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SUMMARY 

 We consider here a class of mechanisms consisting of one or more compliant 

members, the manipulation of which relies on the deflection of those members. 

Compared with traditional rigid-body mechanisms, compliant mechanisms have the 

advantages of no relative moving parts and thus involve no wear, backlash, noises and 

lubrication. Motivated by the need in food processing industry, this paper presents the 

Global Coordinate Model (GCM) and the generalized shooting method (GSM) as a 

numerical solver for analyzing compliant mechanisms consisting of members that may be 

initially straight or curved.  

  As the name suggests, the advantage of global coordinate model is that all the 

members share the same reference frame, and hence, greatly simplifies the formulation 

for multi-link and multi-axis compliant mechanisms. The GCM presents a systematic 

procedure with forward/inverse models for analyzing generic compliant mechanisms. 

Dynamic and static examples will be given and verified experimentally. We also develop 

the Generalized Shooting Method (GSM) to efficiently solve the equations given by the 

GCM. Unlike FD or FE methods that rely on fine discretization of beam members to 

improve its accuracy, the generalized SM that treats the boundary value problem (BVP) 

as an initial value problem can achieve higher-order accuracy relatively easily.  

Using the GCM, we also presents a formulation based on the Nonlinear 

Constrained Optimization (NCO) techniques to analyze contact problems of compliant 

grippers. For a planar problem it essentially reduces the domain of discretization by one 



 

xviii 

dimension. Hence it requires simpler formulation and is computationally more efficient 

than other methods such as finite element analysis. 

An immediate application for this research is the automated live-bird transfer 

system developed at Georgia Tech. Success to this development is the design of 

compliant mechanisms that can accommodate different sizes of birds without damage to 

them. The feature to be monolithic also makes compliant mechanisms attracting in harsh 

environments such as food processing plants. Compliant mechanisms can also be easily 

miniaturized and show great promise in microelectromechanical systems (MEMS). It is 

expected that the model presented here will have a wide spectrum of applications and will 

effectively facilitate the process of design and optimization of compliant mechanisms.  
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CHAPTER 1  

INTRODUCTION AND BACKGROUND 

 

 

1.1 Motivations and Background 

A mechanism, as defined by Reuleaux [1876], is an assemblage of resistant 

members, connected by movable joints, to form a closed kinematic chain with one link 

fixed and having the purpose of transforming motion. The purpose of a mechanism is to 

make use of its internal motions in transforming power or motion. Traditional 

mechanisms consist of rigid (non-deformable) members connected at movable joints. 

Actuations are applied at the joints to provide motion for rigid members. We refer these 

as rigid-body mechanisms. Examples include a reciprocating engine piston, a crane hoist, 

and a vice grip. Analyses of rigid-body mechanisms are well understood since closed 

form solution are available. However, there are many other applications where some of 

the members are intentionally designed to be relatively compliant compared with other 

members. We refer them as compliant mechanisms. As defined by Lobontiu [2002], a 

compliant mechanism is a mechanism that is composed of at least one member (link) that 

is sensibly deformable (flexible or compliant) compared to other rigid links. Figure 1.1 

shows that a rigid-body mechanism (top) becomes a compliant mechanism (bottom) 

when the connecting rod is clamped at the sliding block. 
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Figure 1.1 Rigid-body (top) and compliant (bottom) mechanisms 

A compliant mechanism also transforms motion or power. Unlike rigid-body 

mechanisms, where actuations are applied at the joints connecting the rigid members, the 

manipulation of a compliant mechanism relies on the deflection of compliant members. 

The advantages of compliant mechanisms over rigid-body mechanisms include:   

(1) There are no relative moving parts and thus involve no wear, backlash, noises and 

lubrication.  They are relatively compact in design and can be manufactured from a 

single piece to provide a monolithic mechanism.  

(2) Displacements and forces are smooth and continuous at all levels. 

A specific application of compliant mechanisms is handling of live birds that 

come in a limited range of different sizes and shapes. In order not to cause damage to the 

birds, handling must be performed with care. While rigid-body mechanisms require 

actuators and sensors to manipulate live objects, the use of compliant mechanisms greatly 
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reduces the number of actuators and sensors needed and at the same time minimizes the 

damage. 

The survey by Lee et al. [1996] shows that rubber fingers have been used for 

handling live birds over the past two decades. Among them are a singulating system 

developed by Berry et al. [1993] and a pickup system proposed by Briggs et al. [1994]. 

The rubber fingers were further explored by Lee et al. [1999] to position the bird for 

shackling and transferring. In order to design compliant fingers for transferring live bird, 

Joni [2000] performed a finite element analysis to predict the static contact force between 

compliant fingers and the live object. Yin [2003] studied the dynamical effect of high 

speed grasping of live birds. The study by Joni and Yin has verified that (1) the quasi-

static model is sufficient to predict the contact force and (2) the bird is relatively rigid 

compared with soft fingers so that it can be treated as a rigid body. 

Motivated by the previous work that use compliant fingers for handling and 

transferring live birds, the goal of this thesis is to develop a systematic yet general 

formulation and extend the analysis to general mechanisms so that it that can facilitate 

design and analysis of compliant mechanisms. 

1.2 Problem Description and Objectives 

With the emerging applications of compliant mechanisms, there is a need for 

developing a systematic formulation for design and analysis of compliant mechanisms. 

Although existing methods such as finite element method are widely available, there 

remain challenges in the computational model of compliant mechanisms: 
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 Many existing models are either inadequate to capture the geometric nonlinearity or 

too complicated that can not serve as basis for compliant mechanism design and 

optimization. 

 There is not a single formulation that can directly deal with forward and inverse 

problems of compliant mechanisms.  

 Compliant gripping problems, where manipulation of objects requires deflection of 

grippers, generally require intensive computation.  

With the challenges stated above, the objectives of this thesis are to  

(1) Develop an efficient numerical solver to simulate the force-displacement relationships 

of compliant mechanisms.  

(2) Based on the solver in (1), develop a general forward/inverse model with systematic 

formulations for design and analysis of general compliant mechanisms. 

(3) Develop a numerical technique that can greatly facilitate the analysis of compliant 

grippers.  

Throughout this thesis, we consider compliant mechanisms with the following 

characteristics: 

 Since most compliant mechanisms are designed for planar manipulation, we focus in 

this thesis two dimensional problems. In other words, the compliant member can 

only bend in one direction. We expect that the outcome of this research can be 

extended to three dimensional problems as well. 

 The compliant member is assumed to operate in the linear strain-stress range. 

Nonlinear elastic and plastic deformation are not considered here. 

An immediate application of this research is to design a novel compliant live bird 

transfer system that can accommodate birds with various sizes and shapes. As shown in 



 

5 

Figure 1.2, the system consists of ten compliant fingers, four compliant graspers, and two 

compliant indexers. 

Figure 1.2 Live bird transferring system 

The bird is supported between a pair of “compliant hands” that moves in the y direction. 

Each hand consists of lower fingers, upper fingers and two compliant graspers, whose 

functions are stated as follows: 

(1) The three lower fingers support the weight of the bird while transferring. 

(2) The two upper fingers prevent the bird from flapping and escaping the hands. Both 

the upper and lower fingers are designed to accommodate with a limit range of bird 

sizes in the z direction.  

(3) Compliant graspers are designed to accommodate with a limit range of bird sizes in 

the x direction. 

Compliant indexer

Compliant finger 
Compliant grasper

yz 

x
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In addition, the two compliant indexers are used to position a shaft that rotates the 

compliant grasper in the z direction every 90 degrees.  They are compact in size and can 

replace traditional actuators. As will be shown, the proposed model can greatly simplify 

the design and analysis of these compliant mechanisms. 

1.3 Review of Prior and Related Work 

The literature review is divided into three parts. First we introduce applications 

then computational models for compliant mechanism. Finally, the compliant grippers, a 

special but important class of compliant mechanisms, will be reviewed.  

1.3.1 Compliant mechanism applications  

The idea of using compliant members to store energy and create motion has 

appeared thousands of years ago. Bows have been used as the primary weapon and 

hunting tools in many ancient cultures. Catapults are another example of early use of 

compliant mechanisms. Even nowadays we see compliant mechanism everywhere in our 

lives, such as binder clip, nail clipper, and snap-fits. In the following we introduce the 

applications in mechanical and biomechanical engineering areas. 

Compliant mechanisms in mechanical applications  

With the advance of manufacturing technology, compliant mechanisms have 

numerous applications in robotics/automation such as high precision manipulation [Lee 

and Arjunan, 1991], constant-force end effector [Evans and Howell, 1999], and micro 

electromechanical systems (MEMS). Figure 1.3(a) shows a series of compliant parallel 

mechanisms (also named serpentine) for linear motor drive [Maloney et al., 2004] and 

Figure 1.3(b) shows a micro compliant gripper [Lee et al., 2003].  
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(a) Serpentine (b) Micro gripper 

Figure 1.3 Applications of compliant mechanisms in MEMS 

The reduction in the number of parts and joints offered by compliant mechanisms 

is a significant advantage in the fabrication of MEMS. Micro compliant mechanisms may 

be fabricated using technology and materials similar to those used in the fabrication of 

integrated circuits. Additional applications of compliant mechanisms in macro and micro 

scale can be found in [Howell, 2001] and [Lobontiu, 2002].  

Compliant mechanisms in biomechanical applications  

 Motivated by the successful application of compliant mechanisms in robotics and 

automation, its extension to biomechanics are now emerging and several cutting-edge 

research topics are currently been studied. We introduce some of these topics in the 

following sections. 

Flex-Foot 

As shown in Figure 1.4, Flex-Foot was first introduced in 1984 by prosthetic user 

and research inventor Van Phillips. The advantages of Flex-Foot over conventional 

prosthetic feet are its light weight and compliance. Two critical breakthroughs made this 

product unique and revolutionized the everyday aspirations of amputees. First, energy 
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storage and release, is a function inherent in the patented carbon fiber design of Flex-Foot. 

Second, vertical shock absorption enables a more natural gait and protects the sound limb 

and remaining joints of the amputated limb from excessive shock. Today different 

functions are available within the Flex-Foot range to suit individual needs.  

 

(b) Side view 

 
(a) Flex-Foot for running (c) Vari-Flex 

Figure 1.4 Flex-Foot products (Courtesy of Ossur) 

Biosensors 

Micro cantilever beams have recently found their applications in the bio-medical 

research area. Wu et al. [2001] developed a cantilevered microscopic chip to detect 

prostate specific antigen (PSA) in human blood. As PSA sticks to the antibodies, the 

cantilevered chip bends like a diving board as shown in Figure 1.5(a), where the left 

cantilever bends as the protein PSA binds to the antibody. The other cantilevers, exposed 

to different proteins found in human blood serum (human plasminogen (HP) and human 

serum albumin (HSA)), do not bend because these molecules do not bind to the PSA 

antibody. The cantilevers themselves are about 50 microns wide (half the width of a 

human hair), 200 microns long (a fifth of a millimeter), and half a micron thick. The 
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micro-cantilever technique has applications beyond prostate cancer. Any disease, from 

breast cancer to AIDS, with protein or DNA markers in blood or urine could conceivably 

be assayed by arrays of these micro-cantilevers. 

Another application of micro cantilever beams is shown in Figure 1.5(b). The 

array of micro cantilever beams, coated with a monolayer of edox-controllable [Huang, 

2004] rotaxane molecules, undergoes controllable and reversible bending when it is 

exposed to chemical oxidants and reductants. Conversely, beams that are coated with a 

redox-active but mechanically inert control compound do not display the same bending. 

The capability of transferring chemical energy to mechanical energy in this micro 

cantilever has potential of reduced scale operations compared with traditionally micro 

scale actuators. 

 
(a) Cantilever Sensors Wu et al. [2001] (b) Molecular motors [Huang, 2004] 

Figure 1.5 Biosensors 

EAP as Artificial Muscles 

As shown in Figure 1.6, Electroactive polymers (EAP) are large motion actuators 

that exhibit large bending deformation in response to electrical stimulation. They are 

divided into electronic (driven by electric field) and ionic (driven by diffusion of ions) 

EAPs [Bar-Cohen, 2004]. Electronic EAPs require high activation voltage (~150V/µm) 

but they can sustain DC driven voltages and operate in air. Ionic EAPs, on the other hand, 
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require as low as 1~5V but cannot sustain DC driven voltage and must maintain their 

wetness. Compared with shape memory alloy and electroactive ceramics, EAP materials 

are superior in high actuation strain, low density and low drive voltage [Bar-Cohen, 

2004].  

 

Figure 1.6 An EAP actuator placed between two electrodes 

With the advantages stated above, EAPs have drawn attention in biomechanics 

because they can match the force and energy density of biological muscles.  Various 

robotic applications using EAP have been developed. As shown in Figure 1.7, 

Shahinpoor et al. [1998] used EAP strips as multi-finger grippers for picking 

approximately 10 gram rocks. 

 

(a) Actuated EAP (b) Relaxed EAP 

Figure 1.7 Grasping using  EAP’s 

EAP strip 

Rock 

Electrodes 

EAP strip 
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In addition, Nakabo et al. [2005] implemented a swimming robot using ionic EAP. 

Yamakita et al. [2005] developed a biped walking robot using ionic EAP. Although EAP 

appears as a cutting-edge material for actuation, there are still challenges need to 

overcome before transition to real applications [Bar-Cohen et al. 1999]. 

1.3.2 Computational models for compliant mechanisms 

 With the emerging technology utilizing compliant members, we introduce state-

of-the-art computational models for design and analysis of compliant mechanisms. First 

we introduce static models and second dynamic models.  

Static Analysis of Compliant Mechanisms 

Four methods are commonly used to analyze a compliant mechanism; namely, 

elliptical integrals, finite element method (FEM), chain algorithm, and the pseudo-rigid-

body model. The geometrical solution to the 2nd order, nonlinear differential equation that 

characterizes the large deflection of flexible beams can be found in [Frisch-Fay, 1962] 

but the derivation of the elliptical integrals is rather cumbersome and is useful for beams 

with relatively simple geometry, (see for example, [Mattiasson, 1981]).  FEM can deal 

with complicated geometric shape by discretizing elastic members into small elements 

but the accuracy depends on the resolution of discretization. For nonlinear analysis, the 

formulation is often complicated with time-consuming computation. The chain algorithm 

[Hill and Midha, 1990] also discretizes the elastic member into small linearized elements. 

Unlike FEM, the elements in the chain algorithm are analyzed in succession and hence, 

the inversion of overall stiffness matrix is avoided. Shooting methods are then used to 

satisfy boundary conditions. However, the accuracy of the results computed using the 

chain algorithm still depends on the resolution of the discretization. The pseudo-rigid-
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body model [Howell, 2001] finds the equivalent spring stiffness of a flexible link by 

means of approximation functions. The beam is then decoupled into a torsional spring 

and a rigid link. Thus this model essentially extends the rigid-body analysis to find the 

end-point deflection of a flexible link by approximating closed-form elliptical-integral 

solutions. However it is restricted to linear material properties and unable to predict the 

deflected shape of the entire link. 

The fundamental member of a compliant mechanism is a flexible beam (where the 

axial dimension is much larger as compared to those in the cross-section). More recently, 

Yin et al. [2004] evaluated three numerical methods for computing the deflected shape of 

a flexible beam against the exact closed-form solution [Frisch-Fay, 1962] for a uniform 

beam; shooting method (SM), finite difference method (FDM), and FEM. The SM 

calculated shape (with “ode45” in MATLAB) perfectly matches the exact solution with 

only a few iterations.  The results demonstrate that the SM has some advantages over 

FDM and FEM in solving the large-deflection beam equation; SM formulation is simple 

because it does not rely on discretization of compliant links and as a result, it is relatively 

easy to achieve higher order accuracy with incremental computational effort. In addition, 

SM can deal with unusual boundary conditions (for example, BC’s involve derivatives) 

without using approximation that often limits FDM. For design synthesis of mechanisms, 

it is superior to lumped-parameter methods (such as pseudo-rigid-body model) in that it 

can analyze compliant mechanisms with links of nonlinear material properties. These 

provide us the motivation to develop a generalized SM for analyzing compliant 

mechanisms. 

The shooting method was originally suggested by Keller [1968]. By guessing the 

unknown initial values and then integrating the ODE’s, the SM “shoots” at the terminal 
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values iteratively until convergence. Like solving nonlinear equations, two major 

concerns of SM are the need for the reasonably close guesses and the convergence of 

solutions. Multiple-SM has been developed by Keller [1968] and Stoer et al. [1980] to 

overcome convergence problems, which divides the interval of independent variable into 

small subdivisions and then performs SM on each of the subdivisions such that after 

pieced together, the solution is continuous. Another technique is modified SM [Holsapple 

et al., 2003] which shoots at intermediate values in succession until terminal value.  A 

major application of SM has been the analysis of structural members. Wang et al. [1992] 

analyzes rectangular frames and circular rings using shooting-optimization techniques.  

Pai et al. [1996] use multiple-SM to solve the problem of flexible beams undergoing 

large 3-D deflections. Goh et al. [1991] extends shooting method to solve BVP with 

unknown eigenvalues. Most of these research efforts focused on the use of SM for 

solving the deflected shape of only one beam. Its use for analyzing compliant 

mechanisms with multiple beams remains under-exploited.  

Dynamic Analysis of Compliant Mechanisms 

Dynamic analyses of compliant mechanisms have been a subject of interest for 

simulation and control of flexible mechanical systems. Examples include space robot 

arms and high-speed robotic manipulators. These dynamic models are often based on the 

assumption of small deflection without considering shear deformation. This assumption 

is satisfactory provided that the link undergoes a small deflection such that the theory of 

linear elasticity holds. However, for mechanisms involving highly compliant links (such 

as rubber fingers in [Lee, 1996], light-weight arms, and high-precision elements), the 

effects of large deflection with shear deformation on the link motion cannot be ignored. 

In order to predict more accurately the deflected shape during transient, there is a need to 



 

14 

model the dynamics that capture the deflection of a compliant link.  

In the last two decades, several approaches have been developed to analyze 

compliant links undergoing large deflection and overall rotation. Javier [1994] has 

divided this research field into three groups. The first is the simplified elasto-dynamic 

method originally proposed by Winfrey [1971]. This approach assumes that small 

deformation does not affect rigid body motion in order to decouple the rigid body motion 

from the link deformation. The second is the floating frame method based on defining the 

deformation relative to a floating frame which follows the rigid body motion of the link 

(see for example, [Laskin et al., 1983] and [Book, 1984]). This method makes use of 

linear finite element (FE) theory since reliable FE packages are widely available. 

Although this method can account for shear deformation, the deflection is assumed to be 

small in order for the linear theory of elasticity to hold. The third is the large rotation 

vector method [Simo and Vu-Quoc, 1986] based on defining the overall motion plus 

deformation with respect to the inertial frame. Unlike the floating frame method, this 

method allows large deflection of the compliant link. As a result, nonlinear FE method 

(FEM) has to be used. This method, when solved using FEM, can lead to excessive shear 

forces known as shear locking [Bathe, 1996] as pointed out by Shabana [1998]. 

With the recent development of finite element software, two other popular 

methods capable of large deflection analysis are often used, namely the corotational 

procedure and the absolute nodal coordinate formulation. In the following paragraphs we 

introduce these two methods in more detail. 

Corotational procedure 

The corotational procedure was first presented by Rankin and Brogan 

[1986] and has been used by finite element software such as ANSYS. It has been 
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used to analyze many structural problems with large rotations. This procedure is 

independent of the element formulations used. Both the element and its nodes are 

attached with their own local coordinate frames. These frames are used to subtract 

the rigid body motion from the global displacement field to obtain the 

deformation of the element. Hsiao and Jang [1991] extended the corotational 

procedure to analyze flexible planar linkages using linear beam theory. Behdinan 

[1998] used the corotational procedure to study planar beams undergoing large 

deflections. Although this procedure is widely used by finite element software, 

Campanelli et al. [2000] pointed out the main restrictions as follows: 

(1) Local rotation of end sections has to be less than 30˚ 

(2) Small time/load steps 

Absolute nodal coordinate formulation 

The absolute nodal coordinate formulation [Shabana, 1998] is based on 

the finite element method. Compared with the floating frame or reference 

formulation, the element nodal coordinates are now defined in the inertia frame. 

Global slopes are also used instead of infinitesimal or finite rotations. These nodal 

coordinates and slopes are used with a global shape function that has a complete 

set of rigid body modes. This is an advantage over classical finite element 

formulations which do not describe an exact rigid body displacement [Shabana, 

1996]. The resulting mass matrix of this formulation is constant. However, the 

trade-off is that the stiffness matrix and elastic forces are highly nonlinear.  

This formulation has been extended to solve three dimensional beam 

problems [Shabana, 2001] and plate problems [Mikkola, 2001]. The comparison 
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between corotational method and the absolute nodal coordinate formulation can 

be found in [Campanelli et al., 2000].  

1.3.3 Compliant contact problems 

Mechanical grippers have many applications in high-speed production automation. 

A typical robotic gripper with two or more rigid fingers is often actuated by an electrical 

or a pneumatic motor. Unlike grippers with rigid fingers, a compliant gripper is capable 

of large flexural deflection and is manipulated primarily by means of its contact with the 

object being handled rather than solely by an external actuator. The concept of compliant 

gripping has been widely used for snap-fit assembly.  Bonenberger [2000] has a 

comprehensive description on design of snap-fit assembly.  Lee et al. [1996] designed the 

compliant rubber grippers for singulating broiders for poultry meat production, and later 

[1999] exploited their application as graspers to automate transferring of live birds. As a 

compliant gripper requires no external actuators and sensors for feedback to 

accommodate a limited range of shapes/sizes of the live objects, it has been more 

attractive than traditional grippers for high-speed automation. In addition, compliant 

grippers are easy to fabricate, assemble, and maintain.     

