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SUMMARY 

The United States has more than 2.6 million miles of paved roads and highways 

(FHWA 2013), and 93% of this infrastructure is surfaced with asphalt. Maintenance of 

paved roads and highways, in addition to new projects, requires a significant amount of 

asphalt. Each year, more than 500 million tons of asphalt mixture are produced in the 

United States (NAPA 2015), and the demand is forecasted to increase 3.3% annually 

(Freedonia 2015). However, significant volatility and unprecedented uncertainty in the 

price of asphalt cement is a serious challenge for both contractors and state departments of 

transportation (DOTs) with regard to proper cost estimation and budgeting of 

transportation projects (Damnjanovic et al. 2009). Previous studies indicate that owner 

organizations often overpay for projects under fixed-price contracts that transfer the 

material price risk to contractors due to increased risk premiums and hidden contingencies 

in contractors’ submitted bid prices. A common method widely used by state DOTs to 

handle the issue of extra risk premiums in submitted bid prices and to avoid overpayment 

to contractors is to offer price adjustment clauses (PACs) in contracts. A PAC is a risk-

sharing contractual mechanism that guarantees an adjustment in payment to contractors 

based on the size and direction of the material price change. 

Although volatility and uncertainty in the price of asphalt cement is a serious 

challenge for both contractors and state DOTs, there is little knowledge about how asphalt 

cement prices fluctuate over time. The ability to forecast asphalt cement price can result in 

more accurate cost estimations and budgeting. The first research objective of this thesis is 

to develop appropriate univariate time series models to forecast the price of asphalt cement. 
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In chapter 3, after identifying the characteristics of historical records of asphalt cement 

price index, four univariate time series forecasting models, Holt Exponential Smoothing, 

Holt-Winters Exponential Smoothing, Autoregressive Integrated Moving Average 

(ARIMA), and seasonal ARIMA, are created to forecast future values of asphalt cement 

price. The results indicate the future price of asphalt cement can be predicted with less than 

2% error. 

Second, there is little knowledge about measuring, analyzing, and forecasting 

asphalt cement price volatility. This gap in knowledge makes it difficult to develop material 

price risk management strategies properly. The second research objective of this thesis 

therefore is to measure, model, and forecast asphalt cement price volatility. In chapter 4, 

Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) time series models are created to model the 

conditional volatility of asphalt cement price over time. The results indicate that 

uncertainty in the price of asphalt cement can be modeled and forecasted with less than 3% 

error. 

Although PAC is a very common risk management strategy to address the 

consequences of material price uncertainty, it is not clear how offering PACs in 

transportation contracts affects the submitted bid prices for major asphalt line items. The 

third research objective of this thesis is to examine the effect that offering of PACs has on 

variation in contractors’ submitted bid prices for major asphalt line items in transportation 

projects via multivariate regression models. In chapter 5, multivariate regression models 

that have the power to explain variations in the submitted bid prices for major asphalt line 

items are used to empirically assess the impact of PACs on bid prices. No evidence was 
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found to support the hypothesis that offering PACs would reduce submitted bid prices for 

major asphalt line items. 

Finally, there is little knowledge about the effects of PACs on the level of 

competition among bidders. The fourth research objective of this dissertation is to 

empirically analyze the effects that offering PACs has on the competition among bidders 

for transportation projects. The level of competition is quantified based on the number of 

bidders and the dispersion of the submitted bid prices. In chapter 6, a system monitoring 

process is conducted to empirically examine the impact of the offering of PACs on number 

of bidders and the dispersion of submitted bid prices. The results show that there is no 

empirical evidence to indicate that offering PACs would increase the number of bidders or 

decrease the dispersion of the submitted bid prices for asphalt line items. 

The primary contributions of this study to the existing body of knowledge are as 

follows: (1) creation of univariate time series forecasting models for asphalt cement price 

indexes, (2) creation of ARCH/GARCH models to measure and forecast the volatility of 

asphalt cement price index, (3) creation of multivariate regression models to explain 

variation in highway contractors’ submitted bid prices for major asphalt line items, (4) 

empirical assessment of whether offering PACs contributes to variation in contractors’ 

submitted bid prices for major asphalt line items in highway projects, and (5) empirical 

assessment of whether offering PACs affects the number of bidders and the dispersion of 

bid prices. 

The primary contributions of this study to the state of practice are as follows: (1) 

helping contractors and state DOTs prepare more accurate cost estimates, bids, and budgets 

for highway construction projects; (2) helping contractors and state DOTs to analyze the 
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uncertainty in the price of asphalt cement and to develop proper risk management 

strategies; (3) enhancing the understanding that capital planners of transportation agencies 

have of important variables affecting submitted bid prices in transportation projects and 

the effects that offering PACs has on bid prices; (4) helping contractors price PACs, 

develop their risk profiles, and determine their bid price; and (5) helping state DOTs assess 

the received bids more accurately. 
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CHAPTER 1: INTRODUCTION 

The United States has more than 2.6 million miles of paved roads and highways 

(FHWA 2013), and 93% of this infrastructure is surfaced with asphalt. Maintenance of 

paved roads and highways, in addition to new projects, requires a significant amount of 

asphalt. Each year, more than 500 million tons of asphalt mixture is produced in the United 

States (NAPA 2015), and the demand is forecasted to increase 3.3% annually (Freedonia 

2015). 

1.1. Uncertainty in Price of Asphalt Cement 

Significant volatility and unprecedented uncertainty in the price of asphalt cement 

is a serious challenge for both contractors and state departments of transportation (DOTs) 

with regard to proper cost estimation and budgeting of transportation projects 

(Damnjanovic et al. 2009). The volatility in the price of asphalt cement may lead to 

uncertainty about project cost. Cost uncertainty in turn may increase risk for contractors in 

fixed-price contracts and, consequently, may lead to price speculation and inflated bid 

prices being submitted by contractors to secure their profits against possible price increases 

(Damnjanovic et al. 2009). Therefore, owner organizations may face price speculation, 

inflated bids, very short-term price guarantees, and too few bidders for a project. 

Contractors may lose bids due to cost overestimation or lose profits due to cost 

underestimation (Ashuri and Lu 2010). 
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The price of crude oil and its byproducts, such as asphalt cement, have been more 

volatile than the price of many other commodities since the 1973 oil crisis (Fleming and 

Ostdiek 1999; Verleger 1994). This problem has worsened in the last decade. From 2003 

through 2005, asphalt cement prices increased roughly 4% per year, but between August 

2005 and August 2006, asphalt cement prices spiked by 38% (Gallagher and Riggs 2006). 

Figure 1-1 shows the considerable fluctuations in the average price of asphalt cement in 

the state of Georgia from September 1995 to July 2015. 

 

 

Figure 1-1: Average price of asphalt cement in the state of Georgia 
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1.2. Price Adjustment Clauses 

Several DOTs share the concern that they often overpay for projects under fixed-

price contracts, which transfer the material price risk to contractors due to increased risk 

premiums and hidden contingencies in contractors’ submitted bid prices (Eckert and Eger 

2005). For example, transportation officials in Kentucky, New Hampshire, Pennsylvania, 

and Washington state DOTs believed that they may have paid more money to contractors 

than actual added costs, due to increased material prices (Holmgren et al. 2010).  

A common method that state DOTs widely use to handle the issue of extra risk 

premiums in submitted bid prices and to avoid overpaying contractors is to offer price 

adjustment clauses (PACs) in contracts. PACs are risk-sharing strategies to divide the risk 

of upward and downward movements of material prices between owners and contractors. 

In other words, a PAC is a risk-sharing contractual mechanism that guarantees an 

adjustment in payment to contractors based on the size and direction of the material price 

change. In a contract with a PAC, a state DOT accepts at least part of the risk of price 

escalation and pays the contractor for any increases above an agreed-upon threshold. 

Furthermore, if the price decreases below the threshold, the state DOT benefits from the 

savings. This risk-sharing strategy protects contractors against future material price 

escalation and encourages them to exclude extra risk premiums from their submitted bid 

prices. State DOTs may benefit from this shift in risk allocation through contractors’ 

willingness to submit lower bids (Skolnik 2011). Currently, offering PACs is the most 

common risk-management strategy for handling the consequences of material price 

uncertainty. Results from a Delphi survey of transportation experts show that PACs are 
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among the top ten programs widely used as cost reduction methods (Damnjanovic et al. 

2009). 

1.3. History of Price Adjustment Clauses 

PACs were used for the first time in the United States during World War I to 

manage the rapidly increasing price of coal (Baron and De Bondt 1979). In the 1970s, 

electric utilities faced significant increases in the price of fuel inputs, which resulted in 

many utility investors having to absorb unexpected increases in fuel costs. Motivated by 

the concern that these costs ultimately would be borne by consumers, 43 out of 50 states 

either adopted or expanded existing fuel adjustment clauses (FACs) by 1974 (Golec 1990). 

PACs can be divided into two categories:  redetermination processes, which adjust prices 

by a predetermined formula, and renegotiation processes, which establish prices through 

agreement by both parties. Redetermination processes are more frequently used compared 

to renegotiation process (Crocker and Masten 1991). The literature indicates that 

redetermination processes are more efficient and more frequently used due to the higher 

cost of implementing negotiated price changes (Carrol et al. 2006). 

Contrary to the widespread application of adjustment clauses in the electric utility 

industry, the impact of this clause was controversial, and in the late 1970s and during the 

1980s, poor efficiency resulting from the PAC program was a hot topic. Baron and De 

Bondt (1979) observed that FACs can lead to inefficiency problems related to the choice 

of technology and the selection of fuel supply sources because if utilities can shift all fuel 

cost increases to consumers, then there is no incentive to select the lowest-cost fuel supply.  
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Kaserman and Tepel (1982) found that FACs can lead to unnecessarily high utility 

company costs because of an adverse aggregate input price effect. They examined the 

influence of automatic FACs on the prices paid by electric utilities for aggregate fuel input. 

They asserted that the direct correlation between output price and aggregate fuel cost might 

lead to prices that are higher for aggregate fuel inputs than they would be in the absence of 

adjustment clauses.  

Gollop and Karlson (1978) empirically analyzed the effects of the electric utility’s 

ability to recover costs through an automatic fuel adjustment mechanism on the average 

cost. The authors found that the adjustment clause might lead to higher fuel costs because 

of inefficiency. They suggested that frequent monitoring of FAC provisions can prevent 

inefficient behavior while allowing utilities to recover quickly increasing input costs during 

times of high inflation. Later, in 1982, Isaac examined the effects of the FAC on the input 

choice of electric utilities and confirmed that adjustment mechanisms can lead to 

inefficiencies in input choices. However, these mechanisms also can help to preserve the 

financial integrity of electric utilities. Kendrick (1975) examined the impact of adjustments 

clauses on the telecommunications industry and concluded that the mechanism should 

consist of efficiency incentives to ensure good productivity. 

Since 1974, other industries, such as building and highway construction, have 

gradually begun offering PAC for selected commodities to handle the problem of inflated 

bids (Holmgren et al 2010). In 1974, the American Association of State Highway and 

Transportation Officials (AASHTO) suggested implementing PACs in transportation 

projects (AASHTO 1974). In 2009, a survey by the AASHTO Subcommittee on 

Construction, Contract Administration Section showed that only 3 agencies—Arkansas, 



6 

 

Michigan, and Texas DOTs—do not employ PACs in their contracts. Furthermore, 40 state 

DOTs offer the PAC for asphalt cement, and 42 state DOTs offer the PAC for fuel 

(AASHTO 2009).  

1.4. Design of Price Adjustment Clauses 

Although the primary purpose of all PAC programs across the United States is to 

shift the risk of material price fluctuations from contractor to state DOTs and, 

consequently, eliminate the possibility of risk premiums in contractors’ submitted bids, 

different transportation agencies use various design elements in their PAC programs. The 

most important design elements are the type of eligible materials, calculation of the index, 

trigger points, the presence of opt-in or opt-out, and formulas to calculate the price 

adjustment. Figure 1-2 shows the distribution of the PAC programs based on the eligible 

materials. 

 

 

Figure 1-2: Number of states that offer PAC (Source: Skolnik 2011) 
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Trigger points refer to the percent changes in material prices that initiate the 

application of relevant adjustment clauses. The distribution of the trigger point is broad. A 

large group of state DOTs uses 5-7.5% as the trigger value. Skolnik (2011) surveyed the 

AASHTO members to develop Figure 1-3, which depicts the distribution of the trigger 

point for various eligible line items.  

 

 

Figure 1-3: Trigger points for price adjustment (Source: Skolnik 2011) 
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DOT applies adjustment for fuel when the fuel price changes by at least 10 cents (Holmgren 

et al. 2010).   

 

 

Figure 1-4: Number of states that has an opt-in policy for various line items (Source: Skolnik 2011) 
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Specific pay items are most likely not included due to small amounts of fuel or construction 

inputs consumed or a lack of reliable data at the level of usage for those pay items. 

Moreover, based on the contract conditions for PAC exclusion, around 25% of projects in 

the states with the PAC are not eligible for this clause (Skolnik 2011). 

 

 

Figure 1-5: Distribution of contract conditions among state DOTs for PAC exclusion (Source: 

Skolnik 2011) 
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1.5.1. PAC Provision of 2005 

GDOT first developed the PAC provision for asphalt cement on September 15, 

2005. Based on this provision, if the asphalt cement price for the current month is greater 

than the asphalt cement price for the month in which the project was let to contract, the 

contractor will be paid an amount calculated in accordance with the following formula 

(GDOT 2016): 

PA = (
APM − APL

APL
− 0.05)×TMT×APL 

where: 

PA = price adjustment; 

APM = the monthly asphalt cement price (Georgia base asphalt price [GBAP]) for the 

month the hot mix asphalt/bituminous tack/bituminous surface treatment is placed; 

APL = the monthly asphalt cement price (GBAP)” for the month that the project was let; 

TMT = total monthly tonnage of asphalt cement computed by the engineer based on the hot 

mix asphaltic concrete of the various types per ton. 

On the other hand, if the asphalt cement price for the current month is less than the 

asphalt cement price for the month in which the project was let to contract, GDOT will 

deduct an amount calculated in accordance with the following formula (GDOT 2016): 

PA = (
APM − APL

APL
+ 0.05)×TMT×APL 
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According to the above formulas, no price adjustment shall be made until the APM 

is greater than 5% above or below the APL. This 5% trigger point is one of the most 

important design elements of the PAC program.  

Based on this provision of the PAC, the monthly asphalt cement price index is 

determined based on both national base asphalt price (NBAP) and local base asphalt price 

(LBAP). NBAP is calculated based on the arithmetic average of the previous four weeks’ 

Posted Price Asphalt Cement for the East Coast market-GA/FL as listed in the Asphalt 

Weekly Monitor, published by Poten and Partners. However, LBAP is calculated based on 

the arithmetic average posted price of PG asphalt cement from GDOT’s monthly survey, 

obtained from approved asphalt cement suppliers of bituminous materials to GDOT 

projects and the suppliers terminal after removing the highest and the lowest price. 

The other important characteristics of the PAC are the eligibility criteria and 

restrictions. The restrictions of this provision are as follows: 

• A price adjustment shall not be made on any hot mix asphalt placed between the 

letting date and 180 days after the letting date. 

• Cut-back, tack-coat, and treatment projects are not eligible for price adjustment. 

• There is a cap of 50% above the APL for any price adjustment. 

• After the original contract time has expired, no further asphalt cement price 

adjustment will be made. The asphalt cement price adjustment for any hot mix 

asphalt placed after the original contract time expires will be computed based on 

the monthly asphalt cement price at the time of contract expiration or the monthly 

asphalt cement price at the time the contract was let, whichever is less. 
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1.5.2. PAC Provision of 2009 

GDOT established a new provision for price adjustment on August 21, 2009. The 

most important differences between the second version and the first are the cap on the price 

adjustment and the eligibility criteria for the projects. In the second version, GDOT 

increased the cap from 50% to 125%. Thus, after August 21, 2009, any volatility of the 

asphalt cement price index, from 5% to 125%, is covered by the PAC program. 

Furthermore, according to the second version, no price adjustment will be made on any 

project with fewer than 366 calendar days between the contract letting date and the 

specified completion date. The duration between the original completion date and the 

letting date was not a criterion for eligibility under the 2005 version of the PAC program. 

However, for all eligible projects based on the provision of 2005, a price adjustment was 

not made between the letting date and 180 days after the letting date. 

1.5.3. PAC Provision of 2011 

Two years after the 2009 provision, on August 19, 2011, GDOT revised the PAC 

program and established the third provision. The 5% trigger point was canceled in the third 

version. Thus, the price adjustment is determined as follows (GDOT 2016): 

PA = (
APM − APL

APL
)×TMT×APL  

Another change in the third version compared to the second is the reduction of the 

cap from 125% to 60%. Furthermore, the calculation of the asphalt cement price index is 

only based on the GBAP, which is determined based on the arithmetic average of posted 

prices of PG asphalt cement from GDOT’s monthly survey, obtained from approved 
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asphalt cement suppliers of bituminous materials to GDOT projects and the suppliers 

terminal. 

