
A Text Mining Framework Linking Technical Intelligence from Publication Databases to 
Strategic Technology Decisions 

 
 
 
 
 

 
 
 
 
 
 
 

A Thesis 
Presented to 

The Academic Faculty 
 

By 
 

Cherie R. Courseault 
 
 
 
 
 
 
 

 
 
 
 

In Partial Fulfillment of the Requirements for the Degree 
Doctor of Philosophy in  

Industrial and Systems Engineering 
 
 

 
 

Georgia Institute of Technology 
May 2004 

 
 
 
 

Copyright 2004 by Cherie R. Courseault 



A Text Mining Framework Linking Technical Intelligence from Publication Databases to 
Strategic Technology Decisions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
Approved by: 
 
 
Professor Alan L. Porter, Advisor   Professor William B. Rouse 
 
 
 
Professor Jye-Chyi Lu    Professor Donghua Zhu 
 
 
 
Professor Milena Mihail 
 
 
Date Approved  March 7, 2004



EPIGRAPH 
 

 

 

 

“Information in itself is silent; it is the use to which it is put, in terms of inferring, 

interpreting, projecting, analyzing, manipulating, computing and decision-making, that is 

important.” Oskar Morgenstern  (Jantsch, 1967, p95) 

  

  



DEDICATION 

 
This work is dedicated to my family and to my Lord and Savior, Jesus Christ. 

Thank you, mom and dad, for your ongoing support, in both natural and spiritual ways. 

Thank you, Gregory Trumbach, Jr., my husband, for your patience. Thank you, Anya, my 

daughter, for giving me the motivation to finish. Thank you, Lord, for giving me the 

wisdom, courage, and strength to overcome every obstacle. 

 

 

Heavenly Father, 

I pray that in finishing this degree, I am readily equipped to accomplish all the 

plans and purposes that you have for me.  

In Jesus Name,  

Amen

  



ACKNOWLEDGEMENTS 

 

At this point, I am thoroughly amazed at how many people it actually takes to 

complete a dissertation.  There are so many people who, without their assistance, I would 

not have been able to complete this document.   

First and foremost, I would like to thank my advisor, Dr. Alan. Porter.  It is 

because I had such a great experience working for him as a Master’s GA that I even 

thought of pursuing a PhD.  I would like to also thank others working on TOA: Webb and 

Doug for the hours of algorithm programming; Nils, Paul, and Bob for the opportunities 

provided along the way; Alisa, for all the errands, but mostly for hanging around the 

States until I also finished ☺; and Buddy, for so many things that I cannot name; 

however, the late night and last minute assistance sit at the top of the list.  

I cannot fail to mention all my Atlanta friends, who have been so supportive 

throughout the years. I am afraid to make a list for fear of forgetting someone. 

Thank you to all of those individuals at The Agency for providing a topical 

learning experience that I will never forget.   

Thank you to all of those who gave me their time for interviews, questionnaires, 

and focus groups, especially USACERL, the National Finance Center, and the companies 

located in the UNO Research and Technology Park. Thank you to the faculty of the 

University of New Orleans, especially Olie for your support and patience and Sandy for 

being such a great sounding board and proofreader.  There are many others that I could 

thank, but that might take a book by itself. As I said, “At this point, I am thoroughly 

amazed at how many people it actually takes to complete a dissertation.”

 v



TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS     v  

LIST OF TABLES       ix 

LIST OF FIGURES     xi 

LIST OF ABBREVIATIONS   xiii 

SUMMARY    xiv  

CHAPTER 1: INTRODUCTION   1 

CHAPTER 2: LITERATURE REVIEW     6 

 2.1 Technical Intelligence   7 

  2.1.1 The Benefits of Technical Intelligence 9 

  2.1.2 Technical Intelligence Viewpoints 12 

  2.1.3 Technical Intelligence Methodology 15 

 2.2 Text Mining 30 

  2.2.1 Retrieval 33 

  2.2.2 Extraction 34 

  2.2.3 Data Cleansing 35 

  2.2.4 Data Mining 37 

  2.2.5 Visualization 42 

 2.3 Literature Review Conclusion 48 

CHAPTER 3: DESCRIPTION OF RESEARCH   50 

 3.1 Step One: Determine the Technologies/Functions to be Monitored 53 

3.2 Step Two: Determine the Information Needs of the Technology  56 
Decision-Makers   

 

 vi



 3.3 Step Three: Develop a Concept-Clumping Algorithm 57   

 3.4 Step Four: Compare Keywords and Abstract Phrases Clusters 65 

 3.5 Step Five:  Determine Metrics for an Example Technology 68 

 3.6 Step Six: Evaluate the Framework 70 

CHAPTER 4: FRAMING THE NEEDS OF THE TARGET USERS  72 

 4.1 The Technologies/Functions to be Monitored 72 

  4.1.1 Five Technology Cases 72 

  4.1.2 The Target Audience 73 

 4.2 The Information Needs of the Technology Decision-Makers 80 

CHAPTER 5: DATA PREPARATION   86 

 5.1 The Concept-Clumping Algorithm 86 

  5.1.1 Preparation 86 

  5.1.2 Calculation Precision 88 

  5.1.3 The Effect of the Algorithm 91 

 5.2 Keywords and Abstract Phrases Clusters Comparison 98  

CHAPTER 6: METRIC FINDINGS AND EVALUATION   107 

 6.1 The Metrics for an Example Technology 107 

  6.1.1 General Organizational Monitoring 109 

  6.1.2 Global Organizational Monitoring 111 

  6.1.3 Hiring for  Cutting Edge 113 

  6.1.4 The Progress of the Technology  113 

 6.2 Framework Evaluation 116 

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 123 

 vii



 7.1 Information Products 123 

 7.2 Text Data Mining Methods 124 

 7.3 Future Research 125 

APPENDIX A: FUNCTIONS AFFECTED BY CTI 129 

APPENDIX B: INTELLIGENCE QUESTIONS IN THE PRODUCT  
LIFE CYCLE 132 
 
APPENDIX C: INTERVIEW QUESTIONS 135 

APPENDIX D: INFORMATION REQUIREMENTS QUESTIONNAIRE 137 

APPENDIX E: MAP OF QUESTIONNAIRE STATEMENTS TO   
PUBLICATION METRICS 142 
 
APPENDIX F: TRANSCRIPT OF FOCUS GROUP INTRODUCTION 144 

APPENDIX G: QUESTIONNAIRE STATEMENT SUMMARIES 146 

APPENDIX H: TECHNOLOGY CASES- ZIPF DISTRIBUTION GRAPHS 153 

APPENDIX I: TECHNOLOGY CASES- CLUSTER MAPS 160 

APPENDIX J: CLUSTER DATA CORRELATION MATRIX 175 

REFERENCES 180 

 

 viii



LIST OF TABLES 

 

Table 3.1    Questionnaire Score Categories  56  

Table 3.2    Sonochemistry Keywords vs. Abstract Phrases  59 

Table 3.3    Comparison of Cohesion Measures 68 

Table 4.1    Technology Cases: Record Counts 73 

Table 4.2    Categorized Early Warning Topics 78 

Table 4.3    Summary of Information Evaluation Criteria 79 

Table 4.4    Participant Industry Groups  81 

Table 4.5    Participant Profiles 81 

Table 4.6    Questionnaire Score Categories 82 

Table 4.7    Strong Agreement Survey Questions  82 

Table 5.1    Hard Disk Drive Matches  88 

      Table 5.2    High Density Recording Matches  89 

      Table 5.3   Technology Cases: Clumping Algorithm Precision  
Calculations  91 

 
      Table 5.4    Fuel Cell Top 20 Abstract Phrases  92 

      Table 5.5   Remote Sensing Top 20 Abstract Phrases  94 

      Table 5.6  Magnetic Storage Top 20 Abstract Phrases  95 

      Table 5.7    GIS Top 20 Abstract Phrases  96 

      Table 5.8    Pollution Monitoring Top 20 Abstract Phrases  97 

      Table 5.9    Dataset Sample Sizes  98 

Table 5.10  Quantitative Cluster Measures  101 

 

 ix



Table 5.11  Quantitative Measures of Clusters: Comparison  
  of Means 102 
 
Table 6.1  Size of Research Teams: US vs. Foreign 112 

Table 6.2  Analysis of Non-Technical Terms 115 

Table 6.3  Focus Group Evaluation Results 119 

Table 6.4  Focus Group Consensus Opinions  120 

Table B.1  Intelligence Questions for Life Cycle Stages 132 

Table E.1  Questionnaire Statements Mapped to Publication  
  Database Metrics Calculated in VantagePoint 142 
 
Table G.1  Questionnaire Statement Responses- Descriptive  
  Summary Statistics 146 
 
Table H.1  Fuel Cell Clumped Abstract Phrases Ranks and  
  Frequencies 153 
 

Table J.1  Quantitative Cluster Comparison Data: Correlation  
  Matrix 175 

 

 
 

 x



LIST OF FIGURES 

 

Figure 2.1  Traditional Intelligence Cycle  16 

Figure 2.2  The Herring Protocol 17 

Figure 2.3  Technology Delivery System (TDS)  29 

Figure 2.4  The Text Mining Process  31 

Figure 2.5  Semantic Depth of Field  47 

Figure 3.1  Research Information Flow 52 

Figure 3.2  Participant Evaluation Email 54 

Figure 3.3  Screenshot of VantagePoint 58 

Figure 4.1  Questionnaire Statement Clusters 83 

Figure 5.1  Remote Sensing Clumped Abstract Phrases Map 99 

Figure 6.1  Magnetic Storage Home Page 108 

Figure 6.2  General Organizational Monitoring 108 

Figure 6.3  Magnetic Storage Conferences and Journals  
  Web Page 109 
 
Figure 6.4  Cross-Correlation Map 110 

Figure 6.5  Global Monitoring 111 

Figure 6.6  Global Activity Over The Years 112 

Figure 6.7   The Leading Universities in Magnetic Storage  
   Research 113 
 
Figure 6.8  Cumulative Magnetic Storage Records 114 

Figure H.1   Fuel Cell Zipf Distribution Graphs 155 

Figure H.2   Magnetic Storage Zipf Distribution Graphs 156 

 xi



Figure H.3   Remote Sensing Zipf Distribution Graphs 157 

Figure H.4   Geographical Information Systems Zipf  
Distribution Graphs  158 

 
Figure H.5   Pollution Monitoring Zipf Distribution Graphs 159 

Figure I.1   Fuel Cell Keywords Cluster Maps 160 

Figure I.2  Fuel Cell Cleaned Abstract Phrases Cluster Maps 161 

Figure I.3  Fuel Cell Clumped Abstract Phrases Cluster Maps 162 

Figure I.4  Magnetic Storage Keywords Cluster Maps 163 

Figure I.5  Magnetic Storage Cleaned Abstract Phrases  
  Cluster Maps 164 
 
Figure I.6  Magnetic Storage Clumped Abstract Phrases  
  Cluster Maps 165 
 
Figure I.7   Remote Sensing Keywords Cluster Maps 166 

Figure I.8  Remote Sensing Cleaned Abstract Phrases  
  Cluster Maps 167 
 
Figure I.9  Remote Sensing Clumped Abstract Phrases 
   Cluster Maps 168 
 
Figure I.10   Geographical Information Systems Keywords  
  Cluster Maps 169 
 
Figure I.11   Geographical Information Systems Cleaned Abstract  
  Phrases Cluster Maps 170 
 
Figure I.12   Geographical Information Systems Clumped Abstract  
  Phrases Cluster Maps 171 
 
Figure I.13   Pollution Monitoring Keywords Cluster Maps  172 

Figure I.14   Pollution Monitoring Cleaned Abstract Phrases  
  Cluster Maps 173 
  
Figure I.15   Pollution Monitoring Clumped Abstract Phrases  
  Cluster Maps  174 

 xii



LIST OF ABBREVIATIONS 

 

AMA American Marketing Association 

CEO Chief Executive Officer 

CIO Chief Information Officer 

CTI Competitive Technical Intelligence 

IR Information Retrieval 

KDD Knowledge Discovery in Databases 

NLP Natural Language Processing 

NTIS National Technical Information Service 

R&D Research and Development 

TLC Technology Life Cycle 

TOA Technology Opportunities Analysis  

TPAC Technology Policy and Assessment Center 

 

 

 

 

 

 

 

 xiii



SUMMARY 

 

This research developed a comprehensive methodology to quickly monitor key 

technical intelligence areas, provided a method that cleanses and consolidates 

information into an understandable, concise picture of topics of interest, thus bridging 

issues of managing technology and text mining. This research evaluated and altered some 

existing analysis methods, and developed an overall framework for answering technical 

intelligence questions.  A six-step approach worked through the various stages of the 

Intelligence and Text Data Mining Processes to address issues that hindered the use of 

Text Data Mining in the Intelligence Cycle and the actual use of that intelligence in 

making technology decisions.  A questionnaire given to 34 respondents from four 

different industries identified the information most important to decision-makers as well 

as clusters of common interests. A bibliometric/text mining tool applied to journal 

publication databases, profiled technology trends and presented that information in the 

context of the stated needs from the questionnaire.  

In addition to identifying the information that is important to decision-makers, 

this research improved the methods for analyzing information.  An algorithm was 

developed that removed common non-technical terms and delivered at least an 89% 

precision rate in identifying synonymous terms. Such identifications are important to 

improving accuracy when mining free text, thus enabling the provision of the more 

specific information desired by the decision-makers. This level of precision was 

consistent across five different technology areas and three different databases. The result 

is the ability to use abstract phrases in analysis, which allows the more detailed nature of 

abstracts to be captured in clustering, while portraying the broad relationships as well. 

 xiv



CHAPTER 1 
 

INTRODUCTION 
 

Each year billions of dollars are spent on Research and Development projects.  

Over $275 billion was spent on R&D in 2001 alone (R&D Magazine, 2002). At a time 

when firms faced a few well-known competitors, informal intelligence gathering 

practices were sufficient. However, frequent changes in technology and increased 

competition, among other factors, means technology has been difficult to predict, while at 

the same time companies must now act quickly upon new innovations  (Ashton and 

Klavans, 1997).  Technology managers are faced with the challenge of identifying 

emerging technologies with the greatest economic potential.  The project decisions faced 

by these decision-makers may involve basic science research, specific product 

development, or purchasing decisions. Which project or product should they support? In 

answer to these challenges, competitive intelligence efforts have arisen in recent years. It 

was not until 1986 that The Society of Competitive Intelligence Professionals was formed 

and the associated journal was initiated in 1990.  

Competitive Intelligence (CI) is the organizational process for systemically 

collecting, processing, analyzing and distributing information about an organization’s 

external environment to the people who need it (Hohhof, 1997).  Many decisions affected 

by external forces, such as entering new markets and businesses, investing in and 

acquiring new technologies; making major capital investments; selecting strategic 

partners, forging alliances; and implementing trade and public policy initiatives, require 

intelligence support- (Herring, 1998).  A CI system may track: a competitor’s capabilities 

and strategies; the industry’s structure and trends; the market and customer behavior; 
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political, economic, and social forces; and technological developments (Hohhof, 1997).    

The essence of any CI system is its contribution to better and more timely decisions, 

which can have strategic implications for the survival of the organization (Gilad, 2000)  

This particular research focuses on the technological aspects of CI affecting all of 

the decision areas mentioned above, including investments, acquisitions, partnerships, 

policy, and new business ventures. The issues related to technology and decision-making 

are not new.  In 1967 Erich Jantsch recollects that, before 1960, technological forecasting 

was deemed “a purely exploratory exercise.” And in the same book he states, “Today, all 

leading forecasting institutes and consulting firms producing technological forecasts-… -

regard their forecasting function as closely related to their consulting function in 

corporate planning.” In 1971, Marvin Cetron and Christine Ralph were writing about 

methods to help research and development planners to identify “what appears to be the 

most fruitful areas for the investment of funds… to provide a basis for decisions to 

initiate, increase, cut back, or terminate particular research projects… [and to] discern 

where and when he will be in jeopardy if no action is mounted to effect a timely response 

to the hazards unseen.” Their research concluded that 95% of companies conducted 

formal long-range planning activities, that among the most relevant external factors were 

competition, technological change, diminishing product lifetime, and lengthening market 

lead-times; that technological forecasts were an important input into the planning 

process; and that management information systems could be employed in future planning 

systems (Cetron and Ralph, 1971). Over the years, there have been a number of names 

and method variations to provide substantive information to technology decision-makers. 

Some of them are:  
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• Technological Forecasting: The prediction of innovations and advances in a 

particular technology (AMA, 2004) 

• Scientometrics: The statistical analysis of research patterns in the physical and life 

sciences (Wolfram, 1994) 

• Competitive Technical Intelligence: The analytical process that transforms 

disaggregated competitor technology data into relevant and usable strategic 

technology knowledge about competitors’ positions, size of efforts, and trends 

(Coburn, 1999).                                                             

• Bibliometrics: counts of  publications, patents, or citations to measure or interpret 

technological advances (Watts and Porter,1997) 

• Innovation Forecasting: is the attempt to scientifically predict which technologies 

will successfully evolve through the development cycle into application (Watts 

and Porter, 1997).   

This research will use the term “Technical Intelligence.” Technical Intelligence 

implies information packaged to provide insight beyond mere information. The word 

competitive is not used because, although even research labs can be in competition for 

funding and internal technology offices, such as IT departments,  may be in competition 

with potential outsourcing companies, most individuals tend to think only of private 

enterprises in product competition and not simply the “competitive” position of the firm 

or department itself. The focus may end up only on the direct “competitor,” whereas 

technical intelligence encompasses industry knowledge, competitor knowledge, and 

knowledge of suppliers and enabling technologies.   
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As mentioned previously, the need for technical intelligence is not new. However, 

the environment is new. In 1967, Jantsch wrote “There is even one additional obstacle in 

the present case: there exists nothing which resembles a systematic abstract service.”  In 

modern times, there are numerous abstract services.   Vast amounts of information are 

easily accessible; however, it is so vast as to be impossible for a manager to stay current 

on technology advancements. Dialog, the leader in providing online-based information 

services to organizations, has more than 800 million unique records of key information 

contained in 900 different databases (Dialog, 2004) The volume of scientific writing is 

growing exponentially (Cunningham, 1998) For instance, a search for all 1970 records in 

EI Compendex, a database of Engineering Research, indexed 44,677 abstracts. In 1996, 

that same database indexed over 436,000 abstracts. And in the information age, 

effectively managing knowledge, the most important company asset, is critical to 

business (Tjaden, 1998).  As a result, technology managers are in need of additional tools 

to support the decision-making process.   

Bibliometrics and “text mining” have arisen offering approaches to analyze and 

contextualize large amounts of information (Watts et al, 1999).  Bibliometrics is counting 

publication, patent, or citation activity (Watts et al. 1998). Text mining involves 

extracting information from text and mining the text for discovering rules and patterns 

(Nasukawa and Nagano, 2001). 

One community, that bridges the issues of managing technology and text mining, 

focuses on using published information to aid in the technology decision-making process. 

The Technology Policy and Assessment Center at Georgia Tech (TPAC) formulated an 

area entitled “Technology Opportunity Analysis (TOA), which uses a bibliometric/text 
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mining tool with publication databases in order to profile trends in research and 

development (R&D) and can help identify emerging or unfamiliar research that may 

intersect the functional interest of the client. This research will investigate the 

development of these methods for further utilization in Technical Intelligence gathering 

activities.  

While there are many sources for information and methods to analyze 

information, this project seeks to develop a comprehensive methodology to quickly 

monitor key technical intelligence areas, in order to streamline aspects of the technical 

intelligence gathering effort, providing a method that quickly cleanses and consolidates 

information into an understandable, concise picture of topics of interest.  This approach 

caters to the technology manager’s need for timeliness and completeness. This research 

will determine which journal publication database metrics may be useful to technology 

managers. It will evaluate and alter some existing analysis methods for more accurate and 

effective results, and develop an overall framework to obtain expedited answers in a user-

friendly, consistent format (McDonald and Richardson, 1997). This research is important 

because it has the opportunity to provide a powerful tool that will help technology 

decision-makers quickly get a picture of not only the general landscape of the technology 

that they are reviewing but also identify important changes in trends that might not be 

achievable in any other way. Monitoring technologies can take a whole new direction. 

The goal of this research is to provide a methodology that can be integrated into larger 

monitoring efforts and provide analysis that can be adjusted with feedback from the 

target audience.  

 5



CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 

This research is investigating both improving the tools utilized for text analysis 

and bridging analysis tools with the intelligence gathering processes. Therefore, this 

literature review deals with several topic areas. It seeks to explore the relationships 

among three different stakeholder groups: Competitive Technical Intelligence 

Professionals, Technology Decision-Makers, and Text Data Mining Researchers. The 

competitive technical intelligence professionals gather and analyze a variety of 

information related to the industry, market situation, and competitors’ activities for the 

second group, the technology decision-makers. These individuals must make decisions 

about strategic efforts in researching and developing technologies or purchasing 

technologies.  While the first two sets of stakeholders have a clear overlap in interests, 

the third group, the text-mining professionals, work in the distinct area of analyzing text, 

an analysis method that has only minimally been applied to the competitive or technical 

intelligence domains. The core of this research is the formulation of technical intelligence 

for the technology decision-maker incorporating text mining approaches. 

In order to fully explore the literature in these areas, this review will be separated 

into two sections: the first on technical intelligence and the second on text mining. The 

first section will include a general discussion of technical intelligence and an in-depth 

review of the research related to each step of the TI process. Those steps include 

Planning, Collection, Processing, Analysis, and Dissemination. The interaction between 

decision-makers and TI professionals will be discussed in the Planning step, since the 
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purpose of the planning stage is to scope the intelligence that will be provided to those 

decision-makers. The most in-depth research coverage will take place at the analysis step, 

which will include the foundations of TI analysis leading up to current methods of TI 

analysis. Included in this step will be a discussion of the current methods that have begun 

to incorporate basic text mining methods. Finally, this first section will conclude with a 

discussion on measuring the effectiveness of TI.  

The second section of this literature review is an overall discussion of the steps in 

the text mining process and will be organized around the steps in text mining, in the same 

way as the first section revolves around the established TI process. While this research is 

primarily focused on cleansing text data and mining text for analysis purposes, the overall 

text mining process includes Retrieval, Extraction, Cleansing, Mining, and Visualization.  

In discussing the literature in technical intelligence and text mining in separate 

sections, this review reflects the current situation where there is very little purposeful 

overlap between these two groups of researchers. However, this research seeks to 

increase the intersection between these areas. 

2.1 Technical Intelligence 

Technical Intelligence (TI) is part of the overall Competitive Intelligence (CI) 

process. TI is that component of the CI system that supports project and scientific 

funding decisions and helps decision-makers calculate the relative strength of other 

organizations (Hohhof, 1997).  It emphasizes the R&D function of an organization, but 

can also encompass other technology-driven activities such as strategic planning, 

technology acquisition, and process equipment investments.  Since TI is a subset of CI, 

much of the research concerning general CI covers the TI aspect.  There are only two 
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major books written on the topic of Technical Intelligence, in the modern context, each 

offering a definition of TI. Ashton and Klavans define TI as 

“…the business-sensitive information on external scientific or 
technological threats, opportunities or developments that have the 
potential to affect the company’s competitive situation.”  
 

They go on to emphasize that TI is externally focused, business-sensitive, and action-

oriented.  

Coburn defines TI as 

“The analytical process that transforms disaggregated competitor 
technology data into relevant and usable strategic technology knowledge 
about competitors’ positions, size of efforts, and trends.” 
 

There are two noticeable differences in these definitions. The first is that  Ashton-

Klavans defines TI as “information” and the Coburn definition defines TI as a 

“process.” Secondly, the Coburn definition identifies TI as information about the 

competitor, whereas the Ashton-Klavans definition leaves the definition open to 

any relevant external information, recognizing that competitive advantage can be 

affected by government, customers, suppliers, and general scientific 

developments, in addition to competitor actions.  While both books cover 

generally the same areas, the foundational difference in viewpoint is evident in 

the fact that the Ashton-Klavans book covers broader issues of understanding the 

technology and science of an industry. On the other hand, while both authors 

make it clear that TI should be usable for strategic action and discuss areas where 

TI can aid in the strategic decision making process, the Coburn book deals more 

with the process of implementing those actions. For example, the last five 

chapters of the Coburn book discuss Strategic Alliances. In any case, TI starts 
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with the gathering of information and ends with the actions performed based on 

that information.   

2.1.1 The Benefits of Technical Intelligence 
 
  Coburn and Ashton-Klavans essentially state the same set of objectives for TI. 

Coburn lists the purpose of TI as: 

1) Avoidance of being blindsided, 

2)  Increasing external awareness and focus 

3) Acquisition of Technology 

4) Input for a component of a Tactical Plan of Action 

5) Input for a component of a Strategic Plan 

Ashton-Klavans list the objectives of TI as:  

1)   To provide early warning of external technical developments or company 

moves, 

2)    To evaluate new product, process, or collaboration prospects created by 

external technical activities, 

3)   To anticipate and understand S&T related shifts or trends in the competitive 

environment for organizational planning. (Ashton and Klavans, 1997)  

These objectives also reveal the difference in definitions by the two books. 

Coburn’s objectives reflect more process orientation, while Ashton-Klavans work 

relates more to the information itself and the need for a broad reach of useful 

information. 

Ashton and Klavans (1997) state that TI is not for every company. The companies 

that benefit the most from TI –  
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1) Operate in technologically dynamic industry environments where the pace of 

change is rapid or new technologies are likely to surface  

2)  Emphasize technology-intensive products where technology is a 

differentiating factor, product introduction rate is fast, market entry timing is 

important, regulatory approval of new products is complex  

3) Manage a significant R&D portfolio   

4) Expect a high share of near-term business revenue growth from new products  

Some of the industries that fit into these categories are computers, 

telecommunications, pharmaceuticals, and energy.  For such companies, technology is a 

basic determinant of a company’s competitive position and is the source of future growth. 

