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Abstract 

There is a need for efficient and reliable evaluation of the 
shape, size, orientation, density, and regularity of the cells of 
the endothelial layer of the cornea. High speed parallel opto­
electronic methods were investigated for performing such 
evaluation. A coherent optical Fo~rier transform system was used 
to obtain the Fraunhoffer pattern associated with edge-enhanced 
cell patterns. This pattern was sampled by a wedge-ring detector 
and functions relating to angular and radial characteristics 
calculated. These were used in successful evaluation of cell 
density and shape. A nonlinear image processing algorithm was 
developed for enhancing the raw endothelial cell imagery and 
preparing it for use in the Fourier transforming system. The 
algorithm, based on a parallel optical convolver using a rotating 
kernel, can be applied to a variety of image enhancement and 
pattern recognition operations. 
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I. Introduction 

Motivation for this research arose from the need for efficient 
and reliable evaluation of the shape, size, orientation, density, 
and regularity of the cells of the endothelial layer of the 
cornea. It is thought by ophthalmologists that associated 
statistics can be used as an important tool in the diagnosis of 
corneal endothelial tissue in normal and pathological conditions. 
The purpose of the research was to conduct preliminary 
investigations of hybrid optical/digital methods for enhancing 
raw endothelial cell imagery and for obtaining the desired 
statistical measures in near real time. The proposed effort 
included the development of realtime analysis techniques for cell 
size and shape statistics based on both global and regional 
analysis; a comparison of regional and global morphological 
statistics; the development of parallel optical preprocessing 
techniques for enhancing cell-boundary definition; and 
preliminary characterization of hardware and software for general 
analysis of ophthalmic imagery. 

II. Summary of Research Results 

The results of the research program are reported in detail in two 
attachments. The first is entitled "Fourier Transform Method for 
Statistical Evaluation of Corneal Endothelial Morphology," by 
Barry R. Masters, Yim-Kul Lee, and William T. Rhodes, published 
in Noninvasive Diagnostic Techniques in Ophthalmology, B. 
Masters, ed. (Springer-Verlag, 1990), Chapter 8 (pp. 122-141). 
The second is the doctoral dissertation, "Nonlinear Image 
Processing and Pattern Analysis by Rotating Kernel Transformation 
and Optical Fourier Transform," by Yim Kul Lee. A brief summary 
of the key results are presented in the following sections. 

A. Pattern Analysis by optical Fourier Transform 

In preliminary studies, high-contrast tracings of human 
endothelial widef ield specular images were obtained from Keeler 
Instruments. These were used as inputs to an optical Fourier 
transforming system, which produced as output Fraunhoffer 
diffraction patterns of the illuminated region of the tracings. 
The diffraction patterns were sampled, and weighted sums of the 
sample values taken to emphasize radial and azimuthal structures 
in the patterns. Results of the preliminary study, summarized in 
Attachment 1 and in Chapter 2 of Attachment 2, indicated clearly 
that the Fourier transforms can be analyzed to yield average cell 
size as well as the distribution of sizes. However, it was also 
made clear in this preliminary study that raw endothelial cell 
imagery is not satisfactory to use as input to the Fourier 
transform system, because of noise and low contrast. It is 
imperative that the raw imagery undergo some enhancement to 
delineate the boundaries between cells. For this purpose, the 
rotating kernel min-max transformation, discussed next, was 
developed. 
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B. Rotating Kernel Min-Max Transformation 

The rotating kernel min-max transformation (RKMT) is a nonlinear 
image processing operation particularly well suited to enhancing 
straight line structures in noisy imagery. The operation, which 
was invented in the course of this research, is well suited to 
high-speed parallel implementation with a hybrid opto-electronic 
image processing system. In this operation an input image is 
convolved with a long, narrow kernel which is rotated through 360 
degrees, either continuously or discretely in a large number of 
small steps. As the kernel rotates, the output of the convolver 
is monitored and the minimum and maximum result at each point are 
recorded. The output of the transformation is some function 
f (max,min) of those maximum and minimum values at each point. A 
wide variety of kernels can be combined with a wide variety of 
nonlinear functions f(.,.) for image enhancement operations. A 
number of variations on the basic RKMT algorithm were studied. 
The RKMT is discussed in detail in Chapter 3 of Attachment 2. 

c. Nonlinear Preprocessing of Imagery 

The RKMT was successfully applied to the enhancement of the cell 
boarders in raw endothelial cell imagery and to the location of 
the vertices of the cell structures (see p. 51 and Chapter 4 of 
Attachment 2). Methods for binarizing the enhanced images were 
then studied and comparisions made with alternative enhancement 
methods. 

D. Invariant Pattern Recognition 

Investigation of the RKMT methodology led to the invention of a 
new means for characterizing objects that is invariant to object 
scale and orientation angle. The so-called angular signature 
method is discussed in Chapter 5 of Attachment 2. Although it 
was not studied in detail, it holds promise for some forms of 
scale- and orientation-invariant pattern recognition operations. 

E. Edge Detection and ~nhancement 

Edge detection and enhancement represent logical extensions of 
the cell border enhancement operations performed on the 
endothelial cell imagery. Chapter 6 of Attachment 2 presents 
general results on such application of the RKMT operation, both 
for grayscale and binary edge structures. 

III. concluding Remarks 

Because of the clear need for enhancement preprocessing of the 
endothelial cell imagery, the research program did not go as far 
as originally planned in the direction of highspeed opto­
electronic systems to implement the statistical analysis 
operations. On the other hand, the development of the rotating 
kernel image processing operations and associated applications 
represents a very significant step in the general development of 
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nonlinear image processing algorithms. 

Important research has followed that conducted under this grant. 
Of particular significance is work presented in the paper 
"Morphological Image Processing and Network Analysis of Cornea 
Endothelial Cell Images," by Luc Vincent and Barry Masters, to 
appear in Proceedings of the SPIE, Vol. 1769, Image Algebra and 
Morphological Image Processing III (published by SPIE, 
Bellingham, Washington), July 1992. This paper introduces 
remarkably successful morphological methods for enhancing the raw 
endothelial cell imagery and associated network analysis tools 
for extracting the desired statistical information. 

IV. Publications and Presentations Resulting from Research 

1. Yim-Kul Lee and William T. Rhodes, "Nonlinear image 
processing by a rotating kernel transformation," Optics 
Letters, vol. 15, No. 23 (1 December 1990), pp. 1383-1385. 

2. Yim-Kul Lee and William T. Rhodes, "Feature Detection and 
Enhancement by a Rotating Kernel Min-Max Transformation," in 
Hybrid Image & Signal Processing II, D. Casasent and A. 
Tescher, eds. (Proc. SPIE, Vol. 1297, 1990), pp. 

3. Yim-Kul Lee and William T. Rhodes, "Scale- and Rotation­
Invariant Pattern Recognition by a Rotating Kernel Min-Max 
Transformation," in Optical Information Processing Systems 
and Architectures II, B. Javidi, ed. (Proc. SPIE, Vol. 1347, 
1990) , pp. 

4. Barry R. Masters, Yim-Kul Lee, and William T. Rhodes, 
"Fourier transform method to determine human corneal 
endothelial morphology," Presented at OELASE'90 SPIE 
Conference, paper No. #1239. 

5. Barry R. Masters, Yim-Kul Lee, and William T. Rhodes, 
"Fourier Transform Method for Statistical Evaluation of 
Corneal Endothelial Morphology," in Noninvasive Diagnostic 
Techniques in Ophthalmology, Barry R. Masters, ed. Springer­
Verlag, 1990 

6. Yim-Kul Lee and William T. Rhodes, "Edge Enhancement by 
Hybrid Optical Rotating Kernel Min-Max Transformation," 
presented at the Optical Society of America 1990 Annual 
Meeting (1990 Technical Digest Series, Vol. 15, p. 142). 

7. Yim-Kul Lee, Nonlinear Image Processing and Pattern Analysis 
by Rotating Kernel Transformation and optical Fourier 
Transform, Ph.D. Dissertation, Georgia Institute of 
Technology, December 1990. 
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ATTACHMENT 1 

Fourier Transform Method for Statistical Evaluation of Corneal 
Endothelial Morphology, by Barry R. Masters, Yim-Kul Lee, and 
William T. Rhodes, from Noninvasive Diagnostic Techniques in 
Ophthalmology (Springer, New York, 1990), Chapt. 8. 



CHAPTER 8 --

Fourier Transform ~ethod for 
Statistical Evaluation of Corneal 

Endothelial Morphology 
BARRY R. MASTERS, YIM-KUL LEE, and WILLIAM T. RHODES 

The human cornea is about 0.52 mm thick at its 
center. It is composed of several layers, the 
innermost being the endothelium, which is a 
single layer of cells in contact with the aqueous 
humor. The endothelium consists of some 
350,liOO to .'i00,00() p0!ygonal cells, appr0:-:: -
imately 5 mm thick, with straight-sided borders 
about 20 µ.m across. In a newborn baby the 
cells are almost all hexagonal and close­
packed 1; the cell density is approximately 4500 
cells/sq mm. By the ninth decade of life the cell 
density can decrease to fewer than 1000 cells/sq 
mm, and the hexagons are less regular and 
mixed in with pentagons, heptagons, and other 
polygonal shapes.2-4 

Specular microscopy, a routine clinical tool 
for in vivo evaluation of the cornea, provides 
qualitative and quantitative information on the 
morphology of the corneal endothelium.s-7 

(Evaluation of cell function requires other 
types of analysis, such as redox fluorom­
etry.8·9) Photographs are made of the endo­
thelium using a flash lamp; alternatively. 
the images are detected with a video system 
connected to video cassette recorder. In the 
latter case the video monitor is photographed 
to obtain the endothelial images. The negatives 
are enlarged. and the cell boundaries are 
traced. Usually a fraction of the cells in the 
print have indistinct cell boundaries. which 
must be filled in by hand. A digitizing pad is 
used to digitize the cell borders. and a compu­
ter program then calculates the following para­
meters: number of cells. average cell area. cell 

122 

density, cell perimeter, coefficient of variatior 
(CV; given by the standard deviation dividel 
by the mean) of the cell area. percent of cell· 
that are hexagons, and the border length per 
square millimeter. The variation in cell sizt 
(polymc;;ethism) and cell shape \plcommpi.­
ism) are determined from histograms of cell 
size and shape.10 

Quantitative information is obtained from 
manual digitization of the images or through 
automated morphometric analysis. 11- 16 Auto­
mated analysis works best for high-contrast. 
wide-field specular images. Several systems are 
available for automated endothelial analysis. 
most requiring human intervention for 5 to 
10% of the cells. All of the analytic methods 
treat the endothelial cells as discrete inde­
pendent entities without consideration of eel I 
position or neighborhood. This method is ana­
logous to cutting out the individual endothelial 
cells on a specular photomicrograph. mixing 
them, and randomly choosing a particular cell 
for analysis. The average morphologic param­
eters are obtained from an arithmetic mean 
of the parameters of the individual cells. This 
approach removes all spatial information about 
the global cellular pattern and effective!\ 
randomizes the positions of the cells. There i~ 
thus no possibility of obtaining correlative in­
formation betw~cn individual ..:..::b aS a func­
tion of position. size, shape. and orientation. 
Because there is a reasonable possibility that 
such information has diagnostic value. and be­
cause existing morphometric analysis methods 
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FIGURE 8.1. Optical system for evaluating Fourier 
transform distributions. A phototransparency of the 
input pattern is illuminated by a converging light 

are relatively slow, an alternative approach to 
cell morphometrology is under development in 
our laboratory. 

The method is based on an analysis of the 
two-dimensional (2-D) Fourier transform of 
the cell-boundary pattern. 17 Preliminary re­
sults indicate that the method can provide 
reliable measures of average cell size, cell 
si:le variaLion, and angular orientation charac­
teristics of the cell patterns indicative of the 
mixture of polygonal shapes. Of particular 
importance, the method is capable of being 
implemented essentially in real-time using 
opto-electronic techniques. In addition, the 
method can be used equally well for both local 
and global morphologic measures of cell char­
acteristics. 

In the following sections the 2-D Fourier 
transform is reviewed and those characteristics 
that are particularly well suited for the en­
dothelial cell measurements are discussed. 
Basic methods and results are outlined. the 
method and its possible extensions are dis­
cussed. and an opti-electronic system for making 
the measurements at high speed is described. 

Characteristics of Fourier 
Transforms 

The 2-0 Fourier transform F(u,v) of an image 
Jistribution f(x.y) is given by 

F(u.v) = J" f(x.y)exp[-i27T(ux + vy)dxdy (1) 

where i denotes the square root of -1. 18 In 
shorthand noration. f(x.y)- F(u,v). If x and y 

variable 
distance 

beam from a helium-neon laser. The squared magni­
tude (intensity) of the Fourier transform distribution 
appears in the plane of convergence for the beam. 

have units of distance, then u and v have units 
of cycles per unit distance, or spatial fre­
quency. The 2-D Fourier transform provides a 
measure of the spatial frequency content of the 
image. The Fourier transform is generally com­
plex valued; however, in signal or image analy­
sis, what is typically measured is the magnitude 
IF(u,v)I or its square. The squared magnitude 
ii; ufte11 ic:forn:d Lo as the: Fuu1ic:r imerisiiy dis­
tribution. The Fourier transform can be 
obtained using either a digital computer or an 
optical system similar to the one illustrated in 
Figure 8.1. 

The Fourier-transforming optical system. 
which operates in accord with the laws of 
diffraction of light waves, has the advantage 
of performing the computation virtually 
instantaneously . 19.20 The system we use to 
obtain such optical transforms employs a 2 mW 
HeNe laser for the light source. A 20x micro­
scope objective is used to bring the beam down 
to a small point, which is focused onto a 25-mm 
pinhole to remove light scattered by dust on 
the laser output window. After expanding to 
a diameter of approximately 6 mm, the laser 
beam is passed through a 2x objective, which 
focuses the beam to a spot on an observation 
screen 2 meters away. It is in this plane that the 
Fourier transform distributions are observed 
and photographed when a photo transparency 
of the input pattern is placed in the beam near 
the 2X objective end. By moving the trans­
parency cioser to or farther away from the 
observation plane, the Fourier transform is 
made smaller or larger. If necessary, the film 
transparency can be immersed in a refractive­
index-matching liquid (xylene), which reduces 
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or eliminates the effects of film emulsion thick­
ness variations on the recorded Fourier in­
tensities.19 Such systems have been applied 
successfully in the past to a variety of inspec­
tion and pattern characterization opera­
tions. 20·21·23-26 Examples of Fourier trans­
forms obtained optically are shown in Figure 
8.2. Numerous other examples can be found in 
refs. 22 and 27. 

Several characteristics, or properties, of the 
Fourier transform. 18 some of which are evident 
in Figure 8.2, are particularly important to the 
cell measurement problem. 

1. The magnitude of the Fourier transform is 
insensitive to change in position of the input 
image. Thus f(x.y) and f(x - a. y- b) yield 
the same intensity pattern IF(u,v)i2. illus­
trated by the patterns in Figure 8.2 (g) and 
(i) and their respective transforms. 

.... There is an inverse scale relation between 
:in image and its Fot:rier ~::msform; speci­
fically, if f(x.y) transforms to F(u.v), the 
Fourier transform of f(ax,by) is proportion­
al to F( u/a, v/b). This characteristic is seen 
clearly by comparing the Fourier transform 
pair illustrated in Figure 8.2 (a) and (b) with 
that in (c) and (d). Similarly, compare (m) 
and (n) with (o) and (p). 

3. Rotation of the input image produces rota­
tion of its Fourier transform through the 
same angle. In Figure 8.2 compare (e) and 
(f) with (g) and (h). 

4. The Fourier transform of a real-valued in­
put (all image distributions are real-valued) 
has a symmetric magnitude. Thus for a real 
input. the Fourier intensity IF(u.v)IZ is sym­
metric about the origin. This characteristic 
is evident throughout Figure 8.2. 

Of special interest are (n) and (p) in Figure 
8.2. which show the Fourier transform inten­
sities of hexagonal cells. Note that there is a 
bright central lobe surrounded by dark and 
bright rings. Through property 2 (above). the 
mean diameters of the rings are in inverse 
proportion to the sizes of the hexagons and can 
thus be used to estimate hexagon size. In addi­
tion. the distributions show spoked patterns 
that relate to the orientation of the sides of the 

hexagons. This characteristic can also be ex­
ploited, as discussed below. 

The feasibility of using Fourier transforms to 
evaluate corneal endothelial cell patterns was 
first proposed by Masters.Ii The basic thesis 
presented was that the Fourier transform of the 
cell border tracings could serve to measure 
global shape characteristics of the cells, includ­
ing average size, and thus provide clinically use­
ful diagnostic information. The following sec­
tion provides evidence. based on subsequent 
investigation, that the Fourier transform pat­
terns do indeed contain useful and easily eva­
luated information on endothelial cell mor­
phology. 

Methods and Results 

High-contrast tracings of human endothelial 
widefield specular images were obtained from 
Keeler Instruments. Each panel had a different 
coefficient of variation, and cell density varied 
from 1000 to 3000 cells/sq mm. A section of a 
typical cell tracing is shown in Figure 8.3A. 
Fourier transform intensity patterns obtained 
for different cell tracings are shown in the re­
mainder of Figure 8.3. Those in Figure 8.38-F 
were obtained using the optical system of 
Figure 8.1. Groups of approximately 50 cells 
served as the input patterns for obtaining these 
Fourier transform distributions. The coefficient 
of variation of cell size was the same in all cases 
(0.2), but the average cell density differed. 
Note the increase in diameter of the now 
speckled ring patterns as the cell density goes 
up. Photographs of the Fourier transform in­
tensity patterns were scanned and digitized 
in a 512 x 512 sample format using an image 
scanner connected to a Mega Vision XM I 02.+ 
digital image processor. Care was taken tll 
ensure that the zero spatial frequency point 
(the origin of the u.v coordinate system) was 
correctly centered in the field of view of the 
MegaVision system. For comparison. several 
cell tracings (again with a coefficient of size 
variation of 0.2) were also scanned and digi­
tized and their Fourier transform distributions 
calculated digitally. The resultant transform 
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FIGURE 8.4. Wedge-ring mask for calculating angu­
lar and radial projection coefficients in Fourier 
space. Only 32 of the 64 wedges and semiannular 
ring~ <>r"' shown. Because the Fourier intensity 
distribution is symmetric through the origin. the 
pattern sampled by the wedges is the same as the 
pattern sampled by the annular rings. 

patterns are shown in Figure 8.3G. H to slight­
ly different scale. 

To reduce the amount of data to a manage­
able amount, we worked with the theta projec­
tion of JF(u,v)i2, given by 

P1i(8) = r,/Fp(r.8)!2dr 
ll 

(2) 

where Fp(r,8) denotes the Fourier transform 
expressed in polar coordinates. A discretized 
version. appropriate for the sampled computer 
distributions, was obtained by calculating the 
average Fourier intensity within wedge-shaped 
areas such as those shown in Figure 8.4. The 
result was a set of 64 numbers (On) given by 

• riJH -x: 

On=~ \ \ iFp(r,8)J 2 rdrdO. 
n In - 11..lff 

( 3) 

where Nn is a normalizing tactor corresponding 
to the number of pixels within the nth wedge. 
and where .10 = 180°/64. To eliminate the 
effects of the angular orientation of the cell 
pattern and of the cells within the pattern. we 

calculated the discrete angular correlatior 
function (Cm), given by 

64 

LOiOi+m 
i= l 

Cm =----,O~m~63 
64 

LO;O; 

In this calculation, 0; assumes the value 0;- 6_ 

for 65 sis 128. A plot of Cm versus m for the 
Fourier transform of a close-packed array o; 
perfect hexagons is shown in Figure 8.5. Be 
cause of property 4. above, the 180° to 360 
range repeats the 0° to 180° range shown. Tht 
angle between the peaks of the plot is a direct 
measure of the relative orientation of the side~ 
of the hexagon. In general, for an array of reg­
ular polygons oriented the same way, the angu­
lar separation between peaks is given by 180°/J\ 
for Nodd or 180°/(N/2) for N even, where Ni~ 
the number of sides of the polygon. 

The angular correlation function for the cell 
border pattern of actual endothelial cells i~ 

much less peaked than that of Figure 8.5 be­
cause of the irregularity in shape and orienta­
tion of the cells (Fig. 8.6). The absence of a 
strong angular dependence of the Fourier 
transform results from averaging a large num­
ber of cells of different types and angular 
orientations. 

To obtain more useful shape information 
from cell transform patterns, it appears to be 
necessary to ( 1) limit the input to small region 
roughly the size of a single cell. scanning over a 
large number of cells. and (2) average the 
angular correlation functions rather than the 
cell transforms themselves. Figure 8. 7 illus­
trates the basic idea. Figure 8. 7 A shows a small 
region of the cell outline transparency. Each ot 
the numbered cells was Fourier-transformed 
optically by illuminating it with a beam of laser 
light slightly larger than a cell. (The beam had 
a gaussian intensity profile. its radius being 
given by the distance at which the intensity is 
lie times its value at the beam center.) Some of 
the optical transforms are shown in Figure 
8. 7B-D. and their angular correlation func­
tions are shown in Figure 8.7E-G. Figure 8.7H 
shows the mean of the angular correlation 
functions obtained from all of the numbered 
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FIGURE 8.5. Plot of the angu­
lar correlation function versus 
angle for the Fourier trans­
form of a close-packed array 
of perfect hexagons. For hex­
agonal input patterns, the 
peaks occur at O", 60", and 120" 
(180° being the same as O" for 
the symmetric patterns). 
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cells of Figure !S. 7 A. Note that the peaks and 
dips are still well defined but are broader and 
of lower amplitude than those in Figure 8.5. 
Our measurements confirm that the locations 
of the peaks and their widths are statistically 
meaningful parameters representative of shape 
characteristics of the cells. We hypothesize at 
this time that they can have clinical diagnostic 
significance in much the same way that 
percent-of-hexagons and cell-size coefficient of 
variation parameters do now. 

Perhaps more significant, we have shown 
that the average size of the cells-and t1'ere­
fore cell density-can be inferred from Fourier 
transform data. The basic idea has its origins in 
measurements of Fourier spectra such as those 
of Figure 8.3. which suggest (consistent with 
property 2, above) that the average diameter 
of the first bright ring is inversely proportional 
to the size of the cells themselves. Because the 
square root of the average cell density is also 
inversely proportional to the average polygon 
diameter. we should expect these two param­
eters-the diameter of the first ring and the 
square root ot the average cell density-to be 
proportional to one another. In an initial test 
of this hypothesis we estimated the diameter of 
the first dark ring using a ruler and plotted the 
estimates versus the square root of the average 

60 120 180 
CORRELATED ANGLE 

cell density. a parameter supplied with the 
Keeler Instruments endothelial cell tracings. 
The resultant data points did indeed provide a 
good fit to a straight line passing through the 
origin. 

To obtain a more quantitative estimate of 
the diameter of the first bright ring. we worked 
with the radial projection of the Fourier in­
tensity distribution. given by 

!"' 2;r 

P.(r) = ~ JFp(r,9)12 df.l (5) 
IJ 

In its discretized version, obtained from the 
computer samples, Pr(r) is represented by a set 
of 64 numbers Rn calculated by averaging the 
Fourier transform intensity values within each 
of 64 semiannular segments, such as those 
shown in Figure 8.4. To a good approximation. 
Rn is given by 

n.lr 
1 . " . 

Rn= -M ) J 1 Fp(r,8) 2 r dr d8. 
Tl I) 

1n - I 1.lr 

(6) 

where Mn equals the number of pixels within 
the nth annular segment. The segment size Jr 
was adjusted to put the 64 measurements with­
in a diameter slightly greater than twice that of 
the first bright ring. Plots of Rn versus n are 
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A 

B 

F!Gt.:RE 8.6. Fourier transform intensity distribution 
and angular correlation function for an array of en­
dothelial cell (CV 0.2 and density 3000 cells/sq mm) 
hurder tracings: (A·, Input array of cells. 18) Fourier 
transform mtens!ty di~tr?'J:.:t1on for circular region ot 

A containing roughly 50 cells. (C) Angular correla­
tion function obtained from the Fourier inten!>Ll\ 
distribution. Note the enormous change in vt>rtir;i ! 
scale of the vertical axis of the correlation pl<H (()111· 

pared to that in Figure 8.5. 
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FIGURE 8.6. 

shown in Figure 8.8 for endothelial cells with 
densities of 1000, 1500, 2000, 2500, and 3000/sq 
mm. The CV was 0.2, implying a high degree 
of regularity of cell shape and size. When esti­
mating the diameter of the first bright ring, 
the following procedure was used. We first 
smoothed the data using a three-point median 
filter. then fit a fifth-order polynomial to the 
data points lying between the curve minima on 
either side of the first peak. The top of the 
polynomial curve was used to estimate the 
diameter of the first bright ring. Figure 8. 9 
shows a plot of these estimates versus the 
square root of cell density for the five cases of 
Figure 8.8. The dark line is a least-squared 
error linear regression of the data. The good­
ness of this fit and the fact that it passes nearly 
through the origin strongly support the hypoth­
esis that average cell size can be inferred from 
Fourier transform data. 

Also observed in plots uf Rn versus n was a 
broadening ot the hrst peaks as the CV in­
creased. Currently under investigation is a 
quantitative evaluation of the relation between 
the width of this first peak and the CV of the 
cell samples analyzed. 

Discussion 

The preliminary investigations described above 
show the quantitative analysis of the radial 
projection function can yield information lm 
cell size comparable to the average cell den­
sity measured by conventional morphologic 
methods. Less clear is the relation between the 
angular correlation functions and cell shape 
characteristics-percent of hexagons. for 
example-determined by the conventional 
methods. 

