KIMA: Hybrid Checkpointing for Recovery from
a Wide Range of Errors and Detection Latencies

Ioannis Doudalis

Milos Prvulovic

Georgia Institute of Technology
{idoud,milos} @cc.gatech.edu

Abstract

Full system reliability is a problem that spans multiple lev-
els of the software/hardware stack. The normal execution of
a program in a system can be disrupted by multiple factors,
ranging from transient errors in a processor and software bugs,
to permanent hardware failures and human mistakes. A com-
mon method for recovering from such errors is the creation of
checkpoints during the execution of the program, allowing the
system to restore the program to a previous error-free state and
resume execution. Different causes of errors, though, have dif-
ferent occurrence frequencies and detection latencies, requir-
ing the creation of multiple checkpoints at different frequen-
cies in order to maximize the availability of the system.

In this paper we present KIMA, a novel checkpointing cre-
ation and management technique that combines efficiently the
existing undo-log and redo-log checkpointing approaches, re-
ducing the overall bandwidth requirements to both the memory
and the hard disk. KIMA establishes DRAM-based undo-log
checkpoints every 10ms, then leverages the undo-log meta-
data and checkpointed data to establish redo-log checkpoints
every 1 second in non-volatile memory (such as PCM). Our
results show that KIMA incurs average overheads of less than
1% while enabling efficient recovery from both transient and
hard errors that have a variety of detection latencies.

1. Introduction

System reliability is an increasingly challenging problem.
Errors can be caused at any level of the system architec-
ture from the processor to the application, and can propagate
through the hardware/software stack resulting in erroneous
program execution or to an application or system crash. De-
creasing device sizes, render processors increasingly vulnera-
ble [3] to errors and failures, e.g. transient failures from parti-
cle strikes and intermittent or permanent faults due to wear-out
phenomena. The reliability problem is well-known in mas-
sively parallel processing (MPP) systems, where the proba-
bility of hardware errors is high because it increases with the
number of cores of the system. The Mean Time to Failure
(MTTF) in a MPP system can be as low as 6.5 hours [21]], and
future exascale systems are expected to experience an error ev-
ery 3-26 minutes [25]. Processor errors, either transient or per-
manent, still comprise only a part of all possible error types a
system has to recover from; they are reported to be responsible
for only 42% of hardware outages and 24% of total errors [24].
Other common causes of failures are memory errors, followed
by network, software or environment (e.g. power failures), etc.

For the case of DRAM, for example, a recent study [26] based
on field data reports that one third of the machines will suffer a
recoverable error, while 1.3% of them will encounter an uncor-
rectable one; these DRAM error rates are orders of magnitude
higher than previously estimated.

To identify and recover from the multiple types of errors,
systems can use two approaches: forward error recovery (FER)
or backward error recovery (BER). Solutions which rely on
FER use resource redundancy [1l], which replicates structures
of the system (e.g. processor), and execute the same operation
(e.g. program) multiple times, using voting to select the final
result. Such solutions provide systems with the highest degree
of availability, but are very expensive in terms of power, cost
and performance overheads. This cost is especially high when
many system components (DRAM, buses, etc) are replicated.

The lower-cost BER approach relies on checkpoints/logs to
restore execution to a safe point that existed before the occur-
rence of the error, then restart execution from there. The recov-
ery time of BER is a function of the time to restore the state of
the system (processor, memory, etc) and the time necessary to
re-execute the program until the point of the error. This recov-
ery time can be minimized by combining frequent checkpoint-
ing with low-latency error detection. Low-cost hardware and
software techniques [9} 120l 23| |32]] detect processor errors by
their effects on higher levels of the system, and can identify
and recover from an error within several milliseconds of pro-
gram execution. However, there is a small percent, < 2%, of
processor errors 23] which can escape that recoverability win-
dow. These errors, such as memory corruption, partial power
supply failures, etc. can have much longer detection latencies.
Finally, some failures, such as total loss of power, disable the
detection and recovery mechanisms along with the rest of the
system, so recovery from them requires full-state checkpoints
in non-volatile storage. Although long-detection-latency and
catastrophic failures represent a small percentage of errors,
they result in much longer recovery times, so they still have
a major impact on the overall availability and recoverability of
the system.

There are two types of memory checkpoints that BER can
use, undo-log and redo-log checkpoints. Undo-log check-
points [18, 28] save the memory state necessary to restore the
program from the current point in time to the point of time
T in the past. Frequent undo-log checkpoints, combined with
low-latency error detection mechanisms [23]] can provide low
recovery latency. The main disadvantage of undo-log check-
points is that they require the “current” state of the memory
to be preserved in spite of the failure, rendering them unsuit-

able for recovery from hard errors such as DRAM or power
failures, or from other errors that may have corrupted the
non-checkpointed memory state. Redo-log checkpoints over-
come this problem by restoring the system state starting from
a full checkpoint (or the beginning of execution), then apply-
ing redo-log information to update the system to a more re-
cent state. The disadvantage of redo-logs is that they require
periodic creation of a full checkpoint, which includes a copy
of the entire memory state of the system, in addition to the
redo-log that keeps updates for recent modifications. As a re-
sult, redo-log checkpoints have traditionally been created in-
frequently and stored on hard-disks using high performance
I/O infrastructures[34]. In the future, though, as the num-
ber of processors increases, the increased checkpointing re-
quirements and the limitations of disk storage technologies
are expected to constrain the scaling of application perfor-
mance [16]. To overcome this problem, multi-level check-
pointing schemes [14] have been proposed that improve the
efficiency of the system while reducing the I/O load.

In this paper we present KIMA, a hybrid checkpointing
mechanism where both undo-log and redo-log checkpoints are
created in order to provide the maximum recovery coverage
and limit the recovery time from different types of system er-
rors. KIMA has the following characteristics:

e Exploits the synergies between consecutive undo- and
redo-log checkpoints, eliminating the need for multiple
memory tracking mechanisms and reducing the total per-
formance overhead, by checkpointing memory addresses
common across consecutive undo- and redo-logs only
once.

e Uses a specialized hardware engine to create checkpoints
in parallel with the program execution.

e Creates undo-log checkpoints at high frequencies (e.g.
10ms), for quick recovery from transient errors with short
detection latencies, but also establishes incremental redo-
log checkpoints less frequently (e.g. every 1s) to enable
recovery from hard system errors or errors that escape
early detection.

e Employs meta-data structures which enable the con-
solidation of redo-log checkpoints, creating additional
checkpoints at different frequencies (e.g. every minute
or hour) for no additional memory copying cost, assist-
ing future multi-level checkpointing techniques.

e Allows the system to adjust the number and frequency
of checkpoints depending on its error detection latency
characteristics and available memory for storing check-
points.

Overall, KIMA incurs overheads of ~ 1% on average even
at high checkpointing frequencies (10ms for undo-log and 1sec
for redo-log checkpoints), while creating a waveﬂ of check-
points that follow program execution (e.g. at 10ms, Is, 1
minute, and 1 hour distances), enabling the efficient recov-
ery both from catastrophic failures and from non-catastrophic

IKima means wave in Greek.

[Memory } [Program] [UL:ydgo] [Redo Log] T

Addr | Vval WRE 10 Addr | Val Addr | Vval
z | A 1 WRA 1000 E 5 A | a000
T| 8 2
e WRC 20 A 1 B 40
s ¢ 3
£ 2 WRA 4000 c 3 c 20
E 5 WRB 40 B 2 E 10 {141

Figure 1. Undo-log and redo-log checkpoint creation.

ones, and across a wide variety of detection latencies (millisec-
onds to one hour).