A company, of course, does not have to fit into all of the aforementioned categories in 

order for technology to be a basic determinant of position and growth. The participants in 

this study were selected based on their meeting at least two of the characteristics.  Dou 

(1999) asserts that TI focused on the development of new products or new services is 

strongly linked to innovation, which can better benefit the “Contender” companies rather 

than “Native” or “World Class” ones. And while large corporations may be more 

equipped to support full CI department feeding R&D efforts, the lack of finances may be 

the best incentive for small companies to engage in TI. Raymond goes a step further. He 

states that it is essential for SMEs to use intelligence to detect trends and understand 

strategic issues that stem from the global knowledge economy (Raymond, 2003) Brandau 

and Young (2000) discuss how CI in start-ups can occur. The main success factors for 

start-up efforts are speed, simplicity, organization, efficiency, and effectiveness. If a 

company has incorporated intelligence gathering and utilization at an early stage, these 
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activities will become part of the culture. They list many resources that small firms can 

utilize.  Resources for intelligence are becoming more available for SMEs. Dialog, who 

offers access to a a variety of databases, has begun offering a flat-fee set of services 

aimed at small businesses (Anonymous, 2002). In addition, Smith asserts that it is a myth 

that competitive analysis is only necessary in highly competitive environments or that it 

is costly and therefore only necessary for major decisions (Smith, D. C. and Prescott, J. 

E., 1987). Tibbetts (1997) agrees. He asserts that  

“Any of these companies can benefit from TI. Technology monitoring can lead to 
the discovery of new technologies, trends, research in progress, emerging or 
advanced technologies, improved processes and production methods, outsourcing 
possibilities and expertise, technology breakthroughs, proven products, potential 
strategic alliances, organizations doing research in targeted fields, potential 
mergers or acquisitions, new markets, new applications; regulations, standards, 
and laws; solutions to technological problems.” 
 
CTI can benefit a  company by eliminating negative surprises, improving 

portfolio management, improving the selection of projects, and identifying competitive 

threats (Ashton and Klavans, 1997). For example, Davison (2001) mentions the example 

of Dr. Eger, whose pharmaceutical company saved $16million dollars when the CI 

department discovered that they were too far behind the competition in development to 

catch up. Another example, provided by Herring (1993), concerns a company Vice 

President who discovered at a talk that their company’s next big innovation was already 

being researched at a small Far Eastern company. A publication search revealed that the 

company had an 18 month advantage over their company. The small firm was acquired 

and with the combined resources, the introduction date was accelerated by one year.  A 

study by Prescott and Smith (1989), whose sample consisted of 172 corporate CI 

practitioners from the membership of the Society of Competitive Intelligence 
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Professionals (SCIP) found that the most beneficial outcomes of general CI efforts are the 

“Identification of New Business Opportunities” and the “Sharing of Ideas”. Other 

benefits named included “Improving their ability to Anticipate Surprises” and 

“Improving the Managers’ Analytical Skills.”  Ten years later, another study, involving 

137 CEOs and CIOs showed that these individuals valued CI as important for identifying 

both threats and opportunities and that CI was useful in deciding Business Strategies 

(Vedder et. al., 1999.)  Appendix A identifies numerous areas in which TI can be applied 

to benefit a company.   

2.1.2 Technical Intelligence Viewpoints 
 

There are different categorizations and breakouts that affect the approach to TI. 

For example, the most common breakout of TI is Coburn’s discussion of TI purposes: 

strategic vs. tactical (Davison, 2001; Parker, 2000; Prescott and Smith 1989). Davison 

defines strategic CI output as being “forward looking to accommodate the need for 

successful long-term planning. He defines tactical CI as achieving “a particular short 

term aim.”  An example of tactical a TI decision would be whether or not to invest in 

certain equipment. Davison discusses tactical vs. strategic decision in the context of 

measuring results, an issue which will be discussed later.  While Prescott and Smith 

(1989) also find that CI is equally applicable to strategic and tactical decisions, they also 

categorize CI activities based on the mission. They define three types of missions: 

information, offensive, and defensive. Informational missions are for general 

understanding purposes. Offensive missions are geared at understanding the competitor’s 

organization, such as competitor vulnerabilities, while defensive missions are focused on 

the internal organization and actions that competitors may take against the organization, 
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such as recognizing gaps in the organization’s capabilities and how the competitor may 

obtain competitive advantage based on the organization’s internal weaknesses.  

Comstock and Sjolseth (1999), in their case study of Weyerhaeuser Co., 

demonstrate how the categories of TI affect the structure of the R&D organization. 

Weyerhaeuser supports three categories of R&D activities: Core research Programs, 

Strategic Programs, and Development Projects (tactical). They use Technology 

Assessment to understand how external events affect the business needs. The Technology 

Assessment activities have a direct impact on the activities of the three types of 

programs.  One divergent view of CI is presented by Burkhart (2001). She states that TI 

should be considered in terms of the company’s or industry’s location on the product life 

cycle.  The product life cycle describes the developmental evolution of products, 

companies, and industries, consisting of introductory, growth, maturity, and decline 

stages.  Burkhart states that if your industry is at an early stage, recognizing “surprise” 

competitors should be the focus of intelligence gathering. On the other hand, if the 

industry is moving toward maturity, intelligence that helps the company maintain market 

share is most important. Linking intelligence with life cycle information can help 

management better prepare for the future. Some of the intelligence may be used to help 

define the location of the product, industry or company in the Life Cycle. Appendix B is 

a table demonstrating the particular intelligence questions that are most appropriate for 

different Life Cycle Stages.  

Another categorization of TI divides technical intelligence activities by the target:  

technology surveillance and organizational surveillance. Technology surveillance is the 

systemic, continuous watching or searching external environment for relevant technology 
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developments or trends, includes monitoring and analysis. Technology surveillance can 

be used to:  

1) Provide technical descriptions of existing or emerging technology systems, 

developments, events,  trends, or capabilities  

2) Identify or predict significant shifts in the rate of progress in an area or the 

occurrence of technical breakthroughs that will make a new capability technically 

or economically feasible  

3) Identify when substitute of competing technologies are becoming available. 

4) Assess the impact on the directions and rate of technology development from new 

market-influencing technology forces such as government regulations or shifts in 

consumer preferences.  

Organizational Surveillance entails efforts to:  

1) Recognize patterns of activity by other organizations that can have consequences 

for a firm’s market relationships  

2) Identify emerging capabilities or external organizations strengths and weaknesses  

3) Compare products and methods of the state of the art to others  

4) Compare a competitor’s product or process technology performance or cost data 

with past records to discern trends (Ashton & Klavans, 1997).   

The metrics evaluated in this research aid in both technology and organizational 

surveillance. 

Taken as a whole, these findings suggest that many organizations would benefit 

from CI, if the benefits of CI are provided in forms that meet the needs of the users – the 

technology managers themselves – and if they are available in cost-effective, user-
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friendly formats.  This review next considers the literature support for the six- step 

methodology for gathering technical intelligence.     

2.1.3 Technical Intelligence Methodology 
 

There seems to be a substantial consensus concerning the general process model 

for gathering intelligence. Coburn (1999) provides the most simplistic model, breaking 

activities into three steps: Data Collection, Data Analysis, and Action. At the collection 

stage, Coburn takes the perspective that good design will dictate that no more information 

should be gathered than necessary. At the Data Analysis stage, Coburn emphasizes the 

need to bring the data together into a cohesive story using good judgment. Finally, three 

criteria must be met in order to perform the Action stage: the data must be believable, the 

decision maker must trust the analysis, and the conclusions must represent a logical 

fallout from the analysis. In other words, what to do must be obvious. Stacey (1998) 

concurs with these steps but adds Planning to the front end of the steps and Evaluation at 

the tail end.  Ashton and Klavans (1997) provide a more complex model. They separate 

Delivery from the Application Step and demonstrate the relationships among the steps in 

the system, including the input of the intelligence needs and the output of the impacts of 

the actions taken. More important than an academic model of the process which is 

generally agreed upon is to consider examples of the CI process in operation.  This 

section next examines several of the steps in greater detail, in the context of the model 

(Figure 2.1), another example of a more complex model.  This model, presented by 

Herring (1999), is the traditional intelligence cycle proposed by the Central Intelligence 

Agency. It will be used as the basis for the discussion of the TI process.   
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Figure 2.1 Traditional Intelligence Cycle. 

 

2.1.3.1 Step One: Planning and Direction- Identifying Key Intelligence Needs 

The traditional intelligence cycle model actually begins with the information 

needs. Herring has been at the forefront of researchers who are concerned with 

determining the key intelligence needs of the decision-makers.  However, generally very 

little research has been done to determine the information that decision-makers actually 

want.  Herring notes the lack of research on determining the information needs of 

decision-makers and points out that a mismatch between the needs of decision-makers 

and the information provided is cited often as the reason decision-makers do not use 

information provided by competitive intelligence professionals. Herring first embarked 

on a study to determine national level needs for Science and Technology intelligence.  

His protocol for determining these needs was then adapted to corporate interests. Herring 

determined that a company’s intelligence needs fall into three functional areas: Strategic, 
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Early Warning, and Key Players. He then developed a two-level protocol that can be 

utilized in order to determine the information needs of the decision-maker. This protocol 

was adapted into the first stage of this study to determine the needs and expectations of 

the decision-makers (Figure 2.2) 

_______________________________________________________________________ 

 HERRING PROTOCOL 
 

1. Business Decisions and Strategic/Tactical Topics 
 

What decision and/or actions will you/your team be facing in the next ___ 
months, where CI could make a significant difference? 
 

a. How will you use that CI? 
b. When will it be needed? 
 

2. Early-Warning Topics 
(Begin by identifying/discussing a past “surprise” in your industry, business, or 
company.) 
Identify several potential surprise topics that you do not want to be surprised by. 
For example, new competitors, technology introductions, alliances & acquisitions, 
regulatory changes, etc. 
 

3. Key Players in Our Marketplace: Competitors, Customers, Suppliers, 
Regulators, etc. 
Identify those players you believe the company needs to better understand. 
a. Who are they?  
b. What specifically do we need to know?  
__________________________________________________________________ 

Figure 2.2 The Herring Protocol 

 

Despite the process presented by Herring, other research reveals that there is a 

general disconnect between the decision-maker’s needs and the work of intelligence 

analysts.  Breeding (2000), in an article based on a case study of Shell Services 

International (SSI), and especially the entity that provided IT services for the Shell 
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operating companies, provides insight into the concerns of users of CI systems.  Breeding 

identifies the problems described by users of CI: information is too shallow, the 

credibility of the information, the timeliness, and managerial need for some say on how 

the report is assembled.   

Research and subsequent papers (Porter et al 2000, Porter et. al, n.d.) by the 

Georgia Tech Technology Policy and Assessment Center attempts to bridge the 

communication gap between Information Analysts and Information Product users. In one 

project, 26 technology professionals and managers were interviewed in order to 

determine the factors that affect the utilization of information products in their decision-

making. The follow-up research resulted in a checklist of ten action items for managers to 

improve the likelihood of receiving usable Information from their Information Analysts. 

2.1.3.2 Step Two: Collection- Intelligence Gathering and Reporting  

 Gathering Information involves two elements: the sources and the attack plan to 

obtain information from those sources. In order to perform these activities, a wide variety 

of sources may be used to find financial, market, legislative, competitor, and 

technological information. The possibilities and techniques are endless, especially when 

considering the methods to obtain expert opinion.  Mockler (1992) names daily employee 

reporting systems, including that of Kodak, which developed an approach to gather oral 

communications from its employees worldwide.  Similarly, as mentioned in Teo (2000), 

a number of companies use the internet to review their competitors’ advertising, and 

targeting strategies. However, this discussion will address only text sources that can be 

mined to provide information relevant to technology decisions.  
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 Gathering can either be assigned to an individual or department, as is often the 

case in large companies or, as is more typical in R&D laboratories, each expert is 

responsible for keeping up in a specific field.  In either case, the internet has become an 

important source for gathering intelligence.  A survey by Teo (2000) found that 600 

companies in Singapore showed above average agreement that the internet was useful to 

review articles in industry/ trade websites, monitor government information, and check 

on competitors’ products/services. By using the internet, a company can monitor 

competitor activities, track customer viewpoints, seek new ideas, and gain international 

expertise. The Internet can also be a source for obtaining customer feedback, which can 

be stored and mined for trends (Teo, 2000).   

 While a general Internet search on a search engine, such as Google, may provide 

interesting information or lead to a new useful database, the most comprehensive and 

useful approach is to search external databases. A number of companies make use of 

services such as NEXIS, Dow Jones News/Retrieval, and Dialog (Mockler, 1992).    

Cambridge Scientific Abstracts is another portal for access to a large number of 

databases. Research reveals numerous sources that can be utilized for various purposes. 

Business Information can be found using ABI/Inform at Proquest, Hoovers on-line, 

EBSO business index, among other databases of business articles. Press Releases can be 

found at LEXIS-NEXIS, and NTIS provides or a service to find government publications.  

There are a number of other government databases available, also. Other services are 

more specialized. Some of the leading databases are: 
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• Science Citation Index- SCI® provides access to bibliographic information, 

author abstracts, and cited references found in 3,700 of the world's leading 

scholarly science and technical journals. 

• Chemical Abstracts Service (CAS) has indexed and summarized  23 million 

chemistry-related articles from more than 40,000 scientific journals,  patents, 

conference proceedings and other documents.  

• MEDLINE is a database of abstracts maintained by the National Library of 

Medicine containing over 8.4 million abstracts from 3,800+ medical journals. 

• EI Compendex covers almost seven million records referencing 5,000 engineering 

journals and conference materials dating from 1970.  

• INSPEC, produced by the Institution of Electrical Engineers, contains 5.8 million 

records from over 4,000 technical journals, 2,000 conference proceedings plus 

books and reports annually from over 60 countries in physics, electrical 

engineering, electronics, computing, control and information technology. 

• Derwent World Patents Index (DWPI) provides access to information from more 

than 22.9 million patent documents. 

•  Pollution Abstracts contains almost 300,000 records on scientific research and 

government policies on pollution, including coverage of journal literature, 

conference proceedings, and hard-to-find documents.  

Some of these sources are fee-based while others, such as Medline, provide access to 

abstracts for free.  
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2.1.3.3 Step Three: Processing and Storage- 

This step includes the transformation of information into a form usable by 

analysts through decryption, language translations, and data reduction.  This area is 

pertinent to this research in that unstructured text must go through a cleaning process in 

order to retain relevant phrases and reduce the noise that is a normal function of 

language. Extensive discussion of this topic will be included in the text mining section of 

this literature review.  Decryption, translation, and storage are outside of the scope of this 

research.  

2.1.3.4 Step Four: Analysis  

 With all of these sources, it is important to have a systematic approach to analysis 

of the new data for emerging trends and new direction, in research, and there are a 

number of techniques that have been developed for such a task.  However, before 

discussing the modern techniques, it is important to first understand more about the 

history of analysis.  Around 1953-54, corporate long range planning became heavily 

discussed and recognized.  Technological forecasting began to be used around 1959-

1960. However, it wasn’t until 1965-66 that the integration of the two areas started to 

occur (Jantsch, 1967). By 1969, a book was written entitled “Technology Forecasting and 

Corporate Strategy” (Wills et al., 1969) that demonstrated maturing of the idea that 

technology was strongly related to strategy. The “Technological Forecasting” literature 

represented the first attempts to apply analytical methods to data in order to provide 

intelligence to technology decision-makers. The challenge to early forecasters was the 

availability of information. Therefore, the early methods were developed in the 

environment of few data points. The Delphi method was the main approach to obtain 
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industry-wide information. The early methods were not based on systemic literature 

evaluation, but were applied primarily to specific elements of a technology, such as price 

or speed (Jantsch, 1967).   

 In the Information Science world, terms like “content analysis” had already begun 

to appear, although the articles were not focused particularly on science and technology 

content. By 1972, in Martino’s 700 page book entitled “Technological Forecasting for 

Decision-Making,” content analysis received a one paragraph description. Around 1972, 

bibliometrics and citation analysis appeared in the literature. Next, and representing an 

interesting trend in the literature, the discussion of breakthrough technologies and 

substitution became more popular.  An analysis of the “technological forecasting” 

literature revealed that, prior to 1975, very little was written about technological 

breakthroughs, at most one article per year. Then, in 1975 three articles were written and 

the upward trend continued. In 1978, 10 articles were written mentioning words like 

breakthrough and substitution theory. Harold Linstone and Devendra Sahal (1976) edited 

a book that was a collection of articles concerned with technological substitution. The 

book discusses the shortened Technology life cycle and the impact on management.  

During this same time period, patent analysis and scientometrics appeared as methods to  

quantify science and technology.   

  Patent Analysis and Scientometrics are basically categories of Bibliometrics, and 

involve analyzing text information in text databases by counting. These numbers are 

indicators of technological activity.  An “indicator” is a statistic used to measure 

something intangible. Technology indicators are statistics that measure technology 

indirectly. They include, 1) R&D expenditures, 2) number of scientists and engineers, 
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and 3) number of scientific and technical publications (Ashton, Klavans, 1997).  Studies 

have shown that when large numbers of patents are analyzed, the number of patents is 

positively associated with the level of technological activity (Ashton, Klavans, 1997).  

Moreover, there are numerous bits of information in patents that can be counted and 

analyzed.  For example, data can be obtained by comparing entities by classification, 

calculating proportion of patents in classes divided by the company’s proportion of all 

patents, in order to measure strengths and weaknesses; monitoring inventors; and 

analyzing changes in levels of patenting over time. There are all analysis that can be 

conducted on patents (Ashton, Klavans, 1997). Other metrics include the size and 

composition of a patent family, the number and timing of subsequent patent citations and 

the timing of the decision to let a patent lapse (Ashton and Klavans, 1997).  Work by 

Rajman and Besanon (1998) uses textual and statistical methods with correspondence and 

cluster analysis to identify technology interactions and trends. Their research aims to 

profile the research of various countries. Additionally, studies of the scientific literature 

have found that in rapidly changing fields, the references tend to be made to more recent 

articles. The metric representing the speed of the Technology Life Cycle is the median 

age in years of the references on a company’s recent patents. Analyzing patent indicators 

is a good start for quantifying technological activity because patents represent perceived 

economic potential, contain a good level of detail, and contain information not found in 

other places. However, the analyst must be careful because, while counting patents 

reveals the amount of activity. Notice that the information can be misleading because the 

importance of the patent varies.  Also, not all discoveries are patentable, and others are 
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patented just to prevent others from doing so; and evidence from one country doesn’t 

represent global technological activity (Ashton, Klavans, 1997). 

 Similar approaches can also be applied to publication databases, as will be done in 

this research.  The analysis of publication databases as a means of quantifying science 

and technology was initially referred to as Scientometrics. Other names that refer to like 

concepts are Informetrics, Bibliometrics, and Text Data Mining (TDM). Publication 

databases, which hold publication information primarily from entities with cultures of 

publishing, such as universities, represent research in its earliest stages (Tibbetts, 1997). 

Therefore, technological terms tend first to appear in technical publication databases 

years before patents, and up to a decade before the same terms appear in business 

periodicals (Courseault, 2001). For example, microelectromechanical systems first 

appeared in the INSPEC database as early as 1993 and did not appear in Business Index 

until 1998.  Since much of the work in refereed journals and conferences is early stage 

basic research, it has a long shelf life, allowing for trend tracking over time. Some ways 

publication databases are utilized include the evaluation of national scientific capabilities, 

policy evaluation, and compiling intelligence.  Publication databases can be analyzed in 

order to: enhance information retrieval, identify the technology infrastructure (which 

Kostoff defines as the authors, journals, and organizations), identify main themes in the 

literature and discover relationships between different fields of research and elements of 

the infrastructure.  

The BESST Project is an example of using publication databases to evaluate 

national capabilities. The project involved a study in the UK in which publication 

indicators were used to determine the amount of scientific output in different fields, map 
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changes in the collaboration efforts of scientist within the UK and internationally, and to 

explore policy-relevant questions (Katz and Hicks, 1997).   

Georgia Tech Technology Policy and Assessment Center (TPAC) provides other 

examples. The TPAC website contains a recent paper that analyzes Iraqi engineering over 

a fifteen year period (Porter, 2003). Other TPAC examples include the Technology 

Opportunities Analysis (TOA) method that the TPAC research team led by Alan Porter 

has been developing since the early 1990s. They include an early study for the Malaysian 

government profiling the correlation between their R&D and actual industrial activity, 

and the study that initiated the TOA process which was a project to “identify Japanese 

companies actively developing electronic packaging to contact in arranging a US study 

mission (What is TOA?, (n.d.)).  The TOA process for analyzing publication databases 

has moved from simple counting of basic information located in fields to a wide range of 

applications. Indicators such as Technology Life Cycle Status, Innovation Context 

Indicators which represent topic groupings and relationships, and Product Value Chain 

and Market Prospects Indicators, based on gap analysis of actual research versus needed 

research for a technology to become operational, have been formulated. Studies have 

been performed on ceramic engines, fuel cells and a host of other technologies (Watts 

and Porter, 1997 & 1998). The Hot Tech project is in progress and represents an attempt 

to automate the determination of the aforementioned categories of indicators (Hot 

Technologies, (n.d.)).   

Moreover, the methodology is expanding to include Text Data Mining. Whereas 

bibliometrics refers to simple counting, Text Data Mining refers to the processes used to 

extract meaningful relationships from a large corpus. A study on Interoperability reveals 
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a process where a clustering technique is utilized in a process to identify unique 

information in text. The methodology captures terms that are related to the central themes 

of the text but are found at the outskirts of those themes. The study finds that those terms 

are likely to fall into one of three categories: a new application of an existing concept, an 

emerging capability, or noise (Watts et al, 2000). Alan Porter contributes to this body of 

knowledge in a Futures Research Methodology book chapter in which he identifies 

numerous applications of text data mining for technology foresight purposes. One area of 

research that he references is that of Kostoff and Swanson in which text data mining is 

used to identify cross-relationships between topics in a body of research not evident to 

researchers in individual domains (Porter, 2003). 

 Kostoff, in the Office of Naval Research, publishes heavily in applying text data 

mining to science and technology questions.  Like TPAC, Kostoff also utilizes examples 

of technology studies in order to discuss methodology. One important difference in these 

two research teams is that while the Georgia Tech team is working toward automated 

technologies through the Hot Tech initiative (Porter, 2003), Kostoff rejects the notion of 

automated processes and stresses strategies that include expert opinion more extensively. 

 Kostoff presents a general methodology for conducting Science and Technology 

Text Data Mining which is framed in three major steps: Information Retrieval, 

Information Processing, and Information Integration. Retrieval is the selection of text to 

analyze, Processing is the application of the computational approaches, and Integration 

combines the expert interpretation to the computational results. In this paper, Kostoff 

uses the Biomedical domain to present the value of Science and Technology Text Mining 

along with his generic approach and discusses roadblocks to high quality results (Kostoff, 
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2001).  The roadblocks discussed include the limitations created by using a limited 

number of databases, the variation in the quality of information contained in abstract 

records between different databases, and the difficulty in retrieving a corpus that is both 

comprehensive and contains a high percentage of relevant documents. In another paper, 

Kostoff and DeMarco (2001) analyze a corpus of documents published in the journal 

“Analytical Chemistry,” demonstrating the vast array of analysis that can be conducted 

on a body of technology abstracts. The four main categories of application are improving 

further document retrieval, identifying infrastructure elements involved in publishing on 

the specified topic and their relationships to each other - identifying themes and 

relationships within the corpus, and the discovery of links, relationships, and 

opportunities not discernable from reading each record separately (Kostoff, DeMarco, 

2001). 

Publication databases can provide a plethora of intelligence to Science and 

Technology Managers at the earliest stages of development.  However, just as patents 

have drawbacks, so do publication databases. One drawback is that publishing has a time 

delay in months or even years in addition to the lag in time before the article is indexed 

(Hohhof, 1997).  Other potential pitfalls are that articles from less reputable sources are 

given the same weight as other articles, translation of foreign languages, excessive 

extraneous information, or the same information reported in many articles (Kinzey and 

Johnson, 1997).  Publication practices also vary across fields, making interpretation more 

problematic for areas that cross fields. Choosing the appropriate database may also pose a 

challenge (Wining, 2003). With the benefits of all these approaches, one major weakness 
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in using any of these indicators is the lack of research validating them, an issue that must 

be addressed in the future. 

2.1.3.5 Step Five: Dissemination 

The issues and problems facing effective information transfer in the competitive 

technological environment still focus on the basic problem of getting the right 

information to the right person at the right time (Hohhof, 1997). A planned method of 

distribution or communication is essential (Bryant, 1997). A study of 95 Competitor 

Intelligence programs revealed the challenges of dissemination. Different users prefer 

different formats. The study reveals the challenges faced by CI practitioners in getting 

their message into the hands of decision-makers.  Some of the challenges noted were 

deciding who should get the information, the lack of feedback on the information needed 

in order to produce a useful product, and the challenge of reaching a large audience in a 

timely manner using the method of communication to which each of those individuals 

will respond.  Feedback is essential to clarify the user needs, identify missing 

information, and identify new areas to research (Prescott and Smith, 1989). 

Unfortunately, dissemination is often thought of only as getting information into the 

hands of the decision-maker. When information was limited, such a definition perhaps 

was sufficient. Now, however, the presentation of intelligence has become an essential 

part of dissemination. For example, Wenk and Kuehn (1977) developed a method known 

as the Technology Delivery System (Figure 2.3). It is a systems model used in 

understanding the development and delivery of technologies. It includes the organizations 

and factors that either hinder or enable the development of a technology. The issue is that 

many individuals interpret the TDS and the development process in different ways. The 
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two researchers have experimented with changing the name and format of the TDS to 

clarify the purpose of the map to no avail at this point in time.  

 

 

Reprinted from “Forecasting and  Management of Technology” (Banks et al, 1981) 

Figure 2.3 Technology Delivery System (TDS) 

 

 Visualization is an important part of dissemination of information because, as the 

Prescott study demonstrated (1989), CI managers found personal communication to be 

the most effective method for obtaining information. However, it is not the most 

practical. Visualization will be discussed in more detail in the Text Data Mining section 

of this review.  

