
AUTOMATED 3D VISION-BASED TRACKING OF

CONSTRUCTION ENTITIES

A Dissertation

Presented to

The Academic Faculty

by

Man-Woo Park

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Civil and Environmental Engineering

Georgia Institute of Technology

December, 2012

 AUTOMATED 3D VISION-BASED TRACKING OF

CONSTRUCTION ENTITIES

Approved by:

Dr. Ioannis Brilakis, Advisor
School of Civil and Environmental
Engineering
Georgia Institute of Technology

 Dr. Jochen Teizer
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Dr. Randall L. Guensler
School of Civil and Environmental
Engineering
Georgia Institute of Technology

 Dr. Patricio A. Vela
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Michael P. Hunter
School of Civil and Environmental
Engineering
Georgia Institute of Technology

 Date Approved: July 13, 2012

iii

ACKNOWLEDGEMENTS

First and above all, I praise God, the almighty for providing me this opportunity and

granting me the capability to proceed successfully. This thesis appears in its current form

due to the assistance and guidance of several people. I would therefore like to offer my

sincere thanks to all of them.

 First and foremost, I offer my sincere gratitude to my advisor, Dr. Ioannis

Brilakis. He has supported me during my doctoral studies with his patience and

knowledge whilst allowing me the room to work in my own way. His perpetual

enthusiasms in research have motivated me, and as a result, my research life at Georgia

Tech is rewarding.

 I am delighted to have Dr. Randall Guensler, Dr. Michael Hunter, Dr. Jochen

Teizer, and Dr. Patricio Vela become my dissertation committee members. Their

expertise and experience broaden my perspectives and nourish my intellectual maturity. I

gratefully acknowledge them for their valuable guidance and comments. I would like to

particularly thank Dr. Guensler who gave me an opportunity to participate in the

transportation project and supported me with constructive advice and suggestions.

 Many thanks go to my current and former lab mates in the Construction

Information Technology Laboratory. They make the lab a convivial place to work. They

are: Dr. Zhenhua Zhu, Dr. Christian Koch, Dr. Fei Dai, Ms. Gauri Jog, Mr. Habib Fathi,

Mr. Abbas Rashidi, Ms. Stephanie German, Mr. Evangelos Palinginis, Ms. Stefania

Radopoulou, Ms. Linda Hui, Ms. Atefe Makhmalbaf, Ms. Aswathy Sivaram, Mr. Keitaro

Kamiya, and Mr. Matthew Sandidge. I really thank you all for all the fun and discussions

we have had in the last four years.

iv

 I would like to express my gratitude to Korean students in CEE, who were always

there to encourage and comfort me whenever I had a hard time and was in trouble. They

have shared joys and sorrows with me all the time. I would have never been able to make

it through this point without all my friends in CEE.

 I owe my loving thanks to my wife, Doyoon Lee. She has lost a lot due to my

research abroad. She had a cancer surgery and went through all treatments by herself. I

cannot recall it without tears. I really appreciate her patience to get over it. She gave me

encouragement even during the treatments. Her patient love enabled me to complete this

work. I would like to thank my parents for their unconditional support, both financially

and emotionally throughout my degree. The patience and understanding shown by my

mother and father during the honours year is greatly appreciated. They always showed

their confidence in me which encouraged and strengthen me through my life. Last but not

least, my loving thanks are due to my brother and his family. I love you all more than

words can express.

 I will not forget my doctoral study years at Georgia Tech. Again, I would like

thank everybody who is important to the successful realization of this dissertation. Also, I

like to thank the National Science Foundation for its indirect and direct financial support

on this research under grant #0933931 and #0904109.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES ix

LIST OF FIGURES x

SUMMARY xiii

CHAPTER

1 INTRODUCTION 1

1.1 Background and Motivation 1

1.2 Hypothesis 5

1.3 Objectives and Scope 5

1.4 Methodology and Results 8

1.5 Thesis Organization 11

2 LITERATURE REVIEW 14

2.1 State of Practice in Monitoring Construction Resources 14

2.1.1 Global Positioning System (GPS) 14

2.1.2 Radio Frequency Identification (RFID) 15

2.1.3 Ultra Wide Band (UWB) 17

2.2 State of Research in Optical Sensor Based Tracking for Construction 17

2.3 Vision-Based Object Detection 18

2.4 Vision-Based 2D Tracking 22

2.4.1 Contour-Based Methods 23

2.4.2 Template-Based Methods 25

2.4.3 Point-Based Methods 27

vi

2.5 Stereo View Geometry 29

2.6 Summary 32

3 DETECTION OF CONSTRUCTION WORKER AND EQUIPMENT 34

3.1 Construction Worker Detection 34

3.1.1 Methodology 34

3.1.2 Implementation 42

3.1.3 Experiments and Results 43

3.1.3.1 Metrics for Performance Evaluation 43

3.1.3.2 The Definition of ‘Construction Worker’ 44

3.1.3.3 Results - Precision and Time Delay 46

3.2 Construction Equipment Detection 51

3.3 Summary 54

4 2D TRACKING OF CONSTRUCTION ENTITIES 56

4.1 Comparison of 2D Vision Tracking Methods for Tracking of Construction
Entities 56

4.1.1 Independent Variables 57

4.1.2 Dependent Variables 59

4.1.3 Discussion on Contour-Based Methods 60

4.1.4 Experiments on Template-Based and Point-Based Methods 64

4.1.4.1 Absolute Value of Illumination 65

4.1.4.2 Illumination Variation 71

4.1.4.3 Occlusion 74

4.1.4.4 Scale Variation 78

4.1.4.5 Discussion 80

4.2 Combination of Detection and Tracking 81

4.2.1 Methodology 82

vii

4.2.2 Experiments and Results 83

4.3 Summary 85

5 CALCULATION OF 3D COORDINATES 88

5.1 Stereo Camera Calibration 88

5.1.1 Intrinsic Calibration 89

5.1.2 Extrinsic Calibration 90

5.2 Triangulation 91

5.3 Summary 91

6 VALIDATION 93

6.1 Experiment Design 93

6.2 Implementation 96

6.3 Experiments and Results 97

6.3.1 Point Matching between Two Views 97

6.3.2 Tracking of a Steel Plate 100

6.3.3 Tracking of an SUV 102

6.3.4 Tracking of a Construction Worker 104

6.4 Summary 107

7 CONCLUSIONS 109

7.1 Review of Motivation and Objectives 109

7.2 Review of Methods 110

7.3 Discussion and Conclusions 112

7.4 Contributions 114

7.5 Limitations and Recommendations for Future Work 115

APPENDIX A: CODE FOR DETECTION 118

APPENDIX B: CODE FOR 2D TRACKING 125

viii

APPENDIX C: CODE FOR 3D COORDINATE CALCULATION 143

REFERENCES 149

VITA 161

ix

LIST OF TABLES

Page

Table 3.1: The combinations of safety gears 43

Table 3.2: The detection rate (recall) of 5 people 45

Table 3.3: The precision of detection results 50

Table 3.4: The delay of detection 50

Table 3.5: The cause of missed detections 51

Table 4.1: Number of frames successfully tracked 64

Table 4.2: The average errors (pixels) and p-values of their difference for the tests on
illumination conditions (model videos) 66

Table 4.3: The number of successfully tracked frames, the average errors (pixels), and p-
values of error difference for the tests on illumination conditions (site videos)
 67

Table 4.4: The average errors (pixels) and p-values of error difference for the tests on
illumination conditions (model videos) 73

Table 4.5: The number of successfully tracked frames, the average errors (pixels), and p-
values of error difference for the tests on illumination variations (site videos)74

Table 4.6: The average errors (pixels) and p-values of error difference for the tests on
occlusions 76

Table 4.7: The average errors (pixels) and p-values of error difference for the tests on
scale variations 80

Table 4.8: The number of successfully tracked frames, the average errors (pixels), and p-
values of error difference for the tests on scale variations 80

Table 4.9: Determination of the best category between template-based and point-based
methods 81

Table 4.10: The number of training images, and template sizes used for detection 84

Table 6.1: Errors of tracking a steel plate 101

Table 6.2: Errors of tracking an SUV 103

Table 6.3: Errors of tracking a worker (DR=0.6) 106

x

LIST OF FIGURES

Page

Figure 1.1: Tracking of a concrete bucket 2

Figure 1.2: The overall framework of tracking construction entities using two cameras 9

Figure 2.1: The representations of the object (contour-based, template-based, and point-
based methods from left to right) 23

Figure 2.2: Epipolar geometry and centroid relocation 30

Figure 3.1: The framework of construction worker detection 35

Figure 3.2: The foreground regions which result from the approximate median filter (1st
row), the MoG (2nd row), and the color co-occurrence (3rd row) methods 37

Figure 3.3: (a)-(c): people images, (d): average gradients of 200 people images, (e)-(g):
worker images, (h): average gradients of 200 worker images 38

Figure 3.4: RGB color histograms of yellow-green safety vests in bright (1st row) and
dark (2nd row) illumination conditions 39

Figure 3.5: RGB color histograms of orange-red safety vests in bright (1st row) and dark
(2nd row) illumination conditions 39

Figure 3.6: HSV color histograms of yellow-green safety vests in bright (1st row) and
dark (2nd row) illumination conditions 40

Figure 3.7: HSV color histograms of orange-red safety vests in bright (1st row) and dark
(2nd row) illumination conditions 40

Figure 3.8: HSV color histograms of ordinary vests on pedestrians 40

Figure 3.9: Saturation images of a pedestrian (a) and construction workers (b and c) 41

Figure 3.10: Examples for correct detections (left) and false results (right) (Videos 1-3
from top to bottom) 46

Figure 3.11: The performance variation of the method depending on the number of bins
in a saturation histogram 47

Figure 3.12: The performance variation of the method depending on the number of bins
in a hue histogram 48

Figure 3.13: The performance variation of the method depending on the ‘k’ value 48

xi

Figure 3.14: Detection of construction workers using 1100 (left) and 2200 (right)
negative images 49

Figure 3.15: The framework of construction equipment detection 52

Figure 3.16: (a) Rear (b) and left views of a wheel loader: 4 principal components of
eigen-images (right upper), and the reconstructed image (right lower) 53

Figure 4.1: The error for accuracy measurement (The blue/green rectangle and dot
represent the tracked/actual (ground-truth) region and centroid respectively.
The arrow represents the error.) 60

Figure 4.2: A worker tracked by a contour-based (upper row) method and a template-
based method (lower row) 61

Figure 4.3: A roller tracked by a contour-based (upper row) method and a template-based
method (lower row) 62

Figure 4.4: A backhoe bucket tracked by a contour-based (upper row) method and a
template-based method (lower row) 63

Figure 4.5: Five levels of illumination conditions (level 1 to 5 from the darkest to the
brightest) 68

Figure 4.6: The results of tracking a worker under level 5 illumination condition ((b) the
frame at which the point-based method lost the object, (a) the frame previous
to (b), (c) and (d) the template-based method’s result corresponding to (a) and
(b)) 69

Figure 4.7: The results of tracking a dozer under level 1 illumination condition ((b) the
frame at which the point-based method lost the object, (a) the frame previous
to (b), (c) and (d) the template-based method’s result corresponding to (a) and
(b)) 69

Figure 4.8: (a) and (b) the point-based method’s results of the 10th and 50th frame, (c)
and (d), the template-based method’s results of the 10th and 50th frame
(tracking a worker) 69

Figure 4.9: The point-based method’s results of the 1st and 6th frame (tracking a pipe
model) 70

Figure 4.10: (a) and (b), the point-based method’s results of the 2nd and 10th frame, (c)
and (d), the template-based method’s results of the 2nd and 10th frame
(tracking a concrete bucket) 70

Figure 4.11: Illumination variation with 0.1 /s frequency imposed on the video of a car
model 72

xii

Figure 4.12: The four levels of occlusion (20%, 40%, 60%, and 80% - from left to right)
 75

Figure 4.13: The 1st fame (left) and the 35th frame (right) of the tracking a backhoe with
the point-based method 76

Figure 4.14: The 55th frame of tracking a 60% occluded truck model (the point-based
method (upper left), the template-based method (upper right)), and the 46th
frame of tracking a 40% occluded dozer in a real site (the point-based method
(lower left) the template -based method (lower right)) 77

Figure 4.15: The results of tracking a worker with the point-based method (left column),
the template-based method (right column) – the 1st, 42nd, and 84th (last)
frames from top to bottom 79

Figure 4.16: The results of tracking a dozer with the point-based method (left column),
the template-based method (right column) – the 1st and 21st frames from top to
bottom 79

Figure 4.17: Results of the proposed method (red) and a tracking method (blue) under
total occlusion (left column) and viewpoint change (right column) 85

Figure 5.1: The example frames of a checkerboard video 89

Figure 6.1: The layout of tests from a top view 94

Figure 6.2: Trajectories 1 and 2 from right camera 1’s view (top) and trajectory 3 from
right camera 2’s view (bottom) 95

Figure 6.3: 3D tracking error calculation 96

Figure 6.4: Point matches obtained by SURF+RANSAC (DR=0.8) 98

Figure 6.5: Point matches obtained by SIFT+MAPSAC (DR=0.6) 99

Figure 6.6: The tracking results of a steel plate 101

Figure 6.7: Tracking results of an SUV 102

Figure 6.8: 2D tracking results in the right camera view 103

Figure 6.9: Tracking results of a worker with a short baseline 104

Figure 6.10: Tracking results of a worker with a long baseline 105

Figure 6.11: The appearance variations of (a) a steel plate and (b) a worker 107

Figure 6.12: 2D tracking results: the 693rd frame of (a) the left and (b) the right camera
 107

xiii

SUMMARY

In construction sites, tracking project-related entities such as construction equipment,

materials, and personnel provides useful information for productivity measurement,

progress monitoring, on-site safety enhancement, and activity sequence analysis. Radio

frequency technologies such as Global Positioning Systems (GPS), Radio Frequency

Identification (RFID) and Ultra Wide Band (UWB) are commonly used for this purpose.

However, on large-scale congested sites, deploying, maintaining and removing such

systems can be costly and time-consuming because radio frequency technologies require

tagging each entity to track. In addition, privacy issues can arise from tagging

construction workers, which often limits the usability of these technologies on

construction sites. A vision-based approach that can track moving objects in camera

views can resolve these problems.

 The purpose of this research is to investigate the vision-based tracking system that

holds promise to overcome the limitations of existing radio frequency technologies for

large-scale, congested sites. The proposed method use videos from static cameras. Stereo

camera system is employed for tracking of construction entities in 3D. Once the cameras

are fixed on the site, intrinsic and extrinsic camera parameters are discovered through

camera calibration. The method automatically detects and tracks interested objects such

as workers and equipment in each camera view, which generates 2D pixel coordinates of

tracked objects. The 2D pixel coordinates are converted to 3D real-world coordinates

based on calibration. The method proposed in this research was implemented in .NET

Framework 4.0 environment, and tested on the real videos of construction sites. The test

xiv

results indicated that the methods could locate construction entities with accuracy

comparable to GPS.

1

CHAPTER 1

INTRODUCTION

This research tests the feasibility of using rapidly innovative in computer vision and high

definition cameras for the purpose of tracking project-related entities in construction

sites. Tracking of construction entities provides useful information for various site

management tasks including safety management, productivity analysis, and progress

monitoring and activity sequence analysis. The rest of this chapter consists of the

research motivation, objectives, methodology, and the organization of this dissertation.

1.1 Background and Motivation

One of the greatest challenges of engineering noted by National Academy of Engineering

is the need for higher level of automation in construction (National Academy of

Engineering 2008). Even though there are great opportunities to enhance construction

engineering through the state-of-the-art technologies in computer science and robotics,

relatively conservative attitudes of construction industry have slowed down the migration

of those technologies (Anumba 1998; Shapira and Rosenfeld 2011; Park et al. 2004). In

addition to the tendency to be reluctant to adopt new technologies and ideas, complexity

and diversity inherent in most construction projects make it difficult to directly apply the

technologies to construction. However, many researchers have recently endeavored to

change the trends and introduce new technologies for increased efficiency and accuracy

in all aspects of construction from planning and design (Osman et al. 2003; Veeramani et

al. 1998), through construction of the facility (Bernold 2007; Bock 2008), its operation

and maintenance (Ko 2009; Victores et al. 2011). Significant efforts have been made to

 2

automate acquisition of real time site information to provide an additional layer of control

over the project. Automated tracking is one of the topics in this area.

 Tracking provides location data of construction entities (e.g. personnel, equipment

and materials) over time. This spatiotemporal information is useful for various

construction applications such as productivity measurement, travel path conflict

detection, safety management, progress monitoring, and activity sequence analysis, etc.

For a simple example, as in Figure 1.1, tracking of a concrete bucket can provide the

duration of a crane cycle for moving the concrete bucket, which is useful for productivity

measurement. Also, the destination of the concrete bucket can identify the activity being

processed. Furthermore, workers who may pass underneath the moving concrete bucket

can be detected and warned if they are tracked with automated systems.

 Tracking methods applied in construction industry include Radio Frequency

Identification (RFID), Ultra Wide Band (UWB), and global positioning system (GPS).

These technologies have an established record of tracking resources robustly for most

Concrete
Mixer

Destination

Figure 1.1: Tracking of a concrete bucket

 3

construction scenarios, such as proactive work zone safety, and material localization and

installation. RFID has been employed for tracking precast concrete elements from their

casting to assembly, and UWB is well-known for indoor tracking of construction

materials. The latest construction heavy equipment is equipped with GPS units by the

manufacturer for better control of its tasks and tracking. However, the requirement for a

separate tag/sensor on each entity to be tracked can limit their applicability in large-scale,

congested construction sites where a large number of entities need to be tagged. Also,

privacy issues can arise out of tagging workers who may be uncomfortable with being

tagged and tracked. In such cases, there is a need for a more efficient tracking technology

in terms of time and cost, that accurately locates construction entities, maximizes the

number of entities to track, and minimizes labor costs.

 Surveillance cameras are often deployed in construction sites to monitor a broader

perspective of construction activities and operations (Bohn and Teizer 2009). Many

contractors understand advantages of utilizing the on-site cameras. Cheap and high

resolution cameras can capture construction video while extensive data storage and

network capacities enables users to monitor the sites in real-time. Such a camera network

system alleviates the need for personnel to walk around the site and take photos.

Allowing for access to several site views at different locations, the camera network

facilitates monitoring of project progress and site safety. Given that on-site construction

cameras are used in an increasing number of construction sites, the vision-based

technology has a high potential to add the values of the cameras as an efficient tracking

sensor. Archived video data can be used for visualization of construction processes,

remote visual inspections, and progress monitoring. Also, important evidence, in the case

 4

of litigation associated with the project, can be found from the video data (Brilakis 2005).

With the advent of robust computer vision algorithms, it is possible to aumatically extract

information of on-site activities from video streams (Gong and Caldas 2010).

 Vision-based tracking can provide real-time visual information of construction

job sites. Vision-based tracking tracks moving objects in a video on the basis of their

visual patterns and motion patterns. Vision-based tracking is unobtrusive, since it can

track multiple entities concurrently without installing sensors and ID tags of any kind on

the tracked entities. This advantage makes this technology highly applicable in dynamic,

busy construction sites, where large numbers of equipment, personnel and materials are

involved, and more desirable from personnel who wish to avoid being “tagged” with

sensors. Also, Vision-based tracking features a vast size of traceable area. In addition,

due to the simplicity, commercial availability and low costs associated with video

equipment, vision-based tracking can be clearly profitable in various construction

operations (Caldas et al. 2004). However, the general vision trackers have two limitations

to overcome. First, vision-based tracking only provides 2D pixel coordinates which does

not reflect real motions well. The 2D results may be useful in cases where predefined

measurements on an entity’s trajectory are available as in Gong and Caldas’ research

work (2010). However, the lack of depth information limits application of the general

vision trackers. Spatial distance between two entities as well as any motion in the

perpendicular direction to the camera image plane is not measurable. To obtain 3D

location information and be competitive to other radio frequency technologies, additional

procedures are required. Second, to initialize the trackers, it is necessary to manually

 5

mark the region of interested objects to be tracked. Therefore, an automated way of

initialization is demanding to get rid of the burdensome manual processes.

1.2 Research Hypothesis

The hypothesis behind this research is: real world 4D coordinates (3D positions across

time) of construction entities can be automatically retrieved from videos by creating and

applying appropriate algorithms of visual pattern recognition, digital filtering, camera

calibration, and machine learning. The proposed vision-based tracking method promises

to determine the spatial location of objects of standard sizes and shapes, across time,

without installation of any sensors so that it can be considered an appropriate alternative

to other technologies such as GPS, RFID, and UWB. Specifically, stereo camera system

is considered, which allows the acquisition of 3D spatial information.

 The emphasis in this research is placed on creating or selecting capable methods

for 1) automatically detecting construction entities in video streams when they first

appear, 2) tracking the detected entities in the subsequent frames which provides 2D

location across time, 3) integrating detection and tracking algorithms for robust and

stable 2D localization, and 4) calibrating stereo camera system and triangulating 2D pixel

coordinates from two camera views to obtain depth information and calculate 3D real-

world coordinates for each frame. The developed methods need to be validated on the

videos collected in real construction sites, and their corresponding performance needs to

be measured with appropriate performance metrics.

1.3 Objectives and Scope

There are various types of construction entities involved in most projects such as

construction equipment, workers, and materials. Moreover, equipment (e.g. tuck, loader,

 6

excavator, etc.) and materials (precast concrete elements, steel beams and plates, bricks,

etc.) can be classified into a variety of categories. Out of such varied entities, this

research effort is focused on construction workers and equipment. Specifically, the wheel

loader, which is one of the most frequently used equipment for construction earth works,

is mainly dealt with as a representative of equipment. Construction materials are not the

main focus since RFID and UWB are supposed to work with high accuracy and

efficiency (Teizer et al. 2008). RFID is known to be able to track materials from

manufacturing to installation, and UWB is typically devised for tracking in indoor

environment. Even though the needs for attaching tags and deploying associated facilities

on the site limit their application to a certain degree, the potential application of vision-

based tracking of materials is very limited when compared to tracking of other entities.

For example, radio frequency technologies better fit to tracking of precast concrete

elements from an off-site factory to the site because the coverage area of vision tracking

is limited to only the construction site. Furthermore, material detection has been an

independent active research topic and has been investigated in previous works (Brilakis

and Soibelman 2008; Zhu and Brilakis 2010).

 The main objective of this research is to test feasibility of acquiring 4D spatio-

temporal information of interested entities on construction sites (i.e. construction

equipment and workers) from video streams with an enhanced degree of automation. To

support this main objective, specifically, the research effort is divided into the following

three sub-objectives.

1. Create novel detection methods to automatically recognize and localize

construction entities for the purpose of initializing the tracking process. Once an

 7

object of the interested type appears first in the view, it has to be detected so that

the tracking process is triggered to track the detected object in subsequent frames.

For this purpose, image features that effectively characterize visual patterns of

construction equipment and workers are investigated and integrated into a

detection process.

2. Find the best methods to track construction entities in 2D. Since there exist

numerous methods that are capable of tracking construction entities, the research

performs appropriate categorization and thorough comparison to assess the most

effective 2D trackers.

3. Integrate detection and 2D tracking methods in a single line so that they

compliment each other resulting in more stable and reliable process.

4. Investigate the way of calibrating stereo cameras for effective monitoring

construction sites. Generally, the longer the baseline (distance between cameras),

the higher the accuracy that can be achieved. Also, the longer the distance from

cameras to objects, the lower the accuracy. Therefore, a long baseline is necessary

to track objects at long distance from the cameras in large scale construction sites.

Calibration methods compatible with such conditions are investigated and tested.

5. Discuss the research findings.

 It should be noted that real-time processing is not a concern in this research. This

research devotes attention more on the feasibility of the automated 4D data acquisition

than on real-time processing. It is believed that real-time processing can be achieved in a

commercializing step through program optimization or employing a GPU (Graphics

Processing Unit). Besides, certain types of applications do not necessarily require real-

 8

time information. While real-time processing is ultimately required for incident detection

and safety applications, productivity analysis and activity sequence analysis can be

performed in post processing of acquired data on a daily or weekly basis. Though the

research seeks faster methods for each step, accuracy takes precedence over processing

time. In this work, trajectory is one of the most important materials for various tasks of

monitoring construction sites or highway traffic; hence, this research delves into how to

extract trajectories of entities from video data regardless of application.

1.4 Methodology and Results

The research work in this study includes: 1) detecting construction workers, equipment

and vehicles, 2) tracking all detected entities, 3) adjusting tracking results through the

integration with detection results, and 4) calibrating cameras to convert 2D pixel

coordinates to 3D real-world spatial coordinates. The entire framework is illustrated in

Figure 1.2.

 For monitoring construction sites, stereo camera system is proposed to estimate

3D spatial coordinates (Figure 1.2). Two cameras need to have partially overlapping

viewing spectrums so that objects to be tracked can be seen in both views. Each camera

view is continuously searched for new construction resources (i.e. workers, equipment,

materials). Once a resource is detected, its image region is marked and given to a 2D

vision tracker for tracking the entity in each subsequent frame. Such concurrent detection

and tracking allows for handling occlusions (worker moving behind an object, and

reappearing further down), and adjusting the tracker window to ensure robust tracking.

 Detection is possible by characterizing the visual patterns of various entities and

detecting the regions in the video frame that match the visual pattern. This is achieved by

 9

identifying common visual patterns for each entity type (e.g. workers, wheel loaders, and

dump trucks, etc.) by training the algorithm with images of similar objects taken from

various view angles and under different illumination conditions (Chapter 3). Tracking the

entity across time involves locating the same entity over time within the view (Chapter

4). The centroid of the detected and tracked entity is then calculated in a 2D pixel

coordinate (x and y) at each frame. Generally, the 2D data are not enough to extract

substantial information for most construction management tasks since it is unknown how

far entities are located from the camera. Due to the lack of depth data (z), even

approximate distance measurements between two entities (e.g. workers and mobile

equipment) are not reliable, but necessary for e.g. safety management. Also, any

Figure 1.2: The overall framework of tracking construction entities using two cameras

Triangulation

Camera
Calibration

Object
Detection

2D Tracking

Image Frame
(Left Video)

2D Pixel
Coordinates

Object
Detection

2D Tracking

Image Frame
(Right Video)

2D Pixel
Coordinates

Intrinsic &
Extrinsic

Parameters

3D
COORDINATES

 10

movement along the z axis is not measurable. Obtaining 3D coordinates is possible by

correlating 2D coordinates from two or more views (Chapter 5). This is achieved by

calibrating the on-site cameras once (at the beginning of the project) such that intrinsic

(e.g. focal length) and extrinsic (translation and rotation between cameras) camera

parameters are known. The 3D coordinates are then calculated by triangulating the 2D

positions of each element from two or more views (Hartley and Zisserman 2004).

 Every process of the proposed framework in Figure 1.2 is evaluated step by step.

The detection process is evaluated on the basis of precision and time-delay since the main

purpose of the detection process is to initiate the 2D tracking process (Chapter 3). In

other words, it is desirable for the process to detect only interested types of objects

immediately after the objects newly appear in the view (higher precision and shorter

time-delay). The 2D tracking process is assessed based on the errors of centroid of

tracked regions and the number of frames in which objects are successfully tracked

(Chapter 4). The two metrics measure the accuracy of tracked position and the stability of

the process. The error of centroid position is calculated only for the successful frames.

Finally, overall 3D tracking performance is measured by errors of determined 3D

locations (Chapter 6).

 The proposed framework in Figure 1.2 is implemented using Microsoft Visual C#

in .NET Framework 4.0 environment. EmguCV (Emgu CV 2010) was used as a wrapper

to allow OpenCV (Bradski and Kaehler, 2008) functions to be called in the prototype.

