
Approximate Feedback Linearization:A Homotopy Operator Approach�Andrzej Banaszuky John HauserzJanuary 12, 1995AbstractIn this paper, we present an approach for �nding feedback linearizable systems thatapproximate a given single-input nonlinear system on a given compact region of thestate space. First, we show that if the system is close to being involutive then it isalso close to being linearizable. Rather than working directly with the characteristicdistribution of the system, we work with characteristic one-forms, i.e., with the one-forms annihilating the characteristic distribution. We show that homotopy operatorscan be used to decompose a given characteristic one-form into an exact and antiexactpart. The exact part is used to de�ne a change of coordinates to a normal form thatlooks like a linearizable part plus nonlinear perturbation terms. The nonlinear terms inthis normal form depend continuously on the antiexact part and they vanish wheneverthe antiexact part does. Thus, the antiexact part of a given characteristic one-formis a measure of nonlinearizability of the system. If the nonlinear terms are small, byneglecting them we obtain a linearizable system approximating the original system.One can design control for the original system by designing it for the approximatinglinearizable system and applying it to the original one. We apply this approach fordesign of locally stabilizing feedback laws for nonlinear systems that are close to beinglinearizable.1 IntroductionConsider a single-input system _x = f(x) + g(x)u (1)where f , g are smooth vector �elds de�ned on a compact contractible region M of Rncontaining the origin. (Typically, M is a closed ball in Rn). We assume that f(0) = 0, i.e,that the origin is an equilibrium for _x = f(x). The classical problem of feedback linearization�Research sponsored in part by NSF under grant PYI ECS-9157835 and DMS-9207703.ySchool of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332,banaszuk@math.gatech.edu.zElectrical and Computer Engineering, University of Colorado, Boulder, CO 80309-0425,hauser@boulder.colorado.edu. 1



can be stated as follows: �nd in a neighborhood of the origin a smooth change of coordinatesz = �(x) (a local di�eomorphism) and a smooth feedback law u = k(x) + l(x)unew suchthat the closed loop system in the new coordinates with new control is linear:_z = Az + Bunew ; (2)and controllable. We usually require that �(0) = 0.We assume that the system (1) has the linear controllability propertydim span fg; adfg; : : : ; adn�1f gg = n; 8x 2 M; (3)(where adifg are iterated Lie brackets of f and g). We de�ne the characteristic distributionfor (1) D := span fg; adfg; : : : ; adn�2f gg (4)(it is an n-1-dimensional smooth distribution by assumption of linear controllability (3)).We shall call any nowhere vanishing one-form ! annihilating D a characteristic one-formfor (1). All the characteristic one-forms for (1) can be represented as multiples of some�xed characteristic one-form !0 by a smooth nowhere vanishing function (zero-form) �.Suppose that there is a nonvanishing � so that �!0 is exact, i.e., �!0 = d� for some smoothfunction � (d denotes the exterior derivative). Then !0 is called integrable and � is calledan integrating factor for !0. The following result is standard (Hunt et al., Jakubczyk andRespondek).Theorem 1.1 Suppose that the system (1) has the linear controllability property (3) onM. Let D be the characteristic distribution and !0 be a characteristic one-from for (1).The following statements are equivalent:1. (1) is feedback linearizable in a neighborhood of the origin in M.2. D is involutive in a neighborhood of the origin in M.3. !0 is integrable in a neighborhood of the origin in M.As it is well know, a generic nonlinear system is not feedback linearizable for n > 2.However, in some cases, it may make sense to consider approximate feedback linearization.Namely, if one can �nd a feedback linearizable system close to (1), there is hope that acontrol designed for the feedback linearizable system and applied to (1) will give satisfactoryperformance, if the feedback linearizable system is close enough to (1). The �rst attemptin this direction goes back to Krener (1984). He considered applying to (1) a change ofvariables and feedback that yield system of the form:_z = Az + Bunew +O(z; unew) (5)where the term O(z; unew) contains higher order terms. The aim was too make O(z; unew)of as high order as possible. Then we can say that the system (1) is approximately feedback2



linearized in a small neighborhood of the origin. Recently, Hunt and Turi (1993) haveproposed a new algorithm to achieve the same goal with fewer number of steps.Another idea has been investigated by Hauser et al. (1992). Roughly speaking the ideawas to neglect nonlinearities in (1) responsible for the failure of the involutivity conditionin Theorem 1.1. This approach happened to be successful in the ball and beam system,when neglecting of centrifugal force acting on ball yielded a feedback linearizable system.Application of a control scheme designed for the system with centrifugal force neglectedto the original system gave much better results than applying a control scheme basedon classical Jacobian linearization. This approach has been further investigated by Hauser(1992) for the purpose of approximate feedback linearization about the manifold of constantoperating points. However, a general approach to deciding which nonlinearities should beneglected to get the best approximation has not been set forth.Krener and Maag (1991) design a best L2 feedback approximation for the design ofcontrol law for the systems with cubic nonlinearities using a di�erent approach. They tryto come up with a change of variables that directly minimizes the terms P and Q .All of the above-mentioned work (except Krener and Maag (1991)) dealt with applyinga change of coordinates and a preliminary feedback so that the resulting system looks likelinearizable part plus nonlinear terms of highest possible order around an equilibrium pointor an equilibrium manifold. However, in many applications one requires a large region ofoperation for the nonlinearizable system. In such a case, demanding the nonlinear termsto be neglected to be of highest possible order may, in fact, be quite undesirable. Onemight prefer that the nonlinear terms to be neglected be small in a uniform sense over theregion of operation. In the present paper we propose an approach to approximate feedbacklinearization that uses a change of coordinates and a preliminary feedback to put a system(1) in a perturbed Brunovsky form_z = Az +Bunew + P (z) +Q(z)unew (6)where P (z) and Q(z) vanish at z = 0 and are \small" on M. We obtain upper bounds onuniform norms of P and Q (depending on some measures of noninvolutivity of D) on anycompact, contractible M.Our approach is an indirect one. We begin with approximating characteristic one-formsby exact forms using homotopy operators. Namely, on any contractible region M one cande�ne a linear operator H that satis�es! = d(H!) +Hd!; (7)for any form !.Note that the homotopy identity (7) allows to decompose any given one-form into theexact part d(H!) and an \error" part � := Hd!, that we will call the antiexact part of !.For given !0 annihilating D and a scaling factor � we de�ne �� := H�!0 and �� := Hd�!0.Note that the one-form �� measures how exact !� := �!0 is. If it is zero then !� is exactand the system (1) is linearizable, the zero-form �� and its �rst n� 1 Lie derivatives alongf are the new coordinates. In the case that !0 is not exactly integrable, i.e., when no exact3



