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SUMMARY 

 

The United States averages 40,000 traffic fatalities annually.  The American 

Association of State Highway and Transportation Officials (AASHTO) Roadside Design 

Guide cites run-off-the-road crashes as contributing greatly to this statistic, with about one-

third of all traffic deaths [1].  This number has remained relatively constant over the past four 

decades, and despite a major increase in vehicle miles traveled (VMT), the rate of fatalities 

per 100 million vehicle miles traveled has declined.  However, this relatively large number of 

run-off-the-road crashes should remain a major concern in all roadway design.   

The Highway Safety Act of 1966 marks a defining moment in the history of roadside 

safety [1].  Before this point, roadways were only designed for motorists who remained on 

the roadway, with no regard for driver error.  As there was no legislation or guidelines 

concerning roadside design, roadways constructed prior to 1966 are littered with fixed 

objects directly off of the edge of pavement.  Fortunately, many of these roads have reached 

their thirty year design lives and have become candidates for improvement.  

The following report examines roadside crashes on nine Atlanta urban arterial 

roadways.  Accident type, severity, and location for all crashes on these were evaluated.  It is 

found roadside collisions with utility poles and trees were more prone to occur at intersection 

locations than midblock locations.  Also for the studied roadway corridors, on average, 

roadside collisions were more likely to result in serious injury or fatality.  Based on these 

findings initial recommendations are offer for improving clear zone requirements. 
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CHAPTER 1                                                                           

INTRODUCTION 

 

 The “forgiving roadside concept”, emanating from the Highway Safety Act of 1966, 

promotes safety for errant motorists.  In short, the forgiving road concept results in roadside 

designs that allow motorists leaving the roadway ample opportunity to regain control and 

maneuver back to the roadway.  There are many reasons for vehicles leaving a roadway 

including [1]:                                    

• Driver fatigue or inattention 

• Excessive speed 

• Driving under the influence of drugs or alcohol 

• Crash avoidance 

• Roadway conditions such as ice, snow, or rain 

• Vehicle component failure 

• Poor visibility 

 As motor vehicle driving continues to increase in the United States, forgiving 

roadsides remain an important element of effective road design.  This is especially true with 

driver inattention becoming more of a problem with the advent of cellular telephones and 

other devices that shift motorists’ attention [2].  Today’s more active lifestyles inspire people 

to multi-task to save time and money.  Though there may be some benefit in utilizing what is 

otherwise considered lost time while driving, such activities are dangerous and potentially 

deadly.   
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 This issue has received the attention of transportation agencies.  For example, in an 

effort to combat run-off-the-road crashes, many transportation planning agencies are adding 

rumble strips at the edge of pavement to alert drivers that they are no longer traveling in the 

roadway.  A reduction in single vehicle crashes has been reported by several agencies that 

have begun using this treatment method [1].  Some states are considering outlawing the use 

of cell phones while driving.  Many states have already passed legislation limiting the 

number of teenagers that can be in a car when there is a teenage driver, an effort reduce 

distractions.     

 

1.1  Study Overview 

 The National Cooperative Highway Research Program (NCHRP) Project 16-04, 

“Design Guidelines for Safe and Aesthetic Roadside Treatments in Urban Areas” focused on 

promoting safer roads by encouraging more context sensitive roadside environments.  

Context sensitive solutions (CSS) refers to a process of considering community and 

environmental considerations in the early design process.  Essentially, context sensitivity is a 

balancing of the needs and desires of multiple stakeholders, including motorists, cyclists, 

pedestrians, business owners, and residents.  The three main aspects of a context sensitive 

solution are safety, community, and operational performance [3].  This relationship can be 

seen in Figure 1.1 with the intersecting center section representing the best context-sensitive 

solution.  Arriving at this balance might be challenging in that the safest road for motorists 

may not be pedestrian or bicycle friendly. Conversely, a roadside lined with trees and 

decorative lighting may be a wonderful pedestrian environment, but a crash risk for 

motorists.     
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 In an ideal design for motorist safety, all roadsides would be completely traversable 

and clear for errant motorists.  Unfortunately, this is not always feasible or even possible.  

The placement of utilities and landscaping can present a dangerous obstacle for errant 

vehicles.  These same features that provide desirable and livable communities may also be 

detrimental to the roadway’s safety. All the while, the operational performance of the 

roadway must be considered.  Clearly, if the road does not operate well from a traffic flow 

standpoint, it is of little benefit to the transportation network of which it belongs.  An effort 

must be made to attain a balance among safety, community, and operational performance.   

 

Safety

Community

Operational 

Performance
Safety

Community

Operational 

Performance

 
 

Figure 1.1  The three dimensions of context-sensitive solutions.   

 

 

 

 NCHRP Project 16-04 was developed to address the relationship between a 

transportation network and its surrounding environment.  The project’s working plan states 

that “A major challenge for the transportation profession is to enhance the current practices 

and guidelines to simultaneously increase the mobility, accessibility, and safety of the 

transportation while simultaneously preserving the scenic, aesthetic and community values of 

the area in which they are located” [4].  The project examined several urban arterial corridors 

in four states −Georgia, California, Illinois, and Oregon− to determine the effect of the 
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placement of off-road fixed objects on safety.  Nine urban arterials representing three 

counties within the Atlanta Metropolitan Area were selected for study corridors.  While these 

corridors share the same highway functional classification, each has unique roadside 

characteristics that contribute to the number of run-off-the-road (ROR) crashes.  Although 

the number of off-road collisions can largely be determined by the geometric alignment of 

the roadway, NCHRP 16-04 focuses primarily on roadside features and their contribution to 

ROR crashes.   

 From the data gathered for the NCHRP project, it was noticed that a large percentage 

of ROR crashes on the study corridors were near intersections.  Starting from this 

observation, this thesis focuses on the congregation of fixed object crashes, particularly those 

involving trees and utility poles, and their relative proximity to intersection locations.  The 

following sections of this chapter provide an overview of the remainder of the report.       

 

1.2  Literature Review 

 The literature review found in Chapter 2 of this report is divided into four sections.  

The first section discusses existing guidelines from the American Association of State 

Highway and Transportation Officials (AASHTO) and other agencies.  The second section 

examines the danger of utility pole collisions and their contributions to traffic fatalities.  

Next, past research and literature on tree collisions is examined.  Finally, countermeasures 

for preventing, minimizing, and reducing the danger of roadside collisions are presented.        
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1.3  Field Data Collection and Processing 

 Chapter 3 focuses on the methodology used in collecting and processing the data used 

in the study.  It provides step by step instructions on video and GPS data collection 

processes.  Additionally, it discusses data reduction techniques used to format the field data 

into a usable form.  Data was collected from several corridors from several states in different 

parts of the country including Atlanta, Georgia; Orange County, California; San Diego, 

California; Chicago, Illinois; and Portland, Oregon.  For the purpose of this report, only 

Atlanta data was analyzed. 

 

1.4  Analysis and Findings 

Chapter 4 of the report focuses on the analysis and conclusions drawn from the 

Atlanta crash data and corridor analysis.  The chapter analyzes the severity and frequency of 

roadside collisions on the study corridors, as well as the information concerning the location 

of roadside incidents and their proximity to intersection locations.  In addition, Chapter 4 also 

examines crash scenarios that are prevalent at intersection locations involving single and 

multiple vehicles.   

 

1.5  Conclusions 

Chapter 5 of this thesis presents conclusions from the data collection, as well as 

recommendations for decreasing the number of roadside collisions with utility poles and 

trees.  These recommendations come from both field observation, crash data analysis, and the 

review of incident reports.     
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1.6  Appendices 

Additional tables and figures that are not included in the body of this report can be 

found in the appendices.  Appendix A includes geographic information system (GIS) maps of 

the study corridors examined in the report.  Appendix B contains tables and graphs with data 

specific to each of the study corridors. 
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CHAPTER 2                                                                                 

LITERATURE REVIEW 

 

 

The following chapter contains information gathered from the existing literature 

concerning roadside crashes, in particular those crashes involving utility poles and trees.  The 

chapter will discuss not only several existing roadside design standards, but also 

countermeasures for addressing roadside collisions.      

   

2.1  Existing Roadside Design Guidelines 

 In 2004, the Transportation Research Board (TRB) published Utilities and Roadside 

Safety.  This report notes 1967 Yellow Book, Design and Operational Practice Related to 

Highway Safety, as being the first to mention the concept of forgiving roadsides [5].  The 

Yellow Book had been a significant influence on roadside design in the four decades since its 

publication, sparking the development of breakaway signage, collision-worthy guardrails and 

other roadside devices [1].  Without question, many lives have been saved over the years 

from these contributions.  Unfortunately, nontraversable roadsides are far too common on 

American roadways and contribute many injuries and fatalities annually. 

 Since the publication of the Yellow Book many additional resources have built upon 

the concepts outlined within its pages.  Discussed in the following sections are some of the 

current resources utilized by today’s designers and planners to aid in the creation of safer 

designs.        
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2.1.1  National Cooperative Highway Research Program Report 500 Series  

The National Cooperative Highway Research Program published the Report 500 

Series [6] containing several volumes, each addressing a different type of highway crash.  

Volume 6 of this report is entitled “A Guide for Addressing Run-Off-Road Collisions.  This 

volume evaluates countermeasures for the treatment of roadside crashes using ratings of 

effectiveness: tried, experimental, or proven [6].  A tried measure is one that has been 

implemented in many locations and may even be accepted as common practice, but has not 

yet been fully evaluated in terms of performance [6].  An experimental strategy may only 

have been suggested by one agency and does not have wide scale use [6].  Like tried 

measures, experimental measures should be applied with caution.  A proven measure is one 

that has been widely used and evaluations have shown to be effective [6].      

    

2.1.2  AASHTO A Policy on the Geometric Design of Highways and Streets 

 AASHTO’s A Policy on the Geometric Design of Highways and Streets [7], more 

commonly known as the Green Book, is the primary reference used by transportation design 

engineers in the United States.  Chapter 7 of the publication “Rural and Urban Arterials”, 

focuses on “information needed to establish the basis of design for these roadways” [7].  

Urban arterials can range from controlled access freeways to two-lane streets with closely 

spaced traffic signals, making their regulation difficult for governing agencies. 

 The Green Book defines a clear zone as the designation for “the unobstructed, 

relatively flat area provided beyond the edge of the traveled way for the recovery of errant 

vehicles” and recommends a minimum of 10 feet clear zone on rural collectors and local 

roads.  However, it also states that a “minimum offset distance of 500 mm (18 in) should be 
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provided beyond the face of the curb, with wider offset provided where practical [7].  It 

should be recognized, however, that curbs are usually not placed on high speed roadways.  

The Green Book [7] recognizes that 18 inches is not necessarily optimal and agrees that 

greater offsets should be used when possible.  The book also addresses the clearance of 

roadside objects from curbed roadways near intersections and driveways.  In these cases, a 

minimum setback distance of 3 feet is recommended beyond curb lines.   

 The Green Book [7] also discusses traversable roadsides, stating that anything located 

within the clear zone should be of a breakaway variety or shielded by some barrier or 

attenuator.  It states that a nontraversable object should be shielded “by an appropriate barrier 

as long as the barrier represents a lower potential for severe crashes [7].”  This regulation 

could be strengthened by placing specific requirements on the performance of the shielding 

devices.  Finally, the Green Book [7] refers to the Roadside Design Guide [1] as a further 

reference to clear zone width regulations.  

 

2.1.3  AASHTO Roadside Design Guide     

 The AASHTO Roadside Design Guide is the major source of federal roadside design 

guidelines.  Fundamentally, the Roadside Design Guide’s [1] stance on utility pole placement 

is to avoid their use in roadside area or at least move them as far away as possible from the 

roadway.  The book highlights the dangers of utilities and other rigid objects in the right-of-

way.  Future revisions, however, could benefit from providing more information specific to 

the placement of these objects.     

 The Guide focuses on the severity of utility pole collisions, noting that they are 

responsible for 10 percent of all fixed-object fatality crashes [1].  Utility poles are most 
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commonly owned by private corporations and installed on publicly owned land; they are not 

under the direct responsibility of highway agencies [1].  “This dual responsibility sometimes 

complicates the implementation of effective countermeasures [1].”   

 The viewpoint of the Roadside Design Guide is that no utility pole should be placed 

in a location where it can be struck, but if necessary, it should use a breakaway or some other 

design that reduces the danger of the collision.  Primarily, the guide addresses 

countermeasures that should be used to prevent the use of utilities within the roadway right-

of-way.  As this document takes a stance firmly against utility pole placement in vulnerable 

areas, it provides no specific standards for locations on the roadside.  Understandably, 

AASHTO does not advocate the construction of dangerous environments.  However, it could 

be beneficial for the organization to provide greater standards on utility pole placement as 

they are and will continue to be placed in roadside environments. 

