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SUMMARY

Low-density cellular solids have demonstrated superior mechanical proper-

ties as well as multifunctional characteristics, which may provide a basis for the

development of novel structured materials. In particular, cellular solids offer great

design flexibility, owing to their topology, which can provide desired functionalities

via targeted geometric design and proper selection of the constituent material. While

stochastic configurations such as metallic foams have proven to be effective for both

thermal insulation and mechanical-energy absorption, the topology of deterministic

architectures is not constrained by physical processes. This allows for a variety of

configurations to be tailored to simultaneously fulfill disparate tasks. An additional

aspect of deterministic cellular structures is the possibility of assembling materials or

structures by the spatial repetition of a unit cell. The resulting periodicity of such

systems simplifies the characterization of physical properties, which can be estab-

lished by analyzing the unit cell only, and will provide new opportunities in the fields

of structural dynamics, where periodicity-induced impedance leads to the control of

both constructive and destructive interference on propagating waves.

The objective of this work is to investigate the application of the chiral cellular

topology for the design of novel macrostructural, mesostructural and microstructural

configurations. A truss-core airfoil, and a truss-core beam are employed as a ba-

sis to demonstrate both large-displacement capabilities within the elastic regime of

the constituent material, as well as operational deflection shapes with localized dy-

namic deformations. Large deformation capabilities and unique operational deflection

shapes are to be attributed to the unusual deformation mechanism of the chiral lattice.

xvii



Mesostructural and microstructural configurations, on the other hand, are character-

ized by an unique mechanical behavior, complex geometry, as well as geometric design

flexibility to control both static and dynamic phenomena. The propagation of elastic

waves, moreover, is characterized by significant band-gap density as well as strong

energy focusing dependent on frequency and wavenumber. These features suggest the

chiral topology as a basis for the development of acoustic meta-materials.
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CHAPTER I

INTRODUCTION

Low-density cellular solids have demonstrated superior mechanical properties as well

as multifunctional characteristics, which can be exploited for the development of novel

structured materials. In particular, cellular solids offer great design flexibility, owing

to their composition, which can provide desired functionalities via targeted geometric

design and proper selection of the constituent material. While stochastic topologies

such as metallic foams have proven to be effective for both thermal insulation and

mechanical energy absorption, the topology of deterministic architectures is not con-

strained by physical processes, such as chemical reactions, thus allowing for a variety

of configurations to be tailored to simultaneously fulfill disparate tasks. Deterministic

cellular structures, indeed, can be designed to achieve a larger set of desirable char-

acteristics than currently possible with their stochastic counterparts. An important

aspect of deterministic cellular configurations is the possibility of assembling mate-

rials, or structures, by the spatial repetition of a unit cell. The resulting periodicity

of such systems simplifies the characterization of physical properties, which can be

established by analyzing the unit cell only, and will provide new opportunities in

the fields of structural dynamics, where periodicity-induced impedance zones leads to

constructive and destructive interference of propagating waves.

1.1 Objectives

This work explores the application of the chiral cellular topology, first presented

by [76] and depicted in fig. 1, for the design of novel structural concepts. The consid-

ered geometry features a number of interesting and unique properties which include a
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negative, in-plane Poisson’s ratio, a geometry determined by a relatively large num-

ber of parameters which can be independently adjusted to tailor the behavior of the

assembly, and a unique deformation mechanism that allows large deformations within

the linear regime of the constituent material [76].

Figure 1: Chiral geometry

Specifically, this work investigates the application of the chiral topology as part

sandwich panels with novel core configuration (fig. 2.a), truss-core structures with

static and dynamic morphing capabilities (fig. 2.b), as well as phononic lattices as

acoustic meta-materials (fig. 2.c).

The considered applications span various scales and deformation regimes, and are

here classified as macro-scale, meso-scale and micro-scale. This classification relies

on the dimensions of the unit cell with respect to those of the structural component.

Specifically, the truss-core airfoil is considered as a macro-scale application of the

topology at hand, since the unit cells have dimensions comparable to that of the

airfoil. Sandwich structures are considered as meso-scale applications, due to the

fact that the cells are small compared to the overall honeycomb panel, and that the

mechanical behavior of the assembly can be described through homogenized prop-

erties defining an equivalent-continuum material of analogous behavior. Finally, the

phononic configuration is denoted as micro-scale application of the chiral lattice for

2



(a)

(b)

(c)

Figure 2: Sandwich panel with chiral-honeycomb core (a), truss-core airfoil (b) and
phononic chiral lattice (c)

two reasons. First, the unit cell size is typically small compared to the overall phononic

device, and second, the anomalous wave propagation characteristics which make this

class of structures interesting from a scientific and a practical standpoint mostly rely

on deformations internal to the unit cell, which cannot be easily captured by current
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homogenization techniques and equivalent-continuum modeling procedures.

The remainder of this chapter is devoted to brief introductions to the state-of-

the-art in the areas where the application of chiral topology is proposed, namely

cellular materials for sandwich construction, morphing structures, and acoustic meta-

materials.

1.2 Cellular solids

Cellular solids are both naturally-occurring and man-made materials or structures,

depending on the characteristic length scale, and may feature both ordered (or deter-

ministic) and disordered (or stochastic) topologies, two examples of which are shown

in fig. 3. Both stochastic and deterministic instances are characterized by assemblies

of cells with solid boundaries, which may be beam-like and plate-like components

yielding open and closed-cell configurations respectively [40]. Metallic foams, for

(a) Voronoi honeycomb (b) square lattice

Figure 3: Stochastic (a) and deterministic (b) cellular solids

example, may feature both open and closed-cell arrangements as depicted in fig. 4.

Cellular solids, moreover, feature a two-phase composition comprising a solid part en-

capsulating the second phase, usually a liquid or a gas. The solid portion contributes

most of the effective density, while the liquid or gaseous phase contributes most of
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the occupied volume. Cellular solids, thus, boast a low relative density, usually lower

than 30% than that of the constituent material of the solid phase. Two-phase mate-

rials with higher relative density are known as porous solids [40]. Naturally-occurring

cellular materials usually feature heterogenous (or amorphous) topology, while for

their man-made counterpart stochastic as well as deterministic arrangement of the

solid phase is possible. Stochastic topologies are prevalent in cellular foams, like the

instances illustrated in fig. 4, while deterministic configurations are most common in

honeycombs (2-D cellular assemblies), characterized by the spatial repetition of a unit

cell. The novel chiral topology depicted in fig. 1, hence, represents a deterministic

(a) (b)

Figure 4: Open (a) and closed-cell (b) metallic foams

cellular structure.

1.2.1 Applications of cellular solids

The wide-spread use of cellular solids in the aerospace, automotive, and naval indus-

tries, among others, is to be attributed primarily to unique physical properties: low

relative density, low electrical conductivity, low Young’s modulus and strength [40].

Low density facilitates the design components with high specific (mass-normalized)

stiffness, and provides effective thermal insulation [40, 49]. The latter is to be at-

tributed to the low conductivity of the second phase, most often a gas. Low density
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also ideal for naval applications where buoyancy and specific stiffness are required [40].

Low strength is very advantageous in applications where mechanical-energy absorp-

(a) prospective view (b) side view

Figure 5: Hexagonal-honeycomb-core sandwich panel

tion is paramount. This may be the case of crushworthy materials, or of packaging

materials for sensitive components, where foams are most applicable [40, 102]. The

most recognizable application, however, is that of sandwich panels, one example of

which is illustrated in fig. 5. This particular use of cellular structures exploits the

high specific stiffness of the honeycomb core, as well as optimal distribution of inertia

to produce components with extremely high bending stiffness [40, 102]. Such panels

were first adopted by the aeronautical industry [47, 48, 102] but have since become

less expensive, and common in the naval, automotive and wind-turbine industries, to

name a few [102]. The introduction of affordable core materials and bonding tech-

niques is responsible for widespread utilization of sandwich panels [102], which may

feature both foam or honeycomb cores.

Potential improvements in performance of sandwich panels introduced by utiliz-

ing the chiral honeycomb, and their implications given the widespread use of such

components, motivate the fully characterization of both in-plane and out-of-plane

mechanical properties of chiral structures. Particularly, a negative, in-plane Poisson’s

ratio may facilitate the manufacturing of curved panels [102]. The strong dependency

of mechanical properties on a reduced set of geometric parameters suggests design
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flexility that may allow tailoring of the mechanical properties for a given application.

1.2.2 Manufacturing techniques

The topology and constituent material of cellular solids determine their performance

for any given application. Cost and the challenges presented by the manufacturing of

cellular materials, however, lead to restricted available configurations, especially for

deterministic arrangements such as honeycombs. Most commercially offered honey-

combs, in fact, are made either by corrugation or by expansion [102]. In the first case

metal sheets are pressed into a predetermined form, and subsequently glued together,

as shown in fig. 6. Blocks of required thickness can then be cut from the stack. The

corrugation process is widely adopted when manufacturing metallic cores [40, 102].

The expansion process, on the other hand, is mostly employed to manufacture non-

(a) pressing/corrugation (b) completed stack

Figure 6: Corrugation process

metallic cores, such as paper-resin, by first gluing multiple sheets in a predetermined

pattern. Upon curing of the adhesive, the stack is pulled in its transverse direction,

or expanded, to obtain the desired core configuration [102], as illustrated in fig. 7.

As a result, industrial manufacturing techniques have produced core arrangements

featuring hexagonal geometry or a variation thereof [102]. Cellular foams, conversely,

7



(a) expansion process (b) completed core

Figure 7: Expansion process

benefit from a larger pool of manufacturing techniques as well as constituent materi-

als. Polymeric cellular foams, for example, are obtained by introducing gas bubbles

into the liquid monomer or hot polymer. Cooling stabilizes the gaseous phase and

hardens the polymer yielding both open or closed-cell foams, depending on the par-

ticular process used [40]. Metallic foams are usually created by melting hydride com-

pounds which release hydrogen gas. Subsequent cooling produces the desired metallic

foam [40], two examples of which are depicted in fig. 4. Many materials, in addition

to polymers and metals, may be used to obtain foams, and a significant number of

manufacturing processes [40] complements the examples cited in this work.

1.2.3 Novel cellular solids and their applications

The excellent mechanical properties of honeycomb sandwich panels, such as high

stiffness perpendicular to the faces and highest specific shear stiffness and strength

of all available core configurations (including foams), have enticed ambitious mul-

tifunctional designs to re-evaluate and expand the capabilities of honeycomb-core

components. This has led to both novel configurations and their application. A num-

ber of innovative core geometries such as open-cell deterministic metallic structures

have been analyzed to maximize specific stiffness and heat dissipation in [34, 35], in

addition to setting forth performance benchmarks for the next generation of periodic

structures. The advantages of periodic structural components offering a combination
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of desirable physical properties have suggested their use for multifunctional, multidis-

ciplinary applications, beyond sandwich panel arrangements. A combination of low

relative density, superior thermal insulation, and mechanical-energy absorption capa-

bilities, for example, are investigated in [35] for envisioned multifunctional designs,

which consider manufacturing constraints also. Among the recently proposed core ge-

ometries, periodic configurations such as triangular and mixed-cell lattices, depicted

in fig. 8, promise superior in-plane mechanical properties [97]. Interest in cellular

structures for multifunctional applications is also confirmed by proposed multi-field

performance indices set forth in [34].

Most periodic core topologies suggested above, however, require manufacturing

processes that are still not commercially available. The capabilities offered by cor-

rugation and expansion processes (figs 6 and 7), in fact, do not lend themselves for

producing even relatively simple core geometries such as the triangular and mixed-cell

honeycombs suggested in [96] (fig. 8). Consequently, new manufacturing methods, al-

beit still in their research stage, have been proposed. In particular, low-melting point

(a) (b)

Figure 8: Triangular (a) and mixed-cell (b) core geometries

materials lend themselves to mould-casting, such as resins and silicones. Extrusion

processes whereby lasers are used to solidify polymer or resins compounds are also

surfacing [40]. The most encouraging manufacturing technique, proposed in [96], en-

tails the forcing of a ceramic-oxide paste through a die, followed by reduction in a
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hydrogen atmosphere and subsequent sintering. This process permits the fabrication

of metallic honeycombs of any configuration [96], including those depicted in fig. 8.

Plane sandwich panels such as the one depicted in fig. 5 are easily manufactured,

but curved panels are quite difficult to assemble due to Poisson effects when the core

is forced to curve [102]. This hurdle may be overcome by employing core geometries

featuring zero or negative, in-plane Poisson’s ratios [102]. Negative Poisson’s ratio is

characteristic of re-entrant configurations, proposed by [14], such as the one illustrated

in fig. 9, while zero in-plane Poisson’s ratio is achieved by employing the square

honeycomb [40] as the core component (fig. 3.b).

Figure 9: Re-entrant geometry

The advantages of ν ≈ 0 lie in the ability to bend a sheet of core into a cylinder

only through the application of a unidirectional bending moment. In the case of

negative, in-plane Poisson’s ratio, on the other hand, the reaction to a unidirectional

moment is a synclastic curvature (positive curvature in both plane directions) [36,

102], permitting dome-like core configurations. Finally, a positive, in-plane Poisson’s

ratio, as in the case of the hexagonal honeycomb depicted in fig. 7, would produce

anticlastic (opposite curvature in plane directions or saddle-like) curvature, making

core shaping difficult, owing to significant stress during the forming procedure. As a

result of curvature considerations, both re-entrant (fig. 9) and chiral (fig. 1) topologies

may be attractive alternatives to traditional geometries.
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Additional configurations exploiting periodic cellular solids are offered by pris-

matic structures, which comprise face sheets as well as a core which is rotated by

90◦ with respect to that of a sandwich panel to form a truss-like structure. Pris-

matic configurations of the kind depicted in fig 10 have been proposed as effective

heat sinks [21], since they offer high surface-area-to-volume ratio and can be man-

ufactured with high-conductivity walls. Additionally, they offer all the advantages

Figure 10: Prismatic structure

provided by the mechanical properties of low-density cellular solids, such as high spe-

cific stiffness and strength [33]. Their use as multifunctional components, able to

dissipate thermal energy as well as to carry loads, is effective in reducing complexity

and improving performance for electronic cooling devices [21] .

All applications described so far in secs 1.2.1 and 1.2.3 propose the use of cellular

solids as static components. Recently, however, 2-D prismatic or truss-core struc-

tures have been investigated as possible sound-reduction panels. Sound reduction

and vibration-transmission-loss performance of a square, truss-core panel, such as

the one depicted in fig. 11.a, has been characterized by [31]. A comparison of the

same performance indices for more complex core geometries is presented in [80]. Both

studies have deemed truss-core panels as viable assemblies for effective sound absorp-

tion and vibration reduction, indicating intra-cell resonance as the principal vibration

and sound-attenuation mechanism.
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(a) square core

(b) hexagonal core

(c) re-entrant core

Figure 11: Truss-core assemblies

The most exciting opportunities offered by periodic solids, yet, may lie in the abil-

ity to control elastic-wave propagation/attenuation. The periodicity of deterministic

cellular solids, in fact, is associated with both constructive and destructive interfer-

ence phenomena which, depending on the wave-length and frequency of the propagat-

ing waves, generate frequency bands where elastic waves are free to propagate (pass

bands), and frequency bands where elastic wave amplitude is attenuated (stop bands

or band gaps). Investigations by [75] have characterized the pass-band/stop-band

behavior of 2-D periodic lattices, the triangular, square and hexagonal topologies in

particular. The triangular lattice, shown in fig. 8.a, is found to produce a significant

stop band at low frequencies (within the first three waves-modes), while the square

and hexagonal layouts do present stop bands albeit for higher wave modes. The work

presented in [82], moreover, has indicated that elastic waves propagate in preferential

directions for certain frequencies and wavelengths, even though the underlying 2-D

lattice may be statically isotropic. The same dynamic behavior is found in sandwich

panels with honeycomb core [81], such as the one illustrated in fig. 5.

In light of the recent interest and discoveries regarding the propagation of elastic
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waves in periodic lattices, the complex geometry and unusual mechanical behavior

of the chiral lattice are expected to yield a rich dynamic behavior, possibly offering

significant stop/pass band capabilities. The design flexibility featured by the chiral

geometry, and the strong topological dependence of mechanical behavior, furthermore,

may be exploited for the design of novel acoustic meta-materials.

1.3 Morphing structures

The design of deformable systems may be driven by kinematic or mechanical con-

siderations, according to the manner in which the system’s deformations take place.

Deformations may be desired to alleviate structural stresses, they may be passive

in nature and arise from low structural stiffness, or they may be actively induced,

as in the case of structural mechanisms. Often, the ability of a structural system

to deform is coupled with stringent requirements mandating high specific stiffness,

which are common in applications for which weight considerations are paramount.

Multifunctional solutions, however, require a combination of stiffness and compliance

in a given component, both to withstand loads as well as to adapt or reconfigure to

changing operating conditions. This currently appears to be a paradox as stiffness

and compliance are reciprocal of each other. The challenge at hand is to obtain low-

complexity structural systems, intrinsically capable of adapting to disparate operating

environments as well as possessing stiffness and strength attributes.

A widely accepted definition for a morphing structure is a system or assembly ca-

pable of withstanding or producing large deformations, in addition to bearing loads.

To this day, operating conditions requiring highly reconfigurable systems have been

addressed with the use of structural mechanisms. Aircraft, for example, feature wings

with a variety of slats and flaps which are controlled by distributed servo motors, or

in the simplest cases by cables and pulleys. The result is a system with few essential
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degrees of freedom which may not guarantee efficiency over the entire operational en-

velope. Improvements to achieve higher efficiency and adaptability are sought by the

latest efforts in the design of flying vehicles, which envision continuous structural de-

formations [67, 99], perhaps employing biologically inspired solutions/materials [39].

At present, a number of solutions are proposed as morphing structures: tensegrity

structures, elastically-tailored structures, active structures controlled by distributed

sensor-actuator systems, multi-stable composites, as well as inflatable components.

Tensegrity structures are comprised of a set of discontinuous compressed struts,

usually a truss-like structure, held together with a continuous web of tensioned ca-

bles [70]. They are currently appealing candidates for applications that emulate

biological-propulsion methods, such as the flapping tail fin of fish. The major chal-

lenge in their design is determining the optimal distribution and the length of struts.

This is called form finding [92]. In the case of elastically-tailored structures, mechan-

ical coupling between distinct deformation modes is exploited; favorable coupling be-

tween bending and torsion [46, 52], for example, is utilized in morphing wind-turbine

blades [6].

Integration of motion and force transmission through elastic deformation is achieved

with joint-less monolithic devices called compliant mechanisms [93, 94]. According

to [94], compliant mechanisms use flexure and deformation to transmit motion and

forces, rather than rigid bodies with conventional mechanical joints, providing several

benefits such as elimination of mechanical joints, joint-wear, and joint-clearance. This

design paradigm is inspired by nature, where strength and compliance are observed

in its designs, as opposed to the goal of strength and stiffness employed in traditional

engineering. A hybrid solution comprising of a Kagomé active back plane support-

ing a face sheet is proposed as a morphing system [25, 26]. Target deformations are

achieved by a distribution of actuators that replace some of the truss members. As

in the case of tensegrity structures, the distribution of actuators represents the main
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challenge [26].

Multi-stable composites take advantage of local minima and maxima of their buck-

ling and post-buckling stability to achieve target deformations [52]. In particular,

snap-through phenomena are exploited to transition from the base to the target shape

while remaining in the linear range of Hooke’s Law [20, 84]. The advantage of this

method lies in the limited actuation energy needed to initiate snap-through. The

main drawback is control of transition speed from the base to the target configura-

tion (this may require externally induced damping), and more importantly only a

limited number of configurations can be achieved.

Inflatable structures are composed of very light membrane-like materials working

in tension resulting from internal pressure. Inflatable structures are very resilient to

damage from sudden deflection, due to very low inertia, and return to their original

design shape after a sudden loading event. Furthermore, they can withstand very

large deformations suggesting a hyperelastic stress-strain relationship. At present,

inflatable structures are proposed for reconfigurable components such as wings [15,

87], although their load-carrying capabilities appear limited.

Morphing structures are hence an essential component in the quest for truly effec-

tive, adaptable structures. The development of new materials can alleviate drawbacks,

as well as broaden the capabilities of each of the solutions presented above. To this

end, researchers are working on a wealth of promising materials, such as electroactive

polymers [5], advanced composites [52], and cellular structures [40] among others.

The chiral arrangement, in particular, may enhance current jointless monolithic de-

signs through its unusual deformation mechanism, and its ability to undergo large

deformations while in the linear regime of the constituent material makes.
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1.4 Phononic Metamaterials

An effort to expand advantages offered by periodic layouts is represented by engineer-

ing materials that gain their properties from their structure rather than directly from

their material composition [98]. While this characteristic may be attributed to any

man-made structured material, such as metallic foams for example, the label meta-

material was initially used to denote materials that exhibit negative electromagnetic

refraction [55]. In applications engaging quantum or elasto-dynamic phenomena,

metamaterials derive their peculiar wave interaction and propagation properties from

embedded resonant structures. Recently, the excitement surrounding meta-materials

producing exotic propagation of electromagnetic waves, however, has extended to the

field of acoustics, and the propagation of elastic waves. Negative refraction of im-

pinging sound waves, in fact, has been deemed possible if resonance structures are

employed in the equivalent material [63]. Particularly, negative refraction of elastic

waves may be attained by a double negativity in both density and bulk modulus [63].

This would provide the ability to focus or de-focus transmitted and diffracted waves.

Currently, structural systems engineered to manipulate elastic wave phenomena,

known as phononic crystals, gain their authority from mass and/or stiffness periodic

modulation in a composite material to obtain scattering and impedance mismatch

zones. The width and center frequency of a given stop band are respectively associated

with differences in impedance and characteristic length scale in the multi-phase ma-

terial [73]. Phononic crystals generally comprise a solid phase and a liquid or gaseous

phase. The material choice is usually driven by the desired impedance mismatch,

while material arrangement and the period of repeating irreducible units determine

direction, velocity and angular frequency of propagating waves. Thin-walled cellular

solids have recently attracted significant attention because they provide an additional

degree of freedom in the design of phononic crystals [75, 81, 82]. The mere mechan-

ical behavior of internal components yields a complex impedance pattern, perhaps
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not achievable with traditional phononic devices. The resonance of internal members

provides complex interference patterns controllable by selecting the length scale of

internal components as well as the global mechanical behavior of the cellular solid.