1.6. Potential Benefits of Price Adjustment Clauses 

Owner organizations may benefit from a PAC in two main ways. First, offering 

PACs encourages contractors to exclude extra risk premiums from their bid prices and 

consequently submit lower bid prices. Second, offering PACs can potentially boost 

competition among bidders and result in a higher number of bidders and less dispersion in 

the bid prices received for a project. Skolnik (2011) conducted a survey of 50 state DOTs 

and 400 highway construction contractors to identify the possible benefits and beneficiaries 

of and barriers to the successful implementation of the PAC. The results indicate that the 

most important benefits of the PAC from the viewpoint of state DOTs are: 

- Better bid prices (78% of respondents noted this benefit) 

- Contractor stability (56% of respondents noted this benefit) 

- Increased number of bidders (24% of respondents noted this benefit) 

- Fewer bid retractions (2% of respondents noted this benefit) 

In addition, a percentage of state DOT respondents reported perceived benefits of offering 

the PAC for various commodities: 

- Fuel (60%) 

- Liquid asphalt (63%) 

- Cement (most state DOTs do not offer the PAC for cement; of the 10% that do, half 

perceived significant benefits) 
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- Steel (a large number of state DOTs do not offer the PAC for steel; of the 39% that 

do, 13% perceived significant benefits) 

Moreover, a percentage of state DOT respondents reported perceived benefits of offering 

the PAC for various industry stakeholders: 

- Prime contractors (81%)  

- Subcontractors (70%) 

- State DOTs (61%)  

- Suppliers (60%) 

- Others (2% of the respondents perceived a significant benefit for taxpayers) 

On the other hand, a percentage of contractor respondents reported perceived benefits of 

offering the PAC for various commodities:  

- Liquid asphalt (91%) 

- Fuel (72%) 

- Steel (72%) 

- Cement (58%) 

Furthermore, a percentage of contractor respondents reported perceived benefits of offering 

the PAC for various industry stakeholders:  

- State DOTs (82%) 

- Prime contractors (83%) 

- Subcontractors (84%) 
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- Suppliers (78%)  

Identification of the most important barriers to successful implementation of the PAC is 

critical. The results of the survey by Skolnik (2011) indicate that the most important 

barriers to successfully implementing the PAC from the viewpoint of state DOTs are 

- Administrative cost  

- Contractor resistance 

- Process of creating the policy 

- Updated fuel usage factors 

- Costs of the programs do not justify the benefits 

However, the barriers most cited by contractors are 

- Timing on invoices versus the index payment calculations—this problem involves 

a discrepancy between the date the materials are purchased and the index date used 

by state DOTs 

- A high trigger value for index payments 

- Incorrect index values, either due to outdated indexes or incorrect calculations 

Eckert and Eger (2005) gave a list of possible barriers to successful implementation of the 

PAC: 

- Contracts must have set-aside contingency funding to be able to address indexed 

adjustments. These funds, whether used or not, are tied to a contract (i.e., are not 

available for other work) until the contract is closed. 
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- Risk management is not well understood by most, and therefore the long-run 

benefits may not be understood.  

- Suppliers could be artificially raising prices, which will affect the index without the 

state DOT’s knowledge.  

- It is extremely difficult to track payments under the index process over the years. 

Adjustments increase the complexity of the tracking process.  

- It is difficult to ensure that the prices quoted by suppliers for the index are true 

monthly prices for liquid asphalt concrete. 
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CHAPTER 2: PROBLEM STATEMENT AND RESEARCH 

OBJECTIVES 

2.1. Motivation and Gaps in Knowledge 

Although uncertainty in the price of asphalt cement is a serious challenge for both 

contractors and state DOTs and many transportation agencies use PACs to control the 

consequences of material price volatility, there is little knowledge about analyzing 

uncertainties in the price of asphalt cement and the actual performance of PACs. These 

gaps in the current state of knowledge may result in significant financial risks and 

inefficient investments in risk management strategies.  

2.1.1. Gap in Knowledge 1: Modeling and Forecasting Fluctuations in the Price of 

Asphalt Cement 

Although fluctuations in the price of asphalt cement are a critical source of risk in 

highway construction projects with regard to cost estimations and budgeting, there is little 

knowledge about how asphalt cement price fluctuates over time. The ability to forecast 

asphalt cement price could result in more accurate cost estimations and budgeting.     

In the current state of practice, a simple escalation approach is typically used to 

take into account the rise in asphalt cement price. For example, cost estimators inflate the 

estimated cost of materials to the expected midpoint of the construction date to capture 

possible changes in the future prices of materials in their estimates (Anderson et al. 2006). 

Another approach often used by cost estimators is to add a fixed percentage of the total 



18 

 

estimated cost as the risk premium to cover possible escalation in material prices, including 

the price of asphalt cement (Laryea and Hughes 2009). These simple methods do not take 

into account the fact that the price of asphalt cement is subject to significant variations, 

even over a short period of time. These approaches are limited in characterizing the 

variations of asphalt cement price over time and, hence, are problematic for distributing 

the project budget over the project duration (Walls and Smith 1998).  

Currently, a more advanced approach to modeling variations in material prices over 

time is the Monte Carlo simulation. Considering the uncertainty about the rate of escalation 

for the price of asphalt cement, a probabilistic approach based on Monte Carlo simulation 

has been used to quantify the range and the likelihood of the project cost (Back et al. 2000). 

Monte Carlo simulation has been used to draw random values for the escalation rate of 

material price in order to characterize uncertainty about total project cost. An approach 

based on Monte Carlo simulation can be used to characterize uncertainty about future 

prices of asphalt cement, but the major limitation of this approach is that Monte Carlo 

simulation does not address the effects of autocorrelation in historical prices of asphalt 

cement (note that autocorrelation represents the relationship between a time series variable 

and itself over various time intervals). At any point in time, a Monte Carlo simulation 

randomly generates an escalation rate independent of the previous rates (Ibbotson 2005)—

for example, the randomly generated escalation rate of asphalt cement price could be –10% 

in one period and +60% in the next. In this study, we show that actual historical records of 

asphalt cement price are autocorrelated time series data. Variations in the escalation rate of 

asphalt cement price are not completely random. Past values of asphalt cement are 

statistically significant in determining its current and future values. Using historical records 



19 

 

of asphalt cement prices to develop proper forecasting models is a motivation for the third 

chapter of this dissertation. 

2.1.2. Gap in Knowledge 2: Quantifying and Forecasting Uncertainties in the Price of 

Asphalt Cement 

Transportation agencies apply various risk management strategies, such as offering 

PACs, to control the consequences of material price uncertainty. Before using any risk 

management strategy, it is necessary to measure, analyze, and forecast material price 

uncertainty and ensure that the strategy is employed at the proper time. This issue is more 

critical for asphalt cement because the level of volatility and uncertainty in its price is not 

constant over time and may change significantly even over a short period of time. 

Transportation agencies need to constantly track the level of uncertainty in the price of 

asphalt cement to keep decisions about implementing their risk management strategies 

current. However, there is little knowledge about measuring, analyzing, and forecasting 

uncertainty in the price of asphalt cement. Typically, cost estimators and risk managers 

consider the uncertainty in the price of materials such as asphalt cement solely based on 

their fluctuations (Gallagher and Riggs 2006). However, fluctuations do not necessarily 

indicate uncertainty: A variable might be fluctuating but predictable. Therefore, the 

uncertainty of a variable such as the price of asphalt cement should be defined based on its 

unpredictability, which is a latent variable and is not directly observable (Engle and Patton 

2001). This gap in knowledge makes it difficult for transportation agencies to recognize 

the proper time to implement their risk management strategies and adequately control the 

consequences of volatility in the price of asphalt cement. Quantifying and forecasting 
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uncertainties in the price of asphalt cement is a motivation for the fourth chapter of this 

dissertation. 

2.1.3. Gap in Knowledge 3: Empirically Analyzing Effects of PACs on Submitted Bid 

Prices 

State DOTs may benefit from PACs through contractors’ willingness to submit 

lower bids (Skolnik 2011). Most state DOTs in the United States have employed PACs in 

their transportation contracts. In 2009, a survey done by the AASHTO Subcommittee on 

Construction, Contract Administration Section, indicates that 40 state DOTs offer PACs 

for asphalt cement. The results from a Delphi study of transportation experts show that 

PAC is among the top ten program-wide cost reduction methods (Damnjanovic et al. 2009). 

However, most of the findings of previous studies of PACs derived from surveys of state 

DOT officials and other transportation experts and the actual impacts that offering PACs 

has on bid prices are not clear. For example, a survey of 50 state DOT officials and 400 

highway contractors conducted by Skolnik (2011) revealed that 78% of state DOTs 

perceived reduced bid prices as one of the most important benefits of offering PAC. 

Additionally, nearly all responding contractors mentioned that they would add 

contingencies to their bids in the absence of PACs. In other words, most survey respondents 

perceived reduction in bid prices as one of the most significant benefits of offering PAC in 

transportation contracts. However, none of the respondents to Skolnik’s survey provided 

any empirical evidence to support their perception. 

In another study conducted by Eckert and Eger (2005), several state DOT officials 

were surveyed about the risk of asphalt price volatility and their current price adjustments. 

The authors recognized a concern shared by several state DOT officials that state DOTs 
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often overpay for projects under fixed-price contracts that transfer the asphalt price risk to 

contractors. Interviewees argued that highway contractors add hidden contingencies to 

their submitted bid prices if the asphalt price risk is transferred to them in highway projects. 

However, no empirical evidence was provided by the interviewees, and no comparison was 

made between contractors’ submitted bid prices in projects with PACs and those without 

PACs.  

In a similar study of fuel PACs, Holmgren et al. (2010) surveyed DOT officials 

from all fifty states. Thirty-eight state DOT officials believed that PACs can share the risks 

of price volatility appropriately and that their fuel price adjustments are fair. However, they 

did not provide any empirical evidence to justify their beliefs. 

A review of the literature revealed a gap in the current state of knowledge in 

empirical assessment of PACs. Furthermore, the considerable financial burden PACs 

impose on state DOTs (e.g., GDOT’s net payment to contractors as a PAC only for asphalt 

cement exceeded 69 million dollars between 2007 and 2012) emphasizes the importance 

of analyzing the actual effects that offering PACs has on submitted bid prices. 

2.1.4. Gap in Knowledge 4: Empirically Analyzing Effects of PACs on Competition 

In addition to excluding extra risk premiums from submitted bid prices, 

transportation agencies may benefit from PACs through increased competition among 

bidders. Offering PACs may boost competition among bidders and result in a greater 

number of bidders and less dispersion in the bid prices received for a project. Lack of 

competition would harm economic efficiency (Cheung and Shen 2016). Theoretically, 

offering PACs in contracts can stabilize the construction market and support all contractors 

regardless of their size and access to sources of critical materials such as asphalt cement. 
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Therefore, offering PACs in construction contracts may encourage greater competition and 

result in more bidders and less dispersion in the bid prices received for a project. Most 

findings from previous studies of PACs, derived from surveys of state DOT officials and 

other transportation experts, are not clear when assessing the actual impact of offering 

PACs. For example, a survey of 50 state DOT officials and 400 highway contractors 

conducted by Skolnik (2011) revealed that 61% of the respondents believed that PACs 

offer significant benefits for DOTs and lead to contractor stability and a greater number of 

bidders. However, none of the respondents to Skolnik’s survey provided any empirical 

evidence to support their perception. In another study conducted by Eckert and Eger 

(2005), several state DOT officials were surveyed about the risk of asphalt price volatility 

and their current price adjustments. Most of the officials believed that offering PACs 

establishes parity between bidders and increases competition. However, no empirical 

evidence was provided by the interviewees. In a similar study of fuel PACs, Holmgren et 

al. (2010) surveyed officials from the DOTs of all fifty states; thirty-eight state DOT 

officials believed that PACs can allocate the risks of price volatility appropriately and that 

their fuel price adjustments are fair. However, they did not provide any empirical evidence 

to justify their beliefs. The actual impact of PACs on competition has not been analyzed, 

and a review of the literature indicates a gap in the current state of knowledge in empirical 

assessment of PACs. 

2.2. Research Objectives 

Due to the aforementioned gaps in the current state of knowledge, this dissertation 

aims to analyze uncertainty in the price of asphalt cement and examine the performance of 
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PACs in highway construction projects. This overall research objective is broken down 

into four sub-objectives. 

2.2.1. Research Objective Ⅰ: Modeling and Forecasting Asphalt Cement Price 

Due to the first gap in knowledge, the first research objective of this study is to 

identify and characterize variations observed in the actual price of asphalt cement over 

time. This knowledge then will be used to create time series forecasting models for asphalt 

cement price and examine whether and how time series forecasting models can predict the 

future price of asphalt cement with greater accuracy than the existing approaches. 

The results of this part of the study help both state DOTs and contractors improve 

their cost estimations, prepare more accurate budgets, and consequently reduce the risk of 

asphalt cement price volatility in highway construction projects. 

2.2.2. Research Objective Ⅱ: Quantifying and Forecasting Uncertainty in Asphalt 

Cement Price 

Due to the second gap in knowledge, the second research objective of this study is 

to measure, model, and forecast asphalt cement price uncertainty. The results of this part 

of the study can help contractors and state DOTs measure and forecast volatility in the 

price of asphalt cement and subsequently develop more proper risk management strategies 

to address the risk of material price uncertainty in highway construction projects. 

2.2.3. Research Objective Ⅲ: Examining Effects of PACs on Bid Prices 

Due to the third identified gap in the current state of knowledge, the third research 

objective of this dissertation is to empirically examine the effect that offering PACs has on 

variation in submitted bid prices for major asphalt line items in transportation projects and 
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to check whether PACs successfully exclude extra risk premiums. The outcomes of this 

objective enhance transport agencies’ understanding of the actual effects of offering PACs 

in reducing bid prices. 

2.2.4. Research Objective Ⅳ: Examining Effects of PACs on Competition  

Due to the fourth gap in knowledge, the fourth research objective of this study is to 

empirically analyze the effects that offering PACs has on competition among bidders for 

transportation projects. This can help capital planners and transportation agencies 

systematically evaluate the actual effects that offering PACs has on competition among 

bidders. 

2.3. Research Methodology 

This dissertation aims to address the four presented research objectives in four 

separate sections. The research methodology for each research objective is presented in 

this section briefly and will be discussed in full detail in the corresponding chapters.  

To address the first research objective, modeling and forecasting of fluctuations in 

asphalt cement price, a univariate time series analysis is conducted. First, historical records 

of asphalt cement price are collected. Second, variations in asphalt cement price over time 

are identified and characterized. Then, based on the identified time series characteristics, 

univariate time series forecasting models, such as Holt Exponential Smoothing (ES), Holt-

Winters ES, autoregressive integrated moving average (ARIMA), and seasonal ARIMA, 

are created to take into account the short-term variation in asphalt cement price in 

forecasting its future values. Next, diagnostics tests including residual analysis are 
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conducted to validate the applicability of the models. Finally, out-of-sample forecasting is 

performed to measure the predictability of the developed forecasting models. 

The second research objective, quantifying and forecasting uncertainties in the 

price of asphalt cement, is addressed using autoregressive conditional heteroscedasticity 

(ARCH) and generalized autoregressive conditional heteroscedasticity (GARCH) time 

series volatility models. In the first step, the univariate time series models developed for 

the first research objective are fitted to the time series of asphalt cement price to capture 

the conditional mean of asphalt cement price over time. Next, the residuals of the model 

are examined using a heteroscedasticity test to check if the volatility in the price of asphalt 

cement is statistically significant. If heteroscedasticity exists, ARCH/GARCH models are 

created, and the conditional volatility of asphalt cement price is measured and modeled 

over time. The conditional volatility models then are validated and their predictability is 

evaluated.  

Contractors’ submitted bid data from 841 highway projects awarded in the state of 

Georgia were collected and used to investigate the third research objective, empirical 

assessment of the effects of PACs on submitted bid prices. A literature review and 

interviews with transportation cost professionals are conducted to identify a potential list 

of explanatory variables for modeling the variation in contractors’ submitted bid prices. 

The dataset and identified potential explanatory variables, including a binary variable for 

the availability of PAC for a project, are used to create multivariate linear regression 

models to explain variations in submitted bid prices for major asphalt line items in 

transportation projects. Diagnostic tests such as analysis of variance (ANOVA) and 

residual analysis are conducted to check the validity of the models. Finally, the binary 
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variable showing the availability of PAC for a project is checked for statistical significance 

in the models. 

To address the fourth research objective, empirical assessment of the effect of PACs 

on competition among bidders, historical records of the average number of bidders and 

dispersion of submitted bid prices are monitored over time using system monitoring 

processes to check whether their variations statistically changed after the introduction of 

the PAC program. To analyze the effects of PACs on the number of bidders, two variables 

are investigated: 1) the average number of bidders per project; and 2) the number of unique 

contractors divided by the number of projects for each month. The cumulative sum 

(CUSUM) system monitoring method combined with time series analysis is used to check 

whether these two variables statistically changed after the introduction of the PAC 

program. Furthermore, a standard deviation control chart with variable sample size is used 

to check whether the dispersion of the submitted bid prices changed after PACs were 

offered. 

Figure 2-1 shows the overall research methodology used to achieve the research objectives 

in this dissertation. 
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Figure 2-1: Overall research methodology 

 

2.4. Dissertation Organization 

To achieve these research objectives, the remainder of this dissertation is structured 

as follows. Chapter three addresses the first objective. Historical records of asphalt cement 

price are analyzed and characterized to develop univariate time series forecasting models 

to predict the future price of asphalt cement.  

The second research objective of this dissertation is addressed in the fourth chapter. 

Volatility and level of uncertainty in the price of asphalt cement is measured, modeled, and 

predicted using ARCH and GARCH time series models.  

Empirical analysis of the impact that offering PACs has on submitted bid prices is 

presented in chapter five. Multivariate regression analysis was used to explain variations 

in submitted bid prices for major asphalt line items in transportation projects and to identify 
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statistically significant explanatory variables (including the availability of PACs) that 

affect submitted bid prices.  

Chapter six presents the empirical analysis, using system monitoring processes, of 

the effects that offering PACs has on the level of competition. Finally, chapter seven 

concludes the research work presented in this dissertation and suggests possible future 

work and extensions of the proposed analysis. 
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CHAPTER 3: MODELING AND FORECASTING ASPHALT 

CEMENT PRICE 

3.1. Introduction 

The ability to properly forecast asphalt cement price results in more accurate cost 

estimations and a decreased level of uncertainty and financial risks. This study departs from 

the existing body of knowledge and challenges the lack of proper treatment of short-term 

variations in predicting asphalt cement price. The price of asphalt cement over time is 

autocorrelated time series data that can be analyzed, and its major characteristics can be 

identified for use in forecasting its future values. The research objectives of this chapter 

are to (a) identify and characterize the variations observed in the actual price of asphalt 

cement over time; and (b) use this knowledge to create time series forecasting models for 

asphalt cement price and check if time series forecasting models can predict future values 

of asphalt cement more accurately than existing approaches. To achieve these research 

objectives, the remainder of this chapter is structured as follows. After a brief literature 

review of forecasting models, the proposed research approach and steps conducted in this 

study are described. Then the time series dataset of the asphalt cement price index is 

introduced, and its major characteristics (i.e., autocorrelation, stationarity, and seasonality) 

are investigated. Based on the identified characteristics, four univariate time series 

forecasting models, Holt ES, Holt-Winters ES, ARIMA, and seasonal ARIMA, are created 

to take into account the short-term variations in asphalt cement price when forecasting its 

future values. Diagnostic tests, such as goodness of fit and residual analysis, are conducted 
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to measure the accuracy and verify that the underlying conditions hold true for each 

developed model. The predictability of each time series model is evaluated and compared 

to previously existing methods using an out-of-sample forecasting process. Finally, 

conclusions and future work are presented.  