The rest of this paper reviews existing checkpointing tech-
niques (Section 2, provides an overview of KIMA (Section[3)
and discusses KIMA’s implementation details (Sectionfd)), then
presents our quantitative evaluation (Section [3) and conclu-
sions (Section|[6).

2. A Review of Checkpointing Techniques

Checkpointing is typically used by reliability [18] 28] and
debugging [8l 133]] mechanisms which require to roll-back the
program/system to a past state S that existed at time 7". Undo-
logging uses a log with the old values of the addresses which
have been modified between time 7" and the next checkpoint
(or present time). To roll back to state S, undo-logs are ap-
plied to the current state in reverse order, effectively undoing
changes that were made since time 7". The other approach,
redo-logging, saves at time 7" the new values of locations that
were modified between the previous checkpoint and time 7.
To roll back, it restores the state from an older full checkpoint
C, then updates it with subsequently created logs until state .S
is reached. Figure[T]illustrates the two approaches. For a given
time interval, between time 7" and 7'+ 1, both approaches track
memory modifications. For an address which is written for the
first time in the current interval (e.g. A), undo-logging copies
old data to the undo-log and marks it as checkpointed. An-
other write to an address which has already been checkpointed
(A) does not result in another entry in the undo-log checkpoint.
Note that log entries are finally ordered by when data addresses
are modified by the program. To create a redo-log checkpoint
for the time interval between 7" and 7" + 1, we just note which
addresses have been modified by the execution of the program
and, at the end of the interval, copy the newest values of the
modified addresses. As noted by HARE [8], this approach
allows the log to be sorted by address (Figure [I) and allows
efficient checkpoint consolidation.

Because rollback with undo-logging begins with the current
state of the system, it can only be used if the “current” state is
preserved, which limits its scope. In contrast, redo-logging
provides recovery even if all of the current state is lost (e.g.
by loss of power), but is less efficient because it saves data in
bursts and needs to periodically create full-state checkpoints.
Note that redo-log checkpoints should be saved to non-volatile
memory, so they can be used to recover from catastrophic fail-
ures. Conversely, undo-log checkpoints need not be saved to
non-volatile memory, because they are rendered useless by any
failure that results in losing the current DRAM state.

In terms of implementation, checkpointing can be done at
the level of the application [4]], runtime library [[17], or the op-
erating system [29]. Software implementations typically keep
track of the memory modifications at the page granularity, us-
ing existing page protection and dirty bit mechanisms. They
suffer from significant overheads when checkpointing is done
frequently (e.g. every lsec), primarily because the frequent
copying activity competes with the application for processor
time, and because frequent checkpointing causes some fre-
quently modified pages to be copied often (once per check-
point).

Hardware support is necessary for efficient and low over-
head high frequency checkpointing. Hardware mechanisms [8}
181 28] reduce the performance overhead by efficiently track-
ing the memory modifications at cache block granularity, and
by overlapping the program execution with the checkpoint cre-
ation. ReVive [18] and SafetyNet [28]] create undo-log check-
points at frequencies from 10ms to 100ms to recover from tran-
sient errors in the processors or the system (e.g. lost network
packets). Both schemes modify the caches [28] or the co-
herency protocol [18] to keep track of the checkpointed blocks
and log the old data of a block when it is modified for the
first time in a checkpoint interval. The main difference be-
tween ReVive [18]] and SafetyNet [28] is that ReVive stores
the checkpoints in memory, while SafetyNet uses only on-chip
buffering. As a result ReVive can tolerate longer error detec-
tion latencies as well as processor failures, but has higher per-
formance overheads.

To reduce the memory requirements of systems which need
to maintain multiple checkpoints, such as bidirectional debug-
ging, software solutions proposed the consolidation of check-
points [2]. A consolidated checkpoint is the union of the set of
addresses of the two input checkpoints, while duplicate entries
(addresses common to both checkpoints) maintain the data of
the latest checkpoint. A hardware mechanism, HARE [§]], has
been designed to improve performance of redo-logging and
consolidation for debugging uses. Unlike hardware mecha-
nisms which create undo-log checkpoints [18| 28], HARE uses
more complex meta-data structures to keep track of modified
blocks and, at the end of the checkpoint interval, copy them in
parallel with the program execution. Interestingly, HARE re-
stores the program to a past state by first constructing undo-log
checkpoints from its redo-log ones, a processes which can be
completed within the time constraints of bidirectional debug-
ging, but has much higher latency than restoring a pre-existing
undo-log checkpoint.

Another important consideration for checkpointing, espe-
cially redo-logging, is persistent storage. Frequent redo-log
checkpointing would by far exceed the available bandwidth of
disk drives and I/O systems. Multi-level checkpointing [[14]
has been proposed to reduce the 1/O requirements of MMP
systems. Multi-level checkpointing caches checkpoints in the
local memory of a node of an MMP system, instead of writing
them directly to disk, allowing the system to recover 85% of er-
rors using cached checkpoints and reducing the disk 1/O load
by half. Another technology that can enable frequent redo-
logging is phase change memory (PCM), a non-volatile mem-
ory technology that is expected to scale beyond the limitations
of DRAM in the future [11]. Compared to DRAM, PCM has a

[Memory]

[Program] [Undo Log] [Redo Log]

Addr | Val WRE 10 Addr | Val Addr | Vval
Z1 A 1 WRA 1000 | E 5 A | 4000
s -8 Z WRC 20 A 1 B 40
g C 3
= D 4 WRA 4000 c 3 c 20

E 5 WRB 40 B 2 Mk 0 | 141

- [Addr | val WRD 40 | Addr | val Addr | val
2 [A [4000 | ygrg 3 D 4 A 20
s 2 :g WRA 20 B 40 B 3
£ D 2 WRE 1 A 4000 D 40
c
- E 10 WRE 4 E 10 E 4 T+2

Figure 2. Example of memory locations which are common
across consecutive redo-log and undo-log checkpoints.

higher access latency and a limited number of writes that can
endure over its lifetime. However, PCM is far superior to both
disks and flash memory. Recent research results have demon-
strated how to overcome the limitations of PCM and use it as
the main system memory [12, [19]], improve its lifetime [27],
and construct efficient file-systems [6]. Finally, PCM can im-
prove the scalability of checkpointing schemes in future exas-
cale systems [[7].

3. Overview of KIMA

In Figure [2] we show the contents of undo- and redo-log
checkpoints for consecutive checkpointing intervals. We can
make the following two observations regarding the synergies
that develop when both undo- and redo-log checkpoints are
being created.

e For a given time interval, the set of modified addresses
of both the undo-log and the redo-log are the same; the
only difference is that the undo-log saves the oldest data
values for each of these addresses, while the redo-log the
newest (Figure [2). This means that undo-log meta-data
(addresses of saved blocks) can be leveraged by redo-
logging to avoid a separate memory-modification track-
ing scheme.

e If an address (e.g. A) is modified in interval N and in
the next interval NV + 1, the data saved in the undo-log
for interval N + 1 is the same as the redo-log data for
interval N. This property can be leveraged to reduce the
amount of copying that is needed to perform undo- and
redo-logging together.

