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SUMMARY 

In construction sites, tracking project-related entities such as construction equipment, 

materials, and personnel provides useful information for productivity measurement, 

progress monitoring, on-site safety enhancement, and activity sequence analysis. Radio 

frequency technologies such as Global Positioning Systems (GPS), Radio Frequency 

Identification (RFID) and Ultra Wide Band (UWB) are commonly used for this purpose. 

However, on large-scale congested sites, deploying, maintaining and removing such 

systems can be costly and time-consuming because radio frequency technologies require 

tagging each entity to track. In addition, privacy issues can arise from tagging 

construction workers, which often limits the usability of these technologies on 

construction sites. A vision-based approach that can track moving objects in camera 

views can resolve these problems.  

 The purpose of this research is to investigate the vision-based tracking system that 

holds promise to overcome the limitations of existing radio frequency technologies for 

large-scale, congested sites. The proposed method use videos from static cameras. Stereo 

camera system is employed for tracking of construction entities in 3D. Once the cameras 

are fixed on the site, intrinsic and extrinsic camera parameters are discovered through 

camera calibration. The method automatically detects and tracks interested objects such 

as workers and equipment in each camera view, which generates 2D pixel coordinates of 

tracked objects. The 2D pixel coordinates are converted to 3D real-world coordinates 

based on calibration. The method proposed in this research was implemented in .NET 

Framework 4.0 environment, and tested on the real videos of construction sites. The test 
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results indicated that the methods could locate construction entities with accuracy 

comparable to GPS. 
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CHAPTER 1 

INTRODUCTION 

 

This research tests the feasibility of using rapidly innovative in computer vision and high 

definition cameras for the purpose of tracking project-related entities in construction 

sites. Tracking of construction entities provides useful information for various site 

management tasks including safety management, productivity analysis, and progress 

monitoring and activity sequence analysis. The rest of this chapter consists of the 

research motivation, objectives, methodology, and the organization of this dissertation. 

1.1 Background and Motivation 

One of the greatest challenges of engineering noted by National Academy of Engineering 

is the need for higher level of automation in construction (National Academy of 

Engineering 2008). Even though there are great opportunities to enhance construction 

engineering through the state-of-the-art technologies in computer science and robotics, 

relatively conservative attitudes of construction industry have slowed down the migration 

of those technologies (Anumba 1998; Shapira and Rosenfeld 2011; Park et al. 2004). In 

addition to the tendency to be reluctant to adopt new technologies and ideas, complexity 

and diversity inherent in most construction projects make it difficult to directly apply the 

technologies to construction. However, many researchers have recently endeavored to 

change the trends and introduce new technologies for increased efficiency and accuracy 

in all aspects of construction from planning and design (Osman et al. 2003; Veeramani et 

al. 1998), through construction of the facility (Bernold 2007; Bock 2008), its operation 

and maintenance (Ko 2009; Victores et al. 2011). Significant efforts have been made to 
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automate acquisition of real time site information to provide an additional layer of control 

over the project. Automated tracking is one of the topics in this area.  

 Tracking provides location data of construction entities (e.g. personnel, equipment 

and materials) over time. This spatiotemporal information is useful for various 

construction applications such as productivity measurement, travel path conflict 

detection, safety management, progress monitoring, and activity sequence analysis, etc.  

For a simple example, as in Figure 1.1, tracking of a concrete bucket can provide the 

duration of a crane cycle for moving the concrete bucket, which is useful for productivity 

measurement. Also, the destination of the concrete bucket can identify the activity being 

processed. Furthermore, workers who may pass underneath the moving concrete bucket 

can be detected and warned if they are tracked with automated systems.   

 Tracking methods applied in construction industry include Radio Frequency 

Identification (RFID), Ultra Wide Band (UWB), and global positioning system (GPS). 

These technologies have an established record of tracking resources robustly for most 

Concrete 
Mixer 

Destination 

Figure 1.1: Tracking of a concrete bucket 
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construction scenarios, such as proactive work zone safety, and material localization and 

installation. RFID has been employed for tracking precast concrete elements from their 

casting to assembly, and UWB is well-known for indoor tracking of construction 

materials. The latest construction heavy equipment is equipped with GPS units by the 

manufacturer for better control of its tasks and tracking. However, the requirement for a 

separate tag/sensor on each entity to be tracked can limit their applicability in large-scale, 

congested construction sites where a large number of entities need to be tagged. Also, 

privacy issues can arise out of tagging workers who may be uncomfortable with being 

tagged and tracked. In such cases, there is a need for a more efficient tracking technology 

in terms of time and cost, that accurately locates construction entities, maximizes the 

number of entities to track, and minimizes labor costs.  

 Surveillance cameras are often deployed in construction sites to monitor a broader 

perspective of construction activities and operations (Bohn and Teizer 2009). Many 

contractors understand advantages of utilizing the on-site cameras. Cheap and high 

resolution cameras can capture construction video while extensive data storage and 

network capacities enables users to monitor the sites in real-time. Such a camera network 

system alleviates the need for personnel to walk around the site and take photos. 

Allowing for access to several site views at different locations, the camera network 

facilitates monitoring of project progress and site safety. Given that on-site construction 

cameras are used in an increasing number of construction sites, the vision-based 

technology has a high potential to add the values of the cameras as an efficient tracking 

sensor. Archived video data can be used for visualization of construction processes, 

remote visual inspections, and progress monitoring. Also, important evidence, in the case 
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of litigation associated with the project, can be found from the video data (Brilakis 2005). 

With the advent of robust computer vision algorithms, it is possible to aumatically extract 

information of on-site activities from video streams (Gong and Caldas 2010).  

 Vision-based tracking can provide real-time visual information of construction 

job sites. Vision-based tracking tracks moving objects in a video on the basis of their 

visual patterns and motion patterns. Vision-based tracking is unobtrusive, since it can 

track multiple entities concurrently without installing sensors and ID tags of any kind on 

the tracked entities. This advantage makes this technology highly applicable in dynamic, 

busy construction sites, where large numbers of equipment, personnel and materials are 

involved, and more desirable from personnel who wish to avoid being “tagged” with 

sensors. Also, Vision-based tracking features a vast size of traceable area. In addition, 

due to the simplicity, commercial availability and low costs associated with video 

equipment, vision-based tracking can be clearly profitable in various construction 

operations (Caldas et al. 2004). However, the general vision trackers have two limitations 

to overcome. First, vision-based tracking only provides 2D pixel coordinates which does 

not reflect real motions well. The 2D results may be useful in cases where predefined 

measurements on an entity’s trajectory are available as in Gong and Caldas’ research 

work (2010). However, the lack of depth information limits application of the general 

vision trackers. Spatial distance between two entities as well as any motion in the 

perpendicular direction to the camera image plane is not measurable. To obtain 3D 

location information and be competitive to other radio frequency technologies, additional 

procedures are required. Second, to initialize the trackers, it is necessary to manually 
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mark the region of interested objects to be tracked. Therefore, an automated way of 

initialization is demanding to get rid of the burdensome manual processes. 

1.2 Research Hypothesis 

The hypothesis behind this research is: real world 4D coordinates (3D positions across 

time) of construction entities can be automatically retrieved from videos by creating and 

applying appropriate algorithms of visual pattern recognition, digital filtering, camera 

calibration, and machine learning. The proposed vision-based tracking method promises 

to determine the spatial location of objects of standard sizes and shapes, across time, 

without installation of any sensors so that it can be considered an appropriate alternative 

to other technologies such as GPS, RFID, and UWB. Specifically, stereo camera system 

is considered, which allows the acquisition of 3D spatial information.  

 The emphasis in this research is placed on creating or selecting capable methods 

for 1) automatically detecting construction entities in video streams when they first 

appear, 2) tracking the detected entities in the subsequent frames which provides 2D 

location across time, 3) integrating detection and tracking algorithms for robust and 

stable 2D localization, and 4) calibrating stereo camera system and triangulating 2D pixel 

coordinates from two camera views to obtain depth information and calculate 3D real-

world coordinates for each frame. The developed methods need to be validated on the 

videos collected in real construction sites, and their corresponding performance needs to 

be measured with appropriate performance metrics. 

1.3 Objectives and Scope 

There are various types of construction entities involved in most projects such as 

construction equipment, workers, and materials. Moreover, equipment (e.g. tuck, loader, 
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excavator, etc.) and materials (precast concrete elements, steel beams and plates, bricks, 

etc.) can be classified into a variety of categories. Out of such varied entities, this 

research effort is focused on construction workers and equipment. Specifically, the wheel 

loader, which is one of the most frequently used equipment for construction earth works, 

is mainly dealt with as a representative of equipment. Construction materials are not the 

main focus since RFID and UWB are supposed to work with high accuracy and 

efficiency (Teizer et al. 2008). RFID is known to be able to track materials from 

manufacturing to installation, and UWB is typically devised for tracking in indoor 

environment. Even though the needs for attaching tags and deploying associated facilities 

on the site limit their application to a certain degree, the potential application of vision-

based tracking of materials is very limited when compared to tracking of other entities. 

For example, radio frequency technologies better fit to tracking of precast concrete 

elements from an off-site factory to the site because the coverage area of vision tracking 

is limited to only the construction site. Furthermore, material detection has been an 

independent active research topic and has been investigated in previous works (Brilakis 

and Soibelman 2008; Zhu and Brilakis 2010).  

 The main objective of this research is to test feasibility of acquiring 4D spatio-

temporal information of interested entities on construction sites (i.e. construction 

equipment and workers) from video streams with an enhanced degree of automation. To 

support this main objective, specifically, the research effort is divided into the following 

three sub-objectives. 

1. Create novel detection methods to automatically recognize and localize 

construction entities for the purpose of initializing the tracking process. Once an 
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object of the interested type appears first in the view, it has to be detected so that 

the tracking process is triggered to track the detected object in subsequent frames. 

For this purpose, image features that effectively characterize visual patterns of 

construction equipment and workers are investigated and integrated into a 

detection process.  

2. Find the best methods to track construction entities in 2D. Since there exist 

numerous methods that are capable of tracking construction entities, the research 

performs appropriate categorization and thorough comparison to assess the most 

effective 2D trackers.  

3. Integrate detection and 2D tracking methods in a single line so that they 

compliment each other resulting in more stable and reliable process.  

4. Investigate the way of calibrating stereo cameras for effective monitoring 

construction sites. Generally, the longer the baseline (distance between cameras), 

the higher the accuracy that can be achieved. Also, the longer the distance from 

cameras to objects, the lower the accuracy. Therefore, a long baseline is necessary 

to track objects at long distance from the cameras in large scale construction sites. 

Calibration methods compatible with such conditions are investigated and tested.  

5. Discuss the research findings.  

 It should be noted that real-time processing is not a concern in this research. This 

research devotes attention more on the feasibility of the automated 4D data acquisition 

than on real-time processing. It is believed that real-time processing can be achieved in a 

commercializing step through program optimization or employing a GPU (Graphics 

Processing Unit). Besides, certain types of applications do not necessarily require real-
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time information. While real-time processing is ultimately required for incident detection 

and safety applications, productivity analysis and activity sequence analysis can be 

performed in post processing of acquired data on a daily or weekly basis. Though the 

research seeks faster methods for each step, accuracy takes precedence over processing 

time. In this work, trajectory is one of the most important materials for various tasks of 

monitoring construction sites or highway traffic; hence, this research delves into how to 

extract trajectories of entities from video data regardless of application.  

1.4 Methodology and Results 

The research work in this study includes: 1) detecting construction workers, equipment 

and vehicles, 2) tracking all detected entities, 3) adjusting tracking results through the 

integration with detection results, and 4) calibrating cameras to convert 2D pixel 

coordinates to 3D real-world spatial coordinates. The entire framework is illustrated in 

Figure 1.2. 

 For monitoring construction sites, stereo camera system is proposed to estimate 

3D spatial coordinates (Figure 1.2). Two cameras need to have partially overlapping 

viewing spectrums so that objects to be tracked can be seen in both views. Each camera 

view is continuously searched for new construction resources (i.e. workers, equipment, 

materials). Once a resource is detected, its image region is marked and given to a 2D 

vision tracker for tracking the entity in each subsequent frame. Such concurrent detection 

and tracking allows for handling occlusions (worker moving behind an object, and 

reappearing further down), and adjusting the tracker window to ensure robust tracking. 

 Detection is possible by characterizing the visual patterns of various entities and 

detecting the regions in the video frame that match the visual pattern. This is achieved by 
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identifying common visual patterns for each entity type (e.g. workers, wheel loaders, and 

dump trucks, etc.) by training the algorithm with images of similar objects taken from 

various view angles and under different illumination conditions (Chapter 3). Tracking the 

entity across time involves locating the same entity over time within the view (Chapter 

4). The centroid of the detected and tracked entity is then calculated in a 2D pixel 

coordinate (x and y) at each frame. Generally, the 2D data are not enough to extract 

substantial information for most construction management tasks since it is unknown how 

far entities are located from the camera. Due to the lack of depth data (z), even 

approximate distance measurements between two entities (e.g. workers and mobile 

equipment) are not reliable, but necessary for e.g. safety management. Also, any 

Figure 1.2: The overall framework of tracking construction entities using two cameras 
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movement along the z axis is not measurable. Obtaining 3D coordinates is possible by 

correlating 2D coordinates from two or more views (Chapter 5). This is achieved by 

calibrating the on-site cameras once (at the beginning of the project) such that intrinsic 

(e.g. focal length) and extrinsic (translation and rotation between cameras) camera 

parameters are known. The 3D coordinates are then calculated by triangulating the 2D 

positions of each element from two or more views (Hartley and Zisserman 2004). 

 Every process of the proposed framework in Figure 1.2 is evaluated step by step. 

The detection process is evaluated on the basis of precision and time-delay since the main 

purpose of the detection process is to initiate the 2D tracking process (Chapter 3). In 

other words, it is desirable for the process to detect only interested types of objects 

immediately after the objects newly appear in the view (higher precision and shorter 

time-delay). The 2D tracking process is assessed based on the errors of centroid of 

tracked regions and the number of frames in which objects are successfully tracked 

(Chapter 4). The two metrics measure the accuracy of tracked position and the stability of 

the process. The error of centroid position is calculated only for the successful frames. 

Finally, overall 3D tracking performance is measured by errors of determined 3D 

locations (Chapter 6).  

 The proposed framework in Figure 1.2 is implemented using Microsoft Visual C# 

in .NET Framework 4.0 environment. EmguCV (Emgu CV 2010) was used as a wrapper 

to allow OpenCV (Bradski and Kaehler, 2008) functions to be called in the prototype. 

Both OpenCV and EmguCV are open source. Each step of the framework in Figure 1.2 is 

tested on construction videos and validated based on the defined metrics. As will be 

discussed in Chapter 6, the overall framework composed of the validated methods is 
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tested on videos of construction sites with controlled conditions. Tracking of a worker, a 

steel plate, and an SUV (Sport Utility Vehicle) at a construction site results in 3D 

location errors less than 0.7 m with 95% confidence level which are comparable to 

general GPS, and validates feasibility of the proposed methodology.  

1.5 Dissertation Organization 

The motivation, hypothesis, objectives, methodology and results, and contributions 

behind this research have been introduced. The remaining chapters in the dissertation are 

organized as follows. 

 Chapter 2 is a background literature review chapter. The chapter first outlines the 

current practices of monitoring construction resources and the state of research in optical 

sensor based tracking for construction applications. The current practices and the state of 

research in construction are followed by an overview of the fundamental knowledge and 

previous research studies in 1) vision-based object detection, 2) vision-based 2D tracking, 

and 3) stereo view geometry which this research plans to build on and augment for the 

purpose of tracking and localizing construction entities in 3D. The chapter ends with a 

summary on discussing the issues and limitations of current practices of tracking for 

construction as well as the potential of vision-based tracking. 

 Chapter 3 presents the first part of the proposed framework. Novel, automated 

methods for recognizing and locating construction workers and equipment are explained 

in separate subchapters. Each step of the methods is explained in detail. The 

implementation and experimental test results of construction worker detection are also 

presented. The performance metrics used to evaluate the method’s performance are 

explained. This is then followed by the definition of ‘construction worker’ which is 
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important for validation. The chapter ends with an overview on the designed method, 

implementation, and experiments. 

 Chapter 4 describes the second part of the proposed frameworks which is 2D 

tracking. Details of a comparative study are explained, which aims to find the best 2D 

tracking methods for tracking construction entities. Independent and dependent vaiables 

of the comparison experiments are discussed. The reasons for removing contour-based 

methods from the main comparison expeirments are explained through investigation on 

their features and preliminary tests. Then, results of thorough comparison of template-

based methods and point-based methods are presented. In the following subchapter, the 

methodology of integrating detection and tracking is explained. Experiments and results 

are also presented. The chapter ends with an overview on the designed method, 

implementation, and experiments. 

 Chapter 5 deals with the last part of the proposed framework, which is calculation 

of 3D coordinates. First, the methods of intrinsic and extrinsic calibraton, which are 

executed only once after cameras are setup, are described in detail one by one. Then, the 

selected triangulation method is explained.  

 Chapter 6 presents overall experiments performed to validate the proposed 

framework. The experiment design, implementation of the framework, and results are 

presented in detail from one after another. The experiments include tracking of a 

construction worker, a steel plate, and an SUV. The chapter ends with an overview on the 

experiment design and results. 

 In Chapter 7, the findings and contributions of this research are described. 

Initialization of general 2D vision tracking is automated by construction entity detection 
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methods. Template-based 2D tracking methods are determined as the most appropriate 

methods for tracking construction entities. Depth information and 3D spatial coordinates 

are obtained by emplying stereo camera systems, and a long baseline allows comparable 

accuracy to GPS. This chapter also discusses about next steps to extend and enhance the 

research – hybrid 2D tracking methods, real-time processing, and three- or four-view 

geometry.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 State of Practice in Monitoring Construction Resources 

In recent years, state-of-the-art technologies are employed in practice for monitoring 

construction resources. Many researchers have investigated on these technologies for the 

purpose of site monitoring, and practical applications of the technologies have recently 

been reported by several contractors. This chapter introduces radio frequency 

technologies such as GPS (Global Positioning System), RFID (Radio Frequency 

Identification), and UWB (Ultra Wide Band) which are well-known for tracking 

construction entities. 

2.1.1 Global Positioning System (GPS) 

GPS is the most famous technology which is generally used to track a fleet of heavy 

equipment. It has become a well-established monitoring system in construction sites. The 

system consists of a constellation of satellites, GPS sensors mounted on each equipment 

asset, and a central module that communicates with the sensors. Each sensor captures the 

asset's location and transmits the data to the central module over the mobile network, 

which makes it possible to visualize the location of all equipment on a single map in real 

time (Eecke 2010; Henderson 2008). Numerous products of the GPS system have been 

emerged for tracking and monitoring construction equipment (Cable 2010; Engineering 

News-Record 2008a, 2008b). Equipment manufacturers are adopting the products to 

provide for their customers (Construction Equipment 2010). The GPS sensors are capable 
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of reporting locations as well as idle and work time, and odometer readings. Analyzing 

the reported data can bring about significant benefits for contractors such as reduced fuel 

budget, better equipment utilization, and timely maintenance, etc. (Eecke 2010). Theft 

protection is also available via user-defined curfews, perimeter alerts, and homing beacon 

function (Construction Equipment 2010). For instance, a Texas-based contractor had 

found a stolen rubber tire backhoe costing $85,000 via its GPS system 

(ForConstructionPros.Com 2006). Though GPS has been applied to outdoor construction 

practices like positioning of construction equipment (Oloufa et al. 2003) and vehicles (Lu 

et al. 2007), the maximum error of general GPS is about 10 m, and it can be reduced to 1 

cm by using kinematic GPS with trade off in increased costs (Caldas et al. 2004). 

Moreover, a recent report states that construction business in the United States will face 

serious disruption to their GPS-involved operations because of 4G-LTE open wireless 

broadband network that incorporates nationwide satellite coverage 

(ForConstructionPros.Com 2011). 

2.1.2 Radio Frequency Identification (RFID) 

RFID-based systems are also widely used in construction projects. The systems consist of 

RFID tags, a reader, and a data management system. When a reader requests, each tag 

sends its own ID so that the reader can identify the unique object. It is generally used to 

access and track construction materials or workers. When a critical piece of material 

arrives on site or it is placed in the structure, a tag attached to or embedded in the piece is 

read to register the event with its ID and timestamp of accomplishment (Engineering 

News-Record 2008c). Engineering News-Record reported about a notable case in which 

Skanska made use of RFID technologies to track pre-cast structural elements from 
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casting to assembly in a football stadium construction (Sawyer 2008a). In the project, 

RFID tagging was integrated with BIM (Building Information Modeling). A 4D model is 

updated by uploading RFID scanned information (Yoders 2008). The system enabled 

project managers to easily monitor whether the elements were in the correct sequence. 

RFID-based systems have also been applied to labor and equipment control (Engineering 

News-Record 2008c; Sawyer 2008b). A system commercialized by the DoallTech 

corporation combines tags on ID cards with a digital camera in the reader to verify 

identities (Sawyer 2008b). The RFID-based system was reported to be used in more than 

400 projects around the world (Engineering News-Record 2008c). Furthermore, RFID 

systems facilitate safety control. The systems have been utilized to prevent the collisions 

among tower cranes (Gomez 2007a). Also, fall protection equipment combined with a 

RFID system is now available, which enhances the effectiveness of safety control 

(Gomez 2007b). 

 Researchers have continuously made efforts on the application of RFID in 

construction. It has been applied to quality management (Wang 2008), prevention of 

collision accident (Elghamrawy and Boukamp 2010), and automatic identification of 

construction concepts (Chae and Yoshida 2010). Recently, Ko (2010) proposed a 

methodology of 3D sensing with RFID which locates the positions of various 

construction entities. However, the near-sighted effect prohibits its use in tracking 

applications. There have also been efforts to integrate RFID and GPS technology. Ergen 

et al. (Ergen et al. 2007) applied this combination to track precast pieces in a storage 

yard. These research efforts led to the practical use of RFID technologies in a 

construction project. 
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2.1.3 Ultra Wide Band (UWB) 

UWB is another type of radio technology that can be applied to short-range 

communications. UWB is able to detect time-of-flight of the radio transmissions at 

various frequencies, which enables it to perform effectively in providing precision 

localization even in the presence of severe multipath effects (Fontana et al. 2003). 

Another advantage is the low average power requirement that results from the low pulse 

rate (Fontana, 2004). Teizer et al. (2007a) applied the UWB technology to construction. 

It was used for a material location tracking system with primary applications to active 

work zone safety. Its ability to provide accurate 3D locations in real-time is a definite 

benefit to tracking in construction sites. 

2.2 State of Research in Optical Sensor Based Tracking for Construction 

Vision technologies and laser technologies are attracting increasing interests for tracking 

in large-scale, congested sites because they are free of tags. A 3D range imaging/video 

camera (e.g. a Flash LADAR) provides not only the intensity but also the estimated range 

of the corresponding image area. When compared to 3D laser scanners which have been 

used in construction, the device is portable and inexpensive. Testing various kinds of data 

filtering, transformation and clustering algorithms, Gong and Caldas (2008) used 3D 

range cameras for spatial modeling. Teizer et al. (2007b) demonstrated tracking with 3D 

range cameras and the potential of its use for site safety enhancement. However, the low 

resolution and short range make it difficult to be applied to large-scale construction sites. 

Few tests have been executed in outdoor construction sites where the environments are 

more cluttered and less controlled. Also, it is reported that the reflectance of a surface 
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varies extremely even in indoor environments (Gächter et al. 2006). Moreover, when 

multiple cameras are used, they can interfere with each other (Fuchs 2010).  

 Remote-controlled web-based cameras are currently available and used for remote 

monitoring of construction sites (Engineering News-Record 2008d, 2008e; Gomez 2007). 

The cameras are controlled remotely through pan/tilt/zoom functions, and transmit video 

frames wirelessly to the central system. The wireless communication system enables one 

person to monitor an entire site, which substantially reduces security cost (Gomez 2007). 