2.1.3.6 Step Six: Measuring 

When all is said and done in implementing technology monitoring, the system is useless 

unless it adds value to the company in some manner. In general, there are two ways in 
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which CTI organizations can measure their effectiveness. One way is to generate metrics 

to measure such hard-to-quantify benefits as lack of being blind sighted, lack of product 

development failure, success stories, and demand for CTI services (suggesting CTI 

credibility). These methods potentially measure the direct impacts of CTI. The other way 

of evaluating a CTI program is based on the overall company result of CTI, including 

beating competitors to market, faster development, changes in product or service 

attributes, better marketing position, more competitive cost, or better design (Ashton and 

Klavans, 1997).  These are long-term measures of intelligence and not a focal point in 

this research. However, it is important to note even as late as 2001, the idea of measuring 

the impact of competitive intelligence was still at the stage of “investigating the need and 

ability of competitive intelligence (CI) departments to become accountable” (Davison, 

2001) 

2.2. Text Mining  

To this point, the literature review has emphasized the need for developing 

Competitive Intelligence (CI) and Technical Intelligence (TI) as competitive tools in 

many organizations, and has recognized the need to provide TI/CI in ways which meet 

the needs of decision makers and which are efficient and cost effective.  Next, 

consideration was given to the development of a model to guide the process.  In this 

research, text mining, using VantagePoint, a commercial text data mining tool, is the TI 

tool under study.  Note, however, that there are number of available text mining tools that 

have various strengths and weakness.  In comparing these tools, two components must be 

considered:  the domain and the technique, which account for the primary difference in 

functionality. The primary domains in which text mining approaches are being applied 
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are the web, research publication databases such as Medline and Engineering Index, 

patent databases, and news source databases.  VantagePoint was selected because it is 

designed to analyze text gathered from large databases in order to scan the records, 

identify trends, profile, map, and decompose technologies, needs which are the focus of 

this study.  In this section of the literature review, emphasis is placed upon examining 

how the text mining tool itself fits into the stages of the process developed in the previous 

section, and to examine needs for improvement at two of the stages. 
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Figure 2.4 The Text Mining Process 

 

There are approximately five major technique categories in the overall text 

mining process: Document Retrieval, Data Extraction, Data Cleansing, Mining, and 

Visualization. As part of the text mining process, there are a number of technique 

categories that are subcategories of, or supplements to, these major categories, such as 

Clustering, Visualization or Summarization (Figure 2.4) 
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In technology assessment, one of the basic assumptions about the nature of 

technology development is that, initially, research is focused in individual areas and as 

the technology matures, research domains begin to overlap.  This assumption holds true 

for text mining.   Early research focused on a particular domain, which included: 

information retrieval, entity extraction, clustering, summarization, and link analysis. 

Recent research combines methods. For example, a search in Engineering Index was 

done on the term “information retrieval and document.”  The abstract words were 

analyzed and words related to other methods such as extraction, clustering, grouping, 

visualization etc. were put into a group.  It was found that the percentage of records 

containing words related to other methods increased gradually over time. From 1981 to 

1986, the percentage of records containing words related to other methods averaged 10%, 

from 1987 to 1991-12% from 1991 to 1997 the percentage had increased to 30%.  In 

2001, almost half of all IR abstracts contain words addressing other methods.  For 

example, entity extraction and clustering are being used to improve information retrieval, 

to determine what records are selected and the relevance of the documents selected 

(McCabe, 2000; Muller and Hamp, 1999).  Note that the trend in overlapping topics can 

make the linear process depicted in the model difficult to discuss at a variety of points.       

This section discusses examples from current research in the above core areas: 

Retrieval, Extraction, Cleansing, Mining and Visualization, with a focus on the latter 

three categories. In the course of the discussion, the tool VantagePoint from Search 

Technology will be referenced frequently as an example. As noted, VantagePoint is the 

tool that is utilized in the conduct of this research project. 
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2.2.1 Retrieval 

“Information Retrieval” is the term often used to describe the act of retrieving 

information from documents or retrieving documents from a document collection.  In this 

case, what will be described is document retrieval.    Much of the research in document 

retrieval is being done in support of Web search engines. In 2001, 47% of the documents 

in our information retrieval documents contained either the word “Internet,” “web,” or “w 

w w”. 11% contained “TREC.” The size of the web and subsequently the large number of 

returns from a search is causing frustration in the user population as they attempt to 

identify the most relevant pages in a sea of thousands of hits. For example, an 

“information retrieval” search returned 63,600 documents.  As a result, researchers are 

attempting to find new ways of scoring and presenting the search results. The general 

trend in document retrieval is to incorporate methods that were initially considered post-

retrieval techniques and incorporating these techniques into the retrieval process. For 

example, Google uses a type of link analysis to identify relevant documents, and has been 

quite successful.  Other methods include clustering, both static and dynamic, as a method 

to present the documents to users and allow them to focus on the area of interest (Kaji 

1999; Tsuda, 1999; Muller & Hamp, 1999). Clustering may also be used as a type of 

query expansion.  Documents not containing the search term, but clustered with the 

search term are also returned.  Other researchers are looking to improve the document set 

by returning extracted entities into the search (McCabe, 2000).  The results, although they 

overall have demonstrated some improvement, can also greatly deteriorate the resulting 

set, depending on the entity that is returned into the search.  Further research into the best 

manner in which the entities can be used may lead to better results. Overall, the trend in 
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retrieval is combining methods and including user interaction. In this research, retrieval is 

not a primary issue. The search string will be crafted in such a way as to be as broad as 

possible while limiting the noise in the dataset.  

2.2.2 Extraction 
 

Extraction can take two forms; one is to identify the parts of speech and the other 

is to identify the specific type of entity extracted, such as whether a particular entity is a 

person, organization, phone number, date, address, or geographic location. There are 

numerous companies working in this domain. Many users require knowing the difference 

between an organization and a person, or want to be able to associate certain activities 

with the appropriate proper noun. For these purposes, in a very large corpus, recall is 

much more important than precision because, in general, it would not be challenging to 

remove names from the “Proper Name” group, because the number of proper names 

would not be too large to accomplish this type of revision. However, missing proper 

names requires that an individual sort through the entire word list to identify proper 

names missed by the tool. Some of the tools that perform entity extraction are SRA’s 

NetOwl, Lockheed Martin’s NL Toolset, Inxight’s Thingfinder, and IBM’s Intelligent 

Miner. These extraction tools boast wonderful results in the 90% area for recall and 

precision in MUC and TREC data, which includes primarily newspaper sources. 

However, for less predictable formats, such as publication abstracts or web sites, the 

effectiveness drops considerably.  In these areas, the drop in proper noun recall may 

cause problems. 

Another type of extraction is “parts of speech,” specifically noun phrases, which 

are important for capturing domain specific concepts (Kaji, 1999). The problem with 
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parts of speech extraction is that the same word can be used as different parts of speech 

such as “census” as in “take a census” or “census the population.”  A powerful, 

applicable tool could take advantage of capabilities of both types of extraction to at least 

be able to identify accurately verbs and complex proper nouns.  VantagePoint uses 

Natural Language Processing to extract phrases from abstracts. 

2.2.3 Data Cleansing 
 

The Data Cleansing literature is primarily discussed in relation to cluster analysis, 

but has impacts on all forms of data mining. It consists of the algorithms and methods 

that determine the final information that feeds the clustering algorithm or link analysis. 

Data Cleansing impacts the quality of other text mining techniques and determines the 

quality of the information that is fed into the clustering algorithms a as well as how it is 

structured. For the databases currently used by VantagePoint, and others as well, the first 

decision is what part of the record to use:  keywords, title words, abstract phrases/words, 

for full text words/phrases.  In this research, data mining will be applied to abstract 

phrases. 

Other issues are related to the selection and compression of the words that are 

used. Selection is the way words from text are determined to be candidate keywords for 

analysis. Selection issues relate to identifying a word as a potential keyword for analysis 

and determining the significance of that word in the document. The first step in the 

selection process is the defining of the word.  For instance, words can be determined by 

every space or determined by Natural Language Processing algorithms to identify actual 

phrases (i.e. “Information Retrieval”).  Another approach is simply to use windows of 

adjacent words.  Selection also involves narrowing the number of words for analysis once 
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they have been identified.  For example, VantagePoint only uses words that meet a 

minimum frequency for clustering. Ahonen-Myka et al. (1999) break words into 

sequences, and only use maximal frequent sequences, which are sequences of words that 

are frequent in the document collection and that are not contained in any other longer 

frequent sequence.  A frequency threshold is defined for the document set. In order to 

bolster the frequency of terms in abstracts or full text documents, compression is used.  

Compression is grouping together words that are different, but have the same meaning. 

The most basic type of compression involves the variations of the same phrases such as 

“management of technology” and “technology management. “ VantagePoint’s List 

Cleanup function uses a stemming algorithm and shared words in reverse order to 

improve the compression.  At a more sophisticated level is the compression of words that 

are different but have the same meaning. For example, in literature, Internet commerce 

and web commerce mean the same thing. Ahonen-Myka et al. (1999) described using the 

concept of equivalence class, which they defined as sets of phrases that occur together in 

the same documents frequently enough. Phrases belonging to some equivalence class are 

replaced by the name of the class.  Most software products currently on the market, 

however, only view data cleansing as a task within a document as a component of entity 

extraction. For example, NetOwl will link a last name listed in a document with a full 

name in the same document. The same is true for company acronyms and company full 

names. However, if the acronym or last name is in a different document, then the 

association is missed.  

The final issue is the determination of strength between keywords based on 

location of the words. This information is not exactly data cleansing, but the method of 
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capturing this information has an impact on the type of analysis that can be performed on 

the text data.  Some tools may identify that two words are in the same paragraph or the 

proximity of two words to each other in the document.  

2.2.4 Data Mining 
 
2.2.4.1 Link Analysis 
 

Link Analysis is the linking of information within documents. The most basic 

type of link analysis shows networks of word relationships, usually involving co-

occurrence of some sort. Depending on the number of links, these networks can get very 

large and complex. The more powerful type of Link Analysis tools involve linking 

particular types of verbs with the doer and the object(s) of that action.  SRA international 

incorporates this type of link analysis in order to identify links between entities in text 

and to identify key events in text. Hearst (1999) is also doing some work in this area, Her 

efforts, using computational linguistics, although the most powerful, require a significant 

amount of training for individual domains. Her focus is finding knowledge, such as 

developing a disease hypothesis or uncovering a social impact that is not contained in any 

one document. Kostoff (1997) is pursuing a similar, but his approach is a more 

statistically based effort.  

 
2.2.4.2 Clustering 
 

Since any type of text clustering is based on co-occurrence of words, whether 

some type of keyword or words contained in a document or abstract, it would seem that 

the actual clustering algorithm chosen will not bring about large differences in the actual 

clusters developed. This hypothesis is supported by two separate investigations on 
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clustering performed by TPAC graduate research assistants. Both projects investigated 

term clustering which allowed for multiple locations in space of the same term; terms 

were not required to fit in any one cluster, but terms that did not fit in a cluster were not 

included in the mapping. The first project investigated using two different methods, 

Principal Component Analysis and Maximum Likelihood Estimation, for determining the 

initial factors in factor analysis (Courseault, n.d.). The second project compared Principal 

Component Analysis and a Probabilistic approach to clustering. In both cases, the clusters 

had very little deviation between methods (Parasarathy, n.d.). Further support comes 

from research conducted by Chris Ding at Lawrence Berkeley National Laboratory.  In 

his research, he finds that the partitioning indicator vectors found when clustering using a 

Hopfield network results in LSI index vectors, and that PCA is equivalent to the MinCut 

in graph theory. He also identifies a connection between Hopfield, PCA, and K-means. 

The basis of these similarities is the fact that the objective of all clustering is to minimize 

associations between clusters and maximize the relationships within clusters (Ding, 

2003). Different algorithms simply have different starting points. This statement does not 

necessarily mean that the results are not somewhat different. The details of the chosen 

clustering algorithm are important to the end result and must be determined by the end 

goal.   The difference, however, is primarily based on factors such as the following: 

whether the clusters are term clusters or document clusters, whether the clusters are 

distinct groups or whether certain items can be excluded from any cluster, whether the 

location of certain words or documents have a distinct location in the space or can have 

multiple locations, whether the clusters remain the same each time the algorithm is run 
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or, as in the case of probabilistic methods, the clusters may change each time the 

algorithm is run.  

The cluster research contains a plethora of clustering techniques and additions to 

well known methods designed to improve the ability to find either documents or bits of 

information, as well as to provide a general landscape of the documents.  These 

techniques fall into a number of categories. Hierarchical methods group items in a 

treelike structure. The methods can start with small groups and aggregate those clusters 

into larger clusters or start with one or more larger clusters and break those into smaller 

ones. In contrast, non-hierarchical methods simply break the corpus into subsets (Leouski 

& Croft, 1996).  Partitioning clustering divides the data into disjoint sets. Density-based 

clustering groups neighboring objects into cluster, based on density criteria. A cluster is 

defined by a given density threshold. Statistical clustering method, such as factor 

analysis, use similarity measures to partition documents (Halkidi and Vazirgiannis, 

2001). While factor analysis is a more linear statistical approach, there are other 

statistical approaches, such as the probabilistic approach offered in Vinkourov and 

Girolami (2000). Bayesian Clustering is another probabilistic approach which uses 

Bayesian probability theory to calculate the probability that a certain object belongs in a 

certain group (Rauber et al, 2000). Kohonen Self-Organizing Maps is an artificial 

intelligence approach based on unsupervised neural networks. In general, each of these 

methods is based on term frequency of co-occurrence. One unique method is offered by 

Shah. In this method, the semantic relationships between words in the document are 

captured. The Kohonen Self Organizing Map is used to cluster documents that have the 

most similar semantic maps (Shah, 2002). 

 39



In conducting text mining, clustering can be utilized in a number of different ways 

for a variety of purposes. Clustering may also serve as the basis for other types of 

analysis, such as those presented by Watts, Courseault, and Kapplin (2000). In this paper, 

an algorithm based on combining various clustering techniques is used to find emerging 

technologies that accomplish a particular function in a corpus containing over 10,000 

publication records.   Clustering may be used to discover topic hierarchies giving 

structure to a corpus and allowing an individual to explore the corpus in a more organized 

fashion (Larsen & Aone, 1999).  Merkl and Rauber use the Self Organizing Map as the 

basis for an approach designed to uncover associations between documents. Their 

approach is intended to make explicit the associations between clusters (Merkyl & 

Rauber, 1999). Clustering can also be reapplied to the original document set in order to 

improve information retrieval. Ding applies a probabilistic model for dimensionality 

reduction to a corpus as a means of conducting word sense disambiguation and thus 

permitting the filtering of information and improving information retrieval. Therefore, if 

the user types in the word “capital,” articles related to a city vs. venture capital can be 

separated and the user can then focus their search on the type of capital that is their 

interest (Ding, 2000). Similarly, Kaji et. al. (1999) present a method for generating a 

thesaurus using term clustering as a means to traverse a domain-specific corpus. The 

thesaurus is designed to cluster generic terms first. Then, allow the user to “zoom-in” to a 

cluster and identify more specific terms in that cluster by analyzing the statistical 

correlation between terms (Kaji et. al, 1999). Beil et al (2002) also present a method for 

term-based text clustering with the intent of offering a method that better handles very 

large corpuses and improves the retrieval process. However, this method includes the 
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added affect of cluster descriptions based on the frequent terms in the cluster. A 

hierarchical and a non-hierarchical approach is presented (Beil et al, 2002). 

Most clustering methods use document clustering as a way to maneuver through 

documents, especially as clustering is being promoted as a visualization method for 

document retrieval (Lowden and Robinson, 2002). The increased number of internet sites 

have sparked a greater interest in this area (Zamir and Etzioni, 1998). Therefore, much of 

the most recent research in this area is based on web pages. Broder et al (1997) offers a 

method for determining the syntactic similarity of web documents for the purpose of 

filtering search results, updating web pages and identifying copyright violations. Zamir 

and Etzioni (1998) evaluate clustering algorithms used on web documents and offer an 

algorithm called Suffix Tree Clustering, which analyzes phrases shared by multiple 

documents. 

There are as many methods for evaluating clusters as there are for actually 

clustering. Evaluation techniques fall into four major categories: separateness, cohesion,, 

precision, and recall. Separateness and Cohesion are both based on the similarity. 

Separateness measures the distinctiveness of each cluster. The object is to minimize the 

similarity between clusters. Separateness can be measured either based on the cluster 

members closest to the next cluster or by the distance between the centroids of the 

clusters. Cohesion is a measure of the “tightness” of the clusters. Cohesion is a bit more 

difficult because it looks at the relationship between terms in the cluster for every cluster. 

Dunn’s indices, which incorporate both separateness and cohesion, interprets cohesion as 

the maximum distance between any two elements of a cluster. However, this approach is 

subject to a high degree of influence by noise. Basically, noise would define the cohesion 
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of the cluster (Halkidi et al, 2002). An alternative, yet more complex, approach is to 

calculate the average pairwise similarity between each term in a cluster and calculate a 

map value by averaging those values (Watts et. al, 2002). 

Essentially all of the research on text clustering is based the need for document 

retrieval. This research differs from other research in that it utilizes term clustering as a 

means of understanding concepts within documents and not a representation of 

documents. VantagePoint is one of the few software packages that have this feature.  

Some of the methods mentioned throughout the literature review are based on frequent 

terms but do not display the relationships among term concepts. Therefore, some of the 

approaches taken must be adjusted to consider the representation of terms and not 

documents.  

2.2.5 Visualization 

A review of information visualization literature can be a complex process. The 

visualization of text data mining results may be about visualizing text but not in this area 

exclusively. It may include the visualizing of data about text. Therefore, valuable 

information can be found in general data visualization literature, as well as literature 

concerned with the visualization of textual concepts. 

The big challenge that hinders the effectiveness of text data mining techniques is 

the visualization of results. An effective interface should allow the user to review, 

manipulate, search, explore, filter, and understand large volumes of data (Gershon 1997). 

The challenge is to integrate human perceptual abilities to large datasets (Kein 2001). 

However, the melding together of the two powerful elements, the human mind and the 

computer, is limited by the fact that the communication must pass through some form of 
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video display, severely reducing fast, complex communication (Cawkell 2001). 

Information visualization has emerged as a field merging human computer interaction 

and information retrieval in large databases (Hawkins 1999).  However, there is no 

comprehensive theory of information visualization to handle the increasing scale of 

datasets, nor is there a  general methodology to measure the effectiveness of large data set 

representations (Fabrikant 2001) . General understanding of the dataset is generally not 

assessed in research (Fabrikant 2001). 

The visualization literature covers three main areas: a presentation of general 

visualization principles, results from task completion testing of a selection of 

representations and descriptions of tools under development. The articles generally 

overlap at least two of these categories. The most advanced work in tool development 

and task completion appears in conference proceedings. Very little work, even in 

journals, is focused on the theoretical elements of data representation, especially in 

relation to the representation of text.  

An early work by Robertson, Card, and Mackinlay (1993), addressed the issue of 

increasing the speed of information access to complete work processes. They suggested 

various types of visualizations depending on the type of data. They suggested using a 

cone tree to represent hierarchical structures, a perspective wall for linear structures, a 

data sculpture for continuous data, and an office floor plan for spatial data. (Robertson et 

al. 1993)  Text analysis could result in any of these data types. 

It may seem odd that an article in 1993 is considered an early work in 

visualization. However, Cawkwell (2001), who provides an overview of the history of 

visualization research, notes the limited inclusion of visualization as a research 
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component of Information Science. He concludes that only seven relevant books have 

been written on the topic and four of the seven had been in the prior three years.  Early 

work in visualization work conducted by Tuftes was based on one simple premise “there 

are right and wrong ways to show data; there are displays which reveal the truth and 

displays which do not” (Cawkell 2001).  The article shows the difference between a 

simple flow diagram for representing citation analysis results and a more complex 

representation of literature completed in Pathfinder with zoom in capabilities and 

providing a “mind’s eye” representation of a large corpus. He also mentions one very 

important work in Information visualization. Card (1999) published a book which is the 

most cited information visualization book. It is a collection of classic visualization 

papers. Card includes articles that deal with visualization space and dimension, user 

interaction with visualizations, focus + content methods, and visualization tools. 

Document Visualization is one of eight chapters in this 650 page book. The chapter looks 

at document visualization in 1D, 2D, 3D, and 3D+ Time, including perspective walls, 

network diagrams, and 3D geographical representations.  

 3D is becoming a popular element in more complex visualization tools. However, 

the value of 3D or the optimal use of 3D is yet to be determined. Sebrechts et al (1999) 

compared 3D, 2D, and text versions of the visualization tool NIRVE on a corpus of 

documents that had been clustered. The participants were given some information and 

asked to complete tasks requiring them to locate, compare and describe documents or 

clusters. The structure of the documents was hierarchical. The 3D condition was 

presented as cluster boxes on the surface of a sphere and the 2D condition was simply a 

flattened sphere. The speed of task completion was the measure used to evaluate the 
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results. The text presentation had the fastest average completion time. However, as the 

participants gained experience, the 3D representation showed significant improvement. 

The use of color was another way to add dimensions to the visualization used in this 

study. Color itself was not tested as a variable. However, users were allowed to utilize a 

color feature that associated different concepts with colors. Users consistently made use 

of this feature. However, the effectiveness of color was found to decrease once there were 

more than five concepts shown (Sebrechts et al. 1999). Many studies reveal the value of 

color as an added dimension. The most valuable use of color appears to be when it is used 

to represent concepts (Sebrechts et al. 1999) (Stasko et al. 2000). 

Baker and Bushell (1995) experimented with adding dimensions and clarity to 

data visualization by revisiting and improving upon a classic visualization video, “Study 

of a Numerically Modeled Severe Storm”. This article provides a number of instructive 

points on good visualization, such as the concept of “just noticeable difference,” a 

parameter referring to the minimal variation in color required for a human to perceive 

change. Colors should reflect some natural order to enable the viewer to make a mental 

link between the image and what the image is representing. The linkage may differ 

depending on the field of study. The article mentions that if color is being used to 

represent quantitative data, then the hues should be clearly discriminant and matched to a 

color bar. They also advise using no more than seven colors in order to keep the colors 

distinguishable. This idea is similar to those perpetuated in the Sebrechts paper, which 

found difficulty with distinguishing after five colors were used. The article demonstrates 

the benefits of coordinate axes, labels, and visual cues among other helpful tips for 

visualization. Animation is one of the visual cues discussed. It is used to show the 
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formation of a cloud. The actual steps to the formation are shown using a timeline. In the 

same way, the formation of a cluster could also be represented. In general, however, the 

article does advise limited animation activity.  

Animation is one way the cluster development could be visualized. Yet, how will 

the actual clusters be represented?  An article by Henry Small on visualizing scientific 

relationships determined by mapping citation links provides one method. He presents a 

directed graph with chronologically ordered vertices and nested maps. 

Fabrikant (2001) published three papers related to mapping text information. She 

is a geographer who applies principles of cartography to mapping Reuters documents. A 

hierarchy is created using Latent Semantic Indexing to create layers of granularity in the 

topic clusters. The topics are then depicted in the same way that a state consists of 

multiple counties and counties consist of multiple cities. 

In text data mining clustering is an important concept that requires visualization, 

especially for large cluster maps. One of the challenges is providing the ability to 

maneuver through a cluster map, focusing on the details of the cluster, while maintaining 

perspective in relation to the entire cluster. Also, finding specific details in the midst of a 

large cluster map remains a challenge.  Kosara et al (2002) present an interesting concept 

to aid in viewing detailed information while maintaining an accurate sense of location in 

the data. They take existing Focus + content methods like hyperbolic trees, and have 

created a concept called Semantic Depth of Field (Figure 2.5.)  In the text application, the 

lines surrounding a keyword are displayed yet slightly blurred. The keyword sentence is 

sharp with the keyword highlighted. 
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Figure 2.5 Semantic Depth of Field. 

The idea of using blur and cues can also be applied to finding documents in a tree 

structure or identifying an additional dimension of trends in a scatter plot. This same idea 

can be used with other methods. The authors apply the same idea to a geographical map 

made in layers. Textual concepts first put into a geographical metaphor may also apply 

these concepts to improve search capabilities (Kosara et al. 2002).  

Throughout the literature on visualization are visualization principles. However, 

Mirel (1998) provides the most extensive review of the literature that summarizes 

important principles. The article provides a plethora of principles for usable 

visualizations. It also addresses problems in usable visualizations and areas where 

research is weak.  The principles provide important guidelines that can be applied to 

cluster maps, reiterating much of the other literature such as avoiding over-labeling, and 

noting that icon appearances should represent their function. Mirel also summarizes what 

is known in the research regarding three areas: perceptual sophistication of users, 

completing complex tasks, and visual querying. Mirel cites studies that stress the need for 

simplicity in representation and the proper use of color. The most important aspect of this 

work is the array of areas that she determines have not been studied effectively. Those 
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areas include the effect of users’ prior knowledge and expectations on their interpretation 

of what they see (a fact very relevant to the analysis of text data mining results), the 

trade-off between the need for labels and the limits of screen real estate, the limitations in 

users’ perceptual processing capabilities, users’ actual questions, user patterns of action 

and points of comprehension, designs that best aid problem-solving and recall, and the 

affect of devices for querying (Mirel 1998). The visualization in this research is 

dependent on the capabilities of VantagePoint 

2.3. Literature Review Conclusion 

 For the purposes of this research, it is important to note the parallels between the 

technical intelligence and text data mining processes. Any business effort must begin 

with planning as portrayed in the intelligence cycle. In the text data mining that we are 

offering, the planning stage consists of the development of the search strings, the 

appropriate databases, and identifying the needs of the target user. Collection is the next 

step, which is simply done by retrieving the documents from the appropriate databases. 

Processing entails the steps of Extraction and Cleansing. This research will add to this 

body of knowledge by developing an algorithm to improve the accuracy of the 

representation of abstract phrases. Analysis is the main focus of intelligence efforts. This 

research project intends to demonstrate that the analysis of technical publication abstracts 

provides viable technical intelligence. Dissemination and Visualization both relate to the 

actual interaction between the user and the information. There are many opportunities for 

future work in this domain. Measuring the impact of the analysis is challenging. There is 

also significant space for future research in this domain. 
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CHAPTER 3  
 

DESCRIPTION OF RESEARCH 
 

 
The context of this research centers on the problems encountered by technology 

managers and the utilization of a text-mining tool called VantagePoint to address some of 

those problems. It is a commercial text data-mining tool designed to analyze text gathered 

from large databases in order to scan the records, identify trends, profile, map, and 

decompose technologies. The basic elements of VantagePoint include list creation and 

grouping capabilities, Natural Language Processing (NLP) parsing of abstract and title 

phrases, stemming-based list cleanup capabilities, a versatile thesaurus creation and 

editing ability, matrices, and three variations of Principal Component Analysis. 

VantagePoint is configured to input datasets consisting of detailed abstract records from a 

variety of technical databases. Each record contains several fields including the title of 

article, the authors, the first author’s affiliation, the year that the article was published, 

the source, country, keywords, and an abstract of the work. Frequency lists of the items in 

these fields can be created as well as matrices demonstrating co-occurrence relationships. 

The lists can be cleaned in two ways: through the list cleanup function or through the 

thesaurus function. The thesaurus can also add additional dimensions to the analysis. For 

instance, there is a thesaurus that brings together universities, corporate entities, and 

government organizations into three simple terms named for the affiliation type. 

