
ELASTIC ALGORITHMS FOR  

REGION-OF-INTEREST VIDEO COMPRESSION,  

WITH APPLICATION TO MOBILE TELEHEALTH 
 
 

 

 

 

 

 

 

A Dissertation 

 Presented to  

the Academic Faculty 

 

 

 by 

 

 

Sira P Rao 

 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Electrical and Computer Engineering 

 

 

 
 

 

 

 

Georgia Institute of Technology 

December 2007 



ELASTIC ALGORITHMS FOR  

REGION-OF-INTEREST VIDEO COMPRESSION,  

WITH APPLICATION TO MOBILE TELEHEALTH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Approved by: 

 

Professor Nikil Jayant 

Advisor 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 

Professor Vijay Madisetti 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 

Professor Russell Mersereau 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 

 

 

Professor Anthony Joseph Yezzi 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 

Professor Gregory Abowd 

College of Computing 

Georgia Institute of Technology 

 

Date Approved: 13 August 2007 

 

 

 

 



 ii 

ACKNOWLEDGEMENTS 
 
My sincere thanks to my advisor Prof Nikil Jayant for his faith, support, and guidance during my PhD 

years. He has been a source of constant inspiration, and I have learnt from him a spectrum of things - the art 

of research, teamwork, meeting deadlines, document writing, presentation, and much more. I am also 

grateful to my parents and my brother for their affection. Their love and prayers have been selfless and 

unconditional, and their patience unparalleled.  

I am also happy to have interacted and worked closely with the doctors at the Medical College of Georgia – 

Dr Max Stachura, Dr Elena Khasanshina, and Dr Tony Pearson-Shaver. Many thanks to them for their 

continued assistance with video databases for my research, the publications we worked together on, and 

more importantly, their time and feedback.  

I thank my committee members – Prof Vijay Madisetti, Prof Russell Mersereau, Prof Anthony Yezzi, Prof 

Krishna Palem, and Prof Gregory Abowd for their time and feedback. Thanks to John Piefer, co-founder of 

InteleHealth, Jeff Wilson and Scott Robertson from the Interactive Media Technology Center, and Roberto 

Casas from the Georgia Tech Venture Lab; it has been a real pleasure working with them. 

Thanks to the administrative staff in Dr Jayant’s office – Barbara Satterfield, Tina Clonts, Rex Smith, and 

Joanna Shorter, for being ever so helpful and cheerful.  

I am fortunate to have worked with two esteemed researchers – Prof David Malah of Technion, Israel, and 

Dr Zhongkang Lu of I
2
R, Singapore. Working with them gave me a broader perspective of research areas in 

relation to my specific topic. 

I would like to make a special mention of my aunts and uncles – Viji Mausi, Lopa Mausi, Mr. Guruprasad, 

and Jayaram Mama, and also my little sister Anjana, for their love and affection. 

Finally, I would like to express my gratitude to my friends - Nitin Suresh, Yogesh Sankarasubramaniam, 

Souvik Dihidar, Babak Firoozbakhsh, Jeannie Lee, Rajesh Narasimha, Arumugam Kannan, Mayur 

Chhabra, Navin Viswanath, Gaurav Arora, Bhagat Kota, Karthik Naig, Hemant Sharma, Shirish Srinivas, 

Vasudev Narayan, Ashvin Lakshmikantha, Sanjeev Kanekal, and Prasad Subraveti, for significantly 

shaping my personal as well as professional life.   

 

 



 iii 

TABLE OF CONTENTS 

 

Acknowledgements                  ii  

List of Tables                   v 

List of Figures                  vi  

Summary                viii 

 

1. Introduction                    1 

 

2. Background                    4 

2.1 Wired and Wireless Broadband Communications                4 

2.2 Video Communications and Region-of-Interest (ROI) Processing              5 

2.3 Notion of Functional Quality                  6 

2.4 Telehealth Systems based on Broadband Video                7 

2.5 Telehealth Systems based on Wireless Video                 9 

2.6 Telehealth Systems based on ROI Video               10 

2.7 ROI Segmentation and Tracking                12 

 

3. Video Rate Control                 15 

3.1 Video Encoder Operation                 15 

3.2 Introduction to Video Rate Control                16 

3.3 MPEG-2 TM5 Rate Control                 18 

 

4 Elastic Non-Parametric ROI Bit Allocation Algorithms            23 

4.1 Quantification of Video Quality                23 

4.2 Quality Mappings using the Encoder State Machine              25 

4.3 Quality Update Techniques                 30 

4.4 Modified Encoder State Machine                33 

 

5 Parametric Bit Allocation                36 

5.1 Criteria for Regional Bit Allocation                36 

 



 iv 

6 Performance Results – Elastic Non-Parametric and Parametric Bit Allocation         39 

6.1 Quantification of Video Quality Levels               41 

6.2 ROI Encoding – Elastic Non-Parametric and Parametric Bit Allocation           50 

6.3 Summary of Results                  65 

 

7 Concluding Remarks                66 

7.1 Summary                   66 

7.2 Future Work                  67 

 

Appendix A Medical Expert Evaluations of Uniformly Compressed Videos         72 

 

References                  75

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

LIST OF TABLES 

 

1. Summary of broadband communications technologies.                4  

2. Summary of digital video compression standards.                5 

3. Sample evaluation template for quantifying the relationship between compression 

 and video quality levels.                 24 

 

4. Encoder state table.                  26 

5. Summary of state bit allocation algorithm.               28 

6. Medical video database names and corresponding frame lengths.            40 

7. Evaluation of er08 compressed at four different compression levels.            45 

8. Evaluation of er15 at four different compression levels.             46 

9. Evaluation of Er17 at four different compression levels.             47 

10. Evaluation of Er19 at four different compression levels.             48 

11. Required TBR for DL of several medical features.              49 

12. Summary of bpp values for PL, DL, and BE.               49 

13. PSNR values of video sequences at bitrates corresponding to DL and PL.           49 

14. Evaluation template for ROI encoded videos.               59 

15. Completed evaluation template of er08 at 500kbps, 750kbps, and 1000kbps 

when ROI encoded with both parametric bit allocation methods and both elastic  

non-parametric bit allocation methods.                 63 

 

16. Averaged results for ROI PL? and ROI DL? at 500kbps, 750kbps, and 1000kbps 

with both parametric bit allocation methods and both elastic non-parametric  

bit allocation methods.                  64 

 

17. List of key medical features.                 72 

18. Medical expert evaluations of 7 uniformly compressed videos.            74 

 

 

 

 

 

 

 

 



 vi 

LIST OF FIGURES 

 

1. Impressionistic view of the expected value of the proposed research, as a function 

 of wireless channel capacity and reliability.                 2 

 

2. Illustration of quality management through ROI methods.               6 

3. Telehealth systems based on broadband video communications.              8 

4. Telehealth systems based on wireless video communications.               9 

5. Telehealth systems based on ROI video over a wireless communications system.          10 

6. Block diagram of a typical MPEG-2 video encoder and decoder.            15 

7. Illustration of a video compression system without rate control.            17 

8. Illustration of a video compression system with rate control.             17 

9. (a) Illustration of relationship between QP and average video bitrate.  

(b) QP-bitrate curves for different video source complexities.             17 

 

10. Block diagram representation of the TM5 rate control methodology.            18 

11. Illustration of a typical GOP.                19 

12. Illustration of VBV buffer fullness as a function of macroblock number.           22 

13. Summary of steps involved in the quantification of video quality.            25 

14. State occupancy flow chart illustrating conditions for occupancy of encoder states.          27 

15. Summary of procedure involved in elastic non-parametric video encoding.           29 

16. Illustration of state transitions.                31 

17. Illustration of state transitions for states at the end of rows.             31 

18. Detection criteria for state transitions.               33 

19. Modified methodology for determining encoder state.             35 

20. Parametric bit allocation procedure.                37 

21. Representative frames from the medical video database.             40 

22. Uniform compression of video er08.                41 

23. Uniform compression of video er15.                42 

24. Uniform compression of video er17.                43 

25. Uniform compression of video er19.                44 

26. ROI PSNR versus GOP number for er08 at 500kbps.              53 

27. ROI PSNR versus GOP number for er08 at 750kbps.               54 

28. ROI PSNR versus GOP number for er08 at 1000kbps.              54 

29. BKGRND PSNR versus GOP number for er08 at 500kbps.              55 



 vii 

30. BKGRND PSNR versus GOP number for er08 at 750kbps.              55 

31. BKGRND PSNR versus GOP number for er08 at 1000kbps.              56 

32. ROI bit allocation versus GOP number for er08 at 500kbps.              56 

33. ROI bit allocation versus GOP number for er08 at 750kbps.              57 

34. ROI bit allocation versus GOP number for er08 at 1000kbps.              57 

35. BKGRND bit allocation versus GOP number for er08 at 500kbps.             58 

36. BKGRND bit allocation versus GOP number for er08 at 750kbps.             58 

37. BKGRND bit allocation versus GOP number for er08 at 1000kbps.             59 

38. Representative ROI encoded frame of er08 at 500kbps.             60 

39. Representative ROI encoded frame of er08 at 750kbps.             61 

40. Representative ROI encoded frame of er08 at 1000kbps.             62 

41. Wireless video communications system with transcoder.             71 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

SUMMARY 
 

Video is the most demanding modality from the viewpoints of bandwidth, computational complexity, and 

resolution. Thus, there has been limited progress in the field of mobile video technology. In the research, 

the focus is on elastic wireless video technology, and its adaptation to diagnostic application requirements 

in real-time clinical assessment. It is important and timely to apply wireless video technology to real-time 

remote diagnosis of emergent medical events. This premise comes from initial successes in telehealth based 

on wired networks. The enablement of mobility (for the physician and/or the patient) by wireless 

communication will be a next major step, but this advance will depend on definitive and compelling 

demonstrations of reliability. Thus, an important goal of the research is to develop a complete methodology 

that will be embraced by physicians. Acute pediatric asthma has been identified as a domain where this 

new capability will be highly welcome. 

The research uses flexible and interactive algorithms for Region-of-Interest (ROI) processing. ROI 

processing is a useful approach to achieve the optimal balance in the quality-bandwidth tradeoff 

characteristic of visual communication services. The notion of ROI has been traditionally used mostly for 

foreground-background separation in scene rendering and manipulation, and only more recently for 

variably quality compression. Even when the latter goal is considered, quality criteria have been ad-hoc and 

at best useful for video conferencing, given that the medical domain has its own fidelity criteria. The 

research thus focuses on the design of an elastic ROI-based compression paradigm with medical diagnosis 

as a central criterion. 

The research describes the methodology to achieve elasticity through rate control algorithms at the 

encoder. An elastic non-parametric approach is proposed that uses a priori user-specified video quality 

information, quantifies this information, and incorporates this into the encoder in the form of region-quality 

mappings. This method is compared to a parametric bit allocation approach that is based on region-features 

and a set of tuning weights. A number of videos of actual patients were filmed and used as the video 

database for the developed algorithms. In testing the elastic non-parametric and parametric algorithms, both 

objective measures – in the form of Peak Signal to Noise Ratio (PSNR), and subjective evaluations were 

used. Thus, in this work, the focus is on domain relevance of the algorithms developed, as opposed to 



 ix

network related issues such as packet losses. This is justified in that these may have broader value with 

other applications, and continuation of this work will include realistic network conditions.  

To summarize, the research shows the usefulness of ROI processing as a means of achieving a 

gain (in a bits per pixel sense) over uniform compression at the same bitrate. It also shows how quantifying 

a notion of functionally lossless video quality – diagnostically lossless video quality in a video-based 

telehealth system, in a bits per pixel sense is useful from an applications and bitrate perspective. Finally, 

the research shows how a combination of these two concepts to realize diagnostically lossless ROI video 

quality, is a viable enabler of mobile medical assessment achievable over bitrate limited wireless channels. 

The result of the research is to be regarded as an important proof-of-concept in a challenging 

interdisciplinary area. This thesis lays the scientific foundation for additional validation through prototyped 

technology, field testing, and clinical trials.  
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CHAPTER I  

INTRODUCTION 

The focus of this research is to design an elastic video compression system that is robust to limitations and 

variations in bandwidth over large classes of wireless networks, and provides for flexibility and adaptivity 

to video quality requirements. Video is the most demanding modality from the viewpoints of bandwidth, 

computational complexity, and resolution. Thus, there has been limited progress in the field of mobile 

video technology. In the research, the focus is on elastic wireless video technology, and its adaptation to 

diagnostic application requirements in real-time clinical assessment. 

It is important and timely to apply wireless video technology to real-time remote diagnosis of 

emergent medical events. This premise comes from initial successes in telehealth based on wired networks. 

The enablement of mobility (for the physician and/or the patient) by wireless communication will be a next 

major step, but this advance will depend on definitive and compelling demonstrations of reliability. Thus, 

an important goal of the research is to develop a complete methodology that will be embraced by 

physicians. Acute pediatric asthma has been identified as a domain where this new capability will be highly 

welcome. The designs resulting from this work, while directly impacting that domain, will also extend to 

other applications such as stroke assessment, ultrasound analysis and mammogram interpretation. 

 The research uses flexible and interactive algorithms for Region-of-Interest (ROI) processing. ROI 

processing is a useful approach to achieve the optimal balance in the quality-bandwidth tradeoff 

characteristic of visual communication services. The notion of ROI has been traditionally used mostly for 

foreground-background separation in scene rendering and manipulation, and only more recently for 

variably quality compression. Even when the latter goal is considered, quality criteria have been ad-hoc and 

at best useful for video conferencing, given that the medical domain has its own fidelity criteria. The 

research thus focuses on the design of an elastic ROI-based compression paradigm with medical diagnosis 

as a central criterion. 

