
Expectation-Oriented Framework for Automating Approximate Programming
Hadi Esmaeilzadeh Kangqi Ni Mayur Naik

Georgia Institute of Technology
hadi@cc.gatech.edu vincent.nkq@cc.gatech.edu naik@cc.gatech.edu

Abstract
This paper describes ExpAX, a framework for automating approx-
imate programming based on programmer-specified error expec-
tations. Three components constitute ExpAX: (1) a programming
model based on a new kind of program specification, which we re-
fer to as expectations. Our programming model enables program-
mers to implicitly relax the accuracy constraints without explicitly
marking operations approximate; (2) a novel approximation safety
analysis that automatically identifies a safe-to-approximate subset
of the program operations; and (3) an optimization that automati-
cally marks a subset of the safe-to-approximate operations as ap-
proximate while considering the error expectation. Further, we for-
mulate the process of automatically marking operations as approxi-
mate as an optimization problem and provide a genetic algorithm to
solve it. We evaluate ExpAX using a diverse set of applications and
show that it can provide significant energy savings while improving
the quality-of-result degradation. ExpAX automatically excludes
the safe-to-approximate operations that if approximated lead to sig-
nificant quality degradation.

1. Introduction
Energy efficiency is a first-class design constraint in computer sys-
tems. Its potential benefits go beyond reduced power demands in
servers and longer battery life in mobile devices. Notably, improv-
ing energy efficiency has become a requirement due to limits of
device scaling in what is termed the dark silicon problem [9]. As
per-transistor speed and efficiency improvements diminish, radical
departures from conventional approaches are necessary to improve
the performance and efficiency of general-purpose computing. One
such departure is general-purpose approximate computing.

Conventional techniques in energy-efficient computing navigate
a design space defined by the two dimensions of performance and
energy, and traditionally trade one for the other. General-purpose
approximate computing explores a third dimension—that of error.
This error dimension concerns relaxing the robust digital abstrac-
tion of full accuracy in general-purpose computing, and trades the
accuracy of computation for gains in both energy and performance.

Approximation can only be beneficial if a large body of ap-
plications can tolerate inexact computation without incurring se-
vere degradation of output quality. Recent research [1, 2, 5–8, 10–
18, 20, 21] has in fact shown that many emerging applications
in both cloud and mobile services inherently have such a toler-
ance. These applications span a wide range of domains includ-
ing web search, big-data analytics, machine learning, multimedia,
cyber-physical systems, speech and pattern recognition, and many
more. In fact, there is an opportunity due to the current emergence
of approximation-tolerant applications and the growing unreliabil-
ity of transistors as technology scales down to atomic levels [9].
For these diverse domains of applications, providing programming
models and compiler optimizations for approximation can provide
significant opportunities to improve performance and energy effi-
ciency at the architecture and circuit level by eliminating the high
tax of providing full accuracy [6–8, 17].

State-of-the-art systems for approximate computing such as En-
erJ [18] and Rely [4] require programmers to manually and ex-

plicitly declare low-level details, such as the specific variables and
operations to be approximated, and provide safety [18] or quality
of result guarantees [4]. In contrast, we focus on providing an au-
tomated framework that allows programmers to express concise,
high-level, and intuitive error expectation specifications, and auto-
matically finds the approximable subset of operations in the pro-
gram. In doing so, our framework enables programmers to implic-
itly declare which parts of the program are safely approximable
while explicitly expressing how much approximation is preferable.

Figure 1 shows our automated expectation-oriented framework,
called ExpAX. It constitutes three phases: (1) programming, (2)
analysis, and (3) optimization.

First, ExpAX allows programmers to implicitly relax the accu-
racy constraints on low-level program data and operations by ex-
plicitly specifying error expectations on program outputs. Our pro-
gramming model provides the syntax and semantics for specifying
such high-level error expectations. In this model, the program it-
self without the specific expectation carries the most strict seman-
tics in which approximation is not allowed. Programmers add the
expectations to implicitly relax the accuracy requirements without
explicitly specifying where the approximation is allowed.

Second, ExpAX includes a novel approximation safety analysis
that automatically finds a candidate subset of program operations
that can be approximated without violating program safety guaran-
tees. The program outputs on which the programmer has specified
error expectations are inputs to this analysis.

Third, ExpAX includes an optimization framework that selec-
tively marks a number of the candidate operations as approximate
while considering the specified error expectations. We formulate
the problem of selecting these operations as a general optimiza-
tion procedure that minimizes error and energy with respect to the
specified expectations. Thus, in our formulation, the error expecta-
tions guide the optimization procedure to strike a balance between
quality-of-result degradation and energy savings, and focuses ap-
proximation to satisfy programmer expectations.

The optimization procedure is parameterized by a system spec-
ification that models error and energy characteristics of the under-
lying hardware on which the program will execute. While the pro-
grammer specifies the error expectations in a high-level, hardware-
independent manner, our optimization formulation automatically
considers the low-level hardware parameters without exposing
them to the programmer. ExpAX thereby enhances the portabil-
ity of the approximate programs. We implement an instance of
the optimization procedure using genetic algorithms and evaluate
the effectiveness of the resulting framework using a diverse set
of benchmarks. Our empirical results show that for many applica-
tions, there is a subset of safe-to-approximate operations that if ap-
proximated will result in significant quality-of-result degradation.
This insight and the results confirms that automating approximate
programming is of significant value. Further, our optimization for-
mulation and its genetic implementation can automatically find and
filter this subset while providing significant energy savings.

In summary, our approach provides a system-independent
framework that automates approximate programming while en-
abling programmers to implicitly specify safe-to-approximate parts
of the program and express their error expectations using a novel

(constant) r ∈ R (assignment label) l ∈ L
(variable) v ∈ V (expectation label) k ∈ K

(operation) o ∈ O (expression) e ::= v | r

(program) s ::= v :=l o(e1, e2)
| φk

| s1 ; s2

| if (v>0) then s1 else s2

| while (v>0) do s

Figure 2: Language syntax.

(error) c ∈ R0,1 = [0, 1]
(error magnitude) f ∈ (R× R)→ R0,1

(expectation) φ ::= rate(v) < c
| magnitude(v) < c using f
| magnitude(v) > c using f with rate < c′

Figure 3: Expectation syntax.

(error model) ε ∈ E = (R0,1 × R)
(energy model) j ∈ J = (R0,1 × R)

(system spec) ψ ∈ O→ (E× J)

Figure 4: System specification.

approximate programming model. Our approach does not provide
quality-of-result guarantees. But it represents a best effort-solution
to reduce the programmer effort, enhance the portability of the ap-
proximate programs across different hardware systems, strike a bal-
ance between quality-of-result degradation and energy efficiency,
and focus approximation based on programmer preferences.

2. Expectation-Oriented Programming Model
In this section, we present a core calculus that distills the essence
of our expectation-oriented programming model. We first describe
the abstract syntax of programs (Section 2.1). We then formalize a
system specification, which provides both the error models and the
energy models of approximable program operations under the sys-
tem that executes the programs (Section 2.2). Finally, we provide
an instrumented semantics of these programs under a given system
(Section 2.3). The semantics induces lightweight runtime instru-
mentation that allows our optimization framework (described later
in Section 4) to automatically tune which program operations to
approximate on the given system in a manner that optimizes en-
ergy while taking into account all the programmer-specified expec-
tations on error bounds.