Resonating internal members, moreover, provide authority over wave propagation

characteristics even for wavelengths smaller than the characteristic length of the unit

cell. This for example is not easily achievable with traditional phononic crystals [73].

The findings in [75, 81, 82], moreover, suggest that periodic cellular solids are also

capable of focusing energy in preferential directions due to caustics [101].

The complex geometry of the chiral lattice may provide selective resonance com-

ponents within the lattice, as well as a rich dynamic behavior, attributes that may

prove useful toward achieving phononic meta-materials.

1.5 Organization of the work

An introduction to the characteristics that define chiral media and auxetic structures

and the repercussions of such attributes, in addition to hexagonal symmetry, on me-

chanical behavior is offered in chapter 2. An analysis of the chiral lattice devoted to

determining the equivalent, in-plane elastic constants is discussed in chapter 3. The

analysis is based on previous findings only addressing stiffness properties documented

in [76]. The effective Poisson’s ratio and shear modulus are established through an

analytical unit-cell model as well as through macro-lattice, finite-element simulations.

The mechanical behavior of chiral topologies is also compared to that of the square,

triangular and hexagonal lattices. The equivalent, out-of-plane, elastic properties are

determined in chapter 4 via a 2-D unit cell analysis and are refined to include effects

of out-of-plane thickness with the aid a numerical model. Opportunities offered by

the unusual deformation mechanism and large-deformation capabilities of the chiral

structure are addressed in chapter 5. Specifically, a chiral truss-core airfoil is analyzed

17



to determine both passive and active-morphing performance. Experimental measure-

ments of both aluminum and composite-material samples are employed to confirm

large camber-wise deflections with the elastic regime of the constituent material. In

chapter 6, the dynamic morphing associated with unique operational deflection shapes

of a truss-core beam is investigated numerically and experimentally. Chapter 7 is de-

voted to investigating the phononic performance of the chiral lattice, which is found

to be denoted by stop bands of significant extent within the first 10 wave modes. The

ability to guide elastic waves along preferential directions resulting from caustics is

also demonstrated. A summary of the findings of the research proposed in this thesis,

as well as opportunities for future work are provided in chapter 8.
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CHAPTER II

GEOMETRY AND DESCRIPTION OF HEXAGONAL

CHIRAL LATTICES

2.1 Introduction

The objective of this thesis is to uncover the equivalent mechanical properties, elasto-

dynamic behavior, and possible applications of the structural arrangement depicted

in fig. 12 known as hexagonal chiral lattice. The attribute hexagonal stems from the

lattice’s six-fold geometric symmetry in the plane, while chirality indicates a topology

non-invariant to reflections. This lattice is a deterministic cellular solid which features

a negative in-plane Poisson’s ratio, a characteristic of auxetic materials. It is thus

helpful at this point to specify what properties make a lattice chiral and/or auxetic.

This chapter is hence devoted to introducing the characteristics that define chiral

media and auxetic structures and the repercussions of such attributes, in addition

to hexagonal symmetry, on mechanical behavior. A brief historical background with

respect to man-made, chiral-materials development as well as naturally occurring

examples are offered to provide a context for the research presented in this thesis.

Figure 12: Hexagonal chiral lattice

19



2.2 Chirality

The first definition of chirality (from the Greek cheir = hand) or handedness has

eloquently been offered by Lord Kelvin in [54], as:

I call any geometrical figure, or group of points, chiral, and say it has

chirality, if its image in a plane mirror, ideally realized, cannot be brought

to coincide with itself.

Chirality, as it applies to the particular configuration studied in the following chapters,

is pictorially represented in fig. 13. The lattice and its mirror image in the xy-plane,

or (x, y, z) 7→ (x, y,−z), are clearly not equal. The lack of reflection symmetry in the

x

y

z

x

z

y

Figure 13: Implication of chirality

xy-plane however does not affect the mechanical properties, so long as Hooke’s law

is expressed by symmetric stress and strain tensors [76]. This is certainly the case

of Classical Elasticity Theory as elucidated in [64]. Employing Einstein’s notation,

Hooke’s Law in stress-strain form may be expressed as:

σij = Cijklεkl, (1)
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where C is the elastic modulus tensor. The transformation law for the modulus tensor

under coordinate changes is [76]:

C ′
ijkl = aimajnakoalpCmnop, (2)

where a’s are transformation matrices. For an inversion, the transformation matrix

is the negative of a Kronecker delta, yielding aim = −δim. This produces:

C ′
ijkl = (−1)4Cijkl = Cijkl. (3)

So the classical elastic modulus tensor is unchanged by chirality [76]. This does

not indicate that Classical Elasticity Theory is not applicable, but rather that it

does not capture the causes of the particular mechanical behavior associated with

chiral media. Generalized continuum theories, on the other hand, contemplate anti-

symmetric strain and stress tensors and are capable of capturing mechanical behavior

unique to chiral materials [61].

2.3 Auxetic materials

The attribute auxetic (from the Greek auxetos) is associated with materials that

transversally expand when stretched and transversally contract when compressed [37],

thus featuring a negative Poisson’s ratio. A negative Poisson’s ratio per se is not an

exotic proposition. Instances of negative-Poisson’s-ratio media have been observed

and accepted in highly anisotropic materials, such as the cubic “single crystal” pyrite

proposed by [64]. Another example is that of the re-entrant honeycomb of fig. 14,

an auxetic cellular solid [40]. More interestingly, it is theoretically admissible for an

isotropic material to feature auxetic behavior based on energy considerations from the

Theory of Elasticity, which indicates that for an isotropic solid −1 < ν < 1/2 [38].

Practical examples of isotropic, auxetic materials had not been common occurrences

up to the seminal paper by Lakes [58], which demonstrates that a negative Poisson’s

ratio is practically achievable even in elastically isotropic materials such as metallic
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(a) (b)

Figure 14: Re-entrant lattice featuring negative Poisson’s ratio ν

foams. Among isotropic media, however, auxetic behavior represents a rarity which

is to be attributed to two aspects of a material’s microstructure: the presence of

rotational units and non-affine deformation kinematics [59]. Non-affine kinematics

denotes the behavior of a system whose pairs of internal nodal points move apart

during stretching while others do not. This is the case of re-entrant, 2-D honey-

combs, shown in fig. 14, as well as re-entrant metallic foams [40, 58]. The deformed

configuration of a stretched re-entrant lattice (fig. 14.b) clearly demonstrates that

points that make up vertical walls feature negligible relative displacements, while

points pertaining to the oblique walls move away from each other as the assembly

is expanded. The metallic foams featured in [58] are 3-D examples of re-entrant

lattices, and thus their auxetic properties are to be attributed to non-affine kinemat-

ics also. Rotational units appear in structures or materials which produce internal

macro or micro-rotations when loaded even by direct stresses only [59]. Chiral mate-

rials often give rise to such phenomena, as many occurrences of chirality are typical

of assemblies with non-central forces. This indicates that, as in the case of the lattice

depicted in fig. 12, forces not meeting at a common locus produce moments which

in turn trigger micro or macro-rotations. Beyond the theoretical notions set forth
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by eqs. (2) and (3), demonstrating that Classical Elasticity Theory is unable to cap-

ture the effects of chirality, the lack of rotational degrees of freedom in the same

theory provides a practical reason for its shortcomings. Refined elasticity theories,

such as Micropolar Continuum Theory [32] among others, in fact contemplate the

presence of such degrees freedom in all instances. Their employment in engineering

structural analysis yet has not achieved broad acceptance owing to the difficulty to

experimentally measure micropolar phenomena [72]. In this thesis, however, the aim

is to obtain engineering constants to appreciate the mechanical behavior of the chiral

lattice and not to obtain equivalent-continuum models which would certainly have

to include micropolar effects. Additionally, both elasto-static and elasto-dynamic re-

sponse is analyzed considering deformations of internal beam-like components, for

which Classical Elasticity Theory is certainly appropriate.

2.4 Historical Background of chiral media

The most commonly recognized instances of chirality have historically been in the field

of chemistry [65] and particle physics [71]. Recently, however, significant advance-

ments in material science have established both the occurrence and the practicality

of chiral solids. The first suggestion of their existence appeared in [64] as twinned

crystals, which coincidentally also featured auxetic behavior. Borrowing from the

field of chemistry and encouraged by the early demonstrations of negative Poisson’s

ratio in [58], a wealth of man-made, chiral, cellular solids have been proposed, realized

and experimentally studied. In a significant number of cases, chirality in man-made

structured solids appears to be linked to negative Poisson’s ratio, owing to the pres-

ence of rotational units as a consequence non-central forces, that is pairs of internal

forces that do not meet at a common locus.

The first conceptual model of a chiral structure has been offered by [100] in the
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form of a molecular model exhibiting negative Poisson’s ratio due to internal rota-

tional degrees of freedom. The features necessary to have both isotropic and auxetic

behaviors, established in [100], suggested chirality as an enabling characteristic. Fol-

lowing [100], the first practical model of a chiral cellular assembly was engineered

by [59] (fig. 12). Such topology is the subject of the current work, and as such it

will be introduced in all its details in the next sections. Expanding on the possible

configurations of chiral assemblies, later authors such as [44] and [86] among others,

have proposed chiral assemblies with lower-order geometric symmetry such as those

depicted in fig. 15. The lattice shown in fig. 15.a has been proposed by [86] and it

(a) anti-tetrachiral (b) tetrachiral

(c) trichiral (d) anti-trichiral

Figure 15: Known examples of chiral cellular solid configurations

is known as anti-tetrachiral, as it possesses equal “left handed” and “right handed”

basic units and is not entirely chiral but it is racemic (annihilated chirality). That
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is the each unit cell posses both “left handed” and “right handed” components sym-

metrically distributed, resulting in a anti-chiral or reflection-symmetric topology. Its

counterpart, the tetra-chiral lattice, proposed by [44], is shown in fig. 15.b. The last

two configurations of figs. 15.c and d., feature triangular symmetry and they also

have been proposed by [44].

While in the field of chemistry solutions comprising chiral molecules are com-

mon [65], naturally-occurring, chiral, solid materials are not equally so [60]. Sur-

prisingly, certain species of pine trees produce chiral wood. One such example is

the Ponderosa Pine, images of which are shown in fig. 16, taken during a personal

excursion in the Colorado Rockies for mere curiosity. Chirality in such trees derives

from a non-centrosymmetric cross-section of the trunk. The spirally-structured trunk

(a) (b)

Figure 16: Ponderosa pine with spirally-structured trunk

of Ponderosa Pines is in fact the subject of current research devoted to further the

understanding of the mechanical properties of wood [62].
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2.5 Geometry of a Hexagonal Chiral Lattice

The structural layout of a hexagonal chiral lattice, shown in fig. 17, consists of circular

elements of radius r, acting as nodes, connected by ribs or ligaments, of length L

tangent to the nodes themselves. The distance between node centers is denoted as R,

while the angle between the imaginary line connecting the node centers and the ribs

is defined as β. The angle between adjacent ligaments is denoted as 2θ. Finally, the

wall thickness of nodes and ribs is denoted as tc and tb respectively. As described in

R

r

L

β

θ

y

x

tb

tc

Figure 17: Geometry of a hexagonal, chiral lattice

[76], the following geometric relationships hold:

sin β =
2r

R
, tan β =

2r

L
, sin θ =

R/2

R
, cos β =

L

R
. (4)

The ratio L/R yields significantly different configurations, as depicted in fig. 18, and

thus is here denoted as the topology parameter. The unit cell of the honeycomb

depicted in fig. 18 is highlighted in dashed lines, and it constitutes the smallest struc-

tural domain that encompasses the complete set of geometric entities necessary to

analyze the lattice’s mechanical behavior. Notably, the possible configurations ob-

tained for variations of the topology parameter span those composed of packed circles
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(a) L/R → 0 (b) L/R = 0.60

(c) L/R = 0.90 (d) L/R → 1

Figure 18: Chiral configurations corresponding to increasing topology parameter
L/R

(L/R → 0) to triangular assemblies (L/R → 1 or L/r →∞).

An additional geometric property of the hexagonal chiral lattice, as its name in-

dicates, is its in-plane hexagonal symmetry. As demonstrated by the third of eq. (4),

the angle θ is always 30◦, indicating that the hexagonal chiral topology is invariant

to in-plane rotations by the angle 2θ as shown in fig. 19, regardless of the topol-

ogy parameter. The influence of hexagonal symmetry on the mechanical behavior

results in a mechanical condition of in-plane isotropy [1]. The Young’s modulus of a

hexagonal material, as a result, is independent of direction in the plane normal to the

hexagonal symmetry axis [64]. Such characteristics are very important because they

determine the minimum number of coefficients needed to relate stresses and strains.

Translations, rotations, reflections or a combination thereof which do not alter the

geometry at hand correspond to orthogonal linear coordinate substitutions, such that
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φ = 0
o

φ = 60
o

φ = 60
o

Figure 19: Hexagonal symmetry of the chiral lattice

the strain-energy function is unaltered [64]. Borrowing from notions of crystal symme-

try and solid-state physics, it is demonstrated in [64] that, by enforcing uniqueness

and invariance of the strain-energy function, any symmetry operation reduces the

number of constants required to uniquely express stresses in terms of strains or vice

versa. In its most general form, Hooke’s Law, relating stresses and strains, can be

expressed as:

εkl = Sklijσij (5)

where εkl is the strain tensor, σij is the stress tensor, while Sklij are components of the

compliance tensor. Within Classical Elasticity Theory, 3-D anisotropic solids require

21 independent elastic constants to uniquely determine the compliance tensor S [40].

In the current research, the out-of-plane properties of a honeycomb with chiral lattice

topology are sought to evaluate the feasibility of this concept as an alternative core for

sandwich panels. Since the chiral lattice is expected to feature in-plane isotropy and

since one cannot infer the out-of-plane properties at this stage, chiral-core honeycombs

are generally expected to be transversally-isotropic components. That is, isotropic

in-plane but with different moduli out-of-plane. This implies that the stress-strain
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relation is of the kind [64]:

ε =




1
Ex

−νxy

Ex
−νxz

Ez
0 0 0

−νxy

Ex

1
Ex

−νxz

Ez
0 0 0

−νxz

Ez
−νxz

Ez

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gyz

0

0 0 0 0 0 2(1−νxy)

Ex




σ (6)

where E denotes the Young’s modulus, G the shear modulus and ν the Poisson’s

ratio. The subscript ( )i,j, with i, j = x, y, denotes constants relating shear strains

to shear stresses, while the subscript ( )k, with k = x, y, z denotes constants relating

direct strains to direct stresses. In order to characterize the elasto-static behavior

of chiral-core sandwich panels within the limitations of Classical Elasticity Theory, 5

elastic constants are then needed.

2.6 Unit Cell Configuration And Lattice Vectors

The structural lattice under investigation is obtained from the assembly of unit cells

of the kind shown in fig. 20. As in any periodic assembly, a generic point in a lattice

can be described in terms of its location within a reference unit cell and a set of lattice

vectors which define the periodicity of the system. Introducing a reference frame in

the plane of the lattice FI defined by an orthogonal unit-vector basis I = (i1, i2), the

location of a point P in cell n1, n2 can be expressed as:

ρP (n1, n2) = rP + n1e1 + n2e2, (7)

where n1, n2 are integers, rP defines the position of the point corresponding to P in

the reference cell (0, 0), and e1 and e2 are lattice vectors. The same vectors shown

in fig. 20.a are one of 3 possible sets, given the hexagonal symmetry of the topology.

The equations of motion, however, are not affected by one set of lattice vectors versus
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Figure 20: Chiral Structure, lattice vectors, and unit cell parameters
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another. This results from the fact that the chiral topology is invariant to 2θ rotations.

For the remainder of this thesis, the following convention of mathematical quantities

is used: vectors are denoted as bold, lower case letters, capital bold letters identify

matrices, and the notation ()A indicates components with respect to the vector basis

A. Accordingly, the lattice vectors for the chiral lattice can be expressed as

eI
1 = {R cos θ,R sin θ}T ,

eI
2 = {−R cos θ, R sin θ}T . (8)

2.7 Relative density

As presented in the following chapters, the mechanical behavior of the hexagonal

chiral lattice is strongly dependent upon the wall thickness of the lattice’s components.

This implies that the relative density plays an important role in determining the static

and dynamic responses of chiral assemblies. The relative density is thus defined here

since its influence is discussed in all subsequent analyses.

A possible irreducible unit cell is the one shown in fig. 20. In general, the relative

density ρ̄ of a two-phase composite is defined as the volume occupied by one phase,

in this case the walls of a unit cell, normalized by the sum of the volumes of both

phases. The second phase is here considered simply as a void whose influence on

static and dynamic responses is neglected. Assuming that the lattice’s walls are thin,

the relative density of the hexagonal chiral lattice is:

ρ̄ =
ρ∗

ρs

=
2πrtc + 6Ltb/2

R2 cos θ
, (9)

where ρ∗ is the equivalent density of the lattice, while ρs is the density of the con-

stituent material. In most instances, the wall thickness of the node tc is taken to be

the same as that of the ligaments tb, or tc = tb = t. Furthermore, since from eq. (4)

θ is always 30◦, the relative density may be recast as:

ρ̄ =
ρ∗

ρs

=
2
√

3 (2πr + 3L) t

3 R2
. (10)
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2.8 Summary

Negative-Poisson’s-ratio materials feature unique mechanical behavior, transversally

expanding when stretched and transversally contracting when compressed. Such ma-

terials are termed auxetic, and their exotic behavior stems from three aspects: non-

affine kinematics, rotational units and anisotropy. While it is widely accepted that

anisotropic materials may feature a negative Poisson’s ratio, isotropic auxetic mate-

rials have proven more elusive, and up until recently their existence was questioned.

Advances in material science, however, have in the past two decades produced a

number of man-made, auxetic cellular solids featuring isotropic mechanical behavior.

Metallic foams and re-entrant lattices owe their auxetic behavior to non-affine de-

formations. Rotational degrees of freedom, on the other hand, are typical of chiral

topologies and are the result of non-central forces. Non-centro-symmetric materi-

als in fact, lack reflection symmetry (chirality) and the associated non-central forces

produce moments which in turn cause micro or macro rotations within the material.

The hexagonal chiral lattice is just such an example. Of the man-made chiral cellular

solids, it is the one with the highest-order geometric symmetry (hexagonal symmetry

as its name indicates). Furthermore, the hexagonal chiral lattice boasts all the fea-

tures of other similar cellular solids (fig. 18). Specifically, chirality, internal forces not

meeting at a common locus and a bending-dominated deformation mechanism. For

these reasons, it will be the only investigated configuration and it will be referred to

simply as the chiral lattice.
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CHAPTER III

IN-PLANE MECHANICAL PROPERTIES OF THE

CHIRAL LATTICE

3.1 Introduction

This chapter is devoted to the analysis of the elasto-static behavior of the chiral

lattice. In particular, three aspects instilled curiosity and motivated the research

presented in this thesis:

¦ strong influence of the topology parameter L/R on the mechanical behavior;

¦ negative Poisson’s ratio;

¦ large global deformations within the elastic regime of the constituent material

or solid phase as documented in [9, 76].

The ability to dramatically affect the elastic properties of a lattice, simply by chang-

ing a reduced set of geometric parameters, implies ease of mechanical tailoring to a

given application. While traditionally different stiffness or compliance requirements

have been addressed by employing purposely engineered structural arrangements, the

possibility of exploring a large realm of elastic behavior by varying a single parame-

ter may provide new possibilities. This should facilitate analyses of multifunctional

components, where stiffness requirements may be accompanied by other criteria. The

design of truss-core airfoils discussed in chapter 5, for example, takes advantage of

just such capabilities. Previous studies reported in [76], moreover, suggest that the

chiral lattice features a Poisson’s ratio ν = −1 indicating auxetic behavior, in ad-

dition to exhibiting isotropic mechanical characteristics. The Theory of Elasticity
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however restricts the Poisson’s ratio of isotropic solids to −1 < ν < 1/2 [38]. Any at-

tempts to model an isotropic material with ν = −1 by equivalent continuum models

are thwarted by a resulting indeterminate constitutive matrix. The analyses pre-

sented in the following sections, hence, are devoted to establishing the magnitude

of the Poisson’s ratio and of the Young’s modulus more accurately with respect to

the estimates presented in [76]. The ability of the chiral lattice to withstand large

deformations within the elastic regime has been established experimentally by [76],

and by experimental models of a composite-material, chiral macro-cell presented in

chapter 5.

This chapter is organized as follows: following this introduction, an overview of

existing methods to mechanically classify cellular solids is first presented in sec. 3.2.

In sec. 3.3 previous investigations on the chiral lattice by [76] are discussed to motivate

improvements presented herein. A unit-cell analysis based on relaxing assumptions

made by [76] is then illustrated in sec. 3.4. The analyses of sec. 3.4 are supported

by FE models of a macro-lattice configuration presented in sec. 3.4.1. Finally a

comparison of the mechanical behavior of chiral lattice with other common lattices is

offered in sec. 3.6.

