented 

DNA probes. Note that the fluorescence lifetime was higher than in other experiments, 

likely due to probe co-presentation. Scale bar, 5 μm. (c) Average change in fluorescence 

lifetime in podosome-regions per cell. Dashed grey lines represent the mean. Statistics 

were performed with a two-tailed paired Students T-Test. Each group contained at least 25 

cells, 3 experiments. ****P<0.0001. 
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Figure A 14 MT-FLIM dynamics of podosome maturation.  

(a) MT-FLIM image of the NIH 3T3 cell from Figure 17g at 20 and 46 minutes (N=6 cells, 

3 experiments). Scale bar, 5 μm. (b,c) Cluster and podosome trajectories from 20 to 46 

min. Filled circles represent the emergence of a new cluster (b) or podosome/ podosome-

preceding cluster (c). Scale bar, 5 μm (d) Representative kymograph of podosome 

formation with each frame centered on the centroid of the podosome or cluster noted with 

the arrow in b. White triangles indicate the emergence of tension and depletion. Select 

frames are reproduced in Figure 17g. Scale bar, 0.3 μm. (e) Kymograph of the white boxed 

region in a showing the emergence and maturation of podosomes from clusters (filled white 

arrows). Podosomes spread outwards over several minutes, and new podosomes emerge 

by splitting (unfilled white arrows) and de-novo formation (dotted white arrows). Scale 

bar, 0.2 μm. 
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Figure A 15 Analysis of clustering and tension dynamics on static quenched tension 

probes.  

(a) Schematic of conventional MTFM probes with a linear scaffold and 4.7 pN hairpin. (b) 

Determination of MTFM probe quenching efficiency on an SLB. Teal circles represent the 

mean intensity from 6 individual measurements. Bars represent the mean ± s.d. (error bars), 

2 experiments.  (c,d) Representative images and linescan analysis of NIH 3T3 cells forming 

podosomes one hour after addition to MTFM probes on an SLB. To minimize the 

contribution of autofluorescence, Cy3B images are normalized to the non-podosome signal 

underneath the cell. (N = 42 cells, 3 experiments) (e) Representative first frame of a 3.7 s 

MTFM epifluorescence timelapse with 73 frames to mimic an MFM experiment. (f) 

Kymograph of linescan in (e). (g) Linescan analysis of 3 representative podosomes in f 

show only small noise-dominated fluctuations in MTFM ring signal (N = 35 cells, 3 

experiments). All scale bars, 5 μm. 
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A.1.4 Molecular Force Microscopy 

 

Figure A 16 MFM set-up and excitation-resolved polarization validation.  

(a) Optical configuration for MFM. The excitation polarization was varied using a ½ wave 

plate and a rotating polarizer. (b,c) To validate our MFM set-up, we imaged SLB-coated 

silica beads loaded with DiI. DiI is known to align parallel to the membrane324. The green 

arrow indicates the direction of the fluorophore’s dipole. (d) Representative images of DiI 

loaded beads at varying excitation polarization angles (N=3). (e) Representative per-pixel 

plot of fluorescence intensity as a function of excitation polarization. The phase of the 

sinusoid (indicated by the red arrow) corresponds to the azimuthal angle, which is the 

measured orientation of the fluorophore’s transition dipole moment. (f) Map of DiI 

orientation on an SLB-coated bead reveals that DiI is parallel to the SLB surface. (g) 

Representative per-pixel plot of normalized and bleach-corrected fluorescence intensity in 

podosome shown in Figure 18b as a function of excitation polarization does not reveal 

significant variation in fluorescence intensity with varying excitation polarization 
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orientation. Teal circles correspond to background fluorescence, and dark blue circles 

correspond to podosome fluorescence. Scale bars, 1 µm.  

 

 

Figure A 17 Emission resolved fluorescence data does not indicate lateral 

organization of integrin forces in podosomes.  

