
Operating System Interface Obfuscation
and the Revealing of Hidden Operations

Abhinav Srivastava1 Andrea Lanzi1,2 Jonathon Giffin1

1School of Computer Science, Georgia Institute of Technology
2Dipartimento di Informatica e Comunicazione, Università degli Studi

{abhinav,giffin}@cc.gatech.edu, andrew@security.dico.unimi.it

Abstract

Many software security solutions—including malware analyzers, information flow tracking systems,
auditing utilities, and host-based intrusion detectors—rely on knowledge of standard system call inter-
faces to reason about process execution behavior. In this work, we first obfuscate the Windows and
Linux system call interfaces to degrade the effectiveness of these tools. Our attack, called Illusion, in-
vokes privileged kernel operations in the kernel at the request of user-level processes without requiring
those processes to call the actual system calls corresponding to the operations. The Illusion interface
hides system operations from user-, kernel-, and hypervisor-level monitors mediating the conventional
system-call interface. Illusion alters neither static kernel code nor read-only dispatch tables, remaining
elusive from tools protecting kernel memory. We then consider the problem of Illusion attacks and aug-
ment system call data with kernel-level execution information to expose the hidden kernel operations. We
present a Xen-based monitoring system, Sherlock, that adds kernel execution watchpoints to the stream
of system call events. Sherlock automatically adapts its sensitivity based on security requirements to
remain performant on desktop systems.

1 Introduction

Honeypots and other utilities designed to audit, understand, classify, and detect malware and software attacks
often monitor process’ behavior at the system-call interface as part of their approach. Past research has
developed a widespread collection of system-call based systems operating at user or kernel level [11,12,17,
19,25,35,42] and at hypervisor level [20,36]. In fact, system call monitoring has proved useful enough to see
commercialization [8,31]. Employing reference monitors at the system-call interface makes intuitive sense:
absent flaws in the operating system (OS) kernel, it a non-bypassable interface, so malicious code intending
to unsafely alter the system will reveal its behavior through the series of system calls that it invokes.

Current malware increasingly [24] makes use of kernel modules or drivers that help the user-level pro-
cess perform malicious activities by hiding the process’ side effects. For example, the rootkits adore and
knark hide processes, network connections, and malicious files by illegitimately redirecting interrupt or
system call handling into their kernel modules. Redirection can alter the semantic meaning of a system
call—a problem for any system that monitors system calls to understand the behavior of malware. Jiang
and Wang [20] addressed this class of attack by making the interrupt descriptor table (IDT), system service
descriptor table (SSDT), and system-call handler routines write protected. Systems like that of Jiang and
Wang assume that protections against illegitimate alteration of these objects will force malicious software
to always follow the standard system-call interface when requesting service from the kernel.

Unfortunately, this assumption does not hold true. In the first of two principal contributions of this
paper, we show how malicious code can obfuscate the Windows or Linux system-call interface using only
legitimate functionality commonly used by kernel modules and drivers. We present a novel attack, Illusion,
that allows malicious processes to invoke privileged kernel operations without requiring the malware to

1

call the actual system calls corresponding to those operations. In contrast to prior attacks [6] of the sort
considered by Jiang and Wang, Illusion alters neither static kernel code nor read-only dispatch tables such as
the IAT or SSDT. It only extends the kernel memory by loading a kernel driver, which is a benign operation.
During the execution of malware augmented with the Illusion attack, an existing system-call analyzer sees
a series of system calls different than those actually executed by the malware.

Kernel malware augmented with Illusion becomes hidden from many common signature- and anomaly-
based detectors. Kernel integrity checkers [34,38,52] verify only static kernel code, static data, and dynamic
linked data structures such as the process linked list. Illusion does not make any changes to these structures,
and hence remains elusive from these detectors. System-call based anomaly detectors [11, 12, 17, 19, 42]
monitor sequences of executed system calls to notice unusual patterns. Application-specific monitors com-
pare system-call sequences generated by an application against a normal model of its legitimate behavior.
Our Illusion attack augments existing malicious software for which anomaly detectors have no model and
provide no monitoring protection. Generic, system-wide monitors that observe all applications’ system-call
sequences may be evaded using standard mimicry attack constructions [47]. Hence, it is difficult to detect
the Illusion attack with system-call based anomaly detectors.

The Illusion attack is possible because current analyzers depend on the standard system-call interface to
represent the underlying changes that a process is making to the system. Importantly, they do not take into
account the actual execution of the requested system call inside the kernel. The Illusion attack makes use of
a malicious kernel module, so the defenses must drop to a lower hypervisor level.

In our second principal contribution, we show how defensive systems can both detect the presence of
Illusion attacks and recover the original system call that the malware would have invoked had the Illusion
attack been absent. We have developed a prototype system called Sherlock to demonstrate the feasibility
of our defenses. Sherlock uses Xen and a fully-virtualized Linux guest operating system; defenses for
Windows would operate similarly to those we describe for Linux given knowledge of the internal Windows
kernel code design. Sherlock tracks the kernel’s execution behavior with the help of watchpoints inserted
along kernel code paths that execute during the service of a system call. Mismatches between the system call
invoked and the service routine’s execution indicate that an Illusion attack has altered the internal semantics
of the system-call interface.

Sherlock is an adaptive defensive system that tunes its own behavior to optimize performance. Sher-
lock itself does not provide detection capability for attacks other than the Illusion attack, but is designed
to augment existing system call analyzers with information about hidden kernel operations. When watch-
points match the expected execution of the requested system call, then traditional system call monitoring
indeed observes the correct events. When Sherlock detects the Illusion attack, however, a system call mon-
itor records a faulty series of system calls. Sherlock will then assist the monitor by switching into a deep
inspection mode that uses the execution behavior of the kernel to reconstruct the actual system call opera-
tions executed by the malware. As soon as the malicious invocation of the system call completes, Sherlock
switches back into its high performance mode. During benign execution with watchpoints enabled, Sherlock
imposes overheads of 10% on disk-bound applications, 0%–3% on network-bound software, and less than
1% on CPU-bound applications.

In summary, we feel that this paper makes following contributions:

• The Illusion attack: a demonstration that malicious software can obfuscate a commodity kernel’s
system-call interface using only the legitimate functionality used by benign modules and drivers. The
malicious software controls the obfuscation, so every instance of malware using the Illusion attack
can create a different system call interface.