Similarly, these different types of entities may simply be grouped together. Analysis 

functions such as matrices or maps allow these groups to be analyzed as single entities 

and allows for analysis of a single group individually. VantagePoint offers three type of 

mapping functions: the standard factor map which may, for example, map the 
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relationship among selected terms based on their co-occurrence with each other. This 

type of map shows clusters of terms and the relationship among clusters; the 

autocorrelation map shows individual items such as authors with links showing the 

strength of the relationship among them. The autocorrelation map is equivalent to taking 

the individual terms in a cluster from a factor map and showing the links among those 

particular terms. The cross-correlation map shows the relationship among terms based on 

the co-occurrence of items in another field. For example, the map may show the strength 

of relationships between authors based on the keywords that they publish under rather 

than the fact that individuals simply publish with each other. With these basic functions a 

number of metrics can be developed for analysis. 

This research project has two main focal areas. First is the development and 

evaluation of useful technology monitoring metrics from publication databases as 

determined by the needs of technology decision-makers. Second are individual projects 

intended to improve the text data mining process that creates the technology metrics. The 

approach taken in this research is a six-step process that loosely follows the chronology 

of conducting both intelligence and text data mining activities. The six steps in this 

research project are: 

1) Determine the Technologies/Functions to be Monitored  

2) Determine the Information Needs of Technology Decision-Makers  

3) Develop a Concept-Clumping Algorithm 

4) Compare Keywords and Abstract Phrases Clusters 

5) Determine Metrics for an Example Technology 

6) Evaluate Framework 
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Steps Three and Four, is concerned entirely with data preparation. In this section, the 

research is concerned with the effectiveness of the text-mining tool. Step Three 

introduces an algorithm for clumping together terms that are conceptually the same, but 

have not been reduced to one term in the stemming-based list cleanup function included 

in VantagePoint. This step clearly corresponds with the “Processing” step in the 

Intelligence Cycle. In Step Four, the effect of using this algorithm on multiword abstract 

phrases in concept clustering is evaluated and using abstract phrases is compared to the 

traditional method of clustering keywords. The final section, consisting of Steps Five and 

Six, is focused on evaluating the results of using this methodology. At Step Five, the 

information needs determined in Step Two are linked with a VantagePoint capability. 

Those metrics are determined for one of the technologies of interest found in the initial 

interviews, corresponding with the “Analysis” step in the Intelligence Cycle. Then, users 

can view the results on a website. The website corresponds to the “Dissemination” step.   

Finally, in Step Six, a subset of the decision makers initially surveyed evaluated the 

website. The methods utilized at each step will be described in detail in the sections 

below. 

3.1. Step One: Determine the Technologies/Functions to be Monitored. 

“Scoping” is bounding the investigation in order to identify its purpose. The 

project must bound technological functions, systems, applications and institutions 

(Rossini et al. 1998).  In order to bound the project, a group of accessible technology 

decision-makers were interviewed to determine the technologies and challenges that they 

work with every day.  First, a group of 25 Principal Investigators from the United States 

Army Construction Engineering Research Lab (USACERL) were interviewed as part of a 
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project sponsored by CERL and the Army Environmental Policy Institute (AEPI). 

Although these individuals are not in commercial competition with anyone, they do 

compete for research funding.  They must also have knowledge of technical issues and 

the technical landscape in order to make the decisions that are best for the objectives that 

they are trying to accomplish. A rolling interview process starting with a list of corporate 

and government organizations obtained through personal contacts added an additional 19 

participants.  These individuals were sent an introductory e-mail naming the person who 

referred them, along with a profile of an appropriate interview subject (Figure 3.2.) Some 

of the initial contacts were only useful for the purposes of obtaining new names.  The 

interview consisted of 11 questions (Appendix C) based on Herring’s Key Intelligence 

Topics (KIT) Process (Herring, 1999). 

 

Hi, 
 
  I am conducting research on the utilization of information products in technology 
decision-making. I received your name from _______________, because 
________________. I was wondering if I could have 30 minutes of your time to speak 
with you about my research and to interview you about issues related to technology 
decision-making.  I would also be interested in speaking with anyone that you know who 
is a technology decision-maker or researcher in a business/government entity that meets 
at least two of the following criteria: 
  
1) Technologically dynamic environment where the pace of change is rapid? 
2) New technologies are likely to surface? 
3) Technology is a differentiating competitive factor? 
4) Product introduction rate is fast? 
5) Market entry timing is important?  
6) Regulatory approval of new products is complex? 
7) Manages a significant R&D portfolio? 
 
If you are able to assist me in anyway, please reply to this email with your availability for 
an interview and/or additional contacts. Thank you for your time. 

Figure 3.2 Participant Evaluation Email 
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The interviews determined the particular technologies and/or functions that are of 

interest to the target audience and to bound the analysis (Rossini et al 1998). While not 

used in this research, note that analysts may use other techniques to scope a project 

including brainstorming, expert opinion techniques like the Delphi method, research 

through initial monitoring, and initial bibliometrics. In order to determine the set of topics 

for this research, the participants answered questions about the technology challenges and 

decisions that they face and the terms they use in order to search the Internet or library 

databases for their technology interests. Five technologies relevant to the target audience 

became the basis of the analyses conducted. An initial list of search terms was developed 

and a search conducted. VantagePoint produced an initial keywords list, which was used 

to identify documents unrelated to the technology in the record set. Adding additional 

terms to the search string, using “AND” or “NOT,” reduced noise in the dataset. “Noise” 

entails records that are not related to the technology. Another method is to force the terms 

to be adjacent (ADJ) or near (NEAR#) each other in the record.  In this research, datasets 

for five technologies were retrieved for analysis. 

In addition to the primary purpose of scoping the research studies, the interviews 

obtained demographic and industry information, determined technology issues, 

determined information sources and how the sources were utilized, and determined how 

the decision makers preferred to obtain information. The interviews were coded 

according to relevant answer characteristics. For example, the participants were asked 

which terms they used in searching the internet or library databases for their technical 

area. If they gave an answer such as “xml”, it was coded as “specific technologies.”  An 

answer such as “security” was coded “broad technology area.” The interview results were 
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then summarized and this additional information obtained in the interviews helped gauge 

the expectations of the decision-makers, contributed to framing the questionnaire in the 

next step, and provided the criteria for evaluating the final information product. 

3.2. Step Two: Determine the Information Needs of Technology Decision-Makers. 

While the interviews provided the technologies to be monitored, a questionnaire 

found the common information about the technologies that most interest decision-makers. 

The CTI and Management of Technology (MOT) literature provided the general basis for 

the questionnaire (Appendix D). The participants rated their level or agreement on 

various statements about information that may aid in their decision-making. Thirty-four 

technology decision-makers from a variety of Corporate, Academic, and Government 

organizations participated. First, the mean score and standard deviation for each 

statement was calculated. The statements were then ranked and categorized according to 

the level of agreement with those statements (Table 3.1). The statements with the highest 

level of agreement have the lowest average score.  

 

Table 3.1 Questionnaire Score Categories. 

Category Category Range of Score 
Strong Agreement 1.0 -  1.6 

Agreement 1.6 – 2.2 
Neutral 2.2 – 2.8 

Disagreement 2.8 – 3.4 
Strong Disagreement 3.4 – 4.0 

 

 

Further analysis identified patterns in the responses.  Factor analysis determined 

groups of statements that decision-makers might be interested in obtaining as a package. 
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This method for evaluation provides an opportunity to determine the information 

that technology decision-makers deem important, and to determine if managers agree 

with the statements made in the literature.  The pattern analysis using correlation and 

clustering allows the opportunity to identify any linkages between the information needs 

and the view of information, the technology challenges, or any demographic information. 

The results from this section drive the monitoring metrics that will be described in Step 

Four. 

3.3. Step Three: Develop a Concept-Clumping Algorithm 

In order to more effectively discuss the data cleansing process, several definitions 

are needed. For the purposes of this research, a “word” is a string set apart by spaces, a 

“phrase” is one or more words, and a “term” is a phrase that is identified by VantagePoint 

to be a unique phrase from the abstract. A “phrase” consists of one or more words and 

every phrase belongs to a set of phrases that is a subset of words in a term. Each line in a 

VantagePoint abstract phrases list is considered a “term.” Figure 3.3 depicts a screen shot 

from an Abstract Phrase List in VantagePoint. “Recorded magnetization” has a highlight 

box around it. This term is also a two-word phrase.  

This research investigates the use of abstract phrases in clustering; however 

significant clean up is required to adequately utilize abstract phrases. While a number of 

methods seek to determine the appropriate words for use in clustering, most do not 

address a particular challenge unique to text, which is that there are words that are 

essentially the same in meaning but which are written or extracted in slight variations. 

Words such as “engineering science” and “general engineering science” should be  
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brought together as one term concept. Many tools simply remove a small set of  

 

Figure 3.3 Screenshot of VantagePoint 

 

common words such as “the” and “of.” VantagePoint adds a step to the cleaning process 

by using a stemming algorithm to group two terms into one. With the stemming 

algorithm, “computer” and “computers” become one term. However, this method is 

insufficient. Since the purpose of this research is to make technology linkages, more 

accurate concept representations means more accurate end-results. The discussion that 

follows highlights need for a concept-clumping algorithm when working with abstract 

phrases.  

While using abstract phrases may be desirable, doing so can potentially introduce 

problems. One of the problems with abstracts is the variation in the words that are used. 

In an abstract, there are words that provide no conceptual insight into the content of the 

paper, such as “novel means” shown in the example in Table 3.2. Additionally, there are 
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occasions where the same concepts may be discussed in a variety of ways, even within 

the same abstract.  

Therefore, in order to effectively analyze the information, the data must be 

cleansed and clumped to accurately portray the prevalence of the concepts in the dataset. 

The idea is to remove as much “junk” as possible and to combine words that represent the 

same concept.  Many such methods were discussed in the literature review.  The data 

clumping algorithm developed for this research first identifies a list of relevant noun 

phrases and then applies a rule-based algorithm for identifying synonymous words based 

on shared words in each phrase. The algorithm does not claim to be generalizable to all 

 
 

Table 3.2 Sonochemistry Keywords vs. Abstract Phrases. 
 

List of Keywords List of Abstract Phrases 
• Pollution control 
• Sonochemistry 
• Mass Transfer 
• Ultrasonic applications 
• Reaction Kinetics 
• Sonochemical Reacting 

Systems 

• Environmental Sonochemistry 
• Environmental remediation 
• Ultrasonic waves 
• Kinetic analysis 
• Sonochemical engineering 
• Chemical analysis 
• Mass transfer 
• Aqueous solutions 
• Chemical processing 
• Cheaper reagents 
• Novel means 
• Shorter reaction cycles 
• Smaller plants 
• Large-scale applications 
• Growing area 
• Existing knowledge 
• Outline directions 
• Exciting field 

The table above comes from the article “Sonochemistry: Environmental Science and 
Engineering Applications “. It demonstrates the difference in terms listed in the keywords 
list versus those listed in the abstract phrases list. 
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text sets, but is intended for use with technical periodical abstracts. Further research is 

necessary to determine the generalizability of results to other types of text document sets.  

In performing additional phrase clumping, the intention is to increase the 

analytical validity of using abstract phrases to perform additional analysis.  The basic 

outline of the algorithm is as follows: 

1) Remove hyphens, numbers, punctuation 

2) Remove common words 

3) Clump phrases with four or more words in common into a new phrase. 

4) Name the new phrase the shortest phrase name 

5) Calculate the importance of the remaining words 

6) Clump phrases with three words in common into a new phrase 

7) When a conflict arises, use a similarity measure to determine with which 

group of phrases that the conflicted phrase will clump. 

8) Name the new phrase the phrase name with the highest prominence 

9) Repeat steps 5) – 7) for two word matches. 

The basic starting point for the algorithm is a cleaned list of abstract phrases as 

determined by VantagePoint.  Non-alphanumeric characters are removed. This step 

combines terms such as “high-density” and “high density.”  Then, the algorithm removes 

common single words from the list. Common single words are removed from the list 

using a published list from White (1999) of the most frequently used words from two to 

ten letters. The goal of the research is to use Abstract Phrases to map technical terms. 

Common words, such as “study,” “uses,” or “results,” may occur frequently in the 

dataset, yet do not represent technology and may falsely show relationships more related 
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to the type of article, rather than a technical relationship. The list was revised to remove 

potential technical terms. Any terms left on this list are eliminated. Finally, with only 

multiword noun phrases and uncommon single word noun phrases remaining, the list is 

ready for analysis. VantagePoint abstract phrases list consists of only noun phrases. Noun 

phrases are used because language research finds that text is understood by understanding 

noun phrases (Chen and Chen, 1994).  

Once the list of relevant words has been determined, the clumping algorithm is 

applied. The basis of the remaining portion of the algorithm is the existence of shared 

words. Shared words are the words that exist together in more than one term. For 

example, engineering science and “general engineering science” share two words. 

Identifying equivalent concepts is a difficult process; by starting with shared words, a 

high level of precision can be achieved and the number terms compared to one another is 

limited.  

The algorithm searches for phrases with four words in common. If a phrase has 

four words in common, these words will be combined together and named for the shortest 

phrase. In the rare occasion that a conflict arises, VantagePoint chooses the first grouping 

that occurs in the thesaurus. This approach is somewhat random, however, some initial 

analysis revealed that these terms are likely all conceptually the same and should be 

grouped together in the three-shared words step in the algorithm . 

Secondly, phrases sharing three words in common will be grouped together and  

given a prevalence rating.  The formula for the prevalence rating is: 

∑ Instances of  (b) in D(i)  (3.1) 

# of relevant phrases in Doc (i)
∀   Docs where 
(b)    D(i) ∈

P(b) = 
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where: 

P(b) = prevalence rating for term (b)  

(b) = a term in the abstract phrase list 

D(i) = the set of terms contained in Document (i) in the record set 

In VantagePoint, the prevalence ranking will be determined by first constructing 

the matrix of “records” by “group of relevant abstract phrases” using the instances option 

for the matrix cells. For each relevant abstract phrase, the cell value will be divided by 

the row total. Each of these values will be summed together. This method is used because 

it gives a higher rating to both words that appear in many documents and words that 

appear more frequently in one document. Words are also given a higher prevalence if 

they appear in shorter abstracts.  

 Once the prevalence rating is determined, the algorithm searches for groups of 

terms that share a three-word phrase. These terms are clumped into one term using the 

thesaurus feature in VantagePoint. If a term shares phrases with multiple groups, a 

similarity measure will determine the group to which the term belongs. The basis of the 

similarity measure is the standard approach to similarity used in Information Retrieval 

where similarity of terms has been researched most frequently. The premise is that two 

terms are semantically similar if they occur in the same context (Crestani, 2000).  Other 

approaches to similarity are taxonomy-based. The similarity between two items depends 

on the relationship or distance of the terms in a hierarchically structured lexical resource, 

such as WordNet (Basu et. al, 2001). Taxonomy-based approaches would require 

incorporating a lexical resource such as WordNet into Vantage Point. Such a resource 

would have to map technical terms. A problem with such an approach, for the purposes 
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of this research, is that the terms that are most likely represented differently in the record 

sets occur in newer technical areas. These areas would less likely appear in a lexical 

resource. Therefore, a contextual similarity approach is more suitable for technical 

publications. This algorithm from Cutting et. al (1992) asserts that a term is most similar 

to the group of terms that co-occur with words most like the terms with which the conflict 

term co-occurs.  

 Therefore, for each document α in a corpus C, let c(α) be each word in the 

document and its frequency. Let V be the set of unique terms occurring in C. Then c(α) 

can be represented a vector of length |V|;  

                                                       (3.2) 

wi = ith word in V  

f(wi,α) = the frequency of wi in α.  

Using the cosine between monotone element-wise functions of  c(α) and c(β), the 

similarity measure between two documents can be determined by   

                                                     (3.3.) 

where g is a monotone damping function using a component-wise square-root, “( , )” 

denotes inner product, and “|| ||” denotes vector norm.  

If similarity is considered to be a function of document profiles p(α), then  

                                                             (3.4) 
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in which case  

                                               (3.5) 

Applying the aforementioned equations to match the similarity between the group 

of documents in which the group of terms that share a phrase appear (Γ) and the 

documents in which the term that shares phrases with multiple groups appears (x). Then, 

let  Γ have a profile defined as the normalized sum of profiles of the contained 

individuals. Therefore,  

                                                               (3.6) 

is the unnormalized sum profile, and the normalized profile is   

                                                               (3.7) 

By employing this definition, the cosine measure can be extended to Γ and the 

similarity between a document x and the document set Γ can be found by the following 

equation: 

                                           (3.8)                  

Once all of the three common phrase matches have been made, the “two common 

word” clumping process will take place. The same process utilized in matching terms that 

share three common words is utilized to match terms that share two common words. The 

starting point is the prevalence ranking for the appropriate terms.  This research stops at 

two shared-words in common. Future research may look at improving the algorithm to 
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effectively handle terms that only share one word in common. The assumption is that as 

the number of shared words decreases, the less likely it is that the shared words indicate a 

similarity and, therefore, different approaches will be necessary. 

 “Precision” tests the ability of the algorithm to accurately identify that two words 

are synonymous. The overall precision was evaluated by running the algorithm against an 

abstract record corpus. Each term was manually compared to the term that the algorithm 

named the group for determination as to whether it is actually similar in concept.. The 

naming algorithm is important because it ultimately determines the term that is chosen to 

represent all of the terms in the group. 

 3.4. Step Four: Compare Keywords and Abstract Phrases Clusters  

Prior analysis conducted using VantagePoint has taken advantage of the 

Keywords contained in abstract records provided by the database company (Watts, 1998 

and 2000). However, these Keywords are more generalized than Abstract Phrases and, as 

mentioned, often come from the database provider and not the author of the paper. This 

research hypothesizes that using Abstract Phrases provides a more informative set of 

clusters than Keywords. The abstracts provide a richer source of information. For 

example, compare the keywords and Abstract Phrases found in the pollution prevention 

articled entitled Sonochemistry: Environmental science and engineering applications 

(Table 3.2). The Abstract Phrases are more specific. This research hypothesizes that the 

more specific term creates more meaningful clusters. 

Before actually engaging in clustering, the method for clustering must be 

determined. For scientific publication database clustering, three scenarios were evaluated 

1. Keywords  
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2. Cleaned Abstract hrases  

3. Clumped Abstract Phrases 

Clusters were created for Keywords, Cleaned Abstract Phrases, and Clumped Abstract 

Phrases for a sample from each of the five datasets crafted from the search terms found in 

Step One. These clusters were compared to each other.    

In general, existing research has avoided declaring a standard measure to 

operationalize “good” or “better” for clusters, primarily because different clustering 

algorithms have different guidelines. For example, one traditional approach to testing 

precision and recall is to craft datasets to determine if the algorithm places the documents 

in the same sets as would be performed manually. This approach is not feasible when 

using PCA in term clustering, because not every term is placed in a cluster, terms can be 

placed in multiple clusters, and many terms may be found in the same document.  

However, numerous quantitative measures are available and this research will investigate 

the clustering alternatives from various viewpoints -- both qualitative and quantitative --

to evaluate the clusters.  First, a profile of the clusters will be created using basic 

qualitative or pseudo-quantitative information. 

• A Description of the clusters 

• The number of clusters and links 

• The Strength/number of links between clusters 

• The number of words per cluster (average and distribution) 

As stated in the literature review, quantitative methods to evaluate clustering 

center around four issues: the separateness of the clusters, the tightness of each cluster, 

precision and recall. Precision and recall are used when every document is placed in a 
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cluster. There are numerous methods for determining separateness because many of the 

clustering algorithms are based on separateness. This evaluation used entropy as defined 

in the paper by Watts (2002). Entropy for each cluster is calculated by 

                           .                                                                 (3.9) ∑
=

−=
m

i
jiijj PPEntropy

1
)log(

Pij represents the probability that a member of cluster j also belongs to cluster i. It 

is calculated in VantagePoint as (the number of co-occurances of terms in group j)/(the 

number of records in which terms from group i appear), m represents the number of 

clusters in the cluster map. In order to calculate the entropy for the entire cluster map, we 

define 
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where nj equals the number of abstracts in cluster j,  and n equals the total number of 

abstracts in the dataset.  

 Cohesion is measured by the average similarity of the terms in each cluster of the 

record set. As stated in Chapter Two, Watts (2002) proposed a pair-wise similarity 

approach between the terms in a cluster. However, this pair-wise similarity approach 

defines the cohesion of the clusters along the dimensions of inclusion or exclusion in 

documents as opposed to co-occurrence with similar terms. This difference may seem 

inconsequential except that there actually can be a difference in the calculation, when 

compared with the approach used in this paper (Table 3.3). Table 3.3 shows the 

difference in Cohesion measures for three approaches on a sample of clusters. This 

research is more interested in cohesion based on terms. Therefore, a different approach to 

cohesion is taken. Since, cohesion is a measure of the similarity of the terms in a cluster 
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and similarity of terms has been used with other terms in a group for our clumping 

algorithm, the same approach is utilized for cohesion. Cohesion is defined as the average 

similarity between each term and the other terms in the group as defined in equation 

(3.7). A “tighter” cluster has a larger value. 

 

Table 3.3 Comparison of Cohesion Measures 

Fuel Cell Clusters 

Cohesion 
Document-based 

(duplicated pairwise) 

Cohesion  
Document-based 

(exclusive pairwise) 
Cohesion 

Term-based 
carbonates 0.54 0.31 0.739 
cathodes 0.41 0.21 0.783 
synthesis 0.38 0.18 0.703 

polyelectrolytes 0.69 0.38 0.752 
methane 0.22 0.14 0.736 

  

 

Finally, an overall assessment of the trends and differences among the clusters 

was assessed.  

3.5. Step Five: Determine Metrics for an Example Technology  

The questionnaire identified information important to decision-makers as well as 

groups of important related information. For each of these statements, the associated 

metric in VantagePoint was found. (See Appendix E for the association between each 

question and the publication metrics.)  Those metrics were applied to a random sample 

taken from the dataset of one of the selected technologies. Sampling kept the size of the 

dataset manageable. A macro in VantagePoint tagged every nth record and created a new 

dataset. The goal was to keep the most records possible while allowing for reasonable run 

time for the algorithms in VantagePoint. The metrics calculated were: 
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1) Affiliations appearing/disappearing in the Dataset: This metric identifies 

organizations that are just starting to publish on the technology or have 

potentially abandoned publishing. It is an indicator of either burgeoning or 

waning interest in the technology. 

2) Links between affiliations and  

a. Terms: Indicates the topics that an organization has expertise 

b. Other affiliations: indicates collaboration among various 

organizations 

c. Proper noun phrases in the abstract: indicates the specific interests 

for an organization 

3) Abstract phrases appearing/disappearing: indicates specific topics within 

the technology domain where research interest is either burgeoning or 

waning. 

4) Keywords appearing/disappearing: Indicates broad topic areas where 

interest in research in relation to the technology is either burgeoning or 

waning. 

5) Relationships among keywords and abstract phrases: Indicates the 

research relationships that exist among topics within the technology 

domain. 

6) Comparisons between the United States and Other Countries: Identifies 

differences in research behavior between the United States and the 

International Community 

7) Journals and the topics discussed: Identifies the latest research topics 
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8) Conferences and topics discussed: Indicates the latest research topics 

9) Non-technical terminology: Provides insight into the non-technical aspects 

of the discussion of a technology. Potential information may include hints 

into the Life Cycle progress of the technology or social impact issues 

10)  Cumulative Number of Records/Year:  Indicates position on the 

Technology Life Cycle) 

These metrics were organized on a website according to results from the 

questionnaire.  

3.6. Step Six: Evaluate Framework 

In software engineering, an empirical evaluation of a system may test the usability 

of the system design.  In such cases, the user is required to make choices about an 

interface. In this case, the evaluation is not of the interface design but of the information 

provided by the system. Future research investigating the visualization aspects of the 

system could improve the utility of the information products provided.  

Five technology decision-makers, who were familiar with Magnetic Storage 

technology participated in a focus group evaluating the website information along the 

dimensions found in the initial interviews.  Two additional evaluators, who were not able 

to attend the focus group, provided their input online. The evaluators in the focus group 

were a mix of practitioners and researchers. The participants evaluated the information 

primarily based on the type of information and not the information itself.  

The session began with a briefing on the background of the research and 

instructions. A transcript of the opening statement can be found in Appendix F. Each 

evaluator sat in front of a computer with the Welcome Screen for the website. The 
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evaluators were also given a sheet listing the evaluation criteria. They spent 15-20 

minutes reviewing the information before the discussion began. Following the review 

period, the leader went through each dimension and encouraged discussion based on each 

point. The Results were then summarized in Chapter 6.  
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CHAPTER 4    
 

FRAMING THE NEEDS OF THE TARGET USER 
   
 

4.1. The Technologies/Functions to be Monitored 

4.1.1 Five Technology Cases 

The interviews conducted had three components: Target Audience Profile, 

Monitoring System, and Early Warning Topics. “Target Audience Profile” consists of 

seven questions designed to better understand the participants’ technology challenges., 

the sources of information that they use, and how that information is used in the decision-

making process.  “Monitoring System” consists of two questions related to the ways that 

the participants would like the findings to be organized and how they evaluate the 

usefulness of such a system. “Early-Warning Topics” gathers the type of information that 

the Investigators seek.  This section provides the information to support the main goal of 

the interviews, to determine the technologies of interest to the target audience, from 

which a subset is used in the analysis steps. From the array of answers supplied, five 

topic areas were selected to use for analysis. Search strings were developed for each of 

these areas. The search strings and the total number of abstract records retrieved are as 

follows:  

1. “Fuel cells” or “fuel cell” 

2. “Remote sensing” or “remote sensor” 

3. “geographical information system(s)” or “geographic information system(s)” 

4. “pollution monitoring” 
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5. “magnetic disk storage” or “magnetic storage” or “magnetic bubble memories” 

or “magnetic data storage” or “magnetic film storage” or “magnetic tape 

storage” or “magnetic core storage” or “magnetic heads” 

 

Table 4.1 Technology Cases: Record Counts. 

Technology Database # Records 

FC Compendex 7495 

RS Compendex 11,105 

GIS Inspec 7,556 

PM Pollution Abstracts 7500 

MS Inspec 6985 

  *Information regarding these databases can be found in section 2.1.3.2 

 

4.1.1 The Target Audience 

 Those interviewed come from a range of areas. Most are from IT or 

environmental industries.  They include representatives from government, corporate, and 

academic organizations. Their job functions include CEOs, CIOs, Consultants, Head 

Researchers, and School Deans.  The individuals interviewed are responsible either for 

obtaining funding, deciding on the research that will be conducted, selling their products 

or services, or implementing a technology.  In the sections below are summaries of the 

responses. These responses came from at least six individuals spread across at least two 

types of respondents (i.e. different industries or types of organizations.) Throughout the 

sections are statements that were made by at least a few of the respondents but were not 
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consistent across profile boundaries. These statements are noted with terminology such as 

“For some…” or “Researchers…” At the end of this section is a table that captures the 

overall themes that were dominant throughout the responses. 

