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SUMMARY 

This thesis presents a Doherty Radiator architecture that explores multi-feed antennas to 

achieve an on-antenna Doherty load modulation network and demonstrate high-speed high-

efficiency transmission of wideband modulated signals. On the passive circuits, we exploit 

the multi-feed antenna concept to realize compact and high-efficiency on-antenna active 

load modulation for close-to-ideal Doherty operation, on-antenna power combining, and 

mm-Wave signal radiation. Moreover, we analyze the far-field transmission of the 

proposed Doherty Radiator and demonstrate its wide Field-of-View (FoV). On the active 

circuits, we employ a GHz-bandwidth adaptive biasing at the Doherty Auxiliary power 

amplifier (PA) path to enhance the Main/Auxiliary Doherty cooperation and appropriate 

turning-on/-off of the Auxiliary path. A proof-of-concept Doherty Radiator implemented 

in a 45nm CMOS SOI process over 62-68GHz exhibits a consistent 1.45-1.53× PAE 

enhancement at 6dB PBO over an idealistic class-B PA with the same PAE at P1dB. The 

measured Continuous-Wave (CW) performance at 65GHz demonstrates 19.4/19.2dBm 

PSAT/P1dB and achieves 27.5%/20.1% PAE at peak/6dB PBO, respectively. For single-

carrier 1Gsym/s 64-QAM modulation, the Doherty Radiator shows average output power 

of 14.2dBm with an average 20.2% PAE and -26.7dB EVM without digital predistortion. 

Consistent EVMs are observed over the entire antenna FoV, demonstrating spatially 

undistorted transmission and constant Doherty PBO efficiency enhancement. 
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CHAPTER 1: INTRODUCTION 

Radiators in modern mm-Wave communication transmit high-speed modulated signals 

with large peak-to-average power ratios (PAPR) for high spectrum efficiency and data rate 

[1]-[9]. This poses increasingly stringent requirements on power amplifiers 

(PAs)/transmitters (TXs) for power back-off (PBO) efficiency, linearity, and modulation 

bandwidth. 

Popular PA/TX architectures for high PBO efficiency include Envelope Tracking (ET), 

Outphasing, Doherty, and their variants. Using an envelope detector and supply 

modulators, the ET PA modulates the supply voltage to track the input power level [10]-

[13]. However, the ET PA’s PBO efficiency is practically limited by the power efficiency 

and dynamic range of the supply modulator. Designing high-efficiency supply modulators 

with GHz modulation is challenging in practice, and most ET PAs can only handle 

<200MHz modulation bandwidth [10]-[13]. The outphasing PA, on the other hand, 

vectorially combines constant-envelope phase-modulated PAs for varying envelopes [14]-

[20]. It demands extensive digital signal-processing (DSP) and digital pre-distortion (DPD) 

to generate phase-modulated outphasing signals with a typical ×5~7 bandwidth expansion 

[21][22], resulting in significant computation power and low system efficiency for GHz 

modulations. 

In contrast, the Doherty PA employs Main/Auxiliary PAs to achieve active load 

modulation and an “RF-in-RF-out” solution that supports wideband modulations with low 

DPD overhead [23]-[41]. Several mm-Wave Doherty PAs have been reported at 60-80GHz 

[39][40]. However, these mm-Wave Doherty PAs only have marginal PAE enhancement 
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over an idealistic class-B PA, mainly due to non-ideal and lossy Doherty output networks 

and imperfect Main/Auxiliary PA cooperation. 

We propose a Doherty Radiator architecture that explores an on-chip multi-feed antenna 

as part of the Doherty output network to achieve antenna-based close-to-ideal load 

modulation and high-speed high-efficiency transmission of large PAPR mm-Wave signals 

without any DPD. Additionally, we employ a GHz-bandwidth adaptive biasing circuit in 

the Auxiliary path to radically enhance Main/Auxiliary cooperation and thus improves the 

PBO PAE over the entire operation frequency. Moreover, contrary to the reported spatial 

Outphasing TX [42] or spatial IQ combining TXs [43] which are highly directional and 

support undistorted modulations over limited transmission angles, the proposed Doherty 

Radiator achieves high-speed and undistorted modulation over the entire antenna Field-of-

View (FoV), easing TX/RX alignment in practical mm-Wave communication systems. 