3.2 Overview of methods to determine the mechanics of
cellular solids

Cellular solids feature low relative density and are commonly constituted by arrange-

ments of beam-like slender components. For this reason, the elastic properties of

cellular solids are ordinarily determined by employing beam theory to relate loads

and corresponding deformations at the unit cell level, an example of which is shown

in fig. 21. The simplest technique considers the symmetry of a specific unit cell and

relates externally applied stresses to concentrated loads acting on the unit-cell mem-

bers. The kinematics of the unit cell are then related to externally-applied stresses,

yielding effective constants uniquely defining Hooke’s Law for the equivalent material.
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Figure 21: Microstructural detail (unit-cell members) in periodic solids

In the case of the hexagonal lattice depicted in fig. 22, non-affine deformations

facilitate the determination of the mechanical behavior as only one topologically-

distinct component of the unit cell elastically deflects. As presented in fig. 22, the

analysis is carried out by isolating a unit cell from the beam network. One cut of

the lattice, the left side of the dashed box in fig. 22.b for example, yields enough

equations to resolve all internal forces. Particularly, letting resultant forces be P

and W and summing forces in directions parallel and perpendicular to the externally

applied stress σx yields:

P = σx(H + L sin θ)b, (11)

and

W = σxy(H + L sin θ)b = 0, (12)

where b is the out-of-plane thickness of the lattice. Isolating one of the oblique

members of the unit cell from the rest yields an additional equation relating rectilinear

forces to the internal moment M . Enforcing that the sum of the moments at one of

the extremities of the isolated oblique ligament (fig. 22.d) be zero, one obtains:

M =
PL sin θ

2
. (13)

Given that the resultant forces P, W and moment M are now known, one can relate

the kinematics of the hexagonal lattice to the externally applied stress employing

35



σx σx

(a)

σx σx

σy

σy

τyx

τyx

τ xy

τxy

(b)

M
P

W
H

L

θ

M

P

W

(c)

M
P

W

M

P

W

(d)

Figure 22: In-plane deformation behavior of the hexagonal lattice
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beam theory, providing a relation between resultant forces and moment and deflection

δ. In particular [64]:

δ =
PL3 sin θ

12EsI
, (14)

where Es is the Young’s modulus of the constituent material and I is the area mo-

ment of inertia. The resulting strain of the ligament in the x-direction is εx =

δ sin θ/(L cos θ). Since from eqs. (14) and (11) both δ and P are linear functions

of σx, the equivalent Young’s modulus is found simply as Ex = σx/εx. The same

procedure is applied to determine Ey and Gxy. Such analytical procedure leads to es-

M

P

M

P

δ

θ

Figure 23: Bending caused by loading in the x-direction

timates of equivalent mechanical properties which are as accurate as the beam model

employed to describe the deformation behavior [40]. The same technique has been

applied to the square, hexagonal, triangular and Kagomé lattices among others [97].

More sophisticated beam theories may be employed to include shear effects in addition

to axial, bending deformations.

A second method relates displacements at the extremities of the unit cell to those

of a central joint, or node, relating them through a spatial Taylor-series expansion.

In [41], this procedure is referred to as Homogenization and it is employed to describe

the elasto-dynamic behavior of an equivalent continuum via two partial differential

equations. The coefficients of such equations are compared to known equilibrium-

equation forms such as Classical Elasticity Theory to obtain the equivalent Lamé
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constants. In a similar fashion, the method elucidated in [57], for elasto-static phe-

nomena, relates Taylor-series-linearized displacements at the extremities of the unit

cell to those of the central joint. The approximate kinematic variables are then

employed to obtain an expression of the unit-cell strain energy in terms of geomet-

ric parameters of the lattice. The constitutive matrix relating stress components to

strain components is obtained by taking derivatives of the approximated strain-energy

function.

In a third procedure, the governing equations of motion, in stress formulation,

are expressed in weak form and are solved numerically via the finite-element method.

Internal forces acting on each of the beam-like members of the cellular solid are

transformed into equivalent continuum stresses by averaging the same internal forces

over a representative volume, usually at a scale (fig. 21.b) comprising several unit

cells [24, 30]. This particular technique allows the evaluation of global elasto-static

phenomena bypassing the determination of elastic constants altogether. This analysis

method is particularly suited for stochastic configurations, for which it is not possible

to determine elastic constants based on a unit-cell analysis, as the unit cell itself is only

statistically described in terms of a characteristic volume or length scale. However, it

is certainly applicable to deterministic configurations also, as demonstrated in [24, 30].

Although chiral-lattice topologies have been known for about two decades (the

first example was presented by [100] in 1989), few analytical models relating equiv-

alent elastic constants to geometric parameters have been proposed, one of which is

offered by [76]. Most publications in fact are concerned with negative-Poisson’s ratio

characteristics [44]. The unique topology of the chiral lattice investigated in this the-

sis, moreover, does not present a central joint, thus rendering Taylor-expansion-based

techniques not easily applicable. Furthermore, one the objectives of this work is to

classify the mechanical behavior of the chiral lattice in terms of its equivalent elastic

constants, hence the stress-based formulation of [24, 30] is not applicable either. In
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order to circumvent the difficulties posed by chiral topologies, an improved unit-cell

analysis based on previous findings by [76] is employed with the objective of removing

some of the limiting assumptions and approximations previously considered.

3.3 Previous Studies of in-plane behavior

The dominant deformation mechanism in 2-D structural lattices may be of exten-

sional or bending nature, according to the manner in which the lattice’s components

are interconnected. A rigorous procedure based on Maxwell’s Theorem to determine

which deformation mechanism defines a given 2-D lattice is presented by [22]. This

is a noteworthy feature since equivalent stiffness for extensional lattices scales as

ρ̄, where ρ̄ is the relative density, as opposed to ρ̄3 for bending dominated lattices.

A summary of elastic-constants dependency on ρ̄ is offered by [97], which confirms

notions previously proposed by [40] suggesting that the most common lattice, the

hexagonal lattice, is dominated by cell-wall bending. The same has been observed

experimentally for the chiral lattice [76]. A representative deformed configuration ob-

tained through a finite-element (FE) model of the static response of the chiral lattice

to uniaxial stress is presented in fig. 24, confirming the findings by [76] indicating

that the deformations of the chiral lattice are bending dominated. Accordingly, the

deformed ligaments feature a sigmoidal shape. A negative in-plane Poisson’s ratio is

σ σx x

Figure 24: In-plane deformation behavior of a chiral lattice
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also evident, given the contraction of the assembly perpendicularly to the imposed

stress. Knowledge of the equivalent mechanical properties defining the chiral lattice

is currently very limited; the only efforts to uncover the mechanical behavior of this

novel lattice to this date have been set forth by [76], where only the relation between

Young’s modulus and geometric parameters is investigated. A significant obstacle is

given by the high degree of static indeterminacy, which renders previously proposed

methods [40, 97] not easily applicable. In the case of common arrangements such as

the triangular, square, and hexagonal lattices, the assessment of in-plane mechani-

cal properties is based on enforcing equilibrium of externally applied stresses with

resulting internal forces, without assuming any particular kinematic behavior [40].

Cutting the lattice and enforcing internal equilibrium, in fact, yields enough equa-

tions to uniquely relate each internal force to the externally applied stress as shown

in sec. 3.2. Equivalent mechanical properties are then estimated by enforcing equi-

librium of a unit cell, as well as compatibility of deformations stemming from the

lattice’s symmetry. In the case of the chiral lattice, however, significant static inde-

terminacy hinders the estimation of internal forces resulting from externally applied

stresses.

The work presented in [76] makes five assumptions:

a. nodes (or circles) are considered rigid;

b. internal forces oriented in a direction perpendicular to the externally applied

stress vanish;

c. internal forces are dictated by the observed kinematic behavior;

d. axial and shear deformations of the ligaments are neglected;

e. all deflections are small.

As it will unfold in the following sections, most of the above assumptions lead to
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poor approximations. Nevertheless it is instructive to analyze the procedure sug-

gested by [76], which notably, is based on resolving the internal forces given the

observed kinematic behavior, in contrast with methods presented by [40, 97] among

others, where resultant internal forces are associated with externally-applied stresses

by notions of equilibrium. The analysis of [76] predicts that all ligaments deform

equally, owing to hexagonal symmetry, when the lattice is loaded by a uniaxial stress

as shown in fig. 25.a. The unusual deformation mechanism that characterizes chiral

σx

σx

(a)

θ

M

W
M

W

P

P

θ−β

βφ

φ

r

R - e

e

(b)

Figure 25: Ligament deformation resulting from applied stress σx (a) and associated
internal forces (b)

lattices is explained by [76] as,

a torque results in bending of the ligaments into a sigmoid shape, and ro-

tation of the nodes ... Both the ligament bending and the equal rotation of

all nodes is visible experimentally in the deformation of the model. The

ligaments remain rigidly tangent to the node, therefore the deformation is

constrained to correspond to a change of area without change of shape ...

The orthogonal deformations of the honeycomb result from the displace-

ment of the node centers. ...The angular deflection φ [of the ligament]

measured at its endpoints coincides with the nodes’ rotation through the

same angle, φ. This is due to the constraint that the slope [of the ligament
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at its end points], remains tangent to the node. So, in order to main-

tain φ and θ, the ligaments must “wind” onto the nodes. This results in

a displacement of adjacent nodes along the direction of R. The effective

displacement of each node, is as if it were rolling along R.

It is postulated that the internal forces necessary to produce the deformed config-

uration of fig. 25.a act on ligaments and nodes as shown in fig. 25.b, where P , M

and W represent reactant forces in the transverse direction, reactant moment, and

reactant force in the longitudinal direction respectively. In the deformed state, the

chiral assembly is characterized by a distance between node centers equal to R − e

where e is the displacement along R associated with external compressive stress. The

following analysis will present the determination of in-plane Young’s modulus and

Poisson’s ratios.

Assuming the nodes to be perfectly rigid in addition to neglecting shear and axial

deformations of the ligaments is legitimate provided that the ligaments be slender [76],

which in turn requires low relative density (sec. 2.7). Owing to static equilibrium

considerations, the resultant force W vanishes as there are no applied stresses in the

y-direction, so the reactant moment M depicted in fig. 25.b is:

M (x) =
PL sin(θ − β)

2
, (15)

where the superscript ( )(·) indicates the direction of externally applied stress with

which moments and forces are associated. The same deformation mechanism is ob-

served for an applied stress σy depicted in fig. 26. For this loading configuration, it

is postulated that the resultant force P vanishes as there is no applied stress in the

x-direction, so that the relation between M and W becomes:

M (y) = −WL cos(θ − β)

2
. (16)

The characteristic cell considered by [76] is shown in fig. 27. The strain energy stored
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Figure 26: Ligament deformation resulting form applied stress σy (a) and associated
internal forces (b)

L
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L

Figure 27: Characteristic cell considered by [76]

in a ligament or rib after a quasi-static deformation is:

Urib = 2

∫ φ

0

M(φ′) dφ′. (17)

Due to cyclic symmetry of the chiral lattice with period 2θ (or 60◦), the strain energy

expressed by eq. (17) is characteristic of all ribs. Furthermore, each of the three

ligaments depicted in fig. 27 is shared by two characteristic cells hence the strain

energy stored in the assembly of fig. 27 is:

Ucell =
3

2
Urib. (18)
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The strain energy stored in a continuum portion equivalent to the volume occupied

by a unit cell can be expressed as:

Ucm =

∫ εi

0

V σi(εi)dε′i = V
1

2
Ei, ε

2
i (19)

where Ei is the Young’s modulus of the equivalent continuum, i = x, y, V is the

unit-cell volume, and εi is the strain resulting from an applied stress σi. The volume

V of the characteristic cell, neglecting the contribution of the nodes is:

V = bR2 cos θ =

√
3

2
bR2. (20)

If bending deformations only are considered, the relationship between end reactant

moments M and end rotations φ can be expressed as:

φ =
ML

6EsI
, (21)

where Es is the Young’s modulus of the constituent material, and I is the area-

moment of inertia defined as I = bt3b/12 = bt3/12. The resulting shortening of the

ligaments can be expressed as:

e = r sin(φ) ≈ rφ. (22)

The strain associated with ligament end-rotations is then:

εx =
rφ cos θ

R cos θ
, εy =

rφ sin θ

R sin θ
⇒ εx = εy =

rφ

R
. (23)

Applying the definitions for νxy = −εy/εx and νyx = −εx/εy, yields:

νxy = νyx =
rφ/R

rφ/R
= −1. (24)

Replacing eqs. (15), (17), (20), (21), and (23) into (18), and equating eqs. (18) an

eq. (19), one obtains the following expression for in-plane Young’s moduli:

Ex

Es

=
Ey

Es

=
√

3
t3

L3

L2

r2
, (25)
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which presents the familiar dependency on (t/L)3 as for hexagonal honeycombs [40].

Eq. (25) thus confirms the findings by [22], which indicate that the equivalent stiffness

for bending dominated lattices scales as ρ̄3. Finally, having an in-plane Poisson’s ratio

identically equal to −1 leads to an indeterminacy of the in-plane shear modulus, given

the definition of the latter as:

Gxy =
Ex

2(1 + νxy)
. (26)

At this stage, this indeterminacy prevents a complete description of the mechanical

behavior of the chiral lattice in terms of equivalent elastic constants.

3.4 Improved unit cell analysis

In the literature addressing auxetic materials, high specific shear modulus is often

mentioned as one of the desirable features associated with negative-Poisson’s-ratio

behavior [44, 76, 37, 58, 86]. The findings of [76] as discussed in the previous section

however, do not allow the determination of such an elastic constant, because the Pois-

son’s ratio is estimated to be exactly −1. Given the geometric hexagonal symmetry

of the chiral lattice, it is legitimate to assume isotropic elasto-static characteristics.

However as indicated by [38], the Poisson’s ratio of isotropic materials is bounded by

−1 < ν < 1/2 in 3-D, or −1 < ν < 1 in 2-D, and the associated constitutive matrix

would become singular for ν = −1.

In order to alleviate the shortcomings of the procedure above, the analysis pro-

posed by [76] is revisited by relaxing the assumptions listed in the previous section.

To investigate the repercussions of each of the above constraints placed upon the

mechanics of the lattice, a two-step approach is proposed. In the first phase of the

analysis (referred to as case 1), the following conditions are considered:

1.a nodes or circles are considered rigid;

1.b the kinematic behavior is imposed based on the experimental observations
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of [76];

1.c internal forces oriented in a direction perpendicular to the externally applied

stress are retained;

1.d axial and shear deformations of the ligaments are included in the analysis;

1.e ligament wall thickness tb is the same as that of the nodes or tb = tc = t;

1.f all deflections are small.

One of the objectives of case 1 is to isolate the effect of elastic deformations of the lig-

aments from those of the nodes, hence the latter are considered rigid. The mechanics

of the ligaments, moreover, is not limited to bending deformations resulting from ro-

tations only, but is augmented with axial and shear deformations also. The unusual

kinematics of the chiral lattice featuring rotational units (the nodes) furthermore,

prompts concerns with respect to neglecting any internal forces. Accordingly, resul-

tant forces perpendicular to externally-applied stresses will be retained. In the second

phase of the analysis (referred to as case 2), the following conditions are considered:

2.a the deformations of nodes or circles are included in the analysis;

2.b no restrictions are placed upon resultant forces;

3.c a macro-lattice FE model is employed;

2.d axial and shear deformations of the ligaments are included in the analysis;

2.e all deflections are small;

2.f ligament wall thickness tb is the same as that of the nodes or tb = tc = t;

The objective of case 2 is to fully determine the mechanical properties of chiral lat-

tices. Deformations of the nodes are hence included in the analysis. The high degree
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of indeterminacy and the complexity of the chiral topology, however, do not lend

themselves to obtaining tractable analytical expressions. The equivalent elastic con-

stants are then estimated via a macro-lattice, linear, FE model that considers axial,

bending and shearing deflections of the lattice’s components.

In the following sections the effective Young’s modulus of eq. (25) will be referred

to as EP , where the subscript ( )P indicates estimates from previous studies; the

findings of case 1 will be denoted by ( )C , where C indicates constrained nodes and

results of case 2 will be denoted by ( )U where U denotes unconstrained nodes. A

full description of macro-lattice numerical models employed to support the analyses of

cases 1 and 2 is provided in the following section, followed by the analytical expressions

of Young’s modulus EC for case 1 and approximated formulae for EU of case 2.

3.4.1 Macro-Lattice FE Models

A FE model of the chiral lattice is employed in order to investigate the internal

forces resulting from externally applied stresses, the extent of node deformations and

the relation between equivalent elastic constants and geometric parameters. The

commercially available FE software ANSYSr is employed. Specifically, Timoshenko

beam elements featuring axial, bending and shear deflections are used (BEAM3) [2].

Each ligament is discretized by 24 elements, while each node or circle is discretized by

44 straight-beam elements. The base configuration is characterized by the parameters

reported in Table. 1.

Given the structural composition of the chiral lattice, no single location is able

to withstand a level of stress required to load the entire lattice. Perimeter circles

on the sides perpendicular to the desired direction of deformation are kinematically

constrained to be rigid, as depicted in fig. 28. A displacement producing the desired

level of strain is applied at the center of each constrained perimeter circle. In order to

avoid singularities in the stiffness matrix, a circle on each loaded side is constrained
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Table 1: Base configuration parameters of FE macro lattice

Geometric parameters

L 1 m
L/R 0.6− 0.999
tb 0.01 m
tc 0.01 m
b 0.01 m

Material properties: Aluminum

Es 71 GPa
νs 1/3

to displace collinearly with the loading direction. The analysis of shear stiffness,

on the other hand, does not require any constraints perpendicularly to the imposed

displacements of the perimeter nodes (fig. 28.c) as such boundary conditions ensure

an invertible stiffness matrix. The effective applied stress is evaluated by summing

the point forces at the center of each perimeter circle constrained kinematically and

dividing by the loaded area, depicted as a yellow line in fig. 28. To estimate the shear

stiffness the effective engineering strain is computed as follows:

γyx =
vi+1 − vi

xi+1 − xi

+
uj+1 − uj

yj+1 − yj

, (27)

where (x, y) denote the location of the center of each node and (u, v) denote respec-

tively displacements in the x and y directions. The subscripts i and j indicate node

centers at the top and left sides of the lattice respectively. The equivalent elastic

constants are then computed as: Ex = σx/εx (fig. 28.a), Ey = σy/εy (fig. 28.b), and

Gyx = τyx/γyx (fig. 28.c). Poisson’s ratios νxy and νyx are evaluated based on the

displacements of the extremities of a unit cell located approximately in the center of

the lattice. The applicability of assumptions made with regard to internal forces, is

investigated by monitoring the nodal-force values sampled at the extremities of a unit

cell (yellow points in fig. 28), located approximately at the center of the lattice. For

each of the three considered cases a strain level of 500 µε is employed.
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Figure 28: Representative FE macro-lattice configurations employed to study load-
ing in the x-direction (a), y-direction (b) and xy-direction (c)
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A convergence study is carried out to establish the minimum number of cells

necessary to reasonably estimate stress, strain, and associated elastic constants for

each case considered, as well as to reduce the influence of boundary effects. Estimates
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Figure 29: Variation of Young’s modulus Ex with respect to lattice-cell number
−−−, and extrapolated value −−− for three values of L/R

of Ex shown in figs. 29 do not appear to approach an asymptotic value, suggesting

that additional increments in cell numbers in the x and y-directions are required.

Due to computing limitations, however, larger models are not feasible. A Richardson

extrapolation [78] is used to obtain a limit value of Young’s modulus to assess wether

the current model size is appropriate. The limit value of Ex, denoted as Ēx, may be

expressed as:

Ēx = lim
c→∞

Ex(c), (28)
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where Ex(c) is the FE approximation of Ēx as a function of cell number c, and

c = cell x× cell y. The lattice cells considered here are those depicted in fig. 30. For

c 6= ∞, eq. (28) may be expressed as:

Ēx − Ex(d) = and
kn + O

(
dkn+1

)
, an 6= 0, (29)

where n is an integer, an are unknown constants, kn are known coefficients and d =

1/c. According to Richardson extrapolation [78], the term and
kn in eq. (29) can be

eliminated to obtain the following formula:

Ēx =
rknEx(d/r)− Ex(d)

rkn − 1
+ O

(
dkn+1

)
, (30)

where kn+1 > kn and r is the refinement ratio or r = dn+1/dn. The value kn represents

the order of convergence, which is not known a priori. This may be found with the

following expression [79] which considers three values of discretization:

kn = ln

(
Ex,3 − Ex,2

Ex,2 − Ex,1

)
1

ln(r)
. (31)

For the Young’s modulus estimates shown in fig. 29, kn ≈ 2. Neglecting the error

of order O
(
dkn+1

)
in eq. (30), the Young’s modulus for an infinite lattice may be

expressed as:

Ēx
∼= rknEx(d/r)− Ex(d)

rkn − 1
. (32)

For the three sample values of topology parameter depicted in fig. 29, the difference

between Ex(d) computed with 35 × 59 cells and the extrapolated value Ēx is within

0.3%, which is smaller than the error introduced by approximating equivalent elastic

constants with analytical expressions based on curve fitting presented in sec. 3.4.3.

Given the small error introduced by limiting the FE lattice model to 35 × 59 cells

of the kind depicted in fig. 30, the error introduced by approximate expressions of

sec. 3.4.3 and computational limitations, the maximum number of cells considered

in fig. 29 is deemed legitimate as a basis for the estimation of the desired elastic

constants.
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Figure 30: Chiral lattice employed for convergence studies

3.4.2 Case 1: rigid nodes

The notion suggesting that internal forces perpendicular to the externally applied

stress vanish is applicable to centrally-symmetric lattices with collinear or central

internal forces. This is certainly the case for the hexagonal lattice as discussed in

sec. 3.2. For the chiral lattice, however, this should not be assumed a priori. Isolating

one unit cell, depicted in fig. 31, one would expect the component of internal stress in

the direction perpendicular to the externally applied stress to be 0. However, upon

loading of the chiral lattice by uniaxial stress σx (see fig. 31), and extraction of one unit

cell form the complete structural arrangement shows that 6 reaction forces, Fx1, Fy1,

Fx2, Fy2, Fx3 and Fy3 are present. As depicted in fig. 31.c, such reaction forces satisfy

the hexagonal symmetry of the structure mandated by the lattice vectors e1 and e2,

discussed in sec. 2.6. The assumption proposed by [76] whereby the vertical force W

in fig. 25 vanishes for an applied stress σx thus is too restrictive. If internal forces

perpendicular to the externally applied stress do not vanish, the internal moment M

depicted in fig. 25 then becomes:

M =
PL sin(θ − β)

2
− WL cos(θ − β)

2
. (33)

If eq. (33) is used in the procedure elucidated in sec. 3.3 above, equating eqs. (18)

and (19) leads to a non-linear equation which does not permit relating the equivalent
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Figure 31: In-plane deformation behavior of the chiral lattice with rigid nodes

Young’s modulus to geometric parameters only. A different approach is then devised.

The mechanical behavior of a chiral lattice with rigid nodes is analyzed by employ-

ing constraint equations relating the kinematics of the center of each circle to those

of material points on the circles themselves according to the following expressions:

xOA = xOB + xBA

= xOB + r(cos ψ î + sin ψ ĵ) (34)

xOA′ = xOB + (uB î + vB ĵ) + xBA′

= xOB + (uB î + vB ĵ) + r
[
cos(ψ + φ) î + sin(ψ + φ) ĵ

]
(35)

(uA î + vA ĵ) = xOA′ − xOA

= (uB î + vB ĵ) + r [cos(ψ + φ)− cos ψ] î + r [sin(ψ + φ)− sin ψ] ĵ

= (uB î + vB ĵ)− rφ sin φ î + rφ cos φ ĵ.. (36)

Referring to fig. 32, uA, vA are the displacement components of point A along î and
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Figure 32: kinematics of rigid nodes

ĵ respectively, while uB, vB are those of of point B, φ is the rotation of the circle

and x¦,¦ denotes a position vector. The resulting kinematic constraint of eq. (36) is

linearized in compliance with the assumption of small displacements and rotations.