4.1.1.1 Target Audience Profile 

The primary technology challenges faced by these decision-makers are finding 

and adjusting existing tools to meet their needs. Obtaining long-term, flexible, cost-

effective technology planning; and remaining aware of the most advanced options in their 

field. Other challenges include finding validation for claims for existing products, 

acquiring funding, managing expectations of technology, and security. In the next year, 

they will make decisions primarily about new products or methodologies to be applied. 

These projects may be ongoing from this year or the start of new multiyear projects. A 

surprising finding was that a number of individuals did not know what they would be 

working on in the next year. For some, new laws, additions to the endangered species list, 

or new weapons being developed would be factors, which would drive those decisions. 

For others, customer demand or the weaknesses revealed by 9/11 would drive that work.  

Investigating and developing various forms of modeling technologies will also be popular 

in the coming year, as well as information brokering issues. 

These individuals unanimously felt that keeping up with new information is 

crucial to their success. In order to find technologies that meet their needs, these decision-

makers seek information from a number of sources. The most frequently mentioned 

sources were the internet as a source for research, product information, and even 

demonstrations; and conferences/conference proceedings.  Peer-reviewed journals are the 

most important source for any type of researcher while many corporate decision makers 
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did not mention refereed journals. Other sources include professional organizations, 

government documents, vendors, and other agencies and experts. While these 

investigators prefer to receive information from abstracting services which they can use 

to sort through and then access the full documents, newsletters, or conference 

proceedings, they are willing to receive valuable information in any form. However, 

many of the subjects do not like e-mail alerts because they were too numerous and 

usually not useful.  

Once obtained, the sources are used in a number of ways. They are used to search 

for new ideas, to search for products that can solve a particular problem, or to validate the 

claims of found products. Frequently, the information found is used in proposals or to 

justify a particular decision. Other times, the information is used simply to increase the 

decision-maker’s overall knowledge and view of the problem area.  

The participants were asked the value of and need for intelligence-type 

information in their decision-making. One of the most common areas mentioned was the 

desire to better understand the upcoming needs of funding agencies and other decision-

makers. The individuals who do not know what projects they would be researching in the 

upcoming year especially mentioned this need. Government and academic researchers 

both stated that they would also like to know what other agencies/researchers are doing 

so as not to duplicate efforts and also to know additional technical options that are 

available to them. The aforementioned information would save time and money, prevent 

the decision makers from having a focus that is too narrow, help them to understand 

importance of issues in the long term, and, in general, help maintain the competitiveness 

of the organization.  
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4.1.1.2 Monitoring System 

Participants were asked their preferences for the organization of an information 

analysis system. The responses indicate the features that are important to the participants. 

However, not all requests are possible to incorporate. One important observation is that 

the participants wanted to see brief information that connects to full articles, in line with 

current preferences.  This desire implies that the results of a search would be presented as 

a list of documents. Many participants had not even considered other multidimensional or 

flexible forms of presentation.  This project introduces new forms of presentation to the 

users while attempting to incorporate the users’ preferences. However, the ability to 

access full articles is limited by the database to which the users subscribe.  

The most frequently mentioned features indicate the importance of customization 

in the searches.  The ability to customize searches, set up search criteria, and rate those 

search criteria were the most frequently mentioned organizational elements.  Next, users 

would like to see information rated according to their search criteria; two methods 

mentioned were a familiar relevance score or providing an explanation as to how the 

returned document matched the criteria. Some of the information that the users would 

like to see about the documents is the value that others have placed on the documents, 

which can be judged by the citation frequency of the document.  A number of 

organizational sorting methods were also named. The most commonly mentioned were 

the following: by technology, by geography, by technique, by chronology, by affiliation 

or affiliation type, by author, by source or source type, and by keyword. Almost all of 

these arrangements will be possible, by using VantagePoint to analyze the records 

returned from the search. A more advanced feature recommended by the users is the 
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capability to learn their behavior from previous searches as the computer receives updates 

from listed search preferences. 

Other information or capabilities mentioned were the ability: to associate certain 

methods with an author, an overview of the area searched, to mark abstracts already read 

so that they are not reread, to provide links between technologies, to identify where the 

overlaps in search criteria take place, to determine partnerships, to find other works by 

the same author, to determine if studies or methods are duplicated in the research, to have 

the ability to deal with the variety of jargon used for the same area in the area, to find 

population trends and distribution and track that as new information comes in—graphical 

maps, trend charts, the ability to determine a technology’s maturity and applications of 

the technology.  One other recommendation worth mentioning is that one participant 

mentioned Ebay website as a model of how he would like to search for information.  

Researchers were also asked how they would judge the credibility of information 

received. The most popular responses were credibility of researcher, credibility of the 

journal, and applicability to the problem. Other frequently mentioned methods are the fit 

with the search criteria, the accuracy of the information, and usability of the information 

in reporting. Other interesting criteria were if a new bit of information was found, and if a 

point of contact was included. Only two individuals didn’t think it was possible to 

measure the usefulness either because you couldn’t know what was missed or because the 

information was absorbed into overall thinking and not incorporated in a measurable 

way.  Many participants were focused on finding specific studies and methods to evaluate 

those studies, which is outside of the scope of this research project. The methods in this 
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project can only identify factors that may indicate the validity of the study such as the 

source, affiliation, or author. 

4.1.1.3 Early Warning Topics 

Participants were asked more specifically what type of information they were 

interested in regarding the technologies, organization, and experts in their research area. 

Some of those answers are listed in Table 4.2. The questionnaire incorporated the areas 

from this list that VantagePoint is capable of capturing. 

 

Table 4.2 Categorized Early Warning Topics. 

About the 
Technology 

About 
Organizations 

About 
Experts 

Other 

Applications Who are they Contact 
Information 

Source type 

New developments What are they 
doing 

What are they 
doing 

Reference sources 

Basic information Motivation Who are they Latest political action 
How it works Future plans Motivation New guidelines 
What exists Funding available  Language of journal 
Latest research Funding sources   
Health risks EPA activities   
Patents Breakdown of 

barriers between 
organizations 

  

Problems    
Technology Parameters    
Associated equipment    
Military applications    
Maturity    
Cross uses of the 
technology 

   

Modeling of the 
technology 

   

Human or animal 
research 
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The interviews provide an opportunity to become familiar with the work of the 

decicion-makers and their use of information in that work. One thing that stands out in 

these interviews is the similarity across a wide range of industry and environments. The 

participants overwhelmingly view information as important to their success and want 

new and better ways to obtain applicable information. In general, they are not already 

performing “intelligence” gathering activities such as monitoring the activities of experts, 

other organizations, or the technology itself in an organized fashion. The decision-makers 

brought up many interesting ways in which they would like to monitor information that 

they are currently not doing, a finding which demonstrates that they, for the most part, 

have considered these needs. In general, the most important part of mining information 

for the decision-makers is “not missing anything” and “being able to find new 

information quickly.”  

Throughout these interviews, the participants identified how they use information 

in making technology decisions, the goals that the information helps them to achieve, and 

how they evaluate the usefulness of information (Table 4.3.) These comments became the 

evaluation criteria for the information developed by this research framework.  

 
Table 4.3: Summary of Information Evaluation Criteria 

 

 

 

 

 

1.   Uses Peer-reviewed journals.  
2.   Provides results by category  
3.   Provides access to new ideas.  
4.   Used to solve problems.  
5.   Used in proposals 
6.   Provides overall knowledge  
7.   Provides insight into funding 
      sources.  
8.   Leads to less duplication of  
      research efforts 

9.   Provides Additional options.  
10. Leads to broader research focus.  
11. Provides understanding of long-term 

issues.  
12. Leads to organizational 

competitiveness.  
13  Used in strategic technology 

decision-making. 
14. Allows for Customization 
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4.2 The Information Needs of the Target Users 

While the Early Warning Topic interview questions provide some insight into the 

type of information that decision-makers desire, an online questionnaire provided more 

specifics information corresponding with the capabilities of VantagePoint.  

 Individuals who filled out the questionnaire were obtained in a number of ways. 

Interview participants received an e-mail inviting them to participate in the survey and 

encouraging them to send the e-mail to others who fit the criteria of a technology 

decision maker. This method was generally unsuccessful in obtaining a satisfactory 

sample size. The second and final method involved the internet. Technology decision 

makers involved on Advisory Boards were contacted and asked to answer the questions 

by telephone. In the end, 34 individuals completed the questionnaire. The questionnaire 

consisted of 27 questions and participants rated each statement referring to the 

importance of particular types of information as either Strongly Agree, Agree, Disagree, 

or Strongly Disagree. The statements reflected the interview answers and information 

found in Competitive Technical Intelligence literature. Additionally, the participants 

recorded their company name, position, and job description. Inferences about the 

organization type, size of the organization, industry, and level in the organization were 

made from these responses.  

In the sample, 21 participants are corporate and 13 are from either universities or 

government entities. Nine of the participants are executives and 25 are at the level of 

Head Researcher, Lead Engineer, or Manager. The organizations are labeled small if they 

contain fewer than 100 people, medium if there are fewer than 10,000 and large 

otherwise. Government agencies are placed in the medium category because agencies are 
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considered individually. The participants come from six different industry groups (Table 

4.4). They are also identified by their organization type, the size of the organization, and 

their position level (Table 4.5). 

 

Table 4.4 Participant Industry Groups. 

Industry # Participants 

Science/Engineering  3 

Computer Technology  13 

Energy  4 

Environmental  14 

                       

 

Table 4.5 Participant Profile 

 Position Level Organization Type Organization Size 

9 Executives 21 Corporate 9 Small 

25 Non-Execs 13 Not Corporate 19 Medium 

    6 Large 

 

 

 

 

Participants generally responded to every question. Two statements are missing 

two responses and eight statements are missing one response.  One participant did not 

answer four questions.   

The responses are assigned numeric values. Strongly agree =1, Agree = 2, 

Disagree = 3, and Strongly Disagree = 4. Appendix G contains the summary information 

for each statement, including the mean rating, standard deviation, minimum, and 
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maximum ratings. The statements fall into one of six categories. The scores are 

categorized based on the following scale (Table 4.6). 

 

Table 4.6 Questionnaire Score Categories 

Category Category Range of Score 

Strong Agreement 1.0 -  1.6 

Agreement 1.6 – 2.2 

Neutral 2.2 – 2.8 

Disagreement 2.8 – 3.4 

Strong Disagreement 3.4 – 4.0 

 

 

Table 4.7 Strong Agreement Survey Statements 

Question Avg Score 

R19: I would like to know what periodicals are publishing in my 

technical domain. 

1.55 

R1: I would like to see an overview of the research conducted in 

my technical domain. 

1.56 

R21: It is important to know which conferences cover my 

technical domain and the specific topics covered. 

1.59 

 

 

Table 4.7 lists the three questions that have an average score falling into the 

“Strong Agreement” category. It is, therefore, important to include the answers to these 

questions in any information provided to decision makers. Additionally, Factor Analysis 

was run on the variables using Principal Component Analysis with Varimax Rotation. 

Factor analysis discovers clusters of information that a decision-maker may want 
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together. Therefore, the three statements with the strongest level of agreement were 

removed from the analysis assuming that these would be offered to all decision-makers. 

A scree plot was used to determine the number of factors to accept. Using .5 as the 

minimum factor loading, a conservative approach, four factors were accepted.  A loading 

of .45 was used as the breakpoint for high loading terms. Four clusters were identified 

(Figure 4.1.) 

 

 

 

 

 

 

 

 

 

 

 

Technology 
Progress-Journals 

Organizational 
Monitoring 

 Collaborating Organizations 
 Focus of Leading Companies 
 Focus of Leading Universities 

Shifts over  Time 
Companies no longer publishing

Size of Research Teams 

 Location in Life Cycle
Journal and Conference 

Topics 

 

 University Activity 
Early Stage Research

 
Hiring for Cutting 
Edge 

Questions included in each cluster: 
Organizational Monitoring- (R: 5,7,9,10,11
Technology Progress- Journals- (R: 20, 25,2
Global Organizational Monitoring- (R: 10,1
Hiring for Cutting Research- (R: 8,22) 
 

Figure 4.1 Questionnaire Sta
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Top Foreign Organizations 
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Global Organizational 
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,12,13,14,16,20) 
6) 
1,13,17,18) 

tement Clusters 



 

Cluster 1 includes all questions that are related to knowing what other 

organizations are doing and it is labeled Organizational Monitoring. 

Cluster 2 includes statements related to the life cycle of the technology and 

knowing the topics published in periodicals.  It suggests a search of periodicals to 

determine the progress a technology is making, and it is labeled Technology Progress – 

Journals.. 

Cluster 3 includes statements about concern with global activity in a technical 

domain and general interest in what other organizations are doing.   It is labeled Global 

Organizational Monitoring. 

Cluster 4 includes statements about interest in early stage research and interest in 

recruiting from universities conducting research in their technical domain. This activity 

may indicate that these respondents are particularly interested in working on cutting edge 

technologies, and the factor is labeled Hiring for Cutting Edge. 

In addition to the clusters, there are other sets of metrics that a decision-maker 

may want to choose. For example, as can be expected, individuals whose technical 

decisions were affected by external human factors were also interested in the impact of 

their technology. 

Also, the only significant correlation in relation to the position of the respondent 

is that non-executives are more inclined to believe that commercial readiness could be 

determined by the information in publication databases and are more inclined to believe 

that the organization would be impacted by changes by suppliers. This finding may alter 

the information packets made available for executives versus non-executives. 
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Most questions fell into the “agreement” category. The remaining responses fell 

into the “neutral” category. No question had a mean score falling into any of the 

“disagreement categories. However, all of the questions falling into the neutral category 

had greater than ten responses indicating disagreement. R3, R17, and R18 had the most 

number of “strong disagreement responses, with at least three. R17 and R18 are related to 

the importance of information related to behavior in other countries.  R3 states, “The 

organization has been slow in detecting emerging technological breakthroughs in our 

domain.”  It is interesting to note that this statement has the largest standard deviation of 

all of the responses, with the highest mean disagreement from the participants in the 

energy industry. This response also has a significant correlation with R17, R21, and R25, 

a finding which suggests that the individuals who most felt as though their organization 

was good at detecting emerging technologies, also considered global activity as an 

important part of the decision process, thought that it was important to know which 

conferences covered their technical area, and believed it is important to know the position 

of their technology in its life cycle.  
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CHAPTER 5  
 

DATA PREPARATION 
 

5.1 The Concept-Clumping Algorithm  

5.1.1 Preparation  

 The Concept-Clumping Algorithm is intended to identify and combine terms that 

are conceptually the same, improving the conceptual accuracy of analyses using Abstract 

Phrases. Implementing the Algorithm proved to be challenging. First, the algorithm is 

written as a script in VantagePoint. Therefore, it required a programmer knowledgeable 

of scripting in VantagePoint and able to program in Visual Basic. Four individuals, all 

with other commitments, fit that profile. Additionally, the programming is more 

complicated then initially expected, further limiting the programmers capable of finishing 

the task. Finally, the second programmer found a memory leak in VantagePoint that was 

preventing the algorithm from running properly.  The Algorithm ran on the Cleaned 

Abstract Phrases from samples of the five record sets from the selected topic areas (Table 

4.1). Each sample consists of between 176-263 records taken from one year out of the 

entire record set. The manual requirement to evaluate the precision of the algorithm 

prohibits evaluating an entire record set at this time.  

One major adjustment was made to the algorithm. In some cases, because the 

algorithm forces the term to choose between groupings starting at the level of the greatest 

number of shared words, the multiword search terms create some inaccurate groupings, if 

that term appears in numerous separate concepts. The reason is that the different 

variations in spelling of the search term would be considered at the same time as different 
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categories of the search term. “Carbonate fuel cell systems” has as many shared words 

with “solid oxide fuel cell” as it does with “carbonate fuel cells.”  The algorithm ran at 

sufficient accuracy for the “geographic information system” and the “pollution 

monitoring” record sets. However, the problem became evident after running the 

algorithm on the “remote sensing” and “fuel cell” record sets.  At the two shared-words 

iteration, “carbonate fuel cell system” would have to choose between “solid oxide fuel 

cell” and “carbonate fuel cell”. Since the terms cell(s) very rarely appear without fuel, 

ignoring “cell(s)” improves the accuracy of the algorithm. “Carbonate fuel cell system” 

would not have to consider “solid oxide fuel cell” as a partner.   In the remaining record 

sets, the noun part of the search term which may appear in a variety of forms was 

ignored, meaning “sensing,” “sensor,” “cell,” and “cells,” by the algorithm.  Ignoring the 

search term word that rarely appears without the other is a way of forcing additional 

strength between concepts that contain the search term. It requires an additional shared 

word, allowing different categories of the search term to be considered before variations 

in spelling of the search term itself. 

The algorithm macro now gives the user the option of ignoring a string or set of 

strings from consideration. In the future, something like “sub” might be ignored. “Sub” is 

used in abstracts to indicate a subscript. So, in scientific abstracts “O2” would be written 

as O(sub)2. Further research is required to determine what terms should be added to a list 

of terms to ignore. If there are terms that should be ignored across all record sets, the 

algorithm should be programmed to read these words from a stopwords list. The goal is 

to create such as list that is not domain specific. 
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5.1.2. Calculating Precision 
 
 The output file produced is a set of VantagePoint thesaurus files, which combined 

together provide the entire clumped group and the term that is ultimately chosen as the 

representative term for the group of terms deemed similar. .  For example, the output file 

contained the following segment: 

**hard disk drives 
100 1 ^hard disk drives$ 
100 1 ^double prime hard disk drives$ 
100 1 ^hard drives$ 

 

The “**” indicates the name that the terms in the lines below it will be given.  

Each term was evaluated to determine if the representative term provides an 

accurate portrayal of the term under consideration. The file was opened as an Excel 

Spreadsheet and each term in the group was evaluated to determine if “hard disk drives” 

is a conceptually accurate representation of the term. For this segment, all of the terms 

are “Good Matches.” Therefore, the spreadsheet was marked as in Table 5.1. 

 

Table 5.1: Hard Disk Drive Matches 

Bad 
Matches 

Good 
Matches **hard disk drives 

 1 100 1 ^hard disk drives$ 
 1 100 1 ^double prime hard disk drives$ 
 1 100 1 ^hard drives$ 

 

 

The column totals were tabulated in order to determine the precision of the 

algorithm in that record set. Due to conflict resolutions, some of the output groups 

contained only one term. These are not calculated into the precision, because clearly a 
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group of one term named for that term would be a correct representation. Only output 

combining terms are considered.  So, consider the following output in Table 5.2. 

 

Table 5.2: High Density Recording Matches 

B G **high density recording 
 1 100 1 ^high density recording$ 
 1 100 1 ^high density magnetic recording$ 
 1 100 1 ^high density magnetic recording applications$ 
 1 100 1 ^high density magnetic recording materials$ 
 1 100 1 ^excellent high density recording capability$ 
 1 100 1 ^good high density recording performance$ 
 1 100 1 ^high density magneto optical recording$ 
 1 100 1 ^high density overwrite recording$ 
 1 100 1 ^high density recording disks$ 
 1 100 1 ^high density recording media$ 
 1 100 1 ^high frequency high density tape recording$ 
 1 100 1 ^high linear density recording$ 
 1 100 1 ^recording density$ 
 1 100 1 ^predicted recording density$ 
 1 100 1 ^recording areal density$ 
 1 100 1 ^recording density curves$ 
 1 100 1 ^recording density D sub sub$ 

1  100 1 ^recording linear density$ 
  **high density television 

1  100 1 ^high density$ 
1  100 1 ^high bit density$ 
1  100 1 ^high density partial response channels$ 

 1 100 1 ^high density television$ 
1  100 1 ^high superficial density$ 

  **magnetic property 
  100 1 ^magnetic property$ 
  **thin film head elements 
 1 100 1 ^thin film$ 
 1 100 1 ^polished thin film disk$ 
 1 100 1 ^thin film head on disk wear tests$ 
 1 100 1 ^thin film rigid disk$ 
 1 100 1 ^thin film disks$ 
 1 100 1 ^isotropic longitudinal CoCrTa Cr thin film head$ 
 1 100 1 ^thin film head elements$ 
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Table 5.2 (cont.) 

 1 100 1 ^Co Pt thin film patterns$ 
 1 100 1 ^conventional thin film head sliders$ 
 1 100 1 ^thin film corrosion$ 
 1 100 1 ^thin film corrosion model$ 
 1 100 1 ^thin film discs$ 
 1 100 1 ^thin film magnetism$ 
 1 100 1 ^thin film optics$ 
 1 100 1 ^thin film type recording head$ 
  **magnetic heads 
 1 100 1 ^magnetic heads$ 
 1 100 1 ^small magnetic heads$ 
  **thin films heads 
 1 100 1 ^thin film inductive heads$ 
 1 100 1 ^conventional thin film inductive heads$ 
 1 100 1 ^inductive thin film magnetic recording heads$ 
 1 100 1 ^thin film inductive recording heads$ 
 1 100 1 ^thin film magnetic recording heads$ 
 1 100 1 ^thin film recording heads$ 
 1 100 1 ^CoTaZr amorphous thin film disk heads$ 
 1 100 1 ^thin film inductive disk drive heads$ 
 1 100 1 ^thin film magnetic heads$ 
 1 100 1 ^thin film read write magnetic heads$ 
 1 100 1 ^conventional thin film heads$ 
 1 100 1 ^modified thin film heads$ 
 1 100 1 ^similar thin film heads$ 
 1 100 1 ^thin film heads TFHs$ 
 1 100 1 ^thin films heads$ 
  **amorphous magnetic film 
  100 1 ^amorphous magnetic film$ 

 

 

The “B” column is a marker for “Bad Matches” and the “G” column is a marker 

for “Good Matches”.  Notice that the group member, “amorphous magnetic film” does 

not have a “1” in either column. This term is the only term in its group and therefore, was 

not included in the calculation. There are 50 terms that are considered Good Matches and 
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5 that are considered “Bad Matches.” In some cases, judgments were made by reviewing  

individual abstracts to determine the context of the term in the record set.   

Where precision = (Good Matches)/ (Good Matches + Bad Matches), the above 

sample had a precision of 50/55 or 90.9% 

The precision of the algorithm was above 89% for all five record sets (Table 5.3). 

 

Table 5.3 Technology Cases: Clumping Algorithm Precision Calculations  

File # Recs Precision 
Fuel Cells (1995) 197 91.1% 

Remote Sensing (2002) 263 89.7% 
Magnetic Storage (1992) 220 92.2% 

GIS (1992) 176 90.7% 
Pollution Monitoring (2003) 181 91.4% 

 

5.1.3 The Effect of the Algorithm 
 

The effect of the algorithm is apparent in the “Top 20”  term list for each of the 

record sets. The Clumped Abstract Phrases list is shown alongside the Cleaned Abstract 

Phrases list, where cleaning refers to the stemming algorithm already in VantagePoint. 

Cleaning is maintained in the clumping algorithm as a preparation step. Individual points 

are discussed below each Top 20 list (Tables 5.4 – 5.8).  

Consider the lists in Table 5.4.  The cleaned abstract phrases list only contains two 

multiword phrases containing “fuel cells” (the search term itself) and “solid oxide fuel 

cells.”  However, clumping allows for many of the multiword concepts to increase in 

prominence on the list. Three additional terms containing the phrase “fuel cells” are now 

on the list and the concept “solid oxide fuel cells” increases from 11 records to 30 
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records. The combined “solid oxide fuel cells” entry consists of the following original 

terms: 

solid oxide fuel cells 
 solid oxide fuel cells SOFCs 
 reduced temperature solid oxide fuel cells SOFCs 
 novel solid oxide fuel cell SOFC system 
 SOFC Solid Oxide Fuel Cells interconnector material 
 solid oxide fuel cell SOFC cells 
 solid oxide fuel cell SOFC performance 
 chemical cogenerative solid oxide fuel cell 
 solid oxide fuel cell electrolytes 
 solid oxide fuel cell systems 

 

 
Table 5.4: Fuel Cell Top 20 Abstract Phrases 

 
   

# 
Recs 

Abstract Phrases 
Cleaned 

# 
Recs

Abstract Phrases  
Clumped 

1 50 Fuels cells 50 fuels cells 
2 33 C 33 C 
3 24 developments 31 deg 
4 24 results 30 solid oxide fuel cells SOFCs 
5 20 effects 24 developments 

6 14 study 15 
direct methanol polymer electrolyte  
membrane fuel cells 

7 14 temperatures 15 molten carbonate fuel cells 
8 14 uses 14 temperatures 
9 13 operator 12 current density 
10 12 cells 12 electrodes 
11 12 electrodes 12 electrolytic 
12 12 electrolytic 12 hydrogenation 
13 12 hydrogenation 12 increasing 
14 12 increasing 12 oxygen 
15 12 oxygen 12 yttria stabilized zirconia YSZ 
16 12 systems 11 applications 
17 11 applications 10 high efficiency 
18 11 solid-oxide fuel cells 9 cathodically 
19 10 activity 9 phosphoric acid fuel cells 
20 10 catalysts 9 proton exchange membrane fuel cells 
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The simple ability to combine “solid oxide fuel cells” and “solid oxide fuel cells 

SOFCs” would increase the representation of the this type of fuel cell from 11 records to 

18 records.  

Some other important terms not on the list originally were: direct methanol 

polymer electrolyte membrane fuel cells, molten carbonate fuel cells, phosphoric acid 

fuel cells, yttria stabilized zirconia YSZ, and proton exchange membrane fuel cells. 

Using the concept-clumping algorithm, “yttria stabilized zirconia YSZ” is counted 

in 12 records. Without the algorithm, the most frequent variation of this term only 

appears in 2 records. Therefore, without the algorithm it would not be used in the 

mapping function at all.  Phosphoric acid fuel cells is another term that makes the Top 20 

list only after clumping. It consists of the following terms.  

 four phosphoric acid fuel cell monocells 
 kilowatt phosphoric acid fuel cell  
 phosphoric acid fuel cell cathodes  
 phosphoric acid fuel cell technology  
 phosphoric acid fuel cells  
 pressurized phosphoric acid fuel cell  
 phosphoric acid electrolyte  
 platinum bearing phosphoric acid  
 pyro phosphoric acid  

 

Two phosphoric acid fuel cell terms that are not included in this grouping are 

“phosphoric acid fuel cell power plants” and “PAFC power plants”, which the algorithm 

determined were more similar to a fuel cell power plants grouping.  

