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SUMMARY

Anomaly detection for autonomous underwater vehicles (AUVs) is especially chal-

lenging because AUVs explore distant and hostile environments with unpredictable dis-

turbances. Mechanical and electrical subsystems in AUVs can be easily exposed to harsh

environments such as the deep sea and the polar oceans. During long-range or long-period

missions of AUVs, marine creatures and biofouling may harm AUV sensors and thrusters.

Thus, anomaly detection in AUVs is of great importance for vehicle survivability.

The main contribution of this dissertation is a set of algorithms that detect anomaly

of autonomous underwater vehicles (AUVs) without relying on sensors monitoring vehicle

components. Only using trajectory information, the proposed strategy detects abnormal ve-

hicle motion under unknown ocean flow. It has the potential for mitigating abnormal vehi-

cle motion with path-planning and controller design of AUVs. In the Controlled Lagrangian

particle framework, the adaptive learning algorithm identifies vehicle motion while produc-

ing the estimated flow velocity and vehicle speed. The estimated vehicle speed determines

whether or not the vehicle motion is abnormal. A false alarm prevention scheme is pro-

posed to avoid false alarm caused by estimation error of vehicle speed. Moreover, incor-

porating adaptive control and learning algorithms is proposed to enhance the accuracy of

anomaly detection. The experimental results of the Georgia Tech Miniature Autonomous

Blimp (GT-MAB) and Georgia Tech Wind Measuring Robot (GT WMR) in an indoor test

bed verify the proposed algorithms. To estimate vehicle trajectory underwater, the AUVs

are equipped with acoustic passive receivers primarily used for monitoring tagged fish.

We propose a localization algorithm that integrates odometry using flow estimation and

acoustic detection in order to accurately estimate vehicle position. Acoustic detection that

reduces odometry error can be poor due to underwater environmental factors. We identify

environmental factors using the specially designed array of passive acoustic receivers and

fish tags in Gray’s Reef National Marine Sanctuary.

xix



CHAPTER 1

INTRODUCTION

Anomaly detection is critical to autonomous vehicles. Faulty software and hardware in

unmanned aerial vehicles, autonomous ground vehicles, and autonomous underwater ve-

hicles can lead to unsuccessful missions. Anomaly detection allows vehicles to overcome

software and hardware problems by activating redundant systems or reconfiguring the mal-

functioning systems.

Anomaly detection for autonomous underwater vehicles (AUVs) is especially chal-

lenging because AUVs explore distant and hostile environments with unpredictable dis-

turbances. Mechanical and electrical subsystems in AUVs can be easily exposed to harsh

environments such as the deep sea and the polar oceans. During long-range or long-period

missions of AUVs, marine creatures and biofouling may harm AUV sensors and thrusters

[1]. Thus, anomaly detection in AUVs is of great importance for vehicle survivability.

Many studies have addressed abnormal motion through monitoring sensors installed in

AUVs. Components vulnerable to faults (i.e., thrusters and actuators) can be responsible for

abnormal motion of AUVs. For example, damaged propellers impair propulsive efficiency

to control vehicle speed. These faults could be detected with rotational speed sensors of

propellers; however, this approach requires increased hardware complexity and cost, and it

may not detect unexpected external disturbances (e.g., white shark attack).

We propose novel anomaly detection algorithms for AUVs. Instead of using measure-

ments from sensors that monitor hardware components, in this dissertation, we incorporate

trajectory data to detect abnormal vehicle motion. Given a trajectory, adaptive learning

identifies vehicle motion while producing the estimates of vehicle speed and flow velocity.

The vehicle speed estimate is used to determine whether or not vehicle motion is abnor-

mal. Anomaly occurs when the vehicle speed estimate is out of the range of AUV speed
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in normal operation; otherwise, no anomaly is identified. Compared to existing algorithms

that detect faults of individual components, trajectory-based anomaly detection of AUVs

has the potential to mitigating abnormal vehicle motion with path planning and controller

design of AUVs.

We use vehicle speed to determine if the vehicle’s motion is abnormal. For the esti-

mation of vehicle speed, we develop an on-line adaptive learning algorithm based on the

framework of controlled Lagrangian particle tracking. The adaptive learning algorithm

uses the vehicle trajectory, the net motion of the AUV due to vehicle propulsion, advection

by flow, and external forces, to estimate vehicle speed.

Estimating vehicle speed from an AUV’s trajectory is substantially difficult in that

ocean flow affecting AUV motion is unknown. Here and after, we call vehicle speed con-

trolled speed to distinguish vehicle speed relative to water, which is controlled by the ve-

hicle, and vehicle speed produced by the time derivative of trajectory data. In presence of

flow, controlled speed is different from time derivative of trajectory data. Consequently, it

is impossible to estimate controlled speed from trajectory data without identifying ocean

flow. It is difficult for us to detect abnormal vehicle motion under unknown flow. One

class of AUVs called underwater gliders typically move at controlled speeds between 25-

35 cm/s. Figure 1.1 depicts a glider with a thruster fault and shows estimated paths of an

AUV in two cases: faulty case on the left, and non-faulty case on the right. Consider one

Figure 1.1: Two estimated paths of an AUV are identical, but they happen in different ways; the
thruster fault of the AUV (left) and no thruster fault of the AUV (right)

staring point where an AUV is deployed, and one goal point to be reached. The predicted
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trajectory is the straight line between the starting and the goal point before deployment.

However, the estimated trajectory do not reach the goal point after deployment because

of two different reasons on the left and the right. On the left case, the faulty thruster of

the AUV stops vehicle motion and the vehicle cannot reach the goal. On the right case,

the AUV has no thruster fault; however, the direction of strong flow, from top to bottom,

disturbs vehicle motion, leading to a trajectory that cannot reach the goal point. Therefore,

identification of flow serves to prevent false alarms by identifying unexpected motion of

AUVs that can be explained by flow. Controlled Lagrangian particle tracking serves as a

theoretical tool that analyzes interaction between AUV motion and ocean flow [2]. In this

framework describing the motion of AUVs, adaptive learning identifies vehicle motion un-

der unknown ocean flow while estimating controlled speed and ocean flow from trajectory

data.

1.1 Background

Over the past decades, autonomous underwater vehicles have proven to be valuable sensing

platforms in a variety of scientific and practical missions [3]. One class of AUVs, called

underwater gliders, achieve long endurance or ranges by taking advantage of an energy

efficient method of propulsion [4]. Gliders use fixed wings to change their buoyancy and

center of gravity to translate vertical descent/ascent to forward and turning motion in the

horizontal plane without motor thrusters such as propellers [5]. The motion is particularly

energy efficient; RU-27, a Slocum glider operated by Rutgers University, traveled 7400 km

for 221 days from the US to Spain on a single battery charge [6].

1.1.1 Controlled Lagrangian Particle Tracking

High navigational performance of AUVs is essential for persistent and efficient collection

of information-rich data [7], and serious performance degradation can result when flow

speed is comparable to or exceeds controlled speed of AUVs, as is the case for underwater
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gliders [8]. Controlled Lagrangian particle tracking (CLPT) is a theoretical framework

to analyze the interaction between ocean flow and AUV control [9]. In contrast to passive

Lagrangian methods, an AUV is viewed as a controlled Lagrangian particle in the sense that

AUVs are not freely advected by ocean flow. The trajectory of the controlled Lagrangian

particles can be generated from the vehicle motion model as follows:

dx
dt

= FR(x, t)+vR(ψc(t)), (1.1)

where x is true position of the AUV that is assumed to be known. This assumption will be

removed in Chapter 4 where we discuss how to estimate x. FR is an actual flow, vR is the

through-water velocity, and ψc(t) is heading angle command. To track the controlled La-

grangian particle, we generate the predicted trajectory of the AUV by simulating a vehicle

motion model composed of modeled flow velocity and through-water velocity. That is,

dy
dt

= FM(y, t)+vM(ψc(t)), (1.2)

where y is predicted position, FM is a known modeled flow, vM is through-water velocity.

Then, we compare this predicted trajectory with the estimated trajectory of the AUV. The

discrepancy between the two trajectories shows the tracking performance of the controlled

Lagrangian particle, called controlled Lagrangian prediction error (CLPE). CLPE, e, is

given by

e = x−y. (1.3)

CLPE is a crucial measure that can be interpreted as the degree to which AUV navigational

performance is degraded by ocean model inaccuracy. In [9], the resolution of flow model

is shown to determine the upper bound of CLPE growth. Station-keeping and transect

following controllers can cause affect CLPE growth. Increasing CLPE implies that the

estimated trajectory is significantly deviated from the predicted trajectory. Figure 1.2 shows
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growing CLPE computed by the estimated trajectory and the predicted trajectory during

February 2013 field experiment in Long Bay, SC.

Figure 1.2: Controlled Lagrangian prediction error (CLPE) is the difference between the predicted
trajectory and the estimated trajectory (left). CLPE increases over time at the experiment in Feb.

2013, shown by significant deviation of the estimated trajectory from the predicted trajectory
(right).

Our work uses models of AUV motion under ocean flow to detect abnormal motion

of AUVs. Controlled Lagrangian particle tracking (CLPT) addresses interactions between

AUV motion and ocean flow. Our problem is related to the framework of CLPT because

our work deals with the combination of flow motion and controlled AUV motion; however,

our work is different from CLPT in the sense that controlled speed is extracted from the

estimated trajectory, while CLPT is a theoretical tool that evaluates the accuracy of the

predicted trajectory. In the next section, we describe adaptive inverse dynamic control that

identifies unknown parameters from observed output data.

1.1.2 Adaptive Inverse Dynamic Control

Adaptive control systems can be tuned using parameters from observed output data. For lin-

ear time invariant systems, model reference adaptive control [10] and self tuning controllers

[11] were developed to identify parameters of linear models. The identified parameters are

used to change linear controller gains so that plant output follows model output. For non-

linear systems, adaptive inverse dynamic control was developed to identify parameters of

nonlinear controller in manipulator applications [12, 13, 14]. The nonlinear, model-based

controller uses the identified parameters so that the joint positions of a manipulator follows
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its desired positions. Our work is similar to previous work in that we use flow canceling

controller based on multiple nonlinear time-varying functions. However, previous work

did not use identified parameters for anomaly detection, but improve plant performance by

compensating the weakness of the nonlinear controller. Our work identifies unknown pa-

rameters to determine abnormal vehicle motion. In addition, the previous work deals with

manipulator applications, and but our work treats marine robots in flow fields as controlled

Lagrangian particles.

1.1.3 Anomaly Detection of Autonomous Underwater Vehicles

Anomaly detection in data helps us identify abnormal behaviors and reconfigure malfunc-

tioning vehicle components. Recent ground robot and marine vehicle studies have detected

anomalous signals of sensors to identify abnormal motion of robots and vehicles [15, 16].

A fault is defined as an unpermitted deviation of at least one characteristic property of a

variable from an acceptable behavior [17]. A traditional approach to detecting a fault in the

system is to use multiple sensors that measure the same physical quantity and detects the

occurrence of a fault by a voting technique [18].

Fault detection data analysis techniques can use labeled or unlabeled data. Both meth-

ods have associated difficulties for anomaly detection. The labels of data points denote if

an individual data point is normal or abnormal. It is expensive to acquire accurate and rep-

resentative data points that cover all types of normal and abnormal behaviors in systems.

A number of techniques have been developed for modeling normal behaviors in systems

with unlabeled data. However, the techniques focus on modeling normal behaviors in sys-

tems assuming that normal behaviors occur far more frequently than abnormal behaviors in

unlabeled data. If this assumption is not true, then such techniques can produce incorrect

detection results, or false alarms [19].

Using unlabeled data, dynamical system models can be used for model-based fault

detection. The installation of the extra physical components in the system increases cost
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and complexity of the system [20]. Model-based schemes offer improvements in cost and

complexity, and employ dynamical system models to detect component faults in the system.

A linear dynamical system model is represented by

x(t +1) = Ax(t)+Bu(t)+Ed(t)+B fa(t), y(t) =Cx(t), (1.4)

where x∈Rn is the state vector, u∈Rq is the plant input vector, y∈Rm is the output vector,

d ∈ Rn is the noise vector, and fa ∈ Rn is the fault vector. A great number of theoretical

methods have been developed for detecting faults from equation (1.4) [21]. For example,

the unknown input observer approach was developed to identify fa(t). The basic idea

of this approach is to decouple unknown noise vector d(t) from estimation error. By using

new variables transformed from x(t), a stable observer was designed for the identification of

fa(t). However, most theoretical methods that use the dynamical system models containing

the additive fault model can not detect unmodeled faults. Although fault is modeled in

dynamical systems with known scenarios, unknown fault scenarios can occur in critical

subsystems composed of sensors and actuators. Other noncritical subsystems are able to

cause some fault of the system components. For example in 2015, a software configuration

error in an underwater glider disabled an internal mass shifter that adjusts the vehicle’s

trim, leading the vehicle to sink to the sea floor and resulting in temporary loss [16].

For AUVs, most fault detection algorithms have dealt with abnormal behaviors of the

system components that are the most vulnerable to faults [22, 23, 24]. Blocked propellers,

leaking thrusters, and rotor failure are documented as frequently occurring faults [25]. In

order to detect thruster faults and to identify model parameter changes after fault in [22],

an approximate probability distribution of a motion variable such as surge velocity, sway

velocity, and yaw rate is iteratively computed. After the locally weighted projection regres-

sion yields multiple trained models for given data sets, the motion variable is estimated by

a filtering algorithm. In [23], thruster and actuator faults are detected by observing abrupt
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change in control-force estimates within a certain time window.

Instead of detecting faults in an individual component, vehicle motion can be used for

anomaly detection. The yo-yo trajectory of underwater gliders in the vertical plane of 3-D

space is achieved by changing the glider’s pitch angle and total mass. Authors in [26] use

a threshold technique to prevent a glider from hitting the sea floor. The deviation from

expected AUV motion in the vertical plane is detected by monitoring stern plane angle,

pitch angle, and depth rate. However, due to the cost and slow speed of Iridium satellite

communications, it may not be feasible to telemeter the required sensor fields back to shore

in order to monitor for faults.

Our work addresses anomaly detection of AUVs by using dynamical system models

and estimated trajectory data. The dynamical system models we use enable simultaneous

estimation of controlled speed and flow velocity from an estimated trajectory. Our mod-

els may be viewed as the dynamical system models used for model-based fault detection

in the literature. However, the system models in the literature contain an additive fault

model that represents a fault signal with known fault scenarios. Instead of the additive

fault model, our model has unknown parameters developed in the framework of controlled

Lagrangian particles. The unknown parameters that represent flow velocity and controlled

speed can change according to abnormal motion. The use of trajectory data in our work

follows similar motivations as surveillance applications (e.g., [26]). However, our work

uses underwater trajectory data of autonomous underwater vehicles while previous work

[27, 28] uses car trajectory data and surface trajectory data of marine vessels, both systems

in which trajectory information is available in real time. When trajectory data is used in

surveillance applications, many schemes such as clustering techniques and optimization

techniques have been developed to identify path models that represent normal motion of

the ground and marine vehicles [26, 27, 28]; however, we identify unknown parameters

of dynamical system models from trajectory data; identifying unknown parameters means

that flow velocity and controlled speed composed of the unknown parameters are identi-
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fied from trajectory data. Then we check whether extracted controlled speed is within the

predetermined range of vehicle speed under normal vehicle operation to detect abnormal

motion of the vehicles. In the next section, we describe acoustic localization algorithms

that estimate trajectory information.

1.1.4 Acoustic Localization

AUV localization is a challenging issue in marine robotics. The global positioning sys-

tem (GPS) and radio-frequency signals are not available for positional estimation of AUVs

underwater. Many researchers have proposed various methods to solve the localization

problem of AUVs (e.g., [29, 30]). Most methods focus on decreasing the dead-reckoning

or odometry error of AUVs by using external acoustic sensors that provide range measure-

ments. A basic kinematic model that represents vehicle motion ignoring flow is used to

predict dead-reckoning or odometry error. In order to reduce predicted odometry error,

active acoustic localization employs information on time of arrival in order to accurately

estimate distances between transmitters and receivers.

Here we develop a localization algorithm combining an odometry model and a passive

acoustic receiver [31] to detect transmitters at known fixed locations. Unlike basic odome-

try models that do not account for ocean currents, our odometry uses flow estimation under

the CLPT framework so that we can more accurately predict odometry error. The passive

acoustic receiver listens for signals from transmitters and record only receiver time stamps

and the identity of transmitters. Since acoustic signals can be significantly disturbed by

environmental factors, the accuracy of the localization algorithm depending on the receiver

measurements can be low.

Over several decades, acoustic telemetry has been developed and used to monitor fish

and marine mammals in freshwater and oceanic environments [32]. Acoustic telemetry

uses such passive acoustic receivers to monitor the presence of fish. Ecological and behav-

ioral analysis of telemetric data have revealed important new information about life cycles
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of marine species [33]. However, the accuracy of telemetry is dependent on detection range,

or the maximum distance over which receivers are able to detect transmitters/tags. If detec-

tion range is unknown, telemetry does not inform scientists about where the detected fish

are located. Moreover, detection range with spatial and temporal variability is affected by

a great number of environmental factors such as density, density stratification, and mixing,

which are mediated by wind, buoyancy input, and other effects [32, 34].

Previous studies have examined tidal influence on acoustic detection patterns. Authors

in [35] use Fourier analysis of detection rate to show that fish have a tidal pattern in their

movements. When more than one receiver detects the transmitter in fish within a tidal cycle,

authors insist that the fish’s position has changed because of tidal influence. However, their

results assume that detection range remains constant over a tidal cycle. More recent work

[34] using data from a static array of multiple receivers deployed near an acoustic Doppler

current profiler (ADCP) that measured currents over multiple years suggests that detection

rate and range may be dominated by environmental processes. While the annual cycle

has the strongest control on detection rate, patterns in detection probability were noted at

seasonal cycles, tidal cycles, and synoptic-scale weather events.

Our work addresses identifying acoustic detection patterns influenced by tidal flow.

Previous work [34] describes acoustic detections related to tidal cycles. Our problem is

related to previous work in finding the relationship between tidal flow and acoustic detec-

tion; however, our work is different from previous work in that we identify environmental

factors by using the specially designed acoustic array. The vertical and horizontal axis of

the acoustic array in the 2D plane is aligned with the semi-major axis and semi-minor axis

of tidal ellipse, respectively.

1.2 Summary of Contributions

The rest of the dissertation is organized as follows. Chapter 2 describes a new method

developed for anomaly detection using controlled Lagrangian particle methods. Chapter
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3 extends the method with adaptive control and learning, Chapter 4 develops a technique

of localization that incorporates a flow model and passive acoustics, and describes results

from a field experiment. Chapter 5 verifies the algorithms developed in Chapters 3 and

4 in an indoor test bed using a miniature autonomous blimp and a wind measuring robot.

Summaries of these chapters are given below.

1.2.1 Anomaly Detection of Controlled Lagrangian Particles

We formulate an anomaly detection problem of AUVs using trajectory information in the

framework of controlled Lagrangian particles. First, AUV motion is learned from esti-

mated trajectory. The on-line adaptive learning algorithm simultaneously estimates flow

velocity and controlled speed from estimated trajectory while guaranteeing error conver-

gence, parameter convergence, and robustness. Then, estimated controlled speed is used as

a decision variable in that we obtain the known normal range of controlled speed of AUVs

as an indicator of normal motion. Estimated controlled speed may be inaccurate at a certain

time interval in spite of parameter convergence. The comparison of modeled flow velocity

to estimated flow velocity can improve the reliability of estimated controlled speed. The

block diagram for anomaly detection is shown in Figure 1.3.

Figure 1.3: An acoustic localization algorithm estimates vehicle path. The estimated path is the
input to the adaptive learning algorithm. The anomaly detection algorithm uses the output of the

learning algorithm, which is identified flow and controlled speed to detect abnormal vehicle
motion.
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Estimated controlled speed may not be accurate due to the inaccuracy of estimated

trajectory. Acoustic sensor error and localization algorithm error can be included in the

estimated trajectory. The use of controlled speed extracted from the estimated trajectory

may induce false alarms. We utilize a predicted trajectory as extra information to reduce

the false alarms.

Estimated trajectory may be significantly different from the trajectory we predicted

before deploying the AUV due to unknown ocean flow that affects AUV motion. Conse-

quently, the estimated trajectory may not be accurate enough to detect anomalies using only

the controlled speed that is extracted using the on-line adaptive learning algorithm. To im-

prove accuracy, an adaptive control algorithm is designed. The adaptive control algorithm

implemented on AUVs enables the estimated trajectory to follow the predicted trajectory

so that the accuracy of anomaly detection from the estimated trajectory is enhanced.

1.2.2 Anomaly Detection under Adaptive Control and Learning

Incorporating adaptive control and learning algorithms can improve the estimate of con-

trolled speed. When the adaptive learning algorithm only uses the estimated trajectory, the

learning algorithm has no knowledge on how accurate the estimated trajectory is. If both

the predicted trajectory and the estimated trajectory are provided to the adaptive learning

algorithm, the adaptive learning algorithm can compare the estimated trajectory with the

predicted trajectory in order to precisely estimate controlled speed.

The adaptive learning algorithm generates a trajectory called an identified trajectory

based on the estimation of controlled speed and flow velocity. Controlled Lagrangian lo-

calization error (CLLE) is used to evaluate the difference between the estimated trajectory

and the identified trajectory. In the case of large CLLE, the controlled speed generated by

the learning algorithm should not be trusted. The adaptive control algorithm is developed

to make the estimated trajectory follow the predicted trajectory. Controlled Lagrangian

prediction error (CLPE) is used to evaluate the difference between the estimated trajec-
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tory and the predicted trajectory. If CLLE is larger than CLPE, estimated controlled speed

from the learning algorithm can be inaccurate in that the identified trajectory is relatively

far away from the estimated trajectory when we compare the identified trajectory and the

predicted trajectory with respect to the estimated trajectory. Thus, we derive the conditions

theoretically to find when CLLE is larger than CLPE to avoid false alarms, improving the

reliability of estimated controlled speed.

1.2.3 Acoustic Localization using a Passive Receiver

In order to improve the trajectory information required by the adaptive learning algorithm,

we develop a new localization algorithm to more accurately estimate the trajectory of

AUVs. The AUVs are equipped with acoustic receivers primarily used for monitoring

tagged fish. This new acoustic method using the acoustic receivers can be a binary acous-

tic method in that the receivers only provide binary information. We developed odome-

try using flow estimation under the framework of controlled Lagrangian particle tracking

(CLPT), and derived equations that govern the error growth when the vehicle is subject to

flow in the framework of CLPT. We integrate acoustic detection and the odometry model

to reduce localization error. We estimate vehicle position by a maximum a posteriori esti-

mator.

Using only the binary acoustic sensor still presents substantial difficulty for localiza-

tion. The binary acoustic sensor provides true measurements inside detection range or false

measurements out of detection range. Detection range is the maximum distance at which

the binary acoustic sensor can detect one signal at least. Because the proposed localization

algorithm uses sensing regions determined by detection range to correct the inaccuracy

of the odometry model, the estimated trajectory generated from the localization algorithm

depends on the accuracy of detection range. Although detection range provided by manu-

facturers is given as a fixed value, in practice, the detection range is not fixed. Instead, it

varies according to underwater environmental factors.
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We identify certain underwater environmental factors to improve the accuracy of de-

tection range based on a bioacoustic glider experiment at Gray’s Reef National Marine

Sanctuary (GRNMS), located 40 nm SE of Savannah, GA. The acoustic array is specially

designed to find the relationship between acoustic detections and environmental factors

such as the tidal flow. Data from an acoustic Doppler current profiler (ADCP) and an un-

derwater glider deployed in the array enables us to find which underwater environmental

factors influence the correlation between acoustic detections and tidal flow. Improvement

of detection range accuracy through identifying the environmental factor can increase the

accuracy of the acoustic localization algorithm.

1.2.4 Development of an Indoor Test Bed and Experimental Results

We verify the proposed algorithms with experimental results in an indoor test bed. The use

of real AUVs potentially have a risk of vehicle loss, consuming great amounts of money

and time. We developed a flying robot called the Georgia Tech Miniature Autonomous

Blimp (GT-MAB), that has many similarities of AUV motion in order to repeatedly test the

proposed algorithms. The GT-MAB is deployed in the indoor test bed where a wind source

generates artificial flow, and motion capture cameras collect the GT-MAB trajectory in a

confined space; the input to the adaptive learning algorithm is the GT-MAB trajectory. The

output of the adaptive learning algorithm is the estimated flow velocity. For the verification

of the adaptive learning algorithm, we evaluate the accuracy of the estimated flow velocity.

One way that evaluates the accuracy of the estimated flow velocity is to compare ground

truth data and estimated flow velocity. We deploy the Georgia Tech Wind Measuring Robot

(GT-WMR) that measures actual flow velocity in the indoor test bed so that we compare

measured and identified flows.
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CHAPTER 2

ANOMALY DETECTION OF CONTROLLED LAGRANGIAN PARTICLES

In the framework of controlled Lagrangian particle tracking, the net motion of controlled

Lagrangian particles is determined by flow velocity and controlled speed. Through-water

speed can be generated by thrusters and other methods of propulsion. Unlike flow velocity

which cannot be controlled, the through-water speed can be controlled and hence the name

of “controlled speed” arises.

Through-water speed is a critical variable that represents horizontal navigation perfor-

mance of AUVs moving in a dynamic ocean environment. Positional accuracy and arrival

time to target points are greatly affected by through-water speed of AUVs under ocean flow.

When through-water speed is much lower than flow speed because of thruster faults, AUV

motion is significantly disturbed by flow, and navigation error is increased, then arrival time

is more unpredictable.

We developed an on-line adaptive learning algorithm of controlled Lagrangian particles

in order to estimate the through-water speed of an AUV. Previous work [9] shows that

controlled Lagrangian prediction error (CLPE) that represents the accuracy of the simulated

motion models can increase over time in simulated and field experiments. Because actual

flows differ from flows generated from flow models in simulated motion models, a learning

algorithm is proposed to identify actual flow instead of the use of flow models. The learning

algorithm, which is extended from the framework of controlled Lagrangian particles that

describes the motion of AUVs partially advected by flow, simultaneously estimates both

through-water speed and flow velocity.

Updating rules of the learning algorithm depends on controlled Lagrangian localiza-

tion error. An estimated trajectory is one kind of path information of AUVs. Since the

estimated trajectory reflects vehicle motion, we use the estimated trajectory as the input of
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the updating rules in order to evaluate how adaptive learning identifies true vehicle motion,

then output of adaptive learning is an identified trajectory. Controlled Lagrangian local-

ization error (CLLE) is the difference between the estimated trajectory and the identified

trajectory. When CLLE is zero, the identified trajectory generated from adaptive learning

fits the estimated trajectory. Adaptive learning is updated by the updating rules that make

not only estimation error of flow velocity and through-water speed converge to zero, but

also CLLE converges to zero as time goes to infinity. Further, the learning algorithm guar-

antees bounded CLLE under uncertain disturbances. In spite of uncertainty of actual flow,

the learning algorithm does not make CLLE diverge. This boundedness shows that the

learning algorithm is robust to disturbances. Figure 2.1 shows the diagram of the learning

algorithm composed of adaptive learning and the updating rules.

Figure 2.1: The diagram of the adaptive learning algorithm

Measuring through-water speed of AUVs is substantially difficult because of limited

hardware capability. The inertial measurement unit (IMU) and the Doppler velocity log

(DVL) can be combined to measure through-water speed. Positional accuracy of the only

IMU is too low due to the double integral of the accelerometer measurements that contain

various errors such as scale factor, bias, and noise [36]. IMU error can be corrected by the

DVL, which measures both vehicle velocity with respect to ground (bottom-tracking), and

flow velocity with respect to the vehicle (water-tracking) [37]. However, over several hun-
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dred meters of water depth, the DVL’s acoustic beam cannot reach to the bottom because

of limited power; thus, the DVL is not operated in deep depth. Moreover, DVL accuracy

can be poor when the AUV does not maintain constant altitude and heading angle. Alterna-

tively, acoustic positioning systems can estimate AUV speed using a short baseline (SBL)

or a long base line (LBL) method, which utilizes multiple beacons located at the sea floor

or the hull of a ship [7]. However, this measured velocity is not through-water velocity,

but it is ground velocity that combines both through-water velocity and flow velocity. Our

goal is to simultaneously extract through-water velocity and flow velocity from trajectory

information without any speed sensor.