2.1 Language Syntax
We assume a simple imperative language shown in Figure 2. A
program s in the language is a single procedure with the usual
control-flow constructs (sequential composition, branching, and
loops). The language supports only real-valued data, only binary
operations o on them, and only expressions of the form v > 0 in
conditionals. We limit our formalism to this simplified setting for
clarity of exposition. It is straightforward to incorporate procedure
calls and structured data types such as arrays, records, and pointers.
These extensions are supported in our implementation for the full
Java language and we describe their handling in Section 5.

Our simple language supports two kinds of primitive statements,
both of which play a special role in our approximation framework:
assignments and expectations. Assignments are the only places in
the program where approximations may occur, providing opportu-
nities to save energy at the cost of introducing computation errors.
We assume that each assignment has a unique label l ∈ L. Con-

versely, expectations φ are the only places in the program where
the programmer may specify acceptable bounds on such errors.
We assume that each expectation has a unique label k ∈ K.

The syntax of expectations is presented in Figure 3. An expecta-
tion allows the programmer to express, at a certain program point,
a bound on the error in the data value of a certain program vari-
able. We allow three kinds of expectations that differ in the aspect
of the error that they bound: the error rate, the error magnitude, or
both. We first informally explain the meaning of these expectations
and then give real-world examples illustrating their usefulness. Sec-
tion 2.3 provides the formal semantics of these expectations.
• Expectation rate(v) < c states that the rate at which an error

is incurred on variable v should be bounded by c. Specifically,
suppose this expectation is executed n2 times in an execution,
and suppose the value of v each time this expectation is executed
deviates from its exact value n1 times. Then, the ratio n1/n2

should be bounded by c.
• Expectation magnitude(v) < c using f states that the normal-

ized magnitude of the error incurred on variable v should be
bounded by c. Unlike the error rate, which can be computed
universally for all variables, the error magnitude is application-
specific: each application domain may use a different metric for
quantifying the magnitude of error, such as signal-to-noise ratio
(SNR), root mean squared error, relative error, etc. Hence, this
expectation asks the programmer to specify how to compute this
metric, via a function f that takes two arguments—the poten-
tially erroneous value of v and the exact value of v—and returns
the normalized magnitude of that error.

• Expectation magnitude(v) > c using f with rate < c′ allows
to bound both the error rate and the error magnitude: it states
that the rate at which the error incurred on variable v exceeds
normalized magnitude c is bounded by c′.
We illustrate the above three kinds of expectations on a real-

world program shown in Figure 5 that performs edge detection on
an image. The edge detection algorithm first converts the image to
grayscale (lines 6–8). Then, it slides a 3×3 window over the pixels
of the grayscale image and calculates the gradient of the window’s
center pixel to its eight neighboring pixels (lines 9–16). For brevity,
we omit showing the body of the build_window function. Since
the precise gradient calculation is compute intensive, image pro-
cessing algorithms use a Sobel filter (lines 25–35), which gives an
estimation of the gradient. Thus, the application is inherently ap-
proximate.

We envision the programmer specifying acceptable bounds on
errors resulting from approximations in the edge detection applica-
tion, by means of three expectations indicated by the accept key-
word in the figure. The first expectation is specified on the entirety
of the output_image (line 17). It states that less than 0.1 (10%)
magnitude of error (root-mean-squared difference of pixels of the
exact and approximate output) is acceptable. The second expecta-
tion specifies that on less than 35% of the grayscale pixel conver-
sions, the error magnitude (relative error) can exceed 0.9 (90%).
The third expectation specifies that upto 25% of the times gradi-ent is calculated, any amount of error is acceptable. These specifi-
cations capture the domain knowledge of the programmer about the
application and their expectations of approximations. Further, the
specified expectations serve to implicitly identify any operations
contributing to the computation of data that can be potentially ap-
proximated. In practice, only the first expectation specification on
the output_image (line 17) suffices for our approximation safety
analysis (Section 3) to identify the approximable subset of oper-
ations. But our optimization framework (Section 4) consumes all
three expectations, using them together to guide the optimization
process that ultimately determines which of the approximable op-
erations to approximate in order to yield the best accuracy/energy

Source'Code'Source'Code
Programmer

Approxima2on'
Safety'Analysis

Safe9to9
Approximate'
Opera2ons

Error'and'
Energy'
Analysis

System'
Specifica2on

Input'Data'
Sets

Approximate'
Opera2on'
Selector

Error'and'
Energy'
Analyzer'

Expecta2on'
Checker

Candidate'
Approximate'
Program

Approximate'
Program

Expecta2on'
Status

Expecta2ons

Programming Analysis Op2miza2on

Figure 1: Overview of our expectation-oriented framework, ExpAX, that automates approximate programming.

1 void detect_edges(Pixel[][] input_image,Pixel[][] output_image) {
3 f l o a t[WIDTH][HEIGHT] gray_image;

f l o a t[3][3] window;
5 f l o a t gradient;

f o r(i n t y = 0; y < HEIGHT; ++y)
7 f o r(i n t x = 0; x < WIDTH; ++x)gray_image[x][y] = to_grayscale(input_image[x][y]);
9 f o r(i n t y = 0; y < HEIGHT; ++y)

f o r(i n t x = 0; x < WIDTH; ++x) {
11 build_window(gray_image, x, y, window);gradient = sobel(p);
13 output_image[x][y].r = gradient;output_image[x][y].g = gradient;
15 output_image[x][y].b = gradient;}
17 a c c e p t magnitude[output_image] < 0.1;}
19 f l o a t to_grayscale(Pixel p) {

f l o a t luminance;
21 luminance = p.r * 0.30 + p.g * 0.59 + p.b * 0.11;

a c c e p t magnitude[luminance] > 0.9 with r a t e < 0.35;
23 re turn luminance;}
25 f l o a t sobel(f l o a t[3][3] p) {

f l o a t x, y, gradient;
27 x = (p[0][0] + 2 * p[0][1] + p[0][2]);x += (p[2][0] + 2 * p[2][1] + p[2][2]);
29 y = (p[0][2] + 2 * p[1][2] + p[2][2]);y += (p[0][0] + 2 * p[1][1] + p[2][0]);
31 gradient = sqrt(x * x + y * y);gradient = (gradient > 0.7070) ? 0.7070 : gradient;
33 a c c e p t r a t e[gradient] < 0.25;

re turn gradient;
35 }

Figure 5: Program illustrating expectation-oriented programming.

tradeoff on a given system. We next describe the system specifica-
tion that is needed for this purpose.

2.2 System Specification
The system specification provides the error model and the energy
model of the system on which our programs execute. Our approx-
imation framework is parametric in the system specification to al-
low tuning the accuracy/energy tradeoff of the same program in a
manner that is optimal for the given system.

We adopt system specifications of the form shown in Figure 4.
Such a specification ψ specifies an error model ε and an energy
model j for each approximable operation. In our formalism, this
is every operation o ∈ O on real-valued data. Error models and
energy models are specified in our framework as follows:
• An error model ε for a given operation is a pair (c, r) such that c is

the rate at which the operation, if run approximately, is expected
to compute its result inaccurately; moreover, the magnitude of
the error in this case is ±r.

• An energy model j for a given operation is also a pair (c, r) such
that r is the energy that the operation costs, if run exactly, while

(approximated assignments) L ⊆ L
(program state) ρ, ρ∗ ∈ V→ R

(error expectation values) θ ∈ K→ (Z2 ∪ R)

Figure 6: Semantic domains of instrumented program.

c is the fraction of energy that is saved if the same operation is
run approximately.