integrating factor � exist, we choose � so that d�!0 is smallest in some sense (for this makesalso �� small). We will call this � an approximate integrating factor for !0. We will use thezero-form �� and its �rst n � 1 Lie derivatives along f as the new coordinates, as in thelinearizable case. In those new coordinates the system (1) is in the form_z = Az + Bru+ Bp+ Eu (8)where r; p are smooth functions, r 6= 0 around the origin, and the term E (the obstruction tolinearizablity) depends linearly on �� and some of its derivatives (in particular, E vanisheswhenever �� does). We choose u = r�1(unew � p), where unew is a new control variable.After this change of coordinates and control variable the system is of the form (6) withQ := r�1E; P := �r�1pE. We obtain estimates on the uniform norm of Q and P (viaestimates on r, p, and E) in terms of the error one form �� for any �xed �, on any compact,contractible region M. Most important fact is that Q and P depend in a continuous wayon �� and some of its derivatives, and they vanish whenever � does.From another point of view our approach can be viewed as a robustness analysis ofexact feedback linearization. It is of obvious interest to analyse what happens to an exactlylinearizable system subject to a small perturbation that destroys the property of beinglinearizable. One can expect that if linearization was used as an intermediate tool to achievestabilization, tracking, disturbance rejection, etc., a small perturbation, yielding a system\close" to being linearizable, still allows one to apply the control designed for the originallinearizable system, guaranteeing satisfactory performance. In the present paper we proposesome tools to measure a distance of a nonlinearizable perturbed system from a linearizableone, thus allowing to measure how small the small perturbation is. In particular, we provideanalysis of robustness of stabilizing feedback design based on feedback linearization.We anticipate many applications of transforming (1) into (6). The idea behind makingQ and P small is to neglect them in design. Intuitively speaking, we can neglect them ifthey are \small enough". What does it mean \small enough" will depend on particularapplication.We should warn that one cannot expect that an exact or approximate feedback lineariza-tion will always help to improve performance. The point is that the idea of linearization isto get rid of nonlinearities because we don't know how to deal with them. It may happenthough that removing of some nonlinear terms may negatively a�ect the performance of thesystem. For instance, consider the problem of stabilization of the feedback linearizable sys-tem _x = �x3+u. One can remove the nonlinear term �x3 using feedback, but this doesn'thelp stabilization at all. The term �x3 actually helps to stabilize the system, especiallyfor large initial conditions. Still, there are enough examples of systems in which nonlinearterms cause problems to justify the present study.The paper is organized as follows.In Section 2 we introduce notation and some auxiliary results. We also explain con-struction of characteristic one-forms.In Section 3 we discuss the problem of optimal scaling of the characteristic one forms.We review the construction of exact integrating factors and introduce and study best ap-proximate Lp integrating factors. 4



In Section 4 we show how homotopy operators can be use to decompose characteristicone forms into exact and antiexact parts.In Section 5 we prove that a change of coordinates based on the exact part of anycharacteristic one-form obtained with a homotopy operator having center at the originde�nes a local di�eomorphism that takes the system (1) to a normal form that looks likea linearizable part perturbed by some nonlinear terms. The nonlinear perturbation termsdepend linearly on the antiexact part of the characteristic one-form.In Section 6 we obtain some upper bounds on nonlinear perturbation terms using theantiexact part of a characteristic one form and thus eastablish a continuity relationshipsbetween some measures of noninvolutivity and nonlinearizability.In Section 7 we apply the results of the paper to study locally linearizing feedback lawsfor the system (1).2 Notation and auxiliary resultsIn the present paper we apply the theory of di�erential alternating forms. We refer tostandard texts such as Abraham et al., Bryant et al., Edelen, Flanders, or Hicks, for all thenotions not de�ned here.We denote by TM the tangent bundle to M and by 
k(M) the set of all alternatingk-forms on M, i.e., space of all k-linear anti-symmetric functionals on TM. 
(M) willdenote the direct sum of all 
k(M). Let � 2 
(M) and v 2 TM. Then d� will denote theexterior derivative of � and Lv� will denote the Lie derivative of � along v.By iv(�) we will mean the interior product (contraction) of a vector �eld v with a k-form�, which is a k � 1 form de�ned byiv(�)(v1; v2; : : : ; vk�1) := �(v; v1; v2; : : : ; vk�1):Note that if � is a one-form, then iv(�) = �(v). Below we summarize some properties ofinterior and exterior (wedge) products and exterior and Lie derivatives.Proposition 2.1 Let �1 2 
k(M); �2 2 
(M) and v 2 TM be arbitrary. Then1. iv(�1 ^ �2) = (iv�1) ^ �2 + (�1)k�1 ^ (iv�2).2. iviv�2 = 0.3. d(�1 ^ �2) = (d�1) ^ �2 + (�1)k�1 ^ (d�2).4. d(Lv�2) = Lv(d�2).While we did not need any additional structure except the di�erential one to study theproblem of �nding exact integrating factors, in the case of approximate integrating factorswe need some means of measuring the distance between k-forms (for instance !0 from anexact form d�, or d�!0 from 0), both at a point and globally (on M). For this, we use5



a Riemannian metric, i.e., a positive de�nite (pointwise) inner product h; i on the tangentspace to M. This inner product induces an inner product on p-forms (see Abraham et al.,Section 6.2), that we will denote by the same symbol. Namely, let feig; i = 1; : : : ; n bean orthonormal basis for 
1(M). Then the inner product on p-forms is uniquely de�nedby requiring fei1 ^ : : : ^ eip ji1 < : : : < ipg to be an orthonormal basis for 
p(M). Thecorresponding pointwise norm will be denoted by j � j. We obtain a global inner product hh; iiof p-forms on M by integrating the pointwise one over M. A standard metric associatedwith coordinate system x1; x2; : : : ; xn is the one in which the vector �elds @@x1 ; @@x2 ; : : : ; @@xn ,and thus the one-forms dx1; dx2; : : : ; dxn, are orthonormal. The standard (in coordinatesxi) volume element on M is � := dx1 ^ dx2 ^ : : :^ dxn:For any one-form � we will denote by �# the dual vector �eld to �, i.e., the uniquesmooth vector �eld satisfying h�; �i = i�#(�) = �(�#) for any one-form �. For instance, ifwe use the standard metric, we have (Pni=1 �idxi)# = Pni=1 �i @@xi . We have the followingelementary result.Proposition 2.2 Let �1; �2 2 
1(M) and � 2 
2(M) . Thenh�1 ^ �2; �i = h�2; i�#1 �i = �(�#1 ; �#2 ):Let � 2 
p(M) and � 2 
m�p(M). In the sequel we will deal with the operatorW� : 
p(M) 7! 
m(M) de�ned by W�� := � ^ �.To obtain a one-form annihilating an n�1-dimensional distribution D inM, we contractany volume element of M by any basis of D. For instance, we may choose!0 := igiadfg : : : iadn�2f g�; (9)where � is the standard volume element in coordinates xi.3 Approximate Integrating FactorsBefore we discuss the approximate integrating factors for nonintegrable characteristic one-form !0, let us remind the reader how, given an integrable characteristic one-form !0, oneconstructs an exact integrating factor for !0. The construction will suggest what can bedone in the case of nonintegrable characteristic one-form !0. Let us begin with followingstandard result (see, e.g., Abraham et al., Section 6.4, Edelen, Section 4.2):Proposition 3.1 Let !0 be a nonvanishing one-form on M. The following statements areequivalent:1. !0 is integrable, 6