KIMA exploits these two observations to create both undo-
and redo-log checkpoints efficiently, and to overcome the per-
formance, storage bandwidth, and recovery latency limita-
tions of prior checkpointing schemes. KIMA creates undo-log
checkpoints frequently (10ms - 100ms) to provide low recov-
ery latency from early-detected errors. It then exploits the syn-
ergy between undo- and redo-logs to efficiently create redo-
logs at second-level intervals that enable recovery from more
severe errors. Because some error detection latencies can be
longer than one second, KIMA consolidates redo-log check-
points to also create minute- or hour-level redo-log check-
points. A full checkpoint is also maintained, created at the be-
ginning of the execution and updated by the incremental redo-

RL,, RL CRL, RL;, ULy Ul
| | | Time

im

1h im 1s 20ms10ms

Figure 3. Distribution of undo-logs and redo-logs check-
points over time.

Undo Log Interval (ULI)

| ULl , l‘/l\‘ |UL|n,1oo| ULl |ULIn+1,1oo| Time
| T 1 | [— | >
L . L .)

Redo Log Interval (RLI,)) RLI,,,

Figure 4. Distribution of undo-log and redo-log intervals
over time.

log checkpoints. These redo-log checkpoints allow KIMA to
recover quickly from errors that escape the detection latency
of mechanisms which rely on undo-log checkpoints [23], or
which cannot be recovered from using undo-logs (e.g. because
of a DRAM error).

KIMA is a checkpointing solution which is orthogonal to
existing error-detection mechanisms and can adjust without
incurring significant additional performance overheads to spe-
cific checkpointing configurations, as we will show in our eval-
uation (Section [B). The exact number of undo- and redo-log
checkpoints, the frequency at which they are created, and the
distribution of incremental redo-log checkpoints over-time are
decided by the recovery mechanism [7, [14] based on the fol-
lowing parameters: 1) the expected frequency of errors at ev-
ery checkpointing level, 2) the resiliency of the checkpointing
level to errors (e.g. checkpoints stored in DRAM) 3) the la-
tency of error detection mechanisms, 4) the size, and 5) the
available memory of the system. For the purpose of describ-
ing and evaluating KIMA we are assuming the frequencies and
distribution of checkpoints shown in Figures [3|and [

KIMA creates undo-log checkpoints (UL) every 10ms and
maintains a limited number of completed checkpoints (e.g.
2), plus one that is under construction; this approach allows
KIMA to roll-back the program state by several milli-seconds
(e.g. 30) using undo-logs (Figure [3). Undo-log checkpoints
older than the selected number are discarded (and their mem-
ory freed/recycled). While creating undo-logs, KIMA also
tracks modified blocks for the next redo-log checkpoint (which
is in the modification-tracking stage at the time) and leverages
undo-log data copying to save data to the previous redo-log
checkpoint (which is in the data-copying stage at the time).
A redo-log checkpoint is completed every second; after a
new redo-log checkpoint is created, the previous one is con-
solidated (similar to HARE [8]) into a consolidated redo-log
(CRL) checkpoint for the current minute-long interval. At the
end of the minute, the minute-scale CRL is completed and
the prior one is then consolidated into the hourly checkpoint
for the current hour-long interval. At the end of the hour, the
new hour-scale checkpoint is complete and the old one is used
to update the full checkpoint, which we assume is stored on
disk. To restore program state after a hard failure (or an error

whose latency is longer than 30ms), KIMA restores the full
checkpoint and then applies hour- , minute-, and second-scale
checkpoints until the error latency interval is reache For ex-
ample, if the error detection latency for a particular error is one
hour or less, KIMA would just restore the full checkpoint. If
the detection latency is one second, KIMA restores all but the
second-scale checkpoints.

The hierarchy of checkpoints in KIMA also dictates the
bandwidth management of memory, PCM and disk. Undo-log
checkpoints are created frequently (10-100ms), so they require
very high write bandwidth (up to 900MB/s for some applica-
tions, Figure[5). This bandwidth can be supported by DRAM
memory, where KIMA stores undo-log checkpoints. Redo-log
checkpoints created each second still require significant band-
width (almost 800MB/s for the SPECFP application [30]), but
are saved in PCM that can sustain this write bandwidth. Con-
solidation of redo-logs only requires meta-data changes (no
copying of data blocks) and consumes far less bandwidth than
data copying. Finally, hour-scale updates are sent to disk, but
the bandwidth requirements for this can easily be sustained by
modern disk drives — as shown in Figure[5] even if minute-scale
checkpoints were sent to disk, the required bandwidth would
be only up to 35MB/s.

To create the two types of checkpoints, KIMA uses the fol-
lowing approach: A) For undo-log checkpoints, KIMA keeps
track of the checkpointed blocks in a given undo-log inter-
val (ULI) as described in Section @ B) For establishing
redo-log checkpoints KIMA takes advantage of the two prop-
erties of the undo-log and redo-log checkpoints described in
this Section. First, KIMA uses the meta-data of the multiple
undo-log checkpoints that are created during a redo-log inter-
val (RLI) (Figure [d), in order to construct the set of modified
addresses for the given RLI and create a redo-log checkpoint.
This approach eliminates the need for a second hardware as-
sisted modified memory tracking mechanism similar to the one
used by HARE [8]]. Second, KIMA identifies the block ad-
dresses which belong both to the current undo-log intervals
(ULIn41,1,...,ULIL,41,100) and to the previous redo-log in-
terval (RLI,). The first time such block is identified (e.g. in
ULI,1,1) itis stored directly to the redo-log checkpoint for
RLI, in PCM, and the undo-log meta-data of UL, 1,1 is
updated to point to the same block in PCM. If this address is
found again in following U L s, it is saved to DRAM because
it does not represent the newest values for RLI,,. This method
eliminates future reads and writes that KIMA would have to
perform for creating the redo-log checkpoint of RLI,, reduc-
ing the memory bandwidth requirements.

Another important problem when restoring a system is re-
covering I/O (e.g. network). KIMA is orthogonal to existing
techniques for restoring I/0O (e.g. ReVivel/O [15]). The sup-
port for frequent undo-log checkpointing and quick recovery
from transient errors can reduce the necessary buffering.

2To avoid over-writing multiple times addresses common across
checkpoints KIMA’s meta-data allow to consolidate all incremental
redo-log checkpoints first into a single full checkpoint

OBlock mPage

3,438 4,471 10,803 1,083 2,598 1,868
1000 -
800 -
£ 600 4
m
S 400 A
200 -
0 4 —
Max | Avg | Max | Avg | Max | Avg | Max | Avg | Max | Avg | Max | Avg | Max | Avg | Max | Avg | Max Avg|Max|Avg|Max|Avg|Max|Avg|
CFP | CINT | PARSEC | CFP CINT | PARSEC | CFP CINT | PARSEC | CFP CINT PARSEC
10ms | 100ms 1sec | 1min

Figure 5. Maximum and average memory bandwidth requirements in MB/s of checkpointing mechanisms for different checkpointing
frequencies (in seconds) when using block or page tracking granularities for the SPEC 2006 [30] floating point (CFP), integer

(CINT) and PARSEC 2.1 [5] benchmarks.