To facilitate further investigation of these 
relations we think it is essential to reduce hv 
more than an order of magnitude the amount 
of time needed to go from a collection of cell 
patterns to a suitable average angular correla­
tion function. Therefore. we are designing an 
opto-electronic analyzer for cell patterns that 
consists of the optical Fourier transforming 
system of Figure 8.1 coupled with a segmented 
wedge-ring photodetector and simple com­
putational electronics. The wedge-ring photo­
detector consists of 64 individually wired 
photodetectors fabricated in a 1.5 cm diameter 
package. The 64 elements of the detector are 
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A 

B 

FIGl!RE 8.7. Effect of Fourier transforming only individual cells. (A) Collection of labeled cells. (8-0) 
Optical transforms of cells 2. 1.i. and 15. (continued) 
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FIGURE 8.7. 

laid out in a pattern similar to that of Figure 
8.4. with 32 wedges and 32 semiannular seg­
ments. Such devices have been successfully 
applied to other Fourier domain inspection 
problems. 2~ The 64 signals coming from the 
detector elements will be digitized and com­
putations of the form suggested by Eqs. (3), 
( 4). and \ b) performed either by simple digital 
circuitry or by a desk-top computer that is in­
terfaced to the device. Although our prelimin­
ary investigations suggest that 64 wedges and 

64 annular segments would perform better. a 
128-element device is not manufactured. 

The optical Fourier transform. photodetec­
tion, and computation of the correlation and 
projection coefficients Cm and Rn can be per­
formed in a few microseconds. Significantly 
longer times are required to input the proper 
cell patterns to the opto-electronic system. 
One approach we are considering would em­
ploy a rapidly scanned laser beam that can be 
made to address any local region of the input 
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cell pattern within a fraction of a millisecond. 
With such a scanner it should be possible to 
obtain. for example, the angular correlation 
function averaged over thousands of individual 
cells within a second or so. The laser beam 
diameter would be controllable to allow either 

multiple or individual cell patterns to bl 
fourier-transiormed at a given instant. l hu~ 
use of a larger-diameter beam would yield tht 
average cell size. and that information woulu 
then be used to fix the beam diameter for scan­
ning individual cells. 
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One of the most challenging problems to be 
solved is the rapid conversion of endothelial 
specular images-which are generally of low 
contrast and spatially varying quality-to high­
;::ontrast (essentially binary, or white-on-back) 
images that accurately represent the cellular 
boundaries. Three approaches to solving this 
problem are suicable for study: digital image 
processing methods similar to those currently 

used in computer-aided morphometric analy­
ses: analog processing of the video signals 
obtained from high-resolution video cameras: 
and parallel optical processing based on non­
linear filtering conccpt:;. 28 The objective woulJ 
be a method that is sufficiently fast that it 
would allow on-line clinical evaluation of en­
dothelial cell patterns. Photographic film is not 
needed for any of these methods. as the result-
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ing high-contrast image can be input to the 
optical Fourier transforming system by means 
of a real-time spatial light modulator similar to 
the electronically addressed liquid crystal dis­
plays now used in compact television sets. 

Concluding Remarks 

The Fourier transform of corneal endothelial 
cell boundary patterns contains information on 

cell size. shape. and orientation. In the first 
phase of our investigations we have used cell 
tracings of human endothelial specular photo­
micrographs as input images and performed 
the Fourier transforms both optically and di­
gitally. Our preliminary studies indicate that 
the Fourier transforms can be analyzed to yield 
average cell size or density as well as the dis­
tribution of sizes. This information. together 
with the area of the image. yields cell density 
and the associated coefficient of variation. 
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These quantities have major significance in the 
diagnostic evaluation of the cornea, would 
healing, pre- and posttransplant surgery, and 
pre- and postcataract surgery. In addition, the 
diagnostic evaluation of the clinical course of 
Fuchs' dystrophy can be monitored by an 
analysis of endothelial mop ho logy. The current 
lack of rapid. automated procedures hinders 
such measurements by clinical ophthalmol­
ogists and even hinders the establishment of 
reliable baselines for proper comparison and 
evaluation of the endothelium in pathologic 
states. 29 

The advantage of the Fourier technique for 
statistical characterization of the cells lies in its 
applicability to both global and local measure­
ments. The entire collection of cell patterns. 
which may number several thousand. can be 
incorporated in the transform in a fully parallel 
operation. and thus statistical averaging 1s 
done automatically. Alternatively. local 
measurements can be made rapidly to produce 
other kinds of averages or. if desired. maps of 
cell characteristics as a function of the local re­
gion of the cornea. Furthermore, the Fourier 

60 

transforms can be evaluated essentially instan­
taneously using optical techniques. 

Our preliminary findings demonstrate the 
feasibility of the Fourier transform method to 
characterize and analyze the morphologic 
structure of the corneal endothelium. We sus­
pect that this methodology can also be applied 
to the morphologic analysis and pattern recog­
nition of retinal photomicrographs. In addition. 
the rapid development of real-time confocal 
scanning microscopes specifically designed 
for clinical use with an applanating objective 
would provide wide-field epithelial cell images. 
The techniques could thus be applied to mor­
phologic analysis of epithelial cell patterns. 
with possible resultant improvements of the di­
agnosis of epithelial diseases and dystrophies. 
e.g .. dry eye. Further developments and re­
search are needed to determine the diagnostic 
utility ot the methods. 
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SUMMARY 

Hybrid opto-electronic procedures are introduced for the automated analy­

sis of polygonal cell boundary patterns obtained from raw endothelial (innermost) 

layer of the human cornea. Since the raw image used in this research is character­

ized by low contrast and spatially varying background brightness levels in a noisy 

background, the entire procedures are implemented by two major operations: image 

enhancement in a preprocessing step and optical Fourier transformation with post­

detection processing. The preprocessing or image enhancement operation investi­

gated is performed by a novel rotating kernel min-max transformation (RKMT), 

invented by Y. K. Lee and developed through this research program, for enhanc­

ing directional features (e.g., straight-line segments). The enhanced image or cell 

boundary pattern is then input to an optical Fourier transforming system incorpo­

rating a wedge-ring detector for diffraction pattern sampling in the Fourier trans­

form plane. The subsequent analysis is performed for size and shape measures of 

the polygonal cells by illuminating a larger number of cells and then limiting the 

illuminated area to a small region, approximately the average cell size, respectively. 

Major emphasis is placed on developing the RKMT method for the auto­

mated enhancement of linear features of an image. For the preprocessing opera­

tion, the RKMT method is first introduced, followed by a discussion of the various 

two-dimensional kernels and mapping functions. Algorithms for linear feature en­

hancement are then introduced and some numerical results presented, evaluating 

qualitatively and quantitatively the performance of the RKMT processing under 

various conditions. It is shown that, while the RKMT processing can be imple­

mented on a digital computer alone, it is a particularly attractive candidate for 

optical-electronic implementation. Since the kernel is typically real and nonneg-



xxi 

ative, a hybrid incoherent spatial filtering system is discussed for implementing 

RKMT processing. The RKMT processing operation is then applied to for the en­

hancement of cell boundaries (almost all straight-line segments) in the raw image 

with notable success. Binarization methods for obtaining a binarized cell boundary 

pattern for subsequent diffraction pattern analysis are also discussed. Comparisons 

are made with conventional spatial filtering methods. The Basic RKMT processing 

operations are extended to pattern recognition and edge enhancement. Algorithms 

for the pattern recognition with rotation and quasi-scale invariance and the edge 

enhancement are introduced, along with numerical experiments under various con­

ditions. Effects of the kernel dimension and profile on the pattern recognition and 

edge enhancement capabilities are also discussed. 

Finally, the recommendations for future research and other potentional appli­

cations, for which the RKMT method might be favorably used, are summarized. 



1 

CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation 

The problem originally motivating this research lies in the automated statistical 

evaluation of size, size variation, and shape of polygonal cells in the endothelial 

(innermost) layer of the human cornea. These parameters are of importance in the 

clinical evaluation of corneal tissue [1,2]. Current computer-aided morphometric 

methods for estimating these parameters require the manual tracing of cell bound­

ary patterns to emphasize morphological features such as the shapes of the cells. 

Current techniques [3,4] treat the individual cells as discrete and independent enti­

ties and do not take into account their relative positions within the cell arrays. Gen­

erally speaking, the computer methods are slow, particularly when a large number 

of cells must be analyzed. Recently, Masters [5] showed that the Fourier transform 

of manually-traced cell border patterns contains easily interpreted information on 

average cell size. His work suggested that the optical Fourier transform methods 

discussed in this thesis proposal can be used to estimate quite rapidly both size and 

shape parameters for cells ranging in number to several thousand. 

Figure 1.l(a) shows a sample of a specular micrograph image of corneal en­

dothelial cells. The raw input image has low contrast and spatially varying local 

average brightness levels in a noisy background. It does not yield well-defined 

Fourier signatures suitable for measurement. Figure 1.1 (b) shows a cell boundary 

pattern obtained by manually tracing a raw cell pattern. Note that the cell bound-
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(a) 

(c) (d) 

Figure 1.1: Human corneal endothelial cell image and their thresholded images at 

two different gray-levels. (a) Original image. (b) Example of manually-traced binary 

pattern. (c) and (d) Thresholded versions of (a) at two different gray levels. 
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aries are almost always straight line segments. Figures 1.l(c) and (d) show examples 

of the raw imagery of Fig. 1.l(a) subjected to ideal thresholding-hard limiting at 

two different gray values. It is clear from these latter examples that simple high 

contrast imaging is not sufficient to delineate or enhance the cell boundaries. Some 

more sophisticated processing is required. The low contrast and noise of the raw 

imagery have motivated the development of a method for enhancing automatically 

cell boundary features. With appropriately enhanced imagery serving as input, an 

optical Fourier transform system can then indeed be used to obtain rapidly mor­

phometric statistics on the cells. 

1.2 Research Objectives 

The primary objective of the research is to develop procedures for the automated 

analysis of polygonal cell boundary patterns obtained from raw endothelial cell im­

agery. A block diagram of the approach used in the research is shown in Fig. 1.2. 

The entire system performs two major operations: image enhancement in a prepro­

cessing step and optical Fourier transformation with post-detection processing. It 

has not been the purpose of this research project to investigate exhaustively the mor­

phometric statistics of corneal endothelial cells but rather to suggest procedures for 

the extraction of these morphometric statistics using robust opto-electronic meth­

ods. 

Major emphasis has been placed on developing an opto-electronic method for 

the automated enhancement of the cell boundary patterns. The preprocessing or 

image enhancement operation investigated is based on a novel rotating kernel min­

max transformation (RKMT) method, invented by Lee [6,7] and developed in this 

research program, that is particularly useful for enhancing straight-line segments of 

an image. The transformation method is referred to as RKMT processing through­

out the remainder of the thesis. The development of the RKMT method has been 
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Figure 1.2: A block diagram of the proposed research by nonlinear preprocessing 
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challenging and an important contribution of this research because of its effective­

ness: it appears to work better for this kind of processing than any other technique 

described in the literature [8,9,10,11]. 

One goal of the research has been to evaluate how well the RKMT method 

works in preparing the enhanced cell boundary image for subsequent analysis. The 

development of a hybrid optical electronic system implementing the RKMT pro­

cessing operation is also important. The RKMT method appears to be a useful 

and significant technique for general directional image processing operations and 

pattern recognition. As an offshoot from the primary objectives of the research, 

RKMT processing is extended to applications such as edge enhancement and pat­

tern recognition with scale and rotation invariance. 

1.3 Overview of Related Work 

There are several important topics related to the optical Fourier technique and the 

RKMT processing discussed in this thesis: (1) diffraction pattern analysis; (2) image 

(or feature) enhancement; (3) pattern recognition; and (4) edge enhancement. The 
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Figure 1.3: A configuration of the wedge-ring detector (WRD) with 32 annular ring 

and 32 wedge segments. The WRD is a polar-coordinate array of photodetectors 

coupled to self-ranging electronic amplifiers. 

following subsections discuss work done by other researchers in these areas that is 

particularly relevant to this research. 

1.3.1 Diffraction Pattern Analysis 

Fourier intensity patterns (diffraction patterns) have been used for many years 

for analyzing images. In many cases, the intensity pattern is sampled and in­

put to a computer for post-detection processing. Algorithms based on diffrac­

tion pattern sampling have been developed for a wide variety of applications, in-· 

eluding particle size measurement [12,13,14,15] and pattern recognition and analy­

sis [16,17,18,19,20,21]. 

An important device in Fourier intensity analysis is the wedge-ring detector 

(WRD) [18,22,23]. The commercially available WRD, illustrated in Fig. 1.3, is a 

polar-coordinate array of photodetectors coupled to self-ranging electronic ampli­

fiers. It consists of 32 semiannular ring elements and 32 wedge elements. It produces 
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discretized projections for both radial and angular coordinates. Equations 1.1 and 

1.2 represent mathematically the radial projection R,.,,. and the angular projection 

An: 
1 1Pm+1 lar R,.,,. = -

8 
I(p, <p )pdpd<p, 

m Pm 0 
1 < m < 32 (1.1) 

1 In()() 1"'"+1 An= -Q I(p,<p)pdpd<p, 
n 0 'Pn 

1 ~ n ~ 32 (1.2) 

where I(p, <p) is the Fourier intensity distribution in polar coordinates, and Sm and 

Qn are the areas corresponding to the mth ring and nth wedge segments, respec­

tively. The radial projection Rm provides information about the size of the object 

and is invariant to the orientation of the input object. The angular projection An 

contains shape information on the object and is insensitive to the size of the object. 

Both Rm and An are invariant to horizontal or vertical translation of the object 

through the invariance of I(p,<p) to such translation. The WRD exploits the Her­

mitian symmetry of the Fourier transform pattern of a real input object. Only a half 

plane is needed for measuring either the radial projection or the angular projection 

of I(p,<p); both measurements can be obtained with a single device in a single FT 

plane. A number of industrial and medical applications of diffraction pattern analy­

sis using the WRD have been investigated [18,21,22,24,25,26,27]. Window functions 

have been used to improve the accuracy of spectral estimation [28,29,30]. 

1.3.2 Image and Feature Enhancement 

In many cases, an input image or pattern must be preprocessed to provide well­

defined Fourier signatures for subsequent pattern recognition and analysis. In this 

research the enhancement of straight line features (e.g., the boundaries of the en­

dothelial cells) is of special importance. Many digital algorithms have been devel­

oped for detecting and enhancing linear features, including those appearing in ocean 

wave photos [9], roads in military road maps [10], and ridges in fingerprints [11]. The 

Radon transform [9,31,32] and its inverse have been used for linear feature enhance-
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ment, with the enhancement operation being performed in the Radon transform 

plane. In certain cases, feature enhancement can be performed simply by lowpass 

or bandpass spatial filtering with an optical system [33], though often with poor 

results. As discussed later, the RKMT method can be applied to such a problem 

with good results [6,7]. 

1.3.3 Invariant Pattern Recognition 

In the area of pattern recognition, the conventional matched spatial filter is sen­

sitive to the scale and rotation of an input object [33,34]. The basic method has 

been improved by many spatial-filter-based invariant pattern recognition schemes 

developed during the past decade [34,35,36,37,38,39,40,41,42,43]. The Hough trans­

form [44,45] has been used for rotation-invariant recognition of an input object (e.g., 

airplane) which has highly oriented object features (e.g., straight-line features). Re­

cently, the Hough transform has been used to find vertices from an edge image and to 

generate rule-based string codes [46] for both scale- and rotation-invariant pattern 

recognition. Naor and Shamir [47] presented an angular feature mapping method 

that locates line intersections of the edge image and extracts the information about 

the intersection angles. 

1.3.4 Edge Detection and Enhancement 

It is well known that edge enhancement is an important preprocessing operation 

for pattern recognition and analysis in binary and gray-scale images. Many digital 

algorithms have been developed for edge enhancement, including gradient tech­

niques [48,49], positions of zero-crossings [50,51], and morphological methods [52]. 

Recently, specific digital gradient edge operators have been implemented optically. 

Casasent and Chen [53] implemented Sobel's bipolar digital edge operator using 

a multiple-exposure matched spatial filter and computer-generated hologram in a 

coherent optical system. Cherri and Karim [54] implemented Sobel, Prewitt, and 
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Robert digital edge operators using an optical symbolic substitution technique. 

1.4 Overview of The Thesis 

The remainder of this thesis is divided into five major chapters. In Chapter 2, the 

optical Fourier transform methods for extracting statistical cell parameters relating 

to size and shape are discussed. In one case, a large number of cells are illumi­

nated to extract size information. Once the size information is obtained, individual 

cells are illuminated to extract shape information. Automated procedures for the 

quantitative measurement of cell parameters are discussed. 

In Chapter 3, the rotating kernel min-max transformation is introduced, fol­

lowed by a discussion of various two-dimensional kernels and mapping functions. 

Algorithms for linear feature enhancement are introduced along with numerical ex­

periments, which evaluate qualitatively and quantitatively the performance of the 

RKMT processing under various conditions. A hybrid optical-electronic system 

that implements RKMT processing is discussed. 

In Chapter 4, the RKMT method is applied to the enhancement of endothe­

lial cell boundaries, which are almost always straight-line segments, in raw input 

imagery. Comparisons are made with conventional spatial filtering methods. 

In Chapter 5, the application of RKMT processing to pattern recognition 

with scale and rotation invariance is presented. Effects that variations in the kernel 

length and width have on the discrimination of objects are discussed. A variety of 

numerical experiments are presented. 

In Chapter 6, the application of RKMT processing is extended to edge en­

hancement. Initial studies indicate that the RKMT method can be used effectively 

to locate edges (i.e., object contours) in an image. The application to both gray­

scale edge imagery and binary edge imagery is discussed. 

In the final Chapter, the results of the research and recommendations for future 
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work are summarized. 

The contributions of this research lie in the following areas: 

1. Development of hybrid optical-electronic methods for the automated evalu­

ation of size, size variation, and shape of polygonal cells from raw corneal 

endothelial cell images. 

2. Introduction and development of a novel hybrid rotating kernel min-max 

transformation method for hybrid optical-electronic image processing. 

3. Application of the RKMT method to enhancement of linear features. 

4. Application of the RKMT method to edge enhancement. 

5. Application of the RKMT method to pattern recognition with rotation and 

quasi-scale invariance. 
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CHAPTER 2 

PATTERN ANALYSIS BY OPTICAL 

FOURIER TRANSFORM METHOD 

This chapter begins with background on polygonal cell boundary patterns in the 

human corneal endothelial layer and then describes the optical Fourier transform 

method for the estimation of cell parameters (e.g., size, size variation, and shape). 

Two different optical Fourier analysis procedures are applied to high contra.st cell 

boundary patterns obtained from specular micrographs of the endothelial layer. In 

one case, a large number of cell patterns are illuminated to extract average cell size 

information. Automated procedures for the quantitative estimation of size statistics 

are discussed. Once the average cell size information has been obtained, individual 

cells are illuminated to extract shape information. 

2.1 Background 

The endothelial cell layer consists of some 350,000 to 500,000 polygonal cells. Cells 

have center-to-center spacings of approximately 20 µm. Their thickness in the lon­

gitudinal direction (orthogonal to the plane of observation) is approximately 5 µm. 

The cells are predominately hexagonal in shape (61-75 %). Cell density decreases 

with age and disease, as does the degree of hexagonality [55,56]. Under currently­

used computer morphometric methods, the polygonal cell boundaries appearing in 

specular micrographs are traced out by hand or by a computer with strong human 

intervention. The boundary patterns are then digitized and analyzed by computer. 
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The statistical estimation of morphological parameters is often based on the spatial 

analysis of only 50 ,..,,, 100 endothelial cells, since the techniques are so slow. This 

number is often considered too small for clinical evaluation of the corneal tissue, 

particularly since there might be wide variation in cell size and shape from one 

region of the cornea to another. 

Preliminary experiments by Masters, Lee, and Rhodes [57] confirmed specula­

tion that the optical Fourier transform obtained from cell boundary patterns could 

be used to estimate with good accuracy the average cell density over a wide range 

(1000 to 3000 cells/mm2); further experiments indicated that shape characteristics 

could be extracted. One important conclusion of the preliminary experiments was 

that the optical method could be implemented in such a way that large numbers of 

cells (> 1000) can be easily be analyzed. 

2.2 Optical Diffraction Pattern Analysis 

2.2.1 Examples: Polygonal Patterns 

In the method investigated an input cell boundary pattern is analyzed by a diffrac­

tion pattern sampling using a wedge-ring detector (WRD). Equations 1.1 and 1.2 

show a mathematical representation of the data reduction operation in the Fourier 

transform (FT) plane. Figure 2.1 shows a single lens Fourier transforming system 

with a WRD positioned in the FT plane. With an object t(x, y) illuminated by a 

converging beam, the output intensity I(x, y) in the FT plane [33,58] is given by 

I(x,y) = >.'~!, T (A;,t' A~J" (2.1) 

where A is a proportionality factor, A is the wavelength of the incident quasi­

monochromatic light, d01 is the distance from the object to the FT plane, and 

T(u, v) is the FT of t(x, y). In Eq. 2.1, we assume that the object t(x, y) is fully 

illuminated (i.e., that the pupil function of the lens can be ignored) [33]. 
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I< dot ~1 

Figure 2.1: A coherent optical system incorporating a wedge-ring detector (WRD) 

in the Fourier transform (FT) plane, where t(x, y) is the input pattern and d0 1 is the 

distance to the FT plane. 

There are two advantages for using an optical FT system with converging 

beam illumination [33,58,59] in this research. One advantage is that the scale of 

the FT pattern can be changed by varying the distance d01 . For a cell pattern with 

cell density CD, the cell diameter or size is inversely proportional to VCD and to 

the scale of the FT pattern. From the relationship between VCD and the scale 

of the FT pattern, it can be shown that the scales of the optical Fourier intensity 

patterns of inputs with CD = 1000 and 2000 are the same if the object distances to 

the FT plane are given in ratio of J2 to 1. Alternatively, for the same distance d01 , 

the FT patterns of two cell boundary patterns with different CDs will have scales 

that are proportional to their ./CD. The other advantage of the optical system 

is that an input cell boundary pattern can be scanned both globally and locally 

with an illuminating beam of chosen size. Global scans are used to estimate size 

and size variation for a large number of cells; local scans with a smaller diameter 

illuminating beam size extract the shape statistics of the cells. 

Figures 2.2 and 2.3 illustrate how the optical diffraction pattern can be used 
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for the statistical estimation of morphological parameters of polygonal cells. Fig­

ures 2.2(a) and (b) show a single hexagon and its optical Fourier intensity pattern. 

The distance from the origin to the first bright region in the Fourier intensity pattern 

is inversely proportional to the diameter of the hexagon. Each spoke in the Fourier 

intensity pattern results from the corresponding parallel sides of the hexagon. The 

angles (i.e., 60° for a regular hexagon) between two spokes can be used to infer 

shape characteristics. Figure 2.2(c) shows the angular projection An obtained from 

the intensity pattern in (b). The locations of the peaks represent the distances in 

angle of each spoke from a reference angle (e.g., 0°). Figure 2.3(a) shows an array of 

regular hexagons and Fig. 2.3(b) its Fourier intensity pattern. The radial distance 

from the origin to the first bright region of the FT pattern remains the same as the 

number of regular hexagons increases. Spoke patterns acquire a spot-like pattern 

because of sampling effects. The radial projection Rm of the intensity pattern in 

Fig. 2.3(b) is shown in Fig. 2.3(c). 

For an infinite array of regular hexagons, the hexagonal pattern can be ex­

pressed in terms of a convolution: 

t(x, y) = th(x, y) * *S(x, y) 

= th(x, y) * * [m~oo n"f oo c5(x +[am+ an], y + [bm - bn])] (2.2) 

where th(x, y) is the basic hexagon function and s(x,y) is a Dirac comb sampling 

function. The Fourier transform of t(x, y) is given by 

T(u,v) = Th(u,v)S(u,v) 

[]__ f: f: c5 (u + [ m + n] , v + [ m - n] ) l 
ab m=-oo n=-oo 2a 2b 

(2.3) 

where Th(u, v) and S(u, v) are the Fourier transforms of the single hexagon function 

and the sampling function, respectively [60,58]. Figure 2.4 illustrates pictorially how 

the hexagonal array pattern t(x, y) and its FT pattern T(u, v) are related. In the 

figure (p,q) is a spatial sampling vector, (p1 ,q1) is a spatial frequency sampling 
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Figure 2.2: A single hexagonal boundary pattern and its Fourier intensity pattern: 

(a) boundary pattern: (b) Fourier intensity pattern of (a): (c) angular projection An 

obtained from (b). 
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Figure 2.3: An array of hexagonal boundary patterns: (a) boundary pattern; (b) Fourier 

intensity pattern of (a); (c) radial projection Rm obtained from (b). 
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vector, and b = y'3a. From the figure, it is obvious that the size information can be 

extracted from a collection of the first six spots of the Fourier transform pattern. 

As the regularity of the size and orientation in the input pattern is reduced, 

for example as the regular hexagonal array changes to the corneal pattern array, 

a speckle-like pattern arises. However, a bright region still forms in the Fourier 

intensity pattern. Figures 2.S(a) and (b) show such a cell boundary pattern with 

random orientation of the cells and variations in size and shape, along with its 

Fourier intensity pattern. Note in (b) the presence of a central dark ring surrounded 

by a bright ring. The radial projection of the Fourier intensity pattern is shown 

in Fig. 2.S(c). The radius of the first bright ring is estimated by measuring the 

location of the first peak in the plot of the radial projection. 
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Figure 2.4: Infinite hexagonal array and Fourier transform: (a) Top: hexagonal array 

pattern with spatial period (p, q); (b) Bottom: Fourier intensity pattern with frequency 

period (p1,q1). 
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Figure 2.5: Cell boundary pattern and its Fourier transform: (a) input (CD = 2000 

and CV= 0.2): (b) Fourier intensity pattern of (a): (c) normalized radial projection of 

(b). 
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2.2.2 Optical Set-Up and Experiments 

Figure 2.6 shows the optical system and associated electronics used for the Fourier 

analysis of the input cells. This system includes a 2 mW He-Ne laser, a variable 

beam splitter (VBS) to adjust the laser beam intensity, a 20x microscope objec­

tive(MOl), a 25 µm pinhole, and a 2x microscope objective (M02). MOl expands 

the beam (after focusing it through the pinhole to clean the beam) to a suitable 

diameter. M02 then focuses the beam to a spot in what is the Fourier plane. In 

the Fourier transform plane is a CCD TV camera. Since a WRD was not available 

in our lab, one with 64 annular rings and 64 wedge sections was simulated on a 

computer. The overall system was used as discussed in the following sections for 

the estimation of statistical cell parameters. 

