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SUMMARY

Complex systems, such as healthcare systems, cities, and information networks, often

produce a large volume of time series data, along with ordered event data, which are dis-

crete in time and space, and rich in other features (e.g., markers or texts). We can model

the asynchronous event data as point processes.

It is essential to understand and model the complex dynamics of these time series and

event data so that accurate prediction, reliable detection, or smart intervention can be car-

ried out for social goods. Specifically, my thesis focuses on the following aspects: (1)

new statistical models and effective learning algorithms for complex dynamics exhibited

in event data; (2) new inference algorithms for change-point detection, and temporal logic

reasoning involving time series and event data.

In the first part of the thesis, we focus on the inference algorithms for change-point

detection. We consider two settings to detect the changes. One is for high-dimensional

streaming data, and the other is for networked asynchronous event data.

In the high-dimensional streaming data setting, we propose a kernel-based nonparamet-

ric change-point detection method, which enjoys fewer assumptions on the distributions.

Theoretical tail probability approximation of the nonparametric statistic is also proposed,

which provides a statistically principled way to determine the detection thresholds. The

proposed nonparametric method shows excellent performance on real human-activity de-

tection dataset and speech dataset.

In the networked asynchronous event data setting, we model the event data as point pro-

cesses and propose a continuous-time change-point detection framework to detect dynamic

changes in networks. Specifically, we cast the problem into a sequential hypothesis test,

and derive the generalized likelihood-ratio (GLR) statistic for networked point processes

by considering the network topology. The constructed statistic can achieve weak signal

detection by aggregating local statistics over time and networks. We further propose to

xvii



evaluate the proposed GLR statistic via an efficient EM-like algorithm which can be imple-

mented in a distributed fashion across dimensions. Similarly, we obtain a highly accurate

theoretical threshold characterization for the proposed GLR statistic and demonstrate the

excellent performance of our method on real social media datasets, such as Twitter and

Memetracker.

In the second part of the thesis, we focus on new statistical models and effective learn-

ing algorithms for point processes under the big data setting and the small data setting,

respectively.

For the big data setting, we propose an highly expressive model for point processes and

want the data to speak for themselves. Specifically, we leverage recent advances in deep

learning and parameterize the intensity function of point processes as a recurrent neural

network (RNN). RNN is a composition of a series of highly flexible nonlinear functions,

which allows the model to capture complex dynamics in event data. Fitting neural network

models for even data is challenging. We develop a novel adversarial learning framework to

address this challenge and further avoid model-misspecification. The proposed framework

has been evaluated on real crime, social network, and healthcare datasets, and outperforms

the state-of-the-art methods in data description.

For the small data setting, we propose a unified framework to incorporate domain

knowledge to point process models. The proposed temporal logic point processes model

the intensity function of the event starts and ends via a set of first-order temporal logic

rules. Using softened representation of temporal relations, and a weighted combination of

logic rules, our framework can also deal with uncertainty in event data. We derive a maxi-

mum likelihood estimation procedure for the proposed temporal logic point processes, and

show that it can lead to accurate predictions when data are sparse and domain knowledge

is critical. The proposed framework has been evaluated on real healthcare datasets, and

outperforms the neural network models in event predication on small data and is easy to

interpret.
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CHAPTER 1

INTRODUCTION

Social goods, such as healthcare, smart city and information networks, often produce a list

of ordered event data with rich information in time, location and other features (e.g., text),

i.e.,

Ht := {e1 = (t1, s1, κ1), e2 = (t2, s2, κ2), . . . , en = (tn, sn, κn)},

where ti ∈ R+ is the occurrence time of event i ∈ Z, si ∈ S is the occurrence location and

κi ∈M is the associated feature.

It is essential to understand the complex dynamics of these event data and model the

intricate spacetime-intertwined dynamics so that accurate prediction, detection or inter-

vention can be carried out subsequently depending on the context. Use crime event as an

example. Police departments worldwide are eager to develop better police resource allo-

cation methods to manage the complex and evolving crime landscape. An accurate crime

prediction model is the prerequisite for effective crime prevention, response and investiga-

tion.

However, for crime event and many other types of event data, the modeling and pre-

diction face many challenges due to the irregular nature of the observation, the complex

spatial, temporal and relational dynamics, and the additional high dimensional event mark-

ers or features. All these challenges together make the event data modeling a nontrivial

problem.

Many existing approaches in dealing with event data usually require discretizing the

time and space, and use some ad-hoc aggregations to convert the events to standard time-

series sequences. This discretization and aggregation procedure, however, might not pool
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data efficiently or lose original information in events. Point processes offers an elegant

mathematical framework for directly modeling the event data in continuous time and space.

Classic temporal marked point process models the generative processes of events by con-

ditional intensity function, defined as

λ(t, κ |Ht)dtdκ = E[N(dt× dκ) |Ht],

where N(A) the number of (ti, κi) falling in a set A ⊂ R+ ×M.

The conditional intensity function specifies how the mean number of events in a region

depends on the past in an evolutionary point process, and is hand-crafted by a parametric

or nonparametric form to capture the potentially complex triggering and clustering pattern

of events.

Suppose a parametric model λθ(t, κ |Ht) has been specified by an unknown parameter

θ, then using the maximum-likelihood-estimation (MLE) learning paradigm one can learn

the model by maximizing the joint probability for a realization of {e1, . . . , en} in terms of

θ , i.e.,

λ∗θ = arg max L(θ) := exp

{
−
∫ ∫

(0,t)×M
λθ(t, κ|Ht)dt

} n∏
i=1

λθ(ti, κi |Hti).

The descriptive power of the estimated model relies heavily on expressiveness and flexibil-

ity of the intensity function.

Specifically, under the principled theoretical framework, my thesis focuses on the fol-

lowing aspects:

1. Novel inference algorithms for anomaly detection involving time series and event

data (Chapter 2 and Chapter 3).

2. Novel statistical models and effective learning algorithms for complex dynamics ex-

hibited in event data (Chapter 4 and Chapter 4);
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CHAPTER 2

SCAN B-STATISTIC FOR KERNEL CHANGE-POINT DETECTION

Detecting the emergence of an abrupt change-point is a classic problem in statistics and

machine learning. Kernel-based nonparametric statistics have been used for this task, which

enjoys fewer assumptions on the distributions than the parametric approach and can handle

high-dimensional data.

In this chapter, we focus on the scenario when the amount of background data is large,

and propose a computationally efficient kernel-based statistics for change-point detection,

which are inspired by the recently developed B-statistics. A novel theoretical result of the

paper is the characterization of the tail probability of these statistics using the change-of-

measure technique, which focuses on characterizing the tail of the detection statistics rather

than obtaining its asymptotic distribution under the null distribution.

Such approximations are crucial to controlling the false alarm rate, which corresponds

to the average-run-length in online change-point detection. Our approximations are shown

to be highly accurate. Thus, they provide a convenient way to find detection thresholds for

online cases without the need to resort to the more expensive simulations. We show that

our methods perform well on both synthetic data and real data.

2.1 Overview

Given a sequence of samples, x1, x2, . . . , xt, from a domain X , we are interested in detect-

ing a possible change-point τ , such that before the change samples xi are i.i.d. with a null

distribution P , and after the change samples xi are i.i.d. with a distribution Q. Here, we

consider two scenarios: the time horizon t is fixed, t = T0, which we call the offline or

fixed-sample change-point detection, or the time horizon t is not fixed, meaning that one

can keep getting new samples, which we call the online or sequential change-point detec-
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tion. In the offline setting, our goal is to detect the existence of a change. In the online

setting, our goal is to detect the emergence of a change as soon as possible after it occurs.

Here, we restrict our attention to detecting one change-point. One such instance is seismic

event detection as studied by [1], where one would like to either detect the presence of a

weak event in retrospect to better understand the geophysical structure or detect the event

as quickly as possible for online monitoring.

Ideally, the detection algorithm should be free of distributional assumptions to be ro-

bust when applied to real data. To achieve this goal, various kernel-based nonparametric

statistics have been proposed in the statistics and machine learning literature, see, e.g., [2,

3, 4, 5, 6, 7], which typically work well with multi-dimensional real data since they are

distributional free. Kernel approaches are distribution free and more robust as they provide

consistent results over larger classes of data distributions; albeit they can be less powerful

in settings where a clear distributional assumption can be made. However, most kernel

based statistics cost O(n2) to compute over n samples. In the online change-point detec-

tion setting, the number of samples grows with time and hence we cannot directly use the

naive approach. Recently, [8] developed the so-called B-test statistic to reduce the com-

putational complexity. The B-test statistic samples N pairs of blocks of size B from the

two-sample data, compute the unbiased estimates of the kernel-based statistic between each

pair and then take an average. The computational complexity of the B-test statistic reduces

to O(nB2) instead of O(n2).

In this chapter, we present two scan statistics related to B-test statistics customized for

offline and online change-point detection, which we name as scan B-statistics. The pro-

posed statistics are based on kernel maximum mean discrepancy (MMD) in [9, 10]. They

are inspired by the B-test statistic but differ in various ways to tailor to the need of change-

point detection. Typically, there is a small number of post-change samples (for instance,

seismic events are relatively rare, and in online change-point detection, one would like to

detect the change quickly). But there is a large amount of reference data. So when con-
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structing the detection statistic, we reuse the post-change samples for the test block and

construct multiple and disjoint reference blocks. This leads to a non-negligible dependence

between the MMD statistics being averaged over. Hence, we cannot use the existing ap-

proach based on the central limit theorem to analyze them. Moreover, the scanning nature

of the proposed statistic also introduces non-negligible dependence. We construct the ref-

erence and test blocks in a structured way so that analytical expressions for false alarm can

be obtained.

Our main theoretical contribution includes accurate theoretical approximations to the

false-alarm rate of scan B-statistics. Controlling false alarms is a key challenge in change-

point detection. Specifically, this means to quantify the significance level for offline change-

point detection, and the average run length (ARL) for online change-point detection. Here,

we cannot directly rely on the null property of theB-test statistic established in the existing

work, because the scan statistics take the maximum of multiple statistics computed over

overlapping data blocks that causes strong correlations. Hence, one cannot use the central

limit theorem or even the martingale central limit theorem. Instead, we adopt a recently

developed change-of-measure technique by [11] for scan statistics, which are capable of

dealing with the more challenging situation here.

Our contribution also includes: (1) obtaining a closed-form variance estimator, which

allows easy calculation of the scan B-statistics; (2) further improving the accuracy of our

approximations by taking into account the skewness of the kernel-based statistics. The ac-

curacy of our approximations is validated by numerical examples. Finally, we demonstrate

the good performance of our method using real-data, including speech and human activity

data.

2.1.1 Related work

Classic parametric approaches for change-point detection can be found in [12, 13]. There

has been an array of nonparametric change-point detection methods. Notable non-parametric
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schemes for change-point detection include [14, 15], which are designed for scalar obser-

vations and not suitable for vector observations. [16] provide a comprehensive introduction

to the methodologies and applications of nonparametric change-point detection. [17] con-

struct a nonparametric minimax-optimal test to discriminate continuous paths with volatil-

ity jumps and prove weak convergence of the test statistic to an extreme value distribution.

In the online setting, [5] present a meta-algorithm which compares data in some “reference

window” to the data in the current window, using empirical distance measures that are not

kernel-based; [7] detect abrupt changes by comparing two sets of descriptors extracted on-

line from the signal at each time instant: the immediate past set and the immediate future

set, and then use a soft margin single-class support vector machine to build a dissimilarity

measure in the feature space between those sets without estimating densities as an interme-

diate step, which is asymptotically equivalent to the Fisher ratio in the Gaussian case; [6]

present a density-ratio estimation method to detect change-points, fitting the density-ratio

using a non-parametric Gaussian kernel model, whose parameters are updated online via

stochastic gradient descent approach. Another important branch of nonparametric change-

point detection method is based on Kolmogorov-Smirnov test, in [18, 19], which has been

used in [20]. The generalization of Kolmogorov-Smirnov test from the univariate setting

to the multi-dimensional setting is given by [21], which, however, is less convenient to use

than the kernel-based statistic test.

Seminal works by [22] study kernel based U -statistic for change-point detection. They

show that the statistic indexed by the assumed change-point location parameter τ , after

proper standardization and rescaling of time and magnitude, converges in distribution to a

Gaussian process under the null, and converges to a deterministic path in probability un-

der the alternative distribution when the number of samples goes to infinity. These results

are useful for bounding the detection statistics under the null with high-probability (hence,

controlling the false detection), and for studying the consistency of tests. [23] and [24] con-

tain comprehensive discussions on asymptotic theory of nonparametric statistics including
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U -statistics. Our scan B-statistic can also be viewed as a form of U -statistic using an ap-

propriate definition of the kernel. The main differences between these classic works from

our proposed scan B-statistic are: (1) our statistic uses B-test block decomposition and

averaging to make the test statistic more computationally efficient; (2) our statistic is more

challenging to analyze due to the block structure and correlation introduced by scan statis-

tics; (3) our analytical approach is different: [22] leverage invariance principle to establish

convergence of the entire sample path; we focus on characterizing the tail probability of the

statistic under the null and use the change-of-measure technique to achieve good approxi-

mation accuracy.

Other existing works that also focus on establishing asymptotic distribution of the de-

tection statistic under the null for controlling the false alarm rate include the following:

[2] present a maximum kernel Fisher discriminant ratio statistic and study its asymptotic

null distribution; [25] investigate the two-sample test U -statistic for dependent data. Our

approach is different from above in that we focus on directly approximating the tail of the

detection statistic under the null, rather than trying to obtain its asymptotic distribution.

Moreover, traditional analyses are usually done for offline change-point detection, while

our analytical framework based on change-of-measure can be applied to both offline and

online change-point detection.

Change-point detection problems are related to the classical statistical two-sample test.

However, they are usually more challenging than the two-sample test because the change-

point location τ is unknown. Hence, when forming the detection statistic, one has to “take

the maximum” of the detection statistics. The statistics being maxed over are usually highly

correlated since they are computed using overlapping data.

Our techniques for approximating false alarm rates differ from large-deviation tech-

niques in [26], which establish exponential rate by which the probability converges to zero.

In certain scenarios, the first-order approximation obtained from large-deviation techniques

may not be sufficient for choosing threshold. Our method provides more refined approxi-
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mations to include polynomial terms and constants.

Finally, there are also works taking different approaches rather than hypothesis test

for change-point detection. For instance, [27] develop a kernel-based multiple-change-

point detection approach, where the optimal location to segment the data is obtained by

dynamic programming; [28] estimates multiple change-points by developing a kernelized

linear model, and they provide a non-asymptotic oracle inequality for the estimation error.

In the offline setting, [4] study a problem when there are s anomalous sequences out of n

sequences to be detected, and the test statistic is constructed using MMD; [29] propose a

nonparametric approach based on U -statistics and adopt the hierarchical clustering, which

is capable of consistently estimating an unknown number of multiple change-point loca-

tions; [30] propose a nonparametric maximum likelihood approach, with the number of

change-points determined from the Bayesian information criterion (BIC) and the locations

of the change-points estimated via dynamic programming.

Our notations are standard. Let Ik denote the identity matrix of size k-by-k. Let

E[A;B] = E[A1B] denote the expectation conditioned on event B, where 1B represents

the indicator function that takes value 1 when the event B happens and takes value 0, oth-

erwise. Let Var(·) and Cov(·) denote the variance and the covariance. Let 0 and e denote

vectors of all zeros and all ones, respectively. Let [Σ]ij denote the ij-th element of a ma-

trix Σ. In Section 3.5, EB, VarB, and CovB denote the values computed under the new

probability measure PB after the change-of-measure, where B is the block size. Similarly,

in Section 2.4.2, Et, Vart, and Covt denote the values obtained under the new probability

measure Pt after the change-of-measure, where t is the time index.

2.2 Background

We first briefly review the reproducing kernel Hilbert space (RKHS) and the maximum

mean discrepancy (MMD). A RKHS F on X with a kernel k(x, x′) is a Hilbert space of

functions f(·) : X 7→ R equipped with inner product 〈·, ·〉F . Its element k(x, ·) satisfies
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the reproducing property: 〈f(·), k(x, ·)〉F = f(x), and consequently, 〈k(x, ·), k(x′, ·)〉F =

k(x, x′), meaning that we can view the evaluation of a function f at any point x ∈ X as an

inner product. Commonly used RKHS kernel functions include the Gaussian radial basis

function (RBF) k(x, x′) = exp(−‖x − x′‖2/2σ2), where σ > 0 is the kernel bandwidth,

and polynomial kernel k(x, x′) = (〈x, x′〉+ a)d, where a > 0 and d ∈ N (see [31]). RKHS

kernels can also be defined for sequences, graph and other structured object (see [32]). In

this paper, if not otherwise stated, we will assume that Gaussian RBF kernel is used.

Assume there are two sets X and Y , each with n samples taking value on a gen-

eral domain X , where X = {x1, x2, . . . , xn} are i.i.d. with a distribution P , and Y =

{y1, y2, . . . , yn} are i.i.d. with a distribution Q. The MMD is defined as [9]

MMD[F , P,Q] := sup
f∈F
{EX∼P [f(X)]− EY∼Q[f(Y )]} .

An unbiased estimator of MMD2 can be obtained using U -statistic [9]

MMD2
u[F , X, Y ] =

1

n(n− 1)

n∑
i 6=j

h(xi, xj, yi, yj), (2.1)

where h(·) is the kernel for U -statistic and it can be defined using an RKHS kernel as

h(xi, xj, yi, yj) = k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj, yi). (2.2)

Intuitively, the empirical test statistic MMD2
u is expected to be small (close to zero) if

P = Q, and large if P and Q are “far” apart. The complexity for evaluating MMD2
u is

O(n2), since we have to form the so-called Gram matrix for the data, which is of size n-

by-n. Under the null hypothesis, P = Q, the U -statistic is degenerate and has the same

distribution as an infinite sum of Chi-square variables.

To improve computational efficiency, an alternative approach to eatimate MMD2, called

the B-test, is presented by [8]. The key idea is to partition the n samples from P and Q
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into N non-overlapping blocks, X1, . . . , XN and Y1, . . . , YN , each of size B. Then one

computes MMD2
u[F , Xi, Yi] for each pair of blocks and takes an average:

MMD2
B[F , X, Y ] =

1

N

N∑
i=1

MMD2
u[F , Xi, Yi].

Since B is constant and N is on the order of O(n), the computational complexity of

MMD2
B[F , X, Y ] is O(nB2), which is significantly lower than the O(n2) complexity of

MMD2
u[F , X, Y ]. Furthermore, by averaging MMD2

u[F , Xi, Yi] over blocks, when blocks

are independent, the B-test statistic is asymptotically normal under the null using central

limit theorem. This property allows a simple threshold to be derived for the B-test.

2.3 Scan B-statistics

Now we present our change-point detection procedure based on scan B-statistic. Consider

a sequence of data {. . . , x−2, x−1, x0, x1, . . . , xt}, each taking value on a general domain

X . Let {. . . , x−2, x−1, x0} denote the reference data that we know to follow a given pre-

change distribution. Assume there is a large amount of reference data.

In offline change-point detection, the number of samples is fixed, and our goal is to

detect the existence of a change-point τ , such that before the change-point, the samples are

i.i.d. with a distribution P , and after the change-point, the samples are i.i.d. with a different

distribution Q. The location τ where the change-point occurs is unknown. In other words,

we are concerned with testing the null hypothesis

H0 : xi ∼ P, i = 1, . . . , t,
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Figure 2.1: Illustration of offline change-point detection and online change-point detection.

against the single change-point alternative

H1 : ∃1 ≤ τ < t xi ∼


Q, i > τ

P, otherwise.

Note that we are interested in the case of a sustained change: before the change, all sam-

ples follow one distribution, and after the change, all samples follow another distribution

and never switch back. In online change-point detection, the number of samples is not

fixed, and the goal is to detect the emergence of a change-point as quickly as possible. In

various change-point detection settings, the number of post-change samples is small, but

the number of reference samples is large. Therefore, when constructing MMD statistics

over blocks, we will use a common post-change block and multiple disjoint pre-change

reference blocks.

2.3.1 Offline change-point detection

For each possible change location τ , the post-change block consists of the most recent

samples indexed from τ to t. Since we do not know the change-point location, we scan all

possible change-point locations τ . This corresponds to considering a range of post-change

block sizesB ranging from two (i.e., the most recent two samples are post-change samples)
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to Bmax. Here, we exclude B = 1 because the corresponding MMD is unable to compute.

The detection statistic is constructed as follows, also illustrated in Figure 3.3(a). Data

are split into N reference blocks and one test block, each block is size of Bmax. Then we

select data from each block to form smaller sub-blocks of various size B, 2 ≤ B ≤ Bmax.

The reference blocks are denoted as X(B)
i , i = 1, . . . , N , and the test block as Y (B). We

compute MMD2
u for each reference sub-block with respect to the common post-change

block, and take an average:

ZB =
1

N

N∑
i=1

MMD2
u(X

(B)
i , Y (B)). (2.3)

Since the estimator MMD2
u is unbiased, under the null hypothesis P = Q, E[ZB] = 0.

Let Var[ZB] denote the variance of ZB under the null. The variance of ZB depends on the

block size B and the number of blocks N . To have a fair comparison, we normalize each

ZB by their standard deviation

Z ′B = ZB/(Var[ZB])1/2,

and take the maximum over allB to form the offline scanB-statistic. The variance Var[ZB]

is given in Lemma 1. The closed-form expression facilitates the estimation of the variance

of the statistic. A change-point is detected whenever the offline scan B-statistic exceeds a

pre-specified threshold b:

max
2≤B≤Bmax

Z ′B > b. {offline change-point detection} (2.4)

2.3.2 Online change-point detection

In the online setting, new samples sequentially and we constantly test whether the incoming

samples come from a different distribution. To reduce computational burden, in the online

setting, we fix the block-size and adopt a sliding window approach. The resulted sliding
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window procedure can be viewed as a type of Shewhart chart by [33].

The detection statistic is constructed as follows, also illustrated in Figure 3.3(b). At

each time t, we treat the most recent B0 samples as the post-change block. In online

change-point detection, we want to detect the change as quickly as possible. Hence, typi-

cally we will not wait till collecting many post-change samples. On the other hand, there

is a large amount of reference data. To utilize data efficiently, we utilize a common test

block consisting of the most recent samples to form the statistic with N different reference

blocks. The reference blocks are formed by takingNB0 samples without replacement from

the reference pool. We compute MMD2
u between each reference block with respect to the

common post-change block, and take an average:

ZB0,t =
1

N

N∑
i=1

MMD2
u(X

(B0,t)
i , Y (B0,t)), (2.5)

where B0 is the fixed block-size, X(B0,t)
i is the i-th reference block at time t, and Y (B0,t)

is the the post-change block at time t. When there are new samples, we append them to

the post-change block and purge the oldest samples. We show later that this construction

allows for an explicit characterization of the false-alarm rate. We divide each statistic by

its standard deviation to form the online scan B-statistic:

Z ′B0,t
= ZB0,t/(Var[ZB0,t])

1/2.

The calculation of Var[ZB0,t] can also be achieved using Lemma 1. The online change-

point detection procedure is a stopping time: an alarm is raised whenever the detection

statistic exceeds a pre-specified threshold b > 0:

T = inf{t : Z ′B0,t
> b}. {online change-point detection} (2.6)

The online scan B-statistic can be computed efficiently. Note that the variance of the
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ZB0,t only depends on the block size B0 but is independent of t. Hence, it can be pre-

computed. Moreover, there is a simple way to compute the online B-statistic recursively,

as specified in Appendix A.1.

2.3.3 Analytical expression for Var[ZB]

We obtain an analytical expression for Var[ZB], which is useful when forming the detection

statistic in (2.4) and (2.6).

Lemma 1 (Variance of ZB under the null) Given block size B ≥ 2 and the number of

blocks N , under the null hypothesis,

Var[ZB] =

(
B

2

)−1(
1

N
E[h2(x, x′, y, y′)] +

N − 1

N
Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′)]

)
,

(2.7)

where x, x′, x′′, x′′′, y, and y′ are i.i.d. random variables with the null distribution P .

The lemma is proved by making a connection between MMD2
u and U -statistic in [24] and

utilizing the properties of U -statistic. A detailed proof is provided in Appendix A.2.

2.3.4 Examples of detection statistics

Below, we present a few examples to demonstrate that the B-statistics is quite robust in

various settings with different distributions.

Gaussian to Gaussian mixture. In Figure 2.2(a), P = N (0, I2), Q is a mixture Gaus-

sians: 0.3N (0, I2) + 0.7N (0, 0.1I2), and τ = 250. The online procedure stops at time 270

meaning the change is detected with a small delay of 20 unit time.

Sequence of graphs. In Figure 2.2(b), we consider detecting the emergence of a commu-

nity inside a network, which modeled using a stochastic block model, as considered by

[34]. Assume that before the change, each sample is a realization of an Erdős-Rényi ran-

dom graph, with the probability of forming an edge p0 = 0.1 uniformly across the graph.
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After the change, a “community” emerges, which is a subset of nodes, where the edges are

formed in between these nodes with much higher probability p1 = 0.3. The post-change

distribution models a community where the members of the community interact more of-

ten. Our online procedure stops at time 102, meaning the change is detected with a small

delay of 2 unit times.
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Figure 2.2: Examples of scan B-statistics.

Real seismic signal and effect of kernel bandwidth. In Figure 2.2(c), we consider a

segment of real seismic signal that contains a change-point. Using the seismic signal, we

illustrate the effect of different kernel bandwidth. For Gaussian RBF kernel k(Y, Y ′) =

exp (−‖Y − Y ′‖2/2σ2), the kernel bandwidth σ > 0 is typically chosen using a “median

trick” in [31, 35], where σ is set to be the median of the pairwise distances between data

points.

2.4 Theoretical approximations

2.4.1 Theoretical approximation for significance level of offline scan B-statistic

In the offline setting, the choice of the threshold b involves a tradeoff between two standard

performance metrics: (1) significance level (SL), which is the probability that the statistic

exceeds the threshold b when the null hypothesis is true (i.e., when there is no change); and

(2) power, which is the probability of the statistic exceeds the threshold when the alternative
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hypothesis is true.

We present an accurate approximation to the SL of the offline scan B-statistic, assum-

ing the detection threshold b tends to infinity and the number of blocks N is fixed. The

following theorem is our main result.

Theorem 2 (SL of offline scan B-statistic) When b→∞, andBmax →∞, with b/(Bmax)1/2

held as a fixed positive constant, the significance level of the offline B-statistic defined in

(2.4) is given by

P
{

max
2≤B≤Bmax

Z ′B > b

}
= be−

1
2
b2 ·

Bmax∑
B=2

(2B − 1)

2
√

2πB(B − 1)
ν

(
b

√
2B − 1

B(B − 1)

)
· [1 + o(1)] ,

(2.8)

where the special function

ν(µ) ≈ (2/µ)(Φ(µ/2)− 0.5)

(µ/2)Φ(µ/2) + φ(µ/2)
, (2.9)

φ(x) and Φ(x) are the probability density function and the cumulative distribution function

of the standard normal distribution, respectively.

Although the approximation (2.8) is derived in the asymptotic regime and under the as-

sumption that the collection of random variables {Z ′B}B=2,...,Bmax form a Gaussian random

field, we can show numerically that (2.8) is quite accurate in the non-asymptotic regime.

Consider synthetic data that are i.i.d. normal P = N (0, I20). We set Bmax to be 50, 100,

150, and in each case, N = 5. We compare the thresholds obtained by (2.8) and by simu-

lation, for a prescribed SL α. To obtain threshold by simulation, we generate Monte Carlo

trials for offline B-statistics and find the (1−α)-quantile as the estimated threshold. Table

2.1 shows that for various choices of Bmax, the thresholds predicted by Theorem 2 match

quite well with those obtained by simulation. The accuracy can be further improved for

smaller α values by skewness correction as shown in Section 2.6.

The complete proof of Theorem 2 can be found in Appendix A.3, which leverages
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Table 2.1: Thresholds for the offline scan B-statistics obtained by simulation, theory (The-
orem 2), and theory with Skewness Correction (Section 2.6).

α
Bmax = 50 Bmax = 100 Bmax = 150

b (sim) b (theory) b (SC) b (sim) b (theory) b (SC) b (sim) b (theory) b (SC)
0.10 2.41 2.38 2.57 2.43 2.50 2.76 2.53 2.56 2.89
0.05 2.77 2.67 2.97 2.76 2.78 3.17 2.97 2.83 3.22
0.01 3.54 3.23 3.64 3.47 3.32 3.82 3.64 3.37 3.89

the change-of-measure technique. In a nutshell, we aim to find the probability of a rare

event: under null the distribution, the boundary exceeding event {max2≤B≤Bmax Z
′
B > b}

for a large threshold b is rare (so that false alarm remains low). Since quantifying such a

small probability is hard under the null distribution, we consider an alternative probability

measure under which this boundary exceeding event happens with much higher probability.

Under the new measure, one can use the local central limit theorem to a obtain an analytical

expression for the probability. In the end, the original small probability will be related to

the probability under the alternative measure using the Mill’s ratio in [11].

The proof assumes the collection of random variables {Z ′B}B=2,...,Bmax form a Gaussian

random field (as an approximation). This means the finite-dimensional joint distributions

of the collection of random variables are all Gaussian, and they are completely specified

by the mean and the covariance functions, which we characterize below (this is useful for

establishing Theorem 2). These results will be used when we quantify the tail probability

of the scan B-statistics. Under the null distribution, the expectation E[Z ′B] is zero due to

the unbiased property of the MMD estimator. The covariance under the null distribution is

given by the following lemma:

Lemma 3 (Covariance structure of Z ′B in the offline setting) Under the null distribution,

the covariance of {Z ′B}B=2,...,Bmax is given by

ru,v = Cov (Z ′u, Z
′
v) =

√(
u

2

)(
v

2

)/(
u ∨ v

2

)
, 2 ≤ u, v ≤ Bmax, (2.10)
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where u ∨ v = max{u, v}.

The proof can be found in Appendix A.2.2.

2.4.2 Theoretical approximation for ARL of online scan B-statistic

In the online setting, two commonly used performance metrics are (see, e.g., [36]): (1)

the average run length (ARL), which is the expected time before incorrectly announcing a

change of distribution when none has occurred; (2) the expected detection delay (EDD),

which is the expected time to fire an alarm when a change occurs immediately at τ = 0.

The EDD considers the worst case and provides an upper bound on the expected delay to

detect a change-point when the change occurs later in the sequence of observations.

We present an accurate approximation to the ARL of online scan B-statistics. The ap-

proximation is quite useful in setting the threshold. As a result, given a target ARL, one can

determine the corresponding threshold value b from the analytical approximation, avoiding

the more expensive numerical simulations. Our main result is the following theorem.

Theorem 4 (ARL in online scan B-statistic) Let B0 ≥ 2. When b → ∞, the ARL of the

stopping time T defined in (2.6) is given by

E[T ] =
eb

2/2

b
·

{
(2B0 − 1)√

2πB0(B0 − 1)
· ν

(
b

√
2(2B0 − 1)

B0(B0 − 1)

)}−1

· [1 + o(1)] . (2.11)

The complete proof of Theorem 11 is given in Appendix A.4.

We verify the accuracy of the approximation numerically, by comparing the thresh-

olds obtained by Theorem 11 with those obtained from Monte Carlo simulation. Consider

several cases of null distributions: standard normal N (0, 1), exponential distribution with

mean 1, Erdős-Rényi random graph with ten nodes and probability of 0.2 of forming ran-

dom edges, as well as Laplace distribution with zero mean and unit variance. The simula-

tion results are obtained from 5000 direct Monte Carlo trials. As shown in Figure 2.3, the

thresholds predicted by Theorem 11 are quite accurate. Figure 2.3 also demonstrated that
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theory is quite accurate for various block sizes (especially for larger B0). However, we also

note that theory tends to underestimate the thresholds. This is especially pronounced for

small B0, e.g., B0 = 50. The accuracy of the theoretical results can be improved by skew-

ness correction, shown by black lines in Figure 2.3, which are discussed later in Section

2.6.