We define a range of normal operation of AUV specified by maximum and minimum

through-water speed when AUVs are in normal operation. If the through-water speed esti-

mate is outside the range of normal operation, then anomalies are detected. The inaccuracy

of the through-water speed estimate can occur; for example, model uncertainty used for the

adaptive learning algorithm can induce estimation error of through-water speed, and then

it leads to a false alarm. Because we have knowledge on flow velocity from flow models,

comparing modeled flow velocity and estimated flow velocity enables avoiding the false

alarm.

We describe a vehicle motion model based on the framework of controlled Lagrangian

particles in the next section. The vehicle motion model incorporates a flow model and a

particle model of the vehicle.

2.1 Vehicle Motion Model

Let F:D× [0, ∞]→R2 be a deterministic ambient flow velocity, where D∈R2 is the domain

of interest. Furthermore, let v be the through-water velocity. Then, the vehicle motion

model is approximated by

dx
dt

= FR(x, t)+vR(ψc(t)), (2.1)
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where subscript R for the flow F denotes an actual flow. FR and vR are assumed to be

locally Lipschitz in x = [x1, x2]
> ∈ D. x is the true position of the AUV that is assumed

to be known. This assumption will be removed in Chapter 5 where we discuss how to

estimate x. In equation (2.1), ψc(t) ∈ R that represents the heading angle command of the

AUV is known. We define y(t) as the predicted position of the vehicle before deploying

the vehicle. The set of predicted positions, or the predicted trajectory of the vehicle has

following simulated motion model.

dy
dt

= FM(y, t)+vM(ψc(t)), (2.2)

where subscript M of the flow F denotes a known modeled flow. After we deployed the

AUVs, in the learning algorithm, adaptive learning that incorporates the heading angle

command as input identifies the motion of the vehicle. Let us define z(t) as the output of

adaptive learning, then the identified trajectory of the vehicle is modeled by:

dz
dt

= FL(z, t)+vL(ψc(t)), (2.3)

where subscript L of the flow F is to denote an identified flow.

Flow fields can be represented by spatial and temporal basis functions [38]. We consider

that spatial and temporal basis functions are to be the combination of Gaussian radial and

tidal basis functions, respectively. Let N be a positive integer, and θ , α ∈R2×N be unknown

and known parameters, respectively. Let φ :D× [0, ∞]→ RN be [φ 1(x, t), · · ·φ N(x, t)]> .

FR(x, t) = θφ(x, t) (2.4)

FM(x, t) = αφ(x, t), (2.5)
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where

θ =

θ1

θ2

=

θ 1
1 · · · θ N

1

θ 1
2 · · · θ N

2

 , α =

α1

α2

=

α1
1 · · · αN

1

α1
2 · · · αN

2

 . (2.6)

The combined basis functions are

φ
i(x, t) = exp−

‖x−ci‖
2σi cos(ωit +υi), i = 1, · · · ,N, (2.7)

where ci is the centers, σi is the widths, ωi tidal frequencies, and υi tidal phases. Here

we assume that the flow only contains tidal flow and biased flow, which represents the

combination of high and low frequency components of flow. If ωi equals zero, flow only

has spatial variability. Similarly, FL(z, t) is defined as follows.

FL(z, t) = ξ (t)φ(z, t), (2.8)

where ξ (t) =

ξ1(t)

ξ2(t)

=

ξ 1
1 (t) · · · ξ N

1 (t)

ξ 1
2 (t) · · · ξ N

2 (t)

.

The through-water velocity of the AUV can be represented by the combination of AUV

through-water speed and heading angle command as the general particle model, which

is known as the unicycle model of unmanned ground robots. Let actual through-water

speed VR be a constant value, and let identified through-water speed VL be a time-varying

parameter. Let Ψc = [cosψc(t), sinψc(t)]> be the vector of heading angle command. Let

β (t) ∈ R2 be a learning injection parameter. Then,

vR(ψc(t)) = VRΨc (2.9)

vL (ψc(t)) = VL(t)Ψc +β (t). (2.10)

For normal operation, VR in equation (2.9) is a constant. However, the predicted and es-

timated trajectories diverge when VR has a different abnormal constant value because of
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unexpected AUV motion. To detect such abnormal constant values, the learning algorithm

identifies through-water velocity represented by equation (2.10) that contains time-varying

speed term VL(t), and learning injection term β (t). By plugging equations (2.10) and (2.8)

into equation (2.3), the closed-loop dynamics for the generation of the identified trajectory

is

ż = ξ (t)φ(z, t)+VL(t)Ψc +β (t). (2.11)

Meanwhile, the closed-loop dynamics for the generation of the estimated trajectory is

ẋ = θφ(x, t)+VRΨc, (2.12)

when we plug equations (2.4) and (2.9) into equation (2.1). If x and z have the same

initial condition and VL =VR, and β (t) = θφ(x, t)−ξ (t)φ(z, t), the identified trajectory is

identical to the estimated trajectory. Our goal is to design updating rules and the learning

injection parameter so that the two closed-loop dynamics can be similar. Note that the

parameter θ is unknown so we can not use β (t) = θφ(x, t)−ξ (t)φ(z, t) directly.

On the other hand, through-water velocity can be saturated because of control power

constraints of AUVs. We modify equations (2.1) as follows:

dx
dt

= FR(x, t)+u(ψc(t)), (2.13)

where

u(ψc(t)) =

 vR(ψc(t)) if ‖vR(ψc(t))‖∞ ≤ u0

u0sgn(vR(ψc(t))) if ‖vR(ψc(t))‖∞ > u0.
(2.14)

The maximum through-water speed u0 is determined by the hardware configuration of

AUVs. Our goal is to design updating rules of the time-varying parameters in equation

(2.10) for AUVs with saturated through-water velocity so that the updating rules make the

identified trajectory follows the estimated trajectory in the ocean flow field.
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2.2 Controlled Lagrangian Localization Error

We first derive controlled Lagrangian localization error (CLLE) dynamics that models how

much the estimated trajectory is deviated from the identified trajectory. By subtracting

equation (2.11) from equation (2.12), CLLE dynamics is represented by

ė = ẋ− ż = θφ(x, t)−ξ (t)φ(z, t)+(VR−VL(t))Ψc−β (t). (2.15)

For example, if we let β (t) = ξ (t)φ(x, t)−ξ (t)φ(z, t)+Ke, where K is a diagonal matrix

with positive components, VL(t) converges to VR, and ξ (t) converges to θ , CLLE goes

to zero as time goes by, which implies that the identified trajectory follows the estimated

trajectory. Then we design the learning parameter injection as follows:

β (t) = ξ (t)φ(x, t)−ξ (t)φ(z, t)+Ke. (2.16)

When we plug equation (2.16) into equation (2.15), CLLE dynamics is

ė = (θ −ξ (t))φ(x, t)+(VR−VL(t))Ψc−Ke. (2.17)

We derive CLLE dynamics under control input constraints. Let δu = u(ψc(t))−vR(ψc(t))

be the saturation term of through-water velocity. We combine equations (2.13) and (2.14)

using (2.9), and subtract (2.11) from the combination of (2.13) and (2.14). CLLE dynamics

becomes

ė = (θ −ξ (t))φ(x, t)+(VR−VL(t))Ψc−Ke+δu, (2.18)

where δu can be viewed as an additional disturbance to CLLE dynamics. We assume that

‖δu‖ is bounded by δumax. Equation (2.18) is used for the proposed updating rules that

ensure CLLE to be ultimately bounded in spite of saturation of through-water velocity.
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2.3 Adaptive Learning Algorithm

Our goal is to design the learning algorithm that updates parameters ξ (t) and VL(t) with

the updating rules by using CLLE dynamics so that CLLE converges to zero. Let ξ̄ , θ̄ , and

e⊗φ ∈ R2N be row vectors. That is, ξ̄ (t) = [ξ 1
1 (t), · · · ,ξ N

1 (t),ξ 1
2 (t), · · · ,ξ N

2 (t)]>, θ̄(t) =

[θ 1
1 (t), · · · ,θ N

1 (t),θ 1
2 (t), · · · ,θ N

2 (t)]>, and e⊗φ = [e1φ 1, · · · ,e1φ N ,e2φ 1, · · · ,e2φ N ]>, where

⊗ is the Kronecker product. We design the updating rules for time-varying parameters as

follows:

˙̄
ξ (t) = γ̄e⊗φ(x, t) (2.19)

V̇L(t) = γ̄e>Ψc. (2.20)

To prove error convergence, parameter convergence, and robustness of equations (2.19)

and (2.20), we need Theorems and Lemmas in [39] as follows: Let A(t)∈Rn×n, C(t),L(t)∈

Rn×l , X(t) ∈ Rn×1, and Y (t) ∈ Rl×1 be matrices that satisfy the following equation.

Ẋ(t) = A(t)X(t), Y (t) =C>(t)X(t). (2.21)

Theorem 2.1 A necessary and sufficient condition for the uniformly asymptotically stability

of the equilibrium of Ẋ(t) = A(t)X(t) is that there exists a symmetric matrix P(t) such that

both c1I ≤ P(t) ≤ c2I and A(t)>P(t)+P(t)A(t)+ Ṗ(t)+ νC(t)>C(t) ≤ 0 are satisfied ∀t

and some constant ν > 0, where c1 > 0, and c2 > 0 and C(t) is such that (C(t),A(t)) is

uniformly completely observable.

Definition 2.1 [40, 41] A vector signal u is persistently exciting if there exist positive con-

stants κ1, κ2, and T such that κ2I ≥
∫ t+T

t u(τ)u>(τ)dτ ≥ κ1I ∀t.

Lemma 2.1 Assume that there exists constants ν > 0,kν ≥ 0 such that for all t0 ≥ 0, L(t)

satisfies the inequality
∫ t0+ν

t0 ‖L(τ)‖2dτ ≤ kν . Then system (C(t),A(t)) is a uniformly com-

pletely observable if and only if system (C(t),A(t)+L(t)C(t)>) is a uniformly completely
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observable.

Lemma 2.2 If u : R+ 7→ Rn is persistently exciting, u ∈ L∞, u̇ ∈ L∞, and H(s) is a stable,

minimum phase, proper rational transfer function, then u′ = H(s)u is persistently exciting.

Lemma 2.3 Consider system Ẏ1 = AcY1−Bcφ>Y2, Ẏ2 = 0, and y0 = C>c Y1, where Ac is a

stable matrix, (Cc,Ac) is observable, and φ ∈ L∞. If φ f defined as φ f ,C>c (sI−Ac)
−1Bcφ

satisfies α1I ≤ 1
T0

∫ t+T0
t φ f (τ)φ

>
f (τ)≤ α2I,∀t ≥ 0 for constants α1,α2,T0 > 0, then the sys-

tem is uniformly completely observable.

Lemma 2.4 [42, 43] If g is a real function of real variable t, defined and uniformly contin-

uous for t ≥ 0, and if the limit of the integral
∫ t

0 g(s)ds as t tends to infinity exists and is a

finite number, then limt→∞ g(t) = 0.

Let φ̃1 =

φ 1
1 · · · φ N

1

0 · · · 0

 and φ̃2 =

 0 · · · 0

φ 1
2 · · · φ N

2

 be in R2×N . Let w = [φ̃1, φ̃2, Ψc]
> ∈

R(2N+1)×2. For parameter convergence, we need an assumption on w as follows:

Assumption 2.1 w is persistently exciting. By Definition 2.1, there exists positive definite

matrix W (t) ∈ R(2N+1)×(2N+1) such that

W (t) =

∫ t+T

t



φ 1
1 φ 1

1 φ 1
1 φ 2

1 ··· φ 1
1 φ N

1 0 0 ··· 0 φ 1
1 cosψc

φ 2
1 φ 1

1 φ 2
1 φ 2

1 ··· φ 2
1 φ N

1 0 0 ··· 0 φ 2
1 cosψc

...
...

...
...

...
...

...
...

...
φ N

1 φ 1
1 φ N

1 φ 2
1 ··· φ N

1 φ N
1 0 0 ··· 0 φ N

1 cosψc

0 0 ··· 0 φ 1
2 φ 1

2 φ 1
2 φ 2

2 ··· φ 1
2 φ N

2 φ 1
2 sinψc

0 0 ··· 0 φ 2
2 φ 1

2 φ 2
2 φ 2

2 ··· φ 2
2 φ N

2 φ 2
2 sinψc

...
...

...
...

...
...

...
...

...
0 0 ··· 0 φ N

2 φ 1
2 φ N

2 φ 2
2 ··· φ N

2 φ N
2 φ N

2 sinψc

cosψcφ 1
1 cosψcφ 2

1 ··· cosψcφ N
1 sinψcφ 1

2 sinψcφ 2
2 ··· sinψcφ N

2 1


dτ,

(2.22)

where φ i
j(x,τ) = exp−

‖x−ci‖
2σi cos(ωiτ +υi), i = 1 · · ·N, j = 1,2,and T > 0. This assumption

is critical to prove the convergence of parameters in that estimation error of parameters

cannot converge to zero when the persistent excitation condition is not satisfied [44]. For
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example, when φ i
j is constant and ψc equals 90 degree, W (t) equals

T



φ 1
1 φ 1

1 φ 1
1 φ 2

1 · · · φ 1
1 φ N

1 0 0 · · · 0 0

φ 2
1 φ 1

1 φ 2
1 φ 2

1 · · · φ 2
1 φ N

1 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

φ N
1 φ 1

1 φ N
1 φ 2

1 · · · φ N
1 φ N

1 0 0 · · · 0 0

0 0 · · · 0 φ 1
2 φ 1

2 φ 1
2 φ 2

2 · · · φ 1
2 φ N

2 φ 1
2

0 0 · · · 0 φ 2
2 φ 1

2 φ 2
2 φ 2

2 · · · φ 2
2 φ N

2 φ 2
2

...
...

...
...

...
...

...
...

...

0 0 · · · 0 φ N
2 φ 1

2 φ N
2 φ 2

2 · · · φ N
2 φ N

2 φ N
2

0 0 · · · 0 φ 1
2 φ 2

2 · · · φ N
2 1



. (2.23)

Then, this W (t) is singular due to the last row depending on the other rows with elements

composed of φ i
2; hence w is not persistently exciting. Because constant φ i

j and ψc are not

enough to excite system modes so that unknown parameters are identified, estimation errors

of parameters cannot converge to zero.

We prove error and parameter convergence to show that the learning algorithm ac-

curately identifies a vehicle motion under flow with the proposed updating rules. Error

convergence indicates that the identified trajectory converges to the estimated trajectory,

which implies that the learning algorithm identifies the vehicle motion. The convergence

of CLLE using Lemma 2.4 is proved as follows.

Theorem 2.2 Using equations (2.19) and (2.20), CLLE converges to zero when time goes

to infinity; that is, e(t)→~0 as t→ ∞.

Proof. Consider a candidate Lyapunov function:

V (e,ξ ,VL) =
1
2

{
e>e+

1
γ̄

(
θ̄ − ξ̄ (t)

)> (
θ̄ − ξ̄ (t)

)
+

1
γ̄
(VR−VL(t))

2
}
. (2.24)
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The derivative of V is

V̇ =−eT Ke+ e> (θ −ξ (t))φ(x, t)+(VR−VL(t))
(

e>Ψc−
1
γ̄

V̇L(t)
)
− 1

γ̄

(
θ̄ − ξ̄ (t)

) ˙̄
ξ (t).

(2.25)

We know e> (θ −ξ (t))φ(x, t) =
(
θ̄ − ξ̄ (t)

)
e⊗ φ(x, t). Then, using equation (2.19) and

(2.20),

V̇ =−e>Ke≤ 0. (2.26)

V̇ is negative semi-definite and this implies e, ξ (t), and VL(t) are bounded. In addition, the

second order time derivative of V satisfies

V̈ =−2e>Kė =−2e>K{(θ −ξ (t))φ(x, t)+(VR−VL(t))Ψc−Ke}. (2.27)

Because Ψc is bounded, V̈ is bounded, and hence V̇ is uniformly continuous. By Lemma

2.4, limt→∞ V̇ (t) = 0. Since K is the diagonal matrix, e(t)→~0 as t→ ∞.

Even if CLLE convergence is shown, the learning algorithm may not identify actual flow

because multiple parameters that represent flow are identified from one type of information,

which is the estimated trajectory. Thus, we prove parameter convergence to declare that the

vehicle motion is accurately identified.

Theorem 2.3 Under the same setting of Theorem 2.2, ξ̄ (t) and VL(t) converges to θ̄ and VR,

respectively; that is, ξ̄ (t)→ θ̄ , and VL(t)→VR as t→ ∞.

Proof. Let η1, η2 and η3 be (θ1−ξ1(t)), (θ2−ξ2(t)), and (VR−VL(t)), respectively. We

rewrite equation (2.17) using equation η1, η2, and η3 as follows:

ė = φ̃1(x, t)η1 + φ̃2(x, t)η2 +Ψcη3−Ke. (2.28)
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We augment e, η1, η2, and η3 to new state variable X . Then

Ẋ = A(t)X , Y =CX , A(t) =



−K φ̃1 φ̃2 Ψc

−γ̄ φ̃1 0 0 0

−γ̄ φ̃2 0 0 0

−γ̄Ψ>c 0 0 0


C =



I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,

(2.29)

where 0 is the zero matrix with proper dimensions according to the components of the first

row matrix of A. Our goal is to show that the origin of Ẋ = A(t)X is uniformly asymptoti-

cally stable, which implies that ξ̄ (t) converges to θ̄ , and VL(t) converges to VR when time

goes to infinity. By Theorem 2.1, we need to show that P exists and (C,A) is uniformly

completely observable. Let

P =



1
2K−1 0 0 0

0 1
2γ̄

K−1 0 0

0 0 1
2γ̄

K−1 0

0 0 0 1
2γ̄

K−1


. (2.30)

Let V ′ be X>PX . Then, V̇ ′=X>(A>P+P>A+Ṗ)X ≤−νX>C>CX =−ν‖Y‖2, where Ṗ=

0. Thus, there exists a symmetric matrix P(t) such that c1I ≤ P(t) ≤ c2I and A(t)>P(t)+

P(t)A(t)+ Ṗ(t)+ νC(t)>C(t) ≤ 0. Now we will prove (C,A) is a uniformly completely

observable. Because it is hard to prove the observability of time varying system matrix A,

we will instead show (C,A+LC) is uniformly completely observable with some bounded

matrix L, called output injection by Lemma 3.1. Let L =



K 0 0 0

γ̄ φ̃1 0 0 0

γ̄ φ̃2 0 0 0

γ̄Ψ>c 0 0 0


. Since Ψc is

bounded, and φ̃ is a sinusoidal function with exponential magnitude, L is bounded. Then,
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A+LC =



0 φ̃1 φ̃2 Ψc

0 0 0 0

0 0 0 0

0 0 0 0


. Thus,

Ẋ = AX = (A+LC)X−LY

Y =CX .

(2.31)

Let η = [η1, η2, η3]
>. We have the following equation corresponding to equation (2.31).

ė =−Ke+w>η

η̇ = 0

Y = e.

(2.32)

By Assumption 2.1, w is persistently exciting. Let Φ(τ) =
∫

τ

t exp−K(τ−σ)w(σ)dσ be out-

put of equation (2.32) given input w. By Lemma 2.2, Φ(τ) satisfies persistently exciting

conditions because w(σ) is persistently exciting, and the transfer function of of equation

(2.32), (sI2×2+K)−1, is a stable, minimum phase, proper rational transfer function. There-

fore, there exists constant ρ1, ρ2, T0 > 0 such that ρ2I ≥ 1
T0

∫ t+T0
t Φ(τ)Φ>(τ)dτ ≥ ρ1I ∀t ≥

0. By applying Lemma 2.1 to the system of equation (2.32), (C,A+ LC) is uniformly

completely observable; hence, the system of equation (2.29) is uniformly completely ob-

servable. Therefore, the origin of Ẋ = A(t)X is uniformly asymptotically stable; that is

X →~0 as t → ∞. This means that η1, η2, and η3 go to zeros, individually. Thus, ξ̄ (t) and

VL(t) converge to θ̄ and VR, respectively.

2.3.1 Input constraints

The AUVs have limited power to control their motions. The control power is saturated by

the maximum capacity of hardware such as motors and thrusters. This induces constraint
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to controlling AUVs in the ocean.

Since equation (2.18) includes one saturated term represented by δu = u− vR, which

shows the discrepancy between input and output of the saturator, we reject additional dis-

turbance δu from saturation in equation (2.18) by using a scheme in [45]. We generate

additional signal eδ governed by a differential equation as follows:

ėδ =−Keδ +Λδu, (2.33)

where Λ = diag{Λ1, Λ2} is the matrix with parameters that we design. Those parameters

are determined to reject the disturbance. Let ε = e− eδ be the difference between CLLE

and the additional signal. When subtracting (2.33) from (2.18), we have

ε̇ = ė− ėδ = (θ −ξ (t))φ(x, t)+(VR−VL(t))Ψc−Ke+(I−Λ)δu. (2.34)

Λ is designed to be I. Let δu = [δu1, δu2]
> be two dimensional vectors. To make ε go to

zero, we design the updating rules for time-varying parameters ξ̄ and VL by the following

equations.

˙̄
ξ = γ̄ε⊗φ(x, t) (2.35)

V̇L = γ̄Ψ̃cε (2.36)

Theorem 2.4 Under the update rules (2.35) and (2.36), CLLE is ultimately bounded.

‖e‖ ≤ λmax(Λ)‖δu‖
ξ

, (2.37)

where the positive constant ξ < 1.
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Proof. Let Veδ
= 1

2e>
δ

K−1eδ . The derivative of Veδ
is V̇eδ

= −e>
δ

eδ + e>
δ

Λδu. Then,

V̇eδ
≤−(1−ξ )‖eδ‖2−ξ‖eδ‖2+‖eδ‖λmax(Λ)‖δu‖. When ‖eδ‖ ≥

λmax(Λ)‖δu‖
ξ

given pos-

itive constant ξ < 1, V̇ ≤ −(1− ξ )‖eδ‖2. This means V̇ is not positive. Thus, ‖eδ‖ ≤
λmax(Λ)‖δu‖

ξ
.

We will show ε goes to zero when time goes infinity by the following candidate Lya-

punov function.

V (ε, ξ̄ ,VL) =
1
2

{
ε
>

ε +
1
γ

(
θ̄ − ξ̄

)> (
θ̄ − ξ̄

)
+

1
γ̄
(VR−VL)

2
}
, (2.38)

By using equations (2.35) and (2.36), V̇ =−ε>Kε ≤ 0. V̇ is negative semi-definite and this

implies ε , ξ̄ , and VL are bounded. In addition, V̈ = −2ε>Kε̇ = −2ε>K{(θ −ξ )φ(x, t)+

(VR−VL)Ψc}. Since e = eδ + ε , e is bounded. This implies that x is bounded. In addition,

ξ and VL are bounded. Thus, V̈ is bounded, and then V̇ is uniformly continuous. By Lemma

3.4, limt→∞ V̇ (t) = 0. Since K is the diagonal matrix, ε →~0 when t → ∞; e→ eδ when

t→ ∞. Thus, CLLE is ultimately bounded.

2.3.2 Inaccuracy in flow modeling

Although the basis functions well capture the spatial variability of actual flows in a specific

region, the functions still include deterministic errors induced by the variability out of

the region. In this section, we address the robustness of the proposed adaptive learning

algorithm.

To show that the proposed algorithm is robust to disturbance in the flows, we prove the

boundedness of CLLE when the actual flow model has unknown disturbances. We assume

FR(x, t) = θφ(x, t)+∆, where ‖∆‖ is bounded by ∆max ∈ R. Then,

ė = (θ −ξ (t))φ(x, t)+(VR−VL(t))Ψc−Ke+∆ (2.39)

The Theorem of robustness is proved below.
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Theorem 2.5 Under the same setting of Theorem 2.2 and FR(x, t) = θφ(x, t)+∆, CLLE is

ultimately bounded.

‖e‖ ≤ 1
υ
‖∆‖, (2.40)

where the positive constant υ < λmin(K) and ‖∆‖ is bounded by ∆max.

Proof. Let V be the Lyapunov function represented by equation (2.24). By using equation

(2.39), the derivate of V is

V̇ =− eT Ke+ e>∆+(VR−VL(t))
>
(

1
γ̄

V̇L(t)− e>Ψc

)
+

1
γ̄

(
θ̄ − ξ̄ (t)

)(1
γ̄

˙̄
ξ (t)− e⊗φ(x, t)

)

Then, we plug the updating rules represented by equations (2.19) and (2.20) into equation

(2.41). Then,

V̇ =−eT Ke+ e>∆≤−λmin(K)e>e+ e>∆≤−λmin(K)‖e‖2 +‖e‖‖∆‖

≤ −(λmin(K)−υ)‖e‖2 +‖e‖‖∆‖−υ‖e‖2
(2.41)

When ‖e‖ ≥ 1
υ
‖∆‖ given positive constant υ < λmin(K), V̇ ≤−(λmin(K)−υ)‖e‖2, which

means V̇ is negative definite. Thus, CLLE is ultimately bounded. The bound of CLLE is

‖e‖ ≤ 1
υ
‖∆‖.

2.4 Anomaly Detection Algorithm

From Theorems 2.2-2.5, we prove error and parameter convergence of the learning algo-

rithm. With the updating rules represented by equations (2.19) and (2.20), we estimate

flow velocity and through-water speed simultaneously. The through-water speed estimate

is used for a critical measure that decides whether or not abnormal vehicle motion occurs.

Generally, we know maximum and minimum through-water speed when AUVs are in nor-

30



mal operation. If through-water speed estimate is within the range between maximum and

minimum through-water speed, we determine that the AUV is normally operated without

abnormal motion; however, we determine that the abnormal motion of the AUV happens

when AUV through-water speed estimate is out of the normal range. The binary decision

rule based on through-water speed estimate can wrongly inform that anomaly occurs. Even

if actual through-water speed is within the normal range, through-water speed estimate can

be out of the normal range due to large estimation error of through-water speed; this is

called a false alarm. Such a false alarm may stop the vehicle mission.

In order to prevent the false alarm, we propose that flow velocity estimate is used as

an extra information that can validate through-water speed estimate. Since the adaptive

learning algorithm makes the identified trajectory match the estimated trajectory while es-

timating both flow velocity and through-water speed, large error of through-water speed

estimate implies large error of flow velocity estimate, and vice versa. Thus, we define flow

estimation error as the difference between estimated flow velocity and modeled flow veloc-

ity generated from flow models (ex. [46, 47]) available. To determine that flow estimation

error is large or small by a threshold technique, we use Euclidean norm of normalized

flow estimation error, which is the norm of the ratio of flow estimation error to modeled

flow. Since the ratio describes how much estimated flow is different from modeled flow, we

are able to compare the ratio and a predetermined threshold. When the ratio is below the

threshold, flow estimation error is evaluated to be small; otherwise, flow estimation error is

evaluated to be large. If the ratio is above the threshold, it is highly possible that the binary

decision rule is wrong; on the other hand, the binary decision is reliable when the ratio

is below the threshold. However, using the norm of the ratio has one disadvantage. Flow

model with spatial and time variabilities can have flow speed close to zero. This low flow

speed can cause the large value of the norm of the ratio; we cannot use a fixed threshold to

determine that flow estimation error is small or large. Instead of modeled flow used for the

denominator of the ratio, we compare maximum values of estimated and modeled flows.
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Let F̂Lmax = max(‖FL(τ)‖τ∈[0,t]) be the maximum value of estimated flow speed until time

t. Let F̂Mmax = max(‖FM(τ)‖τ∈[0,t]) be the the maximum value of modeled flow speed until

time t. The measure is proposed by

pE =
‖FM(t)−FL(t)‖

2max
(
F̂Lmax , F̂Mmax

) . (2.42)

The numerator of the measure in equation (2.42) represents the difference between esti-

mated and modeled flows. The denominator of the measure normalizes the numerator by

a type of maximum flow. When we compare the maximum value of estimated flow speed

until time t to that of modeled flow speed until time t, we select the larger value between

the two maximum values in order to avoid numerator near zero. The value 2 in the denom-

inator is a scale factor that make measure be 1 when the difference between estimated and

modeled flows is maximum. The prevention scheme including the proposed measure pE

is combined with the binary decision rule, which describes in the form of pseudocodes in

Algorithm 1.