Advance in MEMS has realized the need for mass production of micro 

components. Various micromachining methods have been developed, such as IC-based 

silicon processing, LIGA, surface machining, and micro electro discharge machining 

(EDM). However, these techniques are only capable of two-dimensional (2-D) 

fabrication. In order to create broader applications based on MEMS devices, it is required 

to develop microgrippers for manipulating and assembling micro components for 3-D 

applications. The interest to reduce the complexity of 3-D assembly has motivated the 
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development of passive microgrippers. As compared to active microgrippers which may 

be driven by means of electro-thermal [Salim et al., 1997], electrostatic [Kim et al., 

1992], electromagnetic [Suzuki, 1996] or piezoelectric [Ansel et al., 2002] actuators, 

passive micro-grippers requiring no external actuators rely on contact between compliant 

fingers and the micro component to generate motion required for assembly; for examples, 

a micro-machined end-effector for MEMS assembly [Tsui et al., 2004], a micro 

transformer [Dechev, 2004] shown in Figure 1.8(a), and a compliant microgripper for 

micro snap-fit connector [Oh et al., 2003] shown in Figure 1.8(b). 

 
(a) Micro transformer (b) Micro snap-fit connector 

Figure 1.8 Snap-fits for micro assembly 

Since uncertain actuator displacement does not exist in passive microgrippers, 

they have significant potential for very high precision applications. However, design of a 

compliant gripper is more challenging due to the difficulty in predicting the contact-

induced deflection of its fingers.    

Compliant fingers undergo large deflection when they contact the object. The 

essence of the analysis is to determine the normal and tangential contact forces that must 
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satisfy the boundary conditions at the interface. Since most contact problems involving 

large deformation do not permit analytical solutions, designers have resorted to the 

following two solutions. 

Simple closed-form solution based on classical beam theory 

 Bayer Corporation [1996] and AlliedSignal Corporation [1997] have both 

provided guidelines for determining contact forces based on simple beam bending theory. 

Using these guidelines, Oh et al. [1999] developed a Java™-based calculator for 

designing snap-fits. The above solution is easy to use and provides designers quick 

results. However, it is limited to small deflection with simple contact geometry and 

uniform cantilever cross-sections. 

Numerical methods for approximation solutions 

Among them, the matrix inversion method satisfies boundary conditions at 

specified matching points. It has been used by Paul & Hashemi [1981] to calculate 

normal contact forces. Another method, the variational inequality method, determines the 

shape and size at contact by using well-developed optimization techniques. Fichera [1964] 

and Duvant & Lions [1972] have investigated on the existence and uniqueness of solution 

to contact problems. They show that the true contact area and surface displacement are 

those that minimize the total strain energy. From a numerical perspective, Kalker and van 

Randen [1972] formulate the minimization problem as a quadratic programming problem 

to solve frictionless non-Hertzian contact problems. The above two methods are based on 

the elastic half-space model [Johnson, 1987] so that linear elasticity theory holds. For 

contact problems involving large deformation such as compliant grippers, a more general 

approach, the finite element method (FEM), is widely used. However, its formulation is 

complicated and often requires intensive computation. Yin and Lee [2002] proposed a 
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numerical solver based on elliptical integrals to solve the problem of a large-deflected 

gripper contacting an elliptic object. By assuming only one contact point exists, the 

results agree well with those obtained by using FEM with less computation time. 

However, the solver models the gripper as a 1-D segment without considering the 

thickness of the finger. Hence it is not applicable to thick fingers. 

1.4 Summary of Results  

The contributions made in this dissertation are briefly summarized as follows: 

(1) The generalized shooting method is developed to serve as the computation basis for 

analyzing compliant mechanisms. The GSM is shown to be able to achieve higher 

order accuracy easily.  

(2) We develop the global coordinate model to provide systematic procedures for 

analyzing compliant mechanisms. This model captures bending, shear, and axial 

deformation of a compliant link at the same time. Compared with corotational 

procedure or floating frame formulation, the global coordinate model requires only 

the inertia frame and hence no coordinate transformation matrices are needed.  

(3) We proposed an efficient numerical technique to facilitate design and analysis of 

compliant grippers. This technique essentially reduces the dimension of discretization 

by one, and hence, is significantly faster than finite element method without losing 

accuracy. 

1.5 Organization of This Dissertation 

The reminder of this thesis is organized as follows. We start in Chapter 2 with the 

development of generalized shooting method for solving systems of boundary value 
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problems. We use Frisch-Fay’s model as an illustration to demonstrate the application of 

generalized shooting method for analyzing compliant mechanisms. The generalized 

shooting method will be the basis for analyzing general compliant mechanisms in 

Chapters 3 and 5. 

In Chapter 3, the global coordinate model will be developed to analyze the 

dynamic response of serial compliant mechanisms with numerical and experimental 

verifications performed in Chapter 4. 

Chapter 5 presents the static analysis of compliant mechanisms using global 

coordinate model. Systematic procedures will be given to model general compliant 

mechanisms. Both forward and inverse examples will be given. A program will also be 

developed to allow graphical user interface. We post a case study at the end of Chapter 5 

to illustrate the application of the global coordinate model.  

Based on the global coordinate model, Chapter 6 will develop a gripping contact 

model for analyzing compliant grippers. The nonlinear constrained optimization 

technique will be applied to solve the model. As will be demonstrated, the technique can 

significantly improve the simulation of compliant gripping problems. Two types of 

gripping contact problems will be considered, namely direct and indirect contact.  

Numerical examples will be given to compare with the results of using finite element 

software.  

Figure 1.9 shows the flow of this thesis. Specifically, two numerical solvers will 

be proposed. They respectively solve two different boundary conditions of compliant 

mechanisms (revolute/clamped and contact) that can be described by global coordinate 

model and compliant gripping model.  
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Figure 1.9 Flow chart of thesis 

Finally, the conclusions and recommendations of the thesis are presented in 

Chapter 7. Several aspects of potential future work are addressed to increase the 

applicability of the analysis and modeling discussed in this thesis, and to facilitate the 

design of compliant mechanisms.  

Ch2 
Generalized shooting 

method 

Ch3 & 5 
Formulation for generic 
compliant mechanisms 

Ch6
Nonlinear constrained 
optimization technique 

Ch6
Compliant gripping model 

Global coordinate model

Model

Solver
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CHAPTER 2 

GENERALIZED SHOOTING METHOD  

 

 
2.1 Introduction 

As mentioned in Subsection 1.3.2, several numerical methods have been 

previously compared for analyzing a large deflected compliant member. The shooting 

method (SM) has been demonstrated to have superior performance compared to its 

counterparts. This chapter extends the shooting method for analyzing compliant 

mechanisms. We organize the remainder of this chapter as following:  

1. We generalize the SM for solving two-point BVP and extend it to analyze compliant 

mechanisms with distributed-parameter models.  

2. Two numerical algorithms are given to implement generalized SM; namely, 

unconstrained Gauss-Newton method and constrained Gauss-Newton method. 

3. We illustrate with five examples the formulation of the generalized SM for a broad 

spectrum of applications. 

4. The numerical method will be validated by comparing against experiment results, and 

those obtained with using other methods; close-form solution, FEM, and FDM 

whenever possible.  Advantages over FEM and FDM are also highlighted. 

Note that the formulation introduced in this chapter will serve as the computation 

basis for the analytical models developed in Chapters 3 and 5. 
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2.2 Formulation of Generalized SM (GSM) 

Consider a chain of compliant links connected together as shown in Figure 2.1 

(either open-loop or close-loop). Each link is governed by n 1st order ordinary differential 

equations (ODE’s) ii fq =′ with normalized independent variable ui. As will be shown later 

in the examples, the variable ui can be the axial coordinate or the path-length variable 

normalized to the length of the link. We are interested in the problem of a compliant 

mechanism where one or more of the links are connected to a fixed frame (or ground).  

The links can then be formulated as a system of l  coupled, normalized sets of 1st order 

nonlinear ordinary differential equations (ODE’s): 
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where iii dud /qq =′ ;  

1,,0 1 ≤≤ lL uu are independent variables; 

T
1 2[ ]i i i inq q q=q L is the state vector, lK,,1=i ; and 

TTTT ],,,[ 21 lL ξξξξ = is a vector of r unknown parameters. As will be illustrated in 

the examples in Section 2.4, these unknown parameters provide the coupling 

among the l sets of ODE’s.  

 

Figure 2.1 Schematics of a series of compliant links 
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Equation (2.1) is subject to the initial and terminal values (BV’s) denoted as  

µuq == )0(  and ηuq == )1(  

where TTTT ],,,[ 21 lK qqqq = is an n× l vector. We consider here a class of problems where 

only some of the initial values are known. The m unknown initial values of q(u=0) are 

denoted by an m×1 unknown vector µu. It is worth noting that the original formulation in 

the conventional SM does not involve unknown parameters and thus, can only deal with a 

special case of Equation (2.1) where all the parameters (ξ’s) are known. 

SM transforms a boundary value problem (BVP) to an initial-value-problem 

(IVP). It generally requires making guesses on the unknown initial values µu in order for 

the nonlinear ODE’s to be solved. Since ξ is an unknown vector, additional guesses on 

the values of the parameters are also needed. These guesses must together satisfy two sets 

of constraints after solving the ODE’s; namely, the terminal constraints and the physical 

constraints.  In order to solve this class of problems, these constraints must together form 

r+m nonlinear algebraic equations after integrating the ODE’s. They are expressed 

mathematically in Equations (2.2a) and (2.2b): 

Constraint Set I: Satisfying (known) terminal constraints  

0),(η),(
1

* =+= ∑
=

i

n

j
ujijui dcg ξµξµ ,  pi ,,2,1 K=  (2.2a)

where the function )(η* ⋅j calculates the thj terminal values jη  for any 

given uµ and ξ ; ijc and id are constant coefficients. 

Constraint Set II: Satisfying (known) physical constraints 

0),( =ξµuig , mrppi +++= ,,2,1 K  (2.2b)
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Note that similar constraint sets has been proposed by Goh et al. [1991]. However, their 

formulation only consists of one set of ODE’s in Equation (2.1), which is a special case 

of the GSM presented here. It is assumed that the solution of the BVP represented by 

Equations (2.1) and (2.2) exists and is unique. For the existence and uniqueness theorem 

of BVP, please refer to Stoer et al. [1980]. 

A general system of nonlinear algebraic equations (NAE) requires that the 

number of initial guesses equals the number of nonlinear equations. The BVP, Equations 

(2.1) and (2.2), shares this property and can be treated as implicit NAE. Numerical 

solvers for NAE can thus be used to solve the BVP. However, unlike a typical NAE, the 

exact derivatives of the BVP are unavailable and must be approximated numerically. We 

choose to use Gauss-Newton method that requires only the 1st derivative, as opposed to 

Newton’s method that requires both the 1st and 2nd derivatives. The following section 

discusses two Gauss-Newton based solvers to solve the BVP. 

The Gauss-Newton method begins with a set of initial guesses 0x for the unknown 

initial values and parameters, and solves for x iteratively. In any (say kth) iteration, we 

approximate the constraint vector ),( ξµg u at iteration in terms of the guesses kx by the 

1st-order function: 

))(()()()( kkk xxxJxgxmxg −+=≅  (2.3)

where  mrR +∈x  is a vector of the guessed initial values and parameters, 

namely TTT
u ][ ξµx = ; 

)( kxJ  is the Jacobian matrix evaluated numerically (for example, finite-

difference-method) at kx ; and 
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mrR +∈)(xg  is the constraint vector given by Equations (2.2a) and (2.2b).  The 

vector function )(xg  should be zero if the problem is solved.  

The remaining problem is then to find a vector x that minimizes the approximation 

function: 

[ ]∑
+

=

mr

i
im

1

2)(min x  (2.4)

In the following two subsections, we consider two different cases; namely, with and 

without bounds on the unknowns. Case I (unbounded) is solved as a least square (L-S) 

problem. Case II is formulated as a quadratic programming (QP) problem, which allows 

the bounds to be imposed on the unknowns. Computational steps will be given for each 

case.  

2.2.1 Unbounded Gauss-Newton method 

No bound imposed on the unknowns –solved as an L-S problem. 

Equation (2.4) is essentially a linear least-square (L-S) problem because the 

approximation functions can be expressed as 

[ ] 2

1

2)( kk

mr

i
im bxJx −=∑

+

=

 (2.5)

where )( kk xJJ =  and )( kk xgg =  are defined to simplify the notation; and 

kkkkkkk gxJxgxxJb −=−= )()(  (2.6)

The L-S problem has a formal solution via matrix algebra   

k
T
kk

T
kk bJJJxx 1

1 )( −
+ ==  (2.7)

which replaces kx  for the next iteration until  
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tolerence≤)(xg . 

Using Equation (2.6), Equation (2.7) can be written as 

k
T
kk

T
kkkkk

T
kk

T
kk gJJJxgxJJJJx 11

1 )()()( −−
+ −=−= . 

It is assumed here that 1)( −
k

T
k JJ exists. This is a line search procedure along the descent 

direction v defined as 

k
T
kk

T
k gJJJv 1)( −−=  (2.8)

In order to know how far xk should go along the descent direction, a positive step-length 

factor β is introduced here  

vxx β+=+ kk 1  (2.9)

such that )( vxg β+k is minimum. In order to obtain the value of β, we choose three 

numbers β1<β2<β3 that are close to β. We then construct a quadratic interpolation 

polynomial )(zp  from the three numbers. The minimum of )(zp  can be obtained at 

],[ˆ
31 βββ ∈ , which approximates the minimum of )( 1+kxg . The steps for the unbounded 

Gauss-Newton method are outlined below: 

Computational steps for Case I: 

Given initial 0x , tolerance ε  and ),,( 321 βββ , repeat the following steps untilε is met: 

Step 1: Evaluate k
T
kk

T
k gJJJv 1)( −−= . 

Step 2: Calculate the optimal β̂  from )(zp . 

Step 3: If εβ ≤+ )ˆ( vxg k  return x  

else vxx β̂1 +=+ kk  

End 
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2.2.2 Bounded Gauss-Newton method  

Bounded unknowns– solved as a quadratic programming (QP) problem.  

The drawback of SM for solving nonlinear BVP, however, is that initial guesses 

are needed to shoot for the specified terminal BV’s on the other side of the domain. Bad 

initial guesses could lead to wrong solution or even divergence. Most practical physical 

problems, however, have bounded BV’s and often these bounds are one-sided, positive or 

negative. For this reason, we offer an alternative formulation using knowledge of the 

problem to impose a bound on the unknowns in solving Equations (2.1), (2.2a) and (2.2b). 

Hence any initial guesses within the bound will lead to the true solution. 

Expanding the approximation function in Equation (2.5), 

( )k
T
kk

T
kk

T
k

T
kk bbxJbxJJxbxJ +−=− 2minmin 2  (2.10)

Since k
T
k bb  is a constant in every kth step, it can be dropped from the minimization 

problem. The least square problem can be recast as a QP problem 

( )xJbxJJx k
T
kk

T
k

T 2min − ,  ublb xxx ≤≤  (2.11)

where lbx  and ubx  defines the lower and upper bounds of the initial guesses respectively. 

Equation (2.11) is a standard QP problem that can be solved using various methods 

[Bazaraa et al., 1993]. After solving the QP, the optimal solution will be the next 

step 1+kx . The descent direction v can be calculated as 

kk xxv −= +1  (2.12)

The procedure for finding β that minimize )( 1+kxg  is the same as the previous section. 
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Computational steps for Case II: 

Given initial 0x  such that ublb xxx ≤≤ 0 , tolerance ε and ),,( 321 βββ , repeat the following 

steps until ε is met: 

Step 1:  For every thk step, solve the QP or Equation (2.11) for optimal 1+kx .  

Step 2:  Evaluate kk xxv −= +1 . 

Step 3:  Calculate the optimal β̂ from )(zp . 

Step 4:  If εβ ≤+ )ˆ( vxg k  return x  

else vxx β̂1 +=+ kk  

End 

The formulation and solution method of bounded Gauss-Newton method offers 

two advantages: 

(1)  The QP avoids inverting k
T
k JJ , which may be singular.  

(2)  Some knowledge on the bounds of the unknown BV parameters ensures that the 

solution is always in the feasible region. 

While developed for GSM, it is worth noting that bounded Gauss-Newton method can 

also be used to solve general nonlinear equations. As long as we know the upper bounds 

and lower bounds of the true roots, we can apply bounded Gauss-Newton method to 

avoid inverting kk JJT . 

2.3 Applications to Compliant Mechanisms 

A general compliant mechanism includes multiple compliant links connected by 

pinned or clamped joints, the formulation of which is represented in the form suggested 
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by Equation (2.1). We offer here a systematic approach leading to a set of guidelines for 

formulating a compliant mechanism. The approach begins with the governing equations 

for a flexible beam capable of large deflection; for clarity, we divide beams into two 

categories; namely, beams that are initially straight and curved. This is followed by 

formulating the flexible beam as a member of a compliant mechanism, along with the 

method for identifying the unknowns and the complete set of constraint equations. 

In the following discussion, we introduce in Subsections 2.3.1 and 2.3.2 a flexible 

beam model based on [Frisch-Fay, 1962] for characterizing large deflection of straight 

and curved compliant members respectively. These governing equations, which offer a 

means to analyze compliant mechanisms where the effect of axial deformation is 

negligible, will be recast as 1st order ODE’s with n=2 in Subsection 2.3.3 and used for all 

examples in this chapter (except in Subsection 2.5.1 where the effect of axial deformation 

is examined). We also provide two alternative models (with n=4 and n=6) in Appendix A 

that can predict axial deformation of compliant members with large deflection. 

2.3.1 Governing equation of a flexible beam: Initially straight  

 Figure 2.2(a) shows an initially straight beam of length L deflected under a point 

force F along the direction α and an external bending moment M0 at location C.  

 

(a) Initially straight beam 
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(b) Initially curved beam 

Figure 2.2 Schematics and coordinate systems of a flexible beam 

In Figure 2.2(a), the coordinate frame O is attached at one end of the beam, where the x 

axis lies on the un-deflected beam that deflects in the y direction. The location of C is 

denoted as PC=[xC yC]T. 

 The bending moment M at a point (x, y) on the beam is given by 

0)(cos)(sin)( MyyFxxFM
ds
dsEI CC +−+−== ααψ  (2.13)

where s is the arc length of the beam as shown in Figure 2.2(a); 

E is Young’s modulus of the beam material; 

I(s) is the moment of area of the beam; 

ψ  is the angle of rotation;  

M is the bending moment (positive when it produces compression in the lower part 

of the beam); 

F is the applied force (positive when pointing towards the positive y-direction.); and 

M0 is the applied moment at the end of the beam. 

In order to express Equation (2.13) explicitly in terms of s, we differentiate it with respect 

to s leading to the following 2nd order differential equation: 
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ψαψαψψ sincoscossin)()( 2

2

FF
ds
d

ds
sdIE

ds
dsEI −−=+  (2.14)

where cosψ=dx/ds and sinψ=dy/ds. Note that the constant M0 vanishes after 

differentiation. We then normalize Equation (2.14) leading to a dimensionless nonlinear 

differential equation of θ with respect to u,  

0sin)(1
2 =+



 θθ

E
F

du
duI

du
d

L
 (2.15)

where ]1,0[∈= L
su  (2.15a)

and ],[ 0ψαααψθ +∈+=  (2.15b)

2.3.2 Governing equation of a flexible beam: Initially curved 

If the un-deformed beam is initially curved (neither straight nor parallel to x axis) 

as shown in Figure 2.2(b). Then, the intrinsic curve function η(s) must be included. The 

dashed line represents the free shape of the beam described by η(s) while the solid line 

represents the deformed shape of the beam described by ψ(s).  

The initial curvature has no effect on bending moment and is subtracted from 

Equation (2.13) to obtain Equation (2.16): 





 −=

ds
d

ds
dsEIM ηψ)(  (2.16)

Following the same procedure as described in Subsection 2.3.1, the governing equation 

of an initially curved beam can be described as follows after normalization. 

0sin)(1
2 =+














 − θηθ

E
F

du
d

du
duI

du
d

L
 (2.17)

Clearly, Equation (2.15) is a special case of Equation (2.17) with η(s)=0. Hence, we will 

refer to Equation (2.17) and Figure 2.2(b) as the general governing equation for the 
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flexible beam hereafter.  Once Equation (2.17) is solved, the position C can be obtained 

from Equation (2.18): 

∫∫ 







−
−

=







=







 1

0

1

0 )sin(
)cos(

sin
cos

duLduL
y
x

C

C

αθ
αθ

ψ
ψ

 (2.18)

It is worth noting that the beam formulation derived here allows for non-uniform 

cross-section, which can be incorporated through the moment of inertia I(u) as shown in 

Equation (2.17). This ability to model beams with non-uniform cross-section would serve 

as an essential basis for dealing mechanisms with links of arbitrary geometry. 