Theorem 11 shows that ARL is O(eb
2
) and, hence, b is O((log ARL)1/2). Note that

EDD is typically on the order of b/∆ due to Wald’s identity [12], where ∆ is the Kullback-

Leibler (KL) divergence between the null and the alternative distributions (a constant).

Hence, given the desired ARL (typically on the order of 5000 or 10000), the error in the es-

timated threshold will only be translated linearly to EDD. This is a blessing since it means

typically a reasonably accurate b will cause little performance loss in EDD. Similarly, The-

orem 2 shows that SL is O(e−b
2
) and a similar argument can be made for the offline case.
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Figure 2.3: Comparison of ARL obtained from simulation, from Theorem 11, and with the
skewness correction (Section 2.6).

2.5 Detection power study

In this section, we study the detection power and the expected detection delay of the offline

and online scan B-statistics, respectively, and compare them with classic methods.
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2.5.1 Offline change-point detection: Comparison with parametric statistics

We compare the offline scan B-statistic with two commonly used parametric test statistics:

the Hotelling’s T 2 and the generalized likelihood ratio (GLR) statistics. Assume samples

{x1, x2, . . . , xn}.

Hotelling’s T 2 statistic. For a hypothetical change-point location τ , we can define the

Hotelling’s T 2 statistic for samples in two segments [1, τ ] and [τ + 1, t] as

T 2(τ) =
τ(n− τ)

n
(x̄τ − x̄∗τ )T Σ̂−1(x̄τ − x̄∗τ ),

where, x̄τ =
∑τ

i=1 xi/τ , x̄∗τ =
∑n

i=τ+1 xi/(n− τ) and the pooled covariance estimator

Σ̂ = (n− 2)−1

(
τ∑
i=1

(xi − x̄i)(xi − x̄i)T+
n∑

i=τ+1

(xi − x̄∗i )(xi − x̄∗i )T
)
.

The Hotelling’s T 2 test detects a change whenever max1≤τ≤n maxT 2(τ) exceeds a thresh-

old.

The generalized likelihood ratio (GLR) statistic can be derived by assuming the null and

the alternative distributions are two multivariate normal distributions, and both the mean

and the covariance matrix are all unknown. For a hypothetical change-point location τ , the

GLR statistic is given by

`(τ) = nlog|Σ̂n| − τ log|Σ̂τ | − (n− τ)log|Σ̂∗τ |,

where Σ̂τ = τ−1
(∑τ

i=1(xi − x̄i)(xi − x̄i)T
)
, and Σ̂∗τ = (n− τ)−1

∑n
i=τ+1(xi − x̄∗i )(xi −

x̄∗i )
T . The GLR statistic detects a change whenever max1≤τ≤n `(τ) exceeds a threshold.

For our examples, we set n = Bmax = 200 for the Hotelling’s T 2 and the scan B-

statistics, respectively. Let the change-point occurs at τ = 100, and choose the significance

level α = 0.05. The thresholds for the offline scanB-statistic are obtained from Theorem 2,
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Table 2.2: Comparison of detection power for offline change-point detection.

Case 1 Case 2 Case 3 Case 4
B-statistic 0.71 1.00 1.00 0.44

Hotelling’s T 2 0.18 0.88 0.87 0.03
GLR 0.03 0.05 0.12 0.04

and those for the other two methods the thresholds are obtained from simulations. Consider

the following cases:

Case 1 (mean shift): observe a sequence of observations in R20, whose distribution

shifts from N (0, I20) to N (0.1e, I20);

Case 2 (mean shift with larger magnitude): observe a sequence of observations in R20,

whose distribution shifts from N (0, I20) to N (0.2e, I20);

Case 3 (mean and local covariance change): observe a sequence of observations in R20,

whose distribution shifts fromN (e, I20) toN (0.2e,Σ),where [Σ]11 = 2 and [Σ]ii = 1, i =

2, . . . , 20;

Case 4 (Gaussian to Laplace): observe a sequence of one-dimensional observations,

whose distribution shifts from N (0, 1) to Laplace distribution with zero mean and unit

variance. Note that the mean and the variance remain the same after the change.

We estimate the power for each case using 100 Monte Carlo trials. Table 2.2 shows

that the scan B-statistic achieves higher power than the Hotelling’s T 2 statistic as well as

the GLR statistic in all cases. The GLR statistic performs poorly, since when τ is small

or closer to the end point, it estimates the pre-change and post-change sample covariance

matrix using a very limited number of samples.

2.5.2 Online change-point detection: Comparison with Hotelling’s T 2 statistics

Now consider the online scan B-statistic with a fixed block-size B0 = 20. We compare

the online scan B-statistic with a Shewhart chart based on Hotelling’s T 2 statistic1. At

1Here we made no comparison of the online scan B-statistic with the GLR statistic, since in our experi-
ments, Hotelling’s T 2 consistently outperforms GLR when the dimension is high.
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each time t, we form a Hotelling’s T 2 statistic using the immediately past B0 samples in

[t−B0 + 1, t],

T 2(t) = B0(x̄t − µ̂)T Σ̂−1
0 (x̄t − µ̂0),

where x̄t = (
∑t

i=t−B0+1 xi)/B0, and µ̂0 and Σ̂0 are estimated from reference data. The

procedure detects a change-point whenever T 2(t) exceeds a threshold for the first time. The

threshold for online scan B-statistic is obtained from Theorem 11, and from simulations

for the Hotelling’s T 2 statistic. To simulate EDD, let the change occur at the first point of

the testing data. Consider the following cases:

Case 1 (mean shift): distribution shifts from N (0, I20) to N (0.31, I20);

Case 2 (covariance change): distribution shifts from N (0, I20) to N (0,Σ), where

[Σ]ii = 2, i = 1, 2, . . . , 5 and [Σ]ii = 1, i = 6, . . . , 20;

Case 3 (covariance change): distribution shifts from N (0, I20) to N (0, 2I20);

Case 4 (Gaussian to Gaussian mixture): distribution shifts from N (0, I20) to mixture

Gaussian 0.3N (0, I20) + 0.7N (0, 0.1I20);

Case 5 (Gaussian to Laplace)2: distribution shifts from N (0, 1) to Laplace distribution

with zero mean and unit variance.

We evaluate the EDD for each case using 500 Monte Carlo trials. The results are sum-

marized in Table 3.2. Note that in detecting changes in either Gaussian mean or covariance,

the online scan B-statistic performs competitively with Hotelling’s T 2, which is tailored to

the Gaussian distribution. In the more challenging scenarios such as Case 4 and Case 5,

the Hotelling’s T 2 fails to detect the change-point whereas the online scan B-statistic can

detect the change fairly quickly.

2For these difficult situations, we report the EDD comparisons based on the selected 500 sequences where
B-statistics successfully detect the changes, which are defined as crossing the threshold within 50 steps from
the time that the change occurs. Hotelling’s T 2 fails to detect the changes for all sequences.
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Table 2.3: Comparison of EDD in online change-point detection.

Case 1 Case 2 Case 3 Case 4 Case 5
B-statistic 4.20 9.10 1.00 23.38 23.03

Hotelling’s T 2 2.47 25.46 1.27 − −

2.6 Skewness correction

We have shown that approximations to the significance level and ARL, assuming that ran-

dom variables {Z ′B}B=2,3,... form a Gaussian random field, are reasonably accurate. How-

ever, Z ′B does not converge to normal distribution even whenB is large (see Appendix A.6)

and it has a non-vanishing skewness, as illustrated by the following numerical example.

Form 10000 instances of ZB computed using samples from N (0, I20). Figures 2.4(a)-(b)

show the empirical distributions of ZB when N = 5, and B = 2 or B = 200, respectively.

Also plotted are the Gaussian probability density functions with mean equal to the sample

mean, and the variance predicted by Lemma 1. Note that the empirical distributions of ZB

match with Gaussian distributions to a certain extent but the skewness becomes larger for

larger B. Figures 2.4(c)-(d) show the corresponding Q-Q plots.

To incorporate the skewness ofZB, one can improve the accuracy of the approximations

for significance level in Theorem 2 and for ARL in Theorem 11. Note that the log moment

generating function ψ(θ) defined in (A.6) corresponds to the cumulant generating function

[37] and it has an expansion for θ close to zero:

ψ(θ) = κ1θ +
κ2

2
θ2 +

κ3

3!
θ3 + o(θ3).

Since E[Z ′B] = 0, the cumulants take values κ1 = E[Z ′B] = 0, κ2 = Var[Z ′B] = 1,

κ3 = E[(Z ′B)3] − 3E[(Z ′B)2]E[Z ′B] + 2(E[Z ′B])3 = E[(Z ′B)3]. Recall that when deriving

approximations using change-of-measurement, we choose parameter θ such that ψ̇(θ) = b.

If Z ′B is a standard normal, ψ(θ) = θ2/2, and hence θ = b. Now with skewness correction,
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Figure 2.4: Empirical distributions of ZB when B = 2 and B = 200.

we approximate ψ(θ) as θ2/2 + κ3θ
3/6 when solving for θ. Hence, we solve for

ψ̇(θ) ≈ θ + E[(Z ′B)3]θ2/2 = b,

and denote the solution to be θB (note that this time the solution depends on B). Moreover,

with skewness correction, we will change the leading exponent term in (2.8) and (A.28)

from e−b
2/2 to be eψ(θ′B)−θ′Bb.

From numerical experiments, we find that the skewness correction is especially useful

when the significance level is small (e.g., α = 0.01) for the offline case, when block size

B0 is small (see Table 2.1 and Fig. 2.3), and can be important for real data where the data

are noisy and the null distribution is more difficult to characterize.

For example, we consider real speech data from the CENSREC-1-C dataset (more de-

tails in Section 2.7). Here, the null distribution P corresponds to the unknown distribution
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of the background signal, and we are interested in detecting the onset of speech signals.

This case is more challenging because the true distribution can be arbitrary. In the dataset,

there are 3000 reference samples. We bootstrap these reference samples to generate 10000

re-samples to estimate the tail of the detection statistic. Table 2.4 demonstrates that the

thresholds predicted by the expensive bootstrapping, by Theorem 2), and by theory with

skewness correction, respectively, for various SL values α. Note that in this case, the accu-

racy improves significantly by skewness correction.

Table 2.4: Thresholds for the offline scan B-statistics using speech data, obtained by sim-
ulation, theory (Theorem 2), and theory with skewness correction.

α
Bmax = 50 Bmax = 100 Bmax = 150

b (boot) b (theory) b (SC) b (boot) b (theory) b (SC) b (boot) b (theory) b (SC)
0.10 2.96 2.38 3.23 3.16 2.50 3.59 3.21 2.56 3.94
0.05 3.62 2.67 3.68 3.82 2.78 4.06 3.86 2.83 4.43
0.01 4.85 3.23 4.61 5.20 3.32 5.03 5.42 3.37 5.45

The remaining task is to estimate the skewness of scan B-statistic. Since ZB is zero-

mean, the skewness of Z ′B is related to the variance and third moment of ZB via

κ3 = E[(Z ′B)3] = Var[ZB]−3/2E[Z3
B].

We already know how to estimate the variance of ZB from Lemma 1. The following lemma

shows the third-order moment E[Z3
B] in terms of the moments of the kernel h defined in

(2.2):
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Lemma 5 (Third-order moment of ZB)

E[Z3
B] =

8(B − 2)

B2(B − 1)2

{
1

N2
E [h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′, x, y′′, y)]

+
3(N − 1)

N2
E [h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′′, x′′′′, y′′, y)]

+
(N − 1)(N − 2)

N2
E [h(x, x′, y, y′)h(x′′, x′′′, y′, y′′)h(x′′′′, x′′′′′, y′′, y)]

}
+

4

B2(B − 1)2

{
1

N2
E
[
h(x, x′, y, y′)3

]
+

3(N − 1)

N2
E
[
h(x, x′, y, y′)2h(x′′, x′′′, y, y′)

]
+

(N − 1)(N − 2)

N2
E [h(x, x′, y, y′)h(x′′, x′′′, y, y′)h(x′′′′, x′′′′′, y, y′)]

}
.

(2.12)

The proof can be found in Appendix A.5. Lemma 5 enables us to estimate the skewness

efficiently, by reducing it to evaluating simpler terms in (2.12) that only requires estimating

the statistic of the kernel function h(·, ·, ·, ·) with tuples of samples.

Finally, although Z ′B does not converge to Gaussian, the difference between its moment

generating functions and that of the standard normal distribution can be bounded, as we

show below. By applying an argument on Page 220 of [11], we obtain that

∣∣∣∣E[eθZ
′
B ]− (1 +

θ2

2
)

∣∣∣∣ ≤ min{|θ|
3

6
E[|Z ′B|3], θ2E[|Z ′B|2]}.

If considering the skewness κ3 of Z ′B, we have a better estimation

∣∣∣∣E[eθZ
′
B ]− (1 +

θ2

2
+
θ3κ3

6
)

∣∣∣∣ ≤ min{ θ
4

24
E[|Z ′B|4],

1

3
|θ|3E[|Z ′B|3]}.

2.7 Real data

We test the performance of the scan B-statistics for change-point detection on real data.

Our datasets include: (1) CENSREC-1-C: a real-world speech data set in the Speech Re-
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source Consortium (SRC) corpora provided by National Institute of Informatics (NII)3;

(2) Human Activity Sensing Consortium (HASC) challenge 2011 data4. We compare our

proposed scan B-statistics with a baseline algorithm, the relative density-ratio (RDR) es-

timate [6]. One limitation of the RDR algorithm, however, is that it is not suitable for

high-dimensional data because estimating density ratio in the high-dimensional setting is

an ill-posed problem. To achieve reasonable performance for the RDR algorithm, we ad-

just the bandwidth and the regularization parameter at each time step and, hence, the RDR

algorithm is computationally more expensive than using the scan B-statistics. We adopt

the standard Area Under Curve (AUC) as in [6] for our performance metric. The larger the

AUC, the better.

Our scanB-statistics demonstrate competitive performance compared with the baseline

RDR algorithm on the real data. Here we only report the main results and leave the details

in Appendix A.7. For speech data, our goal is to online detect the emergence of a speech

signal from the background. The backgrounds are taken from real acoustic signals, such

as noise recorded in highway, airport and subway stations. The overall AUC for the scan

B-statistic is 0.8014 and for the baseline algorithm is 0.7578. For human activity detection

data, our goal is to detect a transition from one activity to another as quickly as possible.

Each instance consists of six possible human activity signals collected by portable three-

axis accelerometers. The overall AUC for the scanB-statistic is 0.8871 and for the baseline

algorithm is 0.7161.

2.8 Discussion

There are a few possible directions to extend our work. (1) Thus far, we have assumed that

data are i.i.d. from a null distribution P and when the change happens, data are i.i.d. from

an alternative distribution Q. Under these assumptions, we have developed the offline

and online change-point detection algorithms based on the two-sample nonparametric test
3Available from http://research.nii.ac.jp/src/en/CENSREC-1-C.html
4Available from http://hasc.jp/hc2011
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statistic MMD. One may relax the temporal independence assumption and extend scan B-

statistics for dependent data by incorporating ideas from [38]. (2) We have demonstrated

how the number of blocks and block size affect the performance of scan B-statistics. One

can also explore how kernel bandwidth, as well as the dimensionality of the data, would

affect the performance. An empirical observation is that the performance of MMD statistic

degrades with the increasing dimensions of data. Some recent results for the kernel-based

test can be found in [35]. We may adopt the idea of [35] to extend our scan B-statistics

for detecting a change in high dimensions. (3) For an exceedingly high dimensional data

set with large Gram matrix, one can perform random subsampling to reduce complexity

similar to [39].
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CHAPTER 3

DETECTING CHANGES IN DYNAMIC EVENTS OVER NETWORKS.

Large volume of networked streaming event data are becoming increasingly available in a

wide variety of applications, such as social network analysis, Internet traffic monitoring and

healthcare analytics. Streaming event data are discrete observation occurred in continuous

time, and the precise time interval between two events carries a great deal of information

about the dynamics of the underlying systems.

How to promptly detect changes in these dynamic systems using these streaming event

data? In this chapter, we propose a novel change-point detection framework for multi-

dimensional event data over networks. We cast the problem into sequential hypothesis test,

and derive the likelihood ratios for point processes, which are computed efficiently via an

EM-like algorithm that is parameter-free and can be computed in a distributed fashion. We

derive a highly accurate theoretical characterization of the false-alarm-rate, and show that

it can achieve weak signal detection by aggregating local statistics over time and networks.

Finally, we demonstrate the good performance of our algorithm on numerical examples and

real-world datasets from twitter and Memetracker.

3.1 Overview

Networks have become a convenient tool for people to efficiently disseminate, exchange

and search for information. Recent attacks on very popular web sites such as Yahoo and

eBay [40], leading to a disruption of services to users, have triggered an increasing interest

in network anomaly detection. In the positive side, surge of hot topics and breaking news

can provide business opportunities. Therefore, early detection of changes, such as anoma-

lies, epidemic outbreaks, hot topics, or new trends among streams of data from networked

entities is a very important task and has been attracting significant interests [40, 41, 42].
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Figure 3.1: Asynchronously and interdependently generated high dimensional event data
are fundamentally different from i.i.d. and time-series data.

All types of the above-mentioned changes can be more concretely formulated as the

changes of time interval distributions between events, combined with the alteration of inter-

action structures across components in networks. However, change-point detection based

on event data occurring over the network topology is nontrivial. Apart from the possible

temporal dependency of the event data as well as the complex cross-dimensional depen-

dence among components in network, event data from networked entities are usually not

synchronized in time. Dynamic in nature, many of the collected data are discrete events

observed irregularly in continuous time [43, 44]. The precise time interval between two

events is random and carries a great deal of information about the dynamics of the under-

lying systems. These characteristics make such event data fundamentally different from

independently and identically distributed (i.i.d.) data, and time-series data where time and

space is treated as an index rather than random variables (see Figure 3.1 for further il-

lustrations of the distinctive nature of event data vs. i.i.d. and time series data). Clearly,

i.i.d. assumption can not capture temporal dependency between data points, while time-

series models require us to discretize the time axis and aggregate the observed events into

bins (such as the approach in [45] for neural spike train change detection). If this approach

is taken, it is not clear how one can choose the size of the bin and how to best deal with the

case when there is no event within a bin.

Besides the distinctive temporal and spatial aspect, there are three additional challenges

using event data over network: (i) how to detect weak changes; (ii) how to update the

statistics efficiently online; and (iii) how to provide theoretical characterization of the false-
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alarm-rate for the statistics. For the first challenge, many existing approaches usually use

random or ad-hoc aggregations which may not pool data efficiently or lose statistical power

to detect weak signals. Occurrence of change-points (e.g., epidemic outbreaks, hot topics,

etc.) over networks usually evince a certain clustering behavior over dimensions and tend

to synchronize in time. Smart aggregation over dimensions and time horizon would man-

ifest the strength of signals and detect the change quicker [46]. For the second challenge,

many existing change-point detection methods based on likelihood ratio statistics do not

take into account computational complexity nor can be computed in a distributed fash-

ion and, hence, are not scalable to large networks. Temporal events can arrive at social

platforms in very high volume and velocity. For instance, every day, on average, around

500 million tweets are tweeted on Twitter [47]. There is a great need for developing effi-

cient algorithms for updating the detection statistics online. For the third challenge, it is

usually very hard to control false-alarms for change-point detection statistics over a large

network. When applied to real network data, traditional detection approaches usually have

a high false alarms [40]. This would lead to a huge waste of resources since every time a

change-point is declared, subsequent diagnoses are needed. Lacking accurate theoretical

characterization of false-alarms, existing approaches usually have to incur expensive Monte

Carlo simulations to determine the false-alarms and are prohibitive for large networks.

Our contributions. In this chapter, we present a novel online change-point detection

framework tailored to multi-dimensional intertwined event data streams over networks (or

conceptual networks) tackling the above challenges. We formulate the problem by lever-

aging the mathematical framework of sequential hypothesis testing and point processes

modeling, where before the change the event stream follows one point process, and after

the change the event stream becomes a different point process. Our goal is to detect such

changes as quickly as possible after the occurrences. We derive generalized likelihood

ratio statistics, and present an efficient EM-like algorithm to compute the statistic online

with streaming data. The EM-like algorithm is parameter-free and can be implemented in
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a distributed fashion and, hence, it is suitable for large networks.

Specifically, our contributions include the following:

(i) We present a new sequential hypothesis test and likelihood ratio approach for de-

tecting changes for the event data streams over networks. We will either use the Poisson

process as the null distribution to detect the appearance of temporal independence, or use

the Hawkes process as the null distribution to detect the possible alteration of the depen-

dency structure. For (inhomogeneous) Poisson process, time intervals between events are

assumed to be independent and exponentially distributed. For Hawkes process, the oc-

currence intensity of events depends on the events that have occurred, which implies that

the time intervals between events would be correlated. Therefore, Hawkes process can be

thought of as a special autoregressive process in time, and multivariate Hawkes process also

provides a flexible model to capture cross-dimension dependency in addition to temporal

dependency. Our model explicitly captures the information diffusion (and dependencies)

both over networks and time, and allows us to aggregate information for weak signal de-

tection. Our proposed detection framework is quite general and can be easily adapted to

other point processes.

In contrast, existing work on change-point detection for point processes has also been

focused on a single stream rather than the multidimensional case with networks. These

work including detecting change in the intensity of a Poisson process [48, 49, 50] and the

coefficient of continuous diffusion process [51]; detecting change using the self-exciting

Hawkes processes include trend detection in social networks [52]; detecting for Poisson

processes using a score statistic [53].

(ii) We present an efficient expectation-maximization (EM) like algorithm for updating

the likelihood-ratio detection statistic online. The algorithm can be implemented in a dis-

tributed fashion due to its structure: only neighboring nodes need to exchange information

for the E-step and M-step.

(iii) We also present accurate theoretical approximation to the false-alarm-rate (for-
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mally the average-run-length or ARL) of the detection algorithm, via the recently devel-

oped change-of-measure approach to handle highly correlated statistics. Our theoretical

approximation can be used to determine the threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our algorithm over two baseline

algorithms (which ignore the temporal correlation and correlation between nodes), using

synthetic experiments and real-world data. These two baseline algorithms representing

the current approaches for processing event stream data. We also show that our algorithm

is very sensitive to true changes, and the theoretical false-alarm-rates are very accurate

compared to the experimental results.

3.1.1 Related work.

Recently, there has been a surge of interests in using multidimensional point processes for

modeling dynamic event data over networks. However, most of these works focus on mod-

eling and inference of the point processes over networks. Related works include modeling

and learning bursty dynamics [44]; shaping social activity by incentivization [54]; learning

information diffusion networks [43]; inferring causality [55]; learning mutually exciting

processes for viral diffusion [56]; learning triggering kernels for multi-dimensional Hawkes

processes [57]; in networks where each dimension is a Poisson process [58]; learning la-

tent network structure for general counting processes [59]; tracking parameters of dynamic

point process networks [60]; and estimating point process models for the co-evolution of

network structure an information diffusion [61], just to name a few. These existing works

provide a wealth of tools through which we can, to some extent, keep track of the net-

work dynamics if the model parameters can be sequentially updated. However, only given

the values of the up-to-date model parameters, especially in high dimensional networks, it

is still not clear how to perform change detection based on these models in a principled

fashion.

Classical statistical sequential analysis (see, e.g., [62, 63]), where one monitors i.i.d.
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univariate and low-dimensional multivariate observations observations from a single data

stream is a well-developed area. Outstanding contributions include Shewhart’s control

chart [64], the minimax approach Page’s CUSUM procedure [65, 66], the Bayesian ap-

proach Shiryaev-Roberts procedure [67, 68], and window-limited procedures [69]. How-

ever, there is limited research in monitoring large-scale data streams over a network, or

even event streams over networks. Detection of change-points in point processes has so

far mostly focused on the simple Poisson process models without considering temporal

dependency, and most of the detection statistics are computed in a discrete-time fashion,

that is, one needs to aggregate the observed events into bins and then apply the traditional

detection approaches to time-series of count data. Examples include [70, 71, 41] .

The notations are standard. The remaining sections are organized as follows. Sec-

tion 3.2 presents the point process model and derives the likelihood functions. Section 3.3

presents our sequential likelihood ratio procedure. Section 3.4 presents the EM-like algo-

rithm. Section 3.5 presents our theoretical approximation to false-alarm-rate. Section 3.6

contains the numerical examples. Section 3.6 presents our results for real-data. Finally,

Section 3.8 summarizes the paper. All proofs are delegated to the Appendix.

3.2 Model and Formulation

Consider a sequence of events over a network with d nodes, represented as a double se-

quence

(t1, u1), (t2, u2), . . . , (tn, un), . . . (3.1)

where ti ∈ R+ denotes the real-valued time when the ith event happens, and i ∈ Z+ and

ui ∈ {1, 2, . . . , d} indicating the node index where the event happens. We use temporal

point processes [72] to model the discrete event streams, since they provide convenient

tool in directly modeling the time intervals between events, and avoid the need of picking a

time window to aggregate events and allow temporal events to be modeled in a fine grained
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fashion.

3.2.1 Temporal point processes

A temporal point process is a random process whose realization consists of a list of discrete

events localized in time, {ti}, with ti ∈ R+ and i ∈ Z+. We start by considering one-

dimensional point processes. Let the list of times of events up to but not including time t

be the history

Ht = {t1, . . . , tn : tn < t}.

Let Nt represent the total number of events till time t. Then the counting measure can be

defined as

dNt =
∑
ti∈Ht

δ(t− ti)dt, (3.2)

where δ(t) is the Dirac function.

To define the likelihood ratio for point processes, we first introduce the notion of con-

ditional intensity function [73]. The conditional intensity function is a convenient and in-

tuitive way of specifying how the present depends on the past in a temporal point process.

Let F ∗(t) be the conditional probability that the next event tn+1 happens before t given the

history of previous events

F ∗(t) = P{tn+1 < t|Ht},

and let f ∗(t) be the corresponding conditional density function. The conditional intensity

function (or the hazard function) [73] is defined by

λt =
f ∗(t)

1− F ∗(t)
, (3.3)

and it can be interpreted as the probability that an event occurs in an infinitesimal interval

λtdt = P{event in [t, t+ dt)|Ht}. (3.4)
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This general model includes Poisson process and Hawkes process as special cases.

(i) For (inhomogeneous) Poisson processes, each event is stochastically independent to

all the other events in the process, and the time intervals between consecutive events are

independent with each other and are exponentially distributed. As a result, the conditional

intensity function is independent of the past, which is simply deterministic λt = µt.

(ii) For one dimensional Hawkes processes, the intensity function is history dependent

and models a mutual excitation between events

λt = µt + α

∫ t

0

ϕ(t− τ)dNτ , (3.5)

where µt is the base intensity (deterministic), α ∈ (0, 1) (due to the requirement of sta-

tionary condition) is the influence parameter, and ϕ(t) is a normalized kernel function∫
ϕ(t)dt = 1. Together, they characterize how the history influences the current intensity.

Fixing the kernel function, a higher value of α means a stronger temporal dependency be-

tween events. A commonly used kernel function is the exponential kernel ϕ(t) = βe−βt,

which we will use through the paper.

(iii) The multi-dimensional Hawkes process is defined similarly, with each dimension

being a one-dimensional counting process. It can be used to model the sequence of events

over network such as (3.1). We may convert a multi-dimensional process into a double

sequence, using the first coordinate to represent time of the event, and the second coordinate

to represent the index of the corresponding node.

Define a multivariate counting process (N1
t , N

2
t , . . . , N

d
t ), t > 0, with each component

N i
t recording the number of events of the i-th component (node) of the network during

[0, t]. The intensity function is

λit = µit +
d∑
j=1

∫ t

0

αijϕ(t− τ)dN j
τ , (3.6)
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Figure 3.2: Illustration of scenarios for one-dimensional examples: (a) Poisson to Hawkes;
(b) Hawkes to Hawkes.

where αij, j, i ∈ {1, . . . , d} represents the strength of influence of the j-th node on the

i-th node by affecting its intensity process λi. If αij = 0, then it means that N j is not

influencing N i. Written in matrix form, the intensity can be expressed as

λt = µt +A

∫ t

0

ϕ(t− τ)dNτ , (3.7)

where

µt = [µ1
t , µ

2
t , . . . , µ

d
t ]
>, dNτ = [dN1

τ , dN
2
τ , . . . , dN

d
τ ]>,

and A = [αij]16i,j6d is the influence matrix, which is our main quantity-of-interest when

detect a change. The diagonal entries characterize the self-excitation and the off-diagonal

entries capture the mutual-excitation among nodes in the network. The influence matrix

can be asymmetric since influence can be bidirectional.

3.2.2 Likelihood function

In the following, we will explicitly denote the dependence of the likelihood function on

the parameters in each setting. The following three cases are useful for our subsequent

derivations. Let f(t) denote the probability density function. For the one-dimensional

setting, given a sequence of n events (event times) {t1, t2, . . . , tn} before time t. Using the
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conditional probability formula, we obtain

L = f(t1, . . . , tn) = (1− F ∗(t))
n∏
i=1

f(ti|t1, . . . , ti−1)

= (1− F ∗(t))
n∏
i=1

f ∗(ti) =

(
n∏
i=1

λti

)
exp

{
−
∫ t

0

λsds

}
.

(3.8)

The last equation is from the following argument. From the definition of the conditional

density function, we have

λt =
d

dt
F ∗(t)/(1− F ∗(t)) = − d

dt
log(1− F ∗(t)).

Hence,
∫ t
tn
λsds = −log(1 − F ∗(t)), where F ∗(tn) = 0, since event n + 1 cannot happen

at time tn. Therefore,

F ∗(t) = 1− exp
{
−
∫ t

tn

λsds

}
, f ∗(t) = λtexp

{
−
∫ t

tn

λsds

}
.

The likelihood function for multi-dimensional Hawkes process can be derived similarly, by

redefining f ∗(t) and F ∗(t) according to the intensity functions of the multi-dimensional

processes.

Based on the above principle, we can derive the following likelihood functions.

Homogeneous Poisson process

For homogeneous Poisson process, λt = µ. Given constant intensity, the log-likelihood

function for a list of events {t1, t2, . . . , tn} in the time interval [0, t] can be written as

logL(µ) = nlogµ− µt. (3.9)
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One dimensional Hawkes process

For one-dimensional Hawkes process with constant baseline intensity µt = µ and exponen-

tial kernel, we may obtain its log-likelihood function based on the above calculation. By

substituting the conditional intensity function (3.5) into (3.8), the log-likelihood function

for events in the time interval [0, t] is given by

logL(α, β, µ) =
n∑
i=1

log

µ+ α
∑
tj<ti

βe−β(ti−tj)


− µt−

∑
ti<t

α
[
1− e−β(t−ti)

]
.

(3.10)

To obtain the above expression, we have used the following two simple results for expo-

nential kernels, due to the property of counting measure defined in (3.2):

λt = µ+ α

∫ t

−∞
ϕ(t− τ)dNτ = µ+ α

∑
ti<t

βe−β(t−ti), (3.11)

and ∫ t

0

λsds = µt+
∑
ti<t

α
[
1− e−β(t−ti)

]
. (3.12)

Multi-dimensional Hawkes process

For multi-dimensional point process, we consider the event stream such as (3.1). Assume

base intensities are constants with µit , µi. Using similar calculations as above, we obtain

the log-likelihood function for events in the time interval [0, t] as

logL (A, β,µ) =
n∑
i=1

log

µui +
∑
tj<ti

αui,ujβe
−β(ti−tj)


−

d∑
j=1

µjt−
d∑
j=1

∑
ti<t

αui,j
[
1− e−β(t−ti)

]
.

(3.13)
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3.3 Sequential change-point detection

We are interested in detecting two types of changes sequentially from event streams, which

capture two general scenarios in real applications (Fig. 3.2 illustrates these two scenarios

for the one dimensional setting): (i) The sequence before change is a Poisson process

and after the change is a Hawkes process. This can be useful for applications where we

are interested in detecting an emergence of self- or mutual-excitation between nodes. (ii)

The sequence before change is a Hawkes process and after the change the magnitude of

influence matrix increases. This can be a more realistic scenario, since often nodes in a

network will influence each initially. This can be useful for applications where a triggering

event changes the behavior or structure of the network. For instance, detecting emergence

of a community in network [74].