 

2.1.4  AASHTO A Policy on the Accommodation of Utilities within Freeway Right of Way 

  The Roadside Design Guide cites other sources as providing more detailed 

information regarding the installation of utilities within highway rights-of-way such as  

AASHTO’s A Policy on the Accommodation of Utilities within Freeway Right of Way 

(UAPSM) [8].  However, this document provides no specific guidelines to utility placement 

in terms of setbacks from the roadway.  This publication focuses specifically on the 

placement of utilities within a freeway right-of-way and is, therefore, not necessarily 

applicable for facilities with lower functional classification, such as those in the study effort.    

 A section of the document entitled “Existing Utilities Along Proposed Freeways” 

explains that a utility may remain “as long as it does not adversely affect the safety, design, 
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construction, traffic operations, maintenance, or stability of the freeway [8].”  However, the 

document offers no detailed guidance on determining whether a utility meets the standard.  

Similarly, in the “New Utility Installations Along a Freeway” section of the document states 

that in cases were longitudinal installations are requested along roadways that “the 

accommodation will not adversely affect safety…” [8].  Future revisions of the document 

will have adequate areas for improvement in terms of placing clearly defined limits and 

regulations.  Again, minimal guidance is offered for determining if an installation meets this 

standard.  Providing planners and designers with additional guidance on implementation of 

the outlined safety goals would likely result in overall improvements in highway safety.   

 

2.1.5  GDOT Transportation Design Manual 

 Chapter 5 of the Georgia Department of Transportation Design Manual [9], Roadside 

Safety and Horizontal Clearance, provides standards for roadside design.  Table 2.1 from the 

GDOT Design Manual provides general guidelines for the placement of trees along 

roadways.  The table groups trees into two categories, less than or equal to 4 inches in 

diameter and those greater than 4 inches in diameter.  The minimum clearance on urban 

shoulders with less than 35 miles per hour design speed is 4 feet from the curb face.  For 

design speeds greater than 35 miles per hour and not exceeding 45 miles per hour, trees less 

than 4 inches in diameter should be a minimum of 8 feet from the curb.  Additionally, there 

are several categories defining the recommended placement of trees exceeding 4 inches in 

diameter.  For design speeds of less than 35 miles per hour, between 35 and 45 miles per 

hour, and equal to 45 miles per hour, tree setbacks should have horizontal clearances of 8, 10, 

and 14 feet, respectively.   
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 Table 2.2 from the GDOT Design Manual displays information concerning utility 

installation on GDOT’s right-of-way.  The table provides minimum horizontal clearances for 

utility poles of 6, 8, and 12 feet for urban shoulders of design speeds of less than 35, between 

35 and 45, and greater than 45 miles per hour, respectively [9].  From these standards, utility 

poles are given slightly less rigid restrictions when compared to trees with a greater than 4 

inch diameter.  Additionally, the table refers to the Georgia Department of Transportation’s 

Utility Accommodation Policy and Standards Manual (UAPSM) [10] as the source for 

general guidance for utility installation.   
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Table 2.1 Horizontal Clearance to Trees and Shrubs from GDOT Design Manual [9]. 
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Table 2.2 GDOT Design Manual Horizontal Clearances for Utility Installations [9]. 
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2.1.6  GDOT Utility Accommodation Policy and Standards Manual  

 The preface of the Georgia Department of Transportation Utility Accommodation 

Policy and Standards Manual (UAPSM) asserts that the “Department of Transportation is 

charged with constructing, maintaining, and operating the State’s highways safely and 

efficiently for the benefit of the motorists who use them” and that the use of public right-of-

way “by water, sewer, gas, power, and communications and other public utilities is a 

privilege afforded utility companies by the Department in the general public interest [10].”  

Therefore, it is the responsibility of the DOT to regulate the placement of utilities in the best 

interests of citizens while maintaining motorist safety standards.     

 The UAPSM states that “longitudinal installations are to be located on uniform 

alignment as near as practical to the right-of-way line so as to provide a safe environment for 

traffic operation and preserve space for future highway improvements or other utility 

installations [10].”  The current standards, however, allow the design engineer to interpret a 

distance that is as “near as practical” to the edge of the right of way.   

 Additionally, GDOT’s UAPSM affirms that “full consideration shall be given to the 

measures, reflecting sound engineering principles and economic factors, necessary to 

preserve and protect the integrity and visual quality of the highway, its maintenance 

efficiency, and the safety of highway traffic.”  Moreover, this section of the book promotes 

context sensitive design through the examination of not only efficiency and safety of traffic, 

but also economic factors and visual quality of the highway.       
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2.2  Utility Pole Collisions 

 Approximately 10 percent of all fixed-object crashes are collisions with utility poles 

[1].  As expected, most fixed object crashes are with trees as they greatly outnumber utilities, 

mailboxes, and guardrails on American roadways.  Utility poles crashes are more common in 

urban than rural areas, due to the higher density.  These crashes can be particularly dangerous 

as utility poles are not typically designed to be “forgiving” when hit in a ROR incident.       

 In 1980, utility pole collisions were responsible for more than 1,900 fatalities on U.S. 

roadways [5].  Fortunately, this number has decreased steadily and was nearly cut in half by 

the year 2000 to approximately 1,100 fatalities, as shown in Figure 2.1.  In addition to 1,100 

deaths, 60,000 traffic injuries are associated with utility pole collisions.  However, 

historically, utility poles have not received significant attention from regulatory agencies.  

Likely due to the rankings of utility poles behind trees, embankments, and guardrails in the 

number of fixed object fatalities as seen in Table 2.3.   

 The installation of utility poles directly off roadways has long been practiced in the 

United States.  A TRB utility safety publication cites a certain utility pole in a northern U.S. 

state that had been struck by a vehicle at least once in each of 50 consecutive years [11].  The 

pole in question had been damaged on several occasions sufficient to warrant replacement, 

and in each case a new pole was installed in the same location.  Clearly, steps should be 

taken by governing agencies, utility companies, and other stakeholders to eliminate these 

events.   
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Figure 2.1 Utility pole fatalities by year [5]. 

 

 

 

 

 

Table 2.3 Fixed Object Fatalities in 2000 [5]. 
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2.3  Tree Collisions 

As seen in Table 2.3, trees account for the largest percentage of fixed object fatality 

crashes on U.S. roadways.  Due to the sheer number of trees, they are often difficult to 

manage.  Volume 3 of NCHRP Report 500 focuses specifically on these crashes and is 

entitled “A Guide for Addressing Collisions with Trees in Hazardous Locations” [12].   

The document cites statistics from the Fatal Accident Reporting System data in which 

10,967 fatal crashes were the result of fixed object collisions in 1999.  Of these fatalities, 

3,010 were the result of fixed object collisions with trees [12].  Additionally, Report 500 

states that 90 percent of these fatalities occurred on two-lane roads [12].  From this statistic it 

can be concluded that the majority of fixed object collisions occur in rural areas.  For this 

reason, rural two-lane roads receive most of the attention in Report 500.  There are two 

primary strategies identified in the report to address tree collisions; to “prevent trees from 

growing in hazardous locations” and “to eliminate the hazardous condition and/or reduce the 

severity of the crash [12].”  Nicholas Bratton, of the University of Washington, writes that 

from a dataset of 1,830 tree collisions, 39 percent were found to have occurred in urban areas 

while the remaining 61 percent were in a rural setting [13].  Additionally, he points out the 

severity of these collisions with only 29 percent of crashes resulting in no injury [13].   

 

2.4  Run-off Road Collision Treatment Options  

There are two classic approaches for reducing ROR crashes on the nation’s roadways: 

keeping vehicles on the roadway and minimizing the consequences of leaving the roadway.  

In AASHTO’s Strategic Highway Safety Plan [14], both are listed as safety plan goal areas.  

As 40 percent of traffic fatalities in 2003 can be credited to ROR crashes, their prevention 



 19 

should be given priority in roadway designs.  The next two sections outline methods used for 

keeping vehicles on the roadway and for minimizing the consequences when a vehicle leaves 

the roadway.   

 

2.4.1  Keeping Vehicles on the Roadway 

The primary line of reasoning behind keeping vehicles on the roadway is quite 

simple.  If a vehicles remains on the roadway, it cannot experience a ROR crash.  In many 

cases, however, this could be the most expensive method for reducing roadside collisions.  

For example, reducing ROR crashes on a particular roadway segment may require a change 

in the roadway alignment, a potentially costly mitigation strategy.  Aside from geometric 

alignment, several techniques for keeping vehicles on the roadway include: rumble strips, 

sharp curve delineation, and skid resistant pavements.  In Chapter 3 of Utilities and Roadside 

Safety, Don Ivey and Paul Scott explain that these measures to keep vehicles on the road are 

not the total answer as they will be never be completely effective.  These countermeasures 

should be coupled with the reduction, removal, relocation, or shielding of the utility poles 

[5].  A brief discussion of these countermeasures follows.                

2.4.1.1  Rumble Strips 

One of the simplest and most effective means for keeping vehicles on the roadway is 

the use of rumble strips.  The Federal Highway Administration has conducted several studies 

and estimate that roadside crashes can be reduced approximately 20 to 50 percent with the 

use of rumble strips [6].  Rumble strips are grooves, often placed on roadway shoulders, that 

are “0.5 inches deep, spaced about 7 inches apart, and cut in groups of four or five [6].”  The 
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result of a vehicle driving over the rumble strips is a vibrating or rumbling that will alert the 

driver that he or she has left the lane and is encroaching on the edge of the roadway.  These 

devices can also be used to alert drivers of approaching intersections or other important 

features ahead.   

2.4.1.2  Sharp Curve Delineation 

A large percentage of ROR crashes occur on roadways with sharp curves.  

Considering the high cost of realignment, increased warning through pavement markings and 

signage can be an effective means for reducing crashes.  Increasing the visibility of signage 

with larger signs and flashing lights is a popular choice for delineating the effects of sharp 

curves [6].  Another technique involves creating a greater sense of danger, using human 

perception to encourage traveling through the curves in a more careful manner.  One such 

method uses pavement markings that give the impression that lanes are narrowing when 

negotiating a curve.  The goal is that if the driver has the impression that they are traveling in 

an especially narrow lane, he or she will likely be more focused on maintaining the vehicle’s 

position on the roadway.   Another measure that has been practiced as a delineator on a sharp 

curve is the use of rumble strips prior to the curve to alert the driver of the upcoming curve.    

2.4.1.3  Skid Resistant Pavements 

Many ROR crashes can be credited to motorists losing control of their vehicles.  Wet 

pavement is a major contributor to these crash types, with 11 percent of single vehicle ROR 

fatal crashes occurring on these surfaces [6].  The decrease in friction from wet pavement 

surfaces makes it especially difficult for motorists to negotiate curvatures.  It is interesting to 

note that with a water film thickness of 0.002 inches the friction between a tire and the 
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pavement decreases by 20 to 30 percent [6].  There are several available countermeasures for 

improving the skid resistance of pavements.  Specific pavement mixtures, overlays, or the 

addition of texture is often used in an effort increase resistance [6].  This is a difficult 

problem to design against, however, as pavement surfaces change drastically over time due 

to wear from vehicles and weather.  Additionally, pavement texturing such as asphalt 

grooving can, at times, decrease skid resistance by providing an area for water to puddle.            

 

2.4.2  Minimizing the Consequences of Leaving the Roadway 

It is the intent of the roadway design to keep vehicles on the highway.  However, at 

present it is not reasonable to guarantee that vehicles will never leave the roadway.  It is the 

responsibility of agencies and roadway designers to minimize, as much as possible, the 

consequences of leaving the roadway.  This is stated clearly in Goal 16 of the AASHTO’s 

Strategic Highway Safety Plan [14].                   

Furthermore, the AASHTO Roadside Design Guide [1] makes several 

recommendations to the placement of trees, utilities poles, and other objects on roadsides, by 

identifying six options.  In order of preference, these are: 

1.  Remove the obstacle. 

2.  Redesign the obstacle so it can be traversed. 

3.  Relocate the obstacle to a point where it is less likely to be struck. 

4.  Reduce impact severity by using an appropriate breakaway device. 

5.  Shield the obstacle with a longitudinal traffic barrier or crash cushion or both if it 

cannot be eliminated, relocated, or redesigned. 

6.  Delineate the obstacle if the above alternatives are not appropriate.   
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 Clearly, the best option for reducing utility pole collisions is eliminating the poles 

themselves.  Other options are identified in the Roadside Design Guide specifically for the 

reduction of utility pole crashes.  These solutions include [1]: 

• Increase lateral pole offset. 

• Increase pole spacing. 

• Combine pole usage with multiple utilities. 

• Bury electric and telephone lines underground.  

The use of these techniques minimizes the consequences of leaving the road, and particularly 

reduces the frequency of roadside crashes with fixed objects when a vehicle does leave the 

roadway.  The following sections will address, specifically, the techniques of removing or 

changing obstacle position, traversable roadside devices, increasing the visibility of objects, 

and traffic calming as methods for minimizing the consequences of leaving the travelway. 