2.3.3 Beam as a member in a compliant mechanism  

Consider the flexible beam in Figure 2.2(b) as the ith link of a compliant 

mechanism. Equation (2.17) that governs the large deflection of the link can be written in 

the form as Equation (2.1) by defining θi1=θ and 12 / ii dud θθθ ′== :  

),,( iiiii u ξθfθ =′  (2.19)

where T
21 ][ iii ff=f ,   

 21 iif θ=  (2.19a)

 1

2

22 sin
)(

)(
)(

)()(
)(
)(

i
iii

ii
ii

ii

iiii
i

ii

ii
i uIE

LFu
uI

uuI
uI
uIf θηηθ −′′+

′′
+

′
−=  (2.19b)

The initial values needed to solve Equation (2.19) are θi1(0) and θi2(0). For a general 

compliant link as shown in Figure 2.2(b), the known and unknown initial values 

(presented in Table 2.1) depend on the type of joints at O. As shown in Table 2.1, the ith 

compliant link has one unknown initial value for either clamped or pinned end. Similarly, 

a compliant mechanism composed of k compliant links has m=k unknown initial values.  
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Table 2.1 Clamped and pinned initial conditions 

Initial Values Conditions at O 
Known Unknown 

Clamped )0()0(1 iii ηαθ +=  )0(2iθ  
Pinned )0()0(2 ii ηθ ′=  )0(1iθ  

The unknown parameters are consequences of connecting compliant links 

together.  For example, the applied forces Fi and Fi+1 to the ith and (i+1)th link are 

essentially the reaction forces when the two links are connected at the joint. Hence, these 

“hidden” variables must be treated as unknowns. In general, the unknown parameter 

vector iξ for the ith link includes the force Fi and its direction αi. Initial guesses have to be 

made about these unknown parameters in order to integrate Equation (2.1). The number 

of unknowns (initial values and parameters) then has to match the number of constraint 

equations in the following subsection so they can be solved using Gauss-Newton method. 

2.3.4 Formulation of constraint equations  

As shown in Figure 2.3(a), the constraint sets Equations (2.2a) and (2.2b) for a 

compliant mechanism can be obtained by applying Newton’s 3rd law and geometrical 

constraints at joint C, which connects one link to another by a pinned or clamped 

condition. 

Constraint Set I:  For a pinned joint connection at C, there is no moment. Hence, 

Equation (2.2a) becomes 

)1()1(2 ii ηθ ′=  2,1=i  (2.20)

For a clamped joint at C, the constraints have the following form: 

0)1()1( 121131111 =++ dcc θθ   (2.21a) 
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0)1()1( 222241222 =++ dcc θθ  (2.21b)

Equation (2.21a) states that link 1 and 2 form a constant clamped angle at C while 

Equation (2.21b) is a moment balance equation at C. Coefficients c and d are 

determined by the above angle/moment equations. 

Constraint Set II:  The physical constraints are derived from the free body diagram as 

shown in Figure 2.3(b) with Newton’s 3rd law: 

021 =− FF  (2.22a)

021 =−− φαα  (2.22b)

whereφ is the relative orientation between frame 1 and frame 2. Since C is a common 

point for both links, its location in both links is the same after transformation 

CC PPPR 1122 =+  (2.22c)

where R is the transformation matrix from frame 2 to frame 1; Ci P  is the position 

vector of C in frame i, i=1,2; and 12 P is the position vector of O2 expressed in frame 1. 

  

(a) Schematics (b) Free body diagram 

Figure 2.3 A pair of connecting links 

The above formulation shows that the basic procedures for solving compliant-

mechanism problems are (1) identifying unknown initial values and parameters needed 

for solving the ODE of the compliant links, (2) next, identifying constraint equations 
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from joints and rigid links, (3) then matching the number of unknowns to the number 

constraint equations, and (4) finally solving using Gauss-Newton method. 

2.4 Numerical Examples 

Five examples (shown in Figures 2.4 2.9 and 2.11) are considered here to 

illustrate the formulation in Section 2.3 for a broad spectrum of applications. The 

examples are divided into two classes based on their initial shapes; namely, initially 

straight and initially curved links. 

• Compliant mechanisms with initially straight links. Example 1 shows a pair of 

compliant links directly connected by a pinned joint as shown in Figure 2.4(a), where 

the linear motion δX is controlled by the link deflection. Unlike Example 1, the two 

flexible links in Example 2 are clamped to a rigid member and the input displacement 

is applied at the joint as shown in Figure 2.4(b), where the constraint equations come 

from the rigid link.  A special case of Example 2, where both links are clamped to a 

fixed frame is commonly used for precision manipulation of camera lens. Example 3 

is a special class of compliant mechanisms where the link is in contact with a smooth 

object as shown in Figure 2.4(c). Unlike Examples 1 and 2, the contact problem in 

Example 3 involves no joints.  In addition, the point where the force applies is not 

known in advance and hence, the length L from origin to contact point must be treated 

as an unknown.  

• Compliant mechanisms with initially curved links. Examples 4 and 5 show that the 

formulation can be extended to compliant mechanisms involving initially curved 

beams. The schematics of these examples (with non-constant and constant radius of 

curvature) are shown in Figures 2.9 and 2.11 respectively. 
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(a) Example 1: Compliant slider mechanism 

 

(b) Example 2: Compliant parallel mechanism 

 

(c) Example 3: Compliant contact mechanism 

Figure 2.4 Illustrative examples 
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Table 2.2 summarizes the unknown parameters/initial values for the five examples. 

Table 2.2 Summary of unknown parameters in Examples 1 - 5 

Ex. l  r ξ m µu p 
1 2 4 F1, α1, F2, α2 2 θ12(0), θ22(0) 2 
2 2 5 F1, α1, F2, α2, P 2 θ12(0), θ22(0) 2 
3 1 3 F, α, L 1 θ2(0) 1 
4 1 1 α 1 θ12(0) 1 
5 2 4 F1, α1, F2, α2 2 θ12(0), θ22(0) 2 

These unknowns are formatted with notations in Subsections 2.3.3 and 2.3.4. The 

constraints I and II that correspond to terminal and physical constraints respectively, and 

selected numerical results are given for each example. 

2.4.1 Compliant mechanisms with only initially straight links 

Example 1: Compliant Slider Mechanism (CSM) 

We expect r+m=6 constraint equations; namely, p=2 terminal and r+m-p=4 

physical constraint equations:  

Constraint Set I: The two equations are given by Equation (2.20) for a pinned joint.  

Constraint Set II: They are written in similar forms as Equation (2.22),  

021 =− FF  (2.23a)

0221 =+−− ϕαα π  (2.23b)
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0)cos()sin(
)sin()cos( δ

φπφπ
φπφπ

 (2.23c)

where [x1C  y1C] and [x2C  y2C] are locations of C expressed in frame 1 and 2 respectively; 

    φ is the angle between x2 and y1 axes; and 

   δX is the distance between the origins of frame 1 and 2. 
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Hence, the numerical solver in Section 2.2 can be used to solve for the six (r+m) 

unknowns and the deflected shape of the links from the two ODE’s in Equation (2.1) and 

the six constraint equations given by the constraint sets. Figure 2.5 shows the results of 

varying δX, where the displacement of the slider along the x1 direction is chosen as input. 
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Figure 2.5 Numerical results for Example 1 

Example 2: Compliant Parallel Mechanism (CPM) 

We expect to have r+m=7 constraint equations from the rigid member connecting 

the two flexible links. The constraint equations, which are similar to Equations 

(2.20)~(2.22), are obtained as follows:   

Constraint Set I (p=2): Two terminal constraints must be satisfied after integrating 

Equation (2.1): 

0])1([ 1 =−−= φαθ iiig 2,1=i  (2.24)

where
AB

BA

yLy
xx
−+

−
= −1tanφ ; L is the length of rigid link AB whose end positions [xA 

yA] and [xB yB] are expressed in frame 1 and 2 respectively. 

Constraint Set II (r+m-p=5): The equations are as follows. The deflected position of 

point A on link 1 is the same as the displacement input δX. 
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03 =−= Xyg A δ  (2.25a)

Since the member AB is rigid, we have 

0)()( 222
4 =−−++−= LyLyxxg ABBA    (2.25b)

Summing the forces applied to link 1 at point A leads to g5 and g6,  

2/12
22

2
221 ])cos()sin[( αα FFPF +−=     (2.25c)








 −
−= −

22

221
21 cos

sintan
α
αα π

F
FP  (2.25d)

In addition, balancing the moment on the rigid link AB, we have g7 as 

0)cos()1()1( 2222
2

12
1

=+++ φαθθ LF
L
EI

L
EI  (2.25e)

Figure 2.6(a) shows the displacement of A and B in x1 and x2 direction while 

Figure 2.6(b) shows P-δX curve. Both results are compared with those computed using 

FEM (BEAM3 in ANSYS is used to model the compliant link). As δX increases, the rigid 

link would tilt (A is higher than B) from horizontal. It is worth noting that the pseudo-

rigid-body model [Howell et al., 1996] is unable to predict such a rotation.  

0 5 10 15

-6

-4

-2

0

δX (mm)

Y
 D

isp
la

ce
m

en
t (

m
m

)

A(GSM)
B(GSM)
A(FEM)
B(FEM)

EI = 0.3 Nm2

L = L1 = L2 = 25.4mm

 

(a) Vertical displacement of points A and B 
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(b) Force required at point A 

Figure 2.6 Numerical results for Example 2 

Example 3: Compliant Contact Mechanism 

We consider here a rotating link in contact with a moving, frictionless elliptical 

object. The r+m=4 constraint equations at the contact point C are obtained as follows:  

Constraint Set I (p=1): The terminal constraint equation is  

0)1(21 ==θg  (2.26)

Constraint Set II (r+m-p=3): Three physical constraints imposed at C which lies on the 

object peripheral. First, its location ),( CC yx must satisfy the ellipse equation fe 

described in the link frame:  

0),(2 == CCe yxfg  (2.27a)

Next, the link and the object share the same slope at the contact point, and 

since αθψ −= )1(10 . We have 

0tan
/
/

0
),(

3 =+
∂∂
∂∂

=
==

ψ
CC yyxxe

e

yf
xfg  (2.27b)

Finally, for frictionless contact, the contact force Fn will be normal to the link at C. 

0)1( 2024 =−+=−= ππ ψαθg  (2.27c)
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The shapes and contact forces of the deflected link at various contact states are 

shown in Figure 2.7.  In Figure 2.7(a), o10222.236 +−= exφ where ex (in m) is the center 

of the ellipse.  Figure 2.7(b) compares the predicted forces against those computed using 

FEM with ANSYS. These FEM results were obtained by using TARGET169 and 

CONTACT172 contact pair for the ellipse and link respectively. Figure 2.8 also shows 

one particular convergence result of GSM with [φ xe]=[π/2 0.0508]. The norm of 

constraints equations g is less than 10-12 after 8 iterations. 

 
(a) Deflection of compliant links at contact 
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(b) Contact forces and comparison against FEM 

Figure 2.7 Deflection and contact forces for Example 3 
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Figure 2.8 Convergence result for Example 3 

2.4.2 Initially curved links  

Example 4: Planar spring - non-constant radius of curvature 

For initially curved beams that do not have a constant radius of curvature, the 

intrinsic curve function can be obtained by approximation functions. An example is given 

in Figure 2.9; a linear force-displacement mechanism consists of a pair of planar springs 

that can be characterized by the intrinsic curve function: 

uπη 5cos6.1=  (2.28)

Planar springs can be used where large linear strokes are needed, and in situation such as 

in MEMS where 3-D spiral springs are difficult to fabricate.  Quevy et. al [2002] has 

implemented the planar spring mechanism for scratch drive actuator.  As shown in Figure 

2.9, the two springs are mirror images of each other and thus only one of them needs to 

be considered. The vertical input force F on the rigid link AB causes a δX displacement.   

Following the same procedure as before, we have the unknowns of this problem 

αξ =  and )0(12θµ =u  

Constraint Set I (p = 1):  For a constant clamped angle, 
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06.1])1([ 111 =+−αθ    

Constraint Set II (r+m-p=1): Due to the vertical force F and rigid link AB, point A will 

have no displacement in the y1 direction and hence 

0=Ay . 

Figure 2.10 shows the force-displacement curve of the planar spring mechanism. 

Since the relationship is linear, we can approximate the spring constant to be 3.2667x104 

N/m.   

 
Figure 2.9 Planar spring mechanism 
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Figure 2.10 Force-displacement relationships 
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Example 5: Compliant mechanism with constant radius of curvature 

 When an initially curved link of length L forms the arc of a circle of radius R, the 

intrinsic curve function has the following properties: 

R
Lu =′ )(η  and 0)( =′′ uη  (2.29)

We consider a compliant mechanism with arcs as shown in Figure 2.11(b), an 

application of which is given in Subsection 2.5.2.  Due to the symmetry of the 

mechanism, we only need to consider a quarter segment as shown in Figure 2.11(a). Link 

1 is initially curved (with 111 / RL=′η ) and has length L1. Link 2 is initially straight and 

has length L2. Frame 1 and 2 are both attached to the clamped ends of the two links. The 

other ends of the links are also clamped together at C. The origin of frame 1 is under a 

vertical displacement load δY. In order to investigate the force-displacement relationship, 

we have to know the action and reaction forces at C along with initial slope at the 

deformed state. Specifically, the unknowns of this problem are [ ]T2211 αα FF=ξ  

and [ ]T2212 )0()0( θθ=uµ . 

 
(a) Quarter segment (b) Schematic model 

Figure 2.11 A compliant mechanism with initially curved links 
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The r+m=6 constraint equations are given as follows:  

Constraint Set I (p = 2): The clamped angle β can be obtained by the 

relationship φβ −= 11 / RL geometrically. 

0))1(())1(( 221111 =−−−− βαθαθ  (constant clamped angle) 

0)1()1( 2212 1
1 =+− θθ R

L  (Newton’s 3rd law) 

Constraint Set II: (r+m-p=4) 

(1) From Newton’s 3rd law, 21 FF −= ; and 21 αα = . 

(2) The location of joint C in both links is the same after transformation. 
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After solving the unknowns by GSM, the normal force F can be obtained from the 

equation 11 sin2 αFF = . The simulation and experiment results are compared in 

Section 2.5. 

2.5 Verification of Generalized SM 

By investigating the deflection shape of a uniform cantilever beam under a point 

force at the end as shown in Figure 2.1, the objectives of this section are (1) to verify 

GSM by comparing the result with close-form solution (2) to compare GSM with FDM 

and FEM and (3) to validate GSM by comparing with experiment results. 

2.5.1 Numerical verification  

Since exact solutions are only available for a uniform beam, we verify the 

numerical model by comparing the deflected shape of a uniform beam against published 

solutions.  Table 2.3 lists the simulation parameters. 
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Table 2.3 Simulation parameters (uniform beam) 

EI =0.08 Nm2 EA =2146 N F= 15 N N=20 L=101.6 mm (4 inches) α= 90°

Since the force F and its direction α are given, the formulation of GSM consists of 

only one unknown initial value µu=θ2(0) and one constraint equation θ1(1)=0. After 

several iterations of Gauss-Newton method, the predicted shape of the beam can be 

computed by using Equation (2.18). The results are compared in Figure 2.12(a) against 

the exact solution given by Frisch-Fay [1962], Euler-Bernoulli beam model (a special 

case of Appendix A.2), and the model that accounts for the axial deformations in 

Appendix A.1. The corresponding axial forces and bending moments calculated using 

Appendix A.1 are shown in Figure 2.12(b). In order to characterize the error of GSM, we 

also solve Equation (2.17) using FDM and FEM [Yin et al., 2004]. The percentage errors, 

which are defined as [ ] )(/)(100error% exactexact θθθ −= , are compared in Figure 2.13. 
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(a) Deflected shape of an uniform beam 
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(b) Axial force and bending moment (uniform beam) 

Figure 2.12 Verification of GSM 
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Figure 2.13 %Error (N=20 for both FDM and FEM) 

The following observations can be made from the comparison between GSM and 

other existing methods. 

1. As compared in Figure 2.12(a), both models of GSM (with and without 

accounting for the effect of axial deformation) yield the same deflected shape and fully 

agree with Frisch-Fay’s closed-form solution; the effect of axial forces on the deflected 
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shape is small. The Euler-Bernoulli beam theory (modeled on the assumption of small 

deflection) fails to predict the deflected shape especially at the free end as expected. 

2. Figure 2.13 illustrates the accuracy of GSM (that converges after 5 iterations) 

depends on the scheme integrating the ODE; it is relatively easy to achieve higher-order 

accuracy. The calculated shapes using GSM (with “ode45” in MATLAB) perfectly 

match those calculated using the Frisch-Fay solution. 

3. The non-uniform link as defined by Ii(ui) in Equation (2.19b) and the derivative 

BC’s [θi2(0) θi2(1)] in Table 2.1 need not be discretized as required by FDM. Hence the 

solutions can be more accurate.  

4. The FDM and FEM satisfy the boundary condition (BC) automatically and thus, 

do not need a recursive algorithm to estimate for the BC, which is the basis of GSM. 

However, these methods (FDM and FEM), which are often referred to as a global 

method, interpolate between nodes. Their accuracy depends on the mesh number N, and 

thus need more computation time in order to improve accuracy. The errors for both the 

FDM and FEM are less than 0.05% when N=20 as shown in Figure 2.13. Due to the 

singularities in the FEM formulation [Yin et al., 2004], the number of divisions N of 

FEM can hardly go beyond 20. The times required for GSM and FDM computation 

using MATLAB on a Pentium 4 PC (1.5 GHz with 512 MB memory) are compared in 

Table 2.4. GSM is computationally more efficient as it relies on the order of the 

numerical integration scheme rather than N to improve its accuracy.    

Table 2.4 Comparisons of computation time 

Method Time(s) Iteration Method Time(s) Iteration
GSM(ode23) 0.938 5 FDM(N=100) 1.187 7 
GSM(ode45)  1.031 5 FDM(N=500) 12.281 7 
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In general, the computation time depends on l , ξ, and µu. For 810−=g as the 

convergence criteria, the computation time of Examples 1 to 5 are 3.37, 3.43, 3.76, 4.06, 

3.45 seconds respectively. 

2.5.2 Experiment validation  

  In this section, GSM will be validated by comparing computed results against 

those obtained experimentally. Two experiments are considered; namely, a flexible beam 

and a compliant mechanism with curved members.  

Experiment 1: Uniform beam under a point load at the end 

The schematic of this experiment is shown in Figure 2.1, where the parameters of 

the beam are given in Table 2.5. Specifically, the aluminum beam was clamped at one 

end and a vertical load was applied at the other end using a static weight. The deflection 

was then determined from images taken using digital camera (OLYMPUS C-700uz, 

1600x1200 pixels resolution) along with an edge detection algorithm. The field-of-view 

was made such that the image provides a resolution in the order of 0.1mm for a tip 

deflection of 50mm. The deflected shapes for two different lengths are plotted in Figure 

2.14; the computed results are within 5% of those measured experimentally. 

0 0.1 0.2 0.3 0.4 0.5

-0.1

-0.05

0

x (m)

y 
(m

)

L=0.381m, F = 17.79N
Experiment result
L = 0.508m, F = 8.90N
Experiment result

Figure 2.14 Experiment results 
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Table 2.5 Experiment parameters (Aluminum beam, 6602-T6511) 

E=68.9GPa 
Thickness=3.175 mm (1/8 inch) 
α=90° 
Width=25.4mm (1 inch) 

Experiment 2: Rotating indexer 

Figure 2.15 shows a practical application of Example 5, which has been used as 

an indexer to position a rotating shaft at pre-determined locations. As the shaft rotates, 

the curved compliant mechanism deforms inside the housing. The two convexes and four 

concaves are designed to snap-fix the shaft position every 90°.  Effective design of such 

an indexer relies on the ability to predict normal forces between the convexes and the 

housing.  

.  

(a) Housing and indexer (b) Indexer 

Figure 2.15 CAD model of the rotating indexer 

The F-δY relationship of the indexer was measured using the force tester from 

TESTRESOURCES (Model 650M).  As shown in Figure 2.16, the indexer was clamped 

between the two slightly flattened convexes as shown in Figure 2.16.  Reaction forces 

were taken as displacement loads were applied along the convexes. The experimentally 

measured F-δY relationship and the analysis of Example 5 are compared in Figure 2.17; 

the excellent agreement shows that Generalized SM can facilitate the design of the 

rotating indexer. 
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(a) 650M (b) Rotating indexer 

Figure 2.16 Experiment setup 
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Figure 2.17 F-δY curve 

2.6 Conclusions 

A general formulation based on Shooting Method has been presented for 

analyzing compliant mechanisms consisting of initially straight or curved flexible beam 

members capable of large deflection. As the terminal and physical constraint equations 

are essential to complete formulation of the problem, a systematic procedure for deriving 

these equations at the (pinned or clamped) joint connections is given along with two 

numerical solvers (Gauss-Newton and bounded Gauss-Newton methods) that solve for 

the deflected shape of the flexible members. Five numerical examples were given to 
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illustrate the formulation of Generalized Shooting Method and its applications to analyze 

general planar compliant mechanisms.   

This chapter numerically compared the analysis of a flexible beam against 

predictions with four other methods; exact solution [Frisch-Fay, 1962], linear small-

defection theory, FD and FE methods. Except the linear small-deflection theory that fails 

at large deflection applications, the numerical solutions closely agree with each other.  

The advantages of GSM (which treats the BVP as an IVP) over the FD and FE methods 

include the following: (1) both initially straight and initially curve links share the same 

simple formulation. (2) It is relatively easy to achieve higher-order accuracy. (3) It can 

deal with unusual boundary conditions and nonlinear material properties without 

approximation.  This simplicity in formulating GSM, which bases on distributed-

parameter with variational principles, makes GSM an ideal candidate for topology 

synthesis of compliant mechanisms for two reasons: (1) The geometry of a compliant link 

can be easily varied by changing η and L. (2) The links can be deleted from or added to a 

compliant mechanism by merely reformulating unknown initial values/parameters and 

constraint sets.     