Both OpenCV and EmguCV are open source. Each step of the framework in Figure 1.2 is

tested on construction videos and validated based on the defined metrics. As will be

discussed in Chapter 6, the overall framework composed of the validated methods is

 11

tested on videos of construction sites with controlled conditions. Tracking of a worker, a

steel plate, and an SUV (Sport Utility Vehicle) at a construction site results in 3D

location errors less than 0.7 m with 95% confidence level which are comparable to

general GPS, and validates feasibility of the proposed methodology.

1.5 Dissertation Organization

The motivation, hypothesis, objectives, methodology and results, and contributions

behind this research have been introduced. The remaining chapters in the dissertation are

organized as follows.

 Chapter 2 is a background literature review chapter. The chapter first outlines the

current practices of monitoring construction resources and the state of research in optical

sensor based tracking for construction applications. The current practices and the state of

research in construction are followed by an overview of the fundamental knowledge and

previous research studies in 1) vision-based object detection, 2) vision-based 2D tracking,

and 3) stereo view geometry which this research plans to build on and augment for the

purpose of tracking and localizing construction entities in 3D. The chapter ends with a

summary on discussing the issues and limitations of current practices of tracking for

construction as well as the potential of vision-based tracking.

 Chapter 3 presents the first part of the proposed framework. Novel, automated

methods for recognizing and locating construction workers and equipment are explained

in separate subchapters. Each step of the methods is explained in detail. The

implementation and experimental test results of construction worker detection are also

presented. The performance metrics used to evaluate the method’s performance are

explained. This is then followed by the definition of ‘construction worker’ which is

 12

important for validation. The chapter ends with an overview on the designed method,

implementation, and experiments.

 Chapter 4 describes the second part of the proposed frameworks which is 2D

tracking. Details of a comparative study are explained, which aims to find the best 2D

tracking methods for tracking construction entities. Independent and dependent vaiables

of the comparison experiments are discussed. The reasons for removing contour-based

methods from the main comparison expeirments are explained through investigation on

their features and preliminary tests. Then, results of thorough comparison of template-

based methods and point-based methods are presented. In the following subchapter, the

methodology of integrating detection and tracking is explained. Experiments and results

are also presented. The chapter ends with an overview on the designed method,

implementation, and experiments.

 Chapter 5 deals with the last part of the proposed framework, which is calculation

of 3D coordinates. First, the methods of intrinsic and extrinsic calibraton, which are

executed only once after cameras are setup, are described in detail one by one. Then, the

selected triangulation method is explained.

 Chapter 6 presents overall experiments performed to validate the proposed

framework. The experiment design, implementation of the framework, and results are

presented in detail from one after another. The experiments include tracking of a

construction worker, a steel plate, and an SUV. The chapter ends with an overview on the

experiment design and results.

 In Chapter 7, the findings and contributions of this research are described.

Initialization of general 2D vision tracking is automated by construction entity detection

 13

methods. Template-based 2D tracking methods are determined as the most appropriate

methods for tracking construction entities. Depth information and 3D spatial coordinates

are obtained by emplying stereo camera systems, and a long baseline allows comparable

accuracy to GPS. This chapter also discusses about next steps to extend and enhance the

research – hybrid 2D tracking methods, real-time processing, and three- or four-view

geometry.

 14

CHAPTER 2

LITERATURE REVIEW

2.1 State of Practice in Monitoring Construction Resources

In recent years, state-of-the-art technologies are employed in practice for monitoring

construction resources. Many researchers have investigated on these technologies for the

purpose of site monitoring, and practical applications of the technologies have recently

been reported by several contractors. This chapter introduces radio frequency

technologies such as GPS (Global Positioning System), RFID (Radio Frequency

Identification), and UWB (Ultra Wide Band) which are well-known for tracking

construction entities.

2.1.1 Global Positioning System (GPS)

GPS is the most famous technology which is generally used to track a fleet of heavy

equipment. It has become a well-established monitoring system in construction sites. The

system consists of a constellation of satellites, GPS sensors mounted on each equipment

asset, and a central module that communicates with the sensors. Each sensor captures the

asset's location and transmits the data to the central module over the mobile network,

which makes it possible to visualize the location of all equipment on a single map in real

time (Eecke 2010; Henderson 2008). Numerous products of the GPS system have been

emerged for tracking and monitoring construction equipment (Cable 2010; Engineering

News-Record 2008a, 2008b). Equipment manufacturers are adopting the products to

provide for their customers (Construction Equipment 2010). The GPS sensors are capable

 15

of reporting locations as well as idle and work time, and odometer readings. Analyzing

the reported data can bring about significant benefits for contractors such as reduced fuel

budget, better equipment utilization, and timely maintenance, etc. (Eecke 2010). Theft

protection is also available via user-defined curfews, perimeter alerts, and homing beacon

function (Construction Equipment 2010). For instance, a Texas-based contractor had

found a stolen rubber tire backhoe costing $85,000 via its GPS system

(ForConstructionPros.Com 2006). Though GPS has been applied to outdoor construction

practices like positioning of construction equipment (Oloufa et al. 2003) and vehicles (Lu

et al. 2007), the maximum error of general GPS is about 10 m, and it can be reduced to 1

cm by using kinematic GPS with trade off in increased costs (Caldas et al. 2004).

Moreover, a recent report states that construction business in the United States will face

serious disruption to their GPS-involved operations because of 4G-LTE open wireless

broadband network that incorporates nationwide satellite coverage

(ForConstructionPros.Com 2011).

2.1.2 Radio Frequency Identification (RFID)

RFID-based systems are also widely used in construction projects. The systems consist of

RFID tags, a reader, and a data management system. When a reader requests, each tag

sends its own ID so that the reader can identify the unique object. It is generally used to

access and track construction materials or workers. When a critical piece of material

arrives on site or it is placed in the structure, a tag attached to or embedded in the piece is

read to register the event with its ID and timestamp of accomplishment (Engineering

News-Record 2008c). Engineering News-Record reported about a notable case in which

Skanska made use of RFID technologies to track pre-cast structural elements from

 16

casting to assembly in a football stadium construction (Sawyer 2008a). In the project,

RFID tagging was integrated with BIM (Building Information Modeling). A 4D model is

updated by uploading RFID scanned information (Yoders 2008). The system enabled

project managers to easily monitor whether the elements were in the correct sequence.

RFID-based systems have also been applied to labor and equipment control (Engineering

News-Record 2008c; Sawyer 2008b). A system commercialized by the DoallTech

corporation combines tags on ID cards with a digital camera in the reader to verify

identities (Sawyer 2008b). The RFID-based system was reported to be used in more than

400 projects around the world (Engineering News-Record 2008c). Furthermore, RFID

systems facilitate safety control. The systems have been utilized to prevent the collisions

among tower cranes (Gomez 2007a). Also, fall protection equipment combined with a

RFID system is now available, which enhances the effectiveness of safety control

(Gomez 2007b).

 Researchers have continuously made efforts on the application of RFID in

construction. It has been applied to quality management (Wang 2008), prevention of

collision accident (Elghamrawy and Boukamp 2010), and automatic identification of

construction concepts (Chae and Yoshida 2010). Recently, Ko (2010) proposed a

methodology of 3D sensing with RFID which locates the positions of various

construction entities. However, the near-sighted effect prohibits its use in tracking

applications. There have also been efforts to integrate RFID and GPS technology. Ergen

et al. (Ergen et al. 2007) applied this combination to track precast pieces in a storage

yard. These research efforts led to the practical use of RFID technologies in a

construction project.

 17

2.1.3 Ultra Wide Band (UWB)

UWB is another type of radio technology that can be applied to short-range

communications. UWB is able to detect time-of-flight of the radio transmissions at

various frequencies, which enables it to perform effectively in providing precision

localization even in the presence of severe multipath effects (Fontana et al. 2003).

Another advantage is the low average power requirement that results from the low pulse

rate (Fontana, 2004). Teizer et al. (2007a) applied the UWB technology to construction.

It was used for a material location tracking system with primary applications to active

work zone safety. Its ability to provide accurate 3D locations in real-time is a definite

benefit to tracking in construction sites.

2.2 State of Research in Optical Sensor Based Tracking for Construction

Vision technologies and laser technologies are attracting increasing interests for tracking

in large-scale, congested sites because they are free of tags. A 3D range imaging/video

camera (e.g. a Flash LADAR) provides not only the intensity but also the estimated range

of the corresponding image area. When compared to 3D laser scanners which have been

used in construction, the device is portable and inexpensive. Testing various kinds of data

filtering, transformation and clustering algorithms, Gong and Caldas (2008) used 3D

range cameras for spatial modeling. Teizer et al. (2007b) demonstrated tracking with 3D

range cameras and the potential of its use for site safety enhancement. However, the low

resolution and short range make it difficult to be applied to large-scale construction sites.

Few tests have been executed in outdoor construction sites where the environments are

more cluttered and less controlled. Also, it is reported that the reflectance of a surface

 18

varies extremely even in indoor environments (Gächter et al. 2006). Moreover, when

multiple cameras are used, they can interfere with each other (Fuchs 2010).

 Remote-controlled web-based cameras are currently available and used for remote

monitoring of construction sites (Engineering News-Record 2008d, 2008e; Gomez 2007).

The cameras are controlled remotely through pan/tilt/zoom functions, and transmit video

frames wirelessly to the central system. The wireless communication system enables one

person to monitor an entire site, which substantially reduces security cost (Gomez 2007).

Along with the increasing of use construction cameras, vision-based tracking has recently

been investigated. Traditional 2D vision tracking is simply based on a sequence of

images and can be a proper alternative to RFID methods because it removes the need for

installing sensors and ID tags of any kind on the tracked entity. For this reason, this

technology is (a) highly applicable in dynamic, busy construction sites, where large

numbers of equipment, personnel and materials are involved, and (b) more desirable from

personnel who wish to avoid being “tagged” with sensors. In Gruen’s research (1997), it

is highly regarded for its capability to measure a large number of particles with a high

level of accuracy. Teizer and Vela (2009) investigated vision trackers for construction

worker tracking, and Yang et al. (2010) proposed a vision tracker that can track multiple

construction workers. Gong and Caldas (2010) validated that vision tracking can be

applied to automate productivity analysis. However, in these works, the results were

limited to 2D pixel coordinates and the entities to be tracked were manually marked.

2.3 Vision-Based Object Detection

This chapter presents a literature review on the computer vision algorithms which are

used for object detection in this research. The purpose of object detection is to recognize

 19

and localize an object category (e.g. face, vehicle, and animal) by image features which

are common to all objects of the type. In this research, object detection plays an

important role in localizing construction entities and vehicles in 2D. The challenge of

object detection is to construct a feature template compatible to various appearances of

the object category. Shape, color, and motion features are generally used for object

detection.

 Haar-like features (Viola and Jones 2001; Lienhart and Maydt 2002) and

Histogram of Oriented Gradients (HOG) (Dalal and Triggs 2005; Zhu et al. 2006) are

well-known shape features. Both features are on the basis of gradient values, but utilize

them in different ways. Haar-like features are vectors of image gradients which are

differences of intensities between adjacent regions. In order to detect various appearances

of an object type, the features are trained through a machine learning process: Haar-like

features of various appearances are extracted from abundant training images and the

features are trained with machine learning algorithms. For example, Viola and Jones

(2001) used vertical and horizontal Haar-like features with an AdaBoost (Adaptive

Boosting) algorithm (Freund and Schapire 1997) for human face detection. Lienhart and

Maydt (2002) introduced additional 45˚ Haar-like features to account for diagonal edges

and enhance the detection. Even though training with AdaBoost takes several days

depending on the processor specifications, the method allows for real time detection once

the training is completed. The HOG feature is a collection of local histograms of gradient

directions. It divides an image based on a grid of uniformly spaced blocks. For each

block, a histogram is calculated by counting the occurrence of gradient orientations.

Similar to Haar-like features, HOG features also need training with a large number of

 20

images. Dalal and Triggs (2005) applied HOG features trained with SVM (Support

Vector Machine) (Joachims 1999) for human detection. They showed the superiority of

HOG features over Haar-like features in human detection. Zhu et al. (2006) sped up the

human detection by using AdaBoost while retaining the equivalent accuracy.

 Color is also a useful and intuitive feature for recognizing an object type. A color

histogram (Swain and Ballard 1991) is one of the typical color features. Simple

calculation and invariance to rotation and translation are its useful qualities for object

detection. It is suitable for detecting an object in distinctive colors. However, the

sensitivity to illumination and the lack of spatial information limits its applications. The

color histogram has been broadly used for image segmentation and content-based image

retrieval in which spatial information is not critical (Zhang et al. 2009; Huang et al.

2004). It has also been employed in tracking applications. In tracking processes, color

histograms combined with HOG features were used as observation models of pedestrians

(Sugano and Miyamoto 2009), hockey players (Lu et al. 2009), etc. However, color

histograms are not appropriate for the detection of pedestrians or hockey players since

their colors widely vary from person to person according to their clothing. In Lu et al.’s

work (2009), Haar-like features are used for detection, and the color histogram is used

exclusively for tracking the detected entities.

 A set of eigen-images is a famous feature used for human face detection. It is

usually combined with principal component analysis (PCA) (Turk and Pentland 1991) or

Fisher’s linear discriminant (FLD) (Belhumeur et al. 1997) which reduces the

dimensionality of the feature. The feature template is obtained by computing the

covariance of the pixels and removing meaningless components. It contains both color

 21

and shape information as it exploits vectors of pixel values which are lined up based on

spatial location. The features work well for recognizing human faces with various

illumination conditions and various expressions. However, they have been tested mostly

on frontal faces, and had troubles with recognizing the faces of different angles.

 Background subtraction (Mcfarlane and Schofield 1995; Stauffer and Grimson

2000; Li et al. 2002) detects moving objects on the basis of their motion cues. This

method can be applied only to fixed camera views. The static background scene is

modeled by taking a dominant value for each pixel across a certain number of frames.

The model has to be updated throughout the frames in order to reflect changes of

illumination. Mcfarlane and Schofield (1995) presented an approximated median filter

which estimates the background with a simple update process. It increases/decreases the

background estimate if the pixel value of the new video frame is larger/smaller than the

estimate. The MoG (Mixture of Gaussians) method (Stauffer and Grimson 2000) is one

of the most popular background modeling methods. It models the background pixel

values as a mixture of multiple Gaussian distributions. Moving objects are detected by

thresholding the difference of pixel values between the current frame and the

background. Li et al. (2002) screened out moving background objects such as wavering

trees and shadows by modeling them with the color co-occurrence feature. Background

subtraction is computationally efficient since it can detect all moving objects

simultaneously regardless of their appearances or types. However, motion features are

not suitable to identify object types. Furthermore, background subtraction may recognize

multiple objects that partially overlap each other as a single object.

 22

 Recently, several approaches for detecting construction entities have been

proposed. Jog et al. (2011) presented methods for detection of trucks. They used the

Semantic Texton Forests approach (Shotton et al. 2008), which detects objects through

segmentation and classification. Though the method correctly marked regions of trucks

with high accuracy, it is not capable of differentiate partially overlapped objects and an

additional process for grouping segmented regions is required. Chi and Caldas (2011)

proposed a method that detects and classifies construction entities including construction

equipment and workers. Several characteristics of foreground blobs which result from

background subtraction are trained for the classification. However, their work lacks

information regarding how to e.g. differentiate a worker from a pedestrian, which is vital

in construction sites located in residential areas. Moreover, their method is sensitive to

illumination changes since it relies only on the foreground blob features.

2.4 Vision-Based 2D Tracking

Even though object detection methods localize interested types of objects in video

frames, the results are lack of identification of the objects. There are no links between the

results of different frames, thus trajectories are not available from using only object

detection methods. The methods only provide 2D positions of objects for each frame.

Therefore, in order to fill this gap, tracking algorithms are required. Once an object is

detected in the current frame, 2D tracking algorithms search the most probable position

of the object in the next frame based on its visual pattern and motion pattern. 2D vision

trackers can be classified as contour-based, Template-based, and point-based trackers,

according to the manner of representation of the objects (Yilmaz 2006). Figure 2.1 shows

the examples of their representations. This chapter provides a review of each method.

 23

2.4.1 Contour-Based Methods

In contour-based methods, the object in the image is represented by contours or

silhouettes which encompass the area of the object. These tracking methods use the

contours to track objects by estimating and updating the region or boundary of the target

in the current frame and comparing that with the results acquired from the previous frame

(Nguyen 2002). These methods generally use edge features, which are easy to implement

and stable to illumination changes. Also, they can maintain successful tracking regardless

of any change inside the contours. However, contour-based methods commonly have

problems with the images whose edges are not strong enough to extract edge features

because the contours from weak edges usually fail to represent the actual boundaries.

There are two types of contours which are used in contour-based tracking methods;

parameterized and non-parameterized contours (Nguyen 2002). Methods that use

parameterized contours approximate the contour using a parametric model (e.g. B-

Splines) or detect the contour by minimization of the contour’s energy function. The

latter, which is referred to as “Snake” is the typical model of the parameterized contours

(Yokoyama and Poggio 2005; Tsechpenakis et al. 2004). In this approach, an internal and

Figure 2.1: The representations of the object (contour-based, Template-based, and
point-based methods from left to right)

 24

external energy are minimized along the contour and result in development of the shape

of the contour (Tsechpenakis et al. 2004). On the contrary, the non-parameterized contour

is defined merely as a boundary of a region e.g. a border between the object and the

background and is obtained mainly by removing background edges (Nguyen 2002). The

strength of such an approach is that it can be used to represent the contour of an arbitrary

shape (Nguyen 2002), and as a result, it has been used in most contour-based tracking

methods of recent years.

 Algorithms employed in contour-based trackers either use “photometric

variables” (e.g. intensity, color, texture), “geometric variables” (e.g. edges, lines,

corners), or a combination of both (Freedman and Zhang 2004). It is argued that trackers

that use photometric variables are more advantageous to geometric trackers because they

are more reliable in the presence of illumination variations and cluttering, and they also

take into account the rich amount of information existing in the images (Freedman and

Zhang 2004).

 Described contour-based methods are inappropriate for the purpose of 3D

tracking of construction entities. First, the main advantage of contour-based trackers is

that they can detect the exact contour, which is useful in applications where exact posture

of the target is needed. However, the desirable 2D tracking results for the proposed stereo

vision based 3D tracking are constant centroid points of the objects, and the flexibility of

the contours actually degrades the accuracy of the calculated centroids. Second, most

project related objects in construction sites are rigid objects that do not deform heavily,

and even workers are commonly tracked relying on the unique colors of their hard hats

and vests, to differentiate them from pedestrians. Consequently, the merits of contour-

 25

based methods cannot contribute to a 3D vision tracking framework for construction.

Third, compared to Template-based methods, contour-based methods were found weak to

illumination variation, and were likely to lose the object which occupies a small area.

2.4.2 Template-Based Methods

Template refers to the basic shape and appearance of the object (Yilmaz et al. 2006). As a

result, these trackers are also referred to as region-based or appearance-based methods.

Region-based methods track connected regions which appropriately represent the shapes

of the objects. Based on the regions’ information such as color and texture, the methods

compute and update the motion of the template in each frame (Marfil et al. 2007;

Schreiber 2008). In region-based methods, color histograms generally play an important

role since color is typically a good distinguishing feature and helps to manage partial

occlusion (Marfil et al. 2007). However, relying only on the color may cause the tracker

to lose objects of similar colors when they are occluded by one another.

 Two sub-categories of template-based trackers are template and density-based

appearance models, and multi-view appearance models. Template-based models, which

take into account both color histograms and spatial information, are widely-used target

models. The basic concept of template tracking is finding the region that best matches

with the template that is manually determined in the first frame. One approach to do this

is the mean-shift procedure, which is an analysis technique that works based on the

comparison of the object histograms with the window approximated around the location

of that object (Yilmaz et al. 2006). Templates and density-based trackers are

advantageous because of their simplicity and low computational cost. However, they are

not suitable if the objects change considerably in each frame (Yilmaz et al. 2006).

 26

Schreiber (2008) presented a region-based method that generalizes the template matching

Lucas-Kanade algorithm (Lucas and Kanade 1981). This method combines template

matching and histogram-based tracking methods. It divides the region of interest into

several overlapping patches, each of which is represented by a histogram, so that spatial

information can be kept. Within this framework, partial occlusion and relatively slight

changes in the object’s appearance are handled well. However, it has the limited ability to

cope with large transformations because it uses a fixed template obtained in the first

frame.

 Maggio et al. (2009) proposed a template-based algorithm that effectively

combines the CONDENSATION algorithm (Isard and Blake 1998) with the extended

Mean-Shift algorithm (Comaniciu et al. 2003). It inherits from the CONDENSATION

algorithm the ability to cope with occlusions and improves the performance of the Mean-

Shift algorithm through the additional estimation of the target rotation and anisotropic

scaling. The target object is approximated with an ellipse in which every pixel has

weighted normalized color histogram. Additionally, similar to Schreiber’s method

(2008), multiple semi-overlapping histograms are introduced in order to complement the

lack of spatial information. This method showed robustness to occlusion and the changes

in the objects' planar rotation or scale. Nevertheless, since this method also uses the fixed

template model, it is not capable of managing severe changes in the target object’s pose.

Marfil et al. (2007) proposed a template-based framework that has the ability to track an

object showing relatively severe pose variation by updating the template at every frame.

This method uses the bounded irregular pyramid (BIP) which represents a target object as

a hierarchical model (Marfil et al. 2007). At every frame, this hierarchical template model

 27

is rearranged and updated reflecting the previous frame’s information. This hierarchical

template-based model can lessen computational cost because it uses the higher level that

contains fewer elements instead of using all pixels in the matching process. The nodes

keep the information of hue, saturation, and brightness to make tracking insensitive to the

sharp changes in illumination (Marfil et al. 2007). This framework can track non-rigid

objects and does not require a priori knowledge of the object to track. Since the template

model is adjusted according to the updated objects’ appearance, it can successfully

maintain tracking when the objects exhibit severe transformation.

 Ross et al. (2008) proposed a framework that uses multi-view appearance models.

The principal components of this framework are the subspace representation, particle

filter, and online update (Ross et al. 2008). The model of objects is composed of a low

dimensional subspace representation, the eigenbases which are obtained from a fixed

number of previous frames. This model provides abundant information of the object

regions. The online learning process updates the model and enables it to be adapted to the

changes in appearance caused by the deformation of object or illumination conditions,

etc. A particle filter estimates the motions of objects without optimization processes.

2.4.3 Point-Based Methods

In point-based trackers, some limited points are selected as features of an object and only

these points are tracked in consecutive frames (Yilmaz 2006). Point-based tracking can

be interpreted as the correspondence of identified objects represented by points across

frames (Yilmaz 2006). Point-based methods are best for tracking extremely small objects

which can be represented by a single point (Yilmaz 2006). However, the larger an object

appears in image frames, the more points may be demanded for successful identification

 28

of the object. In addition, when multiple points are employed, grouping of points that

belong to the same object becomes an important problem (Yilmaz 2006). Also, it is

important to select and keep appropriate feature points that can effectively represent the

objects. Point-based methods using multiple points are beneficial to characterization of

non-rigid objects, provided that the locations of the feature points are flexible.

Cox and Hingorani (1996) presented a method for finding point correspondences that can

be used in point-based tracking method. They employed Reid’s MHT algorithm (Reid

1979) which enabled occlusion handling, improving it in terms of computational

complexity. In order to reduce the computational cost, they narrowed the search space in

prediction by introducing the k-best hypothesis (Cox and Hingorani 1996). Shafique and

Shah (2003) also proposed a point correspondence method. Unlike the MHT algorithm

that uses multiple heuristics, this method employs a single non-iterative greedy algorithm

that allows real time tracking and occlusion handling (Shafique and Shah 2003). In their

experiments, they showed the application to the tracking of small object such as a flock

of birds in the sky or particles in a cylindrical reservoir. First, one feature point is

assigned to each object by the KLT method (Shi and Tomasi 1994) and then the objects

are successfully tracked by their point correspondence method.

 Arnaud et al. (2005) proposed a point-based method that tracks a textured object

with multiple feature points. They combined a Rao-Blackwellized particle filter (Khan et

al. 2004) with a model composed of a planar cloud of feature points. The concatenation

of all the points’ locations is an important factor in estimating the object’s state. This

method allows for not only occlusions but also deformation of the object. However, this

 29

method considers only planar movement and thus, may fail when the object rotates out of

plane and changes pose severely.

 Mathes and Piater (2006) proposed a point-based method in which a point

distribution model is used to represent objects. This model employs feature vectors of the

interest points to describe objects. The feature vector, which consists of the local

appearance and the spatial configurations of feature points, enables the tracker to

differentiate two similar-looking objects even when they are occluded by each other

(Mathes and Piater 2006). The feature points are located sparsely to describe non-rigid

objects accurately and to keep the stability in case of partial occlusion. Most importantly,

the feature points are updated for every frame to make the model adaptive to the change

in appearance and illumination. It matches current feature points to the image points.

Based on the stability of the matching, stable points are added to and unstable points are

removed from the model. When an object is occluded by another object, the update

process stops to avoid the addition of bad points (Mathes and Piater 2006). Accordingly,

it is stable under the changes in scale, appearance and shape. The stability is maintained

in the image when occlusion occurs.

2.5 Stereo View Geometry

As explained in Chapter 1.4, two cameras are employed for tracking construction

resources in 3D. Vision-based tracking is not comparable with other 3D technologies

which are described in Chapter 2.1 unless it can provide 3D information. In order to

reconstruct the 3D position of an entity, several steps must be taken to determine the

stereo view geometry (Hartley and Zisserman 2004). Heikkilä and Silvén (1997), Zhang

(1999), and Bouguet (2004) presented and provided standard calibration tools. The

 30

calibration tools reveal intrinsic camera parameters including the focal length, the

principal point, radial distortions and tangential distortions. They use calibration objects

which have specific patterns such as a checkerboard. Figure 5.1 In Zhang’s calibration

method, tangential distortion is not modeled. Heikkilä and Silvén’s toolbox and

Bouguet’s toolbox use the same distortion model which takes into account both radial

and tangential distortions. Therefore, both toolboxes generally result in almost equivalent

calibration. Bouguet provides additional functions such as error analysis which is useful

to re-calibrate with revised inputs.

 After having calibrated each camera separately, the external camera system has to

be determined (see Figure 2.2). For this purpose feature points are identified and matched

within the two camera views. The most well-known and robust algorithms commonly

used for this task are the SIFT (Scale-Invariant Feature Transform) (Lowe 2004) and

SURF (Speeded Up Robust Features) (Bay et al. 2008). While SIFT uses Laplacian of

Gaussian (LoG), Difference of Gaussian (DoG), and histograms of local oriented

Figure 2.2: Epipolar geometry and centroid relocation

X1

Y1
Z1

O1 X2

Y2

Z2
O2

P

P1

P2

p1 = (x1, y1, 1)

p2 =(x2, y2, 1)

R: Rotation
T: Translation

 31

gradients, SURF relies on a Hessian matrix and the distribution of Haar-wavelet

responses for feature point detection and matching, respectively. While SIFT turned out

to be slightly better in terms of accuracy, SURF is computationally much more efficient

(Bauer et al. 2007). SIFT and SURF provide point matches including extreme outliers

(mismatches) that have to be removed. To achieve that, robust algorithms for managing

the outliers were introduced. RANSAC (RANdom SAmple Consensus) (Hartley and

Zisserman 2004), and MAPSAC (MAximum a Posteriori SAmple Consensus) (Torr

2002) are the representative robust methods. RANSAC minimizes the number of outliers

by randomly selecting a small subset of the point matches and repeating the

maximization process for different subsets until it reaches a desired confidence in the

exclusion of outliers. One of its problems is poor estimates associated with a high

threshold (Torr 2002). MAPSAC which works in a similar way resolved this problem by

minimizing not only the number of outliers but also the error associated with the inliers.