The thesis is organized as follows. Chapter 2 reviews the parallel and series Doherty 

topologies. Chapter 3/4 present the proposed Doherty Radiator with its design approach, 

theoretical derivation, and simulations. Chapter 5 demonstrates a proof-of-concept 62-

68GHz Doherty Radiator in a 45nm CMOS SOI process. Chapter 6 shows the measurement 

results, and chapter 7 presents the conclusion of the thesis.  
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CHAPTER 2: DOHERTY PA ARCHITECTURES 

To achieve PAs with high PBO efficiency, William H. Doherty in 1936 proposed two 

generic architectures that use either parallel or series power combiners to construct active 

load modulation networks [23] (Fig. 1). We summarize the differences of series and 

parallel Doherty architectures on their circuit realization, matrix representation, and active 

load modulation characteristics in Fig. 2. 

 

Figure 1. Generic active load modulation PA architectures proposed by William H. 

Doherty [23] with (a) parallel Doherty architecture, (b) series Doherty architecture, 

and (c) desired Doherty current-voltage trajectory.  

2.1 Parallel and Series Doherty PA Architecture 

A two-port parallel combiner exhibits a non-singular [Z] matrix with its voltage 

relationship V1 = V2. For Doherty PA operation below 6dB PBO, port 2 is open-circuited 

and port 1 sees an impedance Zo. At 0dB PBO, i.e., maximum output power, both ports are 

on and contribute equally to the combiner, and thus each sees a load impedance of 2Zo. To 

complete the parallel Doherty structure, an additional λ/4 impedance inverter with 2Zo 
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characteristic impedance is added to port 1 so that the Main PA sees a reduced load 

impedance versus output power (4Zo at or below 6dB PBO and 2Zo at 0dB PBO), which 

extends the Main PA linearity and maximizes its efficiency, achieving the desired parallel 

Doherty operation [Fig. 2(b)]. 

 
 

 

Figure 2.  (a) Comparison between parallel and series combiner (b) Doherty 

architecture for parallel combiner (c) Doherty architecture for series combiner. 

On the contrary, a two-port series combiner demonstrates a non-singular [Y] matrix with 

its current relationship I1=I2. Below 6dB PBO, port 2 is short-circuited such that port 1 sees 

the total load impedance of Zo. At 0dB PBO, both ports are on and each should see a load 

of Zo/2 for symmetrical power driving. By duality, forming a series Doherty architecture 
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requires adding a λ/4 impedance inverter with characteristic impedance of Zo/2 at port 2 

[Fig. 2(c)]. At deep PBO (or below 6dB PBO), the λ/4 line converts the open-circuited 

termination of the turned-off current-mode Auxiliary PA to a short termination at port 2 of 

the series combiner so that the Main PA sees a load impedance Zo. At 0dB PBO, both Main 

and Auxiliary PAs see a Zo/2 load for symmetrical power driving. Overall, from deep PBO 

to 0dB PBO, the Main PA load impedance decreases from Zo to Zo/2, while the Auxiliary 

PA load reduces from ∞ to Zo/2, demonstrating the desired series Doherty operation [Fig. 

2(c)]. 

2.2 Challenges of Doherty PA Implementation at Mm-Wave Frequencies 

 

Figure 3. Implementation of the series power combiner by employing either 

transformers or transmission lines. 

Compared to the parallel combiner that intrinsically scales up the load impedance, the 

series combiner naturally scales down the load, which is more appealing for voltage-limited 

silicon process. However, at mm-Wave frequencies, implementation of a series combiner 

entails practical challenges. To realize the [Y] matrix of the series combiner, commonly-
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used techniques include transformer-based and transmission line-based (T-line-based) 

implementations (Fig. 3). The transformer-based approach utilizes two or more coils to 

share the magnetic flux in series for power combining [44] [45]. At mm-Wave frequencies, 

the transformer series combiners generally exhibit strong coil-to-coil capacitive coupling, 

resulting in imperfect balancing and severely compromised series combiner [Y] matrix 

behavior. On the other hand, the T-line-based structures involve two λ/4 lines that 

inherently demand an extensive area and do not naturally support differential PA 

implementations. Overall, the above challenges limit implementations of efficient series 

Doherty output network at high mm-Wave frequencies. 
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CHAPTER 3: ON-ANTENNA DOHERTY ARCHITECTURE 

At high mm-Wave frequencies, antenna sizes are often comparable to active circuits. 