 As mentioned, elasticity refers to non-uniform coding of different scene segments (for a given 

total bitrate (TBR)) as well as adaptivity to different TBR budgets (as directed by wireless network 

conditions). Although much of the research will focus on a single ROI, the prescribed designs will extend 
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to the case of multiple ROI, as well as to the notion of an Extended ROI (EROI), which is an intermediate 

region between the ROI and the background (BKGRND). The ROI-EROI-BKGRND framework allows for 

graceful quality management, as opposed to an abrupt quality degradation obtained with a conventional 

ROI-BKGRND framework. 

 The research describes the methodology to achieve elasticity through rate control algorithms at the 

encoder. An elastic non-parametric approach is proposed that uses a priori user-specified video quality 

information, quantifies this information, and incorporates this into the encoder in the form of region-quality 

mappings. This method is compared to a parametric bit allocation approach that is based on region-features 

and a set of tuning weights. Both schemes will be applied to the medical application to test for two 

plausible models for clinical acceptability. 

 

 

Figure 1. Impressionistic view of the expected value of the proposed research, as a function of wireless channel 

capacity and reliability: When the channel capacity is very small, the value of ROI processing is small as well, because 

there is not sufficient capacity in the channel to leverage the benefits of ROI processing. However, the value increases 

as indicated by the large slope in the initial part of the graph. There is a broad “sweet spot” for intermediate channel 

capacities where the proposed research promises high value. At very high channel capacities, the value of ROI 

processing starts to reduce, albeit slowly, because the channel capacity is large enough to support high quality 

communications by allocating high quality to all pixels in the scene, both ROI and background. 

 

Figure 1 depicts a range of situations where the research offers the greatest value. When the 

wireless channel is narrowband (the left end of the abscissa), video communications quality will be low, 

even with the use of ROI processing. When the wireless channel is broadband (the right end of the 

abscissa), video communications quality will be good enough not to need ROI processing. In the 

intermediate range (100 to 1000kbps, packet loss rates on the order of 1%), ROI processing is expected to 

result in visual communications at a quality that will enable services like mobile assessment. 
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To summarize, the research shows the usefulness of ROI processing as a means of achieving a 

gain (in a bits per pixel (bpp) sense) over uniform compression at the same bitrate. For example, if the ROI 

is coded at 0.4 bpp and occupies ¼ of the frame area, and the BKGND is coded at 0.1 bpp and occupies ¾ 

of the frame area, the average bpp for the complete frame is 0.175bpp. In other words, in a bpp sense, there 

is a gain of 2.3 relative to uniform compression at the same bitrate. It also shows how quantifying a notion 

of functionally lossless video quality – diagnostically lossless video quality in a video-based telehealth 

system, in a bits per pixel sense is useful from an applications and bitrate perspective. This is because 

uncompressed color video requires 12 bpp (with 8 bpp for luminance and subsampled color components), 

mathematically lossless color video requires about 4-6 bpp, and coding video at the lowest level of fidelity 

typically requires 0.1 bpp. Thus, there is a wide intermediate range that corresponds to bpp requirements 

for various applications, but these have not been quantified. In other words, it is unclear whether the 

requirement is closer to the lowest level of fidelity, or to the mathematically lossless level. This work 

intends to determine the answer to this question for the specific application of mobile telehealth. Finally, 

the research shows how a combination of these two concepts to realize diagnostically lossless ROI video 

quality, is a viable enabler of mobile medical assessment achievable over bitrate limited wireless channels. 

The result of the research is to be regarded as an important proof-of-concept in a challenging 

interdisciplinary area. This thesis lays the scientific foundation for additional validation through prototyped 

technology, field testing, and clinical trials.  

The rest of the document is organized as follows. Chapter 2 develops the background on video 

compression, video transmission over a broad class of networks, the usefulness of video in remote medical 

assessment, the motivation for ROI based video compression, and lists some key works in each of these 

areas. Chapter 3 provides the fundamentals of video rate control, specifically with respect to the MPEG-2 

standard. Chapter 4 describes the proposed elastic non-parametric bit allocation algorithms. Chapter 5 

describes parametric bit allocation algorithms. Chapter 6 describes the performance results by comparing 

the elastic non-parametric and parametric bit allocation approaches. Chapter 7 summarizes the work and 

concludes the thesis by providing insight into possible future work. 
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CHAPTER II 

 

BACKGROUND 
 
2.1 Wired and Wireless Broadband Communications 
 

The term broadband in the context of data communications refers to high rate data transmissions. There are 

a variety of broadband services today, but they may be broadly divided into four main categories – wired, 

wireless, satellite, and fiber. Table 1 summarizes the important technologies within each of these 

categories, their offered bit rates, their advantages, and their limitations.  

Table 1. Summary of broadband communications technologies – bit rates, advantages, and limitations. 

Broadband Communications  

Technologies Bit rates Advantages Limitations 

Wired DSL 

 

 

 

Cable 

768kbps, 3Mbps 

 

 

 

3-30Mbps 

High bit rates, 

Independent of 

number of users 

High bit rates 

Infrastructure costs, No mobility 

 

 

Infrastructure costs, Depends on 

number of users, No mobility 

Wireless WLAN, WiFi 

 

 

 

3G Mobile 

 

 

 

3G Stationary 

1-54Mbps 

 

 

 

384kbps 

 

 

 

1-2Mbps 

Decreased 

deployment costs, 

mobility 

 

Decreased 

deployment costs, 

True mobility 

Decreased 

deployment costs, 

mobility 

Range limited to tens of meters 

Depends on number of users 

Poor bit rates, Packet loss issues 

 

 

Limited range 

Satellite  1-24Mbps High bit rates Infrastructure and operational 

costs, Latency 

Fiber FTTH 

 

FTTN 

10/100/1000Mbps 

 

25-30Mbps 

Very high bit rates 

High bit rates 

Infrastructure costs, No mobility 

Infrastructure costs, No mobility 

 

 

Wired, satellite, and fiber based broadband systems offer very high bit rates at the price of 

increased infrastructure costs. Thus, the major push towards wireless communications is because of the 

mobility advantage and decreased deployment costs compared to broadband systems. However, the 

drawback is that offered bit rates are much lower. 
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2.2 Video Communications and Region-of-Interest (ROI) Processing 
 

A video signal is spatio-temporal, and its native richness is defined by temporal resolution (number of 

frames per second) and spatial resolution (number of pixels per frame). For digitization, each pixel (in each 

of typically three color axes) is typically quantized to an accuracy of 256 intensity levels or log2(256) = 8 

bits per pixel (bpp) (along each color axis), or 24 bpp (for full color video). In the so-called Common 

Intermediate Format (CIF), the spatial resolution is 352×288 = 101376 pixels per frame. Thus, with 30 

frames per second (fps) and approximately 100000 pixels per frame, the video bit rate is 30×100000× (8×3) 

= 72 Mbps. If a compression algorithm can compress the video by a factor of 72, the bit rate (for 

transmission and storage) would be 1 Mbps. The bit rate per pixel would be 3×8/72 = 0.33 bpp. This is 

indeed the state of the art for video coders used for videoconferencing. Standard definition (SD) and high 

definition (HD) formats for entertainment video use higher spatiotemporal resolutions than CIF. Table 2 

summarizes the essential features of some of the state-of-the-art video compression standards – supported 

bit rates, intended applications, and compression levels assuming a CIF video format at 30fps. 

Table 2. Summary of digital video compression standards – bit rates, applications, and compression 

factors. 

Video Compression 

Standards 

Supported Bit Rates Applications Compression Factors
* 

H.261 40kbps-2Mbps Videoconferencing 36-1800 

H.263,H.263+ 30kbps-0.5Mbps Videoconferencing 2400 

MPEG-1 1.4Mbps Video CD 50 

MPEG-2 384kbps-30Mbps Broadcast, Storage 2-180 

MPEG-4 64kbps-240Mbps Broadcast, Storage, 

Videoconferencing, 

Video streaming etc. 

1-1800 

H.264 64kbps-240Mbps Broadcast, Storage, 

Videoconferencing, 

Video streaming etc. 

1-1800 

* For CIF at 30fps 

 

Region of Interest Processing: Pixels within a region of interest are allocated a disproportionate 

value of bit rate while allocating a lower bit rate (in bpp) for pixels not in the ROI. The proposed ROI 

visual communications algorithm does not alter the native resolution of the video scene. Figure 2 depicts 

the ROI principle in a qualitative pediatric scenario. Part A shows perfect video coding with unconstrained 

bandwidth.  Image quality is identical to that of the uncompressed original. Part B shows the consequences 

of constrained communication bandwidth using the standard procedure of equal allocation of available 

coding resources (bits) across the entire image. The image is uniformly distorted. In Part C, ROI coding 
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(the smaller rectangle) enhances the quality of the infant’s face at the cost of sacrificing the quality of the 

background. It also includes an extended ROI (the larger rectangle) which is of better quality than the 

background but not lossless. The total bit rate is the same in B and C.   

 
   (A)     (B)   

   
(C) 

Figure 2. Illustration of quality management through ROI methods. (A) Standard encoding at 

unconstrained channel bandwidth; (B) Standard encoding at constrained channel bandwidth; (C) ROI 

encoding (ROI is smaller rectangle) with high (possibly lossless) quality and Extended ROI (represented by 

the larger rectangle) with high quality, at the expense of background quality. 

  

 

2.3 Notion of Functional Quality 
 

In spite of the existence of several objective metrics to measure video quality, there is no standardized 

metric to measure video quality. Metrics like Peak Signal-to-Noise Ratio (PSNR), Just Noticeable 

Distortion (JND), Structural Similarity (SSIM) Index etc. are frequently used to compare the performance 

of different video algorithms. Some of these metrics are even take into account Human Visual System 

(HVS) properties such as luminance and texture masking i.e. they are perceptually tuned. However, neither 

of these objective metrics correlates perfectly with a viewer’s perception of video quality. More 

importantly, video quality requirements are very diverse depending on the particular application. For 

example, a medical imaging application may require very specific detail in the image to be rendered with 

absolute lossless quality. On the other hand, a remote medical assessment application may be tolerable to 
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some compression in the video. Likewise, video surveillance may pose its own quality requirements. Thus, 

it is appropriate to speak of functionally lossless video quality i.e. video quality that is perfect for the 

particular application. In this work, it is our goal to perform ROI coding to achieve this level of video 

quality. Specifically, since our focus is on remote medical assessment, the goal is to obtain diagnostically 

lossless (DL) i.e clinically acceptable video quality.  

 

2.4 Telehealth Systems based on Broadband Video 

 
Clinicians commonly find themselves simultaneously committed to one location but needed in another. 

This situation can arise [a] within a hospital – in the Intensive Care Unit attending a critically ill patient and 

called to the Emergency Room to evaluate a patient or assist a trainee, [b] within a community – at work in 

one hospital and needed urgently to evaluate a patient at another hospital, [c] regionally – possessed of 

unique expertise and practicing in an urban, possibly academic, medical center and called by a colleague in 

a rural community to make an urgent assessment and recommendation, [d] practicing in a rural or urban 

multi-office setting – practicing at one office location when a patient presents unexpectedly at another 

office location, and [e] at home, either off-duty or on-call when called upon to make an assessment and 

give recommendations for initial, interim care until necessary expertise can arrive on-site. These situations 

are extremely common, are far from trivial, and are encountered daily by most clinicians, whether 

generalists or specialists.  Under the best of circumstances they represent merely an inconvenience for the 

patient and clinician.  Usually, however, these situations delay diagnosis and management, can lead to 

unnecessary consequences, and can even result in inappropriate initial care.  Taken as a whole, the result is 

inefficiency and increased cost.  When individual cases are examined, however, the outcome can be 

unintended, but nevertheless unmistakable, poor care. The only viable solution to this dilemma is to 

network resources so that access to needed expertise is available wherever the need is encountered and 

wherever the expertise happens to be located at the time. Such a system is known as a Telehealth system. 

Figure 3 illustrates the concept of a telehealth system based on broadband video. A patient (a 

baby, in the figure) in a hospital is being attended to by local doctors, whereas a medical expert is in a 

different physical location. In order to carry out real-time remote medical assessment, video of the baby is 

captured by an acquisition device (e.g. a video camera), and compressed (the camera may have an inbuilt 

video encoder to perform this function). Then, the video is transmitted over a broadband network, which 
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could be wired, wireless, fiber, or satellite. At the client side, there is a video decoder that performs video 

decompression and a display device that displays the output video for the medical expert. 

 

 
Figure 3. Telehealth systems based on broadband video communications. 

 

Telemedicine systems operating over broadband networks: Stamford, et al [1] address high-speed, 

high-quality video transmitted from a rural emergency department (ED) to a major medical center ED. The 

results document improved diagnosis and treatment, as well as improved confidence levels of doctors.  

Kofos et al [2] studied telemedicine in pediatrics using a broadcast quality real-time audiovisual system and 

concluded that such a system may have dramatic implications for providing pediatric specialty and 

subspecialty care in underserved areas. 

An inter-hospital system using a wide area network (WAN):  Yoo [3] reported the design of an 

MPEG-2 video system running at 30 frames per second (fps) and requiring 1.5-6 megabits per second 

(Mbps) to deliver a spatial resolution of 640×480 pixels.  Qiao et al [4] addressed the design of a critical 

care telemedicine system based on video over broadband IP networks. Wang et al [5] described a web-

based videoconferencing system (REACH) that allows specialists at an academic medical center to evaluate 

stroke patients at a rural facility.    