The same constraint may be expressed in matrix form as:





uA

vA

φA





=




1 0 −r sin θ

0 1 r cos θ

0 0 1








uB

vB

φB





= T (θ)





uB

vB

φB





. (37)

In light of the in-plane, hexagonal symmetry of the chiral lattice and the fact that

the nodes are considered rigid, the analysis of a single ligament is expected to produce

the elasto-static behavior of the entire lattice. The simplified geometric model shown

in fig. 33.a is then reduced to that depicted in fig. 33.b by way of eq. (37) thereby

enforcing rigid kinematic constraints on the circles. In fig. 33.b the superscript ( )′

indicates displacement components normal or tangential to the lattice vector e1. If the

circles are to translate along the imaginary line connecting their centers (or along e1),

as presented in fig. 24, one would like to determine what forces and moments produce

such deformations. In a FE framework, such forces and moments can be obtained by
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Figure 33: Case 1: single-ligament model (a), and associated generalized displace-
ments (b)

exploiting the ordering of nodal displacements and forces in their respective vectors:



Kkk Kku

Kuk Kuu








uk

uu





=





fu

fk





, (38)

where the subscripts k and u denote known and unknown values respectively. Two

kinematic states are imposed: a strain along the x-direction εx and subsequently

a strain along the y-direction εy. Invoking eq. (23), direct strains may be related

to the unidirectional displacement e along R (see fig. 25). For the case at hand,

it is convenient to project the generalized displacements onto the imaginary line

connecting the node centers, collinear with e1. This is accomplished as follows:




u1

v1

φ1

u2

v2

φ2





=




cos β − sin β 0 0 0 0

sin β cos β 0 0 0 0

0 0 1 0 0 0

0 0 0 cos β − sin β 0

0 0 0 sin β cos β 0

0 0 0 0 0 1








u′1

v′1

φ′1

u′2

v′2

φ′2





= R(β)





u′1

v′1

φ′1

u′2

v′2

φ′2





.

(39)

The procedure elucidated so far is general and it is not limited to a particular elastic

model. Provided that accounting for shear deformations does not add any more
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complexity to the solution procedure, and for the sake of completeness, estimates

for Ex and Ey are firstly computed considering axial and bending deformations via

Euler-Bernoulli Beam Theory; a refined model that includes axial, bending and shear

deformations is then proposed based on Timoshenko Beam Theory [19]. Neglecting

shear deformations, one may relate generalized forces to generalized displacements

as [19]:

K ′u =
EsIzz

L3




12L2/t2b 0 0 −12L2/t2b 0 0

0 12 6L 0 −12 6L

0 6L 4L2 0 −6L 2L2

−12L2/t2b 0 0 12L2/t2b 0 0

0 −12 −6L 0 12 −6L

0 6L 2L2 0 −6L 4L2




u = f , (40)

where the superscript ( )′ denotes the local coordinate system of the ligament, while

Izz is the area-moment of inertia, or Izz = bt3b/12 = bt3/12. If shear deformations are

included in the elasticity model, the relation between generalized forces and general-

ized displacements becomes [19]:

K ′u =
EsIzzµ

L3




12L2/µ/t2b 0 0 −12L2/µ/t2b 0 0

0 12 6L 0 −12 6L

0 6L 4L2λ 0 −6L 2L2γ

−12L2/µ/t2b 0 0 12L2/µ/t2b 0 0

0 −12 −6L 0 12 −6L

0 6L 2L2γ 0 −6L 4L2λ




u = f ,

(41)

where µ = 1 + 12ω, γ = 1 − 6ω, λ = 1 + 3ω, and ω = EsIzz/(kGsAL2). In the last

expression, k is the shear correction constant, here chosen as 5/6 given the rectangular

cross-sectional area of the ligaments, and Gs is the shear modulus of the constitutive

material. In both eqs. (40) and (41), it is assumed that the chiral lattice is made of a
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homogeneous, isotropic material, and that the wall thickness t is constant throughout

the span of the ligament. Irrespective of the choice of elasticity model, the generalized

displacements are projected onto R as:

K = RT (β) K ′ R(β), (42)

where ( )T denotes the transpose. Imposing that the circles be perfectly rigid is

accomplished by enforcing eq. (37) as follows:

K̃ = T (θ)T K T (θ). (43)

Eq. (43) respects the ordering indicated by eq. (38). Employing eq. (38) and noting

that enforcing uk requires fu = 0, the unknown nodal displacements uu are obtained

from the second of eq. (38) as:

uu = K̃−1
uu

(
−K̃uk uk

)
, (44)

where ( )−1 denotes the matrix inverse. The strain energy Ud
rib stored in a ligament,

analogous to its equivalent-continuous counterpart of eq. (17), can be expressed as:

Ud
rib =

1

2
uT K̃ u. (45)

The strain energy stored in a unit cell Ud
cell follows form eq. (18). Equating the latter

to the equivalent strain energy stored in a continuum volume (eq. (19)) equal to that

of a unit cell, one obtains estimates for Young’s moduli Ex and Ey. In order to derive

an expression for the stiffness along the x direction, the following displacements at

the extremities of the ligament are imposed as for figs. 25 and 33.b:

uk =





u1

v1

u2

v2





=





0

0

εxR

0





. (46)
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The same analysis in the y direction is carried out imposing:

uk =





u1

v1

u2

v2





=





0

0

0

εyR





. (47)

The resulting estimates for Young’s moduli in the x and y directions for both Euler-

Bernoulli and Timoshenko beam theories are reported in Table 2, where νs is the Pois-

son’s ratio of the wall material. As for the procedure presented in sec. 3.3, imposing

Table 2: Estimates of Ex, Ey neglecting node deformations

Including axial and bending deformations

Ex

Es
= sin2 β

[4r2(1+1/ cos2 β)+L2]
2(t2+4r2)

√
3
(

L
r

)2 (
t
L

)3

Ey

Es
= sin2 β

[4r2(1+1/ cos2 β)+L2]
2(t2+4r2)

√
3
(

L
r

)2 (
t
L

)3

Including axial, bending and shear deformations

Ex

Es
= sin2 β

[4r2(1+1/ cos2 β)+L2]
2[k(t2+4r2)+(1+νs) tan2 βt2]

√
3
(

L
r

)2 (
t
L

)3

Ey

Es
= sin2 β

[4r2(1+1/ cos2 β)+L2]
2[k(t2+4r2)+(1+νs) tan2 βt2]

√
3
(

L
r

)2 (
t
L

)3

that the nodes wind onto the ligaments translating along R constrains the Poisson’s

ratio to be νyx = −1. The in-plane shear modulus thus remains undetermined at

this stage. The expressions for Ex and Ey derived above present a striking similarity

to eq. (25), albeit they exhibit a more complicated dependency on the topology pa-

rameter L/R. Expressions for in-plane Young’s moduli presented above indicate an

isotropic, elasto-static behavior, confirming the findings of [76]. Finally, the factor

(t/L)3 indicates that the in-plane deformation mechanism is bending-dominated as

suggested in [97] among others.
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A comparison between the current estimates for Young’s moduli of Table 2 and the

one suggested by [76] and reported in eq. (25) is shown in fig. 34, where furthermore,

the equivalent stiffness of the triangular lattice (obtained from [97]) is also illustrated.

Since the expressions for Ex and Ey in Table 2 are identical, EC indicates the stiffness
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Figure 34: Comparison of improved estimates for the Young’s modulus EC with the
one suggested by [76] EP (a), and percent difference between the two (b)

of the chiral lattice in all directions. Additionally, the difference between EC obtained

neglecting and including shear deformations is within 4%. This may not always be

true. For non-slender ligaments for example shear deflections would not be negligible.

The envisioned chiral topology, however, is to be utilized for low-relative density

applications, and hence the assumption of slender internal components is legitimate.

All comparisons with Young’s modulus obtained by [76] and with subsequent models,

i.e. allowing the nodes to deform, will be carried out with respect to the simpler

model not considering shear within the ligaments. As presented in sec. 2.5, the chiral

lattice approaches the topology of the triangular lattice as L/R → 1. Estimates

for the Young’s modulus of the former thus must approach that of the latter as the

topology parameter approaches 1. This is confirmed in fig. 34.a. The expression for
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the stiffness of the chiral lattice suggested by [76] (EP in sec. 3.3) however produces

values markedly different than those obtained from the formulae of Table 2. The

percent difference between the two is considerable as reported in fig. 34.b. Neglecting

internal forces perpendicular to the externally applied stress hence yields significantly

different values of Young’s modulus than those obtained by including such forces. In

order to obtain a more accurate relationship between Young’s modulus and geometric

parameters, it is worth investigating the implications of including node deformations

in the elasto-static analysis. Moreover, the shear modulus remains indeterminate

within the assumptions of case 1.

3.4.3 Case 2: deformable nodes

It is again helpful to employ a macro-lattice FE model to guide the analysis by

studying how the internal forces and deformations are related to externally applied

stresses. For an applied stress σx (fig. 35.a) the deformed components are shown in

fig. 35.b. Firstly, the nodes of the chiral lattice deform as much as the ligaments for

values of the topology parameter L/R < 0.95. The assumptions of sec. 3.3 and 3.4.2,

whereby node deformations are neglected, hence produce an assembly that is too

stiff. Additionally, the computed resultant forces at the extremities of the unit cell

(fig. 35.c) are all non-zero, albeit they satisfy the hexagonal symmetry of the lattice

along the vectors e1, e2 and their combinations. These forces are obtained at the

nodal locations indicated by yellow points in fig. 28.a. The resultant force components

are then labeled Fxi
and Fyi

(i = 1, 2, 3) according to symmetry conditions. No

resultant moments are present. The orientation and magnitude of each resultant force,

moreover, varies with L/R. Changes in magnitude (fig. 35.e) are to be attributed

to the fact that, for the same applied direct strain εx the assembly’s compliance

diminishes with increasing L/R. The orientation (fig. 35.f), on the other hand, reflects

the topological changes associated with varying L/R, and it approaches that of the
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internal forces of a triangular lattice [97] as L/R → 1. At this stage the problem at

hand presents 6 unknowns with 3 symmetry conditions already included. From an
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Figure 35: In-plane deformation behavior of the chiral lattice with deformable nodes
due to loading in the x-direction. Loading conditions (a), resulting deformation of
internal members L/R = 0.90 (b), resultant forces (c), resultant stresses (d), force-
magnitude dependence on L/R (e) and force-orientation dependence on L/R (f)
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equivalent-continuum point of view, the unit cell depicted in fig. 35.d is the smallest

feature of the lattice, thus its boundaries may be utilized for a stress analysis to

obtain additional equations to solve for the resultant forces Fxi
and Fyi

. Specifically,

the following expressions are satisfied:

Fx2 + Fx3 = σxbR, (48)

Fy2 + Fy3 = 0. (49)

Eqs. (48) and (49) relate the externally applied stress σx to internal forces and ex-

ploit the fact that no shear stress τxy is imposed at the boundaries of the lattice.

Two additional equations should be provided by the fact that neither τyx or σy are

imposed at the boundaries of the assembly. However, both Fx1 and Fy1 are non-zero,

introducing unexpected complexity in the problem at hand, which is thus hyperstatic.

Furthermore, for hyperstatic problems associated with the unit-cell of a given cellu-

lar solid, it is customary to exploit the reflection symmetry of a unit cell to obtain

additional equations at a central joint by taking cuts and enforcing equilibrium [97].

The chiral lattice has neither reflection symmetry nor a central joint. An additional

equation is provided by considering that the sum of the moments must be zero. Then

the elasto-static problem at hand yields 6 unknowns and 2 equations relating internal

forces and external stress and 1 equation of equilibrium of moments, thus it presents

a system degree of redundancy of 3. If the nodes are allowed to deform, moreover, no

particular kinematic behavior should be assumed, as it may strongly depend upon a

given topology. The elastic behavior due to loading in the y-direction as well as shear

loading is investigated next, before any analyses are proposed.

The deformed state of the chiral lattice when loaded by an external, uniaxial

stress σy is shown in fig. 36.a. Note that the deformed state of the circle resembles

an ellipse (fig. 36.b) with its major axis now aligned with e1, while for loading in the

x-direction the circle’s deformation was aligned along e2 (fig. 35.b). The variation
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of force-component magnitude and force orientation are shown in fig. 36.c and 36.d

respectively. As for loading along the x-direction, the case at hand produces 6 dis-
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Figure 36: In-plane deformation behavior of the chiral lattice with deformable nodes
due to loading in the y-direction. Loading conditions (a), resulting deformation of
internal members L/R = 0.90 (b), force-magnitude dependence on L/R (c) and force-
orientation dependence on L/R (d)

tinct reaction-force components that respect the hexagonal symmetry of the lattice

(fig. 36.c). Internal forces for loading in the y-direction satisfy the following relation:

Fx2 + Fx3 = 0. (50)

Once again, the stress state of the unit cell is peculiar. It is reasonable, in fact,

to expect that Fx,1 = 0 and Fy,1 = −σybR cos θ, since no shear stress τyx or τxy is
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applied (fig. 36.a). However the macro-lattice, FE model yields Fx,1 6= 0 and Fy,1 6=
−σybR cos θ. As before, an additional equation is obtained by enforcing equilibrium

of moments. For loading in the y-direction the problem is hyperstatic with a system

degree of redundancy of 4.

The deformed state of the chiral lattice resulting from shear loading is shown in

fig. 37. For the current loading conditions, the circles appear more deformed than the

ligaments (fig. 37.b), and for this case hence neglecting node deflections leads to poor

estimates for the Poisson’s ratio, previously derived in terms of ligament deformations

only (sec. 3.3). As for externally applied σx and σy, isolating one unit cell from the

lattice subject to an applied stress τxy, τyx shows the presence of 6 distinct resultant-

force components which respect the hexagonal symmetry of the lattice. The stress

state of the unit cell is hard to predict as for the other loading cases. The internal

stress must be in equilibrium with with externally applied stress τxy, τyx. The following

must hold:

Fx2 + Fx3 = 0, (51)

Fy2 + Fy3 = τxybR. (52)

Furthermore, it is reasonable to suppose that Fx,1 = −τyxbR cos θ and Fy,1 = 0,

since no stress σy is applied (fig. 37.a), however the macro-lattice, FE model yields

Fy,1 6= 0 and Fx,1 6= −σxybR cos θ. The force-component magnitude and resultant-

force orientation are shown in fig. 37.c and 37.d respectively, and are equally complex

as the same values for loading in the x and y-directions. For the case of shear loading,

the problem presents 6 unknowns and 3 equations including equilibrium of moments,

so that the system degree of redundancy of 3.

Hyperstatic problems, however, are solved routinely in the field of structural en-

gineering. A number of methods allow the determination of additional equations to
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Figure 37: In-plane deformation behavior of the chiral lattice with deformable nodes
due to shear loading. Loading conditions (a), resulting deformation of internal mem-
bers L/R = 0.90 (b), force-magnitude dependence on L/R (c) and force-orientation
dependence on L/R (d)

uniquely establish the relation among forces acting on a body. Employing the flexi-

bility method for example, one may cut the system in as many locations as the degree

of redundancy and define a single relative displacement for each of the cuts. Using

constitutive laws, strain-displacement relationships and imposing that the assumed

displacements at the cuts vanish, additional equations are obtained. Other methods

such as Castigliano’s Theorems may be employed for the task at hand [8]. An ad-

ditional problem is given by the boundary conditions, as a unit cell is constrained
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Figure 38: Unit-cell internal force orientation (L/R = 0.90) for loading in the
x-direction (a), and possible boundary conditions (b)

by elastic supports (other unit cells). This shortcoming may be circumvented by

employing the boundary conditions shown in fig. 38, which would reproduce symme-

try conditions. The orientation of the roller-like supports, however, is a function of

L/R introducing additional complexity in derived analytical expressions. However,

attempts to resolve the mere internal forces of the node after cutting the chiral unit

cell lead to intractable equations. For this reason, the elastic constants of the chiral

lattice are estimated through the macro-lattice FE model. An approximate expression

for Poisson’s ratios and Young’s moduli is established based on the formulae derived

neglecting node deformations (Table 2) as they already provide a qualitatively reason-

able model for in-plane stiffness. In particular, these analytical expressions provide a

very good guess to fit the results of FE simulations.

3.5 Results and comparison of cases 1 and 2

Firstly, the estimated values of Ex,U and Ey,U differ from each other by at most

2.8%, as indicated by figs. 39.a and 39.b. It is then reasonable to conclude that
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Figure 39: Young’s moduli estimated from macro-lattice analysis Ex,U , Ey,U (a),
pecent difference between Ex,U and Ey,U (b). Comparison of improved estimates from
case 1 EC , the one suggested by [76] EP and EU (c), and relative percent difference
(d)

the elasto-static behavior of the chiral lattice is transversally isotropic, or isotropic

in plane. Fig. 39.a further validates the asymptotic relation between EC and L/R

discussed in sec. 3.4.2. Estimated values of EU increase very rapidly with respect

to the topology parameter L/R (fig. 39.a), approaching an asymptotic behavior as
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L/R → 1. The upper limit is the Young’s modulus of the triangular lattice (obtained

from [97]), also presented in fig. 39.a. As L/R approaches 1, in fact, r → 0 and the

chiral lattice becomes identical to the triangular lattice (fig. 18.d). The suggestion set

forth by [76] indicating isotropic mechanical behavior is thus confirmed even when the

nodes are allowed to deform. A comparison of both previous investigations (EP ) and

the improved model of case 1 (EC) with values of Young’s modulus computed with

FE macro-lattice models (EU) is portrayed in fig. 39.c, where the improved model

reasonably agrees with EU as L/R → 1. For low values of L/R, however, EC and EU

present a marked discrepancy likely due to the deformation of the nodes. As shown

in fig. 39.d, the difference between the two for L/R = 0.60 is greater than 60%. An

additional characteristic portrayed by fig. 39.c is the asymptotic-like relation between

EC , EU and EP and the topology parameter L/R. In both eq. (25) and Table 2 in fact

the equivalent stiffness is related to a given topology as EC/Es ∝ (L/r)2. The same

is found in sec. 3.3. Recalling that cos β = L/R and tan β = 2r/L (from eq. (4)), it

is important to note that as L/R increases linearly, L/r increases as 2/ tan β. This

reinforces the suggestion that the mechanical behavior of the chiral lattice can be

significantly altered or tailored simply by varying a single parameter, namely the

topology parameter.

Additional confirmation of isotropic behavior comes from the estimated values

of νxy and νyx shown in fig. 40.a, obtained via the macro-lattice analysis presented

above (sec. 3.4.3). Their relative difference, in fact, is within 1% (fig. 40.b). Fur-

thermore, estimated values of GU from the analysis of case 2 agree with the relation

GU = EU/ (2 (1 + νU)), as shown in fig. 40.c and 40.d. The difference between esti-

mates of GU obtained by quantifying the lattice’s response to an applied shear stress

τxy and those obtained from the the relationship between G and E, ν for an isotropic

material is within 5.5% (fig. 40.d). Finally, in-plane Poisson’s ratio is characterized
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Figure 40: Poisson’s ratios νxy, νyx obtained from macro-lattice analysis (a) and
their relative difference (b); comparison of shear modulus GU with the relation G =
E/[2(1 + ν)] from macro-lattice model (c) and their relative difference (d)

by a boundary-layer-like relation with respect to L/R; that is it approaches its min-

imum value (≈ −0.938 at L/R = 0.991) quasi-linearly. As L/R is increase beyond

0.991 the Poisson’s ratio asymptotically increases toward the value of the triangular

lattice or 1/3, not shown in fig. 40. As the circles become smaller in fact, the mo-

ments arising from non-central forces diminish, and the deformation behavior of the
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ligaments shifts from one dominated by bending to one dominated by axial deforma-

tions. This phenomenon, moreover, justifies the rapid increase of EU with respect to

L/R. Bending-dominated structural lattices feature a dependency between in-plane

Young’s modulus and wall thickness as E ∝ (
t
L

)3
, while axially-dominated lattices

feature E ∝ (
t
L

)
. This is a known fact, suggested in both [40] and [97] among others.

At this stage, one would like to express the relation between Young’s modulus,

including deformations of the node and well as forces perpendicular to the applied

stress, in terms of geometric parameters. Firstly, the computed in-plane Poisson’s

ratios νxy and νyx depicted in fig. 40.b differ by at most 1% for the values of topology

parameter considered (fig. 40.a and 40.a). Moreover Ex,U and Ey,U depicted in fig. 39.a

are within 2.8% of each other. This suggests that an approximate relation between EU

and geometric parameters may be formulated by exploiting the following reciprocity

relationship [40, 64]:

Exνxy = Eyνyx. (53)

Drawing inspiration from the case of hexagonal lattices, for which Exνxy = Eyνyx =

Es

(
tb
L

)3 1
sin θ cos θ

, where θ = 30◦, a similar relation for the chiral lattice is sought.