3.2. Forecasting Models 

Forecasting models can be classified into the two categories of causal models and 

time series models (Taylor and Bowen 1987). Casual models, such as linear regression 

models, forecast a variable using independent explanatory variables. These models are 

widely applied in the construction area. For example, Persad et al. (1995) used regression 

models to forecast engineering manpower requirements for highway preconstruction 

activities. Christian and Pandeya (1997) predicted the operation and maintenance costs of 

facilities using regression models. Lowe et al. (2006) developed linear regression models 

to predict the construction cost of buildings in the United Kingdom; they considered forty-

one potential explanatory variables to predict the cost. Sonmez et al. (2007) used regression 

analysis to develop a model to predict cost contingency in international projects using 

fourteen potential independent factors. Abu Hammad et al. (2010) created a probabilistic 

regression model to predict the cost of public building projects using several explanatory 

factors, such as project area and project duration. Heravi and Ilbeigi (2012) developed a 

multivariate model to quantify and forecast project success using eleven explanatory 

variables. Behmardi et al. (2013) developed and compared the performance of a linear 

mixture model and a Bayesian model to predict the cost of bridge replacement in Oregon 

using the structural characteristics of the bridges. Ilbeigi et al. (2015a) identified and 
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considered fifteen potential explanatory variables to model and forecast variations in 

submitted bid prices for pavement line items in highway construction projects.  

Contrary to the widespread application of causal models, in some cases, it may be 

very difficult to identify, quantify, and predict the explanatory variables, especially when 

the model requires economic-related explanatory variables (Ashuri and Lu 2010). Because 

asphalt cement is a petroleum product, too many factors related to different areas, such as 

market conditions, social and political issues, technology, and economic growth, may 

affect its price. Accurately identifying, quantifying, and predicting future values of all 

explanatory variables to model and forecast the future price of asphalt cement may not be 

a feasible solution in the real world. In this situation, univariate time series forecasting 

models are a powerful alternative to causal models. 

Univariate time series models determine the future values of a variable based only 

on its previous records and observations. A time series forecasting model identifies 

meaningful characteristics in the history of the variable and predicts future values based on 

those characteristics and prior observations. A univariate time series forecasting model 

only requires one input for creating and calibrating the model, an important feature that has 

resulted in widespread application of these models. For example, Hwang and Liu (2009) 

used time series forecasting models to predict short-term productivity in construction 

operations. Ashuri and Lu (2010) created univariate time series forecasting models to 

predict the Engineering News Records (ENR) Construction Cost Index (CCI). Xu and 

Moon (2011) used a cointegrated vector autoregression (VAR) time series model to 

forecast the trend of the construction cost index. Shahandashti and Ashuri (2015) 
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forecasted the highway construction cost index using vector error correction time series 

models. 

Considering the significant capabilities of time series forecasting models to predict 

the future values of a variable based only on its historical records, in this study, univariate 

time series forecasting models are used to model the variations in asphalt cement price over 

time and predict its future values. 

3.3. Research Methodology 

The historical prices of asphalt cement are time series in nature. Time series are 

subject to specific properties, such as autocorrelation, stationarity, and seasonality. 

Statistical time series methods are used to identify and characterize the main properties of 

historical asphalt cement prices. After identifying the main characteristics of the asphalt 

cement time series data, in-sample model fitting is conducted to create four time series 

models for predicting asphalt cement price. Residual analysis tests are conducted to verify 

whether the underlying conditions of the created time series models hold true. Goodness-

of-fit tests are performed to determine the applicability of the created time series models 

for forecasting asphalt cement price. Finally, out-of-sample forecasting is conducted to 

evaluate the predictability of the developed models compared to the previously existing 

models. Figure 3-1 shows the process of time series analysis, model development, and 

predictability evaluation. 
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Figure 3-1: Process of time series analysis, model development, and predictability evaluation 

 

3.4. Dataset 

In this study, the monthly asphalt cement price index in the state of Georgia is 

analyzed and used to develop the forecasting model. GDOT determines the asphalt cement 

price index based on the average price of asphalt cement from the department’s monthly 

survey of approved asphalt cement suppliers. The maximum and minimum prices are 

excluded from the calculation of the index. The dataset consists of 228 observations of the 

asphalt cement price index in Georgia from January 1996 to December 2014 (Figure 1-1). 

Observations from January 1996 to December 2013 are considered for in-sample model 
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fitting and parameter estimation. The last twelve observations (i.e., from January 2014 to 

December 2014) are used for out-of-sample forecasting and predictability evaluation. 

3.5. Time Series Analysis 

The results of the Ljung-Box Q test (Ljung and Box 1978) ( 

Table 3-1) specify that the time series of the asphalt cement price index is 

autocorrelated (i.e., the correlations between the values of the series at different time lags 

are statistically significant), indicating that variations in the asphalt cement price index are 

not random and depend on the index’s past values. Therefore, use of time series analysis 

to explain variations in the asphalt cement price index is meaningful, and time series 

forecasting models for the asphalt cement price index can be created. 

One of the most important characteristics of a time series is stationarity. Although 

the graph of the asphalt cement price index (Figure 1-1) shows an upward trend, indicating 

the potential for a non-stationary time series, an Augmented Dickey-Fuller (ADF) (Fuller 

1976) test is conducted to investigate the non-stationary property of the price index more 

rigorously. The resulting ADF test statistic is –0.1424 with a p-value of 0.63, indicating 

that the null hypothesis that the time series of asphalt cement price index is non-stationary 

cannot be rejected. 

Another important characteristic of a time series is seasonality. Figure 3-2 shows 

the box plot of the monthly asphalt cement price index. The plot does not show a very 

strong difference between the average asphalt cement price index for each month.  
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Table 3-1: Results of the Ljung-Box Q test 

Lag Autocorrelation Q-Statistic P-Value 

1 0.985 219.20 0.000 

2 0.961 428.97 0.000 
3 0.933 627.60 0.000 
4 0.904 814.67 0.000 
5 0.876 991.32 0.000 
6 0.852 1159.3 0.000 
7 0.831 1319.8 0.000 
8 0.814 1474.5 0.000 
9 0.802 1625.1 0.000 

10 0.791 1772.6 0.000 
11 0.784 1917.9 0.000 
12 0.776 2061.2 0.000 
13 0.768 2202.2 0.000 
14 0.760 2341.0 0.000 
15 0.753 2477.8 0.000 
16 0.746 2612.7 0.000 
17 0.740 2746.2 0.000 
18 0.734 2878.2 0.000 
19 0.727 3008.2 0.000 
20 0.719 3136.2 0.000 

 

Figure 3-2: Box plot of monthly asphalt cement price index 

 

Furthermore, Figure 3-3 (a) and (b) show autocorrelation function (ACF) plots of 

the original time series of the asphalt cement price index and the ACF of the time series 

after removing the trend. The ACF plots do not display any apparent cyclical behaviors. 
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Thus, no seasonal pattern in the asphalt cement price index is evident. However, during the 

creation of the models, we will check whether considering seasonal factors improves the 

forecasting models.  

 

 

3.5.1. In-Sample Model Fitting 

Considering the identified characteristics, Holt ES, Holt-Winters ES, ARIMA, and 

seasonal ARIMA models are applied to the asphalt cement price index. After estimating 

the parameters and fitting the models, mean absolute percentage error (MAPE), mean 

square error (MSE), and mean absolute error (MAE) are used to measure and compare the 

goodness-of-fit of the models. 

3.5.1.1. Holt ES 

Holt ES is designed for modeling non-stationary time series (Holt 2004). The Holt 

ES model consists of two parameters: mean smoothing parameters (α) and trend smoothing 

parameters (β). Parameter α estimates the monthly mean of the variable, and parameter β 

Figure 3-3: (a) ACF plot of the original time series of asphalt cement price index; (b) ACF plot of the 

time series after removing the trend 
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estimates the monthly trend factor or growth rate of the variable (Gardner 1985). These 

parameters are estimated using a recursive approach to minimize the sum of squared errors. 

The optimal value of α and β are estimated at 1 and 0.64, respectively. The sum of squared 

errors is 124245.6. The three error measures of the Holt ES model are calculated as follows: 

MAPE=5.68%, MSE=557.88, and MAE=14.11. 

3.5.1.2. Holt-Winters ES 

Winters (1960) developed the Holt-Winters ES model based on the Holt ES 

method. The Holt-Winters ES model is recommended for time series data that display trend 

and seasonality. Holt-Winters ES has a seasonal smoothing parameter (γ) in addition to 

mean and trend smoothing parameters (i.e., α and β). Although there is no strong evidence 

for seasonality in the time series of the asphalt cement price index, the Holt-Winters ES 

method is applied to check whether including the seasonality parameter could improve the 

model. Similar to the Holt ES model, the parameters are estimated using a recursive 

approach. The optimal values of the parameters are α=0.9515, β=0.00457, and γ=1. The 

sum of squared errors is 151074.9, which is considerably larger than the sum of squared 

errors with the Holt ES model. The three error measures to check the goodness-of-fit for 

the Holt-Winters ES are as follows: MAPE=6.44%, MSE=736.95, and MAE=16.70. All of 

the error measures are larger than those of the Holt ES model.  

3.5.1.3. ARIMA 

ARIMA models are designed based on the combination of autoregressive (AR) and 

moving average (MA). An ARIMA model consists of three parameters: p, q, and d. 

Parameters p and q are integers that describe the order of AR and MA in the model. 

Parameter d represents the difference order required to transform the original dataset to a 
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stationary time series. Because the original time series of the asphalt cement price index is 

non-stationary, the first step to create the ARIMA model is to transfer the original dataset 

to a stationary time series. In this manner, the differencing operator of order one can be 

applied to the original dataset. However, some useful information and some data points 

might be lost during the differencing process (Diebold 1998). A better alternative to 

differencing is to include the trend variable in the model. The trend is captured using an 

integer variable that starts at one for the first month and increases incrementally by one 

unit afterward. The ADF test is conducted to check if capturing the trend makes the series 

stationary. The t-statistic of the ADF test after capturing the trend is –4.685167 with a p-

value of 0.0010, indicating that the null hypothesis of the index being non-stationary is 

strongly rejected; the series is stationary if the trend is included in the model. Furthermore, 

to capture any possible seasonal pattern, twelve dummy variables representing each month 

are added into the model. Thus, the equation of the ARIMA model for the time series of 

the asphalt cement price index is as follows: 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) = 𝑐 + 𝛼(𝑡𝑟𝑒𝑛𝑑) + ∑ 𝜑𝑖𝐴𝑅(𝑖)

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝑀𝐴(𝑗)

𝑞

𝑗=1

+ ∑ 𝛽𝑘𝑀𝑘

12

𝑘=1

 

Where: 

p is the order of the AR operator 

q is the order of the MA operator 

d is the differencing order, which is equal to 0 in our case 

c is the intercept 

α is the coefficient of the trend 
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φi is the coefficient of the ith AR operator 

θj is the coefficient of the jth MA operator 

Mk is a dummy variable that is 1 if the observation belongs to month k and 0 otherwise 

βk is the coefficient of the binary variable of month k 

The optimal values of p and q are determined based on the Akaike information 

criterion (AIC) (Akaike 1998) and the Bayesian information criterion (BIC) (Schwarz 

1978). To select the proper model, different models with various combinations of p and q 

were studied. The coefficients of the model are determined using maximum likelihood 

estimation (MLE). The results indicate that the ARIMA(2,0,2) produces the lowest AIC and 

BIC, equal to 8.81 and 8.91, respectively. In this study, the significance level is considered 

equal to 5%. Because the p-values of the intercept, MA(1), and all monthly binary variables 

except the variables for May and August are considerably higher than the significance 

level, they are not statistically significant and can be removed from the model. Table 3-2 

shows the results of the model.  

 

Table 3-2: Results of the ARIMA(2,0,2) model 

Variable Coefficient t-Statistic P-Value 

Trend 2.6928 22.4296 0.0000 

AR(1) 1.3799 22.8986 0.0000 

AR(2) –0.4840 –8.1334 0.0000 

MA(2) 0.2060 2936.12 0.0000 

M5 5.8911 2.2167 0.0277 

M8 5.5038 2.0729 0.0394 

 

The final equation of the ARIMA model can be represented as follows: 
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𝐴𝐶𝑃𝐼𝑡
̂ = 2.6928×𝑇𝑟𝑒𝑛𝑑 + 1.3799×𝐴𝑅(1) − 0.4840×𝐴𝑅(2) + 0.2060×𝑀𝐴(2)

+ 5.8911×𝑀5 + 5.5038×𝑀8 

The three error measures of the ARIMA model are MAPE=5.96%, MSE=373.71, and 

MAE=12.82. All the error measures are lower than the error measures of the Holt ES and the 

Holt-Winters ES models, indicating that the ARIMA model has better goodness-of-fit than the 

Holt family models. Figure 3-4 shows the graph of the actual, fitted, and residuals of the 

ARIMA model.  

 

 

Figure 3-4: Actual, fitted, and residuals of the ARIMA(2,0,2) model 
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The key underlying condition of the ARIMA models is that the residual must follow 

a white noise process with a mean of 0 and finite variance. Figure 3-5 shows the 

correlogram of the residuals, and Table 3-3 shows the results of the Ljung-Box Q test. 

Because the p-values for all lag levels are higher than the significance level of 5%, the null 

hypothesis that the data are independently distributed cannot be rejected. Thus, the 

residuals do not show any serial correlation and can be considered a white noise process. 

 

 

Figure 3-5: Correlogram of the residuals of the ARIMA(2,0,2) model 

 

3.5.1.4. Seasonal ARIMA 

Although the potential seasonality pattern was captured using dummy variables in 

the ARIMA model, another approach is to use a seasonal ARIMA model, which is an 

extended version of the ARIMA model. In addition to the parameters p, q, and d, which 

are required to create a regular ARIMA model, a seasonal ARIMA model uses parameters 

P, Q, and D to capture potential seasonality. Parameters P and Q describe the orders of the  
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Table 3-3: Results of the Ljung-Box Q test for the residuals of the ARIMA(2,0,2) model 

Lag Autocorrelation Q-Statistic P-Value 

1 –0.012 0.0330  

2 –0.021 0.1283  

3 0.071 1.2763  

4 –0.030 1.4812 0.224 

5 –0.106 4.0581 0.131 

6 0.100 6.3503 0.096 

7 0.026 6.5089 0.164 

8 –0.144 11.283 0.046 

9 0.031 11.510 0.074 

10 –0.058 12.308 0.091 

11 –0.002 12.309 0.138 

12 0.119 15.620 0.075 

13 0.034 15.900 0.103 

14 –0.036 16.208 0.134 

15 –0.030 16.428 0.172 

16 0.005 16.433 0.227 

17 0.024 16.575 0.280 

18 0.036 16.888 0.326 

19 0.053 17.562 0.350 

20 0.023 17.691 0.409 

 

seasonal autoregressive (SAR) and the seasonal moving average (SMA) in the model, 

respectively. Parameter D is the difference order required to remove the seasonality of the 

transformed stationary dataset. Because the seasonality pattern was not obvious in the box 

plot diagram, various seasonal ARIMA models with different values for parameter D are 

tested. Parameter d is set to 0 because, similar to the ARIMA model, the original dataset is 

transferred to a stationary time series by including a trend variable in the model. The 

equation of the seasonal ARIMA model for the time series of the asphalt cement price 

index is as follows: 
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𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)

= 𝑐 + 𝛼(𝑡𝑟𝑒𝑛𝑑) + ∑ 𝜑𝑖𝐴𝑅(𝑖)

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝑀𝐴(𝑗)

𝑞

𝑗=1

+ ∑ 𝜆𝑘𝑆𝐴𝑅(𝑘)

𝑃

𝑘=1

+ ∑ 𝛿𝑙𝑆𝑀𝐴(𝑙)

𝑄

𝑙=1

 

Where: 

P is the order of the SAR operator 

Q is the order of the SMA operator 

D is the differencing order required to remove the seasonality 

λk is the coefficient of the kth SAR operator 

δl is the coefficient of the lth SMA operator 

The initial values of the parameters p, q, P, and Q are determined based on the AIC 

and BIC values. Various combinations of the parameters are considered to identify the 

proper models. The coefficients of the model are determined using MLE.  

Similar to ARIMA models, the key underlying condition of the seasonal ARIMA 

models is that the residual must follow a white noise process with a mean of 0 and finite 

variance. Analyzing various combinations of the parameters indicates that several models, 

such as seasonal ARIMA(1,0,12)(1,1,0), produce relatively low AIC and BIC. However, 

the simplest model with low AIC and BIC that satisfies the underlying condition of the 

residuals following a white noise process is the seasonal ARIMA(2,0,2)(8,0,5). The AIC 

and BIC of this model are 8.78 and 8.88, respectively. Table 3-4 shows the results of the 

seasonal ARIMA(2,0,2)(8,0,5). In Table 3-4, those variables that are not statistically 
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significant within the 5% significance level are removed from the results. Figure 3-6 shows 

the graph of the actual, fitted, and residuals of the seasonal ARIMA(2,0,2)(8,0,5) model.  

 

Table 3-4: Results of the seasonal ARIMA(2,0,2)(8,0,5) 

Variable Coefficient t-Statistic P-Value 

Trend 2.6960 22.0585 0.0000 

AR(1) 1.3470 19.2658 0.0000 

AR(2) –0.4123 –5.9075 0.0000 

SAR(8) –0.1869 –2.6558 0.0085 

MA(2) 0.1887 2.4773 0.0141 

SMA(5) –0.2215 –2.9086 0.0040 

 

 

Figure 3-6: Actual, fitted, and residuals of the seasonal ARIMA(2,0,2)(8,0,5) model 

 

Figure 3-7 shows the correlogram and Table 3-5 shows the results of the Ljung-Box Q test 

for the residuals of the ARIMA(2,0,2)(8,0,5) model and indicate that the null hypothesis 
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that the data are independently distributed cannot be rejected. Thus, the residuals can be 

considered a white noise process. 