Conventional off-chip antennas would need packaging technologies with fine feature sizes 

and low parasitic effects and signal loss. Thus, directly integrating antennas on-chip with 

front-end circuits becomes a viable option at high mm-Wave regime. Moreover, this close 

antenna-electronics co-design opens the door to various circuit topologies to achieve 

unprecedented performance[46]-[60]. 

3.1 Proposed On-Antenna Series Combiner Structure 

 

Figure 4. (a) Single-feed wire loop antenna (b) Proposed multi-feed antenna 

structure (c) Standing wave current distribution. The blue lines represent the 

standing-wave current distribution inside the antenna. 

In this work, we leverage this concept of antenna-electronics co-design and exploit a multi-

feed antenna [55][56] to realize a mm-Wave Doherty Radiator. On fully integrated silicon, 
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the proposed network performs signal-processing of the mm-Wave Si PA outputs to 

simultaneously achieve on-antenna power combining, radiation, and Doherty active load 

modulation with high-efficiency and high-linearity. As a specific example, a resonant 

multi-feed one-λ wire loop antenna is explored to construct a series Doherty output network 

(Fig. 4). Starting from a conventional single-feed loop antenna [Fig. 4(a)], we open a new 

symmetrical feed at the opposite side of the loop to form the multi-feed antenna structure 

[Fig. 4(b)]. At resonance, the standing wave current distribution is formed inside the loop 

such that the currents peak at two input locations with the same magnitude and phase (I1 = 

I2), while the current nulls happen at the middle nodes A and B (IA=IB=0) [Fig. 4(c)]. 

 

Figure 5. [Y] matrix derivation of the proposed multi-feed structure. 

The multi-feed structure is inherently a passive, linear, and reciprocal two-port electrical 

network, so it can be analyzed through its [Y] matrix (Fig. 5). The Y-parameters Y11 and 

Y21 can be derived by exciting a voltage Ve at port 1 and assuming a short-circuited 

termination at port 2. With this short termination condition, the multi-feed structure now 

resembles a single-feed loop antenna. Under the excitation voltage Ve, the current I1 equals 

Ve/Zrad, where Zrad is the radiation impedance of the single-feed antenna. Since the standing 
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wave current distribution is formed inside the loop, the magnitude and phase of current I2 

equals to that of current I1, and thus I2 = Ve/Zrad. Therefore, we will have 

𝑌11  𝑌21  1/𝑍𝑟𝑎𝑑 . (1) 

Similarly, the Y-parameters Y22 and Y12 can be derived based on symmetry:  

𝑌22  𝑌12  1/𝑍𝑟𝑎𝑑 (2) 

The antenna’s complete [Y] matrix is thus mathematically identical to an ideal series power 

combiner: 

 𝑌    
𝑌𝑜 𝑌𝑜

𝑌𝑜 𝑌𝑜
 (𝑤ℎ𝑒𝑟𝑒 𝑌𝑜  1/𝑍𝑟𝑎𝑑), (3) 

indicating their electrical equivalency and therefore a multi-feed one-λ wire loop antenna 

can be employed as an ideal series power combiner at its resonance frequency. 

3.2 EM Implementation of the Proposed On-Antenna Doherty PA Architecture 

 

Figure 6.(a) EM model of the on-chip multi-feed one-λ wire loop antenna. (b) 

Detailed metal stack-up for the antenna design. 

Figure 6(a) illustrates the 3D EM model of the on-chip multi-feed antenna, while Figure 

6(b) depicts the metal stack used in this design. The antenna is designed on the 4µm 
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Aluminum layer. In this work, we further shape the loop antenna ground such that it 

exhibits double resonance for bandwidth extension [60]. The antenna occupies 

650×650µm2 with 10µm trace width and 35µm ground separation. The simulated radiation 

efficiency is 83% on a standard high resistivity silicon provided by GlobalFoundries 

advanced SOI processes. Figure 7 depicts the simulated [Y] matrix of the multi-feed 

network. Dual resonance frequencies occur at 60GHz and 70GHz, resulting in relatively 

constant Real and Imag. [Y] parameters over 62-68GHz. Across the entire antenna 

bandwidth, Real(Y11) = Real(Y21) and Imag.(Y11) = Imag.(Y21) ≈ 0, verifying the desired 

[Y] matrix response. The simulation matches well with the theoretical prediction and 

validates the expected series combiner response of the on-chip multi-feed antenna 

structure. 