Along with the increasing of use construction cameras, vision-based tracking has recently 

been investigated. Traditional 2D vision tracking is simply based on a sequence of 

images and can be a proper alternative to RFID methods because it removes the need for 

installing sensors and ID tags of any kind on the tracked entity. For this reason, this 

technology is (a) highly applicable in dynamic, busy construction sites, where large 

numbers of equipment, personnel and materials are involved, and (b) more desirable from 

personnel who wish to avoid being “tagged” with sensors. In Gruen’s research (1997), it 

is highly regarded for its capability to measure a large number of particles with a high 

level of accuracy. Teizer and Vela (2009) investigated vision trackers for construction 

worker tracking, and Yang et al. (2010) proposed a vision tracker that can track multiple 

construction workers. Gong and Caldas (2010) validated that vision tracking can be 

applied to automate productivity analysis. However, in these works, the results were 

limited to 2D pixel coordinates and the entities to be tracked were manually marked. 

2.3 Vision-Based Object Detection 

This chapter presents a literature review on the computer vision algorithms which are 

used for object detection in this research. The purpose of object detection is to recognize 
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and localize an object category (e.g. face, vehicle, and animal) by image features which 

are common to all objects of the type. In this research, object detection plays an 

important role in localizing construction entities and vehicles in 2D. The challenge of 

object detection is to construct a feature template compatible to various appearances of 

the object category. Shape, color, and motion features are generally used for object 

detection.  

 Haar-like features (Viola and Jones 2001; Lienhart and Maydt 2002) and 

Histogram of Oriented Gradients (HOG) (Dalal and Triggs 2005; Zhu et al. 2006) are 

well-known shape features. Both features are on the basis of gradient values, but utilize 

them in different ways. Haar-like features are vectors of image gradients which are 

differences of intensities between adjacent regions. In order to detect various appearances 

of an object type, the features are trained through a machine learning process: Haar-like 

features of various appearances are extracted from abundant training images and the 

features are trained with machine learning algorithms. For example, Viola and Jones 

(2001) used vertical and horizontal Haar-like features with an AdaBoost (Adaptive 

Boosting) algorithm (Freund and Schapire 1997) for human face detection. Lienhart and 

Maydt (2002) introduced additional 45˚ Haar-like features to account for diagonal edges 

and enhance the detection. Even though training with AdaBoost takes several days 

depending on the processor specifications, the method allows for real time detection once 

the training is completed. The HOG feature is a collection of local histograms of gradient 

directions. It divides an image based on a grid of uniformly spaced blocks. For each 

block, a histogram is calculated by counting the occurrence of gradient orientations. 

Similar to Haar-like features, HOG features also need training with a large number of 
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images. Dalal and Triggs (2005) applied HOG features trained with SVM (Support 

Vector Machine) (Joachims 1999) for human detection. They showed the superiority of 

HOG features over Haar-like features in human detection. Zhu et al. (2006) sped up the 

human detection by using AdaBoost while retaining the equivalent accuracy.  

 Color is also a useful and intuitive feature for recognizing an object type. A color 

histogram (Swain and Ballard 1991) is one of the typical color features. Simple 

calculation and invariance to rotation and translation are its useful qualities for object 

detection. It is suitable for detecting an object in distinctive colors. However, the 

sensitivity to illumination and the lack of spatial information limits its applications. The 

color histogram has been broadly used for image segmentation and content-based image 

retrieval in which spatial information is not critical (Zhang et al. 2009; Huang et al. 

2004). It has also been employed in tracking applications. In tracking processes, color 

histograms combined with HOG features were used as observation models of pedestrians 

(Sugano and Miyamoto 2009), hockey players (Lu et al. 2009), etc. However, color 

histograms are not appropriate for the detection of pedestrians or hockey players since 

their colors widely vary from person to person according to their clothing. In Lu et al.’s 

work (2009), Haar-like features are used for detection, and the color histogram is used 

exclusively for tracking the detected entities.  

 A set of eigen-images is a famous feature used for human face detection. It is 

usually combined with principal component analysis (PCA) (Turk and Pentland 1991) or 

Fisher’s linear discriminant (FLD) (Belhumeur et al. 1997) which reduces the 

dimensionality of the feature. The feature template is obtained by computing the 

covariance of the pixels and removing meaningless components. It contains both color 
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and shape information as it exploits vectors of pixel values which are lined up based on 

spatial location. The features work well for recognizing human faces with various 

illumination conditions and various expressions. However, they have been tested mostly 

on frontal faces, and had troubles with recognizing the faces of different angles. 

 Background subtraction (Mcfarlane and Schofield 1995; Stauffer and Grimson 

2000; Li et al. 2002) detects moving objects on the basis of their motion cues. This 

method can be applied only to fixed camera views. The static background scene is 

modeled by taking a dominant value for each pixel across a certain number of frames. 

The model has to be updated throughout the frames in order to reflect changes of 

illumination. Mcfarlane and Schofield (1995) presented an approximated median filter 

which estimates the background with a simple update process. It increases/decreases the 

background estimate if the pixel value of the new video frame is larger/smaller than the 

estimate. The MoG (Mixture of Gaussians) method (Stauffer and Grimson 2000) is one 

of the most popular background modeling methods. It models the background pixel 

values as a mixture of multiple Gaussian distributions. Moving objects are detected by 

thresholding the difference of pixel values between the current frame and the 

background. Li et al. (2002) screened out moving background objects such as wavering 

trees and shadows by modeling them with the color co-occurrence feature. Background 

subtraction is computationally efficient since it can detect all moving objects 

simultaneously regardless of their appearances or types. However, motion features are 

not suitable to identify object types. Furthermore, background subtraction may recognize 

multiple objects that partially overlap each other as a single object.  
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 Recently, several approaches for detecting construction entities have been 

proposed. Jog et al. (2011) presented methods for detection of trucks. They used the 

Semantic Texton Forests approach (Shotton et al. 2008), which detects objects through 

segmentation and classification. Though the method correctly marked regions of trucks 

with high accuracy, it is not capable of differentiate partially overlapped objects and an 

additional process for grouping segmented regions is required. Chi and Caldas (2011) 

proposed a method that detects and classifies construction entities including construction 

equipment and workers. Several characteristics of foreground blobs which result from 

background subtraction are trained for the classification. However, their work lacks 

information regarding how to e.g. differentiate a worker from a pedestrian, which is vital 

in construction sites located in residential areas. Moreover, their method is sensitive to 

illumination changes since it relies only on the foreground blob features. 

2.4 Vision-Based 2D Tracking 

Even though object detection methods localize interested types of objects in video 

frames, the results are lack of identification of the objects. There are no links between the 

results of different frames, thus trajectories are not available from using only object 

detection methods. The methods only provide 2D positions of objects for each frame. 

Therefore, in order to fill this gap, tracking algorithms are required. Once an object is 

detected in the current frame, 2D tracking algorithms search the most probable position 

of the object in the next frame based on its visual pattern and motion pattern. 2D vision 

trackers can be classified as contour-based, Template-based, and point-based trackers, 

according to the manner of representation of the objects (Yilmaz 2006). Figure 2.1 shows 

the examples of their representations. This chapter provides a review of each method.  



 23

2.4.1 Contour-Based Methods 

In contour-based methods, the object in the image is represented by contours or 

silhouettes which encompass the area of the object. These tracking methods use the 

contours to track objects by estimating and updating the region or boundary of the target 

in the current frame and comparing that with the results acquired from the previous frame 

(Nguyen 2002). These methods generally use edge features, which are easy to implement 

and stable to illumination changes. Also, they can maintain successful tracking regardless 

of any change inside the contours. However, contour-based methods commonly have 

problems with the images whose edges are not strong enough to extract edge features 

because the contours from weak edges usually fail to represent the actual boundaries. 

There are two types of contours which are used in contour-based tracking methods; 

parameterized and non-parameterized contours (Nguyen 2002). Methods that use 

parameterized contours approximate the contour using a parametric model (e.g. B-

Splines) or detect the contour by minimization of the contour’s energy function. The 

latter, which is referred to as “Snake” is the typical model of the parameterized contours 

(Yokoyama and Poggio 2005; Tsechpenakis et al. 2004). In this approach, an internal and 

Figure 2.1: The representations of the object (contour-based, Template-based, and 
point-based methods from left to right) 
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external energy are minimized along the contour and result in development of the shape 

of the contour (Tsechpenakis et al. 2004). On the contrary, the non-parameterized contour 

is defined merely as a boundary of a region e.g. a border between the object and the 

background and is obtained mainly by removing background edges (Nguyen 2002). The 

strength of such an approach is that it can be used to represent the contour of an arbitrary 

shape (Nguyen 2002), and as a result, it has been used in most contour-based tracking 

methods of recent years.  

 Algorithms employed in contour-based trackers either use “photometric 

variables” (e.g. intensity, color, texture), “geometric variables” (e.g. edges, lines, 

corners), or a combination of both (Freedman and Zhang 2004). It is argued that trackers 

that use photometric variables are more advantageous to geometric trackers because they 

are more reliable in the presence of illumination variations and cluttering, and they also 

take into account the rich amount of information existing in the images (Freedman and 

Zhang 2004).   

 Described contour-based methods are inappropriate for the purpose of 3D 

tracking of construction entities. First, the main advantage of contour-based trackers is 

that they can detect the exact contour, which is useful in applications where exact posture 

of the target is needed. However, the desirable 2D tracking results for the proposed stereo 

vision based 3D tracking are constant centroid points of the objects, and the flexibility of 

the contours actually degrades the accuracy of the calculated centroids. Second, most  

project related objects in construction sites are rigid objects that do not deform heavily, 

and even workers are commonly tracked relying on the unique colors of their hard hats 

and vests, to differentiate them from pedestrians. Consequently, the merits of contour-
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based methods cannot contribute to a 3D vision tracking framework for construction. 

Third, compared to Template-based methods, contour-based methods were found weak to 

illumination variation, and were likely to lose the object which occupies a small area.  

2.4.2 Template-Based Methods 

Template refers to the basic shape and appearance of the object (Yilmaz et al. 2006). As a 

result, these trackers are also referred to as region-based or appearance-based methods.  

Region-based methods track connected regions which appropriately represent the shapes 

of the objects. Based on the regions’ information such as color and texture, the methods 

compute and update the motion of the template in each frame (Marfil et al. 2007; 

Schreiber 2008). In region-based methods, color histograms generally play an important 

role since color is typically a good distinguishing feature and helps to manage partial 

occlusion (Marfil et al. 2007). However, relying only on the color may cause the tracker 

to lose objects of similar colors when they are occluded by one another. 

 Two sub-categories of template-based trackers are template and density-based 

appearance models, and multi-view appearance models. Template-based models, which 

take into account both color histograms and spatial information, are widely-used target 

models. The basic concept of template tracking is finding the region that best matches 

with the template that is manually determined in the first frame. One approach to do this 

is the mean-shift procedure, which is an analysis technique that works based on the 

comparison of the object histograms with the window approximated around the location 

of that object (Yilmaz et al. 2006). Templates and density-based trackers are 

advantageous because of their simplicity and low computational cost. However, they are 

not suitable if the objects change considerably in each frame (Yilmaz et al. 2006). 
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Schreiber (2008) presented a region-based method that generalizes the template matching 

Lucas-Kanade algorithm (Lucas and Kanade 1981). This method combines template 

matching and histogram-based tracking methods. It divides the region of interest into 

several overlapping patches, each of which is represented by a histogram, so that spatial 

information can be kept. Within this framework, partial occlusion and relatively slight 

changes in the object’s appearance are handled well. However, it has the limited ability to 

cope with large transformations because it uses a fixed template obtained in the first 

frame.  

 Maggio et al. (2009) proposed a template-based algorithm that effectively 

combines the CONDENSATION algorithm (Isard and Blake 1998) with the extended 

Mean-Shift algorithm (Comaniciu et al. 2003). It inherits from the CONDENSATION 

algorithm the ability to cope with occlusions and improves the performance of the Mean-

Shift algorithm through the additional estimation of the target rotation and anisotropic 

scaling. The target object is approximated with an ellipse in which every pixel has 

weighted normalized color histogram. Additionally, similar to Schreiber’s method 

(2008), multiple semi-overlapping histograms are introduced in order to complement the 

lack of spatial information. This method showed robustness to occlusion and the changes 

in the objects' planar rotation or scale. Nevertheless, since this method also uses the fixed 

template model, it is not capable of managing severe changes in the target object’s pose. 

Marfil et al. (2007) proposed a template-based framework that has the ability to track an 

object showing relatively severe pose variation by updating the template at every frame. 

This method uses the bounded irregular pyramid (BIP) which represents a target object as 

a hierarchical model (Marfil et al. 2007). At every frame, this hierarchical template model 
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is rearranged and updated reflecting the previous frame’s information. This hierarchical 

template-based model can lessen computational cost because it uses the higher level that 

contains fewer elements instead of using all pixels in the matching process. The nodes 

keep the information of hue, saturation, and brightness to make tracking insensitive to the 

sharp changes in illumination (Marfil et al. 2007). This framework can track non-rigid 

objects and does not require a priori knowledge of the object to track. Since the template 

model is adjusted according to the updated objects’ appearance, it can successfully 

maintain tracking when the objects exhibit severe transformation.  

 Ross et al. (2008) proposed a framework that uses multi-view appearance models. 

The principal components of this framework are the subspace representation, particle 

filter, and online update (Ross et al. 2008). The model of objects is composed of a low 

dimensional subspace representation, the eigenbases which are obtained from a fixed 

number of previous frames. This model provides abundant information of the object 

regions. The online learning process updates the model and enables it to be adapted to the 

changes in appearance caused by the deformation of object or illumination conditions, 

etc. A particle filter estimates the motions of objects without optimization processes.  

2.4.3 Point-Based Methods 

In point-based trackers, some limited points are selected as features of an object and only 

these points are tracked in consecutive frames (Yilmaz 2006). Point-based tracking can 

be interpreted as the correspondence of identified objects represented by points across 

frames (Yilmaz 2006). Point-based methods are best for tracking extremely small objects 

which can be represented by a single point (Yilmaz 2006). However, the larger an object 

appears in image frames, the more points may be demanded for successful identification 
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of the object. In addition, when multiple points are employed, grouping of points that 

belong to the same object becomes an important problem (Yilmaz 2006). Also, it is 

important to select and keep appropriate feature points that can effectively represent the 

objects. Point-based methods using multiple points are beneficial to characterization of 

non-rigid objects, provided that the locations of the feature points are flexible.  

Cox and Hingorani (1996) presented a method for finding point correspondences that can 

be used in point-based tracking method. They employed Reid’s MHT algorithm (Reid 

1979) which enabled occlusion handling, improving it in terms of computational 

complexity. In order to reduce the computational cost, they narrowed the search space in 

prediction by introducing the k-best hypothesis (Cox and Hingorani 1996). Shafique and 

Shah (2003) also proposed a point correspondence method. Unlike the MHT algorithm 

that uses multiple heuristics, this method employs a single non-iterative greedy algorithm 

that allows real time tracking and occlusion handling (Shafique and Shah 2003). In their 

experiments, they showed the application to the tracking of small object such as a flock 

of birds in the sky or particles in a cylindrical reservoir. First, one feature point is 

assigned to each object by the KLT method (Shi and Tomasi 1994) and then the objects 

are successfully tracked by their point correspondence method.  

 Arnaud et al. (2005) proposed a point-based method that tracks a textured object 

with multiple feature points. They combined a Rao-Blackwellized particle filter (Khan et 

al. 2004) with a model composed of a planar cloud of feature points. The concatenation 

of all the points’ locations is an important factor in estimating the object’s state. This 

method allows for not only occlusions but also deformation of the object. However, this 
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method considers only planar movement and thus, may fail when the object rotates out of 

plane and changes pose severely.  

 Mathes and Piater (2006) proposed a point-based method in which a point 

distribution model is used to represent objects. This model employs feature vectors of the 

interest points to describe objects. The feature vector, which consists of the local 

appearance and the spatial configurations of feature points, enables the tracker to 

differentiate two similar-looking objects even when they are occluded by each other 

(Mathes and Piater 2006). The feature points are located sparsely to describe non-rigid 

objects accurately and to keep the stability in case of partial occlusion. Most importantly, 

the feature points are updated for every frame to make the model adaptive to the change 

in appearance and illumination. It matches current feature points to the image points. 

Based on the stability of the matching, stable points are added to and unstable points are 

removed from the model. When an object is occluded by another object, the update 

process stops to avoid the addition of bad points (Mathes and Piater 2006). Accordingly, 

it is stable under the changes in scale, appearance and shape. The stability is maintained 

in the image when occlusion occurs.  

2.5 Stereo View Geometry 

As explained in Chapter 1.4, two cameras are employed for tracking construction 

resources in 3D. Vision-based tracking is not comparable with other 3D technologies 

which are described in Chapter 2.1 unless it can provide 3D information. In order to 

reconstruct the 3D position of an entity, several steps must be taken to determine the 

stereo view geometry (Hartley and Zisserman 2004). Heikkilä and Silvén (1997), Zhang 

(1999), and Bouguet (2004) presented and provided standard calibration tools. The 
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calibration tools reveal intrinsic camera parameters including the focal length, the 

principal point, radial distortions and tangential distortions. They use calibration objects 

which have specific patterns such as a checkerboard. Figure 5.1 In Zhang’s calibration 

method, tangential distortion is not modeled. Heikkilä and Silvén’s toolbox and 

Bouguet’s toolbox use the same distortion model which takes into account both radial 

and tangential distortions. Therefore, both toolboxes generally result in almost equivalent 

calibration. Bouguet provides additional functions such as error analysis which is useful 

to re-calibrate with revised inputs.  

 After having calibrated each camera separately, the external camera system has to 

be determined (see Figure 2.2). For this purpose feature points are identified and matched 

within the two camera views. The most well-known and robust algorithms commonly 

used for this task are the SIFT (Scale-Invariant Feature Transform) (Lowe 2004) and 

SURF (Speeded Up Robust Features) (Bay et al. 2008). While SIFT uses Laplacian of 

Gaussian (LoG), Difference of Gaussian (DoG), and histograms of local oriented 

Figure 2.2: Epipolar geometry and centroid relocation 
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gradients, SURF relies on a Hessian matrix and the distribution of Haar-wavelet 

responses for feature point detection and matching, respectively. While SIFT turned out 

to be slightly better in terms of accuracy, SURF is computationally much more efficient 

(Bauer et al. 2007). SIFT and SURF provide point matches including extreme outliers 

(mismatches) that have to be removed. To achieve that, robust algorithms for managing 

the outliers were introduced. RANSAC (RANdom SAmple Consensus) (Hartley and 

Zisserman 2004), and MAPSAC (MAximum a Posteriori SAmple Consensus) (Torr 

2002) are the representative robust methods. RANSAC minimizes the number of outliers 

by randomly selecting a small subset of the point matches and repeating the 

maximization process for different subsets until it reaches a desired confidence in the 

exclusion of outliers. One of its problems is poor estimates associated with a high 

threshold (Torr 2002). MAPSAC which works in a similar way resolved this problem by 

minimizing not only the number of outliers but also the error associated with the inliers.  

 The next step is the estimation of the essential matrix, E based on the identified 

point matches. In general, the normalized eight point (Hartley 1997), seven point (Hartley 

and Zisserman 2004), six point (Pizarro et al. 2003), and five point (Nistér 2004) 

algorithms are used. Eight, seven, six and five is the minimal number of points required 

to perform the estimation. Rashidi et al. (2011) compared the resulting accuracy of these 

algorithms in practical civil infrastructure environments, obtaining the five point 

algorithm to be the best. However, due to its simplicity and reasonable accuracy the 

normalized eight-point algorithm is still the most common one and the second best 

according to (Brückner et al. 2008). Based on the essential matrix, E the relative pose of 

two cameras (R, T in Figure 2.2) can be derived directly (Hartley and Zissermann 2004). 
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 In the last step, triangulation is performed. Based on two corresponding pixels in 

the respective view, two lines of sight have to be intersected to find the 3D position 

(Figure 2.2). However, due to image noise and slightly incorrect point correspondences, 

the two rays may not intersect in space. To address this problem, Hartley-Sturm optimal 

triangulation (Hartley and Sturm 1997) and optimal correction (Kanatani et al. 2008) 

algorithms are currently used as standard methods for finding corrected correspondences. 

They both try to find the minimum displacement based on the geometric error 

minimization, correct the pixel coordinates accordingly and intersect the corrected rays to 

determine 3D coordinates. While the latter has a faster process, the former’s results are 

more accurate (Fathi and Brilakis 2011). 

 Several researchers have introduced and applied stereo vision technologies to 

construction. Most applications presented so far are related to 3D modeling of structures 

for progress monitoring. Chae and Kano (2007) estimated spatial data for development of 

a project control system from stereo images. In another work, Son and Kim (2010) used a 

stereo vision system to acquire 3D data and to recognize 3D structural components. 

Golparvar-Fard et al. (2010) presented a sparse 3D representation of a site scene using 

daily progress photographs for use as an as-built model. While these previous works 

employed stereo vision to create 3D geometry models based on static feature points, this 

research applies stereo vision to locate moving entities in 3D across time.  

2.6 Summary 

Obviously, various tasks in construction management can benefit from tracking 

technologies which is capable of providing location of construction entities across time. 

GPS, RFID, and UWB are well-known technologies that are applied to track on-site 
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construction entities. While GPS has been used mostly for heavy equipment, RFID has 

been considered appropriate for construction materials such as pipes and concrete 

elements. UWB is also used for tracking materials, but mainly in indoor environment.  

 In spite of the successful performance of the radio frequency technologies, vision-

based tracking draws interests because it is free of tag or sensors. Vision-based tracking 

tracks objects in a video based on their visual patterns and motion patterns. Vision-based 

tracking can track multiple objects with only one sensor, which is a camera, as long as the 

objects are present in the camera view. There are various types of tracking methods, and 

they can be classified into three categories – contour-based methods, template-based 

methods, and point-based methods – based on the way of representation of objects. 

 A few research works were performed to use vision-based tracking for 

productivity measurement and safety enhancement. However, the results of the employed 

tracking methods were limited to 2D information. 2D results are generally not enough to 

extract substantial information for most construction management tasks since it is 

unknown how far entities are located from the camera. Due to the lack of depth 

information, even approximate distance measurements between two entities are not 

reliable, but necessary for safety management. Therefore, additional procedures to obtain 

the depth information and calculate 3D spatial coordinates are required. Furthermore, 

entities to be tracked had to be manually initialized in the first frame in the previous 

works. In order to further automate the tracking process, methods to automatically 

recognize and localize construction entities are necessary.  
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CHAPTER 3 

DETECTION OF CONSTRUCTION WORKER AND EQUIPMENT 

 

In order to initiate a vision tracker, it is necessary to first determine which entities to 

track in each camera view. All entities that enter the camera views have to be captured 

and marked to trigger a vision tracker. Moreover, a vision tracker generally fails to track 

an entity when it is fully occluded. Therefore, when the entity gets free from the 

occlusion, it has to be initialized again. Given a pixel region corresponding to each entity, 

a vision tracker extracts the visual patterns from the region and starts tracking on the 

basis of the patterns. However, it is time consuming and error prone to manually mark all 

construction entities in multiple views, due to the large amount of entities to track in 

construction sites. Therefore, an automated way of detecting the entities is required. 

3.1 Construction Worker Detection 

This chapter deals with detection of construction workers for initializing 2D vision 

tracking. Specifically this chapter aims to 1) investigate image features that effectively 

characterize the appearance of construction workers who wear safety vests, 2) determine 

appropriate measures to evaluate the method regarding that the main role of the method is 

to accurately initialize 2D vision trackign, and 3) test the method for detecting 

construction workers in various illumination conditions and backgrounds. 

3.1.1 Methodology 

In this research, ‘construction worker’ is considered as a person wearing safety gear such 

as safety vests and hard hats. The proposed method takes advantage of three types of 



 35

image features to describe construction workers: motion, shape and color. These features 

are separately implemented in sequential steps. First, it detects foreground blobs where 

objects in motion are expected to exist. Given the fixed camera views, the difference of 

pixel values between a background model and the incoming frames is the main cue to 

recognize motions. Second, it identifies the regions corresponding to human bodies from 

the foreground blobs based on their patterns of HOG (Histogram of Oriented Gradients) 

features. Third, the detection regions that result from the second step are classified into 

construction workers and non-workers. It uses color histograms and a k-NN (k-Nearest 

Neighbors) (Cover and Hart 1967) classifier to characterize fluorescent colors of safety 

gear. Figure 3.1 illustrates the described framework. In short, the first and second steps 

detect people including workers based on their motion and shape features, then the third 

step sort out workers from the detected people by analyzing their color features.  