 

Table 3-5: Results of the Ljung-Box Q test for the residuals of the seasonal ARIMA(2,0,2)(8,0,5) 

model 

Lag Autocorrelation Q-Statistic P-Value 

1 0.013 0.0351  

2 –0.023 0.1501  

3 0.029 0.3310  

4 –0.111 2.9613  

5 0.023 3.0713  

6 0.065 3.9738 0.046 

7 –0.023 4.0842 0.130 

8 –0.013 4.1211 0.249 

9 0.006 4.1280 0.389 

10 –0.101 6.3819 0.271 

11 –0.014 6.4231 0.377 

12 0.127 9.9949 0.189 

13 0.013 10.030 0.263 

14 –0.075 11.288 0.257 

15 –0.005 11.293 0.335 

16 –0.062 12.165 0.351 

17 0.024 12.294 0.422 

18 0.066 13.298 0.425 

19 0.017 13.363 0.498 

20 0.030 13.569 0.558 

 

 

Figure 3-7: Correlogram of the residuals of the seasonal ARIMA(2,0,2)(8,0,5) model 
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The three error measures of the seasonal ARIMA model are MAPE=5.52%, 

MSE=371.21, and MAE=12.41. All the error measures are slightly lower than those of the 

ARIMA(2,0,2) model. 

3.5.2. Validation: Out-of-Sample Forecasting 

After creating the time series forecasting models and evaluating their goodness-of-

fit, out-of-sample forecasting can be conducted to evaluate the predictability of the models 

and validate the results. As noted earlier, a subset of the first 216 observations from January 

1996 to December 2013 was used to create and calibrate the models. Now, using the time 

series forecasting models, the asphalt cement price index from January 2014 to December 

2014 is forecasted. By comparing the forecast values with the actual values, the 

predictability of the models is evaluated. 

The three error measures (i.e., MAPE, MSE, and MAE) are used to analyze the 

predictability of the models more rigorously. Table 3-6 shows the out-of-sample 

forecasting error measures of the time series models. The results indicate that all developed 

time series models can predict the price of asphalt cement properly with errors of less than 

4%. Among the four models, the Holt ES and ARIMA models are the most accurate, with 

less than 2% error. 

 

Table 3-6: Out-of-sample forecasting error measures 

Model MAPE MSE MAE 

Holt ES 1.62% 147.67 9.50 

ARIMA 1.94% 222.92 11.11 

Seasonal ARIMA 2.15% 253.68 12.34 

Holt-Winters ES 3.62% 564.29 20.99 
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Figure 3-8 shows the results of the out-of-sample forecasting analysis. Because the out-of-

sample forecasting process uses the forecast values of the lagged data points, the forecast 

errors tend to compound over time and result in larger errors (cumulative error).  

 

 

Figure 3-8: Out-of-sample forecast of asphalt cement price index 

 

Overall, Figure 3-8 shows that the forecast values are closer to the actual values for 

the early points in the out-of-sample period and gradually depart from the actual values 

due to the cumulative error. Therefore, all models have better predictability for early points 

in the out-of-sample forecasting period. The results of the out-of-sample forecasting 

validate the applicability of the developed time series models for predicting the future 

values of asphalt cement price. 
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3.6. Predictability of Time Series Models versus Monte Carlo 

Simulation 

As noted in the introduction section, Monte Carlo simulation has been widely used 

to predict the cost of projects. Among the existing approaches, such as adding a fixed 

percentage of the total cost as a risk premium or inflating the estimated cost of materials to 

the expected midpoint of the construction period, the Monte Carlo approach is the only 

method capable of modeling short-term variations in asphalt cement price. However, the 

predictability of this method depends significantly on the accuracy of the input 

distributions; furthermore, this method does not consider the effects of autocorrelation in 

the historical records of asphalt cement price. Conversely, time series forecasting models 

are independent of any assumption or fitted distributions, and their only input is the actual 

historical price of asphalt cement. Furthermore, time series models can capture the effects 

of autocorrelation in the price of asphalt cement appropriately. In this section, a Monte 

Carlo simulation model is developed to forecast the future values of asphalt cement price, 

and the results are compared to those of the developed time series forecasting models. 

Figure 3-9 shows the histogram of the escalation rates in the history of asphalt 

cement price. In the current state of practice, fitting a triangular distribution to the 

histogram is recommended (Back et al. 2000). The mode parameter, lower boundary, and 

upper boundary parameters of the fitted triangular distribution are estimated to equal 

0.00355, –0.31063, and 0.29873, respectively. The primary value of asphalt cement price 

is set to the actual price in December 2013 (i.e., $575). 
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A simulation process is conducted to generate future random paths of the price of 

asphalt cement from January 2014 to December 2014; Figure 3-10 shows the generated 

random paths. Each path is a possible scenario for the future value of asphalt cement during 

the out-of-sample forecasting period.  

 

 

Figure 3-9: Histogram of escalation rates in the history of asphalt cement price 

 

More than 100,000 random paths are generated during the simulation process, and 

the means of the simulated future values of asphalt cement at each time point during the 

out-of-sample period are calculated. Figure 3-11 shows the expected values of future 

asphalt cement price as calculated by Monte Carlo simulation and compares them to the 

actual values.  
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Figure 3-10: Random paths of future values of asphalt cement price generated by Monte Carlo 

simulation 

 

 

Figure 3-11: Results of the Monte Carlo simulation compared to the actual prices of asphalt cement 
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The results of the simulation process indicate that the MAPE, MSE, and MAE of 

the Monte Carlo model are 3.64%, 827.89, and 21.47, respectively. All three error 

measures are higher for the Monte Carlo simulation than for all of the developed time series 

models. To analyze the predictability of the Monte Carlo simulation for asphalt cement 

price more rigorously, thirty-four other distributions, including normal, log normal, 

gamma, beta, Cauchy, and Weibull distribution, were fitted to the histogram of the price 

escalation rates. The results show that a Cauchy distribution with mean of 0 and a standard 

deviation of 0.02563 has the best goodness-of-fit. Using the Cauchy distribution instead of 

the triangular distribution improves the predictability of the Monte Carlo simulation with 

a MAPE of 2.26%. However, three out of the four developed time series models, Holt ES, 

ARIMA, and seasonal ARIMA, still have better predictability compared to the Monte 

Carlo simulation using the Cauchy distribution. It should be noted that time series 

forecasting models are faster and computationally less expensive than the Monte Carlo 

simulation as well. 

3.7. Summary 

The typical existing methods for modeling asphalt cement price (i.e., adding a fixed 

percentage of the total estimated cost as the risk premium or inflating the estimated cost of 

materials to the expected midpoint of the construction period) do not explicitly take into 

account that the price of asphalt cement is subject to significant variations, even over a 

short period of time. A more advanced alternative, Monte Carlo simulation, has been 

widely used to quantify the range and likelihood of project cost. However, Monte Carlo 

simulation cannot consider the effects of autocorrelation in the price of asphalt cement 
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when forecasting its future values, and the simulation’s predictability depends heavily on 

the accuracy of the input distributions.  

On the contrary, univariate time series forecasting models forecast a variable using 

only its historical observations and can properly capture the effects of autocorrelation in 

the time series of a variable to predict its future values. In this empirical study, the time 

series of asphalt cement price is analyzed, and its major characteristics are identified. The 

results of this empirical study show that the time series data of asphalt cement price is 

autocorrelated, non-stationary, and does not have a very strong seasonal pattern. Based on 

the identified time series characteristics, four univariate time series forecasting models, 

Holt ES, Holt-Winters ES, ARIMA, and seasonal ARIMA, were created to take into 

account the short-term variations in asphalt cement price in forecasting its future values. 

The results of in-sample model fitting show that all four models have proper goodness-of-

fit. Residual analysis reveals that the underlying conditions of the models hold true, and, 

therefore, these time series models are usable. The results of the out-of-sample forecasting 

show that all four time series models can predict the future value of asphalt cement price 

with proper accuracy, but the ARIMA and Holt ES models are the most accurate among 

the four with less than 2% error. Furthermore, the results of this study show that time series 

forecasting models can predict the future values of asphalt cement more accurately 

compared to the previously existing methods, including Monte Carlo simulation.  

This chapter makes two primary contributions to the existing body of knowledge: 

(1) a characterization of the variations in asphalt cement prices over time; and (2) the 

creation of univariate time series forecasting models to predict future values of asphalt 

cement prices. The results of this study can help both owners and contractors improve 
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budgeting processes, prepare more accurate cost estimates, and reduce the risk of asphalt 

cement price variations in transportation projects. Although this study was conducted using 

the state of Georgia’s asphalt cement price index, the proposed methodology can be used 

for similar datasets in other states and internationally. 

As observed in the validation section, because the out-of-sample forecasting 

process uses the forecast values of the lagged data points, the forecast errors tend to 

compound over time, resulting in larger errors. Therefore, univariate time series forecasting 

models may not perform well for long-term predictions. A potential solution to this 

limitation of univariate time series forecasting models is to create multivariate time series 

models that use historical records of the price of asphalt cement in addition to the historical 

records of several other variables (i.e., leading indicators). Identifying the time series 

leading indicators of asphalt cement price and creating multivariate time series forecasting 

models for this price could be a basis for future works. Furthermore, developing and 

evaluating risk management strategies and hedging mechanisms to control the 

consequences of asphalt cement price volatility, such as PACs, are topics for future studies. 
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CHAPTER 4: QUANTIFYING AND FORECASTING UNCERTAINTY 

IN THE PRICE OF ASPHALT CEMENT 

4.1. Introduction 

Before using any risk management strategy, it is necessary to measure, analyze, and 

forecast material price uncertainty and ensure that it is the proper time to employ the 

strategy. This chapter addresses the second research objective of this dissertation: 

quantifying and forecasting uncertainties in the price of asphalt cement. To achieve this 

objective, the remainder of this chapter is structured as follows. After a brief introduction 

to ARCH and GARCH time series volatility models, the time series dataset of the asphalt 

cement price index is introduced. The proposed research approach and steps conducted in 

this study then are described. In the first step, a univariate time series model is fitted to the 

asphalt cement price index time series to capture the conditional mean of asphalt cement 

price over time. Next, the residuals of the model are examined by a heteroscedasticity test 

to check whether the volatility in the price of asphalt cement is statistically significant. If 

heteroscedasticity exists, ARCH/GARCH models are created, and the conditional volatility 

of asphalt cement price is measured and modeled over time. The conditional volatility 

models then are validated, and their predictability is evaluated. Finally, conclusions and 

suggestions for future work are presented. This study’s primary contribution to the existing 

body of knowledge is systematically measuring and forecasting uncertainties in the price 

of asphalt cement over time. The results of this study can help transportation agencies 
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properly analyze asphalt cement price uncertainty and subsequently wisely implement their 

risk management strategies at the proper time. 

4.2. ARCH/GARCH Volatility Models 

The uncertainty (i.e., unpredictability) of a variable can be quantified based on the 

concept of conditional volatility, which is defined by the variance of the error term (Engle 

1982). Equation 1 shows a general regression model that can be used to estimate the price 

of asphalt cement. 

𝐴𝐶𝑃𝑡 = 𝑚𝑡 + 𝑒𝑡 

Where: 

ACPt is asphalt cement at time t 

mt is the conditional mean function or the mean value of asphalt cement price at time t 

et is the error term at time t and is distributed normally with a mean of 0 and variance of 

σ2
t 

Regular models simply assume that the variance of the error (i.e., σ2
t) is constant 

over time (i.e., homogeneity of variance) and that the deviations of the actual observations 

from the conditional mean calculated by the model follow a white noise process. In other 

words, the unpredictability of the response variable (i.e., asphalt cement price) is constant 

through time. However, this assumption is not valid in many cases (Engle 1982; Enders 

2008). 

In 1982, Engle observed that even if the residuals of a model follow the white noise 

process, their squared values might be autocorrelated. Based on this interesting 
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observation, he defined ARCH(L1) to model conditional volatility (i.e., conditional 

variance), which depends upon the information available through time t as a function of 

the square of the residuals as follows: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑒𝑡−𝑖

2

𝐿1

𝑖=1

 

∀𝑖 = 1, … , 𝐿1  𝛼𝑖 , 𝜔 > 0 

Where: 

ω is a constant 

L1 is the number of lags 

αi is the coefficient of the ith observation in the window of L1 lags 

ei is the residual of the regression model at time i 

In some cases, the ARCH model requires long lag lengths to capture the impact of 

historical observations on current volatility (Danielsson 2011). To address this issue, 

Bollerslev (1986) introduced the generalized version of the ARCH model, GARCH(L1,L2), 

which incorporates the impact of historical conditional volatilities in addition to historical 

observations to estimate current volatility as follows: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑒𝑡−𝑖

2

𝐿1

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝐿2

𝑗=1

 

∀𝑖 = 1, … , 𝐿1  𝑎𝑛𝑑 ∀𝑗 = 1, … , 𝐿2     𝛼𝑖, 𝛽𝑗 , 𝑎𝑛𝑑 𝜔 > 0 

Where: 

L2 is the number of lags for historical conditional volatilities 
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βj is the coefficient of the jth conditional volatility in the window of L2 lags 

σj is the conditional volatility at time j 

If L2 is equal to 0 in a GARCH model, it produces the same result as an ARCH model. The 

coefficients of the ARCH/GARCH models are estimated using MLE. 

The majority of the volatility models applied to real world problems belong to the 

ARCH/GARCH family (Danielsson 2011). Vilasuso (2002) used GARCH models to 

forecast currency exchange rate volatility. Karmakar (2005) developed GARCH models to 

estimate the conditional volatility of Indian stock markets. Joukar and Nahmens (2015) 

modeled the volatility of the ENR construction cost index using ARCH/GARCH models. 

Ilbeigi et al. (2016c) used GARCH models to improve forecasting of asphalt cement price 

index.  

4.3. Dataset 

In this study, the monthly asphalt cement price index in the state of Georgia is used 

to measure, model, and forecast uncertainty in the price of asphalt cement. GDOT 

determines the asphalt cement price index based on the average of the asphalt cement prices 

from the department’s monthly survey of approved asphalt cement suppliers. The 

maximum and minimum prices are excluded from the calculation of the index. The dataset 

consists of 229 observations from January 1996 to January 2015 (Figure 1-1). In this study, 

observations from January 1996 to December 2013 are considered for model creation, in-

sample model fitting, and parameter estimation. The last twelve observations (i.e., from 

January 2014 to December 2014) are used for out-of-sample forecasting and predictability 

evaluation. 
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4.4. Research Methodology 

In this study, ARCH/GARCH time series models are used to quantify and forecast 

uncertainties in the price of asphalt cement. As noted in the previous sections, uncertainty 

is defined as the variance of the error terms in a model that explains the variations in the 

mean of the historical observations (Engle 1982). Therefore, the first step of modeling 

uncertainties is to create the mean model, which is also called the conditional mean 

function. The conditional mean function can be any regular time series model, such as 

autoregressive moving average (ARMA), ARIMA, or seasonal ARIMA, that satisfies the 

underlying assumptions (e.g., the residuals of the model follow a white noise process) 

(Danielsson 2011). The error terms then are calculated, and the variation of their variances 

(i.e., volatility) is checked for statistical significance (i.e., heteroscedasticity). If 

heteroscedasticity exists (i.e., volatility is statistically significant), the ARCH/GARCH 

models are created and their parameters are estimated. Next, the ARCH/GARCH model is 

validated by conducting the heteroscedasticity test (ARCH test) on its residuals to make 

sure the model has captured the variations of the volatility properly. In other words, for the 

model to be acceptable, the variation of the variances of the residuals in the 

ARCH/GARCH model should not be statistically significant. Furthermore, the estimated 

volatilities using the ARCH/GARCH model are compared with the realized volatilities to 

evaluate the performance of the model more rigorously. Finally, out-of-sample forecasting 

is conducted to predict the future values of volatility and evaluate the predictability of the 

model.  

In summary, the following steps are applied to measure, model, and forecast the 

volatility of the asphalt cement price index: 
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1- Creating conditional mean function  

2- Heteroscedasticity testing on the residuals of the mean function to check whether 

the volatility is statistically significant 

3- Creating ARCH/GARCH models if heteroscedasticity exists 

4- Heteroscedasticity testing on the residuals of the ARCH/GARCH model to validate 

the model 

5- Measuring conditional volatility using the created ARCH/GARCH model 

6- Evaluating the model by comparing the estimated volatilities with realized 

volatilities 

7- Conducting out-of-sample forecasting for conditional volatility 

Figure 4-1 shows the process to quantify, model, and forecast uncertainties in asphalt 

cement price. 

 

Figure 4-1: Process to quantify, model, and forecast uncertainties in asphalt cement price 
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4.5. Volatility Model Development 

As noted before, the development of a volatility model consists of three major steps: 

(1) creating the conditional mean function, (2) conducting heteroscedasticity tests to check 

whether the volatility is statistically significant, and (3) creating ARCH/GARCH models.  

4.5.1. Creating the Conditional Mean Function 

Because the uncertainty of the asphalt cement price index is defined as the variance 

of the errors of the conditional mean function (mt), the first step in analyzing volatility is 

to create the conditional mean function. Ilbeigi et al. (2016a) proposed different types of 

univariate time series models for the asphalt cement price index and showed that an 

Autoregressive Moving Average (ARMA) with a trend and an intercept variable can 

properly fit to the data and forecast future values of the asphalt cement price index.  

The ARMA model consists of two parameters: p and q. These are integers that 

describe the order of AR and MA in the model. Because the original time series of the 

asphalt cement price index is non-stationary, its trend is captured in the model by using an 

integer variable that starts at 1 for the first month and increases incrementally by one unit 

afterward. Furthermore, to capture any possible seasonal pattern, twelve dummy variables 

representing each month are added into the model. Thus, the equation of the ARMA model 

for the time series of the asphalt cement price index is as follows: 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) = 𝑐 + 𝛼(𝑡𝑟𝑒𝑛𝑑) + ∑ 𝜑𝑖𝐴𝑅(𝑖)

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝑀𝐴(𝑗)

𝑞

𝑗=1

+ ∑ 𝛽𝑘𝑀𝑘

12

𝑘=1

 

Where: 

p is the order of the AR operator 
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q is the order of the MA operator 

c is the intercept 

α is the coefficient of the trend 

φi is the coefficient of the ith AR operator 

θj is the coefficient of the jth MA operator 

Mk is a dummy variable that is 1 if the observation belongs to month k and 0 otherwise 

βk is the coefficient of the binary variable of month k 

Optimal values for p and q are determined based on the AIC (Akaike 1998) and the 

BIC (Schwarz 1978). To select the proper model, different models with various 

combinations of p and q are studied. Model coefficients are determined using MLE. Results 

indicate that the ARMA(2,2) produces the lowest AIC and BIC, equal to 8.81 and 8.91, 

respectively. The significance level is considered equal to 5%. Because the p-values of the 

intercept, MA(1), and all monthly binary variables except those for May and August are 

considerably higher than the significance level, they are not statistically significant and can 

be removed from the model. Table 4-1 shows the results of the model.  