Figures 2.7 and 2.8 show 15 cell boundary patterns and their optical Fourier 

intensity patterns used for size statistics measurements. The cell patterns contain 

cells ranging in number from approximately 100 to 400, depending on cell density. 

Cell parameters CD and CV are given by the supplier of the patter~s, Keeler 

Instruments, where CD represents the cell density (1000 ,.., 3000/mm2 ) and CV 

represents the coefficient of size variation (0.2 ,.., 0.5) with respect to an average cell 

size. The cell patterns were photographed, and the resulting transparency was input 

to the optical Fourier transforming system depicted in Fig. 2.6. The optical Fourier 

intensity pattern was recorded on photographic film and digitized with 512x512 

pixels of 256 gray levels for subsequent processing. 
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Figure 2.6: Optical setup used for experiments. The diffraction patterns were scanned. 

digitized. and analyzed on a computer since a wedge-ring detector was not available. 
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3000 cells/mm2 3000 cells/mm2 3000 cells/mm2 

2500 cells/mm2 2500 cells/mm2 2500 cells/mm 2 

2000 cells/mm2 2000 cells/mm2 2000 cells/mm2 

1500 cells/mm 2 1500 cells/mm2 1500 cells/mm2 

1000 cells/mm2 1000 cells/mm2 1000 cells/mm2 

CV=0.2 CV=0.3 CV=0.5 

Figure 2.7: 15 cell patterns. The numbers give the cell density CD (cells/mm2); CV 

is the coefficient of size variation with respect to the mean cell size. 
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Figure 2.8: Optical Fourier intensity patterns of the cell patterns in Fig. 2.7. 
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2.3 Size Measures 

In this section, methods are described for extracting information on size and size 

variation. The methods have been designed to be relatively easily automated. Ex­

perimental results, obtained optically using high contrast polygonal cell boundary 

patterns, are presented. 

2.3.1 Radial Projection and Curve Fitting 

To estimate average cell size (or density) and size variation we used the mean of a 

polynomial curve fitted to the radial projection Rm. Figure 2.9 shows an example: 

information is extracted on the average cell size and the size variation for the cell 

pattern with CD = 2000 and CV = 0.2. In the figure, the points marked by 

'x' represent the raw radial projection Rm. This data is first subjected to 3-point 

median-filtering to reduce the effects of noise. The resulting points are connected 

by the dotted line in Fig. 2.9. The mean R0 of the median-filtered radial projection 

Rm is represented by the dashed line in Fig. 2.9. It is given by 

(2.4) 

where MR (= 64) is the number of semi-annular rings used in the computer simu­

lation of a WRD. The difference dR,,. between Rm and R 0 is then calculated: 

(2.5) 

A fifth-order polynomial p(x) is fitted to those points lying between the points 

labeled p1 and p2 in the figure. The variable x of p(x) is the radial distance from 

the origin of the FT plane, corresponding to the radial spatial frequency. The fitted 

curve is represented by the solid line. The point p1 = 5 was chosen in such a way that 

the de bias and the low spatial frequency components (i.e., first few annular rings) 

of the Fourier intensity pattern were removed to obtain stable measures. Search was 
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Figure 2.9: Determination of average cell density and size variation from Fourier inten­

sity radial frequency measurements. 



25 

conducted among several points in the first lobe of Rm to find a transition point. 

This was defined as the point at which the difference dRm of Eq. 2.5 decreases (or 

increases) monotonically for 3 or more points. The point p2 was determined by 

adding two more points to the transition point for the polynomial curve fitting. 

Three zero crossing points z1 , z2 , and z3 in the difference [p(x) - dR.,.] between the 

polynomial p(x) and dR.,. (Eq. 2.5) were then located for subsequent processing to 

estimate average size and size variation, where p(x) is the fitted polynomial. 

2.3.2 Average Size 

The size measure is obtained by locating the maximum point Bp (marked by '•') 

between z2 and z3 in Fig. 2.9. Figure 2.10 shows a plot of B 11 versus v'CD obtained 

for the 15 cell patterns in Figs. 2. 7 and 2.8. The solid line in Fig. 2.10 represents 

the linear regression of the 15 data points. It is clear from the high degree of 

linearity that cell size (or density) can be accurately inferred from measurements 

of the Fourier intensity patterns. The measurements in Fig. 2.10 were made by 

illuminating 100 to 400 cells at a time. By scanning the illuminating beam, it is 

possible to estimate cell density over an entire endothelial pattern, incorporating 

perhaps several thousand cells in a matter of seconds. That in itself illustrates the 

power of the hybrid optical method. 

2.3.3 Size Variation Measure 

For the estimation of size variation, the contrast between the first dark and bright 

regions of the Fourier intensity pattern is calculated. Note that the contrast de­

creases as CV increases. (See the cell patterns in Fig. 2. 7 and their Fourier inten­

sity patterns in Fig. 2.8.) A possible measure of the size variation can be made 

by calculating the contrast or normalized mean-square difference (NMSD) measure 
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Figure 2.10: Plot of Bp versus VCD for 15 cell patterns. The solid line represents the 

linear regression of the 15 data points. It is evident from the high degree of linearity 

of the data that cell size (or density) can be accurately inferred from measurements of 

the Fourier intensity patterns. 
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Figure 2.11: Plot of e13 [=nmsd13] in (a) and e23 [=nmsd23] in (b) versus CV for 15 

cell patterns. The e23 measures tend to cluster better than e13 • 
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according to 

(2.6) 

where R0 is the mean of median-filtered points and p(x) is the fitted fifth-order 

polynomial. In Eq. 2.6, the contrast (i.e., NMSD) measure e13 is inversely related 

to CV. Figure 2.ll(a) shows the plot of e13 versus CV for 15 cell patterns, where 

nmsd13 = e13 . Note how well the data points cluster for each CV. A better 

clustered measure was obtained by calculating e23 between z2 and z3 (i.e., the first 

bright region of the Fourier intensity pattern): 

(2.7) 

Figure 2.ll(b) shows the values of e23 calculated for 15 patterns. Based on the 

experimental results in Fig. 2.11, e23 tends to cluster better than e13• 

Figures 2.12 shows the results of polynomial curve fitting after median :filtering, 

along numerical values of Bp, e13 [=nmsd13], and e23 [=nmsd23] for the cell patterns 

with CV = 0.2. Similarly, Figs. 2.13 and 2.14 show the results obtained from the 

cell patterns with CV = 0.3 and CV = 0.5, respectively. 

2.3.4 Algorithm 

The algorithm for the size measurement of cells is summarized as follows. 

• Algorithm: 

1. Obtain the radial projection Rm (1 ~ m ~ 64) for a large group of cells 

(e.g., 400); subject raw data to median filtering to reduce the effects of 

noise. 

2. Calculate the mean R0 of the median-filtered value Rm. 

3. Determine p1 and p2 in order to fit a polynomial curve. (See text) 
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4. Fit a fifth-order polynomial p(x) to those points lying between p1 and 

5. Calculate the difference [p(x) - R0 ] and locate the three zero crossing 

points z1, z2, and zs. 

6. For average size or density measure, locate the maximum point Bp be­

tween z2 and zs. 

7. For the size variation measure, calculate the normalized mean-square 

difference measure e13 or e23 , in accord with 

(2.8) 

or 

(2.9) 
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Figure 2.12: Examples of calculating e18 [=nmsd13] and e28 [=nmsd23] for the pat­

terns with CV = 0.2. 
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2.4 Shape Measures 

2.4.1 Algorithm and Optical Experiments 

It was relatively straightforward to obtain measures of the size and size variation 

by scanning a number of cells. However, cell shape cannot be determined directly 

by scanning a large group of cells at a time, since coherent averaging eliminates 

shape information on individual cells. This coherent averaging effect can easily be 

seen in Fig. 2.5 where approximately 200 cells were illuminated. Initial studies [57] 

indicated that to obtain useful shape information from the FT patterns of cells it 

is desirable to limit the illuminated area of an input pattern to a small region, i.e., 

approximately one cell size. 

In order to remove the orientational dependence of cells, the angular correlation 

function, C(n) is calculated from An, 

Mw Mw 

C(n) = (L A1;A1;+n)/(L Ai) 0 :5 n :5 63 (2.10) 
k=l k=l 

where A1; =the kth component of the angular projection and Mw ( = 64) is the num­

ber of wedge segments. Figure 2.15 shows C(n) for the single hexagon of Fig. 2.2; 

two well-defined peaks appear at 60° and 120°. The angular correlation function 

for a regular hexagonal array pattern has similar appearance, though with sampled 

version. Examples of the Fourier intensities and associated angular correlations of 

various polygons are presented by Masters, Lee, ·and Rhodes in [57]. 

The algorithm for the shape measurement of cells is summarized as follows. 

• Algorithm: 

1. Obtain the angular projection An, 1 :5 n :5 Mw, for each small scanned 

area, i.e., approximately one cell size. 

2. Compute the angular correlation function C(n) (Eq. 2.10) for each scanned 

area. 
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3. Repeat Steps 1 to 3 Ns times. 

4. Sum all C(n)'s and find the mean Cm(n): 

1 Ns . 

Cm(n) =NL C'(n), 
s i=l 

(2.11) 

where Ci(n) is C(n) obtained from the ith scanned area. 

5. Measure the peak-to-peak distance and the width of the angular lobe 

around each peak in Cm(n). 

In application of this method, the 24 cells shown in Fig. 2.16(a) were manually 

scanned, one cell at a time, with a beam size slightly larger than the fifth cell. 

Figure 2.16(b) and (c) show the FT patterns of two cells (Nos. 14 and 15) and their 

angular correlation functions [= C(n)]. The mean Cm(n) of angular correlation 

functions obtained from 24 numbered cells is shown in Fig. 2.16(d). Cm(n) in 

( d) still has well-defined peaks and dips as well as angular lobes, but the peaks 

are broader with much higher amplitude ratio of dip to peak than those of the 

hexagonal pattern in Fig. 2.15. The peaks are located at approximately 60° and 

120°. The shape-related characteristics found with individual cell transforms are 

lost in the Fourier intensity pattern of a large group of cells, as shown in Fig. 2.5, but 

preserved, in an average sense, in the mean of the correlation functions associated 

with these individual cells. It has been observed that the location and width of 

the peaks in Cm(n) may represent the average shape and the average variation of 

sides of 24 scanned cells. It is hypothesized that the locations and the widths of 

the peaks have clinical diagnostic significance in much the same way that percent­

of-hexagons and CV do now. For example, pronounced peaks at 60° and 120° on 

the 0 axis suggests a preponderance of hexagonal cells. 

2.4.2 Other Effects On Shape Measure 

Two factors are noted that affect the mean of the correlation functions, Cm ( n). 
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Figure 2.16: Experimental results using local scans for shape measurement. (a) 

Upper-left: 24 numbered cells. (b) Upper-right: optical Fourier intensity patterns 

of cells 14 and 15. (c) Middle: angular correlation functions[= C(n)] for cells 14 (left) 

and 15 (right). (d) Bottom: mean of 24 C(n)'s obtained from 24 numbered cells in 

(a). 
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• Width of line segments. 

To see the effect of line width on the resultant Gm(n), two regular hexagons 

with thin and thick line segments were Fourier transformed and their G(n) 

calculated. Figure 2.17 shows the input patterns and their angular correla­

tion functions. It can be seen that a thinning operation on the given input 

pattern has sharpened the angular correlation function. Thus for a collection 

of polygons such as pentagons, hexagons, and heptagons, The sharpened an­

gular lobe may reduce the average background value of Gm(n), representing 

better polygonal characteristics than a wider one. 

• Low spatial frequency components on the FT pattern. 

The angular correlation function G(n) in Fig. 2.16(c) is sharpened if the very 

low spatial frequency components in the FT pattern are removed. In the 

previous experiment using 24 numbered cells, the low frequency components 

within a radial distance (16 in pixel number) from the origin of the Fourier 

intensity pattern with 512x512 pixels were removed to compute Gm(n). 
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Figure 2.17: Effect of line width on angular correlation function. (a) Top: Two 

hexagons with thin and thick boundaries. (b) Bottom: Their angular correlation func­

tions. 



39 

2.5 Summary and Discussion 

Size measures were obtained by applying a median filtering to reduce the effects of 

noise and then a fifth-order polynomial curve fitting in the first dark and bright 

region. The size information was then obtained by locating the maximum point 

Bp between the second and third zero-crossing points (i.e., z2 and za) or spatial 

frequencies in the fitted fifth-order polynomial. Variations in cell size were extracted 

by calculating normalized mean-square difference (NMSD) measures in the first 

dark and bright regions for the fitted fifth-order polynomial. For the size variation 

measure, two NMSD measures e13 and e23 were obtained. Based on the experimental 

results, the latter measure were better clustered. 

For shape measure, a local scanning method has been used by illuminating 

one cell at its center (or equivalently a small region) at a time for 24 cells and 

then calculating the mean [= Cm(n)] of the resulting angular correlation functions 

[= C(n)]. Other shape measure may be considered other than the method dis­

cussed in Sec. 2.4, illuminating vertices of the cell boundaries. At each vertex, the 

optical Fourier intensity pattern consists of three spokes. If the cells are ideally or 

predominately hexagonal in shape, vertices of the cells will have three outgoing­

lines separated by 60° and then the mean of the angular correlation function in 

Eq. 2.11 will have two peaks at 60° and 120°. Recently, it was encouraged from a 

private communication [61] that this information can be useful for a global shape 

information. 
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CHAPTER 3 

OPTICAL ROTATING KERNEL 

TRANSFORMATION (RKMT) 

This chapter begins with the discussion of techniques for detecting and enhancing 

linear features (e.g., straight line segments) in an input image, and introduces novel 

algorithms for linear feature enhancement by a rotating kernel min-max transfor­

mation (RKMT) processing. A quantitative evaluation of the RKMT processing is 

then presented, followed by the introduction of an optical implementation of RKMT 

processing. 

3.1 Introduction 

Linear or quasilinear features are observed under many circumstances: straight-line 

edge segments on outdoor scenes containing man-made objects [62], ocean waves in 

a SAR image [9], roads in military road maps [10], and a variety of biological struc­

tures [63,64,6, 7]. Striated-line structures are also of interest in various applications. 

Such patterns are seen in airport runways, seismic data [65,66], fingerprints [11,67], 

histologic preparations of the corneal stroma [63], and photographs of the retinal 

nerve fiber layer [11,64]. To detect or enhance such linear features, digital techniques 

based on the Hough transform [44,45] and the Radon transform [9,31,32] as well as 

fan-type filters [67,68,69] and a method [11] based on human visual model [70] have 

been used in a wide variety of applications. Since these techniques are somewhat 

related to the RKMT processing, some of these techniques are briefly discussed in 
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(a) Straight line (b) Hough transform 

Figure 3.1: The Hough transform. 

this section. 

The Hough transform (HT) was initially proposed for detecting lines using 

the slope-intercept parameters, i.e., (a, b) in the equation y = -ax + b. Since 

the slope and intercept were not bounded, application of the technique was rather 

complicated. Duda and Hart [45] suggested a modified Hough transform using a 

different parameter space, (p, 0), to overcome the complexity: 

xcosO + ysinO = p, (3.1) 

where p is the normal distance to a straight-line and 0 is the angle between the 

normal direction and the horizontal axis in the Cartesian coordinate system. Fig­

ure 3.1 shows an example of the HT of a single straight line in an input image. 

Each point on the line in (a) maps into a sinusoidal curve in the HT plane. All the 

mapped points have a common point (Po, Oo) in the HT plane (p, 0) as shown in (b), 

and contribute to producing a high peak at that point. Extensions of the approach 

have been described for the detection of circles [71], parabolas [72], ellipses [73], and 

other arbitrarily shaped curves [74,75]. The HT can be applied to binary-valued 

images [45] or, in extended form, to multiple-valued images [76,77]. The HT may 

also be applied to the detection of lines in noisy images. If the points in input im-
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age are approximately collinear in noisy background, for example, the HT of these 

points tends to show clustering rather than producing an ideal common point with 

high peak. 

Closely related to the HT is the Radon transform (RT) [31,32]. The RT may 

be applicable to the enhancement of linear features (e.g., straight line segments) 

because it has an inverse. Deans [78] has pointed out that the HT can be interpreted 

in terms of the RT. The special case of the RT in 2-D image space can be expressed 

as 

I R(P, 0) =/JD f(x, y)S(p - xcosO - ysinO)dx dy (3.2) 

where f(x, y) and S( *) are a two dimensional input image and a line-delta function, 

respectively. In Eq. 3.2, f R(P, 0) represents a line integral of f(x, y) along the line, 

xcostJ + ysintJ = p. Equation 3.2 can be written in 2-D convolution form using the 

rotation operator Re{ }: 

I R(P, 0) = f(x, y) * *Re{l(x) S(y)}, (3.3) 

where ** represents the 2-D convolution operation and Re{} represents a rotation 

of the 2-D function serving as an argument through an angle 6. The 2-D Fourier 

transform of IR(P, e) is given by 

FR(p,O) = F(u,v) Re{S(u) l(v)}, (3.4) 

where FR(P, 0) and F(u, v) are the 2-D Fourier transforms of the RT and the input 

image, u and v being the horizontal and vertical frequency coordinates, respectively. 

From Eqs. 3.3 and 3.4, it can be seen that the RT is a 1-D projection along the 

straight line at angle 0 in the frequency domain whose direction is orthogonal to 

that of the line feature itself in the space domain. Therefore, the RT performs well 

detecting and enhancing such linear features extended over the entire input plane, 

by incorporating an enhancement operator in the RT plane with the inverse RT. 

Various methods have been proposed for the optical implementation of the HT 

and the RT, including use of an input rotator and a linear detector array [79], a 
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pair of spherical and cylindrical lenses with a linear detector array [80], a matrix of 

space variant holographic filters [81], and parallel holographic generation of multiple 

Hough transform slices [82]. 

Two digital techniques [9,11] to enhance linear features in noisy background 

are briefly discussed using the RT and human fan-type filter based on human visual 

model. Some distinctions between these techniques and RKMT processing are made 

for automated enhancement of linear features with random orientations and varying 

dimensions. Murphy [9] has successively applied the RT for enhancing the linear 

features of ocean waves seen in a noisy SAR image. However, there are two major 

deficiencies of using the RT for line detection and enhancement in certain situations: 

1. Linear features are embedded in noisy background with spatially varying av­

erage intensity from one region to another. 

2. Dimensions of linear features have a wide variation, certain dimensions being 

much less than those of the input image itself. 

3. Mixture of cases 1 and 2. 

In case (1), high peaks may not represent the existence of linear features since 

these peaks may result from some local bright regions with no linear features. A 

highpass spatial filtering operation may be used to reduce the effect of such slowly 

varying characteristics. However, the highpass filtering operation emphasizes noise 

structures. In case (2), specific peaks obtained from noise structures in the RT 

plane may achieve higher magnitudes than those obtained from linear features with 

small dimensions. 

A method alternatively described by Peli [11] for enhancing striated-line fea­

tures in fingerprint imagery is based on a visual model of the cortical cells' re­

sponse [70]. The latter method may be used to overcome the deficiency encoun­

tered in case (2). In the method, a small block or local region of the input image is 

filtered by a small window (i.e., filtering mask) one at a time, where striated-line 
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features (i.e., ridge structrues) have a predominant orientation (perhaps only one 

orientation). However, this method requires intensive human intervention to select 

an appropriate window size and is difficult to place automatically the selected win­

dow in the input image, avoiding multiple orientations of linear features within the 

window. Furthermore, such block processing approach may loose information about 

boundaries between two windows containing linear features and noise background. 

To overcome the aforementioned difficulties encountered in automated linear fea­

ture enhancement operation, the RKMT processing operation, discussed for the 

remainder of this thesis, has been proposed [6,7]. 
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3.2 Rotating Kernel Min-Max Transformation 

In this section, the rotating kernel min-max transformation (RKMT) is defined 

along with various types of 2-D kernels and transform functions used in its appli­

cations. 

3.2.1 Definitions 

The RKMT method utilizes directional information in a local-circular region about 

each point in an input image. It can be used to extract information on particular 

locally directional features (e.g., linear features) to be detected. The theory for the 

RKMT is easily described in terms of space-domain operations. Figure 3.2 shows 

a block diagram of the basic operation. The input image is convolved with a long, 

narrow 2-D kernel of noncircular symmetric or asymmetric profile, which is rotated 

through 360 degrees, either continuously or discretely in a large number of steps. 

The convolution output S8 (x, y) is described by 

Se(x, y) = j_: j_: O(x - p, y - q) Ke(p, q) dpdq (3.5) 

where O(x, y) is the input image and K 8 (x, y) is the 2-D kernel, rotated through 

the angle 0. As the kernel rotates, the convolution output S6(x, y) is monitored and 

the maximum[= Max(x,y)] and minimum[= Min(x,y)] values of S6(x,y) at each 

point (x, y) are stored. The Max(x,y) and Min(x,y) values are defined in accord 

with 

M ax(x, y) = maximum{S6(x, y) : 0 $ 0 < 360°}, 

Min(x, y) = minimum{S8 (x, y) : 0 $ 8 < 360°}. 

(3.6) 

(3.7) 

The output image Iout(x, y) is given by a.n application-dependent function/[ , ] of 

Max(x,y) and Min(x,y) values: 

Iout(x,y) = f[Max(x,y),Min(x,y)]. (3.8) 
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S11(x, y) 

- ![ 'l - fout(X, y) 

Figure 3.2: A block diagram of the RKMT operation. O(x, y) and K8(x, y) are the 

input and rotating kernel oriented at an angle 0. S 11 (x, y) is the convolution output. 

The output Iout(x, y) is given by an application-dependent function ![ . ] of Max(x.y) 

and Min(x.y) values. 

3.2.2 Symmetric and Asymmetric 2-D Kernels 

A variety of 2-D kernels with high directionality (large aspect ratio) can be used for 

RKMT processing [6,7,83,84]. These can be classified into two groups: symmetric 

profiles and asymmetric profiles. The symmetric kernels include 2-D rectangular, 

parabolic, triangular, exponential, and more generally Gaussian profiles, as pre­

sented in Tab. 3.1. L and W are the length and width of the kernels. Because 

of the symmetry of these kernels, it is only necessary to consider the convolution 

outputs for 0 ranging from 0° to 180°, since the convolution outputs for the re­

maining angles are the duplication of those for the first 180 degrees. Figures 3.3(a) 

and (b) show side views of the symmetric rectangular and triangular profile kernels. 

Figure 3.3(c) and (d) show corresponding asymmetric kernels. Figure 3.4 shows 

perspective views of various kernels and their Fourier transform amplitudes, includ­

ing rectangular, triangular, parabola, and Gaussian (a=7) profiles in Table 3.1. The 

kernel dimension used is L = 21 and W = 3. The kernel profile in they direction 

(see Fig. 3.4) is not critical, though somewhat better performance is expected to 

result with a Gaussian profile. A variation of the rectangular profile kernel can be 

considered as a kernel with a + (plus) mark profile or the sum of two symmetric 
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\\ 1-D Profile Kt1(x,y) Note IJ 

Rectangular .R 6{Arect(-L, w)} W«L 

Parabolic .Rs{A[rect(-L,w).1[1- (f) 2
]} W«L 

Triangular .Re{Atri(L]2 )rect( w)} W «L 

Exponential .Re{Arect(f, w )exp(-~)} W « L 

Gaussian .R 8{Arect(f, w )exp(-:~)} W « L 

Table 3.1: Various 2-D kernels in which rect and tri represent rectangular and triangular 

functions. respectively. In each kernel. Land W are the length and width of 2-D kernels, 

respectively, and A and a are constants. 

rectangular profiles which are orthogonal to each other. 

The rectangular profile kernel in Tab. 3.1 has uniform weight for all points. 

Application of the rectangular profile kernel to linear feature enhancement may 

cause certain features (e.g., line segments) to be thickened and some image detail 

to be lost. A rectangular profile kernel with an impulse in the center will in some 

cases reduce this thickening and smoothing effect. 

With the various nonrectangular profile kernels shown Tab. 3.1, input image 

points away from the center of the kernel contribute less to the convolution output 

compared to those points near the center, and thickening of line segments is reduced. 

This property is illustrated by a Min operation followed by an ideal thresholding­

hard limiting. Figure 3.5 illustrates this operation, in a numerical simulation, with 

a symmetric triangular profile kernel of length L = 23 and width W = 1. Min values 

are found when the kernel orientation is orthogonal to the line segments. A binary 

input in Fig. 3.5(a) is subjected to the Min operation, where the width of a typical 

line segment is approximately 9 pixels. The result of applying the Min operation 

is shown in (b). Figure 3.5(b) demonstrates enhancement of the center portions 

of the line segments. Thus, a thin line segment can be obtained by thresholding 
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Figure 3.3: 1-D representation (broad side view) of 2-D kernels: (a) symmetric rect­

angular profile (impulse at center may be excluded): (b) symmetric triangular profile: 

(c) aymmetric rectangular profile: (d) asymmetric triangular profile. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.4: Perspective views of symmetric kernels (left) and their Fourier transform 

amplitudes (right): rectangular (a.b). triangular (c.d). parabolic (e.f). and Gaussian 

(g.h) profiles. The kernel dimension used is L = 21 and W = 3. 
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at a certain gray level. It is seen that the enhancement characteristics obtained 

from the nonuniform weight of the nonrectangular kernels may be incorporated 

into a method to enhance the center of lines or line intersections of 3 lines or more. 