Since the chiral lattice is bending dominated and exhibits hexagonal symmetry, just

as hexagonal lattices, a similar expression should lead to relating νxy to geometric

and material parameters. A possible approximation for Exνxy is found to be:

Exνxy ≈ −Es

(
t

L

)3
cos2 β (11 + 3 sin β)

4 sin2 β
, (54)

which is within 2% of the values estimated from the unit-cell analysis for L/R ∈
[0.6, 0.97] and increases to 10% for L/R ∈ (0.97, 0.999]. A possible description of νxy

based on the formula for EC (from Table 2) in place of Ex in eq.(54) may then be:

νxy = ν∗U ≈ −
√

3(t2 + 4r2) (11 + 3 sin β)

6 tan2 β sin2 β [4r2 (1 + 1/ cos2 β) + L2] (L/r)2

1 + 1
(L/R)1.5

1.78
, (55)

where the superscript ( )∗ denotes approximate values obtained by correcting the

results of case 1 with respect to those of case 2. Predictions of in-plane Young’s
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modulus based on the assumption of rigid circles (EC), furthermore, are compared to

those obtained allowing the circles to deform (EU). As expected, rigid circles lead to

an overestimation of E as shown in fig. 39.b, while the model suggested by [76] (EP ),

reported in eq. (25), yields poor results even as L/R → 1. Finally, an approximate

relationship between in-plane Young’s modulus and L/R is formulated starting from

the expression obtained assuming rigid circles. In particular, it is clear from fig. 39.a

that such estimate is reasonable as L/R → 1; a factor that vanishes as L/R → 1 is

then employed to obtain:

E∗
U

Es

= sin2 β
[4r2 (1 + 1/ cos2 β) + L2]

2(t2 + 4r2)

√
3

(
L

r

)2 (
t

L

)3
1.78

1 + 1
(L/R)1.5

. (56)

The absolute difference between eq. (56) and EU is within 6.5% as shown in fig. 41.
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Figure 41: Comparison of E∗
U from eq. (56) and that obtained from the macro-lattice

FE model (a), and their relative difference (b)

The shear stiffness G∗
U is obtained from eqs. (55) and (56) by enforcing that G∗

U =

E∗
U/[2(1 + ν∗U)].
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3.6 Comparison of the elastic properties of chiral and com-
mon lattices

In order to gain a perception of the mechanical behavior of the chiral lattice uncov-

ered above, it is helpful to compare it to that of other periodic cellular solids. In

particular, square, triangular and hexagonal lattices are common topologies encoun-

tered in engineering applications and have been investigated for their superior specific

(mass-normalized) properties [21, 40, 96, 97]. As reported in [40, 97], the equivalent

mechanical properties on the aforementioned topologies in terms of geometric param-

eters are listed in Table. 3. The results reported in sec. 3.4.3 have been obtained

Table 3: Mechanical properties of common lattice topologies

topology relative density ρ̄ E/Es G/Es ν

square 2t
L

1
2
ρ̄ 1

16
ρ̄3 1

2
νsρ̄

triangular 2
√

3 t
L

1
3
ρ̄ 1

8
ρ̄ 1/3

hexagonal 2√
3

t
L

3
2
ρ̄3 3

8
ρ̄3 1.0

by considering the wall thickness t = 0.01 m, the ligament length L = 1 m. For a

topology parameter 0.6 ≤ L/R ≤ 0.999 and the specified wall thickness and ligament

length, the resulting relative density ρ̄ for the chiral lattice, described by eq. (10)

(sec. 2.7), is shown in fig. 42. With the relative density at hand, it is possible to com-

pare the mechanical properties of the chiral lattice with those of square, triangular

and hexagonal lattices. In particular, the Young’s modulus for the aforementioned

lattices is presented in fig. 43.a. Quite interestingly, the chiral lattice features the

lowest Young’s modulus for 0.6 ≤ L/R ≤ 0.98, while the square lattice is the least

compliant. Regarding shear deformations, in contrast, the square lattice features the
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Figure 42: Relative density ρ̄ for the chiral lattice given 0.6 ≤ L/R ≤ 0.999, t = 0.01
m and L = 1 m

lowest shear modulus, and the triangular lattice the highest. The chiral lattice per-

forms better in shear than square and hexagonal lattices for L/R > 0.83 and its shear

modulus approaches that of the triangular topology as L/R → 1, in agreement with

the earlier findings of secs 3.4.2 and 3.4.3.

3.7 Summary

The analyses presented in this chapter are devoted to establishing the elasto-static

behavior of the chiral lattice. This endeavor was began by the seminal work in [76]

concluding strong influence of the topology parameter L/R on the mechanical be-

havior, and a negative Poisson’s ratio. These characteristics instilled curiosity and

motivated the research presented herein. The findings in [76], moreover, propose that

chiral lattice is isotropic and it is characterized by a Poisson’s ratio of exactly −1

indicating an assembly that transversally expands when stretched and transversally

contracts when compressed. Such elastic properties suggest an unusual mechanical

behavior and attracted the interest of various researchers, such as [10, 44], seeking
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Figure 43: Comparison of Young’s modulus (a) and shear modulus (b) for various
periodic topologies

cellular solids with superior performance. In the literature on auxetic materials, in

fact, it is often indicated that a negative Poisson’s ratio leads to a high shear stiff-

ness [44, 76, 37, 58, 86]. The combination of isotropy and a Poisson’s ratio ν = −1

however hindered any attempt to evaluate the applicability of chiral geometries for

various engineering applications via equivalent-continuum models owing to a singular

constitutive matrix.

The unique geometry of the chiral lattice, not symmetric to its mirror image,

and the lack of a central joint at which internal members meet provides significant

challenges with respect to employing existing analytical methods to determine the

equivalent-continuum elastic constants based on unit-cell analyses. In order to estab-

lish more accurate values of Young’s modulus and Poisson’s ratio, a two-phase study

is carried out. In the first step, the suggestion made in [76] to neglect internal-force

components perpendicular to externally-applied stresses is relaxed and improved ex-

pressions for Young’s modulus are derived. Moreover, axial and shear deflections,
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previously not considered, are included in the investigations, while the circular mem-

bers of the lattice are maintained rigid as was true in [76]. Instead of determining

displacements arising from imposed loads, deformations based on experimental mea-

surements in [76] are imposed, leading to a Poisson’s ratio of −1. Accordingly, the

shear stiffness is not addressed in the first phase. In a second approach, no restrictions

on internal-force components or the deformations of the nodes are imposed. The high

degree of redundancy of the unit cell, however, leads to intractable analytical expres-

sions. A macro-lattice FE model is instead used to obtain numerical values of Young’s

modulus, Poisson’s ratio and shear stiffness, which indicates that the deformations of

the nodes are not negligible, and for shear loading the dominant feature.

The mechanical behavior of the chiral lattice is found to be isotropic denoted

for strong influence of topology parameter L/R. In particular, the Young’s modulus

increases by 3.5 orders of magnitude as L/R is varied from 0.6 to 0.999, while the

Poisson’s ratio decreases to a minimum of −0.94 and subsequently increases asymp-

totically to 1/3. The shear modulus, also increases significantly as L/R increases. All

three elastic constants approach the values of those of the triangular lattice, in com-

pliance with the fact that the chiral lattice approaches a triangular configuration as

L/R → 1. If compared to common lattices such as square, triangular and hexagonal

geometries with equal relative density, the chiral lattice features the lowest Young’s

modulus for L/R < 0.99, while the shear stiffness is the highest for L/R ≥ 0.83

except for the triangular lattice.
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CHAPTER IV

OUT-OF-PLANE MECHANICAL PROPERTIES OF THE

CHIRAL LATTICE

4.1 Introduction

Honeycomb-core sandwich panels are common structural components first adopted

by the aeronautical industry [47, 48, 102] but have since become less expensive and

common components for the construction, naval, automotive and wind-turbine indus-

tries, to name a few [102]. The most commonly utilized core is that of the hexagonal

honeycomb whose mechanical properties have been investigated and reported in a

significant number of publications, eloquently summarized in [40]. While the manu-

facturing of planar sandwich-panels has reached significant maturity, curved panels

still pose challenges, mainly due to Poisson’s ratio effects. The hexagonal honeycomb,

in fact, features a Poisson’s ratio of ≈ 1 which corresponds to sandwich panels with

anticlastic curvature (saddle-shaped) whenever unidirectional moments are applied

at their boundaries. Honeycombs with square topology on the other hand feature an

in-plane Poisson’s ratio of ≈ 0 allowing the manufacturing of singly-curved (cylinder-

like) panels. Core topologies featuring a negative Poisson’s ratio yield a doubly-curved

(dome-shaped) sandwich panel whenever unidirectional moments are applied at their

boundaries [102]. This characteristic is one of the motivations for the research pre-

sented in this chapter since the chiral lattice displays auxetic behavior.

If the chiral lattice is to be proposed as a honeycomb core for sandwich panels as

the one depicted in fig. 44, out-of-plane mechanical properties are needed. With the

in-plane Young’s modulus Ex = Ey and Poisson’s ratio νxy = νyx known, three more

elastic constants are sought: namely the out-of-plane Young’s modulus Ez, shear
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modulus Gxz = Gyz and Poisson’s ratio νxz = νyz. One can say that Gzx = Gzy and

νxz = νyz even before embarking in a detailed analysis, since as indicated by [64] and

presented in chapter 2, in-plane hexagonal symmetry requires five elastic constants

to uniquely define the strain energy function. Since two elastic constants have been

uncovered, three more are needed to fully characterize the mechanical behavior of a

chiral honeycomb.

Figure 44: Sandwich panel with chiral-honeycomb core

The analysis of the out-of-plane elastic properties will proceed with an overview

of available analytical methods (sec. 4.2), while secs. 4.3 and 4.4 will address the

out-of-plane Poisson’s ratios and Young’s modulus Ez respectively. Analytical ex-

pressions for the shear stiffness are presented in sec. 4.5, while sec. 4.6 is devoted to

the refinement of analytical expressions with the aid of a unit-cell, FE model. Finally,

sec. 4.7 compares the shear stiffness of chiral and hexagonal honeycombs to assess the

out-of-plane performance of the former with respect to common topologies.

4.2 Overview of methods to determine the out-of-plane prop-
erties of honeycomb cores

The out-of-plane shear moduli of honeycomb cores are the most difficult elastic con-

stants to derive [40]. A number of elastic phenomena in the core corresponding to

externally-applied shear stresses in fact need to be disregarded in order to obtain
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tractable analytical expressions. Nonetheless, insightful publications by [18, 29, 40,

53, 74] have offered a number of methods to analyze out-of-plane shear stress. The

simplest method, proposed by Chang [18], enforces compatibility of strain and asso-

ciates the latter to equivalent loads through the relation P = GAγ. A load for each

component of the unit cell is computed and summed to obtain the external shear

stress acting on the core. The ratio of effective shear stress and assumed strain pro-

duces a formula for G. A similar procedure is also proposed by Penzien [74], where in

addition, the effect of warping of the core members is analyzed and found to be neg-

ligible provided that b/L be large. The most comprehensive and insightful analysis

is provided by Kelsey [53], where the Unit Load and Unit Displacement methods are

employed to obtain upper and lower-bound estimates of the shear modulus in terms

of geometric parameters, by enforcing that an assumed stress state in the core be in

equilibrium, and an assumed strain state be compatible respectively. The method pro-

posed in [53], moreover, finds that estimates of the shear modulus via the Unit Load

Method represent a lower bound, while those obtained with the Unit Displacement

Method yield an upper bound. In [40], the method proposed by Kelsey [53], which re-

quires the evaluation of stiffness and flexibility matrices, is simplified by substituting

the Principle of Virtual Displacements and the Principle of Virtual Forces with the

Theorem of Minimum Total Potential Energy and the Theorem of Complementary

Potential Energy respectively.

The analysis presented in [40] is reported herein to illustrate the procedure that

will be employed in the next sections for the chiral honeycomb. In the case of the

hexagonal lattice of fig. 45.a, the following simplifications are considered:

¦ only three topologically-distinct components of the unit cell, namely the walls

f , g and h, are included in the analysis (fig. 45.b);

¦ the strain energy only accounts for shear deformations and bending of the walls

is neglected;
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¦ t/L are small, while b/L is large;

¦ small deformations/deflections.
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Figure 45: Hexagonal honeycomb with shearing stresses and strains normal to z
(a), and unit cell (b). Reproduced from [40]

The Theorem of Minimum Total Potential Energy is used to obtain an upper bound of

the shear moduli by enforcing compatibility of displacements with external boundary
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conditions. For loading in the x-direction, the shear strains in walls f , g and h are:

γf = 0

γg = γxz cos θ (57)

γh = γxz cos θ,

where γf , γf , γf denote shear strain in walls f , g, h, while γxz is the applied shear

strain. The angle θ determines the topology of the honeycomb, which in this case is

30◦ (fig. 45.b). For an imposed shear strain γf wall f is expected to bend, and thus

in compliance with the assumptions set forth above, its deformations are neglected.

The Theorem of Minimum Total Potential Energy may be expressed as an inequality

as follows [40]:

1

2
Gkγ

2
kV ≤ 1

2

∑
i

(
Gsγ

2
i Vi

)
, (58)

where k = xz, yz, Gs is the shear modulus of the constituent material and Vi is the

volume of each wall. For wall f for example Vf = Htb. The other two values are

computed in the same manner. For loading in the y-direction the shear strains in the

walls are:

γf = γyz

γg = γyz sin θ (59)

γh = γyz sin θ.

With the shear strains in each wall (eqs. (57) and (59)) and their respective volume,

eq. (58) is used to obtain the relation between Gk and the honeycomb’s geometric

parameters.

In order to obtain a lower bound of the shear moduli, equilibrium of internal

stresses τi’s with external boundary conditions is enforced. The Theorem of Com-

plementary Potential Energy is applied. For loading in the x-direction, symmetry
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considerations impose the following relation [40]:

τg = τh. (60)

Equilibrium with external loads requires that:

2τzxL (H + L sin θ) = τgtL cos θ. (61)

For loading in the y-direction, symmetry considerations impose the same relation as

eq. (60) ([40]). Equilibrium in the z-direction at locations where walls meet requires

that:

τf = τg + τh = 2τg, (62)

while equilibrium with external loads yields:

2τyzL (H + L sin θ) cos θ = 2τgtL sin θ + τfHt. (63)

The Theorem of Complementary Potential Energy may be expressed as [40]:

1

2

τ 2
k

Gk

V ≤ 1

2

∑
i

(
τ 2
i

Gs

, Vi

)
(64)

where τi is the shear stress in each wall (i = f, g, h).

With expressions for the stress in each of the walls, eq. (64) is evaluated to obtain

lower-bound estimates of Gk. It is important to note that both upper and lower-bound

estimates of Gk are derived based upon a 2-D analysis, hence phenomena related to

the out-of-plane thickness b are so far neglected. In this case, according to [42, 43],

a numerical fitting based on FE models can obviate such shortcoming. This is a

common procedure for honeycombs [40, 42, 43] for which the effective out-of-plane

shear modulus may be expressed as:

Gk = GL
k +

α

b/L

(
GU

k −GL
k

)
, (65)

where the superscripts ( )U and ( )L indicate upper and lower-bound estimates re-

spectively obtained from eqs. (58) and (64). For regular hexagonal honeycombs it is
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found that α = 0.787 well describes the out-of-plane shear stiffness for b/L ∈ [1, 10]

as reported in [40, 42, 43].

The same procedure elucidated above will be employed to uncover out-of-plane

mechanical properties of the chiral honeycomb.

4.3 Out-of-plane Poisson’s ratio

Given the in-plane, hexagonal symmetry of the chiral honeycomb, νxz = νyz relates

direct strains in the x and y-direction to that in the z. It is however instructive to

demonstrate the reasons for this. The out-of-plane Poisson’s ratios can be determined

by utilizing the following reciprocal relations [40, 64]:

νxz

Ex

=
νzx

Ez

= −Sxz, (66a)

νyz

Ey

=
νzy

Ez

= −Syz, (66b)

where Sxz and Syz are components of the compliance matrix (eq. (6), sec. 2.5) relating

the direct strain εz to direct stresses σx and σy respectively. Since the chiral honey-

comb is isotropic in plane, from eq. (66), νxz = νyz. Furthermore, it is expected that

Ez À Ex as an applied stress along z would be resisted by axial deformations, while

applied direct stresses in plane yield bending-dominated deformations of the lattice’s

internal members. As discussed in chapter 3 in fact, periodic cellular solids with

axially-dominated, deformation mechanisms are characterized by equivalent elastic-

constants that are proportional to the relative density while bending-dominated de-

formation mechanisms lead to elastic properties proportional to ρ̄3. So from eq. (66a)

νxz = νzxEx/Ez ≈ 0 and likewise from eq. (66b) νyz = νzyEy/Ez ≈ 0. Poissons’s ratios

νzx and νzy relating direct strains in the plane to the direct strain in the z-direction

are [40]:

νzx = νzy = νs, (67)

where νs is the Poisson’s ratio of the core material.
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4.4 Out-of-plane Young’s Modulus

The out-of-plane Young’s modulus Ez can be estimated by considering stress-strain

relationships for an elastic continuum. For transversely-isotropic materials in partic-

ular the stress σz is related to strain components as [64]:

σz =
νxz

1− νxy − 2νxzνzx

Ez (εx + εy) +
1− νxy

1− νxy − 2νxzνzx

Ezεz. (68)

Substituting the findings of the previous section, i.e. νxz = νyz ≈ 0, eq. (68) simplifies

as follows:

σz = Ezεz, (69)

where, both σz and Ez represent equivalent homogenized values, stress and Young’s

modulus in the z-direction specifically. The stress acting on the area occupied by a

unit cell (fig. 46.a) is expressed as σz = P/A, where P is the applied load. Recalling

L

2

r

t

b

(a)

R/2

θ

(b)

Figure 46: Chiral-honeycomb unit cell with characteristic geometric parameters (a)
and equivalent-continuum area (b)

from sec. 2.5 that θ = 30◦, the distance between node centers is R and that the chiral

topology is symmetric about 2θ rotations, the loaded area (fig. 46.b) is A = R2 cos θ.

The strain εz resulting from an applied load is related to the axial stiffness of the unit
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cell as follows:

P = Es Aw εz = Es (2πr + 3L)t εz, (70)

where Aw is the surface provided by the honeycomb’s walls (fig. 46.a). The resulting

equivalent stiffness in the z-direction is then:

Ez

Es

=
2
√

3 (2πr + 3L) t

3 R2
=

ρ∗

ρs

= ρ̄. (71)

4.5 Out-of-plane Shear Moduli

The shear-moduli estimation is based on the following set of assumptions:

¦ the ratio t/L is small;

¦ the ratio b/L is large so that warping of the cell walls ca be neglected;

¦ circles are approximated as hexagons;

¦ shear stress is constant in each component of the unit cell;

¦ the wall thickness is equal for all unit-cell elements so that tb = tc = t;

4.5.1 Upper-bound estimate

Employing the Theorem of Minimum Total Potential Energy to obtain an upper

bound of the shear moduli, compatibility of displacements with external boundary

conditions is enforced. For an externally applied γzx (fig. 47.a) the internal shear

components are assumed constant in each unit-cell internal component of volume Vi.
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Figure 47: Chiral honeycomb with shearing stresses and strains normal to z (a),
and unit cell with shear-strain components (b)
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For loading in the x-direction, the shear strains (fig. 47.b) are:

γa = γzx cos 3θ − β

γb = γzx cos (θ − β)

γc = γzx cos (−θ − β)

γd = γzx cos (−3θ − β)

γe = γzx cos (−5θ − β)

γf = γzx cos (−7θ − β) (72)

γac = γzx cos (2θ − β + π)

γbc = γzx cos (−β)

γcc = γzx cos (−2θ − β)

γdc = γzx cos 2θ − β

γec = γzx cos (−β)

γfc = γzx cos (−2θ − β) .

The volume occupied by a ligament (fig. 47.b) is Vi = Ltb/2, while that of a component

of the inner hexagon is Vi,c = rtb/2, where the subscript ( )c indicates components

belonging to the circle. The volumes occupied by the remaining elements are com-

puted in the same manner. Substituting eqs. (72) into eq. (58), and noting that the

sign of the assumed shear strain in each element is irrelevant (eq. (58)), one obtains

an upper bound estimate as:

GU
zx

Gs

=
√

3 (sin β + cos β) cos3 β,
t

L
(73)
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where the superscript ( )U denotes an upper-bound estimate. For an externally ap-

plied γzy (fig. 47.a), the shear-strain components within the unit-cell are:

γa = γzy sin (3θ − β)

γb = γzy sin (θ − β)

γc = γzy sin (−θ − β)

γd = γzy sin (−3θ − β)

γe = γzy sin (−5θ − β)

γf = γzy sin (−7θ − β) (74)

γac = γzy sin (2θ − β + π)

γbc = γzy sin (−β)

γcc = γzy sin (−2θ − β)

γdc = γzy sin (2θ − β)

γec = γzy sin (−β)

γfc = γzy sin (−2θ − β) .

Substituting eqs. (74) into eq. (58) now adapted for Gzy, and noting that the compo-

nent volumes are unchanged, one obtains:

GU
zy

Gs

=
√

3 (sin β + cos β) cos3 β
t

L
. (75)

Eqs. (73) and (75) are identical indicating that the chiral honeycomb is transversally

isotropic.

4.5.2 Lower-bound estimate

The assumption that the strain energy is to be attributed to shear deformations,

while bending of the unit-cell components is neglected simplifies the analysis for the

hexagonal honeycomb. In the case of the chiral honeycomb, the same simplification

can be made for certain topologies such as the one depicted in fig. 48.a for which
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L/R = 0.90, but not for L/R = 0.60 of fig. 48.b, as the orientation of unit-cell

components varies with L/R. Since the objective of this chapter is to derive estimates

for the out-of-plane shear moduli applicable to topologies with 0.60 ≤ L/R < 1, no

assumption regarding wall bending is made.

ccfc
ττ

(a) L/R = 0.90

cc

fc

τ

τ

(b) L/R = 0.60

Figure 48: Orientation of internal shear-stress components

Fig. 49.a illustrates the assumed direction of shear stress within each unit-cell

component. Specifically, the shear-stress components τi (i = a, ac, b, bc, · · · , f, fc)

are assumed constant yielding 12 unknowns. Given the hexagonal symmetry of the

chiral topology, the following relations for the ligaments are enforced:

τa = τd

τb = τe (76)

τc = τf .

As shown in fig. 49.b, moreover, cutting the structure where the ligaments meet the

node (hexagon), and noting that all unit-cell elements feature the same height b and
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wall thickness t, the following relations must hold:

τb + τbc = τac

τa + τac = −τfc

τf + τfc = τec (77)

τd + τdc = −τcc

τc + τcc = τbc.

It is important to note that there are 6 possible cuts that provide equilibrium relations

among the stress components, but only 5 such equations are independent as a result

of enforcing symmetry for the ligaments. The internal stress components must be in

equilibrium with the externally-applied shear stress τzx, τzy. For shear loading in the

x-direction, the following must hold:

→
∑

i

Fi = (τa + τd)
Lt

2
cos(3θ − β) + (τac + τdc) rt cos(2θ − β)

+ (τb + τe)
Lt

2
cos(θ − β) + (τbc + τec) rt cos(−β)

+ (τc + τf )
Lt

2
cos(−θ − β) + (τcc + τfc) rt cos(−2θ − β)

= τzxR
2 cos θ,

(78a)

↑
∑

i

Fi = (τa + τd)
Lt

2
sin(3θ − β) + (τac + τdc) rt sin(2θ − β)

+ (τb + τe)
Lt

2
sin(θ − β) + (τbc + τec) rt sin(−β)

+ (τc + τf )
Lt

2
sin(−θ − β) + (τcc + τfc) rt sin(−2θ − β) = 0.