 

Figure 7. Simulated [Y] matrix of the proposed on-chip multi-feed antenna. The 

corresponding parallel impedance values are shown on the right y-axis. 
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Figure 8.(a) T-line and CLC equivalent structures. (b) Impedance inverting 

networks as capacitively-loaded T-Line. 

 

Figure 9. (a) Schematic of the proposed Doherty Radiator (b) 3D EM model of the 

proposed Doherty structure. 
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[Fig. 8(a)], the impedance inverting network can be designed as a capacitively-loaded T-

line to ensure its short electrical length for size reduction [Fig. 8(b)]. Figure 9 depicts the 

overall schematic and 3D EM model of the proposed Doherty Radiator. The differential 

Main PA directly connects the on-chip antenna while the differential Auxiliary PA directly 

connects to the impedance inverting network with no additional impedance transformation 

network. Shunt inductors provide supply feeding and resonate out the Main/Auxiliary PA 

output capacitors. 

3.3 Advantages of the Proposed Structure 

 

Figure 10. Simulated active load modulation response of the proposed Doherty 

structure at 65GHz. 

The proposed architecture offers several advantages. First, the antenna-based Doherty is 

inherently a low-loss power combining structure, as on-antenna power combining is 

typically less lossy than conventional power combining methods [53]-[58]. Second, the 

antenna-electronics co-design substantially simplifies on-chip passive networks. Typical 

series Doherty architectures demand transformer-based or T-line-based series combiners. 
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Meanwhile, the Doherty Radiator merges such area-consuming circuits into the antenna, 

eliminating additional passives and more importantly their loss. Third, the Doherty 

Radiator demonstrates excellent signal-processing accuracy. The derived [Y] matrix 

indicates that the multi-feed antenna is electrically equivalent to a differential series-

combiner, while using top thick metal layers to construct on-chip antennas minimizes 

process variations in practice. Overall, we achieve a close-to-ideal Doherty active load 

modulation by antenna-electronics co-designs (Fig. 10). 
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CHAPTER 4: FAR-FIELD TRANSMISSION AND DESIGN 

CONSIDERATIONS 

4.1 Design Considerations of Multi-Feed Antenna 

 

Figure 11. Transmitter with multi-feed antenna architecture and far-field loads 

Multi-feed radiators do not follow the conventional approach of delivering power to either 

a fixed 50Ω impedance or a single-input antenna. Instead, transmitted power is distributed 

to the multiple antenna feeds to perform on-antenna signal processing and is finally 

received by far-field receiver antennas. A generalized figure is shown in Fig. 11. 

Conventional terminal circuit parameters such as output power or large-signal linearities 

(AM-AM, AM-PM) are less meaningful at the antenna multi-feeds, since the transmitted 

signals often exhibit dissimilar magnitudes/phases and have not performed on-antenna 

signal processing at those feed terminals. To resolve this ambiguity, we expand the 
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idealities in free-space propagation and communication channel, quantifying the large-

signal AM-AM and AM-PM linearities of the entire radiator/transmitter chain. 

Additionally, a far-field receiver and the Friis transmission equation can be used to derive 

the radiator output power given the path loss, polarization, and TX/RX antenna gains. 

4.2 Doherty Radiator Analysis 

We apply these considerations to characterize our proposed Doherty Radiator. It is worth 

noting that the driving conditions in the Doherty Radiator varies versus the PBO level. At 

deep PBO, the Auxiliary PA turns off, thus only the Main PA delivers power to the antenna. 

During the Doherty operation at medium/low PBO, the Auxiliary/Main PA power ratio 

gradually increases. Eventually, at 0dB PBO, both Main/Auxiliary PAs contribute the same 

amount of power to the Doherty Radiator. This varying driving condition causes re-

distribution and superposition of on-antenna radiation currents, which is different from 

previously reported multi-feed radiators with fixed antenna’s driving condition (in-phase 

equal-magnitude signals at all feeds) across PBO levels [53]-[57].  

 

Figure 12. Simulated current distribution of the multi-feed antenna at (a) deep PBO 

(b) 3dB PBO (c) 0dB PBO. 
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To maintain large-signal linearity at far-field receivers, the radiation pattern/gain of the 

Doherty Radiator must remain the same across the Doherty operation over the entire 

antenna FoV. Otherwise, spatially dependent AM-AM/AM-PM nonlinearity will appear 

and corrupt the demodulated signals. Figure 12 depicts the simulated current distribution 

of the multi-feed antenna at deep PBO, 3dB PBO, and 0dB PBO, where the Auxiliary path 

is completely turned off, intermediately turned on, and completely turned on, respectively. 

