Project No. A-3210

Project Director: H. L. Bassett
Type Agreement: Del. Order No. 0049 under Contract DAAH01-81-D-A003

Award Period: From	3/25/82	To 9/30/82	(Performance)	(Reports)
Sponsor Amount:	\$50,000			Contracted through:
Cost Sharing:	none			GTRI/G7FX
Title: Geometric	Software	Development		

RESTRICTIONS

See Attached
 \qquad Gov $^{1} t$ Supplemental Information Sheet for Additional Requirements.

 approval where total will exceed greater of 5000 or 125% of approved proposal budget category.

Equipment: Title vests with Government - except that items costing less than $\$ 1,000$ vests with GIT if prinr arproval to purchase is ohtained from Government Contract Officer.

COMMENTS:

Administrative Coordinator Research Property Management Accounting Procurement/EES Supply Services Resagntseryurty-Services
Reports Coordinator_10CA
Legal Servicas (OCA)
Library
EES Public Relations (2)
Computer Input
Project Fite
Other

SPONSORED PROJECT TERMINATION SHEET

Date 7/7/83

Project Title: Geometric Software Model Development
Project No: A-3210 (under BOA File No. 51)
Project Director: H. L. Bassett
Sponsor: USAMICOM/Redstone

Effective Termination Date: $\quad 9 / 30 / 82$
Clearance of Accounting Charges: $11 / 30 / 82$
Grant/Contract Closeout Actions Remaining:

[x] Final Invoice anchetmingriboconnentit
\square Final Fiscal Report
x Final Report of Inventions
x Govt. Property Inventory \& Related CertificateClassified Material CertificateOthe: \qquad

Administrative Coordinator	Rosearch Socurity Services	EES Public Relations (2)
Research Property Management	Lheports Coordinator (OCA)	Computer Input
Accounting	Legal Services (OCA)	Project File
Procurement/EES Supply Services	Library	Other - Bassett

TECHNICAL REPORT \#1
COST AND PERFORMANCE REPORTS \#1 and \#2
REPORT PERIOD
25 March 1982 - 30 Apri1 1982
GEOMETRIC SOFTWARE MODEL DEVELOPMENT
H. L. Bassett
Contract DAAHO1-81-D-A003
Delivery Order 0049, WPAFB ECM RDF-48
GIT/EES Project A-3210
Effective Date: 31 March 1982
Expiration Date: 30 September 1982
Prepared For
U.S. Army Missile CommandRedstone Arsenal, Alabama 35898Attention: DRSMI-RDF
Prepared By
Engineering Experiment StationGeorgia Institute of TechnologyAtlanta, Georgia 30332

TASK STATEMENT

1. The contractor shall develop digital models of two types of terrain specified by the Government.
2. The contractor shall develop a geometric software model to include the signal source, the receiver, and pertinent terrain influences for the specific radio frequency (RF) environments and scenarios of interest, as defined in Wright Patterson ECM report RFD-48.
3. The contractor shall modify existing contractor simulations to incorporate simulation models developed under this task and shall exercise the resulting model to produce RF environmental data for use in and compatible with the MICOM Radio Frequency Simulation System (RFSS).
4. Government furnished items associated with this task include system data associated with RF signal sources and receiver characteristics, terrain data, and scenario information. These items will be provided to the contractor upon award of contract, as they become available to the Government, or as they are produced by the Government.

WORK PERFORMED IN THIS REPORTING PERIOD
Terrain data were obtained for two different terrains and these data have been digitized and incorporated into a software model. The overall model has been designed and the software has been coded. Test cases have been run for certain engagement scenarios over one terrain.

In general, excellent progress has been made. A number of meetings have been held with MICOM, ASD, and Boeing personnel so that a mutual understanding of the Georgia Tech model has been gained.

PROBLEMS ENCOUNTERED IN THIS REPORTING PERIOD

The primary problem has been in the acquisition of all the input parameters required in building the software model. We think we have acquired sufficient input data to finalize the design of the model.

WORK PLANNED FOR THE NEXT REPORTING PERIOD

The look-up data tables will be generated at Georgia Tech and, upon completion, will be inserted into the RFSS computer for use during the simulations.

A-3210, Delivery Order 0049

COST INFORMATION

The following charges have been concurred against the contract during the period 25 March - 30 April 1982.

	Expended	Encumbered
Personal Services (PS)	24,000	
Materials and Supplies	--	
Travel	1200	
Retirement (@ 11.59\% of PS)	2781	
Computer	--	
Overhead (@ 55\% of above charges)	14,796	

The breakdown of personal services is as follows:

	Dollars	Approx. Man-Hours
Principal Research Scientist/Engineer	2100	112
Senior Research Scientist/Engineer	4400	96
Research Scientist II/Engineer II	12,000	640
Research Scientist I/Engineer I	5200	437
Technicians/Draftsmen		
Students		
Secretarial/Clerical/Other	300	33
TOTAL	24,000	1318

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$26,046.00	24,000	2046.00
Materials and Supplies	698.85	--	698.85
Travel and Shipping	2,500.00	1200	1300.00
Computer		--	
Retirement	3,019.15	2781	238.15
Overhead	17,736.00	14,796	2940.00
Encumbered			
TOTAL	\$50,000.00	42,777	7223.00

Based on present full funding, the funding and equivalent man-hours are sufficient to complete the task. Approximately 85% of the proposed task has been completed.
TECHNICAL REPORT \#2
COST AND PERFORMANCE REPORT \#3
REPORT PERIOD
1 May 1982 - 31 May 1982
GEOMETRIC SOFTWARE DEVELOPMENT
H. L. Bassett
Contract DAAH01-81-D-A003
Delivery Order 0049, WPAFB ECM RDF-48
GIT/EES Project A-3210
Effective Date: 25 March 1982
Expiration Date: 30 September 1982
Prepared For
U.S. Army Missile Command
Redstone Arsenal, Alabama 35898
Attention: DRSMI-RDF
Prepared By
Engineering Experiment Station
Georgia Institute of TechnologyAtlanta, Georgia 30332

TASK STATEMENT

1. The contractor shall develop digital models of two types of terrain specified by the Government.
2. The contractor shall develop a geometric software model to include the signal source, the receiver, and pertinent terrain influences for the specific radio frequency (RF) environments and scenarios of interest, as defined in Wright Patterson ECM report RFD-48.
3. The contractor shall modify existing contractor simulations to incorporate simulation models developed under this task and shall exercise the resulting model to produce RF environmental data for use in and compatible with the MICOM Radio Frequency Simulation System (RFSS).
4. Government furnished items associated with this task include system data associated with RF signal sources and receiver characteristics, terrain data, and scenario information. These items will be provided to the contractor upon award of contract, as they become available to the Government, or as they are produced by the Government.

WORK PERFORMED IN THIS REPORTING PERIOD
GIT delivered to MICOM RFSS several computer tapes which provide look-up tables for use in RFSS simulations. The tables contain diffuse multipath returns for several of the scenarios designated by MICOM. There are nine parameters of interest within each table:

1. The missile attitude.
2. The speed along the line of sight.
3. The range along the line of sight.
4. The apparent location of the diffuse multipath in elevation.
5. The standard deviation in elevation of the above.
6. The apparent location of the diffuse multipath in azimuth.
7. The standard deviation in azimuth of the above.
8. The total diffuse power, and
9. The line of sight Doppler frequency shift.