In the following, we cast the change-point detection problems as sequential hypothesis

test [75], and derive generalized likelihood ratio (GLR) statistic for each case. Suppose

there may exist an unknown change-point κ such that after that time, the distribution of the

point process changes.

3.3.1 Change from Poisson to Hawkes

First, we are interested in detecting the events over network changing from d-dimensional

independent Poisson processes to an intertwined multivariate Hawkes process. This models

the effect that the change affects the spatial dependency structure over the network. Below,

we first consider one-dimensional setting, and then generalize them to multi-dimensional

case.

One-dimensional case

The data consists of a sequence of events occurring at time {t1, t2, . . . , tn}. Under the

hypothesis of no change (i.e. H0), the event time is a one-dimensional Poisson process with
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intensity λ. Under the alternative hypothesis (i.e. H1), there exists a change-point κ. The

sequence is a Poisson process with intensity λ initially, and changes to a one-dimensional

Hawkes process with parameter α after the change. Formally, the hypothesis test can be

stated as 
H0 : λs = µ, 0 < s < t;

H1 : λs = µ, 0 < s < κ,

λ∗s = µ+ α
∫ s
κ
ϕ(s− τ)dNτ , κ < s < t.

(3.14)

Assume intensity µ can be estimated from reference data and β is given as a priori. We

treat the post-change influence parameter α as unknown parameter since it represents an

anomaly.

Using the likelihood functions derived in Section 3.2.2, equations (3.9) and (3.10), for

a hypothetical change-point location τ , the log-likelihood ratio as a function of α, β and µ,

is given by

`t,τ,α = logL(α, β, µ)− logL(µ)

=
∑
ti∈(τ,t)

log

µ+ α
∑

tj∈(τ,ti)

βe−β(ti−tj)


− µ(t− τ)− α

∑
τi∈(τ,t)

[
1− e−β(t−ti)

]
.

(3.15)

Note that log-likelihood ratio only depends on the events in the interval (τ, t) and α. We

maximize the statistic with respect to the unknown parameters α and τ to obtain the log

GLR statistic. Finally, the sequential change-point detection procedure is a stopping rule

(related to the non-Bayesian minimax type of detection rule, see [76]):

Tone−dim = inf{t : max
τ<t

max
α

`t,τ,α > x}, (3.16)

where x is a pre-scribed threshold, whose choice will be discussed later. Even though there

does not exist a closed-form expression for the estimator of α, we can estimate α via an
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EM-like algorithm, which will be discussed in Section 3.4.2.

Remark 6 (Offline detection) We can adapt the procedure for offline change-point detec-

tion by considering the fixed-sample hypothesis test. For instance, for the one-dimensional

setting, given a sequence of n events with tmax , tn, we may detect the existence of change

when the detection statistic, maxτ<tmax maxα `tmax,τ,α, exceeds a threshold. The change-

point location can be estimated as τ ∗ that obtains the maximum. However, the algorithm

consideration for online and offline detection are very different, as discussed in Section 3.4.

Multi-dimensional case

For the multi-dimensional case, the event stream data can be represented as a double se-

quence defined in (3.1). We may construct a similar hypothesis test as above. Under the

hypothesis of no change, the event times is multi-dimensional Poisson process with a vec-

tor intensity function λs = µ. Under the alternative hypothesis, there exists a change-point

κ. The sequence is a multi-dimensional Poisson process initially, and changes to a multi-

dimensional Hawkes process with influence matrix A afterwards. We omit the formal

statement of the hypothesis test as it is similar to (3.14).

Again, using the likelihood functions derived in 3.2.2, we obtain the likelihood ratio.

The log-likelihood ratio for data up to time t, given a hypothetical change-point location τ

and parameterA, is given by

`t,τ,A = logL(A, β, µ)− logL(µ)

=
∑
ti∈(τ,t)

log

1 +
1

µui

∑
tj∈(τ,ti)

αui,ujβe
−β(ti−tj)


−

d∑
j=1

∑
ti∈(τ,t)

αj,ui
[
1− e−β(t−ti)

]
.

(3.17)
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The sequential change-point detection procedure is a stopping rule:

Tmulti−dim = inf{t : max
τ<t

max
A

`t,τ,A > x}, (3.18)

where x is a pre-determined threshold. The multi-dimensional maximization can be com-

puted efficiently via an EM algorithm described in Section 3.4.2 .

Remark 7 (Topology of network) The topology of the network has been embedded in the

sparsity pattern of the influence matrix A, which are given as a priori. The dependency

between different nodes in the network and the temporal dependence over events can be

captured in updating (or tracking) the influence matrix A with events stream. This can be

achieved as an EM-like algorithm, which is resulted from solving a sequential optimiza-

tion problem with warm start (i.e., we always initialize the parameters using the optimal

solutions of the last step).

events&

sliding&+me&window&
network&

Figure 3.3: Illustration of the sliding window approach for online detection.

3.3.2 Changes from Hawkes to Hawkes

Next, consider the scenario where the process prior to change is a Hawkes process, and the

change happens in the influence parameter α or the influence matrixA.

One-dimensional case

Under the hypothesis of no change, the event stream is a one-dimensional Hawkes process

with parameter α. Under the alternative hypothesis, there exists a change-point κ. The
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sequence is a Hawkes process with intensity α, and after the change, the intensity changes

to α∗. Assume the parameter α prior to change is known.

Using the likelihood functions derived in 3.2.2, we obtain the log-likelihood ratio

`t,τ,α∗ = logL(α∗, β, µ)− logL(µ)

=
∑
ti∈(τ,t)

log

[
µ+ α∗

∑
tj∈(τ,ti)

βe−β(ti−tj)

µ+ α
∑

tj∈(τ,ti)
βe−β(ti−tj)

]

− (α∗ − α)
∑
ti∈(τ,t)

[
1− e−β(t−ti)

]
,

(3.19)

and the change-point detection is through a procedure in the form of (3.16) by maximizing

with respect to τ and α.

Multi-dimensional case

For the multi-dimensional setting, we assume the change will alter the influence parameters

of the multi-dimensional Hawkes process over network. This captures the effect that, after

the change, the influence between nodes becomes different. Assume that under the hypoth-

esis of no change, the event stream is a multi-dimensional Hawkes process with parame-

ter A. Alternatively, there exists a change-point κ. The sequence is a multi-dimensional

Hawkes process with influence matrix A before the change, and after the change, the in-

fluence matrix becomesA∗. Assume the influence matrixA prior to change is known.

Using the likelihood functions derived in 3.2.2, the log-likelihood ratio at time t for a

hypothetical change-point location τ and post-change parameter valueA∗ is given by

`t,τ,A∗ = logL(A∗, β, µ)− logL(µ)

=
∑
ti∈(τ,t)

log

[
µui +

∑
tj∈(τ,ti)

α∗ui,ujβe
−β(ti−tj)

µui +
∑

tj∈(τ,ti)
αui,ujβe

−β(ti−tj)

]

−
d∑
j=1

∑
ti∈(τ,t)

(
α∗j,ui − αj,ui

) [
1− e−β(t−ti)

]
,

(3.20)
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and the change-point detection is through a procedure in the form of (3.18) by maximizing

with respect to τ andA∗.

Algorithm 1 Online Detection Algorithm
Require: Data {(ti, ui)}. Scanning window length L; Update frequency γ (per events);

Initialization for parameters α (one-dimension) or A (multi-dimension); Pre-defined
threshold: x; Estimation accuracy: ε.

1: repeat
2: if mod (i, γ) = 0 then
3: Initialize α(0) = α̂ orA(0) = Â {warm start}
4: repeat
5: Perform {E-step} and {M-step} from Section 3.4.2
6: until ‖α(k+1) − α(k)‖ < ε or ‖A(k+1) −A(k)‖ < ε
7: Let α̂ = α(k+1) and Â = A(k+1).
8: Use α̂ or Â to compute log likelihood using (3.15), (3.17), (3.19) or (3.20).
9: end if

10: until `t,τ,α̂ > x or `t,τ,Â > x and announce a change.

3.4 Algorithm for computing likelihood online

In the online setting, we obtain new data continuously. Hence, in order to perform online

detection, we need to update the likelihood efficiently to incorporate the new data. To re-

duce computational cost, update of the likelihood function can be computed recursively and

the update algorithm should have low cost. To reduce memory requirement, the algorithm

should only store the minimum amount of data necessary for detection rather than the com-

plete history. These requirements make online detection drastically different from offline

detection. Since in the offline setting, we can afford more computational complexity.

3.4.1 Sliding window procedure

The basic idea of online detection procedure is illustrated in Fig. 3.3. We adopt a sliding

window approach to reduce computational complexity as well the memory requirement.

When evaluating the likelihood function, instead of maximizing over possible change-point
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location τ < t, we pick a window-size L and set τ to be a fixed-value

τ = t− L.

This is equivalent to constantly testing whether a change-point occurs L samples before.

By fixing the window-size, we reduce the computational complexity, since we eliminate

the maximization over the change-point location. This also reduces the memory require-

ment as we only need to store events that fall into the sliding window. The drawback is

that, by doing this, some statistical detection power is lost, since we do not use the most

likely change-point location, and it may increase detection delay. When implementing the

algorithm, we choose L to achieve a good balance in these two aspect. We have to choose

L large enough so that there is enough events stored for us to make a consistent inference.

In practice, a proper length of window relies on the nature of the data. If the data are noisy,

usually a longer time window is needed to have a better estimation of the parameter and

reduce the false alarm.

3.4.2 Parameter Free EM-like Algorithm

We consider one-dimensional point process to illustrate the derivation of the EM-like al-

gorithm. It can be shown that the likelihood function (3.15) is a concave function with

respect to the parameter α. One can use gradient descent to optimize this objective, where

the algorithm will typically involves some additional tuning parameters such as the learn-

ing rate. Although there does not exist a closed-form estimator for influence parameter α

or influence matrix A, we develop an efficient EM algorithm to update the likelihood, ex-

ploiting the structure of the likelihood function [77]. The overall algorithm is summarized

in Algorithm 1.

First, we obtain a concave lower bound of the likelihood function using Jensen’s in-

equality. Consider all events fall into a sliding window ti ∈ (τ, t) at time t. Introduce
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auxiliary variables pij for all pair of events (i, j) within the window and such that tj < ti.

The variables are subject to the constraint

∀i,
∑
tj<ti

pij = 1, pij > 0. (3.21)

These pij can be interpreted as the probability that j-th event influence the i-th event in

the sequence. It can be shown that the likelihood function defined in (3.10) can be lower-

bounded

`t,τ,α >
∑
ti∈(τ,t)

piilog(µ) +
∑

tj∈(τ,ti)

pijlog
[
αβe−β(ti−tj)

]

−
∑

tj∈(τ,t)

pijlogpij

− µ(t− τ)− α
∑
ti∈(τ,t)

[
1− e−β(t−ti)

]
,

Note that the lower-bound is valid for every choice of {pij} which satisfies (3.21).

To make the lower bound tight and ensure improvement in each iteration, we will maxi-

mize it with respect to pij and obtain (3.22) (assuming we have α(k) from previous iteration

or initialization). Once we have the tight lower bound, we will take gradient of this lower-

bound with respect to α. When updating from the k-th iteration to the (k + 1)-th iteration,

we obtain (3.23)

p
(k)
ij =

α(k)βe−β(tj−ti)

µ+ α(k)β
∑

tm∈(τ,tj)
e−β(tj−tm)

{E-step} (3.22)

α(k+1) =

∑
i<j p

(k)
ij∑

ti∈(τ,t)[1− e−β(t−ti)]
{M-step} (3.23)

where the superscript denotes the number of iterations. The algorithm iterates these two

steps until the algorithm converges and obtains the estimated α. In practice, we find that

we only need 3 or 4 iterations to converge if using warm start.

Similarly, online estimate for the influence matrix for multi-dimensional case can be
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estimated by iterating the following two steps:

p
(k)
ij =

α
(k)
ui,ujβe

−β(ti−tj)

µui + β
∑

tm∈(τ,ti)
α

(k)
ui,ume−β(ti−tm)

{E-step}

α(k+1)
u,v =

∑
i:ui=u

∑
j<i:uj=v

p
(k)
ij∑

j: tj∈(τ,t),uj=v

[
1− e−β(t−tj)

] . {M-step}

The overall detection procedure is summarized in Fig. 3.3 and Algorithm 1.

Remark 8 (Computational complexity) The key computation is to compute pairwise inter-

event times for pairs of event ti − tj , i < j. It is related to the window size (since we have

adopted a sliding window approach), the size of the network, and the number of EM steps.

However, note that in the EM algorithm, we only need to compute the inter-event times

for nodes that are connected by an edge, since the summation is weighted by αij and the

term only counts if αij is non-zero. Hence, the updates only involve neighboring nodes and

the complexity is proportional to the number of edges in the network. Since most social

networks are sparse, the will significantly lower the complexity. We may reduce the number

of EM iterations for each update, by leveraging a warm-start for initializing the param-

eter values: since typically for two adjacent sliding window, the corresponding optimal

parameter values should be very close to the previous one.

Remark 9 (Distributed implementation) Our EM-like algorithm in the network setting

can be implemented in a distributed fashion. This has embedded in the form of the algo-

rithm already. Hence, the algorithm can be used for process large networks. In the E-step,

when updating the pij , we need to evaluate a sum in the denominator, and this is the only

place where different nodes need to exchange information, i.e., the event times happened

at that node. Since we only need to sum over all events such that the corresponding αui,uj

is non-zero, this means that each node only needs to consider the events happened at the

neighboring nodes. Similarly, in the M-step, only neighboring nodes need to exchange their

values of pij and event times to update the influence parameter values.
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3.5 Theoretical threshold

A key step in implementing the detection algorithm is to set the threshold. The choice

of threshold involves a trade-off between two standard performance metrics for sequential

change-point detection: the false-alarm rate and how fast we can detect the change. For-

mally, these two performance metrics are: (i) the expected stopping time when there is no

change-points, or named average run length (ARL); and (ii) the expected detection delay

when there exists a change-point.

Typically, a higher threshold x results in a larger ARL (hence smaller false-alarm rate)

but larger detection delay. A usual practice is to set the false-alarm-rate (or ARL) to a

pre-determined value, and find the corresponding threshold x. The pre-determined ARL

depends on how frequent we can tolerate false detection (once a month or once a year).

Usually, the threshold is estimated via direct Monte Carlo by relating threshold to ARL

assuming the data follow the null distribution. However, Monte Carlo is not only computa-

tionally expensive, in some practical problems, repeated experiments would be prohibitive.

Therefore it is important to find a cheaper way to accurately estimate the threshold.

We develop an analytical function which relates the threshold to ARL. That is, given

a prescribed ARL, we can solve for the corresponding threshold x analytically. We first

characterize the property of the likelihood ratio statistic in the following lemma, which

states that the mean and variance of the log-likelihood ratios both scale roughly linearly

with the post-change time duration. This property of the likelihood ratio statistics is key to

developing our main result.

Lemma 10 (Mean and variance of log-likelihood ratios) When the number of post-change

samples (t − τ) is large, the mean and variance of log-likelihood ratio for the single-

dimensional and the multi-dimensional cases, denoted as `t,τ,·, for our cases converges to

simple linear form. Under the null hypothesis, E[`t,τ,·] ≈ (t−τ)I0 and E[`t,τ,·] ≈ (t−τ)σ2
0 .

Under the alternative hypothesis, E[`t,τ,·] ≈ (t − τ)I and E[`t,τ,·] ≈ (t − τ)σ2. Above, I ,
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I0, σ2, and σ2
0 are defined in Table 3.1 for various settings we considered.

Our main theoretical result is the following general theorem that can be applied for all

hypothesis test we consider. Denote the probability and the expectation under the hypoth-

esis of no change by P∞ and E∞, respectively.

Theorem 11 (ARL under the null distribution) When x→∞ and x/
√
L→ c′ for some

constant c′, the average run length (ARL) of the stopping time T defined in (3.16) for one-

dimensional case, is given by

E∞[Tone−dim] = ex

∫
α

ν

(
2ξ

η2

) φ
(
LI−x√
Lσ2

)
√
Lσ2

dα

−1

· (1 + o(1)). (3.24)

For multi-dimensional case, the same expression holds for E∞[Tmulti−dim] except that
∫
α

is replaced by
∫
A

, which means taking integral with respect to all nonzero entries of the

matrix
∫
A

=
∫
· · ·
∫ ∫
{αij ,αij 6=0} . Above, the special function

ν(µ) ≈ (2/µ) (Φ(µ/2)− 0.5)

(µ/2)Φ(µ/2) + φ(µ/2)
.

The specific expressions for I , I0, σ2, and σ2
0 for various settings are summarized in Table

3.1, and

ξ = −(I0 − I), η2 = σ2
0 + σ2. (3.25)

Above, Φ(x) and φ(x) are the cumulative distribution function (CDF) and the probability

density function (PDF) of the standard normal, respectively.

Remark 12 (Evaluating integral) The multi-dimensional integral can be evaluated using

Monte Carlo method [78]. We use this approach for our numerical examples as well.

Remark 13 (Interpretation) The parameters I0, I , σ2
0 and σ2 have the following interpre-
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tation

I0 = E[`t,τ,α]/L, σ2
0 = Var[`t,τ,α]/L,

I = Et,τ,α[`t,τ,α]/L, σ2 = Vart,τ,α[`t,τ,α]/L, (3.26)

which are the mean and the variance of the log-likelihood ratio under the null and the

alternative distributions, per unit time, respectively. Moreover, I can be interpreted roughly

as the Kullback-Leibler information per time for each of the hypothesis test we consider.

The proof of the Theorem 11 combines the recently developed change-of-measure tech-

niques for sequential analysis, with properties the likelihood ratios for the point processes,

mean field approximation for point processes, and Delta method [79].

Star	 Chain		 General	

Figure 3.4: Illustration of network topology.

3.6 Numerical examples

In this section, we present some numerical experiments using synthetic data. We focus on

comparing EDD of our algorithm with two baseline methods, and demonstrate the accuracy

of the analytic threshold.

3.6.1 Comparison of EDD

Two baseline algorithms

We compare our method to two baseline algorithms:
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Table 3.1: Expressions for I , I0, σ2 and σ2
0 under different settings.

Setting I I0 σ2 σ2
0

Poi. → Haw.
(one dim.)

µ
1−α log

(
1

1−α

)
− α

1−αµ µlog
(

1
1−α

)
− α

1−αµ

[
log
(

1
1−α

)]2
·[

µ
1−α + α(2−α)µ

(1−α)3

] µ
[
log
(

1
1−α

)]2

Poi. → Haw.
(high dim.)

λ̄∗ᵀ
(
log(λ̄∗)− log(µ)

)
−eᵀ(λ̄∗ − µ)

µᵀ
(
log(λ̄∗)− log(µ)

)
−e>(λ̄∗ − µ)

eᵀ (H ◦C) e µᵀ
(
log(λ̄∗)− log(µ)

)(2)

Haw. → Haw.
(one dim.)

µ
1−α∗ log

(
1−α
1−α∗

)
− µ

1−α∗ + µ
1−α

µ
1−α log

(
1−α
1−α∗

)
− µ

1−α∗ + µ
1−α

[
log
(

1−α
1−α∗

)]2
·[

µ
1−α∗ + α∗(2−α∗)µ

(1−α∗)3

]
+
(

1− 1−α
1−α∗

)2
·[

µ
1−α + α(2−α)µ

(1−α)3

]

[
1− 1−α∗

1−α

]2
·[

µ
1−α∗ + α∗(2−α∗)µ

(1−α∗)3

]
+
[
log
(

1−α
1−α∗

)]2
·[

µ
1−α + α(2−α)µ

(1−α)3

]
Haw. → Haw.
(multi dim.)

λ̄∗ᵀ
[
logλ̄∗ − logλ̄

]
−eᵀ[λ̄∗ − λ̄]

λ̄ᵀ
[
logλ̄∗ − logλ̄

]
−eᵀ[λ̄∗ − λ̄]

eᵀ (G ◦C∗ + F ◦C) e eᵀ (R ◦C∗ +G ◦C) e

In the table above, M (2) = M ◦M denote the Hadamard product, and related quantities
are defined as

λ̄∗ = (I −A∗)−1µ, λ̄ = (I −A)−1µ,

H =
[
log
(
(I −A)−1µ

)
− log (µ)

]
·
[
log
(
(I −A)−1µ

)
− log (µ)

]ᵀ
,

C = (I −A)−1A
(
2I + (I −A)−1A

)
diag

(
(I −A)−1µ

)
+ diag

(
(I −A)−1µ

)
,

C∗ = (I −A∗)−1A∗
(
2I + (I −A∗)−1A∗

)
· diag

(
(I −A∗)−1µ

)
+ diag

(
(I −A∗)−1µ

)
,

Gij = [log
(
λ̄∗i /λ̄i

)
] · [log

(
λ̄∗j/λ̄j

)
], Fij =

(
1− λ̄∗i /λ̄i

) (
1− λ̄∗j/λ̄j

)
,

Rij =
(
λ̄i/λ̄

∗
i − 1

) (
λ̄j/λ̄

∗
j − 1

)
, 1 6 i 6 j 6 d.

(i) Baseline 1 is related to the commonly used “data binning” approach for processing

discrete event data such as [45]. This approach, however, ignores the temporal correlation

and correlation between nodes. Here, we convert the event data into counts, by discretize

time into uniform grid, and count the number of events happening in each interval. Such

counting data can be modeled via Poisson distribution. We may derive a likelihood ratio

statistic to detect a change. Suppose n1, n2, . . . , nc are the sequence of counting numbers

following Poisson distribution with intensity λi, i = 1, 2, . . . , c is the index of the discrete

time step. Assume under the null hypothesis, the intensity function is λi = µ. Alternatively,

there may exist a change-point κ such that before the change, λi = µ, and after the change,
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λi = µ∗. It can be shown that the log-likelihood ratio statistic as

`c,k,µ∗ = −(c− k)(µ∗ − µ) +
c∑

i=k+1

nilog
µ∗

µ
.

We detect a change whenever maxk<c maxµ∗ `k,c,µ∗ > x for a pre-determined threshold x.

Assume every dimension follows an independent Poisson process, then the log-likelihood

ratio for the multi-dimensional case is just a summation of the log-likelihood ratio for each

dimension. Suppose the total dimension is d, then

`k,c,µ∗ =
d∑
j=1

[
−(c− k)(µ∗j − µj) +

c∑
i=k+1

nji log
µ∗j
µj

]
.

We detect a change whenever maxk<c maxµ∗ `k,c,µ∗ > x.

(ii) Baseline 2 method calculates the one-dimensional change-point detection statistic

at each node separately as (3.15) and (3.19), and then combine the statistics by summation

into a global statistic to perform detection. This approach, however, ignores the correlation

between nodes, and can also be viewed as a centralized approach for change-point detection

and it is related to multi-chart change-point detection [76].

Set-up of synthetic experiments

We consider the following scenarios and compare the EDD of our method to two baseline

methods. EDD is defined as the average time (delay) it takes before we can detect the

change, and can be understood as the power of the test statistic in the sequential setting.

The thresholds of all the three methods are calibrated so that the ARL under the null model

is 104 unit time and the corresponding thresholds are obtained via direct Monte Carlo for a

fair comparison. The sliding window is set to be L = 10 unit time. The exponential kernel

ϕ(t) = βe−βt is used and β = 1. The scenarios we considered are described below. The

illustrations of the Case 1 and Case 2 scenarios are displayed in Fig. 3.2. The network

topology for Case 3 to Case 7 are demonstrated in Fig. 3.4.
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Case 1. Consider a situation when the events first follow a one-dimensional Poisson

process with intensity µ = 10 and then shift to a Hawkes process with influence parameter

α = 0.5. This scenario describes the emergence of temporal dependency in the event data.

Case 2. The process shifts from a one-dimensional Hawkes process with parameter

µ = 10, α = 0.3 to another Hawkes process with a larger influence parameter α = 0.5.

The scenario represents the change of the temporal dependency in the event data.

Case 3. Consider a star network scenario with one parent and nine children, which is

commonly used in modeling how the information broadcasting over the network. Before

the change-point, each note has a base intensity µ = 1 and the self-excitation αi,i = 0.3,

1 ≤ i ≤ 10. The mutual-excitation from the parent to each child is set to be α1,j = 0.3,

2 ≤ j ≤ 10 (if we use the first node to represent the parent). After the change-point, all the

self- and mutual- excitation increase to 0.5.

Case 4. The network topology is the same as Case 3. But we consider a more chal-

lenging scenario. Before the change, parameters are set to be the same as Case 3. After

the change, the self-excitation αi,i, 1 ≤ i ≤ 10 deteriorate to 0.01, and the influence from

the parent to the children increase to α1,j = 0.6, j = 2 ≤ j ≤ 10. In this case, for

each note, the occurring frequency of events would be almost the same before and after the

change-points. But the influence structure embedded in the network has actually changed.

Case 5. Consider a network with a chain of ten nodes, which is commonly used to

model information propagation over the network. Before the change, each note has a base

intensity µ = 1 and the self-excitation αi,i = 0.3, 1 ≤ i ≤ 10 and mutual-excitation

αi,j = 0.3, where j − i = 1, 1 ≤ i ≤ 9. After the change-point, all the self- and mutual-

excitation parameters increase to 0.5.

Case 6. Consider a sparse network with an arbitrary topology and one hundred nodes.

Each note has a base intensity µ = 0.1 and the self-excitation αi,i = 0.3, 1 ≤ i ≤ 100. We

randomly select twenty directed edges over the network and set the mutual-excitation to be

αi,j = 0.3, where i 6= j, i, j are randomly selected. After the change-point, all the self- and

54



mutual-excitation increase to 0.5.

Case 7. The sparse network topology and the pre-change parameters are the same

with Case 6. The only difference is that after the change-point, only half of the self- and

mutual-excitation parameters increase to 0.5.

EDD results and discussions

For the above scenarios, we compare the EDD of our method and two baseline algorithms.

The results are shown in Table 3.2. We see our method compares favorably to the two

baseline algorithms. In the first five cases, our method has a significant performance gain.

Especially for Case 4, which is a challenging setting, only our method succeeds in detecting

the spatial structure changes. For Case 6 and Case 7, our method has similar performance

as Baseline 2. A possible reason is that in these cases the network topology is a sparse

graph so the nodes are “loosely” correlated. Hence, the advantage of combining over graph

is not significant in these cases.

Moreover, we observe that Baseline 1 algorithm is not stable. In certain cases (Case 6

and Case 7), it completely fails to detect the change. An explanation is that there is a chance

that the number of events fall into a given time bin is extremely small or close to zero, and

this causes numerical issues when calculating the the likelihood function (since there is a

log function of the number of events). On the other hand, our proposed log-likelihood ratio

is event-triggered, and hence will avoid such numerical issues.
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Table 3.2: EDD comparison. Thresholds for all methods are calibrated such that ARL =

104.

Baseline 1 Baseline 2 Our Method

Case 1 22.1 − 4.8

Case 2 19.6 − 18.8

Case 3 8.2 6.9 4.3

Case 4 × × 19.8

Case 5 6.1 5.7 4.7

Case 6 × 10.5 10.8

Case 7 × 32.5 32.5

Note: ‘×’ means the corresponding method fails to detect the changes; ‘−’ means in

one-dimensional case Baseline 2 is identical to ours.

3.6.2 Sensitivity analysis

We also perform the sensitivity analysis by comparing our method to Baseline 1 algorithm

via numerical simulation. The comparison is conducted under various kernel decay pa-

rameter β, and the strength of the post-change signals, which can be controlled by the

magnitudes of the changes in α (or A). For each dataset, we created 500 samples of se-

quences with half of them containing one true change-point and half of them containing

no change-point. We then plot the area under the curve (AUC) (defined as the true posi-

tive rate versus the false positive rate under various threshold) for comparison, as shown in

Fig. 3.5.

Set-up of synthetic experiments

Overall, we consider various decay parameter β and the magnitudes of the changes in α to

compare the approaches.

One-dimensional setting. First, consider that before the change the data is a Poisson
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process with base intensity µ = 1. For A.1-A.4, the post-change data become one dimen-

sional Hawkes process: for A.1–A.3, α = 0.2, and β = 1, 10, 100, respectively; for A.4,

α = 0.3, and β = 10. By comparing the AUC curves, we see that, our method has a remark-

ably better performance in distinguishing the true positive changes from the false positive

changes compared to the baseline method. The superiority would become more evident un-

der larger β and bigger magnitudes of shifts in α. For weak changes, the baseline approach

is just slightly better than the random guess, whereas our approach consistently performs

well. Similar results can be found if the pre-change data follow the Hawkes process. For

example, in B.1-B.3, the pre-change data follow Hawkes process with µ = 1, α = 0.3,

and β = 1, and the post-change parameters shift to a Hawkes process with α = 0.5, and

β = 1, 10, 100, respectively. We can see the similar trend as before by varying β and α.

Network setting. We first consider the two-dimensional examples in the following and

get the same results. For C.1-C.2, the pre-change data follow two dimensional Poisson

processes with µ = [0.2, 0.2]ᵀ, and the post-change data follow two dimensional Hawkes

processes with influence parameter A = [0.1, 0.1; 0.1, 0.1], with β = 1, 10, respectively.

For D.1–D.3, consider the star network with one parent and nine children. Before the

change-point, for each node the base intensity is µ = 0.1, β = 1, and the influence from

the parent to each child is α = 0.3. After the change, α changes to 0.4 for D.1, and α

changes to 0.5, β = 1, 10 respectively for D.2 and D.3.

3.6.3 Accuracy of theoretical threshold

We evaluate the accuracy of our approximation in Theorem 11 by comparing the threshold

obtained via Theorem 11 with the true threshold obtained by direct Monte Carlo. We

consider various scenarios and parameter settings. We demonstrate the results in Fig. 3.6

and list the parameters below.

For Fig. 3.6-(a)(b)(c), the null distribution is one-dimensional Poisson process with

intensity µ = 1. We choose β = 1 as a priori, and vary the length of the sliding time
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Figure 3.5: AUC curves: comparison of our method with Baseline 1.
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Figure 3.6: Comparison of theoretical threshold obtained via Theorem 11 with simulated
threshold.
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window. We set L = 10, 50, 100, respectively. For Fig. 3.6-(d), we select L = 50 and let

β = 10. By comparing these four examples, we find our approximated threshold is very

accurate regardless of L and β.

For Fig. 3.6-(e)(f), the null hypothesis is a one-dimensional Hawkes process with base

intensity µ = 1 and influence parameter α = 0.3, β = 10. We vary the sliding window

length to be L = 100, 150, respectively. We can see the accurate approximations as before.

For Fig. 3.6-(g)(h), we consider a multi-dimensional case. The null distribution is a two

dimensional Poisson processes with base intensity µ = [0.5, 0.5]ᵀ. We set β = 1 and vary

the window length to be L = 300 and 400 respectively. The results demonstrate that our

analytical threshold is also sharply accurate in the multi-dimensional situation.

3.7 Real-data

We evaluate our online detection algorithm on real Twitter and news websites data. By

evaluating our log-likelihood ratio statistic on the real twittering events, we see that the

statistics would rise up when there is an explanatory major event in actual scenario. By

comparing the detected change points to the true major event time, we verify the accuracy

and effectiveness of our proposed algorithm. In all our real experiments, we set the sliding

window size to be L = 500 minutes, and set the kernel bandwidth β to be 1. The number

of total events for the tested sequences ranges from 3000 to 15000 for every dataset.

Figure 3.7: AUC for Twitter dataset on 116 important real world events.
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3.7.1 Twitter Dataset

For Twitter dataset we focus on the star network topology. We create a dataset for famous

people users and randomly select 30 of their followers among the tens of thousands fol-

lowers. We assume there is a star-shaped network from the celebrity to the followers, and

collect all their re/tweets in late January and early February 2016. Fig. 3.9-(a) demon-

strates the statistics computed for the account associated to a TV series named Mr. Robot.