Finally, we validated experimentally the analysis of a flexible beam and a 

practical rotational indexer made up of curved members. The excellent agreement shows 

that the formulation and analysis offered by Generalized SM can effectively facilitate the 

process of design and optimization of compliant mechanisms that have a broad spectrum 

of applications ranging from MEMS device fabrication [Quevy et al., 2002] to automated 

handling of live objects in food processing industry [Lee, 2001]. 
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CHAPTER 3 

GLOBAL COORDINATE MODEL 

 

 
3.1 Introduction 

We present here a dynamic link model based on the generalization of classical 

beam theory to capture the response of large-deflected compliant mechanisms. The 

classical beam theory (originated by Daniel Bernoulli) assumes that a straight line 

transverse to the axis of the beam before deformation remains straight, inextensible, and 

normal to the mid-plane after deformation. Another important but implicit assumption for 

classical beam theory is that the deflection must be small. Rayleigh [1945] latter included 

the rotatory inertia in the equation of motion. Timoshenko [1922] further revealed that 

the effect of rotatory inertia is small for low frequency vibration but at high frequency the 

shear stress deformation is comparable to rotatory inertia. However, in order to derive a 

solvable linear differential equation, the above classical theory and its subsequent 

modifications approximate the curvature of the link: 

2

2

dx
yd

ds
d

≈
ψ  (3.1)

whereψ is the angle of rotation of the link; and s is the arc length from origin to point (x,y) 

of the link. The approximation in Equation (3.1) is only valid for dy/dx << 1 and hence, 

the classical beam theory is limited to small link deflections.  
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The difficulty to describe the motion of links undergoing large deflection lies on 

proper relations between the angle of rotation ψ  and the coordinate variables (x, y). This 

is because the curvature dψ/ds is needed to describe the strain energy in addition to the 

coordinate variables needed to express the kinetic energy. In order to characterize the 

dynamics of a compliant mechanism, a geometrically exact curvature formula is 

necessary. The exact curvature equation that can describe dynamics of a large-deflected 

link can be found in most calculus textbooks: 

( )[ ] 2/32

22

/1

/

dxdy

dxyd
ds
d

+
=

ψ  (3.2)

When the deflection is small, i.e., dy/dx <<1, Equation (3.2) reduces to Equation (3.1). 

Equation (3.2) has been used in several papers to formulate the dynamic equations of a 

link, such as Reddy et al. [1981] and Monasa et al. [1983]. However, as pointed out by 

Hodges [1984], Equation (3.2) defines the curvature along the coordinate x, which is on 

the undeflected position of the neutral axis. It does not take into account the well-known 

shortening effect due to transverse deflections. This resulting error is often unacceptable 

in many applications where large deflection is of particular concern. In order to overcome 

this problem, we can parameterize x and y by the arc length s. This leads to another 

curvature equation;  

( )yxyx
ds
d ′′′−′′′=
ψ  (3.3)

where x=x(s), y=y(s), and the prime denotes derivative with respect to s.  Equation (3.3) 

has been used by Wagner [1965] to derive the dynamic equations of a large-deflected 

beam, where the square of Equation (3.3) is substituted into the strain energy function of 

the beam in deriving the governing equations based on Hamilton’s principle. However, 
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the resulting equations are highly coupled and cannot account for shear and axial 

deformation of the link. 

Based on the observations of previous curvature expressions, we develop a 

geometrically accurate relation between the angle of rotation and coordinate variables 

that can be easily incorporated in the dynamic model of large-deflected links. While the 

previous angle of rotation cannot fully solve the problem of large deflection with shear 

deformation (see Equations (3.1)~(3.3)), this chapter provides two constraint equations in 

the derivation of dynamical equations so that angle of rotation induced by bending and 

shear can both be accommodated. 

The model introduced here accounts for the effects of link compliance on the 

dynamic response. Specifically, this chapter offers the following: 

1. A distributed-parameter dynamic model to predict the motion of a large-deflected 

link. The model accounts for bending, shear, and axial deformation by incorporating 

geometric constraint equations to characterize the nonlinear kinematics of deformed 

links. 

2. A method that numerically solves the governing equations of a compliant link.  The 

method consists of two parts; time domain and spatial domain. In the time domain we 

use Newmark algorithm and in spatial domain we use generalized multiple shooting 

method (GMSM). 

3. A systematic procedure for modeling compliant serial mechanisms. This procedure 

can deal with both closed and open chain, clamped and revolute joints. 
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3.2 Global Coordinate Model for Compliant Mechanisms 

The dynamic model of a compliant mechanism is formulated in two steps. First, 

we propose the global coordinate model for analyzing a compliant link. Second, we 

extend the formulation for general compliant mechanisms by introducing constraint 

equations at the joints that connect two links together.  

3.2.1 Global coordinate model (GCM) for a compliant link 

As mentioned above, key to the formulation are two geometric constraint 

functions that relate the deformation and coordinate variables. In addition, we incorporate 

the constraint equations in the variational form and apply Hamilton’s principle to derive 

the governing equations of the link. While some popular methods for analyzing 

compliant mechanisms are based on a floating frame attached to each link, the model 

introduced here requires only the inertia frame so that it is called the global coordinate 

model. 

Geometric constraints 

Figure 3.1 shows a (initially straight) deflected link of length L in the reference 

frame x-y. In order to fully describe the deflected shape, we define ψ as the initial rotation 

of the link plus deflection angle induced by bending, and γ as the shear angle. Hence the 

total angle of rotation is ψ+γ. Figure 3.2(a) shows an infinitesimal segment ds of the link, 

the coordinate of which can therefore be described by its geometric center (x, y) and the 

orientation ψ+γ. We also introduce the axial deformation variable e so that the distance 

between two adjacent infinitesimal segments is ds+de. The variables x, y, γ, ψ, and e are 

functions of arc length s and time t. They can be expressed explicitly as ),( tsx and ),( tsy , 

etc. 
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Figure 3.1 Schematic of a compliant link 

 (a)Infinitesimal segment (b) Trigonometric relation 

Figure 3.2 Schematic of an infinitesimal segment 

Since the plane motion has only three degree-of-freedoms, three of the five 

variables (x, y, ψ, γ, e) are independent. The trigonometry relating the coordinates (x, y) to 

deformation variables (ψ, γ, e) in the x-y frame can be derived with the aid of Figure 3.2(a) 

and are stated as two geometric constraints: 

0)cos()1(1 =++′−′= γψexg  (3.4a)

0)sin()1(2 =++′−′= γψeyg  (3.4b)
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where prime denotes derivative with respect to arc length s. Compared with Equations 

(3.2) and (3.3), the shear angle γ and axial deformation e can be embedded in the two 

geometric constraints in Equation (3.4) easily. Note that Rao et al. [1989] have similar 

constraint equations but again their model cannot capture shear deformation.  

At this point, rather than deriving the explicit expressions for ψ and γ from 

Equation (3.4), we show in the following paragraph that these two equations can be 

appended in the variational form by multiplying two Lagrange multipliers (h and v), 

which result from using more variables (five) than necessary (three).  

Formulation using Hamilton’s principle 

With Equation (3.4), the equation of motion of the link can be systematically 

derived using Hamilton’s principle, where the following variational form holds: 

( ) 02

1
21 =−−+−∫ dtgvghWVK

t

t

nc δδδδδ  (3.5)

where K and V are the kinetic and potential energy of the link respectively; δWnc is the 

virtual work done by non-conservative forces; and t1 and t2 are two arbitrary instants of 

time. Note that we can append 1ghδ and 2gvδ in Equation (3.5) since 1g and 2g are 

identically zero. With h and v, we have enough independent variables (five) for the 

variational procedure. 

Following the standard procedure of Hamilton’s principle, we first form the total 

kinetic energy of the link as  

[ ]∫ ++=
L

dsyxAIK
0

222
2
1 )( &&& ρρψ  (3.6)
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where ρI is moment of inertia of the link;ψ is the angle of rotation induced by bending 

moment; ρA is mass per unit length; and the dot over the variable denotes the time 

derivative of the variable.  

Similarly, the potential (strain) energy of the beam can also be expressed as  

[ ]∫ ′++′=
L

dseEAGAEIV
0

222
2
1 )()( γκψ  (3.7)

where A is the cross-section area and I is the moment of area; E andG are the moduli of 

elasticity and shear respectively; κ is the shear correction factor; γ  is the shear angle; and 

e is the axial elongation. The 1st, 2nd, and 3rd terms of Equation (3.7) represent the strain 

energy due to bending, shear, and axial deformations respectively.  

Equations (3.6) and (3.7) express the kinetic and potential energy functions in 

standard quadratic forms. The nonconservative forces applied at the link may include 

dissipative forces proportional to the angular and linear velocities. As an illustration, we 

use mass proportional damping model to formulate the nonconservative forces as follows:   

∫ ++−=
Lnc dsyyAxxAIW

0
)( δδδψψσδ ρρρ &&&  (3.8)

where σ is the damping coefficient. 

The resulting system of partial differential equations that governs the dynamics of 

the large-deflected link can be obtained using standard manipulations of variational 

calculus [Weinstock, 1974]. Detailed derivations are presented in Appendix B. After 

obtaining the governing equations, we further introduce non-dimensional independent 

variable ]1,0[/ ∈= Lsu to replace s so that x(s,t) = x(u,t) and dudxx =′ , etc. The 

equations can be written as follows after normalization. 
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0)sin()1()cos()1()(2 =++
′

−++
′

++−′′ γψγψψσψψ ρ L
eh

L
evI

L
EI

&&&  (3.9a)

0)( =′−+ hxxLA &&& σρ ; 0)( =′−+ vyyLA &&& σρ  (3.9b,c)

0)cos()( =+′+−′ γψeLx ; 0)sin()( =+′+−′ γψeLy  (3.9d,e)

[ ] 0)sin()cos( =′+++−′′ γψγψ vhLeEA  (3.9f)

[ ] 0)sin()()cos()( =−++′−++′ γκγψγψ GALLehLev  (3.9g)

From the observation of Equation (3.9b,c), the Lagrange multipliers h and v turn 

out to be the internal forces acting on an infinitesimal segment in the positive x and y 

directions as shown in Figure 3.2(a).  The physical interpretations of Equation (3.9) are 

stated as follows: 

1. Equation (3.9a) is the moment balance equation. The rotational inertia in the term is 

often small, and can be neglected in structural applications. Without deformation, this 

equation can be reduced to the one that governs rigid-body rotation. 

2. Equations (3.9b,c) are the results of applying Newton’s 2nd law to each infinitesimal 

segment directly. 

3. Equations (3.9d,e) are the normalization of Equation (3.4). They must be solved 

simultaneously with the rest of Equation (3.9).  

4. Equation (3.9f) is the force balance equation in the deformed axial direction. Without 

the angle of rotation, it reduces to the familiar 2nd order differential equation that 

governs the axial deformation of a link. 

5. Equation (3.9g) states the shear stress-strain relation where the shear stress comes 

from the internal forces h and v. 
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Note that Equation (3.9) is already in the global frame. Hence no intermediate or 

local frames are needed. This is in contrast to those methods that based on floating frames 

(such as the corotational method or the floating frame method).  

3.2.2 Global coordinate model for serial compliant mechanisms  

The dynamical model for a compliant link presented in Subsection 3.2.1 can be 

further extended to analyze mechanisms with compliant members. Since the dynamic 

model of a compliant link has already based on the inertia frame, we can derive the 

governing equations of links and their associated constraints without introducing 

intermediate or local frames since all of them share the same (inertia) frame x-y. 

Consider a generic compliant mechanism shown in Figure 3.3. The l  links are 

connected in series by 1+l  joints where the 0th and th)1( +l joint are ground joints (rigid 

structure). Each link is governed by one set of Equation (3.9) rewritten as follows: 

0)sin()1()cos()1(2 =++
′

−++
′

+−′′ ii
i

i
iii

i

i
iii

i

ii

L
e

h
L
e

vI
L

IE
i

γψγψψψ ρ &&  (3.10a)

0=′− iii hxAL
i
&&ρ ; 0=′− iii vyAL

i
&&ρ  (3.10b,c)

0)cos()( =+′+−′ iiiii eLx γψ ; 0)sin()( =+′+−′ iiiii eLy γψ  (3.10d,e)

[ ] 0)sin()cos( =′+++−′′ iiiiiiiiii vhLeAE γψγψ  (3.10f)

[ ] 0)sin()()cos()( =−++′−++′ iiiiiiiiiiiiiii AGLLehLev γκγψγψ  (3.10g)

where the subscript i is with respect to the ith link. Equation (3.10) includes seven 

variables for one link. For a mechanism with l  links we have l7  variables. These 

variables are constrained by the 1+l  joints connecting the links. Those constraints at the 

joints can be expressed as algebraic equations that must be valid for all time. For clarity 
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we list the constraint equations in the Tables 3.1~3.3. Table 3.1 lists the constraint 

equations for a typical joint which connects two links together. Both revolute and 

clamped joints are considered. For a revolute joint both links cannot resist moment and 

for a clamped joint their moments must balance along with angles of rotation. We list in 

Tables 3.2 and 3.3 constraint equations for joints that connect end links to ground, 

referred here as ground joints. Three different types of ground joints are considered, 

namely fixed, free, and prismatic joints. 

 

Figure 3.3 A generic serial compliant mechanism 

Table 3.1 Constraint equations at a typical joint (1 to 1−l ) 
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Table 3.2 Constraint equations at the 0th joint 

Fixed Free Prismatic 
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
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Table 3.3 Constraint equations at the thl  joint 

Fixed Free Prismatic 



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llllll
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γψγψ
0)1( =′

le 0)]sin([)1( 1 =+−′ =uveAE llllll γψ  
or  

0)]cos([)1( 1 =+−′ =uheAE llllll γψ

Hence at a typical joint (revolute or clamped) there are eight constraint equations and at a 

ground joint there are four constraint equations. 

Equation (3.10) and the constraint equations in Tables 3.1~3.3 form the necessary 

equations to solve for a compliant mechanism. Note that while developed for serial 

compliant mechanisms, the dynamic model can be extended for parallel compliant 

mechanisms as well. 

3.3 Numerical Approximation 

Equation (3.10) with the constraint equations in Tables 3.1~3.3 is a system of 

nonlinear hyperbolic equations with differential constraint equations. We present here a 

semi-discrete method to solve them numerically. Specifically, the spatial domain iu  is 

solved using the generalized multiple shooting method while the temporal domain t is 

solved with Newmark family of integration schemes. 

3.3.1 Temporal approximation: Newmark integration scheme 

Motivated by stability considerations, we use the Newmark family of time 

integration schemes [Newmark, 1959] for temporal discretization. Let the position kZ , its 
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velocity kZ& , and acceleration kZ&& denote the approximate solution 

to ),( utz k , ),( utz k& ,and ),( utz k&& at time level kt  and ]1,0[∈u respectively. Assume the 

solutions of kZ , kZ& , and kZ&& have been obtained, the Newmark method is an implicit 

scheme that finds the approximate solution at next time level 1+kt  according to the 

following formulae: 

kkkkk Z
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where kk ttt −=∆ +1  denotes the time step size and (a1, a2) are Newmark parameters that 

determine the stability and accuracy of the scheme. By applying Equation (3.11a), the 

terms involving time derivatives in Equation (3.10) can be discretized in the time domain. 

Here we use upper cases to represent the approximate solutions of dependent variables 

(in lower cases) as following:  
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Using the approximate solutions, the discretized differential equations at 1+kt of Equation 

(3.10) can be written as follows: 
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Equation (3.12) is a system of time-independent ordinary differential equations 

(ODE’s) involving unknown functions 1+Ψ k
i , 1+k

iH , 1+k
iV , 1+k

iX , 1+k
iY , 1+k

iE , and 1+Γ k
i . 

The method to solve Equation (3.12) will be presented in Subsection 3.3.2.  
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Equation (3.12) requires knowledge of the initial conditions ),,( 000
iii ΨΨΨ &&& , ),,( 000

iii XXX &&&  

and ),,( 000
iii YYY &&& . The initial positions and velocities will be given and the initial 

accelerations can be obtained by assuming zero applied force at t=0. 

0
2

0 )( i
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i
i

i
IL

EI
Ψ ′′=Ψ

ρ

&& , 00 =iX&& , 00 =iY&&  (3.13)

3.3.2 Spatial approximation: generalized multiple shooting method  

After temporal discretization, the governing equation reduces to the nonlinear 

boundary value problem represented by Equation (3.12). We propose in this section an 
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improved numerical formulation called generalized multiple shooting method (GMSM) 

to solve for the spatial domain. 

The generalized shooting method introduced in Chapter 2 offers simple 

formulation with higher order accuracy, but it has the following two major problems in 

implementation.  

(a) When solving Equation (2.1) with wrong initial guesses uµ  and ξ , the solution may 

not exist for all 10 ≤≤ iu , i.e., it becomes unbounded before u reaches 1. In such case, 

there is no way to correct uµ  and ξ  because the iteration fails. 

(b) The solution accuracy relies on the order of the space marching scheme used. 

However, all such schemes suffer the same problem of round-off error accumulation.  

In Chapter 2, we presented the Bounded Gauss-Newton method to overcome the problem 

of wrong initial guesses provided the ranges of initial guesses are known in advance. In 

addition, the problem of round-off errors can be alleviated by using higher order schemes 

(such as ode45 in MATLAB) without sacrificing computation time (as shown in Figure 

2.13).  However, we will introduce in the following subsection a unified approach that 

solves the above two problems at the same time.   

Generalized multiple shooting method (GMSM) 

The above two problems of GSM both result from relatively lengthy integration 

interval.  This leads to the idea of shortening the interval for shooting. Consider the 

following system of l coupled, normalized sets of 1st order ODE’s: 
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where Mi(ui,qi) is the coefficient (mass) matrix of the ith set of ODE. Equation (2.1) can 

be regarded as a special case of Equation (3.14) where Mi=Ii. We divide the interval of 

integration ]10[  of Equation (2.1) into N subintervals with N+1 nodes.  

10 1,21 =<<<<<<= +NiiNijii uuuuu LL ; l~1=i  and 1~1 += Nj  

The symbol iju denotes the normalized arc length of the jth node in the ith link. A single 

shooting method is performed in each subinterval of each link so that the resulting 

solution segments are connected to form a continuous solution over ]10[ . Figure 3.4 

shows the idea of multiple shooting.  

 
Figure 3.4 Multiple shooting method 

Since shooting is performed more than once in the overall interval, the method is called 

multiple shooting. It is also called parallel shooting because shooting method is 

performed independently on each subinterval.  

Similar to single shooting, each subinterval of the multiple shooting requires an 

initial value in order to integrate the ODE’s. We denote the initial values of each 

subinterval as 

iu  

iq  

01 =iu 2iu  3iu 4iu iNu 11, =+Niu



 

69 

[ ] [ ] j
TT

j
T
ij

T
j

T
j

T
ij

T
ij

T
j uuu µµµµqqquq === lll LKLK 111 )()()()(  ; 

Nj ≤≤1  

where jµ now is an 1×nl vector. Since these initial values are not known in advanced, 

we treat them as unknowns. For N subintervals we have Nn×l  unknown initial values 

[ ]TT
N

T
j

T µµµµ LK1=  

with r unknown parameters TTTT ],,,[ 21 lL ξξξξ = . Hence there are totally 

rnN +l unknowns. The equations corresponding to these unknowns are listed as follows: 

(i) n×l  boundary constraint equations 

0))1(),0(( =qqg  (3.15a)

(ii) lnN )1( −  continuity equations that connect the solution segments together 

);( 11 jjj µuqµ ++ =  (3.15b)

We put jµ  after the semicolon to express that in the thj  interval the function q is a 

function of the initial value jµ of that interval.  

(iii) r geometric constraint equations for r unknown parameters 

0),( =ξµg  (3.15c)

We are left to solve a set of  rnN +l  nonlinear algebraic equations 
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In summary, the GMSM includes four steps:  

(i) Recast the BVP in a state-space form as Equation (3.14). 

(ii) Identify unknown initial values and parameters. 

(iii) Formulate constraint and continuity equations from Equation (3.15). 

(iv) Integrate Equation (3.14) and solve for unknowns in Equation (3.16).  

The GMSM can be solved iteratively by methods such as Newton’s or Quasi-Newton, 

where Equation (3.14) is integrated in each iteration.  

3.3.3 Application to the global coordinate model 

By defining Tk
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where the nonzero entries of Mi are 

1),( =kkM i , 8~1=k ; 

)cos()3,8( 11 ++ Γ+Ψ−= k
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Note that Mi now is a singular matrix because the last row of Equation (3.17) is an 

algebraic equation with Mi(9,9)=0. A set of ODE’s with a singular M is also known as 

the differential-algebraic equations (DAE’s). Equation (3.17) is defined as a system of 

DAE’s of index 1. For definitions of DAE indexes, please refer to [Ascher, 1988]. 

Although numerical techniques for solving ODE’s and DAE’s are different, MATLAB 

provides ODE solvers (ode15s, ode23t) that can solve a DAE with index 1 [Shampine, 

1997]. 

There are n=8 first order differential equations in Equation (3.17) that governs the 

deformation of the link. We then divide the link into N subintervals. Each link (say, the 

thi link) then has 8N unknown initial values at time step k as follows:  

T
ij

k
iij

k
iij

k
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k
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k
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k
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k
ij uuuYuXuVuHuu )]()()()()()()()([ 1

2
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1
11111

2
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1
++++++++ ΕΕΨΨ=µ ; 

Nj ≤≤1  

For a compliant mechanism with l links there are lN8 unknown initial values. Note that 

the unknowns ξ  are not involved since the integration of Equation (3.17) does not rely on 

unknown parameters as compared with Equation (2.1).  