While these systems achieve high quality video, sufficient for remote medical assessment, they 

impose constraints on patient and specialist mobility.  Further, rural hospitals frequently have neither the 

equipment nor personnel infrastructure necessary to support high bandwidth broadband networks. The 

infrastructure costs and mobility issues of conventional broadband systems motivate telehealth systems 

based on wireless video. 
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2.5 Telehealth Systems based on Wireless Video 

In today’s wireless networks, we are witnessing a convergence of modes that were traditionally disparate: 

an outdoor mode characterized by high mobility, large coverage area and range and low transmission rates, 

and an indoor mode characterized by lower mobility, lower coverage area and range, and higher 

transmission rates.   

The so-called 3G cellular radio systems are aiming for a 144 kbps rate while driving and a 2 Mbps 

rate indoors. Cellular transmission rates that are available pervasively are still in the 100 kbps range. The 

so-called WiMax and WiFi systems that compete with cellular radio are aiming for ever-greater ranges 

(several miles or tens of miles in the case of WiMax (fixed wireless) and up to 500 feet in the case of WiFi 

(mobile or portable wireless), each at rates of several Mbps.) Systems that are currently pervasive are 

limited to WiFi bubbles in homes, offices and selected urban settings. 

Classification wise, wireless was also grouped under the class of broadband networks. Here, 

however, we treat them separately from the standpoint of mobility and deployment costs. In addition, bit 

rates for wireless systems are far lower compared to wired, satellite, and fiber based systems. Figure 4 

illustrates the concept of a telehealth system based on wireless video. The scenario is exactly the same as in 

Figure 3 except that the communication network is now a wireless network. 

 

 
Figure 4. Telehealth systems based on wireless video communications. 

 

Wireless networks: A number of researchers have explored telemedicine systems over wireless 

networks. Kugean et al [6] discuss a telemedicine system design using a wireless local area network 

(WLAN). H.261 encoded video is transmitted with FCIF/QCIF spatial resolution at 30fps, requiring about 

384kbps. This bandwidth falls well within the WLAN’s capacity, but because bandwidth is shared with 
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other network users, the bandwidth per user varies both with user number and time, with video quality 

often dropping to levels that create problems for physicians analyzing critical real-time patient features. 

Banitsas et al’s [7] design faces similar issues. Chu et al [8] describe a mobile teletrauma system based on 

3G networks where M-JPEG video at 2-25fps with 320×240 resolution is used. The CDMA providers 

advertised a 153kbs bandwidth, but in fact the average available bit rate was only 50-60kbs. Thus, in these 

types of systems, limited and varying bandwidth availability are critical issues that are not compatible with 

clinical uses where the bandwidth must be consistently available and unvarying throughout the encounter. 

 

2.6 Telehealth Systems based on ROI Video 

As mentioned, on the one hand, the available transmission bandwidth may place a constraint on the overall 

compression ratio of the video. On the other hand, for diagnostic purposes i.e. for clinical acceptability, it is 

essential that the compression process cause no tangible loss of detail and introduces no noticeable artifacts 

which could otherwise be misinterpreted as being pathological in nature. Region-of-Interest (ROI) based 

video processing is a useful approach to achieve the optimal balance in the quality-bandwidth tradeoff. The 

pixels within the ROI are allocated a disproportionately large value of bit rate (in bpp) while allocating a 

lower bit rate (in bpp) for pixels in the background (BKGRND), for a given constraint on total bit rate (in 

bits per second: bps, kbps or Mbps). This leads to an ROI with higher quality than the BKGRND. Figure 5 

illustrates the concept of a telehealth system based on ROI video over a wireless communications system. 

The system is identical to Figure 4 except that the encoder is now an ROI encoder, capable of performing 

the necessary differential bit allocation between the ROI and BKGRND. 

 

 
Figure 5. Telehealth systems based on ROI video over a wireless communications system. 
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Descriptions of several ROI based designs, and also those that have telemedicine systems based 

upon them have been published. Wong et al [9] proposed an ROI-based channel-adaptive source-coding 

scheme for wireless channels transmitting H.263 encoded video. Based on the channel state information, 

the channel bandwidth is computed, and both ROI and background (BKGRND) areas are treated with 

varying compression ratios in each region.  The BKGRND is dropped altogether when necessary.  

Chai et al [10] proposed and implemented two ROI coding strategies with the H.261 standard. The 

maximum bit transfer (MBT) strategy assigns the highest compression level to the BKGRND, and the 

lowest possible compression level to the ROI that does not result in exceeding the overall available bitrate. 

The joint bit allocation method allocates bits to the ROI and BKGRND based on the size, motion, and 

priority characteristics of each region. Chen et al [11] proposed a face detection algorithm integrated into a 

H.263+ encoder.   ROI coding is performed by increasing the distortion weights of ROI macro blocks 

(MB). Similar to [10], Sun et al [12] propose using size, variance, and weights to perform bit allocation, 

where the weights are updated based on PSNR difference between ROI and BKGRND. In [13], Lai et al 

use region-weighted rate-distortion (RD) models. Region distortion is modeled as being directly 

proportional to a region’s weight, the residue variance, and as having an inverse exponential relationship 

with the bits allocated to the region. Then, Lagrangian RD optimization results in a closed form expression 

for the bits to be allocated to each region based on the above parameters. In [14], a user specifies the 

percentage of total bits to be allocated to the ROI. In [15], optimal bit allocation for multiple ROIs is 

achieved using a weighted Lagrange multiplier technique. In [16], Lin et al consider a videoconferencing 

application with H.263 video encoded using the TMN-8 rate control scheme, and make decisions on which 

macroblocks may be skipped, and describe how the bits saved are reallocated to non-skipped macroblocks. 

In [17], Liang et al perform Lagrangian RDO to arrive at expressions for optimal bits to be allocated to 

macroblocks. It is a function of the macroblock weight and variance. In addition, a skipping condition is 

described, and saved bits are reallocated. In [18], Sengupta et al adopt a different strategy wherein they 

minimize the rate subject to a distortion constraint as opposed to minimizing the distortion subject to a rate 

constraint. Based on this new Lagrangian optimization, bits are allocated to regions to meet the required 

distortion constraints. 
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Gokturk et al [19] proposed a hybrid compression scheme for 3D medical images where ROI is 

coded in a lossless manner, and the BKGRND is coded in a lossy manner. Lossless compression is done 

using first-frame lossless coding, followed by lossless coding of successive motion-compensated frames, 

and unlike traditional video coders, no DCT is used. The method was tested on CT images of the human 

colon with the ROI being the diagnostically important colon wall.   Gibson et al [20] integrated ROI 

detection and bit allocation integrated into a 3D wavelet compression scheme. Angiogram video sequences 

were used to test the proposed technique, with regions containing the coronary arteries of key diagnostic 

importance. The techniques in [19, 20] are proprietary.   

References [21-25] address the quality of medical images or video in telemedicine systems. 

Martini et al [22] address the design of a quality driven video transmission system for medical applications 

based on joint source and channel coding, as well as metrics such as PSNR and structural distortion, again, 

without user interaction. Gibson et al [23] demonstrate diagnostically lossless medical images by using 

mathematically lossless coding within the ROI, but this cannot be extended to wireless video because of 

bandwidth limitations. Ashraf et al [24] obtain diagnostically lossless angiogram videos through 3D 

wavelet based ROI compression, but the diagnostically lossless property is checked only subjectively and is 

not pursued as part of the algorithm. Wu et al [25] obtain perceptually lossless medical images using a 

visual pruning function embedded into an advanced human visual system (HVS) model, but this also is not 

easily extensible to video. 

In general, the aforementioned systems employ arbitrary choices for ROI and BKGRND 

compression ratios and thus are not human-centric. There is no guarantee of video quality, even within the 

ROI, and there is no opportunity for user interaction or input. 

 

2.7 ROI Segmentation and Tracking 

A crucial issue in ROI based systems pertains to segmentation and tracking of the ROI. Our framework is 

relatively simple as far as ROI segmentation and tracking is concerned. This is because the video camera is 

fixed, and the background stationary. In this case, tracking may be performed with change detection and 

background registration techniques. The stationary background assumption is not valid if, in addition to the 

patient (the ROI), there is a local doctor in the field of view who moves around, and/or nurses entering and 
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leaving the scene. However, the plus side is that the narrowband properties of skin-color distributions may 

be used to detect ROI, and tracking may be performed by relatively simple techniques such as object 

projection or boundary projection. Thus, ROI segmentation and tracking is not the major issue in our ROI 

system design. For the sake of completeness, the state-of-the-art methods for segmentation and tracking are 

listed and briefly described below. 

Video segmentation methods may be classified with respect to the degree of human intervention 

involved. Automatic algorithms do not depend on any user interaction, but their implementation presents 

problems in recognizing and grouping semantically coherent regions into the ROI just as the human eyes 

do. Thus, they tend to be complex, requiring delicate fine-tuning of parameters and often constitute ad hoc 

approaches to specific problems. In semi-automatic methods, the user selects the ROI in the first frame 

using an interaction tool – mouse drawing, polygon method etc., and this is tracked by the algorithm in the 

following frames. In [26,27], a semi-automatic algorithm for ROI tracking is presented, where the ROI 

boundary is projected from frame-to-frame using motion information. Uncertain areas are obtained on the 

boundary based on the regions in conflict by comparing the above results with the results from color 

information. Finally, the boundary is refined through region growing algorithms to get a precise ROI 

boundary. In [28], tracking is performed by taking inter-frame differences to obtain regions with motion, 

performing edge extraction, and finally extracting the ROI in the current frame. In [29], a semi-automatic 

object segmentation algorithm is proposed that aims at minimizing user assistance by requiring it at the 

final step of the segmentation process, as opposed to the initial step. This makes it easier to identify objects. 

For tracking, a single displacement vector for the object is obtained from frame to frame using horizontal 

and vertical histograms of the object in the previous frame and several candidates in the current frame. In 

[30], inter-frame differences are used to generate a change detection mask, which supplements a skin 

detection mask generated using a bivariate normal distribution for skin color. The two masks are fused to 

generate a face and hands segmentation mask. In [31], ROI segmentation and tracking is performed with 

neurosurgical video, where the ROI is a field within which surgical procedures takes place, not a single 

object. Thus, it involves both surgical instruments and a surrounding area, consisting of objects such as 

biological tissue and fluids. The edge of a selected instrument in the video is computed and utilized as an 
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input to a histogram-based tracking algorithm that provides a crucial location, such as the tip of the 

instrument. An ROI is defined around this location and tracked. 
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CHAPTER III 

 

VIDEO RATE CONTROL 
 

3.1 Video Encoder Operation 

 

 

 
Figure 6. Block diagram of a typical MPEG-2 video encoder and decoder. 

*http://www.zenith.com/sub_hdtv/mpeg_tutorial/codecdia1.HTM 

 

 

Figure 6 shows the block diagram of a typical MPEG-2 video encoder and decoder. The encoder is 

essentially a DPCM like system with an embedded decoder. This is so that both the encoder and decoder 
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use the same reference frames in generating the prediction. In the encoder, the motion estimation block 

receives a macroblock in the current frame and the reference frame(s) candidate macroblocks as its inputs. 

It generates the optimum motion vectors corresponding to that source macroblock. These motion vectors 

and the reference frame(s) candidate macroblocks are the inputs to the motion compensation unit, which 

generates the prediction for the source macroblock. If the source macroblock is from an I (intra) frame, 

there is no prediction i.e. a zero prediction. If the source macroblock is from a P frame, the prediction is 

generated by merely selecting the macroblock in the reference frame using the motion vectors. If the 

macroblock is from a B frame, then the prediction could either correspond to an average of predictions 

from two reference frames or just one of the two reference frames, depending on which results in the lowest 

prediction error.   

The prediction is subtracted from the source macroblock, resulting in the prediction error. This is 

then passed through a 2-D DCT, which results in further decorrelation, and also energy compaction. A 

quantization unit reduces the amplitude resolution of the DCT coefficients. The output from this stage feeds 

the embedded decoder consisting of an inverse quantization unit, a 2-D IDCT, and an adder. This generates 

the reference frames for prediction of future frames. The output from the 2-D DCT is also reordered using a 

zigzag scan (or an alternate scan for field pictures in interlaced video), and then converted to (run, level) 

pairs which are encoded to bits using a variable length coder (VLC), such as a Huffman coder. Similarly, 

the motion vectors are also Huffman coded. 

 

3.2 Introduction to Video Rate Control 
  
The video encoder output above is a bitstream. Clearly, with different types of frames – I, P, and B, and 

with different types of video content, the output bitstream will be at a variable bitrate. This is illustrated in 

Figure 7, where an uncompressed source results in a compressed video bitstream at a variable bitrate. The 

quantization parameter (QP) is shown explicitly in this Figure because it is a variable that can control then 

number of bits generated.  
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Figure 7. Illustration of a video compression system without rate control. 

 

In practice, an encoder has to meet the channel constraints on the available total bit rate for 

transmission. Rate control [32, 33, 34] helps achieve this equalization between an inherently variable rate 

video encoder and a channel bitrate constraint using two key features: a) quantization parameter control in 

the quantization unit, b) an encoder buffer to buffer encoded video data before channel transmission. This 

is shown in Figure 8, where a rate controller operates in a negative feedback mode with respect to the 

channel’s demanded bitrate and the actual generated bitrate, thereby controlling QP under a given source 

complexity estimate.  

 

 
Figure 8. Illustration of a video compression system with rate control. 

 

 

 

 
           (a)     (b) 

Figure 9. (a) Illustration of relationship between QP and average video bitrate. (b) QP-bitrate curves for 

different video source complexities. 
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Figure 9a shows a basic relationship between QP and average video bitrate. As expected, with 

increasing QP, the average bitrate decreases. Figure 9b shows the role played by video source complexity. 

The more complex the video content, the higher the average bitrate for a given QP.  

 

3.3 MPEG-2 TM5 Rate Control 
 

 
 

Figure 10. Block diagram representation of the TM5 rate control methodology. 