We identify that the statistics increase around late January 10-th and early 11-th. This,

surprisingly corresponds to the winning of the 2016 Golden Glob Award1. Fig. 3.9-(b)

shows the statistics computed based on the events of the First lady of the USA and 30 of

her randomly selected followers. The statistics reveal a sudden increase in 13th of January.

We find a related event - Michelle Obama stole the show during the president’s final State

of the Union address by wearing a marigold dress which sold out even before the president

finished the speech2. Fig. 3.9-(c) is related to Suresh Raina, an Indian professional crick-

eter. We selecte a small social circle around him as the center of a star-shaped network. We

notice that he led his team to win an important game on Jan. 203, which corresponds to a

sharp increase of the statistics. More results for this dataset can be found in Appendix B.5.

We further perform sensitivity analysis using the twitter data. We identify 116 impor-

tant real life events. Some typical examples of such events are release of a movie/album,

winning an award, Pulse Nightclub shooting, etc. Next, we identify the twitter handles

associated with entities representing these events. We randomly sample 50 followers from

each of these accounts and obtain a star topology graph centered around each handle. We

collect tweets of all users in all these networks for a window of time before and after the

real life event. For each network we compute the statistics. The AUC curves in Fig. 3.7

are obtained by varying the threshold. A threshold value is said to correctly identify the

true change-point if the statistic value to the right of the change-point is greater than the

1http://www.tvguide.com/news/golden-globe-awards-winners-2016/
2http://www.cnn.com/2016/01/13/living/michelle-obama-dress-marigold-narciso-rodriguez-feat/
3http://www.espncricinfo.com/syed-mushtaq-ali-trophy-2015-16/content/story/963891.html
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threshold. This demonstrates the good performance of our algorithm against two baseline

algorithms.
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Figure 3.8: Illustration of the network topology for tracking Obama’s first presidency an-
nouncement.

3.7.2 Memetracker Dataset

As a further illustration of our method, we also experiment with the Memetracker4 dataset

to detect changes in new blogs. The dataset contains the information flows captured by

hyperlinks between different sites with timestamps during nine months. It tracks short

units of texts and short phrases, which are called memes and act as signatures of topics

and events propagation and diffuse over the web in mainstream media and blogs [80]. The

dataset has been previously used in Hawkes process models of social activity [81, 57].

We create three instances of change-point detection scenarios from the Memetracker

dataset using the following common procedure. First, we identify a key word associated

with a piece of news occurred at κ. Second, we identify the top n websites which have

the most mentions of the selected key word in a time window [tmin, tmax] around the news

break time κ (i.e., κ ∈ [tmin, tmax]). Third, we extract all articles with time stamps within

[tmin, tmax] containing the keyword, and each article is treated as an event in the point

4http://www.memetracker.org/
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Figure 3.9: Exploratory results on Twitter for the detected change points: (left) Mr Robot
wins the Golden Globe; (middle) First Lady’s dress getting attention; (right) Suresh Raina
makes his team won.
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Figure 3.10: Exploratory results on Memetracker for the detected change points: (left)
Obama wins the presidential election; (middle) Israel announces ceasefire; (right) Beijing
Olympics starts.

process. Fourth, we construct the directed edges between the websites based on the reported

linking structure. These instances correspond to real world news whose occurrences are

unexpected or uncertain, and hence can cause abrupt behavior changes of the blogs. The

details of these instances are showed in table 3.3.

Table 3.3: Summary information for the extracted instance for change point detection from
Memetracker dataset. The keywords are highlighted in red.

real world news n κ tmin tmax

Obama elected president 80 11/04/08 11/02/08 11/05/08
Ceasefire in Israel 60 01/17/09 01/13/09 01/17/09

Olympics in Beijing 100 08/05/08 08/02/08 08/05/08

The first piece of news corresponds to “Barack Obama was elected as the 44th president

of the United States5”. In this example, we also plot the largest connected component

of the network as shown in Fig. 3.8. It is notable that this subset includes the credible

news agencies such as BBC, CNN, WSJ, Hufftingtonpost, Guardian, etc. As we show

in Fig. 3.10-(a), our algorithm can successfully pinpoint a change right at the time that

5https://en.wikipedia.org/wiki/United States presidential election, 2008
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Obama was elected. The second piece of news corresponds to “the ceasefire in Israel-

Palestine conflict back in 2009”. Our algorithm detects a sharp change in the data, which

is aligned closely to the time right before the peak of the war and one day before the Israel

announces a unilateral ceasefire in the Gaza War back in 20096. The third piece of news

corresponds to “the summer Olympics game in Beijing”. Fig. 3.10-(c) shows the evolution

of our statistics. The change-point detected is 2-3 days before the opening ceremony where

all the news websites started to talk about the event7.

3.8 Summary

In this chapter, we have studied a set of likelihood ratio statistics for detecting change in

a sequence of event data over networks. To the best of our knowledge, our work is the

first to study change-point detection for network Hawkes process. We adopted the network

Hawkes process for the event streams to model self- and mutual- excitation between nodes

in the network, and cast the problem in sequential change-point detection frame, and derive

the likelihood ratios under several models. We have also presented an EM-like algorithm,

which can efficiently compute the likelihood ratio statistic online. The distributed nature

of the algorithm enables it to be implemented on larger networks. Highly accurate theo-

retical approximations for the false-alarm-rate, i.e., the average-run-length (ARL) for our

algorithms are derived. We demonstrated the performance gain of our algorithms relative

to two baselines, which represent the current main approaches to this problem. Finally, we

also tested the performance of the proposed method on synthetic and real data.

6http://news.bbc.co.uk/2/hi/middle east/7835794.stm
7https://en.wikipedia.org/wiki/2008 Summer Olympics
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CHAPTER 4

LEARNING TEMPORAL POINT PROCESSES VIA REINFORCEMENT

LEARNING

Social goods, such as healthcare, smart city, and information networks, often produce or-

dered event data in continuous time. The generative processes of these event data can be

very complex, requiring flexible models to capture their dynamics. Temporal point pro-

cesses offer an elegant framework for modeling event data without discretizing the time.

However, the existing maximum-likelihood-estimation (MLE) learning paradigm re-

quires hand-crafting the intensity function beforehand and cannot directly monitor the

goodness-of-fit of the estimated model in the process of training. To alleviate the risk

of model-misspecification in MLE, we propose to generate samples from the generative

model and monitor the quality of the samples in the process of training until the samples

and the real data are indistinguishable.

We take inspiration from reinforcement learning (RL) and treat the generation of each

event as the action taken by a stochastic policy. We parameterize the policy as a flexible

recurrent neural network and gradually improve the policy to mimic the observed event

distribution. Since the reward function is unknown in this setting, we uncover an analytic

and nonparametric form of the reward function using an inverse reinforcement learning

formulation. This new RL framework allows us to derive an efficient policy gradient algo-

rithm for learning flexible point process models, and we show that it performs well in both

synthetic and real data.

4.1 Overview

Many natural and artificial systems produce a large volume of discrete events occurring in

continuous time, for example, the occurrence of crime events, earthquakes, patient visits to
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hospitals, financial transactions, and user behavior in mobile applications [72]. It is essen-

tial to understand and model these complex and intricate event dynamics so that accurate

prediction, recommendation or intervention can be carried out subsequently depending on

the context.

Temporal point processes offer an elegant mathematical framework for modeling the

generative processes of these event data. Typically, parametric (or semi-parametric) as-

sumptions are made on the intensity function [82, 83] based on prior knowledge of the

processes, and the maximum-likelihood-estimation (MLE) is used to fit the model parame-

ters from data. These models often work well when the parametric assumptions are correct.

However, in many cases where the real event generative process is unknown, these para-

metric assumptions may be too restricted and do not reflect the reality.

Thus there emerge some recent efforts in increasing the expressiveness of the intensity

function using nonparametric forms [84] and recurrent neural networks [85, 86]. How-

ever, these more sophisticated models still rely on maximizing the likelihood which now

involves intractable integrals and needs to be approximated. Most recently, [87] proposed

to bypass the problem of maximum likelihood by adopting a generative adversarial net-

work (GAN) framework, where a recurrent neural network is learned to transform event

sequence from a Poisson process to the target event sequence. However, this approach

is rather computationally intensive, since it requires fitting another recurrent neural net-

work as the discriminator, and it takes many iterations and careful tuning for both neural

networks to reach equilibrium.

In this chaper, we take a new perspective and establish an under-explored connection

between temporal point processes and reinforcement learning: the generation of each event

can be treated as the action taken by a stochastic policy, and the intensity function learn-

ing problem in temporal point processes can be viewed as the policy learning problem in

reinforcement learning.

More specifically, we parameterize a stochastic policy π using a recurrent neural net-
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Figure 4.1: Illustration of our RL modeling framework.

work over event history and learn the unknown reward function via inverse reinforcement

learning [91, 92, 93, 94]. Our algorithm for policy optimization iterates between learning

the reward function and the stochastic policy π. Inverse reinforcement learning is known

to be time-consuming, which requires solving a reinforcement learning problem in every

inner-loop. To tackle this problem, we convert the inverse reinforcement learning step to

a minimization problem over the discrepancy between the expert point process and the

learner point process. By choosing the function class of reward to be the unit ball in re-

producing kernel Hilbert space (RKHS) [95, 96, 97], we can get an explicit nonparametric

closed form for the optimal reward function. Then the stochastic policy can be learned by

a customized policy gradient with the optimal reward function having an analytical expres-

sion.

An illustration of our modeling framework is shown in Figure 4.1. The observed trajec-

tories of events will be viewed as the actions generated by an expert policy πE . The goal

is to learn a policy which we call learner that mimics the distribution of the observed ex-

pert event sequences. The learner policy π(a|st) provides the probability of the next event

occurring at a after t, and st := {ti}ti<t is the history of events before t. We parametrize

π(a|st) by a recurrent neural network (RNN) with stochastic neurons [88], where the gen-

erated events are fed back to the RNN leading to a double stochastic point process [89].

Furthermore, each generated event ti will be also associated with a reward r(ti), and the

policy will be learned by maximizing the expected cumulative rewards [90].
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We conducted experiments on various synthetic and real sequences of event data and

showed that our approach outperforms the state-of-the-art regarding both data description

and computational efficiency.

4.2 Preliminaries

4.2.1 Temporal Point Processes.

A temporal point process is a stochastic process whose realization is a sequence of discrete

events {ti} with ti ∈ R+ and i ∈ Z+ abstracted as points on a timeline [72]. Let the history

st = {t1, t2, . . . , tn|tn < t}

be the sequence of event times up to but not including time t. The intensity function (rate

function) λ(t|st) conditioned on the history st uniquely characterizes the generative pro-

cess of the events. Different functional forms of λ(t|st)dt capture different generating

patterns of events. For example, a plain homogeneous Poisson process has

λ(t|st) = λ0 > 0,

implying that each event occurs independently of each and uniformly on the timeline. A

Hawkes process has

λ(t|st) = λ0 +
∑
ti∈st

exp(−(t− ti))

where the occurrences of past events will boost future occurrences. Given the intensity

function, the survival function defined as

S(t|st) = exp(−
∫ t

tn

λ(τ)dτ)
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is the conditional probability that no event occurs in the window [tn, t), and the likelihood

of observing event at time t is defined as

f(t|st) = λ(t|st)S(t|st)

. Then we can express the joint likelihood of observing a sequence of events sT =

{t1, t2, . . . , tn|tn < T} up to an observation window T as

p({t1, t2, . . . , tn|tn < T}) =
∏
ti∈sT

λ(ti|sti) · exp

(
−
∫ T

0

λ(τ |sτ )dτ
)
. (4.1)

The integral normalization in the likelihood function can be intensive to compute especially

in cases where λ(t|st) do not have a simple form. In this case, a numerical approximation

is typically needed which may affect the accuracy of the fitting process.

4.2.2 Reproducing Kernel Hilbert Spaces.

A reproducing kernel Hilbert space (RKHS) H on T with a kernel k(t, t′) is a Hilbert

space of functions f(·) : T 7→ R with inner product 〈·, ·〉H. Its element k(t, ·) satisfies the

reproducing property:

〈f(·), k(t, ·)〉H = f(t),

and consequently,

〈k(t, ·), k(t′, ·)〉H = k(t, t′)

meaning that we can view the evaluation of a function f at any point t ∈ T as an inner

product. Commonly used RKHS kernel function includes Gaussian radial basis function

(RBF) kernel

k(t, t′) = exp(−‖t− t′‖2
/2σ2)
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where σ > 0 is the kernel bandwidth, and polynomial kernel

k(t, t′) = (〈t, t′〉+ a)d

where a > 0 and d ∈ N [31, 98, 95]. In this paper, if not otherwise stated, we will assume

that Gaussian RBF kernel is used. Let P be a measure on T , we define the mapping of P to

RKHS,

µP := EP[k(t, ·)] =

∫
t∈T

k(t, ·) dP(t),

as the Hilbert space embedding of P [99]. Then for all f ∈ H,

EP[f(t)] = 〈f, µP〉H

by the reproducing property. Similarly, one can also embed another measure Q on T into

RKHS as µQ. Then a distance between measure P and Q can be defined as

‖µP − µQ‖H := sup
‖f‖H61

〈f, µP − µQ〉H .

A characteristic RKHS is one for which the embedding is injective: that is, each measure

has a unique embedding [100], and

‖µP − µQ‖H = 0

if and only if P = Q. This property holds for many commonly used kernels. For T = Rd,

this includes the Gaussian kernels.

4.3 A Reinforcement Learning Framework

Suppose we are interested in modeling the daily crime patterns, or monthly occurrences of

disease for patients, then the data are collected as trajectories of events within a predefined
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time window T . We regard the observed paths as actions taken by an expert (nature).

Let ξ = {τ1, τ2, . . . , τNξ
T
} represent a single trajectory of events from the expert where

N ξ
T is the total number of events up to T , and it can be different for different sequences.

Then, each trajectory ξ ∼ πE can be seen as an expert demonstration sampled from the

expert policy πE . Hence, on a high level, given a set of expert demonstrations

D = {ξ1, ξ2, . . . , ξj, . . . |ξj ∼ πE},

we can treat fitting a temporal point process toD as searching for a learner policy πθ which

can generate another set of sequences

D̃ = {η1, η2, . . . , ηj, . . . |ηj ∼ πθ}

with similar patterns as D. We will elaborate on this reinforcement learning framework

below.

4.3.1 Reinforcement Learning Formulation (RL).

Given a sequence of past events st = {ti}ti<t, the stochastic policy πθ(a|st) samples an

inter-event time a as its action to generate the next event time as ti+1 = ti + a. Then,

a reward r(ti+1) is provided and the state st will be updated to st = {t1, . . . , ti, ti+1}.

Fundamentally, the policy πθ(a|st) corresponds to the conditional probability of the next

event time in temporal point process, which in turn uniquely determines the corresponding

intensity function as

λθ(t|sti) =
πθ(t− ti|sti)

1−
∫ t
ti
πθ(τ − ti|sti)dτ

.

This builds the connection between the intensity function in temporal point processes and

the stochastic policy in reinforcement learning. If reward function r(t) is given, the optimal
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policy π∗θ can be directly computed via

π∗θ = arg max
πθ∈G

J(πθ) := Eη∼πθ

[∑Nη
T

i=1
r(ti)

]
, (4.2)

where G is the family of all candidate policies πθ, η = {t1, . . . , tNη
T
} is one sampled roll-out

from policy πθ, and Nη
T can be different for different roll-out samples.

4.3.2 Inverse Reinforcement Learning (IRL).

Eq.(4.2) shows that when the reward function is given, the optimal policy can be determined

by maximizing the expected cumulative reward. However, in our case, only the expert’s

sequences of events can be observed, but the real reward function is unknown. Given the

expert policy πE , IRL can help to uncover the optimal reward function r∗(t) by

r∗ = max
r∈F

(
Eξ∼πE

[∑Nξ
T

i=1
r(τi)

]
−max

πθ∈G
Eη∼πθ

[∑Nη
T

i=1
r(ti)

])
, (4.3)

where F is the family class for reward function, ξ = {τ1, . . . , τNξ
T
} is one event sequence

generated by the expert πE , and η = {t1, . . . , tNη
T
} is one roll-out sequence from the learner

πθ. The formulation means that a proper reward function should give the expert policy

higher reward than any other learner policy in G, and thus the learner can approach the

expert performance by maximizing this reward. Denote the procedure (4.2) and (4.3) as

RL(r) and IRL(πE), accordingly. The optimal policy can be obtained by

π∗θ = RL ◦ IRL(πE). (4.4)

4.3.3 Overview of the Proposed Learning Framework.

Solving the optimization problem (4.3) is very time-consuming in that it requires to solve

the inner loop RL problem repeatedly. We relieve the computational challenge by choosing

the space of functions F for r(t) to be the unit ball in RKHS H, which allows us to obtain
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an analytical expression for the updated reward function r̂(t) given any current learner

policy π̂(θ). This r̂(t) is determined by finite sample expert trajectories and finite sample

roll-outs from the current learner policy, and it directly quantifies the discrepancy between

the expert’s policy (or intensity function) and current learner policy (or intensity function).

Then by solving a simple RL problem as in (4.2), the learner policy can be improved to

close its gap with the expert policy using a simple policy gradient type of algorithm.

4.4 Model

In this section, we present model parametrization and the analytical expression of optimal

reward function.

4.4.1 Policy Network.

The function class of the policy πθ ∈ G should be flexible and expressive enough to cap-

ture the potential complex point process patterns of the expert. We, therefore, adopt the

recurrent neural network (RNN) with stochastic neurons [88] which is flexible to capture

the nonlinear and long-range sequential dependency structure. More specifically,

ai ∼ π(a |Θ(hi−1)), hi = ψ(V ai +Whi−1), h0 = 0, (4.5)

where the hidden state hi ∈ Rd encodes the sequence of past events {t1, . . . , ti}, ai ∈ R+,

V ∈ Rd, and W ∈ Rd×d. Here ψ is a nonlinear activation function applied element-

wise, and Θ is a nonlinear mapping from Rd to the parameter space of the probability

distribution π. For instance, one can choose ψ(z) = ez−e−z
ez+e−z

to be the tanh function,

and design the output layer of Θ such that Θ(hi−1) is a valid parameter for a probabil-

ity density function π. The output ai = ti − ti−1, serves as the i-th inter-event time (let

t0 = 0), and ai > 0. The choice of model π is quite flexible, only with the constraint that

the random variable should be positive since a is always positive. Common distributions
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such as exponential and Rayleigh distributions would satisfy such constraint, leading to

π(a|Θ(hi−1)) = Θ(h)e−Θ(h)a and π(a|Θ(hi−1)) = Θ(h)ae−Θ(h)a2/2 respectively. In this

way, we specify a nonlinear and flexible dependency over the history.

hi−1
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h0 h1

ai−1

hi

ai

hi+1

ai+1

… …

an

hn

an+1

0 T
… …
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Figure 4.2: Illustration of generator πθ.

The architecture of our model in (4.5) is shown in Figure 4.2. Different from traditional

RNN, the outputs ai are sampled from π rather than obtained by deterministic transforma-

tions. This is what “stochastic” policy means. Randomly sampling will allow the policy

to explore the temporary space. Furthermore, the sampled time point will be fed back to

the RNN. The proposed model aims to capture that the state hi is attributed by two parts.

One is the deterministic influence from the previous hidden state hi−1, and the other is the

stochastic influence from the latest sampled action ai. Action ai is sampled from the pre-

vious distribution π(a|Θ(hi−1)) with parameter Θ(hi−1) and will be fed back to influence

the current hidden state hi.

In some sense, our RNN with stochastic neurons mimics the event generating mech-

anism of the doubly stochastic point process, such as Hawkes process and self-correcting

process. For these types of point processes, the intensity is stochastic, which depends on

history, and the intensity function will control the occurrence rate of the next event.

4.4.2 Reward Function Class.

The reward function directly quantifies the discrepancy between πE and πθ, and it guides

the learning of the optimal policy π∗θ . On the one hand, we want its function class r ∈ F to

be sufficiently flexible so that it can represent the reward function of various shapes. On the
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other hand, it should be restrictive enough to be efficiently learned with finite samples [98,

95]. With these competing considerations, we choose F to be the unit ball in RKHS H,

‖r‖H 6 1. An immediate benefit of this function class is that we can show the optimal

policy can be directly learned via a minimization formulation given in Theorem 14 instead

of the original minimax formulation (4.3).

A sketch of proof is provided as follows. For short notation, we denote

φ(η) :=

∫
[0,T )

k(t, ·)dN (η)
t︸ ︷︷ ︸

feature mapping from data space to R

, and µπθ := Eη∼πθ [φ(η)]︸ ︷︷ ︸
mean embeddings of the intensity function in RKHS

where dN (η)
t is the counting process associated with sample path η, and k(t, t′) is a univer-

sal RKHS kernel. Then using the reproducing property,

J(πθ) := Eη∼πθ

N(η)
T∑
i=1

r(ti)

 = Eη∼πθ

[∫
[0,T )

〈r, k (t, ·)〉HdN (η)
t

]
= 〈r, µπθ〉H.

Similarly, we can obtain J(πE) = 〈r, µπE〉H. From (4.3), r∗ is obtained by

max
‖r‖H≤1

min
πθ∈G
〈r, µπE − µπθ〉H = min

πθ∈G
max
‖r‖H≤1

〈r, µπE − µπθ〉H = min
πθ∈G
‖µπE − µπθ‖H,

where the first equality is guaranteed by the minimax theorem, and

r∗(·|πE, πθ) =
µπE − µπθ
‖µπE − µπθ‖H

∝ µπE − µπθ (4.6)

can be empirically evaluated by data. In this way, we change the original minimax formu-

lation for solving π∗θ to a simple minimization problem, which will be more efficient and

stable to solve in practice. We summarize the formulation in Theorem 14.

Theorem 14 Let the family of reward function be the unit ball in RKHSH, i.e., ‖r‖H 6 1.
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Then the optimal policy obtained by (4.4) can also be obtained by solving

π∗θ = arg min
πθ∈G

D(πE, πθ,H) (4.7)

where D(πE, πθ,H) is the maximum expected cumulative reward discrepancy between πE

and πθ,

D(πE, πθ,H) := max
‖r‖H61

(
Eξ∼πE

[∑N
(ξ)
T

i=1
r(τi)

]
− Eη∼πθ

[∑N
(η)
T

i=1
r(ti)

])
. (4.8)

Theorem 14 implies that we can transform the inverse reinforcement learning procedure of

(4.4) to a simple minimization problem which minimizes the maximum expected cumu-

lative reward discrepancy between πE and πθ. This enables us to sidestep the expensive

computation of (4.4) caused by the solving the inner RL problem repeatedly. What’s more

interesting, we can derive an analytical solution to (4.8) given by (4.6).

4.4.3 Finite Sample Estimation.

Given L trajectories of expert point processes, and M trajectories of events generated by

πθ, mean embeddings µπE and µπθ can be estimated by their respective empirical mean:

µ̂πE = 1
L

∑L
l=1

∑N
(l)
T

i=1 k(τ
(l)
i , ·) and µ̂πθ = 1

M

∑M
m=1

∑N
(m)
T

i=1 k(t
(m)
i , ·). Then for any t ∈

[0, T ), the estimated optimal reward is (without normalization) is

r̂∗(t) ∝ 1

L

∑L

l=1

∑N
(l)
T

i=1
k(τ

(l)
i , t)− 1

M

∑M

m=1

∑N
(m)
T

i=1
k(t

(m)
i , t). (4.9)

Note this empirical estimator is biased at τ (l)
i and t(m)

i . Unbiased estimator can also be

obtained and will be provided in Algorithm RLPP discussed later for simplicity.
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4.4.4 Kernel Choice.

The unit ball in RKHS is dense and expressive. Fundamentally, our proposed framework

and theoretical results are general and can be directly applied to other types of kernels. For

example, we can use the Matérn kernel, which generates spaces of differentiable functions

known as the Sobolev spaces [101, 102]. In later experiments, we have used Gaussian

kernel and obtained promising results.

4.5 Learning Algorithm

4.5.1 Learning via Policy Gradient.

In practice, instead of minimizing D(πE, πθ,H) as in (4.7), we can equivalently minimize

D(πE, πθ,H)2 since square is a monotonic transformation. Now, we can learn π∗θ from

the RL formulation (4.2) using policy gradient with variance reduction. First, with the

likelihood ratio trick, the gradient of∇θD(πE, πθ,H)2 can be computed as

∇θD(πE, πθ,H)2 = Eη∼πθ

 Nη
T∑

i=1

(∇θ log πθ(ai|Θ(hi−1))) ·
(∑Nη

T

i=1
r̂∗(ti)

) , (4.10)

where
∑Nη

T
i=1 (∇θ log πθ(ai|Θ(hi−1))) is the gradient of the log-likelihood of a roll-out sam-

ple η = {t1, . . . , tNη
T
} using the learner policy πθ.

To reduce the variance of the gradient, we can exploit the observation that future actions

do not depend on past rewards. This leads to a variance reduced gradient estimate

∇θD(πE, πθ,H)2 = Eη∼πθ

 Nη
T∑

i=1

(∇θ log πθ(ai|Θ(hi−1))) ·

 Nη
T∑

l=i

[r̂∗(tl)− bl]


where

(∑NT
l=i r̂

∗(tl)
)

is referred to as the “reward to go” and bl is the baseline to further

reduce the variance. The overall procedure is given in Algorithm RLPP. In the algorithm,

after we sample M trajectories from the current policy, we use one trajectory ηm for eval-

77



uation and the rest M − 1 samples to estimate reward function.

An example reward function learned at a different stage of the algorithm is also illus-

trated in Figure 4.3. The reward function r̂∗(t) is estimated using 100 sampled sequences

from πE and πθ. In (a), r̂∗(t) > 0 when the expert’s intensity is above the learner’s in-

tensity, and r̂∗(t) < 0 when the expert’s intensity is below the learner’s intensity. In order

to maximize the cumulative reward given the current reward, the learner should generate

more events in the region when r̂∗(t) > 0 and reduce the number of events when r̂∗(t) < 0.

Based on our formulation, the optimal reward function always quantifies the discrepancy

between the expert and current learner by considering the worst case. As a result, once

the learner is changed, the current optimal reward r̂∗(t) is updated accordingly, and r̂∗(t)

guides the learner to update its policy towards mimicking the expert’s behavior until they

exactly match each other in (b) where r̂∗(t) becomes zero.

Algorithm 2 RLPP: Mini-batch Reinforcement Learning for Learning Point Processes
Initialize model parameters θ
for number of training iterations do
• Sample minibatch of L trajectories of events {ξ(1), . . . , ξ(L)} from expert, where
ξ(l) = {τ (l)

1 , . . . , τ
(l)

N
(l)
T

}

• Sample minibatch of M trajectories of events {η(1), . . . , η(M)} from policy πθ(a|s),
where η(m) = {t(m)

1 , . . . , t
(m)
NT
}

• Update πθ by policy gradient:

θ ← θ + α∇θ
1

M

M∑
m=1

N
(m)
T∑
i=1

r̂∗(t
(m)
i ) log pθ(η

(m))


where log pθ(η

(m)) =
∑Nη

T
i=1 (log πθ(ai|Θ(hi−1))) is the log-likelihood of the sample

η(m), and r∗(t
(m)
i ) can be estimated by L expert trajectories and (M − 1) roll-out

samples without η(m)

r̂∗(t) =
1

L

L∑
l=1

N
(l)
T∑
i=1

k(τ
(l)
i , t)− 1

M − 1

M∑
m′=1,m′ 6=m

N
(m′)
T∑
j=1

k(t
(m′)
j , t).

end for
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Figure 4.3: Generated events v.s. training events and the estimate reward function r̂∗(t).

4.5.2 Comparison with MLE.

During training, our generative model directly compares the generated temporal events

with the observed events to iteratively correct the mistakes, which can effectively avoid

model misspecification. Since the training only involves the policy gradient, it bypasses the

intractability issue of the log-survival term in the likelihood (Eq. (4.1)). On the other hand,

because the learned policy is in fact the conditional density of a point process, our approach

still resembles the form of MLE in the RL reformulation and can thus be interpreted in a

statistically principled way.

4.5.3 Comparison with GAN and GAIL.

By Theorem 14, our policy is learned directly by minimizing the discrepancy between πE

and πθ which has a closed form expression. Thus, we convert the original IRL problem to

a minimization problem with only one set of parameters with respect to the policy. In each

training iteration with the policy gradient, we have an unbiased estimator of the gradient,

and the estimated reward function also depends on the current policy πθ. In contrast, in

GAN or GAIL formulation, they have two sets of parameters related to the generator and

the discriminator. The gradient estimator is biased because each min-/max-problem is in

fact nonconvex and cannot be solved in one-shot. Thus, our framework is more stable and
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efficient than the mini-max formulation for learning point processes.

4.6 Experiments

4.6.1 Synthetic datasets.

To show the robustness to model-misspecifications of our approach, we propose the fol-

lowing four different point processes as the ground-truth: (I) Inhomogeneous Poisson (IP)

with λ(t) = at + b where a = −0.2 and b = 3.5; Here we omit st since λ(t) does not de-

pend on the history. (II) Hawkes Process (HP) with λ(t|st) = µ+α
∑

ti<t
exp{−(t− ti)}

where µ = 2, and α = 0.5. (III) Mixture of IP and HP version 1 (IP + HP1). For the IP

component, its λ(t) is piece-wise linear with monotonic increasing slopes of pieces from

{0.2, 0.3, 0.4, 0.5}. The HP component has the parameter µ = 1 and α = 0.5; (IV) Mix-

ture of IP and HP version 2 (IP + HP2) where the IP component also has piece-wise linear

intensity but the slopes have the zig-zag pattern chosen from {1,−1, 2,−2}, and the HP

component has the parameter µ = 1 and α = 0.1.

4.6.2 Real datasets.

We evaluate our approach on four real datasets across a diverse range of domains:

• 911 call dataset contains 220,000 crime incident call records from 2011 to 2017 in

Atlanta area. We select one beat zone data with call timestamps ranging from 7:00

AM to 1:00 PM.

• Microsoft Academic Search (MAS) provides access to publication venues, time, ci-

tations, etc. We collect citation records for 50,000 papers and treat each citation time

as an event.

• Medical Information Mart for Intensive Care III (MIMIC-III) contains de-identified

clinical visit records from 2001 to 2012 for more than 40,000 patients. Our data
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contain 2,246 patients with at least 3 visits. For a given patient, each clinical visit

will be treated as an event.

• NYSE contains 0.7 million high-frequency trading records from NYSE for a given

stock within one day. All transactions are evenly divided into 3,200 segments. All

segments have the same temporal duration. Each trading record is treated as a event.

4.6.3 Baselines.

We compare our approach against two state-of-the-arts as well as conventional parametric

baselines. The two state-of-the-art methods are WGANTPP [87] and RMTPP1 [85]. In

addition, three parametric methods based on maximum likelihood estimation are compared,

including: (1) Inhomogeneous Poisson process where the intensity function is modeled

using a mixture of Gaussian components, (2) Hawkes Process (or Self-Excitation process

denoted as SE), and (3) Self-Correcting process (SC) with λ(t|st) = exp
{
µt−

∑
ti<t

α
}

.

In contrast to Hawkes process, the self-correcting process seeks to produce regular point

patterns. The intuition is that while the intensity increases steadily, every time when a new

event appears, it is decreased by multiplying a constant e−α < 1, so the chance of new

points decreases after an event has occurred recently.

4.6.4 Experimental Setup.

The policy in our method RLPP is parameterized as LSTM with 64 hidden neurons, and

π(a|Θ(h)) is chosen to be exponential distribution. Batch size is 32 (the number of sampled

sequences L and M are 32 in Algorithm 1, and learning rate is 1e-3. We use Gaussian

kernel k(t, t′) = exp(−‖t − t′‖2/σ2) for the reward function. The kernel bandwidth σ is

estimated using the “median trick” based on the observations [95]. For WGANTPP and

RMTPP, we are using the open source codes. For WGANTPP2, we have used the exact

1RMTPP has very similar performance with [86].
2https://github.com/xiaoshuai09/Wasserstein-Learning-For-Point-Process
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experimental setup as [87], which adopts Adam optimization method [103] with learning

rate 1e-4, β1 = 0.5, β2 = 0.9, and the batch size is 256. For RMTPP3, batch size is 256,

state size is 64, and learning rate is 1e-4.
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Figure 4.4: Comparison of empirical intensity functions on the synthetic data.
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Figure 4.5: Comparison of empirical intensity functions on the real datasets.