• A hypervisor-based kernel execution monitoring system using watchpoints and models of system call
handler execution behavior to reconstruct privileged operations hidden by an Illusion attack.

2

• Adaptive kernel execution monitoring that balances security and performance by deeply inspecting
kernel state only when the kernel executes hidden operations.

2 Related Work

If defenders know a priori about offensive technologies used by attackers, then they can develop appropriate
remedies. To this end, researchers have performed various attack studies to better understand how attackers
can evade host-based security tools. Mimicry attacks [7,47,48] against application-level intrusion detection
systems [19] escape detection by making malicious activity appear normal. Baliga et al. [2] proposed a new
class of kernel-level stealth attacks that cannot be detected by current monitoring approaches. These studies
showed that security software often relies upon assumptions that may not be known and that attackers can
escape detection with attacks that violate the assumptions.

We apply this style of attack reasoning to system-call monitors because of their increasing use in the
design of security systems. With the increasing popularity, it has become important to know the assump-
tions on which they are founded. Like previous literature, we also assume the perspective of an attacker
who is trying to undetectably execute malicious software. By taking this view, we hope to help defenders
understand and defend against the threat of system call API obfuscation.

We use a hypervisor to observe the behavior of a kernel executing within a virtual machine. Virtual
machines are becoming widely used for exfiltration detection [5, 45], rootkit prevention [50], file protection
[53], hidden process detection [23], and in other applications [10, 14–16, 21, 27, 41, 46, 49]. While previous
research mainly focused on monitoring memory and disks for signs of an intrusion, Sherlock monitors a
kernel’s execution to discover hidden operations happening inside the kernel. Jones et al. [22] developed a
mechanism for virtualized environments to track kernel operations related to specific process actions. With
their system, process creation, context-switch, and destruction can be observed from a hypervisor. Sherlock
allows for arbitrary kernel behavior tracking based upon watchpoints inserted into relevant kernel code
execution paths.

Insertion of additional state exposure events into existing code has been a recurring idea in past research
[30]. Payne et al. [37] developed a framework that inserted arbitrary hooks into an untrusted machine and
then protected those hooks using a hypervisor. Xu et al. [51] inserted waypoints into applications; execution
of a waypoint adds or subtracts privilege from an application so that it better adheres to access restrictions
based on least privilege. Giffin et al. [18] used null system calls to improve the efficiency of a user-level
system-call monitor. In a similar way, Windows filter drivers allow hooking and interception of low-level
kernel execution events [33]. Sherlock uses its watchpoints to gain a view of system call handler execution
behavior, and it expects that these watchpoints will be protected via standard non-writable permissions on
memory pages containing kernel code.

Sophisticated attackers may attempt to bypass the portions of kernel code containing watchpoints in a
by altering execution flow in a manner similar to that used to execute application-level mimicry attacks [26].
These attacks abuse indirect control flows and could be prevented using techniques such as control flow
integrity [1,39,43] that guard indirect calls and jumps. Sherlock is not designed to provide such protections
itself.

3 System Call Obfuscation via Illusion Attacks

We first adopt an offensive role and target system-call monitoring systems such as those used to analyze
malware, track information flows among processes, audit suspicious execution, and detect attacks against
software. Our Illusion attack builds a new system call mechanism using legitimate means that cannot be
blocked without disabling a large class of benign kernel drivers.

3

3.1 Abilities of the Attacker

We use a threat model that reflects current, widespread attacks and state-of-the-art monitoring systems.
An attacker can install a kernel driver or module, perhaps via a kernel-level vulnerability or a naı̈ve user,
which bypasses [4, 44] preventive techniques such as driver signing [32] as well as various forms of driver
verification [50]. However, we assume that the attacker cannot modify existing kernel code. We expect that
any vulnerability exploited by the attacker is not so severe as to allow processes to completely bypass the
system-call interface when requesting kernel service. The loaded module can access and alter mutable data
in the kernel, but it cannot alter read-only data such as the interrupt address table or system service dispatch
table. This threat model is sufficient to allow the design of our Illusion attack, though we will revisit this
model with additional expectations when presenting the Sherlock defensive system.

3.2 Overview

Illusion attacks obfuscate the sequence of system calls generated by a malicious process requesting service
from the kernel. The malicious process must still receive the desired service, else the attack would fail to
have an effect beyond CPU resource consumption. The Illusion attack must enable the malicious process
to execute the same system call requests that it would make in the absence of the Illusion attack, but the
particular calls should not be revealed to a system call monitor.

Application System call
dispatcher

System call
handler

System service
descriptor table

User Kernel

1
2

3

45

Figure 1: Normal System-call Execution Path (NSEP)

An obvious attack (that will fail in our threat model) directly alters system call dispatch within the kernel.
Figure 1 depicts system call dispatch with the following steps. (1) When an application invokes a system
call, it issues a software interrupt or system call request. The CPU switches from user to kernel mode and
begins executing the system call dispatch function. (2) The dispatch function reads the system call number,
which indicates the type of system operation requested, and uses it as an index into a table of function
pointers called the system service descriptor table (SSDT). Each entry in the SSDT points at the system call
handler function for a particular system call. (3) After reading the pointer value from the SSDT, the dispatch
function transfers execution to that target system call handler in the kernel. (4) When the handler completes,
it returns its results to the dispatch function, (5) which then copies them back into the application’s address
space and returns control to the application. We define this flow as the normal system-call execution path,
or NSEP . An attack that alters system call dispatch—steps 2 and 3—will not succeed, as our threat model
does not allow an attacker to illegitimately alter the entries in the SSDT without detection.

However, a number of system calls allow legitimate dispatch into code contained in a kernel module or
driver. Consider ioctl: this system call takes an arbitrary, uninterpreted memory buffer as an argument and
passes that argument to a function in a kernel module that has registered itself as the handler for a special file.
Benign kernel modules legitimately register handler functions for such files; a malicious module performing
the same registration exhibits no behaviors different from the benign code. However, a call to ioctl will
be directed into the malicious module’s code together with the buffer passed to ioctl as an argument.