Figures 3.5( c) and ( d) show such an application of detecting the intersections of 

linear features, for which the gray-scale image in (b) was processed by the Min 

operation once more. In Fig. 3.5(c), vertices are much brighter than other portions. 

Note that these vertices tend to obtain larger Min values than those obtained at 

other portions of linear features in ( c). A thresholded version of Fig. 3.5 ( c) is shown 

in Fig. 3.5(d), yielding only vertices. 

As a numerical example of the Min operation, suppose that a binary input 

image with a line segment (5 pixels wide) is convolved with the symmetric triangular 

profile kernel (L = 11, W = 1, and A=5) in Fig. 3.3(b). The convolution output 

is 19, 17, 15, 10, 6, 3, 1, and 0 measured from the center of the line segment. A 

binary output image with a thin line segment is obtained by thresholding at 18 (16) 

for the line segment of 1 (3) pixel width. The nonuniformity of the nonrectangular 

kernel allows one to use a longer kernel with less thickening of line segments for the 

enhancement operation, preserving greater output line connectivity. A rectangular 

kernel with a large L results in thickening of the line segments. For this reason, 

the nonrectangular profile kernels are preferable to the rectangular profile kernel in 

some applications. 

The kernels discussed can be used in a variety of applications: image enhance­

ment including linear feature enhancement and edge enhancement, and pattern 

recognition with various kernel profiles. A long, narrow kernel is particularly useful 

for the enhancement of line segments in noisy background and for reducing noise in 

an image while preserving edges or other directional features. These applications 

are discussed in the following chapters. 
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(a) (b) 

(c) (d) 

Figure 3.5: Min operation with a triangular profile kernel. (a) Original image. (b) 

Result of applying the Min operation to (a). (c) Result of applying the Min operation 

to (b). (d) Thresholded version of (c). 
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3.2.3 Transform Functions 

Various forms of transform function were investigated, including the following: 

where 

Ji[Max,Min] = Max(x,y) 

'2[Max,Min) = Min(x,y) 

f3 [Max,Min] = Max(x,y) -Min(x,y) 

/ 4 [Max,Min) = Max(x, y) · Min(x, y) 

f5[Max,Min] = 1- pm 

fe[Max,Min] = (1- pm)ePm 

1-pm 
h[Max,Min] = --

1 +pm 

p(x,y) = Min(x,y)/Max(x,y). 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

As defined in Eq. 3.16, p possesses a value between 0 and 1, having the maximum 

value (=1) when Min(x,y) = Max(x,y). A small value of p represents a significant 

variation in intensity at a particular point, whereas a large value indicates that there 

is no significant variation in intensity. In other words, (1- p) measures the amount 

of directional intensity variation at a point. Figure 3.6 shows the functions (1- pm) 

(Eq. 3.13) for m = 1, 2, and 3. A high value of m leads to greater sensitivity to a 

small variation in directional intensity for a large value of p. Thus, a low contrast 

image would be processed to enhance some directional feature using the function 

(1-pm) with a high value of m rather than a low value. Similar effects are observed 

with the mappings represented by Eqs. 3.14 and 3.15. 
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0.2 0.4 0.6 0.8 1.0 

p 

Figure 3.6: The RKMT function /[Max, Min] = 1 - pm for m = 1, 2. and 3 from 

bottom to top. It is shown that. for a large value of p. a higher order m provides 

greater sensitivity to small variations in gray-level than a lower one. 
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3.3 Algorithms for Linear Feature Enhancement 

byRKMT 

In this section, algorithms for the RKMT enhancement of linear features are intr~ 

duced. A simple [Max - Min] operation is first described by calculating lout(x, y) = 

Max(x, y) - Min(x, y) at each input point, followed by further general multipass 

operation obtained by cascading a Max operation with the [Max - Min] operation. 

The algorithms are simulated for each operation on a computer with a synthetic 

image containing linear features which are of four orientations: 0°, 45°, 90°, and 

135°. In each numerical simulation, the kernel was thus rotated through these four 

discrete angles. 

3.3.1 Direct [Max - Min] operation 

A block diagram of [Max - Min] operation is shown in Fig. 3.7. The solid box in 

Fig. 3.7(a) includes both the convolution operation of the input with the kernel 

Ks(x, y) and the operation to calculate lout(x, y) = Max(x, y) - Min(x, y). A 

simplified version shown in (b) is used throughout the remainder of the thesis. An 

example of the [Max - Min] operation is suggested by Fig. 3.8. A noiseless input 

image is shown in Fig. 3.8(a) which consists of only straight-line segments. A 

noisy image is generated by adding short line segments, curved line segments, and 

impulsive noise to the noiseless image. The resulting noisy image O(x, y), shown 

in Fig. 3.8(b), is subjected to the [Max - Min] operation to enhance straight-line 

features relative to the other features and noisy background. As the kernel Ke ( x, y) 

rotates, the input is convolved with the kernel, which is long and narrow in profile, 

and both Max(x,y) and Min{x,y) values from the convolution outputs are obtained. 

The difference [Max(x,y) - Min(x,y)] is large at points that lie along the straight­

line segments. Along short line segments, curved lines, and at impulsive noise, 

[Max(x,y) - Min(x,y)] will be comparatively smaller. The result is an enhancement 



O(x, y) __ r * * 1--~ax--Mi~f--+-_. lout ( x, y) 
L J L _ J 

Ks(x, y) (a) 

O(x, y) --[Max - Min]--- lout (x, y) 

Ko(x,y) 

(b) 
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Figure 3.7: A block diagram of the direct [Max - Min] operation where O(x, y) and 

K0 (x, y) are the input and 2-D rotating kernel, respectively: (a) [Max - Min] operation: 

(b) simplified version of (a). 

of the straight-line segments relative to the other features. 

Figure 3.B(c) shows the result of applying the [Max(x,y) - Min(x,y)] operation 

in a numerical simulation. A typical line width is 5 pixels wide. The kernel K6(x, y) 

used is rectangular in profile with L = 19 and W = 1. Some enhancement of the 

straight-line segments relative to the background is evident. This operation also 

fills in gaps in a broken line segment. Figure 3.B(d) shows an image thresholded at 

a gray value (i.e., 128 for 8 bit gray levels) that corresponds to approximately half 

the length of the kernel. Asymmetric kernels can be used in much the same way. 

3.3.2 Cascade Max and [Max - Min] Operations 

Greatly enhanced line segments can be obtained if, in a pre-processing step, an 

intermediate image[:;:::: Iint(x,y)] is calculated in accord with Iint(x,y):;:::: Max(x,y) 

[i.e., Max operation], and then processed by the [Max - Min] operation. Figure 3.9 

shows a block diagram of such a cascade system. The kernel Ks (x, y) may be 

different in the Max and [Max - Min] operations. 
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Figure 3.8: Direct [Max - Min] operation numerically performed: (a) noiseless image: 

(b) noisy input image: (c) result of applying [Max - Min] operation (with rectangular 

kernel) to the noisy image in (b): (d) thresholed image of (c) at a gray level. 

0 
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O(x, y) Max ---[Max - Min]----- Iout(x,y) 

Ke(x,y) Ka(x, y) 

Figure 3.9: Cascade system combining a Max operation with [Max - Min] operation. 

In the cascade system, the kernel Ke (x, y) may be different in each operation. 

In the cascade system, the Max operation pre-enhances line segments some­

what with some smoothing and noise reduction. Figure 3.10 illustrates these char­

acteristics using a binary input containing a broken line segment with two holes 

and a binary kernel oriented at 0°. As the kernel (L = 5) rotates, the binary input 

is convolved with the kernel. The output Iout(x, y) is shown only at y = 0 for con­

venience in (b). Those points within a small region near the x axis (-8 :s:; x :s:; 8 

and -2 :S:: y :S:: 2) achieve Iout(x, y) = 1; for other background points away from 

the x axis 10ut(x, y) = 0. The broken line segment is filled in, and the ends of 

the line segment are smoothed. H desired, a binary output can be obtained by 

thresholding-hard limiting. Figures 3.10 (c) and (d) show two completely filled 

binary outputs obtained by thresholding at Th= 2.5 and Th= 1.5. These thresh­

olding values are equal to the gray values, Th= L/2 and Th= L/2 - 1. Similarly, 

the pre-enhancing operation can be effected in a gray-scale image in such a way 

that the points with low gray values on a line segment will be enhanced relatively 

to background intensity. 

To reduce smoothing at the ends of line segments, a modified kernel with an 

impulse at its center may be used. Figure 3.11 illustrates this effect for I 0 u1(x, y) = 
Max(x, y) in the same way as in Fig. 3.10. In Fig. 3.U(a), the input has a broken 

line segment with. a gap at x = O; the kernel has an impulse of height h at its 

center. The output Iout(X, y) for a Max operation is seen only for y = 0 in (b). 

Those points within a finite region near the x axis (-5 :s:; x :s:; 5 and -2 :s:; y :s:; 2) 
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Figure 3.10: Max operation on a binary input with a binary kernel oriented at 0°. (a) 

Binary input and kernel. (b) lout(x,y) = Max(x,y) for y = 0. (c) Thresholded output 

at Th= 2.5 (= L/2). (d) Thresholded output at Th= 1.5 (= L/2 - 1). 
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Figure 3.11: Max operation using a kernel with an impulse. The output is shown only 

at y = 0. Smoothing at the ends of the line segment is reduced as compared with 

Fig. 3.11. (a) Input and kernel. (b) Iout(x, y) = Max(x, y) for y = 0. (c) Iout(x, 0) 

with h = 4. (d) Iout(X, 0) with h = 1. 
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have lout(z, y) = 1. For other background points away from the x axis Iout(z, y) = 0. 

Ash increases from h = O, the output tends to show steeper ends of the line segment 

and thus to reduce the smoothing effect. In (c) and (d), the convolution output 

is shown for h = 1 and h = 4. From ( c) and ( d), a completely filled binary line 

segment, as shown in Fig. 3.10, can also be obtained by thresholding the output 

l 0ut(z, y) at Th= 2.5 (= L/2). Note that an impulse at the center of kernel affects 

the Max operation but not the [Max - Min] operation, since the impulse contributes 

equally to both Max and Min operations. 

Figure 3.12 shows the results of applying the Max operation with the [Max -

Min] operation using the same noisy image as used for the direct [Max - Min] oper­

ation. The kernel used is of rectangular profile (L = 21andW=1). Figure 3.12(a) 

shows an image processed by the cascade system using the rectangular profile ker­

nel. A thresholded image is shown in Fig. 3.12(b). Figures 3.12(c) and (d) show the 

results of conventional median filtering with 3x3 and 7x7 filtering mask. It is easily 

seen that the RKMT processing outperforms the median filtering, since the median 

filtering does not take into account directionality of certain features and works well 

only for impulsive noise. It is seen in Fig. 3.8( d) and Fig. 3.12(b) that the Max 

operation preenhances the straight-line segments, with noise reduction but some 

smoothing. Then, calculating lout(z, y) = Max(x, y) - Min(x, y) tends to remove 

the effects of variations in background intensity and to remove any uniform bias, 

resulting in greatly enhanced linear features. 

3.3.3 Multipass Operation with Cascade System 

The cascade system combining a Max operation with a [Max-Min] operation may 

be continued iteratively (e.g., two iterations) in the form of multipass operation. 

Figure 3.13 shows a block diagram for the multipass operation in which the image 

obtained in the first iteration is passed through the cascade system again. The 

output image lout(x, y) can be obtained either by the Max operation or by the [Max 
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Figure 3.12: Cascade operation: (a) result of using the rectangular kernel with L = 25 

and W = 1: (b) result of thresholding the result in (a): (c) and (d) results of median 

filtering operations with 3x3 and SxS masks, respectively . 
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O(x, y) __ _ 
Max i------[Max - Min]-- lout(X, y) 

Ks(x,y) Ks(x,y) 

Figure 3.13: Multipass operation for which the output from the first cascade operation 

(i.e .. first iteration) is used as the input to the entire cascade system. 

- Min] operation. In the multipass operation, one or two iterations are sufficient 

for the enhancement of linear features in noisy background. For example, one 

iteration was sufficient for the image without the spatially varying characteristics 

of background intensity as shown in Figs. 3.S(b) and (d) and Fig. 3.12(b). 

Figures 3.14 shows the results of applying the second Max/[Max - Min] op­

eration to the image of Fig. 3.12(a) obtained in the first iteration of the multipa.ss 

operation. The result of applying the Max operation in the second iteration is 

shown in Fig. 3.14(a). A thresholded version of the image in Fig. 3.14(a) is shown 

in Fig. 3.14(b). Similarly, the result of applying the [Max - Min] operation to 

Fig. 3.14(a) is shown in Fig. 3.14(c). A thresholded version of Fig. 3.14(c) is also 

shown in Fig. 3.14(d). No improvement in the enhancement capability is observed 

by the second iteration, as seen in Fig. 3.12(b) and Figs. 3.14(b) and (d), since 

the noisy input in Fig. 3.S(b) does not have the spatially varying characteristics of 

background intensity. As this cascade operation continues iteratively, smoothing 

increases and some image details such as line intersections may be deemphasized or 

lost. 

3.3.4 Effect of the Kernel Length and Width 

It is important to choose the kernel length relative to features (e.g., line segments) 

to be enhanced, even though the basic RKMT processing performs well for a wide 
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(a) (b) 

(c) (d) 

Figure 3.14: Second iteration with cascade system using a rectangular kernel (L=25 

and W=1): (a) result of applying a Max operation to (a) in Fig. 3.12: (b) thresholded 

version of (a): (c) result of applying a [Max - MinJ operation to (a): (d) thresholded 

version of ( c): 
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range of the kernel length. H the kernel is too long, such features will be smoothed 

or smeared out during the enhancement operation. As a result, certain desirable 

features with small scale may be lost. On the other hand, the operation may be 

sensitive to noise and thus lose the enhancement capability as the kernel is made 

too shorten or shorter. It was shown in Fig. 3.11 that the smoothing effect could 

be reduced by using a kernel with an impulse at its origin. Similar effects to reduce 

smoothing can be achieved by using other nonrectangular profile kernels. In general, 

lengthening a long, narrow kernel results in greater output line segment connectivity, 

but with a smoothing of image details such as line intersections. Figure 3.15(a) 

shows an image processed by a cascade system with a rectangular kernel (L = 15 

and W = 1) followed by thresholding. The enhancement effect is somewhat poor. A 

significantly enhanced image can be obtained using a longer kernel. Figures 3.15(b), 

(c), and (d) show the results of applying the cascade system with a longer kernel of 

L = 25, 37, and 49. 

It is also important to consider the width of the kernel (= W). Consider the 

case of an infinitely-long line segment with width W' and rectangular kernel of 

length L (L >> W and L >> W'). Figure 3.16 shows the result for three different 

cases: (a) W = W'; (b) W < W'; and (c) W > W'. Max values are found when the 

kernel is oriented with the line segment. The line segment and kernel are shown 

on the left of Fig. 3.16 for each case while 1-D profiles of Max values along the x 

axis are shown on the right. (The z a.xis is orthogonal to the image plane.) For 

W = W', the Max value decreases monotonically on both sides of the line segment 

as shown in (a). This effect can be demonstrated numerically as follows. H W = 5, 

W' = 5, and L = 15, Max values at points along the line segment are · · · 45, 60, 75, 

60, and 45 · · ·, going from one side of the line segment to the other. The largest 

value (=75) among these Max values is obtained at the center of the line segment. 

The result is an enhancement at the center. H the processed image is thresholded 

at a gray value, a thinner line segment is produced. Thus, incorporating this effect 
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(a) (b) 

(c) (d) 

Figure 3.15: Effect of varying the kernel length (= L) for a cascade system using a 

rectangular kernel (W = 1): (a) L = 13: (b) L = 25: (c) L = 37: (d) L = 49. 
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into the [Max - Min] operation results in a thinning of the line segments as well as 

an enhancement at their centers. In (b) and (c), the Max values form a plateau 

around the center of the line segment and decrease monotonically to either side of 

the line segment. 

Figures 3.17(a), (b), and (c) show the numerical results of varying W from 1 

to 5 for the cascade system (i.e., first iteration). The kernels used are rectangular in 

profile and of length L = 25. Similarly, the same effect of varying the kernel width 

on the enhancement of line segments can be demonstrated by using a triangular 

profile kernel. The result of using the triangular kernel with L = 37 and W = 3 

is shown in Fig. 3.17(d). As the input image is more noisy, the longer and wider 

kernel needs to be used. Figure 3.18 shows such example. The noisy input is shown 

in (a). Figures 3.18(b) and (c) show the images obtained in the first iteration using 

the rectangular kernel of L = 25, followed by thresholding, for W = 3 and W = 5, 

respectively. As comparison, the result of applying the median filtering operation 

with 5x5 mask is shown in Fig. 3.lS(d). 
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Figure 3.16: Effect of the kernel width W: (a) W = W'; (b) W < W': and (c) 

W > W' where W' is the width of the line segment. In each case. L ~ W. L ~ W'. 

and L ~ WW' where L is the kernel length. 
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(a) (b) 

(c) (d) 

Figure 3.17: Effect of varying the kernel width ( = W) for a cascade system where a 

rectangular kernel with L = 25 was used for (a). (b). and (c): (a) result for W = 1: 

(b) result for W = 3: (c) result for W = 5: (d) result using a triangular kernel with 

L = 37 and W = 3. 



69 

(a) (b) 

(c) {d) 

Figure 3.1.8: Noisy input image and its processed images with the cascade system for 

varying the kernel width (= W). (a) noisy input image: (b) result for W = 3: (c) result 

for W = 5: (d) median filtering with SxS mask. 
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3.4 Quantitative Performance Measure of Image 

Enhancement by the RKMT Method 

3.4.1 Analysis Method 

RKMT processing has been shown to be particularly useful for the enhancement 

of linear features (e.g., straight line segments). Although RKMT processing clearly 

performs well qualitatively, it is worth analyzing quantitatively its effectiveness 

under various conditions. One of the reasons for performing a quantitative analysis 

is to understand how effectively RKMT processing can serve as a preprocessor for 

the cell boundary patterns. 

An important question is what quantitative performance measure correlates 

well with the visual inspection of the processed images. There are various meth­

ods commonly used for quantitative measure of image quality, including normalized 

mean-square error measure and normalized peak mean-square error measure [85]. 

These methods yield an error measure between a raw input and a processed im­

age that correlates well with visual inspection. The normalized mean-square error 

measure ( €;.) is defined in the discrete case by 

D; D; 

L L[Or(i,;') - Op(i,;')] 2 

(3.17) 

i=l f=l 

where DixD; is the dimension of image in rows by columns and Or(i,j) and Op(i,;') 

are the raw input and processed image, respectively. Similarly, the normalized peak 

mean-square error measure (e";,) is defined by 

D; D; 

(1/ DiD;) L L[O(i,j) - Op(i,;')] 2 

i=l;=l 
ep=~~~~~~~~~~~~~ 

p2 (3.18) 

where p represents the peak gray value in the image Or(x, y) (e.g., p = 255 for 8 bit 



71 

digitization). 

The peak mean-square error measure for the performance measure (i.e., sim­

ilarity measure) has been chosen, used in this research, and expressed in decibel 

form as an equivalent signal-to-noise ratio (SNR): 

(3.19) 

Equivalently, 

SNR = 10log10 

p2 
(3.20) 

D; D; 

(1/DiD;) LL[Or(i,i) - Op(i,i)] 2 

i=l j=l 

Note that the noiseless and noisy input images used for the enhancement of linear 

features in Sec. 3.3 were binary images. Since the processed image obtained by 

RKMT processing was a gray-scale image, a global thresholding operation is used 

to obtain a binary output image. A thresholding value was chosen at that gray 

value for which the maximum SNR was obtained. In certain situations, choice 

of the thresholding value may depend on the volume of the kernel dimension, by 

considering points on a binary line segment for [Max -Min] operation. Consider the 

case shown in Fig. 3.16(b) (W < W'). In that case, the Max and Min orientations for 

those points on the line segment are parallel and perpendicular to the line segment, 

respectively. Then the thresholding value Ith is obtained by calculating [V - V0 ], 

where V is the total volume of the kernel and Vo the overlapped volume between 

the kernel and line segment in both orientations: 

(3.21) 

for a rectangular kernel and 

(3.22) 

for a triangular kernel. Although these values worked well to binarze the processed 

gray-scale image, they did not yield a maximum SNR for the quantitative analysis. 
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This problem occurs since negative-going noise on the line segment may reduce the 

Max value. The processed images were therefore thresholded at slightly different 

gray values to obtain the maximum SNR. 

3.4.2 Experimental Results 

The peak mean-square error (PMSE) analysis method has been applied to investi­

gate how effectively RKMT processing works for the enhancement of linear features 

in a noisy environment. To understand better how the RKMT processing behaves 

under certain situations, three different cases are considered. The first investigates 

how the processing behaves as the kernel length changes. The second involves a 

quantitative comparison of the enhancement of linear features using the direct [Max 

- Min] operation and the cascade system, which combines a Max operation with a 

[Max - Min] operation. The third compares the performance of RKMT processing 

for various rectangular and nonrectangular (e.g., triangular) kernel profiles. For this 

analysis, the raw input in Fig. 3.7(a) is used as Or(i,j) in Eq. 3.20; the processed 

image is subjected to a global thresholding operation [Op(i,j) in Eq. 3.20]. 

Figure 3.19 shows the experimental results obtained calculating Iout(x, y) -

M ax(x, y) - Min(x, y) subject to an ideal thresholding at a gray value that maxi­

mizes SNR for each kernel length. The length L increases from L = 5 to L = 77. 

The kernel (W = 1) used is rectangular in profile with the width W = 1 pixel. The 

width of the line segments is W' (=5) pixels. As shown qualitatively in Fig. 3.15, 

lengthening the kernel improves the SNR. The SNR increases monotonically up to 

approximately 22 dB for L = 29(= Lmaz). Note that Lmaz ~ 5.SW' (= 29) where 

W' = 5 is the width of line segments in the raw image. As L exceeds the length 

Lmaz, the SNR becomes nearly constant (~ 21.7 dB) and then falls off slightly. 

Lengthening the kernel further tends to decrease the SNR slightly, but not signifi­

cantly. 

Figure 3.20 shows experimental results for the direct method and cascade sys-
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Figure 3.19: Signal-to-noise ratios (SNR) for different kernel lengths (= L). The 

kernel used is rectangular in profile width W = 1. 
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Figure 3.20: Performance measures for direct method ([Max - Min] opertion) and 

cascade system. Higher signal-to-noise ratios (SNR) are obtained from the cascade 

system. 
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tem as the kernel length L increases from L = 5 to L = 77. The SNR for the direct 

method is represented by a dashed line, whereas the solid line represents the SNR 

for the cascade system. The SNR for the cascade system increases monotonically 

up to 24.5 dB at L = 21 ( Lma.z = 4.2W') as does the SNR for the direct method. 

There is an increase of 2.5 dB in the SNR obtained by combining a Max operation 

with [Max - Min] operation. This increase is consistent with visual inspection of 

the processed images, as noted in Sec. 3.3. As L increases further, the SNR tends 

to decreases more rapidly for the cascade system than for the direct method does. 

The reason for this tendency is that lengthening the kernel in the cascade system 

affects more rapidly other input features placed in different regions. In general, the 

RKMT processing using the cascade system tends to reach the maximum SNR for 

a shorter kernel length (i.e., Lma.z). 

The other important quantitative analysis is to investigate how RKMT pro­

cessing behaves over different kernel shapes, e.g., rectangular and nonrectangular 

profiles. Figure 3.21 shows the experimental results obtained with rectangular and 

triangular kernels. The SNRs for the direct method and cascade system are shown 

in (a) and (b), respectively. In (a), the triangular kernel yields slightly higher SNRs 

(e.g., 2.65 dB) for large kernel lengths (e.g., L = 49) than the rectangular kernel 

does. In (b), the triangular kernel still produces higher SNRs (e.g., 1.23 dB at 

L = 57) for large kernel lengths. In both cases, RKMT processing using the rectan­

gular kernel tends to reach the maximum SNR and then fall off for a shorter kernel 

length (note Lma.z both for the direct method and for the cascade system) than is 

the case using the triangular kernel. Table 3.2 shows the numerical results obtained 

for the direct method and cascade system for the rectangular and triangular profile 

kernels. As a comparison, the PMSE method has been applied to the image pro­

cessed by a digital median filtering operation. The SNRs obtained by using 3x3, 

5x5, and 7x7 filtering masks are 18.6 dB, 18.3 dB, and 17.6 dB, respectively. Note 

that the SNR for the cascade system is approximately 6 dB higher than obtained 
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with the median filtering for the particular image shown in Fig. 3.7(b). As more 

undesirable features such as short line segments and curved line segments are added 

to the noisy image, RKMT processing will achieve more significant improvement in 

SNR than the median filtering operation. Table 3.2 shows the numerical results ob­

tained for the direct method and cascade system for the rectangular and triangular 

profile kernels. 

3.4.3 Discussion 

The quantitative performance measures of RKMT processing correlate well with 

the visual inspection of the RKMT enhanced images. The cascade system certainly 

performs better than a simple direct method. From this result, it can be expected 

that the general multipass operation discussed in Sec. 3.3 can yield well enhanced 

linear features using either a rectangular kernel or a nonrectangular kernel. 