2.4.2.1  Removal or Change Position of Obstacle 

 Cost is a major issue when considering complete removal of roadside fixed objects.  

Unfortunately, if utilities are buried, there is a significant increase in installation and repair 

costs, as well as routine maintenance costs that would be suffered by utility providers [1].  

Moreover, the right-of-way required to place utilities underground can be more than twice 

that of overhead installations [1].  Again this represents additional costs that would have to 

be suffered by the utility companies and passed on to the consumer.  Also, Zegeer [15] notes 

that reducing the number of utility poles will provide fewer locations for street lamps to be 

placed.  Additionally, it should be considered that utility pole removal may not completely 
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eliminate utility crashes.  For example, additional transformers that may be needed in the 

case of underground utilities due to the limitations of current capacity [1].    

 When option 1 [1], the complete removal of the obstacle, is not feasible it would still 

be beneficial to decrease their frequency on roadside environments.  However, in the case of 

utility poles this may not be possible, at least with not without significant additional costs.  

Increasing pole spacing may require larger and more costly poles [15].  An engineering study 

would be necessary to determine if this type of improvement was cost-effective or even 

possible [1].   

 Option 1, from the Roadside Design Guide’s suggestions to reduce utility pole 

crashes, is to increase the lateral pole offset from the roadway.  This is due to an 

overrepresentation of pole accidents being found within 10 feet of the roadway [15].  In a 

1978 study by William Hunter, it is suggested that the frequency of off-road fixed object 

collisions will not be reduced through this technique as errant vehicles will strike other 

objects [16].  Following this study, Rinde assumed no decrease in fixed object accident 

frequency by increasing the lateral clearance from the roadway and found that there was a 

decrease in fatal accidents [17].  The decrease in fatal accidents may be credited to the 

generally more rigid nature of utility poles as compared to other roadside objects [17].  

Additionally, if an errant vehicle collides with a pole 30 feet after leaving the roadway as 

opposed to 10 feet, it will have a had a longer time period to avoid an object or at least 

reduce the speed at the point of impact.    

 In a more recent publication, Charles Zegeer provides recommendations for reducing 

utility pole crashes.  The first step is to examine crash history and identify high incidence 

locations [18].  He contends that if each year utility companies and local highway agencies 
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work together to improve problem locations, then utility pole crashes can be reduced in a 

relatively short time [18].  Zegeer’s second step is for utility companies to place greater 

emphasis on the replacement of damaged poles.  If the pole is in a location where additional 

ROR incidents are likely, a new pole location may be an effective countermeasure.  The third 

step is to identify high risk utility poles, such as those at horizontal curves, busy 

intersections, or roadway medians [18].   

 Zegeer points out that allowing high risk poles to remain is not being proactive and 

simply waiting for crashes, possibility fatalities, to occur [18].  He further recommends 

agencies adoption of clear zone policies as seen in the AASHTO Roadside Design Guide [1].  

Zegeer’s final step is to establish a funding source for utility pole improvements.  Certain 

monies should be set aside specifically for the reduction of these preventable crashes.  The 

Washington and Pennsylvania Departments of Transportation have enacted programs for 

identifying and improving problem locations [18].           

2.4.2.2  Traversable Roadside Features and Safety Devices 

 In 1993, The National Cooperative Highway Research Program (NCHRP) published 

Report 350, Recommended Procedures for the Safety Performance Evaluation of Highway 

Features [19].  The report tested several roadside safety apparatuses including barriers, 

terminals and crash cushions, and breakaway utility poles.  It is considered the standard for 

the testing of highway safety devices in this country.    

 A breakaway support “refers to all types of sign, luminaire, and traffic signal supports 

that are designed to yield when impacted by a vehicle [1].”  These devices were tested 

extensively for velocity criterion and other performance measures in NCHRP 350 [19].  

Design considerations for the breakaway support design include structural stability to serve 
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its purpose.  Most of these devices are designed to function properly when impacted at 

bumper height.  For this reason, breakaway supports should not be used near ditches or steep 

slopes which may lead to airborne impact [1].   Additionally, these devices are not effective 

when placed on top of concrete pedestals, which is fairly common in commercial parking 

lots.  The design should not be so forgiving that it is unable to support its load with typical 

ice or wind loading.  The Roadside Design Guide states that “as a general rule, breakaway 

supports should be used unless an engineering study indicates otherwise [1].”     

 Barrier end treatments and crash cushions are devices that are designed to decelerate 

vehicles before impact with a fixed object or redirect the vehicle away from the object.  In 

locations where guardrails or other barriers are used, it is vital to place utility poles behind 

these devices [18].  Barrier end treatments should be crashworthy and should used at any 

location where a barrier terminates in a clear zone or any location where it is likely to be 

struck [1].  Crashworthy describes an object that does “not spear, vault or roll from head-on 

or angled impacts [1].”  End treatments can be placed into two major categories; gating or 

non-gating.  A gating end treatment is designed to allow an impacting vehicle to “pass 

through the device” where non-gating end treatments redirect vehicles [1].   

 An example of an end treatment, the Wyoming Box Beam End Terminal (WYBET-

350) consists of a nosepiece which telescopes into a tube upon impact, dissipating kinetic 

energy [1].  NCHRP Report 350 [19] outlines the standards by which these treatments are 

tested.  If barriers do not have crash worth end treatments, then they should be anchored into 

a backslope.  This option “provides full shielding for the identified hazard, eliminates the 

possibility of an end-on impact with the barrier terminal, and minimizes the likelihood of the 

vehicle passing behind the rail [1]”.           
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 Crash cushions or impact attenuators are also used when fixed objects cannot be 

removed from roadside areas and when barrier end treatments may present other dangers.  

For instance, these devices are favorable when it is not necessarily safer for a vehicle to be 

redirected.  On interstate off-ramps for example, a barrier end treatment may just redirect an 

errant vehicle into another obstacle, such as another lane, where an impact attenuator is 

designed to stop a vehicle upon impact.  The Roadside Design Guide states that “crash 

cushions generally employ one of two concepts to accomplish this task-absorption of kinetic 

energy or transfer of momentum.”        

2.4.2.3  Increase Visibility of Obstacles 

If other measures are not possible due to financial or other constraints, increasing the 

visibility of obstacles can be beneficial.  Increased lighting on the roadways will increase 

driver visibility and should therefore reduce roadside crashes [5].  A less expensive option 

that may produce similar results is practiced by the Pennsylvania Department of 

Transportation.  PennDOT has begun placing reflective tape on utility poles to increase their 

visibility at night.   The theory behind this method is obviously not to reduce the severity of a 

collision, but to permit the driver a greater chance of performing an evasive maneuver away 

from the fixed object.  However, if a motorist has no control over his vehicle, the increased 

visibility afforded will be of no benefit [20].   

Report 500 [20] points out the cost benefit of this countermeasure and states that “if a 

reduction of crashes is assumed” this device will provide a good return in terms of cost-

benefit. Again, this assumption may be ambitious in that most errant motorists do not have 

control to maneuver their vehicle away from impacting a fixed object, albeit illuminated or 

reflective.  The report [20] also points out that if a motorist does strike a utility pole equipped 
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with reflective markings the governing agency may be liable in a lawsuit due to its 

recognition of the obstacle as a potential danger, yet failure to use a more effective and tested 

countermeasure.         

2.4.2.4  Traffic Calming 

Traffic calming measures have also been implemented in some cases with the intent 

of reducing the severity of crashes with roadside objects.  This technique is common in urban 

residential areas where utilities must be provided in a limited right of way.  Primarily, traffic 

claming is implemented with the intention of reducing the speeds of motorists.  By reducing 

speeds, it stands to reason that the severity of roadside crashes would also be reduced due to 

a lesser amount of energy upon impact [20].  Also, slower traveling vehicles would be less 

likely to strike roadside objects as well, given the likelihood of greater vehicle control and an 

increased available reaction time.  Additionally, traffic calming has been proven to be an 

effective deterrent for motorists simply using the roadway as a shortcut, therefore reducing 

the average daily traffic (ADT) on the roadway.  Consequently, a lower ADT would, other 

things being equal, result in fewer crashes along the corridor.  However, the possibility exists 

that these trips are moved to an alternate corridor which may experience and increase in 

incidents with the associated ADT increase.         

 

2.5  Literature Review Summary 

The primary focus of the literature review was existing was existing regulations and 

design recommendations by transportation agencies.  Specifically, AASHTO’s A Policy on 

Geometric Design of Highways and Streets [7], Roadside Design Guide [1], the Policy on the 
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Accommodation of Utilities within Free Right of Way [8], GDOT’s Transportation Design 

Manual [9], and the Utility Accommodation Policy and Standards Manual [10]. 

In addition to citing existing regulations, the chapter also notes areas in which 

additional guidance in the manuals could be useful.  Also, the chapter examines literature on 

utility pole and tree collisions.  Specifically, statistics describing the number of these 

roadside crashes are discussed.  Finally, treatment options for reducing roadside fixed object 

crashes were examined.                  
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CHAPTER 3                                                                                  

FIELD DATA COLLECTION AND PROCESSING 

 

 The data collection portion of NCHRP 16-04 took place in several locations 

throughout the country, including: Atlanta, Georgia; Chicago, Illinois; Orange County, 

California; San Diego, California; and Portland, Oregon.  Different regions were chosen as 

study corridors in order to provide a more diverse sample set.  For this thesis, only data 

collected in the Atlanta metropolitan area was analyzed.         

 This chapter will focus on the processes and methodology used for collecting data for 

this project.  It is divided into scions covering Study Corridors, Field Data Collection, Field 

Data Processing, and Accident Data Processing.  The Field Data Collection section is divided 

into Video and GPS data collection.   

 

3.1  Study Corridors  

 Geographic Information System (GIS) images of each of the Atlanta study corridors 

analyzed in this report are included in Appendix A.  An example of one such image can be 

seen in Figure 3.1.  The focus of this study is on urban arterials, however, even given the 

similar functional classification of the corridors, a wide range of roadside characteristics is 

found.  All study corridors can be seen along with Atlanta expressways in Figure 3.2.  The 

study corridors examined in the report are:   
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• 14th Street from Northside Avenue to West Peachtree Street, West Peachtree Street 

from 14th Street to Peachtree Road, Peachtree Road from West Peachtree Street to 

Peachtree Valley Road 

• Roswell Road from Sandy Springs Place to The Valley Road  

• Roswell Road from Greenbriar Parkway to Taliwa Trial 

• Roswell Road from Red Fox Trial to Fields Pond Drive 

• Alpharetta Highway from Liberty Lane to Mansell Place 

• Franklin Road from Cobb Parkway to South Marietta Parkway 

• Moreland Avenue from Eden Avenue to Briarcliff Road, Briarcliff Road from 

Moreland Avenue to Chalmette Drive 

• Briarcliff Road from Zonolite Road to North Druid Hills Road, North Druid Hills 

Road from Briarcliff Road to Buford Highway 

• Candler Road from Ellen Way to Flat Shoals Parkway, Flat Shoals Parkway from 

Candler Road to Waldrop Road  
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Figure 3.1  GIS Image of Roswell Road Corridor (Length of 2.03 miles).     
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Figure 3.2 GIS Image of all study corridors with Atlanta expressways. 
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3.2  Field Data Collection 

The following section discusses the methods and equipment used to collect the field 

data used in this report.  Primarily, there were two portions of field data collection: video and 

GPS.  The data for each were collected simultaneously from April 2007 to June 2007.          

   

3.2.1  Video Collection 

 In order to have a visual image of each study corridor, the corridor roadsides were 

video recorded.  To accomplish this task, a camera was mounted to the windshield inside of 

the vehicle on the front passenger side as shown in Figure 3.3.  A Canon Optura Xi Digital 

Video Camcorder was focused to capture the edge of pavement and the right-of-way and any 

obstructions or features that were present.  A DC power cable was used to ensure sufficient 

battery life during the collection period.   

 While driving on the study corridors, the driver of the vehicle would remain in the far 

right travel lane so as to capture the clearest image of the corridor’s roadside.  In some cases, 

it was impossible to remain in the far right line due to on-street parking and right turn lanes.  

To increase the video quality, the investigators attempted not to exceed 35 miles per hour, 

but often found this impossible for safety reasons.  While driving the corridors, street names 

and other roadside information was reported verbally to aid with the video analysis. 
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Figure 3.3 Photograph of video camera with windshield mount.   

 

 

 

3.2.2  GPS Data Collection 

        The GPS data and video data were collected simultaneously.  A Hewlett-Packard iPaq 

2210 PDA was used along with Haicom 303E GPS Receiver with a magnet antenna placed 

on the roof of the investigator’s vehicle.  A DC cable was used with the PDA to ensure the 

data would be collected properly.      

