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Abstract

This paper describes an implementation of a behavior-
based mobile manipulator capable of autonomously trans-
ferring a sample from one drum to a second in unstruc-
tured environments. A major contribution of the project
was the coherent integration of the arm and base as a co-
hesive unit, and not just a mobile base with an arm at-
tached. The support for smooth simultaneous operation
of all joints on the vehicle facilitated biologically plausi-
ble motions, such as arm preshaping. The behavior-based
controller used a pseudo-force model, where behaviors add
forces and torques to joints and limbs resulting in coor-
dinated motion. The vehicle Jacobian is used to convert
the pseudo-forces into joint torques and a pseudo-damping
model converts the joint torques into joint velocities. This
process allows rapid control of the manipulator without
the use of inverse kinematics. A drum sampling task is
presented where the vehicle demonstrates how a sample of
material could be moved from one drum to another, illus-
trating the efficacy of the solution.

1 Introduction

This paper describes construction of a behavior-
based mobile manipulator using a motor schema-based
approach [5]. A primary goal of the project was devel-
opment of an integrated mobile manipulator, not just
an arm mounted on a mobile base. This goal grew
out of the desire to support biologically plausible mo-
tions [2], such as arm preshaping, and grasping while
moving. Preshaping refers to the process of forming
the arm into the configuration necessary to acquire a
target as the robot begins to close on the target. This
preshaping process is important to minimize the time
required at the target and to support grasping while
the robot is moving. To construct such a controller,
a generalization of our motor schema-based approach
using pseudo-forces and a pseudo-joint damping model

to cause and control motion was developed [10]. This
control paradigm permits rapid computation of the
desired joint velocities without the use of inverse kine-
matics.

In this paper, a drum sampling task is presented
where the vehicle demonstrates how a sample of ma-
terial could be moved from one drum to a second. This
task integrates our work in temporal sequencing[3]
with our research in visual tracking[l19] and visual
servoing[17]. Images taken from a robot waist camera
are processed using a constrained, line-based Hough
transform[19, 14] to recognize and localize the drums
in natural settings using a stored model. The percep-
tual process provides the direction and distance to the
drum, which is used to servo the vehicle towards the
drum. When the robot arrives at the drum, a wrist
mounted camera is used to discern the bung hole using
thresholding of the dark, open bung hole against the
light colored drum cover. An ellipse fitting algorithm
provides a certainty metric and discards false matches.

2 The mobile manipulator

The mobile manipulator is constructed from a Den-
ning MRV-2 mobile robot and a CRS A251 industrial
robot arm. The MRV-2 uses a three wheel synchro-
nized steering system to allow motion without turning
the vehicle body. The arm controller is mounted in a
cart pulled behind the robot base. An off-board Sun
workstation functions as the mobile manipulator con-
troller, providing integrated control of the arm and
base as a unified mobile manipulator. Treating the
two disparate components as an integrated mechanism
is central to this research. Proprioceptive sensors in-
clude position encoders on the wheels and joints, and
a force/torque sensor on the wrist. A ring of 24 ul-
trasonic sensors surrounding the base provides drum
position and obstacle detection information. Cameras
are mounted on the robot’s wrist and on a waist pan-



tilt mount to accommodate active visual processes.

Motion for the mobile manipulator is generated
using a behavior-based methodology. The reactive
controller was documented in [8, 10] and is only
overviewed here. The basic premise is to guide the
motion of the arm and base by responding to artifi-
cial forces generated by concurrent active behaviors.
Conventional two dimensional reactive methodologies
(e.g., subsumption-based architectures [9], REX [15],
RAPs [12], schema-based systems [5], and many others
[1, 13, 18]) have been extended to three dimensions.
Related work by Connell in mobile manipulation [11]
differs in that in his approach the arm and base are
treated separately from a behavioral perspective, i.e,
the arm inhibits the base’s motion during reaching and
grasping. Our methodology cannot only replicate this
strategy but more importantly permits the coherent
and concurrent motion of the arm and base simulta-
neously for tasks such as preshaping.

To induce movement of the robot towards a goal at-
tractor (e.g., a drum), the move_to_goal behavior adds
a force to the end-effector, pulling it towards the goal.
Other active behaviors add forces and torques of vary-
ing direction and strength to the vehicle joints. The
vehicle Jacobian is then used to convert the pseudo-
force into the corresponding joint torques (computed
at static equilibrium). A pseudo-damping model is
then used to convert the joint torques into the induced
joint velocities. Qualitative changes in the mobile ma-
nipulator’s behavior are generated by controlling the
damping values. For example, making the damping
values appropriate functions of the distance to the goal
can produce rapid motion of the base towards the goal
while keeping the arm relatively rigid when the robot
is distant (i.e., the base joints are loose and the arm
joints are stiff). As the vehicle approaches the goal,
the base slows (stiffens) and preshaping occurs as the
arm extends while reaching for the target object (as a
consequence of the dampening being reduced on the
arm itself).