 Background subtraction, in the proposed method, reduces the candidate regions 

for worker detection. It is used to achieve higher computational efficiency and lower false 

alarm rates. The second step, which is the detection of people with HOG, is 

computationally far more expensive than the background subtraction. Background 

Background 
Subtraction

(Motion)

HOG features 
(Shape)

&
SVM classifier

Color Histogram 
(Color)

&
k-NN classifier

Moving
object

People-
shaped 
object

Worker
Input 
Frame

Figure 3.1: The framework of construction worker detection 
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subtraction restricts the search areas of the second step. It allows the step to scan only 

foreground blobs and prevents from unnecessarily scanning irrelevant areas. In addition, 

it prevents the detection of non-people objects in the background scene (i.e. a static area 

which has a similar shape to people) in the following step. It eventually leads to higher 

precision. Once foreground blobs are obtained, they are post-processed to remove small 

blobs and to merge adjacent blobs. For each foreground blob, the smallest rectangle that 

encloses the blob is found. Finally, each rectangle is inflated to allow for some margin 

around a moving object, which is necessary to calculate HOG shape features in the next 

step. Various methods of background modeling have been presented: approximate 

median filter (Macfarlane and Schofield 1995), MoG (Stauffer and Grimson 2000), color 

co-occurrence (Li et al. 2002), etc. In this research, the median filter method is employed 

since it is computationally the most efficient. Figure 3.2 exhibits the foreground blobs 

extracted with the three methods and the rectangular foreground regions after post 

processing. Even with the simplest process, the median filter method provides 

comparable results to the other methods.  

 Wearing hard hats or safety vests does not induce significant changes in human 

shapes. Figure 3.3 shows two gradient images obtained by averaging a number of 

gradient images of ordinary people and construction workers. Human can be intuitively 

inferred from both gradient images. Therefore, as a step to narrow down candidate 

regions to people, the second step employs HOG features which have proven to be robust 

in detecting human bodies. Detection of people in test images works by sliding a search 

window across the foreground blob regions. The HOG feature is calculated from each 

window and classified into either people or non-people. In order to embed various 
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appearances of people into the HOG feature template, training of a classifier is necessary. 

The SVM is chosen for the training as in Dalal and Triggs’ work [34]. On the basis of 

HOG features extracted from a large number of positive (images of people) and negative 

(images without any people) images, an SVM classifier learns to recognize the patterns of 

HOG features and to distinguish people from others. Training images have to be in the 

same size so that all their HOG features have the same vector size.   

 The results of the second step are the rectangular regions determined to include a 

person inside. These rectangles are further processed by another classifier which 

determines whether they are workers or not. In other words, this step filters out the non-

workers out of the people regions. The HSV color histogram is selected for this purpose. 

ANSI (American National Standards Institute) stipulates that construction workers must 

Figure 3.2: The foreground regions which result from the approximate median filter 
(1st row), the MoG (2nd row), and the color co-occurrence (3rd row) methods 

 
 



 38

use high-visibility safety apparel since they are regularly exposed to the hazards of low 

visibility (ANSI/ISEA 2010). It specifies three colors for the high-visibility apparel: 

fluorescent yellow-green, fluorescent orange-red, and fluorescent red. Since the colors 

are limited and all fluorescent colors, it is viable to characterize the patterns of the safety 

gear colors.  

 The RGB color space, which is an additive color model, is not effective for 

modeling the safety gear colors because of its sensitivity to illumination conditions. This 

fact is illustrated in Figures 3.4 and 3.5 which show the RGB color histograms (32 bins) 

of yellow-green and orange-red safety vests, respectively. In each figure, the two safety 

vests are the same type, but with different illumination conditions – one in a bright 

condition (1st row), and the other in a dark condition (2nd row). It is observed that 

Figure 3.3: (a)-(c): people images, (d): average gradients of 200 people images, (e)-
(g): worker images, (h): average gradients of 200 worker images 

 
 

(a)                 (b)                (c)                 (d) 

(e)                 (f)                (g)                 (h) 
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significant disparity between the color histograms in the 1st and 2nd row is caused by the 

slight change in illumination. Compared to the RGB color space, the HSV color space is 

in better accordance with the conceptualization of human eyes, thus, is more appropriate 

in categorizing objects by colors. The three components of hue, saturation, and value 

measure the actual color, purity, and intensity (brightness), respectively. Figures 3.6 and 

3.7 show the HSV color histograms (32 bins) of the safety vests as in Figures 3.4 and 3.5. 

Hue and saturation histograms in the 1st and 2nd rows exhibit similar patterns in spite of 

the illumination change which is reflected in the value histogram.  In addition, hue and 

saturation histograms in Figure 3.6 and 3.7 are distinct from those of ordinary vests on 
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Figure 3.6: HSV color histograms of yellow-green safety vests in bright (1st row) and 
dark (2nd row) illumination conditions 

Figure 3.7: HSV color histograms of orange-red safety vests in bright (1st row) and 
dark (2nd row) illumination conditions 
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 41

pedestrians in Figure 3.8.  Figure 3.9 shows saturation images of a pedestrian and 

construction workers. Unlike in the pedestrian image, the safety vest regions in 

construction worker images are highlighted by the saturation components regardless of 

their colors. These illustrations signify that the distinct characteristics of safety vests can 

be effectively modeled with hue and saturation histograms. Accordingly, the third step 

exploits hue and saturation histograms for characterizing the visual patterns of the safety 

gear.   

 As in the second step, this step also needs to go through a training process. 

Positive and negative data, in this step, are the images of construction workers and 

ordinary people, respectively. Focusing exclusively on safety vests and hard hats, this 

step takes into account only the upper half of the human body to construct color 

histograms. The obtained color histogram is normalized to minimize the effect of the 

image window sizes. Negative images contain a few images of people wearing jackets of 

which the colors are similar to safety vests. These images prevent SVM from 

constructing clear boundaries between the color histogram vectors of worker and non-

worker. The k-NN is more suitable to this case because it performs classification simply 

Figure 3.9: Saturation images of a pedestrian (a) and construction workers (b and c) 
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based on a majority vote of its k neighbor. Even though the main role of this third step is 

classifying a person into a worker or a non-worker, it also acts as a filter that eliminates 

false positive results of the second step (non-people regions). 

3.1.2 Implementation 

The whole framework as a single package is implemented using Microsoft Visual C# in 

.NET Framework 4.0 environment. The size of the HOG template used for people 

detection is 64×128. In order to detect people smaller than the template size, the 

foreground regions are scaled up. The HOG feature is calculated on the basis of two 

spatial layers (cells and blocks). The first layer is comprised of a grid of cells (8×8 pixels) 

where a local HOG is obtained. The second layer is comprised of a grid of blocks. A 

block is a collection of 2×2 cells. Four local HOG’s of 2×2 cells in a block are 

aggregated and normalized together. The normalization allows for invariance to 

illumination changes. The histogram is constructed based on the angle and magnitude of 

gradients. It consists of 9 bins which represent evenly distributed angles ranging from 0 

to 180 degrees. A gradient magnitude at each pixel is added to the corresponding bin 

which the angle falls into. A sequence of HOG features that are spatially distributed in a 

grid manner structures a final descriptor of the input image.  

 The k-NN classifiers associated with color histograms are trained with images of 

upper half bodies wearing both hard hats and safety vests. A majority vote of ‘k’ nearest 

neighbors determines the classification. Parameter studies are performed to determine the 

optimal number of histogram bins as well as the optimal number of nearest neighbors (k). 

In all tests, 500 positive images (upper half body with safety gear), including yellow-

green, orange-red, and red safety vests, are collected for the training of color histograms.  
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3.1.3 Experiments and Results 

To validate the implemented method, the method is tested on ten high-definition (HD) 

videos taken with a HD camcorder (Canon VISXIA HF S100). However, the videos are 

resized to 768×432 for the sake of faster process. 5 frames per second are processed in 

near real time. The videos are taken of 4-5 people wearing different combinations of 

safety gear (hard hats and safety vests) to investigate the effect of the combinations on 

the detection results. Table 3.1 illustrates the combinations involved in three of the 

videos. All the videos have different backgrounds and various illumination conditions.  

 

Table 3.1: The combinations of safety gears 

Person 
Video 1 Video 2, 3 

Safety vest Hard hat Safety vest Hard hat 

1 X X X White 

2 X White X White 

3 N/A Orange-red X 

4 Yellow-green White Yellow-green White 

5 Orange-red Yellow Orange-red Yellow 

X: not wearing 

 

3.1.3.1 Metrics for Performance Evaluation 

Two metrics are chosen to measure the performance of the method. The metrics are 

selected from the perspective that the main purpose of the method is initializing a vision 

tracker. The first metric is precision which is popular in evaluating pattern recognition. 

To clarify the meaning of precision, several terms are defined as follows:  
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- TP (true positive): the number of correctly detected workers 

- FP (false positive): the number of the detections which is not relevant to a worker 

- FN (false negative): the number of missed workers (i.e. not detected) 

Precision is defined as a ratio of TP to TP+FP and measures the reliability of the 

detection. The second metric is the time delay of detection. It measures how instantly it 

detects a worker after the worker enters the scene or gets out of an occlusion case. It is 

worthwhile to note that the recall is not an appropriate measure of a method for vision 

tracker initialization. The recall is the ratio of TP to TP+FN. The proposed method is not 

designed to detect a worker in every frame, for which a tracker is responsible. For 

instance, a method that detects a worker on every other frame resulting in just 50% recall 

(low recall) could perform well enough to initialize a tracker as long as it detects no other 

type than a worker (high precision).  

3.1.3.2 The Definition of ‘Construction Worker’ 

Although recall is not an appropriate metric overall, it is calculated for the analysis of the 

effect of safety gear combinations. Since the method is devised to detect workers that 

appear in the view, occluded workers are not the target of the method, hence are not 

counted as positive objects. Table 3.2 summarizes the recall of five people wearing 

different combinations of safety gear as shown in Table 3.1. There is clear distinction 

between recall values of Persons 1-2 and Persons 3-5. Person 1 and 2 who did not wear 

safety vests are barely detected. Person 3 who only wore a safety vest is detected far 

more frequently than Persons 1-2, and its detection rate is comparable to Persons 4-5’s. It 

can be inferred from this fact that the safety vest has a more decisive effect on color 

histograms than the hard hat. As ANSI (2010) stipulates, safety vests have a more limited 
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number of colors, which contributes to the effective detection. According to these 

observations, a ‘construction worker’ is defined in this research as a person wearing at 

least a safety vest. Hence, Persons 3, 4 and 5 are defined as construction worker in the 

following experiments. Since the proposed method first detects people (the second step) 

and then sort out construction workers (the third step), it can eventually detect both 

workers and non-workers and classify them by comparing the results of the second step 

and the third step of the framework in Figure 3.1. Figure 3.10 exhibits two result frames 

from each video. Whereas the left images contain only correct detections, the right ones 

contain false results as well. Persons 4 and 3 are classified as non-worker in Video 1 and 

3, respectively (FN). Person 2 is classified as construction worker in Videos 2 (FP). The 

third step which plays a core role in classifying construction worker and non-worker 

takes only 14 ms in average for each frame which is about 9 % of the total processing 

time. This classification will be useful to warn people who are not wearing safety vests 

on a construction site for safety issues.  

 

Table 3.2: The detection rate (recall) of 5 people 

Recall (%) Video 1 Video 2 Video 3 

Person 1 0.0 0.0 0.0 

Person 2 0.0 1.8 6.3 

Person 3 - 77.6 71.1 

Person 4 88.7 96.9 80.9 

Person 5 88.3 74.6 76.8 
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3.1.3.3 Results - Precision and Time Delay 

Precision is calculated according to the definition of ‘construction worker’, and time 

delay is also measured for all ten videos. It should be noted that several videos include 

both shade and light where abrupt changes in illumination occur as workers cross the 

border between them (e.g. Videos 2 and 3 in Figure 3.10). Figures 11-13 show the results 

of parameter studies on the number of bins in saturation and hue histograms, and the 

number of nearest neighbor (k). The number of bins in saturation histograms is 

Figure 3.10: Examples for correct detections (left) and false results (right) (Videos 1-3 
from top to bottom) 
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determined to be ‘8’ because of its highest precision and the delay less than 1 s (Figure 

3.11). ‘64’ is selected for hue histograms since it exhibits the minimal delay and 

comparable precision with other sizes (Figure 3.12). Accordingly, the total size of the 

color histogram is 72 (=64+8). Regarding the value of ‘k’ in the k-NN learning process, 

‘11’ is found the best (the least delay in Figure 3.13).  

 Using the selected parameters, four tests are conducted for each video through the 

training of color histograms with 550, 1100, 1650, and 2200 negative images. The results 

are summarized in Tables 3.3 and 3.4. Results of step 1 (background subtraction) and 

step 2 (people detection based on HOG) remain the same in all four tests. In Table 3.3, 

precision increases as more negative images are used. It indicates that the use of more 

negative images helps reduce FP’s. However, on the contrary, recall works inversely to 

the number of negative images, which means TP’s are also reduced by using more 

Figure 3.11: The performance variation of the method depending on the number of 
bins in a saturation histogram
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Figure 3.12: The performance variation of the method depending on the number of 
bins in a hue histogram 

Figure 3.13: The performance variation of the method depending on the ‘k’ value 
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negative images. Figure 3.14 shows examples of these effects. The first and second rows 

illustrate the removal of FP’s (non-person and Person 2) while the third row shows a 

missed TP (Person 5). Regarding precision results, the proposed method achieved the 

best performance when 2200 negative images are used in training the color histograms of 

upper half body. As explained in the previous chapter, time delays are considered to 

better reflect the performance of the initialization method. In total, 73 cases are observed 

in which a worker enters a view or gets free from occlusion. In Table 3.4, the use of 2200 

negative images results in a maximum of 0.67 s delay which is only 0.11 s longer than 

using 550 negative images. The maximum is calculated with a 95% confidence interval 

for the standard normal distribution. The 99.0 % precision and the 0.67 s delay signify the 

potential of the proposed method for initializing a vision tracker.  

5 3 4 2

1 
3 

42

5 14 2

Figure 3.14: Detection of construction workers using 1100 (left) and 2200 (right) 
negative images 
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 Additionally, since the proposed method is composed of three sequential steps, 

the performance of each step is further investigated. For this purpose, the critical cause of 

the missed workers (FN) is analyzed (Table 3.5). The FN cases are classified into the 

three steps which cause them. Overall, the third step is discovered as a main step that 

Table 3.3: The precision of detection results  

# of negative training images 550 1100 1650 2200 

Precision (%) 90.1 97.2 97.7 99.0 

Recall (%) 87.1 83.6 82.4 81.4 

     

Table 3.4: The delay of detection 

# of negative training images Frames Seconds 

550 

Average 1.5 0.30 

Standard Deviation 0.8 0.16 

Maximum 2.8 0.56 

1100 

Average 1.6 0.31 

Standard Deviation 1.0 0.20 

Maximum 3.2 0.64 

1650 

Average 1.6 0.33 

Standard Deviation 1.1 0.21 

Maximum 3.4 0.68 

2200 

Average 1.6 0.32 

Standard Deviation 1.1 0.21 

Maximum 3.4 0.67 
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filters out FN’s. In detail, it is also observed that Persons 3 and 5, who wear orange-red 

vests, are mainly discarded by the third step while Person 4, who wears a yellow-green 

vest and a white hard hat, is discarded in the second step. The former is attributed to the 

negative images of people with orange-red shirts. In fact, negative images of upper half 

body contain a considerable number of images with orange or red shirts which could be 

confused with orange-red safety vests. In addition, white is a dominant color of hard hats 

in the positive images which force to eliminate Person 3 (brown hair) and Person 5 

(yellow hard hat). On the contrary, it is inferred that the latter results from the similar 

background color to Person 4. Similar colors of background make it difficult to extract a 

human body shape.  

 

3.2 Construction Equipment Detection 

The method of construction equipment detection is similar to construction worker 

detection. It is also comprised of three sequential steps (Figure 3.15). The three steps 

exploit motion, shape, and color features, respectively. The first step is exactly same as in 

 
Table 3.5: The cause of missed detections  

 

 
Step 

Background 
Subtraction 

HOG shape 
detection 

Color histogram 
classification 

 

 
Person 3 9.2 % 26.5 % 64.3 % 

 

 
Person 4 0.9 % 72.7 % 26.4 % 

 

 Person 5 17.2 % 13.2 % 69.5 %  

 
Total 10.5 % 33.8 % 55.8 % 
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construction worker detection. It uses background subtraction to extract regions of 

moving objects. Cameras are fixed on construction sites so that they have static 

background scenes. The objects in motion (foreground blobs) are detected by comparing 

the current frame with the background scene. This step narrows candidate regions down 

to moving object regions.  

 The second step is to find the shape of construction equipment out of the 

candidate regions. As in construction worker detection, HOG features are used, and 

trained with SVM. However, different from construction worker detection, construction 

equipment detection requires several independent trainings for distinct views. For 

example, rear and side views of a wheel loader (Figure 3.16) should be trained 

independently because of the great difference in their appearances. In this research, four 

views (front, rear, left, and right) are trained independently. Therefore four separate 

models are created as equipment templates. Though training of more views such as rear-

right and rear-left can lead to higher recall, it is not considered in this research since it 

will cost more processing time. Also, the gaps between the four trained views can be 

Figure 3.15: The framework of construction equipment detection 
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effectively covered by the tracking process, which will be dealt with in Chapter 4. All 

four models are jointly used for searching every piece of construction equipment. 

 Potential chances of false detections are still remained in the motion- and shape-

based detection. For example, a moving object that exhibits a similar shape of 

construction equipment can be detected through the first and second steps. The third step 

filters out these false detections based on eigen-images which contain both shape and 

color information. When exploiting color features, it is important to select color 

components that can best characterize colors of construction equipment. Even though 

construction equipment is generally yellow, there are other colors of equipment such as 

red and green. Also, RGB (red, green, and blue) values and gray-scale intensity vary 

depending on illumination conditions. Therefore, instead of RGB or gray-scale intensity, 

the proposed method employs the HSV (hue, saturation, and value) color space. Among 

the three components, it uses saturation which measures the purity of the color since most 

equipment has relatively pure colors. PCA reduces the dimension of eigen-images by 

removing the components corresponding to smaller eigenvalues. Similar to the second 

step, eigen-images are trained separately for each view of equipment. Training is 

Figure 3.16: (a) Rear (b) and left views of a wheel loader: 4 principal components of 
eigen-images (right upper), and the reconstructed image (right lower) 

  
 

                    (a)                                                               (b)  
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achieved through SVM. Figure 3.16 illustrates eigen-images for rear and left views of 

wheel loader. Figure 3.16 also shows the images reconstructed with 30 principal 

components of eigen-images. It should be noted that only lower half part (red) is used for 

side views because backgrounds (yellow) accounts for a substantial portion of the upper 

half (Figure 3.16).  

3.3 Summary 

The major hindrance to the use of general vision tracking is the lack of detection methods 

that are needed to automatically initiate the tracking. Even though several methods of 

detecting construction entities were proposed, no approach has been made to differentiate 

construction workers from pedestrians. Also, a robust method against illumination 

changes is missing. This chapter presented methods for automating the detection of 

construction workers, equipment, and vehicles in the video frames. The methods to detect 

construction workers or equipment exploit three types of features – motion, shape, and 

color. The background subtraction and HOG shape features trained with SVM are 

commonly used in both methods as motion and shape features, respectively. While the 

method for workers uses color histograms as a color feature, the one for equipment uses 

eigen-images which contain a certain extent of color and shape information.  

 Out of the three methods, the worker detection method has been tested on various 

illumination conditions and backgrounds. The proposed method is preliminarily tested for 

detecting five people wearing different combinations of safety gear. Based on the 

preliminary tests, ‘construction worker’ is defined as a person wearing a safety vest. 

According to the definition of ‘construction worker’, the experiments resulted in 99.0 % 
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precision and 0.67 second time lapse, which signifies that the proposed method can 

effectively initialize the tracking of construction workers. 
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CHAPTER 4 

2D TRACKING OF CONSTRUCTION ENTITIES 

 

Once interested objects are detected, the detected regions are fed to a 2D tracking 

algorithm so that they are tracked in the subsequent frames. As discussed in Chapter 3, 

detection methods provide independent results for each frame, relying on common 

features of an object type. On the contrary, tracking methods determines the location of 

each object in the current frame, making use of motion and visual patterns of the object 

that recognized in previous frames. This chapter deals with a comparative study of the 

existing 2D tracking methods to find the most appropriate one for tracking construction 

entities, and proposes a way of integrating detection and tracking methods to achieve 

more stable and reliable 2D localization processes.  

4.1 Comparison of 2D Vision Tracking Methods for Tracking of Construction 

Entities  

A comparative study of 2D vision tracking methods are performed for the purpose of 

identifying, in a scientific manner, the most effective tracker for construction resource 

tracking. To accomplish this objective, state-of-the-art trackers are classified into 

contour-based, template-based and point-based methods, as discussed in Chapter 2.4 and 

the performance of the three categories are compared. The domain specific challenges 

that might affect the tracking performance in construction sites are identified and used as 

test parameters for the comparison.  
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4.1.1 Independent Variables 

Construction sites have some unique characteristics such as large-scale, outdoor and 

congested environments, where illumination conditions change frequently and the entities 

are likely to overlap with each other in the camera view. These characteristics directly 

affect the quality and outcome of vision tracking because they change the appearance of 

objects in the view of the cameras. Therefore, to find the most suitable 2D tracking 

method, one needs to know how well each of these factors can be handled. To satisfy 

this, a list of independent variables that are based on these characteristics is proposed 

here to evaluate and compare the 2D vision tracking methods. The variables should 

represent the general qualities common to the methods in the same category for the sake 

of the reasonable comparison of categories. These variables are based on the ability of the 

tracker to handle: 1) absolute value of illumination, 2) illumination variations, 3) 

occlusions, 4) scale variations, and also 5) various types of objects. One additional factor 

is the required cost. In terms of the equipment cost, there is no difference among the 

categories. The cameras, computers, and cables are the hardware required for every 

vision tracking method. The processing time is the factor where the difference exists 

among methods. However, it is not considered in the comparision because even the 

methods of the same category differ in processing time. Also, the processing time is 

dependent on the extent of the code optimization which is hard to explicitly quantify. 

Furthermore, because of the continuous advances of computer hardware capabilities, the 

difference of processing time may become slighter.  

 The absolute value of illumination is related to lighting conditions. When it gets 

extremely dark or bright, the information of objects’ appearances that we can get from 
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videos is likely to be reduced. Accordingly, tracking might become more difficult. 

Working hours at construction sites can start from very early hours in the morning when 

it is still dark and go until very late hours of the day. Also, construction site locations 

vary geographically from very illuminated sites in deserts to light reflecting sites near 

oceans.   

 Also, illumination variations are important factor to consider. Illumination 

variations are related to changes that occur in lighting conditions. Illumination variations 

are common at open, large-scale and congested construction sites, where shadows and 

light reflections (from other equipment or adjacent buildings) are present. Such variations 

can affect tracking results because they can significantly alter the appearance of objects 

in the view of the cameras.    

 Occlusion refers to the state when an object is partially or fully blocked by itself 

or another object. In construction sites, there is constant movement of equipment, 

materials and personnel. As a result, it is extremely important to select a method that can 

continue to track objects even in the presence of occlusions. Self-occlusion is a common 

problem of contour-based methods especially when tracking non-rigid objects. It should 

be noted that one way to handle and control occlusions is by picking the right position to 

install cameras. By installing the cameras in higher levels, it is possible to minimize 

occlusion of objects. Also, the more cameras are employed in the sites, the easier it is to 

handle occlusion. 

 Scale variation indicates changes in the objects’ size in the video images. The 

tracking model should be able to represent the objects regardless of their size. Since 

construction sites generally occupy an extensive area, project related objects are likely to 
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appear in different sizes as they move away from, or towards, the camera. The objects 

could occupy a large region of the image or only cover small number of pixels, 

depending on the distance from the camera. Therefore, it is important to select a method 

that can track small objects and also be able to handle changes in scale.   