 The next step is the estimation of the essential matrix, E based on the identified

point matches. In general, the normalized eight point (Hartley 1997), seven point (Hartley

and Zisserman 2004), six point (Pizarro et al. 2003), and five point (Nistér 2004)

algorithms are used. Eight, seven, six and five is the minimal number of points required

to perform the estimation. Rashidi et al. (2011) compared the resulting accuracy of these

algorithms in practical civil infrastructure environments, obtaining the five point

algorithm to be the best. However, due to its simplicity and reasonable accuracy the

normalized eight-point algorithm is still the most common one and the second best

according to (Brückner et al. 2008). Based on the essential matrix, E the relative pose of

two cameras (R, T in Figure 2.2) can be derived directly (Hartley and Zissermann 2004).

 32

 In the last step, triangulation is performed. Based on two corresponding pixels in

the respective view, two lines of sight have to be intersected to find the 3D position

(Figure 2.2). However, due to image noise and slightly incorrect point correspondences,

the two rays may not intersect in space. To address this problem, Hartley-Sturm optimal

triangulation (Hartley and Sturm 1997) and optimal correction (Kanatani et al. 2008)

algorithms are currently used as standard methods for finding corrected correspondences.

They both try to find the minimum displacement based on the geometric error

minimization, correct the pixel coordinates accordingly and intersect the corrected rays to

determine 3D coordinates. While the latter has a faster process, the former’s results are

more accurate (Fathi and Brilakis 2011).

 Several researchers have introduced and applied stereo vision technologies to

construction. Most applications presented so far are related to 3D modeling of structures

for progress monitoring. Chae and Kano (2007) estimated spatial data for development of

a project control system from stereo images. In another work, Son and Kim (2010) used a

stereo vision system to acquire 3D data and to recognize 3D structural components.

Golparvar-Fard et al. (2010) presented a sparse 3D representation of a site scene using

daily progress photographs for use as an as-built model. While these previous works

employed stereo vision to create 3D geometry models based on static feature points, this

research applies stereo vision to locate moving entities in 3D across time.

2.6 Summary

Obviously, various tasks in construction management can benefit from tracking

technologies which is capable of providing location of construction entities across time.

GPS, RFID, and UWB are well-known technologies that are applied to track on-site

 33

construction entities. While GPS has been used mostly for heavy equipment, RFID has

been considered appropriate for construction materials such as pipes and concrete

elements. UWB is also used for tracking materials, but mainly in indoor environment.

 In spite of the successful performance of the radio frequency technologies, vision-

based tracking draws interests because it is free of tag or sensors. Vision-based tracking

tracks objects in a video based on their visual patterns and motion patterns. Vision-based

tracking can track multiple objects with only one sensor, which is a camera, as long as the

objects are present in the camera view. There are various types of tracking methods, and

they can be classified into three categories – contour-based methods, template-based

methods, and point-based methods – based on the way of representation of objects.

 A few research works were performed to use vision-based tracking for

productivity measurement and safety enhancement. However, the results of the employed

tracking methods were limited to 2D information. 2D results are generally not enough to

extract substantial information for most construction management tasks since it is

unknown how far entities are located from the camera. Due to the lack of depth

information, even approximate distance measurements between two entities are not

reliable, but necessary for safety management. Therefore, additional procedures to obtain

the depth information and calculate 3D spatial coordinates are required. Furthermore,

entities to be tracked had to be manually initialized in the first frame in the previous

works. In order to further automate the tracking process, methods to automatically

recognize and localize construction entities are necessary.

34

CHAPTER 3

DETECTION OF CONSTRUCTION WORKER AND EQUIPMENT

In order to initiate a vision tracker, it is necessary to first determine which entities to

track in each camera view. All entities that enter the camera views have to be captured

and marked to trigger a vision tracker. Moreover, a vision tracker generally fails to track

an entity when it is fully occluded. Therefore, when the entity gets free from the

occlusion, it has to be initialized again. Given a pixel region corresponding to each entity,

a vision tracker extracts the visual patterns from the region and starts tracking on the

basis of the patterns. However, it is time consuming and error prone to manually mark all

construction entities in multiple views, due to the large amount of entities to track in

construction sites. Therefore, an automated way of detecting the entities is required.

3.1 Construction Worker Detection

This chapter deals with detection of construction workers for initializing 2D vision

tracking. Specifically this chapter aims to 1) investigate image features that effectively

characterize the appearance of construction workers who wear safety vests, 2) determine

appropriate measures to evaluate the method regarding that the main role of the method is

to accurately initialize 2D vision trackign, and 3) test the method for detecting

construction workers in various illumination conditions and backgrounds.

3.1.1 Methodology

In this research, ‘construction worker’ is considered as a person wearing safety gear such

as safety vests and hard hats. The proposed method takes advantage of three types of

 35

image features to describe construction workers: motion, shape and color. These features

are separately implemented in sequential steps. First, it detects foreground blobs where

objects in motion are expected to exist. Given the fixed camera views, the difference of

pixel values between a background model and the incoming frames is the main cue to

recognize motions. Second, it identifies the regions corresponding to human bodies from

the foreground blobs based on their patterns of HOG (Histogram of Oriented Gradients)

features. Third, the detection regions that result from the second step are classified into

construction workers and non-workers. It uses color histograms and a k-NN (k-Nearest

Neighbors) (Cover and Hart 1967) classifier to characterize fluorescent colors of safety

gear. Figure 3.1 illustrates the described framework. In short, the first and second steps

detect people including workers based on their motion and shape features, then the third

step sort out workers from the detected people by analyzing their color features.

 Background subtraction, in the proposed method, reduces the candidate regions

for worker detection. It is used to achieve higher computational efficiency and lower false

alarm rates. The second step, which is the detection of people with HOG, is

computationally far more expensive than the background subtraction. Background

Background
Subtraction

(Motion)

HOG features
(Shape)

&
SVM classifier

Color Histogram
(Color)

&
k-NN classifier

Moving
object

People-
shaped
object

Worker
Input
Frame

Figure 3.1: The framework of construction worker detection

 36

subtraction restricts the search areas of the second step. It allows the step to scan only

foreground blobs and prevents from unnecessarily scanning irrelevant areas. In addition,

it prevents the detection of non-people objects in the background scene (i.e. a static area

which has a similar shape to people) in the following step. It eventually leads to higher

precision. Once foreground blobs are obtained, they are post-processed to remove small

blobs and to merge adjacent blobs. For each foreground blob, the smallest rectangle that

encloses the blob is found. Finally, each rectangle is inflated to allow for some margin

around a moving object, which is necessary to calculate HOG shape features in the next

step. Various methods of background modeling have been presented: approximate

median filter (Macfarlane and Schofield 1995), MoG (Stauffer and Grimson 2000), color

co-occurrence (Li et al. 2002), etc. In this research, the median filter method is employed

since it is computationally the most efficient. Figure 3.2 exhibits the foreground blobs

extracted with the three methods and the rectangular foreground regions after post

processing. Even with the simplest process, the median filter method provides

comparable results to the other methods.

 Wearing hard hats or safety vests does not induce significant changes in human

shapes. Figure 3.3 shows two gradient images obtained by averaging a number of

gradient images of ordinary people and construction workers. Human can be intuitively

inferred from both gradient images. Therefore, as a step to narrow down candidate

regions to people, the second step employs HOG features which have proven to be robust

in detecting human bodies. Detection of people in test images works by sliding a search

window across the foreground blob regions. The HOG feature is calculated from each

window and classified into either people or non-people. In order to embed various

 37

appearances of people into the HOG feature template, training of a classifier is necessary.

The SVM is chosen for the training as in Dalal and Triggs’ work [34]. On the basis of

HOG features extracted from a large number of positive (images of people) and negative

(images without any people) images, an SVM classifier learns to recognize the patterns of

HOG features and to distinguish people from others. Training images have to be in the

same size so that all their HOG features have the same vector size.

 The results of the second step are the rectangular regions determined to include a

person inside. These rectangles are further processed by another classifier which

determines whether they are workers or not. In other words, this step filters out the non-

workers out of the people regions. The HSV color histogram is selected for this purpose.

ANSI (American National Standards Institute) stipulates that construction workers must

Figure 3.2: The foreground regions which result from the approximate median filter
(1st row), the MoG (2nd row), and the color co-occurrence (3rd row) methods

 38

use high-visibility safety apparel since they are regularly exposed to the hazards of low

visibility (ANSI/ISEA 2010). It specifies three colors for the high-visibility apparel:

fluorescent yellow-green, fluorescent orange-red, and fluorescent red. Since the colors

are limited and all fluorescent colors, it is viable to characterize the patterns of the safety

gear colors.

 The RGB color space, which is an additive color model, is not effective for

modeling the safety gear colors because of its sensitivity to illumination conditions. This

fact is illustrated in Figures 3.4 and 3.5 which show the RGB color histograms (32 bins)

of yellow-green and orange-red safety vests, respectively. In each figure, the two safety

vests are the same type, but with different illumination conditions – one in a bright

condition (1st row), and the other in a dark condition (2nd row). It is observed that

Figure 3.3: (a)-(c): people images, (d): average gradients of 200 people images, (e)-
(g): worker images, (h): average gradients of 200 worker images

(a) (b) (c) (d)

(e) (f) (g) (h)

 39

significant disparity between the color histograms in the 1st and 2nd row is caused by the

slight change in illumination. Compared to the RGB color space, the HSV color space is

in better accordance with the conceptualization of human eyes, thus, is more appropriate

in categorizing objects by colors. The three components of hue, saturation, and value

measure the actual color, purity, and intensity (brightness), respectively. Figures 3.6 and

3.7 show the HSV color histograms (32 bins) of the safety vests as in Figures 3.4 and 3.5.

Hue and saturation histograms in the 1st and 2nd rows exhibit similar patterns in spite of

the illumination change which is reflected in the value histogram. In addition, hue and

saturation histograms in Figure 3.6 and 3.7 are distinct from those of ordinary vests on

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

200

400

600

0 50 100 150 200 250
0

200

400

600

0 50 100 150 200 250
0

100

200

0 50 100 150 200 250
0

100

200

Red

Red

Green

Green

Blue

Blue

Figure 3.4: RGB color histograms of yellow-green safety vests in bright (1st row) and
dark (2nd row) illumination conditions

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300

400

500

0 50 100 150 200 250
0

100

200

300

400

500

Red

Red

Green

Green

Blue

Blue

Figure 3.5: RGB color histograms of orange-red safety vests in bright (1st row) and
dark (2nd row) illumination conditions

 40

Figure 3.6: HSV color histograms of yellow-green safety vests in bright (1st row) and
dark (2nd row) illumination conditions

Figure 3.7: HSV color histograms of orange-red safety vests in bright (1st row) and
dark (2nd row) illumination conditions

0 50 100 150 200 250
0

200

400

600

0 50 100 150 200 250
0

200

400

600

0 50 100 150 200 250
0

100

200
0 50 100 150 200 250

0

100

200

0 50 100 150 200 250
0

200

400

600

800

0 50 100 150 200 250
0

200

400

600

800

Hue

Hue

Saturation

Saturation

Value

Value

0 50 100 150 200 250
0

200

400

600

800

0 50 100 150 200 250
0

200

400

600

800

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

100

200

300

400

Hue

Hue

Saturation

Saturation

Value

Value

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

100

200

300

400

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250
0

100

200

300Hue

Hue

Saturation

Saturation

Value

Value

Figure 3.8: HSV color histograms of ordinary vests on pedestrians

 41

pedestrians in Figure 3.8. Figure 3.9 shows saturation images of a pedestrian and

construction workers. Unlike in the pedestrian image, the safety vest regions in

construction worker images are highlighted by the saturation components regardless of

their colors. These illustrations signify that the distinct characteristics of safety vests can

be effectively modeled with hue and saturation histograms. Accordingly, the third step

exploits hue and saturation histograms for characterizing the visual patterns of the safety

gear.

 As in the second step, this step also needs to go through a training process.

Positive and negative data, in this step, are the images of construction workers and

ordinary people, respectively. Focusing exclusively on safety vests and hard hats, this

step takes into account only the upper half of the human body to construct color

histograms. The obtained color histogram is normalized to minimize the effect of the

image window sizes. Negative images contain a few images of people wearing jackets of

which the colors are similar to safety vests. These images prevent SVM from

constructing clear boundaries between the color histogram vectors of worker and non-

worker. The k-NN is more suitable to this case because it performs classification simply

Figure 3.9: Saturation images of a pedestrian (a) and construction workers (b and c)

 42

based on a majority vote of its k neighbor. Even though the main role of this third step is

classifying a person into a worker or a non-worker, it also acts as a filter that eliminates

false positive results of the second step (non-people regions).

3.1.2 Implementation

The whole framework as a single package is implemented using Microsoft Visual C# in

.NET Framework 4.0 environment. The size of the HOG template used for people

detection is 64×128. In order to detect people smaller than the template size, the

foreground regions are scaled up. The HOG feature is calculated on the basis of two

spatial layers (cells and blocks). The first layer is comprised of a grid of cells (8×8 pixels)

where a local HOG is obtained. The second layer is comprised of a grid of blocks. A

block is a collection of 2×2 cells. Four local HOG’s of 2×2 cells in a block are

aggregated and normalized together. The normalization allows for invariance to

illumination changes. The histogram is constructed based on the angle and magnitude of

gradients. It consists of 9 bins which represent evenly distributed angles ranging from 0

to 180 degrees. A gradient magnitude at each pixel is added to the corresponding bin

which the angle falls into. A sequence of HOG features that are spatially distributed in a

grid manner structures a final descriptor of the input image.

 The k-NN classifiers associated with color histograms are trained with images of

upper half bodies wearing both hard hats and safety vests. A majority vote of ‘k’ nearest

neighbors determines the classification. Parameter studies are performed to determine the

optimal number of histogram bins as well as the optimal number of nearest neighbors (k).

In all tests, 500 positive images (upper half body with safety gear), including yellow-

green, orange-red, and red safety vests, are collected for the training of color histograms.

 43

3.1.3 Experiments and Results

To validate the implemented method, the method is tested on ten high-definition (HD)

videos taken with a HD camcorder (Canon VISXIA HF S100). However, the videos are

resized to 768×432 for the sake of faster process. 5 frames per second are processed in

near real time. The videos are taken of 4-5 people wearing different combinations of

safety gear (hard hats and safety vests) to investigate the effect of the combinations on

the detection results. Table 3.1 illustrates the combinations involved in three of the

videos. All the videos have different backgrounds and various illumination conditions.

Table 3.1: The combinations of safety gears

Person
Video 1 Video 2, 3

Safety vest Hard hat Safety vest Hard hat

1 X X X White

2 X White X White

3 N/A Orange-red X

4 Yellow-green White Yellow-green White

5 Orange-red Yellow Orange-red Yellow

X: not wearing

3.1.3.1 Metrics for Performance Evaluation

Two metrics are chosen to measure the performance of the method. The metrics are

selected from the perspective that the main purpose of the method is initializing a vision

tracker. The first metric is precision which is popular in evaluating pattern recognition.

To clarify the meaning of precision, several terms are defined as follows:

 44

- TP (true positive): the number of correctly detected workers

- FP (false positive): the number of the detections which is not relevant to a worker

- FN (false negative): the number of missed workers (i.e. not detected)

Precision is defined as a ratio of TP to TP+FP and measures the reliability of the

detection. The second metric is the time delay of detection. It measures how instantly it

detects a worker after the worker enters the scene or gets out of an occlusion case. It is

worthwhile to note that the recall is not an appropriate measure of a method for vision

tracker initialization. The recall is the ratio of TP to TP+FN. The proposed method is not

designed to detect a worker in every frame, for which a tracker is responsible. For

instance, a method that detects a worker on every other frame resulting in just 50% recall

(low recall) could perform well enough to initialize a tracker as long as it detects no other

type than a worker (high precision).

3.1.3.2 The Definition of ‘Construction Worker’

Although recall is not an appropriate metric overall, it is calculated for the analysis of the

effect of safety gear combinations. Since the method is devised to detect workers that

appear in the view, occluded workers are not the target of the method, hence are not

counted as positive objects. Table 3.2 summarizes the recall of five people wearing

different combinations of safety gear as shown in Table 3.1. There is clear distinction

between recall values of Persons 1-2 and Persons 3-5. Person 1 and 2 who did not wear

safety vests are barely detected. Person 3 who only wore a safety vest is detected far

more frequently than Persons 1-2, and its detection rate is comparable to Persons 4-5’s. It

can be inferred from this fact that the safety vest has a more decisive effect on color

histograms than the hard hat. As ANSI (2010) stipulates, safety vests have a more limited

 45

number of colors, which contributes to the effective detection. According to these

observations, a ‘construction worker’ is defined in this research as a person wearing at

least a safety vest. Hence, Persons 3, 4 and 5 are defined as construction worker in the

following experiments. Since the proposed method first detects people (the second step)

and then sort out construction workers (the third step), it can eventually detect both

workers and non-workers and classify them by comparing the results of the second step

and the third step of the framework in Figure 3.1. Figure 3.10 exhibits two result frames

from each video. Whereas the left images contain only correct detections, the right ones

contain false results as well. Persons 4 and 3 are classified as non-worker in Video 1 and

3, respectively (FN). Person 2 is classified as construction worker in Videos 2 (FP). The

third step which plays a core role in classifying construction worker and non-worker

takes only 14 ms in average for each frame which is about 9 % of the total processing

time. This classification will be useful to warn people who are not wearing safety vests

on a construction site for safety issues.

Table 3.2: The detection rate (recall) of 5 people

Recall (%) Video 1 Video 2 Video 3

Person 1 0.0 0.0 0.0

Person 2 0.0 1.8 6.3

Person 3 - 77.6 71.1

Person 4 88.7 96.9 80.9

Person 5 88.3 74.6 76.8

 46

3.1.3.3 Results - Precision and Time Delay

Precision is calculated according to the definition of ‘construction worker’, and time

delay is also measured for all ten videos. It should be noted that several videos include

both shade and light where abrupt changes in illumination occur as workers cross the

border between them (e.g. Videos 2 and 3 in Figure 3.10). Figures 11-13 show the results

of parameter studies on the number of bins in saturation and hue histograms, and the

number of nearest neighbor (k). The number of bins in saturation histograms is

Figure 3.10: Examples for correct detections (left) and false results (right) (Videos 1-3
from top to bottom)

 47

determined to be ‘8’ because of its highest precision and the delay less than 1 s (Figure

3.11). ‘64’ is selected for hue histograms since it exhibits the minimal delay and

comparable precision with other sizes (Figure 3.12). Accordingly, the total size of the

color histogram is 72 (=64+8). Regarding the value of ‘k’ in the k-NN learning process,

‘11’ is found the best (the least delay in Figure 3.13).

 Using the selected parameters, four tests are conducted for each video through the

training of color histograms with 550, 1100, 1650, and 2200 negative images. The results

are summarized in Tables 3.3 and 3.4. Results of step 1 (background subtraction) and

step 2 (people detection based on HOG) remain the same in all four tests. In Table 3.3,

precision increases as more negative images are used. It indicates that the use of more

negative images helps reduce FP’s. However, on the contrary, recall works inversely to

the number of negative images, which means TP’s are also reduced by using more

Figure 3.11: The performance variation of the method depending on the number of
bins in a saturation histogram

 48

Figure 3.12: The performance variation of the method depending on the number of
bins in a hue histogram

Figure 3.13: The performance variation of the method depending on the ‘k’ value

 49

negative images. Figure 3.14 shows examples of these effects. The first and second rows

illustrate the removal of FP’s (non-person and Person 2) while the third row shows a

missed TP (Person 5). Regarding precision results, the proposed method achieved the

best performance when 2200 negative images are used in training the color histograms of

upper half body. As explained in the previous chapter, time delays are considered to

better reflect the performance of the initialization method. In total, 73 cases are observed

in which a worker enters a view or gets free from occlusion. In Table 3.4, the use of 2200

negative images results in a maximum of 0.67 s delay which is only 0.11 s longer than

using 550 negative images. The maximum is calculated with a 95% confidence interval

for the standard normal distribution. The 99.0 % precision and the 0.67 s delay signify the

potential of the proposed method for initializing a vision tracker.

5 3 4 2

1
3

42

5 14 2

Figure 3.14: Detection of construction workers using 1100 (left) and 2200 (right)
negative images

 50

 Additionally, since the proposed method is composed of three sequential steps,

the performance of each step is further investigated. For this purpose, the critical cause of

the missed workers (FN) is analyzed (Table 3.5). The FN cases are classified into the

three steps which cause them. Overall, the third step is discovered as a main step that

Table 3.3: The precision of detection results

of negative training images 550 1100 1650 2200

Precision (%) 90.1 97.2 97.7 99.0

Recall (%) 87.1 83.6 82.4 81.4

Table 3.4: The delay of detection

of negative training images Frames Seconds

550

Average 1.5 0.30

Standard Deviation 0.8 0.16

Maximum 2.8 0.56

1100

Average 1.6 0.31

Standard Deviation 1.0 0.20

Maximum 3.2 0.64

1650

Average 1.6 0.33

Standard Deviation 1.1 0.21

Maximum 3.4 0.68

2200

Average 1.6 0.32

Standard Deviation 1.1 0.21

Maximum 3.4 0.67

 51

filters out FN’s. In detail, it is also observed that Persons 3 and 5, who wear orange-red

vests, are mainly discarded by the third step while Person 4, who wears a yellow-green

vest and a white hard hat, is discarded in the second step. The former is attributed to the

negative images of people with orange-red shirts. In fact, negative images of upper half

body contain a considerable number of images with orange or red shirts which could be

confused with orange-red safety vests. In addition, white is a dominant color of hard hats

in the positive images which force to eliminate Person 3 (brown hair) and Person 5

(yellow hard hat). On the contrary, it is inferred that the latter results from the similar

background color to Person 4. Similar colors of background make it difficult to extract a

human body shape.

3.2 Construction Equipment Detection

The method of construction equipment detection is similar to construction worker

detection. It is also comprised of three sequential steps (Figure 3.15). The three steps

exploit motion, shape, and color features, respectively. The first step is exactly same as in

Table 3.5: The cause of missed detections

Step

Background
Subtraction

HOG shape
detection

Color histogram
classification

Person 3 9.2 % 26.5 % 64.3 %

Person 4 0.9 % 72.7 % 26.4 %

 Person 5 17.2 % 13.2 % 69.5 %

Total 10.5 % 33.8 % 55.8 %

 52

construction worker detection. It uses background subtraction to extract regions of

moving objects. Cameras are fixed on construction sites so that they have static

background scenes. The objects in motion (foreground blobs) are detected by comparing

the current frame with the background scene. This step narrows candidate regions down

to moving object regions.

 The second step is to find the shape of construction equipment out of the

candidate regions. As in construction worker detection, HOG features are used, and

trained with SVM. However, different from construction worker detection, construction

equipment detection requires several independent trainings for distinct views. For

example, rear and side views of a wheel loader (Figure 3.16) should be trained

independently because of the great difference in their appearances. In this research, four

views (front, rear, left, and right) are trained independently. Therefore four separate

models are created as equipment templates. Though training of more views such as rear-

right and rear-left can lead to higher recall, it is not considered in this research since it

will cost more processing time. Also, the gaps between the four trained views can be

Figure 3.15: The framework of construction equipment detection

Background
Subtraction
(Motion)

HOG
features
(Shape)
& SVM

Eigen-images
(Color+Shape)

&
SVM

Moving
object

Equip.-
shaped
regions

Construction
Equip.

Input
Frame

 53

effectively covered by the tracking process, which will be dealt with in Chapter 4. All

four models are jointly used for searching every piece of construction equipment.

 Potential chances of false detections are still remained in the motion- and shape-

based detection. For example, a moving object that exhibits a similar shape of

construction equipment can be detected through the first and second steps. The third step

filters out these false detections based on eigen-images which contain both shape and

color information. When exploiting color features, it is important to select color

components that can best characterize colors of construction equipment. Even though

construction equipment is generally yellow, there are other colors of equipment such as

red and green. Also, RGB (red, green, and blue) values and gray-scale intensity vary

depending on illumination conditions. Therefore, instead of RGB or gray-scale intensity,

the proposed method employs the HSV (hue, saturation, and value) color space. Among

the three components, it uses saturation which measures the purity of the color since most

equipment has relatively pure colors. PCA reduces the dimension of eigen-images by

removing the components corresponding to smaller eigenvalues. Similar to the second

step, eigen-images are trained separately for each view of equipment. Training is

Figure 3.16: (a) Rear (b) and left views of a wheel loader: 4 principal components of
eigen-images (right upper), and the reconstructed image (right lower)

 (a) (b)

 54

achieved through SVM. Figure 3.16 illustrates eigen-images for rear and left views of

wheel loader. Figure 3.16 also shows the images reconstructed with 30 principal

components of eigen-images. It should be noted that only lower half part (red) is used for

side views because backgrounds (yellow) accounts for a substantial portion of the upper

half (Figure 3.16).

3.3 Summary

The major hindrance to the use of general vision tracking is the lack of detection methods

that are needed to automatically initiate the tracking. Even though several methods of

detecting construction entities were proposed, no approach has been made to differentiate

construction workers from pedestrians. Also, a robust method against illumination

changes is missing. This chapter presented methods for automating the detection of

construction workers, equipment, and vehicles in the video frames. The methods to detect

construction workers or equipment exploit three types of features – motion, shape, and

color. The background subtraction and HOG shape features trained with SVM are

commonly used in both methods as motion and shape features, respectively. While the

method for workers uses color histograms as a color feature, the one for equipment uses

eigen-images which contain a certain extent of color and shape information.

 Out of the three methods, the worker detection method has been tested on various

illumination conditions and backgrounds. The proposed method is preliminarily tested for

detecting five people wearing different combinations of safety gear. Based on the

preliminary tests, ‘construction worker’ is defined as a person wearing a safety vest.

According to the definition of ‘construction worker’, the experiments resulted in 99.0 %

 55

precision and 0.67 second time lapse, which signifies that the proposed method can

effectively initialize the tracking of construction workers.

56

CHAPTER 4

2D TRACKING OF CONSTRUCTION ENTITIES

Once interested objects are detected, the detected regions are fed to a 2D tracking

algorithm so that they are tracked in the subsequent frames. As discussed in Chapter 3,

detection methods provide independent results for each frame, relying on common

features of an object type. On the contrary, tracking methods determines the location of

each object in the current frame, making use of motion and visual patterns of the object

that recognized in previous frames. This chapter deals with a comparative study of the

existing 2D tracking methods to find the most appropriate one for tracking construction

entities, and proposes a way of integrating detection and tracking methods to achieve

more stable and reliable 2D localization processes.

4.1 Comparison of 2D Vision Tracking Methods for Tracking of Construction

Entities

A comparative study of 2D vision tracking methods are performed for the purpose of

identifying, in a scientific manner, the most effective tracker for construction resource

tracking. To accomplish this objective, state-of-the-art trackers are classified into

contour-based, template-based and point-based methods, as discussed in Chapter 2.4 and

the performance of the three categories are compared. The domain specific challenges

that might affect the tracking performance in construction sites are identified and used as

test parameters for the comparison.

 57

4.1.1 Independent Variables

Construction sites have some unique characteristics such as large-scale, outdoor and

congested environments, where illumination conditions change frequently and the entities

are likely to overlap with each other in the camera view. These characteristics directly

affect the quality and outcome of vision tracking because they change the appearance of

objects in the view of the cameras. Therefore, to find the most suitable 2D tracking

method, one needs to know how well each of these factors can be handled. To satisfy

this, a list of independent variables that are based on these characteristics is proposed

here to evaluate and compare the 2D vision tracking methods. The variables should

represent the general qualities common to the methods in the same category for the sake

of the reasonable comparison of categories. These variables are based on the ability of the

tracker to handle: 1) absolute value of illumination, 2) illumination variations, 3)

occlusions, 4) scale variations, and also 5) various types of objects. One additional factor

is the required cost. In terms of the equipment cost, there is no difference among the

categories. The cameras, computers, and cables are the hardware required for every

vision tracking method. The processing time is the factor where the difference exists

among methods. However, it is not considered in the comparision because even the

methods of the same category differ in processing time. Also, the processing time is

dependent on the extent of the code optimization which is hard to explicitly quantify.