 A run is defined as a single trip in one direction of a corridor.  Therefore, each study 

corridor required a minimum of two runs.  At the beginning of each run, the PDA’s screen 

with the PDA clock time displayed was video recorded to provide a synching point for the 

later analysis.  GPS data was recorded throughout the entire travel run.  The GPS data 

included second-by-second latitude, longitude, and speed, as well as other information.   
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3.3  Field Data Processing  

 After recording, the video was digitized to allow viewing and storage on a computer.  

The videos were divided into separate video files for each run on each study corridor.  A 

timestamp superimposed on the video image by using Sony Vegas 5 video editing software 

(Figure 3.5).   

 To sync the GPS data with the video stream, a new field, “Video Time”, 

corresponding to the video timestamp was added to each GPS data point.  Using the starting 

point established by recording the PDA clock time at the beginning of each video, it was 

possible to determine the GPS location related to the video timestamp.  Next, the GPS points 

were plotted in ArcGIS using the latitude and longitude as x and y coordinates and labeling 

each point with its “Video Time”.  The image in Figure 3.4 represents an example GIS image 

on 14
th

 Street in Midtown Atlanta.  Figure 3.5 shows the corresponding video image for one 

of the points in Figure 3.4.  This method of coordinating the video and GPS data made it 

possible to watch the video while easily locating the point in the GIS. 

 After the video and GPS data were synced as described above, the videos were 

reviewed concurrently with the ArcGIS file.  Notes were taken describing the roadside 

conditions in terms of frequency of utility poles, trees, raised curb and gutter, decorative 

lighting, turning lanes, and other features.  Corridors were examined in segments with each 

segment beginning and ending at crossing streets.  Roadside conditions were noted for each 

segment without cross referencing crash data for the corridor.  This procedure was used in 

order to prevent bias by the video reviewer.                    
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Figure 3.4 ArcGIS image of 14
th

 Street 
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Figure 3.5 Image from video of 14
th

 Street 

 

 

3.4  Accident Data Processing 

 Critical Analysis Reporting Environment (CARE) software developed at the 

University of Alabama was used in the reduction of the Georgia crash data for the purpose of 

the project.  The software provides an easy-to-use interface that allows users to sort crashes 

by a variety of fields.  Six years of accident data from 2001 to 2005 were analyzed in order to 

have a large sample size.  CARE uses latitude and longitude as well as corridor mileposts to 

plot crashes in ArcGIS.         

 Initially, all Georgia collisions during the specified time period were plotted in 

ArcGIS.  Next, all crashes within 100 feet of the study corridors were selected.  From the 
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selected crashes, tables were generated displaying the number of crashes by accident type, 

severity, and year.  The resulting tables can be seen in Appendix B for each of the nine 

Atlanta corridors.  An example of one such table is shown in Table 3.1.  For the NCHRP 16-

04 Report, specific focus was given to off-road fixed object crashes.  In order to segregate 

these accidents, CARE was used to select accidents occurring on roadsides or shoulders with 

the manner of collision defined as “not a collision with a motor vehicle”.  The resulting 

crashes were examined manually, eliminating crashes that did not meet criteria, specifically 

location.  Examples of eliminated incidents include those on neighboring streets that fell 

within the buffer, but did not occur on the roadside of one the study corridors. 

 

Table 3.1 Table displaying the severity of accidents on Roswell Road (1) corridor.   

 

Roswell Road (1), Fulton County, Georgia

2000 2001 2002 2003 2004 2005 Total

253 211 211 204 176 163 1218

9 12 12 8 12 5 58

 

Fixed Object 13 11 20 21 15 6 86

8 9 4 7 8 10 46

215 197 206 234 202 173 1227

 

Sideswipe Opposite Direction 5 6 4 11 5 7 38

Sideswipe Same Direction 54 52 55 43 47 44 295

557 498 512 528 465 408 2968

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

Total Crashes

Pedestrian

Rear End

Sideswipe (Total)

 

 

 The resulting crashes were grouped by corridor and exported into nine separate 

spreadsheets.  In order to quantify the locations of crashes along the corridors, histograms 

were created using a macro written using Visual Basic.  An example of the resulting 
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histograms can be seen in Figure 3.6.  This histogram illustrates the number of crashes in 0.5 

mile increments along a corridor.  Additionally, line graphs were used to display the same 

information with a 0.1 mile interval.  An example is pictured in Figure 3.7.  The histograms 

for each of the study corridors can been found in Appendix B.  This information was 

beneficial when comparing general roadside conditions found from the video analysis with 

off-road fixed object crash histories.            
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Figure 3.6 Histogram of off-road fixed object collisions for the southbound portion of 

Roswell Road (1) corridor. 
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Figure 3.7 Graph displaying off-road fixed object collisions for the southbound portion of 

Roswell Road (1) corridor. 

 

 

3.4.1  Locating Incidents 

In order to determine the number of incidents located near intersection locations, 

buffers were used in ArcGIS.  Figure 3.8 shows a portion of the 14
th

 Street study corridor in 

which intersections with the intersecting roadways’ centerlines are identified.  From these 

points, buffers were placed as seen in Figure 3.9.  The image displays a buffer of 100 feet, 

although buffers of 25 and 50 feet were also used.  After the buffers were developed, it was 

possible to determine which crashes were within a specified distance from an intersection by 

plotting all roadside collisions with utility poles and trees along the study corridors and 

selecting which crashes fell within the buffer. 
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Figure 3.8 ArcGIS image of 14
th

 Street with intersecting side streets and points at 

intersections. 

 

 

 
 

Figure 3.9 ArcGIS image of 14
th

 Street with intersecting side streets and points at 

intersections and buffers. 



 42 

3.5 Summary of Field Data Collection and Processing 

 Chapter 3 of this report focused on the methodology used for collecting and 

processing the field and accident data.  Specifically, instructions were provided on the 

procedure used in driving, recording, and gathering of GPS data on the study corridors.  All 

video and GPS data was collected between April and June 2007.  Only information 

pertaining to the preparation of the data for analysis was included in this section.  Chapter 4 

provides a discussion of the data analysis. 
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CHAPTER 4                                                                                 

ANALYSIS AND FINDINGS 

 

 This chapter discusses the analysis of the collected field data as well as the accident 

records for the study corridors.  The data were analyzed to determine if crashes that occur off 

of the roadway are more likely to result in injury or death than when considering all crashes.  

Additionally, this chapter will explore if a collision with a tree or utility pole is more 

dangerous than the “all off-road crashes”.  Finally, this chapter will investigate the propensity 

of these ROR collisions with trees and utility poles to occur at locations close to intersections 

rather than mid-block locations.   

 

4.1  Roadside Incidents 

 The crash frequency on the Atlanta study corridors can be seen in Table 4.1.  The 

table contains six years of crash data from 2000-2005 redacted from the CARE database. On 

the nine Atlanta corridors there were 25,841 reported incidents from 2000-2005.  This value 

includes all crashes reported along the study corridors to have occurred within a buffer of 

100 feet centered on the roadway.  This value includes crashes that occurred on neighboring 

streets that fell within this buffer.  This method was used for the initial screening of the 

incident data due to issues identified when attempting to screen corridor crashes by the street 

number and milepost.  For example, some corridors were found to have had multiple mile 

markers.  Also, mileposts were not specific enough to locate the crashes within the specified 

buffers.  For example, a milepost of 21.25 does not provide the precision to locate this crash 
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within 100 feet of an intersection, a requirement of later analysis.   Additionally, this method 

provided a means for including crashes that could have been vehicles turning on or off the 

study corridor. 

4.1.1  Study Corridors’ Crash Frequency and Severity   

 The accident severity statistics demonstrates fairly similar likelihoods for each 

incident type across corridors.  The combined results show that 78 percent of crashes on the 

study corridors resulted in property damage only (PDO).  These numbers ranged between 

72.76 percent on Franklin Road and 81.46 percent on the Briarcliff Road and North Druid 

Hills Road corridor.  Additionally, the incidents resulted in one or more non-fatal injuries in 

approximately 22 percent of cases.  The range of this statistic on the study corridors is 18.48 

percent on the Briarcliff corridor to 27.07 percent on the Franklin Road Corridor.  Lastly, the 

nine Atlanta study corridors were found to have been the site of 25 fatality crashes over the 

six years of accident data.  These 25 crashes represent 0.10 percent of all crashes on the 

corridors.                 

  

 

Table 4.1 Table of frequency and severity of all crashes on the Atlanta study corridors 

from 2000-2005. 

 

Number % of Total Number % of Total Number % of Total

14th St / Peachtree St 5767 4626 80.22% 1137 19.72% 4 0.07%

Roswell Road (1) 2968 2391 80.56% 573 19.31% 4 0.13%

Roswell Road (2) 660 517 78.33% 142 21.52% 1 0.15%

Roswell Road (3) 885 647 73.11% 237 26.78% 1 0.11%

Alpharetta Highway 3845 3056 79.48% 787 20.47% 2 0.05%

Franklin Road 1193 868 72.76% 323 27.07% 2 0.17%

Moreland Avenue / Briarcliff Road 3688 2783 75.46% 901 24.43% 4 0.11%

Briarcliff Road / North Druid Hills Road 3392 2763 81.46% 627 18.48% 2 0.06%

Candler Road / Flat Shoals Parkway 3443 2604 75.63% 834 24.22% 5 0.15%

Totals 25841 20255 78.38% 5561 21.52% 25 0.10%

Fatal
All Crashes

PDO Crashes Non-Fatal Injury
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4.1.2  Off-Road Crash Frequency of Study Corridors 

 Table 4.2 illustrates the number of off-road crashes and percentage of total crashes 

that occurred on the study corridors.  All crashes with “off-road” or “on-shoulder” as their 

location of incident in the attribute table was taken to generate these statistics.  Both locations 

of incidents were selected as each could be considered examples of run-off-the-road crashes.   

These numbers were generated simply to show the frequency of these crashes in comparison 

to the total number of crashes over the duration of the study period.  The percentages ranged 

from less than one percent on Alpharetta Highway to greater than eleven percent on the 

second Roswell Road corridor.  The other corridors had similar off-road crash percentages 

ranging from 2.15 percent on the Briarcliff Road corridor to 5.26 percent on the Moreland 

Avenue corridor.  The highest percentage of roadside crashes was found on the Roswell 

Road (2) corridor.  One possible reason for the unusually high percentage could be the speed 

limit of 45 miles per hour on a large portion of the roadway; however, a detailed analysis 

would need to be conducted to confirm this hypothesis.  Most of the other corridors had 

speed limits of 35 miles per hour.  Overall, 768 of the 25,841 or 2.97 percent of reported 

incidents on the study corridors were found to have occurred either off-road on on-shoulder.    
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Table 4.2 Table of the number of off-road and shoulder crashes on study corridors.  

 

Number % of Total

14th St / Peachtree St 5767 137 2.38%

Roswell Road (1) 2968 98 3.30%

Roswell Road (2) 660 74 11.21%

Roswell Road (3) 885 23 2.60%

Alpharetta Highway 3845 33 0.86%

Franklin Road 1193 41 3.44%

Moreland Avenue / Briarcliff Road 3688 194 5.26%

Briarcliff Road / North Druid Hills Road 3392 73 2.15%

Candler Road / Flat Shoals Parkway 3443 95 2.76%

Totals 25841 768 2.97%

All Crashes

Off-Road / On Shoulder 

Crashes

 
 

 

 

4.1.3  Crash Severity of Off-Road Incidents on Study Corridors 

 Table 4.3 illustrates the severity of all off-road and on-shoulder collisions on the 

study corridors.  When comparing to Table 4.1, it is easy to identify the relative severity of 

these type crashes as compared to the severity of all crashes.  For example, all incidents on 

the study corridors were found to have resulted in property damage only in 78.38 percent of 

cases.  Conversely, off-road and on-shoulder crashes resulted in PDO in approximately 70 

percent of cases.  Similarly, non-fatal injury was the result in all incidents in 21.52 percent of 

cases and 29.43 percent of cases in off-road and on-shoulder incidents.  Moreover, as 

displayed in Table 4.4 run-off-the-road crashes resulted in fatality 0.52 percent as compared 

to 0.10 percent in all cases.  Along the Atlanta study corridors, run-off-the-road crashes were 

five times more likely to be deadly as all crashes along the corridors.  However, the given 

sample sizes are relatively small with 25 overall fatalities and 4 off-road / on-shoulder 

fatalities.  Future analysis is needed to confirm this observation by significantly increasing 

the sample size through the inclusion of data from additional corridors.              
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Table 4.3 Table of the severity of off-road and shoulder crashes on study corridors. 