4

This argument contains the original system call request in a serialized form. The malware will marshal
the original system call into a memory buffer that it subsequently passes to the ioctl system call. The
handling function within a malicious kernel module will unmarshal the buffer to identify the actual operation
requested by the malware, and will then directly call the system call handler for that operation. With this
interface illusion in place, the kernel still executes the same operations that the malware instance would have
executed without the obfuscation. However, system call monitoring utilities would observe a sequence of
ioctl requests and would not realize that malicious operations had occurred.

This attack has properties appealing to an attacker:

• The attacker can select from a collection of system calls offering legitimate dispatch to module code.
For example, ioctl passes arbitrary data to a kernel module by design. The attack can also use
more exotic mechanisms, such as shared memory, netlink sockets, or a character device. A particular
instance of an Illusion attack may use any or all of these operations in combination as replacements
for existing system calls.

• The attacker controls marshaling and unmarshaling operations. Although a system call monitor
knowledgeable of a system call marshaling format could recover the original system call sequence
by unmarshaling arguments, the attacker can continually change the marshaling format to prevent the
monitor from gaining this knowledge. This continual change is similar to the effect of polymorphic
engines or packers upon malicious code.

• The attacker only needs to obscure system calls performing operations that would reveal the malicious
intent of their malware. Other system calls executed by the malware, including dummy calls that
could be inserted for confusion or mimicry, need not be obfuscated. This reduces the rate of calls
to the Illusion attack’s dispatching operation and increases the apparent normalcy of the system call
sequence.

• The attacker can automatically convert a malware instance invoking traditional system calls into a mal-
ware instance using an Illusion attack. A straightforward source-to-source transformation can simply
replace a malware’s system calls with a marshaling operation and a call to an Illusion dispatching
system call such as ioctl. Similar automated transformation could occur at the binary level at any
system call site whose arguments can be recovered via static binary analysis [18].

• The attacker could define new system calls executable through the Illusion attack but having no coun-
terpart in the traditional system-call interface provided by the kernel.

The end result is that while a system-call monitor is able to know that system-calls are occurring, it
cannot evaluate the semantic meaning of the operations.

3.3 The Illusion Kernel Module

The Illusion attack creates an alternative system call execution path (ASEP) that executes system operations
requested by malicious applications. By using an ASEP, malware is able to perform any system operation
without raising the actual system call event related to that operation. In order to create an ASEP, we need
a kernel module, a cooperating malware instance, and a communications channel between the two. Note
that we expect the attacker to successfully load the Illusion kernel module into the victim operating system
kernel; this may occur by acquiring a signature for the module, loading the module on a system that does
not check signatures, or loading the code via an exploit that circumvents module legitimacy checks. A
legitimate signature is the most capable technique, as it evades cutting-edge defenses against kernel-level
malicious code [40].

5

The kernel module is composed of two engines: the protocol engine and the execution engine. The
protocol engine unmarshals an argument buffer into a system operation request and interprets the semantics
of that request. The execution engine actually executes the requested system call operation. The execution
engine can execute the system operations in several different ways, including: (1) a direct call to the cor-
responding system-call handler, (2) a direct call to any exported kernel function with similar behavior, or
(3) execution of code within the kernel module followed by a jump into low-level portions of the kernel’s
handler, such as device driver code that accesses hardware of the computer.

Figure 2 shows how the ASEP alters a kernel’s processing of system call operations. (1) Malware sends
an operation request to the protocol engine. (2) The protocol engine obfuscates the request by using the
marshaling specification. The marshaling specification describes how the requested operation should be
embedded inside the communication call. (3) Once the original request is obfuscated, the malware sends it
to the kernel module via the particular communication channel used by this instance of the Illusion attack.
(4) The protocol engine at the kernel side receives the request, unmarshals the argument using the speci-
fication, and (5) sends the requested operation to the execution engine. (6) The execution engine invokes
the appropriate kernel operation, using one of the three execution methods described above. (7) When the
function returns, it passes the results to the protocol engine which then returns them to the malware. If
needed by the malware, the protocol engine can obfuscate the response, which would then be deobfuscated
by the corresponding engine in the user-level malware.

Illusion-protected malware Illusion kernel driver

User Kernel

3
4

Unmarshalling
specification

Execution
engine

Malicious
dispatch table

Internal kernel
operations

5
6

6

7
7

Marshalling
specification

2

Malicious
application

1
7

Protocol
engine

Protocol
engine

Figure 2: Alternative System-call Execution Path (ASEP)

3.4 Implementation

We have built two different prototypes of the Illusion attack: one for Windows and one for Linux. For
validation of the attack’s ability to obfuscate system call sequences, we also developed Blinders, a Qemu-
based system-call tracer for Windows designed using the same principles of Jiang and Wang [20]. We
describe details of our Windows implementation, but the Linux attack uses a nearly identical design.

Our Windows Illusion attack uses the DeviceIoControl system call as its entry point into the kernel.
This function is used to exchange data between a kernel driver and an application through a device. It
receives parameters that include a device handle for the device and a memory buffer to pass information
to the driver. We used this buffer to pass serialized system operation requests according to the marshaling
protocol.

Our Windows kernel driver is composed of two main functions: one each for the protocol engine and
the execution engine. The first function interprets the protocol and extracts the information for the requested
operation. For the latter function, we implemented all three execution methods described in Section 3.3. For
method 1, the kernel driver prepares the stack layout according to the requirements of the system-call handler
function. After extracting the handler’s function pointer from the system-call dispatch table, it directly calls
the pointer. For the second method, the driver directly calls exported kernel functions; for example, a call to
the function ZwCreateFile performs a file creation operation. The last method is more subtle in that the
driver executes some part of the code inside itself and only then jumps into the kernel code midway along

6

the control-flow path of the requested operations. We copied a piece of the function’s assembly code from
the kernel into the driver and then executed it using the asm directive. We equipped our kernel driver to
execute two operations: creation of a file and creation of a registry key.

For our experimental marshaling protocol, the user-space malware constructed a sequence of comma-
separated fields. We defined two static fields: the first contained the unique number for a system operation,
and the second contained a value that identified the number of parameters for the operation. All following
values represented the values of parameters.

We executed a prototype malware instance using our Illusion attack together with Blinders inside Win-
dows XP. We issued a request from the user-space malware component for file and registry key creation.
We observed that the system calls issued by the user-space component were identified by Blinders as the
incorrect call, as expected. The system-call tracer is only able to see the system call used to communicate
with the driver, which was DeviceIoControl in this experiment.