(a) Optical configuration for emission resolved fluorescence polarization imaging. Tension 

probe fluorescence emission was split into parallel and perpendicular channels using a 

polarizing beamsplitter. (b) Representative DiI-loaded SLBs on 5 µm silica beads exhibit 

systematic variations in anisotropy around the bead perimeter (consistent with DiI 

alignment parallel to the SLB on the bead surface), validating emission resolved 

polarization imaging (N = 23 beads, 3 experiments). (c) Representative emission resolved 

polarization imaging of a podosome-forming cell (N=29 cells, 2 experiments). (d) 

Simulated podosome (radius = 1 μm) with a contractile ring of 20° (selected to approximate 

MFM data). In contrast with the anisotropy of DiI-doped SLBs on 5 µm beads, podosome 

integrin tension does not exhibit systematic spatial variations in anisotropy. White arrows 

indicate laser polarization. 
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A.1.5 Mechanisms of Podosome Force Generation 

 

 

Figure A 18 Actin polymerization and nonconventional myosin regulate podosome 

mechanics.  

(a, b) Podosome depletion radius before and after drug treatment with 50 μM Y27632 or 

0.5 μM Jasplakinolide, respectively.  Statistics were performed with a two-tailed Mann-

Whitney test. Teal lines represent the median. Outliers were excluded (median ± 3 scaled 

median absolute deviations). Each condition contains data from at least 91 individual 

podosomes with an eccentricity of <0.7 from at least 30 cells, 3 experiments.  
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Figure A 19 Myosin IIa is dispensable in podosome ring force generation.  

(a) Representative images of a podosome-forming cell before and after treatment with 50 

μM blebbistatin. (b) Average percent open probes in podosomes per cell before and after 

blebbistatin treatment. Blue and red lines represent an increase or decrease in percent open 

probes per cell, respectively. Grey horizontal lines represent the mean percent open probes. 

Statistics were performed with a two-tailed paired Students t-test. 31 cells, 4 experiments.  
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Scale Bar, 2.5 μm. (c) Podosome depletion radius before and after drug treatment with 50 

μM Blebbistatin. Statistics were performed with a two-tailed unpaired t-test. Teal bars 

represent the mean. Outliers were excluded (Median ± 3 scaled median absolute 

deviations). Each graph contains data from at least 69 individual podosomes with an 

eccentricity of <0.7, 4 experiments. (d) Representative images of actin staining of cells 

treated with nontargeting siRNA or siMYH9 after ~12 hours on glass. MYH9 knockdown 

cells had impaired focal adhesion formation. Representative focal adhesions are marked by 

white arrows. Scale Bar, 5 μm. (e) Representative MT-FLIM images of podosome-forming 

transfected cells on an SLB. Scale Bar, 5 μm. (f) Average fluorescence lifetime in 

podosome regions of control and siMYH9 cells. Teal bars represent the mean, and grey bars 

represent the mean SLB fluorescence lifetime. At least 47 cells per condition were 

analyzed, 3 experiments. Statistics were performed with a two-tailed unpaired t test. (g) 

Average percent open in podosome regions of control and siMYH9 cells. Teal bars 

represent the median. At least 47 cells per condition were analyzed, 3 experiments. 

Statistics were performed with a two-tailed Mann-Whitney Test. (h) Podosome depletion 

radius in siNT and siMYH9 cells.  Statistics were performed with a two-tailed, Mann-

Whitney Test. Outliers were excluded (median ± 3 scaled median absolute deviations). 

Teal bars represent the median. Each condition contains data from at least 74 individual 

podosomes with an eccentricity of <0.7, 3 experiments. ns, P>0.05, *P<0.05. 
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A.1.6 Manipulation of Podosome Mechanics 

 

 

Figure A 20 Kinetics of fluorescence recovery after biotin photostimulation.  