* Source: www.pixeltools.com/figure6.jpg 

 

 

Figure 10 shows the block diagram representation of the TM5 rate control methodology [35, 36, 37, 38] 

popularly used with the MPEG-2 standard. For ease of understanding, it is represented as a rate controller 

with two interfaces – an encoder interface, and a user interface.  

The rate controller operates as follows. The Group of Pictures (GOP) bit allocation unit receives 

the demanded or target bitrate from the user interface. A GOP is a set of frames that consists of exactly one 

I frame, followed by P and, possibly, B frames. A typical GOP is illustrated in Figure 11. 
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Figure 11. Illustration of a typical GOP. 

 

 

The GOP allocation unit generates the target bits for the GOP, denoted by R, as follows: 
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where M is the number of frames in a GOP, TBR is the total bitrate available for encoding in bits per 

second, and FR_RATE is the frame rate in frames per second. The R on the right hand side of the above 

equation is the number of bits remaining after encoding the previous GOP. Thus, this equation represents 

the average number of bits that will be available for encoding a GOP. 

R is the input to the picture target bit allocation unit. This module generates the target bits for each 

picture (frame). Different picture types – I, P, and B pictures are allocated different number of target bits as 

follows: 
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where R represents the remaining number of bits in the GOP. TI, TP, and TB represent the target bits 

allocated to I, P, and B frames, respectively. NP and NB represent the number of P and B frames in a GOP, 

respectively. There is one I frame per GOP. XI, XP, and XB represent the average encoding complexities of 

the I, P, and B frames, respectively. KI, KP, and KB are design parameters that can be used to control the 

allocation. Note that at the end of encoding each frame, R is updated by subtracting from it the actual 

number of bits S, used to encode the frame. 

The logic behind the above allocation is as follows. Bits in a GOP must be divided between I, P, 

and B frames based on the number of such frames, their complexities, and design parameters controlling 

the allocation. For example, in allocating bits to the I frame, the 1 in the denominator represents the number 

of I frames in a GOP, the second term represents the number of P frames in a GOP and the relative 

complexities of the I and P frames, and the third term represents the number of B frames in a GOP and the 

relative complexities of the I and B frames. After allocating bits to the I frame, there remain only P and B 

frames in the GOP, so the denominators in the target bit formulas for P and B frames contain only two 

terms, corresponding to the other picture type. 

The average frame complexities are obtained as follows: 

III QSX ×=  

PPP QSX ×=  

BBB QSX ×=  

 

where SI, SP, and SB represent the actual number of bits required to encode the previous I, P, and B frames, 

respectively. QI, QP, and QB represent the QP, averaged over a complete frame, for the previous I, P, and B 

frames, respectively.  
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Next, a normalized macroblock activity measure N_act is computed as follows: 
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where act is the variance of the current macroblock. Avg_act is the average activity of the previous picture, 

obtained by averaging the variances of all macroblocks. Finally, the QP for the k
th

 macroblock is generated 

as follows: 
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where r, the reaction parameter, is half the ratio of the bitrate to the frame rate. dk is the fullness of the 

virtual buffer, based on a uniform model.  

The encoder uses a video buffer verifier (VBV) model that represents its assumptions of the 

decoder buffer. This is done because the encoder has no information about the decoder’s buffer, yet it 

should take care to avoid overflow or underflow in the decoder buffer. This is achieved by using a VBV 

model – choosing a VBV size BV, ensuring that this buffer does not overflow or underflow, and then 

transmitting the details about this buffer along with the encoded bitstream to the decoder. Thus, in the 

above VBV fullness equation, d0 is the initial buffer fullness, Aj is the actual number of bits used by the j
th

 

macroblock, T is the target bits for the current frame, and N_MB is the total number of macroblocks in a 

frame. The VBV fullness when the k
th

 macroblock is being encoded is obtained by using a uniform model 

i.e. assuming that bits are equally allocated among all the macroblocks in the picture. Thus, the difference 

between the actual bits and the target bits according to the uniform model represents the error in the model. 

The encoder tries to correct or compensate for this error by modulating the normalized macroblock activity 

with the VBV fullness in the QP equation. So, if there is a positive error, representing a deficit in bits, the 

VBV fullness increases, and QP also increases. On the other hand, if there is a negative error corresponding 
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to a surplus in bits, the VBV fullness decreases, and QP also decreases. Figure 12 also illustrates how the 

VBV fullness changes as a function of the macroblock number. 

 

 
Figure 12. Illustration of VBV buffer fullness as a function of macroblock number. 
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CHAPTER IV  

 

ELASTIC NON-PARAMETRIC ROI BIT ALLOCATION ALGORITHMS 
 

Based on the motivation developed in Chapter 2, the objectives of the presented work [39, 40, 41, 42, 43] 

are twofold: (1) Allow for user interaction with the design of the video coding system in order to achieve 

user-based adaptivity and user-defined quality. (2) Make the video coding system robust for each available 

total bitrate (TBR), so as to result in optimal performance at each TBR. This system elasticity creates 

advantages over the aforementioned telemedicine systems in Chapter 1. It achieves this via the following 

steps. First, it uses pilot tests on a set of training medical videos to quantify video quality information. 

Second, it maps these quality levels to the ROI and BKGRND regions. Finally, based on certain in-built 

quality criteria, it appropriately modifies these mappings. Each of these steps is described in detail below. 

 

4.1 Quantification of Video Quality 

Four hierarchical levels of quality are postulated: 

� Mathematical losslessness (ML) - there is no quantization based compression 

� Perceptual losslessness (PL) - there are no perceivable artifacts in the video 

� Diagnostic losslessness (DL) - there may be visually perceivable artifacts, but they do not 

compromise visual medical assessment 

� Best effort (BE) - the video quality is not distracting or annoying 

Based on the current definition of PL, it is always over-designed with respect to DL. In other 

words, PL always guarantees DL, but not vice versa. To quantify these levels of video quality, a set of 

training videos are compressed at a variety of TBR and uniform spatial quality.  Physician experts are 

asked to identify maximum levels of compression that can be applied while retaining the aforementioned 

levels of quality. The training videos are presented in random order to the physicians. For completeness, 

one of these videos is the original uncompressed video. Clinicians complete an evaluation whose format is 

shown in Table 3, which in this example is specific to pediatric respiratory distress. 
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Table 3. Sample evaluation template for quantifying the relationship between compression and video 

quality levels. 

Random 

Video Sample 

Feature Sets DL? 

(1-4) 

PL? 

(Yes/No) 

Comments 

1-n RR 

OC 

WB 

…. 

   

 

 

In Table 3, each sample number represents a video at a particular TBR. The physician expert lists 

whichever features he/she can identify in the video at that particular bitrate. The remaining three columns 

represent the quantification of the video quality information. In the DL? column, the four options relate to 

the quality of the video for clinical assessment of each feature set: 1 – No, 2 – Maybe Not, 3 – Likely, 4 – 

Yes. The lowest TBR at which the evaluation is 4 represents the threshold DL for the particular feature. 

Similarly, the lowest TBR at which PL? is ‘Yes’ represents the PL threshold for the particular video. In the 

‘Comments’ column, the expert identifies any annoying or distracting artifacts in the video. This 

information can be used to obtain the threshold for BE for the particular video. Note that the above table 

represents one video evaluated by one particular expert. The complete test set consists of several videos 

evaluated by several physician experts. It is noted that ML is not required to be determined from the 

functional hierarchy assessment, because mathematical losslessness (ML) is a mathematically deterministic 

video quality level (unlike PL, DL, and BE), obtained when no quantization based compression is applied). 

 If TBR_DLi represents the TBR required for DL for feature i averaged over several physician 

experts and TBR_PL and TBR_BE respectively represent the TBR required for PL and BE, also averaged 

over several experts, then the corresponding bits per pixel (bpp) values denoted by bpp_DLi, bpp_PL, and 

bpp_BE, are: 
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FR_RATE represents the frame rate (in fps) and FR_SIZE represents the spatial resolution of the 

training videos (assuming one fixed value). To obtain one value bpp_DL encompassing all the features j 

necessary for clinical assessment, we choose the maximum value, as follows:  

)_max(_ DLjbppDLbpp =  

Figure 13 summarizes all the steps involved in the quantification of video quality. 

 
Figure 13. Summary of steps involved in the quantification of video quality. 

 

 

4.2 Quality Mappings using the Encoder State Machine 

The encoder must use the information on quantification of quality levels and map it to the ROI and 

BKGRND regions in the video. This is done using the notion of an encoder state which is defined by a pair 

of quality levels, one corresponding to the ROI and the other corresponding to the BKGRND. The 

complete state table for the encoder is shown in Table 4. 
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Table 4. Encoder state table showing state numbers, and expected quality levels for ROI and BKGRND. 

ROI↓ BG→ ML PL DL BE 

ML 1 2 3 4 

PL n|a 5 6 7 

DL n|a n|a 8 9 

BE n|a n|a n|a 10 

 

The states are numbered 1 to 10 according to decreasing priority, based on the premise that the 

ROI quality should be at least the same as or better than the BKGRND quality. For example, state 2 

represents ML quality ROI and PL quality BKGRND, and state 8 represents DL quality ROI and DL 

quality BKGRND. The entries denoted n|a represent pairs of quality levels that are not permitted, because 

they violate the basic premise of the state table. It must be noted that all states in a given row represent the 

same quality level for the ROI. 

The encoder’s state of operation is determined through a GOP-level bit allocation algorithm, based 

on the bpp requirement for ML, and the nominal bpp values for PL, DL, and BE quality levels obtained 

using training videos. State determination is done at the GOP level in order to average over I, P, and B 

frames. For the video currently being encoded, the nominal number of bits required per GOP for DL in the 

ROI denoted by R_ROI_DL, for example, is: 

GOPNSIZEROIDLbppDLROIR _____ ××=  

ROI_SIZE is the average size of the ROI for the current GOP, and may be a window of standard shape and 

size around the feature(s). N_GOP denotes the number of frames in GOP. Similar expressions hold for the 

nominal number of bits required for other quality levels for the ROI and BKGRND. 

At the beginning of each new GOP, the encoder tries to occupy the highest priority state given the 

current TBR. If R denotes the target number of bits in a GOP, the encoder checks if it can occupy state 1 

(highest priority) , governed by the condition: R > R_ROI_ML + R_BKGRND_ML? If so, it occupies state 

1, otherwise it checks if it can occupy state 2, governed by the condition: R > R_ROI_ML + 

R_BKGRND_PL? This procedure continues until it occupies one of the ten possible states, and is 

summarized in the state occupancy flow chart of Figure 14. 
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Figure 14. State occupancy flow chart illustrating conditions for occupancy of encoder states. 

 

In each state, the BKGRND is allocated bits first, and then the remaining bits are allocated to the 

ROI. This is done to ensure that the ROI gets bits in excess of the nominal value. For example, in state 9, 

where the ROI has DL quality, and BKGRND has BE quality, the allocation is done as: 

BEBKGRNDRBKGRNDR ___ =  

BKGRNDRRROIR __ −=  

R_ROI and R_BKGRND denote the target number of bits in a GOP for the ROI and BKGRND, 

respectively. If the encoder determines that state 9 is the current GOP state, the BKGRND gets assigned 

R_BKGRND_BE bits, and the ROI gets assigned at least R_BKGRND_DL bits. The only exception is 

state 10, where all the bits are allocated to the ROI. Table 5 summarizes the state based bit allocation 

algorithm. 
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Table 5. Summary of state bit allocation algorithm. 

Quality levels State 

ROI BKGRND 

Requirements Bit Allocation 

1 ML ML R > R_ROI_ML + R_BKGRND_ML R_BKGRND=R_BKGRND_ML 

R_ROI=R-R_BKGRND 

2 ML PL R > R_ROI_ML + R_BKGRND_PL R_BKGRND=R_BKGRND_PL 

R_ROI=R-R_BKGRND 

3 ML DL R > R_ROI_ML + R_BKGRND_DL R_BKGRND=R_BKGRND_DL 

R_ROI=R-R_BKGRND 

4 ML BE R > R_ROI_ML + R_BKGRND_BE R_BKGRND=R_BKGRND_BE 

R_ROI=R-R_BKGRND 

5 PL PL R > R_ROI_PL + R_BKGRND_PL R_BKGRND=R_BKGRND_PL 

R_ROI=R-R_BKGRND 

6 PL DL R > R_ROI_PL + R_BKGRND_DL R_BKGRND=R_BKGRND_DL 

R_ROI=R-R_BKGRND 

7 PL BE R > R_ROI_PL + R_BKGRND_BE R_BKGRND=R_BKGRND_BE 

R_ROI=R-R_BKGRND 

8 DL DL R > R_ROI_DL + R_BKGRND_DL R_BKGRND=R_BKGRND_DL 

R_ROI=R-R_BKGRND 

9 DL BE R > R_ROI_DL + R_BKGRND_BE R_BKGRND=R_BKGRND_BE 

R_ROI=R-R_BKGRND 

10 BE BE None R_BKGRND=0 

 R_ROI=R 
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Figure 15 summarizes the procedure involved in elastic non-parametric video encoding. 

 
Figure 15. Summary of procedure involved in elastic non-parametric video encoding. 

 

It is useful to carefully consider the properties of the encoder state paradigm. 

1) At a given TBR, the encoder occupies a particular state, which is the highest priority under the 

given conditions.  

2) When the TBR changes, as in a VBR channel, the encoder will likely transition to a new state at 

the beginning of a new GOP. Depending on the change in TBR, the encoder may move to a higher 

priority state or a lower priority state.  
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3) Occupancy of encoder states depends on the bpp values corresponding to quality levels, the ROI 

size, and the BKGRND size. In general, therefore, encoder states are not equidistant in terms of 

bits required for occupancy. This does not represent a flaw in the design because the algorithm 

allocates a nominal number of bits to the BKGRND, and the excess to the ROI. 