For a serial compliant mechanism, the boundary constraint equations 

corresponding to (i) in Subsection 3.3.2 are listed in Table 3.1, 3.2, and 3.3. Since a serial 

mechanism includes 1−l typical joints with two ground joints (a typical joint provides 

eight equations and a ground joint provides four equations), the number of boundary 

constraint equations satisfies that required by the Generalized Multiple Shooting Method. 

ll 84*2)1(8 =+−  

In addition, geometric constraint equations corresponding to (iii) are not required since 

there are no unknown parameters ξ  in the dynamic global coordinate model expressed in 
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Equation (3.9). However, we will see in Chapter 5 that the internal forces h and v appear 

as unknown parameters in the static global coordinate model. 

Once the above unknown initial values and constraint/continuity equations are 

established, Equation (3.17) can be integrated by Euler’s method or higher order schemes 

such as family of Runge-Kutta methods. After integrating Equation (3.17), the function 

)(µF  can be solved by an iterative method. Since explicit formulae for )(µF  cannot be 

obtained, the Jacobian matrix has to be approximated numerically. Also, the Jacobian 

matrix requires the most expensive computation for the generalized multiple shooting 

method, the popular Newton method is not efficient. Instead we use Quasi-Newton 

method that requires only one evaluation of the Jacobian matrix in each time step. In 

summary, the steps for solving the dynamic response of compliant mechanism problem 

using generalized multiple shooting method are outlined as follows: 

Computational Steps: 

1. Given (a1,a2) with initial conditions ),,( 000
iii ΨΨΨ &&& , ),,( 000

iii XXX &&&  and ),,( 000
iii YYY &&& , 

l≤≤ i1  

2. For k = 0 ~ number of time steps 

(I) Given initial guesses kµ , obtain the Jacobian matrix of Equation (3.16) and residual 

)( kµF , solve for  kµ  by Quasi-Newton method.  

(II) After obtaining kµ , integrate Equation (3.17) to get q and calculate ),( kk ΨΨ &&& , 

),( kk XX &&& , and ),( kk YY &&& from Equation (3.11). These values are required for the next 

time step. 

End 
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Note that although initial guesses are required for each time step, we can use the 

initial guesses for the previous time step to replace the initial guesses for the current step. 

Thus we only need to make initial guesses for the first time step. 

3.4 Conclusions 

 A complete dynamic model has been presented for analyzing compliant links 

capable of large deflection. Specifically, we incorporate two geometric constraint 

equations in the derivation using Hamilton’s principle so that bending, shear and axial 

deformations can be incorporated simultaneously. The resulting governing equations are 

based on the inertia frame so that it can be easily extended to multi-link analysis. 

Systematic procedures are presented to analyze compliant serial mechanisms whose 

joints can be either revolute or clamped. In addition, we developed a numerical method 

that combines a Newmark scheme with generalized shooting method to solve the 

equations.  
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CHAPTER 4 

ILLUSTRATIVE EXAMPLES AND VALIDATIONS 

 

 
4.1 Introduction 

By using the numerical schemes described in Chapter 3, we illustrate the 

application of the global coordinate model by using five test examples. We validate the 

model of one compliant link using three examples. In the last two examples, we then 

demonstrate the capability of GCM in analyzing multi-link compliant mechanisms. 

Specifically, these examples are organized as follows:    

I. A compliant link 

I.1 Free vibration of a compliant link 

I.2 Experiment validation of a compliant link with tip load 

I.3 A spinning rod 

II Two compliant mechanisms 

II.1 Compliant slider-crank mechanism 

II.2 Compliant four-bar mechanism 

  Throughout these examples we use the constant average acceleration method 

where the Newmark parameters (a1, a2) in Equation (3.15) are set to (0.5, 0.5). This 

method can be proved to be unconditionally stable for linear systems. However, as 

mentioned by Zienkiewicz [1977], if no other sources of damping are present in the 

problem, the lack of numerical damping can be cause unacceptable numerical noise in the 
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higher frequencies of the structure. He introduced a certain level of numerical damping 

by setting damping amplitude decay factor σ  > 0 in the following equation.  

σ+= 2
1

1a ; 2
2
1

2 )1( σ+=a .  

We set 005.0=σ  for all the following examples. Hence the Newmark parameters 

become (a1, a2) = (0.5050, 0.5050). 

4.2 Illustrative Examples 

Example I.1 Free vibration of a compliant link 

We simulate the free vibration of a flexible steel rod in this example. The 

parameters for the rod are listed in Table 4.1. The rod is given an initial applied load at 

the tip and then released. We can readily apply the formulae in Subsection 3.3.2 and 3.3.3 

to solve this problem. Figure 4.1 shows the tip displacement and Figure 4.2 shows the 

snapshots of the vibrating rod, which has a period approximately equal to 0.49 seconds. 

 

Table 4.1 Simulation parameters and values for a steel rod 

Simulation Parameters Values 
Density ρ 7850 kg/m3 

Dimension (LxWxT) 1.11x0.0127x0.0032 m 
Young’s Modulus E 200GPa 
Shear Modulus G 80GPa 
Time step size ∆t 0.01 sec 
Initial tip location [x(1),y(1)] = (1.0177m, 0.4061m) 
Initial velocity ),,( 000 YX &&&Ψ (0,0,0) 
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Figure 4.1 Beam tip displacement in one cycle 
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Figure 4.2 Snapshot of a free-vibrating beam 

Figure 4.3 shows the kinetic energy distribution in one cycle. Clearly, the kinetic 

energy is dominated by the translational energy in the y direction, which is much larger 

than the rotational energy. For this reason the effect of rotational inertia has always been 

neglected in structural mechanic problems. Figure 4.4 shows the energy distribution 
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between kinetic and potential. It is worth noting that there is no energy loss during the 

temporal integration. 
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Figure 4.3 Kinetic energy of the vibrating beam 
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Figure 4.4 Energy balance of the beam 

An experiment has also been conducted to measure the natural frequency of the 

steel rod whose parameters are listed in Table 4.1. As shown in Figure 4.5, the x direction 

of the rod is parallel to the direction of gravity so that the effect of weight is minimized. 
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A proximity sensor (Keyence EZ18T) is placed at the undeflected tip position such that it 

is ON if the tip of the rod approaches and OFF if not. The period of vibration can be 

recorded by adding two adjacent OFF time intervals. The period shown in Figure 4.6 is 

approximated 0.485 second which is very close to that predicted by the previous 

simulation result (0.49 second).  

 

 

 

 

Figure 4.5 Experiment setup 
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Figure 4.6 Period of a free vibrating steel rod 

Example I.2 Experiment validation of a compliant link with tip load 

In order to validate the transient deflection of a compliant link, we compare the 

simulation result with the experiment obtained by Yoo et. al. [2003]. In their experiment 

shown in Figure 4.7, a spring steel rod is clamped at the base with an applied load 0m at 

the tip. The beam with its tip load is released from the undeflected position. A high speed 

camera (REDLAKE, 125fps) is used to measure the deflection of the tip point.  

 

Gravity Proximity 
sensor
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Figure 4.7 Experiment setup in Yoo et. al. [2003] 

The parameters of the link are listed in Table 4.2. Two experiments are conducted; one 

with gm 200 = and the other with gm 100 = . The equations of motion of the tip load are 

)()( 0 LxmLh &&=− ; )()( 00 LymgmLv &&=−−  

In the original experiment done by Yoo et. al. [2003], they use very small damping 

coefficients to account for aerodynamic and structural damping effects. However, as 

these effects are not obvious in the first few vibrations, we neglect the damping effect and 

compute using the global coordinate model. The results (solid) are compared with the 

experiment data (dotted) shown in Figures 4.8 and 4.9. Obviously the global coordinate 

model agrees well with the experiment. 

Table 4.2 Simulation parameters and values for a spring steel rod  

Simulation Parameters Values 
Density ρ 7919 kg/m3 

Length L 0.4 m 
Cross-section area A 7.854x10-7 m2 

Moment of inertia I 4.909x10-14 m4 

Young’s Modulus E 200GPa 
Time step size ∆t 0.005 sec 
Initial tip location (x,y) = (0.4m, 0m) 
Initial velocity ),,( 000 YX &&&Ψ (0,0,0) 

x
y 
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Figure 4.8 Comparison of simulation and experiment data with gm 200 =  

 

Figure 4.9 Comparison of simulation and experiment data with gm 100 =  

Example I.3 A spinning rod 

   A high-speed rotating link has many applications such as helicopter blades, 

flexible robotic manipulators, and turbine blades. However, approaches that based on 

linear strain-deflection relationship (such as floating frame formulation) have been 

proved to cause instability when simulating a flexible rotating link [Kane, 1987]. As 

pointed out by Kane [1987], the instability of linear model is due to the neglect of the 
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coupling between longitudinal and transverse deformation (centrifugal stiffening effect). 

While many research work has be done to solve this problem (see [Berzeri and Shabana, 

2002] for review), we demonstrate using this example that the global coordinate model 

can automatically account for centrifugal stiffening effect without further modifications. 

   Consider an originally straight rod attached to a hub as shown in Figure 4.10. The 

rod is given a prescribed angle input ),0( tψ at the base shown in Equation (4.1).  

 
Figure 4.10 A spinning rod 











≥





 −

<





















−














+

=

s
s

s

s
s

s

s

s

Tt
T

t

Tt
T

tT
t

Tt

2

12cos
22

1

),0(

2
2

ω

π
π

ω

ψ  (4.1)

The exact solution for the steady state extension of a spinning rod with angular velocity 

sω can be easily shown to be 





 −=+ 1tansin),1(cos),1(

aL
aLLtytx ψψ ; where sEA

Aa ωρ
=  (4.2)

In the past, two test cases have been performed to show the effect of centrifugal 

stiffening. We list the parameters for each case in Table 4.3. Case 1 was studied by [Wu 

and Haug, 1988] and [Dufva et al., 2005]. Case 2 was studied by [Wallrapp and 

Schwertassek, 1991] and [Simo and Vu-Quoc, 1986]. Both cases are computed using the 

global coordinate model. The results obtained are compared with those published results 

as shown in Table 4.4. The comparisons show excellent agreement. 

Rotating hub 

x 
),0( tψ

Spinning rod 
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Table 4.3 Simulation parameters and values for the spinning rod 

Simulation Parameters Case 1 Case 2 
Length of link L 8 m 10m 
Density ρ 2767.77 kg/m3 3000 kg/m3 
Moment of inertia I 8.214x10-9 m4 1.997x10-7 m4 
Cross-sectional area A 7.299x10-5 m2 4x10-4 m2 
Young’s Modulus E 6.895x1010 Pa 7x1010 Pa 

),( ssT ω  (15 sec, 2 rad/sec) (15 sec, 6 rad/sec) 
Time step size ∆t 0.005 sec 0.005 sec 
Initial tip location [x1(1),y1(1)] [8, 0] m [10, 0] m 

Table 4.4 Comparisons of global coordinate model and other models 

Steady-state extension of rod Case 1 Case 2 
Published results 2.7386x10-5m 5.14x10-4m 
Results by global coordinate model  2.7385x10-5m 5.144x10-4m 

Figure 4.11 and 4.12 also shows the tip displacements in the local x and y direction using 

the following formulae. 

[ ] [ ]
[ ] [ ] 








−
















−

=







0),1(

),1(
),0(cos),0(sin
),0(sin),0(cos L

ty
tx

tt
tt

y
x

tip

tip

ψψ
ψψ

 (4.3)

0 5 10 15 20
-6

-5

-4

-3

-2

-1

0

1 x 10
-3

Time (sec)

T
ip

 d
isp

la
ce

m
en

t x
 (m

)

2.738x10-5 m

 
Figure 4.11 The steady-state extension of the rod, 2.738x10-5 m 
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Figure 4.12 The displacement of the tip in the y direction 

Example II.1 Slider-crank mechanism  

We consider here a slider crank mechanism as shown in Fig. 4.13. An input 

torque M drives the mechanism at the base of link 1 (crankshaft) that connects link 2 

(connecting rod) by joint C. Link 2 is tied to another massless slider block through a 

revolute joint. The slider block can only move in the x direction (prismatic joint) and it is 

assumed the surface is frictionless. 

 

Figure 4.13 Compliant slider crank mechanism 

The input torque at link 1 for different time is given as follows and simulation 

parameters given in Table 4.5.  
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Table 4.5 Simulation parameters and values for the compliant slider crank 

Simulation Parameters Values 
Length of link (L1, L2) (0.152, 0.304) m 
Density (ρ1, ρ2) (2770, 2770) kg/m3 

Moment of inertia (I1, I2) (4.909x10-10, 4.909x10-10) m4 

Cross-sectional area (A1, A2) (7.854x10-5, 7.854x10-5 ) m2 
Young’s Modulus (E1, E2) (1x109, 5x107) Pa 
Time step size ∆t 0.005 sec 

Initial tip location [x1(1),y1(1)] = [0.152, 0] m 
[x2(1),y2(1)] = [0.456, 0] m 

The displacement of the slider block is shown in Figure 4.14 and the midpoint 

deformation of connecting rod is shown in Figure 4.15. We also compare the presented 

dynamic model with the floating frame formulation and absolute nodal coordinate 

formulation in these figures. These results show very good agreement. 

------   Global Coordinate Model

 
Figure 4.14 Horizontal position of the slider block 
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----- Global Coordinate Model

 
Figure 4.15 Deformation of link 2  

Example II.2 Four bar mechanism  

In order to explore the ability of global coordinate model for a closed chain 

mechanism, we study here the dynamics of a compliant four-bar mechanism whose initial 

configuration is shown in Figure 4.16. The coupler (link 2) is made more compliant than 

the other two links in order to examine the capability of large deformation. Detailed 

parameters of the mechanism are listed in Table 4.6. 

Figure 4.16 Initial four-bar mechanism configuration 

L1: Crankshaft 

L2: Coupler L3: Follower 

A 

B 

M 
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Table 4.6 Parameters of the four-bar mechanism 

Parameters Values 
Length of link (L1, L2, L3) (0.5, 1, 1) m 
Density (ρ1, ρ2, ρ3) (7847, 7847, 7847) kg/m3 

Moment of inertia (I1, I2, I3) (1.257x10-7, 1.257x10-7, 1.257x10-7) m4

Cross-sectional area (A1, A2, A3) (1.257x10-3, 1.257x10-3, 1.257x10-3 ) m2

Young’s Modulus (E1, E2, E3) (2.1x1011, 2.1x108, 2.1x1011) Pa 

Initial tip location [x1(0),y1(0)] = [0, 0] m 
[x3(1),y3(1)] = [1, 0] m 

The mechanism is initially at rest and the crankshaft is given a moment input 

from 6.00 ≤≤ t as shown in Equation (4.5).  
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Figure 4.17 shows the deformation of the mechanism at four specific time spots. 

Obviously the coupler undergoes more deformation than the crankshaft and follower. 

Note that from Figure 4.17(a) to 4.17(c) the crankshaft rotates counter clockwise while 

from Figure 4.17(c) to 4.17(d) it rotates clockwise.  

(a) t = 0.3 s (b) t = 0.6 s 

A 

B 

A 
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(c) t = 0.9 s (d) t = 1.2 s 

Figure 4.17 Large deformations of the four-bar mechanism 

The advantage of the global coordinate model is that it is derived from Hamilton’s 

principle. Hence it allows us to easily verify the results by energy balance check. Figure 

4.18 shows the calculated energy which must equal to the applied work apparently. It is 

obvious that the total kinetic energy is converted to potential energy at t=0.95s. After the 

potential energy reaches its maximum (and the kinetic energy reaches its minimum), the 

energy transfers back again to the kinetic component.     
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Figure 4.18 Energy balance of the four-bar mechanism (GCM with 001.0=∆t ) 
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Figure 4.19 also shows the internal forces at the two joints that can be automatically 

obtained by the global coordinate model. Both four internal forces ( 1h , 1v , 2h , 2v ) have 

peak values around t=0.35 seconds. 
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Figure 4.19 Internal forces at the joints 

Based on the examples given above, the following observations can be made by 

comparing the global coordinate model with other existing method for analyzing flexible 

multibody systems.  

1. Compared with the floating frame formulation, the links in the global coordinate 

model are all referenced in the global coordinate. The GCM has no geometric 

assumption, and thus, can be applied for links with large deflection. 

2. As mentioned in Chapter 1, the corotational procedure relies on small deflection (less 

than o30 ) between successive time steps. It requires reducing step size in order to get 
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more accurate results. However, the error will still accumulate even for small 

deflections. 

3. Compared with other displacement-based models, the internal forces at the joints can 

be automatically obtained by using the global coordinate model. 

4.3 Conclusions  

Five examples are discussed in this chapter to verify the global coordinate model. 

An illustrative example of a free-vibrating steel rod has been given to show the 

application of the model. The simulation result of the vibrating rod has matched well with 

the experiment data. Finally we extend the dynamic model for predicting the motion of 

one compliant link to analyze compliant mechanisms. An illustration example has been 

given to show the accuracy of the proposed model over general finite element software 

(ANSYS).  
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CHAPTER 5 

DESIGN AND ANALYSIS USING GLOBAL 
COORDINATE MODEL 

 

 
5.1 Introduction 

We presented the global coordinate model with systematic formulation in Chapter 

3 to predict the dynamic response of serial compliant mechanisms. In this chapter, we 

explore its static forward and inverse model for analyzing compliant mechanisms (both 

serial and parallel). The forward model seeks for the deformed configuration given its 

initial configuration and applied forces. It is useful for analyzing mechanisms whose 

initial shape is known. The inverse model, on the other hand, seeks for the initial 

configuration given its deformed configuration and internal forces. It is useful for 

analyzing mechanisms whose desired shapes are known. Of particular interest here is to 

develop a computer program to facilitate design analysis of compliant mechanisms. As 

will be shown through an illustrative application, the forward/inverse models can also 

serve as a basis for optimizing compliant links with initial curvatures.  

Specifically, this chapter provides the following: 

1. A static forward and inverse model. The model will be obtained by neglecting time 

dependent terms in Equation (3.10). Unlike traditional models that attach a frame to 
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each link, this model is derived using the global coordinate which requires no 

transformation matrices between links. 

2. A systematic formulation. This formulation provides a means to analyze both serial 

and parallel compliant mechanisms. A computer program with GUI will be developed 

to facilitate design of compliant mechanisms. 

3. Illustrative examples. Examples will be given to characterize the effect of shear 

deformation and illustrate the global coordinate model for forward/inverse analyses. 

4. A case study. This case study has been motivated by the need to accommodate a 

limited range of sizes in live object handling. 

Note that same as Chapter 3, we use generalized multiple shooting method 

through out this chapter to solve for the global coordinate model. 

5.2 Global Coordinate Model for Static Analysis 

 We first derive the static governing equations for a compliant link. Deflections 

due to flexural and shear deformation are both considered. The constraint formulations 

for generic compliant mechanisms are then developed. Finally the relations between a 

forward and inverse problem are addressed. 

5.2.1 Governing equations for a link 

Consider a typical mechanism consisting of l compliant links shown in Figure 5.1, 

where ),( ykxkk FF=F is an external concentrated force acting at the kth joint. Each link is 

described by a non-dimensional arc length ui with the arrow indicating the positive 

direction.  
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(a) A compliant parallel mechanism 

 
(b) A compliant serial mechanism 

Figure 5.1 Generic compliant mechanisms 

Without lost of generality, we consider here two joint configurations, which can 

be either clamped or revolute. 

(i) A floating joint connects w  links as shown in Figure 5.2(a). Index j is used to number 

the links. An external concentrated force ),( ykxk FF  may apply at the joint. 

(ii) A fixed joint connects a link to ground (rigid structure) as shown in Figure 5.2(b). If 

more than one link are connected, they are treated as individual fixed joints.  

(a) Floating joint (b) Fixed joint 

Figure 5.2 A joint that connects multiple links 
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The equations that govern the static deformation of the link can be reduced from 

Equation (3.10) as follows: 

0)sin()cos()(2 =+−++′′−′′ iiiiiiii
i

ii hv
L

IE
γψγψηψ  (5.1a)

0=′ih ; 0=′iv  (5.1b,c)

[ ] 0)sin()cos( =−+−+ iiiiiiiiii AGhv γκγψγψ  (5.1d)

Compared with many other displacement-based models that often need a post 

computation in order to obtain internal forces (hi, vi), Equation (5.1) can directly solve for 

those forces. They also serve as an essential basis for the forward/inverse models that will 

be introduced later. 

Depending on the type of problems, Equations (5.1a~d) must be solved 

simultaneously with 

Forward: 0)cos( =+−′ iiii Lx γψ ; 0)sin( =+−′ iiii Ly γψ  (5.1e,f)

Inverse: 0cos =−′ iii Lx η ; 0sin =−′ iii Ly η  (5.1g,h)

The coordinate variables (xi, yi) indicate the deformed and initial shapes for the forward 

and inverse problems respectively. Besides its static feature, we list the major differences 

of Equation (5.1) from Equation (3.10) as follows: 

(1) We add the shape function )( ii uη in Equation (5.1a) to represent the initial 

configuration of the thi link. This is similar to Frisch-Fay’s [1962] beam model 

presented in Subsection 2.3.2. However, in Frisch-Fay’s model, the external force F 

and its direction α  are measured in the local frame attached to each link. The global 

coordinate model, on the other hand, requires no local frame since the external force 

is decomposed into the global x and y direction (h and v respectively). Hence, only a 
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single coordinate, which is the inertia frame, is necessary to model all the links; thus, 

the GCM simplifies the formulation, and eliminates computation of coordinate 

transformation. 

(2) Note that the mass of the links does not affect the deformation hence the internal 

forces h  and v  become constant values within each link. 

(3) We had the axial elongation variable e  in Equation (3.10) in order to capture the 

centrifugal stiffening effect (see Example I.3 in Section 4.2). However, for static 

analysis this is not a problem and hence we ignore the axial deformation. 