Furthermore, because of the continuous advances of computer hardware capabilities, the

difference of processing time may become slighter.

 The absolute value of illumination is related to lighting conditions. When it gets

extremely dark or bright, the information of objects’ appearances that we can get from

 58

videos is likely to be reduced. Accordingly, tracking might become more difficult.

Working hours at construction sites can start from very early hours in the morning when

it is still dark and go until very late hours of the day. Also, construction site locations

vary geographically from very illuminated sites in deserts to light reflecting sites near

oceans.

 Also, illumination variations are important factor to consider. Illumination

variations are related to changes that occur in lighting conditions. Illumination variations

are common at open, large-scale and congested construction sites, where shadows and

light reflections (from other equipment or adjacent buildings) are present. Such variations

can affect tracking results because they can significantly alter the appearance of objects

in the view of the cameras.

 Occlusion refers to the state when an object is partially or fully blocked by itself

or another object. In construction sites, there is constant movement of equipment,

materials and personnel. As a result, it is extremely important to select a method that can

continue to track objects even in the presence of occlusions. Self-occlusion is a common

problem of contour-based methods especially when tracking non-rigid objects. It should

be noted that one way to handle and control occlusions is by picking the right position to

install cameras. By installing the cameras in higher levels, it is possible to minimize

occlusion of objects. Also, the more cameras are employed in the sites, the easier it is to

handle occlusion.

 Scale variation indicates changes in the objects’ size in the video images. The

tracking model should be able to represent the objects regardless of their size. Since

construction sites generally occupy an extensive area, project related objects are likely to

 59

appear in different sizes as they move away from, or towards, the camera. The objects

could occupy a large region of the image or only cover small number of pixels,

depending on the distance from the camera. Therefore, it is important to select a method

that can track small objects and also be able to handle changes in scale.

 There are various kinds of objects in construction sites, which have different

characteristics from each other. They have different appearances (colors and shapes) and

different ways of movement (speeds and directions). In addition, the extent of

deformation is another factor in relation to this metric. Rigid objects (e.g. wheel loaders,

backhoes, steel beams) do not make severe changes in their poses. Therefore, their

appearances are adequately predictable. The equipment with articulated movable parts

can also be reliably tracked based on the rigid part (e.g. tracking a backhoe’s body part).

On the other hand, non-rigid objects (e.g. workers) change their poses dynamically. This

makes their appearances in the subsequent frames unpredictable.

4.1.2 Dependent Variables

To evaluate the performance of tracking methods, the number of frames that are

successfully tracked and the accuracy of centroid coordinates are used. The accuracy is

measured by the errors determined as the Euclidean distance between the centroid of the

tracked region and the ground-truth centroid (Figure 4.1). Accordingly, the unit of the

error is a distance in pixels. The ground-truth is determined as the centroid of the

rectangle that encloses the entity in each video frame and is found manually. The tracked

region for the point-based method is determined as the smallest rectangle that encloses all

points of the active shape model. The errors are obtained only with the successfully

tracked frames and the average of the errors is finally calculated. This measurement is

 60

valid for the evaluation since the purpose of this comparison is to find the appropriate

methods for 3D vision tracking which requires corresponding centroid points from two

different camera views.

4.1.3 Discussion on Contour-Based Methods

The main comparison experiments in Chapter 4.1.4 exclude the contour-based methods

for the following three reasons. First, the main advantage of contour-based trackers is that

they can detect the exact contour, which is useful in applications where exact posture of

the target is needed. However, as mentioned in the previous section, the desirable results

we want from 2D tracking are constant centroid points of the objects, and the flexibility

of the contours actually degrades the accuracy of the calculated centroids. Second, most

project related objects in construction sites are rigid objects that do not deform heavily,

and even workers are commonly tracked relying on the unique colors of their hard hats

and vests, to differentiate them from pedestrians. Consequently, the merits of contour-

based methods cannot contribute to a 3D vision tracking framework for construction.

Figure 4.1: The error for accuracy measurement (The blue/green rectangle and dot
represent the tracked/actual (ground-truth) region and centroid respectively. The arrow

represents the error.)

 61

 Above all, preliminary tests show that template-based methods perform better

than contour-based methods (Makhmalbaf et al. 2010). For comparison purposes, one

template-based method is selected that uses the Bhattcharyya coefficient as similarity

measure and the mean-shift algorithm to carry out the optimization based on a method

presented by Comaniciu et al. (2003). Also, a variational framework is selected as a

contour-based tracker, which combines a Bayesian model to develop their variational

method (Rousan and Deriche 2002) and a knowledge-based segmentation algorithm

(Haker et al. 2001). These methods are implemented and tests are performed using real-

site videos.

 Some frames from preliminary tracking test results are shown in Figures 4.2, 4.3,

and 4.4. In Figure 4.2, the worker (non-rigid object) is being tracked using the contour-

Figure 4.2: A worker tracked by a contour-based (upper row) method and a template-
based method (lower row)

 62

based method. This worker is tracked for 10 frames until he is occluded by another

worker and then the tracking failed. On the other hand, the result from the template-based

method shows that this method can track the worker in the equivalent frame and even the

subsequent frames. In Figure 4.3, a bulldozer that is moving away from the camera is

being tracked. The results show that the contour-based method loses the target in frame

2500 while the template-based tracker keeps tracking for another 6000 frames (until the

object comes to the camera). Figure 4.4 shows the results of tracking of a backhoe’s

bucket. Complete deformation of the bucket in the view of the camera can be observed in

these images. The results reveal that the template-based method can track the bucket

Figure 4.3: A roller tracked by a contour-based (upper row) method and a template-
based method (lower row)

 63

for 723 frames while the contour-based lose the object in frame 101. The number of

frames successfully tracked is taken into account as a performance measurement in this

preliminary experiment, and the results are shown in Table 4.1. Based on the results, it is

concluded that compared to template-based methods, contour-based methods are found

weak to illumination variation, and are likely to lose the object which occupies a small

area. Therefore, the contour-based methods are determined inappropriate for the purpose

of 3D tracking of construction entities, and excluded from the experiments in the

following chapter.

Figure 4.4: A backhoe bucket tracked by a contour-based (upper row) method and a
template-based method (lower row)

 64

4.1.4 Experiments on Template-Based and Point-Based Methods

The performance of the template-based and the point-based approaches is tested and

evaluated based on the independent and dependent variables discussed in Chapters 4.1.1

and 4.1.2. Since it is impractical to compare a large number of existing tracking methods,

one state-of-the-art method for each category which is referred to heavily by other

methods in the same category is chosen as the representative of the category. The

template-based method that incrementally learns the object appearance model of eigen-

images (Ross et al. 2008), and a point-based method that uses the active shape model

(Mathes and Piater 2006) are implemented. These two methods do not involve additional

algorithms for the improvement of specific cases (e.g. occlusion), which may deviate the

results from the general aspect of the category. Only the aspects related to the general

characteristics of the category are investigated in the results. Tests are performed using

two kinds of video sets - one with a highway construction site model of scale 1:87 (model

videos) and the other taken at construction sites (site videos). The use of model videos

Table 4.1: Number of frames successfully tracked

Corresponding figures
(object type)

Independent
variables

Template-
based

Contour-
based

Figure 4.3
(worker)

Occlusion 115 102

Figure 4.4
(road roller)

Object scale 8564 2500

Figure 4.5
(bucket of a backhoe)

Illumination
variation

723 101

 65

allows for sufficient data within a controlled environment. For example, to test the

methods’ ability to handle occlusion, the other factors such as illumination and the

objects’ size have to be kept constant, which is actually difficult to control with site

videos. A two-tailed t-test is performed to compare, in a statistical way, the centroid error

of the template-based method (Ek) and the point-based method (Ep). The p-values of (Ek-

Ep) is calculated and presented together with the centroid errors and the number of

successfully tracked frames.

4.1.4.1 Absolute Value of Illumination

In the tests of absolute illumination, six types of objects are used for model videos (brick,

pipe, backhoe, car, crane, and truck) and five are used for site videos (concrete bucket,

timber, dozer, wheel loader, and worker). There is no occlusion or severe changes in

illumination/size of objects in all videos. For each video, five levels of illumination

conditions are imposed by increasing or decreasing the intensity of the images. The

default is made to have the average intensity of 128 (based on the 8 bits intensity images

ranging 0-255). For two darker (brighter) levels, a constant intensity value (40% or 80%

of 128) are added to (subtracted from) all pixels. The maximum and minimum values of

the intensity are kept as 255 and 0, respectively. The loss of information occurs when the

intensity value, which exceeds 255 or falls below 0 due to the addition or subtraction,

becomes 255 or 0. Even though this artificial modification may not exactly replicate the

phenomenon in real sites, it is possible to create the effect of illumination on the loss of

information in the video frames. Also, consistent illumination conditions can be retained

on all different videos. The video frames of the five illumination levels are shown in

Figure 4.5, and the average error results of model videos and site videos are provided in

 66

Tables 4.2 and 4.3, respectively. Another important measurement, the number of frames

in which an object is successfully tracked, is also included in Table 4.3. Since both

methods successfully track the object until the last frame of most model videos, the

number of successfully tracked frames is not included in Table 4.2. Instead, the cases in

which a method failed to track until the end of the video are indicated by the term

‘Failed’ in Table 4.2.

Table 4.2: The average errors (pixels) and p-values of error difference for the tests on
illumination conditions (model videos)

Illum. level
Object
(Total frame #)

1 2 3 4 5

Brick
(182)

Template-based 1.33 2.94 2.29 1.20 1.60

Point-based 25.29 22.78 27.06 32.05 30.37

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Pipe
(128)

Template-based 2.27 1.87 2.03 2.03 1.86

Point-based 44.80 42.46 43.16 42.65 38.85

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Backhoe
(159)

Template-based 2.33 3.10 1.83 1.83 2.36

Point-based Failed 14.18 10.46 17.18 19.31

p-value N/A 0.0000 0.0000 0.0000 0.0000

Car
(144)

Template-based 2.59 2.15 1.31 1.90 1.72

Point-based 6.05 5.00 4.43 5.27 7.07

p-value 0.0002 0.0026 0.0000 0.0001 0.0037

Crane
(104)

Template-based 2.28 1.41 1.55 1.88 1.62

Point-based 5.26 4.41 4.55 4.49 3.93

p-value 0.0063 0.0011 0.0028 0.0010 0.0080

Truck
(151)

Template-based 3.99 6.77 3.17 3.26 2.33

Point-based Failed 14.43 12.21 13.08 12.06

p-value N/A 0.0005 0.0000 0.0000 0.0000

 67

Table 4.3: The number of successfully tracked frames, the average errors (pixels), and
p-values of error difference for the tests on illumination conditions (site videos)

 Illum. level
Object
(Total frame #)

1 2 3 4 5

Concrete
Bucket
(174)

Template
-based

of frames 174 174 174 174 174

Avg. error 1.90 2.59 2.38 2.42 2.57

Point-based Failed Failed Failed Failed Failed

Timber
(179)

Template
-based

of frames 86 88 179 179 179

Avg. error 3.91 2.93 7.04 7.42 7.31

Point-based Failed Failed Failed Failed Failed

Dozer
(277)

Template
-based

of frames 277 277 277 277 277

Avg. error 14.56 15.95 16.40 16.60 17.64

Point-
based

of frames 40 120 138 132 108

Avg. error 19.08 26.53 13.12 25.21 25.19

p-value for error diff. 0.5364 0.0203 0.3437 0.0516 0.0418

Wheel
loader
(294)

Template
-based

of frames 18 294 294 294 294

Avg. error 10.75 24.21 10.73 11.14 11.05

Point-
based

of frames 53 200 212 186 190

Avg. error 56.41 40.58 43.40 52.01 46.40

p-value for error diff. 0.0007 0.0005 0.0000 0.0001 0.0000

Worker
(245)

Template
-based

of frames 140 140 140 140 140

Avg. error 8.16 9.29 9.82 10.72 12.21

Point-
based

of frames 108 122 122 116 84

Avg. error 27.84 24.30 23.34 24.55 17.20

p-value for error diff. 0.0002 0.0001 0.0007 0.0006 0.1830

The template-based method successfully tracks objects over all frames of model videos

while the point-based method fails to track a backhoe and a truck in the darkest condition.

The failure is attributable to the dark colors of the backhoe and the truck. The point-based

 68

method extracts an extremely reduced number of feature points under darker illumination

conditions. On the other hand, the template-based method maintains enough information

to differentiate the object regions. Both methods have more difficulties in tracking

objects in the site videos because the site videos have a less controlled environment and

the objects are more distant from the camera. The overall results show that the template-

based method outperforms the point-based method under the severely dark or bright

condition (Figures 4.6 and 4.7).

 The average errors in Tables 4.2 and 4.3 indicate the performance problem of the

point-based method regardless of illumination conditions. The point-based method’s

errors are larger than the template-based method’s in all cases. There are two primary

reasons for this. First, depending on the spatial distribution of the detected feature points,

the centroid of the tracked region in point-based method is prone to bias. In Figure 4.8(b),

all feature points are extracted from the worker’s back resulting in the centroid point

Figure 4.5: Five levels of illumination conditions (level 1 to 5 from the darkest to the
brightest)

 69

Figure 4.6: The results of tracking a worker under level 5 illumination condition ((b)
the frame at which the point-based method lost the object, (a) the frame previous to

(b), (c) and (d) the template-based method’s result corresponding to (a) and (b))

Figure 4.7: The results of tracking a dozer under level 1 illumination condition ((b) the
frame at which the point-based method lost the object, (a) the frame previous to (b),

(c) and (d) the template-based method’s result corresponding to (a) and (b))

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4.8: (a) and (b) the point-based method’s results of the 10th and 50th frame, (c)
and (d), the template-based method’s results of the 10th and 50th frame (tracking a

worker)

(a) (b) (c) (d)

 70

being biased towards the upper half. Second, in the case of tracking bricks or pipes

carried by vehicles, the point-based method detects the points in the region of the vehicle

and finally tracks the vehicle and the pipe together recognizing them as one object

(Figure 4.9). This phenomenon also biases the centroid. Another notable fact is that the

point-based method is not able to track a concrete bucket or timbers at all. The plain

surface of the concrete bucket does not contain sufficient features and the point-based

method is attracted more by the cluttered background region (Figure 4.10). Also, due to

the small number of feature points extracted from the timbers, a small amount of error in

matching corresponding points can corrupt the tracking.

Figure 4.10: (a) and (b), the point-based method’s results of the 2nd and 10th frame, (c) and
(d), the template-based method’s results of the 2nd and 10th frame (tracking a concrete

bucket)

Figure 4.9: The point-based method’s results of the 1st and 6th frame (tracking a pipe model)

 71

4.1.4.2 Illumination Variation

In this section, six kinds of objects for model videos (brick, pipe, backhoe, car, crane, and

truck) and three for site videos (dozer, wheel loader, and worker) are used. Illumination

variations are imposed on the videos by artificially manipulating the intensity of the

images. Across the frames, the intensities are changed using a function defined as I = I +

128 × 0.6 × sin(2π×f×t), where I, f, and t are the intensity of a pixel, the frequency, and

time in seconds, respectively. Three frequencies of 0.1 /s, 0.15 /s, and 0.2 /s are tested for

the comparison. For each frequency, the gradient of the function (dI/dt) changes along the

time, which creates diverse effects of illumination variation. Even though the

illumination variation based on this equation may not exactly reflect the real sites’

conditions, diverse types of variations can be created with the controlled frequency value.

Because it is inferred from the previous section that the trackers may fail when 80% of

the intensity value 128 is subtracted (illumination level 1), 60% of the intensity value 128

is selected as the height of the sine function. In this way, extremely dark or bright

conditions are avoided in order to investigate only the effect of variations. The maximum

and minimum values of the intensity are kept as 255 and 0, respectively. This

modification generates controlled and consistent conditions for all videos. An example of

the illumination variation that is artificially created is shown in Figure 4.11, and the

resulting data are provided in Tables 4.4 and 4.5. The number of successfully tracked

frames is not included in Table 4.4 since both methods successfully track the object until

the last frame of all model videos.

 It can be inferred from Table 3 and 4 that both methods are not heavily affected

by the illumination variation itself. The numbers of frames that the template-based

 72

method successfully tracked are the same for all frequencies and the errors do not display

any specific tendency. The point-based method also does not show any tendency in either

the errors or the numbers of tracked frames. It is found that the variation causes higher

chances for the entity to have low contrast to the background, regardless of the frequency.

The more influential factor is when the variation causes the entity to look similar to the

background at the moment, rather than the frequency itself. Also, if it becomes dark or

bright when the part that has relatively less features is facing the camera, the tracking is

likely to be more unstable. In Table 4.5, the errors and the numbers of frames of the

point-based methods exhibit wider ranges than those of the template-based method,

which indicates the point-based method is more sensitive to this factor. In most cases, the

statistical analysis results in p-values lower than 0.01 which signify the superiority of the

template-based method over the point-based method.

Figure 4.11: Illumination variation with 0.1 /s frequency imposed on the video of a car model

 73

Table 4.4: The average errors (pixels), p-values of error difference for the tests on
illumination conditions (model videos)

Frequency
Object
(Total frame #)

0.0
(level 1)

0.1
(level 2)

0.15
(level 3)

0.2
(level 4)

Brick
(182)

Template-based 2.29 2.78 2.25 2.66

Point-based 27.06 29.00 40.36 30.88

p-value 0.0000 0.0000 0.0000 0.0000

Pipe
(128)

Template-based 2.03 1.81 1.28 0.77

Point-based 43.16 40.83 37.56 34.68

p-value 0.0000 0.0000 0.0000 0.0000

Backhoe
(159)

Template-based 1.83 2.65 2.95 3.12

Point-based 10.46 35.30 26.61 34.80

p-value 0.0000 0.0000 0.0000 0.0000

Car
(144)

Template-based 1.31 2.29 2.21 2.29

Point-based 4.43 6.32 5.66 5.25

p-value 0.0000 0.0030 0.0005 0.0000

Crane
(104)

Template-based 1.55 1.92 1.48 1.99

Point-based 4.55 4.13 3.55 4.06

p-value 0.0028 0.0108 0.0004 0.0087

Truck
(151)

Template-based 3.17 3.23 2.80 2.21

Point-based 12.21 9.19 9.64 8.93

p-value 0.0000 0.0000 0.0000 0.0000

 74

Table 4.5: The number of successfully tracked frames, the average errors (pixels), and
p-values of error difference for the tests on illumination variations (site videos)

Frequency
Object
(Total frame #)

0.0
(level 1)

0.1
(level 2)

0.15
(level 3)

0.2
(level 4)

Dozer
(277)

Templat
e-based

of frames 277 277 277 277

Avg. error 6.86 7.30 7.55 7.77

Point-
based

of frames 138 106 90 124

Avg. error 13.12 14.79 15.77 19.76

p-value 0.3437 0.0128 0.0004 0.0003

Wheel
loader
(294)

Templat
e-based

of frames 294 294 294 294

Avg. error 11.18 10.45 11.40 9.09

Point-
based

of frames 212 118 112 160

Avg. error 43.40 43.18 34.07 42.56

p-value 0.0000 0.0000 0.0002 0.0000

Worker
(245)

Templat
e-based

of frames 140 140 140 140

Avg. error 9.82 9.25 9.81 12.82

Point-
based

of frames 122 196 220 104

Avg. error 23.34 19.03 24.28 17.67

p-value 0.0007 0.0014 0.0024 0.3894

4.1.4.3 Occlusion

For occlusion, six kinds of objects for model videos (brick, pipe, backhoe, car, crane, and

truck) and one for site videos (dozer) are used. There are no severe changes in

illumination and size of objects in all videos. For both model and site videos, occlusion is

artificially created by drawing a black box at a fixed location on each video frame along

 75

the object’s travel path. Four levels of occlusion (20%, 40%, 60%, and 80%) are

established by incrementally increasing the size of the box. The percentage of occlusion

is determined by the ratio of the occluded area of the entity to the total area of the entity.

In this way, consistent controlled occlusions are imposed on all videos. The examples of

the four different levels are shown in Figure 4.12. The average error results of model

videos and site videos are provided in Table 4.6. In the experiments for occlusion, it is

important to compare whether or not a method lose the objects during the period of

occlusion rather than the number of successfully tracked frames. Therefore, the number

of successfully tracked frames is not included in Table 4.6, and the cases in which a

method failed to track due to the occlusion are indicated by the term ‘Failed’.

Brick, pipe and backhoe are disregarded for fair comparison in this section. When the

pipes or bricks are occluded, the point-based method starts to extract the points from the

vehicles that carry the pipes or bricks. That is, the point-based method tracks the vehicle

and the pipes/bricks together as one entity relying on the points on the vehicle region

which are not occluded. Also in the case of tracking the backhoe, although only the body

part is selected to track in the first frame, the point-based method obtains the points on

the arm and bucket regions by itself, and tracks relying on those points. Since the points

also move in the same way, the method steadily transfers the interest of region from the

Figure 4.12: The four levels of occlusion (20%, 40%, 60%, and 80% - from left to right)

 76

body part (pipes or bricks) to the arm and bucket (vehicles) which are not occluded

(Figure 4.13). Even though this phenomenon increases the error due to the centroid’s

shift towards the region including the arm and bucket, it has a positive effect in that it

avoids losing the entity completely.

Table 4.6: The average errors (pixels) and p-values of error difference for the tests on
occlusions

Occlusion level
Object
(Total frame #)

20% 40% 60% 80%

Car
(144)

Template-based 1.72 Failed Failed Failed

Point-based 4.90 12.06 6.31 11.74

p-value 0.0000 N/A N/A N/A

Crane
(104)

Template-based 1.60 1.87 1.88 4.01

Point-based 4.29 5.11 6.58 7.15

p-value 0.0001 0.0008 0.0282 0.0585

Truck
(151)

Template-based 2.74 2.80 5.55 Failed

Point-based 9.78 17.80 15.80 20.99

p-value 0.0000 0.0000 0.0016 N/A

Dozer
(150)

Template-based 8.81 8.86 Failed Failed

Point-based 19.74 17.11 22.82 Failed

Figure 4.13: The 1st fame (left) and the 35th frame (right) of the tracking a backhoe with the
point-based method

 77

p-value 0.0000 0.0159 N/A N/A

 In Table 4.6, it can be seen that the template-based method is more likely to fail in

tracking under severe occlusion. The template-based method relies on the region of the

object. Therefore, X % of occlusion provides X % reduced information of the object. On

the contrary, since the point-based method relies on the points, it can conserve the

amount of information by extracting the same number of points in the (100-X) % of the

region. As long as the point-based method obtains the sufficient number of points from

the object region, it could succeed in tracking.

 However, in the cases that both methods successfully track the object, the

template-based method shows much more accurate results than the point-based one.

When occlusion occurrs, the template-based method tends to maintain the size of region,

Figure 4.14: The 55th frame of tracking a 60% occluded truck model (the point-based
method (upper left), the template-based method (upper right)), and the 46th frame of
tracking a 40% occluded dozer in a real site (the point-based method (lower left) the

template-based method (lower right))

 78

while the point-based method reduces the size of region to include only the region that is

not occluded (Figure 4.14).

4.1.4.4 Scale Variation

For scale variation, six objects are used for model videos (brick, pipe, backhoe, car,

crane, and truck) and three are used for site videos (dozer, roller, and worker). In the

videos, the object sizes change monotonically as they move away from the camera or

towards the camera. The model dataset contains videos that show 75% decrease in the

objects’ scales, and the real-site dataset contains videos that show 81% decrease, 60%

decrease and 37% increase of dozer, roller and worker, respectively. There are no

occlusion and no severe changes in illumination. The results are provided in Tables 4.7

and 4.8. The number of successfully tracked frames is not included in Table 4.7 since

both methods successfully track the object until the last frame of all model videos.

 For the model videos, both methods successfully track the objects until the end of

the videos. As it is shown in the previous sections, the template-based method shows

higher accuracy than the point-based method. The results of the site videos exhibit more

evidently the stability of the template-based method. The point-based method succeeds in

tracking a worker who is walking toward the camera and getting larger in the video

(Figure 4.15). However, the point-based method fails to track a dozer and a roller until

the end of the videos in which the objects are getting smaller. When the object gets

smaller with cluttered backgrounds, the point-based method extracts the feature points

from the background region which is object region in the previous frame (Figure 4.16).

This phenomenon exerts a harmful influence on the estimation of the movement.

 79

Figure 4.15: The results of tracking a worker with the point-based method (left
column), the template-based method (right column) – the 1st, 42nd, and 84th (last)

frames from top to bottom

Figure 4.16: The results of tracking a dozer with the point-based method (left column),
the template-based method (right column) – the 1st and 21st frames from top to

bottom

 80

Table 4.7: The average errors (pixels) and p-values of error difference for the tests on
scale variations

Object
(Total frame #)

Brick
(326)

Pipe
(256)

Backhoe
(503)

Car
(117)

Crane
(264)

Truck
(235)

Template-based 0.97 0.91 2.76 1.85 2.49 2.49

Point-based 8.57 3.78 14.46 2.41 4.52 8.66

p-value 0.0000 0.0000 0.0000 0.1213 0.0018 0.0000

Table 4.8: The number of successfully tracked frames, the average errors (pixels)
and p-values of error difference for the tests on scale variations

Object
(total frame #)

Dozer
(266)

Roller
(160)

Worker
(163)

Template-based
of frames 266 160 163

Avg. error 12.88 5.70 2.77

Point-based
of frames 20 92 163

Avg. error 37.46 12.89 13.36

p-value 0.0049 0.0005 0.0000

4.1.4.5 Discussion

For thorough comparison of the template-based and the point-based methods, the

characteristics of construction sites that can interfere with the performance of the vision

tracking methods are recognized in order to identify metrics. Comparison tests are set up

in such a way to measure the performance of tracking in relation with construction site

requirements. Based on the tests, a number of experiments under different conditions of

construction sites are performed. The template-based method turns out to be more stable

and insensitive to illumination conditions, illumination variations, and scale variations

 81

than the point-based method. Table 4.9 summarizes the comparison results. The point-

based method shows its strength under occlusions. However, this strength is

overshadowed by its inability to track the objects that do not have enough features on it.

Overall, the template-based methods are determined as the most appropriate for tracking

construction site resources.

Table 4.9: Determination of the best category between template-based and point-based
methods

Variables
Absolute

illumination
Illumination

variation
Occlusion Object scales

of successfully
tracked frames

Template-based Template-based Point-based Template-based

Error of centroid Template-based Template-based Template-based Template-based

4.2 Combination of Detection and Tracking

Positioning of objects in a camera view is attainable through either object detection or

object tracking. Object detection recognizes a certain type of objects (e.g. face and

vehicle). For example, an algorithm of vehicle detection intends to recognize all vehicles

in images. However, it does not provide the identification of each single vehicle. In other

words, it cannot distinguish a vehicle from another. Also, the detection algorithms may

fail to detect a positive object due to limitations on the training of all different views. On

the contrary, object tracking finds a position of a unique object regardless of its object

category, based on its previous location and appearance in video frames. Therefore, to

initiate the tracking process, a prior position of an object has to be manually determined.

 82

Accordingly, it is not feasible to achieve effective monitoring of construction sites by

using either object detection or tracking because of their weaknesses such as false

detections and manual initialization. However, their weaknesses can be complemented by

each other’s strengths. From this perspective of view, hybrid methods that combine the

function of detection and tracking algorithms are presented in this chapter.