4) If the TBR increases, the number of bits to the ROI increases as long as the encoder remains in the 

same state. If the encoder can occupy a higher priority state in the same row of the state table, then 

the number of bits assigned to the BKGRND increases, and so the number of bits assigned to the 

ROI may decrease. This is, however, not a contradiction because the ROI still gets atleast the 

nominal number of bits. The design of the elastic non-parametric system is based on optimizing an 

encoder’s state, consisting of both the ROI and the BKGRND, as opposed to merely optimizing 

the ROI. 

5) Based on the above property, it is clear that, at a given TBR, a lower priority state in a row of the 

state table will allocate a larger number of bits to the ROI than a higher priority state in the same 

row. This property is pivotal to the next section, where methods of increasing ROI quality, where 

necessary, are described.  

 

4.3 Quality Update Techniques 

The encoder operation is based on bit allocations to ROI and BKGRND based on nominal values obtained 

from the quantification of video quality step. For example, for DL, the average bpp value over the features 

is chosen as the nominal value. The encoder is said to have DL quality in the ROI (or BKGRND) if its 

current encoder state corresponds to a DL quality for the ROI (or BKGRND).  However, in some cases, the 

ROI may not be of DL quality even if its current state indicates that it should be so. This is because DL is a 

subjective notion, and while it may be quantified to a fairly accurate degree using training videos, there 

may be imperfections. In other words, DL quality for the ROI may not indeed be achieved as far as the 

current viewer of the video is concerned. Similarly, PL and BE are subjective notions of quality, and may 

vary from viewer to viewer. There is no uncertainty involved with ML because it is mathematically 

deterministic. Under these circumstances, property 4 of the encoder state paradigm is modified i.e. the 

priority is now the ROI as opposed to the state.  
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Figure 16. Illustration of state transitions. 

 

 

The system allocates more bits to the ROI in order to alleviate this problem. As motivated by 

property 5 of the encoder state paradigm, this is done by a state transition from the current state to the next 

lower priority state in the same row, as shown in Figure 16. In the table, the encoder transitions from state 5 

to state 6. The bit allocations in these two states are as follows: 

BKGRNDRRROIR

PLBKGRNDRBKGRNDRSTATE

__

___:5

−=

=  

BKGRNDRRROIR

DLBKGRNDRBKGRNDRSTATE

__

___:6

−=

=  

R_ROI is higher in state 6 than in state 5 because R_BKGRND_DL is smaller than R_BKGRND_PL. 

Transitions are not allowed to states in lower rows because the ROI quality level changes across rows. 

Instead, in states 4, 7, and 9, where the encoder is at the far end of a row (i.e. with BE quality BKGRND), 

R_ROI is increased by a parameter update i.e. by simply reducing R_BKGRND to a new, lower value 

R_BKGRND_BE_MIN, compared to R_BKGRND_BE. This is illustrated in Figure 17, where the new 

state has the same number but is denoted by a “ ’ ”. Thus, state 7 transitions to state 7’. 

 

 
Figure 17. Illustration of state transitions for states at the end of rows. 

 

  Now that the issue about tackling inadequate ROI quality has been addressed, attention needs to 

be focused on detection of such a condition. A manual trigger may be used to indicate that video quality 

within the ROI is inadequate. This option is straightforward, but cumbersome. Thus, automatic methods 

based on objective quality metrics such as peak signal to noise ratio (PSNR), video quality metric (VQM), 

structural similarity metric (SSIM) etc. are necessary to measure quality and detect low ROI quality 

situations. In this work, two methods based on PSNR are explored. However, it must be noted that when the 
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overall system is being tested for performance, video quality will be measured using subjective tests. PSNR 

results will also be obtained, but only as a way of showing trends, not for qualifying video quality. 

1) ROI-BKGRND PSNR difference - A PSNR difference method is used to automatically trigger a state 

transition flag, as follows: 

 

0__

1__

____

=

=

<−

FLAGTRANSITIONSTATE

else

FLAGTRANSITIONSTATE

THDIFFPSNRPSNRBKGRNDPSNRROIIf

 

ROI_PSNR and BKGRND_PSNR respectively denote the average ROI and BKGRND PSNRs for the 

previous GOP, PSNR_DIFF_TH represents a difference threshold, and STATE_TRANSITION_FLAG is an 

update flag that is valid for the current GOP. This flag indicates that there must be a state transition in the 

current GOP in order to take care of the ROI quality problem.  

The detection is based on the expectation of a certain minimal difference in quality between the 

ROI and BKGRND. Note, however, that PSNR_DIFF_TH should be state dependent. This is because a 

higher difference in ROI and BKGRND PSNRs should be expected in states where the ROI and BKGRND 

have different quality abstractions. For example, in state 7 (PL ROI and BE BKGRND), the difference 

between ROI and BKGRND PSNR is expected to be greater than in state 5 (PL ROI and PL BKGRND). 

Even within a state where the ROI and PSNR have the same quality abstraction, the PSNR difference 

should be expected to increase if the TBR increases i.e. when the ROI gets allocated more bits. This is also 

true of states where the ROI and BKGRND have different quality abstractions. The issue with this 

approach is that in general, the ROI and BKGRND represent different video contents. Hence, it may not be 

accurate to compare PSNRs of unrelated video material and draw conclusions about video quality.  

2) ROI PSNR control – A given row in the state table represents a certain level of ROI quality, and this 

must be reflected in the ROI PSNR. Thus, a state transition flag is triggered whenever the ROI PSNR falls 

below a threshold PSNR_TH, as follows: 

 

0__

1__

__

=

=

<

FLAGTRANSITIONSTATE

else

FLAGTRANSITIONSTATE

THPSNRPSNRROIIf
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PSNR_TH should be dependent on ROI quality levels. Thus, PSNR_TH values corresponding to PL and 

DL can be approximately obtained by averaging over ROI PSNRs obtained during uniform compression of 

the video database at TBR_PL and TBR_DL, respectively. This is justified because content-wise, the ROI 

is very similar in all videos, whereas the BKGRND may vary significantly. 

The above procedures are depicted in Figure 18. 

 

 
Figure 18. Detection criteria for state transitions. 

 

 

4.4 Modified Encoder State Machine 

The state transition flag as determined by the quality update techniques modifies the state occupancy 

flowchart of Figure 14. In other words, at the beginning of a new GOP, an encoder has to check the 

available bits with the bit thresholds of each state, and also check the state transition flag. This results in a 

modified methodology for determining the new encoder state shown in Figure 19.  

  First, the encoder uses the state occupancy flow chart of Figure 14 to determine a tentative new 

state, state_n. If the state transition flag corresponding to the previous GOP is 0, then this represents this 

final new state. If state_n and the previous state state_n-1 are in different rows (due to TBR fluctuations), 

then the state transition flag is discarded, because the state transition flag is only relevant to states in the 

same row. The new state is state_n.  
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  If, on the other hand, state_n is of lower priority than state_n-1 (due to TBR fluctuations), then 

again the state transition flag is discarded, because a transition to a lower state has already occurred. The 

new state in this case also is state_n. 

  However, if state_n is either the same as state_n-1, or of higher priority than state_n-1, then the 

state transition flag is used i.e. the new state is (state_n-1 + 1), and state_n is discarded. The exception to 

this rule is if state_n is the same as state_n-1, and they are at the end of a row. In this case, the new state is 

the primed state, state_n’, or equivalently, state_n-1’. 
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Figure 19. Modified methodology for determining encoder state. 
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CHAPTER V  

PARAMETRIC BIT ALLOCATION 

In this approach, bit allocation is shifted from the frame level to individual regions within the frame. A 

number of criteria are used to determine the number of bits allocated to each region. This differs from the 

elastic non-parametric bit allocation approach in that ROI bit allocation is done based on well-defined 

features and even user-defined region weights, but neither ties down as closely with user-quality 

requirements as the elastic non-parametric ROI bit allocation approach does. Nevertheless, it is a useful 

approach and merits study and performance comparison with the proposed elastic non-parametric approach. 

 

5.1 Criteria for Regional Bit Allocation 

In this approach, a frame level bit budget is derived using state-of-the-art rate control techniques. This 

budget is then split into region level budgets – denoted by B
f
T,ROI  for the ROI, and B

f
T,BKGRND  for the 

BKGRND. Since macroblock level quantization parameters (QP) depend directly on the number of bits 

assigned to the region in question, selecting B
f
T,ROI  and B

f
T,BKGRND  is crucial to the system design. Thus, as 

in [10_MontrealStachura], size and motion information are incorporated into the regional bit allocation 

process. It must be noted, however, that [10_MontrealStachura] uses a fixed QP for each MB in a region. In 

addition, a user tunable parameter may be used, specified as the region’s weight. Thus: 

f
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Thus, bits are allocated to individual regions as a fraction of the target bits for the current frame, 

based on size, motion, and weight information. The α parameters are the priorities of the size, motion, and 

weight features, and their sum is equal to 1 in order for the regions to meet the required budget for the 

frame. The S parameters are the normalized size parameters, and the M parameters are the normalized 

activity parameters – obtained from the motion vectors (MV). Wx represents the normalized weight of 

region x. Note that the weights are size normalized before being normalized over regions. Figure 20 

summarizes the parametric bit allocation procedure.  

 
Figure 20. Parametric bit allocation procedure: Bit allocation is first done on a frame level, as in a 

conventional encoder, and then size, motion, and region weight information are used to determine regional 

bit allocation. This information is used to finally determine QP values for MBs within the ROI and 

BKGRND separately.  

 

Two approaches may be used to select the priority weights [a] manual selection, [b] Just 

Noticeable Distortion (JND) based weights which is motivated out of human visual system (HVS) 

considerations. The JND method is based on [54], where a Nonlinear Additivity Model for Masking 

(NAMM) is used to compute the JND as follows: 

)},(),,(min{.),(),(),( , yxTyxTCyxTyxTyxJND tltltl −+=  

In any frame, Tl(x,y) and Tt(x,y) are the visibility thresholds for the two primary masking factors - 

background luminance masking and texture masking, respectively. (x,y) represents the pixel coordinates. 

Cl,t (0< Cl,t <1) accounts for the overlapping effect in masking. Luminance masking is modeled by a root 
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equation for low luminance (below 127) and the other part (above 127) is approximated by a linear 

function. Texture masking can be determined by local spatial activities (e.g. gradients around the pixel). 

The expressions for these are detailed in [54] and are implemented in the encoder, but for the sake of 

simplicity, they are not detailed here.  

 Since JND is a measure of perceptual masking, it has an inverse relationship with bit allocation. In 

other words, smaller the JND of a MB, smaller the masking measure for that MB, and so greater should be 

the number of bits allocated to that MB. Thus, in the implementation, the JND is computed for every pixel 

in a MB, and the minimum value is chosen as a measure of the masking capacity of the MB. This is done 

for all MBs in the ROI, and averaged to get a JND value for the ROI. Likewise, the JND value for the 

BKGRND is obtained. The reciprocal of these (because of the inverse relationship) represent the JND-

based region weights for the current frame.  
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CHAPTER VI 

PERFORMANCE RESULTS 

In this work we focus upon the problem of acute childhood respiratory distress because [a] it is increasingly 

common and demands attention, [b] the video that must be transmitted to the clinician is critical to decision 

making, [c] it occurs with sufficient frequency, [d] initial testing of the technology can occur in settings that 

are not clinically “live”, and [e] “live” clinical testing can occur in a controlled hospital environment in 

which the usefulness of the technology can be evaluated without putting the patient at risk. With parental 

informed consent (MCG Human Assurance Committee #XXXXX), we collected video databases of 

pediatric patients in respiratory distress and used clinical experts to test our algorithms’ efficacy. 

The experimental results consist of three parts. First, the quantification of video quality levels 

through tests on training videos. Second, the results from encoding test videos, different from training 

videos, using the proposed elastic non-parametric bit allocation algorithms implemented within an MPEG-2 

encoder. Third, the same scenario above, but using the parametric bit allocation algorithms instead. 

The experiments use a set of 11 medical videos obtained from MCG. These are videos of patients 

in respiratory distress, and each includes symptomatic features that are useful to physician experts for 

visual assessment. Each video has a spatial resolution of 360×240 pixels at 30fps. Figure 21 shows a 

representative frame from each video used. Table 6 lists the names of the videos used and the number of 

frames in each video.  
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Figure 21. Representative frames from the medical video database. 

 

Table 6. Medical video database names and corresponding frame lengths. 

Name Number of Frames 

Er08 1972 

Er10 435 

Er12 1154 

Er13 823 

Er14 2506 

Er15 1934 

Er16 794 

Er17 2350 

Er19 5111 

Er20 1517 

Er21 2658 
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6.1 Quantification of Video Quality Levels 

11 videos (all the videos in Table 6) were encoded at uniform spatial quality using a standard MPEG-2 

reference implementation (TM5) at 3 bitrates – 500kbps, 1000kbps, and 1500kbps. Figures 22, 23, 24, and 

25 show frames representative of overall video quality of er08, er15, er17, and er19, respectively. For 

comparison, the corresponding frame from the original uncompressed video is also displayed. Similar 

pictures for other videos are available in the appendix. 

 
   (a)      (b) 

 
   (c)      (d) 

Figure 22. Uniform compression of video er08. (a) 500kbps. (b) 1000kbps. (c) 1500kbps. (d) 

Uncompressed video. 
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Figure 23. Uniform compression of video er15. (a) 500kbps. (b) 1000kbps. (c) 1500kbps. (d) 

Uncompressed video. 
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Figure 24. Uniform compression of video er17. (a) 500kbps. (b) 1000kbps. (c) 1500kbps. (d) 

Uncompressed video. 
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Figure 25. Uniform compression of video er19. (a) 500kbps. (b) 1000kbps. (c) 1500kbps. (d) 

Uncompressed video. 