3 Perceptual Support for Drum Sam-
pling

Two independent perceptual processes are used to
discern the drum and the open bung hole. The first
utilizes the waist camera and the second a wrist-
mounted camera looking down on the drum.

3.1 Drum localization

The waist camera, mounted on a Directed Percep-
tion pan-tilt mechanism, is used to locate the drum
and servo the vehicle towards it. The move_to_goal
motor behavior is coupled with the detect_drum per-
ceptual module to support movement towards the
drum. The detect_drum algorithm operates as fol-
lows. First, the shaft-encoders are read to compute
a coarse expected location for the drum (i.e., there is
some a priori knowledge of the drum’s general where-
abouts). The waist camera is then oriented towards
this expected location using the pan/tilt and an image
is captured.
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Figure 1: Model used to match the drums

A region-based line finder[16] is then invoked to ex-
tract lines from the image which are oriented collinear
(within a tolerance) with the set of line orientations
occuring within a stored model (shown in Figure 1).
This model is based upon the patterned hazard mark-
ing tape applied to the upper region of the drum. A
line-based Hough transform is then used to compare
the model to the extracted image lines. The matching
algorithm is shown in Figure 2.

scale_model (estimated_distance);
FOR seg = each_line_in_image
FOR mline = each_line_in_model
IF angle_between(seg,mline) < THRESHOLD
weight = pixels_in(seg) / pixels_in(model)
draw_model_in_hspace (weight) ;
ENDIF
END
END
location = pick_largest_hspace_bucket ()

Figure 2: Line-based Hough transform

Once the location of the model in the image is ex-
tracted, an algorithm searches horizontally along the
model’s estimated location in the image to find the
lines extracted along the vertical edges of the drum.
The location of these edges is then used to improve



the accuracy of the drum location as well as predict
the distance to the drum via projection.

3.2 Bung hole localization

The detect_bung_hole perceptual module consists of
several steps. First, an image is taken using the wrist
camera. Using a realistic expectation of the open bung
hole appearing dark against the lightly colored drum
cover, images are processed using the multi-pass al-
gorithm shown in Figure 3. During each pass, the
darkest pixel (remaining unprocessed) within the pro-
cessing window is suggested as a possible location for
the bung hole. A blob-growing algorithm then pro-
cesses the pixels surrounding the suggested location.
Using the grown blob, a relaxation-based ellipse fit-
ting algorithm determines if the blob is a likely match
for the bung hole, and if so, returns the center of the

hole.

FOR loops = 1 to max_tries
loc = darkest_pixel(image)
blob = grow_blob(image,loc)
IF close_to_expected_size(blob.area)
ellipse = fit_ellipse(blob)
IF ellipse.good
return ellipse
ENDIF
ENDIF
END
return failure

Figure 3: The detect_bung hole algorithm

The £it_ellipse algorithm shown in Figure 4 uses
a relaxation process to shape and size an ellipse to the
blob. The axes of the fitted ellipse are oriented along
the horizontal and vertical axes of the image. The
ellipse is described by the equation

(z—20)"  (v—w0)

a? b2 =1

where xg, yo is the center (x,y in Figure 4) and a, b are
the major and minor radii (horizontal and vertical in
this usage). Blob pixels outside of the ellipse exert a
force on the edge of the ellipse attempting to slide it
towards them (away from the center). Non-blob pixels
inside the ellipse exert a similar force on the ellipse
in the opposite direction (towards the center). The
relaxation process iterates, allowing balanced forces
on opposite sides of the ellipse to deform it while non-
balanced forces cause it to slide. Once the process

X,y,a,b = initial_estimates
FOR loops = 1 to max_relaxation_loops
left,right,top,bot = 0
// relax vertical (b,y parms)
FOR col = left_in_ellipse TO right_in_ellipse
add to top distance the highest blob pixel
in the col is above(+) or below(-) ellipse
add to bot distance the lowest blob pixel
in the col is below(+) or above(-) ellipse
END
IF (top and bot agree on expand or contract)
increment or decrement b based on direction
ENDIF
IF (top and bot differ in magnitude)
increment or decrement y to balance them
ENDIF
// relax horizontal (a,x parms)
FOR row = bot_in_ellipse TO top_in_ellipse
add to left distance the leftmost blob pixel
in the row is left(+) or right(-) of ellipse
add to right distance the rightmost blob pixel
in the row is right(+) or left(-) of ellipse
END
IF (left and right agree on expand or contract)
increment or decrement a based on direction
ENDIF
IF(left and right differ in magnitude)
increment or decrement x to balance them
ENDIF
END
RETURN a,b,x,y

Figure 4: The fit_ellipse algorithm

stabilizes, the center of the ellipse is returned as the
probable location of the center of the drum’s bung

hole.