In the next section, a possible optical system for implementing RKMT pro­

cessing is discussed. 
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Figure 3.21: SNR obtained for rectangular and triangular kernels. 
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Signal-To-Noise Ratios (SNR) dB 

Kernel Length Direct [Max - Min] Operation Cascade System 

L Rectangular Triangular Rectangular Triangular 

5 13.8208 6.2114 14.9303 11.5156 

9 14.7545 13.9324 17.1234 15.3659 

13 17.7352 15.0094 19.8334 16.8680 

17 19.4902 16.4740 23.2793 19.0003 

21 21.3434 18.4521 24.5099 21.2540 

25 21.6910 19.8641 24.4726 23.0326 

29 21.8504 21.1233 24.2028 24.1165 

33 21.7402 22.8100 24.2554 24.3990 

37 21.7402 22.1879 24.3808 24.3990 

41 21.7106 22.4594 24.1681 24.1508 

45 21.5562 22.7117 23.9488 23.9984 

49 20.1405 22.7866 23.4519 23.9984 

53 20.8976 22.7366 22.9929 23.8512 

57 20.6290 22.6748 22.4946 23.7244 

61 20.5757 22.5777 21.9531 23.5257 

65 20.6752 22.4711 21.3254 23.4081 

69 20.6520 22.3442 20.5606 23.1542 

73 20.4563 22.2542 19.9236 22.7992 

77 19.9892 22.2653 19.4784 22.4361 

Table 3.2: Numerical results obtained for direct method and cascade system over 

different kernel shapes (W = 1) where the kernel length L changes from L = 5 to 

L = 77. 
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3.5 Optical Implementation 

3.5.1 General Principle 

RKMT processing can be implemented using a computer or specialized digital­

electronic image processing hardware. The method is computationally expensive 

on a digital computer, since a large number of convolutions and rotations (perhaps 

with a large kernel) must be evaluated. Suppose that an input image with DxD 

pixels is convolved with a rotating kernel of dimension LxW. For a Max operation 

using M discrete kernel orientations, the number of multiplications and additions 

required is given by approximately 2LW M D2 for serial processing and 2LW M for 

parallel processing (using specialized digital-electronic hardware) on the computer. 

In either case, the number of computations increases greatly as L, W, M, and D 

increase. However, the RKMT method lends itself to hybrid optical electronic 

implementation [22], where the computationally-intensive convolution and rotation 

operations are performed optically and optomechanically, respectively, and the Min­

Max operations are performed electronically. 

A coherent optical system may be used to implement the convolution. As 

given in Eq. 3.5, 

Se(x, y) = O(x, y) ** Ke(x, y), (3.23) 

or, in the spatial frequency domain, 

S8 (u,v) = O(u,v)K8 (u,v), (3.24) 

where s,(u,v), O(x,y), and Ke(x,y) are the 2-D Fourier transforms of Ss(x,y), 

O(x,y), and K 8 (x,y), respectively, and tL and v are the horizontal and vertical 

spatial frequency coordinates in the Fourier transform plane. There are certain 

drawbacks to coherent optical implementation of RKMT processing, particularly 

when including general multipass operations or when combining a Max operation 

with a [Max - Min] operation. To begin with, the input distribution in the coherent 
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optical system must be in the form of a complex wave amplitude distribution. Thus, 

a high definition TV monitor or LED array cannot be used directly for input to a 

coherent spatial filtering system, but somehow must be converted to wave amplitude 

form using an incoherent-to-coherent converter. Photographic film may be used 

to record an intermediate output image, but it generally requires time-consuming 

chemical processing. Other serious problems with coherent spatial filtering systems 

include coherent noise and dynamic range. Any speck on an optical element, e.g., 

a lens, can scatter light that ultimately manifests itself as an undesired diffraction 

pattern in the output image. The dynamic range problem applies at the output 

plane because of the square-law relationship between wave amplitude and intensity. 

For example, in order to measure a wave amplitude distribution with dynamic range 

of three orders of magnitude, a detector must be used whose intensity response can 

vary over six orders of magnitude. 

These problems are not found in incoherent spatial filtering systems [86,87,88]. 

Since the kernels shown in Fig. 3.3 are typically real and non-negative, an incoher­

ent spatial filtering can be used to implement RKMT processing, incorporating 

additional hybrid components [22] for general multipass operation. Figure 3.22 

shows one possible incoherent system implementation. A holographically-recorded 

pupil transparency or computer-generated hologram [89], placed in the pupil plane, 

is used to determine the convolution kernel. In the optical implementation, it is 

necessary to physically rotate the pupil transparency (thereby rotating the convolu­

tion kernel) in the optical system. This is much faster than effecting an equivalent 

kernel-rotation operation on a digital computer, particularly when the input image 

has a high space-bandwidth product (high definition image) [22], since the convolu­

tion operation can be done instantaneously regardless of the kernel size (e.g., 41x5 

pixels) and the dimension of the input image (e.g., 1024x1024 pixels). Normally 

the holographically-reconstructed kernel would be diffracted off-axis, and the con­

volution output would therefore swing in an arc around the optical axis. Use of a 
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compensating prism prevents this by bring the convolution on axis. Details of the 

incoherent system implementation are described in the following sections. 

3.5.2 Holographical Spatial Filter 

Figure 3.23 shows an interferometric system [33] for recording the desired pupil mask 

on a photographic film or holographic plate [33]. A positive lens is represented by 

two arrows vertically positioned. Suppose that the convolution kernel to be recorded 

is given by h(x,y). The distribution, perhaps recorded on film, is illuminated by a 

collimated beam of laser light. The lens Fourier transforms h(x, y), yielding in the 

Fourier transform plane the amplitude distribution 

1 -( x' y') 
>.f H >.f' >.f ' (3.25) 

where H( , ) represents the Fourier transform of h(x, y). A portion of the collimated 

light passes through a prism, is deflected down, and is incident on the Fourier 

transform plane at angle 8. This reference beam has field distribution 

Ur(x', y') = R exp(-;'27ray'), (3.26) 

where R is the amplitude of the reference beam and the spatial frequency carrier is 

given by 
sin8 

a=-­
>. ' 

(3.27) 

where >. is the wavelength of a quasi-monocromatic laser beam. Assume that a 

positive-working film with hi = 2 is used to record the interference pattern pro­

duced by the two incident waves in the Fourier transform plane. Then, the ampli­

tude transmittance of the resulting photographic transparency is represented by 

t(z',y') = IRexp(-j2My') + Ui) Ji(;~.~~ )I' 
2 1 .......... x1 y1 R-- x1 y' . ' 

I 
( ) 

1

2 ( ) = R + ).2 f2 H >.f' >.f + >.f H >.f' >.f exp(J21l'ay) 
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Figure 3.22: One possible hybrid optical implementation. Incoherent optical convolver 

with electronic min-max processor in output plane. The prism compensates for holo­

graphic carrier. Prism and hologram trun as a pair to rotate on-axis convolution kernel. 

Min-Max processor performs Min-Max calculations. 
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Figure 3.23: An interferometric setup for recording a kernel h(x, y) where a posi­

tive lens is represented by double arrows and photographic film is used to record the 

interference pattern. 
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..-.... X Y · I R 
( 

I I) 
+ AfH '>../'A/ exp(-J21l'ay ). (3.28) 

3.5.3 Incoherent Spatial Filtering 

The pupil transparency with amplitude transmittance t(x',y'), given above, is in­

serted in the pupil plane of the incoherent spatial filtering system of Fig. 3.22. With 

no prism in the pupil plane, the output image Iim(x, y) is given by the convolution: 

(3.29) 

where J9 (x, y) and f 9 (x, y) are the intensities of input image and the system point 

spread function, respectively, T(, ) is the Fourier transform of t(x, y), and "' is a 

proportionality constant. Equation 3.29 can be Fourier transformed to obtain 

~ ( I I) ~ ( I ') ~ ( I ') Jim x , y = "' 19 x , y F9 x , y , (3.30) 

where l 9 (x', y') and F9 (x', y') are the Fourier transforms of l 9 (x, y) and f9 (x, y), 

respectively. With the same prism used for recording the convolution kernel h(x, y) 

in the pupil plane, Eq. 3.30 is modified as follows: 

Iim(x',y') = K. f 9 (x',y') [F9 (x',y')exp(-j21l'ay')], (3.31) 

or in the space domain, 

Iim(x, y) = "'I9 (x, y) ** [f9 (x, Y)**o(x, y - .\fa)]. (3.32) 

The result shown in Eq. 3.32 indicates that the holographically reconstructed images 

are shifted by .\/a along the y direction in the output plane. 

Normally, the holographically reconstructed kernel is diffracted off axis, and 

the reconstructed images consist of four components at three different locations: 

convolution, crosscorrelation, and combination of the input function and kernel. Use 
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of a compensating prism brings the convolution on axis as shown in the following 

simple analysis. From Eq. 3.29 and Eq. 3.32, 

J, (x, y) **li(x, y - >./a) = (>.~)'Ir ( ~, 10) [' ••li(x, y - >./a) 

= c~ )' 1 { Rexp(-j2iray') + c~) H (;~. 0) '} 
2 

.. o(x,y- >./a) 

1 2 1 -. x' y' R -. x' y' . , 
( ) 2 { I ( ) 12 ( ) = )..f 1 R + )..2 f 2 H )..j' )..f + )..fH )..j' )..f exp(-J27ray) 

R x' y' }[
2 

+ )..fH()..j' )..f)exp(+j211"ay') **O(x,y- )..fa) 

= ( >.~) 
2 

IR'li(x,y) + h(x, Y)**h(-x, -y) +Rh(-x, -Y)**li(x, y->.f a) 

+Rh(x, Y)**o(x, y +)..fa) 12 **O(x, y - )..fa). (3.33) 

With the substitution of Eq. 3.33 into Eq. 3.32, the expression for the output image 

assumes the form 

Iim(x, y) = )..~2 19 (x, y) ** IR2o(x, y) + h(x, y)**h(-x, -y) 

+Rh(-x, -y)**o(x, y - )..fa) 

+ Rh(x,y)**o(x,y + Afa)j 2 **O(x,y- )..fa). 

Equation 3.34 can be simplified into 

K 
I,m(x,y) = )..

2
f

2 
[{R419 (x,y) + jh(x,y)**h(-x,-y)j 2}**o(x,y- )..fa) 

+R219 (x, Y)**lh(-x, -y)l 2**6(x, y - 2)..f a) 

+ R219(x, Y)** [h(x, y) 12] 

=A+B+G+D. 

(3.34) 

(3.35) 

In Eq. 3.35, the first [=A] and second [=BJ terms correspond to the input itself 

and the intensity of the autocorrelation of the kernel h(x, y) located at y = )..fa, 
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respectively. The third [=CJ and fourth [=D] terms are the correlation and convo­

lution of the input with the kernel located at y = 2A/ a and on axis, respectively. 

The desired convolution output [=D] as given in Eq. 3.35 can be obtained on axis 

if J9 (x,y) and h(x,y) are replaced by O(x,y) and JKe(x,y), respectively. 

Figure 3.24 shows the reconstructed images (a) without and (b) with a com­

pensating prism combined with the pupil transparency in the pupil plane. As 

shown in that figure, the incident angle of the reference beam for recording the 

kernel h(x, y) should be large enough to avoid overlap of the convolution output 

and the reconstructed images located at y = A/ a. Figure 3.25 illustrates how the 

reconstructed images without the prism appear in the output plane. Without the 

kernel rotation, the convolution output is located at upper-plane. As the kernel 

rotates, however, the convolution output D swings around the optical axis. Simi­

larly, Fig. 3.25 shows the reconstructed images with the prism-pupil combination 

in the pupil plane. Thus, rotation of the prism-hologram combination results in 

the desired rotation of the kernel K8 ( x, y). 

3.5.4 Min-Max Processor 

Determination of Max(x,y) and Min(x,y) requires that the convolution output 

Se(x,y) in Eq. 3.5 be measured for a large number of orientation angles 8, e.g., 

between 8 and 300 for typical processing operations. Use of the TV camera in the 

output plane would in such cases require approximately 0.26 - 10 seconds for an 

asymmetric kernel or 0.13 - 5.0 seconds for a symmetric kernel to process a given 

input image, assuming 30 frames per second. Thus, if a digitizing TV camera is used 

as a detecting device in the output plane, the speed is limited to TV frame rate. 

Much greater speed can be achieved if a detector array is integrated electronically 

with simple peak-detection circuitry to produce the desired Max(x,y) and Min(x,y) 

outputs directly. Alternatively, a smart spatial light modulator may also be consid­

ered to detect Max and Min values and to perform a simple arithmetic operation 
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using these values, although such light modulator is not commercially available at 

present. 
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19 (x, y) ** lh(x, y) 1
2 

l 9 (x, y) **lh(x, y) 1
2 

Ig(x,y) 
**[h(x, y)**h(-x, -y) J2 

19 (x,y)ulh(-x, -y)J2 

19 (x,y)**lh(-x, -y)l 2 

y y 

(a) (b) 

Figure 3.24: Reconstructed images without kernel rotation: (a) result without the 

prism: (b) result with the prism. Thus, the prism-pupil combination yields the desired 

convolution output on axis. ( •) is the center of the axis. 
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Figure 3.25: Reconstructed images (third column) without a prism. The reconstructed 

kernel ih(x, y) 1
2 with a point source is located in the upper-plane of the first column 

of (a). As the kernel rotates, the desired convolution output [=D] is completely lost 

as shown in (b). ( •) is the center of the axis. 
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Figure 3.26: Reconstructed images with a prism. The reconstructed kernel (i.e .. 

[h(x, y) 1
2) with a point source is on axis in (a). As the kernel rotates. the desired 

convolution output [=DJ is obtained on the optical axis as shown in (b) (inside dashed 

box). (•) is the center of the axis. 
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CHAPTER 4 

NONLINEAR IMAGE PROCESSING: 

PREPROCESSING 

4.1 Introduction 

In Chapter 2, the estimation of cell parameters was performed using high contrast 

cell boundary patterns. In this chapter, the rotating kernel min-max transformation 

(RKMT) discussed in Sec. 3 is applied to raw gray-scale imagery to obtain such 

high contrast image patterns. The raw imagery is processed either by the direct 

[Max - Min] operation or by the multipass operation combining a Max operation 

with the [Max - Min] operation. Both rectangular and triangular kernels are used. 

Numerical experiments performed on a computer are presented. The effects of using 

the function /[ , ] = [1 - p][Max - Min] to reduce variations in the brightness of 

the enhanced line segments are also discussed. The processed image is subjected to 

a thresholding operation to obtain a binarized image. Three thresholding methods 

are discussed. The results of the RKMT processing are then compared with results 

of conventional spatial filtering methods. The application of the RKMT processing 

operation to the enhancement of linear features is then summarized. 
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4.2 Application of RKMT to Raw Endothelial 

Cell Imagery 

4.2.1 Basic Max and [Max - Min] Experiments 

The polygonal cell boundaries shown in Fig. 4.l(a) are fairly ea.sy to see by eye, since 

simple cells in the human visual cortex respond strongly to specifically oriented fea­

tures (e.g., lines or edges) positioned in their receptive fields [70]. However, because 

of relatively low contrast, noise, and spatially varying average intensity, the cell 

boundaries are difficult to locate and enhance automatically. Furthermore, they are 

randomly oriented and have varying lengths and thicknesses. These characteristics 

of the raw image hinder such techniques a.s the Radon transform [31] method and a 

method based on the human visual model [11] from being used for the automated 

enhancement operation. However, the RKMT processing operation implemented 

using an appropriately chosen kernel can overcome these difficulties. 

Figure 4.1 shows the results of applying the RKMT processing operation in 

a numerical simulation. The input is shown in (a). A typical cell boundry in 

this input is approximately 22 pixels long and 4 pixels wide. Note in (a) that the 

upper-center region is brighter than the lower-right region. This spatially varying 

brightness characteristics is much more noticeable in a wide field image, which 

consists of many more cells. The result of applying the [Max - Min] operation 

with a symmetric triangular kernel (L = 11 and W = 1) is sh<?wn in Fig. 4.l(b). 

Lengthening the kernel results in greater connectivity for output line segments, 

but also in some smoothing, particularly at the cell vertices. Figure 4.l(c) shows 

the result of applying the [Max - Min] operation to (a) with a longer symmetric 

triangular kernel (L = 19 and W = 1). Calculating [Max - Min] tends to reduce 

the effects of slowly varying changes in background intensity and to remove any 

uniform bias. Thus, the result is an enhancement of the cell boundaries relative 
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(a) (b) 

(c) (d) 

Figure 4.1: Results of applying [Max - Min] operation numerically using different 

kernels: (a) input image: (b) triangular kernel (L = 11 and W = 1): (c) triangular 

kernel (L = 19 and W = 1): {d) rectangular kernel (L = 11 and W = 1). 
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to the background. Similar thickening and smoothing effects result from using a 

rectangular kernel instead of a triangular kernel. Figure 4.l(d) shows the result of 

using a symmetric rectangular kernel with L = 11 and W = 1. In the simulation, the 

kernel used was rotated through 12 discrete angles separated by approximately 15° 

in angle. Detection or delineation capability of linear features (e.g., cell boundaries) 

can be improved by increasing the number of rotation angles. Figure 4.2 shows the 

kernel and rotating angles used for the simulation. 

Better results were obtained by multipass operation (e.g., cascade system) 

that combines a Max operation with a [Max - Min] operation. Figure 4.3 shows 

the results of applying the multipass operation to the input image in Fig. 4.l(a) 

with a symmetric triangular kernel (L = 11 and W = 1). The intermediate image 

obtained from the Max operation is shown in Fig. 4.3(a). This image is subjected 

to a [Max - Min] operation. The result of the [Max - Min] operation is shown in 

Fig. 4.3{b). Some enhancement of the cell boundaries relative to background is 

evident. The image obtained at the cascade system (i.e., first iteration) is further 

processed by a Max operation. The result of applying the Max operation in the 

second iteration is shown in Fig. 4.3(c). Figure 4.3(d) shows the result of applying 

the [Max - Min] operation to the image in Fig. 4.3(c). Note in (b) and (d) that 

background variations have been effectively removed and the contrast is greatly 

enhanced. If this multipass operation is repeated over and over, smoothing begins 

to increase and some image details such as vertices may be deemphasized or even 

fully lost. Figure 4.4 shows the results of using different kernel dimensions and 

profiles for the cascade system (i.e., first iteration). Figures 4.4{ a) and (b) show 

the output images obtained using a triangular kernel with L = 19 and W = 1. 

The result of applying a Max operation is shown in (a). This image is subjected 

to the [Max - Min] operation, yielding the image in {b). Figs. 4.4(c) and (d) show 

the results of using a rectangular profile kernel (L = 11 and W = 1). The result 

of applying the Max operation is shown in (c). Figure 4.4{d) shows the result of 
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Figure 4.2: Two kernels and rotating angles used for numerical experiments (h = 1): 

(a) long, narrow rectangular profile: (b) long. narrow triangular profile: (c) 12 discrete 

kernel orientations used for numerical experiments. 
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applying the [Max - Min] operation to Fig. 4.4(c). As seen in the processed images 

of Figs. 4.1, 4.3, and 4.4 lengthening the kernel increases output line connectivity 

and smoothing. It is also clear from the figures that a nonrectangular kernel yields 

less smoothing than a rectangular kernel. 

It can be seen in Figs. 4.3 and 4.4 that vertices are typically darker than other 

portions of the cell boundaries (e.g., the centers of line segments). Note that the 

kernel used (L = 11) is approximately half the length of a typical cell boundary 

(22 pixels long). Consider only those points along a typical cell boundary or line 

segment. The Max value at the center of the cell boundaries is comparatively larger 

than that at or near the vertices (or line intersections). (Recall from Fig. 3.5 that 

the Min value at the centers of these vertices tends to be larger than that at the 

centers of the line segments in a binary image.) Then, the difference [Max - Min] 

value at points at or near these vertices will be smaller than that at or near the 

center of the cell boundary. 

4.2.2 Nonuniform Brightness of Enhanced Line Segments 

Operations similar to [Max - Min] may be performed by other transform functions 

as discussed in Sec. 3.2.3. For example, f[Max(x,y),Min(x,y)] = [1-pm(x,y)] and 

f[M ax(x, y), Min(x, y)] = [1 - pm(x, y)]/[1 + pm(x, y)] produce good results in cer­

tain situations (e.g., low contrast imagery), where p = Min(x, y)/Max(x, y). Note 

that, form= 1, [1 - p(x, y)]/[1 + p(x, y)] = [Max(x, y) - Min(x, y)]/[Max(x, y) + 
Min(x, y)], commonly referred to as a visibility measure of an image. In some cases, 

certain line segments representing cell boundaries are brighter than others. Two 

different methods can be considered for compensating for this nonuniform bright­

ness. Recall first that the kernel used in the simulation was rotated through only 

the 12 discrete angles. Those boundary segments actually aligned with the rota­

tion angles received the greatest enhancement. As the number of rotation angles 

increases, the results can be expected to improve. Second, note that the difference 
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(a) (b) 

(c) (d) 

Figure 4.3: Multipass operations numerically performed using a triangular kernel with 

L = 11 and W = 1: (a) result of Max operation applied to the image in Fig. 4.1(a): 

(b) result of [Max - Min] operation applied to (a): (c) result of Max operation applied 

to (b): (d) result of [Max - Min] operation applied to (c). 
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(a) (b) 

(c) (d) 

Figure 4.4: First iterations using different kernel shapes. (a) and (b): results of Max 

and [Max - Min] operations using a triangular kernel (L = 19 and W = 1). (c) and 

(d): results of Max and [Max - Min] operations using a rectangular kernel (L = 11 

and W = 1). 
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[Max{x,y) - Min(x,y)] along the cell boundaries may vary spatially from one region 

to the other, even though the enhanced line segments are brighter than their back­

grounds. In certain situations, this nonuniform brightness may be compensated 

by using the function f[M ax, Min] = [1 - pm(x, y)][M ax(x, y) - Min(x, y)] rather 

than simply [Max(x,y) - Min{x,y)]. As discussed in Sec. 3.2.3 (also see Fig. 3.6), 

the function [1- pm(x, y)] is sensitive to small variations in background intensity of 

a low contrast region, where [1- p(x, y)] = [Max(x, y) - Min(x, y)J/Max(x, y) for 

m = 1. It has the effect of normalizing [Max - Min] by the Max value, The differ­

ence [Max{x,y) - Min(x,y)] at each point represents the brightness of line segments 

relative to their backgrounds regardless of their locations. Thus, by incorporating 

[Max{x,y) - Min(x,y)] with [1 - pm(x, y)], the former term detects the brightness 

of line segments relative to their backgrounds and the latter term compensates, to 

some extent, for the spatially varying characteristics of the contrast. 

Consider two input points which lie on two different line segments. One line 

segment is located in a bright region whereas the other line segment is located 

in a dark region. Assume that one point in the bright region achieves Max = 
200 and Min = 140 as the kernel rotates, and the other point in the dark region 

achieves Max = 30 and Min = 8. The differences [Max - Min] at these points are 

60 and 22, respectively, differing by 38, even though these input points both lie 

on line segments. The function [1 - p][Max - Min] for m = 1 can reduce these 

intenisty variations of the enhanced line segments, yielding 18 and 16.1 at each 

point. Table 4.1 shows numerically, for eight different input points {P1 to Ps), the 

effect of using the function [1 - pm][Max - Min] for m=l/2, 1, 2, and 3. Those 

points (e.g., P1 to P3) in a region with comparatively low gray levels may have the 

smaller difference [Max - Min] than other points (e.g., P6 to Ps) in a region with 

high gray levels, even though all these points lie on certain line segments. With 

only the [Max - Min] operation, the difference [Max - Min] varies from 22 to 60: 

normalized deviation aN ~ 0.30. With the function f[ , ] = [1 - pm][Max - Min], 
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the variation in [Max - Min] is well reduced: normalized deviation <JN = 0.05 (or 

0.18) for m = 1 (or m = 3). It is seen from Tab. 4.1 that the function /[ , ] = 

(1- pm][Max - Min] tends to work best form= 1 to reduce the nonuniformity of 

the brightness of enhanced line segments. 
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Operations P1 P2 P3 P4 Ps Pa p., Ps mo q frN 

Max{x,y) 30 50 70 100 140 160 180 200 

Min{x,y) 8 22 37 60 92 108 125 140 I 
[Max - Min] 22 28 33 40 48 52 55 60 42.25 12.79 0.30 

m = ~: I[,] 10.6 9.4 9.0 9.0 9.1 9.3 9.2 9.8 9.43 0.51 0.05 

m = 1: I[,] 16.l 15.7 15.6 16.0 16.45 16.9 16.8 18.0 16.5 0.74 0.04 

m=2: /[ ,] 20.4 24.l 23.8 25.6 27.3 28.3 28.5 30.6 26.08 3.05 0.12 

m = 3: I[,] 21.6 25.6 28.1 31.4 34.4 36 36.6 39.4 31.64 5.72 0.18 II 

Values under each input point Pi represent gray-levels. 

mo= Mean 

tr= Standard Deviation 

<rN = tr/m0 (=Normalized Deviation) 

Table 4.1: Effect of the function /[Max, Min] = [1-pm][Max- -Min] form= 1/2. 

1. 2. and 3 on nonuniform brightness of enhanced line segments where p = Min/Max. 

The fun~tion tends to work best for m = 1 among these values of m to reduce the 

nonuniformity in the brightness of enhanced line segments. 
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4.3 Binarization of Enhanced Gray-Scale Image 

In the application of RKMT processing to linear feature enhancement, the en­

hanced image is typically binarized for the subsequent postprocessing. A global 

thresholding-hard limiting operation can be used to binarize the image processed 

by the RKMT method. Figures 4.5(a) and (b) show the binarized results obtained 

by thresholding the images obtained at the first and second iterations in Figs. 4.3(b) 

and ( d), respectively. Most cell boundaries in Fig. 4.5 were well extracted by such 

a global thresholding. 

In many situations, it is difficult to choose an appropriate threshold value 

for automated enhancement operation in a global thresholding operation, since the 

enhanced line segments may have spatial variations in brightness from one region to 

the other. A threshold value that is too high may lose line segments with relatively 

low gray levels, even though these line segments were greatly enhanced relative 

to their backgrounds. Two methods, discussed below, have been considered for 

compensating the nonuniform brightness characteristics in automatic binarization 

of the processed gray-scale images resulting from by the RKMT method: (1) Min­

Max deviation measure and (2) angular variance measure. 