4.6.5 Comparison of Learned Empirical Intensity.

We first compare the empirical intensity of the learner point process to the expert point pro-

cess. This is a straightforward comparison: one can visually assess the performance and

localize the discrepancy. Fig. 4.4 and Fig. 4.5 demonstrate the empirical intensity functions

of generated sequences based on synthetic and real data. For each dataset, we have used

all learned models to generate new sequences. The comparisons are based on the empirical

intensities estimated from the generated temporal events and those estimated from the ob-

served temporal events. It clearly shows that RLPP consistently outperforms RMTPP, and

achieves comparable and sometimes even better fitting against WGANTPP. Furthermore,

RLPP consistently outperforms the other three conventional parametric models when there

3https://github.com/dunan/NeuralPointProcess
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exist model-misspecifications. Without any prior knowledge, RLPP can capture the major

trends in data and can accurately learn the nonlinear dependency structure hidden in data.

In the Hawkes example, RLPP performs even as accurate as the ground-truth model. On

the real-world data, the underlying true model is unknown and the point process patterns

are more complicated. RLPP still shows a decent performance in the real datasets.

4.6.6 Comparison of Data Fitting.

Quantile plot (QQ-plot) for residual analysis is a standard model checking approach for

general point processes. Given a set of real input samples t1, . . . , tn, by the Time Chang-

ing Theorem [72], if such set of samples is one realization of a process with the intensity

λ(t), then the respective value achieved from the integral Λ =
∫ ti
ti−1

λ(t)dt should con-

form to the unit-rate exponential distribution [104]. For the synthetic experiments, since

we know the exact ground-truth parametric form of λ(t|st), we can perform this explicit

transformation for a test. Ideally, the QQ-plot for the generated sequences should follow a

45-degree straight line. We use Hawkes Process (HP) and Inhomogeneous Poisson Process

+ Hawkes Process (IP+HP1) dataset to produce the QQ-plot and compare different methods

in Fig. 4.6. In both cases, RLPP consistently stands out even without any prior knowledge

about the parametric form of the true underlying generative point process and the fitting

slope is very close to the diagonal line in both cases. More rigorously, we perform the KS

test. Fig. 4.7 illustrates the cumulative distributions (CDF) of p-values. We followed the

experiment setup in [105]: we generated samples from each learned point process models,

transformed the time interval, and applied the KS test to compare with unit rate exponential

distribution. Under this null hypothesis, the distribution of the p-values over tests should

follow a uniform distribution, whose CDF should be a diagonal line. If the target distribu-

tion is the Hawkes process (Fig. 4.7), both the learned SE (Hawkes process) and the RLPP

models are indistinguishable from that.
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Figure 4.6: QQ-plot for dataset HP (left) and HP+IP1 (right).
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Figure 4.7: KS test results: CDF of p-values.

4.6.7 Comparison of Runtime.

The runtime for all methods averaged on all datasets is shown in Table 4.1. We note that

both RLPP and WGANTPP are written in Tensorflow. However, WGANTPP adopts the

adversarial training framework based on Wasserstein divergence, where both the generator

and the discriminator are modeled as LSTMS. In contrast, RLPP only models the policy as

a single LSTM with the reward function learned in an analytical form. As a consequence,

RLPP requires less parameters and is more simpler to train while at the same time achieving

comparable or even better performance.
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Table 4.1: Comparison of runtime.
Method RLPP WGANTPP RMTPP SE SC IP
Time 80m 1560m 60m 2m 2m 2m
Ratio 40x 780x 30x 1x 1x 1x
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Figure 4.8: Comparison of empirical intensity functions.

4.6.8 Comparisons to LGCP and non-parametric Hawkes.

We also compared RLPP to log-Gaussian Cox process (LGCP) model and non-parametric

Hawkes with non-stationary background rate (Nonpar Hawkes) model regarding learned

empirical intensity function. Representative comparison results are showed in Fig. 4.8.

Our proposed method (RL) performs similarly to LGCP and outperforms Nonpar Hawkes

on real datasets. However, LGCP needs to discretize time into windows and aggregate

event into counts. This leads to some information loss and introduces additional tuning

parameters. Moreover, the standard LGCP is not scalable, typically requiring O(n3) in

computation and O(n2) in storage (n = sequence # × window #). We used an implemen-

tation in GPy package4, which requires 50% more time than our method (127 mins vs 80

mins) in processing 5% of the dataset. The nonparametric Hawkes model is parametrized

by weighted sum of basis functions, similar to that of the inhomogeneous Poisson process

baseline, and it is difficult to generalize outside the observation window.

4https://github.com/SheffieldML/GPy

85



4.7 Discussions

1. RMTPP we compared in experiments is a state-of-the-art maximum-likelihood-based

model, which uses a similar RNN outputting parametrization of exponential distri-

butions but fits the model parameters with maximum likelihood. Across our exper-

iments over eight synthetic and real-world datasets, our proposed method performs

consistently better than the MLE.

2. In theory, although MLE has many attractive limiting properties, it has no optimum

properties for finite samples, in the sense that (when evaluated on finite samples)

other estimators may provide a better estimate for the true parameters, e.g. [106].

Likelihood is related to KL divergence. Since KL divergence is asymmetric and has

a number of drawbacks for finite sample (such as high variance and mode dropping),

many other divergences have been proposed and shown to perform better in the finite

sample case, e.g. [9]. Our proposed discrepancy is inspired by a similar use of RKHS

discrepancy in two sample tests in [9]. RKHS discrepancy has been shown to perform

nicely on finite sample and also preserve the asymptotic properties.

3. Another potential benefit of our proposed framework is that one may use the RNN

to define a transformation for the temporal random variable instead of defining its

output distribution. For example, we can establish our policy as a transformation of

a sample from a unit rate exponential distribution. The same empirical objective in

Eq. (4.8) will be used, but a different optimization algorithm is needed. Since no

explicit parameterization of the output distribution is needed, this may lead to even

more flexible models and this is left for future investigation.

4.8 Conclusions

This chaper proposes a reinforcement learning framework to learn point process models.

We parametrized our policy as RNNs with stochastic neurons, which can sequentially sam-
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ple discrete events. The policy is updated by directly minimizing the discrepancy between

the generated sequences with the observed sequences, which can avoid model misspeci-

fication and the limitation of likelihood based approach. Furthermore, the discrepancy is

explicitly evaluated in terms of the reward function in our setting. By choosing the func-

tion class of reward to be the unit ball in RKHS, we successfully derived an analytical

optimal reward which maximizes the discrepancy. The optimal reward will iteratively en-

courage the policy to sample events as close as the observation. We show that our proposed

approach performs well on both synthetic and real data.
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CHAPTER 5

TEMPORAL LOGIC POINT PROCESSES

We propose a modeling framework for event data, which excels in small data regime with

the ability to incorporate domain knowledge. Our framework will model the intensities of

the event starts and ends via a set of first-order temporal logic rules. Using softened repre-

sentation of temporal relations, and a weighted combination of logic rules, our framework

can also deal with uncertainty in event data. Furthermore, many existing point process

models can be interpreted as special cases of our framework given simple temporal logic

rules. We derive a maximum likelihood estimation procedure for our model, and show that

it can lead to accurate predictions when data are sparse and domain knowledge is critical.

5.1 Overview

A diverse range of application domains, such as healthcare [107], finance [108], smart city,

and information networks [109, 83, 110], generate discrete events in continuous time. For

instance, the occurrences of diseases on patients are event data; credit card uses are event

data; the arrivals of passengers in subway systems are event data; and the posting and shar-

ing of articles in online social platforms are also event data. Modeling these continuous-

time event data becomes increasingly important to understand the underlying systems, to

make an accurate prediction, and to regulate these systems towards desired states. Recently,

sophisticated models such as recurrent Marked point processes [85], neural Hawkes pro-

cesses [86] and reinforcement learning based methods [111] have been proposed, allowing

us to model increasingly complex phenomena.

Although these models are very flexible, they require lots of data to properly fit the

models, making these models perform poorly in the regime of small data. Furthermore,

these models are notorious for their difficult-to-interpret predication results, and have been
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branded as “black boxes” [112]. This means it is difficult to clearly explain or identify

the logic behind these predictions. In some cases, interpretability is more important than

predictions. For example, in medicine, people are more interested in understanding what

treatments contribute to the occurrences and cures of diseases than merely predicting the

patients’ health status [113].

Very often, there already exists a rich collection of prior knowledge or logic rules from

a particular domain, and we want to incorporate them to improve the interpretability and

generalizability of the model. We want to fully utilize knowledge like this, rather than

reinvent the wheel and purely relying on data to come up with the rule. Furthermore, when

the amount of data is small and noisy, it will also be challenging to accurately recover these

rules.

Thus our interest lies in interpretable event data modeling, and we want to incorporate

prior temporal logic reasoning rules [114]. Our proposed modeling framework will explic-

itly model the durations of different types of events as random variables, and furthermore

take into account the relations between different types of events specified by a set of tem-

poral logic rules. More specifically, we will use two intensity functions to model the start

and end of each type of event respectively, and these intensity functions are defined via a

set of temporal logic rules involving both other types of events and temporal constraints.

In addition to the interpretability, our modeling framework has other characteristics and

advantages:

(i) Tolerance of uncertainty. Data are noisy in the world, and time information is often

imprecisely recorded. Treating logic rules as hard constraints will be too strict. Our model

uses a weighted combination of logic rules, rather than using them as hard constraints.

These designs allow us to deal with uncertainty and impreciseness of the rules for real-

world data.

(ii) Temporal relation constraints. Our model can consider temporal relation con-

straints associated with logic rules, such as
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– A happens before B.

– If A happens, and after 5 mins, B can happen.

– If A and B happen simultaneously, then at the same time C can happen.

Our model uses a softened parametrization of temporal relation constraints as part of

our logic functions.

(iii) Continuous-time reasoning process. Our model captures the dynamics of a

continuous-time reasoning process, and directly models the inter-arrival times of the ev-

idence. Our model therefore can naturally deal with asynchronous events on the fly.

(iv) Small data and knowledge transfer. Our model better utilizes domain knowledge,

and therefore will work on small datasets. Different datasets in similar concepts might share

similar logic rules. We might leverage the learned logic weights in one dataset to warm-

start the learning process on a different dataset. Our model makes it possible to transfer

knowledge among different datasets.

Furthermore, we show that many existing point process models [115, 116, 117] can be

recovered as special cases of our framework given simple temporal logic rules. We derive

a maximum likelihood estimation procedure for our model, and show that it can lead to

interpretable and accurate predictions in the regime of small data.

5.2 Temporal Logic

We first provides backgrounds for temporal logic reasoning.

5.2.1 First-order Logic

A predicate such as Smokes(c) or Friend(c, c′) as a logic function x(·), is defined over a

set of entities C = {c1, c2, . . . , c|C|}, i.e., x(·) : C × C · · · × C 7→ {0, 1}. One can think

of predicates as the property or relation of entities. A first-order logic rule is a logical
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connectives of predicates, such as

f1 : ∀c Smokes(c)⇒ Cancer(c); f2 : ∀c ∀c′ Friend(c, c’) ∧ Smokes(c)⇒ Smokes(c′).

Commonly used logical connectives are: ∧ for conjunction, ∨ for disjunction,⇒ for impli-

cation, and ¬ for negation. Each first-order logic rule is also a logic function defined over

the set of entities C, i.e., f(·) : C ×C · · ·×C 7→ {0, 1}. For automated inference, it is often

convenient to convert logic rules to a clausal form, which is a conjunction or disjunction of

predicates. Table 5.1 demonstrates the fact that logic rule xA ⇒ xB is logically equivalent

to the clausal form ¬xA ∨ xB. Every first-order logic rule can be converted to a clausal

form using this mechanism. Generally, given predicates xA1 , . . . , xAk , xB1 , . . . , xBl , the

first-order logic (xA1 ∧ xA2 · · · ∧ xAk) ⇒ (xB1 ∨ xB2 · · · ∨ xBl) is logically equivalent to

f : (¬xA1 ∨ ¬xA2 · · · ∨ ¬xAk) ∨ (xB1 ∨ xB2 · · · ∨ xBl).

xA, xB xA ⇒ xB ¬xA ∨ xB
0, 0 1 1
0, 1 1 1
1, 0 0 0
1, 1 1 1

Table 5.1: Logic rule in clausal form.

5.2.2 Temporal logic predicate

A temporal predicate is a logic function x(·, ·) over the set of entities C = {c1, c2, . . . , c|C|}

and time t ∈ [0,∞),

x(c, t) : C × C · · · × C × [0,∞) 7→ {0, 1},

which can only take two values, 0 or 1. For simplicity of notation, we will focus on the

case with one entity, and drop the dependency of predicates on the entity. Hence, we will

write x(c, t) as x(t) instead.
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A temporal predicate {x(t)}t≥0 can also be viewed as a continuous-time two-state

stochastic process. For example, temporal predicate NormalBloodPressure(t) will take

value 1 and 0 to indicate whether blood pressure is normal (0) or abnormal (1). The state

transition time is stochastic.

Given a sample path of {x(t)}t≥0 up to time t, the state transition time forms a partition

of the time horizon. That is {x(t)}t≥0 will stay in state 0 or state 1 for a time interval. For

example, in Fig. 5.1 left, the grounded predicate is recorded as x(t) = 0 for t ∈ [0, t1),

x(t) = 1 for t ∈ [t1, t2), and so on. In some special cases, the grounded predicate x(t) is

instantaneous, we will obtain the point-based predicate process. Here, we regard point as a

degenerate time interval. As in Fig 5.1 right, we record x(t1) = 1, x(t2) = 1, and so on at

the jumping time. For other non-jumping time, x(t) = 0.
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'
* *

'
*

'

Figure 5.1: Left: Two-state temporal predicate. Right: Point-based temporal predicate.

Temporal relation

Allen’s original paper [118] defined 13 types of temporal relations between two time

intervals, {r1, r2, . . . , r13}, which are also mutually exclusive. More specifically, let two

time intervals be τA = (tA1 , tA2 ] and τB = (tB1 , tB2 ] for predicate xA and predicate xB

respectively, tA1 and tB1 be the respective interval starting times, and tA2 and tB2 be the

respective interval ending times. Then a temporal relation is a logic function

r(·) : (tA1 , tA2 ]× (tB1 , tB2 ] 7→ {0, 1}
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defined via

a step function: g(s) =


1 s ≥ 0

0 s < 0

, and an indicator function: κ(s) =


1 s = 0

0 o.w.

,

(5.1)

for enforcing hard temporal constraints. Function forms of the 13 temporal relations can be

founded in Table 5.2. Considering the inverses of relation r1 − r6 plus the symmetric rela-

tion r7 “equal”, there are a total of 13 relations. If there are no temporal relation constraints

on A and B, then their temporal relations can take any of the 13 types, and r0 = rno()

returns the disjunction of these relations and is always “True” (i.e., 1).

Table 5.2: Interval-based temporal relation constraints and their illustrative figures.
Temporal Relation Temporal Relations r(·) Illustration

r1 = rbe: A before B g(tB1 − tA2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

r2 = rme: A meets B κ(tA2 − tB1)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

r3 = rov: A overlaps B g(tB1 − tA1) · g(tB1 − tA2) · g(tB2 − tA2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

r4 = rst: A starts B κ(tA1 − tB1) · g(tB2 − tA2) !"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

r5 = rco: A contains B g(tB1 − tA1) · g(tA2 − tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

r6 = rfi: A finished-by B g(tB1 − tA1) · κ(tA2 − tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%
r7 = req: A equals B κ(tA1 − tB1) · κ(tA2 − tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

More complex temporal relations can be decomposed as the composition of these 13

types of two way relations. For example, (A and B before C) can be decomposed as (A

before C) and (B before C).

For degenerate point-based predicate process, where tA1 = tA2 = tA, and tB1 = tB2 =
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tB, we will have a total of 3 types of temporal relations and their function forms, i.e.,

A before B: g(tB − tA), A after B: g(tA − tB), A equals B: κ(tA − tB). (5.2)

5.2.3 Temporal logic formula

Then a temporal logic formula is a logical composition of temporal logic predicates and

temporal relations, f(Xf , Tf ) 7→ {0, 1}, where

• Xf = {xu(t)} is a set of temporal predicates used to define the formula f ,

• Tf = {τu} is a set of time intervals, with each xu ∈ Xf associated with a time interval

τu = (tu0 , tu1 ] (0 and 1 in the subscript indicates interval start and end respectively).

We require that within time interval τu, the value of the temporal logic predicate

xu(t) remains fixed.

Then a temporal logic formula have a generic form

f(X , T ) =

(∨
xu∈X+

f

xu(tu1)

)∨(∨
v∈X−f

¬xv(tv1)
)∧(∧

xu,xv∈Xf
r?(τu, τv)

)
.

(5.3)

where X−f is the set of predicates used as negation in the formula f , X+
f = X \ X−f , and

{r?(τu, τv)} is a set of temporal relations between pairs of predicates. We use r? to indicate

that the actual temporal relations used depend on specific formula.

5.3 Temporal Logic Point Processes

Suppose we have a collection of d temporal logic predicatesX = {x1(t), x2(t), . . . , xd(t)},

which is a compact representation of temporal knowledge base. An example of X in

healthcare context is illustrated in Fig 5.2. Each predicate xu(t), defined as, UseDrug1(t),

NormalBloodPressure(t) and so on, represent the properties, medical treatments, and health

status of a patient at time t > 0.
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The network topology ofX is determined by a set of pre-defined temporal logic formu-

lae F = {f1, f2, . . . , fn}, which can express our prior belief on how these temporal predi-

cates are related. For example in Fig 5.2, first-order logic rules such as “(NormalBloodPressure(t)∧

NormalHeartBeat(t′) ⇒ GoodSurvivalCondition(t′′)) ∧ rbe(t, t′) ∧ rbe(t, t′′)” will define

a clique in X . We want to incorporate these temporal logic formulae in our point process

model.

The advantages of our model are two-fold. First, the exact switching times of 0 or 1 for

each process {xu(t)}t≥0 can be noisy or can contain uncertainty due to unmodeled effects.

We are interested in modeling the statistical patterns of X , and predict the values and the

transition times of some temporal predicates inX (e.g., GoodSurvivalCondition). Second,

each logic rules fi is attached with a weight, indicating how confident is the rule in the

world. The weights and temporal relation patterns of each logic rule will be learned from

data.
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Figure 5.2: Illustration of temporal logic predicatesX in medicine.

5.3.1 Dual intensity model for temporal predicate

We note that, for a temporal predicate, the positive and negative values will occur in an

alternating fashion, dividing the time axis into segments. To facilitate later exposition, we

will denoteHu(t) as the sequence of time intervals for each temporal predicate xu(t). More

specifically, if we observe a sequence of transition time {t1, t2, . . . , tn} between (0, t], then
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we define

Hu(t) := {(0, t1], (t1, t2], . . . , (tn−1, tn], (tn, t]} (5.4)

where values of the temporal predicate remain fixed with each time interval. One can also

think of the length of each interval ti+1− ti > 0 is the dwell time of a particular fixed state.

Given the set of H = {Hu}u=1,...,d for all temporal predicates, we can model the se-

quence of events for a particular temporal predicate using two intensity functions as illus-

trated in Fig. 5.3. More specially, define λ∗u(t) := λ(t|H(t)) the conditional transition

intensity for “xu(t) transits from 0 to 1”, and µ∗u(t) := µ(t|H(t)) the conditional transition

intensity for “xu(t) transits from 1 to 0”.

!"

#∗(&)

(∗(&)

Figure 5.3: Two-state transition of temporal predicate.

!"
#∗(&) (∗(&)

" !#∗(&)

Figure 5.4: Unrolled chain: conditional process.

We can unroll the transition diagram and obtain a conditional process, with a unique

sample path. All the transition intensities are time and history dependent. Suppose xu(t) =

0 at t = 0, we will have the conditional process as displayed in Fig. 5.4.

5.3.2 Intensity guided by temporal logic rules

We will now discuss how to design the conditional transition intensity for temporal predi-

cates by fusing a set of temporal logic formulae F = {f1, f2, . . . , fn} from domain knowl-

edge.
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We will take a simple first-order temporal logic rule with temporal relation constraints

as our running example. In plain language, a temporal reasoning rule for deducing event

type C is

f1 : (A ∧B ⇒ C) ∧ (A before B) ∧ (A and B before C), (5.5)

which has the corresponding logical form as “if predicate xA is true, and predicate xB is

true, then predicate xC is true; furthermore, xA occurs before xB, and both occur before

xC”. Write the temporal logic formula in clausal form as Eq. (5.3), we have

f1(xA, xB, xC , tA ∈ τA, tB ∈ τB, tC ∈ τC) : (5.6)

:= (¬xA(tA1) ∨ ¬xB(tB1) ∨ xC(tC1)) ∧ rbe(τA, τB) ∧ rbe(τB, τC)

where we consider the value of predicate xA(t) in the time interval τA = (tA1 , tA2 ], pred-

icate xB(t) in the time interval τB = (tB1 , tB2 ], and predicate xC(t) in the time interval

τC = (tC1 , tC2 ]. Within these time intervals, predicates xA(t), xB(t) and xC(t) all maintain

fixed values which may be different from each other.

We are interested in forward reasoning where we model the conditional transition inten-

sity of deduced predicate xC and treat the histories of xA and xB as evidence. For predicate

xC(t), at any time t, it has two potential outcomes 0 or 1. One can observe only one, but

not both, of the two potential outcomes. The unobserved outcome is called the “counter-

factual” outcome. Suppose xC(t) is the “observed” outcome at time t, then 1 − xC(t) is

always the “counterfactual” outcome at time t.

To incorporate the knowledge from formula f1 in constructing the transition intensity

97



for xC at time t > 0, we define a formula effect (FE) term as

FE = δf1(t | tA ∈ τA, tB ∈ τB) := f1(xA, xB, 1− xC , tA ∈ τA, tB ∈ τB, tC = t) (5.7)

− f1(xA, xB, xC , tA ∈ τA, tB ∈ τB, tC = t)

FE answers the question “what would happen if xC transits its state given logic formula f1

which takes into account the combination of historical states of other involved predicates”.

Note that the sign of FE can be 1, -1 or 0, which can be interpreted as

sgn(FE) =


1 Positive effect to transit,

−1 Negative effect to transit,

0 No effect to transit.

In our example, we can check from the logic function that

FE =


(0, 1] If observed xC(t) = 0, (xA(tA1) = 1, xB(tB1) = 1), (tA2 < tB1), and (tB2 < t)

[−1, 0) If observed xC(t) = 1, (xA(tA1) = 1, xB(tB1) = 1), (tA2 < tB1), and (tB2 < t)

0 Other combinations and temporal relations of A and B

Thus the conditional transition intensity for xC from state 0 to 1, contributed by logic

formula f1 is

λ∗C(t) = exp{wf1 ·
∑

τA∈HA(t)

∑
τB∈HB(t)

δf1(t | tA ∈ τA, tB ∈ τB)︸ ︷︷ ︸
feature φf1 (t)

}, (5.8)

where the sign of the formula effect δf1(t | tA, tB) indicates whether logic f1 exerts a

positive or negative effect provided the history HA(t) and HB(t), and the magnitude of

δf1(tA, tB, t) quantifies the strength of the influence. The double summation takes into
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account all combinations of temporal intervals in HA(t) and HB(t). One can think of the

formula weight wf1 as the confidence level on the formula. The higher the weight, the more

influence the formula has on the intensity of λ∗C(t).

For conditional transition intensity µ∗C(t), it has the same expression as Eq. (5.8). The

only difference is that when we compute λ∗C(t), we let xC(t) = 0, whereas when we

compute µ∗C(t), we let xC(t) = 1, and this will yield different features. As illustrated

in Fig. 5.5, the total valid (nonzero in terms of FE) combinations is 2, corresponding to

xA(tA) = 1, xB(tB) = 1, and xA(tA) happens before xB(tB) and both before t. The

feature can be evaluated from grounding δf1(t|tA, tB) using Eq. (5.6) and (5.7).

!"

#$(!)

!$

#"(!)

Figure 5.5: Effective combinations of A and B

Predicate xC can be deduced from more than one logic formulae. For example, as

shown in Fig. 5.6, xC belongs to f1 and f2. We assume effect of temporal logic formula f1

and f2 are additive in designing the transition intensity for xC .

!"($,&, ') !)(',*)

$ & ' *

Figure 5.6: Factor graph

In general, given a set of temporal logic formulae FC = {f1, . . . , fn} for deducing
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xC(t), the conditional transition intensity for predicate xC , is designed as

λ∗C(t) = exp

{∑
f∈FC

wf · φf (t) + b(t)

}
, (5.9)

where we also introduce a base temporal function b(t) to always allow for spontaneous

transition without influence from the logic. For instance, b(t) can either be a constant

b(t) = b, or a deterministic function of t. The expression of µ∗C(t) is similar to Eq. (5.9),

but with different values of features.

5.3.3 Softened temporal constraints

In practice, the temporal information usually cannot be accurately recorded in real time.

It makes more sense to introduce soft constraints for the temporal relations. We intro-

duce softened approximation functions for step function g(s) and delta function κ(s) in

replacement of those used in the definitions of temporal relations in Table 5.2.

Step function g(s) can be soften as a triangular function with area one or a logistic

function,

g(soft)(s) = min(1,max(0, βs+ 1
2
)), or g(soft)(s) =

1

1 + exp(−βs)
. (5.10)

Delta function κ(s) can be soften as a triangular function with area one, or a Laplace

distribution,

κ(soft)(s) = max(0,min( s
γ2

+ 1
γ
,− s

γ2
+ 1

γ
)), or κ(soft)(s) =

exp(−|s|/γ)

γ
. (5.11)

Parameters β and γ ≥ 1 can be treated as unknown parameters, which can be learned from

data.
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5.3.4 Likelihood

By the definition of transition intensity in Eq. (5.9), we can write out the likelihood. For

predicate C, given a realization of the process up to time t, as in Fig. 5.4, the likelihood

L({xC(t)}t≥0) is

λ∗C(t1) exp

(
−
∫ t1

0

λ∗C(s)ds

)
· µ∗C(t2) exp

(
−
∫ t2

t1

µ∗C(s)ds

)
· · · exp

(
−
∫ t

tn

µ∗C(s)ds

)
,

(5.12)

provided predicate xC starts in state 0 and stays in state 1 up to time t.

Sketch of proof. Let p(tn+1|Htn , xC(tn) = 0) and p(tn+1|Htn , xC(tn) = 1) be the

conditional density function of the time of the next event tn+1 given the history of previous

events (t0, t1, · · · , tn) while xC(tn) = 0, and xC(tn) = 1 respectively. LetF (t|Htn , xC(tn) =

0), and F (t|Htn , xC(tn) = 1) be the corresponding cumulative distribution function for any

t > tn.

Based on the definition of the conditional transition intensity, we have

λ∗C(t) =
p(t|Htn , xC(tn) = 0)

1− F (t|Ht, xC(tn) = 0)
, and µ∗C(t) =

p(t|Htn , xC(tn) = 1)

1− F (t|Htn , xC(tn) = 1)
(5.13)

From (5.13), we have

λ∗C(t) = − d

dt
log(1− F (t|Ht, xC(tn) = 0)), µ∗C(t) = − d

dt
log(1− F (t|Ht, xC(tn) = 1)).
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Integrating both sides, we can get

p(tn+1|Htn , xC(tn) = 0) = λ∗C(t) exp

(
−
∫ t

tn

λ∗C(s)ds

)
,

F (t|Htn , xC(tn) = 0) = 1− exp

(
−
∫ t

tn

λ∗C(s)ds

)
,

p(tn+1|Htn , xC(tn) = 1) = µ∗C(t) exp

(
−
∫ t

tn

µ∗C(s)ds

)
,

F (t|Htn , xC(tn) = 1) = 1− exp

(
−
∫ t

tn

µ∗C(s)ds

)
.

Let t0 = 0. Given the initial state xC(t0) = 0,and the history of the trajectory (t1, t2, . . . , tn),

where xC(tn) = 1, the likelihood function can be factorized into all the conditional densi-

ties of each points given all points before it, i.e., L is

p(t1|Ht0 , xC(t0) = 0)p(t2|Ht1 , xC(t1) = 1) · · ·

p(tn−1|Htn−1 , xC(tn−1) = 0)(1− F (t|Htn , xC(tn) = 1))

= λ∗C(t1) exp

(
−
∫ t1

0

λ∗C(s)ds

)
· µ∗C(t2) exp

(
−
∫ t2

t1

µ∗C(s)ds

)
· · · exp

(
−
∫ t

tn

µ∗C(s)ds

)
.

Similarly, if let t0 = 0, and given the initial state xC(t0) = 0,and xC(tn) = 0, the likelihood

function L becomes

p(t1|Ht0 , xC(t0) = 0)p(t2|Ht1 , xC(t1) = 1) · · ·

p(tn−1|Htn−1 , xC(tn−1) = 1)(1− F (t|Htn , xC(tn) = 0))

= λ∗C(t1) exp

(
−
∫ t1

0

λ∗C(s)ds

)
· µ∗C(t2) exp

(
−
∫ t2

t1

µ∗C(s)ds

)
· · · exp

(
−
∫ t

tn

λ∗C(s)ds

)
,

which completes the proof.
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By considering all the predicates, the likelihood for the dataset is

L =
∏

u∈{1,...,d}

L({xu(t)}t≥0).

All the unknown parameters regarding the logic weights (wf , b) and the temporal relations

β and γ will be jointly learned by maximizing the likelihood.

5.4 Experiments

We will demonstrate the accuracy, flexibility and interpretability of temporal logic point

process models. We first show that we can use simple logic rules to recover several well-

known parametric point processes. Then we use simple rules for a three-player game to

generate complex temporal event patterns. Finally, we evaluate the interpretability of our

model on a real healthcare dataset.

5.4.1 Recover temporal point processes

We show the flexibility and accuracy of our model by recovering nonlinear Hawkes pro-

cesses and self-correcting processes from data. The training data is one sequence of events

generated from nonlinear Hawkes process and self-correcting processes, respectively.

(i) Hawkes. The intensity function λ(t) = b + α
∑

ti<t
exp(−(t − ti)), where b > 0

and α > 0, means that previous events will boost the occurrence of new events. This will

correspond to “If A happens, then A will happen again afterwards”, which can be expressed

as a first-order temporal logic rule

fHawkes(xA(t), xA(t′), t = t, t′ = t′) : (¬xA(t) ∨ xA(t′)) ∧ rbe(t, t′),

where xA(t) is a degenerate point-based temporal predicate. Furthermore, in the intensity,
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α corresponds to formula weight, and we have used softened temporal relation by Logistic

function.
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(a): Hawkes. (b) Self-correcting.

Figure 5.7: Generated events v.s. training events.
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Figure 5.8: More self-correcting processes examples

(ii) Self-correcting. The intensity function λ(t) = exp
(
bt−

∑
ti<t

α
)
, where µ > 0

and α > 0 are positive parameters, models that previous events will inhibit the occurrence

of new events. This will correspond to “If A happens, then A will not happen again”, which

can be expressed as a first-order temporal logic rule

fself-correcting(xA(t), xA(t′), t = t, t′ = t′) : (¬xA(t) ∨ ¬xA(t′)) ∧ rbe(t, t′).
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where xA(t) is a degenerate point-based temporal predicate. Furthermore, in the intensity,

α corresponds to formula weight.

In our experiment, we use the above hypothesized temporal logic rules to design the

intensity of temporal logic point processes. To verify the accuracy of these temporal logic

rules and our model, we generate events from the learned model and compare the cumu-

lative event counts to the training sequences. As displayed in Fig. 5.7 and Fig. 5.8, only

using a very short sequence of events, our temporal logic point processes can accurately

recover the dynamics of nonlinear Hawkes and self-correcting processes.