In practice, system specifications may be even more expressive than
the form described above. For instance, they may provide error
rates and energy savings as functions of not only the kind of op-
eration but even the operand values. Our optimization framework,
described in Section 4, can easily be extended to support richer sys-
tem specifications by virtue of being black-box.

2.3 Instrumented Program Semantics
We now provide an instrumented semantics of programs under a
given system specification. The goal of this semantics is two-fold:
first, it precisely specifies the meaning of expectations; and sec-
ond, it specifies the runtime instrumentation that our optimization
framework needs in order to measure the impact on accuracy and
energy of approximating a given set of assignments in the program.

Figure 6 shows the domains of the instrumented semantics. We
use L to denote the set of labels of assignments in the program that
must be approximated. We use ρ, a valuation of real-valued data to
all program variables, to denote both the input to the program and
the runtime state of the program at any instant of execution. Finally,
we use θ to denote a valuation to all expectations in the program
at any instant of execution. The value of expectation labeled k,
denoted θ(k), is either a pair of integers (n1, n2) or a real value
c, depending upon whether the expectation tracks the error rate
or the error magnitude, respectively. In particular, n1/n2 denotes
the error rate thus far in the execution, and c denotes the largest
error magnitude witnessed thus far. Tracking these data suffices
to determine, at any instant of execution, whether or not each
expectation in the program meets its specified error bound.

We define an instrumented semantics of programs using the
above semantic domains. Figure 7 shows the rules of the semantics
for the most interesting cases: assignments and expectations. For
brevity, we omit the rules for the remaining kinds of statements, as
they are relatively straightforward. Each rule is of the form:

L |=ψ 〈s, ρ1, ρ
∗
1, θ1〉

r
 〈ρ2, ρ

∗
2, θ2〉

and describes a possible execution of program s under the assump-
tion that the set of approximated assignments in the program is L,
the start state is ρ1 with expectation valuation θ1, and the system
is specified by ψ. The execution ends in state ρ2 with expectation
valuation θ2, and the energy cost of executing all assignments (ap-
proximated as well as exact) in the execution is r. Note that ρ1 and
ρ2 track the actual (i.e., potentially erroneous) values of variables in
the approximated program. We call these actual states, in contrast
to corresponding shadow states ρ∗1 and ρ∗2 that track the exact val-

L |=ψ 〈v :=l o(e1, e2), ρ, ρ∗, θ〉
rj
 〈ρ[v 7→ r], ρ∗[v 7→ r∗], θ〉 [if l /∈ L] (ASGN-EXACT)

where
[
ψ(o) = ((__, __), (__, rj)) and r = Jo(e1, e2)K(ρ) and r∗ = Jo(e1, e2)K(ρ∗)

]
L |=ψ 〈v :=l o(e1, e2), ρ, ρ∗, θ〉 r1 〈ρ[v 7→ r2], ρ∗[v 7→ r∗], θ〉 [if l ∈ L] (ASGN-APPROX)

where

 ψ(o) = ((cε, rε), (cj , rj)) and r = Jo(e1, e2)K(ρ) and r∗ = Jo(e1, e2)K(ρ∗)

and r1 = rj(1− cj) and r2 =

{
r with probability 1− cε
r ± rε with probability cε

L |=ψ 〈(rate(v) < c)k, ρ, ρ∗, θ〉 0

 〈ρ, ρ∗, θ[k 7→ (n′1, n2 + 1)]〉 (EXP-RATE)

where
[
θ(k) = (n1, n2) and n′1 =

{
n1 + 1 if ρ(v) 6= ρ∗(v)
n1 otherwise

]
L |=ψ 〈(magnitude(v) < c using f)k, ρ, ρ∗, θ〉 0

 〈ρ, ρ∗, θ[k 7→ max(θ(k), f(ρ(v), ρ∗(v))]〉 (EXP-MAG)

L |=ψ 〈(magnitude(v) > c using f with rate < c′)k, ρ, ρ∗, θ〉 0
 〈ρ, ρ∗, θ[k 7→ (n′1, n2 + 1)]〉 (EXP-BOTH)

where
[
θ(k) = (n1, n2) and n′1 =

{
n1 + 1 if f(ρ(v), ρ∗(v)) > c
n1 otherwise

]
Figure 7: Instrumented program semantics. Rules for compound statements (sequential composition, branching, loops) are omitted for brevity.

ues of variables. We require shadow states to compute expectation
valuations θ. For instance, to determine the valuation of expecta-
tion rate(v) < c at the end of an execution, we need to know the
fraction of times that this expectation was executed in which an er-
ror was incurred on v, which in turn needs determining whether or
not v had an exact value each time the expectation was reached in
the execution.

To summarize, an instrumented program execution maintains
the following extra information at any instant of execution:
• a shadow state ρ∗, a vector of real-valued data of length |V| that

tracks the exact current value of each program variable;
• a real-valued data r tracking the cumulative energy cost of all

assignments executed thus far; and
• the expectation valuation θ, a vector of integer pairs or real

values of length |K| that tracks the current error incurred at each
expectation in the program.
We next explain the semantics of assignments and expectations.

Semantics of Assignments. Rules (ASGN-EXACT) and (ASGN-
APPROX) in Figure 7 show the execution of an exact and an approx-
imate assignment, respectively. The assignment v :=l o(e1, e2) is
approximate if and only if its label l is contained in set L. We use
Jo(e1, e2)K(ρ) to denote the result of expression o(e1, e2) in state
ρ. We need to determine i) the energy cost of this assignment, and
ii) the value of variable v after the assignment executes, in the ac-
tual state (determining its value in the shadow state is straightfor-
ward). To determine these two quantities, we use the system spec-
ification ψ to get the error model of operation o as (cε, rε) and its
energy model as (cj , rj). Then, in the exact case, the assignment
costs energy rj , whereas in the approximate case, it costs lesser
energy rj(1 − cj). Moreover, in the approximate case, the assign-
ment executes erroneously with probability cε and accurately with
probability 1 − cε; in the erroneous case, the assignment yields a
potentially erroneous value for variable v, namely r± rε instead of
value r that would result if the assignment executed accurately.
Semantics of Expectations. Rules (EXP-RATE), (EXP-MAG), and
(EXP-BOTH) in Figure 7 show the execution of the three kinds of
expectations. The only thing that these rules modify is the error
expectation value of θ(k), where k is the label of the expectation.
We explain each of these three rules separately.

Rule (EXP-RATE) handles the execution of the expectation
rate(v) < c, updating incoming value θ(k) = (n1, n2) to either
(n1, n2+1) or (n1+1, n2+1), depending upon whether the actual

and shadow values of variable v are equal or not equal, respectively.
In both cases, we increment n2—the number of times this expecta-
tion has been executed thus far. But we increment n1—the number
of times this expectation has incurred an error thus far—only in the
latter case. At the end of the entire program’s execution, we can
determine whether or not the error rate of this expectation—over
all instances it was reached during that execution—was under the
programmer-defined bound c; dividing n1 by n2 in the final value
of θ(k) provides this error rate.

Rule (EXP-MAG) handles the execution of the expectation
magnitude(v) < c using f , updating incoming value θ(k) to the
greater of θ(k) and the new magnitude of error incurred by this
expectation, as determined by programmer-defined function f . The
reason it suffices to keep only the maximum value is, at the end of
the entire program’s execution, we only require knowing whether
or not the maximum error magnitude of this expectation—over
all instances it was reached during that execution—was under the
programmer-specified bound c.