2. There is a one-form 
 such that d!0 = 
 ^ !0: (10)3. There is a zero-form � suth that d!0 = d� ^ !0 (11)4. !0 satis�es d!0 ^ !0 = 0: (12)Note that the statement (4) provides a test for integrability of !0, and thus for lineariz-ability of the system (1). Let us present one possible way of proving (4) ) (2).Let X be any smooth vector �eld on M satisfying iX(!0) = !0(X) = 1. Then (seeProposition 2.1 (1))0 = iX(d!0 ^ !0) = iX(d!0) ^ !0 + d!0 ^ iX(!0) = iX(d!0)^ !0 + d!0:Choosing 
 := �iX(d!0), we see that (4)) (2). Even though it is not immediately seen,one can choose X so that iX(!0) = 1 and �iX(d!0) = d� for some zero-form �, thus proving(3). The condition (3) is most important in construction of the integrating factor for !0.Namely, once we know the zero-form �, choosing � := e�� , we obtain d�!0 = 0 and � > 0as required. Note that an integrating factor � obtained in that way is not unique. Namely,if �!0 = d� for some zero-form �, one can replace � by h(�)�, where h(�) is smooth andpositive. It is now easily checked that dh(�)�!0 = 0, so that h(�)� is an integrating factorfor !0, whenever � is.Given a nonintegrable characteristic one-form !0, we try to �nd a best possible integrat-ing factor for it. Let us recall that the goal is to make d�!0 \as small as possible". Belowwe de�ne some precise meaning for making d�!0 \small" by an appropriate choice of �. Wewant to avoid the trivial solution � = 0. To contrary, we want to formulate the problem ofconstruction of best approximate integrating factor so that the solution yields � > 0 for allx 2 M. In coordinates, minimization of d�!0 can be understood as making the di�erencesof the mixed partial derivatives @�!0i@xj � @�!0j@xi as small as possible.We will �rst establish a pointwise measure of exactness for �!0 and then construct aglobal one from the pointwise one. Let�(!0)(x) := j(d!0)(x)jj(!0)(x)j ; (13)where j � j is the pointwise norm of a form given by the Riemannian metric. Note that sucha measure of exactness of !0 is invariant under scaling of the one-form !0 by a constant,non-zero function. Now we de�ne global measures of exactness of !0. A uniform measurecan be obtained by taking the supremum of �(!0)(x) overM�1(!0) := supf�(!0)(x); x 2 Mg: (14)7



Note that the supremum exists since M is compact (by assumption).An average measure of integrability is obtained by integrating �(!0)(x) over M. Letp > 0, then �p(!0) := (ZM(�(!0)(x))p�)1=p; (15)where � is the volume element associated with the Riemannian metric. Now, for 1 � p � 1,we can de�ne the best approximate Lp integrating factor � for !0 as the zero-form thatminimizes �p(�!0).The best situation one might hope for when facing the problem of construction of thebest approximate integrating factor is that there is a single function � that is, in fact, thebest Lp approximate integrating factor for every 1 � p � 1. This will be the case if we can�nd a function � that minimizes �(�!0)(x) at every point x 2 M. In certain special casesthere is, in fact, an easy solution to this problem.Let !0 be a given one-form on M and consider the decompositiond!0 = 
 ^ !0 + �: (16)This equation should be interpreted as an \approximation" to (10) with the two-form �playing the role of an error term. There are in�nitely many ways of decomposing d!0as above, because for any 
, one can simply choose � := d!0 � 
 ^ !0. We know fromProposition 3.1 that we can choose � = 0 in the case of integrable !0. If !0 fails to beintegrable we will try to choose 
 and � in (16) so that the two-form � is smallest possiblein a least square sense, i.e., w.r.t. to the (global) L2 norm of forms on Mk�k := (ZM j�j2�)1=2 for � 2 
(M) (17)Note that this smallest possible � measures how far !0 is from being closed (and thus exact).It happens that the problem of �nding 
 and � satisfying (16) with k�k minimal can besolved pointwise.As in the case of integrable !0, we will use an interior product of a vector �eld Xsatisfying iX(!0) = !0(X) = 1 with d!0 ^ !0 to obtain a decomposition of type (16). Wehave (see Proposition 2.1 (1))iX(d!0 ^ !0) = iX(d!0) ^ !0 + d!0 ^ iX(!0) = iX(d!0) ^ !0 + d!0so that d!0 = (�iX(d!0))^ !0 + iX(d!0 ^ !0):This relation has the required form (16) with 
 := �iX(d!0), � := iX(d!0 ^ !0).We will denote by �min the two form � satisfying (16) for some 
 with a minimumpointwise norm j�(x)j at every x 2 M. (It is clear that this will also be the two form withminimal global norm k �k among all two forms � satisfying (16)). Belowe we give an explicitformula for �min. 8



Proposition 3.2 Put X0 := j!0j�2!#0 . Then iX0(!0) = 1 and�min = iX0(d!0 ^ !0): (18)Among all 
 satisfying (16) for � = �min the one with a minimal norm is
min := �iX0(d!0): (19)
min is pointwise orthogonal to !0. All other one-forms 
 satisfying (16) can be representedas 
� = 
min + �!0, for some zero-form �.Proof: First, note that � = �min if and only if h� ^ !0; �i = 0 pointwise on M forany one-form �. (This follows from the fact that by a standard least-squares argument�min must be orthogonal to the space R(W!0) = f� ^ !0j� 2 
1(M)g.) Note also thatiX0(!0) = j!0j�2!0(!#0 ) = j!0j�2h!0; !0i = 1. Thus, it is immediately seen that (16) issatis�ed for � , 
 given by (18) and (19). To see that � de�ned by (18) is actually �min wewill show that h� ^ !0; �i = 0 pointwise on M for any one-form �. Using Proposition 2.2and 2.1 (2), we haveh� ^ !0; �i = �h!0 ^ �; iX0(d!0 ^ !0)i = �j!0j�2h�; i!#0 i!#0 (d!0 ^ !0)i = 0:We have shown that � = �min.To prove that 
min is pointwise orthogonal to !0 note that h!0; 
mini = i!#0 
min =�j!0j�2i!#0 i!#0 (d!0) = 0. 2Note that �min = 0 is zero on M if and only if !0 is integrable on M, �min = 0 and
min = 0 on M if and only if !0 is exact on M. Let � 2 
0(M). We haved�!0 = (d� + �
min) ^ !0 + ��min: (20)Now, we can obtain the following pointwise lower bound for �(�!0):Proposition 3.3 For any x 2 M and � 2 
0(M) we have�(�!0)(x) � j�min(x)jj!0(x)j : (21)Proof: Since the two-forms (d ln �+
min)^!0 and �min are pointwise orthogonal for every �(see the proof of Proposition 3.2), we have �(�!0)(x) = jd�^!0+�d!0jj�!0j = jd�^!0+�(
min^!0)+��minjj�!0j =j(d�+�
min)^!0+��minjj�!0j = j(d ln�+
min)^!0+�minjj!0j = (( j(d ln(�)+
min)^!0jj!0j )2 + ( j�minjj!0j )2)1=2 � j�minjj!0j. 2The best we can hope for is that the lower bound for �(�!0)(x) obtained above is sharp,i.e., there is a zero-form � such that �(�!0)(x) = j�min(x)jj!0(x)j for every x 2 M. This will be thecase if (d ln(�) + 
min) ^ !0 = 0 for some choice of �. A necessary and su�cient conditionfor this is 
� := 
min + �!0 = d�, for some zero-forms � and �. Then we choose � := e��and obtain (d ln �+ 
�)^!0 = 0. Note that the zero-form � is everywhere strictly positive,as required. 9