4. Implementation Details of KIMA

The undo- and redo-log creation mechanisms are tightly
inter-dependent as a result of exploiting the synergies between
checkpoints. For clarity we will describe them separately in
the sections [f.1]and 2] respectively and provide details of the
design of the KIMA engine in Section[43]

4.1 Undo-Log Checkpointing

KIMA’s undo-logging uses a mechanism similar to that de-
scribed in prior work, ReVive [18] and SafetyNet [28]. It uses
an extra checkpoint bit in the tag arrays for the L1 and L2
caches to identify which blocks were already saved in the cur-
rent interval. When a block is written in L1, the checkpoint bit
is checked. If this bit is 1, the block has already been saved
in the current undo-log interval and no further KIMA action is
needed. If the checkpoint bit is 0, the block’s data is sent to the
undo-log, the checkpoint bit is set to 1, and only then the write
proceeds to modify the data. When the block is written back
to the L2 cache the checkpoint bit is written back as well, but
for blocks written back and replaced from L2 the checkpoint
bit information is not preserved (to avoid having to keep these
bits for all blocks in memory). Thus, when a block is brought
into the L2 cache on a miss, its checkpoint bit is assumed to be
0.

Although, the checkpoint bit information dramatically re-
duces the number of writes that reach the KIMA engine, it can
still allow multiple copies of the same block to be saved in a
given interval (U LI, ,,); this occurs when a block is saved,
replaced form the L2 cache, and then written again. Note
that this still allows correct rollback; the undo-log is applied
to memory in reverse order and the data value finally restored
is one that was saved first. However, this unnecessary saving
of already-saved blocks can potentially be a performance and
a log-space problem, as we will show in Section[3]

4.2 Redo-Log Checkpoint Creation and Organiza-
tion

To construct a redo-log checkpoint at the end of a RLI,,
during that RLI,, we need to track the set of modified ad-
dress for that interval. As we pointed out in Section [3} this
set of modified addresses is the same as the set of addresses
that were checkpointed by the (many) undo-logs during this
redo-log interval. Therefore, whenever a block is sent to an
undo-log checkpoint U L1, n,, its address is also added to the

redo-log meta-data for interval RLI,,. At the end of RLI,,
this meta-data is traversed and the included blocks are copied
from DRAM to PCM.

As indicated in Section 3] a significant number of blocks
that belong to the redo-log checkpoint RLI,, are also going
to be copied by future undo-log checkpoints U LI, 1,m. For
this reason, we do not start the copying of RLI,, data as soon
as that interval ends. Instead, we wait for a period of time in
RLI, 41, during which blocks that belong to RLI,, are saved
to PCM by undo-log activity. This “forwarding” of undo-log
writes is done by checking, for each block that should be saved
to the undo-log for ULI,11,m, if 1) the block’s address is
present in the redo-log meta-data for RLI,, and 2) the corre-
sponding data has not been saved yet. In such a case, the data
is saved to PCM, the RLI, meta-data is updated to point to
the saved data, and the U LI, 41, log is made to point to the
same block in PCM.

It is possible (and highly likely) that the sets of modi-
fied address of two consecutive redo-log intervals, RLI,, and
RLI, 41, are not exactly the same. Therefore, at some point
we must stop waiting for undo-logging during RLI, 41 to save
data that belongs to RLI,,, and start actively copying the re-
maining data for RLI,, to PCM. We chose to do this at the mid-
point of interval RLI, 1 (half a second after RLI, ends).
At that point, the KIMA engine traverses the R LI, meta-data
and, for each block that was not already copied (by undo-log
activity), reads the block’s data from the application’s mem-
ory and saves it to PCM. Meanwhile, we continue monitoring
undo-log activity and saving to PCM any blocks that belong to
RLI, buthave not yet been reached by KIMA’s redo-log copy-
ing activity. This monitoring prevents the application from
overwriting any data that should have been saved to RLI,.
Any first modification in RLI, 41 will find the checkpoint bit
in the cache to be zero, and thus send the current (before the
modification) value of the block to the undo-logging mecha-
nism. The undo-log mechanism will in turn check the meta-
data for the prior redo-log checkpoint, saving the block to PCM
and adding its pointer to the redo-log.

A critical aspect of KIMA is the data structure for redo-log
meta-data. This data structure is accessed frequently, both dur-
ing undo- and redo-log checkpoint creation, and needs to be
updatable in hardware. We opted for a trie data structure, Fig-
ure[6](only the last 3 levels of the tree are shown for simplicity),
which is similar to page-table structures used in today’s 64-bit

Virtual Address

29 2120 12 11 65 0
.- | Page Directory offset Page Table offset | Block # Block Offset |

Page
Table

Root

Address Checkpointed
L3 L4 Data

ULI Numbers

Figure 6. Redo-log checkpoint meta-data trie data structure
used by KIMA.

architectures [10]. This structure provides low look-up cost
given a block’s address (to add addresses and check for over-
lap during undo-logging), can be traversed in an order sorted
by address (this facilitates consolidation of checkpoints), and
there are existing hardware mechanisms for accessing its ele-
ments in modern processor A typical page table consists of
four levels where the last level (L4) points to the physical ad-
dress of a page in memory. In KIMA, though, we checkpoint
memory at the granularity of blocks, so we add an additional
level (LS5) that contains 64 pointers, for the respective memory
blocks of a memory page, which point to the checkpointed data
in PCM.

An important additional benefit of updating the trie struc-
ture for RLI, 41 when saving data for (U LI, +1,m) is that we
can perform a secondary filtering to prevent redundant undo-
log entries. As explained in Section[f1] such redundant entries
are not entirely eliminated by adding checkpoint bits to on-chip
caches. To do this secondary filtering, each entry in the redo-
log trie also keeps the number of the last undo-long interval
that checkpointed that entry. If the check finds the number of
the current undo-log interval in the redo-log entry, the block
has already been saved and does not need to be saved again
(neither in the undo-log nor in any redo-log). Since there is a
limited number of undo-log intervals within a redo-log interval
(up to 100, for 10ms undo-log intervals), this only requires 7
bits in the redo-log entry, and we use the block offset bits and
the unused bits of the virtual address|'|(which are not needed)
to store the U LI number.

The PCM memory is managed as a free list of blocks main-
tained by the OS. When copying a block to PCM, KIMA gets
the PCM location from one end of the free list. When redo-
logs are consolidated, freed blocks are returned to the other
end of the free list. This “rotation” of blocks through the free
list helps prevent excessive writes to any one block of PCM
memory.

Finally, the redo-log meta-data are stored in DRAM and
the internal KIMA engine caches them during the time pe-
riod when they are updated. Only after all the blocks of the
redo-log checkpoint have been copied to PCM, KIMA starts
copying the corresponding meta-data to PCM, starting from
the leaves of the trie structure. When the root of the meta-data

30ther data structures, such as hash-tables, could be potentially
used but the trie structure proved to satisfy KIMA’s functionality re-
quirements

4In x86 64-bit architectures the physical address-space is limited
to 48 bits [10] and additional bits can be used to represent the U LI
number if necessary.

Blocks to |
Checkpoint

TLB

Tree Construction
Engine

1
| ," Pending L5 MD
i Probe A 1 Block Cache
L2 W KIMA Queue
Engine ‘ T

Memory ‘\‘ Undo Log Redo Log
Controller \ Engine Engine
\\
3 T \
- Memory Interface
\

PCM DRAM

Figure 7. Architecture of the KIMA hardware engine.

and the corresponding pointer to it have been stored to PCM,
the checkpoint is complete and becomes part of the redo-log
recovery state.