In addition, the power of each of sixty-four 100 Hz wide Doppler bins is provided with bin forty-five representing the line of sight Doppler frequency.

Also delivered were tables that included specular multipath.

PROBLEMS ENCOUNTERED IN THIS REPORTING PERIOD

The primary problems relate to software debugging and computer run times. The computer run time to complete a table for diffuse multipath is 48 or more hours.

WORK PLANNED FOR NEXT REPORTING PERIOD
Documentation efforts and consultation to MICOM and Boeing/RFSS will be the major efforts during the next reporting period.

A-3210, Delivery Order 0049

COST INFORMATION

The following charges have been incurred against the contract during the period 1 May 1982-31 May 1982 .

	Expended	Encumbered
Personal Services (PS)	\$	
Materials and Supplies	500	
Travel	800	
Retirement (@ 11.59% of PS)		
Computer	800	
Overhead (@ 55\% of above charges)	\$ 1,155	

The breakdown of personal services is as follows:
Dollars
Approx. Man-Hours
Principal Research Scientist/Engineer \qquad
\qquad
Senior Research Scientist/Engineer \qquad
\qquad
Research Scientist II/Erigineer II

Research Scientist I/Engineer I

Technicians/Draftsmen

Students

\qquad
Secretarial/Clerical/Other
\qquad
\qquad TOTAL

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$26,046.00	\$26,046.00	\$ --
Materials and Supplies	698.85	500.00	198.85
Travel and Shipping	2,500.00	2,000.00	500.00
Computer		800.00	(800.00)
Retirement	3,019.15	3,019.15	--
Overhead	17,736.00	17,800.83	(65.00)
Encumbered			
TOTAL	\$50,000.00	\$50,165.98	\$(165.98)

Based on present full funding, the funding and equivalent man-hours are sufficient to complete the task. Approximately 100% of the proposed task has been completed.
TECHNICAL REPORT \#'3, \#4
COST AND PERFORMANCE REPORT \#4, \#5
REPORT PERIOD
1 June 1982 - 31 July 1982
GEOMETRIC SOFTWARE DEVELOPMENT
BY
H. L. Bassett
Contract DAAHO 1-81-D-AO 03
Delivery Order 0049, WPAFB ECM RDF-48
GIT/EES Project A-3210
Effective Date: 25 March 1982
Expiration Date: 30 September 1982
Prepared forU. S. Army Missile CommandRedstone Arsenal, Alabama 35895Attention: DRSMI-RDF
Prepared by
Engineering Experiment StationGEORGIA INSTITUTE OF TECHNOLOGYAtlanta, Georgia 30332

TASK STATEMENT

1. The contractor shall develop digital models of two types of terrain specified by the Government.
2. The contractor shall develop a geometric sof tware model to include the signal source, the receiver, and pertinent terrain influences for the specific radio frequency (RF) environments and scenarios of interest, as defined in Wright Patterson ECM report RFD-48.
3. The contractor shall modify existing contractor simulations to incorporate simulation models developed under this task and shall exercise the resulting model to produce RF environmental data for use in and compatible with the MICOM Radio Frequency Simulation System (RFSS).
4. Government furnished items associated with this task include system data associated with RF signal sources and receiver characteristics, terrain data, and scenario information. These items will be provided to the contractor upon award of contract, as they become available to the Government, or as they are produced by the Government.

WORK PERFORMED IN THIS REPORTING PERICD
Final data tables were delivered to MICOM RFSS to be used in the simulation runs. Corrections were made to one set of antenna patterns because of a misunderstanding in the coordinate system.

At Huntsville, we generated the specular tables to correspond with the new diffuse data and consolidated all of the deliverable tables onto a single magnetic tape.

Finally, a table was generated for the case of a different altitude than was initially required.

PROBLEMS ENCOUNTERED DURING THIS REPORTING PERIOD
Problems were primarily in the area of obtaining accurate antenna pattern coordinates. This has been resolved.

The final report is being written and will be delivered in August 1982. No further work, other than consultation, will be done on this project.

A-3210, Delivery Order 0049

COST INFORMATION

The following charges have been concurred against the contract during the period 1 June - 31 July 1982 ___

	Expended	Encumbered
Personal Services (PS)	-	
Materials and Supplies	-	
Travel	-	
Retirement (@ 11.59% of PS)		
Computer		
Overhead (@ 55% of above charges)	-	

The breakdown of personal services is as follows:

	Dollars	Approx. Man-Hours
Principal Research Scientist/Engineer		
Senior Research Scientist/Engineer		-
Research Scientist II/Engineer II	-	
Research Scientist I/Engineer I	-	
Technicians/Draftsmen	-	
Students	-	
Secretarial/Clerical/Other	-	
TOTAL		

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$26,046.00	\$26,046	\$--
Materials and Supplies	698.85	500	198.85
Travel and Shipping	2,500.00	2,000	500.00
Computer		800	(800.00)
Retirement	3,019.15	3,019. 15	--
Overhead	17,736.00	17,800.83	(65.00)
Encumbered			
TOTAL	\$50,000.00	\$50,165.98	\$(165.98)

Based on present full funding, the funding and equivalent man-hours are sufficient to complete the task. Approximately 100% of the proposed task has been completed.
TECHNICAL REPORT \#5
COST AND PERFORMANCE REPORT \# 6
REPORT PERIOD
1 July 1982 - 31 August 1982
GEOMETRIC SOFTWARE DEVELOPMENT
By
H. L. Bassett
Contract DAAHO 1-81-D-A003
Dellvery Order 0049, WPAFB RDF-48
GIT/EES Project A-3210
Effective Date: 25 March 1982
Expiration Date: 30 September 1982
Prepared for
U. S. Army Missile Command
Redstone Arsenal, Alabama 35895
Attention: DRSMI-RDF
Prepared by
Engineering Experiment Station GEORGLA INSTITJTE OF TECHNOLOGY Atlanta, Georgia 30332

TASK STATEMENI

1. The contractor shall develop digital models of two types of terrain specified by the Government.
2. The contractor shall develop a geometric software model to include the signal source, the receiver, and pertinent terrain influences for the specific radio frequency (RF) environments and scenarios of interest, as defined in Wright Patterson ECM Report RFD-48.
3. The contractor shall modify existing contractor simulations to incorporate simulation models developed under this task and shall exercise theresulting model to produce $R F$ environmental data for use in and compatible with the MICOM Radio Frequency Simulation System (RFSS).
4. Government furnished items associated with this task include system data associated with RF signal sources and receiver characteristics, terrain data, and scenario information. These items will be provided to the contractor upon award of contract, as they become available to the Government, or as they are produced by the Government.

WORR PERFORMED IN THIS REPORTING PERIOD
All effort has been devoted to the writing of the final report.

PROBLEMS ENCOUNTERED DURING THIS REPORT PERIOD
None

WORK PLANNED FOR NEXT REPORTING PERIOD
The final report is being written and will be delivered in August 1982. No further work, other than consultation, will be done on this project.