4.2.1 Methodology

Tracking always start with object detection. The object to be tracked has to be identified

and its region needs to be specified. The tracking algorithm is triggered by taking the

region of each object. The detection process is run for every frame not only to recognize

new entities but also to adjust and improve tracking performance. In other words,

detection and tracking are executed simultaneously. The proposed method basically relies

on detection results for location. For each frame, the location results of tracking and

detection are matched based on the distance between them. The tracking result is used

only when there is no detection result matching with it. When detection results of

consecutive frames show drastic changes in the object size or appearance, they are

regarded as false positives and replaced with the corresponding tracking result. This

reciprocal strategy enhances the stability of the processes. Furthermore, if detection

results are missing for a certain length of time, the method regards an object disappeared

(e.g. total occlusion or leaving the view) and stops processing. The identification of

occlusion and automated termination prevent 2D tracking algorithms from failing and

flying away from the object. Whenever the object gets free from the occlusion and

appears in the view, the detection process newly initiates it again.

 83

 As described in Chapter 3.2 and 3.3, the detection method requires separate

trainings of different views. Higher detection rate (recall) is achievable by increasing the

number of views. However, it will demand considerably increased computational efforts.

Even when taking a large number of views into account, it is hard to eradicate possibility

of false detections due to illumination changes or signal noises. To resolve these

problems, detection results are combined with tracking results. The combination allows

higher detection rate with a smaller number of training views. Gaps between the trained

views are filled with tracking results. In addition, tracking delivers identity of each object

which is valuable when tracking multiple objects of the same type. Since separate

templates of different views are used for detecting construction equipment, detection

results can notify the changes of the view. Also, the detection process can alleviate

instability of tracking algorithms caused by view changes (e.g. when equipment makes a

turn).

4.2.2 Experiments and Results

The proposed method is implemented using Microsoft Visual C# in .NET Framework 4.0

environment. The implemented method is tested on two videos recorded with a wheel

loader which is executing the loading/unloading process. They contain 959 (Video 1) and

773 (Video 2) frames, and they are resized to 800×600. The second video starts with a

wheel loader’s entering the view and includes two occlusion cases. The number of

training images and template sizes involved in the detection is presented in Table 4.10. 30

principal eigen-images are used for each view. The detection algorithm is designed to

maximize precision rather than recall, since low recall can be compensated by tracking

results while low precision can cause tracking of false positive objects.

 84

The experiment compares three methods: 1) detection-only, 2) tracking-only with manual

initialization, and 3) detection combined with tracking (proposed method). Method 1

detected the wheel loader from 468 and 187 frames in Video 1 and 2, respectively. These

values are significantly increased to 955 and 697 by using the proposed method, which

result in 99.6% and 90.1% recall. Above all, no false positive was made on both test

videos, which leads to 100% precision. The 76 (=773-697) frames of Video 2, in which

the method fails to extract locations, are associated with total occlusions or the wheel

loader’s entering the view. Figure 4.17 shows examples of results which compare

Methods 2 and 3 (the propose method). The 1st column of Figure 4.17 illustrates an

occlusion case. The proposed method identified the disappearance of the wheel loader

based on continuous absence of detection results, and the process stopped (no result in

3rd image). The process resumed when it appeared again (4th image). When the wheel

loader made a turn, the proposed method appropriately switched over to the rear view,

while Method 2 tended to keep its rectangle region (the 2nd column of Figure 4.17).

Table 4.10 The number of training images, and template sizes used for detection

Views

HOG Eigen-images

of training images Template
size

of training images Template
size Positive Negative Positive Negative

Left & right 603 3000 144×96 603 4000 30×15*

Front & rear 412 3000 88×104 412 4000 20×20
*The template is constructed for lower half of the view

 85

4.3 Summary

2D vision tracking is the departure of this research. This research aims at automating

initialization of 2D vision tracking and extracting 3D information by correlating multiple

2D tracking results or through coordinate conversion. In other words, 3D vision tracking

Figure 4.17: Results of the proposed method (red) and a tracking method (blue) under
total occlusion (left column) and viewpoint change (right column)

 86

that calculates the depth information of objects depends on the results of 2D vision

tracking. Selecting the best 2D vision tracking method for construction applications faces

some challenges. First, there are a large number of 2D vision tracking methods with

different capabilities and specifications. In addition, construction sites have unique

tracking requirements, which must be considered in order to select a 2D tracking method

that performs optimally under restrictions of construction sites. A systematic approach to

compare different categories of 2D vision tracking methods is presented to find the most

appropriate choice for 3D vision tracking purposes. The 2D vision tracking methods are

categorized as contour-based, template-based and point-based methods.

 To compare the three categories in a scientific way, independent variables and

dependent variables of experiments are determined. Characteristics of construction sites

that can affect the tracking performance are recognized and determined as independent

variables – absolute value of illumination, illumination variations, occlusions, scale

variations, and various types of objects. Two dependent variables – centroid error and the

number of successfully tracked frames – measure the performance of methods. Methods

of the three categories are tested on two data sets – model videos and site vidoes. Based

on the results of executed tests, it is concluded that template-based methods are the best

for tracking construction entities.

 Both detection and 2D tracking methods can be used for locating construction

entities in a camera view. A detection method locate all objects of a specific category in

an image while a tracking method locate a unique object based on its location in previous

frames. The combination of the two method leads to automated and stable 2D

localization. The main role of detection is to initialize the tracking algorithm by

 87

determining regions of objects to be tracked. Besides, there are additional benefits

tracking process can take from detection results. First, intrinsic instability of tracking

algorithms can be alleviated. When a tracked object experiences a drastic appearance

change due to noise, illumination conditions, and making turns, the tracking may fail and

lose the object. In this case, if a detection result is found near the tracked region, it can

adjust the region to the correct position. Second, occlusion can be recognized, which

automatically terminate the tracking process.

88

CHAPTER 5

CALCULATION OF 3D COORDINATES

2D pixel coordinates of object location determined by detection (Chapter 3) and 2D

tracking (Chapter 4) need to be further processed to obtain 3D spatial coordinates. To

achieve this, stereo camera calibration and triangulation are the required for a stereo

camera system which is used for construction entities in this research. This research

considers only fixed camera systems, and thus camera calibration is processed only once

after the cameras are set up.

 This chapter presents the method of combining 2D tracking results with stereo

view geometry for the sake of accurate 3D trajectories of far-located construction entities.

It should be noted that this research is aiming strictly for accurate localization of

construction entities from multiple construction cameras at long camera-to-object

distances, not real-time processing. Each single step involved in this method should be

optimized to characteristics of the fixed camera system and construction sites such as

various types of construction entities, the long baseline, and the long distance from

cameras to an entity which is inevitable at large-scale construction sites.

5.1 Stereo Camera Calibration

To obtain depth information, this research adopts stereo camera systems. Camera

parameters have to be discovered to establish geometry of the camera system. The

camera system in this method is composed of two cameras located several meters apart

from each other. The system is described by epipolar geometry as shown in Figure 2.2.

The geometry consists of two types of parameters – intrinsic and extrinsic parameters.

Intrinsic parameters are related to the system of each single camera while extrinsic

 89

parameters are related to the relationship between two cameras. The following chapters

will present methods of intrinsic and extrinsic camera calibration.

5.1.1 Intrinsic Calibration

Intrinsic parameters determine the linear system of projecting 3D points on the image

plane (P1 and P2 in Figure 2.2). Bouguet’s calibration toolbox (2004) is used to reveal the

intrinsic parameters because of its accuracy, robust convergence, and convenience.

Figure 5.1 shows several sample images of a checkerboard which are the input to the

calibration toolbox. The image set should contain various angles of the checkerboard. For

each input image, the toolbox also requires user input of information about the

configuration of the checkerboard – the dimension and the number of the squares, the

four extreme corners of the checkerboard pattern, and an initial guess of radial distortion.

Then, all corner points of the squares are automatically extracted. Erroneous corner

points can be refined by adjusting the initial guess of radial distortion. Using the user

input, the toolbox calculates the focal length, the principal point, the skew coefficient,

and the distortion coefficients. The toolbox provides an error analysis function through

which corner points associated with large errors can be easily found and fixed.

Figure 5.1: The example frames of a checkerboard video

 90

5.1.2 Extrinsic Calibration

Once the linear systems of two cameras are revealed, the relation between the two

cameras has to be estimated. In the stereo camera system, the focal point of the left

camera becomes an origin of the coordinate. Extrinsic parameters represent the relative

pose of the right camera to the left one (the rotation matrix R and the translation vector T

in Figure 2.2). The estimation of R and T involves point matching between two views.

Two combinations of algorithms are considered in this research. One is using SURF

(Speeded Up Robust Features) (Bay 2008) and RANSAC (RANdom SAmple Consensus)

(Hartley and Zisserman 2004) for the feature descriptor and outlier removal, respectively.

This combination proved to be fast and accurate enough for point cloud generation of

infrastructure (Fathi and Brilakis 2011). The other is using SIFT (Scale-Invariant Feature

Transform) (Lowe 2004) and MAPSAC (MAximum a Posteriori SAmple Consensus)

(Torr 2002), which is slower, but capable of acquiring more matches than the former

combination. Even though the use of SIFT is slower than SURF, it is worth to consider

this combination in our application because of the following reasons. First, cameras are

fixed in our application, which requires the camera pose estimation only once at the

initial stage of the framework. Therefore, the longer processing time of using SIFT can be

ignored. Second, as a longer baseline line (distance between two cameras) is used, fewer

point matches are obtained due to higher disparity between two camera views. In this

case, SIFT and MAPSAC can be helpful to feed more inlier matches and less outlier

matches to the next step.

 The normalized 8-point algorithm (Hartley 1997) is selected to estimate the

essential matrix based on intrinsic parameters and point matches. The selected method is

the most widely used because of its simple implementation and reasonably accurate

results. Although this method is less computational efficient and more sensitive to

degeneracy problems compared to other methods (Nistér 2004, Li and Hartley 2006), it is

still efficient and accurate enough to satisfy our needs with regard to fixed camera

 91

positions, a long baseline, and the complexity of construction sites. Finally, extrinsic

parameters (R and T) are recovered directly from the essential matrix (Hartley and

Zisserman 2004). These parameters together with the intrinsic parameters are used for

triangulating 2D tracking results.

5.2 Triangulation

The results obtained in two previous sections (epipolar geometry and two centroids) are

fed into the triangulation step. Generally, the projections of two centroid coordinates

determined from two views do not intersect each other due to camera lens distortions and

errors caused by 2D tracking. Even if the 2D tracker correctly locates the entity on each

frame, the disparity between two camera views causes mismatch of the centroids. In

order to enhance the accuracy of the triangulation process, the two centroids had to be re-

located so that their projections intersect (see Figure 2.2). For this purpose, Hartley and

Sturm’s algorithm (Hartley and Sturm 1997) is selected since the accuracy is more

critical than the processing time in our application. Intersecting projections of the

modified pair of centroids for each frame leads to the 3D coordinate of the tracked entity.

5.3 Summary

The calculation of 3D coordinates from 2D tracking results is covered in this chapter. For

construction applications, two cameras are employed to obtain 3D spatial information by

correlating two of 2D tracking results - one from each camera. Cameras calibration

revealed intrinsic parameters of cameras by processing video frames of a checkerboard.

The extrinsic parameters of two cameras were estimated through point matching between

two views. The extrinsic calibration uses SIFT or SURF for feature point extraction, and

RANSAC or MAPSAX for outlier removal. The discovered intrinsic and extrinsic

camera parameters establish epipolar geometry. For every frame, two of 2D pixel

 92

coordinates of an object, which are provided by a 2D tracking method applied to both

cameras, are triangulated based on the constructed epipolar geometry, and 3D coordinates

are calculated.

 93

CHAPTER 6

VALIDATION

This chapter validates the results of the two frameworks (Figures 1.2 detailed in Chapters

3 through 5) through experiments and statistical analysis. The first framework of tracking

construction entities are tested on site videos taken with a stereo camera system. Its

performance is evaluated based on the accuracy of 3D location.

6.1 Experimental Design

The data for validation of 3D tracking are collected from a construction site at the

Georgia Institute of Technology. This site is the construction of an indoor football

practice facility managed by Barton Malow Company. The roof and columns of the steel-

framed facility were already completed when the data were collected. The videos were

taken with two HD camcorders (Canon VISXIA HF S100, 30 fps, 1920×1080 pixels)

located about 4.5m above the ground on one side of the facility structure, where the

ground area of the facility structure could be overlooked. Two lengths of the baseline

(distance between two cameras) were tested – 3.8 m and 8.3 m. A total station (Sokkia

SET 230RK3) was used to acquire comparable results of the entities’ trajectories which

are used to measure the accuracy of video-derived results.

 Figures 6.1 shows total station data of the positions of the total station, the

cameras, and pre-defined trajectories. The figure is a top view of the site layout in a total

station coordinate system. In the total station coordinate system, x-axis, y-axis, and z-axis

are along the horizontal, vertical, and depth directions, respectively. In Figure 6.1, the

postions of right camera 1 and 2 are corresponding to the short and the long baseline

system. Figure 6.2 shows the entities’ trajectories from the views of the left camera and

the right camera 2. In Figure 6.1 and 6.2, Trajectories 1 and 2 are composed of 10 and 8

 94

segments of straight lines, containing 11 and 9 nodes, respectively. Trajectory 3 is a

straight line. Trajectories 1, 2, and 3 are located approximately at a 39 m, 43 m, and 36 m

distant from the left camera, respectively. The end points of all segments, i.e. 11, 9, and 2

nodes for Trajectories 1, 2, and 3 (●, *, and ■ in Figure 6.1), were pre-defined and clearly

marked on the ground of the site. The position data of the nodes were acquired with the

total station. At each node, a target mark of the total station was mounted on a tripod at

approximate heights of the entities’ centroids. Ground-truth trajectory data to be

compared with vision tracking results are obtained by connecting the acquired position

data of nodes with straight lines. The proposed methodology is tested on three types of

entities (a worker, a steel plate carried by a worker, and a sport utility vehicle (SUV)).

Trajectories 1 and 2 are those of a worker and a steel plate, and the trajectory 3 is of an

Figure 6.1: The layout of tests from a top view

 95

SUV. The entities followed the marks on the ground (nodes of Trajectories 1, 2, and 3),

moving straightly from node to node.

 The accuracy of vision tracking is quantified by an absolute error that is defined

as the distance between the tracked point and a line segment of ground-truth trajectory.

For each frame j, the distance Dj is calculated by the following equation.

 |() ()| |()|

 ̅̅ ̅̅ ̅̅ ̅̅ ̅ ()

Figure 6.2: Trajectories 1 and 2 from right camera 1’s view (top) and trajectory 3 from

right camera 2’s view (bottom)

Trajectory 1

Trajectory 2

Trajectory 3

 96

where Qi and Qi+1 are end points of the i-th line segment Li of ground-truth trajectories,

on which the object in frame j lies. Pj is the j-th frame’s tracking results, i.e. 3D points.

Figure 6.3 illustrates the error calculation. The graph on the left of Figure 6.3 is an

example of tracking results. As shown on the right of the figure, D408, the error of the

408th tracked point, is determined as the length of the projection of P408 onto the line L5.

 The main causes of error considered in this research can be classified into the 2D

tracking error (Chapter 4) and the error of camera pose estimataion (Chapter 5.1.2). Also,

the assumption that an entity moves exactly along the straight line is another

miscellaneous cause of error.

6.2 Implementation

For the purpose of camera calibration, a video of a moving checkerboard (7 by 9 of

65mm×65mm squares) is recorded by each camera (Figure 5.1). 26 frames are selected

appropriately to have various angles of view, and are fed into Bouguet’s calibration

toolbox (Bouguet 2004). Once the checkerboard videos are taken and the cameras are

calibrated, all camera system settings are remained the same through experiments. All

functions that may automatically cause a change in the camera intrinsic parameters, such

-14
-10

-6
-2

2
6

32

36

40

44

48

2

4

X (m)

Z (m)

Y
 (

m
)

P408

D408

L5 = Q5Q6

Figure 6.3: 3D tracking error calculation

Ground-Truth

Vision Tracking

Q1 Q2

Q4

Q6
Q8

Q10

Q3

Q5

Q7
Q9

Q11

 97

as autofocus and automated image stabilization, are disabled. Out of all video frames, a

pair of corresponding frames of left and right cameras is used to obtain a large number of

point matches. The point matches and calculated intrinsic parameters are used to estimate

camera poses. Because the positions of the cameras are fixed in the proposed method, all

calibration procedures are required only once as a pre-process.

 For each calibrated camera view, construction entity is recognized and tracked

across subsequent frames. While a worker and an SUV are detected by the proposed

methods in Chapter 3.1 and 3.3, respectively, a steel plate is manually marked. Given the

results of the comparative study (Chapter 4.1), a template-based 2D tracker based on

Ross et al.’s method (2008) is used. The eigen-image is constructed selectively with gray

scale values or saturation values depending on the tracked entity’s color characteristics to

enhance the accuracy. Also, in the particle filtering process, the position translation

(delta-x and delta-y between consecutive frames) is considered instead of the entity

location (x and y coordinates). This estimation strategy is beneficial to correctly locate the

entity with fewer samples in particle filtering. The centroid coordinates are updated every

frame by accumulating the estimated translation vector.

6.3 Experiments and Results

Experimental results of tracking a steel plate, a worker, and an SUV are presented in the

following subsections.

6.3.1 Point Matching between Two Views

As described in Chapter 5.1.2, two point matching methods are tested – 1) SURF

(Speeded Up Robust Features) with RANSAC (RANdom SAmple Consensus) and 2)

SIFT (Scale-Invariant Feature Transform) with MAPSAC (MAximum a Posteriori

SAmple Consensus). SURF is tested with two threshold values of distance ratio (DR), 0.8

and 0.6. Distance ratio is the distance of the closest neighbor to that of the second closest

 98

neighbor (Lowe 2004). Discarding feature points that have distance ratios higher than the

threshold, is an effective way of reducing false positive matches. In the case of DR=0.8,

more point matches are obtained than if DR=0.6, but they contain apparent outliers as

shown in Figure 6.4. In Figure 6.4, while most matching lines have similar slopes in left-

Figure 6.4: Point matches obtained by SURF+RANSAC (DR=0.8)

 99

bottom direction (\), outliers direct in different way (/). The outliers have adverse effects

on essential matrix estim ation, and the effect of outliers is reflected on the large error of

tracking. On the other hand, in Figure 6.5 which shows point matching results of

SIFT+MAPSAC, outliers are significantly reduced when compared to Figure 6.4.

Figure 6.5: Point matches obtained by SIFT+MAPSAC (DR=0.6)

 100

6.3.2 Tracking of a Steel Plate

A 0.6-m by 0.3-m steel plate is chosen as the first entity to track. The plate is carried by a

worker walking along Trajectories 1 and 2. Tracking tests were performed separately for

Trajectories 1 and 2. The video contains 1430 frames in total (790 and 640 frames for

Trajectory 1 and 2, respectively), which means the results have 1430 tracked 3D

coordinates. In this experiment, right camera 1 (Figure 6.1) is set to have a 3.8 m

baseline. The template model for the 2D tracker is composed of gray pixel values. The

tracker accurately fits the steel plate with an affine-transformed rectangle in most frames.

Therefore, it can be inferred that the errors in this experiment mostly come from

triangulation including camera pose estimation.

 Figure 6.6 shows 3D tracking results. In Figure 6.6, black solid lines represent the

ground-truth trajectories which are obtained by connecting total station data of nodes

with straight lines. The black lines are same as Trajectories 1 and 2 in Figure 6.1. The

other colors of lines are vision tracking results with different point matching methods.

When using SURF and RANSAC with DR = 0.8, the results are far away from the

ground-truth trajectories. The results of using DR = 0.6, on the other hand, are closely

fitting the ground-truths. From the results of Trajectory 2, it can be observed that

SURF+RANSAC (green) is a little closer to the ground-truths than SIFT+MAPSAC.

 These observations are quantiried by the errors in Table 6.1. For every tracked

position, the error, Dj, is calculated, thus, 1430 error data are obtained. The average and

the standard deviation (STD) of the errors are computed. Maximum errors are calculated

based on the average and STD with 95% confidence level. In Table 6.1, the errors are

calculated for tracking along Trajectories 1 and 2, and also the total of them. Even though

SURF with DR = 0.6 generates fewer point matches (271) than others (568 and 423), the

method reduces outliers significantly and performs even better than SIFT+MAPSAC

(DR=0.6), which provide about twice as many point matches. Assuming the error follows

a normal distribution, it is concluded that the tracking error is less than 0.429 m with 95%

 101

confidence. It is worthwhile to note that errors of Trajectory 1 is larger than those of

Trajectory 2 even though Trajectory 1 is closer to the camera. It is inferred that the error

disparity is related to the fact that most point matches are obtained from the area which

are further than Trajectory 2 from cameras. That is, the points are closer to Trajectory 2

than Trajectory 1.

Table 6.1: Errors of tracking a steel plate

Method DR

of

point

matches

Error (m)

Total Trajectory 1 Trajectory 2

Max Avg. STD Max Avg. STD Max Avg. STD

SIFT+

MAPSAC
0.6 568 0.603 0.252 0.179 0.690 0.314 0.192 0.422 0.177 0.125

SURF+

RANSAC

0.8 423 3.005 1.220 0.911 3.463 1.537 0.983 2.043 0.828 0.620

0.6 271 0.429 0.180 0.127 0.489 0.222 0.136 0.305 0.127 0.091

Figure 6.6: The tracking results of a steel plate

Trajectory 1

Trajectory 2

 102

6.3.3 Tracking of an SUV

The second experiment deals with the tracking of an SUV (2-m wide, 1.95-m high, and

5.13-m long). The SUV moved along Trajectory 3 forward and backward. The video

contains a total of 1034 frames. A long baseline (8.3 m) is tested in this experiment

placing a camera at ‘right camera 2’ in Figure 6.1. Gray pixel values are used for

templates of the 2D tracker. Figure 6.7 displays obtained trajectories with ground-truths.

Similar to the first experiment, it is observed that outliers finally result in inaccurate

depth estimation (SURF+RANSAC with DR=0.8). It is worth to notice that tracking

results of moving forward and backward are different from each other even though they

were on the same trajectory. This disparity is caused mostly by the 2D tracking results.

Figure 6.8 shows 2D tracking results in the right camera view. In the figure, a slight

difference between the results of forward and backward movement is observed. This

difference corresponds to the centroid error described in Chapter 4.1.2. The 2D tracking

provides inconsistent centroids, which are linked to 3D tracking error.

 The error results are presented in Table 6.2. Compared to the results in Table 6.1,

Figure 6.7: Tracking results of an SUV

Trajectory 3

 103

the number of point matches significantly reduced because the long baseline camera

system is used. The small numbers of point matches are attributed to the greater

difference between the left and right camera views. Different from the results of tracking

a steel plate in the previous chapter (short baseline), SIFT+MAPSAC, which generated

26% more matches than SURF+RANSAC, performed better in this case (long baseline).

It is inferred that though SURF+RANSAC (DR = 0.6) also contains few outliers, 183

point matches are not enough to accurately estimate extrinsic parameters. Assuming the

error follows a normal distribution, it is concluded that the tracking error is less than

0.658 m with 95% confidence.

Table 6.2: Errors of tracking an SUV

Method DR
of point

matches

Error - Trajectory 3 (m)

Max. Avg. STD

SIFT+MAPSAC 0.6 230 0.658 0.278 0.194

SURF+RANSAC
0.8 235 1.068 0.426 0.327

0.6 183 0.750 0.289 0.235

Figure 6.8: 2D tracking results in the right camera view

 104

6.3.4 Tracking of a worker

The third experiment is performed on a worker. The worker first walked along Trajectory

1, and then Trajectory 2. The worker moved straightly between the node markings on the

ground. Two lengths of baseline (3.8 m and 8.3 m) are tested. The videos with a short and

a long baseline contain 1435 and 1368 frames, respectively. In the 2D tracking process,

the region of a worker’s upper body, which can be well characterized by fluorescent

colors of a hard hat and a safety vest, is tracked. Instead of gray pixel values, saturation

values are used for composing the template model.

 Figures 6.9 and 6.10 present the trajectory results of the short baseline system and

the long baseline system, respectively. In both figures, it is observed that

SIFT+MAPSAC (red) results are closer to the ground-truths than SURF+RANSAC

(blue). More importantly, the results in Figure 6.10 (long baseline) show more stable and

accurate tracking performance than the ones in Figure 6.9 (short baseline). The longer

Figure 6.9: Tracking results of a worker with a short baseline

Trajectory 1

Trajectory 2

 105

baseline forms a larger angle between two projections P1 and P2 in Figure 2.2, which

results in higher accuracy. Table 6.3 summarizes tracking error results. As observed in

Figures 6.9 and 6.10, SIFT+MAPSAC produces lower errors than SURF+RANSAC

regardless of the baseline length. When a long baseline system is employed,

SIFT+MAPSAC generates 215 point matches, which are 30% more than the matches

generated from SURF+RANSAC. More accurate results are allowed by the larger

number of point matches which leads to better estimation of the essential matrix (Chapter

5.1.2). In addition, when using SIFT+MAPSAC, errors of a long baseline system are

significantly approximately half of those of a short baseline. Assuming the error follows a

normal distribution, it is concluded that the tracking error is less than 0.636 m with 95%

confidence.

Figure 6.10: Tracking results of a worker with a long baseline

Trajectory 1

Trajectory 2

 106

 It is worth to compare the short baseline results with the results of steel plate

tracking. When SIFT+MAPSAC is used, the maximum errors of worker tracking and

steel plate tracking are 1.223m (Table 6.3) and 0.603 m (Table 6.2). Because both results

are from short baseline systems and the numbers of point matches (584 and 568) are only

0.2% different, it is inferred that the error difference is attributed to 2D tracking

performance. 2D tracking errors can be divided into two elements. The first element is

caused when the determined centroid in each view does not exactly match the real

centroid, i.e. the total station target point. Tracking of a worker produces higher errors of

the first element because the 2D tracker suffers severe variations of a worker’s

appearance whenever a worker changes one’s direction. When compared with Figure

6.11(a), Figure 6.11(b) shows more substantial changes in the distribution of pixel values

inside a rectangle. The second element is caused when two centroids from left and right

cameras do not correspond to each other (Figure 6.12). 2D Tracking of a worker results

in higher errors in both elements, leading to twice higher errors of 3D tracking than

tracking of a steel plate.

Table 6.3: Errors of tracking a worker (DR=0.6)

Method

Base-

line

length

of

point

matches

Error (m)

Total Trajectory 1 Trajectory 2

Max. Avg. STD Max. Avg. STD Max. Avg. STD

1
i

3.8 m 584 1.223 0.523 0.357 1.338 0.605 0.374 1.032 0.426 0.309

8.3 m 215 0.636 0.258 0.193 0.730 0.317 0.211 0.462 0.187 0.140

2
ii

3.8 m 503 1.656 0.714 0.481 1.827 0.841 0.503 1.354 0.562 0.404

8.3 m 166 1.010 0.381 0.321 1.188 0.455 0.374 0.708 0.292 0.212
i
Method 1: SIFT+MAPSAC

ii
Method 2: SURF+RANSAC

 107

6.4 Summary

The first framework for tracking construction entities was evaluated based on the

accuracy of determined 3D positions. The framework was implemented and tested on the

videos recorded on a real construction site. A total station was used to acquire ground-

truth data which were compared with vision tracking results. The tests involved 3 types

of entities (a steel plate, a worker, and an SUV). A template-based 2D tracker was

employed, and different methods of point match extraction were experimented to reveal

the effect of errors caused by correlating multiple views. SIFT+MAPSAC provided a

(a) (b)

Figure 6.12: 2D tracking results: the 693rd frame of (a) the left and (b) the right

camera

Figure 6.11: The appearance variations of (a) a steel plate and (b) a worker

(a) (b)

 108

larger number of point matches, which generally resulted in a good estimation of

extrinsic parameters especially for long baselines. For tracking of a steel plate and an

SUV, the maximum errors determined with 95% confidence were smaller than the

entity’s width. Various appearances of a worker (front, side, and, rear views) brought

about larger errors of 2D tracking than tracking of a steel plate. However, it results in at

most 0.658 m error with 95% confidence using a long baseline. The results validated that

the vision based 3D tracking approach can effectively provide accurate localization of

construction site entities with distance ranging around 40-50 m.