Finally, Rule (EXP-BOTH) handles the execution of the expec-
tation magnitude(v) > c using f with rate < c′, updating incom-
ing value θ(k) = (n1, n2) as in Rule (EXP-RATE), except that the
condition under which n1 is incremented is not that the most re-
cent execution of this expectation incurred an error, but instead that
it incurred an error whose magnitude exceeded the programmer-
specified bound c (according to programmer-defined function f).

3. Approximation Safety Analysis
In this section, we present an approximation safety analysis that de-
termines a subset of assignmentsL ⊆ L that is safe to approximate.
In practice, there are two kinds of assignments that are unsafe to ap-
proximate. The first kind is those that might violate memory safety,
e.g., cause null pointer dereferences or index arrays out of bounds.
The second kind are those that might violate functional correctness
(i.e., application-specific) properties of the program.

To allow us to reason about approximation safety, we extend
our simple language with two kinds of assertions, assert(v) and
assert_all. The former checks that v has the exact value, while the
latter checks that all live variables that are not endorsed by some
expectation have exact value. We explain the meaning of these
assertions by an example before providing their formal semantics.

(f l o a t , f l o a t) m(p : { f l o a t x, f l o a t y }) {
a s s e r t(p);v1 := p.x * 0.5; // l1v2 := p.y * 0.7; // l2v3 := o(v1, v2); // l3v4 := o(v2, v2); // l4
r a t e(v3) < 0.1;
a s s e r t _ a l l;
re turn(v3, v4);}

Consider function m above that takes a pointer p to a pair of real
numbers and returns another pair of real numbers. Our framework
generates an assertion assert(p) at every deference of variable p.
For brevity, we only show it once, at the dominating dereference.
This assertion says that it is unsafe to approximate any assignment
whose result propagates to p at the entry of m; otherwise, memory
safety could be violated at the dereference of p in the body of m.

Our framework also generates assertion assert_all at the end
of m. This assertion says that it is unsafe to approximate any as-
signment whose result propagates to variable v4 at the end of m.
The reason is that v4 is live at the end of m and the programmer
has not specified any expectation on the error in the value of v4.
Our framework therefore assumes that the programmer expects the
value of v4 to be exact (e.g., in order to satisfy an implicit func-
tional correctness property). This in turn prevents our framework
from approximating assignments l2 and l4, since they both con-
tribute to the value of v4 at the end of m (note that l2 assigns to v2,
which is used at l4 to compute v4).

On the other hand, it is safe to approximate any remaining as-
signment whose result propagates to variable v3 at the end of m.
The reason is that the programmer expects errors in the value ofv3, via the expectation rate(v3) < 0.1 just before the end of m.
This in turn leads our framework to conclude that it is safe to ap-
proximate assignments l3 and l1 (note that l2 also contributes to
the value of v3 but it was deemed unsafe to approximate above be-
cause it also contributes to the value of v4). Thus, for this example,
only assignments in { l1, l3 } are safe to approximate.

A semantics formalizing the meaning of our assertions is shown
in Figure 8. Each rule is of the form:

L |= 〈s, ρ1, T1, E1〉 〈ρ2, T2, E2〉 | error
It describes whether an execution of the program s starting with
input state ρ1 will violate any assertions in s if the set of assign-
ments L is approximated. If any assertion is violated, the final state
is designated error; otherwise, it is the normal output state ρ2.

To determine whether any assertion will be violated, the seman-
tics tracks two sets of variables T and E, which we call the tainted
and endorsed sets, respectively. Intuitively, a variable gets tainted if
its value is affected by some assignment in the set L, and a variable
gets endorsed if an expectation on that variable is executed.

We explain the most interesting rules in Figure 8. Rule (ASGN)
states that the target variable v of an assignment v :=l o(e1, e2)
gets tainted if l is an approximated assignment (i.e., l ∈ L) or if a
variable used in e1 or e2 is already tainted. Rule (VAR-FAIL) states
that assert(v) fails if v is tainted (i.e., v ∈ T). Rule (ALL-FAIL)
states that assert_all fails if any tainted variable is not endorsed
(i.e., T 6⊆ E). Strictly, we require only live tainted variables to be
endorsed, but for simplicity the semantics assumes all variables are
live, though our implementation does a liveness analysis.

Given the semantics of assertions, we can characterize the sets
of assignments that are safe to approximate, as follows:

DEFINITION 3.1. (Approximation Safety Problem) A set of as-
signments L is safe to approximate if for every ρ, there exists
ρ′, T, E such that L |= 〈s, ρ, ∅, ∅〉 〈ρ′, T, E〉.

We now present a static analysis that conservatively estimates
a set of assignments that are safe to approximate. The analysis is

L, 〈T,E〉 ` v :=l o(e1, e2) . 〈(T \ {v}) ∪ T ′, E \ {v}〉 (ASGN)

where T ′ =

{
{v} if l ∈ L or uses(e1, e2) ∩ T 6= ∅
∅ otherwise

L, 〈T,E〉 ` rate(v) < c . 〈T,E ∪ {v}〉 (EXP-RATE)

L, 〈T,E〉 ` assert(v) . 〈T,E〉 [if v /∈ T] (ASSERT-VAR)

L, 〈T,E〉 ` assert_all . 〈T,E〉 [if T ⊆ E] (ASSERT-ALL)

L, 〈T1, E1〉 ` s1 . 〈T2, E2〉 L, 〈T2, E2〉 ` s2 . 〈T3, E3〉
L, 〈T1, E1〉 ` s1 ; s2 . 〈T3, E3〉

(SEQ)

L, 〈T,E〉 ` s1 . 〈T1, E1〉 L, 〈T,E〉 ` s2 . 〈T2, E2〉
L, 〈T,E〉 ` if (v>0) then s1 else s2 . 〈T1 ∪ T2, E1 ∩ E2〉

(IF)

L, 〈T,E〉 ` s . 〈T,E〉
L, 〈T,E〉 ` while (v>0) do s . 〈T,E〉 (WHILE)

Figure 9: Approximation safety analysis. Rules for the two kinds
of expectations not shown for brevity are similar to (EXP-RATE).

shown in Figure 9 using type rules. It states that a set of assignments
L is safe to approximate in a program s if there exists tainted sets
of variables T1, T2 and endorsed sets of variables E1, E2 such that
the type judgment L, 〈T1, E1〉 ` s . 〈T2, E2〉 holds. The rules are
self-explanatory and mirror those of the semantics of assertions in
Figure 8. The most interesting one is rule (IF) which states that
outgoing tainted sets T1 and T2 of the true and false branches of a
conditional statement are unioned, whereas the outgoing endorsed
sets E1 and E2 are intersected. The reason is that it is safe to grow
tainted sets and shrink endorsed sets, as evident in the checks of
rules (ASSERT-VAR) and (ASSERT-ALL).

The following theorem states that our static analysis is sound:

THEOREM 3.2. (Soundness) If L, 〈T1, E1〉 ` s . 〈T ′1, E′1〉 and
T2 ⊆ T1 and E1 ⊆ E2 then ∃ρ′ such that L |= 〈s, T2, E2〉
〈ρ′, T ′2, E′2〉 and T ′2 ⊆ T ′1 and E′1 ⊆ E′2.