A-3210, Delivery Order 0049

COST INFORMATION

The following charges have been concurred against the contract during the period 1 June - 31 July 1982

	Expended	Encumbered
Personal Services (PS)	-	
Materials and Supplies	-	
Travel	-	
Retirement ($@ 11.59 \%$ of PS)	-	
Computer	-	
Overhead (@ 55% of above charges)	-	

The breakdown of personal services is as follows:
Dollars
Approx. Man-Hours
Principal Research Scientist/Engineer \qquad -
Senior Research Scientist/Engineer
Research Scientist II/Engineer II
Research Scientist I/Engineer I
Technicians/Draftsmen
———— \qquad

Students
\qquad
\qquad

Secretarial/Clerical/Other
\qquad
\qquad

TOTAL

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$26,046.00	\$26,046	\$--
Materials and Supplies	698.85	500	198.85
Travel and Shipping	2,500.00	2,000	500.00
Computer		800	(800.00)
Retirement	3,019.15	3,019.15	--
Overhead	17,736.00	17,800.83	(65.00)
Encumbered			
TOTAL	\$50,000.00	\$50,165.98	\$(165.98)

Based on present full funding, the funding and equivalent man-hours are sufficient to complete the task. Approximately 100 \% of the proposed task has been completed.
TECHNICAL REPORT \#6
COST AND PERFORMANCE REPORT \#7
REPORT PERIOD
1 September - 31 September 1982
GEOMETRIC SOFTWARE DEVELOPMENT
By
H.L. Bassett
Contract DAAHO1-81-D-A003
Delivery Order 0049, WPAFB RDF-48
Effective Date: 25 March 1982
Expiration Date: 30 September 1982
Prepared for
U. S. Army Missile Command
Redstone Arsenal, Alabama 35895
Prepared by
Engineering Experiment StationGEORGIA INSTITUTE OF TECHNOLOGY
Atlanta, Georgia 30332

TASK STATEMENT

1. The contractor shall develop digital models of two types of terrain specified by the Government.
2. The contractor shall develop a geometric software model to include the signal source, the receiver, and pertinent terrain influences for the specific radio frqeuency (RF) environments and scenarios of interest, as defined in. Wright Patterson ECM Report RFD-48.
3. The contractor shall modify existing contractor simulations to incorporate simulation models developed under this task and shall exercise the resulting models to produce RF environmental data for use in and compatible with the MICOM Radio Frequency Simulation System (RFSS).
4. Government furnished items associated with this task include system data associated with RF signal sources and receiver characteristics, terrain data, and scenario information. These items will be provided to the contractor upon award of contract, as they become available to the Government, or as they are produced by the Government.

WORK PERFORMED IN THIS REPORTING PERIOD
The final report has been delivered to DRSMI/RDF.

PROBLEMS ENCOUNTERED DURING THIS REPORT PERIOD
None

WORK PLANNED FOR NEXT REPORTING PERIOD
None

A-3210, Delivery Order 0049

COST INFORMATION

The following charges have been concurred against the contract during the period I September - 31 September 1982

Personal Services (PS)	Expended	Encumbered
Materials and Supplies	-	
Travel	-	
Retirement (@ 11.59% of PS)	-	
Computer		
Overhead (@ 55\% of above charges)	-	

The breakdown of personal services is as follows:
Dollars
Approx. Man-Hours
Principal Research Scientist/Engineer \qquad
Senior Research Scientist/Engineer \qquad $\underline{\longrightarrow}$
Research Scientist II/Engineer II
\qquad
\qquad
Research Scientist I/Engineer I \qquad
Technicians/Draftsmen \qquad
\qquad
Students \qquad
\qquad
Secretarial/Clerica1/Other \qquad

TOTAL \qquad
\qquad
The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$26,046.00	\$26,046	\$--
Materials and Supplies	698.85	500	198.85
Travel and Shipping	2,500.00	2,000	500.00
Computer		800	(800.00)
Retirement	3,019.15	3,019.15	--
Overhead	17,736.00	17,800.83	(65.00)
Encumbered			
TOTAL	\$50,000.00	\$50,165.98	\$(165.98)

Based on present full funding, the funding and equivalent man-hours are sufficient to complete the task. Approximately 100% of the proposed task has been completed.

Final Report

GIT/EES Project A-3210

GEOMETRIC SOFTWARE MODEL DEVELOPMENT

by
M. S. West, J. W. Peifer, D. R. Morehead, J. R. Galt

Contract No. DAAH01-81-D-A003

Prepared for
U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama
DRSMI/RDF

Prepared by
GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station Atlanta, Georgia 30332

PREFACE

In March 1982, Georgia Tech began work on a bistatic multipath Doppler computer model for the US Army Missile Command/Radio Frequency Simulation System (MICOM/RFSS) facility in Huntsville, Alabama. This work culminated in June 1982 with the delivery to MICOM of 128 Doppler multipath tables. The receive antenna in all cases was omnidirectional. The primary subject of this report is the Doppler multipath model which was used in the computer implementation. The Beckmann-Barton model was the basis for this implementation and a number of references are available which describe the theory in some detail [1, 2, 3]. The implementation itself was a 6 man-month effort during February, March, and April. David Morehead was primarily responsible for the terrain data bases. James Galt was primarily responsible for the development of the computer scenarios which were run for MICOM. Michael West and John Peifer were responsible for the development of the code which implemented the Beckmann-Barton model. Maurice Long and Steve Zehner acted as technical consultants throughout the program, while Harold Bassett served as Program Manager. The initial software delivery occurred on May 10,1982 and represented the technical culmination of the project. Subsequent to this delivery, additional data were supplied to RFSS.
Section Title Page11.11.21.31.41.5
6 REFERENCES 32
THE BISTATIC MULTIPATH DOPPLER MODEL 1
Introduction 1
Bistatic Cross Sections for Diffuse Multipath 2
The Diffuse Doppler Model 6
The Apparent Direction. 7
The Specular Return 10
TERRAIN MODEL 13
ANTENNA PATTERNS 16
Introduction. 16
Measurement of Azimuth and Elevation 16
Contractor EAST Data. 18
Contractor WEST Data 20
SIMULATED FLIGHT SCENARIOS 23
SUMMARY AND CONCLUSIONS 29

LIST OF FIGURES

Figure Title Page
1 Comparison of the Beckmann and Gaussian distributions as calculated in [6] 4
2 Illustration of the geometry used in the azimuth over elevation angle calculations 17
3 Display of both azimuth and elevation cut antenna data for EAST. 18
4 Display of azimuth cut antenna data for WEST 22
5 Illustration of the down and cross range launch conditions 24
6 Samples of the model flight paths for 8 kilometer down ranges and a 300 foot target altitude. 25
7 Samples of the model flight paths for 16 kilometer down ranges and a 300 foot target altitude. 26
8 Samples of the model flight paths for 24 kilometer down ranges and a 300 foot target altitude. 27

SECTION 1

THE BISTATIC MULTIPATH DOPPLER MODEL

1.1 INTRODUCTION

The heart of the geometric software model work is the multipath model. In the area of radar, Barton is an acknowledged authority in multipath modeling and the Georgia Tech computer program is based on two of his papers [1, 2]. Since the implementation is by computer, the integrals presented by Barton were discretized and Doppler shifts were recorded. Multipath modeling work had been done earlier at Georgia Tech on a series of models widely known as TAC ZINGER [4,5]. Since the main interest of TAC ZINGER, however, was speed of computation, a number of numerical shortcuts had been taken which were not appropriate here. In addition, TAC ZINGER does not compute Doppler shifts, and the primary contributions to the multipath are assumed to occur along the line of sight. Consequently, the MICOM/RFSS program was written from scratch while employing many of the concepts embodied in TAC ZINGER.

