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Abstract

In this paper, we present an approach for finding feedback linearizable systems that
approximate a given single-input nonlinear system on a given compact region of the
state space. First, we show that if the system is close to being involutive then it is
also close to being linearizable. Rather than working directly with the characteristic
distribution of the system, we work with characteristic one-forms, i.e., with the one-
forms annihilating the characteristic distribution. We show that homotopy operators
can be used to decompose a given characteristic one-form into an exact and antiexact
part. The exact part is used to define a change of coordinates to a normal form that
looks like a linearizable part plus nonlinear perturbation terms. The nonlinear terms in
this normal form depend continuously on the antiexact part and they vanish whenever
the antiexact part does. Thus, the antiexact part of a given characteristic one-form
is a measure of nonlinearizability of the system. If the nonlinear terms are small, by
neglecting them we obtain a linearizable system approximating the original system.
One can design control for the original system by designing it for the approximating
linearizable system and applying it to the original one. We apply this approach for
design of locally stabilizing feedback laws for nonlinear systems that are close to being
linearizable.

1 Introduction

Consider a single-input system
¢ = f(z) + g(z)u (1)

where f, g are smooth vector fields defined on a compact contractible region M of R™
containing the origin. (Typically, M is a closed ball in R™). We assume that f(0) =0, i.e,
that the origin is an equilibrium for ¢ = f(z). The classical problem of feedback linearization
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can be stated as follows: find in a neighborhood of the origin a smooth change of coordinates
z = ®(z) (a local diffeomorphism) and a smooth feedback law u = k(z) + {(z)Unew such
that the closed loop system in the new coordinates with new control is linear:

Z=Az+ Bupeyw, (2)

and controllable. We usually require that ®(0) = 0.
We assume that the system (1) has the linear controllability property

dim span {g,adyyg, .. .,ad’;_lg} =n, Vo € M, (3)

(where a,d’J'c g are iterated Lie brackets of f and g). We define the characteristic distribution
for (1)
D :=span {g, adsg, .. .,ad’;_zg} (4)

(it is an n-1-dimensional smooth distribution by assumption of linear controllability (3)).
We shall call any nowhere vanishing one-form w annihilating D a characteristic one-form
for (1). All the characteristic one-forms for (1) can be represented as multiples of some
fixed characteristic one-form wg by a smooth nowhere vanishing function (zero-form) .
Suppose that there is a nonvanishing § so that Bwq is exact, i.e., fwg = da for some smooth
function o (d denotes the exterior derivative). Then wy is called integrable and ( is called
an integrating factor for wg. The following result is standard (Hunt et al., Jakubczyk and
Respondek).

Theorem 1.1 Suppose that the system (1) has the linear controllability property (3) on
M. Let D be the characteristic distribution and wo be a characteristic one-from for (1).
The following statements are equivalent:

1. (1) is feedback linearizable in a neighborhood of the origin in M.
2. D is involutive in a neighborhood of the origin in M.

3. wq is integrable in a neighborhood of the origin in M.

As it is well know, a generic nonlinear system is not feedback linearizable for n > 2.
However, in some cases, it may make sense to consider approzimate feedback linearization.
Namely, if one can find a feedback linearizable system close to (1), there is hope that a
control designed for the feedback linearizable system and applied to (1) will give satisfactory
performance, if the feedback linearizable system is close enough to (1). The first attempt
in this direction goes back to Krener (1984). He considered applying to (1) a change of
variables and feedback that yield system of the form:

2= Az + Bunew + O(2, Unew) (5)

where the term O(z, Unew) contains higher order terms. The aim was too make O(2, Unew)
of as high order as possible. Then we can say that the system (1) is approximately feedback



linearized in a small neighborhood of the origin. Recently, Hunt and Turi (1993) have
proposed a new algorithm to achieve the same goal with fewer number of steps.

Another idea has been investigated by Hauser et al. (1992). Roughly speaking the idea
was to neglect nonlinearities in (1) responsible for the failure of the involutivity condition
in Theorem 1.1. This approach happened to be successful in the ball and beam system,
when neglecting of centrifugal force acting on ball yielded a feedback linearizable system.
Application of a control scheme designed for the system with centrifugal force neglected
to the original system gave much better results than applying a control scheme based
on classical Jacobian linearization. This approach has been further investigated by Hauser
(1992) for the purpose of approximate feedback linearization about the manifold of constant
operating points. However, a general approach to deciding which nonlinearities should be
neglected to get the best approximation has not been set forth.

Krener and Maag (1991) design a best L? feedback approximation for the design of
control law for the systems with cubic nonlinearities using a different approach. They try
to come up with a change of variables that directly minimizes the terms P and @ .

All of the above-mentioned work (except Krener and Maag (1991)) dealt with applying
a change of coordinates and a preliminary feedback so that the resulting system looks like
linearizable part plus nonlinear terms of highest possible order around an equilibrium point
or an equilibrium manifold. However, in many applications one requires a large region of
operation for the nonlinearizable system. In such a case, demanding the nonlinear terms
to be neglected to be of highest possible order may, in fact, be quite undesirable. One
might prefer that the nonlinear terms to be neglected be small in a uniform sense over the
region of operation. In the present paper we propose an approach to approximate feedback
linearization that uses a change of coordinates and a preliminary feedback to put a system
(1) in a perturbed Brunovsky form

2= Az 4 Bunew + P(2) + Q(2)Unew (6)

where P(z) and Q(z) vanish at z = 0 and are “small” on M. We obtain upper bounds on
uniform norms of P and € (depending on some measures of noninvolutivity of D) on any
compact, contractible M.

Our approach is an indirect one. We begin with approximating characteristic one-forms
by exact forms using homotopy operators. Namely, on any contractible region M one can
define a linear operator H that satisfies

w=d(Hw)+ Hdw, (7)

for any form w.

Note that the homotopy identity (7) allows to decompose any given one-form into the
ezact part d(Hw) and an “error” part € := Hdw, that we will call the antiezact part of w.
For given wp annihilating D and a scaling factor § we define ag := HfBw; and eg := HdBwy.
Note that the one-form eg measures how exact wg := Bwp is. If it is zero then wg is exact
and the system (1) is linearizable, the zero-form ag and its first n — 1 Lie derivatives along
f are the new coordinates. In the case that wg is not exactly integrable, i.e., when no exact



integrating factor 3 exist, we choose 8 so that dBwg is smallest in some sense (for this makes
also eg small). We will call this B an approzimate integrating factor for wy. We will use the
zero-form ag and its first » — 1 Lie derivatives along f as the new coordinates, as in the
linearizable case. In those new coordinates the system (1) is in the form

z2=Az+ Bru+ Bp+ Eu (8)

where 7, p are smooth functions, 7 # 0 around the origin, and the term E (the obstruction to
linearizablity) depends linearly on €g and some of its derivatives (in particular, £ vanishes
whenever eg does). We choose u = r_l(unew — p), where Upey is @ new control variable.
After this change of coordinates and control variable the system is of the form (6) with
Q := r71E,P := —r~!pE. We obtain estimates on the uniform norm of @ and P (via
estimates on r, p, and E) in terms of the error one form eg for any fixed §, on any compact,
contractible region M. Most important fact is that ¢ and P depend in a continuous way
on €g and some of its derivatives, and they vanish whenever € does.