 

They were then evaluated by 2 medical experts from MCG. Tables 7, 8, 9, and 10 (identical to the 

template in Table 3) list the evaluations of er08, er15, er17, and er19, respectively, by one of the medical 

experts. They are representative of the overall results, and evaluations other videos at all the TBRs by each 

expert are available in the appendix.  For simplicity of presentation, the video sample names have been 

converted to the form NAME_TBR. However, as stated before, these videos were presented with random 

sample names and in random order.  
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Table 7. Evaluation of er08 compressed at four different compression levels. 

Random 

Video Sample 

Feature Sets DL? 

(1-4) 

PL? 

(Yes/No) 

Comments 

Er08_500 WB 

RR 

T 

MS 

HB 

NF 

2 

2 

2 

3 

2 

2 

No 

 

Unclear 

Er08_1000 WB 

RR 

T 

MS 

HB 

NF 

3 

3 

3 

4 

3 

3 

Yes 

 

 

Er08_1500 WB 

RR 

T 

MS 

HB 

NF 

3 

3 

3 

4 

4 

4 

Yes  

Er08_orig WB 

RR 

T 

MS 

HB 

NF 

4 

4 

4 

4 

4 

4 

 

Yes  
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Table 8. Evaluation of er15 at four different compression levels. (Key: RE – Respiratory excursion, LA – 

Level of activity, STM – Skin tone motting, WB – Work of breathing, RR – Respiratory rate, T- 

Tachypnea, R – Retractions, MS – Mental status)    

Random 

Video Sample 

Feature Sets DL? 

(1-4) 

PL? 

(Yes/No) 

Comments 

Er15_500 RE 

LA 

STM 

WB 

RR 

T 

R 

MS 

2 

2 

1 

1 

1 

1 

1 

1 

No 

 

Unclear 

Er15_1000 RE 

LA 

STM 

WB 

RR 

T 

R 

MS 

3 

3 

3 

3 

3 

3 

3 

3 

Yes 

 

 

Er15_1500 RE 

LA 

STM 

WB 

RR 

T 

R 

MS 

4 

4 

4 

4 

4 

4 

4 

4 

Yes  

Er15_orig RE 

LA 

STM 

WB 

RR 

T 

R 

MS 

4 

4 

4 

4 

4 

4 

4 

4 

Yes  
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Table 9. Evaluation of Er17 at four different compression levels. (Key: WB – Work of breathing, RE – 

Respiratory excursion, A – Activity, R – Retractions, RR – Respiratory rate, T – Tachypnea, MS – Mental 

status)    

Video Sample Feature Sets DL? 

(1-4) 

PL? 

(Yes/No) 

Comments 

Er17_500 WB 

RE 

A 

R 

RR 

T 

MS 

2 

2 

1 

1 

1 

1 

1 

No 

 

Unclear 

Er17_1000 WB 

RE 

A 

R 

RR 

T 

MS 

3 

3 

3 

3 

3 

3 

3 

No 

 

- 

Er17_1500 WB 

RE 

A 

R 

RR 

T 

MS 

4 

4 

4 

4 

4 

4 

4 

Yes 

 

- 

Er17_orig WB 

RE 

A 

R 

RR 

T 

MS 

4 

4 

4 

4 

4 

4 

4 

Yes 

 

- 
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Table 10. Evaluation of Er19 at four different compression levels. (Key: R – Retractions, LA – Level of 

activity, WB – Work of breathing, MS – Mental status, RR – Respiratory rate, T – Tachypnea, HB – Head 

bobbing) 

Video Sample Feature Sets DL? 

(1-4) 

PL? 

(Yes/No) 

Comments 

Er19_500 R 

LA 

WB 

MS 

RR 

T 

HB 

2 

3 

2 

2 

3 

3 

3 

No 

 

“Fuzzy” 

Er19_1000 R 

LA 

WB 

MS 

RR 

T 

HB 

4 

4 

3 

4 

4 

4 

4 

No 

 

Clear 

Er19_1500 R 

LA 

WB 

MS 

RR 

T 

HB 

4 

4 

4 

4 

4 

4 

4 

Yes 

 

- 

Er19_orig R 

LA 

WB 

MS 

RR 

T 

HB 

4 

4 

4 

4 

4 

4 

4 

Yes 

 

- 

 

These tables list the particular feature sets that were visible to the specialist in the particular video, 

and the specialist’s opinion of their quality in both a DL and a PL sense. For example, in Table 7, for video 

er08, the features visible were WB, RR, T, MS, HB, and NF. 

In using the evaluations to quantify video quality, only about half of the database was used. This 

was done so as to leave the remaining videos for testing purposes. The videos used for video quality 

quantification are – er10, er12, er14, er16, er19, and er21. After averaging over these videos, and over all 

the experts, the required TBR values for DL for individual features were obtained, and are tabulated in 

Table 11. The expansions of the feature names are given in Appendix B. Averaging over experts’ feedback 

is justified because they were clustered close together, as opposed to being significantly different. Also, it is 
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interesting to observe the clustering of TBR values for DL for different medical features, irrespective of the 

race of the patient etc. Lighting conditions in all the videos were approximately the same. 

Table 11. Required TBR for DL of several medical features. 

Feature A CE G LA MR MS NF RR R 

TBR(kbps) 750 1000 1000 1000 1000 1000 750 1077 786 

Feature T WB HB RE STM SUB SUPRA INTER  

TBR(kbps) 923 750 1000 1000 1000 750 500 500  

 

 

Thus, choosing the maximum TBR value results in DL over all features, and this value is 

1077kbps. Similarly, the required TBR for PL, obtained after averaging was found to be 1400kbps. In 

practical encoders, a certain minimum bpp is required for coding. This minimum is set as the value for the 

required bpp for BE. Table 12 summarizes the required bpp for PL, DL and BE. These are the results for 

the quantification of video quality levels – 0.54bpp for PL, 0.42bpp for DL, and 0.10bpp for BE. 

Table 12. Summary of bpp values for PL, DL, and BE. 

Quality Level PL DL BE 

bpp 0.54 0.42 0.10 

 

Table 13 summarizes ROI PSNR values of video sequences when compressed uniformly at 

bitrates corresponding to PL and DL – 1400kbps and 1077kbps, respectively. It is interesting to note how 

closely these values are clustered together for the various video sequences because of the similarity in their 

content. By averaging over only the training videos, the PSNR_TH values corresponding to PL and DL are 

obtained as 35.10dB and 34.01dB, respectively. 

Table 13. PSNR values of video sequences at bitrates corresponding to DL and PL. 

Video Sample PSNR DL (dB) PSNR PL (dB) 

Er08 34.08 35.06 

Er10 33.87 34.76 

Er12 33.60 35.93 

Er13 34.48 35.70 

Er14 34.89 35.73 

Er15 33.85 34.60 

Er16 34.50 35.68 

Er17 34.18 34.95 

Er19 33.67 34.11 

Er20 34.21 35.45 

Er21 33.57. 34.40. 
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6.2 ROI Encoding – Elastic Non-Parametric and Parametric Bit Allocation 

ROI encoding of all videos was done in four different ways. The first two methodologies were based on the 

elastic non-parametric ROI bit allocation approach. The bpp values for PL, DL, and BE were used to do 

ROI encoding of all the videos at three different TBR – 500kbps, 750kbps, and 1000kbps. This was done in 

two ways: a) without any quality update techniques, b) with quality update techniques i.e. state transitions. 

In the third and fourth methodology, bit allocation was based on the parametric approach and the encoding 

was done at the same TBRs mentioned above. Specifically, in the third methodology, only a region’s 

weight was used for bit allocation, and the weights of the ROI and BKGRND were both equal to 0.5. In the 

fourth methodology, size, motion, and region weights were all given equal priority i.e. the priority weights 

were 1/3. The ROI and BKGRND weights were still equal to 0.5. In all of the above cases, the ROI was 

manually selected based on a priori knowledge of the ROI based on experts’ feedback. Typically, the size 

of the ROI varied from 25-50% of the total spatial resolution. 

In the following, the above four methodologies are compared in an objective sense using PSNR 

and bits allocated as measures. More importantly, they are compared in a subjective sense using expert 

evaluation. Since elastic non-parametric bit allocation uses expert information on video quality levels, 

videos used in the quantification (training videos) procedure are grouped into one class, and the remaining 

test videos are grouped into another class. 

Objective Comparison 

Videos er10, er12, er14, er16, er19, and er21 were used in the quantification of quality levels, but they are 

also ROI encoded. Videos er08, er13, er15, er17, and er20 are the test videos that are ROI encoded but 

were not used in the quantification of quality levels procedure. 

The following figures show the results after encoding video er08 at 500kbps, 750kbps, and 

1000kbps. Figure 26 shows ROI PSNR as a function of GOP number at 500kbps. ROI PSNR per frame 

was averaged over a GOP to obtain the PSNR for a GOP. The performance of the elastic non-parametric 

approach with quality updates is the best, followed by elastic non-parametric bit allocation without quality 

updates, then parametric bit allocation with equal priorities for size, motion, and region weights, and finally 

parametric bit allocation with only region weights.  
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The elastic non-parametric bit allocation curves are green and red in color, and where they exceed 

the PSNR threshold for the encoder’s state in the previous GOP, they overlap. At 500kbps, it turns out the 

encoder is in state 9 i.e. {ROI, BKGRND} = {DL, BE}. The corresponding threshold is 34dB. Thus, it can 

be seen that the green and red plots overlap when ROI PSNR exceeds 34dB. When it does not, the plots do 

not overlap because the encoder increases ROI bit allocation by transitioning to state 9’. 

The parametric bit allocation curves are blue and black, and in general they fall below the elastic 

non-parametric bit allocation curves because of the empirical choices for the feature parameters. In the two 

strategies chosen, one with equal priorities for different features, represented by the blue plot, and one with 

only region weights, represented by the black plot, the ROI and BKGRND were assigned equal weights of 

0.5. Thus, with the black plot, 50% of the bits per frame are allocated to the ROI, irrespective of ROI size, 

motion etc. With the blue plot, the allocation is more flexible, with some dependency (1/3
rd

) on size and 

motion as well. However, it turns out that in neither of these cases, the bit allocation to the ROI matches 

that of the elastic non-parametric scheme.  

Figures 27 and 28 show similar ROI PSNR plots at 750kbps and 1000kbps, respectively. At 

750kbps, the encoder is in state 9 i.e. {ROI, BKGRND} = {DL, BE}. The corresponding threshold is still 

34dB. The green and red plots overlap when ROI PSNR exceeds 34dB. When it does not, the plots do not 

overlap because the encoder increases ROI bit allocation by transitioning to state 9’. At 1000kbps, the 

encoder is in state 6 i.e. {ROI, BKGRND} = {PL, DL}. The corresponding threshold is 35.1dB. The green 

and red plots overlap when ROI PSNR exceeds 35dB. When it does not, the plots do not overlap because 

the encoder increases ROI bit allocation by transitioning to state 7. The ROI PSNR performance order is 

the same at each TBR i.e. 500kbps, 750kbps, and 1000kbps.   

Figures 29, 30, and 31 show BKGRND PSNR versus GOP number at 500kbps, 750kbps, and 

1000kbps, respectively. As expected, the order is reversed i.e. the performance of the elastic non-

parametric approach with quality updates is the lowest, followed by elastic non-parametric bit allocation 

without quality updates, then parametric bit allocation with equal priorities for size, motion, and region 

weights, and finally parametric bit allocation with only region weights has the highest BKGRND PSNR.  

It can be noted that the elastic non-parametric bit allocation curves are clustered somewhat close to 

each other, and the parametric bit allocation curves are clustered close to each other. However, there is a 
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significant PSNR difference between these two sets of curves. The green and red elastic non-parametric bit 

allocation curves overlap when ROI PSNR exceeds the threshold corresponding to the encoder’s state. 

However, when it does not, ROI bit allocation is increased in the following GOP, and BKGRND bit 

allocation is decreased. At 500kbps and 750kbps, the encoder transitions from state 9 to 9’, thus there is 

only a small decrease in BKGRND PSNR. At 1000kbps, the encoder transitions from state 6 to 7 i.e. 

BKGRND quality changes from DL to BE, therefore there is a significant decrease in BKGRND PSNR. 

BKGRND bit allocation in the two parametric cases is not very different, as will be seen in the following 

bit allocation plots. Furthermore, the bit allocation percentage is significant, compared to the elastic non-

parametric bit allocation case, which explains why the difference in BKGRND PSNR is small (the 

relatively flatter portions of a generic PSNR versus bitrate characteristic occur at higher bitrates where 

PSNR changes are relatively small).  

Figures 32, 33, and 34 plot bits allocated to the ROI versus GOP number at 500kbps, 750kbps, and 

1000kbps, respectively. Likewise, Figures 35, 36, and 37 plot bits allocated to the BKGRND versus GOP 

number at 500kbps, 750kbps, and 1000kbps, respectively. Consistent with their corresponding PSNR plots, 

ROI bit allocation increases from parametric bit allocation to elastic non-parametric bit allocation, 

irrespective of TBR, and BKGRND bit allocation decreases from parametric bit allocation to elastic non-

parametric bit allocation. Like the PSNR plots, the green and red curves overlap whenever ROI PSNR 

exceeds the threshold corresponding to the encoder’s state. One important observation is that ROI bit 

allocation is significantly greater in the elastic non-parametric case compared to the parametric case. 