 

Number % of Total Number % of Total Number % of Total

14th St / Peachtree St 137 91 66.42% 45 32.85% 1 0.73%

Roswell Road (1) 98 72 73.47% 26 26.53% 0 0.00%

Roswell Road (2) 74 51 68.92% 22 29.73% 1 1.35%

Roswell Road (3) 23 18 78.26% 5 21.74% 0 0.00%

Alpharetta Highway 33 22 66.67% 11 33.33% 0 0.00%

Franklin Road 41 29 70.73% 11 26.83% 1 2.44%

Moreland Avenue / Briarcliff Road 194 134 69.07% 60 30.93% 0 0.00%

Briarcliff Road / North Druid Hills Road 73 54 73.97% 19 26.03% 0 0.00%

Candler Road / Flat Shoals Parkway 95 67 70.53% 27 28.42% 1 1.05%
Totals 768 538 70.05% 226 29.43% 4 0.52%

Off-Road / On 

Shoulder

PDO Crashes Non-Fatal Injury Fatal

 
 

 

 

Table 4.4 Table of percentage of fatalities from all crashes and all off-road and shoulder 

crashes. 

 

Number % of Total Number % of Total

14th St / Peachtree St 5767 4 0.07% 137 1 0.73%

Roswell Road (1) 2968 4 0.13% 98 0 0.00%

Roswell Road (2) 660 2 0.30% 74 1 1.35%

Roswell Road (3) 885 1 0.11% 23 0 0.00%

Alpharetta Highway 3845 1 0.03% 33 0 0.00%

Franklin Road 1193 2 0.17% 41 1 2.44%

Moreland Avenue / Briarcliff Road 3688 4 0.11% 194 0 0.00%

Briarcliff Road / North Druid Hills Road 3392 2 0.06% 73 0 0.00%

Candler Road / Flat Shoals Parkway 3443 5 0.15% 95 1 1.05%

Totals 25841 25 0.10% 768 4 0.52%

All Crashes
Fatal

Off Road / 

On 

Shoulder

Fatal

 
 

 

 

4.2  Roadside Collisions with Utility Poles and Trees 

 Trees and utility poles are rigid objects that can contribute to an incident resulting in 

severe injury or death.  Clearly, as seen in Table 4.5, utility poles and trees are responsible 

for 23.44 percent of all reported off-road incidents.  This is a significant percentage, 

especially considering the number of objects that can be found on roadsides.  Other 

commonly hit objects included pedestrians, fences, curb faces, guardrails, and fire hydrants.   

The greatest percentage of utility pole and tree collisions occur on the 14
th

 Street and 

Moreland Avenue corridors with 35.77 and 35.05 percent of all off-road collisions, 
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respectively.  These sites also have the greatest number of off-road incidents.  A reasonable 

hypothesis is that the tree and utility pole placement, likely in combination with other 

roadway design characteristic, is contributing to an increase likely of an errant vehicle being 

involved in an off-road crash.            

 

Table 4.5 Table of the number of utility pole and tree collisions in comparison to all off-

road and shoulder crashes. 

 

Number % of Total

14th St / Peachtree St 137 49 35.77%

Roswell Road (1) 98 20 20.41%

Roswell Road (2) 74 4 5.41%

Roswell Road (3) 23 3 13.04%

Alpharetta Highway 33 6 18.18%

Franklin Road 41 6 14.63%

Moreland Avenue / Briarcliff Road 194 68 35.05%

Briarcliff Road / North Druid Hills Road 73 13 17.81%

Candler Road / Flat Shoals Parkway 95 11 11.58%

Totals 768 180 23.44%

Off-Road / On 

Shoulder 

Crashes

Utility Pole + Trees

 
 

 

 

 As shown in Table 4.6, utility poles are the off-road object hit in a significant 

percentage of the off-road crashes.  The greatest percentage of utility pole collisions occur on 

the 14
th

 Street and Moreland Avenue corridors contributing 32.12 and 29.38 percent of all 

off-road collisions, respectively.  As previously stated, of the nine study corridors, these two 

contribute the greatest number and percentage of off-road crashes of the nine study corridors.   

 Tree collisions were also analyzed as they can share similar features with utility 

poles.  It is possible that a tree collision would go unreported in an urban setting as many of 

the trees located within the right of way were found to have had a small diameter and may 
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have resulted in little damage in a collision.  The greatest percentages of tree collisions were 

found to have occurred on the Alpharetta Highway and Franklin Road corridors.  Overall, 

trees were associated with 5.34 percent of off-road collisions on the Atlanta study corridors.                  

 

 

Table 4.6 Table of the number of utility pole collisions in comparison to the total 

number. 

 

Number % of Total Number % of Total

14th St / Peachtree St 137 44 32.12% 5 3.65%

Roswell Road (1) 98 17 17.35% 3 3.06%

Roswell Road (2) 74 1 1.35% 3 4.05%

Roswell Road (3) 23 2 8.70% 1 4.35%

Alpharetta Highway 33 2 6.06% 4 12.12%

Franklin Road 41 1 2.44% 5 12.20%

Moreland Avenue / Briarcliff Road 194 57 29.38% 11 5.67%

Briarcliff Road / North Druid Hills Road 73 6 8.22% 7 9.59%

Candler Road / Flat Shoals Parkway 95 9 9.47% 2 2.11%

Totals 768 139 18.10% 41 5.34%

Off-Road / On 

Shoulder 

Crashes

Utility Pole Collisions Tree Collisions

 
 

 

 

4.2.1  Severity of Utility Pole and Tree Collisions 

 Trees and utility poles are particularly unforgiving in collisions.  This is evident in 

Table 4.7, which breaks down utility pole and tree collisions by corridor and severity.  

Overall, only 60 percent of crashes were PDO, while 38.33 percent and 1.67 percent were 

non-fatal injury and fatality crashes, respectively.  These rates are skewed higher in severity 

than “all crashes” results and the “all off-road and on-shoulder crash results”. For example, 

38.33 percent of tree and utility collisions resulted in non-fatal injury, whereas 21.52 of all 

crashes and 29.43 percent of all off-road crashes have the same result.  Similar results were 

found for fatal crashes, with trees and utility pole related crashes at 1.67, all off-road and on 

shoulder crashes at 0.10, and all crashes 0.52 percentages, respectively.  Therefore, for the 



 50 

nine Atlanta study corridors, fatality was greater than three times more likely to result for an 

off-road collision with a tree or utility pole than for all off-road crashes.  Moreover, fatality 

was sixteen times more likely to occur in an off-road collision with a tree or utility pole than 

all crashes on the study corridors.        

 

Table 4.7 Table of the severity of utility pole and tree collisions. 

 

Number % of Total Number % of Total Number % of Total

14th St / Peachtree St 49 28 57.14% 20 40.82% 1 2.04%

Roswell Road (1) 20 12 60.00% 8 40.00% 0 0.00%

Roswell Road (2) 4 2 50.00% 2 50.00% 0 0.00%

Roswell Road (3) 3 1 33.33% 2 66.67% 0 0.00%

Alpharetta Highway 6 4 66.67% 1 16.67% 1 16.67%

Franklin Road 6 3 50.00% 2 33.33% 1 16.67%

Moreland Avenue / Briarcliff Road 68 46 67.65% 22 32.35% 0 0.00%

Briarcliff Road / North Druid Hills Road 13 6 46.15% 7 53.85% 0 0.00%

Candler Road / Flat Shoals Parkway 11 6 54.55% 5 45.45% 0 0.00%

Totals 180 108 60.00% 69 38.33% 3 1.67%

FatalUtility Pole + 

Trees

PDO Crashes Non-Fatal Injury

 
 

 

 

4.3  Roadside Crashes at Intersections 

 It has been identified that roadside fixed object crashes, particularly with utility poles 

and trees, are dangerous.  This section of the report will provide data supporting the 

hypothesis that this type of crash is more prone to occur at intersection locations.  This 

concept was born from the data analysis of the Georgia accident data for NCHRP 16-04.  

Through visual inspection, it was noticed that there was a disproportionally high percentage 

of off-road fixed object collisions clustered around intersection locations.  It was then 

assumed that this was due, at least in part, to errant maneuvers of turning vehicles.   

  ArcGIS was used to determine the percentage of crashes that occurred near 

intersection locations.  First, a point was generated at locations where study corridors 
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intersected with other streets.  From the resulting points, buffers were generated at different 

radii to visualize the number of crashes that occurred within the ranges.  With the buffers, it 

was easy to determine how many and what percentage of roadside collisions occurred near 

intersection locations.  However, it was decided that this information was of little 

significance if it could not be compared to the rest of the roadway.   

 To combat this problem, the length of roadway that fell into the various buffers was 

also calculated.  This would allow for roads with fewer or greater number of cross streets to 

be more equally compared.  For example, if 50 percent of crashes were found to have 

occurred within 100 feet of intersections while 50 percent of the roadway length also fell in 

the same range, then intersection locations are not overrepresented in crash rates.   

 

4.3.1  Roadside Collisions with Utility Poles at Intersections 

 The number of utility pole crashes in relation to intersections for all study corridors 

can be seen in Table 4.8.  As seen in the chart, there were 139 roadside fixed object collisions 

with utility pole crashes on the nine Atlanta corridors.   

 The sum of all of the study corridors’ lengths was found to be 125,717 feet or 23.81 

miles.  Of this length, 9,485 feet lay within 25 feet of an intersection with another roadway.  

This length represents less than 8 percent of the entire roadway length.  However, within this 

relatively small portion of roadway, nearly 22 percent of utility pole crashes occurred.  

Clearly, this section of roadway houses a proportionally larger amount of these types of 

crashes than the rest of the roadway.  Similarly, less than 14 percent of the study corridor 

length is within 50 feet of intersection locations.  Yet, greater than 30 percent of roadside 

utility pole collisions were found to have occurred in this space.  Again, the same statistics 
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prove true within 100 feet of intersection locations.  Less than 25 percent of the corridors 

were within this distance, while housing nearly 62 percent of utility pole crashes.               

 In addition to percentage, off-road crash rates were also calculated.  For the entire 

length of all corridors, there was an average of 5.84 off-road incidents with utility poles per 

mile as seen in Table 4.8.  This number rises to 14.49 crashes per mile for sections of 

roadway within 100 feet of intersection.  There is a slight drop off for roadway within 50 feet 

of intersections.  As expected, sections of the study corridors within 25 feet of intersections 

had the highest crash rate at 16.70 per mile and nearly three times the average rate of all 

corridors.  Individual tables for each of the nine study corridors can be seen in Appendix B.    

       

Table 4.8 Table of the amount of utility crashes and their nearness to intersections. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Crashes 

Per Mile

Corridor 125716.80 100.00% 139 100.00% 5.84

Within 25' 9484.54 7.54% 30 21.58% 16.70

Within 50' 17412.51 13.85% 42 30.22% 12.74

Within 100' 31339.96 24.93% 86 61.87% 14.49  
 

 

 

4.3.2  Roadside Collisions with Trees at Intersections 

 Utility pole collisions outnumber tree collisions rather significantly, due to the urban 

environment from which the data was collected.  However, when hit, trees still represent a 

formidable object.  For this reason, the same analysis that was performed on utility poles will 

be conducted on trees.   

 Though there were only 41 roadside collisions with trees on the Atlanta study 

corridors, they followed a similar pattern in location of occurrence with utility pole 
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collisions.  As seen in Table 4.9, 19.51 percent of tree collisions occurred within 25 feet of an 

intersection, or 7.54 percent of study corridors’ length.  Additionally, 29.27 percent of these 

collisions happened on 13.85 percent of the roadways, the portion within 50 feet of 

intersections.  Finally, 51.22 percent of tree collisions occurred within 100 feet of an 

intersection, on less than 25 percent of the roadways.  The crash rates increase significantly 

nearer to intersections with only 1.72 crashes per mile on average for the entire length and 

3.54, 3.64, and 4.45 crashes per mile from 100 feet, 50 feet, and 25 feet, respectively.  

 Not only are utility pole crashes more prevalent on the study areas, they are also 

statistically more prone to occur at intersections than crashes with trees.  This can be 

concluded from comparing the percentage of each type of crash that occurs within the given 

distances from intersections.  Utility pole crashes and tree crashes were found to have 

occurred within 25 feet of an intersection in 21.58 and 19.51 percent of cases, respectively.  

Additionally, the same holds true for buffers of 50 and 100 feet, with utility poles showing 

higher percentages within these ranges.  However, caution must be excised in the use of this 

result as a relative presence of utility poles and trees is not considered, potentially biasing the 

results.  The issue will be further explored in Chapter 5.           

            

Table 4.9 Table of the amount of tree crashes and their nearness to intersections. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Crashes 

Per Mile

Corridor 125716.80 100.00% 41 100.00% 1.72

Within 25' 9484.54 7.54% 8 19.51% 4.45

Within 50' 17412.51 13.85% 12 29.27% 3.64

Within 100' 31339.96 24.93% 21 51.22% 3.54  
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4.3.3  Roadside Collisions with both Utilities and Trees at Intersections 

 The combination of utility pole and tree collisions for the nine Atlanta study corridors 

can be seen in Table 4.10.  This table simply is the sum of the two previous tables, utility 

pole crashes and tree crashes.  Therefore, the percentage of crashes will be a weighted 

average of both types, while the crash rates will be the sum of both crash rates.   