 There are various kinds of objects in construction sites, which have different 

characteristics from each other. They have different appearances (colors and shapes) and 

different ways of movement (speeds and directions). In addition, the extent of 

deformation is another factor in relation to this metric. Rigid objects (e.g. wheel loaders, 

backhoes, steel beams) do not make severe changes in their poses. Therefore, their 

appearances are adequately predictable. The equipment with articulated movable parts 

can also be reliably tracked based on the rigid part (e.g. tracking a backhoe’s body part). 

On the other hand, non-rigid objects (e.g. workers) change their poses dynamically. This 

makes their appearances in the subsequent frames unpredictable. 

4.1.2 Dependent Variables 

To evaluate the performance of tracking methods, the number of frames that are 

successfully tracked and the accuracy of centroid coordinates are used. The accuracy is 

measured by the errors determined as the Euclidean distance between the centroid of the 

tracked region and the ground-truth centroid (Figure 4.1). Accordingly, the unit of the 

error is a distance in pixels. The ground-truth is determined as the centroid of the 

rectangle that encloses the entity in each video frame and is found manually. The tracked 

region for the point-based method is determined as the smallest rectangle that encloses all 

points of the active shape model. The errors are obtained only with the successfully 

tracked frames and the average of the errors is finally calculated. This measurement is 
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valid for the evaluation since the purpose of this comparison is to find the appropriate 

methods for 3D vision tracking which requires corresponding centroid points from two 

different camera views.  

4.1.3 Discussion on Contour-Based Methods 

The main comparison experiments in Chapter 4.1.4 exclude the contour-based methods 

for the following three reasons. First, the main advantage of contour-based trackers is that 

they can detect the exact contour, which is useful in applications where exact posture of 

the target is needed. However, as mentioned in the previous section, the desirable results 

we want from 2D tracking are constant centroid points of the objects, and the flexibility 

of the contours actually degrades the accuracy of the calculated centroids. Second, most  

project related objects in construction sites are rigid objects that do not deform heavily, 

and even workers are commonly tracked relying on the unique colors of their hard hats 

and vests, to differentiate them from pedestrians. Consequently, the merits of contour-

based methods cannot contribute to a 3D vision tracking framework for construction.  

Figure 4.1: The error for accuracy measurement (The blue/green rectangle and dot 
represent the tracked/actual (ground-truth) region and centroid respectively. The arrow 

represents the error.)  
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 Above all, preliminary tests show that template-based methods perform better 

than contour-based methods (Makhmalbaf et al. 2010). For comparison purposes, one 

template-based method is selected that uses the Bhattcharyya coefficient as similarity 

measure and the mean-shift algorithm to carry out the optimization based on a method 

presented by Comaniciu et al. (2003). Also, a variational framework is selected as a 

contour-based tracker, which combines a Bayesian model to develop their variational 

method (Rousan and Deriche 2002) and a knowledge-based segmentation algorithm 

(Haker et al. 2001). These methods are implemented and tests are performed using real-

site videos.  

 Some frames from preliminary tracking test results are shown in Figures 4.2, 4.3, 

and 4.4. In Figure 4.2, the worker (non-rigid object) is being tracked using the contour-

Figure 4.2: A worker tracked by a contour-based (upper row) method and a template-
based method (lower row)  
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based method. This worker is tracked for 10 frames until he is occluded by another 

worker and then the tracking failed. On the other hand, the result from the template-based 

method shows that this method can track the worker in the equivalent frame and even the 

subsequent frames. In Figure 4.3, a bulldozer that is moving away from the camera is 

being tracked. The results show that the contour-based method loses the target in frame 

2500 while the template-based tracker keeps tracking for another 6000 frames (until the 

object comes to the camera). Figure 4.4 shows the results of tracking of a backhoe’s 

bucket. Complete deformation of the bucket in the view of the camera can be observed in 

these images. The results reveal that the template-based method can track the bucket 

Figure 4.3: A roller tracked by a contour-based (upper row) method and a template-
based method (lower row) 
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for 723 frames while the contour-based lose the object in frame 101. The number of 

frames successfully tracked is taken into account as a performance measurement in this 

preliminary experiment, and the results are shown in Table 4.1. Based on the results, it is 

concluded that compared to template-based methods, contour-based methods are found 

weak to illumination variation, and are likely to lose the object which occupies a small 

area. Therefore, the contour-based methods are determined inappropriate for the purpose 

of 3D tracking of construction entities, and excluded from the experiments in the 

following chapter. 

Figure 4.4: A backhoe bucket tracked by a contour-based (upper row) method and a 
template-based method (lower row)  
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4.1.4 Experiments on Template-Based and Point-Based Methods 

The performance of the template-based and the point-based approaches is tested and 

evaluated based on the independent and dependent variables discussed in Chapters 4.1.1 

and 4.1.2. Since it is impractical to compare a large number of existing tracking methods, 

one state-of-the-art method for each category which is referred to heavily by other 

methods in the same category is chosen as the representative of the category. The 

template-based method that incrementally learns the object appearance model of eigen-

images (Ross et al. 2008), and a point-based method that uses the active shape model 

(Mathes and Piater 2006) are implemented. These two methods do not involve additional 

algorithms for the improvement of specific cases (e.g. occlusion), which may deviate the 

results from the general aspect of the category. Only the aspects related to the general 

characteristics of the category are investigated in the results. Tests are performed using 

two kinds of video sets - one with a highway construction site model of scale 1:87 (model 

videos) and the other taken at construction sites (site videos). The use of model videos 

Table 4.1: Number of frames successfully tracked  

Corresponding figures 
(object type) 

Independent 
variables 

Template-
based 

Contour-
based 

Figure 4.3  
(worker) 

Occlusion 115 102 

Figure 4.4 
(road roller) 

Object scale 8564 2500 

Figure 4.5 
(bucket of a backhoe) 

Illumination 
variation  

723 101 
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allows for sufficient data within a controlled environment. For example, to test the 

methods’ ability to handle occlusion, the other factors such as illumination and the 

objects’ size have to be kept constant, which is actually difficult to control with site 

videos. A two-tailed t-test is performed to compare, in a statistical way, the centroid error 

of the template-based method (Ek) and the point-based method (Ep). The p-values of (Ek- 

Ep) is calculated and presented together with the centroid errors and the number of 

successfully tracked frames.   

4.1.4.1 Absolute Value of Illumination 

In the tests of absolute illumination, six types of objects are used for model videos (brick, 

pipe, backhoe, car, crane, and truck) and five are used for site videos (concrete bucket, 

timber, dozer, wheel loader, and worker). There is no occlusion or severe changes in 

illumination/size of objects in all videos. For each video, five levels of illumination 

conditions are imposed by increasing or decreasing the intensity of the images. The 

default is made to have the average intensity of 128 (based on the 8 bits intensity images 

ranging 0-255). For two darker (brighter) levels, a constant intensity value (40% or 80% 

of 128) are added to (subtracted from) all pixels. The maximum and minimum values of 

the intensity are kept as 255 and 0, respectively. The loss of information occurs when the 

intensity value, which exceeds 255 or falls below 0 due to the addition or subtraction, 

becomes 255 or 0. Even though this artificial modification may not exactly replicate the 

phenomenon in real sites, it is possible to create the effect of illumination on the loss of 

information in the video frames. Also, consistent illumination conditions can be retained 

on all different videos. The video frames of the five illumination levels are shown in 

Figure 4.5, and the average error results of model videos and site videos are provided in 
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Tables 4.2 and 4.3, respectively. Another important measurement, the number of frames 

in which an object is successfully tracked, is also included in Table 4.3. Since both 

methods successfully track the object until the last frame of most model videos, the 

number of successfully tracked frames is not included in Table 4.2. Instead, the cases in 

which a method failed to track until the end of the video are indicated by the term 

‘Failed’ in Table 4.2.  

 

Table 4.2: The average errors (pixels) and p-values of  error difference for the tests on 
illumination conditions (model videos) 

Illum. level
Object 
(Total frame #) 

1 2 3 4 5 

Brick 
(182) 

Template-based 1.33 2.94 2.29 1.20 1.60 

Point-based 25.29 22.78 27.06 32.05 30.37 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 

Pipe 
(128) 

Template-based 2.27 1.87 2.03 2.03 1.86 

Point-based 44.80 42.46 43.16 42.65 38.85 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 

Backhoe 
(159) 

Template-based 2.33 3.10 1.83 1.83 2.36 

Point-based Failed 14.18 10.46 17.18 19.31 

p-value N/A 0.0000 0.0000 0.0000 0.0000 

Car 
(144) 

Template-based 2.59 2.15 1.31 1.90 1.72 

Point-based 6.05 5.00 4.43 5.27 7.07 

p-value 0.0002 0.0026 0.0000 0.0001 0.0037 

Crane 
(104) 

Template-based 2.28 1.41 1.55 1.88 1.62 

Point-based 5.26 4.41 4.55 4.49 3.93 

p-value 0.0063 0.0011 0.0028 0.0010 0.0080 

Truck 
(151) 

Template-based 3.99 6.77 3.17 3.26 2.33 

Point-based Failed 14.43 12.21 13.08 12.06 

p-value N/A 0.0005 0.0000 0.0000 0.0000 
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Table 4.3: The number of successfully tracked frames, the average errors (pixels), and 
p-values of error difference for the tests on illumination conditions (site videos) 

                               Illum. level 
Object 
(Total frame #) 

1 2 3 4 5 

Concrete 
Bucket 
(174) 

Template 
-based 

# of frames 174 174 174 174 174 

Avg. error 1.90 2.59 2.38 2.42 2.57 

Point-based Failed Failed Failed Failed Failed 

Timber 
(179) 

Template 
-based 

# of frames 86 88 179 179 179 

Avg. error 3.91 2.93 7.04 7.42 7.31 

Point-based Failed Failed Failed Failed Failed 

Dozer 
(277) 

Template 
-based 

# of frames 277 277 277 277 277 

Avg. error 14.56 15.95 16.40 16.60 17.64 

Point-
based 

# of frames 40 120 138 132 108 

Avg. error 19.08 26.53 13.12 25.21 25.19 

p-value for error diff. 0.5364 0.0203 0.3437 0.0516 0.0418 

Wheel 
loader 
(294) 

Template 
-based 

# of frames 18 294 294 294 294 

Avg. error 10.75 24.21 10.73 11.14 11.05 

Point-
based 

# of frames 53 200 212 186 190 

Avg. error 56.41 40.58 43.40 52.01 46.40 

p-value for error diff. 0.0007 0.0005 0.0000 0.0001 0.0000 

Worker 
(245) 

Template 
-based 

# of frames 140 140 140 140 140 

Avg. error 8.16 9.29 9.82 10.72 12.21 

Point-
based 

# of frames 108 122 122 116 84 

Avg. error 27.84 24.30 23.34 24.55 17.20 

p-value for error diff. 0.0002 0.0001 0.0007 0.0006 0.1830 

 
 

 

The template-based method successfully tracks objects over all frames of model videos 

while the point-based method fails to track a backhoe and a truck in the darkest condition. 

The failure is attributable to the dark colors of the backhoe and the truck. The point-based 
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method extracts an extremely reduced number of feature points under darker illumination 

conditions. On the other hand, the template-based method maintains enough information 

to differentiate the object regions. Both methods have more difficulties in tracking 

objects in the site videos because the site videos have a less controlled environment and 

the objects are more distant from the camera. The overall results show that the template-

based method outperforms the point-based method under the severely dark or bright 

condition (Figures 4.6 and 4.7).  

 The average errors in Tables 4.2 and 4.3 indicate the performance problem of the 

point-based method regardless of illumination conditions. The point-based method’s 

errors are larger than the template-based method’s in all cases. There are two primary 

reasons for this. First, depending on the spatial distribution of the detected feature points, 

the centroid of the tracked region in point-based method is prone to bias. In Figure 4.8(b), 

all feature points are extracted from the worker’s back resulting in the centroid point 

Figure 4.5: Five levels of illumination conditions (level 1 to 5 from the darkest to the 
brightest) 
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Figure 4.6: The results of tracking a worker under level 5 illumination condition ((b) 
the frame at which the point-based method lost the object, (a) the frame previous to 

(b), (c) and (d) the template-based method’s result corresponding to (a) and (b)) 

Figure 4.7: The results of tracking a dozer under level 1 illumination condition ((b) the 
frame at which the point-based method lost the object, (a) the frame previous to (b), 

(c) and (d) the template-based method’s result corresponding to (a) and (b)) 

(a)                           (b)                            (c)                           (d) 

(a)                            (b)                            (c)                            (d) 

Figure 4.8: (a) and (b) the point-based method’s results of the 10th and 50th frame, (c) 
and (d), the template-based method’s results of the 10th and 50th frame (tracking a 

worker) 

(a)                           (b)                            (c)                            (d) 
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being biased towards the upper half. Second, in the case of tracking bricks or pipes 

carried by vehicles, the point-based method detects the points in the region of the vehicle 

and finally tracks the vehicle and the pipe together recognizing them as one object 

(Figure 4.9). This phenomenon also biases the centroid. Another notable fact is that the 

point-based method is not able to track a concrete bucket or timbers at all. The plain 

surface of the concrete bucket does not contain sufficient features and the point-based 

method is attracted more by the cluttered background region (Figure 4.10). Also, due to 

the small number of feature points extracted from the timbers, a small amount of error in 

matching corresponding points can corrupt the tracking.  

 

Figure 4.10: (a) and (b), the point-based method’s results of the 2nd and 10th frame, (c) and 
(d), the template-based method’s results of the 2nd and 10th frame (tracking a concrete 

bucket) 

Figure 4.9: The point-based method’s results of the 1st and 6th frame (tracking a pipe model) 
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4.1.4.2 Illumination Variation 

In this section, six kinds of objects for model videos (brick, pipe, backhoe, car, crane, and 

truck) and three for site videos (dozer, wheel loader, and worker) are used. Illumination 

variations are imposed on the videos by artificially manipulating the intensity of the 

images. Across the frames, the intensities are changed using a function defined as I = I + 

128 × 0.6 × sin(2π×f×t), where I, f, and t are the intensity of a pixel, the frequency, and 

time in seconds, respectively. Three frequencies of 0.1 /s, 0.15 /s, and 0.2 /s are tested for 

the comparison. For each frequency, the gradient of the function (dI/dt) changes along the 

time, which creates diverse effects of illumination variation. Even though the 

illumination variation based on this equation may not exactly reflect the real sites’ 

conditions, diverse types of variations can be created with the controlled frequency value. 

Because it is inferred from the previous section that the trackers may fail when 80% of 

the intensity value 128 is subtracted (illumination level 1), 60% of the intensity value 128 

is selected as the height of the sine function. In this way, extremely dark or bright 

conditions are avoided in order to investigate only the effect of variations. The maximum 

and minimum values of the intensity are kept as 255 and 0, respectively. This 

modification generates controlled and consistent conditions for all videos. An example of 

the illumination variation that is artificially created is shown in Figure 4.11, and the 

resulting data are provided in Tables 4.4 and 4.5. The number of successfully tracked 

frames is not included in Table 4.4 since both methods successfully track the object until 

the last frame of all model videos.  

 It can be inferred from Table 3 and 4 that both methods are not heavily affected 

by the illumination variation itself. The numbers of frames that the template-based 
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method successfully tracked are the same for all frequencies and the errors do not display 

any specific tendency. The point-based method also does not show any tendency in either 

the errors or the numbers of tracked frames. It is found that the variation causes higher 

chances for the entity to have low contrast to the background, regardless of the frequency. 

The more influential factor is when the variation causes the entity to look similar to the 

background at the moment, rather than the frequency itself. Also, if it becomes dark or 

bright when the part that has relatively less features is facing the camera, the tracking is 

likely to be more unstable. In Table 4.5, the errors and the numbers of frames of the 

point-based methods exhibit wider ranges than those of the template-based method, 

which indicates the point-based method is more sensitive to this factor. In most cases, the 

statistical analysis results in p-values lower than 0.01 which signify the superiority of the 

template-based method over the point-based method.  

 

 

 

Figure 4.11: Illumination variation with 0.1 /s frequency imposed on the video of a car model 
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Table 4.4: The average errors (pixels), p-values of error difference for the tests on 
illumination conditions (model videos) 

Frequency   
Object 
(Total frame #) 

0.0 
(level 1) 

0.1 
(level 2) 

0.15 
(level 3) 

0.2 
(level 4) 

Brick 
(182) 

Template-based 2.29 2.78 2.25 2.66 

Point-based 27.06 29.00 40.36 30.88 

p-value 0.0000 0.0000 0.0000 0.0000 

Pipe 
(128) 

Template-based 2.03 1.81 1.28 0.77 

Point-based 43.16 40.83 37.56 34.68 

p-value 0.0000 0.0000 0.0000 0.0000 

Backhoe 
(159) 

Template-based 1.83 2.65 2.95 3.12 

Point-based 10.46 35.30 26.61 34.80 

p-value 0.0000 0.0000 0.0000 0.0000 

Car 
(144) 

Template-based 1.31 2.29 2.21 2.29 

Point-based 4.43 6.32 5.66 5.25 

p-value 0.0000 0.0030 0.0005 0.0000 

Crane 
(104) 

Template-based 1.55 1.92 1.48 1.99 

Point-based 4.55 4.13 3.55 4.06 

p-value 0.0028 0.0108 0.0004 0.0087 

Truck 
(151) 

Template-based 3.17 3.23 2.80 2.21 

Point-based 12.21 9.19 9.64 8.93 

p-value 0.0000 0.0000 0.0000 0.0000 
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Table 4.5: The number of successfully tracked frames, the average errors (pixels), and 
p-values of error difference for the tests on illumination variations (site videos) 

Frequency 
Object 
(Total frame #) 

0.0 
(level 1) 

0.1 
(level 2) 

0.15 
(level 3) 

0.2 
(level 4) 

Dozer 
(277) 

Templat
e-based 

# of frames 277 277 277 277 

Avg. error 6.86 7.30 7.55 7.77 

Point-
based 

# of frames 138 106 90 124 

Avg. error 13.12 14.79 15.77 19.76 

p-value 0.3437 0.0128 0.0004 0.0003 

Wheel 
loader 
(294) 

Templat
e-based 

# of frames 294 294 294 294 

Avg. error 11.18 10.45 11.40 9.09 

Point-
based 

# of frames 212 118 112 160 

Avg. error 43.40 43.18 34.07 42.56 

p-value 0.0000 0.0000 0.0002 0.0000 

Worker 
(245) 

Templat
e-based 

# of frames 140 140 140 140 

Avg. error 9.82 9.25 9.81 12.82 

Point-
based 

# of frames 122 196 220 104 

Avg. error 23.34 19.03 24.28 17.67 

p-value 0.0007 0.0014 0.0024 0.3894 

 
 
 

4.1.4.3 Occlusion 

For occlusion, six kinds of objects for model videos (brick, pipe, backhoe, car, crane, and 

truck) and one for site videos (dozer) are used. There are no severe changes in 

illumination and size of objects in all videos. For both model and site videos, occlusion is 

artificially created by drawing a black box at a fixed location on each video frame along 
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the object’s travel path. Four levels of occlusion (20%, 40%, 60%, and 80%) are 

established by incrementally increasing the size of the box. The percentage of occlusion 

is determined by the ratio of the occluded area of the entity to the total area of the entity. 

In this way, consistent controlled occlusions are imposed on all videos. The examples of 

the four different levels are shown in Figure 4.12.  The average error results of model 

videos and site videos are provided in Table 4.6. In the experiments for occlusion, it is 

important to compare whether or not a method lose the objects during the period of 

occlusion rather than the number of successfully tracked frames. Therefore, the number 

of successfully tracked frames is not included in Table 4.6, and the cases in which a 

method failed to track due to the occlusion are indicated by the term ‘Failed’.  

Brick, pipe and backhoe are disregarded for fair comparison in this section. When the 

pipes or bricks are occluded, the point-based method starts to extract the points from the 

vehicles that carry the pipes or bricks. That is, the point-based method tracks the vehicle 

and the pipes/bricks together as one entity relying on the points on the vehicle region 

which are not occluded. Also in the case of tracking the backhoe, although only the body 

part is selected to track in the first frame, the point-based method obtains the points on 

the arm and bucket regions by itself, and tracks relying on those points. Since the points 

also move in the same way, the method steadily transfers the interest of region from the 

Figure 4.12: The four levels of occlusion (20%, 40%, 60%, and 80% - from left to right) 



 76

body part (pipes or bricks) to the arm and bucket (vehicles) which are not occluded 

(Figure 4.13). Even though this phenomenon increases the error due to the centroid’s 

shift towards the region including the arm and bucket, it has a positive effect in that it 

avoids losing the entity completely.  

  

Table 4.6: The average errors (pixels) and p-values of error difference for the tests on 
occlusions 

Occlusion level 
Object 
(Total frame #) 

20% 40% 60% 80% 

Car 
(144) 

Template-based 1.72 Failed Failed Failed 

Point-based 4.90 12.06 6.31 11.74 

p-value 0.0000 N/A N/A N/A 

Crane 
(104) 

Template-based 1.60 1.87 1.88 4.01 

Point-based 4.29 5.11 6.58 7.15 

p-value 0.0001 0.0008 0.0282 0.0585 

Truck 
(151) 

Template-based 2.74 2.80 5.55 Failed 

Point-based 9.78 17.80 15.80 20.99 

p-value 0.0000 0.0000 0.0016 N/A 

Dozer 
(150) 

Template-based 8.81 8.86 Failed Failed 

Point-based 19.74 17.11 22.82 Failed 

Figure 4.13: The 1st fame (left) and the 35th frame (right) of the tracking a backhoe with the 
point-based method
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p-value 0.0000 0.0159 N/A N/A 

 In Table 4.6, it can be seen that the template-based method is more likely to fail in 

tracking under severe occlusion. The template-based method relies on the region of the 

object. Therefore, X % of occlusion provides X % reduced information of the object. On 

the contrary, since the point-based method relies on the points, it can conserve the 

amount of information by extracting the same number of points in the (100-X) % of the 

region. As long as the point-based method obtains the sufficient number of points from 

the object region, it could succeed in tracking.  

 However, in the cases that both methods successfully track the object, the 

template-based method shows much more accurate results than the point-based one. 

When occlusion occurrs, the template-based method tends to maintain the size of region, 

Figure 4.14: The 55th frame of tracking a 60% occluded truck model (the point-based 
method (upper left), the template-based method (upper right)), and the 46th frame of 
tracking a 40% occluded dozer in a real site (the point-based method (lower left) the 

template-based method (lower right)) 
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while the point-based method reduces the size of region to include only the region that is 

not occluded (Figure 4.14). 

4.1.4.4 Scale Variation 

For scale variation, six objects are used for model videos (brick, pipe, backhoe, car, 

crane, and truck) and three are used for site videos (dozer, roller, and worker). In the 

videos, the object sizes change monotonically as they move away from the camera or 

towards the camera. The model dataset contains videos that show 75% decrease in the 

objects’ scales, and the real-site dataset contains videos that show 81% decrease, 60% 

decrease and 37% increase of dozer, roller and worker, respectively. There are no 

occlusion and no severe changes in illumination. The results are provided in Tables 4.7 

and 4.8. The number of successfully tracked frames is not included in Table 4.7 since 

both methods successfully track the object until the last frame of all model videos. 

 For the model videos, both methods successfully track the objects until the end of 

the videos. As it is shown in the previous sections, the template-based method shows 

higher accuracy than the point-based method. The results of the site videos exhibit more 

evidently the stability of the template-based method. The point-based method succeeds in 

tracking a worker who is walking toward the camera and getting larger in the video 

(Figure 4.15). However, the point-based method fails to track a dozer and a roller until 

the end of the videos in which the objects are getting smaller. When the object gets 

smaller with cluttered backgrounds, the point-based method extracts the feature points 

from the background region which is object region in the previous frame (Figure 4.16). 