Algorithm 1: Anomaly Detection Algorithm
Input: Flow velocity estimate FL(t), modeled flow estimate FM(t), false alarm factor

γ f , controlled speed estimate VL(t), maximum speed Vmax, minimum speed
Vmin

Output: Anomaly detection flag
1 F̂Lmax = max(FL(τ)τ∈[0,t])

2 F̂Mmax = max(FM(τ)τ∈[0,t])

3 pE = ‖FL(t)−FM(t)‖
2max(F̂Lmax ,F̂Mmax)

4 if pE > γ f then
5 flag = 2 . False Alarm
6 else if VL(t) >Vmax or VL(t)<Vmin then
7 flag = 1 . Anomaly Detected
8 else
9 flag = 0 . No Anomaly Detected

10 end
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2.5 Mathematical Simulations of Anomaly Detection Algorithms

This section describes simulation results for the anomaly detection algorithms in Section

2.4. For the presentation of 2D ocean flow, θ1 = [0.9 0.5 0.7] are selected as the true flow

parameter along the horizontal direction; θ2 = [0.8 0.5 0.9] the true flow parameter along

the vertical direction. α1 = [1.08 0.6 0.84] represents modeled flow along the horizontal

direction; α2 = [0.96 0.6 1.08] represents modeled flow along the vertical direction. The

three combined basis functions are composed of center ci, width σi, harmonic frequency

ωi, and harmonic phase νi, where i = 1,2,3. c1, c2, and c3 are [0,0]>, [10,10]>, and [5,5]>,

respectively. σ1, σ2, and σ3 are all equal to 5. ω1, ω2, and ω3 are represented by periods

600 sec, 300 sec, and 800 sec, respectively. Those harmonic periods are arbitrary chosen.

Harmonic phases ν1, ν2, and ν3 are zeros.

For the anomaly detection algorithm, positive constant K in the learning parameter

injection term is the identity matrix. Adaptation speed γ̄ is 0.8. In the prevention scheme

of false alarm, false alarm factor γ f is 0.07. Fig 2.2 represents trajectories of an AUV when

the direction of the AUV in the horizontal plane is controlled by heading angle command

Ψc =
π

2 b
t

20c. In Figure 2.2, the simulated true trajectory represented by the black line

would have one square if there is no flow. However, because flow with spatial and temporal

variabilities affects vehicle motion, the true trajectory has multiple squares.

Figure 2.4 shows simulation results of through-water speed and anomaly detection. In

the upper panel, two green lines represent upper and lower bound of normal through-water

speed, respectively. When actual through-water speed is 0.5m/s after 200 sec due to ab-

normal motion, the learning algorithm keeps tracking actual through-water speed until 300

sec. The anomaly detection algorithm shows changing flag in the bottom panel. Flag

change from 0 to 2 within 10 sec shows that a false alarm happens due to the inaccuracy of

identified flow in a transient period. Flag 0 to 1 is occurred at 200 sec because identified

through-water speed is out of the normal range of through-water speed. Figure 2.5 shows

33



estimation error of vehicle speed converging to zero after 140 sec, but error is abruptly

increasing when vehicle speed reduces to 0.5m/s because of abnormal motion. This in-

creasing error shows that the learning algorithm is able to identify inaccurate vehicle speed

in a transient period. However, error converges to zero shortly. Figure 2.3 shows the con-

vergence of CLLE; CLLE converges to zero after 140 sec. When vehicle speed reduces to

0.5 m/s at 200 sec, CLLE is increasing abruptly, but converging to zero shortly. Figures 2.6

shows that identified flow parameters correspond to true flow parameters, and Figure 2.7

show identification error of flow parameters. In Figures 2.6, three parameters that represent

flow along the X-axis in the upper panel converge to true parameters until 300 sec. Three

parameters that represent flow along the Y-axis in the bottom panel converge to true param-

eters until 300 sec. In Figure 2.7, identification error converges to zero after 100 sec. When

through-water speed reduces to 0.5 m/s after 200 sec, identification error is still converging

to zero; These results support our theoretical analysis of Chapter 3.

Figure 2.2: Every 20 sec, the heading angle
command is changed with this order 0◦, 90◦,

180◦, 270◦. repeatedly, When there is no flow,
the simulated true trajectory has one square, but

it is not because of flow.

Figure 2.3: CLLE converges to zero after 7
intervals, but CLLE is abruptly increasing when

vehicle speed reduce to 0.5m/s because of
abnormal motion. After that, CLLE maintains
closing zero (1 cycle=10 intervals=200 sec).
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Figure 2.4: True through-water speed (upper)
and flag (bottom)

Figure 2.5: Estimation error of vehicle speed (1
cycle =10 intervals = 200 sec)

Figure 2.6: Convergence of flow parameters: Six
flow parameters converges to true values after 20

sec.

Figure 2.7: Convergence of identification error:
Identification error of flow parameters converges

to zero after 20 sec.
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CHAPTER 3

ANOMALY DETECTION UNDER ADAPTIVE CONTROL AND LEARNING

The previous chapter describes anomaly detection algorithms based on the estimation of

through-water speed and flow velocity. When through-water speed of the vehicle is as-

sumed to be constant, both estimates from the adaptive learning algorithm are used to

detect abnormal vehicle motion, reducing false alarms. However, through-water speed can

be changed by the propulsion system of AUVs (ex. [48],[49]), and control strategies. This

chapter addresses the anomaly detection problem when the through-water speed is con-

trolled by an adaptive control algorithm. A predicted trajectory is generated before vehicle

deployment. Given the predicted trajectory, the adaptive control algorithm changes the

through-water speed of the AUV to reduce controlled Lagrangian prediction error, which

is the difference between the estimated and predicted positions. Then, estimated trajec-

tory is acquired after vehicle deployment. Adaptive learning that identifies vehicle motion

controlled by the adaptive control algorithm generates through-water and flow velocity es-

timates. We will show that integration of adaptive control and learning algorithms is able

to create the criteria that detects anomaly and reduces false alarms.

3.1 Vehicle Motion Model

Let Ψc(t) be heading angle commands, which are orientation angles of the vehicle to be

achieved. Let yc(t) = [y1c(t), y2c(t)]> be the set of waypoints according to time in the

2D plane, which are target locations to be reached. Let Γc(t) be commands for achieving

a goal. If the goal is to make a vehicle maintain the orientation angle, then we let Γc(t)

equals Ψc(t). If the goal is to make vehicle reach waypoints, then we let Γc(t) equals yc(t);
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thus, Γc(t) ∈ R or Γc(t) ∈ R2. The vehicle motion model is approximated by

dx
dt

= FR(x, t)+vR(x, t,Γc(t)), (3.1)

where x is the true position of the AUV that is assumed to be known. This assumption will

be removed in Chapter 5 where we discuss how to estimate x. We define y(t) as the pre-

dicted position of the vehicle before deploying the vehicle. The set of predicted positions,

or the predicted trajectory of the vehicle is generated from the following simulated motion

model.
dy
dt

= FM(y, t)+vM(y, t,Γc(t)). (3.2)

After we deployed the AUVs, in the learning algorithm, adaptive learning that incorporates

command Γc(t) as input identifies the motion of the vehicle. Let us define z(t) as the output

of adaptive learning, then the identified trajectory of the vehicle is modeled by:

dz
dt

= FL(z, t)+vL(z, t,Γc(t)). (3.3)

3.1.1 Integrating Adaptive Control and Learning for Anomaly Detection

If we have localization service for the vehicle, and if the vehicle is under adaptive control

to reduce the controlled Lagrangian prediction error (CLPE), then we can use CLPE as an

indicator to reduce false alarm.

A predicted trajectory can be used for anomaly detection, reducing the rate of false

alarms induced by estimation error of through-water speed. Let controlled Lagrangian lo-

calization error (CLLE) denote eL, and controlled Lagrangian prediction error (CLPE) eP

for notationally differentiating between CLLE and CLPE. To explain the usefulness of the

predicted trajectory, Figures 3.1 and 3.2 show examples of an estimated trajectory, a pre-

dicted trajectory, and an identified trajectory together with CLLE eL and CLPE eP. Figures

3.1 and 3.2 are two different identified trajectories represented by Cases 1 and 2, respec-
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tively; subscripts 1 and 2 for eL represent Cases 1 and 2, respectively. Case 1 shows that

the identified trajectory is far from the estimated trajectory when we compare the identified

trajectory and the predicted trajectory with respect to the estimated trajectory since CLLE

is larger than CLPE. If the through-water speed estimates from the identified trajectory in

Case 1 are used for anomaly detection, false detection results are likely obtained. On the

other hand, Case 2 shows that CLLE is smaller than CLPE. Because the identified trajec-

tory is closer to the estimated trajectory in Case 2 than in Case 1, through-water speed

estimates from the identified trajectory are reliable. It leads to using both eL and eP enables

anomaly detection, which is robust to false alarms.

Figure 3.1: When ‖eL1‖ is larger than ‖eP‖ at
time t, the identified trajectory is relatively far

away from the estimated trajectory

Figure 3.2: When ‖eL2‖ is smaller than ‖eP‖ at
time t, the identified trajectory is relatively close to

the estimated trajectory.

3.2 Flow Canceling Control for Maintaining Heading

The vehicle is using adaptive flow canceling control, which is an assumption that will make

the use of CLPE possible. The adaptive controller plays a key role in controlling the AUV

to follow the predicted trajectory generated in the stage of pre-deployment. Let ϑ(t) =ϑ 1
1 (t) · · · ϑ N

1 (t)

ϑ 1
2 (t) · · · ϑ N

2 (t)

 be a 2×N matrix with time varying parameters. Let VI(t) ∈ R be
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time-varying speed. Let δ (t) ∈ R2 be a control injection parameter. Let Ψc(t) be heading

angle command as external input. When Γc(t) = Ψc(t), we let the through-water velocity

of the vehicle be

vR(x, t,ψc(t)) =−ϑ(t)φ(x, t)+VI(t)Ψc(t)+δ (t). (3.4)

Equation (3.4) represents the control law with flow canceling. Flow canceling term

−ϑ(t)φ(x, t), velocity control term VI(t)Ψc, and stabilizing term δ (t) are combined for

vehicle control. The velocity control term makes the vehicle move with time-varying speed

VI and heading angle command ψc after canceling out estimated flow.

For the predicted trajectory, we assume that vehicle speed is constant after canceling

modeled flow. This assumption is different from the constant speed assumption used in

Chapter 2. In this Chapter, the feedback controller on the vehicle is responsible to keep a

constant speed in the direction of heading angle after the flow is canceled. This assumption

will be removed in Section 4.3 where we discuss the structure of feedback and feedforward

controllers. Let VM ∈ R be fixed speed, VL(t) ∈ R time-varying speed. Let β (t) ∈ R2 be a

learning injection parameter. Then, through-water velocity vM for the predicted trajectory

and through-water velocity vL for the identified trajectory are

vM(y, t,ψc(t)) = −FM(y, t)+VMΨc (3.5)

vL(z, t,ψc(t)) = −FM(z, t)+VL(t)Ψc +β (t), (3.6)

respectively. VL(t) is different from VI(t) in that VL(t) is designed to reduce CLLE; how-

ever, VI(t) is designed to reduce CLPE.

By plugging equations (3.6) and (2.8) into equation (2.3), the closed-loop dynamics for

the identified trajectory is

ż = (ξ (t)−α)φ(z, t)+VL(t)Ψc +β (t). (3.7)
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Meanwhile, the closed-loop dynamics for the generation of the estimated trajectory is

ẋ = (θ −ϑ(t))φ(x, t)+VI(t)Ψc +δ (t), (3.8)

when we plug equations (3.4) and (2.4) into equation (2.1). Both of closed-loop dynamics,

represented by equations (3.7) and (3.8), are different from closed dynamics we described

in equations (2.11) and (2.12); flow canceling terms −αφ(z, t) and −ϑ(t)φ(x, t) are added

into closed-loop dynamics. If x and z have the same initial condition and VL(t) = VI(t),

β (t) = (θ −ϑ(t))φ(z, t)− (ξ (t)−α)φ(z, t)+δ (t), the identified trajectory is identical to

the estimated trajectory. Our goal is to design updating rules and the learning injection

parameter β (t) so that the two types of closed-loop dynamics can be similar. Note that the

parameter θ is unknown so we can not use β (t) = (θ −ϑ(t))φ(z, t)− (ξ (t)−α)φ(z, t)+

δ (t), directly.

By plugging equations (3.5) and (2.5) into equation (3.2), the closed-loop dynamics for

the predicted trajectory is

ẏ = FM(y, t)+vM(y, t,Ψc(t)),

= FM(y, t)−FM(y, t)+VMΨc

=VMΨc.

(3.9)

If x and y have the same initial condition and VI(t) = VM, and suppose δ (t) = −(θ −

ϑ(t))φ(x, t), then the estimated trajectory is identical to the predicted trajectory. Our goal

is to design adaptation laws and the control injection parameter so that the closed-loop

dynamics for the estimated trajectory and closed-loop dynamics for the predicted trajectory

can be similar. Note that the parameter θ is unknown so we can not use δ (t) = −(θ −

ϑ(t))φ(x, t), directly.
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3.2.1 Controlled Lagrangian prediction and localization errors

We first derive controlled Lagrangian prediction error (CLPE) dynamics that shows how

much the estimated trajectory deviates from the predicted trajectory. On the subtraction of

equation (3.9) from equation (3.8), CLPE dynamics represents

ėP = ẋ− ẏ = (θ −ϑ(t))φ(x, t)+(VI(t)−VM)Ψc +δ (t). (3.10)

Suppose ϑ(t) converges to θ , VI(t) converges to VM, and δ (t) =−K1eP where K1 is a diag-

onal matrix with positive components, then CLPE goes to zero over time, which implies the

estimated trajectory follows the predicted trajectory. Our first goal is to design adaptation

laws for updating parameters ϑ and VI by using CLPE dynamics so that CLPE converges

to zero.

For the development of the adaptive learning algorithm, we derive controlled Lagrangian

localization error (CLLE) dynamics. The difference between the estimated trajectory and

the identified trajectory, or CLLE, is a measure presenting the deviation of the estimated

trajectory from the identified trajectory. By subtracting equations (3.7) from equation (3.8),

CLLE dynamics represents

ėL = ẋ− ż =(θ −ϑ(t))φ(x, t)− (ξ (t)−α)φ(z, t)+(VI(t)−VL(t))Ψc +δ (t)−β (t).

(3.11)

Unlike Chapter 2 that shows the proof of convergence of the learning algorithm for constant

vehicle speed VR, here time varying speed VI(t) is included in CLLE dynamics; this leads

to difficulties on the proof of convergence. Thus, we incorporate both adaptation laws for

the adaptive control algorithm and updating rules for the adaptive learning algorithm. Our

second goal is to design updating rules for updating parameters ϑ , ξ , and VL by using

CLLE dynamics so that CLLE converges to zero under the adaptation laws.
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3.2.2 Adaptive control and learning algorithms

The adaptive control algorithm is developed to make the estimated trajectory follow the pre-

dicted trajectory. Because the estimated trajectory is disturbed by ocean flow, the proposed

algorithm keeps updating flow parameters and time-varying speed with on-line adaptive

control laws so that the estimated trajectory follows the predicted trajectory. We design

adaptation laws for time-varying parameters as follows:

˙̄
ϑ(t) = γeP⊗φ(x, t) (3.12)

V̇I(t) = −γe>P Ψc, (3.13)

where ⊗ is the Kronecker product, and γ is any positive constant. Let

ϑ̄(t) = [ϑ 1
1 (t), · · · ,ϑ N

1 (t),ϑ 1
2 (t), · · · ,ϑ N

2 (t)]> (3.14)

eP⊗φ = [eP1φ
1, · · · ,eP1φ

N ,eP2φ
1, · · · ,eP2φ

N ]> (3.15)

be row vectors in R2N . We design a control injection parameter as follows

δ (t) =−K1eP, (3.16)

where K1 is a diagonal positive definite matrix. With the adaptation laws, we prove error

and parameter convergence to show that the adaptive control algorithm makes the estimated

trajectory follow the predicted trajectory in unknown ocean flow fields. Error convergence

shows that the adaptive control algorithm accurately estimates flow velocity and cancels

estimated flow velocity, which implies that the estimated trajectory follows the predicted

trajectory. We prove that CLPE converges to zero in Theorem 3.1.

Theorem 3.1 Using equations (3.12) and (3.13), CLPE converges to zero when time goes
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to infinity; that is, eP(t)→~0 as t→ ∞.

Proof. Consider a candidate Lyapunov function:

V (eP, ϑ̄ ,VR) =
1
2

{
e>P eP +

1
γ

(
θ̄ − ϑ̄

)> (
θ̄ − ϑ̄

)
+

1
γ
(VI(t)−VM)2

}
. (3.17)

The derivative of V is

V̇ =− e>P K1eP + e>P (θ −ϑ(t))φ(x, t)+(VI(t)−VM)

(
e>P Ψc−

1
γ

V̇I(t)
)

− 1
γ

(
θ̄ − ϑ̄(t)

) ˙̄
ϑ(t).

We know that e>P (θ −ϑ(t))φ(x, t) =
(
θ̄ − ϑ̄(t)

)
eP⊗φ(x, t). Then, using equation (3.12)

and (3.13),

V̇ =−e>P K1eP ≤ 0. (3.18)

V̇ is negative semi-definite and this implies eP, ϑ(t), VI(t) are bounded. In addition, the

second order time derivative of V satisfies

V̈ =−2e>P K1ėP =−2e>P K1{(θ −ϑ(t))φ(x, t)+(VI(t)−VM)Ψc(t)−K1eP}. (3.19)

Because Ψc is bounded, V̈ is bounded, and hence V̇ is uniformly continuous. By Lemma

2.4, limt→∞ V̇ (t) = 0. Since K1 is the positive definite diagonal matrix, eP(t)→~0 as t →

∞.

Despite error convergence, flow velocity may not be precisely estimated in that multiple pa-

rameters that represent flow are identified from two types of trajectory information, which

are the estimated trajectory and the predicted trajectory. Because the control algorithm uses

estimated flow velocity to cancel actual flow and follow the predicted trajectory, inaccurate

flow estimates may prevent the estimated trajectory from following the predicted trajectory.

Thus, we prove the convergence of parameters ϑ̄ and VI in Theorem 3.2.
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Theorem 3.2 ϑ̄(t) and VI(t) converges to θ̄ and VM, respectively; that is, ϑ̄(t)→ θ̄ , and

VI(t)→VM as t→ ∞

Proof. Let η1, η2 and η3 be (θ1−ϑ1(t)), (θ2−ϑ2(t)), and (VI(t)−VM), respectively. Let

φ̃1 =

φ 1
1 · · · φ N

1

0 · · · 0

 and φ̃2 =

 0 · · · 0

φ 1
2 · · · φ N

2

 be in R2×N . We rewrite equation (3.10)

using η1, η2, and η3 as follows:

ėP = φ̃1(x, t)η1 + φ̃2(x, t)η2 +Ψcη3−K1eP. (3.20)

Because equation (3.20) has the same form of equation (2.28), and w is persistently exciting

by Assumption 3.5, we use the same proof of Theorem 2.3. Hence, ϑ̄ and VI converge to θ̄

and VM, respectively.

The adaptive learning algorithm in Chapter 2 uses the estimated trajectory propagated

by constant through-water speed; however, the estimated trajectory in this chapter is gen-

erated by time-varying through-water speed. Because the adaptation laws represented by

equations (3.12) and (3.13) govern the through-water speed, we need to incorporate the

adaptation laws into the proposed learning algorithm. We design the updating rules as

follows:

˙̄
ξ (t) = γ̃eL⊗φ(x, t)− γeP⊗φ(x, t) (3.21)

V̇L(t) = γ̃e>L Ψc− γe>P Ψc, (3.22)

where γ̃ is a design parameter, which is positive constant. Let

ξ̄ (t) = [ξ 1
1 (t), · · · ,ξ N

1 (t),ξ 1
2 (t), · · · ,ξ N

2 (t)]> (3.23)

ᾱ(t) = [α1
1 (t), · · · ,αN

1 (t),α
1
2 (t), · · · ,αN

2 (t)]
> (3.24)

eL⊗φ = [eL1φ
1, · · · ,eL1φ

N ,eL2φ
1, · · · ,eL2φ

N ]> (3.25)
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be row vectors in R2N . Then, we design learning parameter injection as follows:

β (t) = (ξ (t)−α)φ(x, t)− (ξ (t)−α)φ(z, t)+K2eL−K1eP, (3.26)

where K2 is a positive definite diagonal matrix with positive components. In order to iden-

tify vehicle motion, we first prove that CLLE converges to zero with the designed updating

rules in Theorem 3.3.

Theorem 3.3 Using equations (3.12), (3.13), (3.21) and (3.22), CLLE converges to zero

when time goes to infinity; that is, eL(t)→~0 as t→ ∞.

Proof. Consider a candidate Lyapunov function:

V (eL,ϑ ,ξ ,VI,VL)

=
1
2

{
e>L eL +

1
γ̃

(
θ̄ − ϑ̄(t)−

(
ξ̄ (t)− ᾱ

))> (
θ̄ − ϑ̄(t)−

(
ξ̄ (t)− ᾱ

))
+

1
γ̃
(VI(t)−VL(t))

2
}
.

(3.27)

The derivative of V is

V̇ =− e>L K2eL + e>L (θ −ϑ(t)− (ξ (t)−α))φ(x, t)

+(VI(t)−VL(t))
(

e>L Ψc +
1
γ̃

(
V̇I(t)−V̇L(t)

))
− 1

γ̃

(
θ̄ − ϑ̄(t)− (ξ̄ (t)− ᾱ)

)>
( ˙̄
ϑ(t)+ ˙̄

ξ (t)).

We know that e>L (θ −ϑ(t)− (ξ (t)−α))φ(x, t) equals to
(
θ̄ − ϑ̄(t)− (ξ̄ (t)− ᾱ)

)> eL⊗

φ(x, t). Then,

V̇ =− e>L K2eL +
(
θ̄ − ϑ̄(t)− (ξ̄ (t)− ᾱ)

)>(eL⊗φ(x, t)− 1
γ̃

(
˙̄

ϑ(t)+ ˙̄
ξ (t)

))
+(VI(t)−VL(t))

(
e>L Ψc +

1
γ̃

(
V̇I(t)−V̇L(t)

))
.
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In addition, we know that ˙̄
ϑ(t) = γeP⊗φ(x, t), and V̇I(t) = −γe>P Ψc from the adaptation

laws represented by equations (3.12) and (3.13). Then,

V̇ =− e>L K2eL +
(
θ̄ − ϑ̄(t)− (ξ̄ (t)− ᾱ)

)>(eL⊗φ(x, t)− 1
γ̃

(
γeP⊗φ(x, t)+ ˙̄

ξ (t)
))

+(VI(t)−VL(t))
(

e>L Ψc +
1
γ̃

(
−γe>P Ψc−V̇L(t)

))
.

Using equation (3.21) and (3.22),

V̇ =−e>L K2eL ≤ 0. (3.28)

V̇ is negative semi-definite and this implies that eL, ξ (t), and VL(t) are bounded. In addition,

the second order time derivative of V satisfies

V̈ =−2e>L K2{(θ −ϑ(t)− (ξ (t)−α)φ(x, t)+(VI(t)−VL(t))Ψc−K2eL}. (3.29)

Because ϑ , VI , and Ψc are bounded, V̈ is bounded, and hence V̇ is uniformly continuous. By

Lemma 2.4, limt→∞ V̇ (t) = 0. Since K2 is the diagonal matrix, eL(t)→~0 when t→ ∞.

Even if vehicle motion identified from CLLE convergence, the ocean flow field and through-

water speed may not be accurately identified from the learning algorithm in that multiple

parameters that represent flow are extracted from one type of information, which is the esti-

mated trajectory. For the accurate identification of vehicle motion, we prove that identified

parameters converge to true parameters with the designed updating rules represented by

equations (3.21) and (3.22) in Theorem 3.4.

Theorem 3.4 Under the same setting of Theorem 3.3, ξ̄ (t) and VL(t) converges to ᾱ and

VI(t), respectively; that is, ξ̄ (t)→ ᾱ , and VL(t)→VI(t) as t→ ∞

Proof. Let ζ1, ζ2 and ζ3 be (θ1−ϑ1(t)− (ξ1(t)−α1)), (θ2−ϑ2(t)− (ξ2(t)−α2)), and
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(VI(t)−VL(t)), respectively. Let φ̃1 =

φ 1
1 · · · φ N

1

0 · · · 0

 and φ̃2 =

 0 · · · 0

φ 1
2 · · · φ N

2

 be in

R2×N . Let Ψ̃ = diag{cos(ψc),sin(ψc)}. We rewrite equation (3.11) using equation ζ1, ζ2,

and ζ3 as follows:

ėL = φ̃1(x, t)ζ1 + φ̃2(x, t)ζ2 + Ψ̃ζ3−K2eL. (3.30)

Because equation (3.30) has the same form of equation (2.28), we use the same proof of

Theorem 2.3. Hence, ξ̄ (t) and VL(t) converge to ᾱ and VI(t), respectively.

CLLE interpreted by the accuracy of time-varying speed estimates may be large in a

transient period although we prove the convergence of time-varying vehicle speed. In this

case, it is difficult to use time-varying speed estimates for anomaly detection. We propose

a criteria when time-varying speed estimates are reliable, incorporating the predicted tra-

jectory. Let ẽ = eL−eP be the difference between CLLE and CLPE. Let ē = eL+eP be the

summation of CLLE and CLPE. Let K = K1 = K2 be a positive definite diagonal matrix

with positive components. Let ẽi be each component of ẽ, let ēi be each component of ē,

let ki be each component of K, and let Ψci be each component of Ψc, where i = 1,2.

Theorem 3.5 Given the adaptation laws described by equations equations (3.12) and (3.13),

and the updating rules (3.21) and (3.22), ‖ẽ‖ is bounded, and ‖ē‖ is bounded. If ẽi(t0)< 0,

ēi(t0)> 0, ẽi ≥ gi(t)
ki

, and ēi ≤ 1
ki
(gi(t)+hi(t)), where gi(t) = ∑

N
j=1

(
α

j
i −ξ

j
i (t)

)
φ j(x, t)+

(VM−VL(t))Ψci , and hi(t) = 2
(

∑
N
j=1

(
θ

j
i −ϑ

j
i (t)

)
φ j(x, t)+(VI(t)−VM)Ψci

)
, then

‖eL‖< ‖eP‖ at t ≥ t0.

Proof. ‖eL‖< ‖eP‖ is equivalent to ‖eL‖2 < ‖eP‖2. We will prove ‖eL‖< ‖eP‖ by show-

ing that ∑
2
i=1 ẽiēi < 0. By subtracting equation (3.10) from equation (3.11), we obtain ẽ

dynamics below.

˙̃ei =
N

∑
j=1

(
α

j
i −ξ

j
i (t)

)
φ

j(x, t)+(VM−VL(t))Ψci− kiẽi. (3.31)
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ξ (t), VL(t) are bounded by Theorem 3.3. The derivative of equation (3.31) is

¨̃ei =− ki ˙̃ei−
N

∑
j=1

ξ̇
j

i (t)φ
j(x, t)+

N

∑
j=1

(
α

j
i −ξ

j
i (t)

)
φ̇

j(x, t)

−V̇L(t)Ψci +(VM−VL(t))Ψ̇ci.

(3.32)

Since ξ̇ (t) and V̇L(t) are bounded by the updating rules, ¨̃ei is bounded; hence, ˙̃ei is uni-

formly continuous. By Lemma 2.4, ˙̃ei goes to zero when time goes to infinity. Therefore,

ẽi is bounded; hence, ‖ẽ‖ is bounded. By summing equations (3.10) and (3.11), we obtain

ē dynamics below.

˙̄ei =
N

∑
j=1

(
2(θ j

i −ϑ
j

i (t))+(α
j

i −ξ
j

i (t))
)

φ
j(x, t)+(2VI(t)−VL(t)−VM)Ψci−kiēi. (3.33)

ϑ(t), VI(t) are bounded by Theorem 3.1. ξ (t), VL(t) are bounded by Theorem 3.3. The

derivative of equation (3.33) is

¨̄ei =− ki ˙̄ei−
N

∑
j=1
−2(−ϑ̇

j
i (t)− ξ̇

j
i (t))φ

j(x, t)+
N

∑
j=1

2
(

θ −ϑ
j

i (t)−ξ
j

i (t)+α
j

i

)
φ̇

j(x, t)

2(V̇I(t)−V̇L(t))Ψci +(2VI(t)−VL(t)−VM)Ψ̇ci.