However, the ROI PSNR plots do not reflect a corresponding significant difference. This, again, can be 

attributed to being in the flatter portions of a generic PSNR versus bitrate characteristic i.e corresponding to 

higher bitrates. On the other hand, BKGRND bit allocation is significantly lower in the elastic non-

parametric case compared to the parametric case. The BKGRND PSNR plots do reflect a corresponding 

significant difference. This can be attributed to being in the steeper portions of a generic PSNR versus 

bitrate characteristic. 

It must also be noted that with increasing bitrate, bits allocated to BKGRND increases with 

parametric bit allocation whereas it remains relatively constant with elastic non-parametric bit allocation. 

This emphasizes the important difference between these two bit allocation methods – with parametric bit 
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allocation, the bit allocation methodology is identical irrespective of bitrate, whereas with elastic non-

parametric bit allocation it is adaptive. 

The general nature of the above plots for the other videos, whether training videos or test videos, 

is similar to the ones above. This is not a surprising conclusion with parametric bit allocation, because the 

classification of a video as a training or test video is only with respect to elastic non-parametric bit 

allocation. Thus, it is a significant observation that the PSNR and bit allocation plots for ROI and 

BKGRND at 500kbps, 750kbps, and 1000kbps are behaviorally similar to the plots for the video er08. In 

other words, the results are similar for both training and test videos.  

 
Figure 26. ROI PSNR versus GOP number for er08 at 500kbps.  
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Figure 27. ROI PSNR versus GOP number for er08 at 750kbps.  

 

 
Figure 28. ROI PSNR versus GOP number for er08 at 1000kbps.  
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Figure 29. BKGRND PSNR versus GOP number for er08 at 500kbps.  

 

 
Figure 30. BKGRND PSNR versus GOP number for er08 at 750kbps.  
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Figure 31. BKGRND PSNR versus GOP number for er08 at 1000kbps.  

 

 
Figure 32. ROI bit allocation versus GOP number for er08 at 500kbps.  
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Figure 33. ROI bit allocation versus GOP number for er08 at 750kbps.  

 

 
Figure 34. ROI bit allocation versus GOP number for er08 at 1000kbps.  
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Figure 35. BKGRND bit allocation versus GOP number for er08 at 500kbps.  

 

 
Figure 36. BKGRND bit allocation versus GOP number for er08 at 750kbps.  
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Figure 37. BKGRND bit allocation versus GOP number for er08 at 1000kbps.  

 

  

Subjective Comparison 

In order to evaluate the usefulness of elastic non-parametric bit allocation and compare it with parametric 

bit allocation, all ROI based videos encoded using both elastic non-parametric bit allocation methods and 

both parametric bit allocation methods at 500kbps, 750kbps, and 1000kbps were evaluated by the medical 

experts who originally provided feedback on uniformly compressed videos. Table 14 shows the evaluation 

template provided to the experts. It is identical to the template for uniformly compressed videos (Table 3), 

except that in this case, the assessment of PL and DL apply to the ROI alone. 

Table 14. Evaluation template for ROI encoded videos. 

Random 

Video Sample 

Features ROI DL? 

(1-4) 

ROI PL? 

(Yes/No) 

Comments 

1-n RR 

OC 

WB 

…. 

   

 

For visual comparison, Figure 38 shows a frame representative of overall video quality of er08 

when encoded at 500kbps using both elastic non-parametric bit allocation methods and both parametric bit 

allocation methods. Likewise, Figures 39 and 40 show the same frames at 750kbps and 1000kbps, 

respectively. The ROI is indicated by a rectangular bounding box. At 500kbps and 750kbps, with 

parametric bit allocation, the ROI quality is poorer than with elastic non-parametric bit allocation. At 
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1000kbps, this difference is less perceivable. To illustrate the usefulness of ROI coding per se, it is useful 

to compare these pictures with pictures of the same frame obtained with uniform coding from Figure 22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   (a)      (b) 

 
   (c)      (d) 

Figure 38. Representative ROI encoded frame of er08 at 500kbps. (a) Parametric bit allocation – only 

region weights. (b) Parametric bit allocation – size, motion, and region weights. (c) Elastic non-parametric 

bit allocation without updates. (d) Elastic non-parametric bit allocation with updates. 
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   (a)      (b) 

 
   (c)      (d) 

Figure 39. Representative ROI encoded frame of er08 at 750kbps. (a) Parametric bit allocation – only 

region weights. (b) Parametric bit allocation – size, motion, and region weights. (c) Elastic non-parametric 

bit allocation without updates. (d) Elastic non-parametric bit allocation with updates. 
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   (a)      (b) 

 

 
   (c)      (d) 

Figure 40. Representative ROI encoded frame of er08 at 1000kbps. (a) Parametric bit allocation – only 

region weights. (b) Parametric bit allocation – size, motion, and region weights. (c) Elastic non-parametric 

bit allocation without updates. (d) Elastic non-parametric bit allocation with updates. 

 

 

Table 15 shows the completed evaluation template by an expert of video er08 at 500kbps, 

750kbps, and 1000kbps with each of the four adopted bit allocation methods. From the table, it can be 

noted that any TBR, there is a general decrease in values for ROI DL? from elastic non-parametric bit 

allocation approaches to parametric bit allocation approaches. A comparison with Table 7 also reveals an 

improvement in performance over the uniform compression case. 
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Table 15. Completed evaluation template of er08 at 500kbps, 750kbps, and 1000kbps when ROI encoded 

with both parametric bit allocation methods and both elastic non-parametric bit allocation methods.  

Elastic non-

parametric with 

updates 

Elastic non-

parametric 

without updates 

Parametric – Size, 

Motion, Weights 

Parametric – Only 

weights 

Video_TBR Features 

ROI 

PL? 

ROI 

DL? 

ROI 

PL? 

ROI 

DL? 

ROI 

PL? 

ROI 

DL? 

ROI 

PL? 

ROI 

DL? 

Er08_500 WB 

RR 

T 

MS 

HB 

NF 

Yes 3 

3 

3 

4 

4 

3 

Yes 3 

3 

3 

3 

4 

3 

Yes 3 

3 

3 

3 

3 

3 

No 2 

3 

2 

3 

3 

2 

Er08_750 WB 

RR 

T 

MS 

HB 

NF 

Yes 4 

4 

4 

4 

4 

4 

Yes 4 

3 

4 

3 

3 

4 

Yes 3 

3 

3 

4 

3 

4 

No 3 

3 

3 

3 

3 

3 

Er08_1000 WB 

RR 

T 

MS 

HB 

NF 

Yes 4 

4 

4 

4 

4 

4 

Yes 3 

3 

4 

4 

4 

4 

Yes 3 

3 

3 

4 

3 

4 

Yes 3 

3 

3 

3 

4 

4 

 

To gain an understanding of the general performance of the above four adopted bit allocation 

methods, the above feedback was considered for all the videos. These were then averaged to obtain a mean 

(µ) and standard deviation (σ) score for ROI DL? at 500kbps, 750kbps, and 1000kbps. Table 16 shows 

these values. With the elastic non-parametric bit allocation methods, at 500kbps and 750kbps, the ROI is 

expected to be of DL quality, and at 1000kbps, of PL quality. Since DL is expected irrespective of the 

particular medical feature, the features column does not appear in the table below. Since ROI PL? is 

answered with a Yes or No, it is displayed as a percentage in the table, representing the percentage score 

for an answer Yes to the question ROI PL? 

From the table, it can be noted that any TBR, there is a general decrease in mean values for ROI 

DL? from elastic non-parametric bit allocation approaches to parametric bit allocation approaches. With the 

elastic non-parametric approach without updates, the results are consistent with the encoder state at each 

TBR. For example, at 500kbps and 750kbps, the ROI is in state 9, corresponding to DL quality for the ROI. 

These are reflected in their corresponding mean ROI DL? values – 3.55 and 3.64, respectively. At 

1000kbps, the ROI is in state 6, corresponding to PL quality for the ROI. Since PL falls above DL in the 

quality hierarchy, the ROI is also expected to be of DL quality. This is reflected in its corresponding mean 
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ROI DL? value – 3.70. A performance improvement is seen with elastic non-parametric bit allocation with 

updates. At 500kbps, 750kbps, and 1000kbps, the mean ROI DL? values increase to 3.67, 3.78, and 3.79, 

respectively. On the other hand, with parametric bit allocation, the performance deteriorates. With 

parametric bit allocation using all feature information, the mean ROI DL? values at 500kbps, 750kbps, and 

1000kbps are reduced to 2.92, 3.08, and 3.25, respectively. With parametric bit allocation using only region 

weights, these are further reduced to 2.85, 3.05, and 3.17, respectively. The standard deviation values are 

indicative of the variability about the mean values. To illustrate the advantages of ROI coding per se, it is 

useful to compare the above values with those obtained with uniform compression at the same TBR (as was 

done in the quantification of quality levels step). It turns out that at 500kbps, the mean ROI DL? value is 

2.29, with a standard deviation σ of 0.57. At 1000kbps, mean ROI DL? is 2.94, and σ is 0.64. At 1500kbps, 

mean ROI DL? is 3.54, and σ is 0.61. 

ROI PL? values are indicated as percentages, and it is interesting to note its values at 500kbps as 

82% and 91%, with elastic non-parametric bit allocation without and with updates, respectively. At 

750kbps, the values are identical. These results are surprising because at both 500kbps and 750kbps, the 

ROI is expected to be of only DL quality, and not PL quality. A likely explanation for the above is the 

expert’s perception of the difference in quality between the ROI (as good) and the BKGRND (as bad). 

However, these did not happen with parametric bit allocation, where the values ranged between 45-65%. 

Again, to illustrate the advantages of ROI coding per se, it is useful to compared the above percentages 

with those obtained with uniform compression at the same TBR (as was done in the quantification of 

quality levels step). At 500kbps, the response to ROI PL? was Yes in only 18% of the cases. At 1000kbps 

and 1500kbps, these values were 45%, and 72%, respectively. 

Table 16. Averaged results for ROI PL? and ROI DL? at 500kbps, 750kbps, and 1000kbps with both 

parametric bit allocation methods and both elastic non-parametric bit allocation methods. 

Elastic non-

parametric with 

updates 

Elastic non-

parametric 

without updates 

Parametric – Size, 

Motion, Weights 

Parametric – Only 

weights 

TBR 

ROI 

PL? 

(%) 

ROI DL? 

(µ, σ) 

ROI 

PL? 

(%) 

ROI DL? 

(µ, σ) 

ROI 

PL? 

(%) 

ROI DL? 

(µ, σ) 

ROI 

PL? 

(%) 

ROI DL? 

(µ, σ) 

500 91 3.67, 0.71 82 3.55, 0.57 45 2.92, 0.68 54 2.85, 0.22 

750 91 3.78,0.53 82 3.64, 0.77 54 3.08, 0.55 45 3.05, 0.41 

1000 91 3.79,0.44 91 3.70, 0.59 64 3.25, 0.39 54 3.17, 0.44 

 

6.3 Summary of Results 
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To summarize, the above results show that the elastic non-parametric bit allocation algorithm performs 

better than the parametric bit allocation algorithm. The bpp required for DL, using the elastic non-

parametric bit allocation algorithm, was found to be 0.42bpp. This was found by medical expert feedback 

on uniformly compressed videos and validated by ROI encoding on ROI compressed videos. Thus, at 

500kbps, ROI encoded videos were DL, as compared to 1077kbps for uniformly encoded videos. The ROI 

in the above videos was user-specified and typically 25-50% of the total spatial resolution. This shows that 

ROI encoding with our proposed algorithms results in functional losslessness in video quality over bitrates 

corresponding to the wireless sweet spot i.e. the bitrate range corresponding to state-of-the-art mobile 

technologies.  
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CHAPTER VII 

CONCLUDING REMARKS 

7.1 Summary 

In this work, we developed an elastic non-parametric methodology for ROI bit allocation for video 

compression and transmission over VBR channels. This achieves two important goals – flexibility and 

adaptivity to user quality requirements, and maintenance of this efficiency even under hostile channel 

conditions such as limited bandwidth as well as bandwidth fluctuations. 

Although the particular application considered in this work is pediatrics based remote medical 

assessment, the algorithms developed are in general application independent, and even where they are 

application dependent, they may be easily extensible to other applications. The methods explored in this 

work may be broadly classified into two categories – parametric bit allocation, and elastic non-parametric 

bit allocation. Parametric bit allocation operates at the frame layer, and assigns bits to regions based on 

non-medical feature information such as size, motion, and region priority. Elastic non-parametric bit 

allocation is based on statistical information on allowable compression levels of medical features for 

perceptual clarity (PL) as well as diagnostic acceptability (DL). Based on the thresholds for this quality 

hierarchy, and the available bitrate estimate for the channel, the encoder occupies an optimal state. A state 

assignment assigns quality levels for the ROI and BKGRND based on the defined quality hierarchy, subject 

to first maximizing ROI quality, and then achieving the best possible BKGRND quality. In determining the 

encoder’s state, the encoder also determines the bits to be allocated to the ROI and BKGRND. An 

additional update algorithm to improve ROI quality based on the PSNR metric is also developed. 