We observe a standing-wave current distribution inside the loop, where current peaks are 

at the feeding locations and current nulls are at the middle-nodes A &B. The simulated 

current distributions are mostly identical, suggesting a stable radiation pattern of the 

proposed structure during the Doherty active load modulation. 

 

Figure 13. (a) 3D EM simulation of the Doherty Radiator’s far-field transmission (b) 

Simulated amplitude and phase responses at far-field. 
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is at the boresight main lobe (φ = 0°, θ = 180°) and the other is at the non-boresight direction 

(φ = 0°, θ = 225°). Both dipoles are terminated with their matched loads of 78Ω and the 

Doherty Radiator is driven by idealistic class-B linear Main/Auxiliary PAs to quantify the 

AM-AM/AM-PM nonlinearity only due to the radiator. With the desired Doherty 

Main/Auxiliary cooperation, we observe excellent large-signal linearity at the two far-field 

dipoles with very similar <0.2dB AM-AM and <1.5° AM-PM variations. The far-field 

simulation validates that the multi-feed Doherty Radiator adds minimal large-signal non-

linearity to the overall TX/RX wireless link even with varying Main/Auxiliary driving 

condition across the Doherty operation. 
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CHAPTER 5: DOHERTY RADIATOR DESIGN 

The top-level schematic of the Doherty Radiator is shown in Fig. 14. It consists of an 

antenna-based Doherty output network (Chapter 4-5), symmetric Main/Auxiliary PAs, a 

high-speed adaptive biasing at Auxiliary path, and a 90° coupler input feed.  

 

Figure 14.Top-level schematic of the proposed mm-Wave Doherty Radiator. 

5.1 Power Amplifier Unit Cell Design 

The Main/Auxiliary PAs comprise a common source Driver and a cascode PA (Fig. 15). 
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stage, transformers are utilized as impedance matching networks. The single-ended input 
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to resonate out the PA output parasitic capacitance and provide supply feeding. Unlike 

many differential PA designs that use output baluns, the Doherty Radiator employs 
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eliminating the need for lossy baluns and further improving the balancing of the output 

stage. 

 

Figure 15. Schematic of the identical Main/Auxiliary PAs. 

5.2 High-Speed Adaptive Biasing Circuit 

Differential Doherty operation demands the Main/Auxiliary PA output currents to follow 
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Figure 16. (a) Adaptive biasing for PA stage (b) Undesirable Auxiliary PA turn-on. 

 

Figure 17. (a) Schematic of the adaptive biasing circuit (b) Adaptive biasing voltage 

as a function of input power. 
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In addition, the adaptive biasing circuit must be sufficiently fast to support high-speed 

modulation. As the AM modulation bandwidth is typically ×3~5 that of the complex 

modulation, the bandwidth of the adaptive biasing must be at least 3GHz to accommodate 

1Gsym/s modulated signal. In this work, the simulated bandwidth of the adaptive biasing 

circuit is ~5GHz. 

5.3 Input Feeding Network 

 

Figure 18. Input network of the Doherty Radiator to generate two input signals with 

90° phase difference. 

An on-chip 50Ω 90° coupled line generates the Main/Auxiliary input signals. The coupled 

line directly feeds the 50Ω Main/Auxiliary PA inputs by its through/coupled ports 

respectively. Both feed lines have the same length to ensure the desired 90° phase 

difference. The coupler isolation port is terminated with 50Ω to provide isolation between 

the Main and Auxiliary PAs (Fig. 18). This isolation further enhances the stability of the 

Doherty Radiator. 
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CHAPTER 6: MEASUREMENT RESULTS 

6.1 Chip Fabrication 

 

Figure 19. Die micrographs of the Doherty Radiator, antenna test structure, and 

photos of the flip-chip packaged PCBs. 

As a proof-of-concept, the 62-68GHz Doherty Radiator is fabricated in GlobalFoundries 

45nm CMOS SOI process with trap-rich high resistivity substrate (>200 Ω∙cm) for low-

loss on-chip antennas [61]. The chip is 1.7×1.9mm2 including the on-chip antenna and pads. 