We seek to find as large a set of assignments as possible that is
safe to approximate, so as to maximize the opportunities for energy
savings. One can use techniques for finding optimal abstractions
(e.g., [22]) to efficiently identify the largest set of safe approx-
imable assignments. Hereafter, we denote the set of safe approx-
imable assignments as L. They serve as an input to our optimiza-
tion framework, which we present next.

4. Optimization Framework
We first formulate the optimization problem that we seek to solve
(Section 4.1) and then describe a concrete genetic-based algorithm
that we have implemented to solve it (Section 4.2).

4.1 Optimization Problem Formulation
Figure 10 presents the formulation of our optimization problem

to automatically select a subset of the safe-to-approximate assign-
ments. The objective is to approximate as much of the program to
reduce energy while minimizing error, considering the specified er-
ror expectations. To this end, the optimization procedure aims to
minimize the weighted normalized sum of three components:
1. Number of static assignments in the program that are not ap-

proximate (1− |L|/|L|).
2. Excess error (rates and magnitudes) incurred due to approxima-

tions, over and above the bounds specified in expectations by
programmers (error(ρ)).

3. Energy cost incurred due to lack of approximation (energy(ρ)).
In our optimization framework, we assume that error and energy are
computed with respect to given program input datasets (ρ1, ..., ρn).

L |= 〈v :=l o(e1, e2), ρ, T, E〉 〈ρ[v 7→ Jo(e1, e2)K(ρ)], (T \{v})∪T ′, E \{v}〉
[
T ′=

{
{v} if l ∈ L or uses(e1, e2) ∩ T 6= ∅
∅ otherwise

]
(ASGN)

L |= 〈rate(v) < c, ρ, T,E〉 〈T,E ∪ {v}〉 (EXP-RATE)

L |= 〈assert(v), ρ, T, E〉 〈ρ, T,E〉 [if v /∈ T] (VAR-PASS)

L |= 〈assert(v), ρ, T, E〉 error [if v ∈ T] (VAR-FAIL)

L |= 〈assert_all, ρ, T, E〉 〈ρ, T,E〉 [if T ⊆ E] (ALL-PASS)

L |= 〈assert_all, ρ, T, E〉 error [if T 6⊆ E] (ALL-FALL)

L |= 〈s1, ρ1, T1, E1〉 〈ρ2, T2, E2〉 L |= 〈s2, ρ2, T2, E2〉 〈ρ3, T3, E3〉
L |= 〈s1 ; s2, ρ1, T1, E1〉 〈ρ3, T3, E3〉

(SEQ)

L |= 〈if (v>0) then s1 else s2, ρ, T, E〉 error [if v ∈ T] (IF-FAIL)

L |= 〈s1, ρ1, T1, E1〉 〈ρ2, T2, E2〉
L |= 〈if (v>0) then s1 else s2, ρ1, T1, E1〉 〈ρ2, T2, E2〉

[if v /∈ T1 ∧ ρ1(v) > 0] (IF-TRUE)

L |= 〈s2, ρ1, T1, E1〉 〈ρ2, T2, E2〉
L |= 〈if (v>0) then s1 else s2, ρ1, T1, E1〉 〈ρ2, T2, E2〉

[if v /∈ T1 ∧ ρ1(v) ≤ 0] (IF-FALSE)

Figure 8: Semantics of approximation safety. Rules for other kinds of expectations, loops, and rules propagating error are elided for brevity.

Inputs:
(1) Program Π = 〈s,L,K〉
(2) Program input datasets ∆ = {ρ1, ..., ρn}
(3) System specification ψ

Output:
Best set of approximable assignments L ⊆ L.

Minimize:∑
ρ∈∆

(
α(1− |L||L|) + β error(ρ) + γ energy(ρ)

)
where α, β, γ ∈ R0,1 and α+ β + γ = 1 and:

(1) error(ρ) =

∑
k∈K error(θ(k), bound(k))

|K| where:

• θ s.t. ∃ρ1, ρ2, r : L |=ψ 〈s, ρ, ρ, λk.0〉
r
 〈ρ1, ρ2, θ〉

• bound(k) = c where expectation labeled k is of form:
- rate(v) < c or
- magnitude(v) < c using f or
- magnitude(v) > c′ using f with rate < c

• error(c1, c2) =

{
c1 − c2 if c1 > c2
0 otherwise

(2) energy(ρ) =
r

r∗
where:

• r s.t. ∃ρ1, ρ2, θ : L |=ψ 〈s, ρ, ρ, λk.0〉
r
 〈ρ1, ρ2, θ〉

• r∗ s.t. ∃ρ1, ρ2, θ : ∅ |=ψ 〈s, ρ, ρ, λk.0〉
r∗
 〈ρ1, ρ2, θ〉

Figure 10: Optimization problem formulation.

Minimizing energy(ρ) and the number of non-approximate static
assignments reduces energy but can lead to significant quality-of-
result degradation. The error(ρ) term in the minimization objec-
tive functions strikes a balance between saving energy and preserv-
ing the quality-of-results, while considering the programmer ex-
pectations. The energy(ρ) term in the formulation is the energy
dissipation when a subset of the approximable assignments are ap-
proximated, normalized to the energy dissipation of the program
when executed on the same input dataset with no approximation.

Incorporating expectation in the optimization. The error(ρ)
term is the normalized sum of error (rate or magnitude) at the site
of all expectations when the program runs on the ρ dataset. We
incorporate the expectations in the optimization through error(ρ).
We assume error on an expectation site is 0, if the observed error
is less than the expectation bound. Otherwise, we assume the error

is the difference of the observed error and the expectation bound.
Intuitively, when the observed error is less than the specified bound,
the output is acceptable, same as the case where error is zero.
The optimization objective is to push the error below the specified
bound since the programmer has specified that error below the
expectation bound is acceptable.

4.2 Genetic Optimization Framework
We develop a genetic algorithm that explores the space of possible
solutions for the formulated optimization problem and finds a best-
effort answer. However, there may be other algorithms for solving
the formulated optimization problem.

Genetic algorithms. Genetic algorithms are guided random al-
gorithms that iteratively explore the solution space of a problem
and find a best-fitting solution that maximizes an objective. The
first step in developing a genetic algorithm is defining an encoding
for the possible solutions, namely phenotypes. Then, the algorithm
randomly populates the first generation of the candidate solutions.
The algorithm assigns scores to each individual solution based on
a fitness function. The fitness function is derived from the opti-
mization objective. Defining this fitness function is another impor-
tant component of the genetic algorithm. Each genetic algorithm
also includes two operators, crossover and mutation. These opera-
tors pseudo randomly generate the next generation of the solutions
based on the scores of the current generation of solutions. Below
we describe all the components of our genetic algorithm, which is
presented in Algorithm 1.

Phenotype encoding. In our framework, a solution is a program
in which a subset of the assignments is marked approximate. The
approximation safety analysis provides a candidate subset of as-
signments that are safe to approximate. We assign a vector to this
subset whose elements indicate whether the corresponding assign-
ment is approximate (‘0’) or precise (‘1’). For simplicity, in this
paper, we only assume a binary state for each assignment. How-
ever, a generalization of our approach can assign more than two
levels to each element, allowing multiple levels of approximation
for each assignment. The bit-vector is the template for encoding
phenotypes and its bit pattern is used to generate an approximate
version of the program. We associate the bit-vector with the subset
resulting from the approximation safety analysis and not the entire
set of assignments, to avoid generating unsafe solutions.