(a) Representative images of SLBs with DNA probes attached to the SLB with either 

regular or photocleavable biotin. (b) SLBs were photostimulated in the red box as 

described in Figure 20c. Scale bar, 5 μm. (c) Quantification of fluorescence in the 

photostimulation region indicated in (a). DNA with a photocleavable biotin was ~60% 

released. SLBs recovered by lateral diffusion. Red lines represent SLBs with 

photocleavable biotin (+PC); black lines represent control SLBs with regular biotin (-PC). 

SLBs lacking a photocleavable biotin group were not released or photobleached under 

these illumination conditions. Data represent the mean ± s.e.m. (error bars), 3 experiments. 
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Figure A 21 Integrin tension is released following PCB photostimulation.  

(a) Schematic of photocleavable tension probes. When the biotin anchor is cleaved with a 

405 nm laser, the probe detaches from the bilayer and refolds, severing the podosome’s 

mechanical connection to the SLB and quenching Cy3B fluorescence. (b,c) Representative 

time-lapse acquisitions of podosome tension proximal and distal to the site of 

photostimulation on substrates with a photocleavable biotin group and with a regular biotin 

anchor. (d) Percent change in tension proximal (blue) and distal (green) to photocleavage 

on probes containing regular biotin and PCB. Statistics were performed with a 2-way 

ANOVA. Each group contained at least 23 cells, 3 experiments. ****P<0.0001. All scale 

bars, 5 μm. 
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Figure A 22 Analysis protocol for photocleavable biotin experiments  

(a) Flowchart for PCB tension analysis. Masks were generated from the -12 s image, 

because the signal-to-noise ratio was not sufficiently high to reliably identify photo-

stimulated podosomes at later time points. First, tension regions were identified by 

intensity thresholding of the -12 s pre-stimulation image. Then, small objects in the 

background were removed, and a majority filter was used to fill any single pixel holes in 

rings. The tension mask was multiplied by both the raw tension signal and by the 

photostimulaton masks exported from Nikon Elements to produce quantifiable tension 

maps for proximal and distal regions of the cell. Proximal regions corresponded to the 7 
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μm2 region that was photocleaved. (b) Analysis flowchart for PCB protrusion experiments. 

To generate masks of podosome depletion, the fluorescence images at -12 s and 29 s were 

intensity thresholded and multiplied by masks of the cell area, determined by the 

transmitted light, and by the photostimulation mask, which was exported from Nikon 

Elements. The cell area mask served to remove any holes in SLB in the field of view. 

Podosome masks were overlapped, and any podosomes in the original mask that aligned 

with the overlap mask were accepted. Clear podosome doublets were split in two using a 

2-pixel line. Single podosomes were processed. A small percentage of podosomes could 

not be clearly distinguished from their neighbors or were double-counted in the overlap 

criteria; these data were excluded. 
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Figure A 23 Podosome protrusion is primarily perturbed at the site of 

photocleavage.  

(a,b) Representative time-lapse acquisitions of probe density proximal and distal to the site 

of photostimulation on substrates with a photocleavable biotin group and with a regular 

biotin anchor. (c) Percent change depletion radius proximal (blue) and distal (green) to 

photocleavage on probes containing regular biotin and PCB at t = 29 s. Statistics were 

performed with a 2-way ANOVA. Each group contained at least 79 podosomes across 3 

experiments. Outliers were excluded (median ± 3 scaled median absolute deviations). ns 

P>0.05, ****P<0.0001. Scale Bar, 5 μm. 

  



 186 

A.1.7 Cell Culture 

 

Figure A 24 NIH 3T3 Cell Profile 

Cell profile by IDEXX Bioanalytics. Short tandem repeat analysis of NIH-3T3 cells reveals 

an 85% match to the standard, confirming cell line identity308. 
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A.2  Analysis of DNA Hairpin-Based Tension Probes for Cellular Imaging 

A.2.1 Probe synthesis and purification 

Table A 6 Oligonucleotide Sequences 

Summary of oligonucleotides used in this study. IDT = Integrated DNA Technologies, BT 

= Biosearch Technologies. 