4.3 KIMA Engine Description

The KIMA hardware engine (Figure [/) is responsible for
constructing both the undo-log and the redo-log checkpoints.
It is a structure separate from the cores of the CMP, and is posi-
tioned close to the on-chip memory controller for minimizing
the latency to memory. The number of KIMA engines on chip
will depend on the number of cores, and the checkpointing re-
quirements of future systems. The engine receives the blocks
to be checkpointed from the L1 caches of the coresﬂ In order
to differentiate between the processes/threads running concur-
rently on the CMP, along with the data to be checkpointed,
the L1 also sends the number of the core which modified the
block. Based on the core number the KIMA engine selects
the appropriate undo-log and redo-log checkpoints to insert the
data. The OS is responsible for programming and managing
the KIMA engine. When a new process/thread is scheduled
in one of the cores, the OS updates the KIMA engine regis-
ters with the following values: 1) the pointers of the undo-log
data and meta-data, 2) the pointers to the roots of the redo-log
meta-data for the current and the previous redo-log intervals
(RLI,41 and RLI,), and 3) the core where it will be run-
ning. Threads of the same processes, which typically share the
same address-space, will have the same set of pointers to undo-
and redo-log meta-data.

Internally the KIMA engine consists of a pending queue
of blocks to be processed, an undo-log engine (ULE), a tree
construction engine (TCE), a redo-log construction engine
(RLCE) and a memory interface. Each core sends the blocks
to be saved in the KIMA engine and they are inserted in the
pending queue. Every block in the pending queue is first pro-
cessed by the TCE, which updates the meta-data for the cur-
rent redo-log (RLI, 1), performs secondary filtering of undo-
log writes, and uses the RLI, meta-data to decide whether
the block will be saved to DRAM or PCM. Once the block
is processed by the TCE it is forwarded to the undo-log en-

SIn our architecture we are assuming a snooping cache coherency
protocol. In the case of a directory based protocol, the directory would
be responsible for identifying the blocks to be checkpointed, similar to
ReVive [18]

gine, which writes the block to either DRAM or PCM and up-
dates the undo-log meta-data, by issuing requests to the mem-
ory interface. During the first half of RLI, 41 the checkpoint
for RLI, is updated with the common blocks in ULI;+1,m
which are saved to PCM. When we cross the half-second point
in RLI, 1 the redo-log construction engine starts walking
the redo-log meta-data for RLI,, and copying from DRAM to
PCM the blocks that have not been checkpointed yet, by send-
ing requests to the memory interface. It is possible that data
to be checkpointed still reside in the caches, for this reason
the KIMA engine behaves just like a core, using the existing
cache coherence to get the most recent data either from on-chip
caches or, if the data is not on-chip, from memory.

The KIMA engine updates the meta-data of RLI, and
RLI, frequently. To reduce memory bus activity when ac-
cessing this meta-data the KIMA engine has a translation look-
aside buffer (TLB), where it caches only the first four levels of
the meta-data trie structure, and also a small cache for storing
the U L1 numbers contained in the last level (L5) nodes of the
trie (L5 MD Cache). The intermediate nodes of the trie are
being accessed on every look-up of the trie, and caching them
separately eliminates any misses that the co-location with the
L5 node data would generate.

5. Evaluation

We quantitatively evaluate the hardware cost, the perfor-
mance overhead and the memory requirements of KIMA.

5.1 Hardware Configuration

In our evaluation, we use SESC [22], an open source execu-
tion driven simulator, to model a four-core CMP system with
Core2-like parameters: 4-issue, out-of-order cores running at
2.93GHz. Each core has a private dual-ported 32KB §-way
associative L1 data cache. All cores share a 4MB, 16-way as-
sociative, single-ported L2 cache. The block size is 64 bytes.
We model a DDR3-1333-like memory system, which provides
~11.7GB/s and the DRAM average latency is 50ns, which cor-
responds to 150 cycles. PCM memory shares the same bus as
DRAM and has an average read latency of 150ns and write
latency of 450ns (450 and 1350 cycles respectively) [27]. The
KIMA engine we simulate has a 64 entry pending block queue,
a 256 entry fully associative trie TLB, a 64KB 16-way asso-
ciative single-ported L5 MD cache, and the memory interface
has a 32 entry read queue and a 128 entry write queue. In to-
tal, the KIMA engine requires ~82KB of on-chip state, which
is lower than 256KB in SafetyNet [28]. Because this state is
kept in area-optimized, single ported arrays, its area is 40%
smaller than the area of a single core’s L1 cache (estimated
using CACTI 5.3 [31])

5.2 Evaluation Methodology

In our evaluation we compare KIMA against a number of
possible alternative hardware and software checkpointing tech-
niques. Some of these alternatives correspond to state-of-the-
art implementations and some represent partial implementa-
tions of KIMA-like enhancements for the purpose of isolating
the contributions of each enhancement. All these mechanisms

use hardware undo-logging similar to ReVive [18] and Safe-
tyNet [28], and they differ in how they create redo-logs:

Software Page Based (SW-Page): This implementation uses a
software thread for redo-logging in parallel with the program
execution. It leverages existing dirty-bit information embed-
ded in page-tables to identify modified pages of a given RLI
and then copies those pages to PCM. To prevent the applica-
tion from modifying data that have not been checkpointed yet,
it write-protects such pages; when the application attempts a
write, an exception handler immediately copies the page to
PCM and resumes the application’s execution.

Software Page Based No Cache Allocate (SW-Page-NCA):
This implementation is similar to the previous one with the
only exception that data to be read or written for creating the
redo-log checkpoint are not allocated in the caches, but are be-
ing copied with the help of streaming buffers. This improves
cache performance because redo-log data has little or no tem-
poral locality.

Software Block Based (SW-Block): This approach is prac-
tically a software implementation of the decoupled engine
(which will be described), but uses a software thread instead
of a hardware redo-logging engine to 1) read undo-log meta-
data to update the redo-log trie structure and construct the list
of blocks to copy and 2) checkpoint these blocks to PCM. Just
like the page-based schemes that were described previously, it
uses memory protection to prevent the corruption of the data
that is yet to be copied, and just like SW-Page-NCA, cache
pollution with low-locality data is avoided by using streaming
buffers and bypassing the caches for such data.

Hare and Undo-Log (HARE+Ulog): This approach leverages
an existing hardware mechanism which establishes redo-log
checkpoints, HARE [8]. In our evaluation we use only the
checkpointing engine of HARE as it was originally proposed,
and we disable its checkpoint merging functionality.

Decoupled Engine (Dec-Eng): The decoupled engine is sim-
ilar in structure to the KIMA engine, but the undo- and redo-
logging are performed independently. The decoupled engine
saves undo-log data and meta-data into logs without updat-
ing the redo-logging trie structure. The redo-logging engine
reads undo-log meta-data and build its trie, then copies data to
the redo-log. This decoupled approach leverages the first ob-
servation we make (undo- and redo-logging save data for the
same addresses) but cannot benefit from the second observa-
tion (undo-log data copying can help redo-log data copying).
It also cannot benefit from the trie-based secondary filtering in
undo-logs. Because the trie structure needs no data pointers
prior to active redo-log copying, the decoupled engine does
not need a cache for L5 nodes. Instead, the trie TLB entries
are used as 64 bit-masks to mark modified blocks in that page.
This reduces the cost of the engine — its on-chip state is only
22KB.

Our evaluation uses 27 of the 29 SPEC 2006 [30] bench-
marks, shown in Figure[§] The only benchmarks omitted are
tonto and perl because of incompatibilities with our simulator
infrastructure. We simulate SPEC benchmarks using reference

10%

8%

6%
4%

2%

.