Example 3.0 Consider _x1 = x2 + h1(x3) + h2(x1; x2)_x2 = x3 + h3(x3) + h4(x1; x2)_x3 = u; (22)where hi(�) are any smooth functions with hi(0) = @hi@xj (0) = 0. We have g = @@x3 , f =(x2+h1(x3)+h2(x1; x2)) @@x1+(x3+h3(x3)+h4(x1; x2)) @@x2 , adfg := [f; g] = (�h01(x3)) @@x1�(1+h03(x3)) @@x2 , !0 = (1+h03(x3))dx1�h01(x3)dx2, d!0 = h001(x3)dx2^dx3�h003(x3)dx1^dx3,and d!0^!0 = (h001(x3)dx2^dx3�h003(x3)dx1^dx3)^ ((1+h03(x3))dx1�h01(x3)dx2) = ((1+h03(x3))h001(x3)� h01(x3)h003(x3))dx1 ^ dx2 ^ dx3. We see, that the system is exactly feedbacklinearizable in a neighborhood of the origin if and only if (1+h03(x3))h001(x3)�h01(x3)h003(x3) =0, which is the case if h1(�) = 0.It happens that for this system we can actually construct the best approximate Lpintegrating factor � in above-mentioned sense, i.e., the one that works for every 1 � p � 1.Suppose that we use the standard metric in coordinates x1; x2; x3. We have
min = h01(x3)h001(x3) + (1 + h03(x3))h003(x3)h01(x3)2 + (1 + h03(x3))2 dx3;�min = (h001 (x3)+h03(x3)h001 (x3)�h01(x3)h003 (x3))h01(x3)2+(1+h03(x3))2 ((1 + h03(x3))dx2 ^ dx3 + h01(x3)dx1 ^ dx3):Note that 
min depends only on x3, and thus it is exact. One can check that 
min = d�for � = ln(h01(x3)2 + (1 + h03(x3))2)1=2. The best approximate integrating factor in above-mentioned sense is �0 = e�� = (h01(x3)2+(1+h03(x3))2)�1=2 = j!0j�1 (note that this choicemakes the pointwise length of �0!0 equal to 1 everywhere). 2In Banaszuk et al., 1994a, we show that the lower bound for �(�!0)(x) is always sharpif the metric is the standard metric in some special coordinates. There are however ex-amples of systems for which the lower bound for �(�!0)(x) is not sharp. In this case amore sophisticated analysis is required (cf. Banaszuk et al., 1994b,c), which leads to somevariational problems whose solutions for � are given as solutions of elliptic eigenvalue prob-lems. A simple alternative would be an approximation of 
� by an exact form dH
� usinga homotopy operator H (see the next section).Note that even though the minimal �p(�!0) seems to be a natural measure of integra-bility of !0 and thus also a measure of noninvolutivity of the characteristic distribution D,it may not be a su�cient measure for the problem of approximate linearization. There aresome indications that one should actually minimize d(�!0) together with its �rst n-1 Liederivatives along f . This problem is currently being studied.4 Homotopy operatorOn any contractible region M one can de�ne a linear operator H : 
k(M) 7! 
k�1(M)that partially inverts the exterior derivative, i.e.,! = (dH +Hd)!; 8! 2 
k(M) (23)10



or, in other words, ! = d(H!) +Hd! (24)Any operator with such property will be called a homotopy operator. Following Flanders,we present a construction of such an operator. Consider the cylinder I�M where I := [0; 1]and de�ne a family of maps j� :M 7! I�M by j�(x) = (�; x), for � 2 I . Note that k-formson the cylinder can be represented in coordinates �; x1; : : : ; xn as sums of monomials of twotypes: a(�; x)dxi1 ^ dxi2 ^ : : : ^ dxik and a(�; x)d� ^ dxi1 ^ : : : ^ dxik�1 . We now de�nea linear operator K : 
k(I �M) 7! 
k�1(M) such that its action on these two types ofmonomials is given by K(a(�; x)dxi1 ^ dxi2 ^ : : :^ dxik) = 0; (25)K(a(�; x)d�^ dxi1 ^ : : :^ dxik�1) = (Z 10 a(�; x)d�)dxi1 ^ : : :^ dxik�1 : (26)The operator K satis�es (Flanders, Section 3.6)K(d!) + d(K!) = j�1! � j�0!; (27)where j�� : 
k(I �M) 7! 
k(M) is the pullback induced by j�. Note that the above resultdoesn't require M to be contractible. Now, by de�nition, M is contractible i� there isa smooth mapping � : I �M 7! M such that �(1; x) = x; �(0; x) = x0, where x0 is adistingushed point in M. Such a mapping � is called a homotopy or contraction (of Mto x0). The point x0 is called the homotopy center. Since we have (� � j1)(x) = x and(� � j0)(x) = x0 8x 2 M, the pullback �� : 
k(M) 7! 
k(I �M) induced by the mapping� satis�es j�1(��!) = !; j�0(��!) = 0: (28)Therefore, (27), (28), and the fact that the exterior derivative commutes with a pullbacktogether imply K��(d!) + d(K��!) = !: (29)Thus, the operator H := K � �� satis�es (24) so that it is a homotopy operator.Note that di�erent choices of homotopy centers x0 and homotopies � yield di�erenthomotopy operators. The one we will use is probably the simplest one: it will act on one-forms by integrating them along straight lines (in coordinates xi) from a distingushed pointx0 in M (usually the origin). Such a homotopy operator will be called radial (see, e.g.,Edelen, Section 5.3 and Flanders, Section 3.7). If M is star-shaped in coordinates xi withrespect to x0 (i.e., M can be contracted to x0 by straight lines lying entirely in M), asimple choice for a homotopy � is �(�; x) = x0+�(x� x0). Let ! =Pi1:::ik !i1:::ik(x)dxi1 ^dxi2 ^ : : :^ dxik . Now, one can explicitly calculate the pullback ��:��! = Pi1:::ik !i1:::ik(x0 + �(x� x0))d(x0i1 + �(xi1 � x0i1))^d(x0i2 + �(xi2 � x0i2))^ : : :^ d(x0ik + �(xik � x0ik))= Pi1:::ik !i1:::ik(x0 + �(x� x0))((xi1 � x0i1)d�+ �dxi1)^((xi2 � x0i2)d�+ �dxi2) ^ : : :^ ((xik � x0ik)d�+ �dxik); (30)11



and we can express the action of the radial homotopy operator as(H!)(x) = Pi1:::ik (Pij((�1)j+1(xij � x0ij )R 10 �k�1!i1:::ik (x0 + �(x� x0))d�))dxi1 ^ : : :^ ddxij : : :^ dxik (31)where the symbol b over dxij indicates that it is omitted.Once again consider the system of Example 3 Choose !0 = (1+ h03(x3))dx1� h01(x3)dx2and � = 1. Then, for x0 = 0, we see that� = Z 10 (x1(1 + h03(�x3))� x2h01(�x3))d� = x1 � x2h1(x3)x3 + x1h3(x3)x3and the error one-form � is given by� = �(h3(x3)� x3h03(x3))=x23dx1 + (h1(x3)� x3h01(x3))=x23dx2+ (x2h1(x3)� x1h3(x3)� x2x3h01(x3) + x1x3h03(x3))=x23dx3(Alternatively, once � is known, one can use the formula � = �!0�d� instead of � = Hd�!0to obtain the error one-form �.)Let j � j denote the pointwise norm of a form induced by the standard metric in xicoordinates. We have shown in the previous section that the best approximate integratingfactor for the above system in the sense of minimizing j(d�!0)(x)jj(�!0)(x)j pointwise everywhere is�0 = j!0j�1 = (h01(x3)2+(1+h03(x3))2)�1=2. Contrary to the case � = 1 it is now impossibleto evaluate H�0!0 and Hd�0!0 explicitly. The integration must be performed case by casefor speci�c functions h1(�) and h3(�). We don't expect to be always able to perform theintegration symbolically, for the result might not be an elementary function.The homotopy operator we will use in the sequel uses the origin in coordinates xi as thehomotopy center. One can obtain other homotopy operators choosing di�erent homotopycenters x0. Moreover, one doesn't have to integrate over straight lines from the center. Notethat the notion of a straight line is associated with speci�c choice of coordinates. Hence,if we change coordinates, we immediately obtain a homotopy operator, namely the radialhomotopy operator in the new coordinates. Moreover, an arithmetic mean of homotopyoperators is again a homotopy operator. For exactly linearizable systems, once we havefound an exact integrating factor for a characteristic one-form !, any homotopy operatorwill give the same exact part and zero antiexact part. However, for nonlinearizable systemsthe choice of a homotopy operator will make a di�erence. Apparently, the choice of aparticular homotopy operator will in
uence the exact and antiexact parts of a characteristicone-form !. It is not clear to us yet, what should be the best choice for approximate feedbacklinearization. This issue is currently under investigation. One may expect that the optimalhomotopy operator might be rather complicated. Hence, even though there is no reason tobelieve that the radial homotopy operator in the original coordinates will be the best one(i.e., yielding the smallest antiexact part of !), there is a good chance that it will be thesimplest one to apply. Moreover, any homotopy operator with the center at the origin thatsatis�es �(�; 0) � 0 (in particular the radial one) will always yield �(0) = 0. Since � is asmooth one-form vanishing at the origin, it will be small in a neighborhood of the origin.12