This phenomenon exerts a harmful influence on the estimation of the movement.  
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Figure 4.15: The results of tracking a worker with the point-based method (left 
column), the template-based method (right column) – the 1st, 42nd, and 84th (last) 

frames from top to bottom 

Figure 4.16: The results of tracking a dozer with the point-based method (left column), 
the template-based method (right column) – the 1st and 21st frames from top to 

bottom
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Table 4.7: The average errors (pixels) and p-values of error difference for the tests on 
scale variations  

Object 
(Total frame #) 

Brick 
(326) 

Pipe 
(256) 

Backhoe 
(503) 

Car 
(117) 

Crane 
(264) 

Truck 
(235) 

Template-based 0.97 0.91 2.76 1.85 2.49 2.49 

Point-based 8.57 3.78 14.46 2.41 4.52 8.66 

p-value 0.0000 0.0000 0.0000 0.1213 0.0018 0.0000 

 

 

Table 4.8: The number of successfully tracked frames, the average errors (pixels) 
and p-values of error difference for the tests on scale variations 

Object 
(total frame #) 

Dozer 
(266) 

Roller 
(160) 

Worker 
(163) 

Template-based 
# of frames 266 160 163 

Avg. error 12.88 5.70 2.77 

Point-based 
# of frames 20 92 163 

Avg. error 37.46 12.89 13.36 

p-value 0.0049 0.0005 0.0000 

 

 

4.1.4.5 Discussion 

For thorough comparison of the template-based and the point-based methods, the 

characteristics of construction sites that can interfere with the performance of the vision 

tracking methods are recognized in order to identify metrics. Comparison tests are set up 

in such a way to measure the performance of tracking in relation with construction site 

requirements. Based on the tests, a number of experiments under different conditions of 

construction sites are performed. The template-based method turns out to be more stable 

and insensitive to illumination conditions, illumination variations, and scale variations 
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than the point-based method. Table 4.9 summarizes the comparison results. The point-

based method shows its strength under occlusions. However, this strength is 

overshadowed by its inability to track the objects that do not have enough features on it. 

Overall, the template-based methods are determined as the most appropriate for tracking 

construction site resources.  

 

Table 4.9: Determination of the best category between template-based and point-based 
methods 

Variables 
Absolute 

illumination 
Illumination 

variation 
Occlusion Object scales 

# of successfully 
tracked frames 

Template-based Template-based Point-based Template-based 

Error of centroid Template-based Template-based Template-based Template-based 

 

 

4.2 Combination of Detection and Tracking  

Positioning of objects in a camera view is attainable through either object detection or 

object tracking. Object detection recognizes a certain type of objects (e.g. face and 

vehicle). For example, an algorithm of vehicle detection intends to recognize all vehicles 

in images. However, it does not provide the identification of each single vehicle. In other 

words, it cannot distinguish a vehicle from another. Also, the detection algorithms may 

fail to detect a positive object due to limitations on the training of all different views. On 

the contrary, object tracking finds a position of a unique object regardless of its object 

category, based on its previous location and appearance in video frames. Therefore, to 

initiate the tracking process, a prior position of an object has to be manually determined. 
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Accordingly, it is not feasible to achieve effective monitoring of construction sites by 

using either object detection or tracking because of their weaknesses such as false 

detections and manual initialization. However, their weaknesses can be complemented by 

each other’s strengths. From this perspective of view, hybrid methods that combine the 

function of detection and tracking algorithms are presented in this chapter.  

4.2.1 Methodology 

Tracking always start with object detection. The object to be tracked has to be identified 

and its region needs to be specified. The tracking algorithm is triggered by taking the 

region of each object. The detection process is run for every frame not only to recognize 

new entities but also to adjust and improve tracking performance. In other words, 

detection and tracking are executed simultaneously. The proposed method basically relies 

on detection results for location. For each frame, the location results of tracking and 

detection are matched based on the distance between them. The tracking result is used 

only when there is no detection result matching with it. When detection results of 

consecutive frames show drastic changes in the object size or appearance, they are 

regarded as false positives and replaced with the corresponding tracking result. This 

reciprocal strategy enhances the stability of the processes. Furthermore, if detection 

results are missing for a certain length of time, the method regards an object disappeared 

(e.g. total occlusion or leaving the view) and stops processing. The identification of 

occlusion and automated termination prevent 2D tracking algorithms from failing and 

flying away from the object. Whenever the object gets free from the occlusion and 

appears in the view, the detection process newly initiates it again. 
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 As described in Chapter 3.2 and 3.3, the detection method requires separate 

trainings of different views. Higher detection rate (recall) is achievable by increasing the 

number of views. However, it will demand considerably increased computational efforts. 

Even when taking a large number of views into account, it is hard to eradicate possibility 

of false detections due to illumination changes or signal noises. To resolve these 

problems, detection results are combined with tracking results. The combination allows 

higher detection rate with a smaller number of training views. Gaps between the trained 

views are filled with tracking results. In addition, tracking delivers identity of each object 

which is valuable when tracking multiple objects of the same type. Since separate 

templates of different views are used for detecting construction equipment, detection 

results can notify the changes of the view. Also, the detection process can alleviate 

instability of tracking algorithms caused by view changes (e.g. when equipment makes a 

turn).  

4.2.2 Experiments and Results 

The proposed method is implemented using Microsoft Visual C# in .NET Framework 4.0 

environment. The implemented method is tested on two videos recorded with a wheel 

loader which is executing the loading/unloading process. They contain 959 (Video 1) and 

773 (Video 2) frames, and they are resized to 800×600. The second video starts with a 

wheel loader’s entering the view and includes two occlusion cases. The number of 

training images and template sizes involved in the detection is presented in Table 4.10. 30 

principal eigen-images are used for each view. The detection algorithm is designed to 

maximize precision rather than recall, since low recall can be compensated by tracking 

results while low precision can cause tracking of false positive objects. 
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The experiment compares three methods: 1) detection-only, 2) tracking-only with manual 

initialization, and 3) detection combined with tracking (proposed method). Method 1 

detected the wheel loader from 468 and 187 frames in Video 1 and 2, respectively. These 

values are significantly increased to 955 and 697 by using the proposed method, which 

result in 99.6% and 90.1% recall. Above all, no false positive was made on both test 

videos, which leads to 100% precision. The 76 (=773-697) frames of Video 2, in which 

the method fails to extract locations, are associated with total occlusions or the wheel 

loader’s entering the view. Figure 4.17 shows examples of results which compare 

Methods 2 and 3 (the propose method). The 1st column of Figure 4.17 illustrates an 

occlusion case. The proposed method identified the disappearance of the wheel loader 

based on continuous absence of detection results, and the process stopped (no result in 

3rd image). The process resumed when it appeared again (4th image). When the wheel 

loader made a turn, the proposed method appropriately switched over to the rear view, 

while Method 2 tended to keep its rectangle region (the 2nd column of Figure 4.17).  

 

Table 4.10 The number of training images, and template sizes used for detection  

Views 

HOG Eigen-images 

# of training images Template 
size 

# of training images Template 
size Positive Negative Positive Negative 

Left & right 603 3000 144×96 603 4000 30×15* 

Front & rear 412 3000 88×104 412 4000 20×20 
*The template is constructed for lower half of the view 
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4.3 Summary 

2D vision tracking is the departure of this research. This research aims at automating 

initialization of 2D vision tracking and extracting 3D information by correlating multiple 

2D tracking results or through coordinate conversion. In other words, 3D vision tracking 

Figure 4.17: Results of the proposed method (red) and a tracking method (blue) under 
total occlusion (left column) and viewpoint change (right column) 
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that calculates the depth information of objects depends on the results of 2D vision 

tracking. Selecting the best 2D vision tracking method for construction applications faces 

some challenges. First, there are a large number of 2D vision tracking methods with 

different capabilities and specifications. In addition, construction sites have unique 

tracking requirements, which must be considered in order to select a 2D tracking method 

that performs optimally under restrictions of construction sites. A systematic approach to 

compare different categories of 2D vision tracking methods is presented to find the most 

appropriate choice for 3D vision tracking purposes. The 2D vision tracking methods are 

categorized as contour-based, template-based and point-based methods.  

 To compare the three categories in a scientific way, independent variables and 

dependent variables of experiments are determined. Characteristics of construction sites 

that can affect the tracking performance are recognized and determined as independent 

variables – absolute value of illumination, illumination variations, occlusions, scale 

variations, and various types of objects. Two dependent variables – centroid error and the 

number of successfully tracked frames – measure the performance of methods. Methods 

of the three categories are tested on two data sets – model videos and site vidoes. Based 

on the results of executed tests, it is concluded that template-based methods are the best 

for tracking construction entities.  

 Both detection and 2D tracking methods can be used for locating construction 

entities in a camera view. A detection method locate all objects of a specific category in 

an image while a tracking method locate a unique object based on its location in previous 

frames. The combination of the two method leads to automated and stable 2D 

localization. The main role of detection is to initialize the tracking algorithm by 
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determining regions of objects to be tracked. Besides, there are additional benefits 

tracking process can take from detection results. First, intrinsic instability of tracking 

algorithms can be alleviated. When a tracked object experiences a drastic appearance 

change due to noise, illumination conditions, and making turns, the tracking may fail and 

lose the object. In this case, if a detection result is found near the tracked region, it can 

adjust the region to the correct position. Second, occlusion can be recognized, which 

automatically terminate the tracking process.  

  

 



 

88 

CHAPTER 5 

CALCULATION OF 3D COORDINATES 

 

2D pixel coordinates of object location determined by detection (Chapter 3) and 2D 

tracking (Chapter 4) need to be further processed to obtain 3D spatial coordinates. To 

achieve this, stereo camera calibration and triangulation are the required for a stereo 

camera system which is used for construction entities in this research. This research 

considers only fixed camera systems, and thus camera calibration is processed only once 

after the cameras are set up.  

 This chapter presents the method of combining 2D tracking results with stereo 

view geometry for the sake of accurate 3D trajectories of far-located construction entities. 

It should be noted that this research is aiming strictly for accurate localization of 

construction entities from multiple construction cameras at long camera-to-object 

distances, not real-time processing. Each single step involved in this method should be 

optimized to characteristics of the fixed camera system and construction sites such as 

various types of construction entities, the long baseline, and the long distance from 

cameras to an entity which is inevitable at large-scale construction sites. 

5.1 Stereo Camera Calibration  

To obtain depth information, this research adopts stereo camera systems. Camera 

parameters have to be discovered to establish geometry of the camera system. The 

camera system in this method is composed of two cameras located several meters apart 

from each other. The system is described by epipolar geometry as shown in Figure 2.2. 

The geometry consists of two types of parameters – intrinsic and extrinsic parameters. 

Intrinsic parameters are related to the system of each single camera while extrinsic 
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parameters are related to the relationship between two cameras. The following chapters 

will present methods of intrinsic and extrinsic camera calibration. 

5.1.1 Intrinsic Calibration 

Intrinsic parameters determine the linear system of projecting 3D points on the image 

plane (P1 and P2 in Figure 2.2). Bouguet’s calibration toolbox (2004) is used to reveal the 

intrinsic parameters because of its accuracy, robust convergence, and convenience.  

Figure 5.1 shows several sample images of a checkerboard which are the input to the 

calibration toolbox. The image set should contain various angles of the checkerboard. For 

each input image, the toolbox also requires user input of information about the 

configuration of the checkerboard – the dimension and the number of the squares, the 

four extreme corners of the checkerboard pattern, and an initial guess of radial distortion. 

Then, all corner points of the squares are automatically extracted. Erroneous corner 

points can be refined by adjusting the initial guess of radial distortion. Using the user 

input, the toolbox calculates the focal length, the principal point, the skew coefficient, 

and the distortion coefficients. The toolbox provides an error analysis function through 

which corner points associated with large errors can be easily found and fixed.  

Figure 5.1: The example frames of a checkerboard video 



 90 

5.1.2 Extrinsic Calibration 

Once the linear systems of two cameras are revealed, the relation between the two 

cameras has to be estimated. In the stereo camera system, the focal point of the left 

camera becomes an origin of the coordinate. Extrinsic parameters represent the relative 

pose of the right camera to the left one (the rotation matrix R and the translation vector T 

in Figure 2.2). The estimation of R and T involves point matching between two views. 

Two combinations of algorithms are considered in this research. One is using SURF 

(Speeded Up Robust Features) (Bay 2008) and RANSAC (RANdom SAmple Consensus) 

(Hartley and Zisserman 2004) for the feature descriptor and outlier removal, respectively. 

This combination proved to be fast and accurate enough for point cloud generation of 

infrastructure (Fathi and Brilakis 2011). The other is using SIFT (Scale-Invariant Feature 

Transform) (Lowe 2004) and MAPSAC (MAximum a Posteriori SAmple Consensus) 

(Torr 2002), which is slower, but capable of acquiring more matches than the former 

combination. Even though the use of SIFT is slower than SURF, it is worth to consider 

this combination in our application because of the following reasons. First, cameras are 

fixed in our application, which requires the camera pose estimation only once at the 

initial stage of the framework. Therefore, the longer processing time of using SIFT can be 

ignored. Second, as a longer baseline line (distance between two cameras) is used, fewer 

point matches are obtained due to higher disparity between two camera views. In this 

case, SIFT and MAPSAC can be helpful to feed more inlier matches and less outlier 

matches to the next step.  

 The normalized 8-point algorithm (Hartley 1997) is selected to estimate the 

essential matrix based on intrinsic parameters and point matches. The selected method is 

the most widely used because of its simple implementation and reasonably accurate 

results. Although this method is less computational efficient and more sensitive to 

degeneracy problems compared to other methods (Nistér 2004, Li and Hartley 2006), it is 

still efficient and accurate enough to satisfy our needs with regard to fixed camera 
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positions, a long baseline, and the complexity of construction sites. Finally, extrinsic 

parameters (R and T) are recovered directly from the essential matrix (Hartley and 

Zisserman 2004). These parameters together with the intrinsic parameters are used for 

triangulating 2D tracking results.  

5.2 Triangulation  

The results obtained in two previous sections (epipolar geometry and two centroids) are 

fed into the triangulation step. Generally, the projections of two centroid coordinates 

determined from two views do not intersect each other due to camera lens distortions and 

errors caused by 2D tracking. Even if the 2D tracker correctly locates the entity on each 

frame, the disparity between two camera views causes mismatch of the centroids. In 

order to enhance the accuracy of the triangulation process, the two centroids had to be re-

located so that their projections intersect (see Figure 2.2). For this purpose, Hartley and 

Sturm’s algorithm (Hartley and Sturm 1997) is selected since the accuracy is more 

critical than the processing time in our application. Intersecting projections of the 

modified pair of centroids for each frame leads to the 3D coordinate of the tracked entity.  

5.3 Summary  

The calculation of 3D coordinates from 2D tracking results is covered in this chapter. For 

construction applications, two cameras are employed to obtain 3D spatial information by 

correlating two of 2D tracking results - one from each camera. Cameras calibration 

revealed intrinsic parameters of cameras by processing video frames of a checkerboard. 

The extrinsic parameters of two cameras were estimated through point matching between 

two views. The extrinsic calibration uses SIFT or SURF for feature point extraction, and 

RANSAC or MAPSAX for outlier removal. The discovered intrinsic and extrinsic 

camera parameters establish epipolar geometry. For every frame, two of 2D pixel 
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coordinates of an object, which are provided by a 2D tracking method applied to both 

cameras, are triangulated based on the constructed epipolar geometry, and 3D coordinates 

are calculated.  
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CHAPTER 6 

VALIDATION 

 

This chapter validates the results of the two frameworks (Figures 1.2 detailed in Chapters 

3 through 5) through experiments and statistical analysis. The first framework of tracking 

construction entities are tested on site videos taken with a stereo camera system. Its 

performance is evaluated based on the accuracy of 3D location.  

6.1 Experimental Design  

The data for validation of 3D tracking are collected from a construction site at the 

Georgia Institute of Technology. This site is the construction of an indoor football 

practice facility managed by Barton Malow Company. The roof and columns of the steel-

framed facility were already completed when the data were collected. The videos were 

taken with two HD camcorders (Canon VISXIA HF S100, 30 fps, 1920×1080 pixels) 

located about 4.5m above the ground on one side of the facility structure, where the 

ground area of the facility structure could be overlooked. Two lengths of the baseline 

(distance between two cameras) were tested – 3.8 m and 8.3 m. A total station (Sokkia 

SET 230RK3) was used to acquire comparable results of the entities’ trajectories which 

are used to measure the accuracy of video-derived results.  

 Figures 6.1 shows total station data of the positions of the total station, the 

cameras, and pre-defined trajectories. The figure is a top view of the site layout in a total 

station coordinate system. In the total station coordinate system, x-axis, y-axis, and z-axis 

are along the horizontal, vertical, and depth directions, respectively. In Figure 6.1, the 

postions of right camera 1 and 2 are corresponding to the short and the long baseline 

system. Figure 6.2 shows the entities’ trajectories from the views of the left camera and 

the right camera 2. In Figure 6.1 and 6.2, Trajectories 1 and 2 are composed of 10 and 8 
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segments of straight lines, containing 11 and 9 nodes, respectively.  Trajectory 3 is a 

straight line. Trajectories 1, 2, and 3 are located approximately at a 39 m, 43 m, and 36 m 

distant from the left camera, respectively. The end points of all segments, i.e. 11, 9, and 2 

nodes for Trajectories 1, 2, and 3 (●, *, and ■ in Figure 6.1), were pre-defined and clearly 

marked on the ground of the site. The position data of the nodes were acquired with the 

total station. At each node, a target mark of the total station was mounted on a tripod at 

approximate heights of the entities’ centroids. Ground-truth trajectory data to be 

compared with vision tracking results are obtained by connecting the acquired position 

data of nodes with straight lines. The proposed methodology is tested on three types of 

entities (a worker, a steel plate carried by a worker, and a sport utility vehicle (SUV)). 

Trajectories 1 and 2 are those of a worker and a steel plate, and the trajectory 3 is of an 

Figure 6.1: The layout of tests from a top view 
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SUV. The entities followed the marks on the ground (nodes of Trajectories 1, 2, and 3), 

moving straightly from node to node.  

 The accuracy of vision tracking is quantified by an absolute error that is defined 

as the distance between the tracked point and a line segment of ground-truth trajectory. 

For each frame j, the distance Dj is calculated by the following equation.  

 

   |(       )  (     )|  |(       )| 

                                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅      (       ) 

 

Figure 6.2: Trajectories 1 and 2 from right camera 1’s view (top) and trajectory 3 from 

right camera 2’s view (bottom) 

 
Trajectory 1 

Trajectory 2 

Trajectory 3 
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where Qi and Qi+1 are end points of the i-th line segment Li of ground-truth trajectories, 

on which the object in frame j lies. Pj is the j-th frame’s tracking results, i.e. 3D points. 

Figure 6.3 illustrates the error calculation. The graph on the left of Figure 6.3 is an 

example of tracking results. As shown on the right of the figure, D408, the error of the 

408th tracked point, is determined as the length of the projection of P408 onto the line L5.  

 The main causes of error considered in this research can be classified into the 2D 

tracking error (Chapter 4) and the error of camera pose estimataion (Chapter 5.1.2). Also, 

the assumption that an entity moves exactly along the straight line is another 

miscellaneous cause of error.  

6.2 Implementation 

For the purpose of camera calibration, a video of a moving checkerboard (7 by 9 of 

65mm×65mm squares) is recorded by each camera (Figure 5.1). 26 frames are selected 

appropriately to have various angles of view, and are fed into Bouguet’s calibration 

toolbox (Bouguet 2004). Once the checkerboard videos are taken and the cameras are 

calibrated, all camera system settings are remained the same through experiments. All 

functions that may automatically cause a change in the camera intrinsic parameters, such 
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as autofocus and automated image stabilization, are disabled. Out of all video frames, a 

pair of corresponding frames of left and right cameras is used to obtain a large number of 

point matches. The point matches and calculated intrinsic parameters are used to estimate 

camera poses. Because the positions of the cameras are fixed in the proposed method, all 

calibration procedures are required only once as a pre-process. 

 For each calibrated camera view, construction entity is recognized and tracked 

across subsequent frames. While a worker and an SUV are detected by the proposed 

methods in Chapter 3.1 and 3.3, respectively, a steel plate is manually marked. Given the 

results of the comparative study (Chapter 4.1), a template-based 2D tracker based on 

Ross et al.’s method (2008) is used. The eigen-image is constructed selectively with gray 

scale values or saturation values depending on the tracked entity’s color characteristics to 

enhance the accuracy. Also, in the particle filtering process, the position translation 

(delta-x and delta-y between consecutive frames) is considered instead of the entity 

location (x and y coordinates). This estimation strategy is beneficial to correctly locate the 

entity with fewer samples in particle filtering. The centroid coordinates are updated every 

frame by accumulating the estimated translation vector. 

6.3 Experiments and Results 

Experimental results of tracking a steel plate, a worker, and an SUV are presented in the 

following subsections.  

6.3.1 Point Matching between Two Views 

As described in Chapter 5.1.2, two point matching methods are tested – 1) SURF 

(Speeded Up Robust Features) with RANSAC (RANdom SAmple Consensus) and 2) 

SIFT (Scale-Invariant Feature Transform) with MAPSAC (MAximum a Posteriori 

SAmple Consensus). SURF is tested with two threshold values of distance ratio (DR), 0.8 

and 0.6. Distance ratio is the distance of the closest neighbor to that of the second closest 
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neighbor (Lowe 2004). Discarding feature points that have distance ratios higher than the 

threshold, is an effective way of reducing false positive matches. In the case of DR=0.8, 

more point matches are obtained than if DR=0.6, but they contain apparent outliers as 

shown in Figure 6.4.  In Figure 6.4, while most matching lines have similar slopes in left-

Figure 6.4: Point matches obtained by SURF+RANSAC (DR=0.8) 
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bottom direction (\), outliers direct in different way (/). The outliers have adverse effects 

on essential matrix estim ation, and the effect of outliers is reflected on the large error of 

tracking. On the other hand, in Figure 6.5 which shows point matching results of 

SIFT+MAPSAC, outliers are significantly reduced when compared to Figure 6.4. 

Figure 6.5: Point matches obtained by SIFT+MAPSAC (DR=0.6) 
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6.3.2 Tracking of a Steel Plate 

A 0.6-m by 0.3-m steel plate is chosen as the first entity to track. The plate is carried by a 

worker walking along Trajectories 1 and 2. Tracking tests were performed separately for 

Trajectories 1 and 2. The video contains 1430 frames in total (790 and 640 frames for 

Trajectory 1 and 2, respectively), which means the results have 1430 tracked 3D 

coordinates. In this experiment, right camera 1 (Figure 6.1) is set to have a 3.8 m 

baseline. The template model for the 2D tracker is composed of gray pixel values. The 

tracker accurately fits the steel plate with an affine-transformed rectangle in most frames. 

Therefore, it can be inferred that the errors in this experiment mostly come from 

triangulation including camera pose estimation.  

 Figure 6.6 shows 3D tracking results. In Figure 6.6, black solid lines represent the 

ground-truth trajectories which are obtained by connecting total station data of nodes 

with straight lines. The black lines are same as Trajectories 1 and 2 in Figure 6.1. The 

other colors of lines are vision tracking results with different point matching methods. 

When using SURF and RANSAC with DR = 0.8, the results are far away from the 

ground-truth trajectories. The results of using DR = 0.6, on the other hand, are closely 

fitting the ground-truths. From the results of Trajectory 2, it can be observed that 

SURF+RANSAC (green) is a little closer to the ground-truths than SIFT+MAPSAC.  

 These observations are quantiried by the errors in Table 6.1. For every tracked 

position, the error, Dj, is calculated, thus, 1430 error data are obtained. The average and 

the standard deviation (STD) of the errors are computed. Maximum errors are calculated 

based on the average and STD with 95% confidence level. In Table 6.1, the errors are 

calculated for tracking along Trajectories 1 and 2, and also the total of them. Even though 

SURF with DR = 0.6 generates fewer point matches (271) than others (568 and 423), the 

method reduces outliers significantly and performs even better than SIFT+MAPSAC 

(DR=0.6), which provide about twice as many point matches. Assuming the error follows 

a normal distribution, it is concluded that the tracking error is less than 0.429 m with 95% 
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confidence. It is worthwhile to note that errors of Trajectory 1 is larger than those of 

Trajectory 2 even though Trajectory 1 is closer to the camera. It is inferred that the error 

disparity is related to the fact that most point matches are obtained from the area which 

are further than Trajectory 2 from cameras. That is, the points are closer to Trajectory 2 

than Trajectory 1.  