(3.34)

Since ξ̇ (t) and V̇L(t) are bounded by the updating rules, and ϑ̇(t) and V̇I(t) are bounded by

the adaptation laws, ¨̄ei is bounded; hence, ˙̄ei is uniformly continuous. By Lemma 2.4, ˙̄ei

goes to zero when time goes to infinity. Therefore, ēi is bounded; hence, ‖ẽ‖ is bounded. If

∑
N
j=1

(
α

j
i −ξ

j
i (t)

)
φ j(x, t)+(VM−VL(t))Ψci ≤ kiẽi, then ˙̃ei≤ 0. Thus, ẽi < 0 when ẽi(t0)<

0 where t0 is initial time. In addition, If ∑
N
j=1

(
α

j
i −ξ

j
i (t)

)
φ j(x, t)+ (VM −VL(t))Ψci +

2
(

∑
N
j=1

(
θ

j
i −ϑ

j
i (t)

)
φ j(x, t)+(VI(t)−VM)Ψci

)
≥ kiēi, then ˙̄ei ≥ 0. Thus, ēi > 0 when

ẽi(t0)> 0. Therefore, ∑
2
i=1 ẽiēi < 0; ‖eL‖< ‖eP‖ at t ≥ t0.

Theorem 3.5 provides conditions when the magnitude of CLLE is smaller than the

magnitude of CLPE. This indicates how large CLLE is allowed with the predicted trajectory
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to identify when abnormal motion is detectable. In Theorem 3.5, hi represents estimation

errors of vehicle speed and flow velocity used for the adaptive control algorithm, and gi

represents identification errors of vehicle speed and flow velocity used for the anomaly

detection algorithm. Let us consider that CLPE has a certain value. This implies that hi has

a certain value. One way that keeps CLLE smaller than CLPE is that we increase gain ki.

Increasing ki makes a smaller lower bound for ẽi; that lower bound allows the large value of

ẽi. In addition, changing the adaptation speed of the learning algorithm enables the smaller

lower bound. Because gi contains identification errors of flow velocity and vehicle speed,

fast adaptation speed decreases estimation errors in a short time; then, the value of gi is

small.

The anomaly detection algorithm including the detectable criteria is described by Algo-

rithm 2 extended from Algorithm 1 of the previous Chapter. When the magnitude of CLLE

is larger than or equal to the magnitude of CLPE, Algorithm 2 considers abnormal motion

is not detectable due to large estimation error of controlled speed; then, the flag number is

set to value 3, which represents a false alarm.

Algorithm 2: Anomaly Detection Algorithm Integrating Adaptive Control and Learn-
ing
Input: Flow velocity estimate FL(t), modeled flow estimate FM(t), false alarm factor

γ f , time-varying speed estimate VL(t), maximum speed Vmax, minimum speed
Vmin, CLPE eP, CLLE eL

Output: Anomaly detection flag
1 F̂Lmax = max(FL(τ)τ∈[0,t])

2 F̂Mmax = max(FM(τ)τ∈[0,t])

3 pE = ‖FL(t)−FM(t)‖
2max(F̂Lmax ,F̂Mmax)

4 if ‖eL‖ ≥ ‖eP‖ then
5 flag = 3 . False Alarm
6 else if pE > γ f then
7 flag = 2 . False Alarm
8 else if VL(t) >Vmax or VL(t)<Vmin then
9 flag = 1 . Anomaly Detected

10 else
11 flag = 0 . No Anomaly Detected
12 end
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3.3 Flow Canceling Control for Trajectory Tracing

We focus on a type of state feedback controller with flow canceling for trajectory tracing

missions. Trajectory tracing is to estimate unknown vehicle trajectory with estimated flow

velocity and heading angle [50]. After deploying an autonomous underwater vehicle, we

encounter estimating vehicle trajectory without any localization service; this mission is

called trajectory tracing mission. For the trajectory tracing missions, we design a flow

canceling controller. Previous work [2] cancel out flow velocity with respect to the straight

line between current position and goal position of the AUV. In our work, we cancel flow at

the current position as much as the vehicle can and reduce positional error between current

position and goal position of the vehicle. We do this through a vehicle controller designed

by a combination of feedback and feedforward control laws.

On the other hand, the vehicle controller can be saturated because of control power

constraints of AUVs. We modify equations (3.1) as follows:

dx
dt

= FR(x, t)+u(x, t,yc(t)), (3.35)

u(x, t,yc(t)) =

 vR(x, t,yc(t)) if ‖vR(x, t,yc(t))‖∞ ≤ u0

u0sgn(vR(x, t,yc(t))) if ‖vR(x, t,yc(t))‖∞ > u0.
(3.36)

The maximum through-water speed u0 is determined by the hardware configuration of

AUVs. Our goal is to design the controller that identifies vehicle motion for AUVs with

saturated through-water velocity so that the controller makes the identified trajectory follow

the estimated trajectory in the ocean flow field.

3.3.1 Adaptive Control Algorithm

An adaptive controller plays a key role in controlling the AUV to follow the predicted

trajectory generated in the stage of pre-deployment. We design a desired controller for
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the predicted trajectory and the adaptive controller for the estimated trajectory. Let KM =

diag{KM1,KM2} be diagonal matrices with known parameters. Let KR = diag{KR1(t),KR2(t)}

be diagonal matrices with time-varying parameters. Let

ϑ(t) =

ϑ1(t)

ϑ2(t)

=

ϑ 1
1 (t) · · · ϑ N

1 (t)

ϑ 1
2 (t) · · · ϑ N

2 (t)

 (3.37)

be a 2×N matrix with time varying parameters.Then,

vR(x, t,yc(t)) = −ϑ(t)φ(x, t)−KR(t)(x−yc(t)) (3.38)

vM(y, t,yc(t)) = −FM(z, t)−KM(y−yc(t)). (3.39)

The actual controller represented by equation (3.38) is a path following controller with

the feedforward-feedback structure. The actual controller contains a feedforward term and

feedback terms. The feedforward term is to cancel out flow estimates (−ϑ(t)φ(x, t)), and

the feedback term is a positional negative feedback term including a positional command

with time varying parameters (−KR(t)(x− yc(t))); however, the desired controller repre-

sented by equation (3.39) is to cancel out modeled flow term (−FM(y, t)) in addition to

fixed gains of feedback term (−KM(t)(y−yc(t))). By plugging equations (3.39) and (2.5)

into equation (3.2), the closed loop dynamics of the desired controller is

ẏ =−KM(y−yc(t)). (3.40)

The feedback terms enable vehicles to go toward waypoints; the waypoints yc(t) is a time-

varying signal that are changed according to missions of the vehicles. Meanwhile, the

adaptive controller represented by equation (3.38) includes adaptive parameters despite

having the same structure of the desired controller. The closed loop dynamics of the adap-
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tive controller is

ẋ = (θ −ϑ(t))φ(x, t)−KR(t)(x−yc(t)), (3.41)

when we plug equations (3.38) and (2.4) into equation (3.1). If x and y have the same

initial condition, ϑ(t) converges to θ , and KR(t) converges to KM, the predicted trajectory

is followed by the estimated trajectory as seen from closed-loop dynamics. Our goal is

to design adaptation laws so that the closed loop dynamics of the adaptive controller can

be similar to that of the desired controller. To control the AUV that follows the predicted

trajectory in the actual flow field, we first derive controlled Lagrangian prediction error

(CLPE) dynamics that models how much the estimated trajectory is deviated from the

prediction trajectory. By subtracting equation (3.40) from equation (3.41), CLPE dynamics

is represented by

ė = ẋ− ẏ = (θ −ϑ(t))φ(x, t)−KR(t)(x−yc(t))+KM(y−yc(t))

= (θ −ϑ(t))φ(x, t)+(KM−KR(t))(x−yc(t))−KMe.
(3.42)

If ϑ(t) converges to θ , and KR(t) converges to KM, CLPE goes to zero as time goes by

because of positive KM, which implies that the estimated trajectory follows the predicted

trajectory. In addition, the AUV identifies the actual flow field. Our goal is to design adap-

tation laws for parameters ϑ and KR by using CLPE dynamics so that CLPE converges to

zero. On the other hand, We derive CLPE dynamics under control input constraints. When

we combine equations (3.35) and (3.36), and subtract equation (3.40) from the combination

of (3.35) and (3.36), CLPE dynamics becomes

ė = (θ −ϑ(t))φ(x, t)+(KM−KR(t))(x−yc(t))−KMe+δu. (3.43)

δu is viewed as an addtional disturbance to the error dynamics of controlled Lagrangian

prediction. Equation (3.43) will be used for the proposed adaptation law that enables CLPE

is ultimately bounded in spite of the saturation of controllers. To design adaptation laws
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for controlled Lagrangian particle tracking, we need some definitions and assumptions.

Assumption 3.1 The trajectory yc(t) is a persistently exciting signal.

Remark 3.1 yc(t) is bounded because of persistent excitation.

Assumption 3.2 KM, or the feedback gain matrix of equation (3.40), is positive definite.

Remark 3.2 The predicted trajectory of AUVs is usually generated from stable closed loop

dynamics of equation (3.40). It requires gain matrix KM is positive definite.

Assumption 3.3 We suppose that through-water velocity of the simulated model is not sat-

urated.

Remark 3.3 We can design controller gain matrix KM and sinusoidal function yc to avoid

the saturation of control input given modeled flows for the generation of the predicted tra-

jectory of the vehicle. However, through-water velocity of AUVs in the true flow field can

be saturated because of unknown true flows.

Assumption 3.4 ‖δu‖ is bounded by δumax.

Remark 3.4 When the vehicle controller is not saturated, δu is zero. However, if the vehicle

controller is saturated, δu is bounded.

Let φ̃1 =

φ 1
1 · · · φ N

1

0 · · · 0

 and φ̃2 =

 0 · · · 0

φ 1
2 · · · φ N

2

 be in R2×N . Let x̃ = diag{x1, x2},

and ỹc = diag{y1c, y2c} be diagonal matrices. Let w = [φ̃1, φ̃2, x̃− ỹc]
> ∈ R(2N+2)×2. For

parameter convergence, we need an assumption on w as follows:

Assumption 3.5 w is persistently exciting. By Definition 2.1, there exists positive definite
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matrix W (t) ∈ R(2N+2)×(2N+2) such that

W (t) =

∫ t+T

t



φ 1
1 φ 1

1 ··· φ 1
1 φ N

1 0 ··· 0 φ 1
1 (x1−yc1) 0

φ 2
1 φ 1

1 ··· φ 2
1 φ N

1 0 ··· 0 φ 2
1 (x1−yc1) 0

...
...

...
...

...
...

...
...

φ N
1 φ 1

1 ··· φ N
1 φ N

1 0 ··· 0 φ N
1 (x1−yc1) 0

0 ··· 0 φ 1
2 φ 1

2 ··· φ 1
2 φ N

2 0 φ 1
2 (x2−yc2)

0 ··· 0 φ 2
2 φ 1

2 ··· φ 2
2 φ N

2 0 φ 2
2 (x2−yc2)

...
...

...
...

...
...

...
...

0 ··· 0 φ N
2 φ 1

2 ··· φ N
2 φ N

2 0 φ N
2 (x2−yc2)

(x1−yc1)φ
1
1 ··· (x1−yc1)φ

N
1 0 ··· 0 (x1−yc1)

2 0
0 ··· 0 (x2−yc2)φ

1
2 ··· (x2−yc2)φ

N
2 0 (x2−yc2)

2


dτ,

(3.44)

where φ i
j(x,τ) = exp−

‖x−ci‖
2σi cos(ωiτ +υi), i = 1 · · ·N, j = 1,2,and T > 0.

Let K̄R(t) = [KR1(t), KR2(t)]
> be two dimensional vectors with time-varying parameters.

Let K̄M = [KM1, KM2]
> be two dimensional vectors with desired fixed parameters. Let

ϑ̄ , θ̄ , and e⊗ φ be in R2N ; that is, ϑ̄(t) = [ϑ 1
1 (t), · · · ,ϑ N

1 (t),ϑ 1
2 (t), · · · ,ϑ N

2 (t)]>. e⊗

φ and θ̄(t) are represented by equations (3.67) and (3.68), respectively, where ⊗ is the

Kronecker product. Let γ̃ be any positive constant. We design adaptation laws for time-

varying parameters ϑ̄ , K̄R, and Γ̄R by the following equations.

˙̄
ϑ(t) = γ̃e⊗φ(x, t) (3.45)

˙̄KR(t) = γ̃(x̃− ỹc)
>e. (3.46)

We prove error and parameter convergence to show that the vehicle controlled by the feed-

back controller moves along the predicted trajectory. Because zero CLPE means that the

estimated trajectory follows the predicted trajectory, we prove CLPE convergence by using

the adaptation laws represented by equations (3.45) and (3.46) in Theorem 3.6.

Theorem 3.6 Under Assumptions 3.1 and 3.2, and using equations (3.45) and (3.46), CLPE

converges to zero when time goes to infinity; that is, e(t)→~0 as t→ ∞.
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Proof. Consider a candidate Lyapunov function:

V (e, ϑ̄ , K̄R) =
1
2

{
e>e+

1
γ̃

(
θ̄ − ϑ̄

)> (
θ̄ − ϑ̄

)
+

1
γ̃
(K̄M− K̄R)

>
(K̄M− K̄R)

}
. (3.47)

The derivative of V is

V̇ =−eT KMe+
(
θ̄ − ϑ̄

)>(e⊗φ(x, t)>− 1
γ̃

˙̄αR

)
+(K̄M− K̄R)

>
(
(x̃− ỹc)

>e− 1
γ̃

˙̄KR

)
.

(3.48)

By Assumption 3.2, Remark 3.2, and using equation (3.45) and (3.46), V̇ = −e>KMe ≤

0. V̇ is negative semi-definite and this implies e, ϑ̄ , and K̄R are bounded. In addition,

V̈ =−2e>KM ė =−2e>KM{(θ −ϑ)φ(x, t)+(KM−KR)(x−yc)−KMe}. By Assumption

3.1, yc is bounded, and y is bounded because equation (3.40) represents linear systems. x

is bounded because x = e+ y. In addition, ϑ and KR are bounded. Thus, V̈ is bounded,

and hence V̇ is uniformly continuous. By Lemma 2.4, limt→∞ V̇ (t) = 0. Since KM is the

diagonal matrix, e(t)→~0 as t→ ∞

Flow velocity may not be accurately estimated in that multiple parameters that repre-

sent flow are estimated from trajectory information. When the feedback controller cancels

actual flow by using estimated flow, inaccurate estimated flow makes CLPE be non-zero.

We need to show that all the estimated parameters converge to true parameters; Theorem

3.7 shows parameters convergence as follows.

Theorem 3.7 Under the same setting of Theorem 3.6, ϑ̄ and K̄R converges to θ̄ and K̄M,

respectively; that is, ϑ̄(t)→ θ̄ and KR(t)→ KM as t→ ∞.

Proof. Let η̃1, η̃2, and η̃3 be (θ1−ϑ1)
>, (θ2−ϑ2)

>, and (K̄M − K̄R), respectively. Let

φ̃1 =

φ 1
1 · · · φ N

1

0 · · · 0

 and φ̃2 =

 0 · · · 0

φ 1
2 · · · φ N

2

 be in R2×N . We rewrite equation (3.42)

using η̃1, η̃2, and η̃3 as follows:

ė = φ̃1(x, t)η̃1 + φ̃2(x, t)η̃2 +(x̃− ỹc)η̃3−KMe. (3.49)
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Because equation (3.49) has the same form of equation (2.28), and w is persistently

exciting by Assumption 3.5, we use the same proof of Theorem 2.3. Hence, ϑ̄ and K̄R

converge to θ̄ and K̄M, respectively.

3.3.2 Input constraints for adaptive control algorithm

Since equation (3.43) has one more term δu = u− vR, which shows the discrepancy be-

tween input and output of the saturator than equation (3.42). we reject additional distur-

bance δu from saturation in equation (3.43) by using the same scheme in Section 3.3.6.

We generate additional signal eδ governed by a differential equation as follows:

ėδ =−KMeδ +Λδu, (3.50)

where Λ = diag{Λ1, Λ2} with time varying parameters. Let ε = e− eδ be the difference

between CLPE and the additional signal. When subtracting (3.50) from (3.43), we have

ε̇ = ė− ėδ

= (θ −αR)φ(x, t)+(KM−KR)(x−yc)−KMe+(I−Λ)δu.
(3.51)

Λ is designed to be I. Let δu = [δu1, δu2]
> be two dimensional vectors. We design

adaptation laws for time-varying parameters ϑ̄ and K̄R by the following equations.

˙̄
ϑ = γε⊗φ(x, t) (3.52)

˙̄KR = γ(x̃− ỹc)
>

ε. (3.53)

Theorem 3.8 Under Assumptions 3.1, 3.2, 3.3, 3.4, and adaptation laws (3.52) and (3.53),

CLPE is ultimately bounded.

‖e‖ ≤ λmax(Λ)‖δu‖
ξ

, (3.54)
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where the positive constant ξ < 1.

Proof. Let Veδ
= 1

2e>
δ

K−1
M eδ . The derivative of Veδ

is V̇eδ
= −e>

δ
eδ + e>

δ
Λδu. Then,

V̇eδ
≤−(1−ξ )‖eδ‖2−ξ‖eδ‖2+‖eδ‖λmax(Λ)‖δu‖. When ‖eδ‖ ≥

λmax(Λ)‖δu‖
ξ

given pos-

itive constant ξ < 1, V̇ ≤ −(1− ξ )‖eδ‖2. This means V̇ is not positive. Thus, ‖eδ‖ ≤
λmax(Λ)‖δu‖

ξ
. We will show ε goes to zero when time goes infinity by the following candi-

date Lyapunov function.

V (ε, ϑ̄ , K̄R) =
1
2

{
ε
>

ε +
1
γ

(
θ̄ − ϑ̄

)> (
θ̄ − ϑ̄

)
+

1
γ
(K̄R− K̄M)

>
(K̄R− K̄M)

}
, (3.55)

By Assumption 3.2 and using equations (3.52) and (3.53), V̇ =−ε>KMε ≤ 0. V̇ is negative

semi-definite and this implies ε , ᾱR, and K̄R are bounded. In addition, V̈ = −2ε>KM ε̇ =

−2ε>KM{(θ −ϑ)φ(x, t)+(KM−KR)(x−yc)−KMε}. By Assumption 3.1, yc is bounded,

and y is bounded because of linear system of equation (3.65). Since e = eδ + ε , e is

bounded. This implies that x is bounded. In addition, ϑ and KR are bounded. Thus, V̈

is bounded, and then V̇ is uniformly continuous. By Lemma 2.4, limt→∞ V̇ (t) = 0. Since

KM is the diagonal matrix, e→ eδ when t→ ∞. Thus, CLPE is ultimately bounded.

3.3.3 Inaccuracy in flow modeling for adaptive control algorithm

Although the basis functions well capture the spatial variability of true flows in a specific

region, the functions still include deterministic errors induced by the variability out of

the region. In this section, we address the robustness of the proposed adaptive control

algorithm.

We show the boundedness of CLPE when the true flow model has deterministic distur-

bances such as unstructured uncertainties. We assume FR(x, t) = θφ(x, t)+∆, where ‖∆‖
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is bounded by ∆max ∈ R. Then,

ė = (θ −αR)φ(x, t)+(KM−KR)(x−yc)−KMe+∆. (3.56)

Theorem 3.9 Under the same setting of Theorem 3.6, CLLE is ultimately bounded.

‖e‖ ≤ 1
β̃
‖∆‖, (3.57)

where the positive constant β̃ < λmin(KM).

Proof. Let V be the Lyapunov function represented by equation (3.47). By using equation

(3.56), the derivate of V is

V̇ =−eT KMe+
(
θ̄ − ϑ̄

)>(
φ̃(x, t)>e− 1

γ̃

˙̄
ϑ

)
+(K̄M− K̄R)

>
(
(x̃− ỹc)

>e− 1
γ̃

˙̄KR

)
+ e>∆.

(3.58)

Then, we plug the adaptive law represented by equations (3.45) and (3.46) into equation

(3.58). Then,

V̇ =−eT KMe+ e>∆

≤−λmin(KM)e>e+ e>∆

≤−λmin(KM)‖e‖2 +‖e‖‖∆‖

≤ −(λmin(KM)−β )‖e‖2 +‖e‖‖∆‖−β‖e‖2

(3.59)

When ‖e‖≥ 1
β
‖∆‖ given positive constant β < λmin(K), V̇ ≤−(λmin(KM)−β )‖e‖2, which

means V̇ is negative definite. Thus, CLPE is ultimately bounded. The bound of CLPE is

‖e‖ ≤ 1
β
‖∆‖.

3.3.4 Controlled Lagrangian Localization Error

We first derived controlled Lagrangian localization error (CLLE) dynamics that models

how much the estimated trajectory is deviated from the identified trajectory. By subtracting
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equation (3.65) from equation (3.64), CLLE dynamics is represented by

ė = ẋ− ż

= (θ −α)φ(x, t)− (ξ (t)−α)φ(z, t)−KD(x−yc(t))+KL(t)(z−yc(t))−ζ (t)

= (θ −α)φ(x, t)− (ξ (t)−α)φ(z, t)+(KL(t)−KD)(z−yc(t))−KDe−ζ (t).

(3.60)

For example, if ξ (t) converges to α , KL(t) converges to KD, ζ (t) = (θ −α)φ(x, t), and

KD is positive definite, CLLE goes to zero over time, which implies that the identified

trajectory follows the estimated trajectory. Note that we cannot use ζ (t) = (θ −α)φ(x, t)

because of unknown θ .

Then, we derive CLLE dynamics under control input constraints. Let δu= u(x, t,yc(t))

− vR(x, t,yc(t)) be the saturation term of the vehicle controller. We combine equations

(3.35) and (3.36), and subtract (3.65) from the combination of (3.35) and (3.36) to obtain

CLLE dynamics. It becomes

ė = (θ −α)φ(x, t)− (ξ (t)−α)φ(z, t)+(KL(t)−KD)(z−yc(t))−KDe+δu−ζ (t),

(3.61)

We view δu as an additional disturbance to CLLE dynamics. Equation (3.61) is used for

the proposed controller that ensures CLLE to be ultimately bounded in spite of saturation

of the vehicle controller.

3.3.5 Adaptive Learning Algorithm

Let gains KL(t) = diag{KL1(t),KL2(t)} be diagonal matrices with time varying parameters.

Let KD = diag{KD1 ,KD2}be diagonal matrices with desired fixed parameters. Let ζ (t)∈R2
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be a learning injection parameter. Then,

vR(x, t,yc(t)) =−FM(x, t)−KD (x−yc(t)) (3.62)

vL(z, t,yc(t)) =−FM(z, t)−KL(t)(z−yc(t))+ζ (t). (3.63)

The vehicle controller represented by equation (3.62) is similar to feedforward-feedback

controllers for the applications of wind turbines and hard disks [51, 52]. The feedfor-

ward term is a flow canceling term (−FM(x, t)), which is used to cancel estimated flow,

the feedback terms have a positional negative feedback term including a positional com-

mand (−KD(x− yc(t))). A controller that identifies vehicle motion, represented by equa-

tion (3.63), is designed for the learning algorithm. The controller for the learning algorithm

has the same structure of the vehicle controller; but, all the parameters in the feedforward

and feedback terms are time-varying, and an additional term called learning injection is

included. By plugging equations (2.4), (2.5), and (3.62) into equation (3.1), the closed loop

vehicle dynamics including the vehicle controller is

ẋ = (θ −α)φ(x, t)−KD(x−yc(t)). (3.64)

Meanwhile, the closed loop vehicle dynamics that includes a controller identifying vehicle

motion represented by equation (3.63) is

ż = (ξ (t)−α)φ(z, t)−KL(t)(z−yc(t))+ζ (t), (3.65)

which is derived by plugging equations (2.5), (2.8), and (3.63) into equation (3.3).

Our goal is to design the learning algorithm for updating parameters ξ (t) and KL(t) by

using CLLE dynamics so that CLLE converges to zero. To design the adaptive learning

algorithm for controlled Lagrangian particles, we need the following definitions and as-

sumptions.
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Assumption 3.6 The feedback gain matrix of equation (3.64), KD is positive definite and

diagonal.

Remark 3.6 Positive definite matrix KD is required for the vehicle controller with negative

state feedback.

Let K̄L(t) = [KL1(t), KL2(t)]
> be time-varying vectors of where K̄L(t) is feedback gain.

Let K̄D = [KD1, KD2]
> be two dimensional vectors with desired fixed elements. Let z̃ =

diag{z1, z2}, and ỹc = diag{y1c, y2c} be diagonal matrices. Let ξ̄ , θ̄ , and e⊗φ ∈ R2N be

row vectors. That is,

ξ̄ (t) = [ξ 1
1 (t), · · · ,ξ N

1 (t),ξ 1
2 (t), · · · ,ξ N

2 (t)]> (3.66)

e⊗φ = [e1φ
1, · · · ,e1φ

N ,e2φ
1, · · · ,e2φ

N ]> (3.67)

θ̄(t) = [θ 1
1 (t), · · · ,θ N

1 (t),θ 1
2 (t), · · · ,θ N

2 (t)]>, (3.68)

where ⊗ is the Kronecker product. Then, we design learning injection parameter ζ (t) as

follows:

ζ (t) = (ξ (t)−α)φ(x, t)− (ξ (t)−α)φ(z, t). (3.69)

Time-varying parameters ξ̄ and K̄L are updated according to the following rules:

˙̄
ξ (t) = γe⊗φ(x, t) (3.70)

˙̄KL(t) = −γ(z̃− ỹc)
>e, (3.71)

where γ be any positive constant. We will prove CLLE and parameters convergence to

identify vehicle motion controlled by the feedback controller. Since CLLE is a measure

that represents the deviation of the identified trajectory from the estimated trajectory, CLLE

converging to zero indicates that the identified trajectory follows the estimated trajectory.

Thus, we prove CLLE convergence as follows.

Theorem 3.10 Under Assumptions 3.1 and 3.6, and using equations (3.69), (3.70), and
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(3.71), CLLE converges to zero when time goes to infinity; that is, e(t)→~0 as t→ ∞.

Proof. Consider a candidate Lyapunov function:

V (e,ξ , K̄L) =
1
2

{
e>e+

1
γ
(θ1−ξ1(t))(θ1−ξ1(t))

>+
1
γ
(θ2−ξ2(t))(θ2−ξ2(t))

>

+
1
γ
(K̄L(t)− K̄D)

>
(K̄L(t)− K̄D)

}
.

(3.72)

The time derivative of V is

V̇ =− e>KDe+ e> (θ −ξ (t))φ(x, t)+ e> (ξ (t)−α)φ(x, t)− e> (ξ (t)−α)φ(z, t)

− e>ζ (t)+(K̄L(t)− K̄D)
>
(

1
γ

˙̄KL(t)+(z̃− ỹc)
>e
)
− 1

γ

(
θ̄ − ξ̄ (t)

) ˙̄
ξ (t).

(3.73)

We know that e> (θ −ξ (t))φ(x, t) =
(
θ̄ − ξ̄ (t)

)
e⊗φ(x, t). Then, under Assumption 3.6

and Remark 3.6, using equation (3.69), (3.70), and (3.71),

V̇ =−e>KDe≤ 0. (3.74)

V̇ is negative semi-definite and this implies e, ξ (t), and K̄L(t) are bounded. In addition, the

second order time derivative of V satisfies

V̈ =−2e>KDė =−2e>KD{(θ −ξ (t))φ(x, t)−KDe+(KL(t)−KD)(z−yc)

−ζ (t)+(ξ (t)−α)φ(x, t)− (ξ (t)−α)φ(z, t)}.
(3.75)

From equation (3.69), ζ (t) is bounded. By Assumption 3.1 and Remark 3.1, yc is bounded,

and z is bounded because equation (3.65) represents linear systems with sinusoidal inputs.

In addition, KL(t) is bounded. Thus, V̈ is bounded, and hence V̇ is uniformly continuous.

By Lemma 2.4, limt→∞ V̇ (t) = 0. Since KD is the diagonal matrix, e(t)→~0 as t→ ∞.

Although CLLE converges to zero, estimation error of through-water velocity and flow

velocity may be large due to the identification of multiple flow parameters from one type of
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trajectory information (i.e. the estimated trajectory). Therefore, we need to prove that all

the identified parameters converges to true parameters so that the vehicle motion controlled

by the feedback controller is accurately identified.