Purpose Sequence Source 

4.7 pN (+ Spacers) 

GTG AAA TAC CGC ACA GAT GCG TTT GTA TAA ATG 

TTT TTT TCA TTT ATA C TTT AAG AGC GCC ACG 

TAG CCC AGC  

IDT 

4.7 pN (- Spacers) GTG AAA TAC CGC ACA GAT GCG GTA TAA ATG TTT 

TTT TCA TTT ATA C AAG AGC GCC ACG TAG CCC 

AGC 

IDT 

4.7 pN (+ Spacers) 

Complementary 

Strand 

AAA GTA TAA ATG AAA AAA ACA TTT ATA CAA A IDT 

4.7 pN (- Spacers) 

Complementary 

GTA TAA ATG AAA AAA ACA TTT ATA C IDT 

5’-Alk-3’-Amine /5Hexynyl/ TTT GCT GGG CTA CGT GGC GCT CTT 

/3AmMO/ 

IDT 

5’-Alk-5T-3’-
Amine 

/5Hexynyl/ TTT GCT GGG CTA CGT GGC GCT CTT TTT 

TT /3AmMO/ 

IDT 

5’-Amine-3’-Biotin /5AmMC6/CG CAT CTG TGC GGT ATT TCA CTT T/3Bio IDT 

5’-BHQ1-3’-Biotin  

BHQ-1-CGCATCTGTGCGGTATTTCACTT-Biotin 

BT 

5’-BHQ1-3’ BHQ-1-CGCATCTGTGCGGTATTTCACTT BT 

5’-9TBHQ1-3’-
Biotin 

CGCATCTG-T(BHQ-1)-GCGGTATTTCAC-Biotin BT 

5’-9TBHQ1-3’ CGCATCTG-T(BHQ-1)-GCGGTATTTCAC BT 

5’-9Tamine-3’ CGC ATC TG/iAmMC6T/ CGG TAT TTC ACT TT/3Bio/ IDT 

5’-Dual Biotin-

4.7pN (-Spacers)-

3’ 

/52-Bio/GT GAA ATA CCG CAC AGA TGC GGT ATA 

AAT GTT TTT TTC ATT TAT ACA AGA GCG CCA CGT 

AGC CCA GC 

IDT 

Linear (- Spacers) GTG AAA TAC CGC ACA GAT GCG AAG AGC GCC 

ACG TAG CCC AGC 

IDT 

Linear (+ Spacers)  GTG AAA TAC CGC ACA GAT GCG TTT TTT AAG 

AGC GCC ACG TAG CCC AGC 

IDT 
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* Note that the biotin location was swapped between single and dual biotin experiments 

due to limitations in commercial availability; we expect this effect to be negligible. 

 

Figure A 25 HPLC purification of modified oligonucleotides.  

HPLC chromatograms of A. cRGDfk(PEG-PEG)-Azide. B. 5’-cRGDfk(PEG-PEG)- 3’-

Amine (intermediate), C. 5’-cRGDfk(PEG-PEG)-3’-Cy3B, D. 5’-Alk-3’-Cy3B, E. 5’-

cRGDfk(PEG-PEG) -3’-A488, F. 5’-9TCy3B-3’-Bio, G. 5’-Alk-5T-3’-Cy3B, H. 5’-

Cy3B-3’-Bio. Arrows indicate the product peak. D shows a repurified oligonucleotide, due 

instrument/input error. 
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A.2.2 Tension Probe Characterization 

 

 
Figure A 26 Absorbance spectra of single-dye modified tension probes.  

Schematics and absorption spectra of tension probes labeled only with the donor (A) or 

acceptor (B). Spectra represent the mean ± s.e.m. for 3 experiments. Outlier spectra 

(Baseline ± 3 median absolute deviations) were omitted.  
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Figure A 27 Representative TCSPC curve fits.  