The following result shows some that there are some limitations to what can be achievedin approximating non-exact characteristic forms by exact ones.Theorem 4.1 Let H be any homotopy operator on M and ! be any characteristic one-form for the system (1). Let �H := H! and �H := Hd!. Then for any closed curve c inM we have Zc Lif �H = Zc Lif!for i = 0; 1; : : : :.Proof: Note that Lif! = Lif (d�H + �H ) = dLif�H +Lif �H . Now, the proof follows from thefact that the integral of an exact form over any closed curve is zero. 2The above result is a law of preservation of hassle. No matter how one chooses ahomotopy operator H , the average value of (\a component along c" of) �H := Hd! on anyclosed curve c is constant. Di�erent homotopy operators may only distribute � along c ina di�erent way. A similar result holds true for any Lie derivative (of any order) of � alongany vector �eld.This result can be used to obtain lower bounds for the uniform norm of the error one-form �H and its Lie derivatives along f on M, independent of the choice of homotopy.Let us conclude the section by an example of a homotopy operator that is optimal insome precise sense. Let ! be a one-form. The so-called Hodge decomposition of ! is adecomposition of the form ! = d�+ �, where d� is the best L2 approximation of ! amongexact one-forms (cf. Abraham et al., Section 7.5, Banaszuk et al., 1992, 1994b,c). Let �denote the formal adjoint operator to the exterior derivative d and � := �d+d� denote theLaplace - De Rham operator (Abraham et al., Section 7.5). One can show that �� = �!and �� = �d!. These equations (together with some boundary conditions) allow to �nd� and � appearing in the Hodge decomposition of !. Therefore, the operator H� = ��1�(formally) satis�es ! = d(H�!) + H�d!, so that it is a homotopy operator. Note thatone has to solve a boundary value problem to obtain the zero-form � such that d� bestapproximates ! in L2. This should be contrasted with the radial homotopy operator, whichrequires only simple integration with respect to a parameter. For instance, if the system(1) has polynomial nonlinearities in the original coordinates, the characteristic one-form !0given by (9) will also have polynomial coe�cients and thus the integration in (31) can beeasily performed, yielding polynomial expressions for � and �. The situation is usually muchmore di�cult after applying an optimal approximate integrating factor �0. The optimalcharacteristic one-form �0! will rarely be polynomial, and the result of integration in (31)might not be expressed in terms of elementary functions. This is one reason why we mightnot always be able to apply the optimal approximate integrating factor in practice, even ifwe �nd one. 13



5 Change of coordinatesIn this section we prove that a change of coordinates based on the exact part of any char-acteristic one-form ! obtained with a homotopy operator H having center at the originde�nes a local di�eomorphism that takes the system (1) to a normal form that looks likea linearizable part perturbed by some nonlinear terms, that depend linearly on the errorone-form � := Hd!. This approach can be applied to both linearizable and nonlinearizablesystems.For exactly linearizable systems (1), we proceed as follows. First, we construct a char-acteristic one-form !0. Then we choose an exact integrating factor � and obtain a newcharacteristic form ! := �!0 such that d! = 0. We apply a homotopy operator H to getthe zero form � := H!. Then we use change of variablesz1 = �;z2 = Lf�;...zn = Ln�1f �: (32)The system (8) in new coordinates is _z1 = z2_z2 = z3..._zn�1 = zn_zn = p+ ru (33)where r = LgLn�1f �; p = Lnf�;and the feedback u = r�1(unew � p) makes it linear.For a nonlinearizable system we proceed as follows. First, we construct a characteristicone-form !0. Then we choose an integrating factor �, either optimal or not, and obtain anew characteristic one-form ! := �!0. We apply a homotopy operator H to get the zeroform � := H! and the corresponding error one-form � := Hd!. Then we use change ofvariables (32) (as for exactly linearizable systems) to get a normal form_z1 = z2 + e1u_z2 = z3 + e2u..._zn�1 = zn + en�1u_zn = p+ ru+ enu (34)14



where e1 = Lg�;e2 = LgLf�;...en = LgLn�1f �� (�1)n�1!(adn�1f g);r = (�1)n�1!(adn�1f g);p = Lnf�: (35)In the sequel we will need the following result.Lemma 5.1 Let ! be any characteristic one-form for the system (1). Let i; j be nonnegativeintegers. Then1. (Lif!)(adjfg) = 0, for i+ j < n� 1,2. (Lif!)(adn�1�if g) = (�1)i!(adn�1f g), for i = 0; 1; : : : ; n� 1.Proof: (1) One can proof by induction the formula:(LiX�)(Y ) = l=iXl=0(�1)l il!Li�lX (�(adlXY )): (36)In particular, (Lif!)(adjfg) = Pl=il=0(�1)l�il�Li�lX (!(adlf(adjfg)))= Pl=il=0(�1)l�il�Li�lX (!(adl+jf g)): (37)Notice that !(adl+jf g) = 0 for l = 0; : : : ; i if i+ j � n� 1.(2) Apply the formula (37) for j = n�1� i and notice that all the terms !(adl+n�1�jf g)vanish except when l = i. 2To establish continuity relationships between noninvolutivity and nonlinearizability weexpress the nonlinear perturbation terms ei in terms of the error one-form �.Proposition 5.1 Let ! be a characteristic form for (1), H be a homotopy operator on M,� := H!, and � := Hd!. Let ei; i = 1; : : : ; n; and p be given by (35). Thene1 = ��(g);e2 = �(Lf �)(g);...en�1 = �(Ln�2f �)(g);en = �(Ln�1f �)(g): (38)Proof: It is a straightforward calculation using Lemma 5.1. 215