We implemented a similar prototype of our Illusion attack for the Linux 2.6 kernel. In this version, the
kernel module directly called exported kernel functions to perform requested operations, and it provided
unmarshaling for open, read, write, socket, connect, send, and receive requests. The attack used ioctl
as the hidden system call entry point to the Illusion dispatch functionality. We ran the Linux prototype,
executed all operations, and used the standard system call logging tool strace to observe the issued system
calls. When an experimental malware instance executed any of the hidden calls, strace only showed the
ioctl system call in its log.

3.5 Foundation

The Illusion attack can be understood by reasoning about system call mapping operations.

Definition: Trace Correctness: Let Σ be the set of the system operations and Σ∗ the set of sequences
over the alphabet Σ. Let T = {t1, t2,, tm} ∈ Σ∗ be the ordered sequence of system operations actually
invoked by an application P , as given by an oracle. Let V = {v1, v2,, vn} ∈ Σ∗ be the ordered sequence
of system operations observed by a monitor M observing P through any means possible. The trace V is
correct iff m = n and T = V .

In a correct trace, there is a one-to-one mapping between a system operation invoked by a process and
the operation observed by the monitor. The Illusion attack breaks trace correctness by creating a new one-
to-many relation, unknown to M , between the system call invoked and the real system operations executed.

Figure 3 shows two different mappings between a system operation observed by interposing on the
normal system call mechanism and the real system operation executed within the kernel. The first mapping
is a normal one-to-one relation, where for each system-call invocation there is only one corresponding
system operation executed by the kernel. The second mapping, one-to-many, is created by the Illusion
attack and is not known to the monitor M . In fact, even if the monitor were aware that system calls were
obfuscated through such a relation, it would be unable to reverse the one-to-many relation without additional
information to disambiguate among the collection of actual system calls that all map to the same observed
call.

3.6 Discussion

Our attack diminishes the ability of system call monitors to understand actual malicious process behavior.

7

open
read
write
ioctl

socket
send
recv

open
read
write
ioctl
socket
send
recv

open
read
write
ioctl

socket
send
recv

open
read
write
ioctl
socket
send
recv

Syscall
observed

Operation
executed

Syscall
observed

Operation
executed

Normal system call mapping
(one-to-one)

Illusion system call mapping
(one-to-many)

Figure 3: System-calls and System Operations Mapping

Hypervisor-based system-call analyzers: Due to the prevalence of kernel malware, hypervisor-based
system-call monitoring tools have been proposed [20, 36]. Although these tools provide tamper-resistance,
they still depend on the normal system-call execution path (NSEP) to record system operations. Illusion is
able to obfuscate the system call mechanism and will hide the system operations from these tools.

Malware unpackers and analyzers: A similar effect can be seen on system-call based malware unpack-
ing and analysis [9, 28]. Recently, Martignoni et al. [28] proposed an unpacker that monitors the execution
of suspected malware and assumes that the code is unpacked when the application issues a dangerous sys-
tem call. In another work, Martignoni et al. [29] presented a behavioral monitoring system that relies on
the system-calls. Once the system sees a malicious system-call, it then tries to collect low-level information
corresponding to the call. Since the Illusion attack hides the malicious calls, the behavioral system would
never be invoked to collect low-level information.

Anti-virus tools and intrusion detectors: Some anti-virus software and IDS tools [31] use the system-
call interception mechanism to detect a malware infection. Such tools modify the system-call dispatch table
in order to intercept the system calls. Even in this case, the Illusion attack is able to hide the system call
information without raising the sensors set by the security application.

Many common security tools such as kernel memory scanners or system-call based anomaly detectors
do not detect Illusion attacks. The Illusion attack does not modify a kernel’s static data structures or dispatch
tables, which makes it remain stealthy from security tools that monitor these data. Illusion augments mali-
cious software that would not be protected by application-specific anomaly detection systems. Importantly,
an attacker can always bolster an unusual system call sequence of Illusion requests with unobfuscated nop
system calls to create an undetectable mimicry attack sequence.

4 Sherlock

We developed a hypervisor-based prototype system called Sherlock that detects the presence of an Illusion
attack and determines the actual system operations executed via the hidden interface. It is designed to
achieve the following goals:

• Secure system: Sherlock must provide security by exposing hidden operations happening inside
the operating system. It uses watchpoints, or state exposure operations within kernel code, to track
kernel execution. The watchpoints reveal the hidden behaviors of an Illusion attack’s kernel module
executing within the kernel.

8

Security VM

Kernel

Analyzer &
Instrumenter

Sherlock
controller

User VM

Security
software

Illusion-enabled
malware

Kernel with
watchpoints Illusion

Hypervisor

Kernel with
watchpoints

Offline preparation Online monitoring

SherlockModelModel

Figure 4: Sherlock’s Architecture.

• Tamper resistant: Attackers controlling the operating system should not be able to alter Sherlock’s
execution. It uses a hypervisor-based design to remain isolated from an infected system. It may
protect its watchpoints inside the guest OS by making the kernel’s static code write-protected to
prevent tampering.

• High performance: Sherlock should not unreasonably slow the execution of benign software. Its
design permits adaptive execution, where performance-costly operations will be invoked only when
an Illusion attack may be underway.

Our system-call API obfuscation detection operates in two phases. In the first phase (offline preparation),
we analyze the kernel source code and insert watchpoints along kernel code paths that execute during the
service of a system-call. We create models of system-call handler execution behavior to detect Illusion
attacks. The second phase (online monitoring) divides the system into three components: an untrusted user
virtual machine (VM), a trusted security VM, and a modified Xen hypervisor [3] (Figure 4). The user VM
runs a guest operating system (OS) instrumented with watchpoints. Each watchpoint notifies the hypervisor-
level Sherlock monitor of kernel execution behavior via a VMCALL instruction, and Sherlock determines if
the watchpoint is expected or suspicious. Suspicious watchpoints are passed to the security VM for deep
analysis and as a way to inform traditional system call monitors that an Illusion attack is underway.