 Overall, of the 180 roadside fixed object collisions with trees and utility poles 21.11 

percent occurred within 25 feet of an intersection.  Furthermore, 30 percent of these crashes 

took place within 50 feet of an intersection, an area representative of 13.85 percent of the 

roadways.  Finally, 59.44 percent of incidents were within 100 feet of an intersection or 

24.93 percent of the corridors.   

 The combined crash rates were 7.56 crashes per mile for the entire corridors.  The 

crash rates within 100 feet and 50 feet of intersections were 18.03 and 16.37 crashes per 

mile, respectively.  Lastly, the crash rate for sections of roadway within 25 feet of 

intersections was found to be the highest at 21.15 crashes per mile.  Statistically, if the entire 

length of every corridor had the same crash rate as that within 25 feet of an intersection there 

would be greater than 500 off-road fixed object collisions with utility poles and trees rather 

than the 180. 

 

Table 4.10 Table of the amount of utility and tree crashes and their nearness to 

intersections. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Crashes 

Per Mile

Corridor 125716.80 100.00% 180 100.00% 7.56

Within 25' 9484.54 7.54% 38 21.11% 21.15

Within 50' 17412.51 13.85% 54 30.00% 16.37

Within 100' 31339.96 24.93% 107 59.44% 18.03  
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4.4  Statistical Analysis 

In order to determine the statistical significance of location on the severity of crashes 

and the proximity to intersections on the likelihood of the occurrence of roadside collisions 

with trees and utility poles, two Pearson’s Chi-Square tests was conducted.  In the tests, the 

observed number of crashes by was compared to the expected number of crashes by along 

the study corridors.       

 

4.4.1  Statistical Analysis of Location on Crash Severity 

The observed number of all crashes and roadside crashes by severity are in Table 

4.11.  The expected values in Table 4.12 represent the expected number of roadside crashes 

by severity provided there is no relationship between crash location and severity.  Restated, 

the expected values are generated by using the percentage of crashes by severity for all 

crashes and applying the same rate to the smaller sample size of only off-road crashes.  The 

null hypothesis used for the test is the severity of crashes is independent of the crash location.  

The critical value for the test uses the inverse of the one-tailed probability for the chi-squared 

distribution.  For two degrees of freedom with 95 percent level of confidence, 5.99 is the 

critical value.  In the test, this value is compared to the sum of residuals in Table 4.13.  As 

the sum of 43.39 is greater than 5.99, the null hypothesis can be rejected.  Therefore, with a 

95 percent confidence level, crash severity is dependent upon crash location.  In addition, the 

standardized residuals for crash severity were found to be significant with 95 percent 

confidence as per Table 4.14.  For this statistical testing off-road crashes include both 

incidents with coded event locations of off-road and on-shoulder.     
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Table 4.11  Table of observed results used in Chi-Square test. 

 

PDO 

Crashes

Non-Fatal 

Injury
Fatal Total

Percentage 

of Total

  Off-Road Crashes 538.00 226.00 4.00 768 2.97%

  All Crashes 20255 5561 25 25841 100.00%

  Percentage of Total by

  Severity
78.38% 21.52% 0.10%

 

 

 

Table 4.12  Table of expected results from Chi-Square test. 

 

PDO 

Crashes

Non-Fatal 

Injury
Fatal Total

Percentage 

of Total

  Off-Road Crashes 601.98 165.27 0.74 768 2.97%

  All Crashes 20255 5561 25 25841 100.00%

  Percentage of Total by

  Severity
78.38% 21.52% 0.10%

 
 

 

Table 4.13  Table of residuals for Chi-square test. 

 

PDO 

Crashes

Non-Fatal 

Injury
Fatal

  All Crashes 6.80 22.31 14.28

  Off-Road Crashes 0.00 0.00 0.00

 S = 43.39
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Table 4.14 Table of standardized residuals for Chi-square test. 

 

PDO 

Crashes

Non-Fatal 

Injury
Fatal

  Off-Road Crashes 2.61 4.72 3.78
 

 

4.4.2  Statistical Analysis of Proximity to Intersections on the Occurrence of Roadside 

Crashes with Trees and Utility Poles 

 The observed number of all roadside crashes and roadside crashes within buffers of 

25, 50, and 100 feet are in Table 4.15.  The expected values in Table 4.17 were generating 

using the percentages of length of roadway within the various buffers from Table 4.16.  

These represent the expected number of roadside crashes within the buffers provided there is 

no relationship between proximity to intersection and crash frequency.  The null hypothesis 

used for the test is that the occurrence of roadside crashes with trees and utility poles is 

independent of the proximity to intersections.  The critical value for the test uses the inverse 

of the one-tailed probability for the chi-squared distribution.  For two degrees of freedom 

with 95 percent level of confidence, 5.99 is the critical value.  In the test, this value is 

compared to the sum of residuals in Table 4.18.  As the sum of 163.88 is greater than 5.99, 

the null hypothesis can be rejected.  Therefore, with a 95 percent confidence level, the 

frequency of roadside collisions with trees and utility poles is dependent upon proximity to 

intersections.   
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Table 4.15  Table of observed results used in Chi-Square test. 

 

25'       

Buffer

50'     

Buffer

100' 

Buffer

  Off-Road Crashes within                

  Specified Buffers

  All Off-Road Crashes 180 180 180

  Percentage of Total

38.00 54.00 107.00

21.11% 30.00% 59.44%

 
 

 

 

Table 4.16  Table of length of roadway within buffers used in Chi-Square test. 

 

25'       

Buffer

50'     

Buffer

100' 

Buffer

  Length of Roadway              

  within Specified Buffers

  Total Roadway Length (ft) 125716.8 125716.8 125716.8

24.93%  Percentage of Total

9484.54 17412.51 31339.96

7.54% 13.85%

 
 

 

 

Table 4.17  Table of expected results used in Chi-Square test. 

 
25'       

Buffer

50'     

Buffer

100' 

Buffer

  Off-Road Crashes within                

  Specified Buffers

  All Off-Road Crashes 180 180 180

24.93%  Percentage of Total 7.54% 13.85%

13.57 24.93 44.87
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Table 4.18  Table of residuals for Chi-Square test.   

 
25'       

Buffer

50'     

Buffer

100' 

Buffer

  Off-Road Crashes within                

  Specified Buffers

  All Off-Road Crashes 0 0 0

43.97 33.90 86.01

  SSSS = 163.88

 

 

4.5  Contributing Scenarios  

 There were several factors that arose quite often when reviewing the crash records for 

the roadside collisions with utility pole and trees along the Atlanta study corridors.  First, 

driver inattention and falling asleep were reported as the most common causes for these types 

of crashes.  Additionally, these incidents were often the result of motorists losing control of 

their vehicles due to reasons such as car trouble, alcohol, driver inexperience, and others.  

These contributing factors, however, are not necessarily specific to intersection locations and 

could just as well occur at midblock locations.         

 As previously stated, it was easy to recognize from a glance that a large proportion of 

off-road fixed object collisions take place at or near intersections with cross streets.  This 

section of the report will examine Georgia Department of Transportation accident reports in 

order to detect any trends that may have contributed to the number of crashes present at these 

intersections.  There are features specific to intersection locations which generate the greater 

number of off-road collisions.   
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4.5.1  Single Contributing Vehicles 

 Before delving into GDOT accident reports, it was assumed an errant turning 

movement was the primary reason for the off-road crashes at intersections.  This situation 

refers to a turning vehicle that either overshoots or undershoots its projected lane.  These 

crashes commonly occur when a vehicle is trying to perform a turning movement while 

traveling too fast.  Additionally, several accidents of this nature were found to have occurred 

during inclement weather that contributed to reduced available pavement friction.  Also, 

there were several crashes of this variety that were a result of blown tires, lost steering, and 

other mechanical problems with the automobile.    

 An example of one such crash can be seen in Figure 4.1.  In the example, the motorist 

took the turn too sharply from 14
th

 Street to West Peachtree Street and collided with a light 

pole at the corner of the intersection.  Similarly, an example of a vehicle “overshooting” his 

desired lane and colliding with a utility can be seen in Figure 4.2.  This report shows a left 

turning vehicle that departed the roadway.  In each of these cases, the driver may have 

misjudged the necessary turn radii.     

 Another scenario that was responsible for roadside collisions near intersections was 

the overcorrection of motorists.  In this type of crash, while making a turning maneuver, the 

errant motorist was found to have lost control of a vehicle near the end of a turning 

movement.  An accident report for this type of crash can be seen in Figure 4.3.  In this 

incident, the vehicle lost control of his vehicle after turning out of a convenience store on 

Misty Waters Drive onto Candler Road.       
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4.5.2  Multiple Contributing Vehicles 

 There were several prevalent scenarios that reappeared when reviewing accident 

records for the study corridors.  These accidents largely stem from vehicles making 

unexpected maneuvers causing other motorists to swerve to avoid the crash, thus leaving the 

roadway.  It would stand to reason that a large number of these crashes would occur at 

intersection locations due to a relatively large volume of turning vehicles.   

 Figure 4.4 contains a GDOT accident report for a roadside collision with multiple 

contributing vehicles.  In the accident description the driver stated that a vehicle was stopped 

in the inside lane, perhaps because the vehicle was waiting to turn left.  The approaching 

vehicle was forced to veer off at the last moment to avoid the stopped vehicle, propelling it 

into the roadside where it collided with a utility pole.  A similar situation can been in Figure 

4.5, where a vehicle was forced to turn into the roadside to avoid a collision with a stopped 

Metropolitan Atlanta Rapid Transit Authority (MARTA) transit bus on the far side of an 

intersection on Candler Road.   There are many examples of this scenario that were simply 

reported as a vehicle being “cut off” by another vehicle who changed lanes prior to 

intersections and being forced into the right-of-way.  It would make sense for this situation to 

occur more commonly at intersections as vehicles may be changing lanes to make a turning 

maneuver.   

 Several other crashes stemmed from stopped vehicles awaiting sufficient gaps to 

make a left turn.  In these cases, a vehicle would change lanes to avoid the stopped car, thus 

forcing other vehicles to swerve away from the vehicle that is changing lanes.  These cases 

show that there can be a ripple effect in these events as it not necessarily the first 

approaching vehicle that experiences the collision.      
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 Another roadside crash type with multiple contributing vehicles can be seen in the 

accident report in Figure 4.6.  The remarks on the accident report point out that vehicle 2 was 

attempting to travel southbound on Moreland Avenue through North Avenue while another 

vehicle was making a northbound left onto North Avenue.  Vehicle 1 forced vehicle 2 to 

steer off of the roadway into a utility pole at the corner of the intersection.   

 The accident reported in Figure 4.7 describes an accident on West Peachtree Street, a 

one-way street in Midtown Atlanta.  In this case, a vehicle attempted to make a left turn from 

a lane to the right of another vehicle.  The turning vehicle essentially trapped the inside 

vehicle and forced it off of the roadway into a utility pole at the intersection with 16
th

 Street.           
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Figure 4.1 Image of GDOT accident report for collision with utility pole at the 

intersection of 14
th

 Street and West Peachtree Street. 

 

 

 

 

 
 

Figure 4.2 Image of GDOT accident report for collision with utility pole at the 

intersection. 
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Figure 4.3 Image of GDOT accident report for collision with utility pole at the 

intersection of Candler Road and Misty Waters Drive. 

 

 

 

 

 
 

Figure 4.4 Image of GDOT accident report for collision with utility pole at intersection 

of Moreland Avenue and Delaware Avenue. 
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Figure 4.5 Image of GDOT accident report for collision with utility pole on Candler 

Road.   

 

 

 

 
 

Figure 4.6 Image of GDOT accident report for collision with utility pole at intersection 

of Moreland Avenue and Delaware Avenue. 
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Figure 4.7 Image of GDOT accident report for collision with utility pole at intersection 

of West Peachtree Street and 16
th

 Street. 

 

 

 

4.6  Summary of Analysis and Findings 

 Chapter 4 of this report focused on the analysis and findings of the data collection of 

this report.  It was found that roadside crashes were more likely to result in injury or death 

than the sum of all corridor crashes.  Also, roadside crashes with trees and utility poles were 

more likely to result in injury or death than the sum of all roadside crashes.  Additionally, it 

was found that roadside crashes with trees and utility poles were more likely to occur in close 

proximity to intersections.  Furthermore, statistical testing was conducted and verified that 

there is a relationship between, not only crash severity and location, but also proximity to 

intersections and the likelihood of roadside collisions with trees and utility poles.     
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CHAPTER 5                                                                                   

CONCLUSIONS 

 

 As previously stated, it was the Highway Safety Act of 1966 that first mentioned the 

concept of roadside safety [1].  Though strides have clearly been made over the years 

subsequent to its publication, there is still room for improvement.  Roadside safety clearly 

has the attention of transportation professionals as is evident through the continued 

publication and revision of the AASHTO Roadside Design Guide [1] and the Highway 

Safety Manual currently in development.  Chapter 5 of this report, however, will focus 

specifically on conclusions drawn from the analysis of roadside crashes and their frequency 

of occurrence near intersections.  .    