After numerical and punctuation characters are removed from the list, common 

words with up to ten letters are removed. Notice the impact that this has on the Abstract 

Phrase list for Remote Sensing (Table 5.5.) The five most frequent terms (results, data, 

study, methods, used) are removed from the list. Terms are removed that would be 
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included in a wide array of records but do not uniquely distinguish the scientific concepts 

in the record. 

 

Table 5.5: Remote Sensing Top 20 Abstract Phrases 

 
   # Recs 

Abstract Phrases 
Cleaned # Recs

Abstract Phrases  
Clumped 

1 72 results 79 remote sensing 
2 40 data 26 applications 
3 35 study 24 estimators 
4 34 methods 22 development 
5 32 used 19 approaches 

6 26 applications 15 
Synthetic Aperture Radar SAR 
images 

7 26 presented 14 experimental results 
8 25 remote sensing 14 techniques 
9 24 effects 12 Atmosphere 
10 24 estimators 12 information 
11 22 accuracy 12 potentiality 
12 22 analysis 11 land cover classification 
13 22 development 11 ms 
14 21 surfacing 11 relationships 
15 21 systems 10 classifications 
16 20 measures 10 combinations 
17 19 approaches 10 km 
18 18 problems 10 vegetation 
19 17 images 9 conditions 

20 16 regions 9 
Gaussian maximum likelihood 
GML classification 

 

 Notice the Magnetic Storage Cleaned Abstract Phrases contain a number of 

generic single terms (Table 5.5). In the Clumped Abstract Phrases list, there are a few 

“thin film” entries, such as “thin film heads,” that were not in the Top 20 in the Cleaned 

Abstract Phrases list. The output file looks as follows: 

**thin films heads 
100 1 ^thin film inductive heads$ 
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100 1 ^conventional thin film inductive heads$ 
100 1 ^inductive thin film magnetic recording heads$ 
100 1 ^thin film inductive recording heads$ 
100 1 ^thin film magnetic recording heads$ 
100 1 ^thin film recording heads$ 
100 1 ^CoTaZr amorphous thin film disk heads$ 
100 1 ^thin film inductive disk drive heads$ 
100 1 ^thin film magnetic heads$ 
100 1 ^thin film read write magnetic heads$ 
100 1 ^conventional thin film heads$ 
100 1 ^modified thin film heads$ 
100 1 ^similar thin film heads$ 
100 1 ^thin film heads TFHs$ 
100 1 ^thin films heads$ 

 

 
Table 5.6: Magnetic Storage Top 20 Abstract Phrases 

 
   # Recs 

Abstract Phrases 
Cleaned # Recs

Abstract Phrases  
Clumped 

1 34 Results 32 Mu 
2 29 Heads 20 High density recording 
3 28 Uses 20 Ms 
4 27 Effects 20 Thin film recording media 
5 21 Presents 17 Thin film heads 
6 20 Ms 16 Developments 
7 19 Disks 16 Thin film magnetic recording disks
8 18 Measures 15 Techniques 
9 17 Methods 15 Thin film head elements 
10 16 Described 14 Magnetic property 
11 16 Developments 12 Deg 
12 15 Techniques 11 Applications 
13 14 Magnetic property 11 Experimental results 
14 13 Functions 11 MIG heads 
15 13 Systems 11 Recording heads 
16 12 Magnets 10 Finite element method FIM 
17 12 Taping 10 Intermittent head disk contacts 
18 11 Applications 9 Air bearing surfaces 
19 11 C 9 Directions 
20 11 problems 9 Disk drives 
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Table 5.7: GIS Top 20 Abstract Phrases 

 
   # Recs 

Abstract Phrases  
Cleaned # Recs

Abstract Phrases  
Clumped 

1 54 
GIS-Geographic Information 
System 83 

GIS Geographic Information 
System 

2 43 GIS 63 geographical information systems 
3 36 data 43 GIS 

4 32 
geographical information 
systems 24 applications 

5 32 results 24 developments 
6 31 systems 21 spatial data 
7 30 uses 13 U S 
8 24 applications 12 multiple remote sensing images 
9 24 developments 12 researches 
10 20 analysis 11 land use category 
11 20 informing 11 relationships 
12 20 study 10 ground water 
13 18 maps 10 processing 
14 16 timing 10 remotely sensed 
15 15 spatial data 9 data sets 
16 14 areas 9 land uses 
17 14 numbers 8 United States 
18 14 plans 8 water resources 
19 14 tools 7 approaches 
19 14 users 7 Extensive water quality data  

 

 

The GIS list reveals the limitation of the clumping algorithm. The first three terms 

on the list are “GIS Geographic Information System”  “Geographical Information 

Systems” and “GIS.” These terms are clearly the same concept, but share at most only 

one word in common. The algorithm only reviews terms that share at least two words in 

common, because while this case is clear, imagine the number of terms that may include 

the word “information” in a record set. Reapplying the concepts of ignoring common 

words, stemming, and similarity could result in a more powerful algorithm that could 

address these issues. 
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Table 5.8:  Pollution Monitoring Top 20 Abstract Phrases 
 

 
   # Recs 

Abstract Phrases  
Cleaned # Recs

Abstract Phrases  
Clumped 

1 61 results 42 concentrations 
2 51 study 21 Zn 
3 42 concentrations 19 contamination 
4 36 data 19 Pb 
5 29 sites 17 Cu 
6 21 Zn 16 Cd 
7 20 effects 13 heavy metals 
8 19 contamination 13 pollutants 
9 19 Pb 12 air pollution 
10 18 soils 12 air quality 
11 18 used 12 Co 
12 17 Cu 11 contributions 
13 16 Cd 11 distributions 

14 15 impacts 11 
environmental heavy metal 
ions 

15 15 low 11 Ni 
16 15 sampling 10 PM sub 
17 14 analysis 10 study area 
18 14 area 9 high concentrations 
19 14 increases 9 indicators 

20 14 sediments 9 
polycyclic aromatic 
hydrocarbons 

 
 In the case of Pollution Monitoring, some terms rose in prominence on the list, 

while terms such as “heavy metals,” “ environmental heavy metal ions,” and “polycyclic 

aromatic hydrocarbons” were included on the list.  The group for “polycyclic aromatic 

hydrocarbons” consist of the following terms: 

 **polycyclic aromatic hydrocarbons 
1 100 1 ^polycyclic aromatic hydrocarbons PAHs$ 
1 100 1 ^polycyclic aromatic hydrocarbons$ 
1 100 1 ^low molecular weight polycyclic aromatic hydrocarbons PAH$ 
1 100 1 ^particle bound polycyclic aromatic hydrocarbons$ 
1 100 1 ^polycyclic aromatic hydrocarbon PAH exposure$ 
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  The most frequent occurrence of any one of these terms is the title term, which 

appears in two records.  A term that clearly conceptually belongs with this group is 

“PAHs”, which occurs in 7 records. An improvement in the algorithm should attempt to 

match such a term with like concepts.  

The algorithm has a high level of precision. However, clearly from the Top 20 

lists we also see terms that have the same meaning that are still not identified as being 

conceptually the same. Therefore, additional work should be done to improve the recall 

of the algorithm without reducing the precision. The lists also reveal additional 

opportunities for improvement. If VantagePoint is to be used on files with chemical 

elements discussed, a thesaurus for the elements in the periodic table may be useful. 

5.2. Keywords and Abstract Phrases Cluster Comparison  

The impact of the clumping algorithm is evident in the Step Three results. 

However, can clumping create more accurate clusters? In this step, the five datasets from 

the search terms in Step One were randomly sampled to create workable size datasets 

Table 5.9.  

 

Table 5.9: Dataset Sample Sizes 

Fuel Cells 880 
GIS 520 
Magnetic  Storage 693 
Pollution Monitoring 434 
Remote Sensing 445 
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The first step in creating a cluster map based on PCA is determining which terms 

will be included in the clustering. There are a number of ways to make this 

determination; however, in any case, the term must occur in at least two documents in 

order for any co- occurrence based method to work. Using all terms with at least two 

occurrences, is one method and another is to take a percentage of the terms. This research 

Factor Map

Abstract Phrases Clumped (map)
Factors: 7
% Coverage: 64% (284)
VP top links shown

> 0.75 0 (0)
0.50 - 0.75 0 (0)
0.25 - 0.50 0 (0)
< 0.25 6 (15)

techniquestechniques

high spectral resolution thermal infrared TIR remote sensinghigh spectral resolution thermal infrared TIR remote sensing

correlatorscorrelators

full Landsat Thematic Mapper scenefull Landsat Thematic Mapper scene

High Resolution Radiometer AVHRR dataHigh Resolution Radiometer AVHRR data

radiative transfer modelsradiative transfer models

informativityinformativity

Abstract Phrases Clumped
0.62 high spectral resolution 
0.56 sea surface temperature S
0.39 emissivity

Abstract Phrases Clumped
-0.54 full Landsat Thematic Map
-0.52 land cover
-0.44 Synthetic Aperture Radar 
-0.43 data sets
-0.38 classifications

Abstract Phrases Clumped
-0.68 High Resolution Radiomete
-0.50 difference vegetation ind
-0.44 real time
-0.38 satellite data

Abstract Phrases Clumped
-0.59 radiative transfer models
-0.50 difference vegetation ind
-0.45 estimators
-0.41 atmospherically
-0.40 reflectivity
-0.39 sensitivity
-0.37 relationships

Abstract Phrases Clum
-0.48 informativity
-0.48 time series
-0.46 directions
-0.44 satellites
-0.40 researches
-0.34 atmospherically
-0.31 parameters
-0.31 instruments
-0.26 variations

 

Figure 5.1 Remote Sensing Clumped Abstract Phrases Map 
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 uses a method based on the Zipf distribution. The Zipf distribution asserts the log of the 

rank vs. the log of the frequency of a term is linear. The method used finds that line and 

the terms with the highest and lowest rank that fall below the line are eliminated.  This 

method was chosen because of the variation between the number of terms in keywords 

versus abstract phrases. Appendix H contains the graphs of the Zipf distributions for each 

of the three lists in each of the five datasets.  After the terms for the cluster map were 

determined, three maps were created for each of the five datasets, a Keyword map, a 

Cleaned abstract phrases map, and a Clumped abstract phrases map. The Remote Sensing 

Clumped Abstract Phrases Map shown in Figure 5.1 is an example of one of the maps. 

Appendix I contains the entire set of maps.  

Table 5.10 captures the numerical data regarding the links, clusters, and terms for 

each cluster.  Consider the data on the Remote Sensing Clumped Abstract Phrases Map 

(Figure 5.1), The Remote Sensing clusters were created starting with the original list of 

8004 terms. The Zipf Distribution graph kept only 46 terms, or 0.6% of the original 

terms. Then the clustering algorithm created seven clusters. There are seven blue circles 

on the map, corresponding to the seven clusters. There are 6 links between the clusters all 

with a link strength of less than 0.25. Therefore, there are only weak relationships 

between the clusters. The clustering algorithm used 33 of the 46 terms, or 71.70% of the 

terms. There were an average of 5.14 terms included in each cluster and least one term 

that is included in a cluster occurs in 64% of the documents. The last two columns in 

Table 5.10 represent the tightness and separateness of the clusters. The Remote Sensing 

clusters have an Entropy of .74, and a Cohesion of .45.   

 Using SPSS, a correlation matrix was developed in order to determine if  
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 Table 5.10 Quantitative Cluster Measures 
              
        Strength of Links           

  
Total # 
Terms 

% 
term 

# of 
links <.25 

.25-
.5 >.75 

# of 
Clstrs

Avg # 
terms 
per 

Clstr 

# 
terms 

in 
Clstrs

%  
docs 
Used Entropy Cohes.

                        
Key 1210 81 8 8 0 0 9 5.56 48 59.30% 1.62 0.75 
 

Clean 298 2.00% 9 9 0 0 11 4.64 15.80% 45 9284.8 0.49 
 

9799 1.90% 13 13 0 0 15 5 74 74 11536.2 0.48 

                         

GIS                         
Key 773 146 18.9% 9 1 0 0 6.6 66 45.20% 71 0.69 
Clean 10668 0.30% 8 8 0 0 9 3.44 29 

 
     

# 
Terms 
used 

.5-
.75 % terms 

Fuel 
Cells       

6.70% 0 62 

14564 0 47 

184 0 40.20% Clum 
      

      
10 10 7732.5

31 0 93.50% 69 1828.2 0.42 
1 

Clum 224 2.90% 10 0 0 0 5.08 59 26.30% 2789.2 0.42 

                       
Mag 
Stor        

7614 10 12 49 
 

        

                       
Key 1120 230 20.5% 13 13 0 0 0 15 4.93 74 32.20% 69 40794.5 0.69 
Clean 
 

139 1.30% 9 9 0 0 0 10 5.2 52 37.40% 62 9284.8 0.44 

Clum 
 

7207 149 2.10% 9 9 0 0 0 10 5.4 64 43.00% 52 3810.1 0.41 

                               
Poll 
Mon                               
Key 2072 272 13.1% 14 13 1 0 0 16 6.88 84 30.90% 87 3091.2 0.73 
Clean 
 

12330 167 1.40% 11 10 0 1 0 13 4.62 54 32.30% 70 4149.2 0.56 

Clum 
 

8702 67 0.80% 8 8 0 0 0 9 4.89 36 53.70% 54 0.84 0.48 

                               
Rem 
Sens                              
Key 2175 215 9.90% 13 13 0 0 0 15 5.27 79 36.70% 68 23214.6 0.62 
Clean 
 

11153 90 0.80% 7 6 1 0 0 8 5.75 43 47.80% 71 1.28 0.44 

Clum 
 

8004 46 0.60% 6 6 0 0 0 7 5.14 33 71.70% 64 0.74 0.45 

                                

10832 

 
Note: Entropy requires the log(Pij) However, if there is no overlap between clusters Pij=0 
and the log0 is negative infinity. In such a case if there was one set of clusters with no 
overlap the Entropy of the entire map would be negative infinity. In order to create some 
basis for comparison the log0 was calculated as –10,000. A sufficiently large number. 
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correlations in the variables existed regardless of the method used to construct the cluster  

maps (Appendix J). Some notable correlations that existed at a .01 significance level 

include a positive correlation between the number of terms actually included in the 

clusters, the number of links, and the entropy. These three variables have a negative 

correlation with the percentage of terms actually used from the initial terms used to 

determine the clusters.  Entropy is also positively correlated with the number of clusters. 

Therefore, when there are more clusters on the map, the clusters are more distinct.  

 

Table 5.11 Cluster Quantitative Measure Comparison of Means 
 

 (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) 

Kywd 
Mean 

3 594 1470 189 13.8 12 13 5.85 70 41 71 14967 0.7 

Std. 
Dev. 

2 190 620 75 5.9 3 3 0.85 14 12 9 16974 0.1 

              
Clnd 
Mean 

21 594 11909 145 1.2 9 10 4.73 45 45 63 4910 0.5 

Std. 
Dev. 

5 190 1620 100 0.7 2 2 0.86 10 29 11 4256 0.1 

              
Clmp
Mean 

15 594 8265 134 1.6 9 11 5.10 53 47 59 3627 0.5 

Std. 
Dev. 

4 190 1019 76 1.0 3 3 0.19 18 17 10 4733 0.1 

A) terms per document     
B) Number of documents 
C) Total number of terms 
D) Number of terms used in clustering 
E) Percentage of terms considered for clustering 
F) Number of links on cluster map 
G) Number of clusters on cluster map 
H) Average Number of terms per cluster 
I) Number of terms assigned to a cluster 
J) Percentage of terms assigned to a cluster 
K) Percentage of documents covered by the clusters 
L) Entropy 
M) Cohesion 
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Cohesion does not have a strong correlation with any other variable at the .01 level. 

However, at the .05 level, cohesion is positively correlated with the percent of all the 

term that are selected to use in clustering. The higher the percentage of terms used in the 

clustering results in “tighter” clusters.   A comparison of means was calculated using 

keywords, cleaned phrases, and clumped phrases as the grouping variables.  Table 5.11 

contains the results.  

This paper first compares Clumped Abstract Phrases to Cleaned Abstract Phrases and 

then compares the Clumped Abstract Phrases to Keywords. In comparing Cleaned 

Abstract Phrases to Clumped Abstract Phrases, this table reveals that clumping reduced 

the Abstract Phrase terms by 30% and reduced the number of terms included in the 

clustering. With those reductions came an increase in the number of clusters and the 

average number of terms per cluster. So what was the impact on the factors that are used 

to compare the quality of clusters? The percentage of documents covered was decreased, 

as was the cohesion.  Are these numbers a surprise? Somewhat. While the practice of 

combining terms means that the same terms represent more documents and therefore a 

greater spread of terminology, it is a surprise that the elimination of the common words 

did not result in greater cohesion. Does this mean that clumping phrases is bad? Certainly 

not! As stated earlier, these methods do not necessarily reflect good or better clusters. 

The purpose of the clusters is to show the relationships that exist in the data. The 

precision and impact of the clumping algorithm reveal that clumping conceptually 

represents the dataset well. The more important evaluation of the value of clumping in 

clustering is revealed in the actual clusters themselves.  The biggest difference between 
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the two types of Abstract Phrase maps is the technical specificity of the terms included. 

Cleaned Abstract Phrases are dominated by the common generic terms. This 

circumstance exists for two reasons: the most common words are not removed and 

secondly because the more technical terms are included in phrases that are not gathered 

together as in the Clumped Phrases. For example, the “friction” cluster in Cleaned 

Abstract Phrases includes the terms: “ friction”, “surfaces”, “lubrication”, “coefficients”, 

“wearing”, and “tribology”.  A similar cluster in the Clumped Phrase map contains 

phrases  like “ head disk interface” “surface roughness” “slider disk spacing” “Contact 

Start Stop durability” and “stiction”. Cleaned Abstract Phrases contains more clusters that 

have little meaning because of the broad terminology included. Clusters such as these in 

the Remote Sensing dataset: 

Accounts: used, limits, accounts, interpreting, selection, important 

Presents: presents, ones, techniques, atmospherically, described, viewing, 

experimental results, improvements 

In contrast, some of the Clumped Abstract Phrases clusters are: 

AVHRR data: difference vegetation index NDVI, real time, satellite data, High 

Resolution Radiometer AVHRR data 

TIR remote sensing: high spectral resolution thermal infrared TIR remote sensing, 

sea surface temperature SST, emissivity 

Clearly, clumping provides richer details in the clusters. 

In reviewing the clusters, Clumped Abstract Phrases sits in-between Cleaned 

Phrases and Keywords, having some clusters that match each side and not the other. The 

conceptually equivalent terms that are included in a keyword cluster, but are missing 
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from the Clumped Abstract Phrases clusters, fall into two categories: either the concept is 

defined by a single word, such as “pervoskite” in the fuel cell case, that occurs frequently 

with different words, or one of the words has different variations such as “fault tolerant” 

and “fault tolerance.” In order to capture those concepts found in the keyword clusters in 

the clumped abstract phrase clusters, and adjustment has to be made in VantagePoint. 

Currently, the number of clusters is determined by an algorithm based on the number of 

terms tagged for clustering. If the default number of factors is increased, then more of the 

keyword cluster concepts are captured in the clumping clusters. For example, in the fuel 

cell case, X-ray diffraction analysis is contained in the keyword clusters obtained using 

the VantagePoint default number of factors, but not in the clumping clusters. If the 

number of factors is increased, the term  appears in the clumping clusters, as are some 

other interesting clusters. 

Keyword clustering has been the method used in conducting conceptual clustering 

for a number of reasons. This research initially set out to determine if abstract phrases 

could be used in place of keywords for science and technology mapping. In comparison 

to abstract phrases, keywords used a higher percentage of the total terms which resulted 

in a larger number of clusters and links. The average number of terms per cluster was 

higher, as was the percentage of documents covered; the entropy and cohesion were both 

higher. Keywords do an excellent job of covering the dataset. However, it has been 

determined that the two complement each other and may be used for different purposes. 

Keywords use more general terms and therefore capture relationships with broader fields 

outside the specifics of the topic area. For example, magnetic storage has a cluster with 

the terms computer system recovery, security of data, computer software, computer 
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operating system, computer networks, fault tolerant computer systems. redundancy, 

computer hardware. However, clumped abstract phrases provide the specific details of 

the technology areas. The word "computer" only appears in the abstracts a few times in 

different terms. Abstract Phrases capture more specific concepts such as perpendicular 

recording, single pole type head, head medium spacing fluctuation, medium noise, 

transition shift distortion, and writing head field. 

In Science and Technology Analysis, clustering is used to “discover new concepts 

or new relationships from literature to identify promising research or technological 

opportunities, to identify themes and sub-themes in a large body of technical literature, 

allows technical taxonomies to be generated, and to link major themes” (Kostoff, 2001). 

Keywords can identify where the technology area sits among broad categories and can 

identify promising research at the crossroads of these broad areas. Larger themes can be 

identified using Keywords. Clumped Abstract Phrases on the other hand can be used to 

identify sub-themes within those broad areas. Since keywords come from a taxonomy 

that already exists, Clumped Abstract Phrases is better suited to identify new themes or 

concepts and developing new taxonomies. More specific identification can also take 

place using abstract clumping in clustering. 
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CHAPTER 6  

METRIC FINDINGS AND EVALUATION 
 

6.1 The Metrics for an Example Technology 

The analysis of the Questionnaire results reveals that participants strongly agreed 

with the importance of three of the information statements (Table 4.4) and indicates that 

there are four clusters of information interests. From these results, information packets on 

Magnetic Storage packaged on a website.  The website opened to a Welcome Screen 

which provided background information. Three situations provided the evaluators with 

the perspective of a technology decision-maker who would use the information. 

“Situation 1) You manage research in a magnetic storage technology. You are 
trying to determine if you should make any changes in your research strategy.  
Situation 2) You are a developing a technology that relies on storage technology 
as a component of your design. You are trying to determine if you should invest 
research dollars investigating magnetic storage or look into some other option. If 
you decide to go with a magnetic storage technology, you must decide if you 
should do the work in-house or partner with another organization. 
Situation 3) You are a company that must maintain millions of customer records 
per year. Should you use a magnetic storage technology or investigate another 
route?” 

 

The Welcome Page is linked to the “Magnetic Storage Home Page” (Figure 6.1). 

From the Home Page, the reviewer could link to both a Keyword and Abstract Phrases 

overview map. There is also a link to a list of conferences and journals with the topics 

covered (Figure 6.2). In addition to these links, which provide a general overview of the 

information contained in the dataset, the Home Page contains links to each of the clusters 

of interest.  
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Figure 6.1 The Magnetic Storage Home Page 
 
 
 

 
 
    

 
 

Figure 6.2 Magnetic Storage Conferences and Journals Web Page 
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6.1.1 General Organizational Monitoring 
 
 Figure 6.3 is an example of an information page based on a cluster from the 

questionnaire results.  From this page, a decision-maker can discover the activity of 

leading organizations  and identify the leading individual publishers. 

 

 

Figure 6.3 

 
 A user can discover which organizations have researchers who are publishing 

together using the Collaboration Map. This map shows the links between the top 27 

organizations based on the authors who published together (Figure 6.4). 

Figure 6.4 shows which organizations have authors who are collaborating in 

Magnetic Storage. Note, for example, that Seagate Technology authors have collaborated 

with a number of organizations. They have collaborated, not only with universities such 

as UC San Diego, Carnegie Mellon, and the University of Minnesota, but also with other 

corporations such as Read-Rite Corporation and Western Digital Corporation.  
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Figure 6.4 Magnetic Storage Collaboration Map 

 

 One interesting finding is the number of organizations that are no longer 

publishing.  Four companies (Western Digital Corporation, Fujitsu, Quantum Corp, and 

Phillips Research) had published at least nine articles before 2001 and no articles 
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afterwards. This fact is an indication that the technology may be more mature and the 

research discussion is changing. The information in the “Technology Progress” area 

provides more information on the maturity of the technology. 

6.1.2 Global Organizational Monitoring 
  

On the Global Monitoring page, the user views a graph of the total publishing 

activity in the United States compared to the rest of the world. Users can also see the  

 

 

Figure 6.5 Global Monitoring Web Page 
 
 
 

main research topic areas of different countries and foreign organizations, and compare 

the size of foreign research teams to those in the United States (Figure 6.5). The graph of 

Global Activity (Figure 6.6) shows very similar year-to-year behavior between the United 

States and other Countries. It also shows a significant drop in the number of articles 

published in recent years; yet another sign of the maturity of this technology. Another 

interesting discovery about Global Activity is the difference between the size of research 

teams in the US compared to foreign organizations (Table 6.1). There are fewer 
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publications for the size of the research teams in the foreign companies than in the US 

companies, indicating greater collaboration. 

 

 

Figure 6.6 Global Activity Over The Years 

 

Table 6.1 Size of Research Teams: US vs. Foreign 

Foreign 
    

Recs Size US 
    

Recs Size 
Hitachi, Ltd 23 66 Seagate Technology 36 100 

Fujitsu 7 35 Western Digital Corp  20 68 
Sony 10 34 Storage Tech Div., IBM 18 65 

Data Storage Inst., Singapore 12 31 Read-Rite Corp. 13 38 
Toshiba, Japan 7 21 Quantum 14 25 

Philips  4 18 Linear Technology 3 11 
Samsung 3 9 Hewlett Packard 4 6 
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6.1.3 Hiring for Cutting Edge 
 

 

Figure 6.7 The Leading Universities in Magnetic Storage Research 
 
 

 A number of universities are conducting research in Magnetic Storage. On this 

cluster web page, a technology manager can find a university where research in a 

particular area of Magnetic Storage is being conducted (Figure 6.7). These universities 

are potential partners or may have students graduating with the skills that an organization 

needs. 

6.1.4 The Progress of the Technology 
 

Overall, the results show that Magnetic Storage is a mature technology. The 

indications of maturity are the progression along the S-curve (Figure 6.8) and the  

language progression (Table 6.2). Expert evaluators also supported these findings 

(Ortego, 2004; Domingue, 2004).  
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The y-axis value is the number of articles published in the given year. 
Figure 6.8 

 
 
 

The maturity of Magnetic Storage seems to be confirmed by the non-technical 

terms found in the record set (Table 6.2). The later years terms indicate a further point 

along the Innovation Cycle. In the earlier years, terms such as —“theory, functions, 

commercial” appear. Midway, in 1997, “standards” first appears in the literature, 

characteristic of the Transitional Phase of the Innovation Cycle. In later years, the terms 

“customers, affordable, and reproducibility” first appear, indicating improvements or 

more process innovations, which are indicative of the last stage of the Innovation Cycle 

(Abernathy and Utterback, 1978). The information in this section combined with 

corresponding information in other sections indicates that someone making a decision 

about Magnetic Storage may need to expand their search to more innovative forms of this 

technology. This technology, as it has traditionally been discussed, is towards the end of 

its life cycle. These facts do not necessarily mean that a technology is obsolete; however, 

the discussion of the technology is changing and an innovation that may change the 
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nature of the technology is likely to appear on the horizon. In this case, emerging topics 

center on networks, instead of devices.  