4.1 Threat Model

We expand on the threat model previously described in Section 3.1. Sherlock addresses the problem of
Illusion attacks. As Sherlock uses virtualization, we assume that an attacker is unable to directly attack
the hypervisor or the security VM, an expectation that underlies much research in virtual machine based
security. Sherlock relies on kernel code instrumentation, and so we expect that an Illusion attack’s kernel
module will be required to call into the existing, instrumented code of the kernel at some point in its handling
of hidden operations. Our belief is that while a module may carry some fragments of duplicated kernel
code containing no watchpoint instrumentation, it cannot predict all possible configurations of hardware
and file systems and must eventually make use of the existing code of a victim’s kernel. Although the
module could read and duplicate the kernel’s existing code, W⊕X protections would prevent the module
from executing copied code. While these protections do not address the problem of object hiding via direct
kernel object manipulation, such attacks are not Illusion attacks and would be best detected with kernel
integrity checkers [34, 52].

9

Operation Functions
Open sys open, sys open, open namei
Read sys read, sys read, do sync read generic file aio read
Write sys write, sys write, do sync write, generic file aio write
Socket sys socket, sys socket, sock create, inet create, tcp v4 init sock
Connect sys connect, sys connect, net stream connect, tcp connect init
Send sys send, sys send, sock sendmsg, tcp sendmsg
Receive sys recv, sys recv, sock recvmsg, tcp recvmsg

Table 1: Watchpoint Placement

4.2 Exposing Kernel Execution Behavior

Sherlock monitors the kernel’s execution behavior with the help of watchpoints inserted along the kernel
code paths. These watchpoints expose kernel-level activities and are implemented using the VMCALL in-
struction. In order to distinguish among watchpoints, each watchpoint passes an unique identifier to Sherlock
that helps Sherlock identify the operation being performed. For example, in the case of a read operation, a
watchpoint on the execution path of the read system-call handler sends a unique watchpoint do sync read
whenever it executes. When the hypervisor component receives the do sync read watchpoint, it infers
that a read operation is being performed.

We chose where to place watchpoints by performing a reachability analysis of kernel code. Our analysis
finds all functions reachable from the start of the system-call handler down to the low-level device drivers.
This analysis yields a set of functions that may legitimately execute subsequent to the entry of the system call
handler. Inserting watchpoints in all these functions would greatly impact the performance of the operating
system. We instead find a set of functions that dominate all other functions in the reachability graph, with
separate dominator functions chosen from separate OS components. A function v in the call-graph for a
system-call handler dominates another function w if every path from the beginning of the call-graph to
function w contains v. We define a component as a (possibly) separately-linked code region, namely the
core kernel and each distinct module. For example, the components involved in the execution of a read
operation are the core system-call handler, the filesystem driver, and the disk driver. We insert a watchpoint
in the middle of each selected dominator. Continuing the read example, we insert watchpoints in sys read,
do sync read and generic file aio read. Table 1 shows the list of operations and corresponding
functions where watchpoints were placed.

We currently perform this analysis manually by looking into the source code of the kernel. During this
process, we inserted watchpoints inside the kernel functions corresponding to different system-calls and ran
different user-space applications to stimulate our watchpoints. This process has given us confidence that the
watchpoints are at the correct locations. To remove errors that may get introduced by the manual analysis,
an automated approach is required. Ganapathy et al. [13] presented a system that automatically analyzes
the kernel source code and finds locations to insert hooks. This automated system may also be suitable for
selection of Sherlock watchpoint instrumentation locations.

4.3 Modeling System Call Handler Execution

Sherlock’s goal is to reveal hidden system operations. It must distinguish between a normal system call and
a suspicious system call. A call is suspicious if it was altered by a one-to-many mapping, as described in
Section 3.5. We detect altered system call operations by comparing the sequence of watchpoints executed by
the running kernel against an automaton model describing the expected behavior of each system call handler
function in the kernel.

10

Start

Bad

read(

read)

ioctl(

ioctl)

any read
watchpoint

any ioctl
watchpointelseelse

read) ioctl)

else

else

Figure 5: A portion of Sherlock’s Büchi automaton used to distinguish between benign and suspicious
operations. All states are accepting. The figure shows the portions of the automaton corresponding to the
system calls read and ioctl; the patterns for other system calls are similar. Whenever the automaton
enters in the Bad state, the internal kernel operations are not matched with a requesting system call, an
indicator that an Illusion attack is underway.

To know when system calls are legitimately invoked by an application, Sherlock inserts two watchpoints
in each system-call handler function to know the start and end of the system operation. When a benign
application invokes a system operation, execution reaches the system-call handler using NSEP and the first
watchpoint in that handler executes. Sherlock’s hypervisor component receives the watchpoint and traverses
an opening bracket “(” transition indicating which system call was invoked. It then receives subsequent
watchpoints that had been inserted along the control-flow path of the system operation. Every time it receives
a watchpoint, it verifies that the watchpoint was expected given the invoked system call. It performs this step
repeatedly until it sees the watchpoint “)” corresponding to the end of the system call request. However, if
any received watchpoint should not have occurred given the system call request, then an Illusion attack may
have obfuscated the system call interface. The language of allowed watchpoint sequences is omega-regular,
so a finite-state automaton can easily characterize the expected and suspicious sequences. Figure 5 shows
a portion of the automaton used by Sherlock to distinguish between benign and suspicious operations, with
all individual system calls aggregated into a single model. Whenever a watchpoint executes and is not the
part of the system operation, Sherlock will take the else transition and reach the suspicious state. At the
suspicious state, any operation can be executed until the system call completes, taking Sherlock back to the
start state. A kernel runs forever, so Sherlock’s model is a Büchi automaton with all states final.

4.4 Adaptive Design

Sherlock tunes its performance to match the current security condition of the monitored kernel. Its hypervisor-
level component receives watchpoints from the guest operating system and operates the Büchi automaton to
identify the suspicious activities. If the automaton is not in a suspicious state, then the kernel is executing in
an expected way. Sherlock’s hypervisor component immediately discards all received watchpoints, as they
would provide no additional information to a traditional system call monitor at the standard interface given
the absence of an Illusion attack. Otherwise Sherlock concludes that this is a suspicious activity and starts
logging subsequent watchpoints until the conclusion of the system call. During this process, it activates
performance-costly inspection capabilities: it pauses the user VM and extracts parameters involved in the
operation at each watchpoint. This data gathering helps Sherlock rebuild information about the actual sys-
tem operation underway. Sherlock unpauses the user VM when an analyzer in the security VM completes
the inspection of the state of the VM.