From another point of view our approach can be viewed as a robustness analysis of
exact feedback linearization. It is of obvious interest to analyse what happens to an exactly
linearizable system subject to a small perturbation that destroys the property of being
linearizable. One can expect that if linearization was used as an intermediate tool to achieve
stabilization, tracking, disturbance rejection, etc., a small perturbation, yielding a system
“close” to being linearizable, still allows one to apply the control designed for the original
linearizable system, guaranteeing satisfactory performance. In the present paper we propose
some tools to measure a distance of a nonlinearizable perturbed system from a linearizable
one, thus allowing to measure how small the small perturbation is. In particular, we provide
analysis of robustness of stabilizing feedback design based on feedback linearization.

We anticipate many applications of transforming (1) into (6). The idea behind making
@) and P small is to neglect them in design. Intuitively speaking, we can neglect them if
they are “small enough”. What does it mean “small enough” will depend on particular
application.

We should warn that one cannot expect that an exact or approximate feedback lineariza-
tion will always help to improve performance. The point is that the idea of linearization is
to get rid of nonlinearities because we don’t know how to deal with them. It may happen
though that removing of some nonlinear terms may negatively affect the performance of the
system. For instance, consider the problem of stabilization of the feedback linearizable sys-
tem & = —z3 4+ u. One can remove the nonlinear term —z3 using feedback, but this doesn’t
help stabilization at all. The term —z3 actually helps to stabilize the system, especially
for large initial conditions. Still, there are enough examples of systems in which nonlinear
terms cause problems to justify the present study.

The paper is organized as follows.

In Section 2 we introduce notation and some auxiliary results. We also explain con-
struction of characteristic one-forms.

In Section 3 we discuss the problem of optimal scaling of the characteristic one forms.
We review the construction of exact integrating factors and introduce and study best ap-
proximate LP integrating factors.



In Section 4 we show how homotopy operators can be use to decompose characteristic
one forms into exact and antiexact parts.

In Section 5 we prove that a change of coordinates based on the exact part of any
characteristic one-form obtained with a homotopy operator having center at the origin
defines a local diffeomorphism that takes the system (1) to a normal form that looks like
a linearizable part perturbed by some nonlinear terms. The nonlinear perturbation terms
depend linearly on the antiexact part of the characteristic one-form.

In Section 6 we obtain some upper bounds on nonlinear perturbation terms using the
antiexact part of a characteristic one form and thus eastablish a continuity relationships
between some measures of noninvolutivity and nonlinearizability.

In Section 7 we apply the results of the paper to study locally linearizing feedback laws
for the system (1).

2 Notation and auxiliary results

In the present paper we apply the theory of differential alternating forms. We refer to
standard texts such as Abraham et al., Bryant et al., Edelen, Flanders, or Hicks, for all the
notions not defined here.

We denote by T.M the tangent bundle to M and by QF(M) the set of all alternating
k-forms on M, i.e., space of all k-linear anti-symmetric functionals on 7M. Q(M) will
denote the direct sum of all Q¥(M). Let ¢ € (M) and v € TM. Then d{ will denote the
exterior derivative of ( and L,({ will denote the Lie derivative of { along v.

By 4,(£) we will mean the interior product (contraction) of a vector field v with a k-form

&, which is a k — 1 form defined by

iv(g)(vlav% .- '7vk—1) = 5(”7”17”27 .- '7vk—1)-

Note that if ¢ is a one-form, then ¢,(£) = £(v). Below we summarize some properties of
interior and exterior (wedge) products and exterior and Lie derivatives.

Proposition 2.1 Let & € QF(M), ¢ € Q(M) and v € TM be arbitrary. Then
1. i, (& N &) = (1,€1) A&y + (—1)REL A (5,€3).
2. iyiyés = 0.
3. d(&1 N &) = (d&1) A s + (—1)%6 A (d&y).
4. d(Ly€2) = Ly(d&2).

While we did not need any additional structure except the differential one to study the
problem of finding exact integrating factors, in the case of approximate integrating factors
we need some means of measuring the distance between k-forms (for instance wg from an
exact form da, or dfwy from 0), both at a point and globally (on M). For this, we use



a Riemannian metric, i.e., a positive definite (pointwise) inner product (,) on the tangent
space to M. This inner product induces an inner product on p-forms (see Abraham et al.,
Section 6.2), that we will denote by the same symbol. Namely, let {e},i = 1,...,n be
an orthonormal basis for 2'(M). Then the inner product on p-forms is uniquely defined
by requiring {e" A ...A e®|i; < ... < ip} to be an orthonormal basis for QP(M). The
corresponding pointwise norm will be denoted by |-|. We obtain a global inner product ((, ))
of p-forms on M by integrating the pointwise one over M. A standard metric associated
with coordinate system z1,zs,...,Z, is the one in which the vector fields %, %, ey BBT,L’
and thus the one-forms dzq,dz,,...,dz,, are orthonormal. The standard (in coordinates
z;) volume element on M is

pi=dzy Adzo A ... ANdzy,.

For any one-form 7 we will denote by n# the dual vector field to 7, i.e., the unique
smooth vector field satisfying (£,7) = i, (§) = £(n#) for any one-form ¢. For instance, if

we use the standard metric, we have (X7, n;dzs)* = 3%, m%. We have the following
elementary result.

Proposition 2.2 Let &,& € QY(M) and ¢ € Q*(M) . Then
(600 62,0) = (2, Q) = C(&F,€0).

Let ( € QP(M) and £ € Q™ P(M). In the sequel we will deal with the operator
We : QP(M) > Q™ (M) defined by We( := ( A E.

To obtain a one-form annihilating an n— 1-dimensional distribution D in M, we contract
any volume element of M by any basis of D. For instance, we may choose

Wo = Tglad,g - - "‘ad}”—Zg:“" (9)

where p is the standard volume element in coordinates z;.

3 Approximate Integrating Factors

Before we discuss the approximate integrating factors for nonintegrable characteristic one-
form wyq, let us remind the reader how, given an integrable characteristic one-form wg, one
constructs an exact integrating factor for wg. The construction will suggest what can be
done in the case of nonintegrable characteristic one-form wg. Let us begin with following
standard result (see, e.g., Abraham et al., Section 6.4, Edelen, Section 4.2):

Proposition 3.1 Let wg be a nonvanishing one-form on M. The following statements are
equivalent:

1. wq 15 integrable,



2. There is a one-form <y such that

dwy = v A wg. (10)
3. There is a zero-form 6 suth that

dwo = df A wg (11)
4. wo satisfies

dwg A wg = 0. (12)

Note that the statement (4) provides a test for integrability of wg, and thus for lineariz-
ability of the system (1). Let us present one possible way of proving (4) = (2).

Let X be any smooth vector field on M satisfying ix(wg) = wo(X) = 1. Then (see
Proposition 2.1 (1))

0= ’I:X(dwO A wo) = ’I:X(d(U()) A Wo + dwo A ’I:X((U()) = ’I:X(d(U()) A Wo + dwo.

Choosing v := —ix(dwp), we see that (4) = (2). Even though it is not immediately seen,
one can choose X so that ix(wg) = 1 and —ix(dwg) = df for some zero-form 6, thus proving
(3). The condition (3) is most important in construction of the integrating factor for wq.
Namely, once we know the zero-form 6, choosing £ := e~¢, we obtain dfws = 0 and 8 > 0
as required. Note that an integrating factor 8 obtained in that way is not unique. Namely,
if fwg = do for some zero-form a, one can replace § by h(a)B, where h(a) is smooth and
positive. It is now easily checked that dh(a)Bwo = 0, so that h(a)g is an integrating factor
for wg, whenever 3 is.