 

Table 4-1: Results of the ARMA(2,2) model 

Variable Coefficient t-Statistic P-Value 

Trend 2.6928 22.4296 0.0000 

AR(1) 1.3799 22.8986 0.0000 

AR(2) –0.4840 –8.1334 0.0000 

MA(2) 0.2060 2936.12 0.0000 

M5 5.8911 2.2167 0.0277 

M8 5.5038 2.0729 0.0394 

 Note: The variables that were not statistically significant at the 5% level were excluded from the table 
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The final equation of the ARMA model can be represented as follows: 

𝐴𝐶𝑃𝐼𝑡
̂ = 2.6928×𝑇𝑟𝑒𝑛𝑑 + 1.3799×𝐴𝑅(1) − 0.4840×𝐴𝑅(2) + 0.2060×𝑀𝐴(2)

+ 5.8911×𝑀5 + 5.5038×𝑀8 

The key underlying assumption of the ARMA models is that the residual must 

follow a white noise process with a mean of 0 and finite variance. Figure 4-2 shows the 

correlogram of the residuals; because the residuals of the model depict a white noise 

process, the model is reliable and can properly capture the variations of the conditional 

mean of the time series. Figure 4-3 shows the graph of the actual, fitted, and residuals of 

the ARMA model. 

Table 4-2 shows the results of the Ljung-Box Q test. Because the p-values for all 

lag levels are higher than the significance level of 5%, the null hypothesis that the data are 

independently distributed cannot be rejected. Thus, the residuals do not show any serial 

correlation and can be considered a white noise process. 

 

 

Figure 4-2: Correlogram of the residuals of the ARMA(2,2) model 
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Table 4-2: Results of the Ljung-Box Q test for the residuals of the ARMA(2,2) model 

Lag Autocorrelation Q-Statistic P-Value 

1 –0.012 0.0330  

2 –0.021 0.1283  

3 0.071 1.2763  

4 –0.030 1.4812 0.224 

5 –0.106 4.0581 0.131 

6 0.100 6.3503 0.096 

7 0.026 6.5089 0.164 

8 –0.144 11.283 0.046 

9 0.031 11.510 0.074 

10 –0.058 12.308 0.091 

11 –0.002 12.309 0.138 

12 0.119 15.620 0.075 

13 0.034 15.900 0.103 

14 –0.036 16.208 0.134 

15 –0.030 16.428 0.172 

16 0.005 16.433 0.227 

17 0.024 16.575 0.280 

18 0.036 16.888 0.326 

19 0.053 17.562 0.350 

20 0.023 17.691 0.409 

 

 

Figure 4-3: Actual, fitted, and residuals of the ARMA(2,2) model 
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4.5.2. Heteroscedasticity Test 

After fitting the conditional mean function, the volatility of the asphalt cement price 

index should be checked for statistical significance. Although the residuals of the 

conditional mean function follow a white noise process, Engle (1982) found that the square 

of the residuals might not represent a white noise process, indicating the existence of 

heteroscedasticity. Heteroscedasticity indicates that the variability of the residuals of some 

subpopulations differs from that of other subpopulations. In other words, the 

unpredictability of asphalt cement, which is the source of material price volatility risk, 

differs over time. Engle (1982) introduced the ARCH test, which regresses the squared 

residuals on lagged squared residuals and a constant to test if the heteroscedasticity effect 

is statistically significant. The results of the ARCH test indicate that the F-statistic is 

98.8731 with a p-value of 0.0000, meaning that the null hypothesis of the absence of the 

ARCH components can be rejected strongly. In other words, the volatility is statistically 

significant. 

4.5.3. Creating ARCH/GARCH Models 

Because the results of the heteroscedasticity test indicate that the volatility of the 

asphalt cement price index is statistically significant, ARCH/GARCH models can be 

created to measure, model, and forecast the uncertainty (i.e., unpredictability) of asphalt 

cement price. The most important part of the modeling process is determining the proper 

number of lags in equations 2 and 3 (i.e., L1 and L2). Different models with various 

combinations of L1 and L2 are considered in order to select the proper model. Best model 

selection is conducted based on the AIC (Akaike 1998) and the BIC (Schwarz 1978).  
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The results indicate that the GARCH(2,1) model produces the lowest AIC and BIC, 

equal to 8.1821 and 8.3334, respectively. Table 4-3 shows the estimated coefficients of the 

conditional volatility model. 

 

Table 4-3: Coefficients of the conditional volatility model for the asphalt cement price index 

Conditional Volatility Model (GARCH(2,1)) 

Variable Coefficient z-Statistic P-Value 

ω 212.1689 9.7002 0.0000 

α1 0.776931 21.5847 0.0000 

α2 0.775087 22.5394 0.0000 

β1 –1.003282 –505.5455 0.0000 

Note: The variables that were not statistically significant in 5% significant level were excluded from the table 

 

After creation of the GARCH model, a heteroscedasticity test was conducted on the 

residuals of the GARCH model to check the effectiveness of the modeled volatility. The 

results of the ARCH test indicate that the F-statistic is 0.1695 with the p-value of 0.6810, 

meaning that the null hypothesis of the absence of the ARCH components cannot be 

rejected. In other words, the GARCH(2,1) model can successfully capture variations in 

volatility, and the volatility of the residuals of the GARCH model is not statistically 

significant.  

4.6. Measuring Conditional Volatility 

After selecting the best GARCH model using AIC and BIC criteria, estimating the 

coefficients of the model using MLE, analyzing the capability of the model to capture 

variations in volatility using an ARCH test, and analyzing the residuals of the model for 

white noise processes, the created model can be used to measure conditional volatility 

through time. Figure 4-4 shows the calculated conditional volatility.  
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Figure 4-4: Calculated conditional volatility using GARCH(2,1) 

 

Figure 4-4 indicates that between January 2002 and September 2007, volatility in 

the asphalt cement price index was lower (i.e., the price index was more predictable) 

relative to the period before January 2002. However, volatility increased suddenly in July 

2008 and peaked in September 2008. This very large shock is followed by two other 

relatively large shocks in March 2010 and June 2011. Generally speaking, the volatility 

(i.e., unpredictability) of the asphalt cement price index was high between June 2008 and 

August 2012. However, volatility was much lower after August 2012 when compared with 

any other period of time since March 1996. 
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4.7. Validating the Model 

As noted earlier, volatility is a latent variable and cannot be measured directly 

(Engle and Patton 2001). Therefore, model results cannot be compared with actual 

observed volatilities. Realized volatility is an alternative; it can provide a rough estimate 

of the actual volatilities (Andersen and Bollerslev 1998) and be used in place of actual 

volatility as a basis for evaluating the performance of the GARCH model (Danielsson 

2011). The estimated and forecast volatilities of the GARCH model and the realized 

volatilities then can be checked for general consonance. Consonance is tested by the 

Granger Causality test (Granger 2001). The most common method of calculating realized 

volatility is calculating the square of the changes (Karmakar 2005). Vilasuso (2002) used 

this method to estimate the realized volatilities of currency exchange rates and 

subsequently evaluated the performance of his GARCH model. Figure 4-5 compares the 

estimated conditional volatilities of the asphalt cement price index using the GARCH(2,1) 

model and the realized volatilities derived from the square of monthly changes. 

 

Figure 4-5: Comparison of estimated conditional volatilities and realized volatilities based on the 

square of the monthly changes 
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Balaban (2004) suggested calculating the average monthly volatility for daily 

observations such as currency exchange rates (i.e., calculating the sum of the daily 

volatilities using the Vilasuso (2002) method and dividing by the number of trading days). 

Applying this approach, Joukar and Nahmens (2015) measured the average realized 

volatility of the monthly CCI for 6-month periods and used the results to evaluate their 

volatility forecasting model. In this study, the average realized volatilities for 2-month, 4-

month, and 6-month intervals are compared with the averages of the estimated and forecast 

volatilities over those time periods. Figure 4-6 to Figure 4-8 show the results. 

 

Figure 4-6: Comparison of conditional volatilities and average realized volatilities for 2-month 

intervals 
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Figure 4-7: Comparison of conditional volatilities and average realized volatilities for 4-month 

intervals 

 

 

Figure 4-8: Comparison of conditional volatilities and average realized volatilities for 6-month 

intervals 
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The results of the Granger Causality test of the conditional volatilities and realized 

volatilities, calculated based on either the square of the monthly changes (Figure 4-5) or 

the average realized volatilities over two, four, or six months (Figure 4-6 to Figure 4-8), 

indicate that the estimated conditional and realized volatilities display statistically 

significant consonance. As an example, Table 4-4 shows the results of the Granger 

Causality test for the monthly conditional and monthly realized volatility; results indicate 

that the null hypothesis that time series data do not have information to explain each other 

are strongly rejected, even at the 1% significance level. 

4.8. Forecasting Conditional Volatility 

After creating the GARCH model, estimating its parameters, measuring the 

conditional volatility for the in-sample data points, and validating the results of the in-

sample model fitting, the model can be extrapolated to conduct out-of-sample forecasting. 

As noted earlier, the out-of-sample period is from January 2014 to December 2014.  

 

Table 4-4: Results of the Granger Causality test for conditional and realized volatility 

Dependent Variable: Conditional Volatility 

Explanatory Variable Chi-square Degree of Freedom P-Value 

Realized Volatility 210.5807 2 0.0000 

Dependent Variable: Realized Volatility 

Explanatory Variable Chi-square Degree of Freedom P-Value 

Conditional Volatility 13.3457 2 0.0013 

 

Figure 4-9 compares the forecast and estimated values of asphalt cement price 

volatility during the out-of-sample period. The forecast values are calculated by 
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extrapolating the developed model. The estimated values of asphalt cement price volatility 

are quantified using the GARCH model if the in-sample period is extended to cover the 

entire dataset (Ilbeigi et al. 2017). The results show that the MAPE is less than 2.7%, 

indicating that the model can be extrapolated to conduct the out-of-sample forecasting 

properly. 

 

 

Figure 4-9: Forecast volatility of the asphalt cement price index using GARCH(2,1) 

 

The results correctly indicate that the forecast volatility values for the out-of-sample 

forecasting period are relatively low. Therefore, the unpredictability and level of 

uncertainty in the conditional mean model will be low in that period. 

4.9. Summary 

Asphalt cement is one of the most important materials in highway construction 

projects. However, significant volatility in the price of asphalt cement increases risk for 
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contractors and can lead to price speculation and inflated bid prices. Many transportation 

agencies use different risk management strategies, such as offering PACs in contracts, 

utilizing owner buying power, or providing flexible project start times, to control the 

consequences of the uncertainty in the price of asphalt cement. However, before applying 

those strategies, transportation agencies need to measure, analyze, and forecast uncertainty 

in the price of asphalt cement to make decisions properly about implementing the 

strategies. In this chapter, the uncertainty in asphalt cement price was measured and 

forecast using ARCH/GARCH models. Results indicate that a GARCH(2,1) model with a 

conditional mean function of ARMA(2,2) can properly model the conditional volatilities 

in the price of asphalt cement. 

The outcomes of the GARCH model show that the uncertainty of the asphalt cement 

price index was considerable between March 1996 and January 2002 and between July 

2007 and August 2012. Between August 2012 and December 2013, uncertainty was 

comparatively low. Furthermore, the results of the out-of-sample forecasting process 

indicate that the developed model can predict the uncertainty in the price of asphalt cement 

with less than 3% error.  

This study’s primary contributions to the existing body of knowledge are 

measuring, modeling, and forecasting uncertainties in the price of asphalt cement over 

time. The results of this study can help transportation agencies systematically measure, 

analyze, and forecast the uncertainties in the price of asphalt cement and implement risk 

management strategies at the right time. Although this study was conducted using the state 

of Georgia’s asphalt cement price index, the proposed methodology can be used for similar 

datasets in other states and internationally. After quantifying the uncertainties in the price 
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of asphalt cement, development of quantitative models to determine the proper risk 

premiums and financial value of the risk management strategies could be a topic for future 

works and studies.   
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CHAPTER 5. EFFECTS OF PACS ON SUBMITTED BID PRICES 

5.1. Introduction 

The primary purpose of offering PACs in construction projects is to encourage 

contractors to exclude extra risk premiums from their cost estimations and submit lower 

bid prices. However, there is little knowledge about empirical assessment of PACs and 

their actual effects on bid prices. The third research objective of this dissertation is 

addressed in this chapter. To achieve the objective, the remainder of this chapter is 

structured as follows. After describing the research methodology and the steps taken in this 

empirical investigation, the characteristics of the dataset used in this research are defined. 

The multiple steps involved in modeling the variations in contractors’ submitted bid prices 

for major asphalt line items then are explained. Finally, the results of the statistical models 

are interpreted, and the findings of this research and indications for future work are 

summarized. The primary contributions of this chapter to the body of knowledge are (1) 

the creation of several multivariate regression models that have the power to explain the 

variations in highway contractors’ submitted bid prices for major asphalt line items; and 

(2) the empirical assessment of whether offering PACs contributes to the variations in 

contractors’ submitted bid prices for major asphalt line items in highway projects. This 

work is expected to contribute to the construction engineering and management community 

by helping capital planners of transportation agencies systematically evaluate the effects 

that their risk-sharing strategies, such as material PACs, have on bids submitted by their 

contractors.  
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5.2. Research Methodology 

Multivariate regression analysis was devised to identify significant variables that 

can explain variations in contractors’ submitted bids for major asphalt line items. Several 

steps were followed to create multivariate regression analysis models:  

1. Conduct a literature review and interview transportation cost professionals to 

identify a potential list of explanatory variables for modeling the variations in 

contractors’ submitted bid prices (e.g., project duration, number of bidders, 

quantity of asphalt line items, average price of asphalt cement, and availability of 

PACs in the contract) 

2. Develop a dataset of submitted bid prices for major asphalt line items in 

transportation projects and gather information about the potential explanatory 

variables for these projects 

3. Categorize the projects into two groups of asphalt-intensive and non-asphalt-

intensive projects 

4. Identify unusual observations (i.e., outliers) in the dataset using a statistical test 

based on standardized residuals and remove these data points from the dataset 

5. Develop scatter plots of the contractors’ submitted bids against the potential 

explanatory variables and conduct the Pearson correlation test to determine whether 

any nonlinear relationships (e.g., quadratic, cubic, logarithmic, exponential, or 

power) exist between the submitted bid prices and any of the potential explanatory 

variables and, if needed, apply respective variable transformation 
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6. Apply a backward elimination algorithm to create the best subset multivariate 

regression model using information from potential explanatory variables to 

describe variations in the contractors’ submitted bids 

7. Evaluate the explanatory power of the multivariate regression model using 

ANOVA 

8. Diagnose multicollinearity in the developed multivariate regression model using 

the variance inflation factor (VIF) test to confirm that the model is reliable and the 

results are not misleading 

9. Analyze the residuals of the multivariate regression model to examine the 

appropriateness of the modeling assumptions 

10. Analyze the results and interpret the findings of the multivariate regression model 

Figure 5-1 shows the process of conducting the multivariate linear regression analysis to 

examine the effects of PACs on bid prices. 

 

Figure 5-1: Process to create regression models to examine effects of PACs on bid prices 
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5.3. Dataset 

Contractors’ submitted bid data were collected from 841 highway project contracts 

awarded in the state of Georgia from August 2009 to November 2012. These projects were 

distributed geographically across the seven districts throughout the state. The contract 

values of these projects range from $33,900 to $67,494,183 with an average value of 

$2,687,833 and a median of $871,909. The duration of these projects ranges from 102 to 

2049 days, with an average of 366 days and a median of 312 days. Unit-price bids ($/ton) 

submitted by contractors were collected for five major asphalt line items from these project 

contracts. These asphalt line items represent five major types of asphalt mixtures widely 

used in highway projects in the state. Table 5-1 describes these items and identifies the 

number of observations for each line item in our dataset. 

Highway projects differ with regard to the relative significance of asphalt line item 

costs in the total project cost. To address this major difference, the projects in the dataset 

were classified into two large groups: (1) asphalt-intensive projects, such as resurfacing, 

widening, and intersection improvement projects, in which there are several asphalt line 

items, and the costs of these items represent a considerably large portion of total project 

cost; and (2) non-asphalt-intensive projects, such as bridge replacement and drainage 

construction, in which the costs of asphalt line items are a small portion of total project 

cost. 
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Table 5-1: Major asphalt mixture line items in Georgia 

Line Item 

ID 
Description 

3130 Recycled Asphaltic Concrete 12.5mm, Superpave, GP2, Including Bitumen Materials 

3190 Recycled Asphaltic Concrete 19mm, GP1 or GP2 Including Bitumen Materials 

1812 Recycled Asphaltic Concrete Levelling Including Bitumen Materials 

1802 Recycled Asphaltic Concrete Patching Including Bitumen Materials 

4510 Recycled Asphaltic Concrete 12.5mm, Superpave, GP2, Including Polymer-Modified Bitumen Materials 

 

5.4. Modeling the Variations of Contractors’ Submitted Bid Prices for 

Major Asphalt Line Items 

A multivariate linear regression analysis was devised to create proper models for 

explaining variations in contractors’ submitted bid prices for main asphalt line items using 

the information available from the set of identified potential explanatory variables.  

5.4.1. Defining the Variables 

An extensive literature review and an interview with transportation cost 

professionals were conducted to identify a potential list of explanatory variables for 

modeling the variations in contractors’ submitted bid prices. The following factors were 

identified as potential explanatory variables. 

1- Duration of the project: The duration of a project may be an important effective 

factor in determining the bid price. Sonmez (2008), Lowe et al. (2006), and Trost 

and Oberlender (2003) considered project duration to model costs of construction 

projects. The unit of measure for project duration in this study is days. 

2- Quantity of the line item: The quantity of the line item may be an important factor 

in determining its price, possibly due to the existence of economy of scale. Carr 
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(1989) found that the cost of an activity is related to the quantity of the activity in 

construction projects. 

3- Total bid price: Total bid price shows the size of the project. Ahmad and Minkarah 

(1998) revealed that bid pricing decisions are affected by the project size.  

4- Relative value of the asphalt line item: This variable shows the relative dollar value 

of the line item compared to the total bid price of the project by calculating the ratio 

of the total price of the item over the total bid price. This variable is an indicator of 

the relative importance of the line item compared to the other line items in the 

project. Our interviews with transportation cost professionals indicated the 

importance of this factor in explaining variations in the bid prices submitted by 

contractors.     