4 Drum sampling behavioral configu-
ration

The utility of the mobile manipulator was shown by
implementing a drum sampling task where the vehicle
demonstrates how a sample from one drum could be
transferred to a second container. Two environmental
modifications were made to simplify portions of the
experiment. First, the top 1/3 of the two 55 gallon
drums was cut off, allowing the robot to physically
reach the top. Second, as mentioned earlier, striped
standard hazard marking tape was wrapped around
the two drums to facilitate recognition against the vi-
sually cluttered backgrounds occuring in the lab.



The experiment begins with the vehicle initialized
with an approximate knowledge of the locations of the
drums (drum 1: forward 2 meters, drum 2: left 2
meters) to constrain the visual search.

Using the pan-tilt mount, the vehicle directs the
waist camera towards the drum’s expected location. It
then attempts to recognize the drum using a line-based
constrained Hough transform, based on the model of
the hash marks on the drum. If no match is found,
then a panning visual search for the drum is initiated.
When a match is discovered by the Hough transform,
a second algorithm searches for the edges of the drum
within the set of extracted lines. Finding the true
edges of the drum allows determination of the actual
distance to the drum by transforming the width to
distance. It also permits correcting for the offset error
induced by apparent motion of the hash marks as the
drum rotates relative to the robot.

The vehicle then moves towards the recognized
drum, preshaping the arm to position it above the
open bung hole. When the bung hole becomes visible
using the wrist camera, a downward docking motion
moves the wrist-mounted probe (a soda straw) about
6 inches into the drum to emulate transferring sam-
ples. The vehicle then retracts the arm and backs
away from the drum. The process is then repeated for
the second drum to show how additional samples could
be collected. Finally, the vehicle halts after finishing
with the second drum.

The behavioral configuration which implements
this drum sampling task uses two levels of temporal
sequenced coordination[3] to control execution of the
various stages of the mission. Figure 5 shows the top-
level coordination operator which causes the manipu-
lator to demonstrate how a sample of material could
be moved from one drum to a second.

sample

drum(put)

Figure 5: FSA to move samples

Figure 6 shows the details of the sample drum as-
semblage. This finite state acceptor (FSA) moves
the vehicle towards a selected drum, positions the
arm over the open bung hole, lowers the probe
into the drum, transfers a sample, removes the
probe, and backs away. For these experiments, the
transfer _sample state was just a short pause since
no actual material transfer took place. This assem-
blage is active in both the sample drum(take) and
sample drum(put) states in the move samples as-

semblage. The behaviors active in each state of the
sample drum FSA are listed in Table 1 and are doc-
umented in [5, 4, 7, 10]. They are only overviewed
here.

e set-goal: causes the vehicle to conduct a visual
search to initially locate an object of interest (i.e.,
the drum or bung hole).

e move-to-goal: generates a constant magnitude
three dimensional attractive force on the end-
effector, pulling it towards the goal position.

e avoid-obstacle: generates forces and torques on
the vehicle, repulsing it from obstacles. A cylin-
drical repulsive field is constructed around each
link (the robot base is considered one link) and
a spherical repulsive field is constructed around
each joint.

e move-ahead: Draws the end-effector in a partic-
ular 3D direction at a fixed magnitude.

¢ docking: generates forces and torques on the mo-
bile manipulator forcing the end-effector to ap-
proach in a particular orientation.

controlled_! locate
mtg(drum) bung hole

Figure 6: FSA to probe drum

5 Experimental run

Multiple runs of the mobile manipulator executing
the drum sampling task configuration were completed
in the Georgia Tech Mobile Robot lab. The mobile
manipulator incorporates a route planner[6] for uti-
lizing a priori map information in partially modeled
environments. However, for these experiments, the
planner was not used. Instead, the robot was pro-
vided with rough estimates of the locations of the
drums relative to its starting location. This informa-
tion was used to constrain the initial visual search for
the drums, to reduce startup time. The accuracy of
the estimates was approximately £1 meter.