Given a nonintegrable characteristic one-form wg, we try to find a best possible integrat-
ing factor for it. Let us recall that the goal is to make dBwg “as small as possible”. Below
we define some precise meaning for making dfwg “small” by an appropriate choice of 5. We
want to avoid the trivial solution 8 = 0. To contrary, we want to formulate the problem of
construction of best approximate integrating factor so that the solution yields § > 0 for all
z € M. In coordinates, minimization of dBwg can be understood as making the differences
of the mixed partial derivatives % — %:fj as small as possible.

We will first establish a pointwise measure of exactness for fwg and then construct a
global one from the pointwise one. Let

|(dwo)(2)|
?
|(wo)(z)]
where |- | is the pointwise norm of a form given by the Riemannian metric. Note that such
a measure of exactness of wg is invariant under scaling of the one-form wgy by a constant,

non-zero function. Now we define global measures of exactness of wg. A uniform measure
can be obtained by taking the supremum of k(wq)(z) over M

Xoo(wo) := sup{x(wo)(z),z € M}. (14)

k(wo)(z) := (13)



Note that the supremum exists since M is compact (by assumption).
An average measure of integrability is obtained by integrating x(wo)(z) over M. Let
p > 0, then

Xolwo) = ([ ((wo)(@)Pu)! 7, (15)

where p is the volume element associated with the Riemannian metric. Now, for 1 < p < oo,
we can define the best approximate LP integrating factor § for wg as the zero-form that
minimizes Xp(Bwo).

The best situation one might hope for when facing the problem of construction of the
best approximate integrating factor is that there is a single function 8 that is, in fact, the
best LP approximate integrating factor for every 1 < p < oco. This will be the case if we can
find a function £ that minimizes x(Bwo)(z) at every point ¢ € M. In certain special cases
there is, in fact, an easy solution to this problem.

Let wo be a given one-form on M and consider the decomposition

dwo =y Awg + 7. (16)

This equation should be interpreted as an “approximation” to (10) with the two-form 7
playing the role of an error term. There are infinitely many ways of decomposing dwyq
as above, because for any <y, one can simply choose 7 := dwg — ¥ A wg. We know from
Proposition 3.1 that we can choose 7 = 0 in the case of integrable wg. If wg fails to be
integrable we will try to choose vy and 7 in (16) so that the two-form 7 is smallest possible
in a least square sense, i.e., w.r.t. to the (global) L? norm of forms on M

léll = (] 1efu? for € e a(m) (1)

Note that this smallest possible 7 measures how far wy is from being closed (and thus exact).
It happens that the problem of finding « and 7 satisfying (16) with ||7|| minimal can be
solved pointwise.
As in the case of integrable wg, we will use an interior product of a vector field X
satisfying ix(wo) = wo(X) = 1 with dwo A wp to obtain a decomposition of type (16). We
have (see Proposition 2.1 (1))

’I:X(d(UO A wo) = ’I:X(d(U()) A Wo + dwo A ’I:X((U()) = ’I:X(d(U()) A Wo + dwo

so that
dwo = (—tx(dwo)) A wo + ix(dwo A wo).

This relation has the required form (16) with v := —ix(dwg), 7 := ix(dwo A wo).

We will denote by 7pmin the two form 7 satisfying (16) for some v with a minimum
pointwise norm |7(z)| at every € M. (It is clear that this will also be the two form with
minimal global norm || -|| among all two forms 7 satisfying (16)). Belowe we give an explicit
formula for Thn.



Proposition 3.2 Put X := |wo| 2w®. Then ix,(wo) = 1 and

Tmin = iXo(dwo A wO)- (18)
Among all v satisfying (16) for T = Tpn the one with a minimal norm is
Ymin ‘= _iXo(dWO)- (19)

Ymin 1S pointwise orthogonal to wy. All other one-forms vy satisfying (16) can be represented
as Yn = Ymin + Nwo, for some zero-form 7.

Proof:  First, note that 7 = 7y, if and only if (¢ A wo,7) = 0 pointwise on M for
any one-form £. (This follows from the fact that by a standard least-squares argument
Tmin Tust be orthogonal to the space R(Wy,,) = {£ A wolé € Q'(M)}.) Note also that
ix,(wo) = |w0|_2w0(w§£) = |wo| *(wo,wo) = 1. Thus, it is immediately seen that (16) is
satisfled for 7, v given by (18) and (19). To see that 7 defined by (18) is actually 7., we
will show that (¢ A wp,7) = 0 pointwise on M for any one-form €. Using Proposition 2.2
and 2.1 (2), we have

(E ANwo,T) = —(wo A &, ix,(dwo A wp)) = —|w0|_2<f,iw#iw#(dwo Awg)) = 0.

We have shown that 7 = Tin.
To prove that Ymi, is pointwise orthogonal to wgp note that (wo, Ymin) = ¢ #Vmin =

—|w0|_2iwé¢iwé¢(dwo) =0. (|

Note that 7y = 0 is zero on M if and only if wq is integrable on M, T = 0 and
Ymin = 0 on M if and only if wp is exact on M. Let 8 € Q°(M). We have

d/BwO - (dlg + /B’szn) ANwg + /BTmin- (20)
Now, we can obtain the following pointwise lower bound for x(Bwo):

Proposition 3.3 For any z € M and 8 € Q°(M) we have

k(Bwo)(z) > M (21)

" |wo(z)

Proof: Since the two-forms (dIn S+ Ymin) Awo and Tmin are pointwise orthogonal for every 8

(see the proof of Proposition 3.2), we have x(Bwo)(z) = |dﬂ/\‘|‘g’$ﬁidw°| = |dﬂ/\w°+ﬂ(7|’gi’:0/|\w°)+ﬂ7’"i"| =
|(dﬂ+ﬂ7min)/\w +,67'mi'n.| _ |(dlnﬂ+7min)/\w +Tmi'n.| _ |(dln(ﬂ)+'ymin)/\w | 2 |Tmin| 2\1/2 |Tmin|
Bl = o = (( o )P+ ()R > e

The best we can hope for is that the lower bound for x(Bwo)(z) obtained above is sharp,

i.e., there is a zero-form S such that x(Bwo)(z) = % for every z € M. This will be the
case if (d1n(B) 4 Ymin) A wo = 0 for some choice of 5. A necessary and suficient condition
for this is v, := Ymin + Mwo = db, for some zero-forms 7 and 6. Then we choose 8 := e’
and obtain (dln 8 +7,) Awg = 0. Note that the zero-form g is everywhere strictly positive,

as required.



Example 3.0 Consider

1 = zo+ hi(zs3) + ha(z1,22)
5&2 = I3 —|— h3($3) —|— h4($1, CEg) (22)

5&3:’11,,

where h;(-) are any smooth functions with h;(0) = 8R(0) = 0. We have g = 2, f

— Oz; Ox3?
($2+h1($3)—|-h2(331, CEg))BBTl—F(mg—th(CEg)—Fh;}(CEl, CEQ))BBTZ, (I,dfg = [f, g] = (—h’l(mg))aaTl—
(1+ hg(mg))a%, wo = (14 h4(z3))dz1 — hi(z3)dzs, dwo = h{(z3)dzs Adzs — hf(23)dzq Adas,
and dwo Awo = (A (z3)dzs Adzs — hf(z3)dey Adzs) A((1+ hg(z3))dz — Rl (z3)dzs) = ((1+
h4(z3))hY(z3) — hi(z3)h%(z3))dz1 A dzy A dzs. We see, that the system is exactly feedback
linearizable in a neighborhood of the origin if and only if (14+hk%(z3))hY(z3)—h](z3)h5(z3) =
0, which is the case if A1(-) = 0.
It happens that for this system we can actually construct the best approximate LP

integrating factor 8 in above-mentioned sense, i.e., the one that works for every 1 < p < oo.
Suppose that we use the standard metric in coordinates z1, zo, z3. We have

_ m(z3)hi(z3) + (1 + hy(23))hs(23)

min — d )
! 1 (23)? + (1 + Fy(z3))? *3
i = (LR W) (1 4 b (05))dy A das + B (2)der A daza).