4.3.1 Method 1: Min-Max Deviation Measure 

The Min-Max deviation measure (MDM) extracts the deviations of the Max and 

Min values from the mean value [= S0 (x, y)] of the convolution output S8(x, y) 

obtained at each point over the range of rotation angles. 

The Min-Max deviation measure is calculated as follows: 

[M ax(x, y) - S0 (x, y)] 2 + [Min(x, y) - S0 (x, y)]2 
2So(x, y) 

D(x,y) = (4.1) 

where S0 (x, y) is given by in continuous case with the angular period T for one or 
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(a) (b) 

Figure 4.5: Results of applying a global thresholding operation to the images (Fig. 4.3) 

obtained in multipass operation combining a Max operation with a [Max - Min] oper­

ation: (a) first iteration: (b) second iteration. 
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half revolution of the convolution kernel, 

1 (T 
So(x, y) = T le=o Se(x, y) dO, 

where T = 1f' or 21f', depending on whether the kernel rotates through 180° or 360°. 

In the discrete case with M discrete rotation angles, 

The decision procedure for the binarization of the RKMT enhanced image is given 

by 

Iout(X, y) = 1 

lout(X, y) = 0 

if D(x, y) 2:: Dth, 

otherwise, 
(4.2) 

where Dth is the particular threshold value chosen. In a region with nearly uniform 

brightness, the numerator in Eq. 4.1 becomes small (e.g., < 1.0) and approaches 

0. In regions where the enhanced line segments (i.e., cell boundaries) are located, 

D(x, y) becomes large (e.g., 5.0) since each term in the numerator in Eq. 4.1 is large. 

Figure 4.6(a) shows the result of binarizing the same image used for Fig. 4.5(b) 

with Dth = 4.5. It can be seen that line segments located in the lower-right side in 

Fig. 4.6(c) were better extracted than those in Fig. 4.5{b). Thus, the MDM method 

is comparatively less sensitive to spatial variations in brightness of the enhanced 

line segments than a global thresholding operation. 

For the enhanced endothelial cell images used, it was not difficult to determine 

a suitable value of Dth· A certain range of Dth (e.g., 4.0 ~ Dth ~ 4.5 for the second 

iteration) yielded good results, even though Dth may depend on, to a small degree, 

each RKMT enhanced image for the automatic binarization. H Dth is too large, 

however, some line segments may be lost. ff Dth is too low, background noise will 

appear. A modified deviation measure D'(x, y) can also be used: 

D'(x, y) = [[Max(x, y) - S0 (x, y)] 2 + [Min(x, y) - S0 (x, y)] 2l · (4_3) 
2S0 (x, y) 
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The MDM method is simple to determine Dch for the binarization, and may 

be performed in an optical implementation if a smart focal plane array processor 

is used by detecting only Max, Min, and Mean values from the convolution output 

So(x, y). 

4.3.2 Method 2: Angular Variance Measure 

The angular variance measure (A VM) utilizes the directional convolution outputs 

or local energies obtained at each point (x, y). Suppose that the convolution kernel 

K 8 ( x, y) is rotated through M discrete angles. In the discrete case, the normal­

ized standard variation aM(x, y) of the convolution outputs at each point is first 

calculated as follows: 

O'M(X, Y) = 
l:~1 [Si(x, y) - So(x, y)] 2 

M · S0 (x, y) 

Then, the binarization operation is performed in accord with 

lout(x, y) = 1 

lout(X, Y) = 0 

if O'M(X, Y) ~ O'th1 

otherwise, 

(4.4) 

(4.5) 

In uniform regions, O'M approaches 0 as does D(x, y) in Eq. 4.1. However, if there is 

a prominent line segment or linear feature, O'M becomes large. Thus, a certain range 

of values for O'th (e.g., 2.0:::; O'th :::; 2.5 for the image obtained in the second iteration 

in Fig. 4.3) yielded good results for the binarization of the enhanced gray-scale 

image. Figure 4.6(b) shows the result of binarizing with O'th = 2.2 the image used 

for Fig. 4.5 (b). 

Table 4.2 compares numerically the MDM and A VM methods for the binariza­

tion of RKMT enhanced image. Suppose that eight points (P1 to Pa) are located in 

different regions with high and low gray levels (e.g., P1 to P4 for low gray levels and 

P5 to Pa for high gray levels). If Dth (ath) is chosen as 3.0 (2.0), the points P4 , P6 , 

P7 , and Pa will then be extracted. The A VM method is computationally in tensive, 
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(a) (b) 

Figure 4.6: Binarization of the image obtained at the second iteration in Fig. 4.3( d): 

(a) Min-Max deviation measure (Dth = 4.5): (b) angular variance measure (ath = 2.2). 
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even though the method can be implemented on a computer, yielding a good result. 

In contrast to the A VM method, the MDM method is simple and preferable to an 

optical implementation of the binarization of RKMT enhanced images. 
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Binarization by MDM and AVM 

Input Points 61 62 ()3 ()4 Os D '7M 

P1(x, y) 1 1.1 1.2 0.8 1 0.20 0.13 

P2(x,y) 1 2 2 0 5 1.80 0.83 

Ps(x, y) 1 2 2 0 4 1.50 0.99 

P4 (x, y) 1 1 1 1 10 3.14 2.50 

Ps(x, y) 10 11 12 8 10 0.63 0.41 

Ps(x, y) 10 20 20 0 40 4.74 3.13 

P1(x, y) 10 10 10 10 50 5.50 3.77 

Pa(x, y) 10 10 10 10 100 9.92 6.80 

D(x, y): Min-Max deviation measure [MDM] 

aM: angular deviation measure [A VMJ 

Table 4.2: Comparison of Min-Max deviation measure and angular variance measure 

for eight input points located in different regions and five kernel rotation angles ()i. If 

Dth (ath) is chosen as 3.0 (2.0). the points P4, Ps. P1. and P8 will then be extracted. 
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4.4 Comparisons of RKMT Method with Other 

Methods 

RKMT method of image enhancement is highly nonlinear, depending upon the 

measurements of Max and Min values obtained at each point. It is appropriate 

to compare this nonlinear processing operation with results that can be achieved 

using other linear and nonlinear :filtering methods. Two methods are evaluated for 

purposes of comparison: (1) convolution with the circular Mexican hat kernel and 

(2) nonlinear spatial :filtering using wedge-shaped filters. The input image used is 

that shown in Fig. 4.l(a). Note that this input image has nearly uniformly spaced 

cell boundaries: the cell to cell distance is relatively uniform. Such characteristics 

of the cell boundaries suggest the use of the filter with bandpass characteristics to 

enhance frequency components corresponding to uniformly spaced distribution of 

cell boundaries. Appropriate kernel to be used in such cases is so-called Mexican 

hat kernel [50] given by the expression k(r) = [1 - c(r2 /a2)]exp(-r2 /2a2) where 

r is a radial distance, a(= 1.5) determines the diameter of the kernel, and c( = 
1.027) is a scaling factor for integer arithmetic [51]. The corresponding filter is 

circularly symmetric with no directional filtering capability, bandpass in nature 

with a passband centered at 1/v0:rra in the frequency domain. Figure 4.7(a) shows 

the result of applying the :filtering operation to the image in Fig. 4.1 (a), for which 

the parameter a was chosen to optimize the result in (a). The internal noise-like 

structures in (a) have also been emphasized. Figure 4.7(b) shows the result of 

thresholding the image in Fig. 4.7(a), for which threshold value was visually chosen 

to obtain a good result. 

Another comparison can be obtained using wedge-shaped filters with direc­

tional filtering capability. The comparison using the eight wedge-shaped filters was 

provided by Bamberger [67] using his method, originally developed for the enhance­

ment of linear features (i.e., ridge structures) in :fingerprints. His methodology is 
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(a) {b) 

Figure 4.7: Comparison with RKMT processing: (a) result of linear spatial filtering 

using a Mexican hat kernel which is bandpass in nature (u = 1.5): (b) result of 

thresholding the image in (a). 
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summarized as follows, the remainder of this section being based on a private com­

munication with him: 

1. Eight wedge-shaped filters were generated. Figure 4.8( a) shows the eight 

wedge-shaped filters used for comparison. 

2. The input image in Fig. 4.l(a) was Fourier transformed. Low spatial fre­

quency components in the Fourier transform were removed to avoid some 

noise structure {i.e., slowly varying background intensity in the input image). 

3. The resulting Fourier transform is multiplied by each wedge-shaped filter, 

yielding eight filtered images through the inverse Fourier transform. 

4. The maximum value at each input point (x,y) is searched for the eight angu­

larly filtered images obtained in Step 3. The output image is then given the 

maximum value. 

5. In Step 4, a certain situation was considered, because the resulting maximum 

value could result from some noise structure rather than line segments (i.e., 

cell boundaries). The mean and variance of eight values obtained at each 

point were thus calculated to exclude such undesirable maximum values. As 

the variance was smaller than a certain threshold value, the mean value was 

then assigned to the particular point. Otherwise, the maximum value was 

given the desired output value. 

Figures 4.8(b), (c), and {d) show the processed images provided by Bam­

berger [90] using the eight wedge-shaped filters shown in (a). The highpass-filtered 

image as described in Step 2 is shown in (b). The result of applying Steps 3, 4, and 

5 to the image in (b) is shown in ( c). The thresholded version of ( c) is shown in 

{ d). Most line segments (i.e., cell boundaries) were extracted well, but still noisy. 

Thus, it is evident that the RKMT method works best among these methods used 

for comparison, yielding excellent results. 
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v 

u 

(a) (b) 

(c) (d) 

Figure 4.8: Wedge-shaped filtering: (a) eight wedge-shaped filters where (u, v) is the 

frequency coordinate: (b) result of highpass filtering: (c) result of using the wedge­

shaped filters in (a): (d) result of thresholding the image in (c). 
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4.5 Summary and Discussion 

In the application of the RKMT method to the enhancement of linear features, the 

basic Max and [Max - Min] operations have proven particularly useful and powerful. 

Because the RKMT method extracts orien tational information from an image, it is 

not surprising that kernels with a high degree of orientation perform best. 

The RKMT processing operation tends to be insensitive to variations in bright­

ness as compared to other methods associated with linear spatial filtering and ideal 

wedge-shaped filtering methods. The insensitivity to changes in brightness is one 

of the advantages by which the RKMT method may be quite attractive for image 

processing (e.g., biomedical or industrial image processing) under poor illuminating 

conditions. Figure 4.9 shows a typical wide-field image which is noisy and very 

low contrast. The spatially varying background intensity is evident; most regions 

except the upper-left region are difficult to see by eye. The cell density of the image 

in Fig. 4.9 is approximately four times that of the image shown in Fig. 4.l(a). The 

wide-field image was processed by the multipass operation using a symmetric tri­

angular kernel with L = 11 and W = 1. The result of the second iteration is shown 

in Fig. 4.10. As can be seen, the cell boundaries are greatly enhanced. Note that 

the cell boundaries in the lower-left region are not well delineated whereas those in 

the lower-right region are relatively well enhanced. The RKMT processed image 

was binarized by the MDM method (Dth = 3.5). The result is shown in Fig. 4.11. 

Similarly, the binarized image obtained by the AVM method (ath = 1.9) is shown 

in Fig. 4.12. The binarization operation can also be applied to the image obtained 

in the first iteration or the intermediate image obtained by a Max operation in the 

second iteration. 

In summary, the multi pass operation (e.g., first or second iteration) based on 

the basic Max and [Max - Min] operations is useful for the enhancement of raw 

endothelial cell imagery. A triangular profile kernel is preferable to a rectangular 

kernel for reducing noise and thickening of line segments. Alternatively, a Gaussian 



112 

profile kernel can also be used, yielding a good result. With an optical implementa­

tion discussed Sec. 3.5, the enhancement operation and binarization of line segments 

by the RKMT method can be performed by two steps: (1) the enhancement of line 

segments by the simple [Max - Min] or the iterative operation; then, (2) the bina­

rization of the enhanced image by the MDM method. The MDM method is easy 

to use for the binarization and simple to implement in the optical implementation 

since it requires only Max, Min, and Mean values of the convolution output. 
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Figure 4.9: A wide-field raw image in which a spatially varying characteristic in average 

background intensity from one region to the other is evident. 
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Figure 4.10: Result of applying the second iteration to the image in Fig. 4.9: a sym­

metrical kernel used is triangular in profile (L = 11 and W = 1). 
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Figure 4.11: Result of binarizing the image in Fig. 4.10 by the Min-Max deviation 

measure (Dth = 3.5). 
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Figure 4.12: Result of binarizing the image in Fig. 4.10 by the angular variance measure 

(uth = 1.9). 
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CHAPTER 5 

INVARIANT PATTERN 

RECOGNITION 

5.1 Introduction 

This chapter introduces a novel hybrid optical method, based on RKMT process­

ing, for scale- and rotation-invariant pattern recognition. The method discussed 

exhibits invariance to shift and angular orientation and quasi-invariance to scale. 

In Chapters. 3 and 4 the RKMT method was applied to the enhancement of linear 

features in noisy imagery. Now the method is extended to the problem of recog­

nizing objects with linear features (e.g., alphanumeric characters, airplanes, and 

industrial parts). In this extension [83], RKMT processing operation is used to 

extract an angular signature of the input object contour (i.e., edge). This signature 

is then compared to template signatures to effect the recognition. In the following 

a nonlinear mapping of the object contour information into an angular signature 

function is first defined. An algorithm for scale- and rotation-invariant pattern 

recognition is then presented, followed by numerical experiments. Sensitivity of the 

algorithm to noise is discussed. Effects that variations in the kernel dimension, the 

kernel profile, and the function f[Max, Min] have on the discrimination of objects 

are also discussed. 
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5.2 The Angular Signature Function 

This section defines the angular signature function P(O) for an image and gives 

examples of its calculation. 

5.2.1 Definition of the Angular Signature 

Calculation of the angular signature proceeds initially as for conventional RKMT 

processing: the input is convolved with a long, narrow 2-D kernel, and as the kernel 

rotates, the convolution output is monitored and the maximum [=Max(x,y)] and 

minimum [=Min(x,y)] values at each point (x,y) are stored. In addition, however, 

the angle OMaz(x,y), at which the maximum value is found, is also stored. The 

processed image is given by some function f[Max, Min] of the Max and Min values. 

Once these values are available, each object point (x,y) is associated with the pair 

of values (f[Max(x, y), Min(x, y)], OMaz(x, y)). 

The angular signature function P(O) is calculated from (/[Max, Min], OMaz) 

in accord with the formula 

P(O) = £: £: f[Max(x,y),Min(x,y)] 8[8- OMaz(x,y)] dxdy, (5.1) 

where 8[ ] is a Dirac delta function and 0 :'.5 8 < 360°. In discrete case, 

P(O;) = LLf[Max(m,n),Min(m,n)J 8(0)[8; -OMa:i:(m,n)], (5.2) 
m n 

where 6(0)[] is the unit null function, i.e., 

(0) { 1 8 [81 - OMa:i:(m, n)] = 
0 otherwise, 

(5.3) 

In Eq. 5.3 the kernel assumes only discrete angular orientations considered over 0 to 

360 degrees and thus OMa:i: will have one of the possible values of 81 but it cannot have 

other values. OMa:i:(x; y) is that angle 8 for which the convolution output Se(x, y) 

is maximum, assuming that S8 (x,y) contains a unique maximum over a period 
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{0° ::::; 6 < 180° for a symmetric kernel). In other words, SsM ... (x, y) > Ss(x, y) 

for all 6 =j:. 6Maz' a definition that does not allow for multiple Max angles. Under 

certain conditions, the same Max value can be obtained at multiple Max angles. 

Two methods can be considered to take multiple Max orientations into account. 

One is to split Se (x, y) into multiple orientations at which multiple Max values are 

found. The idea would be to replace o<0J[oi - OMaz] in Eq. 5.2 up into 

where O~az is the kth kernel orientation producing the (same) Max value at point 

(m,n). The other used in this thesis is to exclude those points with multiple Max 

angles [ = OMaz ( x, y)], eliminating them from consideration. The angular signature 

function P(O) in Eqs. 5.1 and 5.2 gives a measure of the directionality of the input, 

as a function of orientation. If the object consists of a single line segment, for 

example, there is a peak at only one angle 0 in the angular signature function P(O). 

For the remainder of the chapter, the function f[Max, Min] is referred to as the 

RKMT transform function, and the procedure to find the angular signature function 

P(O) from the object contour is called an angular mapping operation. Note that 

this mapping operation depends on both the RKMT transform function f [Max, 

Min] and the kernel used. 

5.2.2 Example of Angular Signature Function 

An example of the angular signature function P(O) is illustrated in Fig. 5.1. Fig­

ures 5.l(a) and (c) show an input object E and its angular signature for the four 

discrete kernel orientations shown in (b). Increasing the number of the kernel orien­

tations results in an angular signature containing more information. However, only 

four kernel orientations were implemented for numerical experiments discussed in 

this thesis, because the object features used have only two, three, or four dominant 

orientations (i.e., 0°, 45°, 90°, and 135°). The symmetric kernel used was rectangu-
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goo 

** 13*5' oo ~ 

oo 45° goo 135° 

(a) (b) (c) 

Figure 5.1: Illustration of the angular signature function P(8) obtained by using/[ . ] 

= Max2 (x,y) where** represents 2-D convolution. (a) Object. At a point Q. Max is 

obtained at 0°. The points Q1 and Q 2 are eliminated in finding P ( 8). (b) Four kernel 

orientations with a long, narrow 2-D kernel which is symmetric. (c) P(O). 

lar in profile, its length being approximately 81 % of that of the vertical segment 

of the object E. 

Consider the point Q on the horizontal edge of the object E contour shown 

in Fig. 5.l(a). As the kernel rotates on 'the point, the convolution output will be 

large for 8 = 0° and small for other orientations. More generally, those points along 

the horizontal line segments (or features) give large convolution outputs for 0 = 0°, 

these outputs becoming the Max values. Similarly, those points along the vertical 

line segments yield large Max values for (J = go0
• Certain points such as Q1 and Q2 

are eliminated in finding the Max values, since they have multiple Max orientations 

at 0° and 90° for the particular kernel length used. 

A simple Max operation can be used to find P(O), i.e., f[Max,Min) = Max(x, y). 

Alternatively, P(O) can be obtained using /[Max, Min] = Max2(x, y), thereby fur­

ther enhancing linear features oriented at certain angles. Figure 5.l(c) shows the 

angular signature function P(O) obtained by using f[Max,Mi'n] = Max2 (x,y). In 

the figure P( 8) has two peaks, at 0° and go0
• The Max values obtained for (J = 45° 

and 135° are smaller in number, being achieved only at those points within the half 

kernel distance from the object contour. Increasing the number of kernel orienta-
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tions may reduce the signature values obtained at 45° and 135° whereas significant 

angular signatures at 0° and 90° are still preserved. The angular signature function 

P(O) could also be obtained by using /[Max, Min] = Max(x, y) · Min(x, y). Image 

points along the edge of the object (contour) achieve high Max values and small 

Min values. However, for points outside the object contour, both Max and Min are 

small. By calculating f[Max,Min] = Max(x,y) · Min(x,y), those points on the 

object contour contribute the most to P(O). 

5.2.3 Invariance to Scale 

As the size of the object increases, each component contributing to the angular 

signature function P(O) at angle (J will be increased, roughly in proportion to the 

scale. To obtain approximate scale invariance, P(8) can be normalized by its area 

(evaluated over 0 to 360 degrees), producing p(8): 

p(8) = la2"" ' 
P(8) d8 

0 

P(8) 
(5.4) 

This latter function is similar to a probability density function of line segment 

orientations. 

The normalized angular signature function p( 8) is largely insensitive to varia­

tion in scale of the input object. Figure 5.2 shows P(8) and p(8) for the letter E, 

with variations in scale over a 2.8:1 range. The mapping operation was performed 

using f[Max,Min] = Max(x,y) · Min(x,y). Those points at which multiple Max 

orientations (i.e., 8Maz) occur were not considered in finding P(8). It is seen that 

the normalization operation greatly reduces sensitivity of the angular signature to 

variations in the scale of the objects. In the numerical calculation, the object con­

tours were 2 pixels wide and the kernel used was rectangular in profile ( L = 39 and 

W = 1). The kernel length was approximately 111 % of the longer side of the third 

object (scale= 1.0) in (c). 

It is important to investigate how the approximate scale invariance behaves 
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Figure 5.2: Approximate scale invariance obtained by normalizing the angular signature 

function P(O) by its area to produce p(O): (a) scale :::::: 2.8: {b) scale :::::: 1.4: and 

(c) scale = 1.0. Each signature function was obtained by using f[Max,Mi'n] -

Max(x,y) · Mi'n(x,y). The kernel used is symmetric and rectangular in profile. 
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over a. wide range of the kernel lengths L. Figure 5.3 shows a plot of the normalized 

angular signature function p(O) versus the kernel length L for kernel orientations 

0°, 45°, go0
, and 135°. The objects used are four scaled versions (scale= LO, 1.4, 

I,g, and 2.8) of the character E in Fig. 5.2(c). The kernel used is a symmetric 

rectangle function with W = 1; the RKMT function is f[Max,Min] = Max(x,y) · 

Min(x,y). Each angular signature of the objects at the kernel orientations are 

represented by the solid (scale=l.0), dashdot (scale=l.4), dashed (scale=l.g), and 

dotted (scale=2.8) lines. For the object with scale=l.O, the angular signature at 

0 = goo shows a valley around L = 34 (the length of the longest vertical feature in 

this object). As L increases further, p(O) at 0 =goo increases and then converges to 

a nearly constant value (0.31). Results with larger scaled versions of the object show 

the valley shifted to the right by an amount, roughly in proportional to the length 

of their longest vertical features. Note that the lengths of the vertical features 

of the scaled objects are 34, 48, 64, and g6 pixels. At other kernel orientations 

(e.g., 0°), p(O) also increases, decreases, and then converges to a nearly constant 

value as the kernel length L increases. Thus, the maximum range for which the 

approximate scale invariance can be achieved depends on the kernel length used. 

The results shown in Fig. 5.3 suggest that the kernel length L should be chosen to 

be somewhat longer than the maximum scale of an input object. The approximate 

scale invariance can be expected to hold for a fairly large range (e.g., 1/5 to 5.0) of 

variations in scale. 

5.2.4 Angular Similarity Measure 

Consider the distance measure D(00 ) between two area-normalized angular signa-

tures: 

(5.5) 
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Figure 5.3: Normalized angular signatures [= p(8)] for different kernel lengths L. The 

kernel used is a symmetric rectangle function with W = 1. The objects are four scaled 

versions of the character E (scale=1.0). the scales being given in parenthesis. The 

RKMT function used is f[Max. Min] = Max · Min. Above a certain kernel length (e.g .. 

L = 200), each component tends to converge to a nearly constant value. 
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or, equivalently, 

{ 
f 211' f 2" {211' } 1/2 

Di;(Oo) = lo p;(O)dO +lo pJ(O)dO - 2 lo Pi(O) P;(O + Oo) d(J (5.6) 

where P1e(O) denotes the (area-normalized) angular signature associated with the 

kth object. The angle 80 allows for changes in the relative angular orientation of 

the two objects. Note that the third integral in Eq. 5.6 corresponds to the (cyclic) 

crosscorrelation between Pi(O) and P;(O). An alternative definition of the distance 

measure uses energy-normalized versions of the angular signatures, denoted by D': 

where 

p' ( 0) = -==P=( O=) == 
fo2" P2(0)d0 

D~;(00 ) can be written in the more compact form 

11;;(8,) = [ 1- 1,"·· p:(8) pj(8 + 8,) d8r· 

= [1- Cf;(Oo)r
12 

(5.7) 

(5.8) 

(5.9) 

Note that if Pi(O) = a.P;(O +OR), the energy-normalized distance D~;(00 ) evaluates 

to the minimum possible value of zero if 80 = (JR· Moreover, using the Schwartz 

inequality, it can be shown that D'(00 ) can attain the minimum value of zero only 

when Pi(O) = a.P;(O +OR). 

The similarity measure S between the object and a template signature is de­

fined by 
1 

S = B + D1(8R)' (5.10) 

where B(> 0) is a nonzero constant that controls recognition sensitivity. If Bis too 

small, the recognition process may be overly sensitive to noise or other factors (e.g., 
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object scale and distortion). When both the object and the template are identical, 

D'(Oa) = 0 and S = 1/B. Otherwise, Sis less than 1/B. A useful related quantity 

is given by 
B 

r -----s - B + D1(8a) (5.11) 

where rs(5 1) is the ratio of the similarity measure S (object) to 1/B (template). 

Note that rs = 1 is obtained when the object is identical to the template. If the 

peak ratio rs exceeds a certain threshold value rth, the input object is recognized as 

an object that belongs to the same class of objects with possible variations in scale. 

5.2.5 Algorithm 

The algorithm for the invariant pattern recognition used in numerical experiments 

using Eq. 5.9 is summarized as follows. 

• Algorithm: 

1. The description (f[Max, Min], 8Ma:) for each input object is obtained by 

the RKMT processing. 

2. Given an input object, find the angular signature function P(O) from 

P(O) = £: £: f[Max,Minj 8[8- 8Ma.:] dxdy. 

3. Calculate the energy-normalized function p'(8): 

P(O) 
p' ( 8) = --;::=2======, 

la ,.. P2(8) d8 

where p'(O) = Po (8) for the object and p'(O) = PR(O) for the (reference) 

template. 

4. Find the angle OR for which the cyclic crosscorrelation C1(80 ) is maxi-

mized, 
{271" 

C'(Oo) = Jo PR(O) Po (8 + 80 ) d8. 
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Then, calculate the angular signature difference measure D'(OR) for 00 = 
OR: 

5. The peak ratio rs(~ 1) is given by 

B 

where rs = 1 when the object is identical to the template. 