109

CHAPTER 7

CONCLUSION

This chapter first reviews the motivation and objectives of this research. Then, the brief

descriptions of the methods created in this research are outlined. The conclusions,

recommendations, possibilities of future research that grow out of this research are finally

presented.

7.1 Review of Motivation and Objectives

This research proposes a framework of 3D vision-based tracking that promises to

determine the spatial location of construcion entities without installation of any sensors.

The main objective of this research is to test feasibility of the framework that can resolve

two problems of general 2D vision tracking – the lack of automated initialization and

depth information. Under this objective, the research effort in this study is focused on

four parts: 1) detection of project related entities for automated initialization of 2D

tracking, 2) comparison of 2D tracking methods to find the most appropriate ones for

tracking construction entities, 3) combination of detection and tracking, and 4) stereo

camera calibration for correlating 2D tracking results. The framework is expected to

provide spatiotemporal information of construction entities in a large-scale congested

construction site, such as construction equipment and personnel with comparable

accuracy.

 Vision-based tracking tracks moving objects by making inference on their

location on the basis of visual and motion patterns. Vision-based tracking uses only

camera videos, and is capable of tracking multiple entities concurrently. Wireless

 110

surveillance cameras have been gradually applied to the construction site as cameras with

higher quality and lower costs are available: hence, it is obviously beneficial to employ

vision-based technology. It can be directly applied to video streams collected from the

cameras, costing no additional equipment.

 Vision-based tracking is frree of tags or sensors. It can track multiple entities

without attaching any tags or sensors to the entities as long as they are present in camera

views. On the contrary, radio frequency technologies such as RFID (Radio Frequency

Identification), UWB (Ultra Wide Band), and GPS (Global Positioning System), which

have been applied for tracking construction entities, need to install a sensor to each entity

to be tracked. Though the radio frequency technologies work excellent for a certain type

of materials and equipment for various construction scenarios, the drawbacks of each

technology such as short ranges or the need for installation of sensors impose limits on

their application to construction sites where a large number of entities exist. Therefore,

vision-based tracking can be a promising alternative to the radio frequency technologies.

 This research can contribute to the construction industry by establishing a basis of

automated vision-based tracking. The automated tracking can be used for effective

monitoring of the construction sites and project progress. More broadly, this research can

help advance the level of automation in construction which is one of the greatest

challenges of engineering noted by National Academy of Engineering.

7.2 Review of Methods

This research considers only fixed cameras, and the proposed tracking frameworks for

construction and transportation applications are composed of four steps - 1) detection of

 111

construction workers and equipment, 2) 2D tracking of detected entities, 3) integration of

tracking and detection results, and 4) stereo or single camera calibration.

 Detection processes of construction workers and equipment comprised of three

sequential steps. First, a background subtraction method is used to reduce ROI (Region of

Interest) of the second step to foreground blobs which are moving object regions. The

second step searches shapes of workers or equipment from foreground blobs using HOG

(Histogram of Oriented Gradients) features. The detected regions of the second step are

further filtered based on color information (color histogram or eigen-images).

 There are a great number of 2D vision-based trackers proposed in literatures

which can be directly applied to construction entities. However, little is known about

which one is the best for construction applications. To address this, a comparative study

was undertaken. The methods are classified into the contour-based, template-based, and

point-based methods, and the classes are compared regarding the construction sites’

environments that can affect the tracking performance. Stability and accuracy are

measured by the number of successfully tracked frames and the centroid error.

Illumination conditions, the level of partial occlusions, and object scales are varied and

controlled independently to investigate their effect on the tracking performance.

 Proposed detection methods and the selected 2D tracking method are interated in

such a way that detection initiates 2D tracking and increase the degree of stability of 2D

tracking. Detection of construction equipment which involves four separate trainings for

front, rear, left, and right, informs of view changes and adjusts 2D tracking results. Also,

when no detection results are obtained around a tracking region for a certain amount of

 112

time, the tracked object is considered to be occluded and the tracking process

automatically terminates.

 The combination of detection and tracking generates 2D pixel coordinates across

frames. To obtain 3D coordinates, 2D coordinates from two views are correlated. First,

cameras are calibrated to find their intrinsic parameters. Intrinsic parameters represent the

linear system of projecting 3D points on the image plane. The second step is to estimate a

relative pose (rotation and translation) of the calibrated cameras, which is called extrinsic

parameters. Once the intrinsic and extrinsic parameters are known, 2D tracking results

are triangulated based on the revealed parameters.

7.3 Discussion and Conclusions

All the methods proposed in this research study have been implemented in the Microsoft

Visual Studio environment. Real videos of construction sites have been used to test these

methods. The results from the methods are compared with ground-truth data retrieved

manually or from other technologies to indicate the effectiveness of the methods. To

validate the detection step, the proposed method of construction worker detection is

tested. According to the results, the method can detect construction workers who wear

safety vests with 99% precision within 1 s after they first appear in a camera view. The

results indicate that the method can effectively initialize 2D tracking, which is the major

role of the detection process.

 According to the comparative study, template-based methods prove to be the best

for tracking construction entities. Contour-based methods which have a merit of

recognizing exact boundaries of objects do not fit to the role of 2D tracking in the 3D

tracking framework. Experimental results show template-based methods are more stable

 113

than the contour-based methods under partial occlusions and illumination changes. A

thorough comparison of template-based methods and point-based methods shows the

overall superiority of template-based methods over point-based methods. Point-based

methods exhibit greater strength only in the stability under severe partial occlusions.

Especially, the centroid errors of point-based methods are significantly larger than those

of template-based methods for all different conditions in terms of illumination conditions,

partial occlusions, and object scales.

 The method of detecting construction equipment that uses four separate templates

for different views is integrated with a selected template-based method. Tests of the

integration show highly stable tracking results which are not achievable only with 2D

tracking. In addition to the automated initialization, detection results are effectively used

for adjusting and stabilizing 2D tracking results. It was also possible to automatically

terminate the tracking process when the tracked object got occluded.

 Finally, the 3D tracking framework is tested on real-site videos to validate the

accuracy of 3D position data. The tests involve three types of entities: a steel plate, a

worker, and an SUV (Sport Utility Vehicle). Various point matching methods and

different baseline lengths are applied to identify their effects on accuracy. When the

baseline is longer, higher accuracy is achievable since it reduces the error of triangulation.

The experiments shows that the SIFT+MAPSAC method is more appropriate for the

stereo camera system that has a long baseline since it generates more point matchings

than SURF+RANSAC. The errors of 3D position are at maximum 0.658 m with 95%

confidence. It validates the effectiveness, the accuracy and the applicability of the

proposed vision based 3D tracking approach.

 114

7.4 Contributions

This research will contribute to civil engineering community by providing an unobtrusive

tracking method that can determine 3D positions of various types of objects across time.

This research is expected to enable to improve the efficiency of monitoring both

construction sites and traffic conditions. Furthermore, this research is also a step forward

towards developing vision-based, automated, construction site model generation tools.

The contributions of this research in tracking for construction are listed as follows.

1. This research automates the initialization of 2D tracking. Methods to detect

construction entities (workers and equipment) are created, and used for initiating

2D tracking processes. The methods can trigger the 2D tracking process

immediately once a construction entity newly appears in the camera view.

2. This research suggests the best methods to track on-site construction entities in

2D. The results of the comparative study can be referred to for any purpose that

involves tracking construction entities. In addition, the experimental setup

(independent and dependent variables, and video datasets) in the study can be

used for further comparison of 2D trackers which are or will be proposed more

recently or in the future.

3. This research investigates on extrinsic calibration methods for long baseline

stereo camera systems. For monitoring large-scale construction sites, the baseline

of stereo camera system should be long enough to improve the accuracy of

triangulation. The experiments of this research provide findings on appropriate

point matching algorithms that extract a sufficient number of point matches in

long baseline systems.

 115

7.5 Limitations and Recommendations for Future Work

This research investigates vision-based tracking which provides 4D coordinates (3D

spatial position and time) of construction entities in camera views using appropriate

image processing and machine vision techniques. This chapter will deal with limitations

of this research and future work to enhance the proposed framework and overcome the

limitations.

 As presented in Chapter 6, experimental tests of the prosposed framework result

in approximately 0.7 m error in maximum with 95% confidence level. The experiments

were performed in a controlled condition (single object and no occlusion), and the level

of error can be increased in a more complicated condition. The enhancement of 2D

tracking and triangulation can reduce the error level.

 Parts of 3D tracking error stem from 2D tracking error. Consistent centroids and

pinpoint matching between two centroids from different camer views are the main targets

to minimize the 2D tracking error. Combination of a point-based method and a template-

baed method can be a promising way to achieve the targets. Also, an additional

comparative study of new emerging 2D tracking algorithms will help find better

algorithms and increase accuracy. Further categorization of template-based methods and

their comparison based on the experimental design and dataset presented in this research

will enable to find methods with better performance. Just by replacing the 2D tracking

package with a new one, the accuracy and stability of 3D tracking can be enhanced.

 The use of three or more cameras can improve the 3D tracking performance. First

of all, chances of an object viewed in at least two cameras are increased. Also, the error

of triangulation can be reduced. Furthermore, an investigation of optimal camera

 116

positions can be an important study to improve the performance since the accuracy of

triangulation is sensitive to the camera system.

 Processing of the implemented framework is not real-time. Therefore, code

optimization and employment of GPU (Graphics Processing Unit) are required to achieve

real-time processing. Real-time processing will allow wider applications of vision

tracking in construction project monitoring. For example, real-time information of on-site

entities can be used to identify proximity of worker to heavy equipment or restricted

zones.

 Experiments in this research are limited yet to validate the possibility of practical

monitoring applications. Experiments on more complicated scenes and scenarios are

required to find and resolve problems of vision-based tracking implicated in tracking on-

site entities. Various parameters such as site scale, crowdness, object speed, and activity

type, etc. can be considered in the experiment design. Furthermore, benchmarking studies

of tracking technologies (vision-based tracking and radio frequency technologies) can

provide suggestions on the best tracking technologies for each single combination of the

parameters.

 The ultimate future goal of extending this research is practical application of 3D

vision tracking to real tasks of site monitoring. As discussed in Chapter 2.2, 2D vision

tracking has been already applied to simple scenarios for productivity measurement

(Gong and Caldas 2010) and safety management (Teizer and Vela 2009) with a limited

level of automation. Extended 3D vision tracking methods will broaden applications of

vision tracking, and contribute to the construction industry by automating the acquisition

of important information from videos for more complex tasks of project monitoring. The

 117

3D vision tracking can enhance quality of construction projects by providing an efficient

site monitoring system which contractors can easily adopt and apply to their on-site

construction camera systems.

 118

APPENDIX A

CODE FOR DETECTION

This appendix presents the main part in the prototype code for detecting construction

entities. It includes the background subtraction, color histograms and HOG.

namespace ObjectTracking
{
 public class Detector: IDisposable
 {
 private bool isTrained = false;
 private List<Rectangle> detected;

 private HOGDescriptor hog;
 public Size winSize;
 private Size winStride, cellSize;
 private int nHOGbins;

 private double[] aspect;

 private BlobCounter blobCounter;
 private List<Rectangle> blobs = new List<Rectangle>();

 private bool _disposed = false;

 public Detector()
 {
 detected = new List<Rectangle>();
 winSize = new Size(64, 128);
 winStride = new Size(16, 16);
 cellSize = new Size(8, 8);
 nHOGbins = 9;
 hog = new HOGDescriptor(winSize, new Size(16, 16), cellSize, cellSize,

 nHOGbins, 0, -1, 0.2, true);
 }

 public void FGBlobExtraction(List<Rectangle> entry, List<Image<Gray, byte>> fg,
 Option opt)
 {
 blobs.Clear();

 119

 for (int i = 0; i < entry.Count; i++)
 {
 blobCounter = new BlobCounter(fg[i].Bitmap);
 Rectangle[] blobRect = blobCounter.GetObjectsRectangles();

 for (int j = 0; j < blobRect.Length; j++)
 {
 if (blobRect[j].Width >= opt.th_Blobs && blobRect[j].Height >=
 opt.th_Blobs)
 {
 blobRect[j].Offset(entry[i].Location);
 blobs.Add(blobRect[j]);
 }
 }
 }

 bool needToMerge = true;
 while (needToMerge)
 {
 int count = blobs.Count;
 needToMerge = false;
 for (int i = 0; i < count; i++)
 {
 for (int j = i + 1; j < count; j++)
 {
 if (blobs[i].Contains(blobs[j]))
 {
 blobs.RemoveAt(j);
 needToMerge = true;
 count = blobs.Count;
 }
 else if (blobs[j].Contains(blobs[i]))
 {
 blobs.RemoveAt(i);
 needToMerge = true;
 count = blobs.Count;
 break;
 }
 else if (blobs[i].IntersectsWith(blobs[j]))
 {
 int x = Math.Min(blobs[i].X, blobs[j].X);
 int y = Math.Min(blobs[i].Y, blobs[j].Y);
 int w = Math.Max(blobs[i].Right, blobs[j].Right) - x;
 int h = Math.Max(blobs[i].Bottom, blobs[j].Bottom) - y;

 120

 blobs.RemoveAt(j);
 blobs.RemoveAt(i);
 blobs.Insert(i, new Rectangle(x, y, w, h));
 needToMerge = true;
 count = blobs.Count;
 i--;
 break;
 }
 }
 }
 }
 }

 public void TrainHOG()
 {
 hog.SetSVMDetector(GetHOGData());
 isTrained = true;
 }

 public float[] GetHOGData()
 {
 float[] sv;
 String str_size = "(" + winSize.Width + "x" + winSize.Height + ")";
 System.IO.StreamWriter sw;
 System.IO.StreamReader sr;

 String[] files =
 System.IO.Directory.GetFiles(System.IO.Directory.GetCurrentDirectory(),
 "sv" + str_size + ".txt");
 if (files.Length != 0)
 {
 sr = new System.IO.StreamReader(files[0]);
 String[] str = sr.ReadToEnd().Split(new String[] { "\n" },
 System.StringSplitOptions.RemoveEmptyEntries);
 sv = new float[str.Length];
 for (int i = 0; i < str.Length; i++)
 {
 sv[i] = float.Parse(str[i]);
 }
 sr.Close();
 return sv;
 }

 files = System.IO.Directory.GetFiles(System.IO.Directory.GetCurrentDirectory(),
 "model_HOG_reg" + str_size + ".txt");

 121

 if (files.Length == 0)
 {
 files = System.IO.Directory.GetFiles(
 System.IO.Directory.GetCurrentDirectory(), "trData_HOG"+str_size+".txt");
 if (files.Length == 0)
 {
 String[] str_p = System.IO.Directory.GetFiles(
 @"D:\\[Detection]\\ObjectType\\Positives" + str_size);
 String[] str_n = System.IO.Directory.GetFiles(
 @"D:\\[Detection]\\ \ObjectType\\Negatives");

 int lp = str_p.Length;
 int ln = Math.Min(lp * 3, str_n.Length);

 Image<Bgr, byte> images;

 int[] X = new int[lp + ln];
 float[][] des = new float[lp + ln][];

 ContinuousUniform distribution = new ContinuousUniform();

 distribution.RandNumGen = new Random.MersenneTwister();

 for (int i = 0; i < lp + ln; i++)
 {
 String str = (i < lp) ? str_p[i] : str_n[i - lp];
 int ist = str.LastIndexOf('\\') + 1;
 int iend = str.LastIndexOf('.');
 String newfile = str.Substring(ist, iend - ist);

 images = new Image<Bgr, byte>(str);

 if (i < lp)
 {
 des[i] = HOG.Compute(images, winStride, new Size(0, 0), null);
 }
 else
 {
 int wrange = images.Width - winSize.Width;
 int hrange = images.Height - winSize.Height;

 int x = (int)(distribution.Sample() * wrange);
 int y = (int)(distribution.Sample() * hrange);

 Rectangle rect = new Rectangle(x, y, winSize.Width, winSize.Height);
 Image<Bgr, byte> randImg = images.Copy(rect);

 122

 des[i] = HOG.Compute(randImg, winStride, new Size(0, 0), null);
 randImg.Save("rand_" + newfile + ".png");
 }

 X[i] = (i < lp) ? 1 : 0;
 }

 sw = new System.IO.StreamWriter("trData_HOG" + str_size + ".txt");
 for (int i = 0; i < X.Length; i++)
 {
 if (des[i] != null)
 {
 String data = X[i].ToString() + " ";
 for (int j = 0; j < des[i].Length; j++)
 {
 data += (j + 1).ToString() + ":" + des[i][j].ToString() + " ";
 }
 sw.WriteLine(data);
 }
 }
 sw.Close();
 }

 System.Diagnostics.ProcessStartInfo info
 = new System.Diagnostics.ProcessStartInfo(
 "svm_learn", "-z c –t 0 -a alpha.txt trData_HOG" +
 str_size + ".txt model_HOG_reg" + str_size + ".txt");

 info.RedirectStandardOutput = false;
 info.UseShellExecute = false;
 info.CreateNoWindow = false;

 try
 {
 using (System.Diagnostics.Process proc =
 System.Diagnostics.Process.Start(info))
 {
 proc.WaitForExit();
 }
 }
 catch
 {
 }
 }

 123

 sr = new System.IO.StreamReader("model_HOG_reg" + str_size + ".txt");

 sr.ReadLine();
 sr.ReadLine();
 sr.ReadLine();
 sr.ReadLine();
 sr.ReadLine();
 sr.ReadLine();
 sr.ReadLine();

 String[] strs = sr.ReadLine().Split(new String[] { " " },
 StringSplitOptions.RemoveEmptyEntries);
 int hogSize = int.Parse(strs[0]);
 sv = new float[hogSize + 1];

 sr.ReadLine();
 strs = sr.ReadLine().Split(new String[] { " " },
 StringSplitOptions.RemoveEmptyEntries);
 int nVectors = int.Parse(strs[0]);
 strs = sr.ReadLine().Split(new String[] { " " },
 StringSplitOptions.RemoveEmptyEntries);
 sv[hogSize] = float.Parse(strs[0]);

 for (int i = 0; i < nVectors - 1; i++)
 {
 strs = sr.ReadLine().Split(new String[] { " " },
 StringSplitOptions.RemoveEmptyEntries);
 float alpha_y = float.Parse(strs[0]);
 for (int j = 0; j < hogSize; j++)
 {
 float scalar = float.Parse(strs[j + 1].Substring(strs[j + 1].IndexOf(':') + 1));
 sv[j] += alpha_y * scalar;
 }
 }
 sr.Close();

 sw = new System.IO.StreamWriter("sv" + str_size + ".txt");
 for (int j = 0; j < hogSize + 1; j++)
 {
 sw.WriteLine(sv[j].ToString());
 }
 sw.Close();

 return sv;
 }

 124

 public void WriteResults(Image<Bgr, byte> im, Option opt, long timestamp)
 {
 System.IO.StreamWriter sw = new System.IO.StreamWriter("Detection.txt", true,
 System.Text.Encoding.UTF8);
 for (int i = 0; i < detected.Count; i++)
 {
 im.Draw(detected[i], TemplateTracker.colorValue(opt.rect_color),
 opt.rect_thickness);
 sw.WriteLine(timestamp.ToString() + " " + detected[i].X.ToString() + " " +
 detected[i].Y.ToString() + " "
 + detected[i].Width.ToString() + " "
 + detected[i].Height.ToString());
 }
 sw.Close();
 }
}

 125

APPENDIX B

CODE FOR 2D TRACKING

This appendix presents the main part in the prototype code for 2D tracking of

construction entities. It includes particle filtering (condensation), affine transformation,

and eigen-image analysis, etc.

namespace ObjectTracking
{
 public partial class TemplateTracker : IDisposable
 {
 private String index;
 private Parameter param;
 private double cx, cy;
 private Matrix<double> wimgs;

 private Matrix<double> mean;
 private Matrix<double> eigval;
 private Matrix<double> basis;
 private int numsample; /

 private long cur;
 private long start;
 private int batch;
 private bool _disposed = false;
 private double maxVal;

 private Matrix<double> corners;

 private String eqType;
 private String view;
 private int[] votes;
 public long SinceWhenNotDetected = 0;

 public TemplateTracker(string id, String etype, String view)
 {
 cur = 0;
 start = 0;
 batch = 0;
 numsample = 0;

 126

 index = id;
 cx = 0;
 cy = 0;
 corners = new Matrix<double>(2, 5);
 eqType = etype;
 this.view = view;
 votes = new int[3];
 }

 public void Initiate(Image<Bgr, byte> im, Matrix<double> initParam, Option opt,
 long timestamp, bool isNew)
 {
 cx = initParam[0, 0];
 cy = initParam[1, 0];

 if (opt.x_or_dx == "dx/dy")
 {
 initParam[0, 0] = 0;
 initParam[1, 0] = 0;
 }

 param = new Parameter(initParam, opt);
 wimgs = new Matrix<double>(opt.tw * opt.th, opt.batchsize);

 param.Est = affparam2mat(param.Est);

 param.Wimg = warpimg(im, param.Est, cx, cy, param.TW, param.TH, param.C,
 opt);

 Image<Gray, double> item = new Image<Gray, double>(param.TW, param.TH);
 for (int i = 0; i < param.TW; i++)
 {
 for (int k = 0; k < param.TH; k++)
 {
 item.Data[param.TH - k - 1, param.TW - i - 1, 0] = param.Wimg.Data[i *
 param.TH + k, 0] * 256.0;
 }
 }
 item.Save("wimg" + batch.ToString() + ".gif");

 mean = param.Wimg.Clone();

 double a = opt.tw / 2.0;
 double b = opt.th / 2.0;

 Matrix<double> _corners = new Matrix<double>(

 127

 new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } });

 Matrix<double> M = new Matrix<double>(new double[2, 3] {
 { cx, param.Est.Data[2, 0], param.Est.Data[3, 0] },
 { cy, param.Est.Data[4, 0], param.Est.Data[5, 0] } });

 CvInvoke.cvGEMM(M.Ptr, _corners.Ptr, 1.0, IntPtr.Zero, 0.0, corners.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);

 cur = timestamp;
 if (isNew) start = timestamp;
 }

 public void Track(Image<Bgr, byte> im, Option opt, long timestamp)
 {
 if (opt.x_or_dx == "dx/dy")
 {
 if (cur == start)
 {
 opt.affsig[0] *= (10.0 * opt.n_th);
 opt.affsig[1] *= (10.0 * opt.n_th);
 }
 }

 maxVal = estwarp_condense(im, basis, mean, ref param, cx, cy, opt);

 if (opt.x_or_dx == "dx/dy")
 {
 cx += param.Est.Data[0, 0];
 cy += param.Est.Data[1, 0];
 }
 else
 {
 cx = param.Est.Data[0, 0];
 cy = param.Est.Data[1, 0];
 }

 for(int i = 0; i < wimgs.Rows; i++)
 wimgs.Data[i, batch] = param.Wimg.Data[i, 0];

 batch++;
 if (batch >= opt.batchsize)
 {
 sklm(wimgs, batch, ref basis, ref eigval, ref mean, ref numsample, opt.ff);
 wimgs.SetZero();

 128

 if (basis.Cols > opt.maxbasis)
 {
 basis = GetSubRect(basis, 0, 0, basis.Rows, opt.maxbasis);
 eigval = GetSubRect(eigval, 0, 0, opt.maxbasis, 1);
 }
 batch = 0;
 }

 if (opt.x_or_dx == "dx/dy")
 {
 if (cur == start)
 {
 opt.affsig[0] /= (10.0 * opt.n_th);
 opt.affsig[1] /= (10.0 * opt.n_th);
 }
 }

 double a = opt.tw / 2.0;
 double b = opt.th / 2.0;

 Matrix<double> _corners = new Matrix<double>(
 new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } });

 Matrix<double> M = new Matrix<double>(new double[2, 3] {
 { cx, param.Est.Data[2, 0], param.Est.Data[3, 0] },
 { cy, param.Est.Data[4, 0], param.Est.Data[5, 0] } });

 CvInvoke.cvGEMM(M.Ptr, _corners.Ptr, 1.0, IntPtr.Zero, 0.0, corners.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);

 cur = timestamp;
 }

 public void DrawResults(Image<Bgr, byte> im, Option opt, long timestamp,
 Matrix<double> T)
 {
 DrawBox(im, param.Est, cx, cy, opt);

 if (opt.displayIndex)
 {
 MCvFont _font = new MCvFont(
 Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 0.8, 1.0);
 _font.thickness = 2;
 im.Draw(index, ref _font, new Point((int)cx, (int)cy),
 colorValue(opt.index_color));
 }

 129

 Matrix<double> p = interestPointCoord(opt.interestPoint, corners, cx, cy);

 if (opt.displayPoint)
 {
 System.Drawing.Point centroid =
 new System.Drawing.Point((int)p.Data[0, 0], (int)p.Data[1, 0]);
 im.Draw(new Cross2DF(centroid, 3, 3), colorValue(opt.point_color), 1);
 }

 p = T * p;

 if (opt.saveCenter) WriteCentroid(opt, timestamp, p.Data[0, 0] / p.Data[2, 0],
 p.Data[1, 0] / p.Data[2, 0]);
 }

 public static Matrix<double> DrawBox(Image<Bgr, byte> im, Matrix<double> p,
 double cx, double cy, Option opt)
 {
 LineSegment2D line = new LineSegment2D();
 Matrix<double> affCorners;

 if (p.Cols == 1)
 {
 double a = opt.tw / 2.0;
 double b = opt.th / 2.0;

 affCorners = new Matrix<double>(2, 5);
 Matrix<double> corners = new Matrix<double>(
 new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } });

 Matrix<double> M = new Matrix<double>(new double[2, 3] {
 { cx, p.Data[2, 0], p.Data[3, 0] },
 { cy, p.Data[4, 0], p.Data[5, 0] } });

 CvInvoke.cvGEMM(M.Ptr, corners.Ptr, 1.0, IntPtr.Zero, 0.0, affCorners.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);
 }
 else
 {
 affCorners = p;
 }

 if (im != null)
 {
 for (int i = 0; i < 4; i++)

 130

 {
 line.P1 = new Point((int)affCorners.Data[0,i],(int)affCorners.Data[1,i]);
 line.P2 = new Point((int)affCorners.Data[0,i+1],(int)affCorners.Data[1,i+1]);
 im.Draw(line, colorValue(opt.rect_color), opt.rect_thickness);
 }
 }

 return affCorners;
 }

 public static void DrawResults(Image<Bgr, byte> im, Matrix<double> p, double cx,
 double cy, String name, String[] color, int thickness,
 int tw, int th, bool showCentroid, bool showIndex,
 String interestP)
 {
 LineSegment2D line = new LineSegment2D();

 double a = tw / 2.0;
 double b = th / 2.0;

 Matrix<double> affCorners = new Matrix<double>(2, 5);
 Matrix<double> corners = new Matrix<double>(
 new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } });

 Matrix<double> M = new Matrix<double>(new double[2, 3] {
 { cx, p.Data[2, 0], p.Data[3, 0] }, { cy, p.Data[4, 0], p.Data[5, 0] } });

 CvInvoke.cvGEMM(M.Ptr, corners.Ptr, 1.0, IntPtr.Zero, 0.0, affCorners.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);

 for (int i = 0; i < 4; i++)
 {
 line.P1 = new Point((int)affCorners.Data[0, i], (int)affCorners.Data[1, i]);
 line.P2 = new Point((int)affCorners.Data[0, i+1], (int)affCorners.Data[1, i+1]);
 im.Draw(line, colorValue(color[0]), thickness);
 }

 Matrix<double> point = interestPointCoord(interestP, affCorners, cx, cy);

 if (showCentroid)
 {
 System.Drawing.Point centroid =
 new System.Drawing.Point((int)point.Data[0, 0], (int)point.Data[1, 0]);
 im.Draw(new Cross2DF(centroid, 3, 3), colorValue(color[1]), 1);
 }