Note that vmin depends only on z3, and thus it is exact. One can check that v, = d6
for @ = In(R)(z3)? + (1 + hh(z3))?)'/%. The best approximate integrating factor in above-
mentioned sense is 8o = e~® = (b} (z3)? + (1 + h4(z3))?)~ /2 = |wo| ™" (note that this choice
makes the pointwise length of Sowg equal to 1 everywhere). O

In Banaszuk et al., 1994a, we show that the lower bound for k(Bwg)(z) is always sharp
if the metric is the standard metric in some special coordinates. There are however ex-
amples of systems for which the lower bound for x(Bwo)(z) is not sharp. In this case a
more sophisticated analysis is required (cf. Banaszuk et al., 1994b,c), which leads to some
variational problems whose solutions for § are given as solutions of elliptic eigenvalue prob-
lems. A simple alternative would be an approximation of 7, by an exact form dH~, using
a homotopy operator H (see the next section).

Note that even though the minimal x,(8wo) seems to be a natural measure of integra-
bility of wg and thus also a measure of noninvolutivity of the characteristic distribution D,
it may not be a sufficient measure for the problem of approximate linearization. There are
some indications that one should actually minimize d(fwq) together with its first n-1 Lie
derivatives along f. This problem is currently being studied.

4 Homotopy operator

On any contractible region M one can define a linear operator H : QF(M) — QF-1(M)
that partially inverts the exterior derivative, i.e.,

w=(dH + Hd)w, Yw € Q*¥(M) (23)
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or, in other words,

w=d(Hw)+ Hdw (24)

Any operator with such property will be called a homotopy operator. Following Flanders,
we present a construction of such an operator. Consider the cylinder I x M where I := [0, 1]
and define a family of maps jx : M — I x M by ja(z) = (A, z),for A € I. Note that k-forms
on the cylinder can be represented in coordinates X, z4,...,Z, as sums of monomials of two
types: a(A, z)dz;, Adz, A...Adz;, and a(X, z)dA A dzg, A ... Adz;,_,. We now define
a linear operator K : Q%(I x M) — Q*~1(M) such that its action on these two types of
monomials is given by

K(a(X, z)dz;, ANdziy, A...ANdz;, ) =0, (25)

1
K(a(A2)dAAdai, A...Adz;, ) = (/ (M, z)d\)dei, A ... Ade, . (26)
0

The operator K satisfies (Flanders, Section 3.6)
K(dw) + d(Kw) = 3w - 30, (27)

where ;3 : Q%(I x M) — QF(M) is the pullback induced by j». Note that the above result
doesn’t require M to be contractible. Now, by definition, M is contractible iff there is
a smooth mapping ¢ : I x M — M such that ¢(1,z) = z,¢(0,z) = z°, where z° is a
distingushed point in M. Such a mapping ¢ is called a homotopy or contraction (of M
to z°). The point z° is called the homotopy center. Since we have (¢ o j;)(z) = z and
(¢ 0j0)(z) = z° Vz € M, the pullback ¢* : Q¥(M) s Q*(I x M) induced by the mapping
¢ satisfies

j1(¢'w) = w, jo(¢*w) = 0. (28)
Therefore, (27), (28), and the fact that the exterior derivative commutes with a pullback
together imply

K¢*(dw) + d(K¢p*w) = w. (29)

Thus, the operator H := K o ¢* satisfies (24) so that it is a homotopy operator.

Note that different choices of homotopy centers z° and homotopies ¢ yield different
homotopy operators. The one we will use is probably the simplest one: it will act on one-
forms by integrating them along straight lines (in coordinates z;) from a distingushed point
z° in M (usually the origin). Such a homotopy operator will be called radial (see, e.g.,
Edelen, Section 5.3 and Flanders, Section 3.7). If M is star-shaped in coordinates z; with
respect to z° (i.e., M can be contracted to z° by straight lines lying entirely in M), a
simple choice for a homotopy ¢ is ¢(\,z) = z° + A(z — 2°). Let w = 3 wh-tk(z)dz,, A
dz;, A ...Adz; . Now, one can explicitly calculate the pullback ¢*:

Pw = T, @ (20 + Az — 2°))d(2] + Mz, —27))
/\d(:c?z —|—')\(:ci2 - :c?Z)) A A d(m?k + Az, — :c?k))
= X, @ (2% + M - 2%))((zi, — 23, )dA + Adaz; )
AN(zs, — 22,)dX + Mdziy) A .. A (24, — 22, )dXN + Mdz;,),

i1k
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and we can express the action of the radial homotopy operator as

(Hw)(z) = i (i ((-1)" (zi; — =)

A — 31
S ALt (20 4 Az — 20))dN))dzy A ... A dz;; ... A dz;, (31)

where the symbol ~ over dz;; indicates that it is omitted.
Once again consider the system of Example 3 Choose wg = (1 + h4(z3))dz1 — hi(z3)dz,
and 8 = 1. Then, for zg = 0, we see that

CEghl(CEg) 1 $1h3(3}3)

I3 I3

1
o= / (21(1 + By(Az3)) — 2ol (Aas))dA = 21 —
0
and the error one-form € is given by

e = —(ha(zs) — z3hy(za))/zidzs + (ha(z3) — z3hi(z3))/23dzs
+ (Cﬂghl(ﬂ}g) — $1h3($3) — mgmghll(mg) + mlmghg(mg))/mgdmg

(Alternatively, once a is known, one can use the formula € = fwg — da instead of € = Hdfwg
to obtain the error one-form e.)

Let | - | denote the pointwise norm of a form induced by the standard metric in z;
coordinates. We have shown in the previous section that the best approximate integrating
factor for the above system in the sense of minimizing %((?T‘?)(x}))ﬁ pointwise everywhere is
Bo = |wo| ™' = (R (z3)? + (1+ Rh(z3))?)~Y/2. Contrary to the case § = 1 it is now impossible
to evaluate H fowo and Hdfowg explicitly. The integration must be performed case by case
for specific functions hq(:) and h3(-). We don’t expect to be always able to perform the
integration symbolically, for the result might not be an elementary function.