11

4.5 Demultiplexing of Events

The hypervisor component of Sherlock sees watchpoints as a stream of events generated by the interleaved
execution of multiple processes. In order to verify these events using the automaton, Sherlock first de-
multiplexes them by identifying the VM and process that generated each event in the data stream. In an
environment where multiple guest domains are running, it distinguishes among different VMs using the VM
identifier. In order to distinguish among different processes, Sherlock uses the value present in the hardware
CR3 register, which contains the physical address of the page directory used by the executing process. This
value is unique for each active process and is updated with every context switch. Relying on the CR3 and
VM identifier values are safe because modification of these values are privileged operations and can only be
performed by the hypervisor.

4.6 Sherlock Controller

The security VM has a user-level controller process that controls Sherlock’s operation and runs infrequent,
performance-costly operations. The controller starts and stops the user VM as needed to perform parameter
extraction and system call identification during an active Illusion attack. Whenever the hypervisor-level
component of Sherlock detects the Illusion attack, it informs the controller about the active attack and
passes all the hidden system operations which were executed during the attack. The controller passes the
information to existing security software, pauses the user VM, performs detailed analysis of the unexpected
watchpoint, and then restarts the guest.

Consider again our example of the read system call and corresponding in-kernel execution behavior.
Suppose malware uses the Illusion attack to invoke the read via arguments marshalled through the ioctl
system call. The Illusion kernel module may invoke the read operation by directly calling the ext3 filesystem
driver’s read function do sync read. As Table 1 indicates, we inserted a watchpoint in this function.
Sherlock receives the beginning marker event "ioctl(" followed by the watchpoint do sync read.
Since these events correspond to two different operations, they do not match and the automaton enters in the
Bad state. Sherlock’s hypervisor component reports this mismatch to the controller along with an indication
that read is believed to be the actual system call operation underway. This report activates the controller’s
deep analysis mode. It pauses the user VM, extracts the parameters for the read operation from the user
VM, and passes the computed system call to higher-level monitoring utilities and security software in the
security VM.

5 Evaluation

We paired Sherlock with the Illusion attack to measure its impact on a typical system. We first provide
an empirical false positive and false negative analysis of Sherlock in Section 5.1. We expect Sherlock to
slightly diminish system performance and carry out experiments measuring its effect in Section 5.2. Lastly,
we analyze the system’s robustness to a knowledgeable attacker in Section 5.3.

5.1 False Positive & False Negative Analysis

We empirically analyze the ways in which Sherlock may erroneously believe interface obfuscation is under-
way or fail to recognize the presence of an Illusion attack.

A false positive may arise if our model of kernel system call handlers is incorrect and omits allowed
behavior. A fortunate property of false positives of this sort is that they do not occur due to fundamental
weaknesses in Sherlock’s technique. For example, Linux uses the write system-call for both writing to a

12

Single Watchpoint Time (µs)
Sherlock without Hidden Operation 3.201

Sherlock with Hidden Operation 39.586

Table 2: Single watchpoint processing time

file and writing to a socket. If a write is invoked to write to the socket, it invokes watchpoints both corre-
sponding to the write operation and socket operation. In this case, Sherlock sees watchpoints corresponding
to two different system operations; a naı̈ve automaton model would cause Sherlock to conclude that this
is suspicious activity. Refinements in such a naı̈ve model will remove these false positives and improve
Sherlock for all future use of the system.

A false negative occurs when Sherlock does not report a hidden operation that happens inside the guest
OS. This situation arises when an attacker performs an operation that does not trigger our watchpoints. As
we disallow modifications to kernel code, the attacker may have either (1) brought a full copy of the kernel
code they require as part of their kernel module, or (2) manipulated kernel code pointers to cause execution
to jump in-and-out of small fragments of existing code in the kernel. If the Illusion attack kernel module
attempts accesses to hardware, then it is likely that the attacker will call back into the existing device driver
contained in the kernel, which our watchpoints have instrumented. We expect that abuse of indirect control
flows could be thwarted by guards at the point of the indirect flows [1, 39, 43].

5.2 Performance

As a software mechanism that intercepts events that may occur at high rates, we expect Sherlock’s monitor-
ing to impact the execution performance of guest applications. To measure its performance, we carried out
several experiments involving CPU-bound, disk-bound, and network-bound workloads. For all experiments,
we used Fedora Core 5 in both the security VM and user VM running above Xen 3.0.4 operating in fully
virtualized (HVM) mode. Our test hardware contained an Intel Core 2 Duo processor at 2.2 GHz, with
VT-x, and with 2 GB of memory. We assigned 512 MB of memory to the untrusted user VM. All reported
results show the median time taken from five measurements. We measured microbenchmarks with the x86
rdtsc instruction and longer executions with the Linux time command-line utility.

We measured the time to process a single watchpoint both with and without an Illusion attack underway.
Whenever a watchpoint executes, the control reaches the hypervisor and Sherlock’s hypervisor component
checks whether or not the watchpoint is due to a hidden operation. If so, it then pauses the guest VM
and sends information to the Sherlock controller. Otherwise, it discards the watchpoint and sends control
back to the VM. Table 2 shows the result of our experiment. The adaptive behavior of Sherlock is well
visible: its watchpoint processing is fast for the benign case, and an order of magnitude more costly when
deep inspection is performed due to the detection of a hidden operation. We note that hidden operation
processing shows a best-case cost, as our experiment performed a no-operation inspection into the guest
OS. An analyzer performing a more detailed analysis may take more time before resuming the guest VM’s
execution.