(78b)

At this stage, however, eqs. (76-78) only provide 10 relations, while 12 unknowns

are present, rendering the problem at hand under-determined with a system degree

of redundancy 2. The internal components of shear stress in terms of two unknowns

are reported in Table 4. As discussed in sec. 4.2, a lower-bound estimate of the out-

of-plane, shear stiffness is obtained by enforcing that state of stress within a periodic

cellular solid be compatible with externally-applied loads. Neither the constitutive
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Figure 49: Unit-cell with shear-stress components (a) and method to enforce equi-
librium of shear-stress components (b)
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Table 4: Internal stresses resulting from externally applied τzx

τa −τcc − τfc − cos(β)τzxR2

Lt

τac τcc + cos(β)τzxR2

Lt

τb τcc + τfc + 3 cos(β)τzxR2

2Lt

τbc −τfc − cos(β)τzxR2

2Lt

τc −τcc − τfc − cos(β)τzxR2

2Lt

τcc τcc

τd −τcc − τfc − cos(β)τzxR2

Lt

τdc τfc + cos(β)τzxR2

Lt

τe τcc + τfc + 3 cos(β)τzxR2

2Lt

τec −τcc − cos(β)τzxR2

2Lt

τf −τcc − τfc − cos(β)τzxR2

2Lt

τfc τfc
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relation between stress and strain or any strain-compatibility equations are included

in the analysis. This simplification allows the use of the Principle of Least Work,

which states [8]:

Among all statically admissible stress fields, the actual stress field that

corresponds to the compatible deformations of a rigidly-held body makes

the total stress energy an absolute minimum.

The total complementary energy Π′ can be expressed as:

Π′ =
∑

i

(
τ 2
i

Gs

Vi

)
. (79)

Employing the Principle of Least Work and choosing τfc and τcc as redundant, two

additional equations are obtained by letting:

∂Π′

∂τcc

= 0

∂Π′

∂τfc

= 0. (80)

Given the internal-stress components of Table 4 and eqs. (79) and (79), the redundant

stresses τcc and τfc are found to be:

τcc =
cos(β)τzxR

2

2Lt
(81)

τfc =
cos(β)τzxR

2

2Lt
. (82)

With all internal stresses at hand and the internal volumes Vi defined in sec. 4.5.1,

eq. (64) yields:

GL
zx

Gs

=

√
3

(tan(β) + 1)

(
t

L

)
, (83)

where the superscript ( )L indicates a lower-bound estimate.

For loading in the y-direction, the hexagonal symmetry of the chiral honeycomb

is enforced using eq. (76), and equilibrium of internal stresses among themselves is
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imposed via eq. (77). Equilibrium with respect to an externally-applied stress τzy

leads to the following:

→
∑

i

Fi = (τa + τd)
Lt

2
cos(3θ − β) + (τac + τdc) rt cos(2θ − β)

+ (τb + τe)
Lt

2
cos(θ − β) + (τbc + τec) rt cos(−β)

+ (τc + τf )
Lt

2
cos(−θ − β)+

(τcc + τfc) rt cos(−2θ − β) = 0,

(84a)

↑
∑

i

Fi = (τa + τd)
Lt

2
sin(3θ − β) + (τac + τdc) rt sin(2θ − β)

+ (τb + τe)
Lt

2
sin(θ − β) + (τbc + τec) rt sin(−β)

+ (τc + τf )
Lt

2
sin(−θ − β) + (τcc + τfc) rt sin(−2θ − β)

= τzyR
2 cos θ.

(84b)

The internal components of shear stress in terms of two unknowns are reported in

Table 5. With the aid of eqs. (79) and (80) and the relations of Table 5, the redundant

shear-stress components τfc are found to be:

τcc =
cos(β)τzyR

2

6Lt
, (85)

τfc =
cos(β)τzyR

2

6Lt
. (86)

With all internal stresses at hand, eq. (64) yields:

GL
zy

Gs

=

√
3

(tan(β) + 1)

(
t

L

)
. (87)

The expressions for GL
zx and GL

zy are identical as for the upper-bound counterparts

of eqs. (73) and (75). Once gain, this is confirmation that the chiral honeycomb is

transversally isotropic.

4.6 Influence of gage thickness

The estimation of out-of-plane shear modulus is refined to include the influence of the

out-of-plane thickness b with the aid of a FE model. Given the assumption of thin
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Table 5: Internal stresses resulting from externally applied τzy

τa −τfc − τcc

τac τcc

τb τcc + τfc + cos(β)τzyR2

2Lt

τbc −τfc − cos(β)τzyR2

2Lt

τc −τcc − τfc − cos(β)τzyR2

2Lt

τcc τcc

τd −τfc − τcc

τdc τfc

τe τcc + τfc + cos(β)τzyR2

2Lt

τec −τcc − cos(β)τzyR2

2Lt

τf −τcc − τfc − cos(β)τzyR2

2Lt

τfc τfc
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walls, shell elements (SELL181 [2]) featuring both membrane and bending capabilities

are employed. Such element, suitable for analyzing thin to moderately-thick shell

structures, is a 4-node element with six degrees of freedom per node, which include

translations in the x, y, and z directions, and rotations about the x, y, and z axes [2].

The discretized unit cell is assumed clamped at the bottom (red nodes in fig. 50.a),

while the top surface is constrained to displace along the x or y-direction as if it were

perfectly bonded to the face sheets of a sandwich panel (yellow nodes in fig. 50.b).

Symmetry conditions are imposed at the extremities of each ligament to reproduce

the conditions of a honeycomb of infinite extent in the x-y plane (fig. 50.b.) This is

achieved by selecting a set of master nodes and a set of slave nodes and eliminating

the latter set from the equation system. In-plane symmetry is enforced by imposing

(a) (b)

Figure 50: Unit-cell FE model: (a) constrained nodes, (b) symmetry conditions

the following:
N∑

i=1

ciui = 0, (88)
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where N is the number of nodal locations to relate, ci = [−1, 1], and ui are the

displacements to be coupled [2]. Finally, small deformations are assumed, and thus a

linear solution procedure is used.
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Figure 51: Shear analysis convergence study

In order to establish a proper level of discretization of the unit cell, a convergence

study is carried out. Geometric and material properties used both for convergence

studies and for subsequent estimation of out-of-plane shear stiffness are reported in

Table 6. Given the outcome of the convergence study shown in fig. 51 for which b is set

Table 6: Base configuration parameters of unit cell FE model

Geometric properties:

L 1 cm
t 1 mm
b 1− 10 cm

L/R 0.60− 0.999
Material properties, Aluminum:

Es 71 GPa
νs 1/3

to 2 cm, and where N denotes the number of elements per ligament, a discretization
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with N = 20 is selected, yielding the configuration shown in fig. 50.a.

The computed shear moduli GFE
zx and GFE

zy (the superscript ( )FE is used to in-

dicate results obtained from the FE model) for varying out-of-plane thickness ratio

1 ≤ b/L ≤ 10 (19 intervals) and topology parameter 0.60 ≤ L/R ≤ 0.999 (19 inter-

vals) are shown in fig. 52.a and 52.b. Their difference is within 1 × 10−8 % for all

considered values of the topology-parameter and out-of-plane thickness values, thus

further consolidating the conclusion of transverse isotropy suggested in secs. 4.5.1

and 4.5.2. Upper and lower-bound expressions from eqs. (73) and (83) are illus-

trated in dashed red and black lines respectively. The computed values GFE
zx decrease

with increasing b/L as a result of the fact that bending deformations of the walls

become the dominant deformation mechanism. The relation between the computed

values GFE
zx and L/R on the other hand appears to scale with the relative density

for b/L < 2. For 0.60 ≤ L/R ≤ 0.999 the resulting relative density is reported in

fig. 42. For higher values of b/L the behavior of GFE
zx is not easily attributed to any

specific geometric-parameter changes. The agreement between GL
zx, GU

zx and the FE-

model estimates is satisfactory. The lower-bound analytical expression in particular

provides a good approximation for L/R > 0.90, while for lower values of topology

parameter circles are the dominant topological feature of the assembly (fig. 48) and

thus the approximation of the chiral-honeycomb’s circles as hexagons introduces some

discrepancy.

The computed values of GFE
zx and GFE

zy are presented as a function of b/L in

fig. 53, along with upper and lower-bound estimates in dashed red and black line

respectively. One peculiar aspect of fig. 53.a and 53.b is the fact that the maximum

value of GFE
zx and GFE

zy coincides with L/R = 0.955 and b/L = 1. This indicates

that the chiral honeycomb is stiffer in shear than a triangular honeycomb for which

L/R would be 1. The assumption that the chiral lattice inner circles may be modeled

as hexagons, as shown in fig. 49.b, is reasonable since the difference in out-of-plane
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Figure 52: Computed shear moduli GFE
zx (a) and GFE

zy (b) with unit-cell FE model.
Upper-bound GU

zx −−− and lower-bound GL
zx −−−

shear modulus between the model shown in fig. 50.a and one with the inner circle

replaced by a hexagon is within 4.5 % as reported in fig. 53.d. While some discrepancy

between the chiral-honeycomb model featuring circular nodes and the model featuring

hexagonal nodes is present, particularly for L/R < 0.90, the simplifications afforded

by such geometric-model reductions greatly facilitated the analytical investigations

of sec.’s 4.5.1 and 4.5.2.

At this stage, it is important to include the influence of out-of-plane thickness b

into the upper and lower-bound analytical estimates of eqs. (75) and (87). Employing

eq. (65) and letting M = Gzx − GL
zx and K = GU

zx − GL
zx, where the rows of M and

K correspond to the considered values of L/R while their columns correspond to the

values of b, one obtains:

M = Φ(L/R, b/L)K. (89)

The dependency of the shear modulus Gxz on topology parameter L/R and out-of-

plane thickness b, illustrated in figs. 52 and 53.a, is much more complicated than

hexagonal honeycombs [42, 43]. Attempts to characterize Φ(L/R, b/L) simply as

98



2 4 6 8 10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

G
zx

/ G
s

b/L

L/R

(a)

2 4 6 8 10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Gzy / Gs

b/L

L/R

(b)

2 4 6 8 10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Gzy / Gs

b/L

L/R

(c)

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

b/L

∆ G, [%]

L/R

(d)

Figure 53: Estimated shear modulus: (a) Gxz, (b) Gyz, (c), Gxz for the simplified cell
shown in fig. 49.b, percentage difference between simplified and actual chiral models
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k/(b/L), where k is a constant, yields very poor estimates. Based on the dependency

of upper and lower-bound estimates provided by eqs. (75) and (87) and shown in

fig 52, Φ(L/R, b/L) is approximated employing a complete bivariate polynomial of

order 8. Specifically, the interpolating polynomial takes the form:

Φ(L/R, b/L) =
∑
i,j

ai,j (L/R)i−1 (b/L)j−1 , (90)

where i, j = 1, 2, . . . , 5. The resulting coefficients are reported in Table 7. The

surface to be interpolated as well as the polynomial Φ(L/R, b/L) (red dots) are shown

in fig. 54. The computed and approximated values of Gzx via eq. (89) are shown in

fib. 55.a while fib. 55.b reports the percentage error associated with the interpolating

polynomial, which is satisfactorily within 3.5 % of the FE values. The shear-stress

Table 7: Coefficients of bivariate polynomial Φ(L/R, b/L)

a1 −122.9 a14 18.40
a2 64.29 a15 −0.7109
a3 −15.97 a16 1177
a4 1.715 a17 −613.6
a5 −0.06621 a18 152.1
a6 665.9 a19 −16.33
a7 −346.0 a20 0.6311
a8 85.69 a21 −388.2
a9 −9.189 a22 202.9
a10 0.3548 a23 −50.31
a11 −1332 a24 5.400
a12 6922 a25 −0.2086
a13 −171.5

τzx resulting from an applied displacement on the top portion of the unit-cell, FE

model along the x-direction, reported in fig. 56, reveals that approximating circles

as hexagons is reasonable, as for the agreement of upper and lower-bound estimates

compared to the FE model of figs. 52 and 53. The stress within the ligaments for

both the actual chiral-cell model and the simplified model appears quantitatively
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Figure 54: Bivariate polynomial Φ(L/R, b/L) (red dots) and target surface for
interpolation

similar, while the circle and hexagon display at least a qualitative agreement. The

most important difference, in fact, is the absence of high stress concentration at

locations where ligaments tangentially meet the circle. The most important deviation

from the simplifying assumptions, however, consists in the fact that the shear-stress

distribution within ligaments and circles is not constant, as shown in fig. 56. While the

analysis proposed in sec. 4.5 is certainly extendible to including non-constant shear

stress within each of the assembly’s components, the resulting lower-bound estimates

would be intractable.

4.7 Comparison of shear moduli of chiral and hexagonal
honeycombs

The assumption made in sec. 3.2 that shear stress is constant over the walls of the

hexagonal honeycomb facilitates analytical investigations. In order to establish the

validity of this, a FE model of the same honeycomb is used to compute the response

of a unit cell to applied displacements of the top portion in the x-direction. The
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Figure 56: Shear stress τzx (Pa) resulting from an imposed displacement of the
upper nodes along the x-direction. Simplified model (a), chiral cell (b)
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outcome is shown in fig. 57, which confirms the applicability of the constant shear-

stress assumption as well as the simplification provided by regarding the contribution

to the strain energy of walls perpendicular to the loading direction as negligible.
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Figure 57: Shear stress τzx (Pa) resulting from an imposed displacement of the
upper nodes along the x-direction for the hexagonal honeycomb

According to [40], the lower-bound, out-of-plane shear stiffness of a regular hexag-

onal honeycombs (θ = 30◦, fig. 45.b) is:

GL
zx

Gs

=
GL

zy

Gs

= 0.577

(
t

L

)
. (91)

The upper bound is [40]:

GU
zx

Gs

=
GU

zy

Gs

=

√
3

3

(
t

L

)
, (92)

which is identical to eq. (91). The expression of eq. 92 is then exact within the

assumptions made (sec. 3.2), and thus the refinement proposed by [42] is not needed.

As presented in sec. 3.6, the relative density of the regular hexagonal honeycomb is
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ρ̄ = 2/
√

3(t/L). The shear stiffness may then be recast as:

Gzx

Gs

=
1

2
ρ̄. (93)

For the chiral honeycomb, the relative density (from sec. 2.7) is ρ̄ = 2
√

3 (2πr+3L) t
3 R2 .

Utilizing the relations of geometric parameters of sec. 2.5, the upper-bound estimate

of eqs. (73) may then be recast as:

GU
zx

Gs

=
√

3 (sin β + cos β) cos3 β
t

L
=

3 (sin β + cos β) cos β

2 (2π tan β + 3)
ρ̄. (94)

The lower-bound estimate of eq. (83) is recast as:

GL
zx

Gs

=

√
3

(tan(β) + 1)

(
t

L

)
=

3

2 cos2 β(2π tan β + 3)(tan β + 1)
ρ̄. (95)

Using eqs. (65) and (89) a comparison between the two topologies is shown in fig. 58.

The shear stiffness of the hexagonal is within 5 % of the upper-bound estimate for

the chiral honeycomb.
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Figure 58: Shear stiffness Gzx for the chiral honeycomb (black lines) and hexagonal
honeycomb (red dots)
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4.8 Summary

The analyses presented in this chapter are devoted to establishing the out-of-plane

mechanical behavior of a honeycomb with chiral topology, motivated by the possibility

of manufacturing double-curved (dome-shaped) sandwich panels owing to a negative

in-plane Poisson’s ratio (chapter 3). Given the isotropic nature of the chiral lattice,

chiral honeycombs are expected to be transversally isotropic.

The out-of-plane stiffness Ez is found to be linearly proportional to the relative

density ρ̄, as for all other honeycombs. The Poisson’s ratios νxz and νyz are estimated

to be approximately zero owing to the out-of-plane stiffness being significantly higher

than that in plane.

The derivation of shear moduli takes advantage of existing techniques used for

hexagonal honeycombs, which are based on a 2-D representation of the unit cell.

The circular components of the chiral geometry are approximated as hexagons and

both internal strain and stress components are assumed constant within each mem-

ber without introducing significant error. In particular, an upper-bound expression is

obtained via the Theorem of Minimum Total Potential energy, whereby a compatible

strain state with boundary conditions is enforced neglecting stresses within the hon-

eycomb core. A lower-bound estimate on the other hand is obtained by employing

the Theorem of Minimum Complementary Energy, whereby equilibrium of internal

stress components with boundary conditions is enforced neglecting compatibility of

strain within the honeycomb core. It is found that GL
zx = GL

zy and GU
zx = GU

zy, con-

firming that the chiral honeycomb is transversally isotropic, and both bounds are in

agreement with values computed with a unit-cell, FE model. The analytical model for

shear stiffness is refined with the aid of same unit-cell, FE model to include effects of

out-of-plane thickness. Finally, a comparison between the out-of-plane shear stiffness

of hexagonal and chiral honeycombs reveals that the former topology is stiffer for all

considered values of out-of-plane thickness.
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CHAPTER V

STATIC MORPHING OF CHIRAL-CORE AIRFOILS

5.1 Introduction

The unique set of mechanical properties offered by the chiral topology can be exploited

for the design of airfoils with morphing capabilities. In particular, the chiral structure

can be accommodated within an airfoil, so that its compliant characteristics can be

used to achieve chordwise bending. The unique deformation mechanisms of structural

chiral layouts allow large continuous deformations of the airfoil to occur with all the

individual structural members undergoing deformations within the linear range of the

material. The ability to sustain large deformations without exceeding yield conditions

is required to achieve repeatability, while smooth deformations are required to obtain

aerodynamic efficiency.

The application of the chiral geometry for airfoil morphing has already been inves-

tigated in [10], where it is applied to the design of a race-car spoiler with auto-adaptive

characteristics. The race-car wing proposed in [10] features a core as homogeneous

material having the equivalent homogenized in-plane properties of chiral honeycombs.

Pressure distributions resulting from an increase in the car speed cause the mean cam-

ber line to be passively modified in order to obtain an equivalent reduction of the tab

angle at the trailing edge. The corresponding elastic deformation is recovered when

the speed of the car decreases, thus causing the wing tip to move upward. This passive

morphing behavior results in better performance both in terms of maximum speed

and handling for steep bends. Simulations were performed to predict the chordwise

deflection of the airfoil when it is subjected to free-stream flow of 83 m/s, with an

initial negative angle of attack of −15◦. The pressure distribution over the airfoil
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induces a deformation field over the airfoil structure, which results in a downward

displacement for the trailing edge. The deformation is achieved through the flexibility

provided by an isotropic chiral structure in an internal airfoil layout. No optimization

was performed in order to take advantage of other anisotropic configurations of the

chiral honeycomb and/or the skin. However, the change in camber obtained in [10]

was considered significant and very promising.

In the following treatment, both numerical studies as well as experimental mea-

surements are presented to support the viability of a chiral, truss-core airfoil. Numer-

ical investigations are employed to determine advantageous configurations producing

de-cambering deformations within the linear regime of the constituent material, while

experimental measurements are carried out to confirm the capabilities set forth in [10]

and arising from the aforementioned numerical investigations. In particular, results

obtained from the model depicted in fig. 59.a lead to a simplified configuration, shown

in fig. 59.b. Building upon promising experimental results obtained from aluminum

truss-core airfoils, a simplified manufacturing method to produce truss-core airfoils

made of fiber-composite materials is proposed. Composite chiral-core samples are in-

vestigated to confirm the mechanical behavior presented in chapter 3, and numerical

models of composite, chiral-core airfoils are compared to all-aluminum configura-

tions. Finally, a number of active-morphing strategies are presented to demonstrate

the capabilities of chiral-core airfoils in withstanding concentrated applied torque and

resulting camber-wise deformations.

5.2 Macrostructural Truss-core Configuration

As opposed to the design presented in [10], the considered configuration features

a truss-type structure hosted within the airfoil to generate a truss-core configura-

tion [91]. Schematics of the proposed configurations are shown in fig. 59. The partic-

ular airfoil section is an Eppler 420 profile as in [10]. Such highly cambered airfoil is
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chosen to demonstrate the compliance of the proposed assembly, which constitutes a

system with theoretically high lift at low free-stream velocity, responsible for camber

deformations. As the free-stream velocity is increased, the system would tend to a

structurally stable low-camber, low-induced-drag configuration. Structural stability,

or a finite de-cambering event, is guaranteed by a faster growth of elastic loads than

their aerodynamic counterparts.

The performance of the considered configurations is first investigated numerically,

through weakly coupled structural and computational-fluid-dynamics (CFD) models.

Numerical results are used to identify selected configurations to be manufactured and

tested under assigned loading conditions.

(a)

(b)

Figure 59: Proposed truss-core configurations

5.3 Numerical analysis of static aeroelastic performance

The performance of the considered airfoil is investigated through weakly coupled

structural and (CFD) models. The weak coupling is justified by the limited require-

ment of evaluating the deformed configuration of the airfoil resulting from steady

aerodynamic loads produced by specified flow conditions. Within such assumptions,

the structural displacements can be predicted through an iterative process where air

loads and corresponding displacements are iteratively passed to the structural and
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fluid models until convergence is obtained.

5.3.1 Structural Model

The static equilibrium state of the proposed airfoil configuration is predicted by a

two-dimensional FE model, whereby beam and plane elements are used to discretize

the structural system. In particular, the model shown in fig. 59.a is analyzed using

beam elements only, while the model shown in fig. 59.b requires the use of both beam

and planar elements, as part of the leading and trailing edge regions are composed

of a continuum material. The airfoil profile and chiral core are hence analyzed as

a frame structure, with beam elements featuring both axial and transverse degrees

of freedom (DOF). Transverse shear deformations are also included according to the

formulation presented in [19], in order to avoid inaccuracies derived from the presence

of non-slender elements. Classical isoparametric planar elements are employed to

model the leading and trailing edge regions, where it is assumed that a homogeneous

material is utilized. The mesh employed for such regions includes both triangular and

quadrilateral elements of the kind shown in fig. 60. The quadrilateral elements are

of the bilinear kind, developed according to the formulation denoted as Q6 in [19],

while the planar triangular elements are constant strain elements. Both triangular

and quadrilateral elements feature “drilling” DOF’s, which allow their coupling with

the beam elements used for the chiral core and skin discretization.
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Figure 60: Isoparametric planar elements
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5.3.2 Computational fluid dynamics model

As relatively large deformations of the airfoil are to be investigated, no assumption

regarding the linearity of the flow field, or resulting aerodynamic loads, is made.