The multipath model developed for this project separates the multipath signal into diffuse and specular components. This distinction is artificial in that the two cannot be separately measured in the real world. For this application, the diffuse and specular signals are modeled separately because the two components are broadcast independently from two channels on the RFSS array. The assumption is made that the composite of the separately transmitted diffuse and specular signals will adequately represent the actual multipath signal environment.

In addition to signal strength, the frequency distribution of the multipath signal is also of considerable interest. The signal is spread over a range of frequencies due to the relative motion between the missile and target as they fly over the terrain. Simplifying assumptions include (1) assuming there is no spread in frequency caused by motion on the terrain (or
vegetation on the terrain), (2) approximating the diffuse spectrum by a histogram based on the Doppler shifts associated with the midpoints of terrain facets, and (3) assuming that the specular signal can be characterized as a line spectrum.

The remainder of this section contains a complete description of the Beckmann-Barton multipath Doppler model as implemented by Georgia Tech. This multipath model resides on several different computers including an SEL CONCEPT 87 and a VAX 11/780. This section also discusses some of the limitations of the model due to the necessary implementation of the results at the RFSS facility, the most stringent requirements being on the RFSS illumination directions and the update rate.

Multipath models require data bases of specific or generic terrain features. The RFSS simulation required two data bases, one for terrain reminiscent of the White Sands Missile Range, and one for the B-70 test range at Eglin Air Force Base. Section 2 discusses the development of these two data bases, the dielectric constants, and other terrain dependent quantities.

The RFSS required accurate multipath data for two different transmitting antennas and a single omni-directional receiving antenna. Thus one of the most important aspects of the analysis was the characterization of the transmitting antenna patterns. The methods and results of this effort are presented in Section 3.

Section 4 primarily discusses matters peculiar to model implementation in the RFSS. These matters include the scenarios which were run and the format of the tables Georgia Tech generated.

1.2 BISTATIC CROSS SECTIONS FOR DIFFUSE MULTIPATH

The diffuse multipath scattering surface is modeled by a rectangular grid of small facets which describe surface height, scattering qualities, and surface tilt. The diffuse multipath model calculates the total diffuse signal by summing the bistatic cross section contributions from each facet in the terrain under
consideration. The model assumes that the slopes over the facet are normally distributed with some mean and variance. The bistatic radar cross section, σ, depends on the facet slopes and the variables β and β_{o}. The variable β_{o} is defined by the equation

$$
\begin{equation*}
B_{o}=\frac{2 \cdot \sigma_{h}}{d_{c}} \tag{1}
\end{equation*}
$$

where σ_{h} is the surface roughness (the RMS surface height) and d_{c} is the decorrelation distance of surface features (the distance at which one section of terrain is substantially uncorrelated to another section). Neither of these quantities was available in the terrain data furnished by the government. Consequently, β_{o} was assumed constant at 0.2 . This corresponds roughly to one meter height deviations correlated over a distance of ten meters. Both the Eglin and White Sands scenarios used this number.

Barton defines the variable β as the angle between the bisector of the incident and reflected rays at a facet and the facet normal. One can use vector geometry to easily find this quantity as the inverse cosine of the dot product of the normal facet vector with the sum of the incident and reflected normalized vectors.

The acquisition of β is an important step in determining
σ. In particular we can now find the factor

$$
\begin{equation*}
\sigma^{0}=\frac{1}{\tan ^{2} \beta_{o}} e^{\left(-\tan ^{2} \beta / \tan ^{2} \beta_{o}\right)} \tag{2}
\end{equation*}
$$

which Barton describes as the bistatic radar scattering coefficient [2]. Figure 1 as generated by Torrance and Cook [6], displays the very similar Beckmann coefficient for two values of B_{0}. It was generated by Torrance and Cook in their paper on models of light reflection [6]. Barton multiplies σ^{0} by several

Beckmann distribution for $\tan \beta_{0}=0.2$

Beckmann distribution for $\tan \beta_{o}=0.6$

Gaussian distribution for $\tan \beta_{0}=0.2$

Gaussian distribution for $\tan \beta_{0}=0.6$

Figure 1. Comparison of the Beckmann and Gaussian distributions as calculated in [6].
other terms to obtain the bistatic cross section. In particular, Barton calculates the rms scattering coefficients $\rho_{s 1}$ and $\rho_{s 2}$ which are functions of the angles ψ_{1} and ψ_{2}. ψ_{1} is the angle between the facet and the incident ray and may be calculated by subtracting the inverse cosine of the dot product of the incident vector with the facet normal from 90°. ψ_{2} is similarly calculated using the reflected ray. We require two additional quantities before calculating $\rho_{s 1}$: the surface roughness of the facet, σ_{h}, and the wave number of the transmitter, $2 \pi / \lambda$, where λ is the transmitted wavelength. Given these, $\rho_{s 1}$ is now

$$
\begin{equation*}
\rho_{s 1}=e^{-2 \cdot\left(\frac{2 \pi \sigma_{h}}{\lambda} \sin \left(\psi_{1}\right)\right)^{2}} \tag{3}
\end{equation*}
$$

and similarly for $\rho_{s 2}$, with ψ_{2} in place of ψ_{1} in Equation (3). Thus, Barton scales σ^{0} by the factor

$$
\begin{equation*}
\mathrm{F}_{\mathrm{d}}^{2}=\sqrt{\left(1-\rho_{s 1}^{2}\right)\left(1-\rho_{s 1}^{2}\right)} \tag{4}
\end{equation*}
$$

Note that this term goes to zero as either ψ_{1} or ψ_{2} goes to zero.