 

5.1  Data Analysis Results 

Clearly, as shown in Chapter 4, any crash is dangerous and has the potential to result 

in serious injury or death.  Moreover, roadside crashes have higher likelihood of resulting in 

injury or death.  It can be concluded, further, that of all roadside incidents, those including 

collisions with utility poles and trees, resulted in injury or death more often than the “all off-

road crashes”.  Finally, it is evident through the data analysis that roadside collisions, 

particularly those with trees and utility poles, are prone to occur near intersection locations.     

Chapter 4 further delves into utility pole and tree collisions near intersection locations 

by examining the percentages that occur within 25, 50, and 100 feet of an intersection.  Table 

4.10 indicates that, proportionally, the area within 25 feet of an intersection has the highest 
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rate of collisions with utility poles and trees.  Additionally, scenarios which contributed to 

this large number of crashes were examined in Chapter 4.  Therefore, it stands to reason that 

removal and relocation of obstacles at these locations could significantly reduce the total 

number and severity of off-road collisions.   

 

5.2  Recommended Guidelines 

 The AASHTO Green Book [7] is discussed in Chapter 2 and states that no utility pole 

should be placed in a location where it can be struck, however, it does not provide much 

guidance on identifying these locations.  Furthermore, AASHTO’s UAPSM [8] states that a 

utility pole may be placed in a roadside environment “as long as it does not adversely affect 

the safety design, construction, traffic operations, maintenance, or stability”.  This document 

could be enhanced with future revisions by placing specific parameters defining what 

adversely impacts the safety of motorists.                 

As seen in Chapter 4, the area within 25 feet of intersections houses a 

disproportionate number of roadside collisions and should, therefore, receive a greater 

amount of attention when regulating the placement of utility poles and trees within the right-

of-way.  Hence, the findings of this report suggest that no utility be placed within 25 feet of 

an intersection.  Furthermore, if this is violated, a minimum setback of 10 feet from the edge 

of the travelway should be applied.  Clearly, exceptions may have to be made to allow for the 

placement of traffic signals, luminaries, or other objects that must be placed within this area.    

In the cases where the 25 feet buffer must be violated, only breakaway devices should 

be used.  Although these devices may not reduce the frequency of roadside collisions near 

intersections, it would certainly be an effective means for reducing the severity of the 
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incidents.  Only devices tested that have been tested to standards specified in NCHRP Report 

350 [19] should be used in these cases.      

 

5.3  Limitations of the Research 

There were certain limitations with this research.  Most evident, this report relies 

heavily on the accuracy of the accident reports and the CARE software.  The accidnet 

reports, in particular, are an area of concern in that the data used by the CARE software is 

taken from these reports.  As all of the information in the database has been extracted from 

an accident record that was completed by a reporting officer, there is a potential for error.  

Miscoding of accident type and location on roadway are two particular areas of potential 

error.  Additionally, the location, in terms of milepost, is a great concern for the accuracy of 

the data as the results are completely dependent upon the accuracy of the location.      

Another potential shortcoming of this research is the breadth of corridors examined.  

As all corridors were classified as urban arterials, it would be beneficial to further explore 

roadways of other classifications.  Currently, it can only be concluded from this research that 

for urban arterials, roadside collisions are more prone to occur near intersection locations 

than midblock locations.    Additional data could confirm or disprove the conclusions drawn 

from the data collection and determine if the results can be translated to a larger scale.   

 A potential bias that was considered was the possibility that a large percentage of 

utility poles are found near intersections along corridors.  Hypothetically, if 80 percent of 

utility poles were located within 25 feet of an intersection and 80 percent of utility pole 

crashes being located within this same area, then the distribution of crashes is not necessarily 

greater due to the intersection location.  To address this potential bias, the utility poles along 
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14
th

 Street were counted.  The results of this count are displayed in Table 5.1.  On this 

corridor, the percentage of utility poles within 100 feet of an intersection did not exceed the 

percentage of the length of corridor within the same buffer.  Future efforts should consider 

this potential bias on all corridors in the study.         

 

Table 5.1  Table of utility poles along 14
th

 Street Corridor. 

 

Length 

(ft)

Percentage 

of Length
Utility Poles

Percentage 

of Total

  Length 6019 100.00% 121 100.00%

  Within 100' 3835 63.71% 55 45.45%  

 

 

5.4  Future Research Recommendations 

Future research that should be considered to build upon this report would, most 

importantly, include a greater sample size of different classifications of roadways.  Further 

research in this capacity could determine if the location of roadside collisions at close 

proximity to intersections is standard among all road types.     

Additionally, research that focuses particularly upon the length of setbacks could also 

be extremely beneficial.  This report only examines utility poles and trees and their proximity 

to intersections and does not include analysis of the lateral placement of these obstacles.  

Such research could be used in design manual revisions as it could provide more detailed 

lateral placement information.   
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APPENDIX A  

 

 

 
 

Figure A.1  GIS Image of 14
th

 Street / Peachtree Street Corridor (Length of 3.0 Miles). 
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Figure A.2  GIS Image of Roswell Road (1) Corridor (Length of 2.2 Miles). 
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Figure A.3 GIS Image of Roswell Road (2) Corridor (Length of 2.0 Miles). 
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Figure A.4 GIS Image of Roswell Road (3) Corridor (Length of 2.0 Miles).   
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Figure A.5 GIS Image of Alpharetta Highway Corridor (Length of 2.2 Miles).   
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Figure A.6 GIS Image of Franklin Road Corridor (Length of 2.3 Miles).     
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Figure A.7 GIS Image of Moreland Avenue / Briarcliff Road Corridor (Length of 4.0 

Miles).     
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Figure A.8 GIS Image of Briarcliff Road / North Druid Hills Road Corridor (Length of 

2.6 Miles).     
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Figure A.9 GIS Image of Candler Road / Flat Shoals Parkway Corridor (Length of 3.5 

Miles).     
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APPENDIX B  

 

Table B.1 Crashes by type for 14th Street and Peachtree Street. 

 

14th Street / Peachtree Street, Fulton County, Georgia

2000 2001 2002 2003 2004 2005 Total

380 401 352 264 302 305 2004

11 15 11 12 17 14 80

 

Fixed Object 28 38 22 25 31 20 164

12 7 13 7 9 11 59

451 408 401 334 381 254 2229

 

Sideswipe Opposite Direction 13 15 14 4 12 6 64

Sideswipe Same Direction 214 230 191 189 184 159 1167

1109 1114 1004 835 936 769 5767Total Crashes

Pedestrian

Rear End

Sideswipe (Total)

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

 
 

 

 

Table B.2 Crashes by type for Roswell Road (1). 

 

Roswell Road (1), Fulton County, Georgia

2000 2001 2002 2003 2004 2005 Total

253 211 211 204 176 163 1218

9 12 12 8 12 5 58

 

Fixed Object 13 11 20 21 15 6 86

8 9 4 7 8 10 46

215 197 206 234 202 173 1227

 

Sideswipe Opposite Direction 5 6 4 11 5 7 38

Sideswipe Same Direction 54 52 55 43 47 44 295

557 498 512 528 465 408 2968

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

Total Crashes

Pedestrian

Rear End

Sideswipe (Total)
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Table B.3 Crashes by type for Roswell Road (2). 

 

Roswell Road (2), Cobb County, Georgia

2000 2001 2002 2003 2004 2005 Total

17 12 19 9 16 17 90

2 1 1 2 1 2 9

 

Fixed Object 5 13 4 6 3 6 37

0 3 1 1 0 0 5

61 85 93 103 81 72 495

 

Sideswipe Opposite Direction 2 0 0 2 0 0 4

Sideswipe Same Direction 3 4 7 0 2 4 20

90 118 125 123 103 101 660Total Crashes

Pedestrian

Rear End

Sideswipe (Total)

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

 
 

 

 

Table B.4 Crashes by type for Roswell Road (3). 

 

Roswell Road (3), Fulton County, Georgia

2000 2001 2002 2003 2004 2005 Total

37 35 43 42 51 46 254

0 2 2 8 1 5 18

 

Fixed Object 12 25 20 14 12 12 95

0 0 0 0 0 0 0

48 73 64 80 98 88 451

 

Sideswipe Opposite Direction 0 1 1 0 1 1 4

Sideswipe Same Direction 7 9 8 13 18 8 63

104 145 138 157 181 160 885

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

Total Crashes

Pedestrian

Rear End

Sideswipe (Total)
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Table B.5 Crashes by type for Alpharetta Highway. 

 

Alpharetta Highway, Fulton County, Georgia

2000 2001 2002 2003 2004 2005 Total

187 226 201 230 186 186 1216

18 11 9 16 7 7 68

 

Fixed Object 10 23 5 12 11 11 72

3 2 3 6 2 2 18

320 369 316 384 341 370 2100

 

Sideswipe Opposite Direction 5 6 8 2 1 0 22

Sideswipe Same Direction 55 55 52 65 61 61 349

598 692 594 715 609 637 3845Total Crashes

Pedestrian

Rear End

Sideswipe (Total)

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

 
 

 

 

Table B.6 Crashes by type for Franklin Road. 

 

Franklin Road, Cobb County, Georgia

2000 2001 2002 2003 2004 2005 Total

105 107 82 75 78 70 517

9 3 6 2 2 2 24

 

Fixed Object 5 6 11 11 16 7 56

3 3 1 2 2 5 16

87 76 74 65 61 72 435

 

Sideswipe Opposite Direction 4 4 1 1 5 4 19

Sideswipe Same Direction 31 24 16 20 17 18 126

244 223 191 176 181 178 1193

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

Total Crashes

Pedestrian

Rear End

Sideswipe (Total)
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Table B.7 Crashes by type for Moreland Avenue and Briarcliff Road. 

 

Moreland Avenue / Briarcliff Road, Fulton / DeKalb County, Georgia

2000 2001 2002 2003 2004 2005 Total

209 238 233 206 235 191 1312

13 13 10 12 7 14 69

 

Fixed Object 38 31 31 35 40 44 219

11 13 8 7 8 13 60

225 217 195 204 223 235 1299

 

Sideswipe Opposite Direction 30 11 8 11 14 15 89

Sideswipe Same Direction 98 96 114 102 107 123 640

624 619 599 577 634 635 3688Total Crashes

Pedestrian

Rear End

Sideswipe (Total)

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

 
 

 

 

Table B.8 Crashes by type for Briarcliff Road and N. Druid Hills Road. 

 

Briarcliff Road / N. Druid Hills Road , DeKalb County, Georgia

2000 2001 2002 2003 2004 2005 Total

252 225 176 202 202 194 1251

9 9 10 2 15 2 47

 

Fixed Object 27 12 18 10 11 10 88

4 2 0 6 0 2 14

297 265 248 251 266 255 1582

 

Sideswipe Opposite Direction 13 7 6 9 24 8 67

Sideswipe Same Direction 46 55 49 47 69 77 343

648 575 507 527 587 548 3392Total Crashes

Pedestrian

Rear End

Sideswipe (Total)

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)
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Table B.9 Crashes by type for Candler Road and Flat Shoals Parkway. 

 

Candler Road / Flat Shoals Parkway, DeKalb County, Georgia

2000 2001 2002 2003 2004 2005 Total

224 252 256 198 203 229 1362

18 13 11 9 12 16 79

 

Fixed Object 20 23 26 23 23 19 134

7 9 11 9 8 7 51

200 243 229 246 230 226 1374

 

Sideswipe Opposite Direction 12 15 10 12 14 12 75

Sideswipe Same Direction 46 65 61 63 60 73 368

527 620 604 560 550 582 3443

Crash Type

Angle/Broadside

Head-On

Hit Object (Total)

Total Crashes

Pedestrian

Rear End

Sideswipe (Total)
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Figure B.1 Histogram of off-road fixed object collisions for the eastbound portion of 

14
th

 / Peachtree Street corridor. 
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Figure B.2 Histogram of off-road fixed object collisions for the westbound portion of 

14
th

 / Peachtree Street corridor. 
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Figure B.3 Histogram of off-road fixed object collisions for the northbound portion of 

14
th

 / Peachtree Street corridor. 