5- Number of bidders: The number of bidders is an indicator of competition in the 

market. Carr (2005) presented a quantitative analysis of the impact of competition 

on project bid prices and concluded that bid prices submitted for a project increase 

as the level of competition in the market decreases. 

Asphalt cement is one of the most important input commodities in transportation 

projects. Wang and Liu (2012) statistically showed that there is a direct relationship 

between asphalt cement price and the submitted bid prices of asphalt mixtures. The 

following two explanatory variables are used to investigate the relationship between the 

price of asphalt cement and the submitted bid prices of the five major asphalt line items. 

6- Asphalt cement price index at the bid date: GDOT determines the asphalt cement 

price index based on the arithmetic average of asphalt cement prices from the 
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department’s monthly survey of approved asphalt cement suppliers. The maximum 

and minimum prices are excluded from the calculation of the index. 

7- Past trend of asphalt cement price index: The past trend of the asphalt cement 

price index might be an informative factor that affects contractors’ submitted bid 

prices for asphalt line items. This variable is determined for each month based on 

the slope of the trend line fitted to the last three months of price indexes.  

8- Location of the project: A distinction should be made between urban and rural 

locations considering that projects in urban areas may have access to more suppliers 

of liquid asphalt or may be closer to these suppliers compared to projects in rural 

locations. GDOT divides the state into seven districts: District One – Gainesville, 

District Two – Tennille, District Three – Thomaston, District Four – Tifton, District 

Five – Jesup, District Six – Cartersville, and District Seven – Chamblee. All 

projects in District Seven (Metro Atlanta) are urban projects, whereas most projects 

in the other districts, especially Districts Two, Three, and Four, are rural projects. 

Considering the availability of resources, distance from suppliers of liquid asphalt, 

and weather conditions, the location of a project may affect submitted bid prices. 

Ahmad and Minkarah (1988) surveyed 400 general contractors and found that 

project location is one of the most important criteria that affect bid prices. We have 

used several binary indicators to address this issue. The value of the binary indicator 

of each region is 1 if the project is located in the region. These binary variables 

representing project geographical location have been used as control variables in 

our regression models as possible candidates to explain variations in submitted bid 

prices. 
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9- Eligibility of the projects for PAC: One of the major goals of this research is to 

examine the effect of offering PAC on submitted bid prices for main asphalt line 

items. If a project is eligible for PAC the value of this binary variable becomes 1 

and otherwise, it becomes 0. 

Information about existing and upcoming projects in the market might affect 

contractors’ bidding behaviors; Akintoye (2000) identified market conditions as one of the 

main factors influencing bid prices. GDOT announces its upcoming new projects for each 

fiscal year (from July 1 to the following June 30) in advance. Thus, the number of existing 

and upcoming projects, estimated dollar values of these projects, and total quantity of main 

asphalt line items in these projects might affect contractors’ bid price decisions for a 

specific project. We consider the following three variables to capture information about 

existing and upcoming projects in the region where the project was let.  

10- Annual number of projects in the region: This variable is the total number of 

existing and upcoming projects in the project’s region in the fiscal year that the 

project was let. 

11- Annual value of the projects in the region: This variable is the total annual dollar 

value of all existing and upcoming projects in the project’s region in the fiscal year 

that the project was let.  

12- Annual quantity of asphalt mixtures in the region: This variable is the total 

quantity of existing and upcoming asphalt mixtures in the project’s region in the 

fiscal year that the project was let. 
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In addition, we consider similar variables to capture market conditions in GDOT 

districts other than the region in which the project was let. These variables represent market 

conditions in the neighboring regions that might affect bidders’ pricing decisions.  

13- Annual number of projects in other regions: This variable is the total number of 

existing and upcoming projects in the other regions in the fiscal year that the project 

was let.  

14-  Annual value of the projects in other regions: This variable is the total annual 

dollar value of all existing and upcoming projects in the other regions in the fiscal 

year that the project was let.  

15- Annual quantity of asphalt mixture in other regions: This variable is the total 

quantity of existing and upcoming asphalt mixtures in the other regions in the fiscal 

year that the project was let.  

5.4.2. Detecting Unusual Observations 

Outliers should be identified and removed from the dataset because unusual 

observations are distant from other observations and therefore make the results of 

regression analysis unreliable. A statistical test based on standardized residuals and 

leverage values (Neter et al. 1996) was used to detect unusual observations. A data point 

was considered unusual if the absolute value of the standardized residual is greater than 2 

or if the leverage value is more than 3 times the number of model coefficients divided by 

the number of observations. Table 5-2 shows the number of unusual observations removed 

from the dataset for each asphalt line item. Only a small fraction of data points was 

identified as outliers for these asphalt line items; most unusual observations were from 
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projects with very small quantities of asphalt mixtures. The remaining data points were 

large enough to conduct meaningful statistical analysis. 

 

Table 5-2: Number of unusual observations in the dataset for each major asphalt line item 

Line Item 

ID 

Number of Observations 
Number of Unusual 

Observations 

Asphalt 

Intensive 

Non-

Asphalt-

Intensive 

Asphalt 

Intensive 

Non-

Asphalt-

Intensive 

3130 216 45 8 0 

3190 98 82 4 0 

1812 611 92 13 2 

1802 326 134 9 3 

4510 79 18 3 0 

 

5.4.3. Scatter Plots and Variable Transformation 

Scatter plots of the identified potential explanatory variables and contractors’ 

submitted bid prices were developed to determine whether any nonlinear relationships 

(e.g., quadratic, cubic, logarithmic, exponential, or power) exist between submitted bid 

prices and any of the potential explanatory variables. The results indicate that using the 

natural logarithm of quantity and total bid price, instead of these variables in their original 

forms, leads to more appropriate regression models. Furthermore, Pearson correlation 

coefficients between submitted bid prices and the potential explanatory variables were 

calculated. The results indicate that the linear correlations between natural logarithm 

transformed forms of quantity and total bid price and submitted bid prices are higher than 

those between the original forms of quantity and total bid price and submitted bid prices. 
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5.4.4. Best Subset Regression Models  

A best subset regression model was created to explain the variations in submitted 

bid prices for each main asphalt line item using the information available in the potential 

explanatory variables. A backward elimination algorithm (Webster 2013) was applied to 

determine the combination (i.e., subset) of potential explanatory variables that can best 

model the variations in submitted bids for main asphalt line items in each group of projects. 

Table 5-3 and Table 5-4 show the coefficients and t-statistics of the best subset regression 

models created for explaining the variations in the five main asphalt line items for asphalt-

intensive and non-asphalt-intensive projects, respectively. A regression model for item 

4510 for non-asphalt-intensive projects was not possible due to lack of observations. 

All specified coefficients are significant at the 5% level; therefore, the contribution 

of the variables with non-zero coefficients statistically significantly explains the variations 

in the submitted bid prices for each asphalt line item. The adjusted R-squared values 

indicate that all regression models can be considered good fits for observed submitted bid 

prices for major asphalt line items.  
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Table 5-3: Coefficients and t-statistics of the regression models for major asphalt line items of the asphalt-

intensive projects 

Variables 3130 3121 1812 1802 4510 

Constant 
59.53 

(12.35) 

–14.12 

(–1.06) 

45.694 

(6.68) 

116.54 

(9.07) 

53.66 

(4.72) 

Ln Quantity for the Item 
–2.7527 

(–9.68) 

–10.252 

(–7.86) 

–6.272 

(–13.79) 

–12.374 

(–11.03) 

–5.574 

(–8.24) 

Ln Total Bid Price N/A 
9.249 

(6.58) 

3.653 

(6.17) 
N/A 

2.87 

(3.98) 

AC Index at the Bid Date 
0.0565 

(9.320) 

0.0308 

(3.59) 

0.033 

(6.04) 

0.074 

(4.19) 

0.051 

(4.76) 

Number of Bidders 
–0.789 

(–2.90) 
N/A 

–0.579 

(–3.50) 
N/A N/A 

Relative Value of the Line Item N/A 
69.53 

(3.62) 

48.503 

(10.25) 

51.84 

(3.66) 
N/A 

Duration of the Project N/A N/A 
–0.011 

(–3.48) 
N/A N/A 

Past Trend of the AC Index N/A N/A 
0.056 

(2.34) 
N/A N/A 

PAC Eligibility of the Project N/A N/A 
9.235 

(6.48) 
N/A N/A 

Location of the Project: Region 1 
–4.547 

(–2.97) 
N/A N/A N/A 

–6.052 

(–2.77) 

Location of the Project: Region 2 N/A N/A N/A 
10.661 

(3.14) 
N/A 

Location of the Project: Region 3 
–3.678 

(3.010) 
N/A 

–4.812 

(–5.68) 
N/A 

–4.392 

(–2.22) 

Location of the Project: Region 4 
3.183 

(2.52) 

5.094 

(2.14) 

4.196 

(5.17) 

16.694 

(3.22) 
N/A 

Location of the Project: Region 5 
5.806 

(5.31) 

9.940 

(5.12) 

6.556 

(8.19) 

16.703 

(3.88) 
N/A 

Location of the Project: Region 6 N/A N/A N/A 
–12.204 

(–2.69) 
N/A 

Location of the Project: Region 7 N/A N/A N/A N/A N/A 

Annual Number of Projects in the Region N/A N/A NA N/A N/A 

Annual Value of Projects in the Region N/A N/A N/A N/A N/A 

Annual Quantity of Asphalt Mixture in the Region 
5.16×10–6 

(2.43) 
N/A 

2.93×10–6 

(4.750) 

1.17×10–5 

(2.33) 
N/A 

Annual Number of Projects in Other Regions N/A N/A 
–0.016 

(–2.81) 
N/A N/A 

Annual Value of Projects in Other Regions N/A N/A N/A N/A N/A 

Annual Quantity of Asphalt Mixture in Other Regions N/A N/A N/A N/A N/A 

R-Sq (adj) 60.1% 66.2% 57.7% 57.8% 64.2% 

Note: t-statistics are shown in parentheses 
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Table 5-4: Coefficients and t-statistics of the regression models for major asphalt line items of the non-asphalt-

intensive projects 

Variables 3130 3121 1812 1802 4510 

Constant 
64.94 

(4.35) 

18.86 

(1.40) 

36.35 

(2.62) 

–100.26 

(–1.80) 
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Ln Quantity for the Item 
–6.56 

(–8.48) 

–10.463 

(–9.59) 

–5.557 

(–9.94) 

–13.959 

(–14.92) 

Ln Total Bid Price 
4.50 

(4.57) 

6.870 

(5.64) 

3.146 

(3.25) 

8.066 

(4.40) 

AC Index at the Bid Date N/A 
0.035 

(4.66) 

0.051 

(5.29) 

0.116 

(2.20) 

Number of Bidders 
–1.002 

(–2.22) 
N/A N/A N/A 

Relative Value of the Line Item N/A 
81.06 

(3.26) 
N/A N/A 

Duration of the Project N/A N/A N/A N/A 

Past Trend of the AC Index N/A N/A N/A 
0.935 

(2.86) 

PAC Eligibility of the Project N/A N/A N/A N/A 

Location of the Project: Region 1 N/A N/A N/A N/A 

Location of the Project: Region 2 N/A N/A 
7.216 

(2.79) 
N/A 

Location of the Project: Region 3 
–3.662 

(1.42) 
N/A N/A 

–15.566 

(–2.57) 

Location of the Project: Region 4 
11.559 

(2.58) 

7.935 

(3.52) 

10.232 

(4.20) 
N/A 

Location of the Project: Region 5 
8.786 

(2.55) 

5.884 

(3.26) 

8.945 

(3.29) 
N/A 

Location of the Project: Region 6 N/A N/A N/A N/A 

Location of the Project: Region 7 N/A N/A N/A N/A 

Annual Number of Projects in the Region N/A N/A N/A N/A 

Annual Value of Projects in the Region N/A N/A N/A 
1.4×10–7 

(3.01) 

Annual Quantity of Asphalt Mixture in the Region N/A N/A N/A N/A 

Annual Number of Projects in Other Regions 
–0.036 

(–2.61) 
N/A N/A N/A 

Annual Value of Projects in Other Regions N/A N/A N/A 
2.1×10–7 

(4.06) 

Annual Quantity of Asphalt Mixture in Other Regions N/A N/A N/A 
–1.63×10–5 

(–2.24) 

R-Sq (adj) 70.7% 73.2% 63.9% 69.0% 

Note: t-statistics are shown in parentheses 
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5.4.5. ANOVA Tests 

ANOVA (Webster 2013) is a statistical test that was used to diagnose the goodness 

of the developed regression models for the five asphalt line items. ANOVA was used to 

examine the statistical explanatory power of the developed regression models for asphalt 

line items. The results of the ANOVA tests indicate that the null hypotheses are strongly 

rejected at the 1% significance level for all models. In other words, we cannot reject the 

statement that the developed regression models for explaining the variations in the 

submitted bid prices are statistically reliable; therefore, the models have statistically 

significant explanatory power to describe the variations in the submitted bid prices for 

major asphalt line items. Table 5-5 shows an example of the results of the ANOVA 

performed on the regression model created for asphalt line item 3130 in asphalt-intensive 

projects. Because the p-value is much smaller than the significance level (i.e., it was 

considered 1% in this study), the null hypothesis is rejected, thus indicating that the model 

has significant explanatory power. 

 

Table 5-5: Results of the ANOVA test for item 3130 in asphalt-intensive projects 

Source 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Squares 
F-Value P-Value 

Regression 9 11238.8 1248.8 35.67 0.000 

Residual Error 198 6931.1 35.0   

Total 207 18170.0    

 

5.4.6. Multicollinearity Diagnosis   

The VIF (Webster 2013) was calculated for the developed regression models to 

diagnose any multicollinearity issues (i.e., if two or more explanatory variables in a 

multivariate regression model are highly correlated, the results might be misleading). Table 
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5-6 and Table 5-7 show the calculated VIFs for explanatory variables in the regression 

models of asphalt-intensive and non-asphalt-intensive projects, respectively. All calculated 

VIFs are less than 10, which is the recommended threshold for detecting multicollinearity 

in regression models (Webster 2013); therefore, multicollinearity does not exist in any of 

the five regression models.  

5.4.7. Residual analysis 

Q-Q plots, histogram of residuals, and scatter plots of residuals against fitted values 

and observation orders were built for the developed regression models to examine whether 

the model residuals follow any particular pattern. For example, Figure 5-2 depicts the 

residual plots of the regression model for item 1812 in asphalt-intensive projects. This 

figure indicates no violation of the basic assumptions of a regression model. The Q-Q plot 

of the residuals against normal distribution is close to a straight line, the histogram of the 

residuals is similar to a normal distribution, and no considerable pattern or trend is observed 

in the scatter plots of residuals against fitted values and observation orders. The results of 

the residual analysis for four other regression models are similar. 

 

 

Figure 5-2: Residual plots of the regression model for item 1812 in asphalt-intensive projects 
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Table 5-6: Variance inflation factor for the explanatory variables in the regression models of asphalt-intensive projects 

Variables 3130 3121 1812 1802 4510 

Ln Quantity for the Item 1.152 8.79 6.384 2.577 1.285 

Ln Total Bid Price N/A 7.12 6.870 N/A 1.206 

AC Index at the Bid Date 1.273 1.102 2.820 1.361 1.091 

Number of Bidders 1.513 N/A 1.300 N/A N/A 

Relative Value of the Line Item N/A 4.280 3.884 1.754 N/A 

Duration of the Project N/A N/A 3.625 N/A N/A 

Past Trend of the AC Index N/A N/A 1.328 N/A N/A 

PAC Eligibility of the Project N/A N/A 2.914 N/A N/A 

Location of the Project: Region 1 1.314 N/A N/A N/A 1.178 

Location of the Project: Region 2 N/A N/A N/A 1.201 N/A 

Location of the Project: Region 3 1.545 N/A 1.694 N/A 1.163 

Location of the Project: Region 4 1.417 1.034 1.557 1.824 N/A 

Location of the Project: Region 5 1.197 1.052 1.213 1.428 N/A 

Location of the Project: Region 6 N/A N/A N/A 1.440 N/A 

Location of the Project: Region 7 N/A N/A N/A N/A N/A 

Annual Number of Projects in the Region N/A N/A N/A N/A N/A 

Annual Value of Projects in the Region N/A N/A N/A N/A N/A 

Annual Quantity of Asphalt Mixture in the Region 1.553 N/A 1.951 1.723 N/A 

Annual Number of Projects in Other Regions N/A N/A 3.064 N/A N/A 

Annual Value of Projects in Other Regions N/A N/A N/A N/A N/A 

Annual Quantity of Asphalt Mixture in Other Regions N/A N/A N/A N/A N/A 
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Table 5-7: Variance inflation factor for the explanatory variables in the regression models of non-asphalt-intensive projects 

Variables 3130 3121 1812 1802 4510 

Ln Quantity for the Item 1.754 5.121 1.235 1.106 
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Ln Total Bid Price 1.728 3.801 1.241 1.096 

AC Index at the Bid Date N/A 1.009 1.036 3.575 

Number of Bidders 1.328 N/A N/A N/A 

Relative Value of the Line Item N/A 3.280 N/A N/A 

Duration of the Project N/A N/A N/A N/A 

Past Trend of the AC Index N/A N/A N/A 2.761 

PAC Eligibility of the Project N/A N/A N/A N/A 

Location of the Project: Region 1 N/A N/A N/A N/A 

Location of the Project: Region 2 N/A N/A 1.120 N/A 

Location of the Project: Region 3 1.363 N/A N/A 1.440 

Location of the Project: Region 4 1.614 1.035 1.215 N/A 

Location of the Project: Region 5 1.163 1.086 1.093 N/A 

Location of the Project: Region 6 N/A N/A N/A N/A 

Location of the Project: Region 7 N/A N/A N/A N/A 

Annual Number of Projects in the Region N/A N/A N/A N/A 

Annual Value of Projects in the Region N/A N/A N/A 2.567 

Annual Quantity of Asphalt Mixture in the Region N/A N/A N/A N/A 

Annual Number of Projects in Other Regions 1.346 N/A N/A N/A 

Annual Value of Projects in Other Regions N/A N/A N/A 4.748 

Annual Quantity of Asphalt Mixture in Other Regions N/A N/A N/A 5.337 
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5.5. Interpretation of the Results 

In the previous sections, regression analysis was conducted to model the variations 

in the submitted bid prices for major asphalt line items of asphalt-intensive and non-

asphalt-intensive projects.  