Representative TCSPC decay curves and curve fits (dashed black lines) and residuals for 

close and open tension probes on SLBs. Probes were fit in SymPhoTime as described in 

the Methods section using the system IRF (grey). For visualization, curves are averaged 

over 5 time-bin window. Open probes fit to a monoexponential decay. Closed probes were 

fit to a bi- or triexponential decay. For all curves, chi-squared < 2. 
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Figure A 28 Analysis of intensity and lifetime derived quenching efficiencies.  

Scatter plots of quenching efficiencies calculated using the fluorescence intensity (I) versus 

the amplitude-average lifetime (𝜏). Bars and error bars represent the mean ± SD for at least 

3 experiments. Outliers beyond 3 median absolution deviations were omitted. Statistics 

were performed using a two-tailed unpaired T-test. P values are reported as ns P>0.05, *P 

< 0.05, **P < 0.01, ***P < 0.0001, **** P < 0.0001. 
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Table A 7 Summary of Fluorescence Lifetime, Intensity, and Quenching Efficiencies 

in Open and Closed Tension Probes 

Measurements represent the mean of at least 3 experiments per sample. Error represents 

the standard error of the mean (Amplitude-Weighted Lifetime, Intensity) or standard 

deviation (QE). For the FAST-FLIM Average Lifetime, error reflects the histogram width. 

The standard error of the mean is shown in parentheses.  

 

 τAv. (FAST-FLIM) (ns) τAv. (Amplitude) (ns) Intensity (A.U.) QE (%) 

 Closed  Open Closed Open Closed Open Intensity Lifetime 

A_Cy3B/BHQ1- 

2.388 ± 0.428 

(0.076) 

2.592 ± 0.325 

(0.220) 1.760 ± 0.188 2.566 ± 0.037 56 ± 11 5210 ± 307 99 ± 1 31 ± 18 

A_Cy3B/BHQ1+ 

1.685 ± 0.251 

(0.036) 

2.589 ± 0.296 

(0.037) 1.092 ± 0.015 2.621 ± 0.009 102 ± 10 6030 ± 351 98 ± 0 58 ± 2 

D_Cy3B/BHQ1- 

1.777 ± 0.500 

(0.110) 

2.405 ± 0.554 

(0.051) 1.328 ± 0.112 2.481 ± 0.000 66 ± 8 3594 ± 298 98 ± 0 46 ± 7 

D_Cy3B/BHQ1+ 

1.654 ± 0.199 

(0.028) 

2.574 ± 0.279 

(0.010) 1.245 ± 0.042 2.523 ± 0.004 132 ± 24 2736 ± 311 94 ± 2 51 ± 3 

S_Cy3B/BHQ1- 

1.089 ± 0.149 

(0.017) 

2.659 ± 0.319 

(0.014) 0.743 ± 0.008 2.693 ± 0.007 655 ± 25 2988 ± 71 78 ± 3 72 ± 1 

S_Cy3B/BHQ1+ 

1.626 ± 0.208 

(0.006) 

2.625 ± 0.324 

(0.056) 1.432 ± 0.012 2.634 ± 0.044 1135 ± 78 2249 ± 170 49 ± 8 46 ± 3 

         

A_A488/Cy3B- 

1.349 ± 0.465 

(0.132) 

3.003 ± 0.712 

(0.067) 0.418 ± 0.034 3.061 ± 0.009 80 ± 4 2153 ± 107 96 ± 1 84 ± 2 

A_A488/Cy3B+ 

1.214 ± 0.164 

(0.059) 

3.292 ± 0.332 

(0.085) 0.688 ± 0.026 3.233 ± 0.009 195 ± 49 1785 ± 122 89 ± 5 78 ± 1 

D_A488/Cy3B- 

1.132 ± 0.170 

(0.035) 

3.093 ± 0.372 

(0.042) 0.713 ± 0.026 3.084 ± 0.015 344 ± 31 2186 ± 147 84 ± 7 77 ± 2 

D_A488/Cy3B+ 

1.434 ± 0.262 

(0.077) 