Another multiplicative factor in the bistatic radar cross section is the Fresnel reflection coefficient, ρ_{o}. In the model, this quantity can be calculated using dielectric constants for a variety of terrains both wet and dry and for either horizontal or vertical polarization. The result for vertical polarization is

$$
\begin{equation*}
\rho_{0}=\frac{\varepsilon \sin \psi_{1}-\left(\varepsilon-\cos ^{2} \psi_{1}\right)^{1 / 2}}{\varepsilon \sin \psi_{1}+\left(\varepsilon-\cos ^{2} \psi_{1}\right)^{1 / 2}} \tag{5}
\end{equation*}
$$

where ε is the complex dielectric constant and ψ_{1} is the angle of incidence defined above. Finally, the bistatic
scattering coefficient is multiplied by a vegetation (trees, bushes, etc.) dependent term ρ_{v}. This results finally in the quantity

$$
\begin{equation*}
\sigma=\sigma^{0} \cdot F_{d}^{2}\left|\rho_{0}\right|^{2} \rho V^{2} \tag{6}
\end{equation*}
$$

which is defined as the bistatic radar cross section.
Given the radar cross section, we can calculate the receiver sum voltage signal for a facet via the equation
where

$$
\begin{equation*}
\Delta_{\text {sum }}=\frac{\lambda}{R_{1} \cdot R_{2}}\left[\frac{P_{T} \cdot A \sigma}{(4 \pi)^{3}}\right]^{1 / 2} F_{T} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
\lambda & =\text { transmitted wavelength; } \\
\mathrm{R}_{1} & =\text { range from transmitter to facet center; } \\
\mathrm{R}_{2} & =\text { range from facet center to receiver; } \\
\mathrm{P}_{\mathrm{T}} & =\text { the transmitted power; } \\
\mathrm{A} & =\text { the facet area; } \\
\sigma & =\text { the bistatic radar cross section; } \\
\mathrm{F}_{\mathrm{T}} & =\text { the transmitter gain factor. }
\end{aligned}
$$

The transmitter gain factor is the transmitter pattern gain in the direction of the facet. The calculation of these gains is discussed more fully in Section 3.
1.3 THE DIFFUSE DOPPLER MODEL

The program computes the diffuse contribution from each facet and adds it coherently to the receiver sum channel. For diffuse multipath, the assumption is that the voltage return from each facet has a random phase associated with it where the phases of all the facets at an instant in time are uniformly distributed over 0° to 360°. Statistically, this assumption causes the diffuse return to be distributed as a bivariate Gaussian. Thus, each $\Delta_{\text {sum }}$ is multiplied by a complex bivariate Gaussian with
unit variance. The result is

$$
\begin{equation*}
\Delta_{\text {sum }} \frac{\left(N_{1}+j N_{2}\right)}{\sqrt{2}} \tag{8}
\end{equation*}
$$

where N_{1} and N_{2} are independent zero mean, unit variance Gaussian random variables and j is the square root of -1 . The total diffuse voltage signal, D_{T}, is the sum over M facets of the above terms or

$$
\begin{equation*}
D_{T}=\sum_{i=1}^{M} \quad \Delta_{\text {sum }} \frac{\left(N_{1}+j N_{2}\right)}{\sqrt{ }} \tag{9}
\end{equation*}
$$

The calculations for the difference channels are very similar. Note that the Doppler dependence of D_{T} is buried in the above sum. The computer model is thus forced to break this sum down into separate Doppler parts.

The calculation of the Doppler shift itself is very straightforward since only the shift relative to the transmitter frequency is considered. Thus, the total shift is computed as the sum of the shift between the facet and the target and the facet and the receiver. Data storage considerations require that the program use discrete Doppler bins for the multipath. Each $\Delta_{\text {sum }}$ term is then added to the Doppler bin containing the frequency at which it was received. The Doppler bins used in this program are 100 Hz wide, and in the data tables delivered to MICOM the line of sight frequency is fixed as bin number 45 in a bin set spanning 6400 Hz . The resulting histogram provides an approximation to the Doppler frequency spectrum.

1.4 THE APPARENT DIRECTION

Specifying the apparent direction of the diffuse and specular multipath signals was an important requirement on this project. This requirement is based on the hardware configuration in the RFSS where only a limited number of signal sources can be active at one time. A single source, a triad of horns, was designated for providing the diffuse multipath at a single
instant along the flight path, and another independent source was used to transmit the specular signal. The RFSS uses information from the lookup tables to determine the location of these sources. The apparent direction is defined to be the direction to the location from which the multipath signal appears to be coming with respect to the missile. The assumption is that illuminating from this location provides the same missile response as the actual diffuse and specular signal environment.

For the specular multipath, the apparent direction is found simply by computing the specular angle in the ground plane (assumed to be flat). The computation of the apparent direction for the diffuse signal is more complicated and is based upon a classical sum and difference tracker. One difficulty with this approach is that the apparent track error location can change with boresight direction; an omnidirectional antenna pattern was used to overcome this problem. The details of the derivation are given below.

The classical radar tracking problem consists of determining the elevation and azimuth angle errors, ϕ_{ε} and ϕ_{α} respectively, off the missile boresight. For the simplest case of a single point target, these angle errors identify the target's location with respect to the missile pointing direction. The assumption is made that the angle errors are proportional to the real part of the ratio of the voltage difference channel, D, to the voltage sum channel, S. Thus, the angle errors can be written as

$$
\begin{align*}
& \phi_{\varepsilon}=\operatorname{Real}\left\{P_{e} \frac{D}{S}\right\}, \tag{10}\\
& \phi_{\alpha}=\operatorname{Real}\left\{P_{a} \frac{D}{S}\right\}, \tag{11}
\end{align*}
$$

where P_{e} and P_{a} are the constants of proportionality. The angle error is assumed to be zero when the missile is pointed directly at the target. The proportionality constants are computed by evaluating the D / S ratio for a small angle and a point target. For example, the elevation proportionality constant is computed

$$
\begin{equation*}
P_{e}=\delta_{\varepsilon} \text { Real }\left\{\frac{S}{D}\right\} \tag{12}
\end{equation*}
$$

where δ_{ε} is a small elevation angle and the sum and difference signals correspond to the sum and difference patterns evaluated at the angle δ_{ε}. For the diffuse multipath problem, the Gaussian sum, f_{S}, and difference, f_{D}, patterns

$$
\begin{align*}
& f_{S}\left(\theta_{e}, \theta_{a}\right)=e^{-C\left(\theta_{e}^{2}+\theta_{a}^{2}\right)} \tag{13}\\
& f_{D}\left(\theta_{e}, \theta_{a}\right)=\left\{\begin{array}{l}
\frac{d}{d \theta_{e}} f_{S}\left(\theta_{e}, \theta_{a}\right), \text { elevation } \\
\frac{d}{d \theta_{a}} \quad f_{S}\left(\theta_{e}, \theta_{a}\right), \text { azimuth }
\end{array}\right. \tag{14}
\end{align*}
$$

are assumed, where θ_{e} and θ_{a} are the elevation and azimuth angles off boresight. The constant, C, controls the beamwidth of the pattern and drops out of the equations later on. Using the Gaussian patterns, the proportionality constant for elevation becomes

$$
\begin{equation*}
\mathrm{P}_{\mathrm{e}}=\delta_{\varepsilon} \frac{\mathrm{e}^{-\mathrm{C}\left(\delta_{\varepsilon}^{2}+\theta_{a}^{2}\right)}}{-2 \mathrm{C} \delta_{\varepsilon} \mathrm{e}^{-\mathrm{C}\left(\delta_{\varepsilon}^{2}+\theta_{a}^{2}\right)}}=-\frac{1}{2 \mathrm{C}} \tag{15}
\end{equation*}
$$

and the angle error for a point target is given by

$$
\begin{align*}
\phi_{\varepsilon} & =P_{e} \frac{D}{S} \\
& =\left(-\frac{1}{2 C}\right)\left[\frac{-2 C \theta_{e} e^{-C\left(\theta_{e}^{2}+\theta_{a}^{2}\right)}}{e^{-C\left(\theta_{e}^{2}+\theta_{a}^{2}\right)}}\right]=\theta_{e} . \tag{16}
\end{align*}
$$

The diffuse multipath case is complicated because the sum and difference signals are formed by contributions from many
facets. Thus, the S and D in the Equations (10) and (11) are replaced by the total summations over all the facets. In particular, the elevation angle in Equation (16) becomes

$$
\begin{align*}
\phi_{\varepsilon} & =P_{e} \operatorname{Real}\left\{\frac{\sum D_{i}}{\sum S_{i}}\right\}=\left(-\frac{1}{2 C}\right) \text { Real }\left\{\frac{\sum-2 C \theta_{e_{i}} S_{i}}{\sum S_{i}}\right\} \\
& =\text { Real }\left\{\frac{\sum{ }^{\theta_{e}} S_{i} S_{i}}{\sum S_{i}}\right\} \tag{17}
\end{align*}
$$

A similar result holds for the azimuth angle.