 

Table 6.1: Errors of tracking a steel plate 

Method DR 

# of 

point 

matches 

Error (m) 

Total Trajectory 1 Trajectory 2 

Max Avg. STD Max Avg. STD Max Avg. STD 

SIFT+ 

MAPSAC 
0.6 568 0.603 0.252 0.179 0.690 0.314 0.192 0.422 0.177 0.125 

SURF+ 

RANSAC 

0.8 423 3.005 1.220 0.911 3.463 1.537 0.983 2.043 0.828 0.620 

0.6 271 0.429 0.180 0.127 0.489 0.222 0.136 0.305 0.127 0.091 

 

Figure 6.6: The tracking results of a steel plate 

Trajectory 1 

Trajectory 2 
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6.3.3 Tracking of an SUV  

The second experiment deals with the tracking of an SUV (2-m wide, 1.95-m high, and 

5.13-m long). The SUV moved along Trajectory 3 forward and backward. The video 

contains a total of 1034 frames. A long baseline (8.3 m) is tested in this experiment 

placing a camera at ‘right camera 2’ in Figure 6.1. Gray pixel values are used for 

templates of the 2D tracker. Figure 6.7 displays obtained trajectories with ground-truths. 

Similar to the first experiment, it is observed that outliers finally result in inaccurate 

depth estimation (SURF+RANSAC with DR=0.8). It is worth to notice that tracking 

results of moving forward and backward are different from each other even though they 

were on the same trajectory. This disparity is caused mostly by the 2D tracking results. 

Figure 6.8 shows 2D tracking results in the right camera view. In the figure, a slight 

difference between the results of forward and backward movement is observed. This 

difference corresponds to the centroid error described in Chapter 4.1.2. The 2D tracking 

provides inconsistent centroids, which are linked to 3D tracking error.  

 The error results are presented in Table 6.2. Compared to the results in Table 6.1, 

Figure 6.7: Tracking results of an SUV 

Trajectory 3 
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the number of point matches significantly reduced because the long baseline camera 

system is used. The small numbers of point matches are attributed to the greater 

difference between the left and right camera views. Different from the results of tracking 

a steel plate in the previous chapter (short baseline), SIFT+MAPSAC, which generated 

26% more matches than SURF+RANSAC, performed better in this case (long baseline). 

It is inferred that though SURF+RANSAC (DR = 0.6) also contains few outliers, 183 

point matches are not enough to accurately estimate extrinsic parameters. Assuming the 

error follows a normal distribution, it is concluded that the tracking error is less than 

0.658 m with 95% confidence.  

 

Table 6.2: Errors of tracking an SUV 

Method DR 
# of point 

matches 

Error - Trajectory 3 (m) 

Max. Avg. STD 

SIFT+MAPSAC 0.6 230 0.658 0.278 0.194 

SURF+RANSAC 
0.8 235 1.068 0.426 0.327 

0.6 183 0.750 0.289 0.235 

Figure 6.8: 2D tracking results in the right camera view 
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6.3.4 Tracking of a worker 

The third experiment is performed on a worker. The worker first walked along Trajectory 

1, and then Trajectory 2. The worker moved straightly between the node markings on the 

ground. Two lengths of baseline (3.8 m and 8.3 m) are tested. The videos with a short and 

a long baseline contain 1435 and 1368 frames, respectively. In the 2D tracking process, 

the region of a worker’s upper body, which can be well characterized by fluorescent 

colors of a hard hat and a safety vest, is tracked. Instead of gray pixel values, saturation 

values are used for composing the template model.  

 Figures 6.9 and 6.10 present the trajectory results of the short baseline system and 

the long baseline system, respectively. In both figures, it is observed that 

SIFT+MAPSAC (red) results are closer to the ground-truths than SURF+RANSAC 

(blue). More importantly, the results in Figure 6.10 (long baseline) show more stable and 

accurate tracking performance than the ones in Figure 6.9 (short baseline). The longer 

Figure 6.9: Tracking results of a worker with a short baseline 

Trajectory 1 

Trajectory 2 
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baseline forms a larger angle between two projections P1 and P2 in Figure 2.2, which 

results in higher accuracy. Table 6.3 summarizes tracking error results. As observed in 

Figures 6.9 and 6.10, SIFT+MAPSAC produces lower errors than SURF+RANSAC 

regardless of the baseline length. When a long baseline system is employed, 

SIFT+MAPSAC generates 215 point matches, which are 30% more than the matches 

generated from SURF+RANSAC. More accurate results are allowed by the larger 

number of point matches which leads to better estimation of the essential matrix (Chapter 

5.1.2). In addition, when using SIFT+MAPSAC, errors of a long baseline system are 

significantly approximately half of those of a short baseline. Assuming the error follows a 

normal distribution, it is concluded that the tracking error is less than 0.636 m with 95% 

confidence.  

 

 

Figure 6.10: Tracking results of a worker with a long baseline 

Trajectory 1 

Trajectory 2 
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 It is worth to compare the short baseline results with the results of steel plate 

tracking. When SIFT+MAPSAC is used, the maximum errors of worker tracking and 

steel plate tracking are 1.223m (Table 6.3) and 0.603 m (Table 6.2). Because both results 

are from short baseline systems and the numbers of point matches (584 and 568) are only 

0.2% different, it is inferred that the error difference is attributed to 2D tracking 

performance. 2D tracking errors can be divided into two elements. The first element is 

caused when the determined centroid in each view does not exactly match the real 

centroid, i.e. the total station target point. Tracking of a worker produces higher errors of 

the first element because the 2D tracker suffers severe variations of a worker’s 

appearance whenever a worker changes one’s direction. When compared with Figure 

6.11(a), Figure 6.11(b) shows more substantial changes in the distribution of pixel values 

inside a rectangle. The second element is caused when two centroids from left and right 

cameras do not correspond to each other (Figure 6.12). 2D Tracking of a worker results 

in higher errors in both elements, leading to twice higher errors of 3D tracking than 

tracking of a steel plate. 

 

Table 6.3: Errors of tracking a worker (DR=0.6) 

Method 

Base-

line 

length  

# of 

point 

matches 

Error (m) 

Total Trajectory 1 Trajectory 2 

Max. Avg. STD Max. Avg. STD Max. Avg. STD 

1
i
 

3.8 m 584 1.223 0.523 0.357 1.338 0.605 0.374 1.032 0.426 0.309 

8.3 m 215 0.636 0.258 0.193 0.730 0.317 0.211 0.462 0.187 0.140 

2
ii
 

3.8 m 503 1.656 0.714 0.481 1.827 0.841 0.503 1.354 0.562 0.404 

8.3 m 166 1.010 0.381 0.321 1.188 0.455 0.374 0.708 0.292 0.212 
i
Method 1: SIFT+MAPSAC 

ii
Method 2: SURF+RANSAC 
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6.4 Summary  

The first framework for tracking construction entities was evaluated based on the 

accuracy of determined 3D positions. The framework was implemented and tested on the 

videos recorded on a real construction site. A total station was used to acquire ground-

truth data which were compared with vision tracking results. The tests involved 3 types 

of entities (a steel plate, a worker, and an SUV). A template-based 2D tracker was 

employed, and different methods of point match extraction were experimented to reveal 

the effect of errors caused by correlating multiple views. SIFT+MAPSAC provided a 

(a)                          (b) 

Figure 6.12: 2D tracking results: the 693rd frame of (a) the left and (b) the right 

camera  

Figure 6.11: The appearance variations of (a) a steel plate and (b) a worker 

(a) (b) 
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larger number of point matches, which generally resulted in a good estimation of 

extrinsic parameters especially for long baselines. For tracking of a steel plate and an 

SUV, the maximum errors determined with 95% confidence were smaller than the 

entity’s width. Various appearances of a worker (front, side, and, rear views) brought 

about larger errors of 2D tracking than tracking of a steel plate. However, it results in at 

most 0.658 m error with 95% confidence using a long baseline. The results validated that 

the vision based 3D tracking approach can effectively provide accurate localization of 

construction site entities with distance ranging around 40-50 m.   
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CHAPTER 7 

CONCLUSION 

 

This chapter first reviews the motivation and objectives of this research. Then, the brief 

descriptions of the methods created in this research are outlined. The conclusions, 

recommendations, possibilities of future research that grow out of this research are finally 

presented.  

7.1 Review of Motivation and Objectives  

This research proposes a framework of 3D vision-based tracking that promises to 

determine the spatial location of construcion entities without installation of any sensors. 

The main objective of this research is to test feasibility of the framework that can resolve 

two problems of general 2D vision tracking – the lack of automated initialization and 

depth information. Under this objective, the research effort in this study is focused on 

four parts: 1) detection of project related entities for automated initialization of 2D 

tracking, 2) comparison of 2D tracking methods to find the most appropriate ones for 

tracking construction entities, 3) combination of detection and tracking, and 4) stereo 

camera calibration for correlating 2D tracking results. The framework is expected to 

provide spatiotemporal information of construction entities in a large-scale congested 

construction site, such as construction equipment and personnel with comparable 

accuracy. 

 Vision-based tracking tracks moving objects by making inference on their 

location on the basis of visual and motion patterns. Vision-based tracking uses only 

camera videos, and is capable of tracking multiple entities concurrently. Wireless 
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surveillance cameras have been gradually applied to the construction site as cameras with 

higher quality and lower costs are available: hence, it is obviously beneficial to employ 

vision-based technology. It can be directly applied to video streams collected from the 

cameras, costing no additional equipment.  

 Vision-based tracking is frree of tags or sensors. It can track multiple entities 

without attaching any tags or sensors to the entities as long as they are present in camera 

views. On the contrary, radio frequency technologies such as RFID (Radio Frequency 

Identification), UWB (Ultra Wide Band), and GPS (Global Positioning System), which 

have been applied for tracking construction entities, need to install a sensor to each entity 

to be tracked. Though the radio frequency technologies work excellent for a certain type 

of materials and equipment for various construction scenarios, the drawbacks of each 

technology such as short ranges or the need for installation of sensors impose limits on 

their application to construction sites where a large number of entities exist. Therefore, 

vision-based tracking can be a promising alternative to the radio frequency technologies.   

 This research can contribute to the construction industry by establishing a basis of 

automated vision-based tracking. The automated tracking can be used for effective 

monitoring of the construction sites and project progress. More broadly, this research can 

help advance the level of automation in construction which is one of the greatest 

challenges of engineering noted by National Academy of Engineering.  

7.2 Review of Methods  

This research considers only fixed cameras, and the proposed tracking frameworks for 

construction and transportation applications are composed of four steps - 1) detection of 
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construction workers and equipment, 2) 2D tracking of detected entities, 3) integration of 

tracking and detection results, and 4) stereo or single camera calibration. 

 Detection processes of construction workers and equipment comprised of three 

sequential steps. First, a background subtraction method is used to reduce ROI (Region of 

Interest) of the second step to foreground blobs which are moving object regions. The 

second step searches shapes of workers or equipment from foreground blobs using HOG 

(Histogram of Oriented Gradients) features. The detected regions of the second step are 

further filtered based on color information (color histogram or eigen-images).  

 There are a great number of 2D vision-based trackers proposed in literatures 

which can be directly applied to construction entities. However, little is known about 

which one is the best for construction applications. To address this, a comparative study 

was undertaken. The methods are classified into the contour-based, template-based, and 

point-based methods, and the classes are compared regarding the construction sites’ 

environments that can affect the tracking performance. Stability and accuracy are 

measured by the number of successfully tracked frames and the centroid error. 

Illumination conditions, the level of partial occlusions, and object scales are varied and 

controlled independently to investigate their effect on the tracking performance. 

 Proposed detection methods and the selected 2D tracking method are interated in 

such a way that detection initiates 2D tracking and increase the degree of stability of 2D 

tracking. Detection of construction equipment which involves four separate trainings for 

front, rear, left, and right, informs of view changes and adjusts 2D tracking results. Also, 

when no detection results are obtained around a tracking region for a certain amount of 
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time, the tracked object is considered to be occluded and the tracking process 

automatically terminates.  

 The combination of detection and tracking generates 2D pixel coordinates across 

frames. To obtain 3D coordinates, 2D coordinates from two views are correlated. First, 

cameras are calibrated to find their intrinsic parameters. Intrinsic parameters represent the 

linear system of projecting 3D points on the image plane. The second step is to estimate a 

relative pose (rotation and translation) of the calibrated cameras, which is called extrinsic 

parameters. Once the intrinsic and extrinsic parameters are known, 2D tracking results 

are triangulated based on the revealed parameters.  

7.3 Discussion and Conclusions  

All the methods proposed in this research study have been implemented in the Microsoft 

Visual Studio environment. Real videos of construction sites have been used to test these 

methods. The results from the methods are compared with ground-truth data retrieved 

manually or from other technologies to indicate the effectiveness of the methods. To 

validate the detection step, the proposed method of construction worker detection is 

tested. According to the results, the method can detect construction workers who wear 

safety vests with 99% precision within 1 s after they first appear in a camera view. The 

results indicate that the method can effectively initialize 2D tracking, which is the major 

role of the detection process.  

 According to the comparative study, template-based methods prove to be the best 

for tracking construction entities. Contour-based methods which have a merit of 

recognizing exact boundaries of objects do not fit to the role of 2D tracking in the 3D 

tracking framework. Experimental results show template-based methods are more stable 
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than the contour-based methods under partial occlusions and illumination changes. A 

thorough comparison of template-based methods and point-based methods shows the 

overall superiority of template-based methods over point-based methods. Point-based 

methods exhibit greater strength only in the stability under severe partial occlusions. 

Especially, the centroid errors of point-based methods are significantly larger than those 

of template-based methods for all different conditions in terms of illumination conditions, 

partial occlusions, and object scales.  

 The method of detecting construction equipment that uses four separate templates 

for different views is integrated with a selected template-based method. Tests of the 

integration show highly stable tracking results which are not achievable only with 2D 

tracking. In addition to the automated initialization, detection results are effectively used 

for adjusting and stabilizing 2D tracking results. It was also possible to automatically 

terminate the tracking process when the tracked object got occluded.  

 Finally, the 3D tracking framework is tested on real-site videos to validate the 

accuracy of 3D position data. The tests involve three types of entities: a steel plate, a 

worker, and an SUV (Sport Utility Vehicle). Various point matching methods and 

different baseline lengths are applied to identify their effects on accuracy. When the 

baseline is longer, higher accuracy is achievable since it reduces the error of triangulation. 

The experiments shows that the SIFT+MAPSAC method is more appropriate for the 

stereo camera system that has a long baseline since it generates more point matchings 

than SURF+RANSAC. The errors of 3D position are at maximum 0.658 m with 95% 

confidence. It validates the effectiveness, the accuracy and the applicability of the 

proposed vision based 3D tracking approach.  
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7.4 Contributions 

This research will contribute to civil engineering community by providing an unobtrusive 

tracking method that can determine 3D positions of various types of objects across time. 

This research is expected to enable to improve the efficiency of monitoring both 

construction sites and traffic conditions. Furthermore, this research is also a step forward 

towards developing vision-based, automated, construction site model generation tools. 

The contributions of this research in tracking for construction are listed as follows. 

1. This research automates the initialization of 2D tracking. Methods to detect 

construction entities (workers and equipment) are created, and used for initiating 

2D tracking processes. The methods can trigger the 2D tracking process 

immediately once a construction entity newly appears in the camera view.  

2. This research suggests the best methods to track on-site construction entities in 

2D. The results of the comparative study can be referred to for any purpose that 

involves tracking construction entities. In addition, the experimental setup 

(independent and dependent variables, and video datasets) in the study can be 

used for further comparison of 2D trackers which are or will be proposed more 

recently or in the future.  

3. This research investigates on extrinsic calibration methods for long baseline 

stereo camera systems. For monitoring large-scale construction sites, the baseline 

of stereo camera system should be long enough to improve the accuracy of 

triangulation. The experiments of this research provide findings on appropriate 

point matching algorithms that extract a sufficient number of point matches in 

long baseline systems.  
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7.5 Limitations and Recommendations for Future Work 

This research investigates vision-based tracking which provides 4D coordinates (3D 

spatial position and time) of construction entities in camera views using appropriate 

image processing and machine vision techniques. This chapter will deal with limitations 

of this research and future work to enhance the proposed framework and overcome the 

limitations.  

 As presented in Chapter 6, experimental tests of the prosposed framework result 

in approximately 0.7 m error in maximum with 95% confidence level. The experiments 

were performed in a controlled condition (single object and no occlusion), and the level 

of error can be increased in a more complicated condition. The enhancement of 2D 

tracking and triangulation can reduce the error level.  

 Parts of 3D tracking error stem from 2D tracking error. Consistent centroids and 

pinpoint matching between two centroids from different camer views are the main targets 

to minimize the 2D tracking error. Combination of a point-based method and a template-

baed method can be a promising way to achieve the targets. Also, an additional 

comparative study of new emerging 2D tracking algorithms will help find better 

algorithms and increase accuracy. Further categorization of template-based methods and 

their comparison based on the experimental design and dataset presented in this research 

will enable to find methods with better performance. Just by replacing the 2D tracking 

package with a new one, the accuracy and stability of 3D tracking can be enhanced.  

 The use of three or more cameras can improve the 3D tracking performance. First 

of all, chances of an object viewed in at least two cameras are increased. Also, the error 

of triangulation can be reduced. Furthermore, an investigation of optimal camera 
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positions can be an important study to improve the performance since the accuracy of 

triangulation is sensitive to the camera system. 

 Processing of the implemented framework is not real-time. Therefore, code 

optimization and employment of GPU (Graphics Processing Unit) are required to achieve 

real-time processing. Real-time processing will allow wider applications of vision 

tracking in construction project monitoring. For example, real-time information of on-site 

entities can be used to identify proximity of worker to heavy equipment or restricted 

zones.  

 Experiments in this research are limited yet to validate the possibility of practical 

monitoring applications. Experiments on more complicated scenes and scenarios are 

required to find and resolve problems of vision-based tracking implicated in tracking on-

site entities. Various parameters such as site scale, crowdness, object speed, and activity 

type, etc. can be considered in the experiment design. Furthermore, benchmarking studies 

of tracking technologies (vision-based tracking and radio frequency technologies) can 

provide suggestions on the best tracking technologies for each single combination of the 

parameters.  

 The ultimate future goal of extending this research is practical application of 3D 

vision tracking to real tasks of site monitoring. As discussed in Chapter 2.2, 2D vision 

tracking has been already applied to simple scenarios for productivity measurement 

(Gong and Caldas 2010) and safety management (Teizer and Vela 2009) with a limited 

level of automation. Extended 3D vision tracking methods will broaden applications of 

vision tracking, and contribute to the construction industry by automating the acquisition 

of important information from videos for more complex tasks of project monitoring. The 
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3D vision tracking can enhance quality of construction projects by providing an efficient 

site monitoring system which contractors can easily adopt and apply to their on-site 

construction camera systems.   
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APPENDIX A 

CODE FOR DETECTION 

 

This appendix presents the main part in the prototype code for detecting construction 

entities. It includes the background subtraction, color histograms and HOG. 

 

namespace ObjectTracking 
{ 
    public class Detector: IDisposable 
    { 
        private bool isTrained = false; 
        private List<Rectangle> detected; 
 
        private HOGDescriptor hog; 
        public Size winSize; 
        private Size winStride, cellSize; 
        private int nHOGbins; 
                 
        private double[] aspect; 
 
        private BlobCounter blobCounter; 
        private List<Rectangle> blobs = new List<Rectangle>(); 
         
        private bool _disposed = false; 
 
        public Detector()  
        { 
            detected = new List<Rectangle>(); 
     winSize = new Size(64, 128); 
         winStride = new Size(16, 16); 
         cellSize = new Size(8, 8); 
         nHOGbins = 9; 
             hog = new HOGDescriptor(winSize, new Size(16, 16), cellSize, cellSize,                        

                                             nHOGbins, 0, -1, 0.2, true); 
        } 
 
        public void FGBlobExtraction(List<Rectangle> entry, List<Image<Gray, byte>> fg,  
                                                          Option opt) 
        { 
            blobs.Clear(); 
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            for (int i = 0; i < entry.Count; i++) 
            { 
                blobCounter = new BlobCounter(fg[i].Bitmap); 
                Rectangle[] blobRect = blobCounter.GetObjectsRectangles(); 
 
                for (int j = 0; j < blobRect.Length; j++) 
                { 
                    if (blobRect[j].Width >= opt.th_Blobs && blobRect[j].Height >=  
                                                                                                                     opt.th_Blobs) 
                    { 
                        blobRect[j].Offset(entry[i].Location); 
                        blobs.Add(blobRect[j]); 
                    } 
                } 
            } 
 
            bool needToMerge = true; 
            while (needToMerge) 
            { 
                int count = blobs.Count; 
                needToMerge = false; 
                for (int i = 0; i < count; i++) 
                { 
                    for (int j = i + 1; j < count; j++) 
                    { 
                        if (blobs[i].Contains(blobs[j])) 
                        { 
                            blobs.RemoveAt(j); 
                            needToMerge = true; 
                            count = blobs.Count; 
                        } 
                        else if (blobs[j].Contains(blobs[i])) 
                        { 
                            blobs.RemoveAt(i); 
                            needToMerge = true; 
                            count = blobs.Count; 
                            break; 
                        } 
                        else if (blobs[i].IntersectsWith(blobs[j])) 
                        { 
                            int x = Math.Min(blobs[i].X, blobs[j].X); 
                            int y = Math.Min(blobs[i].Y, blobs[j].Y); 
                            int w = Math.Max(blobs[i].Right, blobs[j].Right) - x; 
                            int h = Math.Max(blobs[i].Bottom, blobs[j].Bottom) - y; 
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                            blobs.RemoveAt(j); 
                            blobs.RemoveAt(i); 
                            blobs.Insert(i, new Rectangle(x, y, w, h)); 
                            needToMerge = true; 
                            count = blobs.Count; 
                            i--; 
                            break; 
                        } 
                    } 
                } 
            } 
        } 
 
        public void TrainHOG() 
        { 
            hog.SetSVMDetector(GetHOGData()); 
            isTrained = true; 
        } 
 
        public float[] GetHOGData() 
        { 
            float[] sv; 
            String str_size = "(" + winSize.Width + "x" + winSize.Height + ")"; 
            System.IO.StreamWriter sw; 
            System.IO.StreamReader sr; 
 
            String[] files =   
                      System.IO.Directory.GetFiles(System.IO.Directory.GetCurrentDirectory(),  
                                                                        "sv" + str_size + ".txt"); 
            if (files.Length != 0) 
            { 
                sr = new System.IO.StreamReader(files[0]); 
                String[] str = sr.ReadToEnd().Split(new String[] { "\n" },  
                                                               System.StringSplitOptions.RemoveEmptyEntries); 
                sv = new float[str.Length]; 
                for (int i = 0; i < str.Length; i++) 
                {                     
                    sv[i] = float.Parse(str[i]); 
                } 
                sr.Close(); 
                return sv; 
            } 
 
            files = System.IO.Directory.GetFiles(System.IO.Directory.GetCurrentDirectory(),  
                       "model_HOG_reg" + str_size + ".txt"); 
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            if (files.Length == 0) 
            { 
                files = System.IO.Directory.GetFiles( 
                     System.IO.Directory.GetCurrentDirectory(), "trData_HOG"+str_size+".txt"); 
                if (files.Length == 0) 
                { 
                    String[] str_p = System.IO.Directory.GetFiles( 
                                             @"D:\\[Detection]\\ObjectType\\Positives" + str_size); 
                    String[] str_n = System.IO.Directory.GetFiles( 
                                             @"D:\\[Detection]\\ \ObjectType\\Negatives"); 
 
                    int lp = str_p.Length; 
                    int ln = Math.Min(lp * 3, str_n.Length); 
 
                    Image<Bgr, byte> images; 
 
                    int[] X = new int[lp + ln]; 
                    float[][] des = new float[lp + ln][]; 
 
                    ContinuousUniform distribution  = new ContinuousUniform(); 
 
                    distribution.RandNumGen = new Random.MersenneTwister(); 
                     
                    for (int i = 0; i < lp + ln; i++) 
                    { 
                        String str = (i < lp) ? str_p[i] : str_n[i - lp]; 
                        int ist = str.LastIndexOf('\\') + 1; 
                        int iend = str.LastIndexOf('.'); 
                        String newfile = str.Substring(ist, iend - ist); 
 