 131

 if (showIndex)
 {
 System.Drawing.Point centroid = new System.Drawing.Point((int)cx, (int)cy);
 MCvFont _font = new MCvFont(
 Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 0.8, 1.0);
 _font.thickness = 1;
 im.Draw(name, ref _font, centroid, colorValue(color[2]));
 }

 return;
 }

 public void WriteCentroid(Option opt, long timestamp, double px, double py)
 {
 System.IO.StreamWriter sw1;
 System.IO.StreamWriter sw2;

 if (cur == start)
 {
 sw1 = new System.IO.StreamWriter(opt.textFileName + index + ".txt", false,
 System.Text.Encoding.UTF8);
 sw1.WriteLine("tw: " + opt.tw.ToString());
 sw1.WriteLine("th: " + opt.th.ToString());
 sw2 = new System.IO.StreamWriter("rw_" + opt.textFileName + index + ".txt",
 false, System.Text.Encoding.UTF8);
 }
 else
 {
 sw1 = new System.IO.StreamWriter(opt.textFileName + index + ".txt", true,
 System.Text.Encoding.UTF8);
 sw2 = new System.IO.StreamWriter("rw_" + opt.textFileName + index + ".txt",
 true, System.Text.Encoding.UTF8);
 }

 sw1.WriteLine(timestamp.ToString() + " "
 + cx.ToString() + " " + cy.ToString() + " "
 + param.Est.Data[0, 0].ToString() + " " + param.Est.Data[1, 0].ToString() + " "
 + param.Est.Data[2, 0].ToString() + " " + param.Est.Data[3, 0].ToString() + " "
 + param.Est.Data[4, 0].ToString() + " " + param.Est.Data[5, 0].ToString() + " ");

 sw2.WriteLine(timestamp.ToString() + " " + (px).ToString() + " " +
 py.ToString());

 sw1.Close();
 sw2.Close();

 132

 return;
 }

 public bool Inside(double[] p, Option opt)
 {
 int tw = opt.tw;
 int th = opt.th;

 double x = cx;
 double y = cy;
 Matrix<double> M = new Matrix<double>(new double[2, 2]{
 {param.Est.Data[2, 0], param.Est.Data[3, 0]},
 {param.Est.Data[4, 0], param.Est.Data[5, 0]} });

 Matrix<double> _p = new Matrix<double>(2, 1);
 Matrix<double> d = new Matrix<double>(new double[2, 1]{
 {p[0] - x}, {p[1] - y} });

 CvInvoke.cvInvert(M.Ptr, M.Ptr
 Emgu.CV.CvEnum.INVERT_METHOD.CV_LU);

 _p = M * d;
 double px = _p[0, 0] + opt.tw / 2;
 double py = _p[1, 0] + opt.th / 2;

 return (px >= 0 && px < opt.tw && py >= 0 && py < opt.th);
 }

 public void WriteCompleted(Option opt, long timestamp)
 {
 System.IO.StreamWriter sw = new System.IO.StreamWriter(opt.textFileName +
 index + ".txt", true, System.Text.Encoding.UTF8);

 sw.WriteLine("completed_at " + timestamp.ToString());

 sw.Close();

 return;
 }

 public void UpdateVotes(String v)
 {
 if (v == "r")
 {
 votes[0]++;
 votes[1]--;

 133

 votes[2]--;
 }
 else if (v == "l")
 {
 votes[1]++;
 votes[0]--;
 votes[2]--;
 }
 else if (v == "b")
 {
 votes[2]++;
 votes[0]--;
 votes[1]--;
 }
 votes[0] = Math.Min(Math.Max(votes[0], 0), 3);
 votes[1] = Math.Min(Math.Max(votes[1], 0), 3);
 votes[2] = Math.Min(Math.Max(votes[2], 0), 3);

 view = "";
 if (votes.Max() == votes[0])
 view = "r";
 else if (votes.Max() == votes[1])
 view += "l";
 else if (votes.Max() == votes[2])
 view += "b";
 }

 public double estwarp_condense(Image<Bgr, byte> image, Matrix<double> basis,
 Matrix<double> mean, ref Parameter param,
 double cx, double cy, Option opt)
 {
 int n = param.N;
 int w = param.TW;
 int h = param.TH;
 int sz = w*h;

 if(param.Param == null)
 {
 param.Param = new Matrix<double>(6, n);
 CvInvoke.cvRepeat(affparam2geom(param.Est).Ptr, param.Param.Ptr);
 }
 else
 {
 Matrix<double> cumconf = new Matrix<double>(n, 1);
 cumconf.Data[0, 0] = param.Conf.Data[0, 0];
 for (int i = 1; i < n; i++)

 134

 cumconf.Data[i, 0] = cumconf.Data[i - 1, 0] + param.Conf.Data[i, 0];

 Matrix<double> A = new Matrix<double>(1, n);
 A.SetRandUniform(new Emgu.CV.Structure.MCvScalar(0.0), new
 Emgu.CV.Structure.MCvScalar(1.0));
 Matrix<int> idx = new Matrix<int>(n, 1);
 for (int i = 0; i < n; i++)
 {
 int id = 0;
 double temp = A.Data[0, i];
 for (int j = 0; j < n; j++)
 {
 if (temp > cumconf.Data[j, 0]) id++;
 }
 idx.Data[i, 0] = id;
 }
 cumconf.Dispose();
 A.Dispose();
 Matrix<double> par = new Matrix<double>(6, n);
 for (int j = 0; j < n; j++)
 {
 int id = idx.Data[j, 0];
 for (int i = 0; i < 6; i++)
 par.Data[i, j] = param.Param.Data[i, id];
 }
 param.Param.Data = par.Data;
 par.Dispose();
 }

 Matrix<double> ran = new Matrix<double>(6, n);
 ran.SetRandNormal(new Emgu.CV.Structure.MCvScalar(0.0), new
 Emgu.CV.Structure.MCvScalar(1.0));
 for (int i = 0; i < 6; i++)
 {
 double aff = opt.affsig[i];
 for (int j = 0; j < n; j++)
 param.Param.Data[i, j] += (ran.Data[i, j] * aff);
 }
 ran.Dispose();

 Matrix<double> affmat = affparam2mat(param.Param);
 Matrix<double> wimgs = warpimg(image, affmat, cx, cy, w, h, param.C, opt);

 Matrix<double> diff = new Matrix<double>(wimgs.Size);
 Matrix<double> t = new Matrix<double>(1, diff.Cols);
 t.SetValue(1);

 135

 CvInvoke.cvGEMM(mean.Ptr, t.Ptr, 1.0, wimgs.Ptr, -1.0, diff.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);
 t.Dispose();

 if (basis != null)
 {
 Matrix<double> coef = new Matrix<double>(basis.Cols, n);
 CvInvoke.cvGEMM(basis.Ptr, diff.Ptr, 1.0, IntPtr.Zero, 0.0, coef.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T);
 CvInvoke.cvGEMM(basis.Ptr, coef.Ptr, -1.0, diff.Ptr, 1.0, diff.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);
 }

 param.CalConf1(diff, opt.condensig);

 Point minidx, maxidx;
 double minVal, maxVal;
 param.Conf.MinMax(out minVal, out maxVal, out minidx, out maxidx);

 affmat.GetCol(maxidx.Y).CopyTo(param.Est);
 wimgs.GetCol(maxidx.Y).CopyTo(param.Wimg);

 return maxVal;
 }

 public static Matrix<double> affparam2mat(Matrix<double> p)
 {
 Matrix<double> q = new Matrix<double>(p.Size);

 for (int i = 0; i < p.Cols; i++)
 {
 double s = p.Data[2, i];
 double th = p.Data[3, i];
 double r = p.Data[4, i];
 double ph = p.Data[5, i];

 double cth = Math.Cos(th);
 double sth = Math.Sin(th);
 double cph = Math.Cos(ph);
 double sph = Math.Sin(ph);

 double ccc = cth * cph * cph;
 double ccs = cth * cph * sph;
 double css = cth * sph * sph;
 double scc = sth * cph * cph;
 double scs = sth * cph * sph;

 136

 double sss = sth * sph * sph;

 q.Data[0, i] = p.Data[0, i];
 q.Data[1, i] = p.Data[1, i];
 q.Data[2, i] = s * (ccc + scs + r * (css - scs));
 q.Data[3, i] = s * (-ccs - sss + r * (ccs - scc));
 q.Data[4, i] = s * (scc + -ccs + r * (ccs + sss));
 q.Data[5, i] = s * (-scs + css + r * (ccc + scs));
 }

 return q;
 }

 public static Matrix<double> affparam2geom(Matrix<double> p)
 {
 Matrix<double> q = new Matrix<double>(6, 1);

 Matrix<double> A = new Matrix<double>(new double[2, 2] {
 { p[2, 0], p[3, 0] }, { p[4, 0], p[5, 0] } });
 Matrix<double> U = new Matrix<double>(2, 2);
 Matrix<double> S = new Matrix<double>(2, 2);
 Matrix<double> V = new Matrix<double>(2, 2);

 CvInvoke.cvSVD(A.Ptr, S.Ptr, U.Ptr, V.Ptr,
 Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_DEFAULT);

 if(U.Det < 0)
 {
 Matrix<double> Temp = U.Clone();
 U.Data[0, 0] = Temp.Data[0, 1];
 U.Data[1, 0] = Temp.Data[1, 1];
 U.Data[0, 1] = Temp.Data[0, 0];
 U.Data[1, 1] = Temp.Data[1, 0];

 Temp = V.Clone();
 V.Data[0, 0] = Temp.Data[0, 1];
 V.Data[1, 0] = Temp.Data[1, 1];
 V.Data[0, 1] = Temp.Data[0, 0];
 V.Data[1, 1] = Temp.Data[1, 0];

 double temp = S.Data[0, 0];
 S.Data[0, 0] = S.Data[1, 1];
 S.Data[1, 1] = temp;
 }

 q.Data[0, 0] = p.Data[0, 0];

 137

 q.Data[1, 0] = p.Data[1, 0];
 q.Data[3, 0] = Math.Atan2(U.Data[1, 0]*V.Data[0, 0]+U.Data[1, 1]*V.Data[0, 1],
 U.Data[0, 0] * V.Data[0, 0] + U.Data[0, 1] * V.Data[0, 1]);

 double phi = Math.Atan2(V[0, 1], V[0, 0]);
 double c, s;
 Matrix<double> R;

 if (phi <= -PI / 2)
 {
 c = Math.Cos(-PI / 2); s = Math.Sin(-PI / 2);
 R = new Matrix<double>(new double[2, 2] { { c, -s }, { s, c } });
 V = V.Mul(R);
 S = S.Mul(R);
 CvInvoke.cvGEMM(R.Ptr, S.Ptr, 1.0, IntPtr.Zero, 0.0, S.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T);
 }
 else if(phi >= PI / 2)
 {
 c = Math.Cos(PI / 2); s = Math.Sin(PI / 2);
 R = new Matrix<double>(new double[2, 2] { { c, -s }, { s, c } });
 V = V.Mul(R);
 S = S.Mul(R);
 CvInvoke.cvGEMM(R.Ptr, S.Ptr, 1.0, IntPtr.Zero, 0.0, S.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T);
 }

 q.Data[2, 0] = S.Data[0, 0];
 q.Data[4, 0] = S.Data[1, 1] / S.Data[0, 0];
 q.Data[5, 0] = Math.Atan2(V.Data[0, 1], V.Data[0, 0]);

 return q;
 }

 unsafe public Matrix<double> warpimg(Image<Bgr, byte> img, Matrix<double> p,
 double cx, double cy,
 int tw, int th, String color, Option opt)
 {
 int l = tw * th;
 int nsample = p.Cols;

 double[,] _p = p.Data;
 double[] x = new double[l];
 double[] y = new double[l];
 Matrix<double> mean = new Matrix<double>(l, nsample);
 Image<Gray, double> temp = new Image<Gray, double>(img.Size);

 138

 if (color == "Gray")
 {
 temp = img.Convert<Gray, byte>().ConvertScale<double>(1.0 / 256.0, 0.0);
 }
 else if (color == "Blue" || color == "Green" || color == "Red")
 {
 Image<Bgr, double> image = img.ConvertScale<double>(1.0 / 256.0, 0.0);
 if (color == "Blue")
 temp = image[0];
 else if (opt.cspace_t == "Green")
 temp = image[1];
 else if (opt.cspace_t == "Red")
 temp = image[2];
 }
 else
 {
 Image<Hsv, double> image = (img.Convert<Hsv, byte>() as Image<Hsv,
 byte>).ConvertScale<double>(1.0 / 256.0, 0.0);
 if (opt.cspace_t == "Hue")
 temp = image[0];
 else if (opt.cspace_t == "Saturation")
 temp = image[1];
 else if (opt.cspace_t == "Value")
 temp = image[2];
 }

 int height = temp.Height;
 int width = temp.Width;

 for (int isample = 0; isample < nsample; isample++)
 {
 double p0 = _p[0, isample] + (opt.x_or_dx == "dx/dy" ? cx : 0);
 double p1 = _p[1, isample] + (opt.x_or_dx == "dx/dy" ? cy : 0);
 double p2 = _p[2, isample];
 double p3 = _p[3, isample];
 double p4 = _p[4, isample];
 double p5 = _p[5, isample];

 for (int i = 0; i < tw; i++)
 {
 int ix = i - tw / 2 + 1;
 for (int j = 0; j < th; j++)
 {
 x[i * th + j] = p0 + ix * p2 + (j - th / 2 + 1) * p3;
 y[i * th + j] = p1 + ix * p4 + (j - th / 2 + 1) * p5;

 139

 }
 }

 int x0, x1, y0, y1;
 double xx, yy, rx, ry;
 double a, b, c, d;
 bool x00, x01, x10, x11;
 bool y00, y01, y10, y11;

 for (int i = 0; i < l; i++)
 {
 xx = x[i];
 yy = y[i];

 x0 = (int)xx; x1 = x0 + 1;
 y0 = (int)yy; y1 = y0 + 1;

 rx = xx - x0;
 ry = yy - y0;

 y00 = (y0 <= 0);
 y01 = (y0 > height);
 y10 = (y1 <= 0);
 y11 = (y1 > height);
 x00 = (x0 <= 0);
 x01 = (x0 > width);
 x10 = (x1 <= 0);
 x11 = (x1 > width);

 a = (y00 || y01 || x00 || x01) ? 0 : temp [(y0 - 1) * width + (x0 - 1)];
 b = (y00 || y01 || x10 || x11) ? 0 : temp [(y0 - 1) * width + (x1 - 1)];
 c = (y10 || y11 || x00 || x01) ? 0 : temp [(y1 - 1) * width + (x0 - 1)];
 d = (y10 || y11 || x10 || x11) ? 0 : temp [(y1 - 1) * width + (x1 - 1)];

 mean.Data[i, isample] = ((1-rx)*a+rx*b)*(1-ry)+((1-rx)*c+rx*d)*ry;
 }
 }
 return mean;
 }

 public void sklm(Matrix<double> data, int bs, ref Matrix<double> U, ref
 Matrix<double> D, ref Matrix<double> mu, ref int n0, double ff)
 {
 int N = data.Rows;
 int n = data.Cols;

 140

 if (U == null)
 {
 if (bs == 1)
 {
 data.GetCol(0).CopyTo(mu);
 U = new Matrix<double>(N, n);
 D = new Matrix<double>(1, 1);
 }
 else
 {
 CvInvoke.cvReduce(data.Ptr, mu.Ptr,
 Emgu.CV.CvEnum.REDUCE_DIMENSION.SINGLE_COL,
 Emgu.CV.CvEnum.REDUCE_TYPE.CV_REDUCE_AVG);

 Matrix<double> _mu = new Matrix<double>(data.Size);
 CvInvoke.cvRepeat(mu.Ptr, _mu.Ptr);
 CvInvoke.cvSub(data.Ptr, _mu.Ptr, data.Ptr, IntPtr.Zero);

 int dimension = Math.Min(data.Rows, data.Cols);
 U = new Matrix<double>(data.Rows, dimension);
 Matrix<double> S = new Matrix<double>(dimension, dimension);
 CvInvoke.cvSVD(data.Ptr, S.Ptr, U.Ptr, IntPtr.Zero,
 Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_DEFAULT);

 D = new Matrix<double>(dimension, 1);
 Matrix<double> diag = new Matrix<double>(dimension, 1);
 CvInvoke.cvGetDiag(S.Ptr, diag.Ptr, 0);
 CvInvoke.cvCopy(diag.Ptr, D.Ptr, IntPtr.Zero);
 }
 }
 else
 {
 if(mu != null)
 {
 Matrix<double> mu1 = new Matrix<double>(data.Rows, 1);
 CvInvoke.cvReduce(data.Ptr, mu1.Ptr,
 Emgu.CV.CvEnum.REDUCE_DIMENSION.SINGLE_COL,
 Emgu.CV.CvEnum.REDUCE_TYPE.CV_REDUCE_AVG);

 Matrix<double> t = new Matrix<double>(1, data.Cols);
 t.SetValue(1);
 CvInvoke.cvGEMM(mu1.Ptr, t.Ptr, -1.0, data.Ptr, 1.0, data.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);
 t.Dispose();

 double temp = Math.Sqrt(n * n0 / (double)(n + n0));

 141

 Matrix<double> _mu = new Matrix<double>(mu.Size);
 CvInvoke.cvSub(mu.Ptr, mu1.Ptr, _mu.Ptr, IntPtr.Zero);
 data = data.ConcateHorizontal(temp * _mu);
 mu1 = (ff * n0 * mu + n * mu1) / (n + ff * n0);
 n = (int)(n + ff * n0);
 _mu.Dispose();
 }

 Matrix<double> data_proj = new Matrix<double>(U.Cols, data.Cols);
 Matrix<double> data_res = new Matrix<double>(data.Size);
 CvInvoke.cvGEMM(U.Ptr, data.Ptr, 1.0, IntPtr.Zero, 0.0, data_proj.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T);
 CvInvoke.cvGEMM(U.Ptr, data_proj.Ptr, -1.0, data.Ptr, 1.0, data_res.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);

 int ndata = data.Cols;
 int nbasis = D.Rows;

 dnAnalytics.LinearAlgebra.Decomposition.GramSchmidt qr1
 = new dnAnalytics.LinearAlgebra.Decomposition.GramSchmidt(
 new DenseMatrix(data_res.Data));
 Matrix<double> q = new Matrix<double>(qr1.Q().ToArray());
 Matrix<double> Q = U.ConcateHorizontal(q);
 Matrix<double> DD = new Matrix<double>(nbasis, nbasis);

 for(int i = 0; i < nbasis; i++)
 DD.Data[i, i] = D.Data[i, 0];

 Matrix<double> R = new Matrix<double>(q.Cols, data_res.Cols);
 CvInvoke.cvGEMM(q.Ptr, data_res.Ptr, 1.0, IntPtr.Zero, 0.0, R.Ptr,
 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T);
 R = data_proj.ConcateVertical(R);
 R = (ff * DD).ConcateVertical(new Matrix<double>(
 ndata, nbasis)).ConcateHorizontal(R);

 Matrix<double> S = new Matrix<double>(R.Size);
 U = new Matrix<double>(R.Size);
 CvInvoke.cvSVD(R.Ptr, S.Ptr, U.Ptr, IntPtr.Zero,
 Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_DEFAULT);

 D = new Matrix<double>(S.Rows, 1);
 Matrix<double> diag = new Matrix<double>(S.Rows, 1);
 CvInvoke.cvGetDiag(S.Ptr, diag.Ptr, 0);
 CvInvoke.cvCopy(diag.Ptr, D.Ptr, IntPtr.Zero);

 Matrix<double> Temp = D.Clone();

 142

 Temp._Mul(Temp);

 double cutoff = Temp.Sum * 1e-6;
 int index = D.Rows - 1;
 for (int i = D.Rows - 1; i >= 0; i--)
 {
 if (D.Data[i, 0] > cutoff) { index = i; break; }
 }
 D = GetSubRect(D, 0, 0, index + 1, 1);
 U = GetSubRect(U, 0, 0, U.Rows, index + 1);
 U = Q * U;
 }
 }
 }

}

 143

APPENDIX C

CODE FOR 3D COORDINATE CALCULATION

This appendix presents the main part in the prototype code for stereo camera calibration.

public class Processing
{
 private MainWindow main;
 private Picture stream;
 private String test_name;
 private String test_acronym;

 public Processing(MainWindow main, Picture stream)
 {
 this.main = main;
 if (stream is Camera)
 {
 this.stream = new Camera(main, "Output");
 this.stream.Set_isOutput(true);
 this.stream.Show(true);
 ((Camera)(this.stream)).Play();
 }
 else
 {
 this.stream = new Picture(main, "Output.jpg");
 this.stream.Set_isOutput(true);
 this.stream.Show(true);
 }

 String[] str = main.Get_streamList()[0].Get_name().Split(new char[]{'_'});
 test_acronym = str[0].ElementAt(0).ToString() + str[1].ElementAt(0).ToString();
 test_name = str[0] + "_" + str[1];
 }

 public void Process_Frame(Frame frame)
 {
 Image<Bgr, byte> img1 = (Image<Bgr, byte>)frame.Get_frame();
 Image<Bgr, byte> img2 = (Image<Bgr,byte>)main.Get_streamList_stream(1)
 .Get_Buffer().ElementAt(0).Get_frame();

 List<double[]> inlier_left = new List<double[]>();
 List<double[]> inlier_right = new List<double[]>();

 144

 List<double[]> track_left1 = new List<double[]>();
 List<double[]> track_left2 = new List<double[]>();
 List<double[]> track_left3 = new List<double[]>();

 List<double[]> track_right1 = new List<double[]>();
 List<double[]> track_right2 = new List<double[]>();
 List<double[]> track_right3 = new List<double[]>();

 MatlabMatrixReader dmr;
 Matrix matrix;

 int method = 1;
 double distratio = 0.8;

 if (method == 1)
 {
 Image<Gray, byte> gray1 = img1.Convert<Gray, byte>();
 Image<Gray, byte> gray2 = img2.Convert<Gray, byte>();

 MCvSURFParams surfParam = new MCvSURFParams(500, false);
 SURFFeature[] features1 = gray1.ExtractSURF(ref surfParam);
 SURFFeature[] features2 = gray2.ExtractSURF(ref surfParam);

 SURFTracker tracker = new SURFTracker(features1);
 SURFTracker.MatchedSURFFeature[] matchedFeatures =
 tracker.MatchFeature(features2, 2, 20);
 matchedFeatures = SURFTracker.VoteForUniqueness(matchedFeatures,
 distratio);
 matchedFeatures = SURFTracker.VoteForSizeAndOrientation(
 matchedFeatures, 1.5, 20);

 int n_matches = matchedFeatures.Length;
 Matrix<double> p1 = new Matrix<double>(n_matches, 2);
 Matrix<double> p2 = new Matrix<double>(n_matches, 2);

 for (int j = 0; j < n_matches; j++)
 {
 p1.Data[j, 0] = matchedFeatures[j].SimilarFeatures[0].Feature.Point.pt.X;
 p1.Data[j, 1] = matchedFeatures[j].SimilarFeatures[0].Feature.Point.pt.Y;

 p2.Data[j, 0] = matchedFeatures[j].ObservedFeature.Point.pt.X;
 p2.Data[j, 1] = matchedFeatures[j].ObservedFeature.Point.pt.Y;
 }

 Matrix<double> F = new Matrix<double>(3, 3);

 145

 Matrix<sbyte> status = new Matrix<sbyte>(1, n_matches);
 CvInvoke.cvFindFundamentalMat(p1.Ptr, p2.Ptr, F.Ptr,
 Emgu.CV.CvEnum.CV_FM.CV_FM_RANSAC_ONLY,
 2.0, 0.99, status.Ptr);

 for (int i = 0; i < status.Cols; i++)
 {
 if (status[0, i] == 1)
 {
 inlier_left.Add(new double[] { p1.Data[i, 0], p1.Data[i, 1] });
 inlier_right.Add(new double[] { p2.Data[i, 0], p2.Data[i, 1] });
 }
 }
 }
 else
 {
 dmr = new MatlabMatrixReader(test_name + "_inlier.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 Matrix<double> inlier_pl = new Matrix<double>(matrix.Rows, 2);
 Matrix<double> inlier_pr = new Matrix<double>(matrix.Rows, 2);
 for (int i = 0; i < matrix.Rows; i++)
 {
 inlier_pl.Data[i, 0] = matrix[i, 0];
 inlier_pl.Data[i, 1] = matrix[i, 1];
 inlier_pr.Data[i, 0] = matrix[i, 2];
 inlier_pr.Data[i, 1] = matrix[i, 3];
 }
 for (int i = 0; i < inlier_pl.Rows; i++)
 {
 inlier_left.Add(new double[2] { inlier_pl.Data[i, 0], inlier_pl.Data[i, 1] });
 inlier_right.Add(new double[2] { inlier_pr.Data[i, 0], inlier_pr.Data[i, 1] });
 }
 #endregion
 }

 String methods;
 if (method == 1)
 methods = distratio.ToString();
 else
 methods = "siftmapsac";

 #region draw lines between the matched features
 Image<Bgr, Byte> res = img1.ConcateVertical(img2);
 PointF p = new PointF();
 for (int i = 0; i < inlier_left.Count; i++)
 {

 146

 p.X = (float)inlier_right[i][0];
 p.Y = (float)inlier_right[i][1];
 p.Y += img1.Height;
 res.Draw(new LineSegment2DF(new PointF((float)inlier_left[i][0],
 (float)inlier_left[i][1]), p), new Bgr(0, 0, 0), 2);
 }
 res.Save("matching_" + methods +".jpg");

 dmr = new MatlabMatrixReader(test_acronym + "l1.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 for (int i = 0; i < matrix.Rows; i++)
 {
 track_left1.Add(new double[2] { matrix[i, 1], matrix[i, 2] });
 }
 dmr = new MatlabMatrixReader(test_acronym + "r1.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 for (int i = 0; i < matrix.Rows; i++)
 {
 track_right1.Add(new double[2] { matrix[i, 1], matrix[i, 2] });
 }

 Main_Algorithms_CSharp.InternalParameters calib1 = new
 Main_Algorithms_CSharp.InternalParameters();
 dmr = new MatlabMatrixReader(“cc_left.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 calib1.cc = new double[2] { matrix[0, 0], matrix[1, 0] };
 dmr = new MatlabMatrixReader("fc_left.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 calib1.fc = new double[2] { matrix[0, 0], matrix[1, 0] };
 dmr = new MatlabMatrixReader("kc_left.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 calib1.kc = new double[5] { matrix[0, 0], matrix[1, 0], matrix[2, 0], matrix[3, 0],
 matrix[4, 0] };

 Main_Algorithms_CSharp.InternalParameters calib2 = new
 Main_Algorithms_CSharp.InternalParameters();
 dmr = new MatlabMatrixReader("cc_right.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 calib2.cc = new double[2] { matrix[0, 0], matrix[1, 0] };
 dmr = new MatlabMatrixReader("fc_right.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 calib2.fc = new double[2] { matrix[0, 0], matrix[1, 0] };
 dmr = new MatlabMatrixReader("kc_right.mat");
 matrix = dmr.ReadMatrix(StorageType.Dense);
 calib2.kc = new double[5] { matrix[0, 0], matrix[1, 0], matrix[2, 0], matrix[3, 0],
 matrix[4, 0] };

 147

 track_left1.Clear();
 track_right1.Clear();
 track_left1.Add(new double[2] { 775, 602 });
 track_right1.Add(new double[2] { 736, 562 });

 #region Obtaining Extrinsic Parameteres (R and t) and Triangulation (Abbas')
 Main_Algorithms_CSharp.ReconstructionData extrinsic
 = Main_Algorithms_CSharp.Reconstruct(inlier_left, inlier_right,
 track_left1, track_right1, calib1, calib2, "output1_" + methods +".txt");

 Matrix<double> xL1 = new Matrix<double>(2, track_left1.Count);
 Matrix<double> xR1 = new Matrix<double>(2, track_right1.Count);
 for(int i = 0; i < track_left1.Count; i++)
 {
 xL1[0, i] = track_left1[i][0];
 xL1[1, i] = track_left1[i][1];
 xR1[0, i] = track_right1[i][0];
 xR1[1, i] = track_right1[i][1];
 }

 Matrix<double> R = new Matrix<double>(3, 3);
 Matrix<double> t = new Matrix<double>(3, 1);
 for (int i = 0; i < 3; i++)
 {
 for (int j = 0; j < 3; j++)
 {
 R.Data[i, j] = extrinsic.RpT[i][j];
 }
 t.Data[i, 0] = extrinsic.tpT[0][i];
 }

 Matrix<double> fc_left = new Matrix<double>(2, 1);
 Matrix<double> cc_left = new Matrix<double>(2, 1);
 Matrix<double> kc_left = new Matrix<double>(5, 1);
 fc_left.Data[0, 0] = calib1.fc[0];
 fc_left.Data[1, 0] = calib1.fc[1];
 cc_left.Data[0, 0] = calib1.cc[0];
 cc_left.Data[1, 0] = calib1.cc[1];
 kc_left.Data[0, 0] = calib1.kc[0];
 kc_left.Data[1, 0] = calib1.kc[1];
 kc_left.Data[2, 0] = calib1.kc[2];
 kc_left.Data[3, 0] = calib1.kc[3];
 kc_left.Data[4, 0] = calib1.kc[4];

 Matrix<double> fc_right = new Matrix<double>(2, 1);
 Matrix<double> cc_right = new Matrix<double>(2, 1);

 148

 Matrix<double> kc_right = new Matrix<double>(5, 1);
 fc_right.Data[0, 0] = calib2.fc[0];
 fc_right.Data[1, 0] = calib2.fc[1];
 cc_right.Data[0, 0] = calib2.cc[0];
 cc_right.Data[1, 0] = calib2.cc[1];
 kc_right.Data[0, 0] = calib2.kc[0];
 kc_right.Data[1, 0] = calib2.kc[1];
 kc_right.Data[2, 0] = calib2.kc[2];
 kc_right.Data[3, 0] = calib2.kc[3];
 kc_right.Data[4, 0] = calib2.kc[4];

 Matrix<double> pl1 = StereoTriangulation.Triangulate(xL1, xR1, R, t, fc_left,
 cc_left, kc_left, 0.0,
 fc_right, cc_right, kc_right, 0.0);

 System.IO.StreamWriter sw = new System.IO.StreamWriter(methods + ".txt");
 for (int i = 0; i < pl1.Cols; i++)
 {
 sw.WriteLine(pl1.Data[0, i].ToString() + " " + pl1.Data[1, i].ToString() + " " +
 pl1.Data[2, i].ToString());
 }
 sw.Close();

 frame.Set_frame(res);
 if(stream is Camera)
 stream.Add_Frame_To_Buffer(frame);
 else
 {
 stream.Add_Frame_To_Buffer(frame);
 stream.Show(false);
 }
 }
}

149

REFERENCES

ANSI/ISEA (2010). “ANSI/ISEA 107-2010: American national standard for high-

visibility safety apparel and headwear.” International Safety Equipment

Association (ISEA).