 



 86 

South

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5

Milepost

C
ra

s
h

e
s

 
 

Figure B.4 Histogram of off-road fixed object collisions for the southbound portion of 

14
th

 / Peachtree Street corridor. 
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Figure B.5 Histogram of off-road fixed object collisions for the northbound portion 

Roswell Road (1) corridor. 
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Figure B.6 Histogram of off-road fixed object collisions for the southbound portion 

Roswell Road (1) corridor. 
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Figure B.7 Histogram of off-road fixed object collisions for the eastbound portion 

Roswell Road (2) corridor. 
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Figure B.8 Histogram of off-road fixed object collisions for the westbound portion 

Roswell Road (2) corridor. 
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Figure B.9 Histogram of off-road fixed object collisions for the eastbound portion 

Roswell Road (3) corridor. 
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Figure B.10 Histogram of off-road fixed object collisions for the westbound portion 

Roswell Road (3) corridor. 
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Figure B.11 Histogram of off-road fixed object collisions for the eastbound portion 

Franklin Road corridor. 
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Figure B.12 Histogram of off-road fixed object collisions for the westbound portion 

Franklin Road corridor. 
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Figure B.13 Histogram of off-road fixed object collisions for the northbound portion 

Moreland Avenue / Briarcliff Road corridor. 
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Figure B.14 Histogram of off-road fixed object collisions for the southbound portion 

Moreland Avenue / Briarcliff Road corridor. 
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Figure B.15 Histogram of off-road fixed object collisions for the northbound portion 

Briarcliff Road / North Druid Hills Road corridor. 
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Figure B.16 Histogram of off-road fixed object collisions for the southbound portion 

Briarcliff Road / North Druid Hills Road corridor. 
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Figure B.17 Histogram of off-road fixed object collisions for the northbound portion 

Candler Road / Flat Shoals Parkway corridor. 
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Figure B.18 Histogram of off-road fixed object collisions for the southbound portion 

Candler Road / Flat Shoals Parkway corridor. 
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Figure B.19 Graph of the number of off-road fixed objects crashes for eastbound 

portion of 14
th

 / Peachtree Street corridor. 
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Figure B.20 Graph of the number of off-road fixed objects crashes for westbound 

portion of 14
th

 / Peachtree Street corridor. 
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Figure B.21 Graph of the number of off-road fixed objects crashes for northbound 

portion of 14
th

 / Peachtree Street corridor. 
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Figure B.22 Graph of the number of off-road fixed objects crashes for southbound 

portion of 14
th

 / Peachtree Street corridor. 
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Figure B.23 Graph of the number of off-road fixed objects crashes for northbound 

portion of Roswell Road (1) corridor. 
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Figure B.24 Graph of the number of off-road fixed objects crashes for southbound 

portion of Roswell Road (1) corridor. 
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Figure B.25 Graph of the number of off-road fixed objects crashes for eastbound 

portion of Roswell Road (2) corridor. 
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Figure B.26 Graph of the number of off-road fixed objects crashes for westbound 

portion of Roswell Road (2) corridor. 
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Figure B.27 Graph of the number of off-road fixed objects crashes for eastbound 

portion of Roswell Road (3) corridor. 
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Figure B.28 Graph of the number of off-road fixed objects crashes for westbound 

portion of Roswell Road (3) corridor. 
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Figure B.29 Graph of the number of off-road fixed objects crashes for northbound 

portion of Franklin Road corridor. 
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Figure B.30 Graph of the number of off-road fixed objects crashes for southbound 

portion of Franklin Road corridor. 
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Figure B.31 Graph of the number of off-road fixed objects crashes for northbound 

portion of Moreland Avenue / Briarcliff Road corridor. 
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Figure B.32 Graph of the number of off-road fixed objects crashes for southbound 

portion of Moreland Avenue / Briarcliff Road corridor. 
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Figure B.33 Graph of the number of off-road fixed objects crashes for northbound 

portion of Briarcliff Road / North Druid Hills Road corridor. 
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Figure B.34 Graph of the number of off-road fixed objects crashes for southbound 

portion of Briarcliff Road / North Druid Hills Road corridor. 
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Figure B.35 Graph of the number of off-road fixed objects crashes for northbound 

portion of Candler Road / Flat Shoals Parkway corridor. 
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Figure B.36 Graph of the number of off-road fixed objects crashes for southbound 

portion of Candler Road / Flat Shoals Parkway corridor. 

 

 

 

Table B.10 Table of utility pole crashes and their nearness to intersections on the 14
th

 

Street / Peachtree Street corridor. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 15840.00 100.00% 44 100.00%

Within 25' 1416.54 8.94% 6 13.64%

Within 50' 2595.55 16.39% 12 27.27%

Within 100' 4378.12 27.64% 22 50.00%  
 

 

 

Table B.11 Table of utility pole crashes and their nearness to intersections on the 

Roswell Road (1) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 11616.00 100.00% 17 100.00%

Within 25' 626.69 5.40% 1 5.88%

Within 50' 1185.89 10.21% 2 11.76%

Within 100' 2270.54 19.55% 7 41.18%  
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Table B.12 Table of utility pole crashes and their nearness to intersections on the 

Roswell Road (2) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 10665.60 100.00% 1 100.00%

Within 25' 662.32 6.21% 0 0.00%

Within 50' 1269.81 11.91% 0 0.00%

Within 100' 2497.77 23.42% 0 0.00%  
 

 

 

Table B.13 Table of utility pole crashes and their nearness to intersections on the 

Roswell Road (3) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 10718.40 100.00% 2 100.00%

Within 25' 625.00 5.83% 0 0.00%

Within 50' 1246.87 11.63% 0 0.00%

Within 100' 2498.00 23.31% 0 0.00%  
 

 

 

Table B.14 Table of utility pole crashes and their nearness to intersections on the 

Alpharetta Highway corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 11510.40 100.00% 2 100.00%

Within 25' 534.97 4.65% 0 0.00%

Within 50' 993.25 8.63% 0 0.00%

Within 100' 1896.18 16.47% 0 0.00%  
 

 

 

Table B.15 Table of utility pole crashes and their nearness to intersections on the 

Franklin Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 12144.00 100.00% 1 100.00%

Within 25' 827.50 6.81% 0 0.00%

Within 50' 1436.48 11.83% 0 0.00%

Within 100' 2430.45 20.01% 1 100.00%  
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Table B.16 Table of utility pole crashes and their nearness to intersections on the 

Moreland Avenue / Briarcliff Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 21172.80 100.00% 57 100.00%

Within 25' 1968.60 9.30% 17 29.82%

Within 50' 3407.11 16.09% 21 36.84%

Within 100' 5891.17 27.82% 46 80.70%  
 

 

 

Table B.17 Table of utility pole crashes and their nearness to intersections on the 

Briarcliff Road / North Druid Hills Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 13516.80 100.00% 6 100.00%

Within 25' 1372.92 10.16% 3 50.00%

Within 50' 2605.80 19.28% 4 66.67%

Within 100' 4500.68 33.30% 6 100.00%  
 

 

 

Table B.18 Table of utility pole crashes and their nearness to intersections on the 

Candler Road  / Flat Shoals Parkway corridor. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 18532.80 100.00% 9 100.00%

Within 25' 1450.00 7.82% 3 33.33%

Within 50' 2671.76 14.42% 3 33.33%

Within 100' 4977.04 26.86% 4 44.44%  
 

 

 

Table B.19 Table of tree crashes and their nearness to intersections on the 14
th

 Street / 

Peachtree Street corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 15840.00 100.00% 5 100.00%

Within 25' 1416.54 8.94% 2 40.00%

Within 50' 2595.55 16.39% 2 40.00%

Within 100' 4378.12 27.64% 2 40.00%  
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Table B.20 Table of tree crashes and their nearness to intersections on the Roswell 

Road (1) corridor. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 11616.00 100.00% 3 100.00%

Within 25' 626.69 5.40% 0 0.00%

Within 50' 1185.89 10.21% 0 0.00%

Within 100' 2270.54 19.55% 1 33.33%  
 

 

 

Table B.21 Table of tree crashes and their nearness to intersections on the Roswell 

Road (2) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 10665.60 100.00% 3 100.00%

Within 25' 662.32 6.21% 0 0.00%

Within 50' 1269.81 11.91% 0 0.00%

Within 100' 2497.77 23.42% 0 0.00%  
 

 

 

Table B.22 Table of tree crashes and their nearness to intersections on the Roswell 

Road (3) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 10718.40 100.00% 1 100.00%

Within 25' 625.00 5.83% 0 0.00%

Within 50' 1246.87 11.63% 1 100.00%

Within 100' 2498.00 23.31% 1 100.00%  
 

 

 

Table B.23 Table of tree crashes and their nearness to intersections on the Alpharetta 

Highway corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 11510.40 100.00% 4 100.00%

Within 25' 534.97 4.65% 0 0.00%

Within 50' 993.25 8.63% 0 0.00%

Within 100' 1896.18 16.47% 3 75.00%  
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Table B.24 Table of tree crashes and their nearness to intersections on the Franklin 

Road corridor. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 12144.00 100.00% 5 100.00%

Within 25' 827.50 6.81% 2 40.00%

Within 50' 1436.48 11.83% 2 40.00%

Within 100' 2430.45 20.01% 2 40.00%  
 

 

 

Table B.25 Table of tree crashes and their nearness to intersections on the Moreland 

Avenue / Briarcliff Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 21172.80 100.00% 11 100.00%

Within 25' 1968.60 9.30% 2 18.18%

Within 50' 3407.11 16.09% 5 45.45%

Within 100' 5891.17 27.82% 7 63.64%  
 

 

 

Table B.26 Table of tree crashes and their nearness to intersections on the Briarcliff 

Road  / North Druid Hills Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 13516.80 100.00% 7 100.00%

Within 25' 1372.92 10.16% 1 14.29%

Within 50' 2605.80 19.28% 1 14.29%

Within 100' 4500.68 33.30% 4 57.14%  
 

 

 

Table B.27 Table of tree crashes and their nearness to intersections on the Candler 

Road / Flat Shoals Parkway corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 18532.80 100.00% 2 100.00%

Within 25' 1450.00 7.82% 1 50.00%

Within 50' 2671.76 14.42% 1 50.00%

Within 100' 4977.04 26.86% 1 50.00%  
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Table B.28 Table of utility pole and tree crashes and their nearness to intersections on 

the 14
th

 Street / Peachtree Street corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 15840.00 100.00% 49 100.00%

Within 25' 1416.54 8.94% 8 16.33%

Within 50' 2595.55 16.39% 14 28.57%

Within 100' 4378.12 27.64% 24 48.98%  
 

 

 

Table B.29 Table of utility pole and tree crashes and their nearness to intersections on 

the Roswell Road (1) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 11616.00 100.00% 20 100.00%

Within 25' 626.69 5.40% 1 5.00%

Within 50' 1185.89 10.21% 2 10.00%

Within 100' 2270.54 19.55% 8 40.00%  
 

 

 

Table B.30 Table of utility pole and tree crashes and their nearness to intersections on 

the Roswell Road (2) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 10665.60 100.00% 4 100.00%

Within 25' 662.32 6.21% 0 0.00%

Within 50' 1269.81 11.91% 0 0.00%

Within 100' 2497.77 23.42% 0 0.00%  
 

 

 

Table B.31 Table of utility pole and tree crashes and their nearness to intersections on 

the Roswell Road (3) corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 10718.40 100.00% 3 100.00%

Within 25' 625.00 5.83% 0 0.00%

Within 50' 1246.87 11.63% 1 33.33%

Within 100' 2498.00 23.31% 1 33.33%  
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Table B.32 Table of utility pole and tree crashes and their nearness to intersections on 

the Alpharetta Highway corridor. 

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 11510.40 100.00% 6 100.00%

Within 25' 534.97 4.65% 0 0.00%

Within 50' 993.25 8.63% 0 0.00%

Within 100' 1896.18 16.47% 3 50.00%  
 

 

 

Table B.33 Table of utility pole and tree crashes and their nearness to intersections on 

the Franklin Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 12144.00 100.00% 6 100.00%

Within 25' 827.50 6.81% 2 33.33%

Within 50' 1436.48 11.83% 2 33.33%

Within 100' 2430.45 20.01% 3 50.00%  
 

 

 

Table B.34 Table of utility pole and tree crashes and their nearness to intersections on 

the Moreland Avenue / Briarcliff Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 21172.80 100.00% 68 100.00%

Within 25' 1968.60 9.30% 19 27.94%

Within 50' 3407.11 16.09% 26 38.24%

Within 100' 5891.17 27.82% 53 77.94%  
 

 

 

Table B.35 Table of utility pole and tree crashes and their nearness to intersections on 

the Briarcliff Road / North Druid Hills Road corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 13516.80 100.00% 13 100.00%

Within 25' 1372.92 10.16% 4 30.77%

Within 50' 2605.80 19.28% 5 38.46%

Within 100' 4500.68 33.30% 10 76.92%  
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Table B.36 Table of utility pole and tree crashes and their nearness to intersections on 

the Candler Road / Flat Shoals Parkway corridor.   

 

Length (ft)
Percentage of 

Corridor
Crashes

Percentage of 

Crashes

Corridor 18532.80 100.00% 11 100.00%

Within 25' 1450.00 7.82% 4 36.36%

Within 50' 2671.76 14.42% 4 36.36%

Within 100' 4977.04 26.86% 5 45.45%  
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