The homotopy operator we will use in the sequel uses the origin in coordinates z; as the
homotopy center. One can obtain other homotopy operators choosing different homotopy
centers zg. Moreover, one doesn’t have to integrate over straight lines from the center. Note
that the notion of a straight line is associated with specific choice of coordinates. Hence,
if we change coordinates, we immediately obtain a homotopy operator, namely the radial
homotopy operator in the new coordinates. Moreover, an arithmetic mean of homotopy
operators is again a homotopy operator. For exactly linearizable systems, once we have
found an exact integrating factor for a characteristic one-form w, any homotopy operator
will give the same exact part and zero antiexact part. However, for nonlinearizable systems
the choice of a homotopy operator will make a difference. Apparently, the choice of a
particular homotopy operator will influence the exact and antiexact parts of a characteristic
one-form w. It is not clear to us yet, what should be the best choice for approximate feedback
linearization. This issue is currently under investigation. One may expect that the optimal
homotopy operator might be rather complicated. Hence, even though there is no reason to
believe that the radial homotopy operator in the original coordinates will be the best one
(i.e., yielding the smallest antiexact part of w), there is a good chance that it will be the
simplest one to apply. Moreover, any homotopy operator with the center at the origin that
satisfles ¢(A,0) = 0 (in particular the radial one) will always yield €(0) = 0. Since € is a
smooth one-form vanishing at the origin, it will be small in a neighborhood of the origin.
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The following result shows some that there are some limitations to what can be achieved
in approximating non-exact characteristic forms by exact ones.

Theorem 4.1 Let H be any homotopy operator on M and w be any characteristic one-
form for the system (1). Let ap := Hw and € := Hdw. Then for any closed curve ¢ in

M we have
/CL’feH = /CL’fw

Proof: Note that L’}w = L’J'c(daH +em) = dL’J'caH + L’J'ceH. Now, the proof follows from the
fact that the integral of an exact form over any closed curve is zero. O

fori=10,1,.....

The above result is a law of preservation of hassle. No matter how one chooses a
homotopy operator H, the average value of (“a component along ¢” of) ez := Hdw on any
closed curve ¢ is constant. Different homotopy operators may only distribute € along ¢ in
a different way. A similar result holds true for any Lie derivative (of any order) of € along
any vector field.

This result can be used to obtain lower bounds for the uniform norm of the error one-
form ep and its Lie derivatives along f on M, independent of the choice of homotopy.

Let us conclude the section by an example of a homotopy operator that is optimal in
some precise sense. Let w be a one-form. The so-called Hodge decomposition of w is a
decomposition of the form w = da + ¢, where da is the best L? approximation of w among
exact one-forms (cf. Abraham et al., Section 7.5, Banaszuk et al., 1992, 1994b,c). Let §
denote the formal adjoint operator to the exterior derivative d and A := é§d + dé denote the
Laplace - De Rham operator (Abraham et al., Section 7.5). One can show that Aa = fw
and Ae = §dw. These equations (together with some boundary conditions) allow to find
a and € appearing in the Hodge decomposition of w. Therefore, the operator Hy = A™1§
(formally) satisfies w = d(Haw) + Hadw, so that it is a homotopy operator. Note that
one has to solve a boundary value problem to obtain the zero-form o such that da best
approximates w in L2. This should be contrasted with the radial homotopy operator, which
requires only simple integration with respect to a parameter. For instance, if the system
(1) has polynomial nonlinearities in the original coordinates, the characteristic one-form wq
given by (9) will also have polynomial coeflicients and thus the integration in (31) can be
easily performed, yielding polynomial expressions for a and e. The situation is usually much
more difficult after applying an optimal approximate integrating factor Bp. The optimal
characteristic one-form fow will rarely be polynomial, and the result of integration in (31)
might not be expressed in terms of elementary functions. This is one reason why we might
not always be able to apply the optimal approximate integrating factor in practice, even if
we find one.
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5 Change of coordinates

In this section we prove that a change of coordinates based on the exact part of any char-
acteristic one-form w obtained with a homotopy operator H having center at the origin
defines a local diffeomorphism that takes the system (1) to a normal form that looks like
a linearizable part perturbed by some nonlinear terms, that depend linearly on the error
one-form € := Hdw. This approach can be applied to both linearizable and nonlinearizable
systems.

For exactly linearizable systems (1), we proceed as follows. First, we construct a char-
acteristic one-form wg. Then we choose an exact integrating factor § and obtain a new
characteristic form w := Bwg such that dw = 0. We apply a homotopy operator H to get
the zero form o := Hw. Then we use change of variables

21 = «,
zy = Lja
. ’ (32)
Zn = L’;_la.
The system (8) in new coordinates is
2:'1 = 29
2:'2 = Z3
(33)
Zn1 = Zn
Zn = pH+rTu

where
= LgL’}_la,p = L%a,

and the feedback u = 171 (upew — p) makes it linear.

For a nonlinearizable system we proceed as follows. First, we construct a characteristic
one-form wy. Then we choose an integrating factor B, either optimal or not, and obtain a
new characteristic one-form w := fwg. We apply a homotopy operator H to get the zero
form a := Hw and the corresponding error one-form € := Hdw. Then we use change of
variables (32) (as for exactly linearizable systems) to get a normal form

2:'1 = 29 + e1u
2:'2 = Z3 + €U
(34)
Zn1 = Znten_1u

Zn, = DpE+ru+teyu

14



where

er. = Lga,
ea = LgLsa,

' 35
e = LIy e (-1 tu(ad} ), (%)
ro= (S w(ady ),
p = Lt

In the sequel we will need the following result.

Lemma 5.1 Letw be any characteristic one-form for the system (1). Leti,j be nonnegative
integers. Then

1. (L’J'cw)(a,d;g) =0, fori+j<n-—1,
2. (Liw)(ad} ' "'g) = (—-1)'w(ad} 'g), for i =0,1,...,n— 1.

Proof: (1) One can proof by induction the formula:

=1 .
(L (¥) = Y (-1) (Z) L (n(adyY)). (36)

=0
In particular, _ ' o _
(B)odig) = SIH(-DHQ I (w(ad (adlg))
= Y- () Ik (w(adsYg)).
Notice that w(adlf-l'jg) =0forl=0,...,0if24+7<n—1.

(2) Apply the formula (37) for j = n— 1 —4 and notice that all the terms w(ad?"_l_jg)
vanish except when [ = 1. O

(37)

To establish continuity relationships between noninvolutivity and nonlinearizability we
express the nonlinear perturbation terms e; in terms of the error one-form e.

Proposition 5.1 Letw be a characteristic form for (1), H be a homotopy operator on M,
a:= Hw, and € := Hdw. Lete;,i =1,...,n, and p be given by (35). Then

er = —¢€(g),
e2 = —(Lse)(9),
: (38)
ens = —(I172)(g),
en = (L7 e)(9):
Proof: 1t is a straightforward calculation using Lemma 5.1. O
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Note that the above choice for e, and r is not the only possible. Actually, any choice
that guarantees v + e, = LgL’;_la with e,(0) = 0 could be considered, for instance e, = 0
and r = LgL’}_la. Our choice is dictated by the fact that it guarantees 7 # 0 on the whole
M and e, = —(L’J}_le)(g).

One can also express the function p := L%o using the error one-form eas p = (L’J}_lw)(f)—
(L5 ') ).

A natural question to ask is whether the zero-form o together with its » — 1 Lie deriva-
tives along f is a well defined change of coordinates. The main result of this section says

that in a neighborhood of the origin, (32) indeed defines a local diffeomorphism. Before we
prove it, we need some preliminary results.

Lemma 5.2 Let n be any smooth one-form and X,Y be any smooth vector fields on M.
Then

1. (Lxm)(Y) = Lx(n(Y)) — n([X,Y]),
2. Ifn(0) = 0 and X(0) = 0, then (L n)(Y)(0) =0, fori=0,1,2,....

Proof: (1) See Hicks, Section 7.3.