Note that the above choice for en and r is not the only possible. Actually, any choicethat guarantees r + en = LgLn�1f � with en(0) = 0 could be considered, for instance en = 0and r = LgLn�1f �. Our choice is dictated by the fact that it guarantees r 6= 0 on the wholeM and en = �(Ln�1f �)(g).One can also express the function p := Lnf� using the error one-form � as p = (Ln�1f !)(f)�(Ln�1f �)(f).A natural question to ask is whether the zero-form � together with its n� 1 Lie deriva-tives along f is a well de�ned change of coordinates. The main result of this section saysthat in a neighborhood of the origin, (32) indeed de�nes a local di�eomorphism. Before weprove it, we need some preliminary results.Lemma 5.2 Let � be any smooth one-form and X; Y be any smooth vector �elds on M.Then1. (LX�)(Y ) = LX(�(Y ))� �([X; Y ]),2. If �(0) = 0 and X(0) = 0, then (LiX�)(Y )(0) = 0, for i = 0; 1; 2; : : :.Proof: (1) See Hicks, Section 7.3.(2) For i = 0 the formula is true as (L0X�)(Y )(0) = �(Y )(0) = 0. Assume thatthe formula is true for i = 0; : : : ; m. Using the statement (1) one easily shows that(Lm+1X �)(Y )(0) = d((LmX�)(Y ))(X)(0)� (LmX�)([X; Y ])(0). The �rst part of this expres-sion is zero because X(0) = 0, the second by assumption. By induction, the formula holdsfor all nonnegative i. 2Proposition 5.2 Assume that dim span fg; adfg; : : : ; adn�1f gg = n, 8x in a neighborhoodof 0 in M (linear controllability). Let ! be any characteristic one-form for the system (1).Then the one-forms !, Lf!, : : : , Ln�1f ! are linearly independent in a neighborhood of theorigin.Proof: It is su�cient to show that (Ln�1f ! ^ Ln�2f ! ^ : : : ^ !)(0) 6= 0. Since this form issmooth, it is enough to check that (Ln�1f ! ^ Ln�2f ! ^ : : :^ !)(g; adfg; : : : ; adn�1f g)(0) 6= 0.For this, note that (Ln�1f ! ^ Ln�2f ! ^ : : : ^ !)(g; adfg; : : : ; adn�1f ) = detS, where S isan n � n matrix whose (i; j) entry is (Li�1f !)(adj�1f g). Now, by Lemma 5.1, S is anupper triangular matrix, whose i-th diagonal element is (�1)n�i!(adn�1f g). Therefore,detS = (�1)n(!(adn�1f g))n 6= 0. 2Now we are ready to prove the main result of this section.Theorem 5.1 Assume that dim span fg; adfg; : : : ; adn�1f gg = n, 8x in a neighborhood of0 in M (linear controllability). Let H be any homotopy operator on M with the center atthe origin such that �(�; 0)� 0 and let ! be any characteristic one-form for the system (1).Set � := H!. Then (32) de�nes a local di�eomorphism in a neighborhood of the origin.16



Proof: We will show that the di�erentials of the zero-forms �, Lf�,: : : , Ln�1f � are linearlyindependent at the origin (and thus, in a neighborhood of the origin). Let � := Hd!.Since ! = d�+ � and the Lie and exterior derivatives commute, we have dLif� = Lifd� =Lif (!��) = Lif!�Lif �. Hence, dLif�(0) = Lif!(0)�Lif�(0). Note that �(0) := (Hd!)(0) = 0,as H is a homotopy operator with the center at 0 such that �(�; 0)� 0. Now, it follows fromLemma 5.2(2) that �, Lf�, : : : , Ln�1f � all vanish at the origin and hence dLif�(0) = Lif!(0).Now the result follows from Proposition 5.2. 2We usually cannot guarantee a priori that the change of coordinates (32) will be validin the whole M. Some conditions for a map to be a global di�eomorphism are quoted inHunt et al.and Zampieri. Below, we show an example of a system that admits a globaltransformation in R3 to the normal form (6).Example 5.0 Consider the system_x1 = x2 + h1(x3)_x2 = x3_x3 = u (39)where h1(�) is any smooth function with h01(0) = 0. We have !0 = dx1 � h01(x3)dx2,� = H�!0 = x1 � x2h1(x3)x3 , � = (h1(x3)�x3h01(x3)x23 )(x3dx2 � x2dx3). Lf� = L2f � = 0. Thesystem can be transformed by a global di�eomorphismz1 = � = x1 � x2h1(x3)x3 ;z2 = Lf� = x2;z3 = L2f� = x3 (40)to the form _z1 = z2 + z2(h1(z3)�z3h01(z3))z23 u_z2 = z3_z3 = u: (41)The inverse transformation given byx1 = z1 + z2h1(z3)z3 ;x2 = z2;x3 = z3: (42)2In the case when the change of coordinates is not valid on the whole regionM, we haveto restrict to a region on which the change of coordinates is valid. In the sequel we assumethat this has been done and the restricted region is also called M.17



6 Estimates of the nonlinear partIn this section we estimate the nonlinear perturbation terms e1; : : : ; en using the error one-form �. First, let us rewrite the equations (34) (in the usual matrix-vector notation) as_z = Az + Bru+ Bp+ Eu (43)where A, B are in the Brunovsky form, that is,A = 2666666664 0 1 0 � � � 0... . . . . . . . . . ...... . . . 1 0... 0 10 � � � � � � � � � 0 3777777775 ; B = 266666664 0......01 377777775 ;and E = (e1; e2; : : : ; en)T (e0is, r, and p are de�ned by (35)). We see that r 6= 0 on M(under the assumption that linear controllability holds on M) and E depends linearly on� and vanishes, whenever � does. We will choose u = r�1(unew � p), where unew is a newcontrol variable. After this change of coordinates and control variable the system is of theform (6) with Q := r�1E; P := �r�1pE. In this section we obtain estimates on the uniformnorm of Q and P (via estimates on r, p, and E) in terms of the error one form �� for any�xed �, on any compact, contractible region M.Let h be a smooth vector �eld onM and l be a nonnegative integer. Let � be a k-formon M. We de�ne C0 norm k�k0 of � as k�k0 := sup j�(x)j, for x 2 M (uniform norm onM), and Clh norm k�klh as k�klh := sup(j�(x)j2+ jLh�(x)j2+ : : :+ jLlh�(x)j2)1=2, for x 2 M(uniform norm on M, together with the �rst l Lie derivatives along h). It is immediatelyseen from Proposition 5.1 that whenever the one-forms �, Lf �, : : : , Ln�1f � are small on M,so is the term E on M.Theorem 6.1 Let ! be any characteristic one-form for the system (1) and let � be theerror one-form corresponding to a given homotopy operator. Then the mapping � 7! E is acontinuous mapping from the space of smooth one forms equipped with the Cn�1f norm onM into the space of smooth vector �elds on M equipped with the C0 norm (uniform normon M). In particular, kEk0 � k�kn�1f kgk0:Proof: Immediate in view of Proposition 5.1. 2Note that in the above result we could substitute for �, Lf �, : : : , Ln�1f � their evaluationsat (contractions by) the vector �eld g. Let h; v be smooth vector �elds on M and l be anonnegative integer. Let us de�ne Clh;v seminorm k�klh;v of a one-form � onM as k�klh;v :=sup(j�(v)(x)j2 + jLh�(v)(x)j2 + : : :+ jLlh�(v)(x)j2)1=2, over x 2 M. Note that Clh;v is notquite a norm, for it may happen that k�klh;v = 0 even though � 6= 0 (example: k!0k0f;g for !018