                        images = new Image<Bgr, byte>(str); 
 
                        if (i < lp) 
                        { 
                            des[i] = HOG.Compute(images, winStride, new Size(0, 0), null); 
                        } 
                        else 
                        { 
                             int wrange = images.Width - winSize.Width; 
                             int hrange = images.Height - winSize.Height; 
 
                             int x = (int)(distribution.Sample() * wrange); 
                             int y = (int)(distribution.Sample() * hrange); 
 
                             Rectangle rect = new Rectangle(x, y, winSize.Width,  winSize.Height); 
                             Image<Bgr, byte> randImg = images.Copy(rect); 
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                                des[i] = HOG.Compute(randImg, winStride, new Size(0, 0), null); 
                                randImg.Save("rand_" + newfile + ".png"); 
                        } 
 
                        X[i] = (i < lp) ? 1 : 0; 
                    } 
 
                    sw = new System.IO.StreamWriter("trData_HOG" + str_size + ".txt"); 
                    for (int i = 0; i < X.Length; i++) 
                    { 
                        if (des[i] != null) 
                        { 
                            String data = X[i].ToString() + " "; 
                            for (int j = 0; j < des[i].Length; j++) 
                            { 
                                data += (j + 1).ToString() + ":" + des[i][j].ToString() + " "; 
                            } 
                            sw.WriteLine(data); 
                        } 
                    } 
                    sw.Close(); 
                } 
 
                System.Diagnostics.ProcessStartInfo info  
                                  = new System.Diagnostics.ProcessStartInfo( 
                                             "svm_learn", "-z c –t 0 -a alpha.txt trData_HOG" +                 
                                             str_size + ".txt model_HOG_reg" + str_size + ".txt"); 
 
                info.RedirectStandardOutput = false; 
                info.UseShellExecute = false; 
                info.CreateNoWindow = false; 
                 
                try 
                { 
                    using (System.Diagnostics.Process proc =  
                                  System.Diagnostics.Process.Start(info)) 
                    { 
                        proc.WaitForExit(); 
                    } 
                } 
                catch 
                { 
                }                 
            } 
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            sr = new System.IO.StreamReader("model_HOG_reg" + str_size + ".txt"); 
 
            sr.ReadLine(); 
            sr.ReadLine(); 
            sr.ReadLine(); 
            sr.ReadLine(); 
            sr.ReadLine(); 
            sr.ReadLine(); 
            sr.ReadLine(); 
 
            String[] strs = sr.ReadLine().Split(new String[] { " " },  
                                                                    StringSplitOptions.RemoveEmptyEntries); 
            int hogSize = int.Parse(strs[0]); 
            sv = new float[hogSize + 1]; 
 
            sr.ReadLine(); 
            strs = sr.ReadLine().Split(new String[] { " " },  
                                                      StringSplitOptions.RemoveEmptyEntries); 
            int nVectors = int.Parse(strs[0]); 
            strs = sr.ReadLine().Split(new String[] { " " },  
                                                      StringSplitOptions.RemoveEmptyEntries); 
            sv[hogSize] = float.Parse(strs[0]); 
                         
            for (int i = 0; i < nVectors - 1; i++) 
            { 
                strs = sr.ReadLine().Split(new String[] { " " },  
                                                          StringSplitOptions.RemoveEmptyEntries); 
                float alpha_y = float.Parse(strs[0]); 
                for (int j = 0; j < hogSize; j++) 
                { 
                    float scalar = float.Parse(strs[j + 1].Substring(strs[j + 1].IndexOf(':') + 1)); 
                    sv[j] += alpha_y * scalar; 
                } 
            } 
            sr.Close(); 
 
            sw = new System.IO.StreamWriter("sv" + str_size + ".txt"); 
            for (int j = 0; j < hogSize + 1; j++) 
            { 
                sw.WriteLine(sv[j].ToString()); 
            } 
            sw.Close(); 
 
            return sv; 
        } 
 



 124

        public void WriteResults(Image<Bgr, byte> im, Option opt, long timestamp) 
        { 
            System.IO.StreamWriter sw = new System.IO.StreamWriter("Detection.txt", true,  
                                                                     System.Text.Encoding.UTF8); 
            for (int i = 0; i < detected.Count; i++) 
            { 
                im.Draw(detected[i], TemplateTracker.colorValue(opt.rect_color),  
                                opt.rect_thickness); 
                sw.WriteLine(timestamp.ToString() + " " + detected[i].X.ToString() + " " +  
                                        detected[i].Y.ToString() + " "  
                                         + detected[i].Width.ToString() + " "   
                                         + detected[i].Height.ToString()); 
            } 
            sw.Close();  
        } 
} 
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APPENDIX B 

CODE FOR 2D TRACKING 

 

This appendix presents the main part in the prototype code for 2D tracking of 

construction entities. It includes particle filtering (condensation), affine transformation, 

and eigen-image analysis, etc.  

  

namespace ObjectTracking 
{ 
    public partial class TemplateTracker : IDisposable 
    { 
        private String index; 
        private Parameter param;         
        private double cx, cy;         
        private Matrix<double> wimgs;  
 
        private Matrix<double> mean;     
        private Matrix<double> eigval;   
        private Matrix<double> basis;    
        private int numsample;          / 
                 
        private long cur;   
        private long start;   
        private int batch;   
        private bool _disposed = false; 
        private double maxVal; 
 
        private Matrix<double> corners; 
 
        private String eqType; 
        private String view; 
        private int[] votes; 
        public long SinceWhenNotDetected = 0; 
 
        public TemplateTracker(string id, String etype, String view) 
        { 
            cur = 0; 
            start = 0; 
            batch = 0; 
            numsample = 0; 
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            index = id; 
            cx = 0; 
            cy = 0;             
            corners = new Matrix<double>(2, 5); 
            eqType = etype; 
            this.view = view; 
            votes = new int[3]; 
        } 
 
        public void Initiate(Image<Bgr, byte> im, Matrix<double> initParam, Option opt,  
                                       long timestamp, bool isNew) 
        { 
            cx = initParam[0, 0]; 
            cy = initParam[1, 0]; 
 
            if (opt.x_or_dx == "dx/dy") 
            { 
                initParam[0, 0] = 0; 
                initParam[1, 0] = 0; 
            } 
             
            param = new Parameter(initParam, opt); 
            wimgs = new Matrix<double>(opt.tw * opt.th, opt.batchsize);             
             
            param.Est = affparam2mat(param.Est); 
             
            param.Wimg = warpimg(im, param.Est, cx, cy, param.TW, param.TH, param.C,  
                                                    opt); 
 
            Image<Gray, double> item = new Image<Gray, double>(param.TW, param.TH); 
            for (int i = 0; i < param.TW; i++) 
            { 
                for (int k = 0; k < param.TH; k++) 
                { 
                    item.Data[param.TH - k - 1, param.TW - i - 1, 0] = param.Wimg.Data[i *  
                                     param.TH + k, 0] * 256.0; 
                } 
            } 
            item.Save("wimg" + batch.ToString() + ".gif"); 
 
            mean = param.Wimg.Clone(); 
 
            double a = opt.tw / 2.0; 
            double b = opt.th / 2.0; 
 
            Matrix<double> _corners = new Matrix<double>( 
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                new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } }); 
 
            Matrix<double> M = new Matrix<double>(new double[2, 3] {  
                                            { cx, param.Est.Data[2, 0], param.Est.Data[3, 0] },  
                                            { cy, param.Est.Data[4, 0], param.Est.Data[5, 0] } }); 
 
            CvInvoke.cvGEMM(M.Ptr, _corners.Ptr, 1.0, IntPtr.Zero, 0.0, corners.Ptr,                      
                                           Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
 
            cur = timestamp; 
            if (isNew) start = timestamp; 
        } 
 
        public void Track(Image<Bgr, byte> im, Option opt, long timestamp) 
        { 
            if (opt.x_or_dx == "dx/dy") 
            { 
                if (cur == start) 
                { 
                    opt.affsig[0] *= (10.0 * opt.n_th); 
                    opt.affsig[1] *= (10.0 * opt.n_th); 
                } 
            } 
             
            maxVal = estwarp_condense(im, basis, mean, ref param, cx, cy, opt); 
 
            if (opt.x_or_dx == "dx/dy") 
            { 
                cx += param.Est.Data[0, 0]; 
                cy += param.Est.Data[1, 0]; 
            } 
            else 
            { 
                cx = param.Est.Data[0, 0]; 
                cy = param.Est.Data[1, 0]; 
            } 
 
            for(int i = 0; i < wimgs.Rows; i++) 
                wimgs.Data[i, batch] = param.Wimg.Data[i, 0]; 
 
            batch++; 
            if (batch >= opt.batchsize) 
            { 
                sklm(wimgs, batch, ref basis, ref eigval, ref mean, ref numsample, opt.ff); 
                wimgs.SetZero(); 
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                if (basis.Cols > opt.maxbasis) 
                {    
                    basis = GetSubRect(basis, 0, 0, basis.Rows, opt.maxbasis); 
                    eigval = GetSubRect(eigval, 0, 0, opt.maxbasis, 1); 
                } 
                batch = 0; 
            } 
             
            if (opt.x_or_dx == "dx/dy") 
            { 
                if (cur == start) 
                { 
                    opt.affsig[0] /= (10.0 * opt.n_th); 
                    opt.affsig[1] /= (10.0 * opt.n_th); 
                } 
            } 
 
            double a = opt.tw / 2.0; 
            double b = opt.th / 2.0; 
 
            Matrix<double> _corners = new Matrix<double>( 
                new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } }); 
 
            Matrix<double> M = new Matrix<double>(new double[2, 3] {  
                                                 { cx, param.Est.Data[2, 0], param.Est.Data[3, 0] },  
                                                 { cy, param.Est.Data[4, 0], param.Est.Data[5, 0] } }); 
 
            CvInvoke.cvGEMM(M.Ptr, _corners.Ptr, 1.0, IntPtr.Zero, 0.0, corners.Ptr,  
                                            Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
 
            cur = timestamp; 
        } 
 
        public void DrawResults(Image<Bgr, byte> im, Option opt, long timestamp,  
                                                Matrix<double> T) 
        { 
            DrawBox(im, param.Est, cx, cy, opt); 
 
            if (opt.displayIndex) 
            { 
                MCvFont _font = new MCvFont( 
                              Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 0.8, 1.0); 
                _font.thickness = 2; 
                im.Draw(index, ref _font, new Point((int)cx, (int)cy),  
                               colorValue(opt.index_color)); 
            } 
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            Matrix<double> p = interestPointCoord(opt.interestPoint, corners, cx, cy); 
 
            if (opt.displayPoint) 
            { 
                System.Drawing.Point centroid = 
                            new System.Drawing.Point((int)p.Data[0, 0], (int)p.Data[1, 0]); 
                im.Draw(new Cross2DF(centroid, 3, 3), colorValue(opt.point_color), 1); 
            } 
 
            p = T * p; 
 
            if (opt.saveCenter) WriteCentroid(opt, timestamp, p.Data[0, 0] / p.Data[2, 0],  
                                                                   p.Data[1, 0] / p.Data[2, 0]); 
        } 
 
        public static Matrix<double> DrawBox(Image<Bgr, byte> im, Matrix<double> p,  
                                                                        double cx, double cy, Option opt) 
        { 
            LineSegment2D line = new LineSegment2D(); 
            Matrix<double> affCorners; 
 
            if (p.Cols == 1) 
            { 
                double a = opt.tw / 2.0; 
                double b = opt.th / 2.0; 
 
                affCorners = new Matrix<double>(2, 5); 
                Matrix<double> corners = new Matrix<double>( 
                    new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } }); 
 
                Matrix<double> M = new Matrix<double>(new double[2, 3] {  
                                                                     { cx, p.Data[2, 0], p.Data[3, 0] },  
                                                                     { cy, p.Data[4, 0], p.Data[5, 0] } }); 
 
                CvInvoke.cvGEMM(M.Ptr, corners.Ptr, 1.0, IntPtr.Zero, 0.0, affCorners.Ptr,  
                                            Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
            } 
            else 
            { 
                affCorners = p; 
            } 
 
            if (im != null) 
            { 
                for (int i = 0; i < 4; i++) 
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                { 
                    line.P1 = new Point((int)affCorners.Data[0,i],(int)affCorners.Data[1,i]); 
                    line.P2 = new Point((int)affCorners.Data[0,i+1],(int)affCorners.Data[1,i+1]); 
                    im.Draw(line, colorValue(opt.rect_color), opt.rect_thickness); 
                } 
            } 
 
            return affCorners; 
        } 
 
        public static void DrawResults(Image<Bgr, byte> im, Matrix<double> p, double cx,  
                                                          double cy, String name, String[] color, int thickness,  
                                                          int tw, int th, bool showCentroid, bool showIndex,  
                                                          String interestP) 
        { 
            LineSegment2D line = new LineSegment2D(); 
 
            double a = tw / 2.0; 
            double b = th / 2.0; 
 
            Matrix<double> affCorners = new Matrix<double>(2, 5); 
            Matrix<double> corners = new Matrix<double>( 
                new double[3, 5] { { 1, 1, 1, 1, 1 }, { -a, a, a, -a, -a }, { -b, -b, b, b, -b } } ); 
 
            Matrix<double> M = new Matrix<double>(new double[2, 3] {  
                              { cx, p.Data[2, 0], p.Data[3, 0] }, { cy, p.Data[4, 0], p.Data[5, 0] } }); 
 
            CvInvoke.cvGEMM(M.Ptr, corners.Ptr, 1.0, IntPtr.Zero, 0.0, affCorners.Ptr,  
                                            Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT);             
 
            for (int i = 0; i < 4; i++) 
            { 
                line.P1 = new Point((int)affCorners.Data[0, i], (int)affCorners.Data[1, i]); 
                line.P2 = new Point((int)affCorners.Data[0, i+1], (int)affCorners.Data[1, i+1]); 
                im.Draw(line, colorValue(color[0]), thickness); 
            } 
 
            Matrix<double> point = interestPointCoord(interestP, affCorners, cx, cy); 
 
            if (showCentroid) 
            { 
                System.Drawing.Point centroid = 
                            new System.Drawing.Point((int)point.Data[0, 0], (int)point.Data[1, 0]); 
                im.Draw(new Cross2DF(centroid, 3, 3), colorValue(color[1]), 1); 
            } 
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            if (showIndex) 
            { 
                System.Drawing.Point centroid = new System.Drawing.Point((int)cx, (int)cy); 
                MCvFont _font = new MCvFont( 
                                Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 0.8, 1.0); 
                _font.thickness = 1; 
                im.Draw(name, ref _font, centroid, colorValue(color[2])); 
            } 
 
            return; 
        } 
 
        public void WriteCentroid(Option opt, long timestamp, double px, double py) 
        { 
            System.IO.StreamWriter sw1; 
            System.IO.StreamWriter sw2; 
 
            if (cur == start) 
            { 
                sw1 = new System.IO.StreamWriter(opt.textFileName + index + ".txt", false,  
                                                                           System.Text.Encoding.UTF8); 
                sw1.WriteLine("tw: " + opt.tw.ToString()); 
                sw1.WriteLine("th: " + opt.th.ToString()); 
                sw2 = new System.IO.StreamWriter("rw_" + opt.textFileName + index + ".txt",  
                                                                           false, System.Text.Encoding.UTF8); 
            } 
            else 
            { 
                sw1 = new System.IO.StreamWriter(opt.textFileName + index + ".txt", true,  
                                                                           System.Text.Encoding.UTF8); 
                sw2 = new System.IO.StreamWriter("rw_" + opt.textFileName + index + ".txt",  
                                                                           true, System.Text.Encoding.UTF8); 
            } 
 
            sw1.WriteLine(timestamp.ToString() + " " 
               + cx.ToString() + " " + cy.ToString() + " " 
               + param.Est.Data[0, 0].ToString() + " " + param.Est.Data[1, 0].ToString() + " " 
               + param.Est.Data[2, 0].ToString() + " " + param.Est.Data[3, 0].ToString() + " " 
               + param.Est.Data[4, 0].ToString() + " " + param.Est.Data[5, 0].ToString() + " "); 
 
            sw2.WriteLine(timestamp.ToString() + " " + (px).ToString() + " " +  
                                     py.ToString()); 
 
            sw1.Close(); 
            sw2.Close(); 
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            return; 
        } 
 
        public bool Inside(double[] p, Option opt) 
        { 
            int tw = opt.tw; 
            int th = opt.th; 
 
            double x = cx; 
            double y = cy;  
            Matrix<double> M = new Matrix<double>(new double[2, 2]{  
                                              {param.Est.Data[2, 0], param.Est.Data[3, 0]},  
                                              {param.Est.Data[4, 0], param.Est.Data[5, 0]} }); 
             
            Matrix<double> _p = new Matrix<double>(2, 1); 
            Matrix<double> d = new Matrix<double>(new double[2, 1]{  
                                                                                {p[0] - x}, {p[1] - y} }); 
             
            CvInvoke.cvInvert(M.Ptr, M.Ptr  
                                           Emgu.CV.CvEnum.INVERT_METHOD.CV_LU); 
 
            _p = M * d; 
            double px = _p[0, 0] + opt.tw / 2; 
            double py = _p[1, 0] + opt.th / 2; 
 
            return (px >= 0 && px < opt.tw && py >= 0 && py < opt.th); 
        } 
 
        public void WriteCompleted(Option opt, long timestamp) 
        { 
            System.IO.StreamWriter sw = new System.IO.StreamWriter(opt.textFileName +  
                                                               index + ".txt", true, System.Text.Encoding.UTF8); 
 
            sw.WriteLine("completed_at " + timestamp.ToString()); 
 
            sw.Close(); 
 
            return; 
        } 
 
        public void UpdateVotes(String v) 
        { 
            if (v == "r") 
            { 
                votes[0]++; 
                votes[1]--; 
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                votes[2]--; 
            } 
            else if (v == "l") 
            { 
                votes[1]++; 
                votes[0]--; 
                votes[2]--; 
            } 
            else if (v == "b") 
            { 
                votes[2]++; 
                votes[0]--; 
                votes[1]--; 
            } 
            votes[0] = Math.Min(Math.Max(votes[0], 0), 3); 
            votes[1] = Math.Min(Math.Max(votes[1], 0), 3); 
            votes[2] = Math.Min(Math.Max(votes[2], 0), 3); 
 
            view = ""; 
            if (votes.Max() == votes[0]) 
                view = "r"; 
            else if (votes.Max() == votes[1]) 
                view += "l"; 
            else if (votes.Max() == votes[2]) 
                view += "b"; 
        } 
 
        public double estwarp_condense(Image<Bgr, byte> image, Matrix<double> basis,  
                                                            Matrix<double> mean, ref Parameter param,  
                                                            double cx, double cy, Option opt) 
        { 
            int n = param.N; 
            int w = param.TW; 
            int h = param.TH; 
            int sz = w*h; 
 
            if(param.Param == null) 
            {             
                param.Param = new Matrix<double>(6, n); 
                CvInvoke.cvRepeat(affparam2geom(param.Est).Ptr, param.Param.Ptr);                 
            } 
            else 
            { 
                Matrix<double> cumconf = new Matrix<double>(n, 1); 
                cumconf.Data[0, 0] = param.Conf.Data[0, 0]; 
                for (int i = 1; i < n; i++) 
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                    cumconf.Data[i, 0] = cumconf.Data[i - 1, 0] + param.Conf.Data[i, 0]; 
 
                Matrix<double> A = new Matrix<double>(1, n); 
                A.SetRandUniform(new Emgu.CV.Structure.MCvScalar(0.0), new  
                                                Emgu.CV.Structure.MCvScalar(1.0)); 
                Matrix<int> idx = new Matrix<int>(n, 1); 
                for (int i = 0; i < n; i++) 
                { 
                    int id = 0;       
                    double temp = A.Data[0, i];       
                    for (int j = 0; j < n; j++) 
                    { 
                        if (temp > cumconf.Data[j, 0]) id++; 
                    } 
                    idx.Data[i, 0] = id; 
                } 
                cumconf.Dispose(); 
                A.Dispose(); 
                Matrix<double> par = new Matrix<double>(6, n); 
                for (int j = 0; j < n; j++) 
                { 
                    int id = idx.Data[j, 0];      
                    for (int i = 0; i < 6; i++)  
                        par.Data[i, j] = param.Param.Data[i, id]; 
                } 
                param.Param.Data = par.Data; 
                par.Dispose(); 
            } 
             
            Matrix<double> ran = new Matrix<double>(6, n); 
            ran.SetRandNormal(new Emgu.CV.Structure.MCvScalar(0.0), new  
                                              Emgu.CV.Structure.MCvScalar(1.0));             
            for (int i = 0; i < 6; i++) 
            { 
                double aff = opt.affsig[i]; 
                for (int j = 0; j < n; j++) 
                    param.Param.Data[i, j] += (ran.Data[i, j] * aff); 
            } 
            ran.Dispose(); 
 
            Matrix<double> affmat = affparam2mat(param.Param);             
            Matrix<double> wimgs = warpimg(image, affmat, cx, cy, w, h, param.C, opt); 
             
            Matrix<double> diff = new Matrix<double>(wimgs.Size);                            
            Matrix<double> t = new Matrix<double>(1, diff.Cols); 
            t.SetValue(1); 
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            CvInvoke.cvGEMM(mean.Ptr, t.Ptr, 1.0, wimgs.Ptr, -1.0, diff.Ptr,  
                                       Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
            t.Dispose(); 
            
            if (basis != null)    
            { 
                Matrix<double> coef = new Matrix<double>(basis.Cols, n); 
               CvInvoke.cvGEMM(basis.Ptr, diff.Ptr, 1.0, IntPtr.Zero, 0.0, coef.Ptr,  
                                             Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T); 
                CvInvoke.cvGEMM(basis.Ptr, coef.Ptr, -1.0, diff.Ptr, 1.0, diff.Ptr,  
                                            Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
            } 
             
            param.CalConf1(diff, opt.condensig); 
             
            Point minidx, maxidx; 
            double minVal, maxVal; 
            param.Conf.MinMax(out minVal, out maxVal, out minidx, out maxidx); 
                         
            affmat.GetCol(maxidx.Y).CopyTo(param.Est); 
            wimgs.GetCol(maxidx.Y).CopyTo(param.Wimg); 
             
            return maxVal; 
        } 
 
     public static Matrix<double> affparam2mat(Matrix<double> p) 
        { 
            Matrix<double> q = new Matrix<double>(p.Size); 
             
            for (int i = 0; i < p.Cols; i++) 
            { 
                double s = p.Data[2, i]; 
                double th = p.Data[3, i]; 
                double r = p.Data[4, i]; 
                double ph = p.Data[5, i]; 
 
                double cth = Math.Cos(th); 
                double sth = Math.Sin(th); 
                double cph = Math.Cos(ph); 
                double sph = Math.Sin(ph); 
 
                double ccc = cth * cph * cph; 
                double ccs = cth * cph * sph; 
                double css = cth * sph * sph; 
                double scc = sth * cph * cph; 
                double scs = sth * cph * sph; 
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                double sss = sth * sph * sph; 
 
                q.Data[0, i] = p.Data[0, i]; 
                q.Data[1, i] = p.Data[1, i]; 
                q.Data[2, i] = s * (ccc + scs + r * (css - scs)); 
                q.Data[3, i] = s * (-ccs - sss + r * (ccs - scc)); 
                q.Data[4, i] = s * (scc + -ccs + r * (ccs + sss)); 
                q.Data[5, i] = s * (-scs + css + r * (ccc + scs)); 
            } 
 
            return q; 
        } 
 
        public static Matrix<double> affparam2geom(Matrix<double> p) 
        { 
            Matrix<double> q = new Matrix<double>(6, 1); 
             
            Matrix<double> A = new Matrix<double>(new double[2, 2] {  
                                                      { p[2, 0], p[3, 0] }, { p[4, 0], p[5, 0] } }); 
            Matrix<double> U = new Matrix<double>(2, 2); 
            Matrix<double> S = new Matrix<double>(2, 2); 
            Matrix<double> V = new Matrix<double>(2, 2);              
 