Fitness function. The fitness function assigns scores to each phe-
notype. The higher the score, the higher the chance that the phe-
notype is selected for producing the next generation. The fitness

Algorithm 1 Genetic algorithm to generate approximate program.
1: INPUT: Program Π = 〈s,L,K〉:

- s is program body
- L is set of safe approximable assignments in s
- K is set of all expectations in s

2: INPUT: Program input datasets ∆ = {ρ1, ..., ρn}
3: INPUT: System specification ψ
4: INPUT: Genetic algorithm parameters 〈N,M,P 〉:

- N is population size
- M is number of generations
- P is probability of mutation

5: OUTPUT: Bit-vector with the highest global fitness
elite_phenotype

6: α := 0.2, β := 0.4, γ := 0.4
7: for i in 1..N do
8: phenotype[i] := random bit vector of size |L|
9: end for

10: for k in 1..M do
11: var f, g of type R0,1[N]
12: for [parallel] i in 1..N do
13: error[i], energy[i] := execute(Π, phenotype[i], ∆, ψ)

14: f[i] :=
(
α

∑
phenotype[i]
|L| + β error[i] + γ energy[i]

)−1

15: end for
16: for i in 1..N do
17: g[i] := f[i]/

∑
f[i]

18: if f[i] > f_elite_phenotype then
19: f_elite_phenotype := f[i]
20: elite_phenotype := phenotype[i]
21: end if
22: end for
23: for i in 1..N do
24: x := roulette_wheel(g)
25: y := roulette_wheel(g)
26: phenotype[x], phenotype[y] :=
27: crossover(phenotype[x], phenotype[y])
28: phenotype[x] := mutate(phenotype[x], P)
29: phenotype[y] := mutate(phenotype[y], P)
30: end for
31: end for

function encapsulates the optimization objective and guides the ge-
netic algorithm in producing better solutions. Our fitness function
is defined as follows based on the objective function in Figure 10:

f(phenotype) =

(
α

∑
j phenotypej

|L| + β error + γ energy

)−1

We use the inverse of minimization object in Figure 10 to calculate
fitness scores. That is, a phenotype with more approximate instruc-
tions (

∑
j phenotypej

|L|), less error, and less energy has a higher
score and higher chance of reproducing better solutions. Since we
use ‘0’ to mark an assignment as approximate, the lower the∑
j phenotypej , the more instructions are approximated, which

is in correspondence with the formulation in Figure 10. As dis-
cussed, the error incorporates the programmer-specified expec-
tations. Since not all the static assignments contribute equally to
the dynamic error and energy dissipation of the program, we set
α = 0.2, β = 0.4, and γ = 0.4. This setting equally weighs the
dynamic information captured in error and energy while giving
less importance to the number of static assignments that are approx-
imated. We generate approximate versions of the program based on
the phenotypes and run them with the input datasets. We make each

Table 1: Benchmarks, quality metric (Mag=Magnitude), and result
of approximation safety analysis: # approximable operations.

Description Quality Metric # Lines # Approximable
Operations

fft
SciMark2
benchmark:
scientific kernels

Mag: Avg entry diff 168 123
sor Mag: Avg entry diff 36 23
mc Mag: Normalized diff 59 11
smm Mag: Avg normalized

diff
38 7

lu Mag: Avg entry diff 283 46

zxing Bar code decoder
for mobile phones

Rate of incorrect
reads

26171 756

jmeint jMonkeyEngine
game: triangle
intersection kernel

Rate of incorrect de-
cisions

5962 1046

imagefill ImageJ image
processing: flood-
filling kernel

Mag: Avg pixel diff 156 130

raytracer 3D image renderer Mag: Avg pixel diff 174 199

version of the program an independent thread and run them in par-
allel. Executing different input datasets can also be parallel.

Roulette wheel gene selection. We use the roulette wheel selec-
tion strategy for generating the next generation. The probability
of selecting the ith phenotype is g[i] = fi∑

fi
. That is, phenotype

with higher fitness have a better chance of producing offsprings.
Nonetheless, the low score phenotypes will still have the chance to
reproduce sine they may contain part of a better solution that will
manifest several generation later.

Crossover and mutation. The crossover operator takes two se-
lected phenotypes and recombines them to generate a new solution.
All the phenotypes are of the same size. Therefore, crossover ran-
domly picks a location on the bit-vector, cuts the two bit-vectors,
and swaps the cut parts. Since crossover does not improve the di-
versity of the solutions, with a small probability, we mutate the
phenotypes after each crossover. The mutation operator randomly
flips a bit.

Elitism. We record the best global solution across all the genera-
tions. This approach is referred to as elitism.

5. Evaluation
5.1 Methodology
Benchmarks. We examine nine benchmarks written in Java,
which are the same programs used in [18]. Five of them come from
the SciMark2 suite. ZXing is a multi-format bar code recognizer
developed for Android phones. jMonkeyEngine is a game develop-
ment engine; the benchmark is the engine’s 3D triangle-intersection
algorithm used for collision detection. ImageJ is a library for image
manipulation; the application from this library is the flood-filler al-
gorithm. Finally, the suite includes a simple 3D raytracer. Table 1
summarizes the benchmarks and shows their quality metric.

Application-specific quality metrics. For jmeint and zxing, the
quality metric is a rate. For jmeint, the quality metric is the rate
of incorrect intersection decisions. Similarly, for the zxing bar code
recognizer, the quality metric is the rate of unsuccessful decodings
of a sample QR code image. For the rest of the benchmarks, the
quality metric is defined on the magnitude of error, which is calcu-
lated based on an application-specific quality-of-result metric. For
most of the applications, the metric is the root-mean-squared error
of the output vector, matrix, or pixel array.

Genetic optimization framework. We implement the genetic
framework described earlier to automatically find the approximate
version of the program considering the specified expectations. We

Table 2: Summary of the (error rate, energy saving)’s with our four
system specifications derived from [18].

Operation Mild Medium High Aggressive

Instruction (10−6, 12%) (10−4, 22%) (10−3, 26%) (10−2, 30%)

On-chip read (10−16.7, 70%) (10−7.4, 80%) (10−5.2, 85%) (10−3, 90%)

On-chip write (10−5.6, 70%) (10−4.9, 80%) (10−4, 85%) (10−3, 90%)

Off-chip (10−9, 17%) (10−5, 22%) (10−4, 23%) (10−3, 24%)

use a fixed-size population of 30 phenotypes across all the gener-
ations. We run the genetic algorithm for 10 generations. We use
a low probability of 0.02 for mutation. Using low probability for
mutation is a common practice in using genetic algorithms and
prevents the genetic optimization from random oscillations. We did
not explore genetic optimization beyond 10 generations and with
populations larger than 30. Running the genetic algorithm for more
than 10 generations and/or with larger populations can only lead
to potentially better solutions. However, the reported experiments
provide the grounds to show the correctness and effectiveness of
our genetic optimization framework. We also made our genetic al-
gorithm parallel. The programs generated based on phenotypes of
a generation run as independent threads in parallel.

Simulator. We modified the open-source simulator provided
in [18] and built our genetic optimization framework on top of the
modified simulator. The simulator allows the instrumentation of the
method calls, object creation and destruction, arithmetic operators,
and memory accesses to collect statistics and inject errors based
on the system specifications. The runtime system of the simula-
tor, which is a Java library and is invoked by the instrumentation,
records memory-footprint and arithmetic-operation statistics while
simultaneously injecting error to emulate approximate execution.
The modified simulator at the end records the error rate or error
magnitude at the expectation site. The simulator also calculates
the energy savings associated with the approximate version of the
program, which is generated based on phenotypes of the genetic
algorithm. We run each application five times to compensate for
the randomness of the error injection and average the results. The
results from the simulation are fed back to the genetic algorithm to
calculate the fitness and score of each phenotype.