3.243 ± 0.406 

(0.014) 1.002 ± 0.113 3.255 ± 0.008 475 ± 97 1788 ± 258 74 ± 7 69 ± 7 

S_A488/Cy3B- 

1.520 ± 0.207 

(0.021) 

3.361 ± 0.307 

(0.032) 1.005 ± 0.013 3.345 ± 0.009 379 ± 15 2046 ± 268 78 ± 14 69 ± 1 

S_A488/Cy3B+ 

2.166 ± 0.208 

(0.011) 

3.396 ± 0.288 

(0.014) 1.788 ± 0.018  3.423 ± 0.010 735 ± 43 2021 ± 205 48 ± 1  48 ± 1 

         

A_A488/BHQ1- 

0.943 ± 0.181 

(0.043) 

3.180 ± 0.343 

(0.037) 0.440 ± 0.016 3.244 ± 0.015 92 ± 8 1847 ± 171 95 ± 1 86 ± 1 

A_A488/BHQ1+ 

1.278 ± 0.187 

(0.030) 

3.31 ±  0.365 

(0.047) 0.828 ± 0.007 3.400 ± 0.014 262 ± 25 1668 ± 228 84 ± 4 76 ± 0 

D_A488/BHQ1- 

1.300 ± 0.200 

(0.026) 

3.349 ±  0.389 

(0.011) 0.956 ± 0.003 3.311 ± 0.008 557 ± 44 2177 ± 274 73 ± 10 71 ± 0 

D_A488/BHQ1+ 

1.781 ± 0.239 

(0.038) 

3.361 ±  0.390 

(0.013) 1.410 ± 0.016 3.429 ± 0.009 671 ± 62 2038 ± 130 67 ± 7 59 ± 1 

S_A488/BHQ1- 

1.503 ± 0.263 

(0.040) 

3.3340 ±  0.356 

(0.022) 1.064 ± 0.005 3.388 ± 0.007 592 ± 21 2757 ± 220 78 ± 5 69 ± 0 

S_A488/BHQ1+ 

2.261 ± 0.386 

(0.031) 

3.418 ±  0.475 

(0.016) 1.874 ± 0.016 3.429 ± 0.007 740 ± 169 2087 ± 177 65 ± 5 45 ± 1 
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Figure A 29 Analysis of dual- and single-biotin tension probes on SLBs. 

Scatters plots of the intensity and amplitude-weighted average fluorescence lifetimes of 0 

to 100% open probes on SLBs. Data represent the mean ± s.e.m. for three experiments. 

Data are curve fit using a linear model (A-B) or a biexponential model as used for MT-

FLIM histogram calibration33 (C-D). While nonlinear curve fits better represent the data, 

for this small data set, these curves are likely overfit. Therefore, understanding this 

relationship will require further investigation.  

A.1.1.1 NUPACK Structural Modeling of DNA-based Tension Probes 

For a course-grain view of tension probe structure, we used freely available 

NUPACK software to model open and closed tension probes with and without spacers and 

a 5nt overhang on the donor strand (Figure A 30, A.1.1.1). While this cannot provide the 

atomistic detail provided by smFRET combined with MD simulations, this allowed us to 

understand the broad structural features. NUPACK estimates and illustrates the 

equilibrium pair probabilities. When the probes were opened with a complementary strand, 

probes lacking an overhang had a relatively linear structure. Probes containing a 5nt 

overhang were bent in the open conformation, but the interpretation of these results is 

limited. Even with tension probe’s knicked structure at the TWJ, probes with spacers 

separating the stem-loop structure from the arm sequences were the most 
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thermodynamically stable. Nevertheless, NUPACK modeling suggested that most probes 

lacking spacers still folded, with a fraction of probes exhibiting some peeling of the upper 

arm sequence or the terminal two base-pairs in the step-loop sequence 

  

Figure A 30 Influence of spacer and overhang sequences on three-way junctions in 

tension probes. 