Sherlock expects multiple watchpoints for each operation. We next measured the time to execute a
single operation in the presence of watchpoints. Since we only instrumented the code of open, read,
write, socket, connect, send, and recv system calls, we only measured the time to execute these
operations. We wrote a sample test program to invoke each of these calls and measured execution times in
three ways: without Sherlock, with Sherlock during benign execution, and with Sherlock during an Illusion
attack. Table 3 presents the result of this experiment, and it also shows the number of watchpoints inserted
for each operation and the number of watchpoints executed during an Illusion attack. It can be seen from
the table that for open and read operations, Sherlock is able to detect the presence of the Illusion attack

13

Normal VM Sherlock Sherlock + # of watchpoints
Operation Time Time Hidden Op. Time Inserted Executed
Open 17.946 26.439 61.752 3 1
Read 19.419 30.537 60.970 4 1
Write 27.025 37.807 90.656 4 2
Socket 24.515 45.558 115.106 5 3
Connect 1879.894 1905.336 1984.419 4 2
Send 717.391 746.416 838.440 4 2
Receive 8.377 20.958 79.488 4 2

Table 3: Single operation processing time (µs)

Operations Normal VM (sec) Sherlock (sec) % Overhead
Disk I/O 45.731 49.902 9.12
Network I/O (Virtual Network) 29.005 29.608 2.07
Network I/O (Physical Network) 212.054 213.352 0.61
CPU Bound 102.004 103.383 0.01

Table 4: Performance measurements. “Normal VM” indicates Xen without Sherlock monitoring; “Sher-
lock” includes monitoring time.

even with the execution of single watchpoint.
Finally, we tested Sherlock with real workloads to measure its overhead seen by the guest operating

system’s applications. We carried out experiments with disk-, network-, and CPU-bound workloads. In
our disk I/O experiment, we copied the 278 MB kernel source code tree from one directory to another using
Linux’s cp command. Table 4 shows the time taken by this operation and it can be seen that Sherlock creates
9.2% overhead. To test Sherlock against network workloads, we performed two different experiments. In
the first experiment, we transferred a file of size 200 MB over HTTP between virtual machines using Xen’s
virtual network. We used a small HTTP server, thttpd, to serve the file. We repeated the file transfer
operation on the same file using the physical network to a nearby machine. We measured the time taken
by these file transfers with and without Sherlock and show results in Table 4. It is evident that Sherlock’s
overhead is very low.

Finally, we performed a CPU bound operation. Since we mainly instrumented I/O related system calls
(both disk and network), we did not expect significant overhead with CPU workloads. To measure CPU
bound cost, we used bzip2 utility to compress a tar archive of the Linux source tree. The result of this
operation is again shown in Table 4, and it is again clear that Sherlock’s overhead on CPU bound loads is
negligible.

As expected during the execution of these benign applications, Sherlock did not report any hidden op-
eration. These results show that Sherlock is indeed an adaptive system that creates small overhead during
the execution of benign applications. Given this appealing performance, it appears well suited to production
desktop environments.

5.3 Security Analysis

We analyze Sherlock from the perspective of an attacker who wants to bypass our security system in order
to execute malicious code.

Sherlock depends upon watchpoints to know about the state of the executing kernel. It implements a
watchpoint using the VMCALL instruction, which gets triggered when a watchpoint is hit inside the guest
VM. An attacker may try to confuse Sherlock by executing fake or nop VMCALL instructions, which may

14

lead to false alarms. Sherlock defeats these kind of mimicry attacks by locating the code position (instruction
pointer) from where a VMCALL instruction is invoked. With this knowledge, any VMCALL instruction that
does not correspond to the set of our watchpoints can be discarded.

An attacker cannot tamper with the watchpoints or static kernel code. However, she can unload a device
driver that contains our watchpoint and replace it with a new device driver. In this way, the attacker can
execute the driver functions to perform hidden operations without hitting any of the watchpoints. Sherlock
thwarts this attack by keeping the memory locations where the device drivers containing watchpoints are
loaded in the kernel memory (this information is kept in the /proc/module file). Any unloading and
loading (memory update) operations in those memory areas are intercepted by Sherlock to counter the
attack.

6 Conclusions

In this paper, we described our two principal contributions: first, we implemented an attack called Illu-
sion that obfuscates the system-call interface and uses a legitimate mechanism to invoke system operations
without revealing the system call for that operation. We considered the problem where an existing system-
call based analyzer is not able to see the operations performed by the Illusion attack due to its reliance on
the system-call mechanism. Second, we presented a system named Sherlock that addresses the problem of
hidden operations created by the Illusion attack. It detects the presence of the Illusion attack and exposes
hidden operations with the help of watchpoints inserted inside the kernel code path of the guest OS. The
adaptive design of Sherlock helps maintain the acceptable performance overhead imposed on the user-space
applications.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity: Principles, implementations, and

applications. In 12th ACM Conference on Computer and Communications Security (CCS), Alexandria, VA, Nov.
2005.

[2] A. Baliga, P. Kamat, and L. Iftode. Lurking in the shadows: Identifying systemic threats to kernel data. In IEEE
Symposium on Security and Privacy, Oakland, CA, May 2007.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing,
NY, Oct. 2003.

[4] Blorge. Faulty drivers bypass Vistas kernel protection. http://vista.blorge.com/2007/08/02/
faulty-drivers-bypass-vistas-kernel-protection/. Last accessed 11 Sep 2008.

[5] K. Borders, X. Zhao, and A. Prakash. Siren: Catching evasive malware. In IEEE Symposium on Security and
Privacy, Oakland, CA, May 2005.

[6] A. Chakrabarti. An introduction to Linux kernel backdoors. http://www.infosecwriters.com/
hhworld/hh9/lvtes.txt. Last accessed 11 Sep 2008.

[7] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks are realistic threats. In 14th

USENIX Security Symposium, Baltimore, MD, Aug. 2005.

[8] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor. Subdomain: Parsimonious server
security. In Systems Administration Conference, New Orleans, LA, Dec. 2000.

[9] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware virtualization extensions.
In 15th ACM Conference on Computer and Communications Security (CCS), Alexandria, Virginia, Oct. 2008.

15

[10] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Revirt: Enabling intrusion analysis through virtual-machine
logging and replay. In 5th Symposium on Operating System Design and Implementation (OSDI), Boston, MA,
Dec. 2002.

[11] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using call stack information. In
IEEE Symposium on Security and Privacy, Oakland, CA, May 2003.

[12] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for UNIX processes. In IEEE
Symposium on Security and Privacy, Oakland, CA, May 1996.

[13] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement of authorization hooks in the Linux security modules
framework. In 12th ACM Conference on Computer and Communications Security (CCS), Alexandria, Virginia,
Nov. 2005.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[15] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for intrusion detection. In
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2003.

[16] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS support and applications for trusted computing. In 9th
Hot Topics in Operating Systems (HOTOS), Lihue, HI, May 2003.

[17] J. Giffin, S. Jha, and B. Miller. Detecting manipulated remote call streams. In 11th USENIX Security Symposium,
San Francisco, CA, Aug. 2002.

[18] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection. In Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2004.