Performance Overhead

0% r—r— . — B e b e e R e e B ey

%] X = 0 v T O T > X M EtE 9 O 5 N Q X 9 5 Q O xXx D W X T Q T 9 0O 05 0 0 S D
Ew§=awo_§m=gmgxgg>ﬂgogﬁm§ 32233535 E2 22882 dd s
nh 2238 ¢ 8290 EFsacL 5 < B8 D53 E 2 2 5 <o 8 23T @& E 8 v o5 gJ

S < 5 £ E = 5 o <€ S o S © g € w o 2 5 o © @ E E £ S5 S <
L 268 ° 35 a -8 35 3 o S« 5] = SE 5555 ¢ o538 [8)
w85 3 o S = Q@ @ N c £ > £ S Z 58§ 8 S 90 © w
£ S) O T S =5 x 9 -D-:“EB %)
[] I o g O ¢ o B S 7 x
o o = x 8 5 3 4

=

o b a

mef I

Figure 8. Performance overhead of KIMA for the SPECFP 2006 (CFP), SPECINT (CINT), and PARSEC benchmarks.

inputs, by fast-forwarding through 5% (up to a maximum of 20
billion instructions) of the execution in order to skip the pro-
gram’s initialization, then simulating 10 billion instructions.
We also evaluate KIMA with all 13 multi-threaded benchmarks
from PARSEC 2.1 [3]], using native inputs and four threads.
The exception is dedup where we use the simlarge input be-
cause the native input exceeds the addresses-space of the 32-
bit MIPS-Linux simulated machine in SESC. We fast-forward
PARSEC applications to the beginning of the parallel execu-
tion, fast-forward an additional 21 billion instructions to warm-
up the memory tracking mechanisms of all undo- and redo-
logging techniques, then simulate 20 billion instructions in de-
tail. In the evaluation of software-based checkpointing tech-
niques for multi-threaded workloads, checkpointing threads al-
ways have higher priority than application threads so one of
the application threads is suspended when the checkpointing
thread is active in case of no “free” cores.

5.3 Performance Results

Performance Overhead of KIMA. Figure [§] presents the
performance overhead of KIMA for all simulated applications,
along with the averages for SPECFP, SPECINT and PARSEC
benchmarks. The undo-log checkpointing period is 10ms and
the redo-log period is 1 second. Overall, KIMA has average
performance overheads of ~1%, and the maximum overhead
is 8% (in GemsFDTD and freqmine). The benchmarks where
KIMA has the highest overheads are applications which are al-
ready memory intensive, memory bandwidth constrained and
are creating the largest checkpoints across all applications we
have evaluated. KIMA’s overheads are still low in these appli-
cations because, KIMA efficiently reduces the memory band-
width needs of redo-log checkpoints when compared to other
checkpointing techniques.

Comparison of KIMA with other techniques. Figure [J]
compares performance overheads of the five alternative tech-
niques described in Section[5.2} All schemes create undo-log
checkpoints every 10ms and redo-log checkpoints every 1 sec-
ond. In the Figure we present the worst performing bench-
marks for KIMA, along with averages for all benchmarks in
the SPECFP, SPECINT and PARSEC suites. KIMA outper-
forms all alternative techniques across all benchmarks, re-
ducing overheads by one order of magnitude in some cases.
The only exception is freqmine which does not benefit from
KIMA’s memory bandwidth optimizations. Even so, KIMA’s

overhead in freqmine is relatively low (8%) and similar to that
of the best-performing technique.

To understand why KIMA has an advantage over other
techniques, we use the comparison from Figure [J] to iden-
tify the causes of performance overhead. Software techniques
compete with the application for space in the shared caches.
This competition for cache space can be quantified by compar-
ing the SW-Page and SW-Page-NCA techniques. Examples
of applications where cache space contention has a significant
impact are GemsFDTD and mcf, whose overhead reduces by
10%. However other applications and the averages indicate
the elimination of cache contention is not the main reason for
KIMA’s good performance.

Another source of overhead is contention for memory bus
bandwidth. The first step to reduce bandwidth consumed for
checkpointing is to use finer memory tracking granularities and
eliminate unnecessarily copied data. SW-Block tries to do this
in software, providing a significant benefit in milc and mcf
— in these applications page-based redo-logging copies twice
as much data as block-based SW-Block does. However SW-
Block achieves its finer granularity at a cost of doing much
more work to construct its set of data to be copied, which
results in significant new overheads in benchmarks like 1bm,
facesinﬂ etc.

After eliminating cache contention and reducing bus band-
width contention by using finer tracking granularities, the next
step to improve performance of redo-logging is to use spe-
cialized hardware. In our experimentation we observed that
more than 50% of the overhead of software implementations
comes from pausing the application’s execution in order to
serve a page-fault caused when the application tries to mod-
ify data which have not been checkpointed yet. Hardware
techniques dramatically reduce these pauses by creating check-
points faster.

Note that Dec-Eng and HARE+Ulog have similar over-
heads because both need to copy the same amount of data in or-
der to establish a redo-log checkpoint. The marginally higher
overheads of HARE+Ulog compared to Dec-Eng (with the ex-
ception of GemsFDTD where HARE+Ulog is 5% slower) are
caused by the caching of HARE’s memory modification track-
ing meta-data in the L2 cache and the additional cost of sort-
ing the collision list [§]. KIMA outperforms both Dec-Eng and

OThis cost cannot be hidden for the case of the PARSEC bench-
marks because the checkpointing thread preempts the application’s
threads, while for the SPEC benchmarks the checkpointing thread runs
on one of the idle cores

mKIMA ®BDec Eng OHARE+Ulog BSW Block @SW Page NCA @SW Page

145

50%
e}
8 400
2 40%
2 30%
o) 0
8 209
2 20% -
IS
E 10% o
£ | N
S 0% -

GemsFDTD Ibm milc zeusmp CFP Avg mcf CINT Avg facesim fluidanimate freqmine x264 PARSEC Avg

Figure 9. Worst case and average performance overhead numbers of KIMA when compared to other checkpointing approaches
for the SPECFP (CFP), SPECINT (CINT) and PARSEC benchmarks.

HARE+Ulog because it further reduces the bandwidth require-
ments by 1) eliminating the reads of undo-log meta-data that
Dec-Eng does, 2) removing duplicate entries in the undo-logs
via secondary trie-based filtering and 3) avoiding many reads
and writes in the redo-log copying by leveraging copying ac-
tivity of undo-logging. As shown in Figure 0] these benefits
can be very significant especially in the applications that suffer
the highest overheads in Dec-Eng and HARE+Ulog.

5.4 Sensitivity Analysis

Another way to reduce the memory bandwidth require-
ments of a combined undo-log and redo-log checkpoint mech-
anism is to decrease checkpointing frequency of undo-logs.
The intuition behind this approach is that blocks that are check-
pointed multiple times across consecutive undo-log check-
points are going to be checkpointed only once and the memory
bandwidth requirements are going to decrease. In Figure ﬂl?l
we present the highest overhead benchmarks along the with
the averages for KIMA and Dec-Eng for undo-log checkpoint-
ing frequencies of 10ms and 100ms, keeping the redo-log fre-
quency unchanged (at 1 second). KIMA benefits from the
reduced checkpointing frequency, although only marginally.
Contrary to our expectations, the overhead of Dec-Eng actually
increases when undo-log checkpoints are created less often.

To gain better insight into this phenomenon, Figure [TT]
shows the breakdown of memory accesses into: accesses gen-
erated by the application (App), necessary undo-log writes
(UL-Nec), unnecessary undo-log writes (UL-Unnec), redo-log
construction reads and writes (RL), and engine accesses (EA)
(such as the reads of the undo-log meta-data for Dec-Eng and
the misses from the engine’s caching structures in both Dec-
Eng and KIMA). All numbers are normalized to application
accesses (App) of the slowest configuration (Dec-Eng with
100ms undo-logging).