1.5 THE SPECULAR RETURN

The specular multipath model is not as complicated as the diffuse model. The terrain is treated as a single plane, rather than many facets. Thus, it is easy to calculate the specular point and the specular angle since only analytic geometry is necessary. Once the specular point is determined, the beacon equation is used along with the specular reflection coefficient to calculate the specular multipath return. This results in the equation

$$
\begin{equation*}
S_{T}=\frac{\lambda \cdot \gamma P_{T} \cdot G_{t} e^{i \frac{2 \pi}{\lambda}\left(R_{1}+R_{2}-R\right)}}{4 \pi \cdot\left(R_{1}+R_{2}\right)} \cdot \rho \tag{18}
\end{equation*}
$$

where

```
    \lambda = transmitted wavelength,
P
G}\mp@subsup{T}{}{\prime}=\mathrm{ transmitter voltage pattern factor,
R
R}\mp@subsup{R}{}{\prime}=\mathrm{ distance from specular point to receiver,
R = line of sight distance from receiver to transmitter,
```

and the specular reflection coefficient, ρ, is computed as

$$
\begin{equation*}
\rho=\rho_{o} \rho_{v} \cdot e^{-2\left(\frac{2 \pi}{\lambda} \sigma_{h} \sin \psi\right)^{2}} \tag{19}
\end{equation*}
$$

where
$\rho_{o}=$ Fresnel reflection coefficient,
$\rho_{v}=$ vegetation factor,
$\lambda=$ wavelength of the transmitter,
$\sigma_{h}=$ the surface roughness of the terrain at the specular point,
$\psi \quad=\quad$ the specular angle.
The apparent location for the specular multipath is assumed to be the specular point. However, this point will appear to wander according to the dimensions of the first Fresnel zone. In [2], the major and minor axes of the glistening surface are given. Briefly, this results in a length of 4 . β_{o} if the specular angle, θ, is less than 2 . β_{o} or a length of $2 \cdot \beta_{0}+\theta$ otherwise. The width of the surface is given by $2 \cdot \theta \cdot \beta_{o} \cdot$ Scaling these values by $1 / e$ provides the standard deviations for the aimpoint wander. Note that since β_{0} was fixed at 0.2 in both scenarios, the statistics of the apparent direction will not appear to vary much between encounter scenarios.

In summary, the lookup table for the specular program includes

1. the receiver's altitude,
2. the line of sight speed,
3. the line of sight range,
4. the elevation angle of the receiver boresight relative to the line of sight,
5. the standard deviation of this angle,
6. the azimuth angle of the receiver boresight relative to the line of sight,
7. the standard deviation of the azimuth angle,
8. the magnitude of the received signal voltage,
9. the Doppler shift of the received signal due to the motion of transmitter and receiver with respect to the terrain.

TERRAIN MODEL

The multipath Doppler model was exercised for two different terrains: White Sands Missile Range and Eglin Air Force Base. Digitized representations of these terrains were obtained from data tapes furnished by the government. For purposes of this program, the facets on the tapes were assumed to be square, although one terrain is in fact made up of slightly rectangular facets. The data tapes consist of elevation data approximately every 80 meters over a large rectangular grid. The data tapes do not describe terrain type, decorrelation distances, or surface roughness. Thus, surrounding data points were used to obtain an average surface tilt and to calculate the surface roughness of the given facet. Since the exact vegetation of the terrains was unknown, the White Sands terrain was modeled as sand scrub, and the Eglin terrain was assumed to be grassy. The limits of the computer implementation are such that the size of the terrain data base is restricted to a size smaller than that required in many of the scenarios. In such cases, the terrain was "rolled over," that is, the piece of available terrain was mirrored in each direction as necessary during the flight. The mirroring effect provided continuity in the terrain's surface roughness and altitude data.

Each terrain model consists of a rectangular grid of facets which are characterized by the following parameters: elevation of the facet center, rms surface roughness, tilt, and terrain type.

Surface roughness and tilt for each facet were computed using a weighted least squares plane-fitting algorithm. Given N digitized points $\left(X_{i}, Y_{i}, Z_{i}\right), i=1,2,3, . . ., N$, a plane may be fitted to these points. The plane model is given by

$$
\begin{equation*}
\hat{z}=c_{1}+c_{2} X+c_{3} Y \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{1}=\text { Z-intercept } \\
& \mathrm{C}_{2}=\text { slope in the } \mathrm{X} \text {-direction } \\
& \mathrm{C}_{3}=\text { slope in the Y-direction. }
\end{aligned}
$$

The Z-coordinate error at each point is given by

$$
\begin{equation*}
\varepsilon_{i}=z_{i}-\hat{z}_{i}=z_{i}-\left(C_{1}+C_{2} x_{i}+C_{3} Y_{i}\right) \tag{21}
\end{equation*}
$$

If the error at each point is weighted by a factor W_{i}, then the total squared error is

$$
\begin{equation*}
E^{2}=\sum_{i=1}^{N}\left(W_{i} \varepsilon_{i}\right)^{2}=\sum_{i=1}^{N} W_{i}^{2}\left(Z_{i}-C_{1}-C_{2} X_{i}-C_{3} Y_{i}\right)^{2} \tag{22}
\end{equation*}
$$

The values for C_{1}, C_{2}, and C_{3} which yield the minimum squared error may be found by taking partial derivatives with respect to the $C^{\prime} s$ and setting them to zero.

After the coefficients C_{1}, C_{2}, and C_{3} have been found, the unit normal to the least squares plane is found to be

$$
\begin{equation*}
\hat{n}=\left(-\frac{C_{2}}{L},-\frac{C_{3}}{L}, \frac{1}{L}\right) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{L}=\left(\mathrm{C}_{2}^{2}+\mathrm{C}_{3}^{2}+1\right)^{1 / 2} \tag{24}
\end{equation*}
$$

The unit normal describes the facet tilt. It is used to determine the angles of incidence and reflectance and to test for simple self-shadowing in the Doppler multipath model.