Figure 5.4 shows the entire block diagram for the procedures required to perform 

the invariant pattern recognition by the angular difference measure D'(OR)· 
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Figure 5.4: A block diagram of the entire systems to perform the invariant pattern 

recognition operation. Po ( 0) and PR( 0) are the energy-normalized functions of the 

object and template. respectively. (JR is the rotation angle of the object with respect 

to the template. C'(OR) is the cyclic crosscorrelation value for 0 =OR at which C'(OR) 

is maximized. 
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5.3 Numerical Experiments 

The algorithm presented in Sec. 5.2 has been applied to edge images obtained from 

several binary alphabetic characters. Some effects of the kernel dimension, the 

kernel profile, and the RKMT transform function f[Max, Min] on pattern recognition 

performance are discussed. 

5.3.1 Examples of Invariant Pattern Recognition 

Figure 5.5 shows the results of applying the invariant algorithm with B = 0.5 to 

several binary alphabetic characters. The RKMT function used was ![Max, Min] = 
M ax(x, y) · Min(x, y). The kernel used was a symmetric rectangle with L = 39 and 

W = 1. The kernel length was approximately 81 % of the longer (vertical) side 

of the template, whose edges are 2 pixels wide. Only four kernel rotation angles 

were used: 0, 45, 90, and 135°. Figure 5.5( a) demonstrates the pattern recognition 

capability for four objects. The character E was used as the template. The peak 

ratios [ = rs] are 1.0000, 0.6893, 0.4545, and 0.4180. Figure 5.5{b) illustrates the 

capability of recognizing the character E with variations in scale of 1.0 (E1), 0. 7 

(E2), 1.3 (E3 ), and 2.0 (E4). The template is located at the upper-left. Note in (b) 

that the peak ratio rs tends to decrease slightly as the scale decreases or increases. 

Table 5.1 shows the numerical results obtained from the objects in Fig. 5.5. Listed 

are the angular signature functions P(8), the normalized angular signature function 

p( 8), the energy-normalized function p' ( 8), the angular signature difference measure 

D'(OR), and the peak ratio rs. 

To increase the recognition capability between different objects, B can be 

lowered. If B is too small, however, S or rs may be excessively sensitive to noise 

or object distortion. Thus, it is necessary to understand how the peak ratio rs is 

affected by varying B. Figure 5.6 shows the plot of rs versus B for the objects with 

the same kernel and f[Max, Min] as used in Fig. 5.5. The character E 1 was again 
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H E 

N 

1.0000 0.6893 1.0000 0.9515 

0.4545 0.4180 0.9262 0.9493 

(a) (b) 

Figure 5.5: Experimental results for quasi-invariant pattern recognition. The character 

E is used as the template. The peak ratios rs are shown inside the box below the 

objects for f[Max, Min] = Max · Min. (a) Results of recognizing four different objects. 

(b) Results showing the quasi-invariance to four different scales (approximately 1.00. 

0.66, 1.33. and 2.00). 
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II Angular Signatures: P( fJ) II 
0 E1 H N K E2 Es E4 
oo 7.4394 1.6480 2.2322 2.2144 6.4198 9.0286 13.3884 

45° 0.4467 1.2862 0.2814 3.5652 0.3498 0.7740 0.6881 

90° 2.0096 5.5128 4.5592 4.6713 1.5662 2.6414 3.9604 

135° 0.4467 1.2862 6.6498 3.5988 0.3498 0.7740 0.6861 

Area-Normalized Functions: p(fJ) 
0 E1 H N K E2 Es E4 

oo 0.7193 0.1693 0.1627 0.1576 0.7391 0.6831 0.7151 

45° 0.0432 0.1321 0.0205 0.2538 0.0403 0.0586 0.0368 

90° 0.1943 0.5664 0.3322 0.3325 0.1803 0.1998 0.2115 

135° 0.0432 0.1321 0.4846 0.2561 0.0403 0.0586 0.0366 

II Energy-Normalized Functions: p'(fJ) II 

0 E1 H N K E2 Es E4 
oo 0.9622 0.2731 0.2667 0.3095 0.9688 0.9533 0.9566 

45° 0.0578 0.2131 0.0336 0.4926 0.0528 0.0817 0.0492 

90° 0.2599 0.9135 0.5447 0.6454 0.2364 0.2789 0.2830 

135° 0.0578 0.2131 0.7944 0.4972 0.0528 0.0817 0.0490 

D'(OR) 0.0000 0.2254 0.6000 0.6962 0.0255 0.0398 0.0267 

rs 1.0000 0.6893 0.4545 0.4180 0.9515 0.9262 0.9493 

Table 5.1: Numerical results obtained for the objects in Fig. 5.5. The RKMT function 

used is f[Max. Min] = Max(x.y) · Min(x.y). The kernel used is a symmetric rectangle 

function with L = 41 and W = 1. Kernel length is approximately equal to 81 % of the 

longer (vertical) side of the template E 1 (scale = 1.0). The objects E 2 • Es. and E 4 

have scales 0.66, 1.33, and 2.00 with respect to the template E 1 (=E]. 



.52 .... 
«S 

Ci::: 

~ 
~ 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

,• .. · 
0.2 " . . ... .... . ... 

•' 
. ·" . 

" 
.·· 

... 
. ·· 

.. -... 
... 

E&E 

E&H 

E&N ... ... 
... . ........ ····· ... ... 

,.•' . ... 

E&K 

......... ... ....... ........ 
.......... . .... -· 

132 

·- ,_ ..... _,_ ..... 
........ 

0.1'--~~~_._~~~-'-~~~~....__~~~---~~~-....~~~----' 

0.1 0.2 0.3 0.4 

B 

0.5 0.6 0.7 

Figure 5.6: Plot of the peak ratio rs(= B/[B + D']) versus B where Eis used as the 

template and the objects used are shown in Fig. 5.S(a). 
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Object 

Template Ei H N K E2 Es E4 

Ei (1.0) 1.0000 0.6893 0.4545 0.4180 0.9515 0.9262 0.9493 

H 0.6893 1.0000 0.5380 0.5095 0.6791 0.7245 0.6792 

N 0.4545 0.5380 1.0000 0.5617 0.4548 0.4639 0.4474 

K 0.4180 0.5095 0.5617 1.0000 0.4141 0.4306 0.4155 

E2 (0.7) 0.9515 0.6791 0.4548 0.4141 1.0000 0.8912 0.9116 

Es (1.3) 0.9262 0.7245 0.4639 0.4306 0.8912 1.0000 0.9150 

E" (2.0) 0.9493 0.6792 0.4474 0.4155 0.9116 0.9150 1.0000 

Table 5.2: Results of calculating the peak ratio rs with B = 0.5. Those values greater 

than 0.8 are bold-faced. The objects used are shown in Fig. 5.5. The character E 

has four different scales indicated by ( ·) in the figure. The kernel used is a symmetric 

rectangle function with L = 39 and W = 1. Kernel length is approximately 81 % of 

the longer (vertical) side of the object E 1• 
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used as the template. H the object E 1 was used as the object, rs is constant (= 

1) regardless of B since D'(OR) is zero. Because B is large (e.g., 1), there will be 

small differences in rs's obtained from different objects (e.g., H) with respect to 

the template E 1• As B decreases, the difference in rs between the objects increases. 

Thus, with an appropriately chosen B, the recognition process can preserve good 

recognition capability. 

Table 5.2 shows the results of calculating rs using the same kernel dimension 

and RKMT function f[Max, Min] as used for Fig. 5.5. In Tab. 5.2, the first row 

and column represent the objects and templates used for seven different cases, re­

spectively. If the character H is used as an object, for example, rs (=1) for the 

template H is significantly greater than for other templates in the first column of 

Tab. 5.2. From Tabs. 5.1 and 5.2, it is seen that the algorithm can preserve a good 

recognition capability, although only approximate scale invariance is achieved. 

5.3.2 Discrimination Between Similar Objects 

It is necessary to understand how the aforementioned algorithm responds to the 

objects similar to the template and to objects with some noise in shape and edge 

width. To demonstrate the recognition capability in such cases, three synthetic 

objects were generated: F, C, and E. The object F was generated by removing 

the horizontal line segments at the bottom of the template E. Similarly, the object 

C was generated by removing the horizontal line segments at the center of the 

template. A noisy object was generated by removing part of the horizontal line 

segments at the center of the template E. Note that the object F and C have very 

similar angular signatures. 

Figure 5. 7 demonstrates the recognition capability for edge images obtained 

from these synthetic objects. Figure 5.7(a) shows the results of recognizing these 

synthetic objects for which the character E in the upper left was used as the tem­

plate. The peak ratio rs is shown in the box below these objects in Fig. 5.7(a). The 
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LI m 

1.0000 0.7071 1.0000 0.8533 

0.6606 0.8669 1.0000 0.8515 

(a) (b) 

Figure 5.7: Numerical results of recognizing similar objects. The peak ratios rs are 

shown in the boxes below the objects. The RKMT function used is f[Max. Min] = 

Max · Min. (a) First set: similar and distorted objects . (b) Second set: rotated and 

noisy versions of the character E. 
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Object 

Template E F c Ea E4&o E2100 Eis&o 

E 1.0000 0.7071 0.6606 0.8669 0.8533 1.0000 0.8515 

F 0.7071 1.0000 0.7945 0.7772 0.6731 0.7071 0.6793 

c 0.6606 0.7945 1.0000 0.7331 0.6484 0.6606 0.6539 

Ea 0.8669 0.7772 0.7331 1.0000 0.8002 0.8669 0.8047 

E450 0.8533 0.6731 0.6484 0.8002 1.0000 0.8533 0.9823 

E21oa 1.0000 0.7071 0.6606 0.8669 0.8533 1.0000 0.8515 

Eis&o 0.8515 0.6793 0.6539 0.8047 0.9823 0.8515 1.0000 

Table 5.3: Results of calculating the peak ratio [= rs] obtained for similar objects in 

Fig. 5.7. The kernel used is a symmetric rectangle function (L = 41 and W = 1) with 

kernel length approximately 81 % of the longer side of the object E (scale = 1.0). 

RKMT function used is f[Max,Min] = Max(x,y) · Min(x,y) for B = 0.5. The 

kernel used is rectangular in profile, and the kernel length is approximately 81 % 

of the longer side of the template E at upper-left. It is shown that the recognition 

capability is still noticeable, particularly when the distorted character E is used as 

the object. 

In certain situations, nonuniform edge width may affect the recognition capa­

bility. Figure 5.7(b) shows the results of applying the same convolution kernel and 

f[Max, Min] used in (a) to three rotated objects (45°, 135°, and 270°) with noise 

and variations in the edge width. Since only four discrete kernel orientations sepa­

rated by 45° were used, the objects were rotated to align with one of these kernel 

orientations. The peak ratio rs is shown in the box below the rotated objects. The 

recognition capability is well preserved for such noisy and rotated objects. 

Table 5.3 shows the numerical results of using the same kernel and f[Max, Min] 

used for the objects in Fig. 5. 7 for B = 0.5. The first row and column represent the 
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input objects and the templates used for each case, respectively. It is not surprising 

that the peak ratio rs between F and C is relatively high, since the method discussed 

takes into account only directional information. 

5.3.3 Effects of the Kernel Dimension on the Performance 

The invariant algorithm discussed depends on the kernel dimension, particularly 

the kernel length L. It is therefore important to understand how the recognition 

capability behaves as the kernel length increases. Consider two objects E and H, 

which have very similar angular signatures at 0° and 90°. For these two objects 

shown in Fig. 5.5(a), the similarity measure peak ratio rs will be relatively high 

(e.g., close to 1) when the kernel is very short (e.g., L = 3 or 5). With such a short 

kernel, the nonlinear mapping to find P(O) is close to a mapping that simply counts 

those points on line segments of the object contour at each kernel orientation. In 

other words, the mapping operation becomes simply a histogram of those points 

on the line segments at each orientation. In such cases, there will be no significant 

difference between the angular signatures obtained from the objects H and E, the 

recognition capability being lost. As L increases, however, the ambiguity tends to 

be resolved. The angular signature function P(O) is no longer simply a histogram 

of those points on the line segments at each orientation. 

Figure 5.8 shows the plot of rs versus L for five objects using the same kernel 

and RKMT function used in Fig. 5.5. The character E 1 (scale=l.0) is used as 

the template. The longer side of the template is 48 pixels long. Since L is very 

small, the peak ratio [=rs] obtained from the objects Hand E 1 is close to 1, and 

thus there is no significant difference in their angular signatures. The ambiguity 

is resolved, however, as L increases. For both scaled versions E 2 (scale~0.7) and 

E 3 (scale~l.3), a valley or dip appears in the plot, the location of the dip tending 

to depend on the scale factor (e.g., 0.7 and 1.3). As the scale factor increases, the 

location of the valley tends to move to the right. When L exceeds a certain value 
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Figure 5.8: Plot of the peak ratio rs versus L. The kernel used is a rectangle 

function with W = 1. The objects used are shown in Fig. 5.5. E2 • E3 • and E4 are the 

scaled versions (0.71. 1.34, and 1.98) of E1 (shown at the upper left in Fig. 5.5(b)). 

respectively. 
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(e.g., L = lSO), the peak ratio rs tends to converge to a certain value. Since the 

objects K and N are of significantly different angular signatures from those of the 

scaled versions of the template Ei, there exist significant differences in the resulting 

peak ratios. It is shown that an appropriately chosen range of L (e.g., 31 $ L $ Sl 

or L ~ 110 ) can be used for the invariant pattern recognition problems. 

5.3.4 Effects of the Kernel Profile on the Performance 

A variety of 2-D kernel profiles can also be used, including a rectangular kernel with 

or without an impulse at its center, a triangular profile, and a Gaussian profile. The 

kernel profile may affect the recognition capability. Figure S.9 illustrates an example 

of the effect of the kernel profile on the recognition capability using a rectangular 

kernel with an impulse of the height h at its center. The RKMT function used is 

f[Max,Min] = Max(x,y) · Min(x,y), with L = 39 and W = 1. If h is close to 

zero, there are significant differences in rs for different objects (e.g., H and E 4). 

However, when h becomes significantly large (e.g., h = 20), the recognition process 

fails to discriminate the object H from the template E 1• Thus, it is recommended 

that a rectangular kernel without an impulse be used in the application of the 

invariant pattern recognition. On the other hand, other objects like N and K 

have significantly different angular signatures, rs being effectively insensitive to 

variations in h. 

Other kernels with gray-scale profiles (e.g., triangular kernel) can yield results 

comparable with those obtained by using the rectangular kernel. Table S.4 shows 

the peak ratio rs using different kernel profiles for the objects in Fig. S.S. The 

kernels with gray-scale or center-weighted profiles tend to decrease the recognition 

capability as the center portions of the kernels are more weighted. Thus, it is seen 

in Tab. S.4 that the rectangular kernel tends to work better than other kernels. 



0.9 

·' 

0.8 .. ...- El & H 

0.7 

0.6 

0.5 

i 
i .. 

/ 
' 

-.. 
····· 

/ 

... ........ 

. -·· 

0 

......... -·- ... 

L 
2 

-·· ......... -

140 

x 

. , __ ,.,_,_.,. ... ·-·-···-·-

El&N 
0.4 . ...... . ... ·-·-

................... :.: : :--. : ~:.: ::~: ~ ... :-:::: :: : :'".'. :-::~: -~: ~. ·. ~ ::: :~ :::.:: -~: ~. ·.~:.:: -~: ~.: ~ ... -... ~: ~.-. ~.-.~: -~ :~. ~ ~---~: -~: ~- ·. ~---~: -~: ~- ~ ~- -~ .· .-: ~-: ~---~ .· .~ 
El&K 

0.3'--~~~--~~~~'--~~~--~~~~--~~~-'-~~~----

0 5 10 15 

h 

20 25 30 

Figure 5.9: Plot of the peak ratio r8 versus h, where h is the height of an impulse at 

the center of a rectangular kernel. If h is large (e.g .. h = 20, which is approximately 

51 % of the kernel length (L = 39)). the recognition process fails to discriminate the 

objects H and E4 from the template E1 • The objects used are shown in Fig. 5.5. E4 

(scale=l.98) is the scaled version of E1 (scale=1.0) at upper-left in Fig. 5.5(b). 



141 

Kernel Ei H N K E2 Es E" B 

Rect 1 1.0 0.6893 0.4545 0.4180 0.9515 0.9262 0.9493 0.50 

Triangular 1.0 0.7872 0.2148 0.1844 0.9802 0.9280 0.8445 0.18 

Gaussian 1.0 0.7072 0.2113 0.1833 0.9274 0.9587 0.8494 0.17 

Parabola 1.0 0.7303 0.2497 0.2173 0.9279 0.9328 0.8591 0.21 

Rect 5 1.0 0.8360 0.4127 0.3972 0.9740 0.9628 0.9586 0.50 

Rect 11 1.0 0.9136 0.3922 0.3842 0.9870 0.9752 0.9651 0.50 

Table 5.4: Effects of different kernel profiles (L = 41) on the recognition capability 

with the RKMT function f{Max, Min] = Max · Min. Rect 1. 5. and 11 represent a 

rectangular kernel with an impulse of the height h (h = I. 5. and 11) at its origin. The 

standard deviation equals 10 pixels for the Gaussian profile kernel. The input objects 

are shown in Fig. 5.5 and 5.7. 

f[Max, Min] Ei H N K E2 Es E" B 

Max· Min 1.0 0.6893 0.4545 0.4180 0.9515 0.9262 0.9493 0.5 

Max 1.0 0.7587 0.5452 0.5393 0.8961 0.9414 0.8716 0.5 

Max2 1.0 0.8825 0.3925 0.3928 0.8958 0.9810 0.9005 0.4 

Max2 · Min2 1.0 0.7950 0.4916 0.3439 0.9259 0.8854 0.8837 0.4 

[Max- Min] 1.0 0.8518 0.5663 0.5371 0.8535 0.9602 0.8454 0.5 

[Max- Min]2 1.0 0.9015 0.4758 0.4551 0.8552 0.9617 0.8939 0.5 

Max·[Max -Min] 1.0 0.8923 0.4067 0.3962 0.8571 0.9647 0.8857 0.4 

Max2• [Max - Min] 2 1.0 0.8387 0.4404 0.4840 0.8238 0.9424 0.9143 0.5 

Table 5.5: Effects of the RKMT function f[Max, Min] on the recognition capability 

using a rectangular kernel (L = 39 and W = 1) for different RKMT functions f{Max. 

Min]. The input objects are shown in Fig. 5.5. 
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5.3.5 Effects of the RKMT Functions on Performance 

A variety of RKMT transform functions can be used to obtain P(O) and thus to 

perform the invariant pattern recognition: 

f[Max,Min] = Max(x,y) · Min(x,y), 

f[Max,Min] = Max(x,y), 

f[Max,Min] = Max2 (x,y), 

f[Max,Min] = Max2(x,y) · Min2(x,y), 

f[Max,Min] = Max(x,y) -Min(x,y), 

f[Max,Min] = [Max(x,y) -Min(x,y)] 2
, 

f[Max,Min] = Max(x,y) · [Max(x,y) -Min(x,y)], 

f[Max,Min] = Max2(x, y) · [Max(x,y) -Min(x,y)]2
• 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

The function f[Max,Min] = Max(x,y) may be useful in certain situations since it 

can enhance linear features and is easy to measure in an opto-electronic implemen­

tation. The formula given by Eq. 5.19 is particularly useful when the object contour 

is em bedded in noisy background. The first part, M ax2 ( x, y), enhances the linear 

features whereas the second part, [Max(x,y) - Min(x,y)]2, suppresses noise. By 

combining these functions as in Eq. 5.19, the recognition process becomes nearly 

insensitive to noise unless noise with highly oriented linear features exists. 

Table 5.5 shows the peak ratio rs for different RKMT transform functions 

using a rectangular kernel with L = 39 and W = 1. The RKMT functions in 

Tab. 5.5 work well for objects with different angular signatures (e.g., E, N, and K). 

See the characters E 4 and H. A RKMT function like f[Max,Min] =[Max-Min] 

does not discriminate these objects. Note that only four kernel orientations (0°, 

45°, 90.0 , and 135°) were used in the numerical experiments. Increasing the number 

of kernel orientations can improve the discrimination capability for these objects, 
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excluding those points with multiple Max orientations outside their object contours 

and thus removing resulting spurious peaks. Using f[Max,Min] = Max·Min, only 

those points on the object contour contribute most to finding the angular signature 

function. Thus, the function ![Max, Min]= Max· Min tends to exhibit the best 

recognition capability among other RKMT functions as in Tab. 5.5. 

5.4 Summary and Discussion 

We have discussed a novel hybrid optical method to perform scale- and rotation­

invariant pattern recognition. In this method, the description (f[Max(x,y), Min(x,y)), 

DMaz(x, y)) is first obtained by RKMT processing, and the mapping operation to the 

angular signature function and the subsequent recognition process are performed 

on a computer. To obtain quasi-scale invariance, the angular signature function is 

normalized by its area. The area-normalized angular signature function exhibits an 

quasi-scale invariance, although the recognition capability still depends somewhat 

on the kernel length used relative to object scale. Since the kernel rotates, rotation 

invariance is achieved for input objects with different orientations. 

Some effects that variations in the kernel length have on the discrimination 

of objects with similar angular signatures were discussed. As the kernel length in­

creases, certain ambiguities can be resolved. With an appropriate RKMT transform 

function, a variety of kernel profiles can be used for the invariant recognition. A 

rectangular kernel works better than a rectangular kernel with an impulse at its 

center. In general, other kernels with gray-scale or weakly-weighted profile at their 

centers can also be used, yielding good recognition capability. Variations in the 

RKMT transform function are available for enhancing linear features and perform­

ing the invariant recognition. The RKMT functions that are particularly interesting 

include Max · Min, Max2 , and Max2 • [Max - Min]2. The latter function may be 

useful for the invariant recognition in a noisy environment. 
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The foregoing method for the invariant pattern recognition can be implemented 

using a digital computer alone. However, the method is computationally expen­

sive because of multiple convolutions and rotation operations. Therefore, a hybrid 

optical/ digital system such as the one discussed in Sec. 3.5, can be employed to 

implement the procedures for the invariant recognition process. For certain objects, 

partial rotation of the convolution kernel may be sufficient to perform the invariant 

recognition for a certain class of objects. 
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In this chapter, the RKMT operation is applied to edge detection and enhance­

men t by a hybrid optical/digital method. Two different classes of edge images are 

discussed: (1) a gray-scale edge image and (2) a binary edge image. Compar­

isons are made with conventional digital edge operators, along with a quantitative 

performance analysis by calculating the signal-to-noise ratio used in Sec. 3.4. 

6.1 Introduction 

In this section, a new hybrid edge detection method is introduced. For application to 

edge detection, an asymmetric rectangular or triangular profile kernel is used rather 

than a symmetric profile kernel. Figure 6.1 illustrates the edge detection operation 

using a binary input image and a rectangular profile kernel with both symmetry and 

asymmetry. When the symmetric kernel is convolved with the binary image, the 

Max value equals the Min value at the boundary in continuous case. Calculating 

lout (x, y) = M ax(x, y) - M in(x, y), the points on the boundary have then zero edge 

magnitude. Similarly, the edge magnitude on the boundary is zero or quite small in 

discrete case, depending on the kernel dimension used. The edge magnitude in either 

side of the boundary increases monotonically with the maximum W(L + W)/2 at 

x = W /2, and decreases monotonically with zero magnitude at x = L/2. A double 
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Figure 6.1: Edge detection on a binary image with (a) symmetric and (b) asymmetric 

rectangular profile kernels. Top to bottom: Binary images and kernels with Max 

orientations represented by black. Max (solid-line) and Min (dotted-line) values, and 

edge magnitudes. ( •) represents the center of the kernel rotation. 



147 

edge will then result from the symmetry of the kernel, as shown in Fig. 6.l(a). 

On the other hand, Fig. 6.1 (b) shows a single edge image obtained by using an 

asymmetric kernel with the maximum value W Lat the boundary. When the kernel 

is too long, the edge will be thickened. To reduce this effect, the triangular profile 

or other nonrectangular profile kernels can be used. 

6.2 Gray-Scale Edge 

The method discussed for the gray-scale edge detection by RKMT processing is 

a gradient type edge detection method, combining directional information at each 

point in an input object. Two methods are discussed to obtain the gray-scale edge 

image using an asymmetric short, narrow kernel. One way to obtain the gray-scale 

edge image is simply to calculate the edge magnitude d(x, y) at each point, 

d(x, y) = Max(x, y) - Min(x, y). (6.1) 

The edge magnitude d(x, y) considers only Max(x,y) and Min(x,y) values without 

considering of their orientations at each point. The other is to find the angularly 

rank-ordered edge magnitude d9(x, y) by incorporating the orientation of the con­

volution output Ss(x, y) at an angle 0, 

ds(x, y) = IS9(x, y) - SH1soo(x, Y)I. {6.2) 

The latter method involves calculating the difference between two convolutions ob­

tained from two opposite-kernel orientations, for example, 0° and 180° or 45° and 

225°. For 8 discrete rotation angles, four angularly rank-ordered edge magnitudes 

are obtained as di, d2 , d3 , and d4 , for which the highest ranked-edge magnitude is 

represented by d1 (i.e., rank 1). The edge detection method using angularly ranked­

magnitudes can be useful in certain situations, particularly when the input image 

is noisy and thus the direct edge magnitude d(x, y) may be sensitive to noise and 

results in thickening of the edges. 
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(a) 

{b) (c) 

Figure 6.2: Gray-scale edges obtained by using a triangular profile kernel (L = 4 and 

W = 1): (a) original image: (b) Iout(x, y) = d(x, y) with an asymmetric kernel: and 

{c) Iout(x, y) = d(x, y)[l - p3 (x, y)J with an asymmetric kernel. 
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Figure 6.2 illustrates several edge enhancement operations using an image 

with 256x256 pixels. Figure 6.2(a) shows the original image. Figures 6.2(b) and 

(c) show the results obtained by calculating lout(x, y) = d(x, y) and lout(x, y) = 

d(x, y)[l-p(x, y)], respectively. The brightness of each image in Fig. 6.2 was rescaled 

with 256 gray levels. The kernels used for {b) and (c) were triangular in profile 

(L = 4 and W = 1) with asymmetry, and rotated through 8 discrete rotation angles: 

0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. For the edge enhancement application, 

it may not be necessary to scan all of the orientations from 0 to 360°. A few 

orientations may be sufficient to quickly locate most significant object boundaries. 