We observe that, by decreasing the undo-log frequency,
the number of unnecessary checkpointed undo-log blocks in-
creases for Dec-Eng. The reason for this is that long undo-log
checkpointing intervals increase the probability of a block get-
ting replaced for the L2 cache after it has been checkpointed.
This removes the checkpoint bit information, resulting in the
same block being checkpointed again when it is written again
in the same undo-log interval. KIMA does not suffer from this
behavior because of its secondary trie-based filtering that pre-
vents duplicates from being saved to the undo-log.

Additional performance benefit of KIMA over Dec-Eng
(and HARE+Ulog) comes from overlapping undo-log copying

OKIMA 10ms = KIMA 100ms @Dec Eng 10ms @Dec Eng 100ms

25%

20%

OO

15%

10%

-1

5%

Performance Overhead

0%

GemsFDTD
CFP Avg |
omnetpp j
CINT Avg
freqmine

Figure 10. Worst case and average performance overhead
numbers of KIMA compared to the decoupled checkpointing
engine for undo-log checkpointing frequencies of 10ms and
100ms.

for redo-log checkpoints. This approach eliminates almost all
redo-log copying activity in lbm, and reduces such activity by
50% percent in GemsFDTD. Overall, this synergistic copying
eliminates 50% of redo-log copying activity on average across
all applications.

We have also performed experiments (Figure[T2) where we
vary the undo-log (0.01 and 0.1 sec) and redo-log (0.5, 1 and
2 sec) checkpointing frequencies. As expected, higher redo-
log checkpointing frequencies (0.5sec) increase the overhead
of KIMA to 2% on average for CFP. The increased overhead
can be attributed to the additional copied memory for creating
twice as many checkpoints, and also to the reduced percent-
age of blocks forwarded between undo- and redo-log check-
pointsﬂ This observation explains why the overhead increases
for GemsFDTD and 1bm when we increase the undo-log inter-
val from 0.01sec to 0.1sec and maintain the redo-log frequency
at 0.5sec: shorter redo-log intervals do not match the applica-
tion’s memory modification period, so there are fewer com-
mon blocks between consecutive redo-log intervals, resulting
in reduced synergistic copying. For lower redo-log checkpoint-
ing frequencies (2sec) the overhead decreases, as expected, be-
cause we create fewer checkpoints, and also because close to
100% of redo-log blocks come from the undo-logs (it was only
50% for GemsFDTD for redo-log frequency of 1sec).

The only benchmark where KIMA offers no performance
improvement over the other techniques is freqmine (Figure E)
Freqmine has a memory access pattern such that: 1) no unnec-
essary undo-log entries are created (no benefit from secondary
filtering), 2) there is limited number of synergistic copying op-

"It is enabled only during the first half of the redo-log interval

220%

BEA

200%

180%
160%
140%
120%
100%

80%

@ARL

®UL Unnec

BUL Nec

Memory Accesses

KIMA 10ms
DecEng 10ms
DecEng 100ms
KIMA 10ms
DecEng 10ms
DecEng 100ms
KIMA 10ms
DecEng 10ms
DecEng 100ms
KIMA 10ms

GemsFDTD

=3
3

CFP Avg

DecEng 10ms

3
=}

OApp

DecEng 100ms
KIMA 10ms
DecEng 10ms
DecEng 100ms
KIMA 10ms
DecEng 10ms
DecEng 100ms
KIMA 10ms
DecEng 10ms
DecEng 100ms

CINT Avg fregmine Parsec Avg

Figure 11. Breakdown of the type of memory accesses of the KIMA and the decoupled memory engine for undo-log checkpointing

frequencies of 10ms and 100ms.

0OU0.01s RO.5s @UO0.1s R0.5s mU0.01s R1s ®U0.01s R2s @U0.1s R2s
16%

12%

8%

4%

0%

Performance Overhead
GemsFDTD
Ibm
milc
CFP Avg
mcf
CINT Avg
fregmine
PARSEC

Avg

Figure 12. Worst case and average performance overhead
numbers of KIMA for different undo-log (U) and redo-log (R)
checkpointing frequencies.

portunities when creating redo-log checkpoints every 1sec, but
can improve as we decrease the checkpointing frequency (Fig-
ure [[2), and 3) KIMA caches exhibit high miss-rates. As part
of our future work we plan to continue studying the perfor-
mance benefits of synergistic undo/redo-log creation and fur-
ther reduce the associated performance cost.

55 PCM Memory Requirements and Perfor-
mance/Power Considerations

To estimate the PCM space requirements of checkpoint-
ing we profiled the SPEC and PARSEC applications using
PIN (we used the reference and native inputs respectively
and the applications ran to completion) and estimated the av-
erage redo-log checkpoint size at 1-second and 1-minute fre-
quencies. The benchmarks we used in our evaluation do not
run long enough to estimate the size of 1-hour checkpoints, so
we assume that a 1-hour checkpoints is as large as the allo-
cated address space of the application. The results are shown
in Figure [[3] We find that 4GB of PCM would be sufficient
on average to store all redo-log checkpoints (1s, 1min, 1h). In
KIMA, we copy the old one-hour checkpoints to other stor-
age media (flash or hard disks). Our experiments indicate that
this requires a maximum bandwidth of 35MB/sec, which can
be provided by existing storage. Note that 4GB PCM require-
ment is not fundamental — if needed we could adopt more ag-
gressive consolidation, based on the policy dictated by the re-
covery mechanism. We also estimated the lifetime of a 4GB
PCM with KIMA — 17.7 years in the worst case. KIMA writes

2,500

2,000

1,500

1,000

500

Checkpoint Size (MB)

Max|Avg |Max|Avg
CFP | CINT
<— 1secChpt

PARSEC‘ CFP | CINT |PARSEC| CFP ‘ CINT |PARSEC|
—» <— 1minChpt —» <& Address Space =

Figure 13. Maximum and average memory requirements
in MB of the one second, one minute checkpoints and the
address-space of the application.

to PCM only one checkpoint per second, consolidations update
only meta-data, and writes can easily be distributed over PCM
to avoid waring out a single block.

PCM is not a standardized memory technology yet and the
expected write latency may increase in final products. For this
reason, we also conducted experiments where we doubled the
average write latency of PCM to 900ns or 2700 cycles for our
architecture. In these experiments, the performance overhead
of KIMA remains the same, and there is a minor increase in
the checkpoint creation time. The 128-entry write queue of the
KIMA engine, which is 50% to 60% occupied in our original
experiments, has 90% occupancy in increased-latency experi-
ments. With this in mind, we except that further increases in
the PCM latency will require larger write queues to avoid no-
ticeable performance impact.

Finally, we estimate the power overhead of our technique
to the system, using CACTI 5.3 to determine the dynamic
power consumed by the caches/queues of the KIMA engine
and the DRAM memory of the system. PCM is expected to
have higher write power requirements than DRAM and we
used the power estimates from Lee et. al. [12]. These are
expected to be the dominant sources of additional power con-
sumption caused by KIMA. Our results show that the majority
of the power overhead is caused by the additional memory ac-
cesses for creating the checkpoints, and that the power require-
ments of the system increase by 1-2 Watts on average.