5.2.2 Constraint (boundary) equations 

Equation (5.1) that governs each link is subjected to constraint equations at both 

ends (u=0 or 1), which may be a floating and/or fixed joints shown in Figure 5.2. For 

convenience, we introduce u  and δ to denote the value of u at the joints so that  





=+
=−

=
11
01

uif
uif

δ  

For clarity, the constraint equations are divided into two classes, force/displacement and 

angle/moment, as follows: 

1 Force/displacement constraint equations 

Force/displacement constraints depend on the mobility of joints (floating or fixed). 

For a floating joint, the forces must balance regardless of its type (clamped or revolute). 

With external forces Fxk and Fyk, the following equations must be satisfied: 

0
1

=−∑
=

xk

w

j
j Fhδ ; 0

1
=−∑

=
yk

w

j
j Fvδ . (5.2a,b)
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The links are also connected rigidly at the floating joint and must satisfy the following 

1−w constraint equations to prevent separation. 

0)()( 11 =− ++ jjjj uxux  for 1~1 −= wj  

0)()( 11 =− ++ jjjj uyuy  for 1~1 −= wj  
(5.2c,d)

In addition, a floating joint may have absolute displacement load (Dxk, Dyk) as follows:  

xkDux =)( 11 ; ykDuy =)( 11  (5.2e,f)

When an arbitrary Dxk or Dyk is applied to a joint, the corresponding forces (Fxk and Fyk) 

are unknown since force and displacement cannot be applied simultaneously at a joint. 

For a fixed joint, the two constraint equations are 

constant)( =ux  and constant)( =uy  (5.2g,h)

where the constants are determined by mechanism configurations. The internal forces for 

the link connecting to a fixed joint must be determined from the other end, which 

connects to a floating joint. 

2   Moment/angle constraint equations 

Moment/angle constraints given below depend on joints types (clamped or 

revolute as well as floating or fixed joints): 

Floating joint - w constraint equations 

At a clamped joint, the clamped angle between every two links must remain 

unchanged after they are deflected and the moment summation of every link must 

balance at the joint: 

)()()()( 1111 ++++ −=− jjjjjjjj uuuu ψψηη  for 1~1 −= wj  (5.3a)
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[ ] 0)()(
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=′−′∑
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jj uu
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IE
ηψδ  (5.3b)

 A revolute joint cannot resist moment hence the change of slope must be zero for 

all the w links.  

[ ] 0)()( =′−′ jjjj uu ηψ  for wj ~1=  (5.3c)

Fixed joint - one constraint equation 

Equation (5.3d) is the angle constraint for a clamped joint and Equation (5.3e) is 

the moment equation for a revolute joint. 

)()( uu ψη = ; [ ] 0)()( =′−′ uu ηψ  (5.3d,e)

5.2.3 Forward and inverse as a dual problem 

The system (Figures 5.1 and 5.2) represented by Equations (5.1a~5.1h) and 

constraints (5.2) and (5.3) can be formulated as a forward or an inverse problem, which 

are a complementary pair as illustrated in Figure 5.3. 

 

Figure 5.3 The forward and inverse problems  

The forward analysis solves for the deformed shape characterized by the link 

curvature ψi+γi and the corresponding internal forces (hi, vi) given the initial shape ηi and 

external forces. On the other hand, the inverse analysis solves for the initial shape ηi and 

external forces given the deformed shape and internal forces. Unlike the forward model 

that focuses on analysis, the inverse model is for synthesis (or design). It is not always 

Initial configuration ηi 
External forces (Fxj, Fyj) or 
displacement loads (Dxk, Dyk)

Deformed configuration ψi

Internal forces (hi, vi)  Inverse 
problem

Forward 
problem 
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known how much an external force a mechanism can resist before it yields. However, the 

yield strength of common material is generally available. By specifying internal forces 

that are below the material’s limit, the inverse analysis will give us the appropriate 

external forces. 

5.3 Forward and Inverse Analyses 

Following the procedures of GMSM, we solve for the forward and inverse 

problems posted in Section 5.2. We consider the forward and inverse problems separately 

since they have different state-space forms. 

5.3.1 Forward and inverse models in state-space forms 

The forward problem is defined as follows: Given initial mechanism 

configuration and external loads, solve for the deformed configuration and internal 

forces of all links. For this, Equations (5.1a)~(5.1f) are recast in a state-space form: 
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qM  (5.4a)

where ][ γψψ yxi ′=q  are the state variables. Since the last component in 

Equation (5.4a) is an algebraic equation that does not includeγ ′ , the matrix Mi is singular. 

Equation (5.4a) becomes a set of DAE. The MATLAB programs ode15s and ode23t 

[Shampine, 1997] can be used to integrate DAE as an ODE. 

We define the inverse problem as follows: Given a deformed configuration and 

some of its internal forces, solve for the initial configuration and external forces. The 
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internal forces are the design parameters to be specified (with selection of materials). As 

in the forward analysis, Equations (5.1a)~(5.1d) and (5.1g,h) are recast for the inverse 

problem as follows: 
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where ][ γηη yxi ′=q  are the state variables. Opposite of Equation (5.4a), the 

unknown and known shape functions of the inverse problem are η and ψ respectively. 

5.3.2 Number of unknowns and constraint equations 

The unknowns generally include initial values of Equation (5.4) with force loads 

(Fxk, Fyk) and/or displacement loads (Dxk, Dyk). As an example, we consider force loads 

for the mechanism shown in Figure 5.1. The number of constraint equations and 

unknowns are given in Tables 5.1 and 5.2. 

Table 5.1 Number of constraint equations for a joint 

Type of constraints Floating joint Fixed joint 
Force/displacement 2w 2 
Moment/angle w 1 
Total 3w 3 

Table 5.2 Unknowns for the forward and inverse problems 

Type of unknowns Forward problem Inverse problem 
Initial values (µi) )0(iψ , )0(iψ ′ , )0(ix , )0(iy )0(iη , )0(iη′ , )0(ix , )0(iy

Parameters (ξi) ih , iv  ih , iv , xiF , yiF  

Number of unknowns l6  l6  
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The number of constraint equations is independent of problem types, i.e., a floating joint 

connecting w links will have 3w constraint equations while a fixed joint will have three. 

For a forward problem where external forces are given, there are six unknown for every 

link and hence a mechanism with l links will have l6 unknowns. In order to apply 

GMSM, we provide the proof that the number of unknowns is always equal to that of the 

constraint equations for a forward problem. 

Proof:  

Consider a mechanism consisting of l  links. The total number of connections is 

equal to l2  as a link has two connections. For ni floating joints connecting i links and m 

fixed joints, the sum of these joints must equal to the number of connections, or  

min
i

i += ∑
=

l

l
2

2  (5.5)

Multiplying the above equation by three on both sides we have 

min
i

i 336
2

+= ∑
=

l

l  (5.6)

where the 1st and 2nd terms on the right hand side represent the number of constraint 

equations from floating joints and fixed joints respectively. The sum of them equals 

to l6 (number of unknowns) on left hand side. We then finish the proof.  The forward 

problem is always solvable. 

For the inverse problem where some of the internal forces are given, the number 

of unknowns must also equal to l6 . In order to be solvable, the number of given internal 

forces must be equal to the number of unknown external forces. For the case of one 

external force, we specify the internal force of the link that undergoes most critical loads. 

Note that the internal force and the applied force don’t have to act on the same joint. For 
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cases of multiple external forces, care must be taken so that the specified internal forces 

are not over-constrained.  

5.4 Illustrative Examples and Applications 

We demonstrate GCM and its forward/inverse models with three examples. The 

1st example illustrates the effect of shear deformation on the link deflection. The 2nd and 

3rd examples illustrate the forward and inverse analyses respectively. 

Example 1: Effect of shear deformation on link deflection  

As shown in Equations (5.1d~f), the link deflection is caused by both bending and 

shear. Although shear angles are small within each infinitesimal element, they 

accumulate along the axial direction of the link. The effect of shear deformation at the tip 

can be observed by comparing the computation with/without shear deformation, which 

cannot be ignored especially for highly compliant members or precision flexure 

mechanisms. 

We investigate the effect of shear deformation by applying a vertical (+y) force on 

a compliant link originally pointing to +x. We denote δ+δs and δ as the tip deflections in 

the +y with and without considering shear deformations.  We use κ=5/6 as the shear 

correction factor for rectangular cross-sections. Other shear correction factors can be 

found in [Kaneko, 1975]. 

It can be shown from Equation (5.1d) that the shear angle is inverse proportional 

to shear modulus G, and from Equations (5.1a) and (5.1d) that the shear angle is 

proportional to the square of the link height h. We define the following two ratios so that 

the effect of these two factors on the shear deformation can be studied on a non-

dimensional basis: 
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(a) Material property ratio (E/G): This ratio is related to Poisson’s ratio as E/G=2(1+ν). 

Typical materials have an E/G between two to three, such as steel (E/G=2.54), Delrin 

(E/G=2.7), and rubber (E/G=3). 

(b) Geometric aspect ratio (h/L): This is the ratio of the height h to the length L of the 

link. 

Figure 5.4 shows the effects of these two ratios on the tip deflection for δ=0.2. Figure 5.5 

shows the effect of increasing tip deflection δ to the deflection δs caused by shear.  
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Figure 5.4 Effect of shear on tip deflection with δ=0.2 
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Figure 5.5 Effect of shear for link with large deflection (E/G = 3) 
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Clearly, the deflection δs becomes more significant as the two ratios increase; it is 

especially dominated by the geometric ratio. As expected, δs increases as δ increases. 

Hence the tip deflection due to shear deformation becomes significant for links 

undergoing large deflections. 

 Example 2: Forward analysis of a six-bar mechanism 

The mechanism shown in Figure 5.6 was originated from Kim and Kota [2002] as 

a compliant transmission for the secondary micro actuators in disk drives. The 6-bar 

mechanism is actually a 4-bar mechanism with its mirror image over the vertical link L3. 

Translation of J4 can be obtained by an input force at J2. We solve for the displacement 

δy for a given force Fy2 at J2. The parameters of the mechanism are that L1=L5=0.5m, 

L2=L4=0.68m, and L3=0.4m. All the links are initially straight ( 0=′iη ) and have the same 

flexural rigidity EI=0.3Nm2. The angles between the links are β1 = β2 = π/6. The arrows in 

the middle of each link indicate the direction of the arc length u. 

 

Figure 5.6 A compliant double four-bar mechanism 

Since the mechanism consists of 5=l links, there are 6x5=30 constraint equations, which 

are given in Table 5.3. The simulated geometry after deformation and computed F-δy 

curve are shown in Figs. 5.7 and 5.8 respectively. The results match well with those 

obtained by ANSYS (commercially available FE software).  
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Table 5.3 Constraint equations for the double four-bar mechanism 

Force constraints 
J2: 021 =− hh ; 0221 =−− yFvv   
J3: 0432 =++ hhh ; 0432 =++ vvv  
J4: 045 =− hh ; 045 =− vv  
Compatibility constraints 
J1: 0088.0)0(1 =+x ; 006.0)0(1 =−y  
J2: 0)0()1( 21 =− xx ; 0)0()1( 21 =− yy  
J3: 0)1()1( 32 =− xx ; 0)1()1( 32 =− yy ; 0)1()1( 43 =− xx ; 0)1()1( 43 =− yy  
J4: 0)0()1( 45 =− xx ; 0)0()1( 45 =− yy  
J5: 0)0(3 =x ; 0)0(3 =y  
J6: 0088.0)0(5 =−x ; 006.0)0(5 =−y  
Angle/moment constraints 
J1: πψ =)0(1   
J2: 121 )0()1( βπψψ −=− ; 0)0()1( 21 2

2

2
2
1

1 =′−′ ψψ
L

EI

L

EI  

J3: 2132 )1()1( πβψψ −=− ; )()1()1( 2243 βπψψ π −−=− ; 0)1()1()1( 432 2
4

4
2
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Figure 5.7 Deformed shape  Figure 5.8 Forward yF δ− curve  

Example 3: Inverse analysis of a four-bar mechanism 

Consider a compliant 4-bar mechanism. The interest is to find a configuration that, 

after deflected, has the shape shown in Figure 5.9. It is required that L2 remains straight 

under an external force Fx2. We also know the critical internal (shear) force h3 that L3 can 
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resist. We now seek for the original shape and Fx2. The parameters of the four-bar 

mechanism are EI1= EI2 = EI3 = 0.08Nm2, L1 = L3 = 0.2m, and L2 = 0.1932m.  

Figure 5.9 Deformed shape of a compliant mechanism 

Since the deformed shape is known, the angle function of each link can be approximated 

as a th4 order polynomial shown in Table 5.4. 

Table 5.4 Polynomials that approximate the angle functions 

Link 1 5673.17463.53610.110858.118763.4)( 1
2
1

3
1

4
111 +−+−≈ uuuuuψ

Link 2 0233.0)( 22 =uψ  
Link 3 0609.20966.32937.37269.04298.0)( 3

2
3

3
3

4
333 −−++−≈ uuuuuψ

By using the approach stated in Subsection 5.2.2, we formulate the 3x6=18 constraint 

equations in Table 5.5. The external force Fx2 is now an unknown and we specify the 

value of h3. The total number of unknowns is 18, which matches the number of constraint 

equations. Two original shapes are obtained in Figure 5.10 for h3=5N and h3= -5N. Their 

required forces are 32.48N and -32.33N respectively. 

Table 5.5 Constraint equations for the single four-bar mechanism 

Force constraints 
J2: 0221 =−− xFhh ; 021 =− vv   
J3: 032 =− hh ; 032 =− vv  
Compatibility constraints 
J1: 0)0(1 =x ; 0)0(1 =y   

L1 

L3 

Fx2

L2 J2 J3 

J1 J4 x 

y 
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J2: 0)0()1( 21 =− xx ; 0)0()1( 21 =− yy  
J3: 0)0()1( 32 =− xx ; 0)0()1( 32 =− yy   
J4: 2.0)1(3 =x ; 0)1(3 =y  
Angle constraint equations 
J1: )0()0( 11 ψη =   
J2: )0()1()0()1( 2121 ψψηη −=− ; [ ] [ ] 0)0()0()1()1( 2211 2

2

2
2
1

1 =′−′−′−′ ηψηψ
L

EI

L

EI  

J3: )0()1()0()1( 3232 ψψηη −=− ; [ ] [ ] 0)0()0()1()1( 3322 2
3

3
2
2

2 =′−′−′−′ ηψηψ
L

EI

L

EI  

J4: )1()1( 33 ψη =  

Original with h3=5N
Deformed shape
Original with h3=-5N

Fx2 = 32.48N

Fx2 = -32.33N

 
Figure 5.10 Original and deformed shape of the four-bar mechanism 

5.5 Software Development 

With the systematic procedures stated above, the global coordinate formulation 

can be written as a graphical user interface (GUI) program to analyze general compliant 

mechanisms.  We develop a program using the forward model with layout shown in 

Figure 5.11.  

The steps of using this program are outlined as follows: 

Step 1: Create joints: Graphical user input and manual input are both available. Joints 

will be labeled in order. 

Step 2: Create links: Create links starting from source joint (u=0) to sink joint (u=1). 

Input flexural rigidity EI for each link. For compliant mechanisms that include 
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rigid link, increase the flexural rigidity of the rigid link so that it is large enough 

compared with compliant links. Links will be labeled in order. 

Step 3: Choose fixed joints: Choose fixed joints from the joints created in Step 1. The 

fixed joint is limited to one link connection. 

Step 4: Define loads: Define applied load or displacement at the joint. This is limited to 

one joint. 

Step 5: Execute: After setting up the constraint equations, the generalized shooting 

method will be used to solve this model. Deflected shape will be plotted in red. 

Internal forces in each link will also be shown. 

 

Figure 5.11 Layout of the program 
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By showing some complicated examples, we demonstrate that the global 

coordinated model is generic for any number of links with any type of joints. Figure 5.12 

shows a compliant gripper mechanism that has often been implemented in micro systems, 

such as Figure 1.3(b) in [Lee et al., 2003]. Figure 5.13 shows a compliant crimper 

designed by Saxena and Ananthasuresh [2001]. 

(a) Original shape (b) Deformed shape 

Figure 5.12 Compliant gripper 

 

Figure 5.13 Compliant crimper [Saxena and Ananthasuresh, 2001] 

Rigid jaws

F F

F
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5.6 A Case Study: Design and Optimization of a Compliant Grasper 

We have shown in the previous sections that the global coordinate model is 

capable of both forward and inverse analysis. The objective here is to demonstrate that 

the model is efficient for design and optimization of compliant mechanisms.  

The optimization problem of a compliant mechanism can be defined into three 

hierarchical levels [Howell, 2001]. Topology optimization is the highest level that 

determines the form of the mechanism. It is equivalent to type and number synthesis in 

rigid-link mechanisms [Uicker et al., 2003]. At the second level, shape optimization 

determines the curvature of each link. It has no rigid-link mechanism counterpart since 

links must be rigid. At the lowest level, the size optimization is considered. It is 

equivalent to dimensional synthesis in rigid-link mechanisms. Table 5.6 lists the design 

variables for each level using the nomenclature of the global coordinate model.  

Table 5.6 Optimization problems and its corresponding variables 

Many research works have been performed to optimize the topology of compliant 

mechanisms (see [Kirsch, 1989] for review). Most of them assume the shape of link to be 

initially straight and then perform optimization technique to determine the number of 

links with their locations. However, the function of the link’s initial shape has not been 

fully explored. The determination of initial shape (or shape optimization) is in general 

more difficult than size optimization because we need appropriate variables to define the 

Optimization level Design variables Rigid-link mechanism equivalence 

Topology Number of links l  
and position of joints (xi, yi)

Type synthesis 
and number synthesis 

Shape )(uη , )(uψ  N/A 

Size I , A , L  Dimensional synthesis 
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δx

Original shape 

Deformed shape 
y 

x 

F

Deformed shape F

Original shape

δy

shape of a compliant mechanism. While this may be a problem for models (such as Euler-

Bernoulli’s beam model) that based on coordinate variables (x, y) to describe the shape, 

the global coordinate model can easily express an arbitrary by using initial angle of 

rotation η(u). We illustrate in the following two subsections with an example to show 

how to optimize the shape of a compliant mechanism using the global coordinate model. 

5.6.1 Shape optimization of a compliant link 

The well known shortening effect of a large deflected link is shown in Figure 

5.14(a). When an initially straight link undergoes a vertical force F, its tip will not only 

displace in the y direction but also retreat in the x direction. This effect is undesired in 

applications that require linear displacement of the tip in the y direction while keeping δx 

unchanged. However, for an initially curved link as shown in Figure 5.14(b), it is possible 

that δx remains unchanged under a specified force F.  

  

(a) An initially straight link (b) An initially curved link 

Figure 5.14 Shortening effect of a link 

Obviously there are many solutions to the initial shape and specified force in Figure 

5.14(b). We post the optimization problems as: To find the optimal initial shape that 

requires least force to deflect δy while keeps δx unchanged. In order to find the optimal 

shape, we first express the initial curvature of the link in a Fourier sine series as follows: 
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)2sin()(
1

uicu
i

i πη ∑
∞

=

=  (5.7)

where ci’s are Fourier coefficients. Other series can also be used to express )(uη . The 

reasons that we use Fourier sine series are that the slope at 0=u and 1=u are required to 

be zero for ease of fabrication and Equation (5.7) can express an arbitrary function with 

zero initial and end slopes. Figure 5.15 shows three different initial shapes using two term 

(c1 and c2) Fourier series that have total link length L=3.34 inches. The original base and 

tip locations are at (0, 0)inch and (2, 0)inch respectively. The forces shown in Figure 5.15 

are those required to have δy=0.5 inch while δx remains unchanged.  Obviously the 

number of inflection points increases as c2 increases. 

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

x (inch)

y 
(in

ch
)

c1=1.3 c2=0.385 F=6.4999N
c1=1.1 c2=0.845 F=6.0236N
c1=0.9 c2=1.057 F=6.4017N

 
Figure 5.15 Different initial shapes 

Since the shape is determined by Fourier coefficients, the vertical force F can be 

represented as a function of those coefficients. In order to find the minimum F, we 

express the optimization problem as follows: 

min ),,,( 321 KcccfF =  subject to LL <  (5.8)

where f is the object function that we are trying to minimize and L is the given length 

that the link can not exceed due to design constraints. In this problem we set the object 
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function as vF =  so that the required vertical force is minimized. Other design variables 

are listed in Table 5.7 with dimensions set according to the fabrication complexity. 

Table 5.7 Design variables for compliant grasper 

Variable Value 
E 2.62GPa 
W x H 0.04572m x 0.001016m 
L  0.085m (3.34 inches) 

)1(x  0.0508m (2 inches) 
yδ  0.0127m (0.5inches) 

In order to find the coefficients that would give the optimal solution, we implement the 

optimization algorithm using MATLAB function fmincon(). In each optimization 

iteration, we use the GMSM to obtain the F-δy relations. The optimal shape with respect 

to one, two, and three terms Fourier series are shown in Figure 5.16. Table 5.8 also shows 

the optimal coefficients and their corresponding required forces. Smaller F can be 

obtained be increasing the number of terms. Due to fabrication complexity (machine tool 

geometry and assembly difficulties, etc), the one term approximation is chosen.  