Figure 6.3 shows the results obtained finding angularly ranked-edge magni­

tudes with an asymmetric triangular kernel with L = 4andW=1: {a) lout(x,y) = 

d2(x, y); {b) lout(X, y) = ds(x, y); {c) lout(X, y) = d2(x, y)[l - p3 (x, y)]; and (d) 

laut(x, y) = d3(x, y)[l - p3(x, y)]. It can be shown in (c) and {d) that background 

noise was significantly reduced by combining [l-p3 {x, y)] with d2(x, y) and d3 {x, y) 

as demonstrated in Tab. 4.1. Most significant edges with high directionality were 

enhanced by calculating the ranked-edge magnitude t4(x, y). 

Figure 6.4 shows the results obtained using a noisy image with an asymmetric 

triangular kernel of L = 5 and W = 1, followed by thresholding-hard limiting. A 

threshold value was chosen to obtain comparatively similar edge widths from the 

gray-scale edge images. Figure 6.4{a) shows the image in Fig. 6.2(a) corrupted 

by adding the Gaussian noise with zero mean and a = 40 {standard deviation). 

The results of calculating laut(X, y) = d(x, y) and laut(X, y) = d2(x, y) are shown 

in Figs. 6.4 {b) and ( c), respectively. In the numerical simulation, the kernel was 

rotated through only 8 discrete angles used for the images in Fig. 6.2. Note that 

the maximum number of rotation angles is eight for 3x3 mask size in the discrete 

implementation of the RKMT edge enhancement operation. As the kernel becomes 

longer or wider, the discrete implementation of the RKMT operation may become 

difficult, particularly when a nonrectangular kernel must be used to reduce thicken-
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Figure 6.3: Gray-scale edges obtained by using an asymmetric triangular kernel (L = 4 

and W = 1): (a) Iout(x, y) = d2(x, y); (b) Iout(x, y) = d3(x, y); (c) Iout(x, y) = 
d2(x, y)[l - p3(x, y)]: and (d) Iout(x, y) = d3(x, y)[l - p3(x, y)]. 
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Figure 6.4: Results from the noisy image corrupted with Gaussian noise of u = 40 

using an asymmetric triangular kernel with L = 5 and W = 1. (a) Noisy image. (b) 

Result of calcaulting Iout(x, y) = d(x, y). (c) Result of calcaulting Iout(x, y) = d2 (x, y). 

( d) Result of applying the Sobel' s digital edge operator with 3x3 mask. 
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ing of enhanced edges and background noise. In an optical implementation of the 

RKMT edge enhancement operation, however, this problem is not found. Better 

results could be expected if more rotation angles were used in the optical imple­

men tation of the enhancement method. For comparison, the Sobel's digital edge 

operator [49] with a 3x3 mask was applied to the image in Fig. 6.4( a). The result 

of applying the Sobel's operator is shown in Fig. 6.4( d). A larger mask (e.g., 5x5 or 

7x7 mask) can be used to reduce background noise, but resulting in great thickening 

of the edges and losing certain details because the SobePs edge operator detects well 

only horizontal and vertical edges in the input image. 
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6.3 Binary Edge 

The concept behind binary edge detection and enhancement is similar to a mor­

phological operation [52,91,92]. In one application of the latter method to edge 

detection, an input image is processed finding the maximum gray value in a struc­

turing element (e.g., 3x3 mask or 5x5 mask). An edge detection operation is then 

performed by calculating the difference in pixel values at each point between the 

processed image and the input image [93]. The edge detection operation by RKMT 

processing is performed by finding Max or Min value of the convolution outputs 

with a certain kernel rather than individual pixel values in the input image. 

In the application of the RKMT method to the binary edge detection, a Max 

operation with an asymmetric short kernel (e.g., 3xl) tends to expand bright objects 

in an image whereas a Min operation shrinks bright objects. The kernel dimension 

[=LxW] can be either L > W or L < W. Figure 6.5 illustrates the results of 

applying the Max and Min operations with an asymmetric kernel. The kernel used 

is rectangular in profile with L = 3 and W = 1. Figure 6.5(a) shows a camera man 

image with 256x256 pixels. The images processed by the Max and Min operations 

are shown in (b) and (c), respectively. In (b), certain bright regions in the tripod 

legs were expanded into comparatively dark regions. In (c), the bright line features 

in the left leg of the tripod was significantly reduced by the Min operation. Both 

Max and Min operations result in smoothing, particularly at the boundaries as seen 

in (b) and (c), but preserving most desired features. The property of expanding 

the object by the Max operation can be used for detecting the edges in such a 

way that the processed image is subtracted by the original image, followed by a 

certain thresholding operation to obtain a binary image. Similarly, the input image 

can also be subtracted by the image obtained in the Min operation, followed by a 

thresholding operation. 

The binary edge detection operation is summarized as follows. 
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(a) 

(b) (c) 

Figure 6.5: Examples of expanding and shrinking objects by Max and Min operations. 

respectively. where the kernel used is rectangular in profile with L = 3 and W = 1. (a) 

Original image. (b) Result of applying a Max operation. (c) Result of applying a Min 

operation. 
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1. For the input image O(x, y), obtain the intermediate image 

(6.3) 

where V0 is the volume of the convolution kernel used. The image obtained 

in the Max operation is normalized by the volume V0 to remove dependence 

on the kernel dimension. 

2. Compute the difference image db(x, y), 

db(x, y) = c · l~ut (x, y) - O(x, y) (6.4) 

where c( < 1) is a constant to control the difference. The constant c also 

depends on image contrast. For example, c is relatively small for the image 

with high contrast. 

3. Obtain the binary edge image lout(x, y), 

lout(X, y) = 1, 

lout(X, y) = O, 

if d,,(x, y) ;:::: 0. 

if db(x, y) < 0. (6.5) 

Alternatively, 1;ut (x, y) = Min(x, y)/V0 can also be used instead of taking lout (x, y) = 
Max. In this case, Eq. 6.4 is replaced by db(x, y) = c · O(x, y) - I~udx, y). 

Figure 6.6 shows the results of applying the detection method to a gray­

scale image in Fig. 6.5 (a). The kernel used is rectangular in profile with L = 2 

and W = 1 (L > W). The images in Figs. 6.6(a) and (b) show the results of 

calculating db(x, y) = c · l~ut(x, y) - O(x, y) (Eq. 6.4) with c = 0.71 and 0.81, 

respectively. The kernel with W > L is also useful for the binary edge detection 

method as the image is noisy, reducing background noise and thickening of the 

edges. Comparisons are made with the Sobel's edge operator and a morphological 

operation. Figure 6.6( c) shows the result of applying the Sobel's edge operator with 

a 3x3 mask, followed by thresholding-hard limiting. The threshold value was chosen 
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(a) {b) 

(c) (d) 

Figure 6.6: Results of the edge detection operation. (a) and (b) RKMT binary edge 

detections using an asymmetric rectangular kernel (L = 2 and W = 1) with c = 0.71 

and c = 0.81. respectively. (c) Sobel's edge operator with 3x3 mask. (d) Morphological 

operation with 3x3 mask. 
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to obtain comparatively similar edge widths to those of the images in Figs. 6.6( a) 

and (b). The result of applying a morphological operation is shown in Fig. 6.6( d), 

for which the input image in Fig. 6.5( a) was processed by finding the maximum 

value in a 3x3 structuring element (i.e., filtering mask) and the processed image 

was then subtracted by the input image, followed by thresholding-hard limiting. 

6.4 Quantitative Performance Measure 

It is useful to investigate quantitatively how the RKMT edge enhancement operation 

performs under various conditions of varying the kernel dimension and profiles. 

The peak mean-square error measure method as discussed in Sec. 3.4 was used 

to estimate similarity between ideal edge components in a noiseless edge image 

and edge components obtained from a noisy image, calculating the signal-to-noise 

ratio (SNR). Figure 6.7 shows the images used for the quantitative performance 

analysis. The noiseless test image used for this analysis is shown in Fig. 6. 7 (a) 

and consists of 12 triangles and uniform backgrounds with 150 and 100 in 256 gray 

levels, respectively. The noiseless edge components of the image in (a) are shown in 

(b), where each edge width is two pixels. The image in (a) was corrupted by adding 

the Gaussian noise with zero mean and q = 10 (standard deviation). The resulting 

noisy image is shown in ( c). 

Two digital edge detection methods are evaluated for purposes of comparison: 

(1) gradient-type digital edge operators (e.g., Sobel's and Prewitt's operators) [49] 

and (2) a morphological operation. Note that the RKMT gray-scale edge enhance­

ment method discussed in Sec. 6.2 is also a gradient-type operator. The edge 

detection method using the Sobel's and Prewitt's edge operators has been opti­

cally implemented using a multipl~posure matched spatial filter (and computer­

generated hologram) in a coherent optical system [53] and using an optical symbolic 

substitution technique [54]. The optical implementations of such digital edge op-



158 

(a) (b) 

(c) 

Figure 6.7: Test images. (a) Noiseless image where the bright (dark) region has 150 

(100) in 256 gray levels. (b) Edge image of (a). where the edges are 2 pixels wide. 

(c) Noisy image corrupted by Gaussian noise with zero mean and a = 10 (standard 

deviation). 
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erators suggest the use of the Sobel's and Prewitt's edge operators to evaluate the 

performance of the RKMT edge enhancement operation. Another comparison can 

be obtained using a simple morphological edge operator used for Fig. 6.6( d), since 

the concept for finding Max and Min values of the convolution outputs in the RKMT 

processing is somewhat similar to such a morphological edge detection method. 

The noisy image in Fig. 6.7( c) is subjected to various RKMT edge enhancement 

operations and digital edge operators. Figure 6.8 shows the edge images obtained 

by calculating various RKMT functions: lout (x, y) = d(x, y) and lout (x, y) = d,(x, y) 

for i=l, 2, and 3. The kernel used is triangular in profile with L = S and W = 1. 

(Note that the number of nonzero weights of the triangular kernel is only 4.) Each 

image was thresholded at a gray level at which the maximum SNR was obtained. 

Similarly, Fig. 6.9 shows the results of applying the digital edge operators. The 

images obtained from the Sobel's edge operators with 3x3 and SxS masks are shown 

in Figs. 6.9(a) and (b), respectively. Figures 6.9(c) and (d) show the results of using 

the Prewitt's edge operators with 3x3 and SxS masks, respectively. Two filtering 

mask sizes were used because the small one (i.e., 3x3) can be sensitive to noise. 

Table 6.1 shows the numerical results of calculating the SNRs for the binarized 

edge images in Figs. 6.8 and 6.9, where S3(SS), P3(PS), and M3 (MS) represent the 

Sobel's operator, the Prewitt's operator, and the morphological operation with 3x3 

(SxS) mask, respectively. The SNRs represent the similarity between the noiseless 

edge image in Fig. 6. 7(b) and the processed images in Figs. 6.8 and 6.9. In other 

words, the SNRs measure how accurately each edge detection operator locates and 

enhances the edge components of the noisy image in Fig. 6.7(c). It is shown in 

Tab. 6.1 that both 3x3 Sobel's and Prewitt's operators can detect accurately the 

desired edge components for a= 0 (i.e., SNR=oo). Otherwise, the SNRs obtained 

using these digital operators remain approximately the same (SNR~19 dB for 3x3 

mask and SNR~21 dB for SxS mask). The morphological operation (M3 for 3x3 

mask and MS for SxS mask) may detect well the edges, the detection operation 
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Figure 6.8: Results of applying various RKMT functions, followed by thresholding-hard 

limiting: (a) Iout(X, y) = d(x, y): (b) Iout(X, y) = dt(x, y): (c) Iout(X, y) = d2(x, y): 

and (d) Iaut(X, y) = d3(x, y). 



·G ~- ~ t~ 
. . . 

LJ· -~ "Ll LJ· 
L] LJ L]· Ll 

(a) 

-~ ~-~--~ 

LJ . L'.] L:J L] 

L] LJ LJ· Ll 

(c) 

161 

(b) 

(d) 

Figure 6.9: Results of applying digital gradient edge operators: (a) and (b) 3x3 and 

SxS Sobel's edge operators: (c) and (d) 3x3 and SxS Prewitt's edge operators. 
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II Signal-To-Noise Ratios [=SNR] dB II 
<7 d di d2 ds 83 85 P3 P5 M3 M5 

0 34.36 31.35 18.25 16.32 00 27.37 00 26.96 16.00 12.71 

10 23.84 22.04 19.07 17.98 18.55 21.94 19.47 21.93 14.77 13.29 

Table 6.1: Numerical results obtained for various edge operators. where 53 (P3) and 

SS (PS) represent the Sobel's (Prewitt's) digital edge operators with 3x3 and SxS 

filtering masks. respectively, and M3 (MS) is a morphological edge operator with 3x3 

(SxS) mask. The kernel used for d(x, y) and d;(x, y) is triangular in profile with L = 5 

and W = 1. 

being sensitive to noise. However, the SNRs for these morphological edge operators 

are quite low, because they do not locate·accurately. Note that the morphological 

operation was performed by finding the maximum pixel value within a structuring 

element and thus the bright regions of the triangles expand into dark background 

regions. This means that the edge components are found in only dark regions (i.e., 

outside the triangles). Thus, in a certain case, only one pixel edge width is obtained. 

The kernel used for the RKMT processing is triangular in profile with L = 5 

and W = 1. The RKMT edge enhancement operation with L = 5 and W = 1 does 

not yield SNR = oo for a = 0, because such a long kernel results in thickening of the 

edges and then reducing the SNR. Alternatively, a shorter kernel can be used to yield 

SNR = oo. (See Tab. 6.2.) The SNRs for l 0 u1(x, y) = d(x, y) and lout(X, y) = di(x, y) 

are slightly higher than those of digital opertors. For only comparison, the SNRs for 

other angularly rank-ordered edge magnitudes are also given in Tab. 6.1. The SNRs 

for such low rank-ordered edge magnitudes (e.g., d2(x, y) and d3 (x, y)) are much 

lower than those of [Max - Min] operation and d1(x, y), simply because they lose 

certain edge components (e.g., vertices of the triangles) and result in some thinning 

of the edges. 
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Triangular Kernel Rectangular Kernel 

(f L=3 L=4 L=5 L=6 L=1 L=2 L=3 L=4 L=5 L=6 

0 00 00 34.36 34.36 31.35 00 34.36 31.35 29.59 28.34 

10 21.46 25.54 23.84 22.55 21.42 21.42 22.20 20.18 18.59 17.90 

Table 6.2: SNRs obtained calculating laut(x,y) = Max(x,y) - Min(x,y) with two 

kernel profiles [W=1] for various kernel lengths [=L]. Note that the number of nonzero 

weights of the triangular kernel with the length Lis (L - 1). 

Table 6.2 shows the SNRs obtained varying the kernel length L for two kernel 

profiles (W = 1): triangular and rectangular kernels. The kernels with L=3 (and 4) 

for the triangular kernel and L=2 for the rectangular kernel yield SNR=oo, since 

these kernels can detect the same edge components as those of the noiseless edge 

image in Fig. 6.7(b). The maximum SNR was obtained for the triangular kernel 

with L=4, which is 3.6 dB higher than that of the 5x5 Sobel's edge operator in 

Tab. 6.1. The SNRs for other longer kernels decrease because these kernels result in 

thickening of the edges as discussed in Tab. 6.1. Similarly, the SNR tends to decrease 

because of noise effects as L becomes short. In Tab. 6.2, the triangular profile kernel 

tends to show the better performance than the rectangular profile kernel. It is not 

difficult to choose a proper kernel dimension for a certain application. As the input 

is noisy, the kernel can also be widened to reduce background noise. 

It is shown from Tabs. 6.1 and 6.2 that the overall results obtained in the 

RKMT edge enhancement operations are close to those obtained from Sobel's and 

Prewitt's digital edge detection operators. However, such digital operators may 

not work well for objects with arbitrary edge orientations, because they locate and 

detect well only the horizontal and vertical edges. In an optical implementation 

of the RKMT operation, most significant edges regardless of their orientations can 

be located and enhanced, since the convolution kernel rotates through 360 degrees. 
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In addition, a nonrectangular profile kernel can easily be generated holographically 

with various kernel dimensions, reducing noise effects and thickening of enhanced 

edges. 
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary of Results 

In this work we have described robust opto-electronic procedures for the reliable 

extraction of information on size and shape parameters. The focus has been on 

developing a novel optical rotating kernel transformation (RKMT) method for en­

hancing linear features (e.g., endothelial cell boundaries) in noisy background. Re­

lated works, which are offshoots from the RKMT endothelial image preprocessing, 

have been discussed, including invariant pattern recognition and edge enhancement. 

7.1.1 Pattern Analysis by Fourier Transform Methods 

Two different procedures have been discussed for extracting statistical information 

on cell parameters such as size, size variation, and shape of cells. One procedure 

involves illuminating and optically Fourier transforming a large number of cells 

in the input pattern. The other procedure limits the illuminated area to a small 

region approximately the size of one cell, thus enabling the estimation of shape 

characteristics. 

The first procedure was used to obtain the radial projection of the Fourier 

intensity pattern, introducing robust automated algorithms for size measures. The 

raw radial projection was median-filtered to reduce the effects of noise and then 

subjected to fifth-order polynomial curve fitting. For the average size or density, 

the maximum point Bp was located in the first lobe of the fitted polynomial curve. 
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For the size variation, the normalized mean-square difference measures eu1 and e23 

(i.e., contrast measure) were calculated between the fitted polynomial and the mean 

of median-filtered values. It was shown that the latter measure e23 tends to cluster 

better than the former measure. 

To obtain shape characteristics, a numbered cell pattern containing 24 cells 

was scanned, one cell at a time, with a beam size slightly larger than a single cell. 

Twenty-four angular correlation functions of angular projections obtained from the 

Fourier intensity distributions were summed and averaged. It was observed that 

the location and width of the peaks in the mean correlation function relate rather 

well, at least qualitatively, to the average shape and average variation of number of 

sides of the 24 scanned cells. 

7.1.2 Optical Rotating Kernel Transformation 

RKMT processing has been introduced and demonstrated, in computer simulations, 

for nonlinear image processing including linear feature (e.g., straight-line segments) 

enhancement operation. A variety of 2-D noncircular symmetric (and asymmetric) 

kernels and RKMT functions were introduced. Two types of kernels were partic­

ularly useful for the enhancement of linear features: a long, narrow rectangular 

profile and a long, narrow nonrectangular (e.g., triangular) profile. 

Algorithms for enhancing linear features were introduced and applied to noisy 

images, including [Max - Min] operation and more generally multipass operation 

iteratively combining a Max operation and a [Max - Min] operation. The multipass 

operation demonstrated quantitatively and qualitatively better performance than 

the basic [Max - Min] operation. Continuing the multipass operation may increase 

smoothing and thickening of enhanced line segments, while reducing noise. 

While the RKMT processing can be implemented on a digital computer, per­

haps its most important advantage lies in the fact that it is particularly well suited 

for optical-electronic implementation. Since the kernels used are typically nonneg-
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ative, an incoherent spatial filtering system was discussed to implement the RKMT 

processing. In such an optical implementation, a prism-hologram combination is 

used in the pupil plane to produce the desired kernel rotation. Such a realization 

would retain much of the flexibility of a digital-electronic implementation, while 

tapping the traditional speed and throughput advantages of optics. 

7.1.3 Nonlinear Image Processing: Preprocessing 

RKMT processing was applied to the enhancement of cell boundaries (i.e., straight­

line segments) in endothelial cell images characterized by low contrast and spatially 

varying average background brightness in noisy background. While a simple [Max 

- Min] operation achieved useful enhancement of the cell boundaries, better results 

were obtained for multipass operation combining a Max operation with the [Max 

- Min] operation. Furthermore, two iterations of the multipass operation yielded 

still better results. Lengthening the kernel resulted in greater connectivity in the 

output line segments, but increased thickening of line segments and smoothing at 

the intersections of cell boundaries. The triangular profile kernel resulted in reduced 

thickening of the cell boundaries. 

Two binarization methods, based on the Min-Max deviation measure and the 

angular variation measure, were also introduced and applied to the gray-scale im­

age enhanced by the RKMT processing for subsequent pattern analysis. The former 

measure is simple and suitable for optical-electronic implementation. Comparisons 

were made with conventional digital filtering methods, including bandpass spatial 

filtering and directional nonlinear processing with wedge-shaped spatial filters. Ex­

perimental results showed that RKMT processing compared extremely well with 

such digital techniques. 
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7.1.4 Invariant Pattern Recognition 

A novel hybrid optical method to perform pattern recognition with rotation and 

quasi-scale invariance has been introduced and discussed using alphabetic charac­

ters. Based on numerical experiments, the quasi-scale invariance was obtained over 

1:3 range. More generally, such scale invariance can also be expected over a wide 

range (e.g., 1:5) using an appropriate kernel dimension. Since the kernel was ro­

tated, the rotation invariance was achieved. The recognition process was performed 

by calculating the angular crosscorrelation function between the energy-normalized 

angular signature functions obtained from both the input object and the template. 

The rotation angle of the object with respect to the template was found to corre­

spond to the point where the correlation achieves the maximum. 

Also discussed were some effects that variations in the kernel length and profile 

have on the discrimination of objects with similar angular signatures. The RKMT 

function ![Max, Min)= Max(x,y)·Min(x,y) performed best among other RKMT 

functions with four kernel orientations. Increasing the number of kernel orientations 

improves the recognition capability by excluding those points with multiple Max 

orientations, which may not be excluded using a small set of kernel orientations. 

7.1.5 Edge Detection and Enhancement 

The RKMT processing has also been extended to edge enhancement operation, us­

ing a short, narrow asymmetric kernel. Two types of edge images were obtained: 

gray-scale and binary edge images. For the gray-scale edge image, two methods 

were discussed to quickly locate edges: direct edge magnitude [=d(x, y)] and an­

gularly rank-ordered edge magnitude [=di(x,y)]. The methods for the direct edge 

magnitude and binary edge image are highly attractive for optical-electronic imple­

mentation. Quantitative analysis on the performance of RKMT edge enhancement 

operation was also performed for test images with and without noise. A triangular 

kernel performed better than a rectangular kernel, reducing thickening of edges and 
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thus yielding higher signal-to-noise ratio. More generally, a nonrectangular pro­

file kernel with a large dimension can be used without great thickening of edges, 

searching most edge orientations in the input image. 

7.2 Recommendations for Future Research 

The RKMT processing developed in this thesis appears to be a promising hybrid 

optical-electronic technique for nonlinear image processing and pattern recognition. 

In this regard, it is recommended that the RKMT method be investigated further 

for future research in various areas. In one of these areas, RKMT processing can 

be generalized to an angularly rank-ordered filtering (AROF) operation for which 

the Max and Min values are treated as the highest- and lowest-ranked values of 

the directional convolution outputs. One example of such an AROF operation may 

be demonstrated by directional smoothing [49], which reduces noise but preserves 

sharp boundaries in noisy imagery. This argues for further investigation into the 

applications of the AROF operation. 

RKMT processing can be developed for detecting and enhancing striated pat­

terns like fingerprints and airport runways, and nonlinear features like line intersec­

tions. It is possible to use a '+' shaped kernel for enhancing such striated patterns 

and periodic line structures (e.g., mesh structures) in a matter similar to endothe­

lial image preprocessing. With basic RKMT processing operations, it may also be 

possible to enhance line intersections embedded in noisy gray-scale images. A sim­

ple case of enhancing vertices in a binary cell boundary pattern was demonstrated 

(Sec. 3.2.2) by two consecutive Min operations. In addition, various types of image 

enhancement or feature detection and enhancement operations can also be found 

for biomedical and industrial applications. 

In the invariant pattern recognition application, numerical experiments wei:e 

performed for only four kernel orientations. Increasing the number of kernel orien-
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tations can improve the recognition capability. The invariant algorithm discussed 

can be particularly useful for determining the quasi-scale invariance for small tar­

gets. For more general applications, a more thorough investigation is needed into 

how well the invariant algorithm works for other objects with linear features (e.g., 

airplanes and industrial parts) rather than alphabetic characters. 

Most challenging is an optical implementation of the RKMT processing oper­

ation. Currently, RKMT processing can be demonstrated using a hybrid incoherent 

spatial filtering system incorporated with a CCD camera and a digital computer. 

However, much greater speed can be achieved if a smart focal plane array processor 

with simple peak-detection electronic circuitry can be used as a Min-Max proces­

sor in the output plane. Such an optical implementation of the RKMT processing 

requires a physical rotation of the convolution kernel in the pupil plane. Another 

method for achieving such a kernel rotation can be considered if a smart spatial 

light modulator were to be available to electronically write the kernel at each kernel 

orientation. Thus, it is recommended that such a smart spatial light modulator be 

investigated for future work. 

For cell pattern analysis in clinical treatment, further investigation is needed 

into how the parameters (e.g., Bp and e23) obtained by optical Fourier transform 

methods relate with computer morphometric cell parameters. This is another sub­

ject for potential investigation. In order for these investigations to proceed, it is 

essential that an optical system be constructed with a real wedge-ring detector in 

the Fourier transform plane and a great deal of clinical data be incorporated. 
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