Theorem 3.11 Under the same setting of Theorem 3.10, ξ̄ (t) and K̄L(t) converge to θ̄ , K̄D,

respectively; that is, ξ̄ (t)→ θ̄ , and K̄L(t)→ K̄D as t→ ∞

Proof. Let η1, η2, and η3 be (θ1−ξ1(t))
>, (θ2−ξ2(t))

>, and (K̄L(t)− K̄D), respectively.

Let φ̃1 =

φ 1
1 · · · φ N

1

0 · · · 0

 and φ̃2 =

 0 · · · 0

φ 1
2 · · · φ N

2

 be in R2×N . We rewrite equation (3.60)

using equation η1, η2, η3, and η4 as follows:

ė = φ̃1(x, t)η1 + φ̃2(x, t)η2 +(z̃− ỹc)η3−KDe. (3.76)

Because equation (3.76) has the same form of equation (2.28), and w is persistently exciting

by Assumption 3.5, we use the proof of Theorem 2.3. Thus, ξ̄ (t) and K̄L(t) converge to θ̄

and K̄D, respectively.

3.3.6 Input constraints for adaptive learning algorithm

The AUVs have limited control energy for controlling their velocities. The maximum con-

trol power generated from motors and thrusts is restricted by their hardware configuration.

This induces constraint to controlling AUVs in the ocean.

Since equation (3.61) includes one saturated term represented by δu = u− vR, which

shows the discrepancy between input and output of the saturator, we reject additional dis-

turbance δu from saturation in equation (3.61) by using a scheme in [45]. We generate

additional signal eδ governed by a differential equation as follows:

ėδ =−KDeδ +Λδu, (3.77)
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where Λ = diag{Λ1, Λ2} is the matrix with parameters that we design. Those parameters

are determined to reject the disturbance. Let ε = e− eδ be the difference between CLLE

and the additional signal. When subtracting (3.77) from (3.61), we have

ε̇ = ė− ėδ

= (θ −α)φ(x, t)− (ξ (t)−α)φ(z, t)+(KL(t)−KD)(z−yc(t))

−KDε +(I−Λ(t))δu−ζ (t).

From equation (3.69), we obtain

ε̇ = (θ −ξ (t))φ(x, t)+(KL(t)−KD)(z−yc(t))−KDε +(I−Λ)δu. (3.78)

Λ is designed to be I. δu = [δu1, δu2]
> be two dimensional vectors. With learning param-

eter injection represented by (3.69), we design the updating rules for time-varying param-

eters ξ̄ and K̄L by the following equations.

˙̄
ξ (t) = γε⊗φ(x, t) (3.79)

˙̄KL(t) = −γ(z̃− ỹc)
>

ε (3.80)

For the reliability of the proposed updating rules when saturation occurs, we show that

CLLE is bounded as follows.

Theorem 3.12 Under Assumptions 3.1-3.4, and the update rules (3.79) and (3.80), CLLE is

ultimately bounded.

‖e‖ ≤ λmax(Λ)‖δu‖
ρ

, (3.81)

where the positive constant ρ < 1.

Proof. Let Veδ
= 1

2e>
δ

K−1
D eδ . The derivative of Veδ

is V̇eδ
=−e>

δ
eδ + e>

δ
Λδu. Then, V̇eδ

≤
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−(1− ρ)‖eδ‖2− ρ‖eδ‖2 + ‖eδ‖λmax(Λ)‖δu‖. When ‖eδ‖ ≥
λmax(Λ)‖δu‖

ρ
given positive

constant ρ < 1, V̇ ≤ −(1− ρ)‖eδ‖2. This means that V̇ is not positive. Thus, ‖eδ‖ ≤
λmax(Λ)‖δu‖

ρ
.

We will show ε goes to zero as time goes to infinity by the following candidate Lya-

punov function.

V (ε, ξ̄ , K̄L)

=
1
2

{
ε
>

ε +
1
γ

(
θ̄1−ξ1(t)

)> (
θ̄1−ξ1(t)

)
+

1
γ

(
θ̄2−ξ2(t)

)> (
θ̄2−ξ2(t)

)
+

1
γ
(K̄L− K̄D)

>
(K̄L− K̄D)

}
,

(3.82)

By Assumption 3.6 and using equations (3.79) and (3.80), V̇ =−ε>KDε ≤ 0. V̇ is negative

semi-definite and this implies ε , ᾱ , and K̄L are bounded. In addition, V̈ = −2ε>KDε̇ =

−2ε>KD{(θ −ξ (t))φ(x, t) + (KL(t)−KD)(z− yc)−KDε}. By Assumption 3.1, yc is

bounded, and z is bounded because of linear system of equation (3.65). Since e = eδ + ε ,

e is bounded. In addition, ξ (t) and KL(t) is bounded. Thus, V̈ is bounded, and then V̇

is uniformly continuous. By Lemma 2.4, limt→∞ V̇ (t) = 0. Since KD is the diagonal ma-

trix, ε →~0 when t → ∞. This shows e→ eδ when t → ∞. Thus, CLLE is ultimately

bounded.

3.3.7 Inaccuracy in flow modeling for adaptive learning algorithm

Although the basis functions represented by equation (2.8) well capture the spatial vari-

ability of actual flows in a specific region, the functions still include deterministic errors

induced by the variability out of the region. In this section, we address the robustness of

the proposed adaptive learning algorithm.

We show the boundedness of CLLE when the actual flow model has unknown distur-

bances such as unstructured uncertainties. We assume FR(x, t) = θφ(x, t)+∆, where ‖∆‖
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is bounded by ∆max ∈ R. Then,

ė = (θ −ξ (t))φ(x, t)+(KL(t)−KD)(z−yc)−KDe+∆. (3.83)

Theorem 3.13 Under the same setting of Theorem 3.10, CLLE is ultimately bounded.

‖e‖ ≤ 1
β
‖∆‖, (3.84)

where the positive constant β < λmin(KD).

Proof. Let V be the Lyapunov function represented by equation (3.72). By using equation

(3.83), the derivate of V is

V̇ =− eT KDe+ e>∆+(K̄L(t)− K̄D)
>
(

1
γ

˙̄KL(t)+(z̃− ỹc)
>e
)

+
1
γ

(
θ̄ − ξ̄ (t)

)(1
γ

˙̄
ξ (t)− e⊗φ(x, t)

) (3.85)

Then, we plug the updating rules represented by equations (3.70) and (3.71) into equation

(3.85). Then,

V̇ =−eT KDe+ e>∆≤−λmin(KD)e>e+ e>∆≤−λmin(KD)‖e‖2 +‖e‖‖∆‖

≤ −(λmin(KD)−β )‖e‖2 +‖e‖‖∆‖−β‖e‖2.

(3.86)

When ‖e‖ ≥ 1
β
‖∆‖ given positive constant β < λmin(KD), V̇ ≤ −(λmin(KD)−β )‖e‖2,

which means V̇ is negative definite. Thus, CLLE is ultimately bounded. The bound of

CLLE is ‖e‖ ≤ 1
β
‖∆‖.
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3.4 Mathematical Simulations of Incorporating Adaptive Learning and Control for

Anomaly Detection

This section describes simulation results about incorporating adaptive control and learning

for the anomaly detection algorithms in Section 4.2. For the presentation of 2D ocean flow,

θ1 = [0.9 0.5 0.7] are selected as the true flow parameter along the horizontal direction;

θ2 = [0.8 0.5 0.9] the true flow parameter along the vertical direction. α1 = [1.08 0.6 0.84]

represents modeled flow along the horizontal direction; α2 = [0.96 0.6 1.08] represents

modeled flow along the vertical direction. The three combined basis functions are com-

posed of center ci, width σi, harmonic frequency ωi, and harmonic phase νi, where i =

1,2,3. c1, c2, and c3 are [0,0]>, [10,10]>, and [5,5]>, respectively. σ1, σ2, and σ3 are all

equal to 5. ω1, ω2, and ω3 are represented by periods 600 secs, 300 secs, and 800 secs,

respectively. Those harmonic periods are arbitrary chosen. Harmonic phases ν1, ν2, and ν3

are zeros. For the uncertainty of actual flow, flow bias 0.23m/s is added to simulated true

flow along the X-axis, and flow bias 0.25m/s along the Y-axis.

For the anomaly detection algorithm, positive constant K in the learning parameter in-

jection term is the identity matrix. Adaptation speed γ̃ and γ is 1.0 and 0.1, respectively.

In the prevention scheme of false alarm, false alarm factor γ f is 0.07. Fig 3.3 represents

trajectories of an AUV when the direction of the AUV in the horizontal plane is controlled

by heading angle command Ψc =
π

2 b
t

20c while the adaptive controller cancel out estimated

flow. In Figure 3.3, the predicted trajectory represented by the black line has one square

in that the vehicle controller completely cancel out modeled flow and make the vehicle

follow heading angle command. The simulated true trajectory represented by blue line

has similar shape of the square that the predicted trajectory has in that the adaptive con-

troller makes the estimated trajectory follow the predicted trajectory. If the adaptive control

scheme could not be applied to the AUV as Chapter 3, the simulated trajectory would have

multiple squares different from one square that the predicted trajectory has. The identi-
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fied trajectory represented by red line has a square similar to the square of the estimated

trajectory. Thus, three trajectories show that the adaptive learning algorithm identifies ve-

hicle motion from the estimated trajectory that represents vehicle motion controlled by the

adaptive control algorithm. Figure 3.4 shows CLLE and CLPE. During most time of simu-

lation, CLLE is less than CLPE, which means that identified through-water speed from the

learning algorithm is reliable. However, CLLE is greater than equal to CLPE around 2 sec,

20 sec, and 150 sec; we do not trust identified through-water speed at that time.

Figure 3.3: Predicted (black), estimated (blue),
and identified (red) trajectories

Figure 3.4: Controlled Lagrangian localization
and prediction Error (CLLE, CLPE)

Figures 3.5 and 3.6 shows identified through-water speed, anomaly detection results,

and identification error of through-water speed. In the bottom panel of Figure 3.5, a false

alarm denoted by flag 3 occurs from the condition that CLLE is greater than and equal

to CLPE. Flag 2 that represents a false alarm associated with large identification error of

through-water speed happens between 2 sec and 10 sec. Because identified flow is signif-

icantly different from modeled flow during that time, we do not trust identified through-

water speed. This result is supported by Figure 3.6; identification error of through-water

speed is maximum between 0 sec and 20 sec. In addition, we see that identification error

of through-water speed is 0.2m/s between 60 sec and 140 sec. Because additional flow bias

is added in the entire simulation time, identification error of through-water speed is not
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zero, but bounded. At 150 sec, actual through-water speed is increasing abruptly in that

abnormal motion happens. Then, identification error is increasing due to uncertainty in a

transient period, but error is reduced after the period. These results support our theoretical

analysis of Section 4.2.

Figure 3.5: Identified through-water speed (top)
and flag (bottom)

Figure 3.6: Identification error of through-water
speed
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3.5 Mathematical Simulations of Adaptive Learning and Control Algorithms

3.5.1 Adaptive learning algorithm

For the adaptive learning algorithm, one gain matrix in the feedback term of the vehicle

controller, KD is diag{1,1}. Identification speed, or γ is designed as 0.8. KL(t) and ξ (t),

which represent parameters in the updating rules of equations (3.70) and (3.71), have all the

zero initial values. Figure 3.7 represents waypoints and trajectories of the AUV when we

consider 10 waypoints generated from zc = [r cosΘ, r sinΘ]> with r = 3, and Θ = π

5 b
t

20c.

Arrows represents true ocean flow spatially distributed at the initial time. The direction of

arrow changes over time by the tidal basis functions.

An AUV starts to go to the waypoint (3,0) from the origin, and then keeps moving the

next waypoint counter-clockwise direction. Waypoints are changed every 20 sec. The AUV

completes a cycle when it sequentially travels nine waypoints counter-clock direction from

starting at waypoint (3,0), and arrives back at waypoint (3,0).

In Figure 3.7, the simulated true trajectory represented by the black line would pass

waypoints if the vehicle controller could cancel true flow. However, because the vehi-

cle controller represented by equation (3.62) cancel modeled flow, the difference between

modeled and actual flows push the AUV toward north east direction off the waypoints.

Figures 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, and , 3.14 show simulation results of CLLE, six

flow parameters, and four controller gains. CLLE goes to zero over 10 intervals (200 sec-

onds), which is about one cycle. Moreover, the six flow parameters converge to their true

values. Feedback and feedforward gains converge to the gains of the desired controller

while showing the similar trend of identified flow parameters. These results support our

theoretical analysis in Section 3.3.5.
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Figure 3.7: Identified trajectory and simulated
true trajectory

Figure 3.8: Convergence of CLLE: CLLE
converges to zero over one cycle (1 cycle=10

intervals=200 sec).

Figure 3.9: Convergence of horizontal flow
parameters: Parameters for horizontal flow
converge to the true values over 200 secs

Figure 3.10: Identification error of horizontal
flow parameters: Identification error converge to

zero over 200 secs

3.5.2 Adaptive control algorithm

In this section, we perform simulation of the adaptive control algorithm that enables the

simulated true trajectory pass the waypoints. The desired controller represented by equa-

tion (3.39) generating the predicted trajectory is set by choosing gains KM as the two by

two identity matrices. Adaptation speed γ̃ is designed as 0.6. In the vehicle controller
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Figure 3.11: Convergence of vertical flow
parameters: Parameters for vertical flow
converge to the true values over 200 sec

Figure 3.12: Identification error of vertical flow
parameters: Identification error converge to zero

over 200 sec

Figure 3.13: Convergence of controller gains:
Controller gains converge to the true values over

200 sec

Figure 3.14: Identification error of controller
gains: Identification error converge to zero over

200 sec

represented by equation (3.38), ϑ1, which represents esimated flow parameters along the

horizontal axis, has [0.1 0.05 0.1] at the initial time. ϑ2, which represents estimated flow

parameters along the vertical axis, has [0.05 0.1 0.2] at the initial time. Gains KR in the

vehicle controller are initially zeros. ϑ and KR are constantly updated by the adaptation

laws represented by equations (3.45) and (3.46). Figure 3.15 represents waypoints and tra-

jectories of the AUV when we consider 6 waypoints generated from zc = [r cosΘ, r sinΘ]>
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with r = 3, and Θ = π

3 b
t

20c.

An AUV starts to go to the waypoint (3,0) from the origin, and then keeps moving the

next waypoint counter-clockwise direction. Waypoints are changed every 20 sec. The AUV

completes a cycle when it sequentially travels five waypoints counter-clock direction from

starting at waypoint (3,0), and arrives back at waypoint (3,0). Arrows represents true ocean

flow spatially distributed at the initial time. The direction of arrow changes over time by

the tidal basis functions.

In Figure 3.15, the true trajectory represented by the black line pass waypoints and

follow the predicted path as time goes by. Because the vehicle controller represented by

equation (3.38) cancel identified flow, the AUV maintain the predicted path when estimated

flow parameters are close to true flow parameters. Figures 3.16, 3.17, 3.18, 3.19, 3.20, 3.21,

and 3.22 show simulation results of CLPE, six flow parameters, and four controller gains.

CLPE goes to zero over 15 intervals (300 seconds), which is about one and half cycle.

Moreover, the six flow parameters converge to their true values. Feedback and feedforward

gains converge to the gains of the desired controller while showing the similar trend of

estimated flow parameters. These results support our theoretical analysis in Section 3.3.1.

Figure 3.15: Simulated true trajectory and
predicted trajectory

Figure 3.16: Convergence of CLPE: CLPE
converges to zero over one and half cycle (1.5

cycle=15 intervals=300 sec).
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Figure 3.17: Convergence of horizontal flow
parameters: Parameters for horizontal flow

converge to the true values over 300 sec

Figure 3.18: Estimation of horizontal flow
parameters: Estimation error converge to zero

over 300 sec

Figure 3.19: Convergence of vertical flow
parameters: Parameters for vertical flow
converge to the true values over 300 sec

Figure 3.20: Estimation of vertical flow
parameters: Estimation error converge to zero

over 300 sec
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Figure 3.21: Convergence of controller gains:
Parameters for controller gains converge to the

true values over 300 sec

Figure 3.22: Estimation error of controller gains:
Estimation error converge to zero over 200 secs
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CHAPTER 4

ACOUSTIC LOCALIZATION USING A PASSIVE RECEIVER

Estimated trajectory information for the proposed algorithm of anomaly detection for con-

trolled Lagrangian particles can be obtained from a localization algorithm using passive

acoustic telemetry. Acoustic telemetry monitors the presence of fish tagged with transmit-

ters (or tags) attached to inside or outside skin of fish (depending on size). Commercially

available fish tags can be used as transmitters for localization with relatively low-cost com-

paring to an acoustic baseline system [53]. The acoustic receiver records the time stamp of

detection and identification number of transmitter. Since acoustic telemetry provides detec-

tions and non-detections, or binary information of the receivers, this new passive acoustic

method can be thought of as a binary acoustic method that consumes less power than the

most common acoustic methods that use range measurements of the active acoustic re-

ceivers for AUV localization in the literature [29, 30]. For vehicle localization, we use a

single Vemco VMT receiver as the passive acoustic receiver, and multiple V13 tags. The

Vemco VMT receiver uses an omnidirectional hydrophone that detects multiple transmit-

ters. When the V13 tags send individual ping randomly in a certain time interval at specific

frequency, the Vemco VMT receiver records time stamps of pinging and identities of the

V13 tags. When a receiver equipped in the vehicle detects tags installed at known positions,

the localization algorithm is likely to estimate vehicle positions.

Developing the localization algorithm with the passive receivers is significantly chal-

lenging because detection range of the receiver is critical to the accuracy of estimated tra-

jectory information. Although the manufacturer’s stated detection range is 1km, actual

detection range varies significantly due to wind, tides, buoyancy input, stratification, water

depth, and other environmental factors [34]. In this dissertation, we seek to examine how

tides, which dominate variability on the Georgia continental shelf [54], may affect acoustic

76



telemetry in this environment. We first show the localization algorithm using the passive

acoustic receiver to find relationship between accuracy of estimated trajectory information

and detection range. Then, we analyze variability of hourly detection data collected in an

acoustic array.

4.1 Localization Incorporating Flow Model and Acoustic Detection

Many researchers have proposed various methods to solve the localization problem of

AUVs (eg. [29, 30]). Most methods fundamentally focus on decreasing the dead-reckoning

or odometry error of AUVs by using external sensors, and assume that the dead-reckoning

and odometry models are basic kinematic models of AUVs. However, the basic kinematic

models do not account for ocean currents [55], which can greatly affect odometry errors.

Some researchers developed algorithms to cope with the effect of ocean currents [56]; their

kinematic models assume that ocean flow is unknown constant, which cannot explain sub-

stantially more complex ocean flow.

We develop odometry using flow estimation to deal with complex ocean flow. Con-

trolled Lagrangian particle tracking (CLPT) enables analysis of the AUV trajectory in

complex flow, combining ocean flow models with the vehicle kinematics. We combine

the flow models and their uncertainties in odometry by extending the framework of CLPT,

thus allowing analytical study of the growth of odometry error.

To reduce the growth of odometry error based on flow estimates, we assume that while

underwater, an AUV is able to detect the presence of acoustic transmitters installed at

known locations. However, we do not assume the vehicle is able to measure its distance

to the acoustic transmitters. When a signal is detected, the only information the vehicle

may have is that its distance to the transmitter is less than a certain threshold. We will

show that a reduction of localization error can be achieved under this setting. This method

differs from previous work [29, 30] in that the acoustic measurements do not contain direct

measurement of range.
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We extract geometric information from binary measurements, which uniquely deter-

mine sub-regions that correspond to which subset of transmitters can be detected. All the

sub-regions can then be represented by a graph. The graph leads to the assignment of likeli-

hood, or the probability of obtaining binary measurements given sub-regions. We describe

an acoustic measurement model for binary measurements in the next section.

4.1.1 Acoustic measurement model

We use multiple transmitters installed at known locations and a receiver installed on the

AUV. The receiver passively listens to transmitted signals generated from the stationary

transmitters. In previous work [57], one AUV that has multiple passive acoustic receivers

tracks a shark with a fish tag. Given AUV position, velocity, and attitude angle in a horizon-

tal plane, the AUV estimates the location of the shark and follows the shark by using signal

strength measurements and a measurement of relative bearing angle to the tag detected by

the passive receivers. Our work differs from [57] because we solve the localization prob-

lem of an AUV equipped with one receiver that can detect multiple stationary transmitters

installed at known locations. Furthermore, the passive receiver only provides binary infor-

mation, detection or non-detection.

Given one AUV and N transmitters, let j be the index numbers of transmitters, where

j = 1, · · · ,N. Let x be the true position of the AUV in the horizontal plane relative to an

origin. Let x j
trans ∈ R2 be the position of the jth transmitter. Let R j

trans be the range within

which the AUV detects the jth transmitter. We define t[k] as follows.

Definition 5.1: t[k] represents the moment when the receiver receives an acoustic signal

from one of the transmitters, where k = 1,2,3, · · · . Initial value t[0] is zero.

We employ the following measurement equation for acoustic detection.

z jk =


1 if ‖x−x j

trans‖ ≤ R j
trans

0 if ‖x−x j
trans‖> R j

trans

, (4.1)
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where z jk is a binary measurement from jth transmitter at time t[k]. Equation (4.1) shows

that the AUV detects the signal of the jth transmitter at time t[k] within a detection range.

4.1.2 Vehicle motion model

For the proposed odometry model, we add stochastic eddy term ν to the vehicle motion

model described by equation (3.1). The result leads to the Langevin equation [2],

dx = (FR(x, t)+vR(x̂, t)+ν)dt (4.2)

dν = −Mνdt +Λdω, (4.3)

where x̂ is the estimated position of the AUV in the horizontal plane relative to an origin,

and ω is a stochastic input that is Gaussian white noise with a zero mean. Matrix A is 1
τ

Ω

−Ω
1
τ

, and matrix Λ is σ

√
2
τ
I2×2, where σ represents the variance of stochastic fluc-

tuations, τ is the Lagrangian correlation time, and Ω is a spin parameter. Here, we assume

that σ and τ are known constants and Ω = 0. Our goal is to localize the AUV moving

under the control of the state feedback controller with flow canceling. Let xk be x at time

t[k]. Let zk be a measurement vector, which consists of all binary measurements from all

transmitters at time t[k]. That is, zk = [z1k, · · · ,zNk]
T . Let Zk be all binary measurement

vectors until time t[k]. Then Zk = [z1, · · · ,zk]. We estimate the position of the AUV with

probabilistic approach as follows:

x̂k = argmax
xk

p(xk|Zk). (4.4)

To compute probability of equation (4.4), we first derive odometry using flow estimation

for state propagation in the next section.
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4.1.3 Odometry using flow estimation

To deal with nonlinear time-varying stochastic differential equations (4.2) and (4.3), we

incorporate a flow model and the vehicle motion model as follows:

dx = (FM(x̂, t)+vR(x̂, t)+FR(x, t)−FM(x̂, t)+ν)dt (4.5)

dν = −Aνdt +Λdω. (4.6)

When we take the expectation of both sides in (4.6) and assume ν(t0) = 0 where t0 is the

initial time, E(ν) = 0. Because all terms of the right side in (4.5) are deterministic except

for ν , it follows that

dx̂
dt

= FM(x̂, t)+vR(x̂, t)+FR(x̂, t)−FM(x̂, t). (4.7)

A waypoint controller is designed for controlled velocity vR(x̂, t) [9, 31]. The waypoint

controller guides the vehicle to a waypoint while canceling estimated flow velocity from

available flow models. The cancellation of the normal component of estimated flow veloc-

ity with respect to a line between the vehicle and the waypoint enables the vehicle to reach

the waypoint. Figure 4.1 show a schematic diagram of the waypoint controller. Controlled

velocity vR(x̂, t) is the following equation:

v(x̂, t) = (sn(u(x̂, t)) ·N)N+(sn(u(x̂, t)) ·T)T (4.8)

sn(u(x̂, t)) ·N = −FM(x̂, t) ·N (4.9)

sn(u(x̂, t)) ·T = ±
√
|s2− (FM(x̂, t) ·N)2 |. (4.10)

Let x̂1 and x̂2 be components of the positional estimate x̂. To conveniently handle the non-

linear system represented by equation (4.7), we transform a Cartesian coordinate system

into a polar coordinate system by the following definition.
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Figure 4.1: The schematic of the waypoint controller: sn represents the velocity vector of the
vehicle with constant speed s. u is a desired heading angle called a control input. T is the unit

vector of
−→
Ox̂, N is the rotation vector of T by 90 degrees counterclockwise, and Xs-Ys is the X-Y

axis in an inertial frame.

Definition 5.1: Let r̂ and θ̂ be an estimated range and an estimated angle, respectively in the

polar coordinate system. The components x1 and x2 of x̂ are r̂cosθ̂ and r̂sinθ̂ , respectively.

Since the waypoint controller determines the controlled velocity of the AUV, the determin-

istic error growth of equation (4.7) depends on the discrepancy between real and modeled

flows; we call FR(x̂, t)−FM(x̂, t) a perturbation term. When the perturbation term is zero,

dx̂
dt

= FM(x̂, t)+vR(x̂, t). (4.11)

Definition 5.2: Let r̂0 and θ̂0 be solutions of equation (4.11). They are called nominal so-

lutions.

Let fM1(x̂, t) be the projected component of FM on T. Let fM2(x̂, t) be the projected

component of FM on N. Then, FM = fM1(x̂, t)T+ fM2(x̂, t)N. Let fR1(x̂, t) be the pro-

jected component of FR on T and fR2(x̂, t) be the projected component of FR on N. Then,

FR = fR1(x̂, t)T+ fR2(x̂, t)N.

Assumption 5.1: Let εr0 and εθ0 be in R. Let g1(x̂, t) and g2(x̂, t) be fR1(x̂, t)− fM1(x̂, t)

and fR2(x̂, t)− fM2(x̂, t), respectively. Then we suppose that the components of the pertur-

bation term are bounded, ‖g1(r̂ cos θ̂ , r̂ sin θ̂ , t)‖ ≤ εr, ‖g2(r̂ cos θ̂ , r̂ sin θ̂ , t)‖ ≤ εθ , where

εr ∈ [0, εr0 ] and εθ ∈ [0, εθ0].

Assumption 5.2: Let εr(t[k−1]) be the value of εr at time t[k−1]. Let εθ (t[k−1]) be the value of
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εθ at time t[k−1]. We assume that both εr(t[k−1]) and εθ (t[k−1]) are time-invariant constants;

but, εr(t[k]) and εθ (t[k]) have different constant values from εr(t[k−1]) and εθ (t[k−1]).

Remark 5.1: FR 6= FM because real flows differ from modeled flows. This difference means

that the solution of equation (4.7) is not the nominal solution due to the perturbation term.

To analytically derive the solution of equation (4.7), we let εr and εθ be upper bounds of

perturbation terms, representing the worst case scenario about the difference between real

and modeled flows. Given equations (4.5), (4.6), (4.7), and (4.8), the position estimate of

an AUV is as follows:

x̂(t[k]) =

r̂(t[k])cos(θ̂(t[k]))

r̂(t[k])sin(θ̂(t[k]))

+w(t[k]), (4.12)

where

r̂(t[k]) = r̂0(t[k])+ εr(t[k−1])

(
e
∫ t[k]

t[k−1]
A(t)dt

∫ t[k]

t[k−1]

e
−
∫ t[k]

t[k−1]
A(t)dt

dt

)

+ εθ (t[k−1])

(
e
∫ t[k]

t[k−1]
A(t)dt

∫ t[k]

t[k−1]

B′(t)e
−
∫ t[k]

t[k−1]
A(t)dt

dt

)
,

θ̂(t[k]) = θ̂0(t[k])+ εθ (t[k−1])
∫ t[k]

t[k−1]

1
r̂0(t[k])

dt,

w(t[k])∼N

(
0,

L2

2a

(
1− e−2at[k]

)
I2×2

)
.