System specifications. We derive four system specifications from
the energy models provided in [18] as shown in Table 2. We con-
sider a simplified processor/memory system energy dissipation
model that comprises three components: instruction execution,
on-chip storage (SRAM), and off-chip storage (DRAM). While
these simplified models provide good-enough energy estimates,
our framework can easily replace these models with more accurate
system specifications. In fact, one of the advantages of our opti-
mization framework is its modularity and system-independence.

Architecture model. We assume an architecture similar to Truf-
fle [8] that can execute interleaving of precise and approximate in-
structions and does not incur overhead when switching between ap-
proximate and precise instructions. In our architecture model, reg-
ister files, functional units, caches, and memory can switch between
approximate and precise state. However, the instruction fetch, de-
code, and commit are always precise. Our system specifications
consider the overhead of keeping these part of the system precise.

5.2 Experimental Results
Approximating all safe-to-approximate operations. Figure 11
shows the energy and error when approximating all the safe-to-
approximate operations. As depicted, the geometric mean energy
savings ranges from 15% with the Mild system specification to 22%
with the Aggressive system specification. The sor shows the least
energy savings (10% with Mild) while raytracer shows the highest

0%	

10%	

20%	

30%	

40%	

(sor	 mc	 smm	 lu	 zxing	 jmeint	 imagefill	 raytracer	 geomean	

Ap
pl
ic
a'

on
	 E
ne

rg
y	
	 S
av
in
g	

Mild	 Medium	 High	 Aggressive	

(a) Application energy savings.

0%	

20%	

40%	

60%	

80%	

100%	

)	 sor	 mc	 smm	 lu	 zxing	 jmeint	 imagefill	 raytracer	

Ap
pl
ic
a'

on
	 E
rr
or
	

Mild	 Medium	 High	 Aggressive	

(b) Application error.
Figure 11: Energy savings and error when approximating all safe-
to-approximate operations.

energy savings (38% with Aggressive). All the applications show
acceptable error levels with the Mild system. However, there is a
jump in error when the system specification changes from Mild to
Medium. These results show the upper bound on energy savings.

Genetic optimization. To understand the effectiveness of the ge-
netic optimization, we take a close look at lu when it undergoes
the genetic optimization under the Aggressive system specification
with the output expectation set to 0.00. We will also present the
energy savings and error levels for all the applications. Figure 12a
depicts the distribution of error for lu in each generation of the ge-
netic optimization. As shown, the application shows a wide spec-
trum of error, 18%–100%. The result shows that there is a subset
of safe-to-approximate operations that if approximated can lead to
significant quality-of-result degradation.

In contrast to error, as Figure 12b depicts, lu’s energy profile
has a narrow spectrum. That is, carefully selecting which opera-
tion to approximate can lead to significant energy savings, while
delivering significantly improved quality-of-results. Compared to
approximating all safe-to-approximate operations, our automated
genetic framework improves the error level from 100% to 18%,
while only reducing the energy savings from 21% to 16%. That is,
5.5× improvement in quality-of-results with only 31% reduction in
energy benefits. Finally, Figure 12c shows the fraction of candidate
static operations that are approximated across generations. The re-
sults show that if only a little more than half of the candidate opera-
tions are approximated in lu, significant energy saving is achievable
with significantly improved quality-of-results. These results show
that our optimization framework strikes a balance between energy
savings and error. Theses results also suggest that formulating the
selection of approximate operations as an optimization can enable
effective approximation even on highly unreliable hardware.

Effect of error bounds on the genetic optimization. Figure 13
shows (a) error, (b) energy savings, and (c) fraction of approxi-
mated safe-to-approximate static operations under the Medium sys-

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

Er
ro
r	 (
%
)	

Genera,on	

Phenotype	 Local	 Best	 Global	 Best	

(a) Error.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

En
er
gy
	 (%

)	

Genera-on	

Phenotype	 Local	 Best	 Global	 Best	

(b) Energy.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

Fr
ac
%o

n	
Ap

pr
ox
im

at
ed

	 (%
)	

Genera%on	

Phenotype	 Local	 Best	 Global	 Best	

(c) Fraction approximated.
Figure 12: The lu benchmark under the genetic optimization with the Aggressive system specification and the output expectation set to 0.00.

tem specification. The output expectation bounds are set to 0.00,0.03, 0.05, 0.10, 0.50, and 0.75. The last bar in Figures 13(a-
c) represents the case when all the safe-to-approximate operations
are approximated. In general, the larger the expectation bounds, the
more relaxed the error requirements. Almost consistently, as the er-
ror requirements become more strict, the genetic algorithm finds
lower-error versions of the approximate programs, while maintain-
ing significant energy benefits (Figure 13b). The genetic optimiza-
tion also filters out the subset of the static operations that lead to
significant quality-of-result degradation (Figure 13c). Since the ge-
netic algorithm is a guided random algorithm, there are some ex-
pected minor fluctuations in the results.

As Figure 13a shows, the correlation of error reduction with
tighter error bounds is evident in the case of fft. The automated ge-
netic optimization has been able to find approximate versions of fft
that exhibit significantly better quality-of-results while delivering
significant energy savings. This case shows that the bounds guide
the genetic optimization to find and filter out safe-to-approximate
operations that lead to significant quality degradation, while main-
taining significant energy savings (Figure 13b). For sor, the genetic
algorithm has been able to satisfy all the expectations and reduce
the error to negligible levels when the bounds are strict. For mc,
smm, lu, and zxing, imagefill, raytracer, the genetic algorithm has
been able to find a near-to-optimal solution. However, in case of
jmeint the genetic algorithm has failed to find the optimal solution,
which is approximating all the operations. We can always consider
the fully approximated solution as a candidate solution and bypass
genetic optimization if it satisfies the expectations. As Figure 13c
shows, for fft, sor, lu, zxing, and raytracer the genetic optimization
filters out the subset of safe-to-approximate operations that when
approximated lead to quality degradations. We performed similar
experiments with the Aggressive system specification and found
similar trends. However, due to space limitations we did not in-
clude those results. These results confirm that automating the pro-
cess of selecting approximate operations is of significant value and
confirms the effectiveness of our optimization formulation and our
concrete genetic algorithm solution.

5.3 Limitations
Large programs. For larger programs, the framework can divide
the application into smaller kernels and apply the optimization step-
by-step. However, the order in which the kernels go under the
optimization can have an effect on the optimality of the results.

Online versus offline optimization. In this paper, we only fo-
cused on offline optimization. However, it is possible to further op-
timize the program after deployment as part of a just-in-time (JIT)
compiler. Nonetheless, there is tradeoff between allocated compute
and energy resources to the optimization and the benefits from ex-
tended online optimization. One option is to offload the online op-

timization to the cloud where the compute resources are abundant
and the parallelism in our optimization can be effectively exploited.

Symbolic approximate optimization. Our current system is a
data-driven optimization framework which relies on profiling in-
formation. However, future research can incorporate probabilistic
symbolic execution into our framework.

Quality-of-result guarantees. Our framework is a best-effort op-
timization that does not provide quality-of-result guarantees. Fu-
ture research may investigate using a programming language such
as Rely [4] as our back-end, which provides static guarantees with
explicit approximate annotations.