Figure 7(a) shows the mobile manipulator in the
starting configuration. Figure 7(b) shows the waist
camera view with the extracted lines and the drum



Table 1: Behaviors active in sample drum FSA states

Active Behaviors

set_goal (waist_camera)

avoid_obstacle(ultrasonics)
move_to_goal(detect_drum (shaft_encoders,waist_camera))

avoid_obstacle(ultrasonics)
move_to_goal( detect_drum(shaft_encoders,waist_camera))

dock( detect_drum (shaft_encoders))

set_goal(wrist_camera)

dock( detect_bung_hole(shaft_encoders,wrist_camera))

move_ahead

no active behaviors

move_ahead(shaft_encoders)

State Exit Trigger
locate.drum found drum
ballisticmtg(drum) | near drum
controlled mtg(drum) | at drum
dock(above drum) over drum
locate bung_hole saw bung hole
dock(at_hole) lost bung hole
move_in hole within drum
transfer_sample timeout
move_out_hole above drum
move_away away from drum

move_to_goal(shaft_encoders)
avoid_obstacle(ultrasonics)

model (sized to match the calculated distance) over-
laid on the image. The drum is tracked as the vehi-
cle moves to correct for locational uncertainty and to
handle dynamic environments where the drum is per-
mitted to be moved. Once the vehicle gets within four
feet of the drum, the robot stops visually tracking the
drum since the edges of the drum may extend beyond
the field of view of the camera. Figure 7(c) shows the
image taken using the waist camera at this transition
point.

Next, the arm is activated causing it to leave the
safe travel position it has been in and to extend
straight up. Starting from this raised configuration
allows the docking behavior to position the wrist cam-
era to achieve the best possible view of the bung hole.
Using shaft-encoders and dead-reckoning the mobile
manipulator moves the end-effector above the drum,
positioning the wrist camera vertically, to allow view-
ing of the bung hole. Figure 7(d) is a photo of the
vehicle during the docking phase.

The vehicle now uses the wrist camera to track the
open bung hole. A low-cost vision algorithm is used
which thresholds the image looking for the dark bung
hole. The ellipse fitting algorithm then verifies that
the tracker has in fact located the hole and estimates
the distance to the bung hole based on its perceived
diameter in the image. This corrects for uncertainties
in the robot’s position and handles drums of varying
height. Figure 7(e) is a photo of the arm docked above
the drum and (f) shows the wrist camera image taken
in this position with the extracted bung hole high-
lighted and the projected center of the hole marked
with a cross.

The vehicle continues tracking the hole as it lowers

the sampling probe into the drum, visually servoing to
correct for motion errors. Figure 7(g) shows the arm
in the fully inserted position, and (h) shows the cor-
responding wrist camera image. Notice that although
the probe visibly protrudes into the image (from the
lower left corner towards the center of the hole) and
the entire hole is not visible, the ellipse is still posi-
tioned reasonably accurate. The hole is servoed to the
lower left corner of the image because the probe is cen-
tered in the wrist and the camera is offset by about
3 inches in both X and Y from the centerline of the
arm.

The vehicle then retracts the probe and backs away
from the drum to get a good view of the second drum.
Figure 7(i) shows the arm retracting, (j) shows the arm
fully retracted, and (k) shows the robot backing away
from the first drum. It then repeats this entire pro-
cess to deliver the sample to the second container as
shown in Figure 7, images (1)-(n). Finally, it retracts
the manipulator into the safe traveling configuration
and backs away from the delivery drum before halt-
ing. Figure 7(o) shows the vehicle in the final, halted
state.

6 Summary

This paper has described construction of a
behavior-based mobile manipulator using a motor
schema-based approach. The vehicle operates as an
integrated system, utilizing preshaping while mov-
ing and supporting grasping while moving. A new
schema-based controller was developed for this project
which uses application of pseudo-forces to induce mo-
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Figure 7: Photos of sample drum test run



tion. An attractive behavior such as move_to_goal in-
duces a force on the end-effector pulling it towards
the goal. Repulsive behaviors such as avoid_obstacles
induce repulsive forces on joints when obstacles ap-
proach nearer than a safe distance. Other behaviors
add forces and torques to joints as required to induce
their desired motions. The integrated vehicle Jacobian
matrix (at static equilibrium) is used to convert these
forces into the set of corresponding joint torques that
would be induced. A pseudo-damping model is then
used to convert the joint torques into joint velocities.
By controlling the damping values at each joint using
functions of distance to the goal, varying performance
characteristics are generated. A drum sampling task
was demonstrated to show the feasibility of this type
of control in real-world problems.
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