5.4.2 Three-player game.

We design a game, where player A, B and C follow the following logic rules,

f1 : (¬xC(t) ∧ xA(t)⇒ xA(t′)) ∧ rbe(t, t′); f2 : xA(t) ∧ xB(t)⇒ xC(t); f3 : xC(t)⇒ ¬xA(t).

For player A, if there is no C, it will occur periodically, which corresponds to a temporal

logic rule

fperiodic : (¬xA(t) ∨ xA(t′)) ∧ req(t, t
′ − T ),

where T is the period. We simulate this repeated game after player C joins the game.

Furthermore, we will also use softened temporal relation to represent req using Laplace

kernel.

As illustrated in Fig. 5.9, once A and B occur, C will be triggered (f2). However,

C will inhibit A (f3). Then A stops happening, and C vanishes as a result (f2). After C

disappears, A occurs again (f1). This simple example shows the flexibility of our temporal

logic model. The simulated dynamic systems, governed by logic rules, exhibit different

stages automatically, and demonstrate the flexibility of the model.
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(a): Periodic A without C in the game. (b) Involving C in the game.

Figure 5.9: Repeated three-player game.

5.4.3 Healthcare applications.

We demonstrate the interpretability and prediction accuracy of our temporal logic model

on MIMIC-III dataset [119]. A total of 100 sepsis patients (with mean age 66.6, 43.6%

female) are selected as our population.

To establish our model, 31 logic rules, as shown in Table 5.3, are introduced as prior

knowledge. These logic rules are collected from real observed treatments as well as domain

knowledge. Predicates {xi}i=1,...,23 denote different types of treatments (i.e., drugs, and see

Appendix for details), u1 denotes the blood pressure, and u2 is the survival condition. De-

fined by the temporal logic rules, “treatments”, “blood pressure”, and “survival condition”

are inter-related and the transition intensity of these predicates can be constructed. All

predicates take values 0 or 1. For drugs, 1 means the treatment is applied, and 0 otherwise;

for blood pressures, 1 means normal status and 0 otherwise; for survival condition, 1 in-

dicates survival and 0 otherwise. All predicates will be grounded sequentially with state

transition times recorded.

To evaluate our model’s prediction accuracy on small data, we train our model using

only 5 and 30 patients’ trajectories respectively, and predict the real-time states of u1 and

u2 on test patients. We make a comparison with LSTM and RNN, which are state-of-the-art

predictive models, and the results are summarized in Table 5.4. Our model performs fairly

well and consistently better than the baselines, due to better utilization of prior knowledge.
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f : (xi ⇒ u2) ∧ rb(txi , tu2) , i ∈ {1, 2, ..., 23}
f : (xj ⇒ u1) ∧ rb(txj , tu1), j ∈ {2, 11, 12, 19}
f : (u1 ⇒ u2) ∧ (tu1 = tu2)
f : (x10 ∧ x20 ⇒ u2) ∧ rb(tx10 , tu2) ∧ rb(tx20 , tu2)
f : (x14 ∧ x20 ⇒ u2) ∧ rb(tx14 , tu2) ∧ rb(tx20 , tu2)
f : (¬x12 ∧ x8 ⇒ u2) ∧ rb(tx12 , tu2) ∧ rb(tx8 , tu2)
f : (¬x12 ∧ x17 ⇒ u2) ∧ rb(tx12 , tu2) ∧ rb(tx17 , tu2)

Table 5.3: List of logic rules.

Table 5.4: BP and mortality prediction
Method Train/Test: 5/5 Train/Test: 30/10

BP Precision Mortality Precision BP Precision Mortality Precision
LSTM 0.264±0.036 0.505±0.371 0.242±0.034 0.545±0.325
RNN 0.217±0.057 0.517±0.097 0.213±0.035 0.557±0.245

Temporal Logic 0.535±0.012 0.641±0.037 0.599±0.014 0.658±0.019

We are also interested in understanding what types of medical treatments contribute

more to the outcome. The learned formula weights based on the population are reported in

Appendix.

Figure 5.10: Formula graph.

In Fig. 5.10, each node represents a predicate and the thickness of the lines represent the

weights of the formula. We labeled the Blood pressure and Survival condition predicates

and discovered important drugs. We discovered the rule f : x11 ⇒ u1, where x11 is insulin,

is the most important factor to affect blood pressure. Insulin therapy has been verified

that may increase blood pressure levels [120]. This discovery is consistent with domain

knowledge that the physiologically frail diabetic individuals suffer the highest infection
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rates of sepsis [121]. Another example is f : x10 ⇒ x20 where x10 is Acetaminophen and

x20 is Warfarin. Warfarin is a vitamin K antagonist and Acetaminophen has been shown

that may enhance the anticoagulant effect of Warfarin [122]. In Fig, 5.11, we visualized

how the logic weights are updated in the training process. At the beginning, the logic

weights are almost the same. With more iterations, the dominant rules appeared. These

results show that our model can better predict individual patient’s health status, and can

uncover important rules using population data.

t = 16t = 16

Survival Condition

Blood Pressure

t = 58t = 58

Survival Condition

Blood Pressure

t = 92t = 92

Survival Condition

Blood Pressure

Figure 5.11: Weights during training

5.5 Discussion.

In this chapter, we proposed a unified framework to integrate first-order temporal logic

rules into point processes. Our model is easy to interpret and works well on small data.

We also introduced a softened representation of the temporal relation constraints to tolerate

uncertainty. Many existing point processes can be recovered by defining simple logic rules.

As for future work, we aim to introduce latent predicates to make our model more flexible.
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APPENDIX A

SCAN B-STATISTIC FOR KERNEL CHANGE-POINT DETECTION

A.1 Recursive implementation of online scan B-statistic

The online scan B-statistic can be computed recursively via a simple update scheme. By

its construction, when time elapses from t to (t + 1), a new sample is added into the post-

change block, and the oldest sample is moved to the reference pool. Each reference block is

updated similarly by adding one sample randomly drawn from the pool of reference data,

and the oldest sample is purged. Hence, only a limited number of entries in the Gram

matrix due to the new sample will be updated.

The update scheme is illustrated in Fig. A.1 and explained in more details therein. The

online B-statistic is formed with N background blocks and one testing block and, hence,

we keep track of N Gram matrices. For illustration purposes, we partition the Gram matrix

into four windows (in red, black and blue, as shown on the left panel). At time t, to obtain

MMD2(X
(B0,t)
i , Y (B0,t)), we compute the shaded elements and take an average within each

window. The diagonal entries in each window are removed to obtain an unbiased estimate.

At time t + 1, we update X(B0,t)
i and Y (B0,t) with the new data point and purge the oldest

data point, and update the Gram matrix by moving the colored window as shown on the

right panel. We compute the elements within the new windows, and take an average. Note

that we only need to compute the right-most column and the bottom row. Similarly, the

offline scan B-statistic can also be computed recursively by utilizing the fact that ZB for

B ∈ {2, . . . , Bmax} shares many common terms.
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Figure A.1: Recursive update scheme to compute the online scan B-statistics.

A.2 Variance and covariance calculation

Below, X(B)
i,j , where i = 1, . . . , N , and j = 2, . . . , Bmax, denotes the j-th sample in the i-th

blockX(B)
i , and Y (B)

j denotes the j-th sample in Y (B). The superscriptB denotes the block

size. We start with proving Lemma A.2.1 and Lemma A.2.2, which are useful in proving

Lemma 1.

Lemma A.2.1 (Variance of MMD, under the null.) Under the null hypothesis,

Var
[
MMD2(X

(B)
i , Y (B))

]
=

(
B

2

)−1

E[h2(x, x′, y, y′)], i = 1, . . . , N. (A.1)

Proof For notational simplicity, below we drop the superscript B, which denotes the block

size. Furthermore, we use x, x′, y and y′ to denote generic samples, i.e.,Xi,l
d
= x,Xi,j

d
= x′,

Yl
d
= y, Yj

d
= y′ and they are mutually independent of each other. Here the notation

d
= means two random variables have the same distribution. Below, we follow the same
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convention. For any i = 1, 2, . . . , n, by definition of U-statistic, we have

Var
[
MMD2(Xi, Y )

]
= Var

[(
B

2

)−1∑
l<j

h(Xi,l, Xi,j, Yl, Yj)

]

=

(
B

2

)−2 [(
B

2

)(
2

1

)(
B − 2

2− 1

)
Var [Ex,y[h(x, x′, y, y′)]]

+

(
B

2

)(
2

2

)(
B − 2

2− 2

)
Var [h(x, x′, y, y′)]

]
.

(A.2)

Under null distribution, Ex,y[h(x, x′, y, y′)] = 0. Thus, Var [Exiy[h(x, x′, y, y′)]] = 0, and

Var [h(x, x′, y, y′)] = E[h2(x, x′, y, y′)]− E[h(x, x′, y, y′)]2 = E[h2(x, x′, y, y′)].

Substitute these results into (A.2), and we obtain the desired result (A.1).

Lemma A.2.2 (Covariance of MMD, under the null, different block index.) For s 6= 0,

under null hypothesis

Cov
[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B)
i+s , Y

(B))
]

=

(
B

2

)−1

Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′)] .

Proof For i = 1, 2, . . . , N , and s = (1− i), (2− i), . . . , (N − i), s 6= 0,

Cov
[
MMD2(Xi, Y ),MMD2(Xi+s, Y )

]
= Cov

[(
B

2

)−1∑
l<j

h(Xi,l, Xi,j, Yl, Yj),

(
B

2

)−1∑
p<q

h(Xi+s,p, Xi+s,q, Yp, Yq)

]

=

(
B

2

)−2(
B

2

)(
2

1

)(
B − 2

2− 1

)
Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′′)]

+

(
B

2

)−2(
B

2

)(
2

2

)(
B − 2

2− 2

)
Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′)] .

112



Under null distribution,

Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′′)]

=

∫
h(x, x′, y, y′)h(x′′, x′′′, y, y′′)dP(x, x′, x′′, x′′′, y, y′, y′′)

=

∫ ∫ h(x, x′, y, y′)dP(x′, y′)︸ ︷︷ ︸
=0

 dP(x) ·
∫ ∫ h(x′′, x′′′, y, y′′)dP(x′′, y′′)︸ ︷︷ ︸

=0

 dP(x′′′) = 0.

Above, with a slight abuse of notation, we use dP(·) to denote the probability measure of

appropriate arguments. Finally, we have the desired results as shown in Lemma A.2.2.

A.2.1 Variance of scan B-statistics

Proof [Proof for Lemma 1] Using results in Lemma A.2.1 and Lemma A.2.2, we have

Var[ZB] = Var

[
1

N

N∑
i=1

MMD2(Xi, Y )

]

=
1

N2

[
NVar[MMD2(Xi, Y )] +

∑
i 6=j

Cov
[
MMD2(Xi, Y ;B),MMD2(Xj, Y )

]]

=

(
B

2

)−1 [
1

N
E[h2(x, x′, y, y′)] +

N − 1

N
Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′)]

]
.

Next, we introduce Lemma A.2.3 and Lemma A.2.4, which are useful in proving Lemma

3.

Lemma A.2.3 (Covariance of MMD, different block sizes, same block index.) For blocks
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with the same index i but with distinct block sizes, under the null hypothesis we have

Cov
[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B+v)
i , Y (B+v))

]
=

(
B ∨ (B + v)

2

)−1

E[h2(x, x′, y, y′)].

(A.3)

Proof Note that

Cov
[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B+v)
i , Y (B+v))

]
= Cov

[(
B

2

)−1 B∑
l<j

h(Xi,l, Xi,j, Yl, Yj),

(
B + v

2

)−1 B+v∑
p<q

h(Xi,p, Xi,q, Yp, Yq)

]

=

(
B

2

)−1(
B + v

2

)−1

Cov

[
B∑
l<j

h(Xi,l, Xi,j, Yl, Yj),
B+v∑
p<q

h(Xi,p, Xi,q, Yp, Yq)

]

=

(
B

2

)−1(
B + v

2

)−1(
B ∧ (B + v)

2

)
Var[h(x, x′, y, y′)]

=

(
B ∨ (B + v)

2

)−1

E[h2(x, x′, y, y′)],

where the second last equality is due to a similar argument as before to drop block indices

as they are i.i.d. under the null.

Lemma A.2.4 (Covariance of MMD, different block sizes, different block indices.) Under

the null we have

Cov
[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B+v)
i+s , Y (B+v))

]
=

(
B ∨ (B + v)

2

)−1

·

Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′)] .
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Proof Note that

Cov
[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B+v)
i+s , Y (B+v))

]
= Cov

(B
2

)−1 B∑
l<j

h(X
(B)
i,l , X

(B)
i,j , Y

(B)
l , Y

(B)
j ),

(
B + v

2

)−1 B+v∑
p<q

h(X
(B+v)
i+s,p , X

(B+v)
i+s,q , Y

(B+v)
p , Y (B+v)

q )


=

(
B

2

)−1(B + v

2

)−1

Cov

 B∑
l<j

h(X
(B)
i,l , X

(B)
i,j , Y

(B)
l , Y

(B)
j ),

B+v∑
p<q

h(X
(B+v)
i+s,p , X

(B+v)
i+s,q , Y

(B+v)
p , Y (B+v)

q )


=

(
B

2

)−1(B + v

2

)−1(B ∧ (B + v)

2

)
Cov

[
h(x, x′, y, y′), h(x′′, x′′′, y, y′)

]
=

(
B ∨ (B + v)

2

)−1

Cov
[
h(x, x′, y, y′), h(x′′, x′′′, y, y′)

]
,

where the second last equality is due to a similar argument as before to drop block indices

as they are i.i.d. under the null.

A.2.2 Covariance of offline scan B-statistics.

Proof [Proof of Lemma 3] For the offline case, we have that the correlation

rB,B+v :=
1√

Var[ZB]

1√
Var[ZB+v]

Cov [ZB, ZB+v] ,

where

Cov (ZB, ZB+v) = Cov

[
1

N

N∑
i=1

MMD2(X
(B)
i , Y (B)),

1

N

n∑
j=1

MMD2(X
(B+v)
j , Y (B+v))

]

=
1

N
Cov

[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B+v)
i , Y (B+v))

]
+

1

N2

∑
i 6=j

Cov
[
MMD2(X

(B)
i , Y (B)),MMD2(X

(B+v)
j , Y (B+v))

]
.
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Using results from Lemma A.2.3 and Lemma A.2.4, we have:

Cov (ZB, ZB+v) =

(
B ∨ (B + v)

2

)−1 [
1

N
E[h2(x, x′, y, y′)]

+
N − 1

N
Cov [h(x, x′, y, y′), h(x′′, x′′′, y, y′)]

]
.

Finally, plugging in the expressions for Var[ZB] and Var[ZB+v], we have (2.10) for the

offline case.

A.2.3 Covariance of online scan B-statistic

Similarly, for the online case we need to analyze ρt,t+s := Cov
(
Z ′B0,t

, Z ′B0,t+s

)
. We adopt

the same strategy as the above for a fixed block size B0 to obtain

Cov
(

MMD2(X
(B0,t)
i , Y (B0,t)),MMD2(X

(B0,t+s)
i , Y (B0,t+s))

)
= Cov

[(
B0

2

)−1 B0∑
l<j

h(X
(t)
i,l , X

(t)
i,j , Y

(t)
l , Y

(t)
j ),

(
B0

2

)−1 B0∑
p<q

h(X
(t+s)
i,p , X

(t+s)
i,q , Y (t+s)

p , Y (t+s)
q )

]

=

(
B0

2

)−2(
(B0 − s) ∨ 0

2

)
Var[h(x, x′, y, y′)]. (A.4)

Figure A.2 (a) demonstrates how MMD2(X
(B0,t)
i , Y (B0,t)) and MMD2(X

(B0,t+s)
i , Y (B0,t+s))

are constructed. The shaded areas represent the overlapping data.

Similarly, we have

Cov
(

MMD2(X
(B0,t)
i , Y (B0,t)),MMD2(X

(B0,t+s)
j , Y (B0,t+s))

)
= Cov

[(
B0

2

)−1 B0∑
l<k

h(X
(t)
i,l , X

(t)
i,k , Y

(t)
l , Y

(t)
k ),

(
B0

2

)−1 B0∑
p<q

h(X
(t+s)
j,p , X

(t+s)
j,q , Y (t+s)

p , Y (t+s)
q )

]

=

(
B0

2

)−2(
(B0 − s) ∨ 0

2

)
Cov(h(x, x′, y, y′), h(x′′, x′′′, y, y′)), (A.5)

Figure A.2 (b) demonstrates how MMD2(X
(B0,t)
i , Y (B0,t)) and MMD2(X

(B0,t+s)
j , Y (B0,t+s)),
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Figure A.2: Illustration of how MMD2s are constructed.

j 6= i are constructed. The shaded areas represent the overlapping data. Thus,

Cov (ZB0,t, ZB0,k+s)

= Cov

(
1

N

N∑
i=1

MMD2(X
(B0,t)
i , Y (B0,t)),

1

N

N∑
j=1

MMD2(X
(B0,t+s)
j , Y (B0,t+s))

)

=

(
B0

2

)−2(
(B0 − s) ∨ 0

2

)[ 1

N
Var(h(x, x′, y, y′))

+
N − 1

N
Cov(h(x, x′, y, y′), h(x′′, x′′′, y, y′))

]
.

Finally, plugging in the expressions for Var[ZB0,t] and Var[ZB0,t+s], we have (A.26) for the

online case.

A.3 Proof of Theorem 2

Below, we present the main steps in proving Theorem 2, including (1) exponential tilting;

(2) change-of-measure by the likelihood identity; (3) establish properties of the local field

and the global term; and (4) perform asymptotic approximation using the localization theo-

rem (Theorem 5.1 in [123] and Sec. 3.4 in [11]) by showing that the “global” log likelihood

and the “local process” are asymptotically independent. Finally, we collect terms together
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to obtain the result.

A.3.1 Step One: Exponential tilting

We first introduce exponential tilting, which creates a family of distributions that is related

to the original distribution of Z ′B. Let the log moment generating function of Z ′B be

ψ(θ) = logE[eθZ
′
B ]. (A.6)

Define a family of new measures

dPB = exp {θZ ′B − ψ(θ)} dP, (A.7)

where P represents the original probability measure of Z ′B under the null distribution P ,

PB is the new measure after the transformation, and θ parameterizes the family of the new

measures. Note that the new measures take the form of exponential family, with θ being

the parameter.

Recall that, under the null distribution, Z ′B has zero mean and unit variance. Given

the assumption that Z ′B is a standard Gaussian random variable, the corresponding log

moment generating function is given by ψ(θ) = θ2/2. One has the freedom to select the

value of θ to determine the new measure. We will set θ such that the mean under the tilted

measure is equal to a given threshold b. This means that the new measure peaks at the

threshold b, which enables us to use the local central limit theorem later on. This can be

done by choosing θ such that ψ̇(θ) = b, and therefore θ = b. Note that the solution θ

does not depend on B. Hence, we can set the mean under the transformed measure to b,

by uniformly choosing θ = b for any B. Given such a choice, the transformed measure is

given by dPB = exp {bZ ′B(x)− b2/2} dP. We also define, for each B, the log-likelihood
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ratio log(dPB/dP) of the form

`B = bZ ′B − b2/2. (A.8)

This way, we have associated the detection statistic Z ′B with a likelihood ratio, even if Z ′B

itself does not come out of a likelihood ratio.

The following lemma shows that Z ′B under the new measure has the same unit variance

and its mean has been shifted to b. This key fact will lead to the desired exponential tail.

Lemma A.3.1 (Mean and variance under tilted measure) Define EB and VarB as the

expectation and variance under the transformed measures

EB[U ] = E[Ue`B ], (A.9)

VarB[U ] = E[U2e`B ]− E2
B[U ]. (A.10)

We have EB[Z ′B] = b, and VarB[Z ′B] = 1.

Proof First, EB[Z ′B] = ψ̇(b) = b by construction. To show VarB[Z ′B] = 1, note that

logE[ebZ
′
B ] = b2/2. Taking the derivative ofψ(θ) with respect to b twice gives E[(Z ′B)2ebZ

′
B ] =

eb
2/2 + b2eb

2/2. Hence, EB[(Z ′B)2] = E[(Z ′B)2eθZ
′
B−ψ(b)] = 1 + b2, and VarB[Z ′B] =

EB[(Z ′B)2]− b2 = 1.

The following lemma shows that Z ′B under the new measure has the same unit variance

with the mean shifted to b. This key fact will lead to the desired exponential tail.

Lemma A.3.2 (Mean and variance under tilted measure) Define EB and VarB as the

expectation and variance under the transformed measures

EB[U ] = E[Ue`B ], (A.11)

VarB[U ] = E[U2e`B ]− E2
B[U ]. (A.12)
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We have EB[Z ′B] = b, and VarB[Z ′B] = 1.

Proof First, EB[Z ′B] = ψ̇(b) = b by construction. To show VarB[Z ′B] = 1, note that

logE[ebZ
′
B ] = b2/2. Taking the derivative ofψ(θ) with respect to b twice gives E[(Z ′B)2ebZ

′
B ] =

eb
2/2 + b2eb

2/2. Hence, EB[(Z ′B)2] = E[(Z ′B)2eθZ
′
B−ψ(b)] = 1 + b2, and VarB[Z ′B] =

EB[(Z ′B)2]− b2 = 1.

A.3.2 Step Two: Change-of-measure

Now we are ready to analyze the tail probability P {max2≤B≤Bmax Z
′
B > b}. The basic idea

is to convert the original problem of finding the small probability that the maximum of a

random field exceeds a large threshold to another problem: finding an alternative measure

under which the event happens with a much higher probability.

Here, the alternative measure will be a mixture of simple exponential tilted measures.

Define the maximum and the sum for likelihood ratio differences relative to a particular

parameter value B:

MB = max
s∈{2,...,Bmax}

e`s−`B , SB =
∑

s∈{2,...,Bmax}

e`s−`B . (A.13)

Also define a re-centered likelihood ratio, which we call the global term

˜̀
B = b(Z ′B − b).
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With the definitions above and the log likelihood ratios `B in (A.8), we have the following

P
{

max
2≤B≤Bmax

Z ′B > b

}
= E

[
1; max

2≤B≤Bmax

Z ′B > b

]
= E

[ ∑Bmax

B=2 e
`B∑Bmax

s=2 e`s︸ ︷︷ ︸
=1

; max
2≤u≤Bmax

Z ′u > b

]

=
Bmax∑
B=2

E
[

e`B∑
s e

`s
; max

2≤u≤Bmax

Z ′u > b

]
(A.11)

=
Bmax∑
B=2

EB
[

1∑
s e

`s
; max

2≤u≤Bmax

Z ′u > b

]

= e−b
2/2

Bmax∑
B=2

EB
[
MB

SB
e−(˜̀

B+logMB); ˜̀
B + logMB ≥ 0

]
(A.14)

where an intermediate step is done by changing the measure to PB, and the last equality can

be verified by simple algebra. Recall our notation EB[A;B] = EB[A1{B}] for a random

quantity A and event B; 1 denotes an indicator function.

In a nutshell, the last equation in (A.14) converts the tail probability to a product of

two terms: a deterministic term e−b
2/2 associated with the large deviation rate, and a sum

of conditional expectations under the transformed measures. A close examination of the

conditional expectations of the form EB[· · · ; [· · · ] ≥ 0] reveals that it involves a product

of the ratio MB/SB, and an exponential function that depends on ˜̀
B, which plays the role

of weight. Under the new measure PB, ˜̀
B has zero mean and variance equal to b2 (shown

below in Lemma A.3.3) and it dominates the other term logMB and, hence, the probability

of exceeding zero will happen with much higher probability. Next, we characterize the

limiting ratio and the other factors precisely, by the localization theorem.

A.3.3 Step Three: Establish properties of local and global terms

In (A.14), our target probability has been decomposed into terms that only depend on (i) the

local field {`s − `B}, 2 ≤ s ≤ Bmax, which are the differences between the log-likelihood

ratio with parameter B and with other parameter values s, 2 ≤ s ≤ Bmax, and (ii) the

global term ˜̀
B, which is the centered and scaled likelihood ratio with parameter B. We
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need to first establish some useful properties of the local field and the global term under

the tilted measure. We will eventually show that the local field and the global term are

asymptotically independent.

The following property for the global term can be derived from Lemma A.3.2. The

result shows that under the tilted measure, the global term ˜̀
B has zero mean for any B,

with variance diverging with b.

Lemma A.3.3 (Global term for offline scan B-statistic) The mean and variance of the

global term ˜̀
B = b(Z ′B − b), for 2 ≤ B ≤ Bmax, are given by

EB[˜̀B] = 0, VarB[˜̀B] = b2. (A.15)

Assuming Z ′B is approximately normal, the local field `s − `B (or equivalently b(Z ′s −

Z ′B)) and the global term ˜̀
B (or equivalently b(Z ′B − b)) are also approximately normally

distributed.

Lemma A.3.4 (Local field for offline scan B-statistic) The mean and variance of the lo-

cal field {`s − `B}, for |s−B| = 0, 1, 2, . . ., are given by

EB[`s − `B] = −b2(1− rs,B), VarB[`s − `B] = 2b2(1− rs,B),

with rs,B defined in (2.10). For any s1 and s2, the covariance between two local field terms

is given by

CovB (`s1 − `B, `s2 − `B) = b2 (1 + rs1,s2 − rs1,B − rs2,B) .

Proof Note that `s − `B = b(Z ′s − Z ′B), EB[Z ′B] = b, VarB[Z ′B] = 1. Moreover, due

to the normal assumption of Z ′B, we have the following decomposition EB[`s − `B] =

EB[b(Z ′s − Z ′B)] = EB[b(rs,BZ
′
B + (1 − r2

s,B)1/2W − Z ′B)] = −b2(1 − rs,B), where W is

a zero-mean random variable and independent of Z ′B, representing residual of regression.
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The variance and covariance can be found using similar decompositions.

Remark A.3.1 (Consequence of Lemma A.3.4) From the expression of the covariance in

(2.10), we have that for s−B > 0,

rs,B = [1 + (s−B)/B]−1/2 [1 + (s−B)/(B − 1))]−1/2,

and for s−B < 0,

rs,B = [1 + (s−B)/B]1/2 [1 + (s−B)/(B − 1)]1/2 .

Consequently,

1. When |s−B| → ∞, rs,B → 0. Therefore, when |s−B| → ∞, EB[`s−`B] converges

to −b2 and VarB[`s − `B] converges 2b2.

2. When |s − B| is small, assume s = B + j, j = 0,±1,±2, . . .. Perform the Taylor

expansion of rB+j,B around 0, we have that

rB+j,B = 1− 1

2

2B − 1

B(B − 1)
|j|+ o(|j|). (A.16)

Define

µ = b{(2B − 1)/[B(B − 1)]}1/2. (A.17)

Note that µ depends on the threshold as well as B, the block size parameter. Using
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(A.16), we have

lim
|j|→0

EB[`B+j − `B] = −µ
2

2
|j|,

lim
|j|→0

VarB[`B+j − `B] = µ2|j|,

lim
|j1|→0,|j2|→0

CovB (`B+j1 − `B, `B+j2 − `B) = µ2(|j1| ∧ |j2|).

Therefore, when |j| is small (i.e., in the neighborhood of zero), we can approximate

the local field using a two-sided Gaussian random walk with drift µ2/2 and the vari-

ance of the increment being µ2:

`B+j − `B
d
= µ

|j|∑
i=1

ϑi − µ2j/2, j = ±1,±2, . . . (A.18)

where ϑi are i.i.d. standard normal random variables.

A.3.4 Step Four: Approximation using Localization Theorem

The remaining work is to compute the conditional expectations EB[· · · ; (· · · ) ≥ 0] for

each B in (A.14). In the following, we drop the subscript B in EB for simplicity, and the

approximation results hold for each B. We assume b → ∞, Bmax → ∞, and b2/Bmax is

held to a fixed positive constant. Introduce an abstract index κ and let κ = b2; this choice is

because κ1/2 is the multiplicative factor that balances the rate of convergence of the global

term under the transformed measure. Typically, κ is equal to the variance of the global term

˜̀
B = b(Z ′B − b), which is b2 as shown in Lemma A.3.3; κ is also associated with the drift

and the variance of the incremental of the local field {`s− `B} for |s−B| = 0, 1, 2, . . ., as

shown in Lemma A.3.4.

Using a powerful localization theorem (see Theorem 3.1 in [123] or Theorem 5.2 in

[11]), we can obtain the limit for each term in the summand of (A.14), rewritten as (by
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changing the index to κ)

E
[
Mκ

Sκ
e−(˜̀

κ+logMκ); ˜̀
κ + logMκ ≥ 0

]
, (A.19)

when κ→∞. Basically, the localization theorem states that (A.19) scaled by κ
1
2 converges

under mild conditions when κ→∞.

The statement of the theorem involves a local σ-algebra denoted as F̂κ:

F̂κ = σ{`s − `B : |s−B| ≤ g(κ)}, (A.20)

where a function g(κ) specifies the size of the local region. The choice of g(κ) is critical

and it guarantees subsequent convergence. Following the analysis of scan statistics in [11],

we choose g(κ) = cb−2 for some large constant c. This local σ-field is asymptotically

independent of ˜̀
κ, and it carries all information needed to construct the local field.

Define M̂κ and Ŝκ as the maximization and summation restricted to a smaller subset of

parameter values {s : |s − B| ≤ g(κ)}, and they are measurable with respect to F̂κ. Note

that M̂κ and Ŝκ serve as approximations to Mκ and Sκ. In the limit, the local random field

converges to a Gaussian random field, and the ratio E[M̂κ/Ŝκ] converges to a limit that can

be determined with the parameters of the Gaussian random field.

The localization theorem (Theorem 5.1 in [123] and Sec. 3.4 in [11]) consists of the

five conditions as follows.

Theorem A.3.1 (Localization Theorem) Given ε > 0, if for all large κ, all following

conditions hold

I. Both 0 < Mκ ≤ Sκ <∞ and 0 < M̂κ ≤ Ŝκ <∞ hold in probability one.

II. Denote Ac = {| logMκ − log M̂κ| > ε} ∪ {|Ŝκ/Sκ − 1| > ε}. For some 0 < δ that

125



does not depend on ε:

max
|x|≤3g(κ)

P
[
Ac ∩ {˜̀κ + log M̂κ ∈ x+ (0, δ]} ∩ {|m̂| ≤ g(κ)}

]
≤ εκ−1/2,

where m̂κ = min{log M̂κ, g(κ)} − log(1− ε).

III. E[M̂κ/Ŝκ] converges to a finite and positive limit denoted by E[M/S].

IV. There exist µκ ∈ R and σκ ∈ R+ such that for every 0 < ε′, δ, for any event E ∈ F̂κ

and for all large enough κ

sup
|x|≤εκ1/2

∣∣∣∣κ1/2P(˜̀
κ ∈ x+ (0, δ], E)− δ

σ
φ
(µ
σ

)
P(E)

∣∣∣∣ ≤ ε′.

V. P(| logMκ| > εκ1/2), P(| log M̂κ| > εκ1/2) and P(logMκ − log M̂κ < −ε) are all

o(κ−1/2).

Then

lim
κ→∞

κ1/2E
[
Mκ

Sκ
e−[˜̀

κ+logMκ]; ˜̀
κ + logMκ ≥ 0

]
= σ−1φ

(µ
σ

)
E[M/S], (A.21)

where φ(·) is the density of the standard normal distribution.