Rather, the entire flow field is resolved using the finite-volume Galerkin program

NSC2KE [68]. The fluid region is discretized with the unstructured triangular mesh

depicted in fig. 61. While the program NSC2KE offers a variety of viscous flow and

boundary layer models, their use is beyond the scope of the current work, which aims

at investigating static aeroelastic deformations due to lift and not drag. Nonetheless,

the entire flow field is analyzed using an inviscid flow Euler model [68]. The mesh of

elements in contact with the airfoil profile is selected to feature minimum element side

length at the trailing and leading edges equal to 1×10−3 ·c, with c denoting the airfoil

chord. The element size over the rest of the airfoil profile is linearly relaxed by a factor

of 5 (fig. 61.b), since particularly unfavorable pressure gradients are not expected.

This results in triangular elements in contact with the airfoil whose maximum side

length varies from 10−3 · c, at the trailing and leading edges, to 5× 10−3 · c at the mid

curvilinear length along the top and bottom portions of the airfoil. The relaxation of

the element size in the direction normal to the airfoil is not directly controlled; instead

the inflow and outflow boundaries are represented by 30 elements whose maximum

side length is at a minimum at mid curvilinear length of each boundary, and linearly

relaxed otherwise. The wake region is also discretized with the same logic as the airfoil

boundaries: wake elements near the trailing edge of the wing profile share the same

size imposed to elements on the airfoil boundary. Wake element size is then increased

linearly up to the outflow boundary (fig. 61.a). External forces such as gravitational

forces are neglected as the inertial frame of reference is assumed to be at rest. An

implicit Euler local time stepping procedure is employed as the sought solution is

assumed to be steady-state. The number of iterations required to resolve the flow

field has been selected based on the considered mesh (fig. 61). In particular, both the
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residual’s norm and the lift coefficient have been analyzed. Figure 62.a suggests that

(a) ¦ inflow points; o outflow points.

(b) detailed view of airfoil boundary

Figure 61: Unstructured Euler grid

reasonable results can be obtained with ∼ 4000 to 5000 iterations. Figure 62.b, on

the other hand, suggests that the normalized L2 norm is reduced by four orders of

magnitude with 8000 iterations. The latter number is then used as the current static

aeroelastic investigation requires the pressure distribution around the airfoil to then

evaluate structural deformations, as opposed to investigating the global lift coefficient

only.
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Figure 62: Result convergence in terms of Cl and L2 norm

5.3.3 Fluid-structure interaction and convergence

Coupled-field analyses may be carried out according to the sequential and direct

methods. In the case of the direct method a coupled-field element type containing all

necessary degrees of freedom is used. In the case of the sequential method, solutions

for the fluid and solid analyses are carried out separately. Given the need for analyzing

relatively large structural deformations, and thus potentially substantial changes in

the flow field, a sequential method is used, whereby the static aeroelastic solution is

obtained through an iterative process based on convergence of fluid and structural

solutions. The computed gauge pressure at the fluid-airfoil boundary is applied as

a distributed load on the structural model. Equilibrium is then imposed, and the

resulting deformed configuration is used to obtain a newly meshed fluid region. The

process is repeated until Πi − Πi−1 < 1 × 10−4, where Π is the total strain energy

of the truss-core airfoil, and i is the iteration number. The flow chart depicting

the iterative procedure considered for the sequential method is shown in fig. 63.

Typically, convergence is achieved after 3 or 4 iterations. An example of pressure

distribution upon convergence of the flowfield model, is shown in fig. 64.a, while the

associated pressure coefficient (Cp) over the airfoil boundary is depicted in fig. 64.b.
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Figure 63: Schematic of static, aeroelastic convergence model

No particular corrugations over the upper portion of the airfoil profile are observed as

the Cp distribution depicted in fig. 64.b does not present any pressure discontinuities,

which would indicate corrugation of the airfoil profile.

5.4 Design configuration 1

Initial investigations are carried out on the configuration shown in fig. 59.a. The

design is obtained by fitting a regular, periodic chiral layout into the airfoil shape

of an Eppler 420 of chord c = 1 m, as shown in Figure 65.a. Fig. 65.b shows the

resulting truss-core airfoil. The leading edge is considered clamped, and the out-of-

plane depth of the assembly is 2.54 cm. The core is aluminum (Young’s Modulus

E = 7.1× 1010 N/m2, density ρ = 2700 kg/m3, Poisson’s ratio ν = 0.33) with a wall

thickness t = 0.8 mm, while the outer skin is modeled as a softer material (Young’s
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Figure 64: Gauge pressure and Cp distributions upon convergence of the CFD model

Modulus E = 9× 109 N/m2, density ρ = 2700 kg/m3, Poisson’s ratio ν = 0.33) with

a wall thickness t = 0.4 mm. The softer skin is chosen to promote axial deformations

due to chordwise bending of the wing profile. Free-stream properties are assumed to

be those at sea-level, with a Mach number of M = 0.45, and an angle of attack α = 2◦.

Such free-stream conditions produce the pressure distribution shown in fig. 64.a. The

resulting deformed configurations of airfoils of different core designs are presented in

fig 66. The first core design features an upward deflection approximately equal to
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(a)

(b)

Figure 65: Eppler airfoil superimposed to regular, periodic chiral layout (a), and
resulting truss-core airfoil (b)

2.75 cm, while the second core is significantly stiffer, as the tip displacement under

the same conditions is more than one order of magnitude lower (' 0.22 cm). Such

a difference in compliance is obtained by only varying a single parameter, i.e. L/R,

while maintaining material and geometric parameters constant. Such capabilities

demonstrate the sensitivity of the considered design to small changes in the core

configuration, which may be optimized to achieve the desired compliance, or in general

the required functionality. In principle, this potentially simplifies the optimization of

the core configuration. These results also suggest that ribs of the kind here considered

may be manufactured to obtain different levels of compliance at different locations

along the wing. The deformed configuration depicted in fig. 66.a, for L/R = 0.60,

corresponds to the distribution of axial strain shown in fig. 67. It is interesting to

observe how the maximum strain levels in the core are of the order of 1× 10−4, and

therefore can be considered safely within the linear-elastic region of the constituent

material.

116



(a) L/R = 0.60

(b) L/R = 0.80

Figure 66: Deformed configurations obtained with two core designs
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x 10
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Figure 67: Axial strain distribution corresponding to the configuration shown
fig. 66.a
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5.5 Design configuration 2

The information obtained from the strain distribution for deformed configurations

of design 1 is used to simplify the design of chiral truss-core airfoils. Fig. 67 shows

that the highest strain levels due to chordwise bending only occur within a limited

portion of the airfoil. Based on this observation the design is modified according to

the configuration shown in fig. 59.b. This choice also facilitates the meshing process

and simplifies the manufacturing of the assembly. A schematic of the process for

the generation of this modified layout is shown in fig. 68. The core configuration

is defined by assigning the parameters of the chiral topology (L/R) in the unde-

formed configuration, and the number of cells along the longitudinal and transverse

directions r, s. The resulting regular, periodic configuration is then mapped into the

curved geometry of the airfoil through a change of coordinates. The following wing

c

φ
t

a b

s

r

tD

µ

Figure 68: Mapping of chiral layout into airfoil profile

dimensions are selected based on manufacturing constraints: chord c = 0.7 m, angle

φ = 8.58◦, angle µ = 8.0◦, lengths a and b respectively equal to 11 and 23.5 cm, and

wall nominal thickness of core structure and airfoil profile t = 0.76 mm. Finally, the

out-of-plane thickness of the structure is 1.9 cm. The shaded area in the trailing-edge

region (fig. 68) is obtained by offsetting the trailing-edge profile by 2.54 cm. The

resulting thickness on the upper and lower trailing-edge boundaries, tD is then 2.54

cm.
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The performance of this second design is evaluated for the same free-stream con-

ditions previously considered. The choice of the chord length is driven by limitations

imposed by manufacturing considerations. The core and the top part of the skin are

made of aluminum, while the lower section of the skin is modeled as a softer material

to facilitate the desired bending deformations. A summary of the considered airfoils’

performance is presented in fig. 69 where the displacement of the trailing edge for as-

signed flow conditions and various core configurations is plotted versus L/R. Results

are presented for different number of cells across the thickness of the airfoil, namely

2, 3, and 4, and for various values of the lower skin’s Young’s modulus. Figs. 69

confirm that large nodes resulting from low numbers of cells through the thickness

yield greater compliance. Another parameter that clearly has great influence on the

airfoil performance is the skin stiffness, as dictated by the Young’s modulus of the

constitutive material. As the results show, and as expected, the lower the skin’s

Young’s modulus the higher the compliance. The lower limit considered in the in-

vestigations corresponds to the smallest possible values to prevent significant bulging

deformations due to aerodynamic loads.

5.6 Experimental investigations of airfoil compliance

The main objective of the following studies is to investigate the properties of the chiral

core airfoil experimentally, and confirm the findings of the previous section. While in

sec. 5.3, the loads applied to the FE models are distributed pressures of aerodynamic

nature, experimental tests on the manufactured airfoil samples involve a simplified

scenario whereby mechanical point-loads are employed to promote bending. Specifi-

cally, the de-cambering deformations of the airfoil as a result of increasing mechanical

loads are measured while monitoring the strain at selected locations. The purpose

of the tests is to verify the strong influence of core design on airfoil compliance and

to estimate maximum deflections achievable in the elastic range of the material. The
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Figure 69: Trailing edge tip displacement for various values of bottom skin Young’s
modulus: (a) Es = 7.1× 1010 Pa, (a) Es = 7.1× 109 Pa, and (c) Es = 7.1× 108 Pa
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tests are guided by a numerical model, which is used to predict load values to be

considered in the experiments. The model is significantly different from the one used

in sec. 5.3. First, material non-linearities are introduced to enable the prediction of

loads causing the material to enter the plastic range, and secondly geometric stiffen-

ing due to large deformations is included. In addition, the geometry of the structure

is modified to reflect variations from the ideal geometry due to the water jet manu-

facturing process employed for the fabrication of the samples. In particular, a perfect

tangency condition between nodes and ligaments cannot be reproduced. Fillets be-

tween nodes and ligaments are included in the FE model in an attempt to reproduce

the geometry of the test specimens. The presence of fillets is important as it may in

fact modify the bending behavior of the ligaments, which is the leading mechanism

of deformation of the chiral structure [76] (chapter 3).

5.6.1 Numerical results

The following analysis focuses on the structural deformations of the proposed airfoil

assembly, without considering the effects of aerodynamic loading. The deformations

of the wing profile are induced by a concentrated mechanical load applied at upper

left corner of the trailing edge void shown in fig. 68. This loading configuration

reproduces the one considered experimentally. A structural FE model is utilized to

investigate the ability of the airfoil assembly to undergo large chord-wise deformations

while within the linear behavior of the constitutive material. Hence the ability to

predict the onset of non-linear stresses is needed. For this purpose a static, large-

deformation, non-linear-FE model is employed to predict stresses and strains resulting

from the applied loads. The commercially available software ANSYSr is used for this

purpose. In the model, the material behavior is described by a bilinear stress-strain

curve, whose slopes are defined by the Young’s modulus (69 GPa) of the material,

and beyond the specified yield stress (σy = 276 MPa), by the tangent modulus (100
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MPa). Such constitutive model represents a reasonable approximation of the stress-

strain curve, as given by [45], for the selected material (Aluminum 6061 T651), since

only the onset of plasticity is sought.

The truss-core wing dimensions are identical to those presented in sec. 5.5. Manu-

facturing constraints imposed the presence of fillets at the locations where ligaments

join with nodes. The radius of such fillets was estimated to be of the order of 0.13

mm. In addition, the thickness of the ligaments, nominally designed to be 0.76 mm,

was found upon measurement to vary between 0.66 and 0.80 mm. In the non-linear

FE model thus, the wall thickness of the core elements is randomly assigned to each

element varying from 0.66 to 0.80 mm, and plane elements are added in regions where

ligaments join the nodes to simulate the presence of fillets, as shown in fig. 70.

 

Figure 70: Detail of core discretization with fillets at the nodes/ligaments joints

The results presented in sec. 5.5 show that the airfoil compliance strongly depends

upon the core configuration. In particular, the number of cells in the chordwise di-

rection and across the thickness, and the nominal topology parameter L/R are the

parameters which affect the airfoil performance the most. In an attempt to maximize

deflections and evaluate the performance of the chiral core for large deformations,

the lower skin of each airfoil configuration has been cut at the locations indicated by

arrows in fig. 71. In the proposed design, the skin has been found to act as an obstacle

to the de-cambering deformation. Moreover, the ability to carry shear loads and the
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potential torsional rigidity of the chiral layout due to its negative Poisson’s ratio sug-

gest that the classic closed section with stressed-skin may not be necessary. prova71

(a)

(b)

(c)

Figure 71: Mapped chiral-core configurations and locations of lower skin cuts

The configurations considered for the analysis are depicted in fig. 71. Such geome-

tries, selected on the basis of of results reported in sec. 5.5 are respectively defined

by 2 cells across the thickness and L/R = 0.60 (configuration a) (fig. 71.a), 3 cells

across the thickness and L/R = 0.60 (configuration b) (fig. 71.b), and 3 cells across

the thickness and L/R = 0.94 (configuration c) (fig. 71.c). The compliance of these

truss-core airfoils is assessed by applying increasing loads at the upper left corner

of the trailing edge void, and by recording the corresponding trailing edge vertical

displacement. Load/displacement curves, obtained from the non-linear FE model,

for the three configurations are plotted in fig. 72, which demonstrates, in adherence

with the previous predictions, that configuration a is the most compliant, while con-

figuration c is the least compliant. Fig. 73 shows the Von Mises stress distribution

immediately before the onset of plastic deformations. In all cases, the highest stresses

appear within the core, and in particular, where ligaments join nodes. It is worth
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noting that the locations of highest stress are different for each configuration. Such

disparities may be attributed to the different deformation mechanisms that arise by

varying the geometry of the core.
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Figure 72: Load, trailing-edge displacement relationship for the considered config-
urations

5.6.2 Manufacturing and experimental set-up

Three truss-core airfoils matching the configurations shown in fig. 71 have been man-

ufactured to validate numerical predictions presented above. An OMAXr water-jet

machine was used to cut the airfoils out of a plate of aluminum 1.9 cm thick. The

manufacturing process is depicted in fig. 74, and the completed chiral, truss-core

airfoils are shown in fig. 75.

The experimental setup consists of a linear variable displacement Transducer

(LVDT) from RDPr (Model DCTH) and associated power supply (Agilentr, Model

E3641A), to measure the trailing edge deflection, as depicted in fig. 76. The strain

in selected structural members is measured by a set of strain gages (VISHAYr CEA-

13-125UN-120), which are applied to the ligaments within the truss core and on the

airfoil profile based on the stress distribution provided by the numerical simulations

presented in sec. 5.6.1. The selected locations for the strain gages are depicted in
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Figure 73: Von Mises stress distribution of considered configurations

fig. 77, which also shows the point of load application and location of the LVDT.

The stress distribution within a ligament can be estimated from the simple linear-

elastic deformation mechanism proposed by [76] outlined in sec. 3.3. Loading of the

chiral core causes rotation of the nodes and bending of the ligaments as depicted in

fig. 25. Neglecting shear deformations, the resulting axial strain distribution within

a ligament varies linearly along the length from a negative to a positive value, so

that, at mid span, the axial strain is approximately 0. The highest axial strain is

then expected at the location where ligaments join nodes in a tangential fashion.

Consequently, the strain gages are placed on the ligaments, as close to the nodes as

possible.
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Figure 74: Experimental setup

5.6.3 Experimental results and comparison with numerical predictions

In the experiments, each specimen is subjected to a loading/unloading cycle to ob-

serve deviations from linearity, hysteresis and the presence of residual deformations

upon unloading. To preserve the integrity of the manufactured truss-core airfoil sam-

ples for future tests, the maximum applied load is maintained below the value which

numerical results indicate capable of producing plastic deformations. The employed

numerical analysis in certain circumstances, however, underestimates stress concen-

trations where ligaments are tangent to the nodes, even with very refined meshes.

The load/trailing-edge-displacement variation for configuration a is shown in fig. 78,

which directly compares experimental measurements and numerical predictions. The

plot shows good agreement and indicates the presence of some hysteresis in the ex-

periments. Such hysteresis can be associated to friction at the airfoil/LVDT contact

region, and internal to the LVDT itself. In addition, a residual displacement is ob-

served experimentally upon unloading. The evidence of residual deformations can be

also observed from the strain gage measurements. The strain recorded at location
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(a)

(b)

(c)

Figure 75: Manufactured samples with Eppler 420 profile: 2 cells across the airfoil
maximum thickness and L/R = 0.60 (a), 3 cells and and L/R = 0.60 (b) and 3 cells
and and L/R = 0.94 (c)

5 (see fig. 77) shown in fig. 79 also indicates the presence of a residual strain upon

unloading. For completeness, the strain predicted at location 4 is also shown in the

figure. The discrepancy between numerical and experimental strain may be attributed

to the fact that strain gages may not have been placed exactly at the location of max-

imum strain, and by the fact that the strain measured by strain gages is averaged over

the gage area, while a point, nodal strain is extracted from the finite-element results.

Results for configuration b presented in fig. 80 show excellent agreement between

measurements and numerical predictions. As opposed to the case of configuration a,

no residual displacement is observed, indicating that, for configuration b, the trailing

edge displacement is recovered upon unloading. The absence of plastic deformations

in the material is confirmed by the strain variation at location 5 (see fig. 77) shown

in fig. 81. The strain variation at another location (location 2) does not show the

same level of agreement, but confirms the absence of residual strains. It should be
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Figure 76: Manufacturing process of chiral truss-core airfoils
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Figure 77: Strain gage, load and LVDT locations

observed that the application of strain gages on configuration b was more difficult

due to the smaller size of the unit cell and correspondingly of the ligaments on which

strain gages are applied. Similarly to configurations a and b, the numerical model for

configuration c is able to capture the trailing edge displacement variation for increas-

ing applied loads (fig. 82). As in the case of configuration b, no residual displacements

are observed. Variations of strain clearly confirm the absence of non-linear behavior,

and of residual strains upon unloading (fig. 83). As in the case of configuration b,

no residual displacements are observed. Variations of strain at selected locations do
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Figure 78: Numerical and experimental trailing-edge displacement for configuration
a
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Figure 79: Numerical and experimental strain for configuration a

not show as good of an agreement as in the previous two cases, but clearly confirm

the absence of non-linear trends in the curve, and of residual strains upon unloading.

The lack of agreement on strains in this and in the previous two cases may indicate

shortcomings in the FE model, and a lack of accuracy in the strain gage positioning.

Experimental results, indeed, confirm the strong dependence of the airfoil compliance

on the core configuration. Direct comparison of trailing edge displacement versus

load, both numerical and experimental, for the three configurations is presented in

fig. 84, confirming that configuration a provides the highest compliance of the airfoil,
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Figure 80: Numerical and experimental trailing-edge displacement for configuration
b
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Figure 81: Numerical and experimental strain for configuration b

while configurations b and c are much stiffer designs.
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Figure 82: Numerical and experimental trailing-edge displacement for configuration
c
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Figure 83: Numerical and experimental strain for configuration c
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Figure 84: Comparison of trailing-edge displacement for the three considered con-
figurations

132



5.7 Fiber-Composite Chiral Honeycomb

While water-jet cutting produced satisfactory truss-core airfoil samples, such manu-

facturing process is limited to homogeneous materials not sensitive to water exposure

such as aluminum. Furthermore, the out-of-plane thickness achievable with water-

jet cutting is limited as the high-pressure water jet becomes distorted upon contact

with the metal slab, and such distortion increases with slab thickness. If deep truss-

core wing sections are desired, water-jet cutting is not a feasible process to obtain

monolithic samples. In order to circumvent such obstacles and to explore the use of

other materials, a new manufacturing process is has been investigated by a research

group at the Politecnico di Milano, Italy, with which a collaboration has been estab-

lished. The application of a fiber-composite-winding process permits the assembly of

truss-core airfoils with large out-of-plane depth and different fiber lay-ups to obtain

configurations that may perform better than those made of aluminum.

Fiber-composite materials, however, may feature significant elastic anisotropy,

which in turn may alter the deformation mechanism investigated in chapter 3. In

order to contemplate the employment of anisotropic materials and validate the new

manufacturing method, experimental analyses of a chiral cell are carried out to study

the mechanical behavior arising from the considered composite materials, and a com-

parison based on numerical models is utilized to determine possible advantages pro-

duced by alternative materials used for truss-core airfoils.

5.7.1 Manufacturing Procedure: Fiber-Composite Winding

The set up of a feasible technological process to manufacture truss-core airfoils has

driven the production method of a chiral macro-cell, which has been devised by the

Aerospace Department at the Politecnico di Milano, Italy, and documented in [9].

Based upon previous manufacturing experience by the researches in Italy, the assem-

bly of ligaments and cylinders has been accomplished by means of classical lamination,
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by using a vacuum-bag process. Fig. 85.a shows the mould prepared to cure the parts

of the chiral structure subsequently assembled. The minimum dimension of the el-

ements that can be manufactured in such a way depends upon a trade-off between

the drapeability of the pre-preg material and minimum curvature radii desired. The

assembly of the chiral cells is obtained by a second curing process to bond the pre-

cured parts with a structural adhesive film, shown in fig. 85.b. In the final version

of the devised process, cylinders are obtained by superimposing the curved portion

of the ligaments during the assembly. It should be observed that the strength of the

obtained chiral core strongly depends upon the quality of the adhesion between its

parts. To overcome such difficulty, a specific mould has been conceived for the cell

 

(a)

 

(b)

Figure 85: Manufacturing procedure of a composite chiral cell: mould (a) and detail
of circle construction with adhesive layer (b)

assembly. The hexagonal mould, shown in fig 85.a, has a series of metallic cylinders

fixed to its lower base to proper position the pre-cured ligaments. The ligaments are

positioned introducing the adhesive films between the superimposing curved parts

(fig 85.b). The assembled mould is then introduced in a vacuum bag and cured in an

autoclave. The geometric dimension and the material selection is based on a trade-off

between numerically evaluated performance and the practicality of the manufactur-

ing process. It has been opted to avoid excessively small dimensions and curvature
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radii so as to reduce difficulties in the pre-curing of the ligaments as well as in han-

dling the elements during the final assembly. A nominal topology parameter L/R of

0.90 characterizes the constructed sample, leading to a cylinder radius r = 18 mm.