Here A(t) = ∂F
∂ r̂ (r̂0, θ̂0, t), B(t) = ∂F

∂ θ̂
(r̂0, θ̂0, t), and B′(t) = B(t)

∫ t
t0−

1
r̂0

dt. Using equations

(4.5), (4.6), (4.7), and (4.8) and Assumptions 5.1, and 5.2, we have

˙̂r = fM1(r̂cosθ̂ , r̂sinθ̂ , t)−
√

s2−
(

fM2(r̂cosθ̂ , r̂sinθ̂ , t)
)2

+ εr (4.13)

˙̂
θ = −1

r̂
εθ . (4.14)
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Range r̂ and angle θ̂ consist of nominal solutions and perturbation-related terms as follows:

r̂ = r̂0 + εr r̂1 + εθ r̂′1 (4.15)

θ̂ = θ̂0 + εθ θ̂1. (4.16)

For the first step, we assume that εr = 0. Then equations (4.15) and (4.16) are changed as

follows:

r̂ = r̂0 + εθ r̂′1 (4.17)

θ̂ = θ̂0 + εθ θ̂1. (4.18)

When we plug equations (4.17) and (4.18) in equations (4.13) and (4.14),

˙̂r0 + εθ
˙̂r′1 = F(r̂0, θ̂0, t,0)+

∂F(r̂,θ̂ ,t,0)
∂εθ

∣∣∣∣
εθ=0

εθ (4.19)

˙̂
θ0 + εθ

˙̂
θ1 = G(r̂0, θ̂0, t,0)+

∂G(r̂,θ̂ ,t,εθ )
∂εθ

∣∣∣∣
εθ=0

εθ . (4.20)

Let A(t),B(t), and B′(t) be ∂F
∂ r̂ (r̂0, θ̂0, t,0), ∂F

∂ θ̂
(r̂0, θ̂0, t,0), and B(t)

∫ t
t0−

1
r̂0

dt, respectively.

From Definition 5.2, we obtain linear time varying first-order differential equations as fol-

lows:

˙̂r′1 = A(t)r̂1 +B(t)θ̂1 (4.21)

˙̂
θ1 = − 1

r̂0
. (4.22)

Thus, the solutions of the equations are

r̂′1 = e
∫ t

t0
A(t)dt

(∫ t

t0
B′(t)e−

∫ t
t0

A(t)dtdt
)

(4.23)

θ̂1 =
∫ t

t0
− 1

r̂0
dt, (4.24)
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because r̂(t0) = r̂0(t0)+ εθ r̂′1(t0). For the second step, we assume that εθ = 0. Equations

(4.15) and (4.16) lead to

r̂ = r̂0 + εr r̂1 (4.25)

θ̂ = θ0. (4.26)

When we use similar way to the first step, we obtain

r̂1 = e
∫ t

t0
A(t)dt

(∫ t

t0
e−

∫ t
t0

A(t)dtdt
)
. (4.27)

For the final step, when we plug equations (4.15) and (4.16) in equations (4.13) and (4.14),

we obtain the following equation related to εr.

˙̂r1 =
∂F(r̂, θ̂ , t,εr)

∂ r̂

∣∣∣∣
εr=0

r̂1 +
∂F(r̂, θ̂ , t,εr)

∂εr

∣∣∣∣
εr=0

. (4.28)

In addition, the remaining terms related to εθ are

˙̂r′1 =
∂F(r̂, θ̂ , t,εr)

∂ r̂

∣∣∣∣
εr=0

r̂′1 +
∂F(r̂, θ̂ , t,εr)

∂ θ̂

∣∣∣∣
εr=0

θ̂1 (4.29)

˙̂
θ1 =

∂G(r̂, θ̂ , t,εθ )

∂ r̂

∣∣∣∣
εθ=0

r̂1 +
∂G(r̂, θ̂ , t,εθ )

∂ θ̂

∣∣∣∣
εθ=0

θ̂1 +
∂G(r̂, θ̂ , t,εθ )

∂εθ

∣∣∣∣
εθ=0

. (4.30)

All solutions of equations (4.28), (4.29), and (4.30) correspond to the solutions of the first

and the second step. The results are as follows:

r̂− r̂0 = εr

(
e
∫ t

t0
A(t)dt

∫ t

t0
e−

∫ t
t0

A(t)dtdt
)
+ εθ

(
e
∫ t

t0
A(t)dt

∫ t

t0
B′(t)e−

∫ t
t0

A(t)dtdt
)
(4.31)

θ̂ − θ̂0 = εθ

∫ t

t0

1
r̂0

dt. (4.32)
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Because we need error growth of odometry between t[k] and t[k−1], deterministic error

growth of odometry is

r̂(t[k]) = r̂0(t[k])+ εr(t[k−1])

(
e
∫ t[k]

t[k−1]
A(t)dt

∫ t[k]

t[k−1]

e
−
∫ t[k]

t[k−1]
A(t)dt

dt

)

+ εθ (t[k−1])

(
e
∫ t[k]

t[k−1]
A(t)dt

∫ t[k]

t[k−1]

B′(t)e
−
∫ t[k]

t[k−1]
A(t)dt

dt

)
,

θ̂(t[k]) = θ̂0(t[k])+ εθ (t[k−1])
∫ t[k]

t[k−1]

1
r̂0(t[k])

dt,

w(t[k])∼N

(
0,

L2

2a

(
1− e−2at[k]

)
I2×2

)
.

For stochastic error growth of odometry stochastic eddy diffusion term described by equa-

tion (4.6), let M = (1/τ) I2×2 and Λ =
(

σ
√

2/τ

)
I2×2. Let ν ′ be a component in ν , where

ν = ν1 = ν2. Let ω ′ be a component in ω , where ω = ω1 = ω2.To solve equation (4.6), let

dν
′ = −aν

′dt +Ldω
′, (4.33)

where a = 1
τ
, and L = σ

√
2
τ
. Let ν(t0) = 0. Because ω ′ is Gaussian white noise with a zero

mean and ν(t0) = 0, it is clear that E(ν ′) = 0 when we take the expectation of both sides in

equation (4.33). Let φ(ξ ) = ν ′2 where ξ = ν ′ and g = L. By using the Ito’s differentiation

rule, we obtain

VAR(ν ′) =
L2

2a

(
1− e2at) . (4.34)

The stochastic error growth is calculated by

E(ν ′) = 0, VAR(ν ′) =
L2

2a

(
1− e−2at) . (4.35)

The stochastic error growth in equation (4.35) is not distributed by Gaussian. Thus, we

model the error growth at time t[k] as Gaussian with zero mean and variance of equation
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(4.35). Note that the variance of equation (4.35) is changed every time t[k]. Therefore,

w(t[k])∼N

(
0,

L2

2a

(
1− e−2at[k]

)
I2×2

)
. (4.36)

Remark 5.2: r̂(t[k]) depends on nominal solution r̂0(t[k]) and bounded constant εr(t[k−1]).

θ̂(t[k]) depends on nominal solution θ̂0(t[k]) and bounded constant εθ (t[k−1]). Nominal so-

lutions at time t[k] are computed from time t[k−1]. Thus, equation (4.12) will be used for

propagating particles in the proposed particle filter algorithm of Section 4.1.5.

4.1.4 Division of sensing regions

When an object that has a transmitter moves around the sensor, the sensor detects a signal

transmitted from the transmitter. The detection informs us that distance to the transmitter

is less than or equal to a certain threshold. A transmitted signal is not detected when the

distance is greater than the threshold. The region where the sensor can detect the transmit-

ter is called a sensing region; here, we use sensing regions defined in [58, 59]. We divide

sensing regions into sub-regions under the following assumptions:

Assumption 5.2 Given N transmitters, the transmitters are fixed at known locations in the

2D space.

Assumption 5.3 The receiver is installed in the AUV.

We draw circles with radii equal to the ranges of detection centered around each transmit-

ter, and assume that the receiver can detect the transmitters inside these circles, each of

which represents a disk-shaped sensing region. Geometric sub-regions are defined as the

intersections of sensing regions. Let labels of sub-regions be C0, · · ·CS. We assume that S

is N2−N +1, which is the maximum number of possible sub-regions given N transmitters

[60]. Let m ≤ N be the number of transmitters that the AUV detects. Let il be an index

number of the lth transmitter, where l = 1, · · · ,m. By Assumption 5.2, we know the loca-

tion of the lth transmitter when the AUV detects the lth transmitter. The region where the
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location is in is labeled as follows (see Figure 4.2):

If m = 0, then the vehicle is in region C0

If m = 1, then the vehicle is in one of regions C1, · · · ,CN

If m 6= 1 and m 6= N, then the vehicle is in one of regions

CmN−N+1, · · · ,CmN

If m = N, then the vehicle is in region CN2−N+1.

There are many ways to assign labels to regions. Fortunately such assignments can be

determined once and for all after the transmitter locations are known. Figure 4.2 shows an

example with three transmitters (N = 3). When the AUV detects transmitters 1 and 2, the

AUV is in region C4. Similarly, the AUV is in region C7 when it detects transmitters 1, 2,

and 3, and we match all labels of sub-regions with the combination of index numbers that

show detected transmitters. This match is one-to-one correspondence, since the number

of sub-regions equals the number of index numbers. In addition, all labels of sub-regions

are distinct, and the combination of index numbers represented by detected transmitters are

distinct.

We convert sensing regions into a graph. The benefit of the graph is that we can ex-

plicitly use adjacency information on the sub-regions at the graph. We define the graph as

follows:

Definition 5.3 A graph of sub-regions C1,C2, · · · is graph G, which is defined to be a set

{Cρ} of nodes and a set {eργ} of arcs that connect nodes, where ρ,γ = 0,1, · · · ≤N2−N+1

and ρ 6= γ .

Definition 5.4 Cν is a neighbor node of Cµ if there exists an arc eµν between Cµ and Cν .

Definition 5.5 Neighboring operator Γ is defined such that Γ : {Cρ}→ {Cγ}.

As an example of the transformation of sub-regions into a graph, we consider three trans-

mitters in Figure 4.2, which shows eight sub-regions in sensing regions. x1
trans, x2

trans, and
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x3
trans represent the locations of transmitters. Figure 4.3 illustrates the graph derived from

Figure 4.2. The graph has eight nodes and their undirected arcs. Using this graph structure,

Figure 4.2: Three transmitters and regions
of detection

Figure 4.3: The graph
transformed from Figure 4.2

we model a likelihood function as follows.

q
(
xk(−) ∈Cρ |zk

)
, (4.37)

where xk(−) ∈Cρ is vehicle position in sub-region Cρ before updating detection measure-

ments. The likelihood represents the probability of obtaining detection measurements given

sub-regions. We design the likelihood for developing a particle filter algorithm in the next

section.

4.1.5 Graph-based particle filter

The proposed odometry model in equation (4.12) has nonlinear dynamics with non-Gaussian

noise. The acoustic detection model is a nonlinear mapping function in equation (4.1). The

following section develops the graph-based particle filter algorithm, which incorporates

odometry and acoustic measurements for the positional estimation of the AUV.

We derive posterior probability density function p
(
xk ∈Cρ |Zk) under the Bayesian
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approach for the estimation of the position of the AUV in a sub-region as follows:

p
(

xk ∈Cρ |Zk
)
=

q
(
xk(−) ∈Cρ |zk

)
p
(
xk ∈Cρ |Zk−1)∫

q
(
xk(−) ∈Cρ |zk

)
p
(
xk ∈Cρ |Zk−1

) , (4.38)

where p
(
xk ∈Cρ |Zk−1) is a prior probability density. When approximating probability

density function with the classical histogram approach, we compute a prior probability

density by using odometry represented by equation (4.12), and model likelihood on the

graph to determine the weights of particles. Then, we estimate the position of the AUV with

the highest weight of the particles using the maximum a posteriori (MAP) estimator. We

introduce the particle filter algorithm to estimate the position of the AUV in the following

steps.

1. Initialization of particles

The true positions of the AUV may be distributed with respect to the straight line, the

nominal trajectory of the AUV under the waypoint controller between the starting

and goal points. Initial particles are placed on the area of a half circle centered

about the straight line. The radius of the half circle represents the uncertainty of the

initial position of the AUV. We uniformly discretize the area with intersected points

between the arcs of half circles and radial lines at the starting point as shown in

Figure 5.3.

Figure 4.4: Generation of initial particles; r̂0 and θ̂0 represent the initial position of the AUV. φn

and Rm are the orientation and the size of the half circle, respectively.
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2. Propagation of particles

Let x(l),(−)k be the lth particle before updating measurements. To obtain a priori prob-

ability density function p(xk ∈ Cρ |Zk−1), we generate propagated particle x(l),(−)k

using equation (4.12).

3. Computation of likelihood

We compute likelihood q(x(l),(−)k |zk) from new acoustic measurements. The pro-

posed likelihood model uses three types of information on the graph: the previous

estimated position, the predicted positions, and the measurements. The previous es-

timated position is an estimate of the AUV at time t[k−1]. Because the estimated

position belongs to a node on the graph, we obtain the index number of the node.

The predicted positions correspond to the particles in Step 2. We calculate the index

numbers of nodes that contain the particles. The likelihood function on the graph is

modeled as follows:

q
(

x(l),(−)k |zk

)
=



q1 if x̂k−1,x
(l),(−)
k ∈Cρ and zk = ρ

q2 if x(l),(−)k ∈Cν and zk = ν

and x(l),(−)k ∈ Γ(x̂k−1 ∈Cρ),ν 6= ρ

q3 if x(l),(−)k ∈Cν and zk 6= ν

and x(l),(−)k ∈ Γ(x̂k−1 ∈Cρ),ν 6= ρ

q4 if x(l),(−)k ∈Cν and zk = ν

and x(l),(−)k 6∈ Γ(x̂k−1 ∈Cρ),ν 6= ρ

q3 if x(l),(−)k ∈Cν and zk 6= ν

and x(l),(−)k 6∈ Γ(x̂k−1 ∈Cρ),ν 6= ρ.

(4.39)

The first case is when the previous estimated position, the position of the propagated

particle, and the measurement vector belong to the same node, Cρ indicating that the

90



AUV is staying on the node. The second case means that the AUV moves to another

node, which is a successor node of the previous node. Third and fifth cases deal with

inconsistency between the nodes for a measurement vector and for the position of

a propagated particle. For the fourth case, the node indicated by the measurement

vector and the node for the position of a propagated particle are the same. However,

the node is not a successor node of the node where the particle with the highest

weight is previously in. Among all the likelihoods, q1 should be the highest and q3

should be the lowest.

4. Computation of weights

Using the likelihoods generated in the previous step, we compute weights of particles

using q(x(l),(−)k |zk)

∑
Ns
l=1 q(x(l),(−)k |zk)

. Then, we estimate the positions of AUVs from maximum-a-

posteriori (MAP) estimation. The estimate x̂k is argmaxxk p(xk ∈Cρ |Zi
k).

5. Resampling

We use a standard resampling technique. After particles are resampled, the localiza-

tion algorithm returns to Step 2 and repeat from Steps 2 to 5.

4.1.6 Mathematical Simulation of Acoustic Localization Algorithm

In this section, we describe simulation results for the positional estimation of the AUV.

For likelihood on the graph, we select that q1 = 1, q2 = 0.9, q3 = 0.1, and q4 = 0.5. We

select the detection range of the receiver as 200m. Figure 4.5 shows the AUV and the

locations of transmitters with circular sensing regions. We simulate one AUV and three

transmitters with their circular sensing regions. The AUV moves through sensing regions

of one to three transmitters. The unit of flow velocity is m/s. We arbitrary choose flow

parameters that represent low and high frequency components of flow. We assume that one

component of true flows is fR1(r,θ , t), which equals
(
10−6r cosθ −0.2

)
sinω f t + 0.01.

The other component fR2(r,θ , t) equals
(
−10−6r cosθ +0.2

)
cosω f t + 0.01. In terms of
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components of modeled flows, fM1(r,θ , t) equals
(
10−6r cosθ −0.1

)
sinω f t. In addition,

fM2(r,θ , t) equals
(
−10−6r cosθ +0.1

)
cosω f t. Here ω f =

2π

T , and T = 12.42 hours. fM1

and fM2 represent a tidal model of the M2 constituent. Then, the deterministic error growth

of odometry evolves at every measurements by maximum bounds εr0 = 0.2 and εθ0 = 0.03

for the worst case. For the stochastic eddy flows represented by equation (4.3), we choose

Lagrangian correlation time τ is five seconds and stochastic fluctuation σ is 0.01. We

perform simulations by selecting two waypoints in 2D space:(-400, 200) and (800, 600).

Every 1150 seconds, the AUV follows a new waypoint. Figure 4.5 shows the simulated

true trajectory of the AUV starting at (285, 62). The line segments of the trajectory are

curved because of the difference between true and modeled flows. We assume that each

transmitter pings an acoustic signal every 20 seconds. Figure 4.6 shows the magnitude of

positional estimation error of the AUV.

Figure 4.5: True trajectories of the AUV Figure 4.6: Estimation error

Overall, Figure 4.6, which represents the estimation error of the AUV, shows a trend

of reduction in the estimation error of the position of the AUV. The figure shows that the

slope of estimation error is slightly changed at 480 sec represented by time index 22 when

the AUV detects two transmitters. Estimation error is significantly reduced between 1140

sec and 2050 sec (time index 55 and 100) when the AUV detects two or three transmitters.

The value of root-mean-square (RMS) error when the AUV detects transmitters is 148.46m

while it is 277.55m without acoustic detection. Thus, the RMS error decreases by around

92



46.5% with respect to that of odometry using flow estimation. Although the AUV ob-

tains coarse measurements such as on-off measurements from transmitters, the positional

estimation error significantly decreases whenever the AUV detects more transmitters.

From the proposed particle filter, the accuracy of positional estimation depends on the

likelihood function. The characteristic of the likelihood function shows that the AUV visits

the overlapped sensing region with high probability. If the overlapped region is inaccurate

due to changing detection range, it is expected that positional accuracy is low. We examine

how environmental factors affect acoustic detections with a specially designed acoustic

array.

4.2 Acoustic Detection Rate

This section presents detection rate to analyze acoustic detections collected in the specially

designed acoustic array. First, we describe configuration of the acoustic array deployed off

Savannah, GA in 2014. Then, acoustic detection rate is defined to be a measure of detection

efficiency for the identification of influence from environmental factors.

4.2.1 Configuration of acoustic array

Eight Vemco VR2W receivers and 14 Vemco V13 tags were deployed in August 2014 in

a static array at Gray’s Reef National Marine Sanctuary (GRNMS), located 40 nm SE of

Savannah, GA. The area is designated for controlled scientific study on more than 200

species of fish by the US National Oceanic and Atmospheric Administration (NOAA).

The placement of receivers and tags in the horizontal plane is shown in Figure 4.7; water

depth is approximately 21m throughout the receiver array. The array was designed with

receivers 400 meters apart, based on results from [34], which found that detection rate at

200 meters distance falls to a minimum 8% during late summer in August compared to 97%

in February. A 600 kHz upward-looking acoustic Doppler current profiler (ADCP) [61]

was moored approximately 1.1km away to remove the potential for interference between
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the ADCP and the acoustic array (Vemco, pers. comm.).

Figure 4.7: The two dimensional placement of receivers and tags: The origin of the figure is the
center of the array, located 3.09-km ENE of the National Data Buoy Center (NDBC) buoy at

Gray’s Reef (31.400N, 80.868W). The circle about each receiver reflects a nominal 200-m radius
of detection during summer as observed by [34].

Figure 4.7 shows the array of receivers and tags installed at Gray’s Reef, with the station

number indicated. We define two directions that represent the direction of combination of

receivers and tags: alongshore direction and cross-shore direction. For instance, the pair of

one tag in station 1 and one receiver in station 2 is aligned with the direction of cross shore,

27.3 degrees clockwise of east. The pair of one tag in station 1 and one receiver in station 4

is aligned with the alongshore direction. Receiver 3 is removed from this statistical analysis

because of receiver malfunction.

The number of tags are distributed according to station number and depth in Figure

4.7. Each station has from one to three tags at 18.6 meters (near-surface), 12.5 meters

(mid-depth), and 6 meters (near-bottom) depth from bottom. Using the acronyms S, M,

and B that represent surface, mid-depth, and bottom depth, respectively, we index the tags

by station number and vertical placement: 1S, 1M, 1B, 2M, 3S, 3M, 3B, 4M, 5S, 5M, 6M,

7S, 7M, 8M. When the receiver’s omnidirectional hydrophone detects the transmitter, the

receiver records time stamps of detection and identification number of the transmitter. Each

surgically-implantable transmitter [62] is programmed to send one ping randomly in each

45-second interval at 69kHz with power output 147dB. Minimum delay and maximum
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delay for randomly pinging are zero and 90 seconds, respectively.

4.2.2 Detection rate

Many studies [63, 64] have focused on detection probability, defined as the ratio of the

number of detections to the number of pings. Detection probability is a measure of the

efficiency of detection with the relations of input and output for an acoustic channel that

can be modeled by an acoustic sound propagation [64]. Estimating input by ping over

each 45s interval with this configuration is not accurate and can lead to significant error

of detection probability. Hourly detections computed by the number of detections over a

longer interval (1 hr) is a more representative metric for detection efficiency. With one ping

randomly each 45s, we expect a mean value of 80 pings per hour, and detection “rate” in

any one hour interval is thus compared to the mean value of 80 hourly detections. Figure

4.8 shows the mean hourly detections at the receivers by tag. However, the maximum

observed detections is less than 50 per hour, with only two receivers with hourly detections

greater than 40. The proportion of measured hourly detections to the expected value of 80

serves as a proxy for detection probability. However, since the ratio is seldom larger than

50%, we look to signal collision as a potential cause for some of this loss.

We find the receivers with the highest signal collision among eight receivers by compar-

ing the mean hourly detections. We first focus on the diagonal, which shows the number of

detections at tags that are co-located with the receivers. The distance between the receiver

and the tag at the same station is minimum 6 meters and maximum 19 meters, shorter than

any distance between the receiver at one station and the tag at the other station. Because

detection probability is assumed to be highest over the shortest distance [32], we expect

co-located tags and receivers to have the largest number of hourly detections.

However, Receiver 2 recorded fewer than 20 hourly detections of Tag 2M. In contrast,

Receiver 8 has more hourly detections of Tag 2M despite its distance of over 400m from the

Tag. In addition, the comparison of mean hourly detections of Tag 5M shows that Receiver
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Figure 4.8: Mean hourly detections: The horizontal and vertical axes in the figure shows the index
number of receivers and tags, respectively. The color bar represents mean values of hourly

detections.

7, which is 400 meters away from Tag 5M has more detections than Receiver 5, located just

12 meters away from Tag 5M. It is worth noting that the vertical position of the receiver

and tags are different, and stratification may prevent clear transmission in the vertical.

However, we assume that conditions are spatially invariant, and this loss is constant over

the array. Because these receivers are centrally located within the array, we suspect that

signal collision may contribute to the lower than expected hourly detections compared to

other co-located receiver/tag pairs. Receivers 2 and 5 are located in the densest part of the

array, with ten and seven tags within 400 meters distance, respectively. Signal collision

probability of 70% is predicted by the metrics in [65]. We therefore remove these receivers

from the subsequent analysis.

We find Receivers 2 and 5 with the highest signal collision among eight receivers by

comparing the mean hourly detections [66], and then examine variability of hourly detec-

tions over time. Figure 4.9 shows mean and standard deviation of hourly detections about

the pairs of five receivers and 14 tags. When we ignore co-located receiver/tag pairs, the

largest number of mean hourly detections is found between Receiver 1 and Tag 4M, Re-

ceiver 4 and Tag 1B, Receiver 6 and Tag 3S, Receiver 6 and Tag 3M, Receiver 7 and Tag

5M, Receiver 8 and Tag 2M. The direction of each of these pairs is aligned with alongshore

direction in Figure 4.7, suggesting that the pairs parallel to alongshore direction have more
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detections than cross-shore direction. Standard deviation of hourly detections follows the

same pattern. Most pairs aligned with alongshore direction have the second highest stan-

dard deviation of hourly detections. Further, the standard deviation of the pairs is fairly

large, and is comparable to the mean value. This result motivates closer examination of the

source of detection variability.

Figure 4.9: Mean hourly detections (on the left) and standard deviation of hourly detections (on
the right)

4.3 Tidal Analysis

We formulate our analysis of detections with respect to tidal currents, and will present

comparison of detection range with respect to cross- and alongshore tidal variability. In

particular, M2, N2, S2, K2, O1, K1, P1, and Q1 are eight tidal constituents that explain 90%

of the variance in measured depth-averaged flow. If the signal-to-noise ratio (SNR) of a

tidal constituent is greater than and equals 1, the tidal constituent is significant in hourly

detections.

We choose eight combinations of receivers and tags in the configuration. Because

acoustic sound propagation varies according to the range of receivers that detect tags, we

pick tags 1M, 2M, 3M, 4M, and 5M installed at two-dimensional distance 400 meters and

depth 8.5 meters from Receivers 1, 4, 6, 7 and 8 to maintain the same range of each re-
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ceiver/tag pair in the 3D space. The t tide Matlab toolbox [67] extracts harmonic fits to

astronomical tidal frequencies given a scalar or vector time series. 35 tidal components

are identified from the 53-day record of hourly detections. We choose these eight largest

constituents of tidal current variability, summarized in Table 4.1, for joint analysis of signal

detection. In addition to amplitude and phase, the t tide toolbox calculates signal-to-noise

ratio (SNR) by the square of the ratio of amplitude to amplitude error at the 95% confidence

level.

Table 4.1: Signal to noise ratio of tidal constituents †

Tidal R6,5M R6,3M R4,5M R4,1M R1,2M R1,4M R7,5M R8,2M
M2 5.2 23 1.5 34 1.2 16 0.15 0.71
N2 4.5 4.1 0.24 3.7 0.91 1.8 1.7 0.26
S2 0.74 1.4 1.7 4.9 10 1.6 2.5 34
K2 6.2 5.7 0.87 14 17 12 2 59
O1 14 0.62 0.35 1.74 1.4 2 3.2 1.4
K1 10 23 7.7 1 0.78 1.4 24 17
P1 8.8 9.9 6.6 9.2 5.3 2.4 24 8.5
Q1 0.81 3.4 4.2 2 0.049 3.1 0.4 1.6

†Values of SNR >1 are given in bold

SNR values for the eight major tidal constituents are given in Table 4.1. Receiver/tag

pairs are given in the notation defined in Section 4.2.1. All eight major tidal constituents

are represented with SNR>1 for the following pair: Receiver 4 and Tag 1M. However,

Receiver 6 and Tag 5M, Receiver 4 and Tag 5M, Receiver 1 and Tag 2M, Receiver 7 and

Tag 5M, and Receiver 8 and Tag 2M have two or three constituents with SNR below 1.

Receiver 6 and Tag 3M contains seven of the eight but is not significant for O1. Receiver

1 and Tag 4M contains seven of the eight but is not significant for K1. We focus on the

M2 tidal constituent, which explains approximately 80% of the measured current variance

at GRNMS. All combinations but R7,5M and R8,2M are significant for the M2 tidal con-

stituent. Thus, we remove the last two columns of the table to choose six pairs to analyze

the relationship between flow direction and hourly detections.
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Figure 4.10: SNR on the configuration: The direction of each arrow represents the direction of the
tag toward the receiver. The length of each arrow represent the magnitude of SNR. Alongshore

pairs have much stronger SNR than cross-shore pairs

Figure 4.10 shows that the highest SNR at the M2 frequency is found between trans-

mitter/receiver pairs that are oriented alongshore. SNR is greater than 15 between R4,1M,

R6,3M, and R1,4M but much lower between the cross-shore pairs. In addition, the vari-

ability in Section 4.2.2 shows receiver-tag pairs aligned with alongshore direction tend to

have higher mean and standard deviation of hourly detections than cross-shore direction,

overall, not just at specific tidal frequency. The dominant tidal frequency M2 is strong in

high hourly detections, suggesting that the fluctuation of hourly detections is significantly

related to tidal flows. These spatial patterns of tidal variability suggests that the shape of

detection range is not uniform, but rather changes significantly in space and time.

4.4 Flow Direction

We identify the relationship between hourly detections and flow direction. We show that

time series of hourly detections of pairs oriented in the alongshore direction contain sig-

nificant tidal variability at the M2 frequency [66]. To investigate the relationship between

direction of tidal currents and detection probability further, we consider the time series of

hourly detections and flow components aligned with the receiver/tag pair. The acoustic

signal path length, or the distance sound must travel between the tag and receiver, may be

reduced when the current is in the direction from the tag to the receiver; when the current
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opposes the direction from the tag to the receiver, the acoustic signal path length may be

increased. Figure 4.11 shows shore direction and the reference direction of acoustic signal

path at hourly detections. The acoustic signal path length is main factor that affects detec-

tions of receivers. If the acoustic signal path is long, then signal power is greatly attenuated,

and this leads to non-detections of receivers; the receivers has much more likely to detect

signal when the acoustic signal path is short. The red arrows in Figure 4.11 indicate di-

rections that make shortest acoustic signal path lengths. When Tag 3M transmits a signal

to Receiver 6 along the direction of the red arrow starting at Tag 3M, the acoustic signal

path is the shortest in that the straight line between Tag 3M and Receiver 6 is the shortest

distance. Thus, we let the direction of the red arrow be the reference direction at hourly

detections.