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

x (inch)

y 
(in

ch
)

One term
Two terms
Three terms

 
Figure 5.16 Optimal grasper shapes 
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Table 5.8 Optimal coefficients and required forces 

Number of Terms Function F (N) 
1 )2sin(3426.1)( uu πη ≈  7.6227 
2 )4sin(7817.0)2sin(1412.1)( uuu ππη +≈  6.0119 
3 )6sin(5197.0)4sin(7668.0)2sin(0628.1)( uuuu πππη ++≈  5.4298 

5.6.2 Compliant grasper and experiment validations 

An immediate application of the optimized compliant link presented in Subsection 

5.5.1 is the compliant grasper shown in Figure 1.2. The compliant grasper consists of a 

rigid frame with a pair of compliant links inside shown in Figure 5.17. It is used to 

support the compliant fingers (for grasping objects) and accommodate objects with a 

limited variation in sizes in the y direction. The force to deflect the compliant links comes 

from the contact forces between compliant fingers and objects. 

Figure 5.17 Grasping with compliant grasper 

 We performed an experiment to measure the force-displacement relations of the 

compliant grasper. As shown in Figure 5.18(a), we use a force tester from 

Compliant finger

Pair of compliant 
links 

Object 

Rigid frame 

x

y

δy 
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TESTRESOURCES (Model 650M) to record the forces by giving displacement inputs. 

We also show the deformed shape in Figure 5.18(b) and a close view in Figure 5.18(c). 

Deformed shapes under 0, 5 and 10 lb are shown in Figure 5.19. As compared in Figure 

5.20, the experiment results of both tension and compression tests are performed and 

agree well with those obtained by the global coordinate model. 

 
(b) Deformed shape 

  
(a) Experiment setup (c)Compliant grasper frame 

Figure 5.18 Experiment setup 

   
(a) No load (b) 5 lb (b) 10 lb 

Figure 5.19 Deformation of the grasper frame under different loads 
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Figure 5.20 Force-displacement relations 

5.7 Conclusions 

This chapter presents the global coordinate model for analytical design of 

compliant mechanisms. This model is general in such that it automatically accounts for 

initially curved beams and beams with nonuniform shape. The deflection is governed by 

a set of differential equations with two types of constraint equations. The differential 

equations can be readily solved by the generalized multiple shooting method developed 

in Chapter 2 and 3. The global coordinate model is systematic that it can be generalized 

to analyzing multi-link compliant mechanisms.  

Forward and inverse models are both illustrated with examples. Unlike 

displacement-based models, the global coordinate model can directly solve the inverse 

problems and thus, is suitable for initial design of compliant mechanisms. The effect of 

shear deformation on the deflection of a compliant link has also been characterized.  

Tension 

Compression
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Along with the GCM, a GUI program has been developed to facilitate topology 

design of compliant mechanisms. Finally, we use the compliant grasper as an example to 

demonstrate the capability of global coordinate model in both analysis and optimization. 

An experiment is conducted to validate the global coordinate model for analyzing 

initially curved compliant links. The comparison result has shown good agreement.  
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CHAPTER 6  

GRIPPING CONTACT MODEL 

 

 
6.1 Introduction 

 In the previous three chapters (Chapter 3, 4, and 5), compliant mechanisms with 

equality (bilateral) constraints have been investigated using generalized shooting method 

with global coordinate model. For certain applications such as compliant grippers, some 

of their constraints (contact constraint) cannot be expressed as equations and hence 

require a different analytical tool that can deal with inequality constraints.    

This chapter presents an efficient computational technique using nonlinear 

constrained optimization to facilitate design and analysis of compliant grippers. This 

technique is rather general and can be used to analyze contact between an arbitrarily 

shaped 2-D object and a compliant gripper with arbitrary geometry in its lateral direction. 

Key to this model is the expression of strain energy and formulation of geometric 

constraints. This remaining chapter offers the following:  

1. A formulation based on the Nonlinear Constrained Optimization (NCO) technique. 

It offers a means to predict the deflected shape of the compliant gripper and its contact 

forces (both normal and tangential) with an object where the geometric shapes of the 

gripper cannot be ignored. 

2. Two classes of design configurations are considered. Namely, gripping with and 
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without a rigid jaw as shown in Figures. 6.1(a) and 6.1(b) respectively. The former 

relies on indirect contact with the object through a jaw while in the latter the compliant 

gripper directly contacts the object. 

3. A numerical solver based on Sequential Quadratic Programming method. This 

method solves the nonlinear constraint optimization problems. 

4. Verification with FEM. We simulate two examples using the proposed method 

and compare the computed results against those obtained using FEM; the results are in 

excellent agreement with simpler formulation and much less computation effort.  

 

 (a) Grip with a rigid jaw 

 

(b) Continuous grip without a rigid jaw (c) Differential segment 

Figure 6.1 Compliant gripping contacts 
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 While this chapter focuses on 2-D gripping contact model, the formulation of 3-D 

model can be found in Appendix C. 

6.2 General Formulation of the Contact Problem 

We formulate the compliant gripper contact problem as a nonlinear constrained 

optimization (NCO) problem. This begins with the strain energy expression of a 

compliant gripper capable of large deflection with shear deformation; followed by the 

formulation of geometric constraints that prevent the gripper from penetrating the object. 

The minimization of strain energy with geometric constraints together forms a nonlinear 

constrained optimization problem after discretization. Normal and tangential contact 

forces can be obtained by using Newton’s 3rd law.  

6.2.1 Formulation of strain energy 

 Consider the two classes of compliant grippers as shown in Figure 6.1(a) and 

Figure 6.1(b). The manipulation of grippers depends on the contact forces from the rigid 

object to make the fingers deflect in such a way that can accommodate the geometry of 

the object. The gripper shown in Figure 6.1(a) has a triangular jaw attached at the end 

while the surface of the gripper in Figure 6.1(b) is in direct contact with an elliptical 

object. Note that the shapes of the gripper and object are not restricted to the schematics 

shown in Figure 6.1.    

In order to characterize the gripper deflection, we generalize Timoshenko’s beam 

theory [1922] so that it can account for large flexural deflection with shear deformation. 

Timoshenko’s beam theory is applicable to small deflections with assumptions that (a) 

the cross-section remains planar after deflection and (b) the gripper is inextensible. The 
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deflection of a differential segment shown in Figure 6.1(c) is interpreted as a 

superposition of two effects: (I) a bending moment induces an angle of rotation ψ without 

changing the shear angle, and (II) the shear force distorts the segment by a shear angle γ 

without causing it to rotate. The resultant of these effects is that the cross-section rotates 

by an angle ψ+γ. Furthermore, by replacing the differential arc length ds with dx, we 

generalized Timoshenko’s theory so that it is applicable to large deflections.  Since most 

deformation of the gripper is due to bending and shear, we neglect the local surface 

deformation (treat as rigid surface) and state the strain energy V stored in the system 

shown in Figure 6.1(a) and Figure 6.1(b) as 

[ ]∫ 





 +=

L
dsssGA

ds
dsEIV

0

22
2
1 )()())(( γκψ  (6.1)

where s is an arc length;  

A, L, and I are the cross-section area, length and moment of inertia of the gripper 

respectively;  

E and G are respectively the Young’s and shear moduli of the gripper;  

ψ is the angle of rotation of the gripper; 

γ is the shear angle of the gripper; 

κ is the shear coefficient; and 

[xC, yC]T is the position vector of the contact point. 

The shear coefficient κ is introduced in order to correct the assumption (a) made above. 

In Equation (6.1), the 1st and 2nd terms in the integral account for the strain energy due to 

bending and shear respectively. There is no strain energy of the object since we assume it 

is rigid. Here we perform a quasi-static analysis and assume that the gripper and object 
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are on the verge to slip. The following conditions can be drawn according to this 

assumption.  

1. The magnitude of normal force |Fn| and contact force |Ft| are related to each other by 

µ|Fn|=|Ft| where µ is kinetic friction coefficient. 

2. Continue from 1, the contact point can be viewed as a rigid joint since we neglect 

local deformation. The work due to normal and friction force is canceled between the 

gripper and object. Thus the potential energy of the system only includes Equation 

(6.1). 

From hereafter we set the x-axis pointing to the undeflected direction of the 

gripper and y-axis to the deflected direction. The dash line in the middle of the finger 

represents the neutral axis and the position of a point (x, y) on it can be obtain as 

∫ 







+
+

=






 s
ds

y
x ˆ

0 )sin(
)cos(

γψ
γψ

 (6.2)

where ŝ is the arc length from origin O to point (x, y).  

6.2.2 Formulation of geometric constraints 

The geometric constraints are formulated in order to describe the state at contact. 

Specifically, the points )~,~( yx on the contact surface of the gripper must satisfy the 

following inequality in order not to penetrate the rigid object 

0)~,~( ≥yxg  (6.3)

where g(x,y)=0 is the surface function that describes the contour of the object contacting 

the gripper. Depending on the location of contact, the points )~,~( yx on the contact surface 

for the two classes of grippers can be stated as follows: 
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Case I: Compliant finger with a rigid jaw (indirect contact) 

 Since the local deformation near contact area of the jaw is small compared with 

the deflection of the finger, it can be treated as a rigid body. The position )~,~( yx  of a 

point on the surface of the jaw, i.e., line segment ab, can be described by the angle of 

rotation at s=L and the point [x(L), y(L)]. 










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
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
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+
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+
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




=








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L
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P

y
x

y
x

)cos(
)sin(

)sin(
)cos(

~
~

γψ
γψ

γψ
γψ

 (6.4)

where the subscript L denotes the value obtained at s=L; and 

[Px, Py]T is the position vector from (xL, yL) to )~,~( yx  in the jaw frame (with origin 

at [xL, yL]T and axes parallel to x-y before contact); 

Case II: Direct contact between compliant finger and object 

When the finger surface is in direct contact with the object, an arbitrary 

point )~,~( yx on the contact surface of the finger can be related to its corresponding point 

on the neutral axis by 









+−
+

+







=








)cos(

)sin(
2

)(
~
~

γψ
γψsw

y
x

y
x

 (6.5)

where w(s) is the thickness of the finger. 

6.2.3 Determination of normal and tangential contact forces 

Of all the points on the contact surface, the one that satisfies the surface function 

g=0 is denoted as PC=[xC yC]T. The contact force can be obtained by applying Newton’s 

3rd law at the gripper. Specifically, the contact forces F=[Fx Fy]T from the gripper to the 

object (or -F from the object to the gripper) must have a moment on the gripper that 

equals the reaction moment at O.  
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FP ×−=
=

C
sds

dsEI
0

)( ψ  (6.6)

The contact force F includes normal and tangential components that can be written in the 

following form. 

F = [Fx Fy]T = Fn+Ft = [Fnx Fny]T + [Ftx Fty]T (6.7)

The direction of normal contact force must be parallel to the gradient of the object 

surface at (xC yC). 

nx

ny

yx F
F

xg
yg

CC

=
∂∂
∂∂

),(/
/   (6.8)

Since normal contact force and tangential (friction) contact force are orthogonal to each 

other, we have 

tynytxnx FFFF =  (6.9)

Since the contact surface is on the verge to slip, the magnitude of normal force relates to 

the magnitude of friction force by 

2222
tytxnynx FFFF +=+µ  (6.10)

where µ is the kinetic friction coefficient. The components Fnx, Fny, Ftx, and Fty can be 

solved simultaneously from Equations (6.6), (6.8), (6.9), and (6.10). Note that the signs 

of Ftx and Fty have to be determined from the direction of interaction between the gripper 

and object. 

 In the case of frictionless contact, only normal contact force Fn = [Fnx Fny]T needs 

to be considered. The x component Fnx and y component Fny can be solve simultaneously 

from Equations (6.6) and (6.8). 
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6.2.4 Numerical discretization 

In order to obtain the deflected shape of the gripper, we apply the principle of 

minimum potential energy for Equation (6.1) with geometric constraints Equation (6.3). 

Specifically, the principle of minimum potential energy states that of all admissible 

displacements, those that satisfy the equilibrium condition at contact make the total 

potential energy minimum. Namely, we are trying to find the minimum of V from 

Equation (6.1) with the admissible displacements imposed by Equation (6.3). Rather than 

seeking for a closed-form solution, we resort to numerical approximations by discretizing 

the neutral axis of the finger into N equally spaced intervals and the contact surface into 

M equally spaced intervals. We use capital letters to denote the approximated values of 

the variables as follows: 

sisi ∆= , N
Ls =∆ , Ni ~0=  

)( iii sψψ =≈Ψ ; )( iii sγγ =≈Γ , Ni ~0=  

)( iii sxxX =≈ ; )( iii syyY =≈ , Ni ~0=  

)(~~~
jjj sxxX =≈ ; )(~~~

jjj syyY =≈ , Mj ~0=  

(6.11)

Hence we can approximate Equation (6.1) by, but not restricted to, the trapezoidal rule: 
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The area A and moment of inertia I are approximated as 

2
)()( 1

2
1

−
−

+
= ii

i
sIsI

I ; and 
2

)()( 1
2

1
−

−

+
= ii

i
sAsA

A  (6.13)

Since the gripper is clamped at the base, the initial angle of rotation (ψ0) and position (x0, 

y0) are equal to zero. 
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00 =Ψ ; 00 =X ; and 00 =Y  (6.14)

Follow from Equation (6.2), any point on the neutral axis of the finger can be 

approximated as 

[ ]∑
−

=
++ ∆Γ+Ψ+Γ+Ψ=

1

0
112

1 )cos()cos(
i

k
kkkki sX  

[ ]∑
−

=
++ ∆Γ+Ψ+Γ+Ψ=

1

0
112

1 )sin()sin(
i

k
kkkki sY  

(6.15)

where i=1~N. The points on the contact surface can be obtained by plugging Equation 

(6.15) into Equation (6.4) or (6.5). The approximated )~,~( YX  is then substituted into 

Equation (6.3)  

0)~,~( ≥jjj YXg ; Mj ~1=  (6.16)

Equation (6.12) is a quadratic object function that has to be minimized subject to the 

constraint functions from Equation (6.16) with independent variables Ψi and Γi (i=1~N). 

The numerical solvers for obtaining the optimal solution will be presented in Section 6.3. 

Note that the number of intervals M for the neutral axis, in general, does not have to be 

equal to the number of intervals N of the contact surface. 

6.3 Sequential (Successive) Quadratic Programming 

 In this section we introduce a numerical algorithm based on sequential quadratic 

programming (SQP) to solve the optimization problem governed by Equations (6.12) and 

(6.16). The general nonlinear minimization problem with inequality constraints can be 

stated as follows: 

min )(xf  (6.17)



 

125 

subject to 0)( ≥xig , Mi ~1=  

where gi is the ith inequality constraint function. 

The idea of SQP is to approximate the current state (say, xk) by a quadratic programming 

(QP) sub-problem as 

min ppxp T
kk

T fL ∇+∇ )(2
2
1  

subject to 0)()( ≥+∇ kikki gg xxx , Mi ~1=  
(6.18)

where kxxp −=  and ∑
=

+=
m

i
ii gfL

1
)()( xx λ  

Equation (6.18) contains a quadratic approximation of f(x) and linear 

approximations of gi(x). The minimizer of Equation (6.16) is then used to define a new 

state by setting xk+1= xk+p. The minimizer of the QP should be the optimal solution of 

Equation (6.17) when the iterative process converges. The disadvantages of SQP are that 

the computation of Hessian matrix ∇2L(xk) is time-consuming for large problems and that 

it may not be positive definite. Various quasi-Newton algorithms can be used to 

approximate Hessian matrix. Here we adopt the popular BFGS algorithm (by Bryoden, 

Fletcher, Goldfarb, and Shanno). The formulae are stated as follows [Bazaraa et al., 

1993]: 

kk
T
k

k
T
kkk

k
T
k

T
kk

kk pWp
WppW

pq
qq

WW ~
~~

~~
1 −+=+  (6.19)

where 

kkk xxp −= +1  (6.19a)

and  
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[ ]∑
=

+++ −∇+∇−∇=
m

i
kikiikkkk ggff
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1
~

+kW  is the approximation Hessian for the next step. The steps for the SQP are outlined 

as below. 

Computational Steps 
Given initial x0, 0

~W , λ0,i (i=1~m), ]1,0[∈β , and tolerance ε: 

1. Solve Equation (6.18) for p and λk+1,i (i=1~m) 

2. For k=0,1,2… 

Set xk+1 = xk + βp 

 While fk+1 > fk 

  xk+1 = xk + β(xk+1 - xk) 

 End 

Obtain BFGS update matrix 1
~

+kW  from Equation (6.19). 

If |f(xk+1)|< ε, exit 

End 

6.4 Verification of Frictionless and Frictional Contact 

In this section we illustrate with two examples to verify the NCO technique 

introduced in Section 6.2. In Example I, we consider an indirect gripping contact where 

the object contacts with the gripper through a triangular jaw. In Example II the direct 

contact of the gripper with an elliptical object is considered. The simulation results are 

then compared against those obtained by using FEM. Both frictionless and frictional 

contacts will be considered. Note that in Example I we need not consider shear 

deformation since finger thickness is relatively small.  
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Example I: Passive gripper for micro-assembly 

The assembly process using a compliant gripper includes insertion, deflection, 

and assembly. An effective assembly requires designing the geometry of the gripper and 

its jaw such that it is easy to insert but very difficult to pull out. For clarity, we consider 

in Figure 6.2 a gripper with a triangular jaw and a circular object surface. Due to 

symmetry, only half of the gripper needs to be considered. 

(a)Insertion (b)Deflection/contact (c)Assembly 

Figure 6.2 Gripper assembly sequence 

Since only segment ab on the jaw contacts with the object, we only need to 

discretize surface ab into M equally spaced intervals. The geometric constraints can be 

obtained by using the equation of a circle 

0)~()~()~,~( 222 ≥−−+−= RyYxXYXg ojojjjj  (6.20)

where R is the radius of the extrusion part of the object and (xo, yo) is the center of the 

circle as shown in Figure 6.2(b). The simulation parameters for both the NCO technique 

and FEM are listed in Table 6.1. Figures 6.3 and 6.4 show the forces required as the 

gripper inserts into the fixture. The NCO technique matches well with FEM with 

differences less than 3%. Figure 6.5 also shows the deflection shape obtained by ANSYS 

where xo= 0.06781m. The comparison of computation time of this particular result in 
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Table 6.2 shows that the NCO technique is more efficient than FEM without losing 

accuracy. 

Table 6.1 Simulation parameters and values 

Parameters Values Parameters Values 
Young’s 
modulus(N/m2) 

2.6x109 

Lead angle β 25o 

Thickness w 0.0032m

element type 
for ANSYS 

PLANE2 for both gripper and 
object 

Width b 0.0095m
Finger length L 0.057m # of elements for ANSYS 1266 

Jaw length Le 0.019m N 100 
Fixture radius R 0.0089m M 100 
Fixture position yo  0.0105m   
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Figure 6.3 Simulation result of a gripper assembly (µ=0) 
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Figure 6.4 Simulation result of a gripper assembly (µ=0.5) 
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Figure 6.5 Simulation results from FEM 

Table 6.2 Comparison of computation time 

Method Time(sec) 
NCO(without shear deformation) 20.95 
FEM(ANSYS) 516.463 

Example II: Gripper for object handling 

In this example we illustrate an application where the gripper manipulates an 

object by direct contact through the finger. The finger needs to make contact with the 

object. For ease of illustration, we consider a case where a nonuniform gripper 

manipulates an elliptical object as shown in Figure 6.6. We perform a quasi-static 

analysis where the relationship between the moving object and rotating finger can be 

described by 

o10222.236 +−= exφ  (6.21)

where xe is in meters and φ is the rotation between gripper frame xy and world frame xwyw. 

The contact surface includes one side of the finger that approaches the object. Since the 

contact location is unknown, the whole finger surface needs to be discretized and the 

geometric constraints can be obtained by using the equation of an ellipse. 
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0~~~~~~
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1 ≥+++++= bYbXbYXbYbXbg jjjjjjj  (6.22)

where bi’s are the coefficients of the elliptical object. 

 
Figure 6.6 Schematics of a rotating gripper contacting an object 

As mentioned in Section 6.2, Timoshenko’s beam theory includes a shear coefficient κ. 

Various shear coefficient formulae have been proposed. As shown in Equation (6.23), we 

adopt the shear coefficient formula suggested by Kaneko [1975] to correct the shear 

angles of grippers with rectangular cross-section.   

)56/()55( ννκ ++=  (6.23)

where ν is Poison’s ratio. We again compare the results of the NCO technique with FEM. 

Simulation parameters are listed in Table 6.3. Figure 6.7 shows the continuous snapshots 

where the object moves from left to right while the gripper rotating clockwise. The 

computation time of xe=0.0508m is compared in Table 6.4. In Figure 6.8 we compare the 

results of frictionless contact by using the NCO technique (with and without shear effect), 

FEM and a one-dimensional model (treat finger as a line segment without considering 

lateral thickness, say, Frisch-Fay’s model). In Figure 6.9, the results of frictional contact 

are also compared with direction of friction force pointing to the positive x axis. We also 

show in Figure 6.10 the angle of rotation ψ and shear angle γ  at xe = -0.0254m. It is 
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apparent that the contact point locates around s = 0.08m. There is no deformation after 

the contact point and hence, ψ  remains constant and γ becomes zero. 