Intuitively, the localization theorem says the following. To find the desired limit of

(A.19) as κ→∞, one first approximates Mκ and Sκ by their localized versions, which are

obtained by restricting the maximization and summation in a neighborhood of parameter

values. Then one can show that the localized ratio Mκ/Sκ is asymptotically independent

of the global term ˜̀
κ as κ → ∞. The asymptotic analysis is then performed on the local

field and the global term separately. The expected value of the localized ratio E[Mκ/Sκ]

converges to a constant independent of κ, and the limiting conditional distribution of ˜̀
κ

can be found using the local central limit theorem. Thus, one can calculate the remaining

conditional expectation involving ˜̀
κ.
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Checking conditions. Let us now verify the validity of the conditions in our setting. First,

Condition I is met since for Gaussian random variables, Mκ > 0, Sκ > 0 with probability

1, and the maximization of a collection of non-negative numbers is smaller or equal to the

summation. Similar arguments hold for their counterparts M̂κ > 0 and Ŝκ > 0 when the

maximization and summation are over a smaller set.

Condition II describes that the localized versions M̂κ and Ŝκ are good approximations

of Mκ and Sκ when κ is sufficiently large, for properly defined F̂κ. In Section 3.4.4 of

[11], the corresponding Condition II has been rigorously checked, assuming a local re-

gion defined in the same form of our local region and assuming Gaussian random field.

Thus, checking Condition II for our case will follow the same steps, using the properties

established in Section A.3.3. We omit the details here.

Condition III is checked by applying the distributional approximations to the localized

version of Mκ/Sκ. We can show that the expectation of the ratio E[M̂κ/Ŝκ] converges

to a finite and positive limit denoted by E[M/S], which does not depend on κ. Since the

increment `B+j−`B has negative mean as shown in Lemma A.3.4, the values ofMκ and Sκ

will be determined by values j close to 0, so is the ratio Mκ/Sκ. This implies, a relatively

small local region centered on B is sufficient.

From Remark A.3.1, the local field when the index is close to the shifted measure

parameter B can be approximated as a two-sided Gaussian random walk with drift −µ2/2

and variance µ2 (with µ defined in (A.17)), which is denoted as W (µ2j) below. Therefore,

we have that with high probability,

E[M̂κ/Ŝκ] = E

[
max|j|≤cb−2 eW (µ2j)∑

|j|≤cb−2 eW (µ2j)

]
.

When c→∞, it approaches to a limit known as the Mill’s ratio

E[M/S] = E

[
max|j| e

W (µ2j)∑
|j| e

W (µ2j)

]
,
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with maximization and summation extending to the entire collection of negative and pos-

itive integers. The Mill’s ratio is related to the Laplace transform of the overshoot of the

maxima of Gaussian random field over a threshold b, and an expression has been obtained

based on nonlinear renewal theory (see, [12] and Chapter 2.2 of the book [11]): E[M/S] =

exp(−2
∑∞

j=1 Φ(−j1/2µ/2)).An easier numerical evaluation is given by E[M/S] ≈ (µ2/2)ν(µ)

for a special function ν(µ) defined in (2.9).

Condition IV can be checked via a local multivariate central limit theorem that is local

in one component and non-local in others (Theorem 5.3 in [11]). The theorem says the

following: assuming ξi are independent, identically distributed random vector of dimen-

sion d + 1. Assume the mean of each vector is zero, and variance of the first component

converges to a finite σ, the covariance matrix of the last d components converges a finite

matrix Σ, and the correlation between these components and the first one converges to

zero (hence, the overall covariance matrix is block-diagonal). Define Sγ =
∑γ

i=1 ξi,1 and

a d dimensional vector with element hγ,j = γ−1/2ξi,j , for 1 ≤ j ≤ d. Then under mild

conditions,

lim
γ→∞

γ1/2P(Sγ ∈ [l, u], hγ ∈ A) =
l − u

(2π)1/2σ
P(h ∈ A) (A.22)

for any interval [l, u] and an arbitrary set A.

Our setting matches exactly to the above distribution when we set the global term as

the first component and the local field as the remaining components. Using the properties

in Section A.3.3, we have shown the finite mean and variance (covariance) of the global

and local field terms. We only need to show the global term, and the local fields are inde-

pendent of each other asymptotically. It suffices to prove that the conditional covariance

of {`B+j − `B} given ˜̀
B converges to the unconditional covariance, and the conditional

means converges to the unconditional one. With a slight abuse of notation, r1 = rB+j1,B

and r2 = rB+j2,B and using the linear regression decomposition, when conditioning on Z ′B
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(which is proportional to ˜̀
B), the two local field terms are independent of each other:

Cov(b(Z ′B+j1
− Z ′B), b(Z ′B+j2

− Z ′B)|Z ′B)

= Cov(b(r1Z
′
B + (1− r2

1)1/2W1 − Z ′B), b(r2Z
′
B + (1− r2

2)1/2W2 − Z ′B)|Z ′B) = 0.

whereW1 andW2 are two mutually independent zero-mean random variables that represent

the regression residuals (they are also independent of Z ′B).

On the other hand, using the same decomposition, we can show that without condition-

ing, the covariance is given by

Cov(b(Z ′B+j1
− Z ′B), b(Z ′B+j2

− Z ′B)) = b2(1− r1)(1− r2).

Hence, when b → ∞, due to the property of local field in equation (A.16), for |j1| ≤

cb−2, |j2| ≤ cb−2, the unconditioned covariance converges to zero given (A.16), which is

equal to the conditioned covariance. Similarly, we can show that the conditional means of

{Z ′B+j − Z ′B} conditioning on Z ′B converges to the unconditional ones.

Now we invoke the local central limit theorem. Since the density of the global term

˜̀
B is approximately normal, we can calculate a desired form of the probability. From

(A.15), the variance of the global term increases with b. The density of ˜̀
B can be uniformly

approximated by 1/(2πb2)1/2 within a small region around the origin |x| ≤ 3(4/ + 1 +

ε) log b [11]. Such an approximation also holds for ˜̀
B − x given any value x that is not too

large. Furthermore, notice that log M̂κ is very close to 0 and therefore is negligible; this is

because e`s−`B should attain its maximal value when |s−B| close to 0 as analyzed before.

Let µκ = EB[˜̀κ/b] = 0 and σ2
κ = VarB[˜̀κ/b] = 1. When κ = b2 →∞, using local central

limit theorem (A.22), we have that

κ1/2P
(

˜̀
κ ∈ x− log M̂κ + (0, δ]

)
→ δ

σκ
φ

(
µκ
σκ

)
. (A.23)
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Condition V is checked as follows. Note that the terms inside the Mκ are likelihood

ratios with unit expectation since EB[exp(`B)] = 1. Thus, exp(`s − `B) is a martingale

and by a standard martingale inequality, P(logMκ > εκ1/2) ≤ exp(−εκ1/2). Then using

a similar argument as in [123], one can show the other two inequalities, since M̂κ is an

approximation to Mκ.

Finally, since all conditions are met, we can now apply the localization theorem for

b→∞ and put things together to obtain

EB
[
MB

SB
e−[˜̀B+logMB ]; ˜̀

B + logMB ≥ 0

]
=
µ2

2
ν(µ)

1√
2πb2

(1 + o(1)). (A.24)

Substitute (A.24) back to the likelihood ratio identity (A.14), and we arrive at the approxi-

mation in Theorem 2.

A.4 Proof of Theorem 11

The method for approximating the ARL is related to that used to analyze the offline scan

B-statistic. In addition, we need the following lemma.

Lemma A.4.1 (Asymptotic null distribution of T ) Under the null, when b → ∞, the

stopping time T defined in (2.6) is uniformly integrable and asymptotically exponentially

distributed, i.e.,

|P{T ≥ m} − exp(−λ0m)| → 0,

in the range where mλ0 is bounded away from 0.

Proof The proof is based on adapting arguments in [124, 125, 126]. The main idea is to

show that the number of boundary cross events for detection statistic over disjoint intervals

converges to Poisson random variable in the total variation norm, resulted from the Poisson

limit theorem (Theorem 1 in [127]) for dependent samples. First, we show that the stopping

time T is asymptotically exponentially distributed. The analysis of the distribution of the
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stopping time is based on Poisson approximation. Define an indicator of the event 1j such

that the event 1{max(j−1)m≤t≤jm Z
′
B0,t

> b}. Consider the time interval [0, x]. Note that

the stopping time is not activated in the interval [0, x], if and only if, all the relevant indi-

cators are zero. For simplicity, we assume x is divisible by m. Define the random variable

Ŵ =
∑x/m

j=1 1j . Hence, {Ŵ = 0} = {Tb > x}. Thus, to characterize the tail probability of

the stopping time P{Tb > x}, we show that the sum of the indicator functions converge to

a Poisson distribution.

Using Lemma A.4.1, we know for largem, P{T ≤ m} is approximately 1−exp(−λ0m) ≈

λ0m, and E{T} is equal to λ−1
0 asymptotically when b→∞. So the remaining question is

to find the probability and the corresponding λ0. Consider P{T ≤ m} = P{max2≤t≤m Z
′
B0,t

>

b}. Suppose m > B0 and log b � m � b−1e
1
2
b2 . We will adopt a similar strategy to ap-

proximate this probability using the change-of-measure technique.

Note that the covariance structures for online and offline scan B-statistics are different,

so there will be different drift parameters when we invoke the localization theorem. Using

exponential tilting, we introduce a likelihood ratio

ζt = bZ ′B0,t
− b2/2.

Again using the change-of-measure by likelihood ratio identity, we obtain

P
{

max
2≤t≤m

Z ′B0,t
> b

}
= e−b

2/2

m∑
t=2

Et
[
M ′

t

S ′t
e−[ζ̃t+logMt]; ζ̃t + logM ′

t ≥ 0

]
, (A.25)

where

M ′
t = max

2≤s≤m
eζs−ζt , S ′t =

∑
2≤s≤m

eζs−ζt , and ζ̃t = b(Z ′B0,t
− b).

Hence, one can again apply the localization theorem to find the approximation when b →

∞, and the only differences are in the definition and characterization of global and local
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field terms.

Lemma A.4.2 (Local field of online scan B-statistic) The mean, variance, and covari-

ance of the local field {ζs − ζt} are given by

Et[ζs − ζt] = −b2(1− ρs,t), Vart[ζs − ζt] = 2b2(1− ρs,t),

Covt (ζs1 − ζt, ζs2 − ζt) = b2 (1 + ρs1,s2 − ρs1,t − ρs2,t) ,

where

ρs,t = Cov(Z ′B0,s
, Z ′B0,t

) =

(
(B0−|t−s|)∨0

2

)(
B0

2

) . (A.26)

The proof can be found in Appendix A.2.3. Note that when |t− s| is close to 0, Et[ζs − ζt]

is close to 0. With an increasing |t− s|, Et[ζs− ζt] decreases until |t− s| > B0 (when there

are no overlapping test data in the sliding block), then Et[ζs− ζt] becomes−b2. The values

of Mκ and Sκ as in localization theorem will be determined by the values of |j| close to 0.

Now, again, we will use an argument based on Taylor expansion to find the drift term

of the local field. When |s− t| is close to 0, we can approximate {ζs − ζt} as a two-sided

random walk. Using Taylor expansion, we have

ρt+j,t = 1− 2B0 − 1

B0(B0 − 1)
|j|+ o(|j|). (A.27)

Let λ = b[2(2B0 − 1)]/[B0(B0 − 1)]1/2. Hence, we can show that the mean, variance, and

covariance of the local field are approximately

lim
|j|→0

Et[ζt+j − ζt] = −λ
2

2
|j|,

lim
|j|→0

Vart[ζt+j − ζt] = λ2|j|,

lim
|j1|→0,|j2|→0

Covt (ζt+j1 − ζt, ζt+j2 − ζt) = λ2(|j1| ∧ |j2|).
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As a result, by invoking the localization theorem through a similar set of steps, we obtain

P {T ≤ m} = m · be
− 1

2
b2

√
2π

(2B0 − 1)

B0(B0 − 1)
· ν

(
b

√
2(2B0 − 1)

B0(B0 − 1)

)
(1 + o(1)), (A.28)

Matching this to above, we know λ0 is the factor that multiplies m and this leads to the

desired result.

For online scanB-statistics, the standard Poisson limit cannot be directly applied, since

the events {1j}, j = 1, . . . , x/m, are not independent, and we need the generalized Poisson

limit theorem [127], which allows for dependence between the variables. The setup for

the theorem is as follows. Let I be an arbitrary index set, and for α ∈ I , let Xα be a

Bernoulli random variable with pα = P(Xα = 1) > 0. Let W =
∑

α∈I Xα. For each

α ∈ I , suppose we choose Bα ⊂ I with α ∈ Bα. Think of Bα as a “neighborhood

of dependence” for each α, such that Xα is independent or nearly independent of all of

the Xβ for β /∈ Bα. Define p1 =
∑

α∈I
∑

β∈Bα pαpβ , p2 =
∑

αI

∑
α 6=β∈Bα E(XαXβ),

p3 =
∑

α∈I E|E(Xα−pα|σ(Xβ : β ∈ I−Bα))|, where σ(·) represents the σ-field generated

by the corresponding random field. Loosely speaking, p1 measures the neighborhood size,

p2 measures the expected number of neighbors of a given occurrence and p3 measures the

dependence between an event and the number of occurrences outside its neighborhood.

Then, we have the following theorem.

Theorem A.4.1 (Poisson approximation, Theorem 1 in [127]) Let W be the number of

occurrences of dependent events, and let Z be a Poisson random variable with EZ =

EW = λ > 0. Then the total variation distance between the distributions of W and Z is

bounded by

sup
‖h‖=1

|Eh(W )− Eh(Z)| ≤ p1 + p2 + p3.

where h : Z+ → R, ‖h‖ = supk≥0 |h(k)|.

The theorem is a consequence of the powerful Chen-Stein method.
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Invoking the above theorem in our online scan B-statistics setting, we can bound the

total variation distance between the random variable, defined as the number of boundary

cross events for the statistic over disjoint intervals, and a Poisson random variable with the

same rate. In our setting, let I = {1, 2, . . . , x/m} and N (j) = {j − 1, j, j + 1} where

j = 2, . . . (x/m − 1) (with obvious modifications for j = 1 and j = x/m). Then we can

specify:

p1 =
∑
j∈I

∑
i∈N (j)\{j}

P{1j = 1}P{1i = 1} = 2(x/m− 2)P{11 = 1}2 + 2P{11 = 1},

(A.29)

p2 =
∑
j∈I

∑
i∈N (j)\{j}

P{1j = 1, 1i = 1} = 2(x/m− 1)P{11 = 1, 12 = 1}, (A.30)

p3 =
∑
j∈I

E {|E{1j|σ{1i : i 6∈ N (j)}} − E{1j}|} . (A.31)

We will show that p1, p2, and p3 converge to 0 as b → ∞. For p1, the last summand

in (A.29) is associated with the two edge elements. It follows that p1 is asymptotically to

(2C + 2)P{11 = 1}, which will converge to zero as b → ∞ since P{11 = 1} converges

to zero when m is sub-exponential, i.e., log b � m � b−1e
1
2
b2 . Next, let us examine p2 in

(A.30). Redefine parameter sub-region

S1 = [0,m−B0/2], S2 = [m−B0/2,m+B0/2], S3 = [m+B0/2, 2m],

and denote Yi, i = 1, 2, 3 as {Yi = 1} = {maxt∈Si Z
′
B0,t

> b}, which are the indicator func-

tions of crossings of the threshold in the approximate sub-regions. Notice that the indicator

functions Y1 and Y3 are independent of each other and they share the same distribution. We

use the fact that unless the crossing occurs in a shared sub-region, it must simultaneously

occur in two disjoint sub-regions in order to have double crossing. As a consequence, we
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obtain the upper bound 11 · 12 ≤ Y2 + Y1 · Y3, and

P{11 = 1, 12 = 1} ≤ P{Y2 = 1}+ P{Y1 = 1}2 ≤ P{Y2 = 1}+ P{11 = 1}2.

The probability P{Y2 = 1} is proportional to B0 · be−
1
2
b2 . Consequently, p2 is asymptoti-

cally bounded by 2C(B0/m + P{11 = 1}). Hence, p2 converges to zero if log b � m �

b−1e
1
2
b2 whenever b →∞. For p3 in (A.31), 1j and 1i are computed over non-overlapping

observations and are therefore independent. Thus, the term p3 vanishes.

Next prove that the collection of stopping times {Tb} indexed by b is uniformly inte-

grable. Again consider the sequence of indicators {1j}, j = 2k and k = 1, 2, . . . . Define

the random variable τ that identifies the index of the first indicator in the sequence that

obtains the value one: τ = inf{k : 12k = 1}. Note that τ has a geometric distribution.

Moreover, since Tb ≤ 2mτ we obtain that

P{Tb > x} ≤ P{τ > x/(2m)} = (1− P(12 = 1))bx/(2m)c.

The conclusion then follows from that 1/m · P(12 = 1) converges to 0.

A.5 Skewness correction

In the following, Lemma A.5.1, Lemma A.5.2, and Lemma A.5.3 are used to derive the

final expression for the skewness of the scan B-statistic:

Lemma A.5.1 Under null hypothesis,

E
[(

MMD2(Xi, Y )
)3
]

=
8(B − 2)

B2(B − 1)2
E [h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′, x, y′′, y)] +

4

B2(B − 1)2
E
[
h(x, x′, y, y′)3

]
.
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Proof Note that

E
[(

MMD2(Xi, Y )
)3
]

=

(
B

2

)−3

E

(∑
a<b

h(Xi,a, Xi,b, Ya, Yb)

)3


=

(
B

2

)−3∑
k

CkE [habhcdhef ] ,

where for simplicity we write hab = h(Xi,a, Xi,b, Ya, Yb) and define Ck the correspond-

ing number of combination under specific structure. Most of the terms in E [habhcdhef ]

vanish under the null. By enumerating all the combinations, only two terms are nonzero:

E [habhbchca] and E [habhabhab]. Then,

E
[(

MMD2(Xi, Y )
)3
]

=

(
B

2

)−3(
B

2

)
2(B − 2)E [habhbchca] +

(
B

2

)−3(
B

2

)
E [habhabhab]

=
8(B − 2)

B2(B − 1)2
E [h(Xi,a, Xi,b, Ya, Yb)h(Xi,b, Xi,c, Yb, Yc)h(Xi,c, Xi,a, Yc, Ya)]

+
4

B2(B − 1)2
E
[
h(Xi,a, Xi,b, Ya, Yb)

3
]

=
8(B − 2)

B2(B − 1)2
E [h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′, x, y′′, y)] +

4

B2(B − 1)2
E
[
h(x, x′, y, y′)3

]
.

Lemma A.5.2 Under null hypothesis,

E
[(

MMD2(Xi, Y )
)2 MMD2(Xj, Y )

]
i 6=j

=
8(B − 2)

B2(B − 1)2
E [h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′′, x′′′′, y′′, y)]

+
4

B2(B − 1)2
E
[
h(x, x′, y, y′)2h(x′′, x′′′, y, y′)

]
.
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Proof Note that

E
[(

MMD2(Xi, Y )
)2 MMD2(Xj, Y )

]
i 6=j

=

(
B

2

)−3

E

(∑
a<b

h(Xi,a, Xi,b, Ya, Yb)

)2(∑
a<b

h(Xj,a, Xj,b, Ya, Yb)

)
=

(
B

2

)−3∑
k

CkE [hi,abhi,cdhj,ef ] ,

where for simplicity we write hi,ab = h(Xi,a, Xi,b, Ya, Yb) and define Ck the corresponding

number of combination under specific structure. Similarly, most of the terms in E [hi,abhi,cdhj,ef ]

vanish under the null. By enumerating all the combinations, only two terms are nonzero:

E [hi,abhi,bchj,ca] and E [hi,abhi,abhj,ab]. Then,

E
[(

MMD2(Xi, Y )
)2 MMD2(Xj, Y )

]
i 6=j

=

(
B

2

)−3(
B

2

)
2(B − 2)E [hi,abhi,bchj,ca] +

(
B

2

)−3(
B

2

)
E [hi,abhi,abhj,ab]

=
8(B − 2)

B2(B − 1)2
E [h(Xi,a, Xi,b, Ya, Yb)h(Xi,b, Xi,c, Yb, Yc)h(Xj,c, Xj,a, Yc, Ya)]

+
4

B2(B − 1)2
E
[
h(Xi,a, Xi,b, Ya, Yb)

2h(Xj,a, Xj,b, Ya, Yb)
]

=
8(B − 2)

B2(B − 1)2
E [h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′′, x′′′′, y′′, y)]

+
4

B2(B − 1)2
E
[
h(x, x′, y, y′)2h(x′′, x′′′, y, y′)

]
.
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Lemma A.5.3 Under null hypothesis,

E
[
MMD2(Xi, Y )MMD2(Xj, Y )MMD2(Xr, Y )

]
i 6=j 6=r

=
8(B − 2)

B2(B − 1)2
E [h(x, x′, y, y′)h(x′′, x′′′, y′, y′′)h(x′′′′, x′′′′′, y′′, y)]

+
4

B2(B − 1)2
E [h(x, x′, y, y′)h(x′′, x′′′, y, y′)h(x′′′′, x′′′′′, y, y′)] .

Proof Note that

E
[
MMD2(Xi, Y )MMD2(Xj, Y )MMD2(Xr, Y )

]
i 6=j 6=r

=

(
B

2

)−3

E

[(∑
a<b

h(Xi,a, Xi,b, Ya, Yb)

)(∑
c<d

h(Xj,c, Xj,d, Yc, Yd)

)(∑
e<f

h(Xr,e, Xr,f , Ye, Yf )

)]

=

(
B

2

)−3∑
k

CkE [hi,abhj,cdhr,ef ] .

Similarly, most of the terms in E [hi,abhj,cdhr,ef ] vanish under the null. By enumerating

all the combinations, only two terms are nonzero: E [hi,abhj,bchr,ca] and E [hi,abhj,abhr,ab].

Then,

E
[
MMD2(Xi, Y )MMD2(Xj, Y )MMD2(Xr, Y )

]
i 6=j 6=r

=

(
B

2

)−3(
B

2

)
2(B − 2)E [hi,abhj,bchr,ca] +

(
B

2

)−3(
B

2

)
E [hi,abhj,abhr,ab]

=
8(B − 2)

B2(B − 1)2
E [h(Xi,a, Xi,b, Ya, Yb)h(Xj,b, Xj,c, Yb, Yc)h(Xr,c, Xr,a, Yc, Ya)]

+
4

B2(B − 1)2
E [h(Xi,a, Xi,b, Ya, Yb)h(Xj,a, Xj,b, Ya, Yb)h(Xr,a, Xr,b, Ya, Yb)]

=
8(B − 2)

B2(B − 1)2
E [h(x, x′, y, y′)h(x′′, x′′′, y′, y′′)h(x′′′′, x′′′′′, y′′, y)]

+
4

B2(B − 1)2
E [h(x, x′, y, y′)h(x′′, x′′′, y, y′)h(x′′′′, x′′′′′, y, y′)] .

Using results from Lemma A.5.1, Lemma A.5.2, and Lemma A.5.3, and we can derive the
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final expression for the skewness of the scan B-statistic, as summarized in Lemma 5.

Proof We can write the raw third-order moment as

E[Z3
B]

=E

( 1

N

N∑
i=1

MMD2(Xi, Y )

)3


=
1

N3
E

( N∑
i=1

MMD2(Xi, Y )

) N∑
j=1

MMD2(Xj , Y )

( N∑
r=1

MMD2(Xr, Y )

)
=

1

N3
NE

[(
MMD2(Xi, Y )

)3]
+

1

N3

(
3

2

)(
N

1

)(
N − 1

1

)
E
[(

MMD2(Xi, Y )
)2 MMD2(Xj , Y )

]
i 6=j

+
1

N3

(
N

1

)(
N − 1

1

)(
N − 2

1

)
E
[
MMD2(Xi, Y )MMD2(Xj , Y )MMD2(Xr, Y )

]
i 6=j 6=r

=
1

N2

{
8(B − 2)

B2(B − 1)2
E
[
h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′, x, y′′, y)

]
+

4

B2(B − 1)2
E
[
h(x, x′, y, y′)3

]}
+

3(N − 1)

N2

{
8(B − 2)

B2(B − 1)2
E
[
h(x, x′, y, y′)h(x′, x′′, y′, y′′)h(x′′′, x′′′′, y′′, y)

]
+

4

B2(B − 1)2
E
[
h(x, x′, y, y′)2h(x′′, x′′′, y, y′)

]}
+

(N − 1)(N − 2)

N2

{
8(B − 2)

B2(B − 1)2
E
[
h(x, x′, y, y′)h(x′′, x′′′, y′, y′′)h(x′′′′, x′′′′′, y′′, y)

]
+

4

B2(B − 1)2
E
[
h(x, x′, y, y′)h(x′′, x′′′, y, y′)h(x′′′′, x′′′′′, y, y′)

]}

A.6 ZB does not converge to Gaussian

Note that the third-order moment ofZB scales asO(B−3) (due to (2.12)), but when dividing

by its variance which scales as O(B−2), the skewness becomes a constant with respect to

B. Furthermore, examining the Taylor expansion of moment generating function at θ = 0,

we have

E[eθZ
′
B ] = 1 + E[Z ′B]︸ ︷︷ ︸

0

θ +
θ2

2
E[(Z ′B)2]︸ ︷︷ ︸

1

+
θ3

6
E[(Z ′B)3eθZ

′
B ] + o(θ3).
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Recall that the moment generating function of a standard normal Z is given by E[eθZ ] =

1 + θ2/2 + o(θ3). The difference between the two moment generating functions is given by

∣∣∣E[eθZ
′
B ]− E[eθZ ]

∣∣∣ =
|θ|3

6
|E[(Z ′B)3eθ

′Z′B ]|+ o(θ3) >
|θ|3

6
c|E[(Z ′B)3]|+ o(θ3), (A.32)

where the inequality is due to the fact that eθ′Z′B > 0 and we may assume it is larger than

an absolute constant c. Note that the first term on the right hand side of (A.32) is given by

(cθ3/6)Var[ZB]−3/2|E[ZB
3]|, which is clearly bounded away from zero. Hence,

∣∣∣∣E[eθZ
′
B ]− (1 +

θ2

2
)

∣∣∣∣ > |θ|36
γ + o(θ3)

for some constant γ > 0. This shows that the difference between the moment generating

functions ofZ ′B and a standard normal is always non-zero and, hence, Z ′B does not converge

to a standard normal in any sense. This explains why incorporating the skewness of ZB can

improve the accuracy of the approximations for SL in Theorem 2 and for ARL in Theorem

11.

A.7 More details for real data experiments

A.7.1 CENSREC-1-C speech dataset

CENSREC-1-C is a real-world speech dataset in the Speech Resource Consortium (SRC)

corpora provided by National Institute of Informatics (NII)1. This dataset contains two

categories of data: (1) Simulated data. The simulated speech data are constructed by con-

catenating several utterances spoken by one speaker. Each concatenated sequence is then

added with 7 different levels of noise from 8 different environments. So there are totally 56

different types of noise. Each noise setting contains 104 sequences from 52 males and 52

1Available from http://research.nii.ac.jp/src/en/CENSREC-1-C.html
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females speakers. (2) Recording data. The recording data is from two real-noisy environ-

ments (in university restaurant and in the vicinity of highway), and with two Signal Noise

Ratio (SNR) settings (lower and higher). Ten subjects were employed for recording, and

each one has four speech sequence data.

Experiment Settings. We will compare our algorithm with the baseline algorithm from

[6]. [6] only utilized 10 sequences from “STREET SNR HIGH” setting in recording data.

Here we will use all the settings in recording data, the SNR level 20 dB and clean signals

from simulated data. See Figure A.3 for some examples of the testing data, as well as

the statistics computed by our algorithm. The red vertical bar shown in the upper part of

each figure is the ground truth of change-point; The green vertical bar shown in the lower

part is the change-point detected by our algorithm (the point where the statistic exceeds

the threshold). We also plot the threshold as a red dashed horizontal line in each figure.

Once the statistics touch the threshold, we will stop the detection. For each sequence, we

decompose it into several segments. Each segment consists of two types of signals (noise

vs speech). Given the reference data from noise, we want to detect the point where the

signal changes from noise to speech.

Evaluation Metrics. We use Area Under Curve (AUC) to evaluate the computed statis-

tics, like in [6]. Specifically, for each test sequence that consists of two signal distributions,

we will mark the points as change-points whose statistics exceed the given threshold. If the

distance between the detected point and true change-point is within the size of detection

window, then we consider it as True Alarm (True Positive). Otherwise it is a False Alarm

(False Positive).

We use 10% of the sequences to tune the parameters of both algorithms, and use the

rest 90% for reporting AUC. The kernel bandwidth is tuned in

{0.1dmed, 0.5dmed, dmed, 2dmed, 5dmed},
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where dmed is the median of pairwise distances of reference data. Block size is fixed to be

50, and the number of blocks is simply tuned in {10, 20, 30}.

Results. Table A.7.1 shows the AUC of two algorithms on different background set-

tings. Our algorithm outperforms the baseline on most cases. Both algorithms are perform-

ing quite well on the simulated clean data, since the difference between speech signals and

background is more significant than the noisy ones. The averaged AUC of our algorithm

on all these settings is .8014, compared to .7578 achieved by the baseline algorithm. See

the ROC curves in Figure A.4 for a complete comparison.
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Figure A.3: Examples of speech dataset.

Table A.1: AUC results in CENSREC-1-C speech dataset.
RH RL SH SL

Ours 0.7800 0.7282 0.6507 0.6865
Baseline 0.7503 0.6835 0.4329 0.6432
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Figure A.4: ROC curves comparison for speech dataset.
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Table A.2: Simulate data with low SNR, with noise from different environment.

C1 C2 C3 C4 C5 C6 C7 C8
Ours 0.9413 0.9446 0.9236 0.9251 0.9413 0.9446 0.9236 0.9251

Baseline 0.9138 0.9262 0.8691 0.9128 0.9138 0.9216 0.8691 0.9128

Table A.3: Simulated data with SNR = 20 dB, with noise from different environment.

S1 S2 S3 S4 S5 S6 S7 S8
Ours 0.7048 0.7160 0.7126 0.7129 0.7094 0.7633 0.6796 0.7145

Baseline 0.7083 0.6681 0.6490 0.7119 0.6994 0.6815 0.6487 0.6541

A.7.2 HASC human activity dataset

This data set is from Human Activity Sensing Consortium (HASC) challenge 20112. Each

data consists of human activity information collected by portable three-axis accelerometers.

Following the setting in [6], we use the `2-norm of 3-dimensional data (i.e., the magnitude

of acceleration) as the signals.

We use the ‘RealWorldData’ from HASC Challenge 2011, which consists of 6 kinds of

human activities:

walk/jog, stairUp/stairDown, elevatorUp/elevatorDown,

escalatorUp/escalatorDown, movingWalkway, stay.

We make pairs of signal sequences from different activity categories, and remove the se-

quences which are too short. We finally get 381 sequences. We tune the parameters using

the same way as in CENSREC-1-C experiment. The AUC of our algorithm is .8871, com-

pared to .7161 achieved by baseline algorithm, which greatly improved the performance.

Examples of the signals are shown in Figure A.5. Some sequences are easy to find

the change-point, like Figure A.5(a), and A.5(d). Some pairs of the signals are hard to

distinguish visually, like Figure A.5(b) and A.5(c). The examples show that our algorithm

2http://hasc.jp/hc2011
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can tell the change-point from walk to stairUp/stairDown, or from stairUp/stairDown to

escalatorUp/escalatorDown. There are some cases when our algorithm raises false alarm.

See Figure A.5(h). It finds a change-point during the activity ‘elevatorUp/elevatorDown’.

It is reasonable, since this type of action contains the phase from acceleration to uniform

motion, and the phase from uniform motion to acceleration.
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Figure A.5: Examples of HASC dataset.
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APPENDIX B

DETECTING CHANGES IN DYNAMIC EVENTS OVER NETWORKS.

B.1 Proofs of Theorem 1

We show the one dimensional case as an example. The following informal derivation jus-

tifies the theorem. Let t be the current time, and let the window-length be L. Recall our

notations: P and E denote the probability measure and the expectation under the null hy-

pothesis; Pt,τ,α and Et,τ,α denote the probability measure and the expectation under the

alternative hypothesis. We also use the notation use E[U ;A] = E[UI{A}] to denote condi-

tional expectation.

First, to evaluate ARL, we study the probability that the detection statistic exceeds the

threshold before a given time m. We will use the change-of-measure technique [128].