 

Table 6.2: Analysis of Non-Technical Terms 

 
FIRST YEAR OF 
APPEARANCE 

   NON-
TECHNICAL  TERMS 

1995 functions  
theory  
commercial 
techniques 
obsolescence 
issues  
costs 
devices 

efficient 
environments 
copy 
constraints 
policy  
predictions  
configurations 
components 

1996 interfaces  
behaviors  
products  
models  
relationships  
stable  
established 

demonstration  
instability 
repeatability  
capabilities 
fundamentals  
obsolete  
start-up 

1997 challenges  
applied  
standards  
usefulness 

1998 interactions  
domains 
barriers  
basics  
quality  
success 
economies  
infrastructure 
utilized  

1999 appliances  
2000 reproducibility  
2001 customers  
2002 affordable  
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6.2 Framework Evaluation 

The purpose of a focus group is not to be representative but to gain the greatest 

possible understanding of a topic from the point of view of participants. In contrast to 

standard survey and interview techniques, the goal of focus groups is to understand the 

“why” of participant responses. Focus groups have been used to understand user 

interaction with information products (Eysenbach and Kohler, 2002). In this research, a 

focus group served as outside evaluators of the information produced, along previously 

defined dimensions. The focus group provided insight not only as to whether the 

information products met the requirements stated by decision-makers, but as to what 

improvements could be made in order to further attain those goals.  

In the interviews conducted at Step One, the initial participants conveyed the role 

that information plays in their decision-making. The participants named 14 expectations 

that they have of such information.  The dimensions are: 

1. Emphasizes significant use of peer reviewed journals.  

2. Provides an ability to obtain results by category (chronology, geography, etc.).  

3. Provides access to new ideas.  

4. Produces results which can be used to solve problems. 

5. Provides factual data for support, as in proposals and decision justification.  

6. Permits increase in overall knowledge of a problem area.  

7. Provides a better understanding of the needs of funding sources. 

8. Leads to less duplication of research efforts (i.e., through seeing what others are 

doing and sharing information).  

9. Permits identification of additional approaches/techniques/options.  
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10. Leads to a broader research focus.  

11. Leads to understanding of long-term issues.  

12. Leads to improvement of organizational competitiveness. 

13. Can be used in making strategic technology decisions. 

14. Can be Customized 

The last dimension was clearly outside of the scope of this particular project and, 

therefore, the first 13 dimensions became the basis for analyzing the Information on the 

website developed in Step Six. 

Five technology decision-makers who were familiar with Magnetic Storage 

technology participated in a focus group evaluating the Website information along the 

above dimensions.  Three additional evaluators, not able to attend the focus group, 

provided input online. Two online evaluators were provided information on the 

consensus opinions of the focus group. The evaluators consisted of two consultant 

practitioners who make recommendations to clients, two organizational implementers, 

who make decisions on what technology to implement in their own organization, two 

organizational innovators, who developed technology solutions, and two academic 

researchers. The instructions emphasized that they were to evaluate the type of 

information provided and not the information itself. The evaluators who offered their 

input online received background information in an email, along with the consensus 

results from the focus group. 

The focus group session began with a briefing on the background of the research 

and instructions. A transcript of the opening statement can be found in Appendix G. Each 

evaluator sat in front of a computer with the Welcome Screen for the website. The 
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evaluators were also given a sheet listing the evaluation criteria. They spent 15-20 

minutes reviewing the information before the discussion began. Following the review 

period, the focus group engaged in discussion along each of the evaluation criteria.  In 

addition to the Magnetic Storage sample set, a dataset from the search string “storage 

area network” was also provided. This dataset, which includes only 76 records, was 

shown on a projector. This additional information provides a comparison, as magnetic 

storage in general is an older technology and storage area networks are considered 

emerging.  

 The participants evaluated the information in comparison to the current forms of 

information that they receive. The results of the focus group are tabulated in Table 6.3. 

The table records categories of statements made by evaluators and notes which evaluator 

expressed agreement with the statement. A missing check does not indicate disagreement 

with the statement, but simply means that agreement was not overtly expressed. In some 

cases, the difference is simply based on whether the evaluator was involved in the focus 

group or not. The first five columns in the table represent individuals who participated in 

the focus group. The last three columns represent those individuals who responded 

online.  Only those sentiments expressed by at least two individuals are recorded. 

The results from the focus group show that the information product provides a good 

broad overview of the topic area and that it is good for R&D decision makers and 

technology implementers. There are many areas where the evaluators had a consensus 

opinion. Table 6.4 summarizes these opinions. As can be expected, the information was 

deemed less useful for consultant practitioners who are recommending technologies that 

are already developed by other organizations. While organizational implementers are also 
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Table 6.3: Focus Group Evaluation Results 

Evaluation Statements 

C
P-

1 
C

P-
2 

A
R

-1
 

A
R

-2
 

IM
P-

F 
IM

P-
O

 
IN

N
-1

 
IN

N
-2

 

Uses peer-reviewed journals √ √ √ √ √ √ √ √ 
Wants breakout between applied and theory √ √ √ √   √     

Good for researchers  √ √ √   √ √ 
Like the categories and presentation of the categories √ √ √ √ √ √ √ √ 

Want to see topic branches/compare technologies √ √ √ √ √      
Little direct access to new ideas/more history √ √ √ √       
Want to see links to emerging technologies √ √ √ √ √      

Better than current methods for accessing new ideas          √ √ √ 
Somewhat better than current methods for solving problems         √ √ √ √ 

Technologies need to be defined more specifically √ √             
Significantly/Somewhat better for proposals       √ √ √ √ √ 

Good source for references (whose doing what with whom) √ √ √ √ √       
Comparison information needed for proposals √ √ √ √ √       

Significantly/Somewhat support for overall knowledge         √ √ √ √ 
Categories would help develop overall knowledge √ √ √ √ √       

Poor source for information on funding sources √ √ √ √ √ √     
Somewhat better for information on funding sources             √ √ 

Whose doing what- Abstract better than Keywords(Specific) √ √ √ √ √       
Whose doing what- want drilldown to titles √ √ √ √ √       

Somewhat better for avoiding duplicating effort         √ √ √ √ 
Good for seeing different applications of the technology             √ √ 

Broadens research focus, but needs more specifics √ √ √ √ √ √ √ √ 
Life Cycle is helpful, but needs comparison information √ √ √ √ √ √ √ √ 

Not good for a corporate sell √ √             
Not better than current methods for competitiveness         √ √     

Significantly better for competitiveness, but not guaranteed             √ √ 
Somewhat/Significantly better for strategic decisions         √ √ √ √ 

Drill down and comparison would be better for strategy √ √ √ √ √       
Visualization of some areas needs improvement √ √ √ √ √ √ √ √ 

 

 

only implementing a technology developed by others, this group may differ in their 

analysis of  the type of information in the example output because of the difference in the 

level of knowledge about the technology. The organizational implementers may use the 

broad-based information provided to better understand a technology about which they are 
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not intimately familiar, but decide on its feasibility.  To this end, the approach of starting 

with the stated needs of decision-makers and framing the information product in those 

contexts was successful. The participants expressed appreciation for that format, as well 

as the numerous categorical perspectives. However, there is still significant room for 

improvement in the presentation of many components of the website pages.  

The participants found that both the relationships between organizations portrayed in 

the collaboration map and the ranking of the organizations according to their publication 

numbers provided relevant competitive information. Lastly, the participants deemed the 

Life Cycle information both accurate and useful in decision-making. However, the lack 

of comparison information made that information more difficult to interpret. 

 

Table 6.4: Focus Group Consensus Opinions 

Likes Wants 
• Broad Overview 
• Information for Researchers 
• Categories 
• Overall Presentation (Answer 

Approach)  
• Collaboaration Map 
• Organization Rankings 
• Life Cycle Information 
• Abstract Phrases Over Keywords 

• Customizability 
• Drill Down Capabilities 
• Comparison Information 
• Better Visualization 
• Explanation of Concept Maps  
• Separation between Applied and 

Theoretical 
• Access to More Specifics 

 

 It is noteworthy that the participants want more specific information. On the 

website, both keywords and Abstract Phrases were listed as the research topics for 

organizations and authors. The participants favored the Abstract Phrases because they 

were more specific than Keywords. They also expressed a desire for more specific 
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information and greater detail in the relationship between those phrases.  Using Abstract 

Phrases as the basis for additional methods, would make it possible for decision-makers 

to have access to information at a level of detail not possible when using Keywords. 

However, the participants also appreciated the broader information. “Drill-down 

Capability” was the main principle expressed. Along with the drill-down capability, the 

focus group reiterated the earlier stated desire for customizability. One participant stated 

that the information was overwhelming and primarily wanted the ability to control how 

many members of a list were shown at once.   

 While some sections of the website were easy to comprehend, others needed 

further explanation. In most cases, the lack of clarity was expelled by providing some 

form of context, either comparison information or greater explanation of the results. The 

online evaluators each had a particular item that they found to be unclear as well.   In 

some cases, the method of visualization was the hindering factor. The focus group 

participants understood the collaboration map, but not the concept map. Those maps have 

an almost identical visualization method. It appears that the visual form seems more 

suited to the cross-correlation maps in VantagePoint, than to the conceptual factor maps. 

Some information, such as the gap analysis of organizations and keywords, became more 

clear when shown in VantagePoint, underscoring the need for customizability even in the 

presentation of the information.  

 The evaluators were given the 13 dimensions discussed in Chapter Four along 

which to evaluate the information product. The focus group interaction provided rich 

details into how the participants interacted with the information. For example, when 

participants didn’t understand a certain presentation of the information, they requested 
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that an explanation be made available. However, in some cases, where a visual relied 

upon a written explanation, the participants did not read the information. This fact 

underscores the need for visuals that expressly state the intent of the information 

presented. Also, this research took an approach of starting with the statements of 

information needs and crafting the information to address those statements. While this 

seems to have been an effective method, the problems experienced when providing 

VantagePoint lists, matrices, and maps with no context can only be mitigated to the 

degree to which an exhaustive context is provided. For example, the website presents 

conference information under the following heading: “Attend one of these Conferences.” 

One of the consulting practitioners stated that this was not useful because conferences are 

too far ahead into the future. It never occurred to him that perhaps he could review the 

proceedings from the prior conference, because that was not expressly stated. These types 

of issues should be kept in mind when crafting the visualization and contextual 

representation of these information products.  

 It is also important to note that while the evaluators expressed interest in a 

customizable solution with drill-down capabilities and comparison information included, 

they also stated that the information was overwhelming. A solution must be addressed in 

the context of visualization. This research indicates that presenting information in packets 

geared toward stated information needs is meaningful for technology decision-makers. 

However, additional research must be done in order to determine the appropriate balance 

between the desire for access to more information and information overload. Improved 

visualization and a drill-down approach, which is currently utilized in Executive 

Information Systems, may mitigate some of those issues. 

 122



CHAPTER 7 
 

CONCLUSIONS AND FUTURE RESEARCH 
 

 
 The purpose of this research was to provide a method of producing technical 

intelligence that provides an advantage over methods currently used by decision-makers. 

Information Analysts and Text Data Mining Professionals have had the ability to apply 

advanced techniques to provide information to Technology Decision-Makers. However, 

there has been a disconnect between the information provided and the presentation of that 

information in a manner that decision-makers find useful. This research used a six-step 

approach to work through the various stages of the Intelligence and Text Data Mining 

Processes in order to address issues that may hinder the use of Text Data Mining in the 

Intelligence Cycle and the actual use of that Intelligence in making technology decisions. 

Figure 3.1 demonstrates the flow of the research and the contributions of one step to 

another. The evaluation efforts from this research found that presenting mined 

information in packets based on the stated information needs, in the context of an action 

for the decision-makers, offers an improvement over the current methods used by these 

decision-makers along a number of dimensions. However, refinements are needed and 

should be addressed by future research.  

7.1 Information Products 

  The similarity of expressed needs among a wide range of technology managers 

reveals that certain information and methods can be used to address common needs. 

Herring (1998) introduced a protocol that he recommended be used each time an analyst 

initiated an intelligence gathering effort. This research started with that protocol as a 
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basis to identify common interests among technology managers regardless of industry 

and size of the organization.  

 Interviews of technology managers produced a set of technologies to serve as 

example cases throughout the analysis of the methods and overall framework. Those 

interviews also provided insight into how decision makers use information, identifying 

dimensions along which to evaluate the information product (Table 4.3). A questionnaire 

given to 34 respondents from four different industries identified the information most 

important to decision-makers as well as clusters of common interests. This information 

was used to create a website for Magnetic Storage, our example technology. Each cluster 

of interest had its own web page on the site. The bibliometric and text data mining results 

were presented in the context of the stated needs from the questionnaire. A group of 8 

decision-makers from a variety of technology perspectives evaluated the information 

products along 13 dimensions identified from the initial interviews. These dimensions 

represent how decision-makers may use the information. The evaluation results are found 

in Tables 6.3 and 6.4. The evaluators found that the information provided an 

improvement along most of the dimensions. However, they wanted more customizability 

and drill-down capabilities. They also wanted more detailed information, better 

visualization, and the ability to compare technologies along the given metrics. 

Implementing the information from the evaluations can further enhance the usability of 

these types of information products in the decision-making process 

7.2 Text Data Mining Methods 

In addition to identifying the information that is important to decision makers, this 

research made improvements to the methods for analyzing information.  Identifying 
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terms that are synonymous is important to improving accuracy when mining free text, 

thus enabling the provision of the more specific information desired by the evaluators. An 

algorithm was developed that has delivered at least an 89% precision rate in making such 

identifications. This level of precision was achieved across five different technology 

areas (pollution monitoring, remote sensing, magnetic storage, fuel cells, and geographic 

information systems) and was used in three different databases (Compendex, Inspec, and 

Pollution Abstracts), all with about the same level of precision. These results indicate that 

the algorithm may be used with other types of free text such as Patents and the Internet. 

The impact of this algorithm can be seen in Tables 5.4 – 5.8. Terms that are conceptually 

important to the dataset (solid oxide fuel cells) have replaced very generic common 

words (study, results) at the top of the list. Also, the viability of using Abstract Phrases 

improves because the concept-clumping algorithm reduces the number or terms to 

consider for clustering by 30%.  The terms left are the more technical terms. The 

comparison of cluster terms in Chapter Five found more technically meaningful clusters. 

The result is the ability to use abstract phrases in analysis, which allows the more detailed 

nature of abstracts to be captured in a clustering format. Clumped Abstract Phrases 

capture the broad relationships as well.  

7.3 Future Research 

There are a plethora of future research opportunities sparked from this research, 

both to improve the presentation of information products and in the techniques used to 

develop those products. 

- There are significant future research opportunities in the presentation of the 

information. More can be done to make use of visualization research to improve 
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the clarity of the information provided. For example, the focus group participants 

did not immediately understand the nature of the overview maps and clearly did 

not see a difference between the overview factor maps and the cross-correlation 

maps, because they look very similar. The use of metaphors, color, and 

dimensions may improve the clarity and usefulness of those maps. Visualization 

methods should also aim to reduce the “overwhelming” elements of the 

information provided. 

- It was very clear that although packetizing the information into categories was 

helpful to the users, the users want more flexibility in the packets and a drill-down 

component. To this end, additional research using expert system approaches may 

improve the usability of the information. Research on combining text mining with 

Executive Information Systems may also provide an answer for how to provide 

drill-down capabilities in a manner that decision-makers want. 

-  In the process of conducting this research, achieving a high level of recall in 

clumping like concepts together was difficult. However, some foundational 

methods (i.e. shared words, similarity, stop words lists, and the ignore feature) 

have been established that can improve the algorithm further. In particular, by 

applying the methods to single word matches and incorporating stemming into the 

algorithm warrant investigation. Other research to improve the clumping results 

includes examining the number of default factors when clustering terms. 

- In the evaluation of the different cluster types, there were indications that the 

number of factors traditionally used for keywords was insufficient when using the 

clumped abstract phrases. The same research that was performed in this study to 
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make the determination of number of factors for keywords should be replicated 

for clumped abstract phrases.    

- Additional research can be conducted to determine the effect of clumping when 

dealing with websites or patents. Clumping may also be useful for improving 

patent searches, especially in identifying emerging technologies in the patent 

dataset. 

- In the process of evaluating the clusters, it became clear that the quantitative 

methods for evaluating clusters that have traditionally been used in document 

clustering do not seem to be the best approach for term clustering. In term 

clusters, the accuracy of the conceptual linkages is more important than any 

“physical” characteristic of the cluster. However, the traditional way in which 

“accuracy” is measured becomes increasingly complex when making term-

concept clusters. This issue occurs primarily because terms can be in multiple 

clusters and some terms selected for clustering, when using PCA, are not actually 

included in any cluster.  

- Finally, in combining the methods with the information products, this research 

used some of the more basic methods to produce information. Additional research 

should seek to apply more advanced methods of text mining to address the 

information needs of decision-makers. Link Analysis, linking more specific 

information in research, may address the decision-makers’ need for more specific 

information. Sequential analysis, or identifying metrics over time that occur 

frequently in a sequential pattern, may do the same, as well as provide some 

forecasting insights. The techniques should also be applied to different types of 
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databases for comparison, such as patent databases and business databases. More 

research could also be done to further study the lexical nature of technology 

publication databases; a key example is further identifying terminology that 

indicates a technology’s position in its life cycle. 
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APPENDIX A: FUNCTIONS AFFECTED BY CTI 

 

Business and Technology Strategy 

• Strategic Technology Roles and Directions 

• What role advanced technology will play in business, vision, goals, and strategy 

• Which technology-based business and market directions to pursue 

• Which core technical competencies to create and/or nurture 

• Technology Needs and Opportunity Evaluation 

• What priority to assign current product, process, and operations technology needs 

• Which new technology applications (product, process, service, or operations 

developments to pursue 

• Whether to enter a technology-based product line with strong competitors 

• Technical Information and Property Security 

• How to protect intellectual property 

• How to protect sensitive company information 

Technology Acquisition 

• Technology Acquisition Planning 

• How best to acquire a new technology: internal  R&D, external purchase. 

Licensing-in, hiring or partnering 

• How much to invest in technology acquisition and R&D budgets 

• Technology Collaboration Choices 

• Whether to enter into joint technology development venture with another 

organization and what gains to expect from it 
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• Which technology partners to consider and which terms of agreement to 

establish 

• Technology Acquisition Implementation 

• What external technology sources to pursue 

• How to get the best bargain from external acquisitions 

R&D Program and Portfolio Management 

• R&D Investment Portfolio Decisions 

• Which new product development initiatives or improvements to make 

• What allocation of R&D funds near-versus long-term projects 

• Whether to terminate or delay work on a project or in an S&T area 

• Technical Research, Product or Process Development Strategies 

• Which technical approach to take in developing new product or process 

technologies 

• What technical objectives to set for R&D programs 

Technology Deployment Investments or Divestiture Actions 

• Product and Process Investment Decisions 

• Which new product options to select for investment 

• Which capital expenditures to make for facility or process technology needs 

• Technology Transfer Mechanisms 

• How to transition new know-how from R&D to manufacturing operations 

• Whether to permit external disposition of technology and how to transfer or 

limit distribution of rights or results 

Production and Delivery Operations 
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• Manufacturing and Distribution Operations 

• How to qualify suppliers, customers or partners 

• What kind of technology training and operational procedures to establish 

• Technology Maintenance and Replacement 

• What technology maintenance, repair, and replacement policies to use 

• How to trouble-shoot product or manufacturing technology problem 

• Tracking competitor activities 

• Identifying emerging technologies that can aid or hurt the company 
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APPENDIX B: INTELLIGENCE QUESTIONS IN THE PRODUCT LIFE CYCLE 
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 APPENDIX C: INTERVIEW QUESTIONS 
 
 
Name     

Organization      

Phone    Email  

Position  

Is the person a  

Scientist/Engineer  Marketing Personnel  

Executive   Policy Maker/Regulator 

Other 

 
I. Target Audience Profile 

1. What are some technology challenges that you face?  

2. Who are other organizations operating in your same field?  

3. What decisions do you make concerning technology?  

4. What information sources (magazines, vendors, internet, consulting research etc)  

do you utilize in order to make those decisions? How is this information 

incorporated into the decision process? 

5. What types of technical monitoring information would you prefer to receive? 

(e.g., analytical alerts, competitor assessments, short  briefings, etc.)   

 

6. What technology decisions and/or actions will your group face in the next year, 

where early technical information could make a significant difference?  
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In what ways would information/intelligence or monitoring affect the overall success of 

your organization? 

II. A Monitoring System 

 Suppose a system was developed that would automatically seek out information 

on your technology, analyze the information, and present the results on your desktop, 

How would you suggest the system be organized?   

1. How will you evaluate the value of the information that you receive?   

III. Early-Warning Topics 

1. If you were searching on the internet for technologies/functions that you must 

regularly monitor, what search terms would you use? 

2. In regards to the topic that you searched  on, what would you like to know about?  

• About the technology? 

• About other organizations and experts? 
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APPENDIX D: INFORMATION REQUIREMENTS QUESTIONNAIRE 
 

The following questionnaire is intended to determine the type of information that you 

consider important to the long-term strategic technology/research decisions that your 

organization must make. Please select the circle that indicates your level of agreement 

with the statement above the scale. 

 

Top of Form 

Name and/or E-mail address___________________________________ 

Organization:                            _________________________________  

Position & Job Description:    __________________________________  

  

I. Technology Topic Profile 

1. I would like to see an overview of the research conducted in my technical domain. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

2. I want to know the gaps in my organization’s activities in comparison to the full 

scheme of research in our technical domain. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

3. The organization has been slow in detecting emerging technological breakthroughs in 

our domain. 

Strongly Agree         Agree          Disagree        Strongly Disagree   

4. We want to be aware of constraints/difficult issues faced in developing a particular 

technology. 

Strongly Agree         Agree          Disagree         Strongly Disagree   
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II. Organizations 

5. It is important to know the names of universities, companies, agencies, and labs that 

are publishing in my technical domain. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

6. Sometimes emerging competitors/organizations come from an entirely different 

industry.  I need to identify those organizations and their research interests.  

Strongly Agree         Agree         Disagree         Strongly Disagree   

7. It is important for me to know if an organization is no longer researching in my 

technical domain and perhaps why they are no longer doing so.  

Strongly Agree         Agree          Disagree         Strongly Disagree   

8. I would like to know which universities are researching in my technical domain in 

order to strategically recruit for my organizational needs. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

9. It is important for me to know the technical strengths and weaknesses of other 

organizations in my technical domain. 

Strongly Agree         Agree          Disagree        Strongly Disagree   

10. I would like profiles of the work being done by other organizations working in my 

area. I am interested in  

a. their current research activity,  

Strongly Agree         Agree          Disagree         Strongly Disagree   

b. how their activities have changed over time, 

Strongly Agree         Agree          Disagree         Strongly Disagree   

c. their partnerships,. 
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Strongly Agree         Agree          Disagree         Strongly Disagree   

d. the size of research teams 

Strongly Agree         Agree          Disagree         Strongly Disagree  

11. If I knew which organizations in my technical domain were publishing together, then 

I would have greater insight into their strategic direction. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

III. Suppliers 

12. My organization would be adversely affected by major technical changes by 

suppliers.   

Strongly Agree         Agree          Disagree         Strongly Disagree   

IV. Experts 

13. Publication databases contain the names of individuals publishing from around the 

world. I want to track the activities of relevant external subject matter experts. .  

Strongly Agree         Agree          Disagree        Strongly Disagree   

V. Global Activity 

14. My company is evaluating our future opportunities in a technical domain. Increases 

or decreases in global activity regarding this technology may determine my organization's 

interest in this technology. 

Strongly Agree         Agree         Disagree         Strongly Disagree   

15. A profile of the expertise located in other countries would be helpful to my decision-

making.  

Strongly Agree         Agree         Disagree         Strongly Disagree   

VI. Periodicals  

 139



16. I would like to know what periodicals are publishing in my technical domain. 

Strongly Agree         Agree          Disagree        Strongly Disagree   

17. It is important to know the spread of topics discussed in my domain's most important 

periodicals. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

18. It is important to know which conferences cover my technical domain and the 

specific topics covered. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

19. Publication databases contain conference proceedings. Conferences represent 

research in its earliest stages. It is important for me to be aware of this research.  

Strongly Agree         Agree         Disagree         Strongly Disagree   

VII. Regulations and Standards  

20. My technical decisions can be affected by changes in international, political, social, 

economic or regulatory situations. 

Strongly Agree         Agree         Disagree         Strongly Disagree   

VIII. Miscellaneous  

21. It is important that I know about the potential social, economic, environmental, or 

cultural impact of technology developments. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

22. It is important that I know the position of specific technologies in their life cycle. 

Strongly Agree         Agree          Disagree         Strongly Disagree   

23. The commercial readiness of a technology can be determined by the topics of 

discussion in technology publications. 
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Strongly Agree         Agree          Disagree         Strongly Disagree   

24. Our organization markets the ability of our products/services to accomplish certain 

functions. Part of my responsibility is to determine the appropriate technology to fulfill 

each function. 

Strongly Agree         Agree          Disagree         Strongly Disagree   
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APPENDIX E: MAP OF QUESTIONNAIRE STATEMENTS TO PUBLICATION 
METRICS 

 
 
 

Table E.1 Questionnaire Statements Mapped to Publication Database Metrics in 
VantagePoint 

 
Statement Metric 

R1. I would like to see an overview of the research conducted in my 
technical domain. 

• Concept map 

• Top keywords 

R2. I want to know the gaps in my organization’s activities in 
comparison to the full scheme of research in our technical domain. 

• Keywords X Affiliation 
(grouped) 

R4. We want to be aware of constraints/difficult issues faced in 
developing a particular technology. 

• Abstract Phrases 
(Topics Discussed) 

R5. It is important to know the names of universities, companies, 
agencies, and labs that are publishing in my technical domain. 

• Affiliations list 

R6. Sometimes emerging competitors/organizations come from an 
entirely different industry.  I need to identify those organizations and 
their research interests.  