5.5.1. Asphalt-Intensive Projects 

The results of the five regression models created for asphalt-intensive projects 

indicate that the quantity of the asphalt line item is a statistically significant explanatory 

variable with a negative sign in all five models for asphalt-intensive projects. The negative 

sign indicates that the larger the quantity of the asphalt in the project, the lower the 

contractor’s unit price for the asphalt line item (i.e., the existence of economy of scale). 

The quantity variable has the highest absolute t-statistics value among all potential 

explanatory variables in all models and has the highest power to explain the variations in 

the submitted bid prices for major asphalt line items. 

Asphalt cement price index at the bid date is a statistically significant explanatory 

variable in all five models of asphalt-intensive projects with a positive coefficient, 

indicating that the expected bid prices increase as the asphalt cement price index increases. 

The explanatory variable of total bid price is statistically significant in three out of 

five models developed for asphalt-intensive projects with a positive coefficient, indicating 

that the expected bid prices for major asphalt line items are relatively greater for larger 

projects than for smaller projects. 

Similar to the total bid price, the relative value of the asphalt line item is statistically 

significant with a positive coefficient in three out of five models for asphalt-intensive 
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projects, indicating that the expected bid price for those major asphalt line items increases 

as the relative value of the line item increases. The number of bidders is a statistically 

significant explanatory variable with a negative coefficient in two models for asphalt-

intensive projects, which indicates that expected bid prices decrease as the number of 

bidders increases.  

Project duration is not a statistically significant explanatory variable for all models 

created for asphalt-intensive projects except for the model of line item 1812. Even for this 

model, the t-statistic for project duration is relatively low; therefore, project duration does 

not have considerably high explanatory power to describe the variation in submitted bid 

prices for major asphalt line items in asphalt-intensive projects.  

Although the asphalt cement price index is a significant explanatory variable in all 

models created for asphalt-intensive projects, the explanatory variable of the past trend of 

the asphalt cement price index is only significant in the model developed for line item 

1812. Thus, the past trend of the asphalt cement price is not a significant variable to 

describe the variations in the submitted bid prices for most asphalt line items. It can be 

concluded that from contractors’ point of view, the past trend of the asphalt cement price 

index is not an appropriate factor to use to determine their bid prices. This might be due to 

the significant volatility in the asphalt cement price index, indicating that future prices do 

not follow past trends in many cases. Thus, contractors do not consider the past trends in 

their bids. 

Variables representing the location of the project do not show any similar effects in 

explaining the variations in submitted bid prices for different asphalt line items. The 

variables representing regions 4 and 5 are statistically significant in four out of the five 
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models created for asphalt-intensive projects with positive coefficients (i.e., expected bid 

prices for projects in regions 4 and 5 are relatively higher than those in the other regions). 

None of the location variables has a considerably large t-statistic. Overall, location is not a 

powerful explanatory variable to describe the variations in submitted bid prices for major 

asphalt line items in asphalt-intensive projects. Similarly, the three variables representing 

the market conditions in the region where the project was let and the three variables 

representing market conditions in the neighboring regions do not have considerable 

explanatory power to explain variations in submitted bid prices for major asphalt line items.  

The annual number and value of projects in the region where the project was let, 

the annual value of the projects in other regions, and the annual quantity of asphalt mixture 

in other regions are not statistically significant in any models developed for asphalt-

intensive projects. The annual number of projects in other regions and the annual quantity 

of asphalt mixture in the region are statistically significant in only one and three of the 

models for asphalt-intensive projects, respectively. The t-statistics of those variables in 

those models are not considerably large. Thus, variables related to existing and upcoming 

projects in the market do not have considerable explanatory power to explain the variations 

in submitted bid prices for asphalt line items in asphalt-intensive projects. 

Finally, PAC eligibility is not a statistically significant explanatory variable in all 

models created for asphalt-intensive projects, except the model for line item 1812. Even in 

this model, the project’s PAC eligibility is statistically significant with a positive sign (i.e., 

the expected bid prices for asphalt line item 1812 is greater in PAC-eligible projects than 

in PAC-ineligible projects). This line item is related to leveling and requires more liquid 

asphalt cement (approximately 6.5-7% of hot mix asphalt volume) compared to the other 
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line items. The t-statistic of the PAC variable in this model is not substantially large. Thus, 

the project’s eligibility for the PAC program does not have much power to explain the 

variations in the submitted bid prices for this line item. Overall, no evidence was found to 

support the hypothesis that offering PAC would reduce the submitted bid prices of major 

asphalt line items in asphalt-intensive projects.  

5.5.2. Non-Asphalt-Intensive Projects 

The results of the regression analysis for non-asphalt-intensive projects indicate 

that the quantity of the asphalt line item is a statistically significant explanatory variable 

with a negative coefficient in all four models, indicating that the submitted bid prices for 

major asphalt line items in non-asphalt-intensive projects are expected to decrease as the 

quantity of the line items increases. 

The explanatory variable of total bid price is statistically significant in all four 

models created for non-asphalt-intensive projects with a positive coefficient, indicating 

that the expected bid prices for major asphalt line items in non-asphalt-intensive projects 

are relatively greater for large projects than for small projects. 

Asphalt cement price index is a statistically significant explanatory variable with a 

positive sign in three out of four models, indicating that the expected value of bid prices 

for major asphalt line items in non-asphalt-intensive projects increases as the asphalt 

cement price index increases.  

Number of bidders, relative value of the line item, and past trend of the asphalt 

cement index are statistically significant in only one out of the four models, with a not 
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considerably large t-statistic. Thus, these variables are not among the powerful explanatory 

variables to explain the variations in submitted bid prices. 

Project duration and the three binary variables representing the location of the 

project in regions 1, 6, and 7 are not statistically significant in any models. The variables 

representing regions 4 and 5 are statistically significant in three out of the four models 

created for non-asphalt-intensive projects with positive coefficients (i.e., expected bid 

prices for projects in regions 4 and 5 are relatively higher than those in the other regions). 

None of the location variables has a considerably large t-statistic. Overall, location is not a 

powerful explanatory variable to describe the variations in submitted bid prices for major 

asphalt line items in non-asphalt-intensive projects. 

The annual number of projects and quantity of asphalt mixture in the region where 

the project was let are not statistically significant in any models. The other four explanatory 

variables related to market conditions (i.e., annual value of the projects in the region, 

annual number of projects, value of the projects, and quantity of asphalt mixture in other 

regions) are statistically significant in only one model with no considerably large t-

statistics. Overall, the variables representing market conditions do not have considerable 

explanatory power to explain the variations in the submitted bid prices for major asphalt 

line items. The explanatory variable of the project’s PAC eligibility is not a statistically 

significant variable in any models created for non-asphalt-intensive projects. 

5.6. Summary 

It is concluded that the variations in the submitted bid prices for major asphalt line 

items in transportation projects can be explained by a linear combination of several 
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variables, such as the quantity of the asphalt line items in the project, total bid price, and 

the asphalt cement price index. The most powerful explanatory variables for explaining the 

variations in the submitted bid prices are the quantity of the line item, the total bid price of 

the projects, and the asphalt cement price index at the bid date. 

Variables, such as the duration of the project, the past trend of the asphalt cement 

price index, the location of the project, and the variables related to market conditions in the 

region in which the project was let or in neighboring regions are typically not statistically 

significant and do not have considerable explanatory power in most cases to explain the 

variations in the submitted bid prices.  

Eligibility for the PAC is statistically nonsignificant in all models except the one 

developed for line item 1812 (Recycled Asphaltic Concrete Leveling) in asphalt-intensive 

projects. This variable has a positive coefficient, indicating that expected bid prices for this 

line item in PAC-eligible projects are higher than those in PAC-ineligible projects. Thus, 

no evidence was found to support the hypothesis that offering PAC would reduce the 

submitted bid prices of major asphalt line items in both asphalt-intensive and non-asphalt-

intensive projects. 

Timing of asphalt work may affect contractors’ submitted bid prices. Contractors 

may submit relatively higher bids for new construction projects with asphalt work 

scheduled in the distant future than for overlay projects with asphalt work scheduled close 

to the contract award date. However, this likelihood could not be examined in this study 

due to the limitations of our dataset. No further timing information is available other than 

the total project duration that has been used in this study. In a future study, detailed 
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information about project schedule, especially information about the exact timing of 

asphalt work, should be used to enhance the quality of the developed regression models. 

Unbalanced bids can be a major issue in the assessment of submitted bid prices for 

construction projects (Arditi and Chotibhongs 2009). For the last two decades, GDOT has 

adopted a rigorous process for analyzing bid reasonableness in order to detect and reject 

unbalanced bids. In essence, every bid is evaluated against the engineer’s estimate, and 

GDOT rejects those nonresponsive bids that significantly differ from the engineer’s 

estimate. This comparative assessment is done for all major line items, including asphalt 

line items, both in terms of quantities and unit prices. Therefore, the dataset used in this 

study does not include rejected bids, and unbalancing has not been an issue in this analysis. 

Although this study was conducted using data from transportation projects in the 

state of Georgia, the proposed framework for conducting rigorous empirical studies can be 

used for similar datasets in other states and internationally. A more elaborate study with a 

larger dataset from several state DOTs and more potential explanatory variables can be the 

next step to compare the results across different owner organizations.    

The primary contributions of this research to the body of knowledge are (1) the 

creation of several multivariate regression models that have the power to explain the 

variations in highway contractors’ submitted bid prices for major asphalt line items; and 

(2) the empirical assessment of whether offering PACs contributes to the variations in 

contractors’ submitted bid prices for major asphalt line items in highway projects. This 

work is expected to contribute to the construction engineering and management community 

by helping capital planners of transportation agencies and owners of major capital projects 
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systematically evaluate the effect of their PACs on the submitted bid prices for their capital 

projects.  
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CHAPTER 6. EFFECTS OF PACS ON COMPETITION AMONG 

BIDDERS 

6.1. Introduction 

In addition to receiving lower bid prices, transportation agencies may benefit from 

PACs through higher competition among bidders. Theoretically, offering PACs in 

contracts can stabilize the construction market and support all contractors regardless of 

their size and access to the sources of critical materials such as asphalt cement. Therefore, 

offering PACs in construction contracts can potentially encourage greater competition and 

result in more bidders and less dispersion in the bid prices received for a project (Ilbeigi 

and Castro-Lacouture 2017). However, there is little knowledge about the actual effects of 

PACs on the number of bidders for a project and the dispersion of submitted bid prices. 

This chapter addresses the fourth research objective of this dissertation: an empirical 

assessment of the effects of offering PACs on competition among bidders in transportation 

projects. 

The level of competition can be quantified based on the number of bidders (Skolnik 

2011) and the dispersion of the submitted bid prices (Dufwenberg and Gneezy 2000). The 

average number of bidders per project for each month, the number of unique contractors 

bidding each month divided by the number of projects delivered in that month, and the 

dispersion of submitted bid prices for each month are analyzed over time to determine 

whether these values statistically changed after PACs were offered. To conduct the 



100 

 

empirical analysis and achieve the research objective, the reminder of this chapter is 

structured as follows. The proposed research methodology and steps taken in this study are 

described in the next section. The datasets used in this empirical study then are introduced. 

The average number of bidders per project and the number of unique bidders divided by 

the total number of projects for each month are analyzed over time using CUSUM control 

charts to check whether their processes statistically changed after the introduction of PACs. 

Dispersion of the submitted bid prices for projects is analyzed using standard deviation 

control charts with variable sample size. Finally, the conclusions and suggestions for future 

work are presented. The primary contribution of this research to the body of knowledge is 

the empirical assessment of whether offering PACs contributes to the number of bidders 

and/or dispersion of the received bid prices in highway projects. This study can help capital 

planners and transportation agencies systematically evaluate the effects of their risk 

management strategies, such as PACs, on received bid prices. 

6.2. Research Methodology 

One approach for statistically analyzing the effects that offering PACs has on the 

number of bidders or dispersion of submitted bid prices is to model the relationships 

between these dependent variables (i.e., the number of bidders and dispersion of bid prices) 

and various potential explanatory variables and see whether availability of PACs is a 

statistically significant explanatory variable in those models. However, properly 

identifying and quantifying all potential factors to accurately investigate their effects on 

the variations in the number of bidders and the dispersion of submitted bid prices may not 

be efficiently feasible in many cases due to lack of information and data. Alternatively, the 

historical records of the average number of bidders and dispersion of submitted bid prices 
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can be monitored over time using system monitoring processes to check whether their 

variations have statistically changed after the introduction of the PAC program. The latter 

approach does not require a large amount of input data and produces reliable, unbiased, 

and robust results (Montgomery 2007). 

The CUSUM system monitoring method combined with time series analysis is used 

to check whether the average number of bidders per job and the number of unique 

contractors divided by the number of projects for each month have statistically changed 

after the introduction of the PAC program. A standard deviation control chart with variable 

sample size then is used to check whether the dispersion of the bid prices changed after 

PACs were offered. Several steps are followed to conduct the CUSUM analysis: 

1- The time series of the average number of bidders per project and the number of 

unique bidders divided by the total number of projects for each month are created. 

2- Autocorrelation in time series is checked. 

3- If the time series are autocorrelated, a proper time series model is created and fitted 

to the data, and the CUSUM analysis is conducted on the residuals of the time series 

model instead of the original data. 

4- CUSUM control charts are created, and their lower and upper control limits are 

estimated using the historical data before the introduction of the PAC program. 

5- Historical data after offering of PACs are checked for inclusion within the control 

limits. 

Figure 6-1 shows the process used to analyze the effects of PACs on the number of bidders 

using the CUSUM system monitoring process. 
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To create the standard deviation control chart and analyze the dispersion of the submitted 

bid prices, the following steps are taken: 

1- Datasets of contractors’ submitted bid prices for major asphalt line items in 

transportation projects are gathered. 

2- Outliers of the submitted bid prices are detected using the modified Thompson Tau 

method and are removed from the datasets. 

3- Expected bid prices for each line item in each project are estimated using 

multivariate linear regression models. 

4- Residuals of the regression models that represent the difference between the 

submitted bid prices and the expected bid prices are calculated. 

 

 

Figure 6-1: Process to conduct CUSUM control charts to examine effects of PACs on number of 

bidders 
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5- Standard deviation control charts with variable sample size are created for each 

major asphalt line item using the difference between submitted bid prices and 

expected bid prices before the start date of the PAC program. 

6- Standard deviations of the submitted bid prices after offering of PACs are 

monitored using the developed control charts to check whether the dispersion of 

the bid prices has statistically changed.   

Figure 6-2 shows the steps of conducting a standard deviation system monitoring 

process to investigate the effects of PACs on the dispersion of submitted bid prices. 

 

 

Figure 6-2: Process to conduct a standard deviation system monitoring process to examine effects of 

PACs on dispersion of bid prices 
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6.3. Dataset 

Bid data were collected from 1,602 highway projects awarded in the state of 

Georgia from September 2000 to September 2007. These projects were distributed 

geographically across the seven districts in the state. Contract values of these projects range 

from $57,650 to $218,024,661 with an average contract value of $5,282,814 and a median 

of $1,392,159. Durations of these projects range from 67 to 2,043 days, with an average 

duration of 448 days and a median of 379 days.  

6.4. Analysis of Effects of PACs on Number of Bidders 

Figure 6-3 shows the average number of bidders per highway construction project 

in the state of Georgia from September 2000 to September 2007. 

 

 

Figure 6-3: Average number of bidders per highway construction project in the state of Georgia 
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GDOT has been offered PAC for asphalt line items in highway construction 

projects since September 2005. The recorded average number of bidders per project from 

September 2000 to August 2005 are used to create the CUSUM system monitoring control 

chart and estimate its upper and lower control limits. The control chart created is used to 

check whether the observations after offering of PAC in September 2005 are still within 

the control limits or whether their behavior has statistically changed. 

CUSUM control charts are designed to analyze variables that are not autocorrelated 

and follow a white noise process (Montgomery 2007). If the historical records of a variable 

are autocorrelated, a proper time series model should be fitted to the data and the CUSUM 

analysis should be conducted on the residuals of the time series model (Lu and Reynolds 

2001). 

The results of the Ljung-Box Q test (Ljung and Box 1978) on the average number 

of bidders per project specify that the time series of this variable is autocorrelated. 

Therefore, first, the time series analysis should be conducted. In the time series analysis, 

the main properties of the historical data are identified and characterized to build the time 

series model that can properly explain the variations of the data over time. AR models are 

among the time series models used most often. An AR(p) model represents the AR model 

of order p, which defines the current value of a process based on its p past values using the 

following equation (Diebold 1998): 

𝑋𝑡 = 𝑐 + ∑ 𝜑𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 

Where: 
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𝜑𝑖 is the parameter of the model 

c is a constant 

𝜀𝑡 is the error term 

The AR models are designed for stationary time series (i.e., historical data that 

show a trend and have a mean and variance that are constant over time). Therefore, if the 

historical data are not stationary, a trend variable might be required in the model. The 

results of the time series analysis indicate that an autoregressive model of order one (i.e., 

AR(1)) with a trend variable is properly fitted to the historical data. Table 6-1 shows the 

results of the Ljung-Box Q test on the residuals of the time series model. Because the 

calculated p-values of the Q-statistics for all lags are greater than the significance level 

(i.e., 5%), the null hypothesis that the data are independently distributed cannot be rejected. 

Therefore, the residuals do not show any serial correlation, and the time series model is 

acceptable (Diebold 1998).  

CUSUM control charts monitor a process by accumulating derivations from the 

mean of the process using the following statistics (Montgomery 2007): 

𝐶𝑖
+ = 𝑚𝑎𝑥[0, 𝑥𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1

+ ] 

𝐶𝑖
− = 𝑚𝑎𝑥[0, (𝜇0 − 𝐾) − 𝑥𝑖 + 𝐶𝑖−1

− ] 

Where: 

 𝐶𝑖
+ is the cumulative derivation of point i above the target value 

 𝐶𝑖
− is the cumulative derivation of point i below the target value 

𝜇0 is the mean of the process 
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K is the reference value that is typically defined as being halfway between the target mean 

(i.e., 𝜇0) and the out-of-control value of the mean that should be detected 

If either 𝐶𝑖
+ or 𝐶𝑖

− exceeds the decision interval H, the process has statistically changed. A 

reasonable value for H is five times the process standard deviation (Montgomery 2007). 