Anumba, C. J. (1998) “Industry Uptake of Construction IT Innovations – Key Elements

of a Proactive Strategy.” The Life-cycle of Construction IT Innovations:

Technology Transfer from Research to Practice, Bjork B-C & Jagbeck A. (Eds),

CIB Working Commission W78 Conference, KTH Stockholm, 3-5 June, 77-83.

Arnaud, E. and Memin, E. (2005). “An efficient Rao-Blackwellized particle filter for

object tracking.” Proceedings of ICIP 2005, IEEE, Genoa, Italy, 2, 426-429.

Bauer, J., Sünderhauf, N., Protzel, P. (2007). “Comparing several implementations of two

recently published feature detectors.” Proceedings of Int. Conf. on Intelligent and

Autonomous Systems, Toulouse, France.

Bay, H., Tuytelaars, T. and Gool, L.V. (2008). “SURF: Speeded Up Robust Features.”

Computer Vision and Image Understanding, 110(3), 346-359.

Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). "Eigenfaces vs.

Fisherfaces: Recognition using class specific linear projection." IEEE T Pattern

Anal, 19(7), 711-720.

Bernold L. E. (2007). “Control schemes for tele‐robotic pipe installation.” Automation in

Construction, Elsevier, 16(4), 518-524.

Bock, T. (2008). “Digital design and robotic production 3-D shaped precast

components.” Proceedings of The 25th International Symposium on Automation

in Construction, Zavadskas, E.K., Kaklauskas, A., Skibniewski M.J. (Eds.),

Technika, Vilnius, 11–21.

Bohn, G. and Teizer, J. (2009). “Benefits and barriers of monitoring construction

activities using hi-resolution automated cameras.” Proceedings of Construction

Research Congress, ASCE, 21-30.

Bouguet, J.Y. (2004). “Camera calibration toolbox for Matlab.” Intel Corp.,

<http://www.vision.caltech.edu/bouguetj/calib_doc> (Accessed June 4, 2012)

http://www.vision.caltech.edu/bouguetj/calib_doc

 150

Bradski, G., and Kaehler, A., (2008). “Learning OpenCV: Computer Vision with the

OpenCV.” ISBN-13: 978-0596516130

Brilakis, I. K., and Soibelman, L.(2008). “Shape-based retrieval of construction site

photographs.” J Comput Civil Eng, 22(1), 14-20.

Bruckner, M, Bajramovic, F., and Denzler, J. (2008). “Experimental evaluation of

relative pose estimation algorithms.” Proceedings of the 3rd International

Conference on Computer Vision Theory and Applications, 2, 431-438.

Cable, L. (2010) “Construction equipment monitoring system.” Government Product

News, Penton Media, December 2010.

<http://govpro.com/products/fleets/management/construction-equipment-

monitoring-201012/> (Accessed June 4, 2012)

Caldas, C. H., Torrent, D. G., and Haas, C. T. (2004) "Integration of automated data

collection technologies for real-time field materials management." Proceedings of

the 21st International Symposium on Automation and Robotics in Construction,

IAARC.

Chae, S. and Kano, N. (2007). “Application of location information by stereo camera

images to project progress monitoring.” Proceedings of the 24th International

Symposium on Automation and Robotics in Construction, Kochi, Kerala, India,

89-92.

Chae, S., and Yoshida, T. (2010). "Application of RFID technology to prevention of

collision accident with heavy equipment." Automat Constr, 19(3), 368-374.

Chi, S. and Caldas, C.H. (2011). “Automated object identification using optical video

cameras on construction sites.” Computer-Aided Civil and Infrastructure

Engineering, 26(5), 368-380.

Comaniciu, D., Ramesh, B., and Meer, P. (2003). “Kernel-based object tracking.” IEEE

Trans. Pattern Anal. Mach. Intell., 25(5), 564-577.

Construction Equipment (2010) “DPL America, Hyundai selects DPL’s asset monitoring

solution.” Construction Equipment, December 2010.

<http://www.constructionequipment.com/hyundai-selects-dpl%E2%80%99s-

asset-monitoring-solution> (Accessed June 4, 2012)

http://govpro.com/products/fleets/management/construction-equipment-monitoring-201012/
http://govpro.com/products/fleets/management/construction-equipment-monitoring-201012/
http://www.constructionequipment.com/hyundai-selects-dpl%E2%80%99s-asset-monitoring-solution
http://www.constructionequipment.com/hyundai-selects-dpl%E2%80%99s-asset-monitoring-solution

 151

Cover, T. M., and Hart, P. E. (1967). "Nearest Neighbor Pattern Classification." IEEE T

Inform Theory, 13(1), 21-27.

Cox, I.J. and Hingorani, S.L. (1996). “An efficient implementation of Reid’s multiple

hypothesis tracking algorithm and its evaluation for the purpose of visual

tracking.” IEEE Trans. Pattern Anal. Mach. Intell., 18(2), 138-150.

Dalal, N. and Triggs, B. (2005). “Histograms of oriented gradients for human detection.”

Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 1, 886-893.

Eecke, R. (2010) “Greening (and saving) with GPS fleet tracking.” Construction News

Tracker, Cygnus Business Media.

<http://www.forconstructionpros.com/article/10288916/greening-and-saving-

with-gps-fleet-tracking> (Accessed June 4, 2012)

Elghamrawy, T., and Boukamp, F. (2010). "Managing construction information using

RFID-based semantic contexts." Automat Constr, 19(8), 1056-1066.Engineering

News-Record (2008a) “Equipment tracking: wireless monitoring.” The

MacGraw-Hill Companies, December 2008.

<http://enr.construction.com/products/product_snapshot/2008/1203-

productsnapshot.asp> (Accessed June 4, 2012)

Emgu CV, (2010), “Emgu CV: OpenCV in .NET (C#, VB, C++ and More).”

<http://www.emgu.com/wiki/index.php/Main_Page> (Accessed June 4, 2012)

Engineering News-Record (2008a) “Equipment tracking: wireless monitoring.” The

MacGraw-Hill Companies, December 2008

<http://enr.construction.com/products/product_snapshot/2008/1203-

productsnapshot.asp> (Accessed June 4, 2012)

Engineering News-Record (2008b) “Equipment monitor: wireless locator.” The

MacGraw-Hill Companies, July 2008.

<http://enr.construction.com/products/newProducts/archives/080723.asp>

(Accessed June 4, 2012)

Engineering News-Record (2008c) “Behind a murky name lurks an amazing little tag.”

The MacGraw-Hill Companies, April 2008.

<http://enr.construction.com/opinions/editorials/archives/080423.asp> (Accessed

June 4, 2012)

http://www.forconstructionpros.com/article/10288916/greening-and-saving-with-gps-fleet-tracking
http://www.forconstructionpros.com/article/10288916/greening-and-saving-with-gps-fleet-tracking
http://enr.construction.com/products/product_snapshot/2008/1203-productsnapshot.asp
http://enr.construction.com/products/product_snapshot/2008/1203-productsnapshot.asp
http://enr.construction.com/products/product_snapshot/2008/1203-productsnapshot.asp
http://enr.construction.com/products/product_snapshot/2008/1203-productsnapshot.asp
http://enr.construction.com/products/newProducts/archives/080723.asp
http://enr.construction.com/opinions/editorials/archives/080423.asp

 152

Engineering News-Record (2008d). “Solor-powered webcam: remotely monitor job

sites.” The MacGraw-Hill Companies

<http://enr.construction.com/products/newProducts/archives/080730.asp>

(Accessed June 4, 2012)

Engineering News-Record (2008e). “Jobsite monitoring: remote camera keeps an eye on

projects.” The MacGraw-Hill Companies

<http://enr.construction.com/equipment/features/archives/080301-26-2.asp>

(Accessed June 4, 2012)

Ergen, E., Akinci, B., and Sacks, R. (2007). "Tracking and locating components in a

precast storage yard utilizing radio frequency identification technology and GPS."

Automat Constr, 16(3), 354-367.

Fathi, H. and Brilakis, I. (2011). “Automated sparse 3D point cloud generation of

infrastructure using its distinctive visual features.” Advanced Engineering

Informatics, 25(4), 760-770.

Fontana, R. J., Richley, E., and Barney, J. A. (2003). "Commercialization of an Ultra

Wideband Precision Asset Location system." 2003 IEEE Conference on Ultra

Wideband Systems and Technologies, Conference Proceedings, 369-373.

Fontana, R. J. (2004). "Recent system applications of short-pulse ultra-wideband (UWB)

technology." IEEE T Microw Theory, 52(9), 2087-2104.

ForConstructionPros.Com (2006). “GPS Tracking and fleet management software system

pays big dividends.” Cygnus Business Media, November 2006.

<http://www.forconstructionpros.com/article/10299515/gps-tracking-and-fleet-

management-software-system-pays-big-dividends> (Accessed June 4, 2012)

ForConstructionPros.Com (2011). “Study shows interference with GPS poses $96 billion

threat to US economy.” Cygnus Business Media, June 2011.

<http://www.forconstructionpros.com/press_release/10366178/study-shows-

interference-with-gps-poses-96-billion-threat-to-us-economy> (Accessed June 4,

2012)

Freedman, D., and Zhang, T. (2004). "Active contours for tracking distributions." Ieee T

Image Process, 13(4), 518-526.

http://enr.construction.com/products/newProducts/archives/080730.asp
http://enr.construction.com/equipment/features/archives/080301-26-2.asp
http://www.forconstructionpros.com/article/10299515/gps-tracking-and-fleet-management-software-system-pays-big-dividends
http://www.forconstructionpros.com/article/10299515/gps-tracking-and-fleet-management-software-system-pays-big-dividends
http://www.forconstructionpros.com/press_release/10366178/study-shows-interference-with-gps-poses-96-billion-threat-to-us-economy
http://www.forconstructionpros.com/press_release/10366178/study-shows-interference-with-gps-poses-96-billion-threat-to-us-economy

 153

Freund, Y. and Schapire, R.E. (1997). “A decision-theoretic generalization of on-line

learning and an application to boosting.” Journal of Computer and System

Sciences, 55(1), 119-139.

Fuchs, S. (2010), “Multipaths interference compensation in time-of-flight camera image.”

Proceedings of the 20th Int. Conf.on Pattern Recognition, Istanbul, 3583-3586.

Gächter, S., Nguyen, V., Siegwart, R. (2006). “Results on range image segmentation for

service robots”, Proceedings of IEEE International Conference on Computer

Vision Systems, Lausanne, Switzerland.

Golparvar-Fard, M., Peña-Mora, and Savarese, S. (2010). “D4AR- A 4-Dimensional

augmented reality model for automating construction progress data collection,

processing and communication.” Journal of Information Technology in

Construction (ITcon), 14, 129-153.

Gomez, K. (2007a) “Cost-effective anti-collision.” Construction Contractor, June 2007,

32.

Gomez, K. (2007b) “Fall protection enters the information age.” Construction Contractor,

June 2007, 40.

Gomez, K. (2008). “Mobile security + remote monitoring.” Construction Contractor,

November 2008.

Gong, J., and Caldas, C. H. (2008). "Data processing for real-time construction site

spatial modeling." Automat Constr, 17(5), 526-535.

Gong, J., and Caldas, C. H. (2010). "Computer Vision-Based Video Interpretation Model

for Automated Productivity Analysis of Construction Operations." J Comput Civil

Eng, 24(3), 252-263.

Gruen, A. (1997). “Fundamentals of videogrammetry – A review”, Human Movement

Science Journal, 16, 155-187.

Haker, S., Tannebaum, A., Sapiro, G., and Washburn, D. (2001), “Missile tracking using

knowledge-based adaptive thresholding: Tracking of high speed projectiles.”

Proceedings of ICIP, 786-789.

 154

Hartley, R. (1997). “In defense of the eight-point algorithm.” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19(6), 580-593.

Hartley, R. and Sturm, P. (1997). “Triangulation.” Journal of Computer Vision and Image

Understanding, 68(2), 146-157.

Hartley, R. and Zisserman, A. (2004). “Multiple view geometry in computer vision.”

Cambridge University Press.

Heikkilä, J. and Silvén, O. (1997). “A four-step camera calibration procedure with

implicit image correction.” Proc., IEEE Computer Society Conf. on Computer

Vision and Pattern Recognition, 1106-1112.

Henderson, H. (2008). “Benefits of machine control.” Construction Contractor,

December 2008.

Huang, C.B., Yu, S.S., Zhou, J.L., and Lu, H.W. (2004). “Image retrieval using both

color and local spatial feature histograms.” Proceedings of 2004 International

Conference on Communication, Circuits, and Systems, 2, 927-931.

Isard, M. and Blake, A. (1998). “CONDENSATION-conditional density propagation for

visual tracking.” International Journal on Computer Vision, 29(1), 5-28.

Joachims, T. (1999). “Making large-scale SVM learning practical.” Advances in Kernel

Methods – Support Vector Learning, MIT Press, Cambridge, MA, USA, 169-184.

Jog, G., Park, M.W., and Brilakis, I. (2011). “Truck face recognition using semantic

texton forests.” Proceedings of the ASCE Construction Research Congress,

Ontario, Canada.

Kanatani, K., Sugaya, Y., Niitsuma, H. (2008). “Triangulation from two views revisited:

Hartley-Sturm vs. optimal correction.” Proceedings of the 19th British Machine

Vision Conference, Leeds, UK, 173-182.

Khan, Z., Balch, T., and Dellaert, F. (2004). “A Rao-Blackwellized particle filter for

eigentracking.” Proceedings of CVPR 2004, IEEE, Washington DC, 2, 980-986.

 155

Ko, C. H. (2009). “RFID-based building maintenance system.” Automation in

Construction, 18(3), Elsevier, 275-284.

Ko, C. H. (2010). "RFID 3D location sensing algorithms." Automat Constr, 19(5), 588-

595.

Li, L.Y., Huang, W.M., Gu, I.Y.H., and Tian, Q. (2002). “Foreground object detection in

changing background based on color co-occurrence statistics.” Proceedings of the

6th IEEE Workshop on Applications of Computer Vision, 269-274.

Lienhart, R. and Maydt, J. (2002). “An extended set of haar-like features for rapid object

detection.” Proceedings of 2002 International Conference on Image Processing,

1, 900-903.

Lowe, D.G. (2004). “Distinctive image features from scale-invariant keypoints.” Int.

Journal of Computer Vision, 60(2), 91-110.

Lu, M., Chen, W., Shen, X.S., Lam, H.C., and Liu, J.Y. (2007) “Positioning and tracking

construction vehicles in highly dense urban areas and building construction sites.”

Automation in Construction, 16(5), 647-656.

Lu, W.L., Okuma, K., and Little, J.J. (2009). “Tracking and recognizing actions of

multiple hockey players using the boosted particle filter.” Image and Vision

Computing, 27(1-2), 189-205.

Lucas, B. and Kanade, T. (1981). “An image registration technique with an application to

stereo vision.” Proceedings of the International Joint Conference on Artificial

Intelligent, William Kaufmann, Vancouver, 674-679.

Maggio, E. and Cavallaro, A. (2009). “Accurate appearance-based Bayesian tracking for

maneuvering targets.” Computer Vision and Image Understanding, 113, 544-555.

Makhmalbaf, A., Park, M.-W., Yang, J., Brilakis, I., and Vela, A.V. (2010). “2D vision

tracking methods’ performance comparison for 3D tracking of construction

resources.” Construction Research Congress, Banff, Canada, 459-469.

Marfil, R., Molina-Tanco, L., Rodriguez, J.A., and Sandoval, F. (2007). “Real-time

object tracking using bounded irregular pyramids.” Pattern Recognition Letters,

28, 985-1001.

 156

Mathes, T. and Piater, J.H. (2006). “Robust non-rigid object tracking using point

distribution manifolds.” Proceedings of the 28th Annual Symposium of the

German Association for Pattern Recognition (DAGM), Springer, Berlin, 4174,

515-524.

Mcfarlane, N.J.B. and Schofield, C.P. (1995). “Segmentation and tracking of piglets in

images.” Machine Vision and Applications, 8(3), 187-193.

Mimbela, L.E.Y., Klein L.A. (2000). “Summary of vehicle detection and surveillance

technologies used in intelligent transportation systems.” Federal Highway

Administration, Intelligent Transportation Systems Joint Program Office.

National Academy of Engineering (2008). "Restore and improve urban infrastructure",

Grand Challenges for Engineering,

<http://www.engineeringchallenges.org/cms/8996/9136.aspx> (Accessed June 4,

2012).

Nguyen, H. T., Worring, M., van den Boomgaard, R., and Smeulders, A. W. M. (2002).

"Tracking nonparameterized object contours in video." IEEE T Image Process,

11(9), 1081-1091.

Nistér, D. (2004). “An efficient solution to the five-point relative pose problem.” IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6), 756-

770.

Oloufa, A.A., Ikeda, M., and Oda, H. (2003). “Situational awareness of construction

equipment using GPS, wireless and web technologies.” Automation in

Construction, 12(6), 737-748.

Osman, H. M., Georgy, M. E., and Ibrahim, M. E. (2003). “A hybrid CAD-based

construction site layout planning system using genetic algorithms.” Automation in

Construction, Elsevier, 12(6), 749-764.

Park, M., Nepal, M. P., and Dulaimi, M. F. (2004) “Dynamic Modeling for Construction

Innovation.” Journal of Management in Engineering, ASCE, 20(4), 170-177.

Pizarro, O., Eustice, R., and Singh, H. (2003). “Relative pose estimation for

instrumented, calibrated platforms.” Proceedings of the 7th Digital Image

Computing: Techniques and Applications, 601-612

 157

Rashidi, A., Dai, F., Brilakis, I., and Vela, P. (2011). “Comparison of camera motion

estimation methods for 3D reconstruction of infrastructure.” ASCE International

Workshop on Computing in Civil Engineering, Miami, FL, USA.

Reid, D.B. (1979). “An algorithm for tracking multiple targets.” IEEE Trans. Automatic

Control, 24(6), 843-854.

Rodriguez, T., and Garcia, N. (2010). "An adaptive, real-time, traffic monitoring system."

Mach Vision Appl, 21(4), 555-576.

Ross, D., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). “Incremental learning for robust

visual tracking.” International Journal of Computer Vision, 77(1), 125-141.

Rousson, M. and Deriche, R. (2002). “A variational framework for active and adaptive

segmentation of vector valued images.” Proceedings of IEEE Workshop on

Motion and Video Computing, 56-61.

Sawyer, T. (2008a) “$1-billion jigsaw puzzle has builder modeling supply chains.”

Engineering News-Record, The MacGraw-Hill Companies, April 2008.

Sawyer, T. (2008b) “South Korean research in electronic tagging is forging ahead.”

Engineering News-Record, The MacGraw-Hill Companies, April 2008.

Schreiber, D. (2008). “Generalizing the Lucas-Kanade algorithm for histogram-based

tracking.” Pattern Recognition Letters, 29, 852-861.

Shafique, K. and Shah, M. (2003). “A non-iterative greedy algorithm for multi-frame

point correspondence.” Proceedings of ICCV 2003, IEEE, Nice, France, 110-115.

Sharpira, A. and Rosenfeld, Y. (2011). “Achieving construction innovation through

academia-industry cooperation-keys to success.” Journal of Professional Issues in

Engineering Education and Practice, ASCE, 137(4), 223-231.

Shi, J. and Tomasi, C. (1994). “Good features to track.” Proceedings of CVPR 1994,

IEEE, Seattle, WA, 593-600.

 158

Shotton, J., Johnson, M., and Cipolla, R. (2008). “Semantic texton forests for image

categorization and segmentation.” Proceedings of 2008 IEEE Conference on

Computer Vision and Pattern Recognition, 1-8.

Son, H. and Kim, C. (2010). “3D structural component recognition and modeling method

using color and 3D data for construction progress monitoring.” Automation in

Construction, 19(7), 844-854.

Stauffer, C.and Grimson, W.E.L. (2000). “Learning patterns of activity using real-time

tracking.” IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(8), 747-757.

Sugano, H. and Miyamoto, R. (2009). “Parallel implementation of pedestrian tracking

using multiple cues on GPGPU.” Proceedings of IEEE 12th International

Conference on Computer Vision Workshops, 900-906.

Swain, M.J. and Ballard, D.H. (1991). “Color Indexing.” International Journal of

Computer Vision, 7(1), 11-32.

Teizer, J., Lao, D., and Sofer, M. (2007a). “Rapid automated monitoring of construction

site activities using ultra-wideband.” Proceedings of 24th Int. Symp. on

Automation and Robotics in Construction, Construction Automation Group,

Kerala, India, 23-28.

Teizer, J., Caldas, C. H., and Haas, C. T. (2007b). "Real-time three-dimensional

occupancy grid Modeling for the detection and tracking of construction

resources." J Constr Eng M ASCE, 133(11), 880-888.

Teizer, J., Venugopal, M., and Walia, A. (2008). “Ultrawideband for Automated Real-

Time Three-Dimensional Location Sensing for Workforce, Equipment, and

Material Positioning and Tracking” Transportation Research Record: Journal of

the Transportation Research Board, 2081, 56-64.

Teizer, J., and Vela, P. A. (2009). "Personnel tracking on construction sites using video

cameras." Adv Eng Inform, 23(4), 452-462.

The New Georgia Encyclopedia (2008) “Georgia Department of Transportation”,

<http://www.georgiaencyclopedia.org/nge/Article.jsp?id=h-2444> (Accessed

June 4, 2012)

http://www.georgiaencyclopedia.org/nge/Article.jsp?id=h-2444

 159

Torr, P.H.S (2002). “Bayesian model estimation and selection for epipolar geometry and

generic manifold fitting.” Int. Journal of Computer Vision, 50(1), 35-61.

Tsechpenakis, G., Tsapatsoulis, N., and Kollias, S. (2004). “Probabilistic boundary-based

contour tracking with snakes in natural cluttered video sequences.” International

Journal of Image and Graphics,4(3), 469-498.

Turk, M., and Pentland, A. (1991). "Eigenfaces for Recognition." J Cognitive Neurosci,

3(1), 71-86.

Veeramani, D., Tserng, H. P., and Russell, J. S. (1998). “Computer-integrated

collaborative design and operation in the construction industy.” Automation in

Construction, Elsevier, 7(6), 485-492.

Victores, J. G., Martínez, S., Jardón, A., and Balaguer C. (2011). “Robot-aided tunnel

inspection and maintenance system by vision and proximity sensor integration.”

Automation in Construction, 20(5), Elsevier, 629-636.

Viola, P. and Jones, M. (2001). “Rapid object detection using a boosted cascade of

simple features.” Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1, 511-518.

Wang, L. C. (2008). "Enhancing construction quality inspection and management using

RFID technology." Automat Constr, 17(4), 467-479.

Yang, J., Arif, O., Vela, P. A., Teizer, J., and Shi, Z. K. (2010). "Tracking multiple

workers on construction sites using video cameras." Adv Eng Inform, 24(4), 428-

434.

Yilmaz, A., Javed, O., and Shah, M. (2006). "Object tracking: A survey." Acm Comput

Surv, 38(4).

Yoders, J. (2008) “Integrated project delivery using BIM.” Building Design &

Construction 49.5, April 2008, 30-44.

Yokoyama, M. and Poggio, T. (2005). “A contour-based moving object detection and

tracking.” Proceedings of ICCCN 2005, IEEE, San Diego, CA, 271-276.

 160

Zhang, Z. (1999). “Flexible camera calibration by viewing a plane from unknown

orientations.” Proceedings of the 7th IEEE Int. Conf. on Computer Vision, IEEE,

Kerkyra, Greece, 1, 666-673.

Zhang, Z.H. Li, W.H., and Li, B. (2009). “An improving technique of color histogram in

segmentation-based image retrieval.” Proceedings of the 5th International

Conference on Information Assurance and Security, 2, 381-384.

Zhu, A., Yeh, M.C., Cheng, K.T., and Avidan, S. (2006). “Fast human detection using a

cascade of histograms of oriented gradients.” Proceedings of IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1491-1498.

Zhu, Z. H., and Brilakis, I. (2010). "Concrete column recognition in images and videos."

J Comput Civil Eng, 24(6), 478-487.

 161

VITA

MAN-WOO PARK

Man-Woo Park was born in Seoul, South Korea. He holds a B.S. in Engineering and an

M.S. in civil, urban, and geo-system engineering. In 2008, He started to pursue a

doctorate in civil engineering with a specialization in construction engineering and

management. Man-Woo Park is an active member in several academic and professional

organizations, and officially serves as a reviewer for ASCE journals. His research

interests include image pattern recognition and filtering techniques for tracking and

monitoring construction entities and highway vehicles. In 2012, he received 2012 Fiatech

CETI (Celebration of Engineering and Technology Innovation) Award in the category of

Outstanding Student Research Project.