(2) For ¢ = 0 the formula is true as (L$7)(Y)(0) = n(Y)(0) = 0. Assume that
the formula is true for ¢ = 0,...,m. Using the statement (1) one easily shows that
(L) (Y)(0) = d((L2n)(Y))(X)(0) — (LBn)([X,Y])(0). The first part of this expres-
sion is zero because X (0) = 0, the second by assumption. By induction, the formula holds
for all nonnegative <. O

Proposition 5.2 Assume that dim span {g, adysg, .. .,ad’;_lg} = n, Yz in a neighborhood
of 0 in M (linear controllability). Let w be any characteristic one-form for the system (1).
Then the one-forms w, Lyw, ..., L’;_lw are linearly independent in a neighborhood of the
origin.

Proof: 1t is sufficient to show that (L’J}_lw A L’;_zw A...Aw)(0) # 0. Since this form is
smooth, it is enough to check that (L’J}_lw A L’;_zw A Aw)(g,adsg,.. .,ad’}_lg)(O) # 0.
For this, note that (L’J}_lw A L’}_zw A Aw)(g,adyg,. ..,ad’;_l) = detS, where § is
an n X n matrix whose (z,7) entry is (L’J'c_lw)(adjc_lg). Now, by Lemma 5.1, S is an
upper triangular matrix, whose i-th diagonal element is (—1)”_iw(ad’;_1g). Therefore,

detS = (—1)"(w(ad? g))" # 0. O
Now we are ready to prove the main result of this section.

Theorem 5.1 Assume that dimspan {g,adyg, .. .,ad’;_lg} = n, Yz wn a neighborhood of
0 in M (linear controllability). Let H be any homotopy operator on M with the center at
the origin such that ¢(A,0) = 0 and let w be any characteristic one-form for the system (1).
Set o := Hw. Then (32) defines a local diffeomorphism in a neighborhood of the origin.
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Proof: We will show that the differentials of the zero-forms a, Lsa,. .., L’;_la are linearly
independent at the origin (and thus, in a neighborhood of the origin). Let ¢ := Hdw.
Since w = da + € and the Lie and exterior derivatives commute, we have dL’J'ca = L’J'cda =
L’J'c(w—e) = L’J'cw—L’J'ce. Hence, dL’J'ca(O) = L’J'cw(O)—L’J'ce(O). Note that €(0) := (Hdw)(0) = 0,
as H is a homotopy operator with the center at 0 such that ¢(,0) = 0. Now, it follows from
Lemma 5.2(2) that ¢, Lye, .. ., L’;_le all vanish at the origin and hence dL’J'ca(O) = L’}w(O).
Now the result follows from Proposition 5.2. O

We usually cannot guarantee a priori that the change of coordinates (32) will be valid
in the whole M. Some conditions for a map to be a global diffeomorphism are quoted in
Hunt et al.and Zampieri. Below, we show an example of a system that admits a global
transformation in R3 to the normal form (6).

Example 5.0 Consider the system

1 = 3+ hi(z3)
5&2 I3 (39)
5&3 = U

where hq(-) is any smooth function with A{(0) = 0. We have wy = dzi — hi(z3)dz,,
— 7”:211;?3), € = (—hl(z3);z23hl(z3))(:c3d:c2 — z3dz3). Lye = Lie = 0. The
3

system can be transformed by a global diffeomorphism

a = HBwy = z;

21 = a = T — A—Mhéa T3 5
Z9 = Lfa = T2, (40)
23 = L?ca = 3

to the form

4 o= o+ 22(h1(23)2—§23h1(23))u
2:'2 = Z3 (41)
2:'3 = Uu.

The inverse transformation given by

hi(z3)
T, = 21-|-2221323,
22, (42)
r3 = Z3.

I3

In the case when the change of coordinates is not valid on the whole region M, we have
to restrict to a region on which the change of coordinates is valid. In the sequel we assume
that this has been done and the restricted region is also called M.
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6 Estimates of the nonlinear part

In this section we estimate the nonlinear perturbation terms eq, ..., e, using the error one-
form e. First, let us rewrite the equations (34) (in the usual matrix-vector notation) as

2= Az+ Bru+ Bp+ FEu (43)

where A, B are in the Brunovsky form, that is,

o1 0 ---0 r QT

A: 1 0 ,B: ,
: 0 1

[0 - oor oo 0| | 1]

and E = (e1,ez,...,en)T (ebs, r, and p are defined by (35)). We see that 7 # 0 on M
(under the assumption that linear controllability holds on M) and E depends lnearly on
€ and vanishes, whenever ¢ does. We will choose u = r_l(unew — D), Where Upey is @ new
control variable. After this change of coordinates and control variable the system is of the
form (6) with @ := r~'E, P := —r!pE. In this section we obtain estimates on the uniform
norm of @ and P (via estimates on r, p, and E) in terms of the error one form eg for any
fixed B, on any compact, contractible region M.

Let h be a smooth vector field on M and [ be a nonnegative integer. Let { be a k-form
on M. We define C° norm ||¢]|° of ¢ as ||¢]|° := sup|{(z)|, for £ € M (uniform norm on
M), and G4 norm ([l as ¢, = sup(|¢(@)? + | Ln¢(@) + ..+ | ZLC(2) P2, for o € M
(uniform norm on M, together with the first [ Lie derivatives along h). It is immediately
seen from Proposition 5.1 that whenever the one-forms €, Lye, ..., L’;_le are small on M,
so is the term E on M.

Theorem 6.1 Let w be any characteristic one-form for the system (1) and let € be the
error one-form corresponding to a given homotopy operator. Then the mapping e — FE is a
continuous mapping from the space of smooth one forms equipped with the C?_l norm on
M into the space of smooth vector fields on M equipped with the C° norm (uniform norm
on M). In particular,

1N < lellF 1ol

Proof: Immediate in view of Proposition 5.1. O

Note that in the above result we could substitute for €, Lyse, .. ., L’}_le their evaluations
at (contractions by) the vector field g. Let h,v be smooth vector fields on M and ! be a
nonnegative integer. Let us define C’,lw seminorm ||C||§w of a one-form ( on M as ||C||§w =

sup(|C(v)(2)]? + |LaC(v)(2)]? + ... + | LEC(v)(2)]2)/?, over z € M. Note that C’,lw is not
quite a norm, for it may happen that ||C||§w = 0 even though ¢ # 0 (example: [|wo||} , for wo
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being a characteristic one-form for (1)). However, it happens that for the one-forms on M,
the C’”g1 seminorm becomes a norm if the vector fields f, g satisfy the linear controllability
condition of Theorem 1.1. This follows from the following result.

Proposition 6.1 Let ( be a one-form on M, and the vector fields f,g satisfy the linear
controllability condition of Theorem 1.1. Then ( = 0 if and only if ||C||” L=o.

Proof: (=) Obvious.

(<) Note that L* ¥((g) = Lf(L§C_1C(g)) — L§C_1C(adfg). We have L}C(g) =0 for ¢ =
0,1,...,n—1. In partlcular, ((g) = 0. Thus, using Lemma 5.2(1), we get 0 = (Ls()(g) =
L¢(C(g )) ((adsg) = —((adsg). Continuing in the same fashion, we obtain C(ad’}g) =0,
for ¢ = 0,1,...,n — 1. By the linear controllability assumption, the vector fields a,d’J'cg
for ¢ = 0,1,...,n — 1 are linearly independent. The one-form ( annihilates n linearly
independent fields on an n-dimensional manifold. Thus { = 0. O

The above result, when applied to the error one-form ¢ yields an obvious fact that the
€ = 0is equivalent with (32) being the linearizing change of coordinates for (1). The fact that
we wanted to emphasize here is that, because of (38), the nonlinear perturbation terms e,
can be used to define a norm for the error one-form ¢, thus making the relationship between
a measure of noninvolutivity of the characteristic distribution D and a direct measure of
nonlinearity of the system (1) in new coordinates explicit. Namely, we have

Proposition 6.2 || E||° = [|¢[[7;".