[19] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[20] X. Jiang and X. Wang. Out-of-the-box monitoring of VM-based high-interaction honeypots. In 10th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID), Surfers Paradise, Australia, Sept. 2007.

[21] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through VMM-based ‘out-of-the-box’ semantic view.
In 14th ACM Conference on Computer and Communications Security (CCS), Alexandria, VA, Nov. 2007.

[22] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Antfarm: Tracking processes in a virtual machine
environment. In USENIX Annual Technical Conference, Boston, MA, June 2006.

[23] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. VMM-based hidden process detection and identi-
fication using Lycosid. In ACM Conference on Virtual Execution Environments (VEE), Seattle, WA, Mar. 2008.

[24] Kimmo Kasslin. Kernel malware: The attack from within. www.f-secure.com/weblog/archives/
kasslin AVAR2006 KernelMalware paper.pdf. Last accessed 11 Sep 2008.

[25] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. Information flow control
for standard OS abstractions. In Symposium on Operating System Principles (SOSP), Stevenson, WA, Oct. 2007.

[26] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating mimicry attacks using static binary
analysis. In 14th USENIX Security Symposium, Baltimore, MD, Aug. 2005.

[27] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell. Linux kernel integrity measurement using
contextual inspection. In 2nd ACM Workshop on Scalable Trusted Computing, Alexandria, VA, Nov. 2007.

[28] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack: Fast, generic, and safe unpacking of malware. In
23rd Annual Computer Security Applications Conference (ACSAC), Miami, FL, Dec. 2007.

[29] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A layered architecture for detecting mali-
cious behaviors. In 11th International Symposium on Recent Advances in Intrusion Detection (RAID), Boston,
MA, Sept. 2008.

16

[30] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy, and M. Hiramatsu. Probing the guts of
kprobes. In Proceedings of the Linux Symposium, Ottawa, Canada, July 2006.

[31] McAfee Security. System Call Interception. http://www.mcafee.com/us/ tier2/products/
media/mcafee/wp systemcallinterception.pdf. Last accessed 11 Sep 2008.

[32] Microsoft. Digital Signatures for Kernel Modules on Systems Running Windows Vista. http://www.
microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx. Last accessed 11 Sep 2008.

[33] Microsoft. Introduction to File System Filter Drivers. http://msdn.microsoft.com/en-us/
library/ms790748.aspx. Last accessed 11 Sep 2008.

[34] Microsoft. PatchGuard. http://en.wikipedia.org/wiki/Kernel Patch Protection. Last ac-
cessed 11 Sep 2008.

[35] D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer. Exploiting execution context for the detection of anomalous
system calls. In 10th International Symposium on Recent Advances in Intrusion Detection (RAID), Surfers
Paradise, Australia, Sept. 2007.

[36] K. Onoue, Y. Oyama, and A. Yonezawa. Control of system calls from outside of virtual machines. In ACM
Symposium on Applied Computing, Fortaleza, Ceara, Brazil, Mar. 2008.

[37] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure active monitoring using
virtualization. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2008.

[38] N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh. An architecture for specification-based detection
of semantic integrity violations in kernel dynamic data. In 15th USENIX Security Symposium, Vancouver, BC,
Canada, Aug. 2006.

[39] N. L. Petroni, Jr. and M. Hicks. Automated detection of persistent kernel control-flow attacks. In 14th ACM
Conference on Computer and Communications Security (CCS), Alexandria, VA, Nov. 2007.

[40] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel rootkits with VMM-based memory shad-
owing. In 11th International Symposium on Recent Advances in Intrusion Detection (RAID), Boston, MA, Sept.
2008.

[41] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L. Griffin, and L. van Doorn. Building a MAC-
based security architecture for the Xen open-source hypervisor. In Annual Computer Security Applications
Conference (ACSAC), Tucson, AZ, Dec. 2005.

[42] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method for detecting anomalous
program behaviors. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.

[43] M. Sharif, K. Singh, J. Giffin, and W. Lee. Understanding precision in host based intrusion detection: Formal
analysis and practical models. In 10th International Symposium on Recent Advances in Intrusion Detection
(RAID), Surfers Paradise, Australia, Sept. 2007.

[44] SoftPedia. Download Tool to Bypass Driver Signing on 32-bit and 64-bit Windows Vista. http://news.
softpedia.com/news/Download-Tool-to-Bypass-Driver-Signing-on-32-bit-and-.
64-bit-Windows-Vista-61405.shtml. Last accessed 11 Sep 2008.

[45] A. Srivastava and J. Giffin. Tamper-resistant, application-aware blocking of malicious network connections. In
11th International Symposium on Recent Advances in Intrusion Detection (RAID), Boston, MA, Sept. 2008.

[46] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust between applications and operating systems
congurable. In Symposium on Operating System Design and Implementation (OSDI), Seattle, WA, Oct. 2006.

[47] K. M. Tan, K. S. Killourhy, and R. A. Maxion. Undermining an anomaly-based intrusion detection system using
common exploits. In Recent Advances in Intrusion Detection (RAID), Zurich, Switzerland, Oct. 2002.

[48] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In 9th ACM Conference on
Computer and Communications Security (CCS), Washington, DC, Nov. 2002.

17

[49] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Constructing services with interposable virtual hardware.
In 1st Symposium on Networked Systems Design and Implementation (NSDI), San Francisco, CA, Mar. 2004.

[50] J. Wilhelm and T. c. Chiueh. A forced sampled execution approach to kernel rootkit identification. In 10th

International Symposium on Recent Advances in Intrusion Detection (RAID), Surfers Paradise, Australia, Sept.
2007.

[51] H. Xu, W. Du, and S. J. Chapin. Context sensitive anomaly monitoring of process control flow to detect mimicry
attacks and impossible paths. In 7th International Symposium on Recent Advances in Intrusion Detection, Sophia
Antipolis, France, Sept. 2004.

[52] M. Xu, X. Jiang, R. Sandhu, and X. Zhang. Towards a VMM-based usage control framework for OS kernel
integrity protection. In 12th ACM Symposium on Access Control Models and Technologies (SACMAT), Sophia
Antipolis, France, June 2007.

[53] X. Zhao, K. Borders, and A. Prakash. Towards protecting sensitive files in a compromised system. In 3rd IEEE
Security in Storage Workshop, 2005.

18