            CvInvoke.cvSVD(A.Ptr, S.Ptr, U.Ptr, V.Ptr,  
                                         Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_DEFAULT);                         
             
            if(U.Det < 0) 
            { 
                Matrix<double> Temp = U.Clone(); 
                U.Data[0, 0] = Temp.Data[0, 1]; 
                U.Data[1, 0] = Temp.Data[1, 1]; 
                U.Data[0, 1] = Temp.Data[0, 0]; 
                U.Data[1, 1] = Temp.Data[1, 0]; 
 
                Temp = V.Clone(); 
                V.Data[0, 0] = Temp.Data[0, 1]; 
                V.Data[1, 0] = Temp.Data[1, 1]; 
                V.Data[0, 1] = Temp.Data[0, 0]; 
                V.Data[1, 1] = Temp.Data[1, 0]; 
 
                double temp = S.Data[0, 0]; 
                S.Data[0, 0] = S.Data[1, 1]; 
                S.Data[1, 1] = temp; 
            } 
 
            q.Data[0, 0] = p.Data[0, 0];  
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            q.Data[1, 0] = p.Data[1, 0]; 
            q.Data[3, 0] = Math.Atan2(U.Data[1, 0]*V.Data[0, 0]+U.Data[1, 1]*V.Data[0, 1],  
                                      U.Data[0, 0] * V.Data[0, 0] + U.Data[0, 1] * V.Data[0, 1]); 
 
            double phi = Math.Atan2(V[0, 1], V[0, 0]); 
            double c, s; 
            Matrix<double> R; 
             
            if (phi <= -PI / 2) 
            { 
                c = Math.Cos(-PI / 2);  s = Math.Sin(-PI / 2); 
                R = new Matrix<double>(new double[2, 2] { { c, -s }, { s, c } });                 
                V = V.Mul(R); 
                S = S.Mul(R); 
                CvInvoke.cvGEMM(R.Ptr, S.Ptr, 1.0, IntPtr.Zero, 0.0, S.Ptr,  
                                                  Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T); 
            } 
            else if(phi >= PI / 2) 
            { 
                c = Math.Cos(PI / 2);  s = Math.Sin(PI / 2); 
                R = new Matrix<double>(new double[2, 2] { { c, -s }, { s, c } }); 
                V = V.Mul(R); 
                S = S.Mul(R); 
                CvInvoke.cvGEMM(R.Ptr, S.Ptr, 1.0, IntPtr.Zero, 0.0, S.Ptr,  
                                                 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T);                 
            } 
 
            q.Data[2, 0] = S.Data[0, 0]; 
            q.Data[4, 0] = S.Data[1, 1] / S.Data[0, 0]; 
            q.Data[5, 0] = Math.Atan2(V.Data[0, 1], V.Data[0, 0]); 
 
            return q; 
        } 
 
        unsafe public Matrix<double> warpimg(Image<Bgr, byte> img, Matrix<double> p,  
                                                                        double cx, double cy, 
                                                                        int tw, int th, String color, Option opt) 
        { 
            int l = tw * th; 
            int nsample = p.Cols; 
 
            double[,] _p = p.Data; 
            double[] x = new double[l]; 
            double[] y = new double[l]; 
            Matrix<double> mean = new Matrix<double>(l, nsample); 
            Image<Gray, double> temp = new Image<Gray, double>(img.Size); 
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            if (color == "Gray") 
            { 
                temp = img.Convert<Gray, byte>().ConvertScale<double>(1.0 / 256.0, 0.0); 
            } 
            else if (color == "Blue" || color == "Green" || color == "Red") 
            { 
                Image<Bgr, double> image = img.ConvertScale<double>(1.0 / 256.0, 0.0); 
                if (color == "Blue") 
                    temp = image[0]; 
                else if (opt.cspace_t == "Green") 
                    temp = image[1]; 
                else if (opt.cspace_t == "Red") 
                    temp = image[2]; 
            } 
            else 
            { 
                Image<Hsv, double> image = (img.Convert<Hsv, byte>() as Image<Hsv,  
                                                                   byte>).ConvertScale<double>(1.0 / 256.0, 0.0); 
                if (opt.cspace_t == "Hue") 
                    temp = image[0]; 
                else if (opt.cspace_t == "Saturation") 
                    temp = image[1]; 
                else if (opt.cspace_t == "Value") 
                    temp = image[2]; 
            } 
 
            int height = temp.Height; 
            int width = temp.Width; 
 
            for (int isample = 0; isample < nsample; isample++) 
             { 
                 double p0 = _p[0, isample] + (opt.x_or_dx == "dx/dy" ? cx : 0); 
                 double p1 = _p[1, isample] + (opt.x_or_dx == "dx/dy" ? cy : 0); 
                 double p2 = _p[2, isample]; 
                 double p3 = _p[3, isample]; 
                 double p4 = _p[4, isample]; 
                 double p5 = _p[5, isample]; 
 
                 for (int i = 0; i < tw; i++) 
                 { 
                     int ix = i - tw / 2 + 1; 
                     for (int j = 0; j < th; j++) 
                     { 
                         x[i * th + j] = p0 + ix * p2 + (j - th / 2 + 1) * p3; 
                         y[i * th + j] = p1 + ix * p4 + (j - th / 2 + 1) * p5; 
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                     } 
                 } 
 
                 int x0, x1, y0, y1; 
                 double xx, yy, rx, ry; 
                 double a, b, c, d; 
                 bool x00, x01, x10, x11; 
                 bool y00, y01, y10, y11; 
 
                 for (int i = 0; i < l; i++) 
                 { 
                     xx = x[i]; 
                     yy = y[i]; 
 
                     x0 = (int)xx; x1 = x0 + 1; 
                     y0 = (int)yy; y1 = y0 + 1; 
 
                     rx = xx - x0; 
                     ry = yy - y0; 
 
                     y00 = (y0 <= 0); 
                     y01 = (y0 > height); 
                     y10 = (y1 <= 0); 
                     y11 = (y1 > height); 
                     x00 = (x0 <= 0); 
                     x01 = (x0 > width); 
                     x10 = (x1 <= 0); 
                     x11 = (x1 > width); 
 
                     a = (y00 || y01 || x00 || x01) ? 0 : temp [(y0 - 1) * width + (x0 - 1)];  
                     b = (y00 || y01 || x10 || x11) ? 0 : temp [(y0 - 1) * width + (x1 - 1)];  
                     c = (y10 || y11 || x00 || x01) ? 0 : temp [(y1 - 1) * width + (x0 - 1)];  
                     d = (y10 || y11 || x10 || x11) ? 0 : temp [(y1 - 1) * width + (x1 - 1)];  
 
                     mean.Data[i, isample] = ((1-rx)*a+rx*b)*(1-ry)+((1-rx)*c+rx*d)*ry; 
                } 
            } 
            return mean; 
        } 
 
    public void sklm(Matrix<double> data, int bs, ref Matrix<double> U, ref  
                                    Matrix<double> D, ref Matrix<double> mu, ref int n0, double ff) 
        {    
            int N = data.Rows;     
            int n = data.Cols;     
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            if (U == null) 
            { 
                if (bs == 1) 
                { 
                    data.GetCol(0).CopyTo(mu); 
                    U = new Matrix<double>(N, n); 
                    D = new Matrix<double>(1, 1); 
                } 
                else 
                { 
                    CvInvoke.cvReduce(data.Ptr, mu.Ptr,  
                                    Emgu.CV.CvEnum.REDUCE_DIMENSION.SINGLE_COL,     
                                    Emgu.CV.CvEnum.REDUCE_TYPE.CV_REDUCE_AVG); 
                     
                    Matrix<double> _mu = new Matrix<double>(data.Size); 
                    CvInvoke.cvRepeat(mu.Ptr, _mu.Ptr); 
                    CvInvoke.cvSub(data.Ptr, _mu.Ptr, data.Ptr, IntPtr.Zero); 
                              
                    int dimension = Math.Min(data.Rows, data.Cols);                                         
                    U = new Matrix<double>(data.Rows, dimension); 
                    Matrix<double> S = new Matrix<double>(dimension, dimension); 
                    CvInvoke.cvSVD(data.Ptr, S.Ptr, U.Ptr, IntPtr.Zero,  
                                                 Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_DEFAULT); 
 
                    D = new Matrix<double>(dimension, 1); 
                    Matrix<double> diag = new Matrix<double>(dimension, 1); 
                    CvInvoke.cvGetDiag(S.Ptr, diag.Ptr, 0); 
                    CvInvoke.cvCopy(diag.Ptr, D.Ptr, IntPtr.Zero);  
                } 
            } 
            else 
            {                 
                if(mu != null) 
                { 
                    Matrix<double> mu1 = new Matrix<double>(data.Rows, 1); 
                    CvInvoke.cvReduce(data.Ptr, mu1.Ptr,  
                                              Emgu.CV.CvEnum.REDUCE_DIMENSION.SINGLE_COL,  
                                              Emgu.CV.CvEnum.REDUCE_TYPE.CV_REDUCE_AVG); 
                     
                    Matrix<double> t = new Matrix<double>(1, data.Cols); 
                    t.SetValue(1); 
                    CvInvoke.cvGEMM(mu1.Ptr, t.Ptr, -1.0, data.Ptr, 1.0, data.Ptr,  
                                            Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
                    t.Dispose();                     
 
                    double temp = Math.Sqrt(n * n0 / (double)(n + n0)); 
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                    Matrix<double> _mu = new Matrix<double>(mu.Size); 
                    CvInvoke.cvSub(mu.Ptr, mu1.Ptr, _mu.Ptr, IntPtr.Zero); 
                    data = data.ConcateHorizontal(temp * _mu); 
                    mu1 = (ff * n0 * mu + n * mu1) / (n + ff * n0);                     
                    n = (int)(n + ff * n0); 
                    _mu.Dispose(); 
                } 
                 
                Matrix<double> data_proj = new Matrix<double>(U.Cols, data.Cols);      
                Matrix<double> data_res = new Matrix<double>(data.Size);                     
                CvInvoke.cvGEMM(U.Ptr, data.Ptr, 1.0, IntPtr.Zero, 0.0, data_proj.Ptr,  
                                                 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T); 
                CvInvoke.cvGEMM(U.Ptr, data_proj.Ptr, -1.0, data.Ptr, 1.0, data_res.Ptr,  
                                            Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_DEFAULT); 
                 
                int ndata = data.Cols; 
                int nbasis = D.Rows; 
 
                dnAnalytics.LinearAlgebra.Decomposition.GramSchmidt qr1  
                    = new dnAnalytics.LinearAlgebra.Decomposition.GramSchmidt( 
                                                                            new DenseMatrix(data_res.Data));                 
                Matrix<double> q = new Matrix<double>(qr1.Q().ToArray());                                  
                Matrix<double> Q = U.ConcateHorizontal(q); 
                Matrix<double> DD = new Matrix<double>(nbasis, nbasis); 
                 
                for(int i = 0; i < nbasis; i++) 
                    DD.Data[i, i] = D.Data[i, 0];                 
 
                Matrix<double> R = new Matrix<double>(q.Cols, data_res.Cols); 
                CvInvoke.cvGEMM(q.Ptr, data_res.Ptr, 1.0, IntPtr.Zero, 0.0, R.Ptr,  
                                                 Emgu.CV.CvEnum.GEMM_TYPE.CV_GEMM_A_T); 
                R = data_proj.ConcateVertical(R); 
                R = (ff * DD).ConcateVertical(new Matrix<double>( 
                                                                                    ndata, nbasis)).ConcateHorizontal(R); 
                                 
                Matrix<double> S = new Matrix<double>(R.Size); 
                U = new Matrix<double>(R.Size); 
                CvInvoke.cvSVD(R.Ptr, S.Ptr, U.Ptr, IntPtr.Zero,  
                                             Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_DEFAULT); 
                 
                D = new Matrix<double>(S.Rows, 1); 
                Matrix<double> diag = new Matrix<double>(S.Rows, 1); 
                CvInvoke.cvGetDiag(S.Ptr, diag.Ptr, 0); 
                CvInvoke.cvCopy(diag.Ptr, D.Ptr, IntPtr.Zero);  
 
                Matrix<double> Temp = D.Clone(); 
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                Temp._Mul(Temp); 
 
                double cutoff = Temp.Sum * 1e-6; 
                int index = D.Rows - 1; 
                for (int i = D.Rows - 1; i >= 0; i--) 
                { 
                    if (D.Data[i, 0] > cutoff) { index = i; break; } 
                } 
                D = GetSubRect(D, 0, 0, index + 1, 1); 
                U = GetSubRect(U, 0, 0, U.Rows, index + 1); 
                U = Q * U; 
            } 
       } 
    } 
 
} 
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APPENDIX C 

CODE FOR 3D COORDINATE CALCULATION 

 

This appendix presents the main part in the prototype code for stereo camera calibration.  

 
public class Processing 
{ 
   private MainWindow main; 
   private Picture stream; 
   private String test_name; 
   private String test_acronym; 
 
   public Processing(MainWindow main, Picture stream) 
   { 
       this.main = main; 
       if (stream is Camera) 
       { 
           this.stream = new Camera(main, "Output"); 
           this.stream.Set_isOutput(true); 
           this.stream.Show(true); 
           ((Camera)(this.stream)).Play(); 
       } 
       else 
       { 
           this.stream = new Picture(main, "Output.jpg"); 
           this.stream.Set_isOutput(true); 
           this.stream.Show(true); 
       } 
 
       String[] str = main.Get_streamList()[0].Get_name().Split(new char[]{'_'}); 
       test_acronym = str[0].ElementAt(0).ToString() + str[1].ElementAt(0).ToString(); 
       test_name = str[0] + "_" + str[1]; 
   } 
             
   public void Process_Frame(Frame frame) 
   { 
       Image<Bgr, byte> img1 = (Image<Bgr, byte>)frame.Get_frame(); 
       Image<Bgr, byte> img2 = (Image<Bgr,byte>)main.Get_streamList_stream(1) 
                                                                .Get_Buffer().ElementAt(0).Get_frame(); 
 
       List<double[]> inlier_left = new List<double[]>(); 
       List<double[]> inlier_right = new List<double[]>(); 
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      List<double[]> track_left1 = new List<double[]>(); 
      List<double[]> track_left2 = new List<double[]>(); 
      List<double[]> track_left3 = new List<double[]>(); 
 
      List<double[]> track_right1 = new List<double[]>(); 
      List<double[]> track_right2 = new List<double[]>(); 
      List<double[]> track_right3 = new List<double[]>(); 
 
      MatlabMatrixReader dmr; 
      Matrix matrix; 
 
      int method = 1; 
      double distratio = 0.8; 
 
      if (method == 1) 
      { 
          Image<Gray, byte> gray1 = img1.Convert<Gray, byte>(); 
          Image<Gray, byte> gray2 = img2.Convert<Gray, byte>(); 
 
          MCvSURFParams surfParam = new MCvSURFParams(500, false); 
          SURFFeature[] features1 = gray1.ExtractSURF(ref surfParam); 
          SURFFeature[] features2 = gray2.ExtractSURF(ref surfParam); 
 
          SURFTracker tracker = new SURFTracker(features1); 
          SURFTracker.MatchedSURFFeature[] matchedFeatures =  
                                                                tracker.MatchFeature(features2, 2, 20); 
          matchedFeatures = SURFTracker.VoteForUniqueness(matchedFeatures,  
                                                                                                   distratio); 
          matchedFeatures = SURFTracker.VoteForSizeAndOrientation( 
                                                                                    matchedFeatures, 1.5, 20); 
 
          int n_matches = matchedFeatures.Length; 
          Matrix<double> p1 = new Matrix<double>(n_matches, 2); 
          Matrix<double> p2 = new Matrix<double>(n_matches, 2); 
 
          for (int j = 0; j < n_matches; j++) 
          { 
              p1.Data[j, 0] = matchedFeatures[j].SimilarFeatures[0].Feature.Point.pt.X; 
              p1.Data[j, 1] = matchedFeatures[j].SimilarFeatures[0].Feature.Point.pt.Y; 
 
              p2.Data[j, 0] = matchedFeatures[j].ObservedFeature.Point.pt.X; 
              p2.Data[j, 1] = matchedFeatures[j].ObservedFeature.Point.pt.Y; 
          } 
 
          Matrix<double> F = new Matrix<double>(3, 3); 
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            Matrix<sbyte> status = new Matrix<sbyte>(1, n_matches); 
            CvInvoke.cvFindFundamentalMat(p1.Ptr, p2.Ptr, F.Ptr,  
                                               Emgu.CV.CvEnum.CV_FM.CV_FM_RANSAC_ONLY,  
                                               2.0, 0.99, status.Ptr); 
 
            for (int i = 0; i < status.Cols; i++) 
            { 
                if (status[0, i] == 1) 
                { 
                    inlier_left.Add(new double[] { p1.Data[i, 0], p1.Data[i, 1] }); 
                    inlier_right.Add(new double[] { p2.Data[i, 0], p2.Data[i, 1] }); 
                } 
            } 
        } 
        else 
        { 
            dmr = new MatlabMatrixReader(test_name + "_inlier.mat"); 
            matrix = dmr.ReadMatrix(StorageType.Dense); 
            Matrix<double> inlier_pl = new Matrix<double>(matrix.Rows, 2); 
            Matrix<double> inlier_pr = new Matrix<double>(matrix.Rows, 2); 
            for (int i = 0; i < matrix.Rows; i++) 
            { 
                inlier_pl.Data[i, 0] = matrix[i, 0]; 
                inlier_pl.Data[i, 1] = matrix[i, 1]; 
                inlier_pr.Data[i, 0] = matrix[i, 2]; 
                inlier_pr.Data[i, 1] = matrix[i, 3]; 
            } 
            for (int i = 0; i < inlier_pl.Rows; i++) 
            { 
                inlier_left.Add(new double[2] { inlier_pl.Data[i, 0], inlier_pl.Data[i, 1] }); 
                inlier_right.Add(new double[2] { inlier_pr.Data[i, 0], inlier_pr.Data[i, 1] }); 
            } 
            #endregion 
        } 
 
        String methods; 
        if (method == 1) 
            methods = distratio.ToString(); 
        else 
            methods = "siftmapsac"; 
 
        #region draw lines between the matched features 
        Image<Bgr, Byte> res = img1.ConcateVertical(img2); 
        PointF p = new PointF(); 
        for (int i = 0; i < inlier_left.Count; i++) 
        { 
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           p.X = (float)inlier_right[i][0]; 
           p.Y = (float)inlier_right[i][1]; 
           p.Y += img1.Height; 
           res.Draw(new LineSegment2DF(new PointF((float)inlier_left[i][0],  
                                                        (float)inlier_left[i][1]), p), new Bgr(0, 0, 0), 2); 
       } 
       res.Save("matching_" + methods +".jpg"); 
        
       dmr = new MatlabMatrixReader(test_acronym + "l1.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       for (int i = 0; i < matrix.Rows; i++) 
       { 
           track_left1.Add(new double[2] { matrix[i, 1], matrix[i, 2] });                 
       }             
       dmr = new MatlabMatrixReader(test_acronym + "r1.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       for (int i = 0; i < matrix.Rows; i++) 
       { 
           track_right1.Add(new double[2] { matrix[i, 1], matrix[i, 2] }); 
       } 
        
       Main_Algorithms_CSharp.InternalParameters calib1 = new      
                                                        Main_Algorithms_CSharp.InternalParameters(); 
       dmr = new MatlabMatrixReader(“cc_left.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       calib1.cc = new double[2] { matrix[0, 0], matrix[1, 0] }; 
       dmr = new MatlabMatrixReader("fc_left.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       calib1.fc = new double[2] { matrix[0, 0], matrix[1, 0] }; 
       dmr = new MatlabMatrixReader("kc_left.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       calib1.kc = new double[5] { matrix[0, 0], matrix[1, 0], matrix[2, 0], matrix[3, 0],  
                                                     matrix[4, 0] }; 
 
       Main_Algorithms_CSharp.InternalParameters calib2 = new  
                                                           Main_Algorithms_CSharp.InternalParameters(); 
       dmr = new MatlabMatrixReader("cc_right.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       calib2.cc = new double[2] { matrix[0, 0], matrix[1, 0] }; 
       dmr = new MatlabMatrixReader("fc_right.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       calib2.fc = new double[2] { matrix[0, 0], matrix[1, 0] }; 
       dmr = new MatlabMatrixReader("kc_right.mat"); 
       matrix = dmr.ReadMatrix(StorageType.Dense); 
       calib2.kc = new double[5] { matrix[0, 0], matrix[1, 0], matrix[2, 0], matrix[3, 0],  
                                                     matrix[4, 0] }; 
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        track_left1.Clear(); 
        track_right1.Clear(); 
        track_left1.Add(new double[2] { 775, 602 }); 
        track_right1.Add(new double[2] { 736, 562 }); 
 
        #region Obtaining Extrinsic Parameteres (R and t) and Triangulation (Abbas') 
        Main_Algorithms_CSharp.ReconstructionData extrinsic 
                    = Main_Algorithms_CSharp.Reconstruct(inlier_left, inlier_right,  
                      track_left1, track_right1, calib1, calib2, "output1_" + methods +".txt"); 
 
        Matrix<double> xL1 = new Matrix<double>(2, track_left1.Count); 
        Matrix<double> xR1 = new Matrix<double>(2, track_right1.Count); 
        for(int i = 0; i < track_left1.Count; i++) 
        { 
            xL1[0, i] = track_left1[i][0]; 
            xL1[1, i] = track_left1[i][1]; 
            xR1[0, i] = track_right1[i][0]; 
            xR1[1, i] = track_right1[i][1]; 
        } 
 
        Matrix<double> R = new Matrix<double>(3, 3); 
        Matrix<double> t = new Matrix<double>(3, 1); 
        for (int i = 0; i < 3; i++) 
        { 
            for (int j = 0; j < 3; j++) 
            { 
                R.Data[i, j] = extrinsic.RpT[i][j]; 
            } 
            t.Data[i, 0] = extrinsic.tpT[0][i]; 
        } 
         
        Matrix<double> fc_left = new Matrix<double>(2, 1); 
        Matrix<double> cc_left = new Matrix<double>(2, 1); 
        Matrix<double> kc_left = new Matrix<double>(5, 1); 
        fc_left.Data[0, 0] = calib1.fc[0]; 
        fc_left.Data[1, 0] = calib1.fc[1]; 
        cc_left.Data[0, 0] = calib1.cc[0]; 
        cc_left.Data[1, 0] = calib1.cc[1]; 
        kc_left.Data[0, 0] = calib1.kc[0]; 
        kc_left.Data[1, 0] = calib1.kc[1]; 
        kc_left.Data[2, 0] = calib1.kc[2]; 
        kc_left.Data[3, 0] = calib1.kc[3]; 
        kc_left.Data[4, 0] = calib1.kc[4]; 
 
        Matrix<double> fc_right = new Matrix<double>(2, 1); 
        Matrix<double> cc_right = new Matrix<double>(2, 1); 
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        Matrix<double> kc_right = new Matrix<double>(5, 1); 
        fc_right.Data[0, 0] = calib2.fc[0]; 
        fc_right.Data[1, 0] = calib2.fc[1]; 
        cc_right.Data[0, 0] = calib2.cc[0]; 
        cc_right.Data[1, 0] = calib2.cc[1]; 
        kc_right.Data[0, 0] = calib2.kc[0]; 
        kc_right.Data[1, 0] = calib2.kc[1]; 
        kc_right.Data[2, 0] = calib2.kc[2]; 
        kc_right.Data[3, 0] = calib2.kc[3]; 
        kc_right.Data[4, 0] = calib2.kc[4]; 
                     
        Matrix<double> pl1 = StereoTriangulation.Triangulate(xL1, xR1, R, t, fc_left,  
                            cc_left, kc_left, 0.0, 
                            fc_right, cc_right, kc_right, 0.0); 
 
        System.IO.StreamWriter sw = new System.IO.StreamWriter(methods + ".txt"); 
        for (int i = 0; i < pl1.Cols; i++) 
        { 
            sw.WriteLine(pl1.Data[0, i].ToString() + " " + pl1.Data[1, i].ToString() + " " +  
                                   pl1.Data[2, i].ToString()); 
        } 
        sw.Close(); 
 
        frame.Set_frame(res); 
        if(stream is Camera) 
            stream.Add_Frame_To_Buffer(frame); 
        else 
        { 
            stream.Add_Frame_To_Buffer(frame); 
            stream.Show(false); 
        } 
    } 
} 
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