We conclude this section with establishing some upper bounds on the uniform norms
|P||° and ||@]]° of the nonlinear terms @ := r'E, P := —r~!pE in the system (6) after
change of coordinates and preliminary feedback.

Proposition 6.3 Letw be any characteristic form for the system (1), o := Hw, € := Hdw.
Let p := inf |w(ad’}_1g)(m)| over z € M and ¢ := sup |L}o(z)| over z € M. Then

1.

ollell,"
I1P|° < =t (44)
P
g el
f7
1Q° < . : (45)
Proof: Immediate, in view of Proposition 6.2 and (35). O
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7 Application to stabilization

In this section we will use the results of the previous section to study various locally sta-
bilizing feedback laws for the system (1). The laws that we have in mind will be linear
in new coordinates (32), with the gains chosen so that the linear part of the system (6) is
asymptotically stable. We will then study robustness of such control laws when applied to
the system (6). We will accomplish that studying Lyapunov functions that are quadratic in
new coordinates. We shall examine how the nonlinear part of (6) affects the time derivative
of the Lyapunov function. The continuity result of Theorem 6.1 will allow us to formulate
some robustness criteria for stabilization.

The idea behind transforming a linearizable system (1) to an equivalent form (2) is to
design control schemes for (2), which is much easier to analyze and control, and apply them
to (1). For example, if ® happens to be a global diffeomorphism from R™ into R™, one
can globally asymptotically stabilize the system (1). For this, one can choose new control
variable Upey = Kz (linear feedback in new variables) so that the closed-loop system

i=(A+ BK)z, (46)

is globally asymptotically stable (controllability of (2) is equivalent to possibility of arbitrary
assignment of the eigenvalues of (A + BK) by an appropriate choice of the feedback gain
K). Then u = k(z) 4 (z)Unew = k(z) + [(z) K ®(z) makes the closed-loop system

i = f(2) + 9(o)(k(a) + I(z) KB (c)) (47)

globally asymptotically stable, since ! is a diffeomorphism preserving the equilibrium
point at the origin.

For nonlinearizable systems the best we can hope for using our approach is to transform
(1) to (6) with P and @ small. Then we will try to use the new form (6) to design a locally
stabilizing feedback—in this case we expect to improve the basin of attraction of the origin of
the closed loop system. We will choose upey, = Kz (a feedback law linear in new variables) so
that the mapping A+ BK is stable (has all eigenvalues with negative real parts) and analyze
its robustness as a stabilizing law for (6)—bounds on uniform norms for ¢ and P should help
us to do so. Let us stress that we will actually use new coordinates z and new control uneqy
only as intermediate tools, the control law u = 171 (Upew —p) = 771 (K z2—p) will be expressed
in the old coordinates z as u = ki(z) (where ki(z) := 7(®(z)) (K ®(z) — p(®(z)))) and
applied to (1). Since ®~! is a diffeomorphism preserving the equilibrium point at the origin,
it maps the basin of attraction of the equilibrium for

2=(A+BK)z+ P(2)+ Q(2)K=z (48)
to the basin of attraction of the equilibrium for
s = 1(2) + g(o)hn(o) (49)

Observe that, to express the feedback laws computed in new coordinates z in the original
coordinates =, we don’t even need to find the form (6) explicitly. It would be actually
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very difficult, if not impossible, to do so in general, for we would have to know the inverse
transformation z = ®!(z) in order to obtain the form (6).

Of course, we might not always be able to find the best integrating factor £y for wy
annihilating D := span {g, adyg, .. .,ad’;_zg} to begin with. Still, for any scaling factor
B we can choose the corresponding zero-form ag and its Lie derivatives along f as new
coordinates. We can also find the corresponding error one-form eg and verify the bounds
on the corresponding terms ¢ and P in (6), and decide if they are sufficiently small for our
purpose.

Theorem 7.1 Assume that z = ®(z) be a (global) diffeomorphism of M onto its image
given by (32). Let unew = Kz be any linear feedback in new variables so that the linear part

2= (A+ BK)z, (50)

of the system (6) obtained from (1) after change of coordinates and preliminary feedback is
asymptotically stable. Let N be a positive definite n by n matriz and let M be the unique
positive semidefinite solution of the Lyapunov equation

(A+ BK)"M + M(A+ BK)+ N = 0. (51)

Let
E(2):=P(2)+Q(2)Kz (52)

and Q, = {0} U {z € (M) : (2, Mz) < r and (2,Nz) — 2(z, ME(z)) > 0}. Define
Pmaz = sup{r > 0: Q, C ®(M)}. Then (R, ..) is an invariant set contained in the
basin of attraction of the origin of the system

& = f(z) + g(2)ki(2), (53)
where ki(z) := r(®(z)) " (K®(z) — p(®(z))) (p and q are defined by (35)).

Proof: The linearizable part of the system in new coordinates z can be made asymptotically

stable by feedback upe,, = Kz linear in new coordinates. One can define a quadratic
Lyapunov function V(2) := (z, Mz) with a negative time derivative §%(2) = —(z, Nz)

solving the Lyapunov equation (51). The sets {2, are invariant sets for the closed loop
linear part (50). Now, the time derivative of Lyapunov function for the true system in new
coordinates is 2(2) = —((z, Nz) — 2(z, ME(z))). If this is negative, the sets ~1(Q,,...)
are invariant sets for the closed-loop system (53). O

The above result simply states a sufficient condition for a region of M to be an invariant
set contained in the basin of attraction of the origin of the system ¢ = f(z) + g(z)ki(z),
and is well known. What is nice about the above result is that we can actually estimate the
set ®71(Q,,_ . ) in our approach. Namely, since we have estimates on the uniform norms
||P(2)|| and ||@(z)|| of the nonlinear terms in the system (6), we obtain an upper bound
on the uniform norm E(z) = P(z) + Q(z)Kz. Thus, we can check if the time derivative
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—((z,Nz)) 4+ 2(z, M E(z))) of the Lyapunov function is negative on the region of interest.
Moreover, since we expect P(z) and Q(z) to be small, so will be E(z). Since the first term
in —({z, Nz))+2(z, M E(2))) is negative and the second term is small, the whole expression
is negative in some neighborhood of the origin.

Let us define yet another measure of nonlinearity in new coordinates that is particularly
suited for studying stabilization:

mz) = L for s 20, ()= 0. (54)

Now we can replace the condition
2(z, ME(2)) < (2,Nz), for z#0 (55)

with
Mafi(2z) < 1. (56)

Note that the quantity 7,4 actually depends on the choice of characteristic one form, the
particular homotopy operator, the stabilizing feedback gain matrix K, and the matrix N.
Observe that |7,7(2)| < 1 means that the linear term dominates the nonlinear one in the
time derivative 2%(2) = —({2, Nz)) + 2(z, ME(2))) of the Lyapunov function V(z) :=
(z, M z) at the particular point z, guaranteeing its negative sign. On the other hand 0 <
Nafi(z) means that the nonlinearities contribute to making 2% (z) more positive, and thus
have a destibilizing effect, while 7,/(2) < 0 means that the nonlinearities try to make
%(z) more negative, and hence help to stabilize the system. Therefore, the following
terminology is justified: we will say that the nonlinearities are weak (respectively, strong)
at z if [n.51(2)] < 1 (respectively, |n.51(2)] > 1) and friendly (respectively, unfriendly) if
Nafi(z) < 0 (respectively, 0 < 7,71(2)).