Under the null hypothesis, the boundary crossing probability can be written as

P
[

sup
t<m,α∈Θ

`t,τ,α > x

]
= E

[
1; sup

t<m,α∈Θ
`t,τ,α > x

]

= E


∫
t

∫
α∈Θ

e`t,τ,αdtdα∫
t′

∫
α′∈Θ

e`t′,τ ′,α′dt′dα′︸ ︷︷ ︸
=1

; sup
t<m,α∈Θ

`t,τ,α > x


=

∫
t

∫
α∈Θ

E

[
e`t,τ,α∫

t′

∫
α′∈Θ

e`t′,τ ′,α′dt′dα′
;

sup
t<m,α∈Θ

`t,τ,α > x

]
dtdα (B.1)

where the last equality follows from changing the order of summation and the expectation.
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Using change-of-measure dP = e−`t,τ,αdPt,τ,α,, the last equation (B.1) can be written as

∫
t

∫
α∈Θ

Et,τ,α

[
1∫

t′

∫
α′∈Θ

e`t′,τ ′,α′dt′dα′
;

sup
t<m,α

`t<m,τ,α > x

]
dtdα

After rearranging each term and introducing additional notations, the last equation above

(B.2) can be written as

e−x
∫
t

∫
α∈Θ

Et,τ,α
[
Mt,τ,α

St,τ,α
e−[l̃t,τ,α+mt,τ,α];

l̃t,τ,α +Mt,τ,α > 0
]
dtdα

(B.2)

where

Mt,τ,α = sup
t′
e`t′,τ ′,α−`t,τ,α ,

St,τ,α =

∫
t′
e`t′,τ ′,α−`t,τ,αdt′,

l̃t,τ,α = `t,τ,α − x, Mt,τ,α = logMt,τ,α.

The final expression is also based on the following approximation. When the interval

slightly changes from (τ ′, t′) to (τ, t), α′ changes little under the null hypothesis since

α′ is estimated from data stored in (τ ′, t′). Therefore, in the small neighborhood of (τ ′, t′),

we may regard α as a constant. This leads to an approximation:

supt′,α′ e
`t′,τ ′,α′−`t,τ,α∫

t′

∫
α′
e`t′,τ ′,α′−`t,τ,αdt′dα′

≈ supt′ e
`t′,τ ′,α−`t,τ,α∫

t′
e`t′,τ ′,α−`t,τ,αdt′

. (B.3)

The representation (B.2) consists of a large deviation exponential decay, given by e−x,

and lower order contribution that reside in the expectation. The random variables in ex-

pectation are further dissected into random variables that are influenced mainly by local
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perturbations and the random variable that captures the main part of the variability. We

can show that the random variable l̃t,τ,α, which is referred to as the “global term”, has an

expectation (t− τ)I − x under the alternative, and a variance (t− τ)σ2. The other random

variables are Mt,τ,α and St,τ,α and its log mt,τ,α, which are determined by the so-called

“local field” {`t′,τ ′,α − `t,τ,α} are parameterized by t′ when we fix t− τ .

Define M̂t,τ,α and Ŝt,τ,α by restricting the integral and maximization only to the range

of parameter values that are at most ε away from either τ or t. By localization theorem

(Theorem 5.2 in [128]), under certain conditions, the local and global components are

asymptotically independent, which informs:

Et,τ,α
[
Mt,τ,α

St,τ,α
e−[l̃t,τ,α+mt,τ,α]; l̃t,τ,α +Mt,τ,α > 0

]
≈ Et,τ,α

[
M̂t,τ,α

Ŝt,τ,α

]
1√

(t− τ)σ2
φ

(
(t− τ)I − x√

(t− τ)σ2

)
.

(B.4)

We can further prove (see Appendix B.3) that the expected local rate Et,τ,α [Mt,τ,α/St,τ,α]

only depends on α and is independent of t:

Et,τ,α

[
M̂t,τ,α

Ŝt,τ,α

]
≈ ν

(
2ξ

η2

)
, (B.5)

for ξ and η2 defined in (3.25). The conditions for which these approximations hold are

given on Page 56 of [128], and in particular, we need to compute the local rate, which is

done in Appendix B.3.

Hence, the probability in (B.2) should be

e−x
∫
t

∫
α∈(0,1)

ν

(
2ξ

η2

)
1√

(t− τ)σ2
φ

(
(t− τ)I − x√

(t− τ)σ2

)
dαdt

≈ me−x
∫
α∈(0,1)

ν

(
2ξ

η2

)
1√

(t− τ)σ2
φ

(
(t− τ)I − x√

(t− τ)σ2

)
dα.

(B.6)

Define C to be the factor that multiplies m in the equation above.
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Next, since

P

[
sup

t<m,α∈(0,1)

`t,τ,α > x

]
= P [T < m] ,

we can relate (B.6) to the ARL E[T ]. Note that we can write the tail probability (B.6) in a

form P [T < m] = mC[1 + o(1)]. When x → ∞, from the arguments in [129, 130], we

see that the stopping time T is asymptotically exponentially distributed and P[T < m] →

1− exp(−Cm). As a result, E[T ] ∼ C−1, which is equivalent to (3.24). Derivations for I ,

σ2, ξ and η2 will be talked about in Appendix B.4.

B.2 First- and second-order statistics of Hawkes processes

We first to characterize the first- and second-order statistics for Hawkes processes, which

are useful for evaluating I , σ2, ξ and η2. For the defined one-dimensional Hawkes pro-

cesses and multi-dimensional Hawkes processes, if we choose kernel function ϕ(t) with∫
ϕ(t)dt = 1, we will have the following two lemmas that are derived from the results in

[131]. [132]:

Lemma 15 (First-order statistics for Hawkes processes) If the influence parameters sat-

isfy α ∈ (0, 1) (one-dimension) or the spectral norm ρ(A) < 1 (high-dimension), then

the Hawkes processes are asymptotically stationary and with stationary intensity mt =

EHt [λt]. We further have that for the one-dimensional case

λ̄ := lim
t→∞

mt =
µ

1− α

and for the multi-dimensional case

λ̄ := lim
t→∞

mt = (I −A)−1µ.

Lemma 16 (Second-order statistics for Hawkes processes) For stationary Hawkes pro-
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cesses, the covariance intensity, which is defined as:

c(t′ − t) = Cov [λt,λt′ ] =
Cov [dNt, dNt′ ]

dtdt′
(B.7)

will only depend on t′ − t. Then for one-dimensional Hawkes processes, we have:

c(τ) =



αβ(2−α)µ
2(1−α)2

e−β(1−α)τ , τ > 0;

µ
1−αδ(τ), τ = 0;

c(−τ), τ < 0.

(B.8)

for the multi-dimensional Hawkes processes

c(τ ) =



βe−β(I−A)τA
(
I + 1

2
(I −A)−1A

)
·diag ((I −A)−1µ) , τ > 0;

diag ((I −A)−1µ) δ(τ ), τ = 0;

c(−τ )ᵀ, τ < 0.

Proof [Proof of Lemma 15] For multi-dimensional Hawkes processes, by mean field ap-

proximation and definemt = EHt [λt], we have:

mt = µ+A

∫ t

−∞
ϕ(t− s)msds (B.9)

which can be written as

mt =

(
I +

∞∑
n=1

An

∫ t

−∞
ϕ(?n)(s)ds

)
µ. (B.10)

where ? denotes the convolution operation, and ϕ(?n) denote the n-fold convolution. Let

Ψ(t) = Aϕ(t) +A2ϕ(t) ? ϕ(t) +A3ϕ(t) ? ϕ(t) ? ϕ(t) + · · · =
∑∞

n=1A
nϕ(?n)(t). And we
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can write (B.10) as:

mt =

(
I +

∫ t

−∞
Ψ(s)ds

)
µ.

Given a function f(t), we denote its Laplace transform L(·) as:

f̂(z) = L(f(t)) =

∫ ∞
−∞

f(t)e−ztdt.

Next, apply Laplace transform to both sides of equation (B.10). Clearly

m̂(z) =
1

z
(I − β

z + β
A)−1λ0,

where

Ψ̂(z) =
∞∑
n=1

(
β

z + β

)n
·An = (I − β

z + β
A)−1 − I.

By the property of Laplace transformation,

λ̄ := lim
t→∞

mt = lim
z→0

zm̂(z) = (I −A)−1µ. (B.11)

For a special case where d = 1, we have λ̄ = µ/(1− α).
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Proof [Proof for Lemma 16] For τ > 0, we have:

c(τ ) =
E [dNt+τdN

ᵀ
t ]

(dt)2
− λ̄λ̄ᵀ = E

[
λt+τ

dN ᵀ
t

dt

]
− λ̄λ̄ᵀ

= E
[(
µ+A

∫ t+τ

−∞
ϕ(t+ τ − s)dNs

)
dN ᵀ

t

dt

]
− λ̄λ̄ᵀ

= A

∫ τ

−∞
ϕ(τ − s)c(s)ds

= Aϕ(τ)diag(λ̄) +A

∫ τ

−∞
ϕ(τ − s)c(s)ds

= Aϕ(τ)diag(λ̄) +A

∫ ∞
0

ϕ(τ + s)c(s)ds

+A

∫ τ

0

ϕ(τ − s)c(s)ds.

For the last two equalities, we are using the relation, c(−τ) = c(τ)ᵀ and the fact that when

τ = 0 c(τ) = diag(λ̄)δ(τ). Note that for Poisson processes, we have c(τ) = diag(λ)δ(τ).

Now substituting ϕ(τ) = βe−βτ into the above, we have:

c(τ) = Aβe−βτdiag(λ̄) +A

∫ ∞
0

βe−β(τ+s)c(s)ds

+A

∫ τ

0

βe−β(τ−s)c(s)ds.

(B.12)

Applying Laplace transform to both sides of (B.12), we obtain

ĉ(z) =
β

z + β
Adiag(λ̄) +

β

z + β
Aĉ(β) +

β

z + β
Aĉ(z),

where

L
(∫ ∞

0

βe−β(τ+s)c(s)ds

)
= L

(
βe−βτ

∫ ∞
0

e−βsc(s)ds

)
= L

(
βe−βτ ĉ(β)

)
=

β

z + β
ĉ(β).

(B.13)
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Replacing z with β, we obtain

ĉ(β) =
1

2
(I −A)−1Adiag(λ̄).

Therefore,

ĉ(z) = ((z + β)I − βA)−1 βA

(
I +

1

2
(I −A)−1A

)
· diag

(
(I −A)−1µ

)
Using inverse Laplace transform for ĉ(z), we obtain

c(τ) = L−1 (ĉ(z)) = βe−β(I−A)τA

(
I +

1

2
(I −A)−1A

)
· diag

(
(I −A)−1µ

)
, τ > 0.

For a special case d = 1, we obtain:

c(τ) =
αβ(2− α)µ

2(1− α)2
e−β(1−α)τ , τ > 0.

B.3 Approximate local rate

To show (B.5), we need to evaluate the mean and variance of the local field {`t+ε,τ+ε,α −

`t,τ,α} after change-of-measures. From (3.15) we see the the log-likelihood ratio `t,τ,α is an

integration from time τ to t. Thus, we can rewrite `t+ε,τ+ε,α into several parts by dissecting

the integration region:

∫ t+ε

τ+ε

=

∫ τ+ε+

τ+ε

+

∫ t+ε−

τ+ε+
+

∫ t+ε

t+ε−
. (B.14)
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From this we the only overlap of data between `t+ε,τ+ε,α and `t,τ,α is the integration over

the interval (τ + ε+, t+ ε−). Therefore, we have

Et,τ,α[`t+ε,τ+ε,α] = E
[
`t+ε,τ+ε,αe

`t,τ,α
]

= E
[
`τ+ε+,τ+ε,αe

`t,τ,α
]

+ E
[
`t+ε−,τ+ε+,αe

`t,τ,α
]

+ E
[
`t+ε,t+ε−,αe

`t,τ,α
]

= E [`τ+ε+,τ+ε,α]E
[
e`t,τ,α

]
+ Et,τ,α [`t+ε−,τ+ε+ ]

+ E [`t+ε,t+ε−,α]E
[
e`t,τ,α

]
.

Due to the property of the likelihood ratio, E
[
e`t,τ,α

]
= 1. Thus, we have:

Et,τ,α[`t+ε,τ+ε,α]

= E [`τ+ε+,τ+ε,α] + Et,τ,α [`t+ε−,τ+ε+ ] + E [`t+ε,t+ε−,α]

= −ε−E[`t,τ,α]

t− τ
+ (t+ ε− − τ − ε+)

Et,τ,α[`t,τ,α]

t− τ

+ ε+
E[`t,τ,α]

t− τ
.

For the last equality, we use the fact the both E[`t,τ,α] and Et,τ,α[`t,τ,α] are linear with time

interval (t− τ), which will be proven in Appendix B.4. Finally we have:

Et,τ,α[`t+ε,τ+ε,α − `t,τ,α]

= (−ε− + ε+)
E[`t,τ,α]

t− τ
− (ε+ − ε−)

Et,τ,α[`t,τ,α]

t− τ

=
E[`t,τ,α]− Et,τ,α[`t,τ,α]

t− τ︸ ︷︷ ︸
−ξ<0

|ε|.

By Jensen’s inequality, we can prove that E[`t,τ,α] < 0 and Et,τ,α[`t,τ,α] > 0.
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Similarly, we derive the variance of the local field:

Vart,τ,α[`t+ε,τ+ε,α − `t,τ,α]

= Vart,τ,α [(`τ+ε+,τ+ε,α + `t+ε−,τ+ε+,α + `t+ε,t+ε−,α)− `t,τ,α]

= Vart,τ,α [`τ+ε+,τ+ε,α − (`τ,τ+ε+,α + `t+ε−,t,α) + `t+ε,t+ε−,α]

= Vart,τ,α [`τ+ε+,τ+ε,α]

+ Vart,τ,α [`τ,τ+ε+,α + `t+ε−,t,α] + Vart,τ,α [`t+ε,t+ε−,α]

= Var [`τ+ε+,τ+ε,α] + Vart,τ,α [`τ,τ+ε+,α

+`t+ε−,t,α] + Var [`t+ε,t+ε−,α]

= (ε+ − ε−)
Var[`t,τ,α]

t− τ
+ (ε+ − ε−)

Vart,τ,α[`t,τ,α]

t− τ

=
Var[`t,τ,α] + Vart,τ,α[`t,τ,α]

t− τ︸ ︷︷ ︸
η2

|ε|.

Above, we use the fact that both Var[`t,τ,α] and Vart,τ,α[`t,τ,α] are approximately linear with

time interval (t− τ), which will be proven in Appendix B.4.

The above derivations show that the asymptotic distribution of {`t+ε,τ+ε,α − `t,τ,α}, for

small |ε| is a two-sided Brownian motion with a negative drift −ξ. The variance of an

increment of this Brownian motion is η2. That is, the re-centered process:

`t+ε,τ+ε,α − `t,τ,α = B(η2|ε|)− ξ|ε| (B.15)

with the equality meaning equality in distribution, where B is a two-sided random walk

with negative drift. According to Chapter 3 in [128], we obtain (B.5).
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B.4 Expectation and variance of log-likelihood ratio under null and alternative dis-

tributions

The calculations I , σ2, ξ and η2 boil down to evaluating Et,τ,α[`t,τ,α], Vart,τ,α[`t,τ,α], E[`t,τ,α]

and Var[`t,τ,α], i.e., the expectation and variance of log-likelihood ratio under null and alter-

native distributions. Below, we will perform the calculation for all likelihoods considered

in our paper. The main techniques used are mean-field approximation, Delta method, and

Lemma 15 and 16. Below, let EHt− [·] denote the conditional expectation for the Hawkes

process given the past history.

One-dimension: Poisson to Hawkes.

Assuming stationary and (t − τ) is large, we can approximate the stationary intensity for

the Hawkes process to be λ̄∗, which is defined as

λ̄∗ = lim
t→∞

m∗t = lim
t→∞

EHt− [λ∗t ].

We use mean field approximation, which assumes each stochastic process λ∗t has small

fluctuations around its mean λ̄∗: |λ∗t − λ̄∗|/λ̄∗ � 1. Then we compute the expectation of

log-likelihood ratio under alternative hypothesis

Et,τ,α[`t,τ,α]

= Et,τ,α
[∫ t

τ

log (λ∗s) dNs −
∫ t

τ

log (λs) dNs

−
∫ t

τ

(λ∗s − λs) ds
]

(B.16)

≈ EHt−
[∫ t

τ

λ∗slog (λ∗s) ds

−
∫ t

τ

λ∗slog (λs) ds

]
−
∫ t

τ

(m∗s − λs) ds. (B.17)
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From (B.16) to (B.17), we use the fact that under Pt,τ,α, Ns is a Hawkes random field with

conditional intensity λ∗s. From (B.16) to (B.17), more justifications can be found in [133,

134, 72].

Next, when (t − τ) is large, we can approximate the stationary intensity for Hawkes

process to be λ̄∗. To approximate EHt−
[∫ t

τ
λ∗slog (λ∗s) ds

]
, we perform the first order taylor

expansion for a new defined function f(λ∗s) = λ∗slog (λ∗s) around EHt− [λ∗s] = λ̄∗ (this is

based on the Delta method):

λ∗slog (λ∗s) ≈ λ̄∗log
(
λ̄∗
)

+
[
log(λ̄∗) + 1

]
(λ∗s − λ̄∗). (B.18)

Taking expectation on both sides of the equation and using EHt− [λ∗s] = λ̄∗, we have

EHt−
[∫ t

τ

λ∗(s)log (λ∗(s)) ds

]
≈
∫ t

τ

λ̄∗log(λ̄∗)ds.

Finally, we have:

Et,τ,α[`t,τ,α] ≈ (t− τ)

[
λ̄∗log

(
λ̄∗

µ

)
− (λ̄∗ − µ)

]
= (t− τ)

[
µ

1− α
log
(

1

1− α

)
− α

1− α
µ

]
︸ ︷︷ ︸

I

.

On the other hand, under the null distribution and given stationary assumption, we have:

E[`t,τ,α]

= E
[∫ t

τ

log
(
λ∗s
λs

)
dNs −

∫ t

τ

(λ∗s − λs) ds
]

≈ EHt−
[∫ t

τ

λslog
(
λ∗s
λs

)
ds−

∫ t

τ

(λ∗s − λs) ds
]

≈ (t− τ)

[
µlog

(
1

1− α

)
− α

1− α
µ

]
︸ ︷︷ ︸

I0

.
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For the second equality we use the fact that under P, Ns is a Poisson random field with

intensity λs. For the last equality, we use mean-field approximation.

Next, we compute the variance of log-likelihood ratio under null distribution and alter-

native distribution, respectively. Under the alternative distribution,

∫ t

τ

log
(
λ∗s
λs

)
dNs −

∫ t

τ

(λ∗s − λs) ds

≈
∫ t

τ

[
λ∗slog

(
λ∗s
λs

)
− λ∗s

]
ds+ λs(t− τ).

Then the only random part is
∫ t
τ

[
λ∗slog

(
λ∗s
λs

)
− λ∗s

]
ds. Therefore,

Vart,τ,α[`t,τ,α] ≈ VarHt−

[∫ t

τ

[
λ∗slog

(
λ∗s
λs

)
− λ∗s

]
ds

]
. (B.19)

Again, to use Delta method, we consider a function with respect to λ∗s:

f(λ∗s) = λ∗slog
(
λ∗s
λs

)
− λ∗s,

and apply the first order taylor expansion around EHt− [λ∗s] = λ̄∗:

f(λ∗s) ≈ f(λ̄∗) + log
(
λ̄∗

λs

)(
λ∗s − λ̄∗

)
. (B.20)

From (B.20), we obtain

VarHt− [f(λ∗s)] ≈ EHt−
[
(f(λ∗s)− f(λ∗))2]

≈
[

log
(
λ̄∗

λs

)]2

EHt
[
(λ∗s − λ̄∗)2

]
,

where EHt−
[
(λ∗s − λ̄∗)2

]
= VarHt [λ∗s]. Note that the log-likelihood ratio is an integra-

tion from τ to t. When computing the variance, we need to consider Cov[λ∗s, λ
∗
s+τ ]. Un-

der the stationary assumption, from Lemma 16, we obtain an expression for c(τ) :=
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CovHt− [λ∗s , λ
∗
s+τ ], which only depends on τ . Therefore,

Vart,τ,α[`t,τ,α]

≈
[

log
(
λ̄∗

λs

)]2 ∫ t

τ

∫ t

τ

c(s′ − s)dsds′

=

[
log
(
λ̄∗

λs

)]2 [∫ t−τ

0

λ∗ds+ 2

∫ t−τ

0

∫ s

0

c(v)dvds

]
= (t− τ)

[
log
(

1

1− α

)]2 [
µ

1− α
+
α(2− α)µ

(1− α)3

+
α(2− α)µe−β(1−α)(t−τ)

β(1− α)4(t− τ)
− α(2− α)µ

β(1− α)4(t− τ)

]
.

Moreover, since α is usually a small number, when (t−τ) is a large number, we may ignore

the small terms and further approximate:

Vart,τ,α[`t,τ,α]

≈ (t− τ)

[
log
(

1

1− α

)]2 [
µ

1− α
+
α(2− α)µ

(1− α)3

]
︸ ︷︷ ︸

σ2

.

On the other hand, under the null distribution, we have the variance of the log-likelihood

ratio

Var[`t,τ,α] ≈
[

log
(
λ̄∗

λs

)]2 ∫ t

τ

λsds

= (t− τ)µ

[
log
(

1

1− α

)]2

︸ ︷︷ ︸
σ2
0

.

Multi-dimension: Poisson to Hawkes

The derivations for the multi-dimensional case would follow the same strategy as the one-

dimensional case. So we just put the key results here. For the expectation of the log-
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likelihood ratio under alternative distribution, we have:

Et,τ,A[`t,τ,α]

≈ (t− τ)
[
λ̄∗ᵀ

(
log(λ̄∗)− log(µ)

)
− eᵀ(λ̄∗ − µ)

]
= (t− τ)

[
(I −A)−1µ

(
log((I −A)−1µ)− log(µ)

)
−eᵀ((I −A)−1µ− µ)

]
.

where the quantity inside [·] above corresponds to I in this case. Under null, we have

E[`t,τ,α] ≈ (t− τ) [µᵀ (log(λ∗)− log(µ))− eᵀ(λ∗ − µ)]

= (t− τ)
[
µᵀ
(
log((I −A)−1µ)− log(µ)

)
−eᵀ((I −A)−1 − I)µ

]
,

where the quantity inside [·] above corresponds to I0 in this case. For the variance of the

log-likelihood ratio under alternative, we have

Vart,τ,A[`t,τ,A]

= Vart,τ,A

[
d∑
i=1

∫ t

τ

log
(
λi(s)

µi

)
dN i

s

]

=
d∑
i=1

Vart,τ,A

[∫ t

τ

log
(
λi(s)

µi

)
dN i

s

]
+ 2

∑
i<j

Covt,τ,A

[∫ t

τ

log
(
λi(s)

µi

)
dN i

s,

∫ t

τ

log
(
λj(s)

µj

)
dN j

s

]
. (B.21)

From Lemma 16, for s > 0

c(s) = βe−β(I−A)sA

(
I +

1

2
(I −A)−1A

)
· diag

(
(I −A)−1µ

)
.
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To compute (B.21), we also need

∫ t

τ

∫ t

τ

c(s′ − s)dsds′ = 2

∫ t−τ

0

∫ s

0

c(v)dvds

= 2β

∫ t−τ

0

∫ s

0

e−β(I−A)vdvds

A

(
I +

1

2
(I −A)−1A

)
diag

(
(I −A)−1µ

)
= 2β

∫ t−τ

0

(
− 1

β
(I −A)−1

(
e−β(I−A)s − I

))
ds

A

(
I +

1

2
(I −A)−1A

)
diag

(
(I −A)−1µ

)
= 2(I −A)−1

∫ t−τ

0

(
I − e−β(I−A)s

)
ds

A

(
I +

1

2
(I −A)−1A

)
diag

(
(I −A)−1µ

)
≈ (t− τ)(I −A)−1A

(
2I + (I −A)−1A

)
· diag

(
(I −A)−1µ

)
.

Note that when computing Cov[dN i
s, dN

i
s′ ], we need to consider an extra term:

∫ t

τ

∫ t

τ

λ̄∗δ(s′ − s)dsds′ =
∫ t−τ

0

λ̄∗ds = (t− τ)λ̄∗. (B.22)

After rearranging terms, using the mean-field approximation and Delta method, we obtain

Vart,τ,A[`t,τ,A] ≈ (t− τ) eᵀ (H ◦C) e︸ ︷︷ ︸
σ2

, (B.23)

whereH and C are defined in Table 3.1.

We compute the variance of the log-likelihood under null distribution. Note that when
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the data follow Poisson processes, we have Cov[N i
t , N

j
t′ ]t6=t′ = 0. Therefore,

Var[`t,τ,A] ≈ (t− τ)
[
µᵀ
(
log(λ̄∗)− log(µ)

)(2)
]

(B.24)

≈ (t− τ)
[
µᵀ
(
log((I −A)−1µ)− log(µ)

)(2)
]

︸ ︷︷ ︸
σ2
0

. (B.25)

One-dimension: Hawkes to Hawkes.

Similarly, we compute the expectation of the log-likelihood ratio under alternative distri-

bution

Et,τ,α[`t,τ,α]

= Et,τ,α
[∫ t

τ

log (λ∗s) dNs −
∫ t

τ

log (λs) dNs −
∫ t

τ

(λ∗s − λs) ds
]

≈ EHt−
[∫ t

τ

λ∗slog (λ∗s) ds−
∫ t

τ

λ∗slog (λs) ds−
∫ t

τ

(λ∗s − λs) ds
]

≈ (t− τ)
[
λ̄∗log(λ̄∗)− λ̄∗log(λ̄)− (λ̄∗ − λ̄)

]
≈ (t− τ)

[
µ

1− α∗
log
(

1− α
1− α∗

)
− µ

1− α∗
+

µ

1− α

]
︸ ︷︷ ︸

I

,

where the first approximation is due to that under Pt,τ,α, N(ds) is a Hawkes random field

with intensity λ∗s, and for the latter approximation, we are using mean field approximation

and (multivariate) Delta Method given EHt− [λ∗(s)] = λ̄∗ and EHt− [λs] = λ̄. And for the

stationary intensity, we have λ̄ = µ/(1− α) and λ̄∗ = µ/(1− α∗).
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Next, the expectation of the log-likelihood ratio under null distribution is given by

E[`t,τ,α]

= E
[∫ t

τ

log (λ∗s) dNs −
∫ t

τ

log (λs) dNs

−
∫ t

τ

(λ∗s − λs) ds
]

≈ EHt−
[∫ t

τ

λslog (λ∗s) ds−
∫ t

τ

λslog (λs) ds

−
∫ t

τ

(λ∗s − λs) ds
]

≈ (t− τ)
[
λ̄log(λ̄∗)− λ̄log(λ̄)− (λ̄∗ − λ̄)

]
= (t− τ)

[
µ

1− α
log
(

1− α
1− α∗

)
− µ

1− α∗
+

µ

1− α

]
︸ ︷︷ ︸

I0

,

and the variance of the log-likelihood ratio under alternative distribution is given by

`t,τ,α =

∫ t

τ

log (λ∗s) dNs −
∫ t

τ

log (λs) dNs

−
∫ t

τ

(λ∗s − λs) ds

≈
∫ t

τ

[λ∗slog (λ∗s)− λ∗slog (λs)− λ∗s + λs]︸ ︷︷ ︸
f(λ∗s ,λs)

ds.

Next, we perform the first order taylor expansion to the newly defined multivariate function

with respect to λ∗s and λs:

f(λ∗s, λs)

≈ f(λ̄∗, λ̄) + log
(
λ̄∗

λ̄

)(
λ∗s − λ̄∗

)
+

(
1− λ̄∗

λ̄

)
(λs − λ̄).
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Based on this, we have

Var [f(λ∗s, λs)] = E
[(
f(λ∗s, λs)− f(λ̄∗, λ̄)

)2
]

≈
[

log
(
λ̄∗

λ̄

)]2

Var[λ∗s] +

(
1− λ̄∗

λ̄

)2

Var[λs].

Note that the null intensity λs is independent of the alternative intensity λ∗s. Finally, we

have:

Vart,τ,α[`t,τ,α]

≈ Vart,τ,α

[∫ t

τ

λ∗slog (λ∗s) ds−
∫ t

τ

λ∗slog (λs) ds

−
∫ t

τ

(λ∗s − λs) ds
]

≈
[

log
(
λ̄∗

λ̄

)]2 ∫ t

τ

∫ t

τ

c∗(s′ − s)dsds′

+

(
1− λ̄∗

λ̄

)2 ∫ t

τ

∫ t

τ

c(s′ − s)dsds′

≈ (t− τ)

([
log
(

1− α
1− α∗

)]2 [
µ

1− α∗
+
α∗(2− α∗)µ

(1− α∗)3

]

+

(
1− 1− α

1− α∗

)2 [
µ

1− α
+
α(2− α)µ

(1− α)3

])
.

The factor in the last equation that multiplies (t − τ) corresponds to σ2 in this setting.

Again, we’ve ignored some small terms.

Similarly, we can compute the variance of the log-likelihood ratio under null distribu-

tion. Under null distribution,

`t,τ,α ≈
∫ t

τ

λslog(λ∗s)− λslog(λs)− λ∗s + λs︸ ︷︷ ︸
f(λ∗s ,λs)

ds. (B.26)
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Still perform the first order taylor expansion to the new defined function:

f(λ∗s, λs) ≈ f(λ̄∗, λ̄) +

(
λ̄

λ̄∗
− 1

)
(λ∗s − λ̄∗) + log

(
λ̄∗

λ̄

)
(λs − λ̄).

Therefore, using multivariate Delta method

Var[f(λ∗s, λs)]

= E
[(
f(λ∗s, λs)− f(λ̄∗, λ̄)

)2
]

≈
(
λ̄

λ̄∗
− 1

)2

Var[λ∗s] +

[
log
(
λ̄∗

λ̄

)]2

Var[λs].

Finally we obtain

Var[`t,τ,α] ≈
(
λ̄

λ̄∗
− 1

)2 ∫ t

τ

∫ t

τ

c∗(s′ − s)dsds′

+

[
log
(
λ̄∗

λ̄

)]2 ∫ t

τ

∫ t

τ

c(s′ − s)dsds′

≈(t− τ)

([
1− 1− α∗

1− α

]2 [
µ

1− α∗
+
α∗(2− α∗)µ

(1− α∗)3

]

+

[
log
(

1− α
1− α∗

)]2 [
µ

1− α
+
α(2− α)µ

(1− α)3

])
.

The factor in the last equation that multiplies (t− τ) corresponds to σ2
0 in this setting.

The proof for multi-dimensional case with a transition from the Hawkes process to a

Hawkes process is similar and omitted here.

B.5 More real-data examples

The scenario for Fig. 3.9(d) is also interesting as it reflects the activity on the network

surrounding Mr. Shkreli, the former chief executive of Turing Pharmaceuticals, who is

facing federal securities fraud charges. At Feb. 4th he was invited to congress for a hearing
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to be questioned about drug price hikes1.

The fifth example, Fig. 3.9(e) is about Rihanna who announced the release of her new

album in a tweet on Jan. 25th. That post was retweeted 170K times and received 280K

likes and creates a sudden change in network of her followers.2

The last example, in Fig. 3.9(f), demonstrates an increase in the statistic related to the

network of Daughter around 25th of January who is attributed to releasing his new album

at Jan. 25th.3
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Figure B.1: Exploratory results on Twitter for the detected change points: (a) Court hearing on
Martin Shkreli; (b) Rihanna listens to ANTI; (c) Daughter releases his new album.

1http://www.nytimes.com/2016/02/05/business/drug-prices-valeant-martin-shkreli-
congress.html

2http://jawbreaker.nyc/2016/01/is-rihannas-anti-album-finally-done/
3http://www.nme.com/news/daughter/79540
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