Figure 4.11: The reference direction at hourly detections

The ADCP measures horizontal and vertical flow as a function of time and depth. To

obtain along- and cross-shore components of flow measurements, we eliminate bins close

to the surface that have been contaminated with surface effects and side lobe interference,

and form a depth-average from the remaining bins. Depth-averaged flow is decomposed

into along- and cross-shore components. we assume that 1) flow does not vary significantly

over the array, and 2) the 1.1km distance to the ADCP from the array is smaller than
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the length scale of variability; in other words, ADCP data are representative of the flow

measurements within the array. With the two assumptions, we compare the time series

of hourly detections between the receiver/tag pair to the along- or cross-shore component

of flow. First, we window detection data every tidal period, and find when windowed

data are maximum and minimum. Then we compile a time series of maxima and minima

on detections. Second, because we know when along- and cross-shore components are

maximum and minimum, we also compile a time series of maxima and minima on flow

components. By comparing two time series of maxima and minima, we can examine flow

direction at maxima and minima on detections to see if there is a consistent relationship

between detection probability and tidal phase.

We compute time differences between the rate of detections and flow components in

that we have a time series of maxima on detections and on flow components; in addition,

we have a time series of minima on detections and on flow components. Then we have a

time series of computed phase angles between the rate of detections and flow components.

Because we know the reference direction of each receiver/tag pair shown in Figure 4.11,

we can identify flow directions when the rate of detections is maximum and minimum by

using a histogram approach.

Figure 4.12: Maximum (left) and minimum (right) hourly detections, taken over each successive
M2 tidal cycle, for three receiver-tag pairs oriented alongshore.

Figure 4.12 shows maximum and minimum hourly detections for each successive 12.42-
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hour interval. In the left panel of Figure 4.12, maximum hourly detections at all three re-

ceiver/tag pairs are consistent, with a relatively sharp increase around August 24th, and

a slower increase over the deployment period. This change may be caused by a frontal

passage that led to cooling and loss of stratification in the transition from summer into

early fall. There is no obvious spring/neap cycle in the rate of detection. In contrast, the

right panel shows that minimum hourly detections have no consistent pattern among the

receiver/tag pairs and overall. For example, there are no detections of Tag 4M at Receiver

1 for much of mid-to late September, while minimum detection rates of Tag 3M at Receiver

6 are much higher than any other pairs. At that time, minimum detection rates of Tag 3M

at Receiver 6 (20 detections per hour) is only 50% lower than maximum detection rates of

Tag 3M at Receiver 6 (43 detections per hour). This trend is not seen in the time series of

detection rates of other two pairs.

Figure 4.13: Phase of flow with respect to the direction from Tag 3M to Receiver 6 at maximum
hourly detections (left) and at minimum hourly detections (right). Angle is given in degrees
clockwise of the reference angle (negative alongshore, NNE); phases of 90 and 270 degrees

correspond to offshore/positive and onshore/negative cross-shore flow, respectively.

Figures 4.13, 4.15, and 4.16 show the distribution of phase angle of flow at the time

of maximum and minimum hourly detection for one alongshore pair. Phase of flow is

given with respect to the reference angle, in the direction of acoustic path from the tag to

the receiver, and is positive clockwise. Figure 4.14 shows flow direction when detection

rates of Tag 3M at Receiver 6 is maximum shown in the left panel of Figure 4.13. The
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Figure 4.14: Flow direction at minimum detection rates of Tag 3M at Receiver 6

Figure 4.15: Phase of flow with respect to the direction from Tag 1M to Receiver 4 at maximum
hourly detections (left) and at minimum hourly detections (right). Angle is given in degrees
clockwise of the reference angle (negative alongshore, NNE); phases of 90 and 270 degrees

correspond to offshore/positive and onshore/negative cross-shore flow, respectively.

distributions in the left panels are bimodal, with strong maxima at 90 or 270 degrees; these

angles represent flow component in the cross-shore direction. In contrast, the right panels

showing phase angle with time of minimum detections are more evenly distributed over the

full range of angles. This result suggests that the relationship between flow direction and

increased detection probability is not related to the acoustic path but rather the phase of the

tide relative to the reference direction.

From analyzing the relationship between alongshore pairs detections and flow direction
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Figure 4.16: Phase of flow with respect to the direction from Tag 4M to Receiver 1 at maximum
hourly detections (left) and at minimum hourly detections (right). Angle is given in degrees

clockwise of the reference angle (positive alongshore, SSW); phases of 90 and 270 correspond to
onshore/negative and offshore/positive cross-shore flow, respectively.

through a histogram approach, we hypothesize that Doppler frequency shift may affect de-

tection among alongshore pairs. Doppler frequency shift is determined by relative motion

between sound and the receiver. If flow is strong in the direction from the tag to the re-

ceiver, sound signal may be shifter to a slightly higher frequency. For example, Doppler

frequency shift is 4.6Hz when flow speed is 50cm/s, and the frequency of transmitting sig-

nal is 69kHz. If the receiver is sufficiently sensitive to the frequency of the transmitted

signal, it may not detect the transmission. Because cross-shore flow is much stronger than

alongshore flow in Gray’s Reef, Doppler frequency shift in cross-shore detection could be

strong and it may lead to minimum detections of cross-shore tag-receiver pairs when flow

direction is aligned with cross-shore direction.

Figures 4.17, 4.18, 4.19 show the distribution of flow at the time of maximum and

minimum detection for cross-shore pairs selected from SNR analysis in Section 4.3. The

distributions in the right panels are bimodal, with strong minima at 0 or 180 degrees; these

angles represent the cross-shore direction. In contrast, the left panels showing phase angle

with time of maximum detections are more evenly distributed over the full range of an-

gles.Doppler frequency shift could potentially explain the lower rate of detection among

cross-shore pairs than among alongshore pairs.
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Figure 4.17: Phase of flow with respect to the direction from Tag 5M to Receiver 6 at maximum
hourly detections (left) and at minimum hourly detections (right). Angle is given in degrees
clockwise of the reference angle (positive cross-shore, ESE); phases of 0 and 180 degrees

correspond to offshore/positive and onshore/negative cross-shore flow, respectively.

Figure 4.18: Phase of flow with respect to the direction from Tag 5M to Receiver 4 at maximum
hourly detections (left) and at minimum hourly detections (right). Angle is given in degrees
clockwise of the reference angle (negative cross-shore, WNW); phases of 0 and 180 degrees

correspond to onshore/negative and offshore/positive cross-shore flow, respectively.

4.5 Stratification

Tidal currents are largely oriented cross-shore on the Georgia shelf. M2 tidal ellipse orienta-

tion is cross-shore at Gray’s Reef, so offshore or onshore flow is associated with the largest

tidal current magnitude. When tidal flow is stronger, the height of the bottom boundary

layer can extend higher into the water column [68, 69], which can lead to a tidal asymme-

try in mixing and stratification. Since acoustic propagation is enhanced under well-mixed
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Figure 4.19: Phase of flow with respect to the direction from Tag 2M to Receiver 1 at maximum
hourly detections (left) and at minimum hourly detections (right). Angle is given in degrees

clockwise of the reference angle (negative cross-shore, WNW); phases of 0 and 180 correspond to
onshore/negative and offshore/positive cross-shore flow, respectively.

conditions, this mechanism may explain why maximum hourly detections are associated

with cross-shore flow along the M2 semi-major axis. The relative shallow depth at Gray’s

Reef (21-m) makes it likely that the frictional boundary layer extends through most or all

of the water column, and that tidal variation in mixing can affect stratification in the mid-

or upper layers.

For the investigation of water stratification in GRNMS, an underwater glider was de-

ployed for about 23 days during the acoustic telemetry experiment. The underwater glider,

equipped with conductivity, temperature, and density (CTD) sensors, traveled around GR-

NMS to consistently collect CTD data as shown in Figure 4.20.

The top panel in Figure 4.20 is collected density data from the CTD sensors. Blue

represents density data at the surface; red represents density at the bottom. A bulk estimate

of the Brunt-Vaisala frequency N2 index is calculated [70] from near-surface and near-

bottom values of glider-measured density from the following equation:

N2 =−g
1
ρ

dρ

dz
, (4.40)

where g is gravitational acceleration (9.81m/s2), z depth (m), and ρ water density (kg/m3).
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Figure 4.20: Collected density data (top), and post processed N2 stratification index (bottom)

N2 is high when water column is stratified; N2 is low when water column is less stratified.

The time series of stratification is shown in the bottom panel of Figure 4.20.

Figure 4.21 shows time series of hourly detection of the alongshore pair (Receiver 4

and Tag 1), N2, and flow vectors during 48 hours beginning September 18. This period is

representative of variability during the initially stratified portion of the experiment, and the

glider is closest to the acoustic array. As suggested by tidal analysis of detection rate, detec-

tion rate has a visible semidiurnal trend, with one maximum and minimum approximately

every 12.42 hours.

The time series of bulk stratification also shows a semidiurnal pattern, with stronger

stratification when the currents are directed offshore, and weaker stratification with onshore

flow. A weak diurnal pattern in stratification is becomes more apparent in longer time

series, but diminishes with the first fall storm.

The maximum detection rate roughly coincides with the onshore cross-shore flow and

minimum stratification. For example at 06:00 and 18:00 September 18th, and 07:00 and
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Figure 4.21: Hourly detections (top), N2 (middle), and depth-averaged ADCP currents (bottom)

19:00 September 19th, detection rate is greatest while stratification is low and currents

are directed offshore. However, while the previous analysis suggested that both onshore

and offshore flow may be associated with an increase in detection rate, the time series of

detections and currents do not show consistent patterns with stratification at quarterdiur-

nal frequencies (i.e., every 6.21 hours), as would be expected if the detections vary more

strongly with current magnitude. The increase of stratification with offshore flow may be

similar to Strain Induced Periodic Stratification (SIPS, Simpson et al., 1990 [71]) described

in estuaries.

Future work will investigate the links between stratification and detection rate using a

combination of glider, acoustic, and oceanographic data. Wavelets or multiple short term

harmonic analysis can be used to reveal when tidal variability is important to detection
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rate, and link changes in frequency and magnitude to oceanographic conditions. Future

work will also investigate the effects that a mobile platform may have on detection rate.

Preliminary work with an inertial model developed for this experiment (not included in

this thesis) suggests that vehicle attitude and angle between the tag and receiver may cause

significant differences between predicted and actual detection rates. Future work could

detectability with respect to both vehicle motion and environmental variability.
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CHAPTER 5

DEVELOPMENT OF AN INDOOR TEST BED AND EXPERIMENTAL RESULTS

The verification of the anomaly detection algorithms from the use of actual autonomous

underwater vehicles (AUVs) requires spending significant amount of time and money, and

may suffer the risk of vehicle loss. Generally, deploying AUVs is restricted by environmen-

tal conditions; for instance, the severe weather such as heavy rain and high wave prohibits

vehicle deployment. Moreover, underwater gliders, one class of AUVs that have been

widely used by oceanographers, are too expensive to be used to test the anomaly detection

algorithms repeatedly. We need intentional faults to be made on the underwater gliders

which may lead to vehicle loss.

This dissertation verifies the proposed algorithms derived in Chapters 3 and 4 with

indoor experimental results. Indoor experiments prove the value of the algorithms. For this

purpose, we develop one flying robot and one ground robot: the Georgia Tech Miniature

Autonomous Blimp (GT-MAB) and the Georgia Tech Wind Measuring Robot (GT-WMR).

5.1 Georgia Tech Miniature Autonomous Blimp (GT-MAB)

There is a need for small flying vehicles to support autonomy research. Unmanned aerial

vehicles such as quad-rotors and multi-copters have become popular for this purpose. How-

ever, the indoor usage of these unmanned aerial vehicles (UAVs) is limited by a number of

factors. UAVs usually have short flight durations per battery charge, typically less than 20

minutes, which restricts the duration of experiments. Some UAVs have large spinning pro-

pellers and some fly at relatively high speeds. This can cause safety concerns for humans

sharing the same space. Safety nets or cages are usually installed for human protection,

which limits the potential for human-robot interaction experiments.

We develop miniature autonomous blimps (MAB) as flying vehicles for indoor exper-
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Figure 5.1: Children play with the GT-MAB

Figure 5.2: The GT-MAB’s gondola includes
four motor thrusters. Two motor thruster are

vertically installed to control up-down motion.
The other two motor thrusters are horizontally

installed to control forward-backward and
spinning motions, which are presented in [72].

iments that can support research on mobile sensor networks, human-robot interaction, 3D

motion control, networked robotics, and other aspects of autonomy. The GT-MAB (Geor-

gia Tech Miniature Autonomous Blimp) has relatively long flight durations of up to two

hours per battery charge. Furthermore, the blimps are naturally cushioned and do not cause

any harm if they collide with a human. It offers a fun experience that encourages physical

contact, as illustrated in Figure 5.1. With its small size, low cost, and safe operation, the

GT-MAB also serves to educate and excite young students about robot design and control.

A significant body of literature exists for both outdoor and indoor robotic blimps. Ear-

lier developments are very similar to airships [73, 74]. Indoor blimps have been previously

developed for entertainment [75], artistic performance in museum [76], and telepresence

[77] and also for the emulation of underwater vehicles [78], A class of small blimps was

previously designed for robotics research on indoor localization and mapping [79]. The

advantages of blimps over other aerial vehicles, including reduced energy consumption,

lower cost, and better safety, have been noted in the work reviewed.

The GT-MAB is a unique design in several perspectives. It is perhaps the smallest

indoor robotic blimp up to the time this thesis is written. The blimp envelop has an el-
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lipsoidal shape with the lengths of the semi-major and semi-minor axes as 0.36 and 0.23

meters, respectively. The smallest previous blimp design known in the literature has the

length of the semi-major axis greater than 0.5 meter [80]. Being small allows multiple

blimps to be flown at the same time to support indoor experiments on swarming and sensor

networks. But being small also causes limited load capacity, which has motivated us to

design small and lightweight driving and sensing hardware systems. Recent advancements

in electronics, computing, and MEMS allow us to achieve this goal. The GT-MAB is also

highly maneuverable. Most previous designs [81, 78, 82, 79] inherited the envelop design

of airships and employ longitudinal tail fins for maneuvering. This design favors stable

forward cruise motion for long-range flights, but it is not the optimal choice for maneuver-

ability in an indoor lab setting. The GT-MAB uses a “saucer-shaped” envelope that makes

turning motions easier. Multiple propellers can provide vector thrusts that achieve better

maneuverability in indoor environments, see Fig. 5.1 and 5.2.

5.1.1 Physical design

The physical design of the GT-MAB reflects a balance among design challenges such as

stability of the structure, limited payload, and maneuverability. The GT-MAB has two

major modules, a “saucer-shaped” envelope and a gondola (see Fig. 5.1). The center of

gravity is below the center of buoyancy, which facilitates dampening of pitching and rolling

motions and hence increases the stability of operation. The symmetric shape of the envelop

allows easy spinning in place, which increases the maneuverability.

Fig. 5.2 shows a gondola that is attached to the bottom of the envelope near the center.

The gondola is a 3D printed housing for the control and sensing hardware, which includes

motors, propellers, a microprocessor, an inertial measurement unit (IMU), and other sen-

sors. The limited lift provided by the envelope imposes a constraint on the total weight of

the gondola. This constraint was satisfied by a careful selection of electronic components

and a light-weight design of the mechanical structure. The total weight is 85.9 grams, and
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offers 12.1 grams for payload.

The motion of the GT-MAB is generated by four motors connected to small propellers

that are mounted to the gondola. This particular configuration of the four motors gives the

blimp high maneuverability. The two motors, mounted facing upwards near the center-

line, provide counter torque to each other and stabilize the upward motion of the blimp.

The other two motors facing the head of the GT-MAB provide counter torque to stabilize

the horizontal motion of the blimp and can also be used to provide differential thrusts for

quick turning motion.

When we consider GT-MAB motion under strong flow generated by an artificial wind

source, the two motors facing the head of the GT-MAB may not be enough to provide

thrusts for horizontal motion. If error along the side-way direction would occur because of

strong flow, the two motors could not compensate error in that the motors do not generate

thrust for side-way motion of the GT-MAB. Therefore, we add one more motor to the

current gondola so that the GT-MAB has additional motion control. The Figure 5.3 shows

the gondola that contains five motors.

Figure 5.3: This gondola has one more motor than that of Figure 5.2. The motor installed along
the side-way direction provides thrust for side-way motion of the GT-MAB.

5.2 GT-MAB Field Experiments with GT-WMR

We choose the GT-MAB as a controlled Lagrangian particle for the verification of the

113



proposed algorithms in this dissertation. The GT-MAB has dynamics that are similar to

the dynamics of underwater vehicles [83],[84], [85], [78]. The lighter gas of the GT-MAB

induces buoyancy, which plays the same role in restoring force and moment of the GT-

MAB as underwater vehicles. On top of that, the GT-MAB is subjected to significant fluid

dynamic influences, which are common to underwater vehicles.

In order to generate flow that affects the motion of the GT-MAB, a Dyson fan is used as

an artificial wind source. The Dyson fan creates more consistent flows along the direction of

blowing wind than rotating fans that produce inconsistent flows. The use of the Dyson fan

is beneficial due to providing consistent flows whenever the GT-MAB is flying. Utilizing

the GT-MAB and the Dyson fan, we establish an indoor test bed in the confined space of

indoor environments, which is shown in Fig 5.4.

Figure 5.4: Indoor test bed: The yellow bulbs represent infrared motion capture cameras. The blue
square represents the Dyson fan. The star represents the starting point of the GT-MAB. The red

line represents the trajectory of the GT-MAB. When the GT-MAB is flying at the starting point, the
GT-MAB motion is disturbed by flow generated from the Dyson fan. Then, the motion capture

cameras collect the attitudes and trajectory of the GT-MAB.
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5.2.1 Georgia Tech wind measuring robot (GT-WMR)

On the indoor test bed, measuring flow generated from the Dyson fan is necessary for

algorithm verification. Because the GT-MAB is able to fly in any position in the volume

of the indoor test bed, we obtain flow estimates produced by the proposed algorithms from

anywhere. To verify the flow estimates, we use wind field measurements of the test bed as

ground truth. Although the Dyson manufacturer tells us that the maximum wind speed of

Dyson fans is around 3m/s, the value may be different because of product tolerance. The

Dyson fan generates multiple wind streams in the horizontal plane. The maximum wind

speed is valid inside the boundary of the wind streams; however, we have no knowledge on

wind speed outside the boundary of the wind streams, where the GT-MAB can fly.

We develop a wind measuring robot (WMR) to measure the wind fields of the indoor

environment. The GT-WMR (Georgia Tech Wind Measuring Robot) collects low wind

speed measurements ranged from 0 to 4 m/s in all directions at predetermined locations,

autonomously. The GT- WMR is shown in Figure 5.5. The GT-WMR integrates wind

sensors on an omnidirectional robot. Figure 5.6 shows directional and non-directional wind

sensors, and Figure 5.7 an omni-directional robot. In Figure 5.6 , the directional wind

sensors measure wind speed which is perpendicular to the front side of the sensors. The

directional sensors have one cubic hole that enables measuring wind speed when flow goes

inside the hole. Each of the directional sensors has different range of measurements. One

OMRON sensor provides wind speed between 0.2m/s and 1m/s with 0.01m/s accuracy

(left sensor). The other OMRON sensor provides wind speed between 1m/s and 4m/s

with 0.01m/s accuracy (right sensor). The non-directional sensor manufactured by Modern

Device measures wind speed between 0 and 40m/s. Because the Modern Device sensor

measures the wind speed with the change of temperature of the wire in the sensor, wind

speed is measured regardless of direction. In Figure 5.7, the omnidirectional robot includes

three wheels whose each rotational axis with respect to the omnidirectional robot’s center

has 120 degrees apart. It allows the omnidirectional robot to move in any direction.
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Figure 5.5: GT-WMR: The GT-WMR contains two main components: an omnidirectional robot
called omnibot and three wind sensors. The three wind sensors on an horizontal black frame are
connected to the omnibot. The black frame can be moved vertically to measure wind speed at

different heights. The omnibot has two Arduino board; one is an embedded Arduino board that
receives wheel command from an ground station, and drive the wheels of the omnibot. The other is
an additional Arduino board that collects wind measurements and send them to the ground station
via the embedded Arduino board. The four gray spheres represent makers that the motion capture
cameras recognize. The motion capture cameras collect attitudes and trajectories of the omnibot.
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Figure 5.6: Two types of wind sensors:
directional and non-directional

Figure 5.7: Three wheels of the omnidirectional
robot

5.2.2 Adaptive learning algorithm

This section describes the experimental results applying the adaptive learning algorithm of

Section 2.3. We have performed two steps for the verification of the adaptive learning algo-

rithm. The first step is to identify air flow generated from the Dyson fan installed at certain

position in the indoor test bed. At this stage, we measure the through-air speed from the

derivative of the GT-MAB trajectory when there is no wind. We use the adaptive learning

algorithm to identify air flow from the GT-MAB trajectory after we deploy the GT-MAB

under air flow. The next step is to verify identified flow from ground truth. The GT-WMR

autonomously moves along predetermined waypoints, and then the GT-WMR collects wind

measurements at an altitude where wind sensors are fixed on the omnidirectional robot.

For the adaptive learning algorithm, we design four spatial basis functions composed of

center ci, width σi, where i = 1,2,3,4. c1, c2, c3, and c4 are [1.5594,0.3]>, [2.0594,0.3]>,

[2.5594,0.3]>, and [1.5594,−1.5]> respectively. σ1, σ2, σ3, and σ4 are all equal to 1.

Time-varying basis functions with harmonic frequencies and phases are removed because

of consistent flow from the Dyson fan. Figure 5.8 shows the GT-MAB trajectories with and

without the wind source. The black represents the GT-MAB trajectory without the wind

source, and the blue with the wind source. Because the GT-MAB motion is disturbed by

the wind source, the blue trajectory is bended over the black trajectory. With the black

trajectory, we estimate through-air speed of the GT-MAB, which is 0.0185m/s. Multiple
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starting points together with the location of wind source are shown in Figure 5.9. The black

circle, which represents the Dyson fan, located in (2.94m, 0.3m). The eight blue squares

represent starting points for forward or backward motion of the GT-MAB; the eight red

squares represent starting points for diagonal motion toward the wind source or away the

wind source.

Figure 5.8: The GT-MAB trajectory without the
wind source (the black) and with the wind source

(the blue)

Figure 5.9: Location of the wind source (black
circle), and multiple starting points for the

GT-MAB deployment

Figures 5.10-5.17 show estimated and identified trajectories of the GT-MAB according

to the blue starting points of Figure 5.9. At the individual starting point represented by

one black square, we select one waypoint along the Y-axis for the forward or backward

motion of the GT-MAB. The blue arrows, which represent wind identified by the adaptive

learning algorithm, moves away from the wind source largely. The direction of identified

flow corresponds to the wind direction generated from the wind source. Since the blue

starting points are located inside the main stream of the Dyson’s wind in Figure 5.9, most

estimated trajectories are aligned with the main stream direction.

Figures 5.18-5.27 show estimated and identified trajectories of the GT-MAB according

to the red starting points of Figure 5.9. Because wind strength at the red starting points is

much smaller than at the blue starting points, one waypoint at individual red starting point

is determined to make the GT-MAB moves diagonally away or toward the wind source; it

enables the GT-MAB to identify spatially varying flow, covering the horizontal plane of the
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Figure 5.10: Estimated (blue) and identified
(red) trajectories starting at No. 1 (black)

Figure 5.11: Estimated (blue) and identified
(red) trajectories starting at No. 2 (black)

Figure 5.12: Estimated (blue) and identified
(red) trajectories starting at No. 3 (black)

Figure 5.13: Estimated (blue) and identified
(red) trajectories starting at No. 4 (black)

Figure 5.14: Estimated (blue) and identified
(red) trajectories starting at No. 5 (black)

Figure 5.15: Estimated (blue) and identified
(red) trajectories starting at No. 6 (black)

test bed. The magnitude of the blue arrows at the place closing to the wind source is larger

than at other places; this tendency corresponds to the fact that strong wind is generated at

positions close to the wind source.
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Figure 5.16: Estimated (blue) and identified
(red) trajectories starting at No. 7 (black)

Figure 5.17: Estimated (blue) and identified
(red) trajectories starting at No. 8 (black)

Figure 5.18: Estimated (blue) and identified
(red) trajectories starting at No. 9 (black)

Figure 5.19: Estimated (blue) and identified
(red) trajectories starting at No. 10 (black)

Figure 5.20: Estimated (blue) and identified
(red) trajectories starting at No. 11 (black)

Figure 5.21: Estimated (blue) and identified
(red) trajectories starting at No. 12 (black)

For the next step, we deploy the GT-WMR in the indoor test bed instead of the GT-

MAB, maintaining the same wind environment of the GT-MAB experiments. To densely

collect wind measurements in the indoor test bed, we determine multiple waypoints that

120



Figure 5.22: Estimated (blue) and identified
(red) trajectories starting at No. 12 (black)

Figure 5.23: Estimated (blue) and identified
(red) trajectories starting at No. 13 (black)

Figure 5.24: Estimated (blue) and identified
(red) trajectories starting at No. 14 (black)

Figure 5.25: Estimated (blue) and identified
(red) trajectories starting at No. 15 (black)

Figure 5.26: Estimated (blue) and identified
(red) trajectories starting at No. 15 (black)

Figure 5.27: Estimated (blue) and identified
(red) trajectories starting at No. 16 (black)

can generate the GT-WMR path having a type of lawn mower patterns. Figure 5.28 shows

the waypoints and the GT-WMR’s path, and Figure 5.29 shows measured wind velocity at

each waypoints.
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Figure 5.28: The path (blue) and waypoints (red)
of the GT-WMR

Figure 5.29: Measured flow velocity at each
waypoint

When the GT-WMR controlled by a waypoint controller accurately reaches one way-

point shown in Figure 5.28, the GT-WMR stays at the waypoint until the wind speed sensors

of Figure 5.6 measure wind speed along the orientation with 30 degrees increments starting

from 0 to 360 degrees, and then the GT-WMR moves to the next waypoint and measure

wind velocity at that waypoint; this collecting process is performed repeatedly for all the

waypoints. At each waypoint, we assume that the wind speed sensors containing cubic

holes of Figure 5.6 measure maximum wind speed when wind velocity vectors are per-

pendicular to the surface on the their cubic holes. Finding maximum value of wind speed

measurements at each waypoint enable measuring wind velocity from the wind speed sen-

sors. Measured wind of Figure 5.29 is valid in that the largest measurement of wind speed

is acquired in the closest to the wind source. In addition, the width of strong wind streams

is around 0.2m. This value is similar to the diameter of the Dyson fan, which is 0.254m.

Outside of the width of strong wind streams, wind speed measurements is very small; it

shows flow consistency of the Dyson fan. Measured wind direction is from the left to the

right, which corresponds to wind blowing direction of the Dyson fan.

Verifying the adaptive learning algorithm is significantly difficult by simply comparing
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Figures 5.10-5.27 with Figure 5.29. Although wind velocities are identified in the entire

space of the test bed as shown Figures 5.10-5.27, the accuracy of the wind velocities is

not consistent. Wind velocities identified along the GT-MAB trajectory is accurate; but,

wind velocities identified at other positions except the positions that the trajectory occupy

is not accurate. Because using constant heading angle command and constant spatial ba-

sis functions does not satisfy persistent excitation (PE) condition in equation (2.22), flow

parameters for identified flow may be inaccurately identified. Therefore, identified flow

may not be valid for the entire space of the indoor test bed, but for locations along the

GT-MAB trajectory. Furthermore, measured flow velocities in Figure 5.29 rely on sensor

accuracy. Instead of measurement comparison, we create two wind field maps based on

identified and measured wind velocities, individually, The Kriging method, known as the

optimal interpolation technique of spatial data, is used to make the wind field maps. Then,

root-mean -square errors of wind speed and direction are computed to find the accuracy of

the wind field map based on wind velocities identified from the adaptive learning algorithm

with respect to the wind field map based on measured wind velocities.

Figure 5.30 and 5.31 shows identified wind velocities along the GT-MAB trajectories

and the identified wind field map from the wind velocities.