The above methods were tested on medical videos filmed at the Medical College of Georgia, 

Augusta. From both an objective as well as subjective standpoint, elastic non-parametric bit allocation 

performed better than parametric bit allocation. In essence, elastic non-parametric bit allocation determines 

the required number of bpp for the ROI to achieve the desired quality level, coupled with an automatic 

update algorithm to improve ROI quality. On the other hand, parametric bit allocation makes the bpp 

assignment empirically, and is therefore likely to be inadequate compared to elastic non-parametric bit 

allocation. 
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To summarize, the research shows the usefulness of ROI processing as a means of achieving a 

gain (in a bits per pixel (bpp) sense) over uniform compression at the same bitrate. For example, if the ROI 

is coded at 0.4 bpp and occupies ¼ of the frame area, and the BKGND is coded at 0.1 bpp and occupies ¾ 

of the frame area, the average bpp for the complete frame is 0.175bpp. In other words, in a bpp sense, there 

is a gain of 2.3 relative to uniform compression at the same bitrate. It also shows how quantifying a notion 

of functionally lossless video quality – diagnostically lossless video quality in a video-based telehealth 

system, in a bits per pixel sense is useful from an applications and bitrate perspective. This is because 

uncompressed color video requires 12 bpp (with 8 bpp for luminance and subsampled color components), 

mathematically lossless color video requires about 4-6 bpp, and coding video at the lowest level of fidelity 

typically requires 0.1 bpp. Thus, there is a wide intermediate range that corresponds to bpp requirements 

for various applications, but these have not been quantified. In other words, it is unclear whether the 

requirement is closer to the lowest level of fidelity, or to the mathematically lossless level. This work has 

determined the answer to this question for the specific application of mobile telehealth as 0.4 bpp. Finally, 

the research shows how a combination of these two concepts to realize diagnostically lossless ROI video 

quality, is a viable enabler of mobile medical assessment achievable over bitrate limited wireless channels. 

The result of the research is to be regarded as an important proof-of-concept in a challenging 

interdisciplinary area. This thesis lays the scientific foundation for additional validation through prototyped 

technology, field testing, and clinical trials.   

7.2 Future Work 

More Extensive Testing with MCG 

The results presented in this research have not been statistically validated. For this purpose, many more 

training and test videos of patients are required, and also many more doctors to evaluate them. Also, the 

algorithms need to be tested with other video resolutions. Then, a prototype of the system may be built that 

can be tested on an actual wireless testbed. Following this, actual clinical trials of the ROI system may be 

performed. 

Extensions to H.264 (AVC) 

It must be noted that the 0.4 bpp value for DL is specific for the class of medical videos considered in this 

work and also the MPEG-2 digital video compression standard used to encode the videos. A smaller value 
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will result if a more compression efficient video standard is used. H.264 [44, 45, 46] is a state-of-the-art 

digital video coding standard that is identical to MPEG-4 Part 10 or Advanced Video Coding (AVC). It is 

known for its compression efficiency and also robustness to channel errors. It achieves its compression 

efficiency as a result of not one, but a host of incremental as well as significant improvements over the 

MPEG-2 standard. For example, it employs intra prediction, several inter prediction modes based on 

macroblock partitions and sub-partitions, ¼ pel motion estimation as opposed to just ½ pel motion 

estimation, context adaptive binary arithmetic coding (CABAC) in addition to variable length coding 

(VLC), an in-loop deblocking filter etc. It achieves its error resilience due to methods such as data 

partitioning (DP), redundant slices, and flexible macroblock ordering (FMO), reversible variable length 

coding (RVLC) etc. For these reasons, it is a strong candidate for video transmission over VBR wireless 

channels. 

Rate control methods in MPEG-2 and H.264 have some similarities but several differences. The 

similarities are the rate control hierarchy – GOP layer, followed by frame layer, followed by slice layer, 

and finally macroblock layer. The differences arise due to the plurality of prediction mode options available 

in H.264. This leads to the so-called chicken-and-egg dilemma in H.264, which is briefly described as 

follows. Mode decision in H.264 depends on the rate i.e. the bits generated as a result of encoding, which 

clearly depends on the quantization parameter (QP). The quantization parameter model is a quadratic one, 

which involves the bit budget and distortion measure (typically, the mean absolute distortion (MAD)). 

However, the MAD depends on the chosen mode. Thus, there is a cyclical relationship which needs to be 

broken in order to arrive at a solution. Practical H.264 encoders typically adopt one of two approaches to 

achieve this – quantization parameter prediction e.g. previous frame average QP, or MAD prediction e.g. 

previous frame MAD. However, the chicken-and-egg dilemma does not affect our algorithms because our 

work is more concerned with bit allocation to regions at the frame or GOP level, and does not explicitly 

deal with QP calculation.  

Efficient Semi-Automatic ROI Segmentation and Tracking 

In our work, we assumed the ROI was known a priori, based on medical experts’ requirements on 

the diagnostically important regions in the video scene. Furthermore, for convenience, the ROI was 

assumed fixed from frame-to-frame, and whenever necessary, the ROI was altogether changed to a new set 



 69 

of coordinates. This assumption is justified based on the fact that the camera was held still throughout the 

filming period, with some zooming. In other words, the field of view captured by the camera was more or 

less fixed. Furthermore, the motion of the object of interest i.e. a baby patient, was usually limited, and this 

was consistent with our assumptions. 

However, the above assumption can be relaxed to accommodate a scenario where the ROI may 

move moderately or even significantly from frame-to-frame e.g. a sudden turn of a baby’s face. In this case, 

with a fixed ROI assumption, the actual object of interest may move out of the ROI and become part of the 

BKGRND, and thus get coded at lower quality than expected. In order to avoid this, ROI tracking needs to 

be incorporated into the system. 

There are several methods in the literature to perform ROI tracking based on color and/or motion 

information. For example, one class of motion methods based on projection assumes the object to be 

completely rigid and estimate a pair of translational motion vectors for the ROI from frame to frame. 

Another class relaxes the rigidity assumption, and estimates a new boundary based on motion vectors of 

individual macroblocks that comprise the ROI. The disadvantage of this scheme is its heavy computational 

complexity, although motion vectors generated in the encoding process itself may be used to perform the 

tracking. A third simpler class only projects the motion vectors of the boundary macroblocks, but this 

approach fails if there is occlusion.  

It is assumed that the selection of the ROI is the user’s task, and is performed at the decoder end. 

In other words, the user selects the ROI whenever he chooses to, or whenever he/she considers ROI 

tracking to be inefficient. The size and shape of the ROI is transmitted over a feedback channel from the 

decoder to the encoder. As already mentioned, in our work, we assumed the ROI size and shape as known a 

priori. In order to reduce delays, predefined ROI templates i.e. fixed sizes and shapes may be explored, so 

that this information is quickly transmitted to the encoder. From the standpoint of compression, it may be 

worthwhile to switch to a new user-defined ROI at the beginning of a new GOP i.e. at the start of a new I 

frame. Otherwise, the new ROI macroblocks will be predicted from their corresponding motion 

compensated macroblocks in reference frame(s) which may belong to the BKGRND, and thus may be of 

lower quality. This means that the prediction will be poor, and this will affect compression because larger 

macroblock residues require greater bits to encode.  
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Channel Issues – Error Resilience and VBR Issues 

In our work, we operated under the assumption of no packet losses. However, a signal received 

over a wireless channel exhibits considerable fades in the signal strength. Unlike a wire-line channel 

wherein the signal strength is relatively constant and the errors in reception are mainly due to the additive 

noise, the errors in a wireless channel are predominantly due to the time varying signal strength caused by 

the multi-path propagation from local scatters. Thus, the errors in a wireless channel tend to be bursty, with 

the duration of bursts being a function of the receiver velocity and the nature of the time varying 

environment.  

For two-way video communication over a narrow-band wireless channel, as we have seen, the 

video encoder applies motion-compensation and variable length coding to reduce the temporal and spatial 

redundancies. This increases the compression ratio but makes the signal susceptible to transmission errors. 

Even a single-bit error may cause the error to propagate over many frames because of the dependencies 

introduced by motion-compensation and variable length coding. The degree of severity depends on the 

location of the error(s). 

To improve video quality under transmission errors, error-resilience schemes can be performed at 

the source or channel coding stages. Various source coding schemes [47] like reversible variable length 

coding (RVLC) and multiple description coding (MDC) have been proposed. As already mentioned, H.264 

introduces additional error resilience tools such as DP, FMO, and redundant slices. Another approach is to 

protect the integrity of the bit-stream by using channel coding schemes, such as forward error correction 

(FEC) codes or automatic retransmission request (ARQ) schemes. Yet another approach concerns the 

decoder, which assumes the responsibility of remedying as much as possible the effects of errors and 

removing visually annoying artifacts. In a ROI-BKGRND video coding scheme such as ours, error 

resilience is more important for the ROI than the BKGRND. However, in a medical application, ROI error 

fixes using decoder-based schemes such as region-similarity based matching may be unacceptable. Such 

fixes are acceptable for the BKGRND. Thus, other robust approaches are required that do not compromise 

the diagnostic value of the ROI. One approach is to provide better protection against errors in the ROI as 

opposed to the BKGRND [48]. 



 71 

Delay considerations and buffer design are especially crucial for wireless video transmission. 

Figure 41 [49] shows a generic wired-wireless system for video transmission. A video source is connected 

to a wireless access point through a high bandwidth, low error rate channel. Therefore, the transmission 

between the video source and the access point may be assumed to be error-free. The video client is 

connected to the wireless access point through a wireless channel. The video transcoder is located at the 

access point and dynamically adapts the video transmission rate for the wireless channel. The encoder 

buffer is required to smooth out the mismatch between the encoding rate and the wired channel rate. The 

transcoder buffer is required to smooth out the mismatch between the transcoding rate and the wireless 

channel rate. The decoder buffer is required to smooth out the differences between the wireless channel rate 

and the decoding rate. 

 

 
Figure 41. Wireless video communications system with transcoder. 

 

The Ds represent the delay each frame experiences at various stages in the above system. If the 

overall delay is constant, the system will function normally as long as the decoder buffer does not 

underflow, which guarantees that the decoder has received the data of a video frame before it is scheduled 

to be displayed. To achieve this, however, the buffer sizes must be chosen appropriately, and it turns out, as 

we intuitively expect, that there is dependency between required buffer size and available channel bitrate 

[47, 49, 50, 51, 52, 53]. The available channel bitrate is thus necessary for this purpose as well as for rate 

control. Channel models [47, 49, 50, 52, 53] are necessary to estimate expected values of rate for following 

frames or GOPs. 
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APPENDIX A 

 

 MEDICAL EXPERT EVALUATIONS OF UNIFORMLY COMPRESSED  

 

VIDEOS 
 

Table 18 lists the evaluations of 7 videos by expert 1 which were not included in the main document due to 

space constraints. The key medical features are listed in Table 17. 

Table 17. List of key medical features. 

A-Activity RR-Respiratory Rate 

CE-Chest excursion R-Retractions 

G – Gasping T-Tachypnea 

LA-Level of activity WB-Work of breathing 

MR – Mild Retraction HB-Head bobbing 

MS-Mental status RE-Respiratory excursion 

NF-Nasal flaring STM-Skin tone mottling 

 

 

Table 18. Medical expert evaluations of 7 uniformly compressed videos. 

Video Sample Feature Sets DL? Comments PL? 

Number 

(NAME_TBR)   (1-4)   (Yes/No) 

13_1000 WB 3 Difficult to clearly define No 

 RR 2   

 T 3   

13_500 T 3 

Not clear image, but good 

for No 

  WB 3 grow findings   

 RR 1   

13_1500 WB 2 Non-diagnostic No 

  RR 3     

 T 3   

13 original WB 3   Yes 

  RR 3   Yes 

  T 3   Yes 

14_1000 MS 3 

Needs better lighting for 

wide Shate Yes 

   WB 3  Yes 

 RR 1   

14_500 WB 3 

Very pixilated, few fine 

details No 

 MS 1   

 RR 1   

Table 18 Continued 

14_1500 MS 4 Appears diagnostic Yes 

  WB 4   Yes 

  RR 4   Yes 

14 original WB 4 Noted work of breathing Yes 
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by noting  

  RR 4 

movement of the patient's 

gown. Not  No 

  MS 4   Yes 

16_1000 WB 2    No  

 RR 2   

 T 2   

16_500 T 3 

Unclear image, poor fine 

details No 

  WB 1     

 RR 1   

16_1500 WB 2 

Not able to see fine 

features No 

  RR 3 Resp rate Diagnostic Yes 

 T 3   

16 original WB 4 

Patient facing away on NF 

and MS Yes 

 RR 4   Yes 

  T 4   Yes 

12_1000 T 3 Remote lighting is poor  No 

 R 2     

  WB 3     

12_500 R 3 

Not a clear, but an 

adequate Yes 

 T 3 image Yes 

  WB 3   Yes 

12_1500 R 3 Poor light 

Good, but not 

perfect 

 T 4   Yes 

  WB 3   No 

12 original WB 4   Yes 

 R 4   Yes 

 T 4   Yes 

21_1000 R 4 Good clip Yes 

 A 4   Yes 

  MS 4   Yes 

 T 4   

21_500 R 3 Adequate detail Yes 

 A 3   Yes 

 MS 3   Yes 

  T 3   Yes 

21_1500 R 4 

Clear enough for 

diagnostic Yes 

 MS 4 purposes Yes 

  A 4   Yes 

 T 4   

Table 18 Continued 

21 original R 4   Yes 

  A 4   Yes 

  MS 4   Yes 

  T 4   Yes 
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10_1000 MS 4 Clear Yes 

  NF 4 Clear Yes 

 A 4   

10_500 MS 3 Fuzzy No 

  A 3   No 

  NF 2   No 

10_1500 MS 4 Diagnostic Yes 

  NF 4   Yes 

 A 4   

10 original NF 4 

Focuses on the 

face;difficult to get Yes 

  MS 4 an overall impression Yes 

 A 4   

20_1000 R 3 

Clip is not clear, but it is 

possible Yes 

  T 3 

to define details in the 

image   

  MS 3     

20_500 R 2 Pixilated, not diagnostic No 

  T 2   No 

 MS 1   

20_1500 R 4 Diagnostic Yes 

  T 4 Diagnostic Yes 

  MS 4 

Gives impression, but not 

diagnostic Good 

      for mental status   

20 original R 4 Facing away Yes 

  T 4   Yes 

  MS 4   Yes 
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