being a characteristic one-form for (1)). However, it happens that for the one-forms onM,the Cn�1f;g seminorm becomes a norm if the vector �elds f; g satisfy the linear controllabilitycondition of Theorem 1.1. This follows from the following result.Proposition 6.1 Let � be a one-form on M, and the vector �elds f; g satisfy the linearcontrollability condition of Theorem 1.1. Then � = 0 if and only if k�kn�1f;g = 0.Proof: ()) Obvious.(() Note that Lif�(g) = Lf (Li�1f �(g)) � Li�1f �(adfg). We have Lif�(g) = 0 for i =0; 1; : : : ; n � 1. In particular, �(g) = 0. Thus, using Lemma 5.2(1), we get 0 = (Lf�)(g) =Lf (�(g))� �(adfg) = ��(adfg). Continuing in the same fashion, we obtain �(adifg) = 0,for i = 0; 1; : : : ; n � 1. By the linear controllability assumption, the vector �elds adifgfor i = 0; 1; : : : ; n � 1 are linearly independent. The one-form � annihilates n linearlyindependent �elds on an n-dimensional manifold. Thus � = 0. 2The above result, when applied to the error one-form � yields an obvious fact that the� = 0 is equivalent with (32) being the linearizing change of coordinates for (1). The fact thatwe wanted to emphasize here is that, because of (38), the nonlinear perturbation terms eican be used to de�ne a norm for the error one-form �, thus making the relationship betweena measure of noninvolutivity of the characteristic distribution D and a direct measure ofnonlinearity of the system (1) in new coordinates explicit. Namely, we haveProposition 6.2 kEk0 = k�kn�1f;g .We conclude this section with establishing some upper bounds on the uniform normskPk0 and kQk0 of the nonlinear terms Q := r�1E, P := �r�1pE in the system (6) afterchange of coordinates and preliminary feedback.Proposition 6.3 Let ! be any characteristic form for the system (1), � := H!, � := Hd!.Let � := inf j!(adn�1f g)(x)j over x 2 M and % := sup jLnf�(x)j over x 2 M. Then1. kPk0 � %k�kn�1f;g� : (44)2. kQk0 � k�kn�1f;g� : (45)Proof: Immediate, in view of Proposition 6.2 and (35). 219



7 Application to stabilizationIn this section we will use the results of the previous section to study various locally sta-bilizing feedback laws for the system (1). The laws that we have in mind will be linearin new coordinates (32), with the gains chosen so that the linear part of the system (6) isasymptotically stable. We will then study robustness of such control laws when applied tothe system (6). We will accomplish that studying Lyapunov functions that are quadratic innew coordinates. We shall examine how the nonlinear part of (6) a�ects the time derivativeof the Lyapunov function. The continuity result of Theorem 6.1 will allow us to formulatesome robustness criteria for stabilization.The idea behind transforming a linearizable system (1) to an equivalent form (2) is todesign control schemes for (2), which is much easier to analyze and control, and apply themto (1). For example, if � happens to be a global di�eomorphism from Rn into Rn, onecan globally asymptotically stabilize the system (1). For this, one can choose new controlvariable unew = Kz (linear feedback in new variables) so that the closed-loop system_z = (A+ BK)z; (46)is globally asymptotically stable (controllability of (2) is equivalent to possibility of arbitraryassignment of the eigenvalues of (A + BK) by an appropriate choice of the feedback gainK). Then u = k(x) + l(x)unew = k(x) + l(x)K�(x) makes the closed-loop system_x = f(x) + g(x)(k(x) + l(x)K�(x)) (47)globally asymptotically stable, since ��1 is a di�eomorphism preserving the equilibriumpoint at the origin.For nonlinearizable systems the best we can hope for using our approach is to transform(1) to (6) with P and Q small. Then we will try to use the new form (6) to design a locallystabilizing feedback|in this case we expect to improve the basin of attraction of the origin ofthe closed loop system. We will choose unew = Kz (a feedback law linear in new variables) sothat the mapping A+BK is stable (has all eigenvalues with negative real parts) and analyzeits robustness as a stabilizing law for (6)|bounds on uniform norms forQ and P should helpus to do so. Let us stress that we will actually use new coordinates z and new control unewonly as intermediate tools, the control law u = r�1(unew�p) = r�1(Kz�p) will be expressedin the old coordinates x as u = k1(x) (where k1(x) := r(�(x))�1(K�(x)� p(�(x)))) andapplied to (1). Since ��1 is a di�eomorphism preserving the equilibrium point at the origin,it maps the basin of attraction of the equilibrium for_z = (A+ BK)z + P (z) +Q(z)Kz (48)to the basin of attraction of the equilibrium for_x = f(x) + g(x)k1(x) (49)Observe that, to express the feedback laws computed in new coordinates z in the originalcoordinates x, we don't even need to �nd the form (6) explicitly. It would be actually20



very di�cult, if not impossible, to do so in general, for we would have to know the inversetransformation x = ��1(z) in order to obtain the form (6).Of course, we might not always be able to �nd the best integrating factor �0 for !0annihilating D := span fg; adfg; : : : ; adn�2f gg to begin with. Still, for any scaling factor� we can choose the corresponding zero-form �� and its Lie derivatives along f as newcoordinates. We can also �nd the corresponding error one-form �� and verify the boundson the corresponding terms Q and P in (6), and decide if they are su�ciently small for ourpurpose.Theorem 7.1 Assume that z = �(x) be a (global) di�eomorphism of M onto its imagegiven by (32). Let unew = Kz be any linear feedback in new variables so that the linear part_z = (A+ BK)z; (50)of the system (6) obtained from (1) after change of coordinates and preliminary feedback isasymptotically stable. Let N be a positive de�nite n by n matrix and let M be the uniquepositive semide�nite solution of the Lyapunov equation(A+ BK)TM +M(A+BK) +N = 0: (51)Let E(z) := P (z) +Q(z)Kz (52)and 
r = f0g [ fz 2 �(M) : hz;Mzi < r and hz;Nzi � 2hz;ME(z)i > 0g. De�nermax := supfr � 0 : 
r � �(M)g. Then ��1(
rmax) is an invariant set contained in thebasin of attraction of the origin of the system_x = f(x) + g(x)k1(x); (53)where k1(x) := r(�(x))�1(K�(x)� p(�(x))) (p and q are de�ned by (35)).Proof: The linearizable part of the system in new coordinates z can be made asymptoticallystable by feedback unew = Kz linear in new coordinates. One can de�ne a quadraticLyapunov function V (z) := hz;Mzi with a negative time derivative @V@z (z) = �hz;Nzisolving the Lyapunov equation (51). The sets 
r are invariant sets for the closed looplinear part (50). Now, the time derivative of Lyapunov function for the true system in newcoordinates is @V@z (z) = �(hz;Nzi � 2hz;ME(z)i). If this is negative, the sets ��1(
rmax)are invariant sets for the closed-loop system (53). 2The above result simply states a su�cient condition for a region ofM to be an invariantset contained in the basin of attraction of the origin of the system _x = f(x) + g(x)k1(x),and is well known. What is nice about the above result is that we can actually estimate theset ��1(
rmax) in our approach. Namely, since we have estimates on the uniform normskP (z)k and kQ(z)k of the nonlinear terms in the system (6), we obtain an upper boundon the uniform norm E(z) = P (z) + Q(z)Kz. Thus, we can check if the time derivative21