A separate antenna test structure in the same process is used for antenna stand-alone 

characterization. Both the Doherty Radiator and the test structure are flip-chip packaged 

on a Rogers CLTE-ATTM laminate to perform back-side radiation. With considerably 

higher permittivity (~12) than air or PCB (~1-3), the silicon substrate traps most of the 

electric fields and radiated power to the back of the chip, leading to backside radiation with 

simulated back-to-front ratio of 3.3. The PCB has a ground opening in all the layers 



 23 

underneath the chip. Southwest end-launch connectors are used to feed the mm-Wave input 

signals. Figure 19 shows the micrographs of the Doherty Radiator, antenna test structure, 

and photos of the flip-chip packaged PCBs. 

6.2 Continuous-Wave (CW) Measurement 

 

Figure 20. CW measurement setup. 

 

Figure 21. (a) Power distribution network to characterize the antenna gain at peak 

output power (b) Back-to-back test structure to measure passive loss of the antenna 

feeding network. 
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Figure 20 depicts the CW measurement setup. The CW input signal is generated from a 

VDI V-band source, amplified by an external amplifier, monitored by a 3dB coupler with 

power sensor, and applied to the Doherty Radiator chip input. Then the signal is amplified 

and radiated by the Doherty Radiator chip. At far-field (d = 0.8m), the CW signal is 

received by a horn antenna and the received power is measured by a power sensor. The 

total output power 𝑃𝑜𝑢𝑡  of the Doherty Radiator is calculated as the power delivered to the 

antenna: 

𝑃𝑜𝑢𝑡  𝐸𝐼𝑅𝑃 − 𝐺𝑎𝑛𝑡𝑒𝑛𝑛𝑎 . 
(4) 

The Equivalent Isotropically Radiated Power (𝐸𝐼𝑅𝑃) is then derived based on the Friis 

transmission equation: 

𝐸𝐼𝑅𝑃  𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝐺ℎ𝑜𝑟𝑛 + 𝑃𝑎𝑡ℎ𝑙𝑜𝑠𝑠, 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑎𝑡ℎ𝑙𝑜𝑠𝑠  20𝑙𝑜𝑔(
4𝜋𝑑

𝜆
). 

(5) 

The antenna gain 𝐺𝑎𝑛𝑡𝑒𝑛𝑛𝑎 is characterized from the antenna test structure. While Doherty 

Radiator gain is constant across the Doherty operation [Fig. 13(b)], we measure the antenna 

test structure gain at 0dB PBO to specifically characterize the peak total output power. 

Since the Main/Auxiliary PAs contribute the same power to the antenna at 0dB PBO, a T-

junction power divider and Marchand baluns are implemented as the feeding network to 

deliver equal power to the two differential feeds of the antenna [Fig. 21(a)]. In addition, 

we measure the loss of the feeding network of this antenna by a back-to-back feed test 

structure [Fig. 21(b)]. At 65GHz, the measured antenna gain is 4.5dBi and the radiation 

pattern of the multi-feed Doherty Radiator versus various power level is depicted in Fig. 
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22. The measured radiation pattern remains stable during the Doherty operation and 

demonstrates a close match between the measurement and simulation results. 

 

Figure 22. Radiation pattern of the proposed structure in E-/H-plane at 

0dB/3dB/deep PBO 

Figure 23 shows the measured CW performance and a performance summary of the 

Doherty Radiator. Across operation frequencies, the PAE curves demonstrate two distinct 

regions: the Doherty region with a substantially boosted PAE response for 0-6dB PBO and 

a class-AB region below 6dB PBO after the Auxiliary path turns off. The measured 

Doherty Radiator exhibits radical PAE enhancement at 6dB PBO compared to an idealistic 

class-B PA normalized with the same PAE at P1dB, demonstrating consistent 1.45-1.53× 

PAE improvement across 62-68GHz. The PAE closely tracks the drain efficiency of PA 

stage due to the adaptive biasing applied in the Auxiliary PA path. Additionally, the 

Doherty Radiator features an excellent AM-AM linearity with only <0.7dB difference 

between Psat and P1dB over the entire 62-68GHz, which benefits from both on-antenna 
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adaptive biasing power consumption at 0dB/6dB PBO are 27.5%/20.1% respectively, 
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enhancement over an idealistic class-A PA with the same PAE at 0dB PBO. Accounting 

the simulated 83% radiation efficiency, the peak radiated power is 18.6dBm, which is 

0.8dB less than the peak power delivered to the antenna of 19.4dBm. 