• Affiliations X 
Keywords or Abstract 
Phrases 

R7. It is important for me to know if an organization is no longer 
researching in my technical domain and perhaps why they are no 
longer doing so.  

• Affiliations list X Year 
Matrix 

R8. I would like to know which universities are researching in my 
technical domain in order to strategically recruit for my 
organizational needs. 

• Affiliations list (Group 
Universities) 

R9. It is important for me to know the technical strengths and 
weaknesses of other organizations in my technical domain. 

• Affiliations X 
Keywords matrix or 
Abstract Phrases 

R10. I would like profiles of the work being done by other 
organizations working in my area. I am interested in  
a. their current research activity,  

• Affiliations X 
Keywords 

R11. how their activities have changed over time, • Affiliations X 
Keywords X Time 

R12. their partnerships,. • Cross correlation of 
Affiliations by Authors 

R13. the size of research teams • Affiliation X Author X  
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Table E.1 (continued) 
 

R14 If I knew which organizations in my technical domain were 
publishing together, then I would have greater insight into their 
strategic direction. 

• Cross correlation of 
Affiliations X Authors 

R15. My organization would be adversely affected by major 
technical changes by suppliers.   

• Affiliations X 
Keywords or Abstract 
Phrases 

R16. Publication databases contain the names of individuals 
publishing from around the world. I want to track the activities of 
relevant external subject matter experts. .  

• Authors List 

R17. My company is evaluating our future opportunities in a 
technical domain. Increases or decreases in global activity regarding 
this technology may determine my organization's interest in this 
technology. 

• Countries X 
KeywordsX Year 

R18. A profile of the expertise located in other countries would be 
helpful to my decision-making.  

• Countries X Keyword 

• Countries X Abstract 
Phrases 

R19. I would like to know what periodicals are publishing in my 
technical domain. 

• Journals List 

R20. It is important to know the spread of topics discussed in my 
domain's most important periodicals. 

• Journals X Keywords 

• Journals X Abstract 
Phrases 

R21. It is important to know which conferences cover my technical 
domain and the specific topics covered. 

• Sources-- Conferences 

R22. Publication databases contain conference proceedings. 
Conferences represent research in its earliest stages. It is important 
for me to be aware of this research.  

• Conferences X Abstract 
Phrases 

R23. My technical decisions can be affected by changes in 
international, political, social, economic or regulatory situations. 

• Abstract Phrases  

R24. It is important that I know about the potential social, economic, 
environmental, or cultural impact of technology developments. 

• Abstract Phrases  

R25. It is important that I know the position of technologies in their 
life cycle. 

• Cumulative Records X 
Year 

• Abstract Phrases 

R26. The commercial readiness of a technology can be determined 
by the topics of discussion in technology publications. 

• Abstract Phrases 
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APPENDIX F: TRANSCRIPT OF FOCUS GROUP INTRODUCTION 

 

Thank you for participating in this focus group. Let me first give you 

some background. You all know the challenge of making long-term technology decisions 

in today's information intense competitive environment. Perhaps you are a researcher 

looking to avoid duplicated efforts, or you are looking for that company with whom to 

partner or merge, perhaps you are looking to hire someone, sufficiently knowledgeable. 

Perhaps, you need to know if the technology is at its maturity peak or not. Will your 

investment be obsolete next year?  

At the beginning of this research, I interviewed 40+ technology decision-makers, 

people who have to make long-term technology decisions either as a researcher, 

developer, or implementer. I asked them about the information that they use in order to 

make those decisions, the sources that they use, and the criteria that they use in order to 

judge the value of the information. In front of you are the criteria that the interviews 

revealed are used to evaluate information. You will use those dimensions to evaluate the 

information that I will show you today.  

So, what is this information and how did we choose what will be included? I have 

found that there is a 5-7 year gap between what is published in business magazines and 

what appears in journal/conference publication databases. If a decision maker waits until 

they read it in their favorite business magazine to make a decision, it is too late. 

Monitoring of the technology landscape must be an ongoing process and should start at 

the publication database level. However, the results can be numerous. The information in 

front of you  is based on Magnetic Storage. There were 693 abstract records over a ten 
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year period. This information product analyzes that information to provide answers to 

questions that technology decision makers deemed important. We provided our interview 

subjects with a list of 33 statements concerning technology, other countries, and other 

organizations; and asked them to determine how important the information is to their 

decision-making. These information products reflect the information that was deemed the 

most important or clusters of interest by participants. 
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APPENDIX G: QUESTIONNAIRE STATEMENT SUMMARIES 

 

Table G.1 contains the mean, maximum, minimum and standard deviation for each of the 

statements on the questionnaire. Following the summary table is the frequency 

information for each question, R1- R27. 

 
 
 

Table G.1 Questionnaire Statement Responses-Descriptive Summary Statistics 
 

34 1 2 1.56 .504
34 1 3 1.65 .544
34 1 4 2.44 .927
34 1 3 1.62 .551
34 1 3 1.74 .751
34 1 3 1.82 .673
33 1 3 2.30 .728
34 1 3 1.97 .627
34 1 4 1.71 .676
34 1 3 1.68 .589
33 1 4 2.09 .723
34 1 3 1.88 .591
34 1 4 2.21 .687
33 1 3 2.00 .433
31 1 4 2.32 .791
33 1 3 2.24 .614
34 1 4 2.35 .849
33 1 4 2.45 .754
33 1 3 1.55 .564
34 1 3 1.91 .668
34 1 3 1.59 .557
34 1 3 1.85 .610
32 1 4 1.91 .818
34 1 4 1.94 .736
33 1 3 1.88 .696
32 1 4 2.19 .821
33 1 3 1.94 .659
27

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation
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R1

15 44.1 44.1 44.1
19 55.9 55.9 100.0
34 100.0 100.0

1
2
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R2

13 38.2 38.2 38.2
20 58.8 58.8 97.1

1 2.9 2.9 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R3

6 17.6 17.6 17.6
11 32.4 32.4 50.0
13 38.2 38.2 88.2

4 11.8 11.8 100.0
34 100.0 100.0

1
2
3
4
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R4

14 41.2 41.2 41.2
19 55.9 55.9 97.1

1 2.9 2.9 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R5

15 44.1 44.1 44.1
13 38.2 38.2 82.4

6 17.6 17.6 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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R6

11 32.4 32.4 32.4
18 52.9 52.9 85.3
5 14.7 14.7 100.0

34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R7

5 14.7 15.2 15.2
13 38.2 39.4 54.5
15 44.1 45.5 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R8

7 20.6 20.6 20.6
21 61.8 61.8 82.4
6 17.6 17.6 100.0

34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R9

13 38.2 38.2 38.2
19 55.9 55.9 94.1
1 2.9 2.9 97.1
1 2.9 2.9 100.0

34 100.0 100.0

1
2
3
4
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R10

13 38.2 38.2 38.2
19 55.9 55.9 94.1
2 5.9 5.9 100.0

34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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R11

6 17.6 18.2 18.2
19 55.9 57.6 75.8

7 20.6 21.2 97.0
1 2.9 3.0 100.0

33 97.1 100.0
1 2.9

34 100.0

1
2
3
4
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R12

8 23.5 23.5 23.5
22 64.7 64.7 88.2

4 11.8 11.8 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R13

4 11.8 11.8 11.8
20 58.8 58.8 70.6

9 26.5 26.5 97.1
1 2.9 2.9 100.0

34 100.0 100.0

1
2
3
4
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R14

3 8.8 9.1 9.1
27 79.4 81.8 90.9

3 8.8 9.1 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent
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R15

5 14.7 16.1 16.1
12 35.3 38.7 54.8
13 38.2 41.9 96.8

1 2.9 3.2 100.0
31 91.2 100.0

3 8.8
34 100.0

1
2
3
4
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R16

3 8.8 9.1 9.1
19 55.9 57.6 66.7
11 32.4 33.3 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R17

5 14.7 14.7 14.7
15 44.1 44.1 58.8
11 32.4 32.4 91.2

3 8.8 8.8 100.0
34 100.0 100.0

1
2
3
4
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R18

2 5.9 6.1 6.1
17 50.0 51.5 57.6
11 32.4 33.3 90.9

3 8.8 9.1 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
4
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent
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R19

16 47.1 48.5 48.5
16 47.1 48.5 97.0

1 2.9 3.0 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R20

9 26.5 26.5 26.5
19 55.9 55.9 82.4

6 17.6 17.6 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R21

15 44.1 44.1 44.1
18 52.9 52.9 97.1

1 2.9 2.9 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R22

9 26.5 26.5 26.5
21 61.8 61.8 88.2

4 11.8 11.8 100.0
34 100.0 100.0

1
2
3
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R23

11 32.4 34.4 34.4
14 41.2 43.8 78.1

6 17.6 18.8 96.9
1 2.9 3.1 100.0

32 94.1 100.0
2 5.9

34 100.0

1
2
3
4
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent
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R24

9 26.5 26.5 26.5
19 55.9 55.9 82.4

5 14.7 14.7 97.1
1 2.9 2.9 100.0

34 100.0 100.0

1
2
3
4
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
R25

10 29.4 30.3 30.3
17 50.0 51.5 81.8

6 17.6 18.2 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R26

6 17.6 18.8 18.8
16 47.1 50.0 68.8

8 23.5 25.0 93.8
2 5.9 6.3 100.0

32 94.1 100.0
2 5.9

34 100.0

1
2
3
4
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

 
R27

8 23.5 24.2 24.2
19 55.9 57.6 81.8

6 17.6 18.2 100.0
33 97.1 100.0

1 2.9
34 100.0

1
2
3
Total

Valid

SystemMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent
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APPENDIX H: TECHNOLOGY CASES- ZIPF DISTRIBUTION GRAPHS 
 
 

The Zipf distribution asserts the log of the rank vs. the log of the frequency of a 

term is linear. The method finds that line, and eliminates the terms with the highest and 

lowest ranks that fall below the line.  On the following pages are the Zipf distribution 

graphs for each type of term list (Keywords, Cleaned Abstract Phrases, Clumped Abstract 

Phrases) for each of the five technology cases. VantagePoint contains a script that opens 

Excel and records a single entry for each frequency and the last rank at which that 

frequency occurs. Then, it plots  the log (rank) vs. log ( frequency.) The Excel output for 

Figure H.1 [c] Fuel Cell Zipf Distribution Graphs: Clumped Abstract Phrases is below: 

 

Table H.1: Fuel Cell Clumped Abstract Phrases Ranks and Frequencies 
 

NumTerms Rank Size 
1 1 212 
1 2 163 
1 3 93 
1 4 88 
1 5 71 
1 6 69 
1 7 66 
1 8 58 
1 9 57 
1 10 56 
2 12 54 
2 14 53 
1 15 47 
2 17 45 
1 18 43 
1 19 39 
1 20 36 
4 24 34 
3 27 32 
1 28 30 
1 29 29 
3 32 28 
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Table H.1: (continued) 
 

1 33 27 
3 36 26 
1 37 25 
4 41 24 
4 45 23 
3 48 22 
9 57 21 
2 59 20 
3 62 19 
6 68 18 
8 76 17 
5 81 16 
13 94 15 
8 102 14 
8 110 13 
15 125 12 
17 142 11 
27 169 10 
25 194 9 
35 229 8 
47 276 7 
74 350 6 

112 462 5 
171 633 4 
368 1001 3 
1107 2108 2 
7691 9800 1 

 
 
 
The Highlighted rows correspond to the cutoff points for inclusion in the 

clustering maps. These are the points above the line in Figure H.1[c]. 25 terms occur nine 

times, ending with the 194th term. The first term “fuel cells” is the highest ranking term, 

occurs in 212 records and will be excluded from clustering. “Fuel cells” is the search 

term, reflecting the intent of this method. This method eliminates such terms because all 

of the record in the dataset have some relationship with fuel cells. By removing that term 

, the relationship between the other term becomes evident. At the other end, the terms 

have frequencies too low to have significant influence.  
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Figure H.1 Fuel Cell Zipf Distribution Graphs: [a] Keywords [b] Cleaned Abstract 

Phrases [c] Clumped Abstract Phrases 
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Figure H.2 Magnetic Storage Zipf Distribution Graphs: [a] Keywords [b] Cleaned 

Abstract Phrases [c] Clumped Abstract Phrases 
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Figure H.3 Remote Sensing Zipf Distribution Graphs: [a] Keywords [b] Cleaned 

Abstract Phrases [c] Clumped Abstract Phrases 
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Figure H.4 Geographical Information Systems Zipf Distribution Graphs: [a] 

Keywords [b] Cleaned Abstract Phrases [c] Clumped Abstract Phrases 
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Figure H.5 Pollution Monitoring Zipf Distribution Graphs: [a] Keywords [b] 

Cleaned Abstract Phrases [c] Clumped Abstract Phrases 
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APPENIDIX I: TECHNOLOGY CASES- CLUSTER MAPS 
 

Appendix I contains Figures I.1 – I.15, which are all of the Cluster Maps for Keywords, 

Cleaned Abstract Phrases, and Clumped Abstract Phrases for each of the five technology 

cases. 

 
 

Factor Map

Keywords (controlled) (map3)
Factors: 9
% Coverage: 62% (546)
VP top links shown

> 0.75 0 (0)
0.50 - 0.75 0 (0)
0.25 - 0.50 0 (0)
< 0.25 8 (28)

Synthesis (chemicalSynthesis (chemical

PolyelectrolytesPolyelectrolytes

Ion exchange membranesIon exchange membranes

CathodesCathodes

Yttrium compoundsYttrium compounds

CarbonatesCarbonates

MethaneMethane

ReductionReduction

PerovskitePerovskite

Keywords (controlled)
0.54 Polyelectrolytes
0.52 Polymeric membranes

Keywords (controlled)
-0.69 Ion exchange membranes
-0.67 Protons
-0.40 Hydrogen

Keywords (controlle
0.54 Cathodes
0.53 Electrolytes
0.47 Polarization
0.44 Microstructure

Keywords (controlled)
-0.53 Yttrium compounds
-0.53 Zirconia
-0.52 Ionic conduction in solid
-0.49 Cerium compounds
-0.44 Solid electrolytes
-0.37 Interfaces (materials
-0.37 Ceramic materials

Keywords (controlled)
-0.74 Carbonates
-0.69 Molten materials
-0.46 Pressure effects

 
 
 

Figure I.1 Fuel Cell Keywords Cluster Maps 

 160



Factor Map

Ab Phrases Cleaned (map2)
Factors: 17
% Coverage: 45% (392)
VP top links shown

> 0.75 0 (0)
0.50 - 0.75 0 (0)
0.25 - 0.50 0 (0)
< 0.25 9 (32)

platinumplatinum

emissionsemissions

sub>H(2)</ subsub>H(2)</ sub

catalytic activitycatalytic activity

ionic conductivityionic conductivity
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corrosioncorrosion

SrSr
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-0.34 room temperature
-0.31 contrast
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Figure I.2 Fuel Cell Cleaned Abstract Phrases Cluster Maps 
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Factor Map
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% Coverage: 74% (653)
VP top links shown
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Figure I.3 Fuel Cell Clumped Abstract Phrases Cluster Maps 
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Factor Map

Keywords (controlled) (map2)
Factors: 15
% Coverage: 69% (481)
VP top links shown
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< 0.25 13 (52)
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Figure I.4 Magnetic Storage Keywords Cluster Maps 
 

 163



Factor Map
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VP top links shown
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Figure I.5 Magnetic Storage Cleaned Abstract Phrases Cluster Maps 
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Factor Map

Abstract phrases clumped (map)
Factors: 12
% Coverage: 52% (362)
VP top links shown
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0.25 - 0.50 0 (0)
< 0.25 9 (32)
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Figure I.6 Magnetic Storage Clumped Abstract Phrases Cluster Maps 
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Factor Map

Keywords (Cleaned) (map)
Factors: 15
% Coverage: 68% (302)
VP top links shown
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0.25 - 0.50 0 (0)
< 0.25 13 (63)
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Figure I.7 Remote Sensing  Keywords Cluster Maps 
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Factor Map
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Figure I.8 Remote Sensing Cleaned Abstract Phrases Cluster Maps 
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Factor Map
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VP top links shown
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Figure I.9 Remote Sensing  Clumped Abstract Phrases Cluster Maps 
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Factor Map

Keywords (controlled) (map2)
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VP top links shown
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Figure I.10 Geographical Information Systems Keywords Cluster Maps 
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Figure I.11 Geographical Information Systems Cleaned Abstract Phrases Cluster 
Maps 
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Factor Map
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Figure I.12 Geographical Information Systems Clumped Abstract Phrases Cluster 
Maps
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Factor Map
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Figure I.13 Pollution Monitoring Keywords Cluster Maps 
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Factor Map
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Figure I.14 Pollution Monitoring Cleaned Abstract Phrases Cluster Maps 
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Factor Map
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% Coverage: 54% (233)
VP top links shown

> 0.75 0 (0)
0.50 - 0.75 0 (0)
0.25 - 0.50 0 (0)
< 0.25 8 (28)

accountingaccounting

biomarkingbiomarking

applicationsapplications

estimationestimation

applicationsapplications

heavy metal pollutionheavy metal pollution

PCBsPCBs

PAHsPAHs

ZnZn

Abstract Phrases C
0.48 accounting
0.42 high levels

Abstract Phrases Clumped 
0.49 biomarking
0.45 reference sites
0.44 significant differences
0.41 biomonitors
0.38 bioavailable

Abstract Phrases Clumped ma
-0.42 estimation
-0.41 spatial distributions
-0.35 air quality
-0.32 air pollution
-0.31 long term exposure limits
-0.29 PM sub

Abstract Phrases Clumped 
-0.59 heavy metal pollution
-0.40 heavy metals
-0.40 accumulations

Abstract Phrases C
-0.67 PCBs
-0.65 DDTs
-0.61 pesticides
-0.41 agriculture

 
 

 
Figure I.15 Pollution Monitoring Clumped Abstract Phrases Cluster Maps 
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APPENIDIX J: CLUSTER DATA CORRELATION MATRIX 
 
 
 
 

Table J.1: Quantitative Cluster Comparison Data: Correlation Matrix 
 

 terms /doc #Docs Total# Terms 
Spearman's rho terms /doc Correlation 

Coefficient 
1.000 -.415 .868*' 

Sig. (2-tailed)  .124 .000 
N 15 15 15 

#Docs Correlation Coefficient -.415 1.000 -.044 
Sig. (2-tailed) .124  .877 
N 15 15 15 

Total# Terms Correlation Coefficient .868** -.044 1.000 
Sig. (2-tailed) .000 .877  
N 15 15 15 

# Terms used Correlation Coefficient -.350 .164 -.107 
Sig. (2-tailed) .201 .560 .704 
N 15 15 15 

% term Correlation Coefficient -.854** 107 -.739*' 
Sig. (2-tailed) .000 .458 .002 
N 15 15 15 

# of links Correlation Coefficient -.459 -.011 -.332 
Sig. (2-tailed) .085 .969 226 
N 15 15 15 

# of Clusters Correlation Coefficient -.390 .033 -.220 
Sig. (2-tailed) .151 .907 .430 
N 15 15 15 

Avg # terms per Cluster Correlation 
Coefficient 

-.568* -.065 -.550* 

Sig. (2-tailed) .027 .817 .034 
N 15 15 15 

# terms(in clusters) Correlation Coefficient -.661" .049 -.540* 
Sig. (2-tailed) .007 .862 .038 
N 15 15 15 

• terms Correlation Coefficient .171 -.076 -.057 
Sig. (2-tailed) .541 .787 .840 
N 15 15 15 

• docs Coverage Correlation Coefficient -.075 -.312 -.165 
Sig. (2-tailed) .790 .258 .557 
N 15 15 15 

ENTROPY Correlation Coefficient -.395 .410 -.120 
Sig. (2-tailed) .145 .130 .671 
N 15 15 15 

COHESION Correlation Coefficient -.550* -.076 -486 
Sig. (2-tailed) .034 .787 .066 
N 15 15 15 
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Table J.1 (continued) 

 
 # Terms used % term # of links 

Spearman's rho terms /doc Correlation 
Coefficient

-.350 -.854** -.459

Sig. (2-tailed) .201 .000 .085
N 15 15 15

#Docs Correlation Coefficient .164 .207 -.011
Sig. (2-tailed) .560 .458 .969
N 15 15 15

Total# Terms Correlation Coefficient -.107 -.739" -.332
Sig. (2-tailed) 704 .002 .226
N 15 15 15

# Terms used Correlation Coefficient 1.000 .682" .790
Sig. (2-tailed)  .005 .000
N 15 15 15

% term Correlation Coefficient .682** 1.000 .705
Sig. (2-tailed) .005  .003
N 15 15 15

# of links Correlation Coefficient .790" .705** 1.000
Sig. (2-tailed) .000 .003  
N 15 15 15

# of Clusters Correlation Coefficient .856** .653** .981
Sig. (2-tailed) .000 .008 .000
N 15 15 15

Avg # terms per Cluster Correlation 
Coefficient

.050 .468 .081

Sig. (2-tailed) .860 .079 .773
N 15 15 15

# terms(in clusters) Correlation Coefficient .727*' .826** .919
Sig. (2-tailed) .002 .000 .000
N 15 15 15

• terms Correlation Coefficient -.950" -.546* -.712
Sig. (2-tailed) .000 .035 .003
N 15 15 15

• docs Coverage Correlation Coefficient .014 .147 .390
Sig. (2-tailed) .960 .602 .150
N 15 15 15

ENTROPY Correlation Coefficient .677" .570* .760
Sig. (2-tailed) .006 .026 .001
N 15 15 15

COHESION Correlation Coefficient .282 .607* .399
Sig. (2-tailed) .308 .016 .140
N 15 15 15
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Table J.1 (continued) 
 
 
  Avg # terms # terms(in 
 # of Clusters per Cluster clusters)

Spearman's rho terms /doc Correlation
Coefficient

-.390-.568* -.661

Sig. (2-tailed) .151 .027 .007
N 15 15 15

#Docs Correlation Coefficient .033 -.065 .049
Sig. (2-tailed) .907 .817 .862
N 15 15 15

Total# Terms Correlation Coefficient -.220-.550* -.540
Sig. (2-tailed) .430 .034 .038
N 15 15 15

# Terms used Correlation Coefficient .856" .050 .727
Sig. (2-tailed) .000 .860 .002
N 15 15 15

% term Correlation Coefficient .653" .468 .826
Sig. (2-tailed) .008 .079 .000
N 15 15 15

# of links Correlation Coefficient .981 .081 .919
Sig. (2-tailed) .000 .773 .000
N 15 15 15

# of Clusters Correlation Coefficient 1.000 -.011 .871
Sig. (2-tailed)  .969 .000
N 15 15 15

Avg # terms per Cluster Correlation
Coefficient

-.011 1.000 .416

Sig. (2-tailed) .969 .123
N 15 15 15

# terms(in clusters) Correlation Coefficient .871 .416 1.000
Sig. (2-tailed) .000 .123 
N 15 15 15

• terms Correlation Coefficient -.791" .057 -.601
Sig. (2-tailed) .000 .840 .018
N 15 15 15

• docs Coverage Correlation Coefficient .288 .297 .381
Sig. (2-tailed) .298 .282 .161
N 15 15 15

ENTROPY Correlation Coefficient .762" -.100 .694
Sig. (2-tailed) .001 .723 .004
N 15 15 15

COHESION Correlation Coefficient .350 .286 .409
Sig. (2-tailed) .201 .302 .130
N  15 15 1
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Table J.1 (continued) 
 
 
  % docs 
 % terms Coverage 

Spearman's rho terms /doc Correlation Coefficient .171 -.075
Sig. (2-tailed) .541 .790
N 15 15

#Docs Correlation Coefficient -.076 -.312
Sig. (2-tailed) .787 .258
N 15 15

Total# Terms Correlation Coefficient -.057 -.165
Sig. (2-tailed) .840 .557
N 15 15

# Terms used Correlation Coefficient -.950** .014
Sig. (2-tailed) .000 .960
N 15 15

% term Correlation Coefficient -.546* .147
Sig. (2-tailed) .035 .602
N 15 15

# of links Correlation Coefficient -.712" .390
Sig. (2-tailed) .003 .150
N 15 15

# of Clusters Correlation Coefficient -.791" .288
Sig. (2-tailed) .000 .298
N 15 15

Avg # terms per Cluster Correlation Coefficient .057 .297
Sig. (2-tailed) .840 .282

15 15
# terms(in clusters) Correlation Coefficient -.601* .381

Sig. (2-tailed) .018 .161
N 15 15

• terms Correlation Coefficient 1.000 .111
Sig. (2-tailed)  .694
N 15 15

• docs Coverage Correlation Coefficient .111 1.000
Sig. (2-tailed) .694  
N 15 15

ENTROPY Correlation Coefficient -.615* .137
Sig. (2-tailed) .015 .626
N 15 15

COHESION Correlation Coefficient -.154 .387
Sig. (2-tailed) .585 .154
N 15 15

N 
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Table J.1 (continued) 
 
 
 ENTROPY COHESION 

Spearman's rho terms /doc Correlation Coefficient -.395 -.550*
Sig. (2-tailed) .145 .034
N 15 15

#Docs Correlation Coefficient .410 -.076
Sig. (2-tailed) .130 .787
N 15 15

Total# Terms Correlation Coefficient -.120 -.486
Sig. (2-tailed) .671 .066
N 15 15

# Terms used Correlation Coefficient .677" .282
Sig. (2-tailed) .006 .308
N 15 15

% term Correlation Coefficient .570* .607*
Sig. (2-tailed) .026 .016
N 15 15

# of links Correlation Coefficient .760** .399
Sig. (2-tailed) .001 .140
N 15 15

# of Clusters Correlation Coefficient .762** .350
Sig. (2-tailed) .001 .201
N 15 15

Avg # terms per Cluster Correlation Coefficient -.100 .286
Sig. (2-tailed) .723 .302
N 15 15

# terms(in clusters) Correlation Coefficient .694*' .409
Sig. (2-tailed) .004 .130
N 15 15

• terms Correlation Coefficient -.615* -.154
Sig. (2-tailed) .015 .585
N 15 15

• docs Coverage Correlation Coefficient .137 .387
Sig. (2-tailed) .626 .154
N 15 15

ENTROPY Correlation Coefficient 1.000 .231
Sig. (2-tailed)  .408
N 15 15

COHESION Correlation Coefficient .231 1.000
Sig. (2-tailed) .408  
N 15 15

**Correlation is significant at the .01 level (2-tailed). 
*Correlation is significant at the .05 level (2-tailed). 
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