Let us express this condition in terms of system (6) and (8). We have E(z) = P(2) +
Q(2)Kz = (Kz—p(2))(r~}(2)E(2)). Thus 2(z, ME(2)) = 2(z, M(Kz—p(2))(r () E(2))),
and (56) is equivalent with

2(z, M(K z — p(2))(r"(2)E(2)))
(z, N z)

<1, for z #0. (57)

Using bounds on ||P(z)|| and ||@(2)|| obtained in the previous section, one can formulate
the following inequality that implies the previous ones

(e+ IKII=DIelF;" _ inf o)

2
p sup o (M)

2], for 2 #0 (58)

where o(-) denotes a spectrum of a matrix.
It is possible to combine the problems of designing a stabilizing feedback for the linear
part of of the system (6) obtained from (1) after change of coordinates and preliminary
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feedback and construction of a Lyapunov function in a linear quadratic optimal control
design: find ey minimizing

[0, N + (8, R (01

for strictly positive definite R and a positive definite N. (To make life easier, we will assume
that N is also strictly positive definite). It is well-known that the optimal control upe, has
the form of linear feedback Upey, = Kz for K = —R~* BT M, where M is the unique positive
definite solution of the Riccatti equation

ATM + MA—- MBR'BTM + N =o0. (59)

Example 7.0 Consider the system

1 = z9+ a,:cg + b:c:l”
iy = z3+cxizy (60)
5&3 = Uu.

O

Note this is a particular case of the system considered in Example 3. We have wg =
dzq — Samgdmg, and dwg = 6azzdzs A dz3. For scaling factor § = 1 we get o := Hw = 21 —
azyzi, e := Hdw = (2az3)(zodz3—z3dT2). New coordinates z = ®(z) are given by z; := a =
T — (ZCEgCE%, zp:=Lia=1z9+ b:c:l” — acm%mgmg, 23 = L?ca = 23+ 3b%z,5 + 3bz1 %2y + cz1lzy —
2abczitzozs? —ac’zitzozs? — 2aczi 22232+ 3abz %233 —acz?z3® — 2a%cz1zo245°. Note that
®(z) is only a local diffeomorphism around the origin and it is impossible to find an inverse

transformation. Thus, in the sequel we express the nonlinear terms E(z), 7(2), and p(z) in

old coordinates: E(®(z)) = [-2azsz3, —2acz1?T273, —2acz1To23 (20213 + cz13 + 225 — 40,3:33)]T,
r(®(z)) = 1+ 9abzi%z3? — 3aczi?z3? — 18a%czizo23"
p(®(z)) = 15b3z,7 + 2162z %2y + Bbezitzy + c?zitzy + 6bT T2+
2cz1z9% + 3bzq1%z3 + cz1’z3 — 8ab’cr,18zy23% — 6abc?z1 620237 —
acz1%z923% — 10abez3z22232% — 8ac’z13zy%243% — 2aczo3z3+

21ab’z,%z3® — 4abezitzs® — ac?zitzs® + 12abzizozs®—

daczizozs® — 10a2bez3zo23° — 6a?c?z13zo235 — 4a%czozs®+
6a?bz1z3® — 4acz123® — 2a3czyz3®
173 123 223

(all computationd were done using Mathematica). To design a locally stabilizing feedback,
we have solved the LQ regulator problem for the linear part of the system as mentioned
above for N being the 3 by 3 identity matrix and R = 1. The optimal feedback gain
matrix was K = [—1,-2.41421, —2.41421], and eigenvalues of A+ BK were —1, —0.707107+
10.707107, —0.707107 — 20.707107. The feedback law applied to the original system (1) was
Ugst = 7(®(z)) YK ®(z) — p(®(z))). We choose the values of parameters a = 0.01,b =
1,c=5and M := {|z;| < 0.36,7=1,2,3}. We checked the condition (57) was satisfied on
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M, with sup 7,51(®(z)) ~ 0.45. Thus, by Theorem 7.1, the corresponding set ®~(f,,...)
(defined in the formulation of Theorem 7.1) is in the basin of attraction of the origin. As
we have checked, the whole M was in the basin of attraction of the origin. The basin
of attraction was actually much larger than M, even though the condition (57) was not
satisfled (note that Theorem 7.1 gives only an underestimate of the actual stability region).
For comparison, we considered the control based on Jacobian linearization ujq. := Kz, for
the same gain matrix K. Note that x and z coordinates agree up to 1-st order, and that
both control schemes u,¢; and ujq. yield the same linear part of the closed loop system with
eigenvalues —1,—0.707107 4 ¢0.707107, —0.707107 — 20.707107. We checked that for u;,c
condition (57) failed to hold on M, with sup 7;4.(z) = 5.6 (11 times more than for u,y),
where 7jqc(z) 1= 2<E’M(Iiz])v(f>j“(z))> y Ejac = [az} + bz3, czlzy,0]7. Not whole M was in the
region of stability for uj-a,c, and the region of stability for u;,. was strictly contained in the
the region of stability for ugs. We present (in figures 1 through 3) typical plots of the state
variables as functions of time (the darker lines represents the time responses for u,¢, the

lighter lines for u;,.). Comparing those responses of our system for both control schemes, we
see that u,f; offered faster convergence to the origin and less oscillatory responses than ;4.
We also plot (in figures 4 and 5) the terms 7, £(®(z)) and n;,.(z) along trajectories, because
they in some sense measure nonlinearity of the corresponding closed loop systems. Observe
that the strong and unfriendly nonlinearities prevail in the closed-loop system with uj,c
control when compared to weak nonlinearities in the closed-loop system with ugf; control.

0.4
0.2 /_\

2 4 6 [ 10
-0.2

-0.2

-0.4

-0.6

Figure 2: z,(t) for z1(0) = 0,22(0) = 0.3,z3(0) = 0.3.
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Figure 3: z3(t) for z1(0) = 0,z2(0) = 0.3,z3(0) = 0.3.

2 2 3 8 10

Figure 4: njqc for z1(0) = 0,z2(0) = 0.3,z3(0) = 0.3.

0.03
0.02
0.01
JAN
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-0.01
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Figure 5: ng; for z1(0) = 0,z2(0) = 0.3,z3(0) = 0.3.

Note that from Section 3 we actually know that the optimal integrating factor for wy =
dz1 —az3dzyis B = |wo| ' = (1+a?z3)~1/2. Observe, that with @ = 0.01 and |z3| < 0.36, we
have 8 =~ 1 up to six decimal places. We have found the coresponding change of coordinates
and performed simulations, but the results were indistinguishable from the case g = 1.

8 Conclusion

In this paper, we presented an approach for finding feedback linearizable systems that
approximate a given single-input nonlinear system on a given compact region of the state
space. We have shown that if the system is close to being involutive then it is also close to
being linearizable. We have applied this approach for design of locally stabilizing feedback
laws for nonlinear systems that are close to being linearizable. The main idea was to study
the characteristic one forms rather than deal with the characteristic distribution directly.
In this approach two issues have occured. First, how to scale characteristic forms, second,
how to approximate them by exact forms. We have presented some ideas on that subject
and indicated some open problems.
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