For the White Sands terrain, surface roughness on a facet was also calculated from the digitized terrain data. It was computed as the root mean square error

$$
\begin{equation*}
E_{\mathrm{rms}}=\left[\frac{\sum_{i=1}^{N}\left(W_{i} \varepsilon_{i}\right)^{2}}{\underset{i=1}{N} W_{i}}\right]^{1 / 2} \tag{25}
\end{equation*}
$$

A lower limit of 1 cm roughness was assigned for any facets with computed $E_{\text {rms }}$ values less than 1 cm . This was done to account for the cases where zero $E_{r m s}$ values were obtained due to the coarseness of the terrain digitization. Zero surface roughness would imply a perfectly smooth reflecting surface, and the terrain being modeled did not have such characteristics.

The Eglin terrain, while gently sloping, does not exhibit large surface roughness. Rather than use the computed Erms values to represent the facet roughness, the terrain model was forced to be smooth by using a constant 1 cm surface roughness for the Eglin terrain.

Terrain type is a qualitative switch in the multipath model which determines the selection of the vegetation factor and the dielectric constant. For White Sands the terrain type was assumed to be dry sand. This characterization led to the selection of a complex dielectric constant of

$$
\begin{equation*}
\varepsilon=2.4+j 0.1 \tag{26}
\end{equation*}
$$

obtained from Cihlar and Ulaby [7] with no vegetation attenuation ($\rho_{v}=1$) . The Eglin terrain was described as grassy with a dielectric constant of

$$
\begin{equation*}
\varepsilon=2.0+j 0.0 \tag{27}
\end{equation*}
$$

with again no vegetation attenuation ($\rho_{\mathrm{v}}=1$) .

SECTION 3

ANTENNA PATTERNS

3.1 INTRODUCTION

Data were furnished to Georgia Tech for two different transmitters. Each transmitter was implemented separately in the bistatic Doppler multipath model. The nature of the data received and the methods of implementation are discussed below.

3.2 MEASUREMENT OF AZIMUTH AND ELEVATION

Figure 2 shows the scheme used for measuring angles. This particular scheme is referred to as azimuth over elevation because the azimuth angle is measured over the elevation plane. We shall use the abbreviation AZ/EL. First the elevation angle is determined by computing the orthogonal projection \vec{F}_{p} of \vec{F} onto the plane containing \hat{z} and \vec{L} and then taking the dot product of \vec{L} with \vec{F}_{p}. Similarly, the azimuth angle is found by taking the dot product of \vec{F}_{p} with \vec{F}. This method of determining azimuth and elevation provides answers which differ in some cases from those obtained by an alternative method. In the alternative method, elevation over azimuth (EL/AZ), the azimuth angle is determined first.

As an example of the measurement scheme, let us examine the elevation angle generated. Let $\vec{F}=\left(F_{x}, F_{y}, F_{z}\right)$ and $\vec{L}=\left(L_{x}, L_{y}, L_{z}\right) \cdot I f$

$$
\begin{align*}
& \vec{G}=\vec{F}-\frac{\vec{F} \cdot(\vec{L} \times \hat{z})}{|\vec{L} \times \hat{z}|^{2}} \quad(\vec{L} \times \hat{z}), \text { then } \tag{28}\\
& \cos E L=\vec{G} \cdot \vec{L} /(|\vec{G}| \cdot|\vec{L}|) \cdot \tag{29}
\end{align*}
$$

Notice that $\vec{L} \times \hat{z}=\left(+L_{y},-L_{x}, 0\right)$ so that

Figure 2, Illustration of the geometry used in the azimuth over elevation angle calculations.

$$
\begin{align*}
& G=\vec{F}-\frac{F_{x} L_{y}-F_{y} L_{x}}{L_{x}^{2}+L_{y}^{2}} \quad\left(+L_{y},-L_{x}, 0\right) \quad \text { and } \tag{30}\\
& \mid \text { む } \left\lvert\,=\left[\frac{\left(F_{x} L_{y}-F_{y^{2}} L_{x}\right)}{\left(L_{x}^{2}+L_{y}^{2}\right)}+F_{z}^{2}\right]^{1 / 2} .\right. \tag{31}
\end{align*}
$$

From these definitions, the AZ/EL result is

$$
\begin{equation*}
E L=\cos ^{-1}[(\vec{F} \cdot \vec{L}) /(|\vec{G}| \cdot|\vec{L}|)] \cdot \tag{32}
\end{equation*}
$$

3.3 CONTRACTOR EAST DATA

Contractor EAST supplied MICOM with antenna measurement data on April 22, 1982. The data of interest were recorded at a frequency referred to as "H" for high. Both azimuth and elevation cuts were measured. The azimuth cuts were measured at elevation angles of $1^{\circ}, 14^{\circ}, 29^{\circ}$, and 44° off the boresight; the elevation cuts were measured at azimuth angles of $0^{\circ}, 30^{\circ}$, and 60°. These antenna cuts were digitized using a bitpad and a digitizing program on the ECLIPSE $S 130$ computer. Figure 3 illustrates the resulting digitized data. Since these antenna cuts were measured as great circle cuts, a series of transformations had to be applied to convert the angles measured during the running of the multipath program to great circle angles.

The transformations which were applied to this data are as follows:

$$
\begin{aligned}
& \text { AEEL }=\sin ^{-1}(\cos \varepsilon \sin E L-\sin \varepsilon \cos A Z \cos E L) ; \\
& A E A Z=\tan ^{-1}(\sin A Z \cos E L /(\cos \varepsilon \cos A Z \cos E L+\sin \varepsilon \sin E L))
\end{aligned}
$$

Figure 3. Display of both azimuth and elevation cut antenna data for Contractor EAST.

$$
\begin{align*}
& A A A Z=\sin ^{-1}(\sin A E A Z \cos A E E L) \\
& \text { AAEL }=\tan ^{-1}(\tan A E E L / \cos A E A Z) \tag{34}
\end{align*}
$$

where:
$\varepsilon=$ the depression angle of the boresight off horizontal;
$E L=$ the elevation angle of the direction of interest relative to the boresight as computed in the multipath model;
$A Z=$ the azimuth angle of the direction of interest relative to the boresight as computed in the multipth model.

For this program ε was set either at -29° or -25° depending on whether the transmitter was assumed to be flying level or pitched up at 4°. The pattern peak gain was 0 dB and the assumed gain was 13.5 dB so 13.5 was added to each digitized data point.

3.4 CONTRACTOR WEST DATA

Contractor WEST supplied MICOM with antenna measurement data on April 22, 1982. The data of interest were recorded at a frequency referred to as F6. The data which were digitized were azimuth sweeps for varying elevation angles. The elevation angles ran from $+10^{\circ}$ above horizontal to -100°, in increments of 10°, except for an additional cut at -45°. These measurements were also great circle cuts; after the elevation and azimuth angles were determined, they were transformed by the relations

$$
\begin{align*}
& \text { AAAZ }=\sin ^{-1}(\sin A Z \cos E L) ; \tag{35}\\
& A A E L=\tan ^{-1}(\tan E L / \cos A Z) ; \tag{36}
\end{align*}
$$

where $A Z$ and EL are defined as the azimuth and elevation angles of the desired direction relative to the transmitter's boresight. In those cases where the vehicle was run pitched up at 4°, the program was modified so that the elevation cuts ran
from 6° to -104°. Figure 4 displays the digitized data. The pattern peak gain was -4 dB and assumed gain was 15.4 dB , so 19.4 dB was added to each digitized data point.