 

Figure 23. (a-e) Measured CW performance of the Doherty Radiator at 

62/63/65/67/68GHz carrier frequencies (f) CW performance summary. 

6.3 Dynamic Modulation Measurement 

Next, we characterize the dynamic measurement of the Doherty Radiator. Figure 24(a) 

depicts the modulation measurement setup. The modulated signal is generated by an 

arbitrary waveform generator (AWG), up-converted by a mixer with an image-rejection 

filter, amplified by external amplifiers, and applied to the Doherty Radiator input. After 

amplification by the Doherty PAs and radiation from the on-chip multi-feed antenna, the 

modulated output wave at far-field is received by a horn antenna. The signal is then 

amplified by a low noise amplifier, down-converted by a mixer, amplified again, and 

analyzed by an oscilloscope. In addition, a wireless loop-back test with two horn TX/RX 

antennas is employed to perform channel equalization and characterize the EVM floor of 

the measurement setup. Figure 24(b) depicts the modulation performance of the Doherty 
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Radiator. The Doherty Radiator supports 3Gbit/s and 6Gbit/s 64-QAM modulation 

transmission. For 0.5/1Gsym/s 64-QAM without DPD and at average power of 

14.5/14.2dBm, the measured EVMs are -28.06/-26.7dB, the measured ACPRs are -26.97/-

25.8dBc, and the measured average PAEs are 21.2%/20.2% respectively. 

 

Figure 24. (a) Measurement setup to characterize the dynamic performance of the 

Doherty Radiator (b) Measured constellations and spectra of the Doherty Radiator 

with 0.5Gsym/s and 1Gsym/s 64QAM modulation. 

 

Figure 25. (a) Spatial Outphasing transmitter [42] and Spatial IQ combiner 

transmitter [43]. (b) Modulation measurement of the Doherty Radiator with 64-

QAM 3Gb/s over the (b) E-plane and H-plane, illustrating wide antenna FoV. 
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Previous literature have shown PA/TX architectures with spatial power combining such as 

the Spatial Outphasing TX [42] and Spatial IQ Combiner TX [43] [Fig.25(a)]. However, 

due to the vectoral spatial signal combining, these designs fundamentally exhibit 

substantially narrower FoV than the intrinsic antenna FoV. Furthermore, undistorted 

modulations only exist at specific directions and are severely distorted if the TX/RX angles 

are slightly mis-aligned (e.g., by only ~5-10° in the design of Spatial Outphasing [42]). On 

the other hand, the Doherty Radiator combines the TX outputs on the antenna and 

simultaneously radiates out, avoiding any vectoral spatial combining and ensuring 

undistorted modulation over the full antenna FoV. Figures 25(b)-(c) depict the modulation 

results of the Doherty Radiator over various radiation directions. Given the horn antenna 

rotating with 3° increments over ~ -60° to +60° zenith angle in both E-/H-planes, 

measurement data show that the Doherty Radiator is angle-independent, achieving 

undistorted modulation and consistent EVMs over the entire FoV. In practical wireless 

communication scenarios, this helps to establish reliable links and substantially ease the 

TX/RX alignment. Moreover, multiple Doherty Radiators can form a phased array, where 

each unit does not compromise the array FoV, thus particularly suitable for massive MIMO 

applications.  

Table I compares the Doherty Radiator with state-of-art [62]-[85]. Compared with 60-

80GHz PAs/TXs, the Doherty Radiator features a PA architecture supporting high-

efficiency high-speed transmission of modulated signals and demonstrating the record 

PBO efficiency enhancement ratio at 6dB PBO, absolute PAE value at 6dB PBO, and 

average PAE for 3Gbit/s and 6Gbit/s 64-QAM wireless transmission. It is worth 

mentioning that using the same principle, an on-antenna Doherty network or in general 

active load modulation network can also be implemented on other types of baseline 

antenna, such as patch, dipole, spiral, bow-tie, etc. The loop-based Doherty Radiator shown 

in this paper is just a demonstration example. 