Figure 5.30: Identified wind velocities along the GT-MAB trajectories

Because dense data is necessary for wind field mapping, identified wind velocities

within a subspace of Figure 5.30, ranging from 0 to 2 along X-axis and from -0.5 to 1
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along Y-axis, are used to reconstruct a wind field map. The reconstructed wind speed map

in the subspace is shown in Figure 5.31. Wind speed is the strongest at (2m, 0.3m), which

is close to wind source located at (2.94m, 0.3m); wind is relatively stronger near 0.3m of

Y-axis than other locations, which shows the main stream of wind blown by the Dyson fan.

Figure 5.33, which represents the reconstructed wind direction map, consistently shows that

wind directions are mostly 180 degrees. The direction is aligned with the X-axis negative

direction. To verify both maps shown in Figures 5.31 and 5.33, we consider the measured

wind velocity from the GT-WMR as ground truth. Although measured wind velocities are

collected at 63 points evenly distributed in the square space where it is from -1.1m to 2.0m

horizontally, and from -1.4m to 1.7m vertically, the number of data points are insufficient

to make the measured wind map. For more dense data points, we utilize radial basis func-

tions (RBF) with same centers and width that the adaptive learning algorithm use for flow

identification; however, we do not use the same flow parameters that the adaptive learning

algorithm identify. Given 63 data points, we identify flow parameters for the measured

wind field map by using the least square algorithm. Identifying parameters enables making

the measured wind field map. With dense data points generated from the RBF including

the estimated flow parameters, the Kriging method makes the measured wind map; Fig-

ures 5.32 and 5.34 represent a wind speed map and a wind direction map constructed from

measured wind velocity, respectively.

When we compare the reconstructed wind map of Figure 5.31 with the measured wind

speed map of Figure 5.32, the range of wind speed is the same in both figures. The strongest

wind of the figures is commonly identified at (2m, 0.3m) near the wind source. Further-

more, the main stream of blowing wind generated from the wind source is identified be-

tween 1.5m and 2m along the X-axis.

When we compare the reconstructed wind direction map of Figure 5.33 with the mea-

sured wind direction map of Figure 5.34, the range of wind direction is the same in both

figures. Most wind directions in the square space are 180 ◦, which corresponds to the
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Figure 5.31: Reconstructed wind speed map
using identified velocities of Figure 5.30

Figure 5.32: Measured wind speed map using
measured velocities of Figure 5.29

Figure 5.33: Reconstructed wind direction map
using identified velocities of Figure 5.30

Figure 5.34: Measured wind direction map using
measured velocities of Figure 5.29

direction away from the wind source.

In order to evaluate the accuracy of the reconstructed wind field map, we compute the

wind speed error map and the wind direction error map, shown in Figures 5.35 and 5.36.

The maximum wind speed error occurs in areas around (2,0.8) and (0.3,-0.5). Because the

number of trajectories of the GT-MAB passing on the areas is much smaller than in the

center of the space, the estimated flow is likely to be inaccurate. The root-mean-square
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Figure 5.35: Error map of wind speed Figure 5.36: Error map of wind direction

(RMS) error is a measure of the difference between estimated and measured data. Since

we assume that the measured wind field map is ground truth, we compute RMS error of

the reconstructed wind field map to see how the reconstructed wind field map is close

to the measured wind field map. The RMS error of the reconstructed wind speed map is

0.16m/s; the value is around 11% of measured maximum wind speed. The RMS error of the

reconstructed wind direction map is 25.86◦; the value is around 14% of measured maximum

wind speed. Therefore, the reconstructed wind field map is reliable due to small RMS error,

which is less than 15% of measured maximum values. Since the reconstructed wind field

map uses air flow parameters identified by the adaptive learning algorithm of Section 3.3,

we say that the adaptive learning algorithm of Section 3.3 is verified experimentally.

5.2.3 Anomaly detection algorithm

This section presents the experimental results associated with the anomaly detection algo-

rithm. Intentionally making a fault of the GT-MAB is needed to verify whether the anomaly

detection algorithm detects the fault. Although a variety of fault scenarios including soft-

ware and hardware faults can be considered to verify the anomaly detection algorithm, we

focus on a thruster fault, which is one of the most common faults to AUVs. Among the
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five motors generating forces and moments for GT-MAB motions, we stop the fifth motor

for a simulated fault during certain amounts of time. Because the fifth motor provides a

force that controls the side-way motion of the GT-MAB, significant changes of a trajec-

tory along side-way direction happens after the motor stops. The trajectory enables finding

abnormal through-air speed from the anomaly detection algorithm. Our goal is to esti-

mate through-air speed from the GT-MAB trajectory, and detect anomaly with estimated

through-air speed.

For the anomaly detection algorithm, we exploit the same four spatial basis functions

composed of center ci, width σi, where i = 1,2,3,4 as the four spatial basis functions in the

adaptive learning algorithm of Section 5.2.2; but, we do not use the same flow parameters

of the adaptive learning algorithm. The flow parameters are updated by the updating rules

for the given trajectory. When we force the fifth motor to stop at 4 sec, Figure 5.37 shows

through air speed (top) and flags (bottom). The normal speed range represented by two

green lines has through-air speed estimate until 4.43 sec; after 4.43 sec, the through-air

speed estimate escapes from the range. In this situation, flag change shows whether or not

an anomaly is detected. Flag 0 maintains until 4.43 sec showing no anomaly detection.

Flag 1 means that anomaly occurs because the through-air speed estimate is out of the

range. Figures 5.38 and 5.39 show CLLE and the GT-MAB trajectory, respectively.

Figure 5.37: Identified wind velocities along the GT-MAB trajectories
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Figure 5.38: CLLE along the X-axis (black), and
CLLE along the Y-axis (red)

Figure 5.39: Estimated (blue) and identified
(red) trajectories with identified flow (black)

5.2.4 Adaptive control algorithm

This section describes the experimental results associated with the adaptive control algo-

rithm of Section 3.3.1. We know that the GT-MAB trajectory is not straight due to flow

generated from the wind source, as shown in Figure 5.8. If the adaptive control algorithm

cancels flow that disturbs the trajectory, the GT-MAB trajectory would be straight, which

is the goal of the adaptive control algorithm. Because the adaptive control algorithm re-

quires a predicted trajectory that the GT-MAB trajectory wants to follow, we measure the

positions of the GT-MAB controlled by a waypoint controller for the predicted trajectory

when there is no wind source. When we assign waypoint (0,2) to the GT-MAB, the way-

point controller in the GT-MAB makes the vehicle move forward till reaching a waypoint

at (0,2). Then, we use the set of measured positions of the GT-MAB according to time as

the predicted trajectory.

Applying the adaptive control algorithm to the GT-MAB is difficult because of the GT-

MAB controller structure. Given one waypoint to the GT-MAB, the waypoint mission is

performed by using two distance controllers. One distance controller that generates thrust

command to forward thrusters reduces Y-axis error distance between current position and
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waypoint along Y-axis. The other distance controller, which generates thrust command to

the side-way thruster, decrease X-axis error distance between current position and way-

point along X-axis. Both controllers allow the GT-MAB to achieve the waypoint mission.

However, because the adaptive control algorithm generates a velocity command to decrease

error distances, we cannot connect the output of the adaptive control algorithm to the in-

put of the distance controllers. To solve this problem, we convert the velocity command

to a waypoint command. When we fix the Y-axis waypoint, we only compute the X-axis

waypoint according to the direction of the velocity command. The reason why we fix the

Y-axis waypoint is that we make the GT-MAB motion insensitive to the direction of the

weak flow along the Y-axis. We know that flow along the Y-axis is very weak in Figure

5.29. If the Y-axis waypoint varies according to positive and negative direction of weak

flow along the Y-axis, the GT-MAB is likely to move back and forth, and may not reach

at the waypoint (0,2). Thus, we fix the Y-axis waypoint to only cancel negative direction

of weak flow along the Y-axis; this method is valid when the direction of dominant flow is

along the X-axis.

For the adaptive control algorithm, we utilize the same four spatial basis functions of

the adaptive learning algorithm described in Section 5.2.2; but, we do not use the same

flow parameters of the adaptive learning algorithm. The flow parameters are updated by

the on-line adaptation laws represented by equations (3.45) and (3.46). Then, the adaptive

controller described in equation (3.38) cancel the identified flow. Figures 5.40 shows the

GT-MAB trajectory.

The black represents the predicted trajectory when the GT-MAB follows waypoint (0,2)

without the wind source. The blue represents the GT-MAB trajectory when the GT-MAB

follows the waypoint without the adaptive control algorithm under the wind source. The

predicted trajectory is the straight line, but the GT-MAB trajectory curves in that flow

disturbs the GT-MAB motion. The red represents the GT-MAB trajectory when the GT-

MAB follows the waypoint with the adaptive control algorithm under the wind source.
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Figure 5.40: The adaptive control algorithm makes the GT-MAB trajectory (red) follow the
predicted trajectory (black); without the adaptive control algorithm, the GT-MAB trajectory (blue)

is away from the predicted trajectory.

It shows that the GT-MAB trajectory follows the predicted trajectory by canceling flow.

Figures 5.41 and 5.42 show CLPE along the X-axis and the Y-axis, respectively.

Figure 5.41: CLPE along the X-axis keeps
increasing until 1m without the adaptive control
algorithm (blue); but, CLPE along the X-axis is

bounded by 0.3m with the adaptive control
algorithm (red).

Figure 5.42: The similar trend of the increasing
rate is shown in both CLPE along the Y-axis

without the adaptive control algorithm (blue) and
CLPE along the Y-axis with the adaptive control

algorithm (red).

In Figures 5.41 and 5.42, the blue represents CLPE without the adaptive control al-
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gorithm, and the red with the adaptive control algorithm. The adaptive control algorithm

significantly makes CLPE reduction along the X-axis in Figure 5.41; comparing the blue

and the red, the adaptive control algorithm decreases CLPE by 70 % with respect to non-

adaptive control algorithm. For CLPE along the Y-axis, both cases have similar trend of

increasing CLPE.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The main contribution of this dissertation is a set of algorithms that detect anomaly of

autonomous underwater vehicles (AUVs) without sensors monitoring vehicle components.

Only using trajectory information, the proposed strategy detects abnormal vehicle motion

under unknown ocean flow. It has the potential for mitigating abnormal vehicle motion with

path-planning and controller design of AUVs. The experimental results of the Georgia Tech

Miniature Autonomous Blimp (GT-MAB) and Georgia Tech Wind Measuring Robot (GT

WMR) in an indoor test bed verify the proposed strategy. The summary of the contributions

are described as follows.

• Estimating through-water speed and ambient flow from trajectory information: Given

an estimated vehicle trajectory obtained after AUV deployment, The on-line adaptive

learning algorithm simultaneously estimates through-water speed and flow velocity,

guaranteeing convergence and robustness.

• Detecting anomaly using estimated through-water speed and flow velocity: Suppose

we know the range of through-water speed when AUVs work normally. The anomaly

detection algorithm determines that vehicle motion is abnormal when the through-

water speed estimate is out of the normal speed range; if the through-water speed

estimates is within the normal speed range, the algorithm determines that vehicle

motion is normal. False alarms can happen due to estimation error of through-water

speed during a transient period. Because we have knowledge on flow from flow mod-

els, comparing modeled flow velocity and estimated flow velocity enables avoiding

the false alarms. Moreover, incorporating an adaptive flow canceling controller into

AUVs mitigates false alarms induced by error of the estimated vehicle trajectory.
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• Controlling through-water speed with feedback and feedforward adaptive controller:

When through-water speed can be controlled by feedback and feedforward con-

trollers, the adaptive learning and control algorithms are developed to estimate through-

water speed and flow velocity at the same time, guaranteeing convergence and robust-

ness.

• Estimating vehicle trajectory from underwater acoustic localization: An acoustic

localization algorithm of AUVs that use acoustic receivers primarily used for mon-

itoring tagged fish is developed to estimate vehicle trajectory. The accuracy of esti-

mated trajectory relies on the detection ranges of the receivers. Because the detection

ranges vary due to environmental factors, we identify certain environmental factor to

improve the accuracy of the estimated trajectory.

Future work will incorporate the estimated trajectory from acoustic localization into the

adaptive learning algorithm and the anomaly detection algorithm. After modeling detection

range that reflects tides and water stratification, the acoustic localization algorithm estimate

the vehicle trajectory. The estimated trajectory is used for the adaptive learning algorithm

that estimates through-water speed. Then the anomaly detection algorithm determine the

abnormal vehicle motion with through-water estimates.
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APPENDIX B

AUTOPILOT DESIGN FOR GT-MAB

B.1 Dynamics and Control

Blimps have dynamics that are significantly different from aerial vehicles such as quad-

rotors and small airplanes. The lighter than air gas (Helium for GT-MAB) creates a fixed

amount of lift. Blimps are subjected to significant fluid dynamic influences that are similar

to the dynamics of underwater vehicles [83],[84], [85], [78]. In order to design controllers

for the GT-MAB, the six degree-of-freedom (6-DOF) dynamics model for the blimp is

first derived. We then simplify the model based on the goal to achieve two types of stable

motion: the longitudinal translation motion and the spinning motion. We apply system

identification techniques to compute unknown parameters in these models. The simplified

models also allow us to design simple PID controllers for stable flight.

B.2 Dynamics with 6-DOF

The position of the blimp is determined in a world-fixed inertial coordinate frame. But it

is more convenient to represent the linear and angular velocities in a body-fixed coordinate

frame; see Fig. B.1. The control commands are supplied to the on-board thrusters which

apply thrust in the body-fixed frame, but the position and orientation of the blimp are de-

scribed with respect to the inertial coordinate frame. We follow the established procedures

in the literature [85, 78] to derive the dynamic modeling equations.

Let Euler angles φ , θ , ψ be the roll, pitch, and yaw angles respectively and ηB =

[u,v,w]>, η I = [ẋ, ẏ, ż]> be the linear velocity vectors in the body-fixed frame and the in-

ertial frame respectively. The linear velocity vector can be transformed to the body-fixed

frame from the inertial frame using ηB = CB
I η I , where CB

I = CφCθCψ , and Cφ ,Cθ ,Cψ
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are the rotation matrices corresponding to roll, pitch and yaw respectively where Cφ =
1 0 0

0 cosφ sinφ

0 −sinφ cosφ

, Cθ =


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

, and Cψ =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

. Let

ωωω = [p,q,r]> be the angular velocity of the blimp in the body-fixed frame such that

ωωω = J[φ̇ , θ̇ , ψ̇]> where

J =


1 0 −sinθ

0 cosφ cosθ sinφ

0 −sinφ cosθ cosφ

 .

Figure B.1: Inertial and body coordinate frames. OB−XBYBZB represents the body-fixed axis of
the blimp. OI−XIYIZI represents the inertial axis of the blimp. The origin OB is the center of the
buoyancy (CB) of the blimp. The center of buoyancy (CB) is the same as the center of volume of

the balloon. The height H of the blimp is 0.46 meters and the diameter D is 0.72 meters.

Let f = [ fx,0, fz]
> represents the translational forces generated by the propellers of the

blimp. There is no sideway force in the body-fixed frame. Let τττ = [0,0,τz] be the turning

torque generated by the propellers that control the yaw moment only. Let F = [Fx,Fy,Fz]
>

be a vector that represents the gravity forces, the buoyancy forces, and other aerodynamic

forces acting on the blimp in the body-fixed frame. Let M = [Mx,My,Mz]
> be a vector that

represents all the external moments exerted on the blimp except for those generated by the
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propellers. Let m be the mass of the blimp and

I =


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz


be the moment of inertia about the origin of the body-fixed frame. Then the dynamic

equations of motion for the blimp can be derived as

m(η̇B +ωωω×η
B) = F+ f (B.1)

Iω̇ωω +ωωω× (Iωωω) = M+ τττ. (B.2)

B.3 Motion Primitives

The 6-DOF model described by equations (B.1) and (B.2) is nonlinear and coupled. A

general controller design for such system is difficult, especially when some of the param-

eters of the model are unknown. Therefore, we need to find simplified models to achieve

controllable flight. The GT-MAB is designed mainly to achieve three motion primitives:

1. Maintaining speed. The blimp should be able to maintain a desired constant speed

along its XB direction while having zero vertical speed, and zero yaw angular speed

e.g., u = u0, w = 0, and r = 0.

2. Changing altitude. The blimp should be able to ascend or descend to a desired height

while maintaining zero forward speed and zero yaw angular speed e.g. z = z0, u = 0

and r = 0.

3. Changing orientation. The blimp should be able to spin in place so that its yaw angle

can be stabilized at any desired value while maintaining zero forward speed, and zero

vertical speed e.g. ψ = ψ0, u = 0 and w = 0.
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These motion primitives can be combined to achieve stable flights that allow the blimp to

move in 3D space. The design goals for the autopilot are now reduced to stabilizing these

three motion primitives.

In order to simplify the dynamics, we make the following practical assumption that

holds for all three motion primitives.

Assumption 1. The roll angle and the roll angular velocity (φ , p), the pitch angle and the

pitch angular velocity (θ , q), and the side-slipping velocity (v) are negligibly small during

the transient phase of the flight and zero during the steady state flight.

Remark 1. The assumption is justified because the GT-MAB is under the influence from

the restoring forces due to its bottom-heavy design. The restoring forces induced by gravity

and buoyancy effectively damp out roll and pitch motion. Since the blimp is very light with

a large envelop, the side-slipping velocity of the blimp will vanish quickly due to air drag

when the blimp flies forward. We understand that a sideway force will be generated by the

term ωωω×ηB while the blimp is spinning and flying forward at the same time. However, this

term is viewed as a vanishing disturbance force that is damped out by air drag. The force

can also be ignored under the assumption that the spinning speed is almost zero during

forward flight, and the forward speed is almost zero during the spinning motion.

We are then able to separate the longitudinal and the spinning motion from the full

nonlinear motion model and obtain three dynamic equations

mu̇ = Fx + fx (B.3)

mẇ = Fz + fz (B.4)

Izṙ = Mz + τz. (B.5)

Equations (B.3) and (B.4) describe the motion of the blimp in the XB−ZB plane, assuming

no sideway motion and ignoring the sideway forces. Equation (B.5) represents the spinning

motion of the blimp around the ZB axis.
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Remark 2. Due to the symmetry of the blimp envelop, the inertia matrix I becomes diago-

nal. One advantage of the “saucer-shaped” envelop is that Ix = Iy, which further simplifies

the dynamics. The term ω× Iω does not generate rotation moments in equation (B.5) if the

roll and pitch angular velocities are zero. In the case when roll and pitch moments are not

zero, the contribution from the term ω × Iω to the roll and pitch moments are also small

allowing them to be easily damped out by the restoring force from the gravity.

Remark 3. Note that the models (B.3-B.5) are still nonlinear because the external forces

Fx,Fz and the external moment Mz include the forces and moments generated by the gravity

and the ambient air. These forces are nonlinear functions of accelerations and velocities

that are quite difficult to model. This is quite different from quad-rotors and multi-copters

with powerful thrusters that generate forces fx, fz and moment Mz at least a magnitude

larger than the influences from ambient air, which allow Fx,Fz and Mz to be ignored. For

the blimp, because of the relatively large envelop and the relatively weak thrusters, the

aerodynamics need to be considered, which is very similar to the modeling of underwater

vehicles.

B.4 System Identification

The simplified models can be further linearized for each motion primitive. For flight at con-

stant heading, we linearize the model around a desired forward speed, zero vertical speed,

and zero yaw angular speed. For a change of altitude, we linearize the model around the

desired height, zero forward speed and zero yaw angular speed. For a change of orien-

tation, we linearize the model around a desired yaw angle, zero forward speed, and zero

vertical speed. These models can be viewed as open-loop plants. The model for maintain-

ing forward speed has fx as its input and the forward speed u as its output. The model for

changing altitude has fz as its input and the z as its output. Since z is positive downward,

the height of the blimp is negative z. And the model for changing orientation has the torque

τz as its input and the yaw angle ψ as its output. A set of experiments have been performed

141



where both input and output of the models are measured. Then the models can be identified

using the MATLAB system identification toolbox.

The identified transfer functions are:

P1(s) =
0.9624s2 +0.5787s+12.26

s3 +0.7634s2 +14.62s+4.691
e−0.17s (B.6)

P2(s) =


1.9535

s2+0.1267se−0.17s if fz ≤ 0

0.9346
s2+0.0172se−0.17s if fz > 0

(B.7)

P3(s) =
10.9365

s2 +0.1855s
e−0.17s. (B.8)

We notice that these models are greater than second order, most likely because they in-

corporate the parasitic effects caused by the non-ideal values of the state variables that we

previously ignored.

We use the first order Pade approximation to approximate the time delays in the transfer

functions. The Pade approximation e−τs = 1
τs+1 [86] leads to approximated open loop

transfer functions. The model for maintaining forward speed is approximated by

P1(s) =
5.6612s2 +3.4041s+72.1176

s4 +6.6471s3 +19.1118s2 +90.7059s+27.5941
. (B.9)

The model for changing altitude is approximated by

P2(s) =


11.4912

s3+6.0088s2+0.7453s if fz ≤ 0

5.4976
s3+5.9s2+0.1012s if fz > 0.

(B.10)

And the model for changing orientation is approximated by

P3(s) =
64.3324

s3 +6.0676s2 +1.0912s
. (B.11)

The locations of open loop poles and zeros of the transfer function P1(s) are plotted in
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blue in Fig. B.2. For transfer functions P1(s) and P3(s), there are no poles on the right

half of the complex plane, but there are poles on the imaginary axis or the origin. This

implies that forward speed and orientation systems are marginally stable. The altitude

transfer function P2(s) has different pole characteristics depending on input. When input fz

is non-positive, one pole is located at the origin; however, double poles are located at the

origin when input fz is positive. It shows that the altitude system is marginally stable under

non-positive input, and unstable under positive input. Therefore, the desired speed, height,

and yaw angle can not be achieved by open loop control.

In particular, the forward speed model P1(s) has one pair of complex conjugate poles

very close to the imaginary axis, which are generated by the coupling between the forward

motion and pitch oscillation that are ignored when deriving the theoretical model. These

poles will lead to very slowly vanishing oscillatory modes in the pitch angle when the blimp

flies forward.

The altitude model P2(s) is changed according to input sign. It implies that altitude

dynamics is changed due to propeller efficiency and the asymmetric blimp shape. When

we compare numerators of transfer function P2(s), the slope of upward thrust ( fz ≤ 0) is

two times larger than that of downward thrust ( fz > 0). Since propeller blades are mainly

designed for generating upward thrust, reversal rotation of propellers produces much lower

downward thrust than upward thrust. Comparing pole positions of transfer function P2(s)

shows asymmetric motion vertically. When the GT-MAB goes up, the upward motion is

marginally stable in that the gondola located at the bottom of the envelope plays a role

in a stabilizer aerodynamically. However, when the GT-MAB goes down, the downward

motion is unstable because of nothing on the top of the envelope. Thus, the upward and the

downward motions are not symmetric.
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B.5 Speed and Heading Controller Designs

Based on the identified linear input-output speed and heading models, we design controllers

to achieve two motion primitives: maintaining speed and changing orientation. The goal

is to make the two closed-loop systems asymptotically stable, and to compensate for the

oscillations in the speed system. The forward speed controller uses u as feedback and fx

as control input. The heading controller uses ψ as feedback and τz as the control. ψ is

measured by the 3D localization system.

The two controllers are designed as the PID controllers. The PID gains for the two

controllers are tuned in MATLAB based on the open-loop transfer functions identified.

Table B.1 shows the gains.

Table B.1: Speed and Yaw PID Controller Gains

Controllers P I D
Speed 1.095 1.095 0
Yaw 0.1955 0 0.192

The two closed-loop transfer functions under the PID controllers are:

G1(s) =
6.1988s3 +9.9265s2 +82.6865s+78.9594
s5 +6.6459s4 +25.3141s3 +100.6424s2

+110.2788s+78.9594

(B.12)

G2(s) =
12.5771

s3 +6.0676s2 +13.4429s+12.5771
, (B.13)

where G1(s) is closed-loop transfer function of speed, and G2(s) is closed-loop transfer

function of yaw angle.

For two closed-loop transfer functions, all poles are on the left half plane, hence all

the two closed-loop transfer functions are asymptotically stable. Furthermore, there is

no steady-state errors under step function input. The poles and zeros of the closed-loop

transfer function G1(s) are plotted in red in Fig. B.2. The oscillatory complex poles in

P1(s) are compensated by a pair of complex conjugate zeros, which significantly reduce
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the oscillation.

Figure B.2: Poles and zeros of the open loop transfer function P1(s) and the closed-loop transfer
function G1(s) for forward speed control. Blue markers represent poles and zeros of the open-loop
transfer function. Red markers represent poles and zeros of the closed-loop transfer function. One
open-loop pole located at (−5.88,0) and one closed-loop pole located at (−4.88,0) are omitted in

the figure.

Fig. B.3 shows the comparison of the simulated step response and the measured step

response of the GT-MAB under each controller. It can be seen that the heading controller

(bottom-graph) performs similarly to the simulated response and has a good rise and set-

tling time. However, we still observe small oscillations in the speed controller (top graph).

Due to lack of direct control input for the pitch motion, the linearized system is stabilizable

but not controllable with respect to the pitch angle.

B.5.1 Altitude controller with a scheduling algorithm

We design an altitude controller to accomplish motion primitive for changing altitude. The

altitude controller uses z as feedback and uses fz as the control. Using one PID controller

is not able to satisfy the stability and performance of altitude systems which changes ac-

cording to the sign of fz. We design a scheduling algorithm to switch between two set of

PID gains.

The first PID gain is designed with the transfer function associated with upward thrust

( fz ≤ 0). The second PID gain is designed with the transfer function associated with down-
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Figure B.3: Simulated step response (red) and measured step response (blue) for two motion
primitives of the GT-MAB

ward thrust ( fz > 0). The PID gains are tuned in MATLAB and shown in Table B.2.

Table B.2: Altitude PID Controller Gains

Controllers P I D
# 1 0.6560 0.0087 0.7352
# 2 0.146 0.0027 1.955

We need to decide when to switch from one PID gain to the other PID gain, or vice

versa. We design a scheduling algorithm for this purpose. Let e be altitude error with

respect to desired altitude. Let flag represent switching modes. Let fz1 and fz2 represent

output obtained by using #1 PID gain and #2 PID gain, respectively. Then, the scheduling

algorithm is shown in Algorithm 3.

Note that positive fz represents downward thrust; non-positive fz represents upward

thrust. For the scheduling algorithm, we select non-positive fz1 in that #1 PID gain is

designed for upward thrust. In addition, we select positive fz2 because #2 PID gain is

designed for downward thrust. We choose fz1 when both fz1 and fz2 are non-positive;

i.e., both PID controllers generate upward thrust. We select fz2 when both fz1 and fz2 are

positive. For two additional cases: when fz1 is non-positive and fz2 is positive, and when

fz1 is positive and fz2 is non-positive, we are not able to choose either fz1 or fz2. Then,

we employ extra information to resolve this issue. The sign of altitude error allows us to
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Algorithm 3: Scheduling Algorithm for Altitude Controller
Input: #1 PID controller output fz1, #2 PID controller output fz2, altitude error e
Output: Control input fz and switching mode flag

1 if fz1 ≤ 0 & fz2 ≤ 0 then
2 fz = fz1, flag = 0
3 else if fz1 ≤ 0 & fz2 > 0 then
4 if e≤ 0
5 fz = fz2, flag = 1
6 else
7 fz = fz1, flag = 2
8 end
9 else if fz1 > 0 & fz2 > 0 then

10 fz = fz2, flag = 3
11 else if fz1 > 0 & fz2 ≤ 0 then
12 if e≤ 0
13 fz = fz2, flag = 4
14 else
15 fz = fz1, flag = 5
16 end
17 else
18 break;
19 end

decide between fz1 and fz2. Positive altitude error means current height is less than desired

height. Non-positive altitude error means current height is greater than or equal to desired

height. Therefore, #1 PID gain is used for positive altitude error, and #2 PID gain is used

for non-positive altitude error at each case.

Fig. B.4 show measured step response of altitude (top) and corresponding time-series

switching modes (bottom) while Algorithm 1 is running. Transient altitude response set-

tles down after 40 secs by the altitude controller incorporating the scheduling algorithm.

Furthermore, the proposed altitude controller has overshoot less than 20% and zero steady

state error. In the bottom panel of Fig. B.4, flags 0 and 2 represent upward thrust that

reduces positive altitude error before 4 secs and steady state error after 40 secs. Flags 3 and

4 represent downward thrust that reduces overshoot and transient altitude error.
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Figure B.4: Measured step response for changing altitude (top) and switching modes (bottom)
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