 

Table 6-1: Results of the Ljung-Box Q test on the residuals of the time series model 

Lag Autocorrelation Q-Statistic P-Value 

1 –0.070 0.4231  

2 0.152 2.4466 0.118 
3 –0.093 3.2209 0.200 
4 0.091 3.9660 0.265 
5 0.092 4.7373 0.315 
6 0.090 5.4802 0.360 
7 –0.020 5.5163 0.479 
8 0.071 5.9913 0.541 
9 –0.106 7.0761 0.528 

10 0.084 7.7617 0.558 
11 0.032 7.8602 0.642 
12 0.118 9.2549 0.598 
13 –0.097 10.222 0.597 
14 –0.078 10.844 0.624 
15 –0.007 10.848 0.698 
16 –0.073 11.422 0.722 
17 0.056 11.765 0.760 
18 –0.071 12.320 0.780 
19 –0.073 12.917 0.796 
20 0.044 13.134 0.832 

 

Figure 6-4 shows the CUSUM control chart for the average number of bidders per 

project. The lower and upper control limits are estimated as –2.408 and 2.408, respectively. 

Although the C+ in February 2007 is very close to the upper limit, it does not pass the 

control limit and decreases immediately in the following month, indicating that it was not 

a statistically significant and long-lasting change in the behavior of the variable. Therefore, 

the control chart indicates that the process has not changed statistically after the 

introduction of the PAC program in Georgia in September 2005.  
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Other than the overall number of bidders per project, a PAC program may lead to 

a fairer market that attracts more companies to be active. Therefore, the number of unique 

contractors that participate in bids in a month divided by the total number of projects 

(Figure 6-5) is another indicator that is investigated as a proxy for competition.  

 

 

Figure 6-4: CUSUM control chart for the average number of bidders per project 

 

The results of the Ljung-Box Q test for the historical records of this variable 

indicate that the p-values of the Q-statistics for all lags are greater than 5%. Thus, the time 

series is not autocorrelated, and the CUSUM control chart can be created using the original 

data. Figure 6-6 shows the control chart for the number of unique contractors bidding in 

Georgia divided by the total number of projects for each month. Similar to the previous 

control chart for the average number of bidders per project, the upper and lower control 
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limits are estimated using the historical records before the introduction of the PAC program 

(i.e., from September 2000 to August 2005).  

 

Figure 6-5: Number of unique bidders divided by total number of projects for each month 

 

Figure 6-6: CUSUM control chart for the number of unique contractors bidding in Georgia divided 

by total number of projects each month 
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The lower and upper control limits are estimated as –3.316 and 3.316, respectively. 

The control chart shows that the number of unique bidders divided by the number of 

projects stays within the control limits after September 2005, and the behavior of this 

variable has not statistically changed after introduction of the PAC. 

In summary, the results of the system monitoring process using the CUSUM control 

charts for both variables, the average number of bidders per project for each month and the 

number of unique bidders divided by the total number of projects in each month, show that 

there is no evidence to indicate that offering PAC has statistically affected these two 

variables. 

6.5. Analysis of PAC Effects on Dispersion of Submitted Bid Prices 

In a stable and reasonable market in which many contractors can properly compete, 

prices converge and owner organizations face less-dispersed bid prices (Dufwenberg and 

Gneezy 2000). Theoretically, offering PACs in contracts can stabilize the market by 

managing the risk of material price volatility and supporting all contractors regardless of 

their size and access to critical resources (Skolnik 2011). In this section, submitted bid 

prices for four major asphalt line items in highway projects in Georgia from September 

2000 to September 2007 are analyzed to check whether the offering of PACs has affected 

the dispersion of bid prices. These asphalt line items represent four major types of asphalt 

mixtures widely used in highway projects in the state. Table 6-2 describes these line items 

and their number of observations in the dataset. 
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Table 6-2: Major asphalt mixture line items in Georgia 

Line Item 

ID 
Description 

3121 Recycled Asphaltic Concrete 25mm Superpave, GP1 or GP2 

3130 Recycled Asphaltic Concrete 12.5mm, Superpave, GP2, Including Bitumen Materials 

3190 Recycled Asphaltic Concrete 19mm, GP1 or GP2 Including Bitumen Materials 

1812 Recycled Asphaltic Concrete Levelling Including Bitumen Materials 

 

The modified Thompson Tau test is used to detect the outliers in the submitted bid 

prices. Table 6-3 shows the number of observations and the number of outliers removed 

from the dataset for each asphalt line item. Only a small fraction of data points was 

identified as outliers for these asphalt line items. Most outliers were from projects with 

very small quantities of asphalt mixtures. The remaining data points are large enough to 

conduct meaningful statistical analysis. 

 

Table 6-3: Number of observations and outliers in the dataset for each major asphalt line item 

Line Item 

ID 
Number of Observations 

Number of Unusual 

Observations 

3121 4633 77 

3130 4463 136 

3190 5545 123 

1812 13501 155 

 

First, the standard deviation system monitoring process for one of the line items 

(i.e., 3190) is described in detail to explain the steps and the methodology. Then the 

presented methodology is repeated on the other three line items. Figure 6-7 shows the 

scatter plot of the submitted bid prices for line item 3190 from September 2000 to 

September 2007 after removal of the detected outliers.  

Because factors such as project size, location, contract duration, bid dates, and 

number of bidders may affect the bid prices (Ilbeigi et al. 2015a), the scales of the submitted 
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bid prices for different projects might be different. Therefore, before analyzing the 

historical records of the bid prices using standard deviation control charts, the effects of 

other potential factors should be identified and captured. In chapter 5, multivariate linear 

regression models were created to explain the variations in the submitted bid prices for the 

major asphalt line items in highway construction projects. Potential explanatory variables 

such as quantity of the asphalt line item, asphalt cement price at bid date, project duration, 

total contract value of the project, location of the project, and number of bidders were 

identified. 

 

 

Figure 6-7: Submitted bid prices for line item 3190 

Using the regression models developed in the previous chapter, the expected value 

for the submitted bid prices for each line item in each project is estimated. Then the error 
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prices) for each observation is calculated. The error terms represent the variation of the 

actual submitted bid prices from the estimated expected bid prices. In chapter 5, the error 

terms (i.e., the residuals of their models) were shown to follow a normal distribution, 

indicating that the identified explanatory variables can properly explain the variations of 

the submitted bid prices.  

 

 

Figure 6-8: Deviations of the actual submitted bid prices from the expected bid prices for line item 

3190 

 

Basically, the error terms represent the bid prices after capturing and removing the 
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6-8 shows the deviation of the actual submitted bid prices from the expected bid prices 

(i.e., the residuals of the regression model) for line item 3190. 

After cleaning and preparing the dataset, the dispersion of the deviations of the 

submitted bid prices from the expected bid prices is analyzed. The standard deviation 

control chart with variable sample size is used to monitor the dispersion over time and 

determine if the pattern changed statistically after introduction of the PAC program in 

September 2005. The standard deviation of the observations in each month is calculated, 

and the center line of the control chart is determined using the data from September 2000 

to August 2005 (i.e., the period before the introduction of the PAC program) as follows 

(Montgomery 2013): 

𝑠̅ = [
∑ (𝑛𝑖 − 1)𝑠𝑖

2𝑚
𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1 − 𝑚

]

1/2

 

Where: 

m is the number of months 

𝑛𝑖 is the number of submitted bid prices in the ith month 

𝑠𝑖 is the standard deviation of the deviations of the submitted bid prices from the expected 

bid prices (i.e., the residuals of the regression model for bid prices) in the ith month 

Because the number of submitted bid prices might be different for each month, the 

upper and lower control limits may not be constant and are determined as follows: 

𝑈𝐶𝐿 = 𝑠̅ + 3×
𝑠̅

𝑐4

√1 − 𝑐4
2 
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𝐿𝐶𝐿 = 𝑠̅ − 3×
𝑠̅

𝑐4

√1 − 𝑐4
2 

Where: 

UCL is the upper control limit of the control chart 

LCL is the lower control limit of the control chart  

𝐶4 is a tuning constant that depends on the sample size (i.e., n) 

The estimated center line of the control chart for item 3190 is 6.69, and Figure 6-9 

presents the created standard deviation control chart for this item. As shown by the control 

chart, the standard deviations after the introduction of the PAC program did not go below 

the lower control limit; in some months, it is actually even higher than the upper control 

limit. Therefore, although the results of the surveys and interviews conducted in previous 

studies (Eckert and Eger 2005; Skolnik 2011; Pierce et al. 2012) concluded that offering 

PAC would lead to less dispersion in bid prices, the results of the system monitoring 

process using standard deviation control charts for item 3190 does not show any reduction 

in the dispersion of the submitted bid prices after September 2005, when the PAC program 

was introduced in Georgia. 
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Figure 6-9: Standard deviation control chart for line item 3190 

 

The proposed methodology is conducted on the other three major asphalt line items 

(i.e., 3121, 3130, and 1812) as well. Figure 6-10 to Figure 6-12 show the control charts for 

these items. Similar to the results for line item 3190, the results of the system monitoring 

process for the other major asphalt line items do not show any reduction in dispersion of 

the submitted bid prices after the introduction of the PAC program; actually, in some 

months after September 2005, the dispersions are even greater than the upper control limit. 

Therefore, there is no empirical evidence to support the hypothesis that offering PACs 

would reduce the dispersion of the submitted bid prices. 
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Figure 6-10: Standard deviation control chart for item 3121 

 

Figure 6-11: Standard deviation control chart for item 3130 
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Figure 6-12: Standard deviation control chart for item 1812 

 

6.6. Summary 

In this chapter, the effects of the offering of PACs on the average number of bidders 

per project, the number of unique bidders divided by the number of total projects for each 

month, and the dispersion of the submitted bid prices for four major asphalt line items were 

analyzed. CUSUM control charts were used for the first two variables: the average number 

of bidders per project and the number of unique contractors bidding each month divided 

by the number of projects. Results from the system monitoring analysis using CUSUM 

control charts indicate that the variations and behaviors of these variables have not 

statistically changed after introduction of PAC in September 2005.  
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Dispersion monitoring analysis was conducted on historical records of the 

submitted bid prices for the four major asphalt line items using standard deviation control 

charts with variable sample size. The standard deviation control charts show that the 

dispersion of the submitted bid prices for all four line items has not decreased after the 

introduction of PAC. This research advances the literature because the results show that 

there is no empirical evidence to indicate that offering PACs would increase the number of 

bidders or decrease the dispersion of the submitted bid prices for asphalt line items. 

Although this study was conducted using bid data from the state of Georgia, the 

proposed methodology can be used for similar datasets in other states and internationally. 

This chapter’s primary contribution to the body of knowledge and state of practice is its 

empirical and statistical analysis of the effects that offering PACs has on the level of 

competition based on the number of bidders and on the dispersion of the submitted bid 

prices. The results of this study can help capital planners of transportation agencies and 

owners of major capital projects systematically evaluate their financial risk management 

strategies, such as PAC. Identifying and analyzing effective factors in the performance of 

PACs, finding more accurate means of improving their effectiveness on the submitted bid 

prices and level of competition, devising a systematic approach to designing PACs, finding 

the most suitable time to implement PACs, and identifying appropriate types of projects 

for PAC programs can be the basis for future studies. 
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CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1. Introduction 

Volatility in material costs has been a serious challenge for state DOTs and 

contractors since the 2000s. Volatility and uncertainty in the price of critical materials 

increase risk for contractors in fixed-price contracts and can lead to price speculation and 

bid inflation. One of the most common strategies used to address inflated bid prices and 

encourage the submission of lower bids is PACs, which guarantee an adjustment in 

payments to contractors based on the size and direction of material price changes. Contrary 

to the widespread application of PACs by state DOTs, there is little knowledge about how 

asphalt cement prices fluctuate over time. Furthermore, there is little knowledge about 

measuring, analyzing, and forecasting asphalt cement price volatility. This gap in 

knowledge makes it difficult to develop material price risk management strategies 

properly. Moreover, it is not clear how offering PACs in transportation contracts affects 

submitted bid prices for major asphalt line items and their dispersions and the number of 

bidders. 

After a comprehensive review of the existing body of knowledge on uncertainties 

in the price of critical materials in transportation projects and PACs, time series analysis 

was conducted in Chapter 3 to forecast the future price of asphalt cement. ARCH/GARCH 

time series analysis was conducted to quantify and forecast the level of uncertainties in the 

price of asphalt cement in Chapter 4. In Chapter 5, the impact that offering PACs has on 

submitted bid prices for major asphalt line items was analyzed using multivariate 
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regression analysis. Finally, the effects that offering PACs has on dispersion of submitted 

bid prices and number of bidders were analyzed using system monitoring processes. 

7.2. Summary of Results and Contributions to the Body of Knowledge 

In chapter 3, the time series of asphalt cement price is analyzed and its major 

characteristics are identified. The results of this empirical study show that time series data 

of asphalt cement price is autocorrelated and non-stationary and does not show a very 

strong seasonal pattern. Based on the identified time series characteristics, four univariate 

time series forecasting models, Holt ES, Holt-Winters ES, ARIMA, and seasonal ARIMA, 

were created to take into account the short-term variations in asphalt cement price in 

forecasting its future values. The results of in-sample model fitting showed that all four 

models have proper goodness-of-fit. Residual analysis revealed that the underlying 

conditions of the models hold true and, therefore, these time series models are usable. The 

results of the out-of-sample forecasting show that all four time series models can predict 

the future values of asphalt cement price with proper accuracy, but among the four models, 

the ARIMA and Holt ES models are the most accurate with less than 2% error. The primary 

contributions of this chapter of the study to the existing body of knowledge are twofold: 

(1) characterizing the variations of asphalt cement prices over time; and (2) creating 

univariate time series forecasting models to predict future values of asphalt cement prices. 

The results of this study can help both owners and contractors improve the budgeting 

process, prepare more accurate cost estimates, and reduce the risk of asphalt cement price 

variations in transportation projects. 

In chapter 4, the uncertainty of asphalt cement price was measured and forecast 

using ARCH/GARCH models. Results indicate that a GARCH(2,1) model with a 
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conditional mean function of ARMA(2,2) can properly model the conditional volatilities 

in the price of asphalt cement. The primary contributions of this chapter of the study to the 

existing body of knowledge are measuring, modeling, and forecasting uncertainties in the 

price of asphalt cement over time. The results of this study can help transportation agencies 

systematically measure, analyze, and forecast uncertainties in the price of asphalt cement 

and implement their risk management strategies at the right time. 

The primary contributions of chapter 5 of this study to the body of knowledge are 

(1) the creation of several multivariate regression models that have the power to explain 

the variations in highway contractors’ submitted bid prices for major asphalt line items; 

and (2) the empirical assessment of whether offering PACs contributes to variations in 

contractors’ submitted bid prices for major asphalt line items in highway projects. This 

work is expected to contribute to the construction engineering and management community 

by helping capital planners of transportation agencies and owners of major capital projects 

systematically evaluate the effect of their PACs on the submitted bid prices for their capital 

projects. 

In chapter 6, system monitoring processes were used to analyze the impact of 

offering PACs on number of bidders and dispersion of submitted bid prices. The primary 

contribution of this chapter to the body of knowledge and state of practice is its empirical 

and statistical analysis of the effects that offering PACs has on the level of competition 

based on the number of bidders and on the dispersion of the submitted bid prices. The 

results of this study can help capital planners of transportation agencies and owners of 

major capital projects systematically evaluate their financial risk management strategies, 

such as PAC. 
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7.3. Future Works and Directions 

As explained in the previous sections, this dissertation has focused on analyzing 

uncertainties in the price of asphalt cement to improve risk management strategies for 

material price volatility and on empirically analyzing the performance of PACs and their 

impact on submitted bid prices and level of competition. 

Systematic design of PACs can be an important topic for future studies. As noted 

in chapter 1, a PAC program consists of different elements, such as trigger points; 

eligibility conditions based on duration, quantity of material, and dollar value of projects; 

eligible types of projects; maximum adjustment limit; and price index. Systematically 

determining these factors is very important to improve the performance of PACs. 

Currently, there is little knowledge about design of PACs. Future research can extend this 

dissertation in different ways: 

• Trigger points, which refer to the percent changes in material prices that initiate the 

application of relevant adjustment clauses, may affect the performance of PACs 

significantly. The distribution of the trigger point is broad, and they range from 0% 

to 20%. However, there is little knowledge about systematically determining them. 

In a very rare study, Zhou and Damnjanovic (2011) used a weighted least squares 

regression model to create a generic algorithm for determining the amount of risk 

that should be transferred to owner organizations using strategies such as PACs. 

The results of their model can help determine trigger points in PACs. However, 

their model can be implemented only for materials with future prices that are traded 

in the market.  
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• Eligibility conditions for the PAC program based on factors such as duration of the 

project, quantity of asphalt, and dollar value of the project are important factors that 

affect the performance of PACs. The eligibility conditions differ significantly 

through various states DOTs. For example, GDOT defines eligibility for its PAC 

program only based on duration of a project, whereas many other state DOTs 

consider other factors such as quantity of asphalt. An empirical analysis by Ilbeigi 

et al. (2015b), using unsupervised statistical methods, showed that GDOT could 

improve performance of its PAC program for asphalt cement by defining eligibility 

conditions based on quantity of asphalt and the contract value of the project. 

Developing a systematic approach to determine eligibility conditions is a topic for 

future studies. 

• Some state DOTs offer PACs with an opt-in policy, which gives contractors the 

right to decide whether to accept the PAC (Skolnik 2011). However, there is little 

knowledge about a systematic decision analysis approach to evaluate PACs in given 

market conditions. This, too, can be a basis for future research. 

•  Typically, PAC programs define a maximum adjustment limit that determines the 

maximum amount of financial risk that is shifted to owner organizations. Currently, 

state DOTs determine the maximum adjustment limit solely based on their 

experiences. However, developing a quantitative approach to systematically 

determine the limits can improve the performance of PACs and be a basis for the 

future direction of studies. 

• Contrary to the widespread application of PACs by state DOTs, there is little 

knowledge about the financial value of offering PACs in transportation contracts. 
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This gap in knowledge makes it difficult for contractors and state DOTs to 

systematically evaluate the impact of offering PACs on their risk profiles. Ilbeigi 

et al. (2016b) developed a real option model to estimate the financial value of PAC 

programs for asphalt cement. However, a more comprehensive approach for 

systematically quantifying the financial value of PACs in transportation contracts 

is necessary and can be another topic for future studies.    
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