�(hz;Nzi) + 2hz;ME(z)i) of the Lyapunov function is negative on the region of interest.Moreover, since we expect P (z) and Q(z) to be small, so will be E(z). Since the �rst termin �(hz;Nzi)+2hz;ME(z)i) is negative and the second term is small, the whole expressionis negative in some neighborhood of the origin.Let us de�ne yet another measure of nonlinearity in new coordinates that is particularlysuited for studying stabilization:�afl(z) := 2hz;ME(z)ihz;Nzi ; for z 6= 0; �afl(0) := 0: (54)Now we can replace the condition2hz;ME(z)i< hz;Nzi; for z 6= 0 (55)with �afl(z) < 1: (56)Note that the quantity �afl actually depends on the choice of characteristic one form, theparticular homotopy operator, the stabilizing feedback gain matrix K, and the matrix N .Observe that j�afl(z)j < 1 means that the linear term dominates the nonlinear one in thetime derivative @V@z (z) = �(hz;Nzi) + 2hz;ME(z)i) of the Lyapunov function V (z) :=hz;Mzi at the particular point z, guaranteeing its negative sign. On the other hand 0 <�afl(z) means that the nonlinearities contribute to making @V@z (z) more positive, and thushave a destibilizing e�ect, while �afl(z) < 0 means that the nonlinearities try to make@V@z (z) more negative, and hence help to stabilize the system. Therefore, the followingterminology is justi�ed: we will say that the nonlinearities are weak (respectively, strong)at z if j�afl(z)j < 1 (respectively, j�afl(z)j > 1) and friendly (respectively, unfriendly) if�afl(z) < 0 (respectively, 0 < �afl(z)).Let us express this condition in terms of system (6) and (8). We have E(z) = P (z) +Q(z)Kz = (Kz�p(z))(r�1(z)E(z)). Thus 2hz;ME(z)i= 2hz;M(Kz�p(z))(r�1(z)E(z))i,and (56) is equivalent with2hz;M(Kz � p(z))(r�1(z)E(z))ihz;Nzi < 1; for z 6= 0: (57)Using bounds on kP (z)k and kQ(z)k obtained in the previous section, one can formulatethe following inequality that implies the previous ones2(%+ jKjjzj)k�kn�1f;g� < inf �(N)sup �(M) jzj; for z 6= 0 (58)where �(�) denotes a spectrum of a matrix.It is possible to combine the problems of designing a stabilizing feedback for the linearpart of of the system (6) obtained from (1) after change of coordinates and preliminary22



feedback and construction of a Lyapunov function in a linear quadratic optimal controldesign: �nd unew minimizingZ 10 (hz(t); Nz(t)i+ hunew(t); Runew(t)i)dt;for strictly positive de�nite R and a positive de�nite N . (To make life easier, we will assumethat N is also strictly positive de�nite). It is well-known that the optimal control unew hasthe form of linear feedback unew = Kz for K = �R�1BTM , where M is the unique positivede�nite solution of the Riccatti equationATM +MA�MBR�1BTM +N = 0: (59)Example 7.0 Consider the system_x1 = x2 + ax33 + bx31_x2 = x3 + cx21x2_x3 = u: (60)2Note this is a particular case of the system considered in Example 3. We have !0 =dx1 � 3ax23dx2, and d!0 = 6ax3dx2 ^ dx3. For scaling factor � = 1 we get � := H! = x1 �ax2x23; � := Hd! = (2ax3)(x2dx3�x3dx2). New coordinates z = �(x) are given by z1 := � =x1�ax2x23; z2 := Lf� = x2+ bx31�acx21x2x23; z3 := L2f� = x3+3b2x15+3bx12x2+ cx12x2�2abcx14x2x32�ac2x14x2x32�2acx1x22x32+3abx12x33�acx12x33�2a2cx1x2x35. Note that�(x) is only a local di�eomorphism around the origin and it is impossible to �nd an inversetransformation. Thus, in the sequel we express the nonlinear terms E(z), r(z), and p(z) inold coordinates: E(�(x)) = [�2ax2x3;�2acx12x2x3;�2acx1x2x3 �2bx13 + cx13 + 2x2 � 4ax33�]T ,r(�(x)) := 1 + 9abx12x32 � 3acx12x32 � 18a2cx1x2x34p(�(x)) := 15b3x17 + 21b2x14x2 + 5bcx14x2 + c2x14x2 + 6bx1x22+2cx1x22 + 3bx12x3 + cx12x3 � 8ab2cx16x2x32 � 6abc2x16x2x32�ac3x16x2x32 � 10abcx13x22x32 � 8ac2x13x22x32 � 2acx23x32+21ab2x14x33 � 4abcx14x33 � ac2x14x33 + 12abx1x2x33�4acx1x2x33 � 10a2bcx13x2x35 � 6a2c2x13x2x35 � 4a2cx22x35+6a2bx1x36 � 4a2cx1x36 � 2a3cx2x38(all computationd were done using Mathematica). To design a locally stabilizing feedback,we have solved the LQ regulator problem for the linear part of the system as mentionedabove for N being the 3 by 3 identity matrix and R = 1. The optimal feedback gainmatrix wasK = [�1;�2:41421;�2:41421], and eigenvalues of A+BK were �1;�0:707107+i0:707107;�0:707107� i0:707107. The feedback law applied to the original system (1) wasuafl := r(�(x))�1(K�(x) � p(�(x))). We choose the values of parameters a = 0:01; b =1; c = 5 and M := fjxij < 0:36; i= 1; 2; 3g. We checked the condition (57) was satis�ed on23



M, with sup �afl(�(x)) � 0:45. Thus, by Theorem 7.1, the corresponding set ��1(
rmax)(de�ned in the formulation of Theorem 7.1) is in the basin of attraction of the origin. Aswe have checked, the whole M was in the basin of attraction of the origin. The basinof attraction was actually much larger than M, even though the condition (57) was notsatis�ed (note that Theorem 7.1 gives only an underestimate of the actual stability region).For comparison, we considered the control based on Jacobian linearization ujac := Kx, forthe same gain matrix K. Note that x and z coordinates agree up to 1-st order, and thatboth control schemes uafl and ujac yield the same linear part of the closed loop system witheigenvalues �1;�0:707107 + i0:707107;�0:707107� i0:707107. We checked that for ujaccondition (57) failed to hold on M, with sup �jac(x) � 5:6 (11 times more than for uafl),where �jac(x) := 2hx;M(Kx)(Ejac(x))ihx;Nxi ; Ejac := [ax33+ bx31; cx21x2; 0]T . Not whole M was in theregion of stability for ujac, and the region of stability for ujac was strictly contained in thethe region of stability for uafl. We present (in �gures 1 through 3) typical plots of the statevariables as functions of time (the darker lines represents the time responses for uafl, thelighter lines for ujac). Comparing those responses of our system for both control schemes, wesee that uafl o�ered faster convergence to the origin and less oscillatory responses than ujac.We also plot (in �gures 4 and 5) the terms �afl(�(x)) and �jac(x) along trajectories, becausethey in some sense measure nonlinearity of the corresponding closed loop systems. Observethat the strong and unfriendly nonlinearities prevail in the closed-loop system with ujaccontrol when compared to weak nonlinearities in the closed-loop system with uafl control.
2 4 6 8 10

-0.2

0.2

0.4Figure 1: x1(t) for x1(0) = 0; x2(0) = 0:3; x3(0) = 0:3.
2 4 6 8 10

-0.6

-0.4

-0.2

0.2Figure 2: x2(t) for x1(0) = 0; x2(0) = 0:3; x3(0) = 0:3.24



2 4 6 8 10

-0.4

-0.2

0.2

0.4Figure 3: x3(t) for x1(0) = 0; x2(0) = 0:3; x3(0) = 0:3.
2 4 6 8 10

0.5

1

1.5

2

2.5Figure 4: �jac for x1(0) = 0; x2(0) = 0:3; x3(0) = 0:3.
2 4 6 8 10

-0.02

-0.01

0.01

0.02
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