6. Related Work
There is a large body of work on languages, reasoning, analyses,
transformations, and synthesis for approximate programs. We dis-
cuss each of these in more detail below.

EnerJ [18] and Rely [4] are imperative programming languages
for approximate computing. EnerJ allows programmers to specify,
via type qualifiers, which data in their programs can be approxi-
mate and which data must be exact. Their type system statically
guarantees isolation of the exact and approximate parts of the pro-
gram, and guides the compiler to generate code that achieves high
energy savings at little accuracy cost. Rely allows programmers to
specify quantitative reliability requirements in explicitly annotated
approximate programs, and provides a static analysis that reasons
symbolically about reliability in order to prove that programs meet
those requirements on a given unreliable hardware specification.

The programming model of ExpAX differs from that in EnerJ
and Rely in crucial ways. Unlike in EnerJ, expectations in ExpAX
specify error bounds, not just isolation of exact data from approx-
imate data. Moreover, expectations implicitly dictate such isola-
tion, as our approximation safety analysis demonstrates. Unlike in
Rely, expectations specify programmer preferences, not require-
ments. Besides, expectations implicitly determine which program
operations are approximable, where in Rely they are annotated ex-
plicitly. Finally, ExpAX provides an optimization framework lack-
ing in those languages, to automatically determine the subset of
the safe-to-approximate operations to be approximated in a manner
that optimizes energy savings and error expectations under a given
system specification.

Carbin et al. [3] propose a relational Hoare-like logic for reason-
ing about the correctness of approximate programs. They provide
stronger guarantees than we do but also require more programmer
involvement than in our work.

Transformations have been proposed to approximate programs,
including substitution-based and sampling-based ones (e.g., loop
perforation [16, 20]), more recently with probabilistic correctness
guarantees [19] and optimization procedures [23] that automati-
cally pick different versions of a function’s transformations. These

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

-	 sor	 mc	 smm	 lu	 zxing	 jmeint	 imagefill	 raytracer	

Ap
pl
ic
a'

on
	 E
rr
or
	

Exp=0.00	 Exp=0.03	 Exp=0.05	 Exp=0.10	 Exp=0.50	 Exp=0.75	 All	 Approx	

(a) Error.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

)	 sor	 mc	 smm	 lu	 zxing	 jmeint	 imagefill	 raytracer	 geomean	

En
er
gy
	 S
av
in
g	

Exp=0.00	 Exp=0.03	 Exp=0.05	 Exp=0.10	 Exp=0.50	 Exp=0.75	 All	 Approx	

(b) Energy.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

-	 sor	 mc	 smm	 lu	 zxing	 jmeint	 imagefill	 raytracer	 geomean	

Ap
pr
ox
im

a)
on

	

Exp=0.00	 Exp=0.03	 Exp=0.05	 Exp=0.10	 Exp=0.50	 Exp=0.75	 All	 Approx	

(c) Fraction of static instructions approximated.
Figure 13: Results of the genetic optimization under the Medium system specification with expectation bounds set to 0.00, 0.03, 0.05,0.10, 0.50, and 0.75 along with the results when all the safe-to-approximate operations are approximated.

techniques operate at the granularity of functions. We provide an
analysis and an optimization that operates on the fine granularity
of single operations. The randomized algorithm in [23] does op-
timization at the granularity of functions which is not scalable to
the fine-grained approximation model that we investigate. Further-
more, we provide a novel programming model that is implicit and
requires less involvement from the programmer.

Green [2] is a framework that monitors the quality-of-service
(QoS) requirement as programs run and automatically adjusts the
level of approximation, which in their case is either early termina-
tion of loops or choosing an approximate version of hot functions.
Green provides a code-centric programming model for annotating
approximable loops and functions that is more suited for coarse
grain software-based approximation. In contrast, we provide an im-
plicit programming model, a static analysis, and a profile-driven
optimization that automatically finds approximate operations that
are in the granularity of single instructions and execute on unreli-
able hardware.

7. Conclusions
We described ExpAX, an expectation-oriented framework for au-
tomating approximate programming, and its three components:
programming, analysis, and optimization. We developed a pro-
gramming model and a new program specification, referred to as
expectations. Our programming model enables programmers to im-
plicitly relax the accuracy constraints on low-level program data
and operations without explicitly marking them as approximate.
Further, the expectations allow programmers to quantitatively ex-
press their error preferences. Then, we developed a approxima-
tion safety analysis that using the high-level expectation specifica-
tions automatically finds the candidate safe-to-approximate subset
of the operations. Then, we described a system-independent opti-
mization formulation for selectively marking a number of the can-
didate operations as approximate. Further, we provided a concrete
instantiation of the optimization framework using a genetic algo-
rithm and evaluated its effectiveness using a diverse set of appli-
cations. The results show that in many cases, there is a subset of
the safe-to-approximate operations that if approximated can lead
to significant quality-of-result degradations. We show that our ge-
netic optimization framework effectively excludes these operations
from approximation. The results confirm that automating this pro-
cess is of significant value and can in many cases enable effec-
tive approximation even on highly unreliable hardware. Our ap-
proach is a best-effort solution to automate approximate program-
ming, improve their portability, automatically balance quality-of-
result degradation and efficiency, and guide approximation based
on programmers’ expectations.

References
[1] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-

point multimedia applications. IEEE Trans. Comput., 54(7), 2005.

[2] W. Baek and T. M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In
PLDI, 2010.

[3] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving accept-
ability properties of relaxed nondeterministic approximate programs.
In PLDI, 2012.

[4] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quantitative
reliability for programs that execute on unreliable hardware. In OOP-
SLA, 2013.

[5] M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerg-
ing workloads and silicon reliability trends. In SELSE, 2009.

[6] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an architec-
tural framework for software recovery of hardware faults. In ISCA,
2010.

[7] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural accel-
eration for general-purpose approximate programs. In MICRO, 2012.

[8] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In ASPLOS, 2012.

[9] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Power challenges may end the multicore era. Commun.
ACM, 56(2), 2013.

[10] Y. Fang, H. Li, and X. Li. A fault criticality evaluation framework of
digital systems for error tolerant video applications. In ATS, 2011.

[11] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing via
algorithmic noise-tolerance. In ISLPED, 1999.

[12] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA: error
resilient system architecture for probabilistic applications. In DATE,
2010.

[13] X. Li and D. Yeung. Exploiting soft computing for increased fault
tolerance. In ASGI, 2006.

[14] X. Li and D. Yeung. Application-level correctness and its impact on
fault tolerance. In HPCA, 2007.

[15] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Sav-
ing refresh-power in mobile devices through critical data partitioning.
In ASPLOS, 2011.

[16] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard. Quality of
service profiling. In ICSE, 2010.

[17] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable stochas-
tic processors. In DATE, 2010.

[18] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[19] S. Sidiroglou, S. Misailovic, H. Hoffman, and M. Rinard. Probabilis-
tically accurate program transformations. In SAS, 2011.

[20] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In FSE,
2011.

[21] V. Wong and M. Horowitz. Soft error resilience of probabilistic
inference applications. In SELSE, 2006.

[22] X. Zhang, M. Naik, and H. Yang. Finding optimum abstractions in
parametric dataflow analysis. In PLDI, 2013.

[23] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Random-
ized accuracy-aware program transformations for efficient approxi-
mate computations. In POPL, 2012.