NUPACK equilibrium pair probability analysis of DNA tension probes in the closed and 

open conformations. Probes were modeled at identical temperature, DNA, and salt 

concentrations as experimental analysis. Pair probability is the probability that a given base 

will be paired or unpaired as shown. Thus, unpaired blue bases are equivalent to orange 

paired bases and vice versa. 
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A.2.3 Cellular Imaging 

Figure A 31 Analysis Map for Podosome Identification on High QE Probes 

The FLIM photon counts image was illumination profile corrected and used to select 

regions of interest containing a podosome-forming cell and the SLB background. 

Podosomes were detected by the presence of bright rings in the photon counts image. Scale 

bar, 5 μm. 

 

Figure A 32 Analysis Map for Podosome Identification on Low QE Probes 

The FLIM photon counts image was illumination profile corrected and used to select 

regions of interest containing a podosome-forming cell and the SLB background. 

Podosomes were detected based on the decrease in fluorescence intensity at the podosome 

cores and rings were included through mask dilation. Scale bar, 5 μm.  
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Figure A 33 Analysis Map for Podosome Identification on A_Cy3B/BHQ1- Linear 

Probes 

The FLIM photon counts image was illumination profile corrected and used to select 

regions of interest containing a podosome-forming cell and the SLB background. 

Individual podosome depletion regions were hand-selected and pixels were dilated to 

include the entire podosome region. Scale bar, 5 μm.  
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Figure A 34 Analysis of Tension Probe Signal on S_CY3B/BHQ1- (MT-FLIM) and 

S_Cy3BBHQ1+ Probes.  

(A) Schematic of S_Cy3B/BHQ1- and S_Cy3B/BHQ1+ 4.7 pN and linear probes. (B) 

Quantification of the raw fluorescence lifetime in podosome-regions per cell. Grey lines 

indicate the background average fluorescence lifetime. At least 41 cells from 3 experiments 

were analyzed per sample. Statistics were performed with a grouped 2-way ANOVA 

followed by a multicomparison test. (C) Histograms showing the average fluorescence 

lifetime of podosome regions (teal) versus the SLB background (blue) in 35 cells. Here, 

intensity weighted refers to weighting by the number of photon counts per pixel, not the 

intensity-weighted average lifetime. P values are reported as ns P>0.05, **** P < 0.0001. 
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Figure A 35 Analysis of Tension Probe Signal on A_Cy3B/BHQ1- and 

A_Cy3B/BHQ1+ Probes.  

(A). Schematic of A_Cy3B/BHQ1- and A_Cy3B/BHQ1+ 4.7 pN and linear probes. (B) 

Quantification of the raw fluorescence lifetime in podosome-regions per cell. Grey lines 

indicate the background average fluorescence lifetime. At least 35 cells from 3 experiments 

were analyzed per sample. Statistics were performed with a grouped 2-way ANOVA 

followed by a multiple comparison test. (C) Histograms showing the average fluorescence 

lifetime of podosome regions (teal) versus the SLB background (blue) in 35 cells. Here, 

intensity weighted refers to weighting by the number of photon counts per pixel, not the 

intensity-weighted average lifetime. P values are reported as **** P < 0.0001. 
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Figure A 36 Analysis of Tension Probe Signal on A_A488/BHQ1- and 

A_A488/BHQ1+ Probes 

(A). Schematic of A_A488/BHQ1- and A_ A488/BHQ1+ 4.7 pN and linear probes. (B) 

Quantification of the raw fluorescence lifetime in podosome-regions per cell. Grey lines 

indicate the background average fluorescence lifetime. At least 33 cells from 3 experiments 

were analyzed per sample. Statistics were performed with a grouped 2-way ANOVA 

followed by a multiple comparison test. (C) Histograms showing the average fluorescence 

lifetime of podosome regions (teal) versus the SLB background (blue) in 35 cells. Here, 

intensity weighted refers to weighting by the number of photon counts per pixel, not the 

intensity-weighted average lifetime. P values are reported as **** P < 0.0001 
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APPENDIX B. PERMISSIONS 
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