 29 

 

Table 1 – Comparison with state-of-art 60-80GHz silicon-based PAs/Transmitters 

 

 

 

 

  

 This work 
[39] 

Greene, 
JSSC’  7 

[40] 
Kaymaksut, 
TMTT’   

[43] 
Chen, 
ISSCC’   

[53] 
Chi, 

ISSCC’ 7 

[74] 
Khalaf, 
JSSC’ 6 

[68] 
Zhao, 
TMTT’   

[79] 
Lin, 

TMTT’ 6 

[72] 
Chappidi, 
JSSC’ 7 

[81] 
Datta, 
JSSC’ 7 

[78] 
Jayamon, 
RFIC’ 6 

Architecture 
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Doherty 
Doherty Doherty 

Spatial IQ 
combiner 

On-antenna 
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Digital 
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Class AB Class AB 
Asymmetric 
Combiner 

Stacked 
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Stacked 
PMOS 

Frequency (GHz) 65 62 72 60 60 60 80 76 55 83 78 

VDD (V) 1.9 3.6 1.5 1 2 0.9 0.9 1.8 4 6.5 3.6 

Psat (dBm) 19.4‡« 17.5* 21 9.6 27.9‡ 10.8 20.9 27.3 23.6 23.3 18.7 

P1dB (dBm) 19.2 17.1 19.2 9.6 25 7.4 17.8 22.3 19.9 -- 15* 

Peak PAE 28.3% 23.7%* 13.6% 28.5% 23.4% 29.8% 22.3% 12.4% 27.7% 17.1% 24% 

PAE @ P1dB 27.5% 23.7% 12.4% 28.5% 16.2% 15% * 12% 3% * 15.7% -- 20% * 

PAE @ 6dB PBO 20.1% 13% 7% 14.25%* 6%* 4.5% * 4.5% * 1% * 7% * -- 8% * 

PAE Enhancement 
Ratio at 6dB PBO** 

1.46 1.10 1.13 1 0.74 * 0.6 * 0.75 * 0.67 * 0.89 * -- 0.8 * 
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Data Rate 
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-- 
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16-QAM 
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16.2dB 
6dBm* 
16.5% 

64-QAM 
4.8Gb/s 
25.4dB 

19.3dBm 
5.3% 

16-QAM 
6.7Gb/s 
18.1dB 

3.6dBm 
-- 

64-QAM 
3Gb/s 
24.7dB 

11.9dBm 
-- 

-- 

64-QAM 
3Gb/s 
21dB 

14.8 dBm 
-- 

-- -- 

Active Area (mm2) 0.3 / 3.23† 0.6 0.19 -- 10.5† <0.18 0.19 6.48 1.02 1.95 0.12 

Technology 
45nm  

CMOS SOI 
130nm 
SiGe 

40nm 
CMOS 

65nm 
CMOS 

45nm 
CMOS SOI 

40nm 
CMOS 

40nm 
CMOS 

90nm  
SiGe 

130nm 
SiGe 

90nm 
SiGe 

32nm 
CMOS SOI 

* Estimated from reported figures  
** Compared to an idealistic class-B PA with the same PAE at P1dB 
‡Wireless-based power measurement 
«Peak PRadiated = 18.6dBm with simulated 83% radiation efficiency 
†Including pads and on-chip antenna 
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CHAPTER 7: CONCLUSION 

The main purpose of this work is to investigate the possibility of employing antennas as a 

multi-feed network that performs active load modulation. As a proof-of-concept 

demonstration, we present a mm-Wave Doherty architecture leveraging a loop-based 

multi-feed network to support high energy-efficiency transmission of wideband modulated 

signal. Theoretical analysis and simulated results prove that the proposed antenna structure 

is electrically equivalent to a differential series combiner, which lead to an on-antenna 

series Doherty network that exhibits desirable Doherty active load modulation behavior. A 

general viewpoint on a multi-feed antenna wireless link system has been discussed, where 

the definition of final load is expanded to far-field receivers, and the condition of consistent 

radiation pattern during Doherty operation and power back-off is investigated and 

achieved. Additionally, adaptive biasing circuit is designed at the Auxiliary path to 

linearize the Doherty Radiator, such that wideband modulated signals can be transmitted 

without DPD. Overall, the Doherty Radiator demonstrates substantial efficiency 

enhancement at PBO (1.46-1.53× PAE enhancement at 6dB PBO compared to an idealistic 

class-B PA normalized with the same PAE at P1dB) and illustrates undistorted 

constellation up-to 6Gbit/s 64QAM over the entire antenna FoV. 
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