 

Figure 6.7 Snapshots of gripper-ellipse contact   

(φ=144 o, 126o, 108o, 90o, 72o, 54o from left to right) 
 

Table 6.3 Simulation parameters and values 

Parameters Values Parameters Values 
Young’s modulus  4.8x106 N/m2 
Shear modulus 1.71x106 N/m2 

Poison’s ratio 0.4 
Base thickness wb 0.030m 

element type 
for ANSYS 

PLANE2 for ellipse and 
PLANE42 for gripper 

Tip thickness wt 0.017m 
Width b 0.025m 

# of elements for 
ANSYS 1080 

Ellipse long axis 0.09906m N  90 
Ellipse short axis 0.06731m M 90 
Ellipse position ye 0.12065m   

Table 6.4 Comparison of computation time 

Method Time(sec) 
NCO(without shear deformation) 15.352 
NCO(with shear deformation) 33.358 
FEM(ANSYS) 222.42 
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Figure 6.8 Comparison of simulation results (µ=0) 
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Figure 6.9 Comparison of simulation results (µ=0.5) 
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Figure 6.10 Angle of rotation and shear angle at xe = -0.0254m and φ=108o 
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The following observations can be made from the comparison between NCO and 

other existing methods: 

1. The one-dimensional model, which treats the finger as a line segment, ignores the 

geometry of the finger hence is only applicable for fingers with relatively small 

thickness. The error of contact forces will increase as the thickness increases. 

2. When applying the NCO technique without considering shear deformation of the 

gripper, the error increases as contact force increases. The overall contact forces also 

tend to be higher than those with considering shear deformation. When considering 

shear deformation, the predicted contact forces obtained from the NCO technique 

matches well with FEM. Typical differences are within 3%. Without losing accuracy, 

the NCO technique, which discretizes the finger in one dimension (along the neutral 

axis), is far faster than FEM which discretizes the gripper in two dimensions (along the 

neutral axis and transverse direction). 

3. The excellent agreement of the NCO technique and FEM also verifies that the 

assumption of small surface deformation is valid for frictionless contact and frictional 

contact with moderate friction coefficient. 

4. In order to satisfy the boundary conditions of gripper/object surface, FEM 

requires discretization of both gripper and object surface while the NCO technique only 

needs to discretize the gripper surface. Hence the formulation of NCO can be simpler. 

6.5 Conclusions 

 A computational model based on Nonlinear Constrained Optimization (NCO) 

techniques has been presented for analyzing compliant grippers whose manipulation 

relies on direct or indirect contact with the objects. The model takes into account large 
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flexural deflection and shear deformation whose effect can not be neglected for thick 

fingers. By formulating geometric constraints this model can be applied to nonuniform 

fingers and jaws with arbitrary geometry.   

Two types of compliant grippers have bee presented to illustrate the formulation. 

Both frictionless and frictional contacts have been considered. The simulation results of 

NCO technique agree well with those obtained by using FEM with difference typically 

within 3%. Compared with FEM, the advantages of the NCO technique are the following: 

(a) The dimension of discretization can be reduced by one, namely, 2-D problem can be 

reduced to 1-D and 3-D problem can be reduced to 2-D. Hence it is computationally 

much more efficient than FEM. (b) The object domain need not be discretized. Hence its 

formulation is simpler than FEM.   

The excellent agreement shows that the formulation and analysis offered by the 

NCO technique can effectively facilitate the process of design and optimization of 

compliant grippers that have a broad spectrum of applications ranging from MEMS 

device fabrication [Tsui et al., 2004] to automated handling of live objects in food 

processing industry [Lee et al., 1996]. The formulation can also be further extended to 

compliant grippers with external actuators.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

 

 
7.1 Conclusions  

 A rather complete set of computational models have been presented in this thesis 

to analyze and design planar compliant mechanisms. The models are capable of 

mechanisms with both clamped/revolute joints and gripping contact conditions. In 

summary, we conclude this thesis research with the following three paragraphs. 

(1) The generalized shooting method (GSM):  

 In Chapter 2, we proposed the generalized shooting method as the computational 

basis for analyzing compliant mechanisms. As the method is rather generic, it can be 

applied to any compliant link models that are governed by sets ordinary differential 

equations. Comparisons of generalized shooting method with other existing methods are 

made and the advantages of GSM are highlighted.  

(2) The global coordinate model (GCM): 

 We developed the global coordinate model in Chapter 3 and 5 for analyzing 

compliant mechanisms. This is a distributed-parameter type model that can account for 

large deflection with nonuniform link geometry as well as nonlinear material properties. 

Bending, axial and shear deformations are all captured in this model. Both dynamic and 

static examples are given with verifications. Systematic procedures are formulated to 
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analyze compliant mechanisms with arbitrary link numbers and connection types. 

Forward and inverse problems are addressed to show that this model is an excellent 

candidate for both analysis and design of compliant mechanisms. Finally an illustrative 

example is given to demonstrate how this model can be applied to real problems. 

(3) The gripping contact model and nonlinear constrained optimization technique (NCO): 

 In Chapter 6 we proposed the gripping contact model for analyzing compliant 

grippers. We used the global coordinate model to capture the deformation of the gripper 

with geometric constraints that describe contact boundary conditions. The model was 

solved using nonlinear optimization technique. It was demonstrated that this technique 

essentially reduces the order of computation by one with errors less than 3%. The 

proposed technique is also significantly faster than popular finite element method. Both 

frictional and frictionless problems were investigated.  

 As the computational models have immediate applications in designing compliant 

mechanisms for robotic grasping, it is expected that the models can serve as a basis for 

design and analysis of a wide spectrum of compliant mechanisms.   

7.2 Future Works 

 Some recommendations for further improving the computational models are 

summarized as follows: 

(1) In this thesis, compliant members are assumed to deflect in one direction only. In 

other words, we only consider planar compliant mechanisms. Although most compliant 

mechanisms are designed for planar manipulation, there are certain applications where 

three dimensional models are necessary. Examples include compliant rubber finger 

applied for 3-D object handling [Lee, 1999], space robot arm, and electroactive polymers. 
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To make the global coordinate model complete, we list some of the future works for 

developing three dimensional link models. 

 The generalized shooting method is readily applicable to any models that are 

governed by ordinary differential equations. Hence we can extend Equation (3.10) 

to predict three dimensional deformation using GSM. 

 The gripping contact model developed in Chapter 6 can also be extended to 

analyze 3-D compliant grippers. We present the 3-D gripping contact model in 

Appendix C.  

(2) For broader applications such as control and vibration analysis of compliant 

mechanisms, close form equations are necessary. By using the power series method 

(Appendix D), the governing equations of the global coordinate model can be 

approximated by algebraic equations. 

(3) In addition, the gripping contact model is a quasi-static model that does not consider 

the dynamic interaction between grippers and the object. Although dynamic contact 

models are well developed for rigid bodies, it remains a challenge to develop dynamic 

compliant contact model for grasping problems. 
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APPENDIX A  

ALTERNATIVE COMPLIANT LINK MODELS 

 

 
Although we suggest the proposed global coordinate model for analyzing 

compliant mechanisms, there are other alternatives that can capture the deformation of a 

compliant link. As long as the link model can be represented by ordinary differential 

equations, it can be solve by the generalized shooting method proposed in Chapter 2.  

Two additional link models are introduced here as alternatives. The first model 

extends the large deflection capability to predict the axial deformations. The second 

model uses x as the independent variable and includes Karman strains in the potential 

energy function to account for moderate deflection (transverse normal around 10°~15°). 

These two models can be explored in the same way using generalized shooting method to 

analyze general compliant mechanisms. 

A.1 Link Model With Large Deflection And Axial Deformation 

The Frisch-Fay model [1962] in Chapter 2 is limited to compliant mechanisms 

with negligible effect of axial deformation. In order to account for such effect, we extend 

the Frisch-Fay model by including axial deformation terms. The governing equations are 

derived by using the principle of minimum potential energy which can be formulated as 

follows: 
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where e is the axial displacement; and Fx, Fy are applied forces at the tip along positive x 

and y directions. By means of standard manipulation of variational calculus, we obtain 

the normalized governing equation of a flexible link as 
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where dud /())( =′ and u=s/L. By introducing state-space variables 

[ ] [ ]eeqqqq ′′= ψψ4321 , 

we can recast Equation (A.2) as 1st order ODE’s with n=4. 
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(A.3)

The known and unknown initial values for a clamped link are given by 

Known I.C.: 0)0(1 =q , 0)0(3 =q  

Unknown I.C.: 2q , 4q  

In order to solve Equation (A.3) using generalized shooting method, the following 

terminal conditions must be satisfied for an applied tip force. 
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After obtaining the solution, the position of the tip C can be obtained from the following 

integral equation. 
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Note that the positions of the tip have to be obtained from Equation (A.4) after 

solving Equation (A.3). The global coordinate model, on the other hand, can directly 

obtain the tip position after solving the ODE’s. 

A.2 Euler-Bernoulli-Von Karman Equations of Compliant Links 

The potential energy function using Karman strains [Reddy, 1999] is formulated 

as follows: 
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where y is the transverse displacement. Similarly, we can obtain the normalized Euler-

Bernoulli-von Karman equations of links using variational calculus. 

( )[ ]{ } 02
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′+′ yeLEA ; ( ) ( )[ ]{ } 02

2
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′+′′−″′′ yeLEAyyEI  (A.6)

where dvd /())( =′ and v=x/L. Compared with Equation. (A.2), (A.6) uses the x 

coordinate of the undeflected link as the independent variable, which makes it 

insufficient to predict very large deflection [Hodges, 1984].  Note that by setting A=0, 

Equation (A.6) collapses to the classical Euler-Bernoulli equation. Next we define 
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[ ] [ ]wwweweqqq ′′′′′′′=621 K   

so that Equation (A.5) can be recast as 1st-order ODE’s with n=6. 
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For a compliant link clamped at the base, we have the following known and unknown 

initial values. 

Known I.C.: 0421 === qqq  at x=0; Unknown I.C.: 2q , 5q , 6q  at x=0  

To solve Equation (A.7) using generalized shooting method, the following terminal 

conditions must be satisfied for an applied force at the tip. 

( ) xFLqLqEA 22
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65

2
42

1
34 )( =−′−+  at x=L 

 

Note that in order for Equation (A.6) to analyze compliant mechanisms, coordinate 

transformation matrices are needed among compliant links. The proposed global 

coordinate model does not suffer from this problem. 
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APPENDIX B 

DERIVATION OF EQUATIONS GOVERNING A 
COMPLIANT LINK 

 

 
 

In this appendix we present the derivation of Equation (3.9) using standard 

procedures of variational calculus. We first construct one-parameter comparison 

functionsΨ , X ,Y ,Γ , and R . 

),(),(),( 1 tststs εηψ +=Ψ ; ),(),(),( 2 tstsxtsX εη+= ; ),(),(),( 3 tstsytsY εη+=

),(),(),( 4 tststs εηγ +=Γ ; ),(),(),( 5 tstsetsR εη+=  
(B.1)

where si 'η  are arbitrary differentiable functions and 0),(),( 21 == tsts ii ηη  as required by 

Hamilton’s principle; and ε is the parameter of the family. Further we 

replace ),,,,( eyxγψ  in Equation (3.5) by ),,,,( RYXΓΨ and obtain 
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For simplicity we omit non-conservative forces in Equation (B.2). We then form the 

derivative εddJ /* at 0=ε  
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Since 0),(),( 21 == tsts ii ηη , we express the 1st, 2nd, and 3rd terms in the integrand of 

Equation (B.3) as follows using integration by parts. 
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The 4th, 6th, 7th, 8th, and 11th terms in the integrand of Equation (B.3) can be expressed as 
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Plug in Equations (B.4) and (B.5) back into Equation (B.3) we get 
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We temporarily let 0)()0( == Lii ηη , and since ),( tsh and ),( tsv are arbitrary functions, the 

resulting system of partial differential equations that governs the dynamics of large-

deflected link can be written as follows: 

0)sin()1()cos()1( =++′−++′+−′′ γψγψψψ ρ ehevIEI &&  
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(B.6)
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( ) 0)cos()sin( =′+++−′′ γψγψ hveEA  

0)sin()1()cos()1( =−++′−++′ γκγψγψ GAehev  

When the link is clamped at s=0 and free at s=L, the geometric boundary conditions are 

given as follows: 

0),0( =tψ , 0),0(),0( == tytx , 0),0( =te  (B.7)

We immediately know that 0),0(),0(),0(),0( 5321 ==== tttt ηηηη . Therefore the 

natural boundary conditions are  

0),( =tLv , 0),( =tLh , 0),( =′ tLψ , and 

[ ] 0)sin()cos( =+++−′ γψγψ vheEA  at s=L. 
(B.8)
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APPENDIX C 

THREE DIMENSIONAL CONTACT MODEL 

 

 

The 2-D gripping contact model presented in Chapter 6 will be extended to 3-D 

here. As shown in Figure C.1, the compliant link has length L with it base located at the 

origin of the inertia frame XYZ. The undeflected direction of the link is parallel to the X 

axis. Each cross-section of the link has a local xyz frame attached with origin at the 

geometric center. The y and z axes are parallel to the principal axes of the cross-section 

and the x axis is normal to the cross-section. As shown in Figure C.2, we use 1ψ , 2ψ , 3ψ as 

the precession, nutation and spin angles that transform inertia frame to local frame. Since 

each cross-section has its own local frame, these angles are functions of arc length s.  

 
 

Figure C.1 Three dimensional link model Figure C.2 XZX Eulerian angles 

We denote R the rotation matrix from XYZ frame to xyz frame, P the position 

vector of the origin of xyz frame in XYZ frame. The homogenous transformation matrix 
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from any point in the local frame xyz to inertia frame XYZ can be expressed as 



















=







=

×

1000
1 333231

232221

131211

31 Z

Y

X

Pccc
Pccc
Pccc

0
PR

B  

 

where the direction cosines ijc  are 

211 cosψ=c  

1212 cossin ψψ=c  

1213 sinsin ψψ=c  

3221 cossin ψψ−=c  

2313122 coscoscossinsin ψψψψψ +−=c  

2313123 coscossinsincos ψψψψψ +=c  

3231 sinsin ψψ=c  

2313132 cossincoscossin ψψψψψ −−=c  

2313133 cossinsincoscos ψψψψψ −=c  

 

The coordinate of the point C on the neutral axis of the finger can be obtained 

from the following integration 

Tsss
dscdscdsc 



= ∫∫∫

ˆ

0 13

ˆ

0 12

ˆ

0 11P  (C.1)

where ŝ is the arc length from origin of XYZ to point C. 

Since a 3-D compliant link can bend in y and z with twist in x direction, we need 

to formulate the curvature expressions κx  κy κz for the three axes in order to formulate the 

strain energy function. As pointed out by Clebsch [1862], these curvatures are analogous 
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to the angular velocities of a rigid body with respect to XYZ by replacing time t with arc 

length s.  Hence we can express the curvatures as in Equation (C.2).  

213 cosψψψκ ′+′=X  

32132 cossinsin ψψψψψκ ′−′=Y  

32132 sinsincos ψψψψψκ ′+′=Z  

(C.2)

where prime denotes derivative with respect to s.  By assuming superposition of strain 

energy holds, the total strain energy of a deformed link can be shown as 

[ ]∫ ++=
L

ZzYyX dsEIEIGAV
0

222
2
1 κκκ  (C.3)

where Ix is the principal moment of inertia about x and Iy is the principal moment of 

inertia about y. When the compliant link makes contact with a 3-D object, we have to 

formulate the geometric inequalities so that the link does not penetrate the object. 

0)( ≥sig p  (C.4)

where si p  is an arbitrary surface point expressed in the inertia frame and g is the 3-D 

surface function of the object. The vector si p  can be obtained from the following 

coordinate transformation.  









=








11

sfsi p
B

p
  

where si p is the surface point expressed in the local frame. Similar to the procedures in 

Chapter 6, the link is divided into N equally spaced elements with NLs /=∆ . We use 

capital letters to represent approximate values of curvatures and Eulerian angles after 

discretization. 
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)/( NiLsX
i
X =≈Κ κ ; )/( NiLsY

i
Y =≈Κ κ ; )/( NiLsZ

i
Z =≈Κ κ  

)/(11 NiLsi ==Ψ ψ ; )/(22 NiLsi ==Ψ ψ ; )/(33 NiLsi ==Ψ ψ  

 

Using the above notation, Equation (C.3) can be discretized using trapezoidal rule as 

follows: 

∑
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(C.5)

In order to explicitly express Equation (C.5) in terms of Eulerian angles, we also 

have to discretize the curvatures in Equation (C.2). Take i
XΚ and 1+Κ i

X as an example; we 

obtain the following finite difference equations. 
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ii

i
ii
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X ss 32
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Similar difference equations can be derived for i
YΚ , 1+Κ i

Y , i
ZΚ , and 1+Κ i

Z . In order to 

obtain the finite difference form of Equation (C.4), we use trapezoidal rule again to 

calculate the integral of Equation (C.1) that is the position of any point on the neutral axis 

of the link. 
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[ ]∑
−

=

+ ∆Ψ+Ψ=
1
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1
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1 )cos()cos(
i
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jj
Z sP

i
; and Ni ~1=  

After discretization, this turns out to be a constrained optimization problem with 

object function from Equation (C.5) and constrained function from Equation (C.4). By 

using sequential quadratic programming techniques, we can obtain the deflected shape of 

the link when making contact with an external object. Note that the geometric boundary 

conditions are 

00
3

0
2

0
1 =Ψ=Ψ=Ψ   

since the link is assumed to be clamped at the base. Figure C.3 shows preliminary results 

of a rotating grasper (consists of five fingers) making contact with an elliptical object.  

(a) Initial state  (b) Grasping (c) Grasped 
Figure C.3 Quasi-static grasping using compliant fingers  

As expected, the proposed constrained optimization technique reduces the 3-D 

problem into a 2-D problem (we only discretize the surface only and not the entire finger). 

It is hoped that the proposed technique can facilitate the analysis of compliant finger 

grasping. 
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APPENDIX D 

POWER SEIRES METHOD 

 

 
Equation (5.1) that governs the deflected shape of a link is a set of differential 

equations. We presented the generalized multiple shooting method (GMSM) as the 

numerical solver for obtaining the deflected shape. However, the relationships between 

the forces (h,v) and displacements (x,y,ψ) are governed by differential equations and do 

not render a close form. They are not suitable for control and vibration applications. In 

order to explore the global coordinate model for broader applications, we propose here a 

power series method based on [Frisch-Fay, 1962] that turns the differential equations into 

close-form algebraic equations. 

D.1 Formulation of Power Series Method 

We consider an initially straight link with negligible shear deformation. Its 

governing equation is rewritten from Equation (5.1a) as follows: 

)cossin(
2

iiiiIE
L

i vh
ii

i ψψψ −=′′  (D.1)

First we expand ψi(ui) into an mth order Maclaurin’s series as 

)0()0()0()0( )(
!!2

2 m
im

u
i

u
iiii

m
iiu ψψψψψ ++′′+′+≈ L . (D.2)

Same as the GMSM, we treat the initial values )0(iψ and )0(iψ ′ as unknowns. The 

value )0(iψ ′′ can be obtained from Equation (D.1) as 
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))]0(cos())0(sin([)0(
2

iiiiIE
L

i vh
ii

i ψψψ −=′′   

The initial value )0(iψ ′′′  is obtained by differentiating Equation (D.1) with respect to ui. 

))]0(sin()0())0(cos()0([)0(
2

iiiiiiIE
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i vh
ii

i ψψψψψ ′+′=′′′   

Similarly, higher order initial values can be obtained as 
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and L=)0()5(
iψ , etc. Hence we can express iψ as an algebraic function of 

unknowns )0(iψ , )0(iψ ′ , hi, and vi. The tip location xi(1) and yi(1) are obtained using 

Gauss quadrature formulae: 
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(D.3)

where w = 2ui – 1; ai’s are the weighting factors and wi’s are the integration points.  By 

Equations (D.2) and (D.3), we can represent the values of iψ , iψ ′ , xi, and yi at ui=1 using 

algebraic functions that include )0(iψ , )0(iψ ′ , hi, vi, xi(0), yi(0) as unknowns. By applying 

these algebraic functions and unknowns into the constraint equation formulation in 

Chapter 5, we can analyze a compliant mechanism by solving only algebraic equations. 

The unknowns are identical to those formulated using GMSM. 

Although we use straight links with uniform cross-sections through out the 

formulation, the method itself can be applied to curved links with nonuniform cross-

sections as well.  
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D.2 Illustrative Examples 

In order to illustrate the power series method, we present here three examples. 

The first two examples study the effect of the order of Maclaurin’s series on solution 

accuracy using a highly deflected link. The 3rd example compares the results of the power 

series method with the GMSM using a four-bar mechanism. In summary, we list the 

parameters of those examples in Table D.1. 

Table D.1 Simulation parameters for the power series method 

Example 1 and 2 EI = 0.08Nm2, L = 101.6mm 
Example 3 EI1=EI3=0.3Nm2, EI2>>EI1, L1=L2=L3=25.4mm 

Example 1: Full circle bending test. We apply a moment LEI /λπ at the end of a 

cantilever beam as shown in Figure D.1. Since the beam only undergoes moment loads at 

the two ends, )(sψ ′  must be constant within the beam. Hence the 2nd order Maclaurin’s 

series will be enough to exactly match those calculated using GMSM as shown in Figure 

D.1.    
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λ=1.5

λ=2

 
Figure D.1 Full circle bending of a cantilever beam  

Example 2: A link under transverse load. The initially straight link in Figure D.2 

has a displacement load δy. We compare the results of 4th and 5th order Maclaurin’s series 
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with those obtained by GMSM. The 4th order series is accurate up to δy=0.6L while the 

5th order series agrees with GMSM even at very large deflection (δy=0.8L). 
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Figure D.2 A link under transverse load 

Example 3: Four-bar mechanism. Consider again the four-bar mechanism shown 

in Figure 2.4(b). Under a δx displacement load at point A, we compare the y displacement 

of points A and B using GMSM and the 5th order power series. As shown in Figure D.3, 

the results show much agreement. 
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Figure D.3 Quasi-static grasping using compliant fingers  

 From the above three examples, it is clear that the 5th order series is accurate 

enough to predict the shape of a compliant mechanism. 
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