Figure 4. Display of azimuth antenna cut data for Contractor WEST.

SIMULATED FLIGHT SCENARIOS

Georgia Tech produced Doppler multipath tables for a variety of flight scenarios used in the RFSS facility. The target was constrained to constant speed, straight and level flight at 300 foot and 600 foot altitudes. There were eight down range - cross range initial launch conditions. The down range - cross range pairs consisted of $(8,0),(8,5),(16,0),(16,5),(16,10),(24,0)$, $(24,5)$, and $(24,10)$ kilometers as illustrated in Figure 5.

Five missile flight paths were generated for each of the sixteen encounter geometries by a MICOM supplied program. The objective was to produce flight conditions of sufficient variety to ensure reasonable interpolation within the multipath Doppler table during the RFSS simulation. The five different flight paths correspond to nominal "lock on" times of $1.3,3,5,7$, and 10 seconds. The flight paths were further manipulated to prevent intersections within a set of five paths. Intersections would severely complicate the interpolation scheme used during the RFSS simulation. The final set of five flight paths produced two paths ending above the target, two paths ending below the target, and the middle path intercepting the target.

Figures 6 through 8 illustrate the flight paths for the eight different launch geometries at the 300 foot target altitude. The units on the axes are kilometers and the tic marks on the curves represent ninety second intervals.

The final set of data delivered on this project consists of diffuse and specular Doppler multipath tables for each of the sixteen encounter geometries over both terrains for two different targets (128 tables in all). Each table contains the results of the diffuse (or specular) multipath model for every half second during the flight. During the RFSS simulation, the table is accessed with input values from the RFSS, and the Doppler multipath signal and apparent direction are obtained by interpolation. The input variables are closing speed (between

(a) Down range 8 Cross range 0

(c) Down range 16

Cross range 0
(f) Down range 2 Cross range 0

(b) Down range 8 Cross range 5

(d) Down range 16
(e) Down range 16 Cross range 10

(g)

Down range 24
(h) Down range 24 Cross range 5 Cross range 10

Figure 5. Illustration of the down and cross range launch conditions.

Figure 6. Samples of the model flight paths for 8 kilometer down ranges and 300 foot target altitude.

Figure 7. Samples of the model flight paths for 16 kilometer down ranges and 300 foot target altitude.

Bc. 10 kilometer cross range

Figure 8. Samples of the model flight paths for 24 kilometer down ranges and 300 foot target altitude.
the missile and target), missile altitude, and the range between the target and the missile. Altitude and range are listed in meters, and the closing speed is given in meters per second. The apparent direction of the diffuse signal is described in the table by the mean azimuth and elevation angles and their respective standard deviations. The multipath signal is presented as a Doppler spectrum of expected power levels. The spectrum is composed of sixty-four 100 Hz bins. Bin 45 corresponds to the line of sight Doppler bin. The Doppler shift for this bin is also given for each point in time along each flight path in the table.

During the RFSS simulation, the tabulated spectrum can be shifted according to the difference between the real-time simulation and the tabulated closing speeds. The power levels on the signal are also adjusted corresponding to the actual transmitted powers and antenna gains being used.

SUMMARY AND CONCLUSIONS

Over 128 separate bistatic multipath Doppler scenarios were provided to MICOM from a model which was developed, implemented, and tested in less than three months. Time constraints made some mistakes almost inevitable, but a close working relationship with Boeing and MICOM helped head off many potential problems. The data provided included:

1. Relative positions of receiver and transmitter as a function of time.
2. Apparent locations in azimuth and elevation for both the diffuse and specular multipath.
3. Standard deviations to further describe the above locations.
4. Doppler information for the significant frequencies surrounding the line of sight Doppler frequency.
5. The total multipath specular and diffuse voltage signals as a function of time.

The bistatic Doppler multipath model developed by Georgia Tech demonstrated the ability, through software, to quickly modify and update multipath contributions to a broad range of scenarios. For example, intercept flight paths can be quickly altered, and new data can be obtained much faster than in a test environment totally dependent on hardware.

Quick turn-around is also available for changing such items as antenna patterns, terrains, transmitted powers, gains, etc. On the other hand, the data obtained from software models can be no better than the inputs to such models, and several areas in the Georgia Tech model could be improved.

One of the weak areas in the model is the terrain data base. The data which were made available were not sufficient for an accurate model of the desired landscapes. In particular, the calculation of surface roughness and facet tilts had to be
crudely approximated, given the large distances between data points.

A thorough review of the angle measuring schemes used in the multipath model could prove very useful for avoiding problems in the future with the modeling of various antenna systems. In particular, the $A Z / E L$ versus $E L / A Z$ question needs to be investigated in greater detail with regard to the measurement of the antenna patterns. This is an important task which is necessary to avoid errors in using measured antenna patterns.

The theory inherent in the multipath program has been thoroughly reviewed in the course of preparing this report and no errors in the implementation of the theory were discerned. However, the program shows evidence of hasty patching and programming compromises. Further efforts in multipath analysis should be accompanied by program restructuring.

Numerous possible improvements of the model are worthy of consideration, i.e.,

1. Integrate the flight path scenario generator with the track error generator multipath model.
2. Implement the other factors in the encounter scenario such as clutter and plume attenuation.
3. Georgia Tech has the capability to generate a graphical picture of what the receiver "sees," such as the specular flashes from the terrain, the multipath isodops, the intensity of the diffuse multipath from each terrain facet, etc. This would be an extremely desirable tool from an interactive analysis standpoint and since this information is already calculated, the display of it would be a straightforward process.
4. The theory used in the model is believed to be the best available. The fact that extensive measurement data will shortly be available for comparison with the model data provides a unique opportunity to further refine the existing model. In particular, low altitude dependencies and
apparent directions are both areas open to considerable refinement.

References

1. David K. Barton, "Low-Angle Radar Tracking," Proceedings of the IEEE, Vol. 62, No. 6, June 1974, pp. 687 -704.
2. David K. Barton, "Low-Altitude Tracking Over Rough Surfaces I: Theoretical Predictions," EASCON-79 Record.
3. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergammon, New York, 1963.
4. S. P. Zehner, M. T. Tuley, "Development and Validation of Multipath and Clutter Models for TAC ZINGER in Low Altitude Scenarios," Final Report on Contract F49620-79-C-0121, Georgia Institute of Technology, Engineering Experiment Station, March 1979.
5. S. P. Stuk, "TAC ZINGER Clutter and Multipath Models for Track-While-Scan Systems," Software Documentation on Contract No. F49620-79-C-0222, Georgia Institute of Technology, Engineering Experiment Station, October 1980.
6. R. L. Cook and K. E. Torrance, "A Reflectance Model for Computer Graphics," Computer Graphics, Volume 15, Number 3, August 1981, pp. 307-316.
7. J. Cihlar and F. T. Ulaby, "Dielectric Properties of Soils as a Function of Moisture Content," The University of Kansas Center for Research, Inc, RSL Technical Report 177-47, November 1974.