6. Conclusions

Reliability is going to become an increasing problem in the
future with recovery mechanisms playing a critical role in the

availability of future systems. The two main approaches to
checkpointing each have important limitations — redo-logs can
recover from catastrophic faults but have poor recovery laten-
cies for the most common errors, while undo-logs offer quick
recovery from common errors but cannot recover from catas-
trophic faults.

In this paper we present KIMA, a mechanism that syner-
gistically combines the two approaches. It creates undo-log
and redo-log checkpoints together, using their inherent rela-
tionships to minimize the performance overhead, bandwidth
consumption, and memory space needed for this purpose. Our
experiments indicate that KIMA incurs minimal overheads (~
1%) on average and 8% worst-case across a variety of single-
threaded and multi-threaded benchmarks, while supporting ef-
ficient recovery from catastrophic and non-catastrophic errors
that have a wide range of detection latencies (from a few mil-
liseconds to one hour).

References

[1] D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine,
J. Klecka, and J. Smullen. NonStop Advanced Architec-
ture. 2005 Intl. Conf. on Dependable Systems and Networks
(DSN’05), pages 12-21, 2005.

B. Boothe. Efficient Algorithms for Bidirectional Debugging.
In ACM SIGPLAN 2000 Conf. on Prog. Lang. Design and Impl.,
pages 299-310, 2000.

S. Borkar. Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation.
IEEE Micro, 25(6):10-16, 2005.

G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and
M. Schulz. Application-level Checkpointing for Shared Mem-
ory Programs. In 71th Intl. Conf. on Arch. Support for Prog.
Lang. and Operating Sys., page 235, 2004.

Christian Bienia and Sanjeev Kumar and Jaswinder Pal Singh
and Kai Li. The PARSEC Benchmark Suite: Characterization
and Architectural Implications. In /7th Intl. Conf. on Parallel
Architectures and Compilation Techniques, 2008.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee. Better /O Through Byte-Addressable, Persis-
tent Memory. In ACM SIGOPS 22nd Symp. on Operating Sys.
Principles, page 133, 2009.

X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and
Y. Xie. Leveraging 3D PCRAM Technologies to Reduce Check-
point Overhead for Future Exascale Systems. In Conf. on High
Perf. Computing Networking, Storage and Analysis - SC '09,
page 1, 2009.

I. Doudalis and M. Prvulovic. HARE: Hardware Assisted Re-
verse Execution. In Proc. of 16th Intl. Symp. on High-Perf.
Comp. Arch., 2010.

S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: Proba-
bilistic Soft Error Reliability on the Cheap. In /5¢h Intl. Conf. on
Arch. Support for Prog. Lang. and Operating Sys., pages 385—
396, 2010.

Intel. Intel 64 and IA-32 Architectures Application Note
TLBs, Paging-Structure Caches, and Their Invalidation.
http://www.intel.com/design/processor/applnots/317080.pdf,
2008.

International Technology Roadmap for Semiconductors. Pro-
cess intergration, devices & structures. 2007.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase
Change Memory as a Scalable DRAM Alternative. In 36th Intl.
Symp. on Comp. Arch., page 2, 2009.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation. In ACM SIGPLAN 2005 Conf. on Prog. Lang. Design
and Impl., pages 190-200, 2005.

A. Moody, G. Bronevetsky, and K. Mohror. Design, Modeling,
and Evaluation of a Scalable Multi-level Checkpointing System.
Proc. of the 2010 IEEE/ACM Conf. on Supercomputing, 2010.

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

11

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]
[31]

[32]

(33]

[34]

J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrel-
las. ReVivel/O: Efficient Handling of I/O in Highly-Available
Rollback-Recovery Servers. In Proc. of 12th Intl. Symp. on
High-Perf. Comp. Arch., 2006.

R. a. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R. Varela,
R. Riesen, and P. C. Roth. Modeling the Impact of Check-
points on Next-Generation Systems. In 24th IEEE Conf. on
Mass Storage Systems and Technologies (MSST 2007), number
Msst, pages 3046, 2007.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trans-
parent Checkpointing under Unix. In USENIX 1995 Tech. Conf.
Proc. on USENIX 1995 Tech. Conf. Proc., pages 1818, 1995.
M. Prvulovic and J. Torrellas. ReVive: Cost-Effective Architec-
tural Support for Rollback Recovery in Shared-Memory Multi-
processors. In 29th Intl. Symp. on Comp. Arch., pages 111-122,
2002.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change memory
technology. In 36th Intl. Symp. on Comp. Arch., volume 37,
page 24, 2009.

P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee.
Perturbation-based Fault Screening. Proc. of 13th Intl. Symp. on
High Perf. Comp. Arch., 2007.

D. Reed. High-End Computing: The Challenge of Scale. Direc-
tor’s Colloquium, 2004.

J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.

S. K. Sastry Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V.
Adve. mSWAT: Low-Cost Hardware Fault Detection and Diag-
nosis for Multicore Systems. In 42nd IEEE/ACM Intl. Symp. on
Microarchitecture, page 122, 2009.

B. Schroeder and G. Gibson. A Large Scale Study of Failures
in High-Performance-Computing Systems. /[EEE Trans. On De-
pendable And Secure Computing, (November), 2009.

B. Schroeder and G. A. Gibson. Understanding failures in petas-
cale computers. Journal of Physics: Conf. Series, 78, 2007.

B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in
the wild. In 77th Intl. Joint Conf. on Measurement and Modeling
of Computer Systems, page 193, 2009.

N. H. Seong, D. H. Woo, and H.-h. S. Lee. Security Refresh:
Prevent MaliciousWear-out and Increase Durability for Phase-
Change Memory with Dynamically Randomized Address Map-
ping. In 37th Intl. Symp. on Comp. Arch., page 383, 2010.

D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improv-
ing the Availability of Shared Memory Multiprocessors with
Global Checkpoint/Recovery. In 29th Intl. Symp. on Comp.
Arch., pages 123-134, 2002.

S. M. Srinivasan, S. Kandula, and C. R. Andrews. Flashback:
A Lightweight Extension for Rollback and Deterministic Re-
play for Software Debugging. In USENIX Tech. Conf., General
Track, page 29-44, 2004.

Standard Performance Evaluation Corporation. SPEC Bench-
marks. http://www.spec.org, 2006.

S. Thoziyoor et al. Cacti 5.3. http.//quid.hpl.hp.com:9081/cacti/,
2008.

N. Wang and S. Patel. ReStore: Symptom-Based Soft Error
Detection in Microprocessors. In IEEE Trans. on Dependable
and Secure Computing, volume 3, pages 188-201, 2006.

M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder” for
Enabling Full-system Multiprocessor Deterministic Replay. In
30th Intl. Symp. on Comp. Arch., pages 122—135, 2003.

H. Yu, R. Sahoo, C. Howson, G. Almasi, J. Castanos, M. Gupta,
J. Moreira, J. Parker, T. Engelsiepen, R. Ross, R. Thakur,
R. Latham, and W. Gropp. High Performance File I/O for The
Blue Gene/L Supercomputer. In The 12th Intl. Symp. on High-
Perf. Comp. Arch., 2006., pages 190-199, 2006.

	. Introduction
	. A Review of Checkpointing Techniques
	. Overview of KIMA
	. Implementation Details of KIMA
	Undo-Log Checkpointing
	Redo-Log Checkpoint Creation and Organization
	KIMA Engine Description

	. Evaluation
	Hardware Configuration
	Evaluation Methodology
	Performance Results
	Sensitivity Analysis
	PCM Memory Requirements and Performance/Power Considerations

	. Conclusions