Plain-weave fabric plies with a relatively low cured ply thickness of 0.1 mm have been

selected to exploit the drapeability of fabric without leading to excessively thick lam-

inates. The elastic constants of such fabric materials, evaluated in previous works,

are the ones provided in Table 8. Ligaments have been manufactured using a lay-up

Table 8: Material properties of employed fiber-composite material

Carbon-Fiber CC90 ET443 SEAL:

Exx 56.55 GPa
Eyy 56.55 GPa
νxy 0.0514
Gxy 4.043 GPa
σyield 565.5 MPa
ε11max 0.01

sequence f ([0]5) (i.e. 5 plies all oriented in the 0-direction), with each ply of thick-

ness 0.1 mm, yielding laminates 0.5 mm thick. AFK − 163 − 2K adhesive film has

been used to bond the different components as shown in fig. 85.b. The overall size of

the cells, measured as the distance between two opposite cylinders is approximately

168 mm. In the next sections, results of experiments carried out by researches at the

Politecnico di Milano are reported for completeness.

5.7.2 Experimental evaluation of chiral-cell strength

Tests have been performed at the Politecnico di Milano with the objective of confirm-

ing the deformation characteristics of the chiral lattice, and furthermore, the capa-

bility of chiral cells to undergo large displacement without experiencing permanent

deformation, degradation or failure.

To accomplish such objective, a simple test lay-out has been adopted. Two of the
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cylinders of the chiral cell have been respectively connected to the moveable and the

fixed cross head of an MTS 858 Static Test System, as shown in fig. 86.a. The pins

have been inserted in rings having the outer diameter matching the inner diameter of

the cylinders and can freely rotate about their axis. Each one of the three cells has

been subjected to a different loading-unloading cycle, according to the displacement

schedule reported in fig. 86.b. The cross head speed has been set to 2 mm/min.

(a) (b)

Figure 86: Experimental setup (a) and imposed displacement schedule for each of
three tests (b)

The imposed displacement schedule is chosen to detect possible stiffness degradation

or permanent deformation occurring after the first loading-unloading cycle. Tensile

and compressive failure have been triggered to quantify the cell strength as well as to

identify the actual critical locations of the assembled structure. Six strain gauges have

also been mounted on each of the manufactured composite chiral cells, the locations

of which are reported in fig. 86.a.

5.7.3 Results and Discussion

Force-versus-displacement response obtained in the three performed tests show a

markedly non-linear behavior, with a clear tendency to soften in compression and to

stiffen in tension as depicted in fig. 87. One and two loading-unloading compressive
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cycles have been carried out in test ]1 and test ]3, respectively, before the tensile test

]2. The imposed compressive displacement of 15 mm corresponds to about 9% of the

cell dimensions. The first tensile cycle, performed in test ]2 and displayed in fig. 87,

Figure 87: Force-displacement history for the performed tests

shows that the compressive cycles did not induce significant permanent deformation

as well as stiffness degradation in the cell. Analogously, the tensile loading-unloading

cycle, first performed on the cell used in test ]2, did not induce significant differences

in the compressive response, with respect to test ]1 and test ]3. In such case, the im-

posed tensile displacement of 10 mm corresponds to about 6% of the cell dimension.

Failure occurred in tension due to de-bonding of the ligaments at the upper cylinder

as a result of an imposed displacement of 20 mm, about 12% of the cell dimension,

shown in fig. 88.

Fig. 89.a shows the strain recorded by the gages SG2, SG4 and SG6 as a result

of imposed displacement in test ]1. The behavior of the SG1, SG3 and SG5 signals

demonstrate symmetry in the mechanical behavior of the manufactured chiral cells.
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(a) (b)

Figure 88: Tensile failure: test ]1 (a) and test ]3 (b)

In tension, the strain levels SG2 and SG6 on the compressed side of the two liga-

ments converging on the constrained cylinders are similar and are about three times

the strain recorded near the central cylinder. If a maximum admissible strain in

compression of 0.01 for the fiber composite material is considered, the strain signals

indicate that the compressive failure of ligaments would be achieved with a rela-

tively small increment of the imposed displacement. Hence, although the presented

results indicate that bonding is the actual weak point of the manufactured struc-

ture in tension, their strength appears adequate to exploit almost the whole in-plane

compressive strength of the composite ligaments. As far the compressive failure is

concerned, the force-versus-displacement curve of test ]2 indicates that failure occurs

for an imposed displacement of almost −50 mm, corresponding to about 30% of the

cell dimension. Fig. 89.b reports the strain recorded in test ]2 by SG2, SG4, SG5

and SG6. Strain gauges SG5 and SG6, located on the tensed side of the failed liga-

ments, experienced the highest strain levels among the recorded ones. The failure of

the ligaments occurred in correspondence of strain levels between 13000 and 14000
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(a) (b)

Figure 89: Strain versus displacement history: test ]1 (a) and test ]2 (b)

µε. Compression appears less critical than tension as far as the cell strength is con-

cerned. In such case, the failure-triggering factor appears to be the bending strength

of composite ligaments. A detailed non-linear FE analysis capable of reproducing the

failure mechanisms discussed above and confirming the findings of experimental mea-

surements is presented in [9]. The agreement between the non-linear model presented

in [9] and experimental measurements is encouraging as such numerical model will

be employed to asses capabilities and feasibility of future configurations of truss-core

airfoils.

The ability to realistically manufacture deep chiral truss-core wing-sections may

thus be provided by ligament winding of carbon-fabric plies onto a jig. Encourag-

ing experimental measurements, moreover, demonstrate the dominant deformation

mechanism to be very similar to that observed in aluminum configurations. An ad-

ditional concern deriving from the use of adhesively-bonded carbon-fiber plies is the

failure mechanism and its influence on the overall strength of chiral configurations.

The failure mechanisms observed in experiments however allow the allowable loads

to span the large deformations within the linear regime of the constituent material

afforded by the chiral topology.
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5.8 A comparison of Aluminum and Fiber-Composite Truss-
Core Airfoils

The promising features presented in the previous section may be employed to ob-

tain truss-core airfoils capable of sustaining larger deformations than their aluminum

counterparts. In the following numerical simulations, the influence of manufacturing

limitations as well as the advantages offered by carbon-fiber components are quanti-

fied.

In the following analyses, fillets are not included for either the aluminum model or

for the composite model. The manufacturing process presented in sec. 5.7.1, in fact,

provides the ability of assembling ligaments and nodes without any fillets. This is

advantageous as it does not produce significant deviations from the nominal model.

The overlay of carbon-fabric ligaments to obtain nodes or circles, however, yields

circles with higher wall thickness than the ligaments themselves, and accordingly,

this deviation from the nominal material distribution within the core is modeled as

depicted in fig. 90. In particular, tb = 0.8 mm (4 plies) and tc = 1.4 mm (14 plies)

Figure 90: Detail of fiber-composite airfoil core

as for the chiral-cell sample discussed in sec. 5.7.3. The nominal topology parameter

(before mapping of the core) is L/R = 0.60. The envisioned composite-truss-core
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airfoil is the one depicted in fig. 91, where the light/dark grey portions represent

aluminum 6061 T051, the red portion the considered carbon-fiber material while the

green portion indicates a softer material to promote de-cambering deformations. As

for the non-linear FE model discussed in sec. 5.6.1, a bilinear-isotropic material model

is employed to detect deviations from the elastic regime of the carbon-fiber material.

For the elastic regime, the material properties indicated in Table 8 are employed. For

the plastic regime, tangent moduli Exxt = Eyyt = 56.55 MPa are assumed. The soft-

Figure 91: Fiber-composite truss-core airfoil: light/dark gray aluminum 6061 T051,
red carbon fiber and green soft material

material portion shown in green in fig. 91 features elastic moduli Exx = Eyy = 565.5

MPa, yield stress σyield = 565.5 MPa and tangent moduli Exxt = Eyyt = 0.566 MPa.

The considered loading and boundary conditions are the same as those employed

previously for the all-aluminum model of sec. 5.6.1 and depicted in fig. 77.

The influence of core material as well as core density on airfoil de-cambering

compliance is depicted in figs. 92. The low core density associated with the 2-cell

configuration of fig. 92.a expectedly yields the highest compliance while the 4-cell

configuration yields the highest stiffness (fig. 92.c). Interestingly, employing carbon

fiber as the core material affords a trailing-edge displacement generally twice as large

as that obtained with aluminum at the onset of plasticity. Of note is also the non-

linear behavior of the 2-cell configuration with carbon-fiber core even before the onset

of plasticity (fig. 92.a). This phenomenon should clearly be attributed to the non-

linear response associated with geometric stiffening/softening of the core components.

While the dependency of trailing-edge displacement upon core density and material
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is intuitive, the stress distribution resulting from the adoption of carbon fiber is not

equally so. In particular, the stress distribution for the 2-cell configuration made of

aluminum depicted in fig. 93.a appears confined at the lower portion of the chiral

core, while the same configuration with carbon-fiber core features highest axial stress

of the ligaments on the upper section of the airfoil profile and ligament closest to

the leading edge (fig. 93.b). As for the findings in [90], the core nodes exhibit much

lower stress than the ligaments. The 3-cell configuration also features a significant

difference in core axial stress between the aluminum and carbon-fiber configurations

(figs. 93.c and 93.d). The discrepancy in axial stress distribution may be attributed to

the larger deformations afforded by the composite material, as well as a low relative

density of the truss core. The axial-stress distribution for 4-cell configurations made

of aluminum and carbon fiber, in fact, does not differ as markedly as for the 2-cell

and 3-cell models. Despite the large de-cambering deformations depicted in figs. 93.e

and 93.f, in fact, core components do not deform as much as for the 2 and 3-cell

configurations, likely due to higher relative density of the truss-core.

In summary, the employment of carbon-fiber composites not only allows the man-

ufacturing of deep truss-core airfoils or wings, but it also permits significantly larger

de-cambering deformations while within the elastic regime of the material. Improve-

ments in performance may also be obtained by the tailoring capabilities offered by

composites. Future studies, however, are needed to establish the repeatability of such

large deformations as well as to better understand failure mechanisms that could be

detrimental to the integrity of the wing assembly.
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Figure 92: Airfoil trailing-edge displacement versus applied load: 2-cell (a), and
3-cell (b) and 4-cell configuration (c). Blue line, aluminum core, red line carbon-fiber
core. Red dashed line, plasticity onset
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Figure 93: Axial stress intensity at the onset of plasticity (MPa), for aluminum
models, 2-cell (a), 3-cell (c), 4-cell (e) and composite models, 2-cell (b), 3-cell (d),
4-cell (f). Red dashed lines indicate the undeformed configuration
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5.9 Active Morphing of composite chiral-core airfoils

5.9.1 overview

In recent years, significant effort has been devoted to investigating structural con-

cepts with morphing capabilities. The introduction of smart structures and adaptive

technologies in the aerospace field offers exciting opportunities to implement previ-

ously inaccessible structural morphing concepts [67]. According to [11], morphing in

the engineering sense can be generally defined as “a set of technologies that increases

a vehicle’s performance by manipulating certain characteristics to better match the

vehicle state to the environment and task at hand”. Particularly to the aerospace

field, the typical objective of a morphing concept is to provide airfoils with continuous

deformations, and to eliminate the need for flap-type mechanisms. In this sense, a

variety of solutions have been recently proposed to provide aircraft wings and heli-

copter rotor blades with adaptive capabilities. Methods to generate both chord-wise

and span-wise camber variations are of particular interest, with the goal of controlling

aeroelastic and structural performance of wings and blades in response to changing

fight conditions. The belt rib concept, for example, is an interesting solution pro-

posed by [17]. Continuous camber variation is achieved by transferring the stroke of

an actuator into a geometric change of the airfoil shape through a closed belt and

an internal network structure. A similar, remarkable solution for camber variation is

the finger concept presented by [69], where the airfoil features a flexible rib composed

of plate-like elements connected through revolute joints. The rotation of the driven

element is transferred gradually from element to element thus providing the desired

deformed profile. Tension-torsion coupling has been employed as an effective mean to

actively control camber variations in helicopter blades [13]. Moreover, recent design

solutions have considered inflatable airfoil structures [16], variable-span morphing

wings [4, 95], and hingeless, flexible leading and trailing edges actuated using shape

memory alloys [56].
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The compliance associated with de-cambering deformations demonstrated by chi-

ral, truss-core airfoils as a result of aerodynamic loads (sec. 5.5), and performance

improvements derived from the used of composite materials (sec. 5.8) further offer

the opportunity to easily morph a given truss-core airfoil into a desired shape. In par-

ticular, the unique deformation mechanism characteristic of chiral frame structures

(chapter 3) features rotation of the circular components as well as bending of the lig-

aments. A relatively simple strategy to obtain global deformations then may be the

application of concentrated moments at various node locations to obtain camber-wise

deformations.

5.9.2 Examples of actively induced camber-wise morphing

A possible objective of active morphing, in the aerospace field in particular, may

be to deform a lifting surface, for example, to best adapt to a given flight regime.

While passive morphing would provide a very efficient way to adapt to given flight

conditions, its scope and applicability are limited to the inherent capabilities of the

underlying system. Active morphing on the other hand may expand the possibly

limited capabilities of a compliant system, able to withstand loads, by forcing the

system to assume a desired shape. In the particular case of aerospace applications,

continuous deformations may be required.

To demonstrate the possibility of actively morphing chiral, truss-core airfoils, a

symmetric airfoil is employed: namely the NACA 0012 profile. This particular airfoil

is chosen to illustrate to capability of inducing a symmetric profile to assume cambered

configurations by loading the chiral truss-core. A relatively high-relative-density core

is selected to avoid wrinkling, which is characteristic of low-core-density configurations

such as the one depicted in figs. 93.a and b. In particular a 4-cell configuration is

employed. The upper and lower portions of the airfoil are assumed more compliant

than the core to promote camber-wise deformations. The resulting airfoil is depicted
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in fig. 94. The mapping process of the chiral core into the airfoil profile is identical

c

a b

D
t

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 94: NACA 0012 with chiral core. Soft composite material (green), carbon-
fiber material (red), aluminum 6061 T051 (grey), locations for torque application
(blue)

to the one presented in fig. 68. The chord c is 0.70 m as for all the configurations

previously considered, a = 0.098 m, b = 0.14 m, while tD = 8.3 mm. The wall

thickness and material properties of airfoil profile and core components are identical to

those of the model of sec. 5.8 and fig. 90. Namely, ligaments and airfoil profile feature

a wall thickness tb = 0.8 mm, while the nodes feature a wall thickness tc = 1.4 mm

as in fig. 90. The out-of-plane depth is 1.9 cm. The nodes denoted by blue crosses in

fig. 94 are assumed rigid and indicate locations where torque is applied. The solution

procedure includes large deformations producing geometric softening/stiffening, as

well as a bi-linear isotropic material model to detect the onset of plasticity.

A possible actuation strategy is to apply a torque at each of the node locations

denoted by blue crosses in fig. 94. Based on preliminary simulations, it is found that

a torque of 2 N-m is sufficient to deform the truss-core assemblies up to the onset

plasticity, or wrinkling of the outer skin, depending on core topology. As for passive

morphing, it is important to establish the influence of topology on the compliance

and achievable deformed configurations of chiral, truss-core airfoils. To this end, the

trailing-edge displacement for a set of configurations denoted by L/R ∈ [0.60, 0.90]

loaded in the same manner as described just above is computed. Fig. 95 suggests

that, as for passive morphing, low topology parameter values, i.e. L/R → 0.60, yield

a compliant assembly while high topology parameter values, i.e. L/R → 1, produce
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stiffer configurations.
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Figure 95: Trailing-edge displacement versus topology parameter L/R, given an
applied torque of 2 N-m on each of the constrained nodes

The chiral core has been shown to be able to withstand aerodynamic loads (sec. 5.5),

however, the internal components of the core are thin-wall elements and may not be

able to withstand concentrated loads. In order to propose chiral, truss-core airfoils as

useful for active morphing provided by simple actuation strategies, internal stresses

resulting from applied loads need to be known. Of the considered configurations, the

most compliant (L/R = 0.60) and the stiffest (L/R = 0.90) are analyzed to ensure

that axial stress within each core component is within tolerable levels. For the con-

figuration denoted by L/R = 0.60 and depicted in fig. 96.a, the largest achievable

camber-wise deformations are limited by wrinkling of the upper-skin portion of the

airfoil profile. Localized deformations of the upper-part of the wing section near the

leading edge reach a maximum value of approximately 10% of the airfoil thickness or

6.7 mm. The maximum stress within the core, in fact, is approximately 190 MPa,

which is well within the maximum axial stress allowed for the considered carbon-fiber

material (Table 8). The axial-stress intensity resulting from applied moments for the

configuration denoted by L/R = 0.90 is shown in fig. 96.b. For the same loading

conditions, the latter configuration is much stiffer, and thus wrinkling of the airfoil

profile is not present due to significantly reduced camber-wise deformations.
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Figure 96: Axial stress intensity (MPa) due to applied concentrated
moments,L/R = 0.60 (a) and L/R = 0.90

A further actuation strategy may be the application of concentrated moments of

different magnitude within the truss core. Preliminary simulations aimed at investi-

gating the feasibility of morphing to obtain complex configurations suggest that an

applied torque of 10 N-m on nodes 2 through 5 and −6 N-m on nodes 10 and 11

produces the camber-wise deformations depicted in fig. 97. The axial stress intensity

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x10
8

Figure 97: Axial stress intensity (MPa) due to applied concentrated
moments,L/R = 0.60

reaches its maximum allowed level at nodes near the upper portion of the airfoil pro-

file and near node 11 (refer to fig. 94). In this case, no wrinkling of the airfoil profile

is present, and the limiting factor in achieving the deformations depicted in fig. 97 is

certainly the maximum allowed axial stress for the carbon-fiber material.
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5.10 summary

The unique set of mechanical properties offered by the chiral topology are exploited

for the design of truss-core airfoils with morphing capabilities. Particularly, the ability

of chiral lattice structures to withstand large deformations within the elastic regime

of the constituent material are exploited. An initial configuration obtained by ac-

commodating a periodic chiral lattice within a Eppler 420 profile resulted in undue

complexity as the strain resulting from aerodynamic loads is nearly confined in a small

portion of the core. A second design featuring a reduced truss-core zone is proposed

as an improved alternative to the first arrangement. To asses the capabilities of the

improved design in allowing and withstanding de-cambering deformations, a weakly

coupled static-aeroelastic numerical model is devised. The outcome of such simula-

tions suggests the ability of chiral, truss-core airfoils to withstand aerodynamic load

as well as large de-cambering displacements, on average about 2.9% of the chord at

the trailing edge. Three samples have been manufactured with the intent of confirm-

ing the findings of numerical models. Good agreement, both in the strain distribution

and load-trailing-edge-displacement relation is achieved between experimental mea-

surements and numerical predictions. This is encouraging as it suggests the use of

numerical models for the design of future truss-core configurations.

Limitations encountered in the production of the three aforementioned samples

led to an improved manufacturing technique encompassing carbon-fabric winding

that will allow the production of deep truss-core samples. The use of composite

materials, moreover, will afford improved performance via fiber-orientation tailor-

ing, large-deformation capabilities, reduced weight, and the possibility of embedding

actuators in the ligaments and nodes of the core. Concerns regarding the possi-

bly altered mechanical behavior resulting from composite materials were discredited

based on experimental measurements of the kinematics of a chiral macro-cell. The

same numerical models employed to investigate the onset of plasticity resulting from
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large camber-wise displacements, furthermore, indicate that carbon-fiber materials

may generally allow trailing-edge displacements twice as large as those obtained with

all-aluminum models. Furthermore, the compliance of the chiral truss-core can be

exploited to actively induce camber-wise deformations of wing-sections. Two exam-

ples are analyzed to demonstrate to ability to produce deformed configurations with

single and multiple-curvature camber.

Finally, the investigations reported in the current chapter take advantage of large-

deformation capabilities associated with the chiral lattice.
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CHAPTER VI

DYNAMIC SHAPE CONTROL

Chapter 3 outlines the dependence of the mechanical properties of chiral honeycombs

upon their geometric parameters. In particular, the Young’s modulus can be di-

rectly varied by controlling the ratio L/R. The static aeroelastic response of chiral

truss-core airfoils stands as a prime example. The experimental results obtained by

applying a concentrated load confirm such characteristics, whereby the airfoil com-

pliance directly depends upon the L/R ratio and upon the core relative density. Such

dependency can be investigated in the dynamic regime. In [88], for example, it was

observed how the ratio L/R affects the acoustic performance of chiral truss-core pan-

els. The panels’ modal density was in fact shown to depend upon the aforementioned

geometric parameters, which directly influence transmission loss and sound absorp-

tion characteristics [88]. In addition, it was shown how the dynamic response of the

truss-core panels changes considerably with frequency. At low frequencies, the panels

deforms much like homogenous beams in global bending operational deflection shapes

(ODSs). In the mid-frequency region, the wavelength of the deformations approaches

the length of the core elements and the phenomenon of intra-cell resonance takes

place [88]. Interestingly, at the boundary of the two frequency regions, localized

deformations appear. It is presumed that such phenomena depend upon the wave

propagation characteristics of the chiral honeycomb, which in fact is the subject of

current research. It is therefore appealing to extend this type of dynamic analysis

to truss-core airfoils to investigate their dynamic properties, and possibly extend the

observations presented for truss-core panels. In particular, focus is placed on the

capability of the proposed configurations to generate ODSs where deformations are
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mostly localized in small regions of the structure. The ODSs correspond to excita-

tion at the natural frequencies of the structure, so that resonance can be exploited to

minimize the power required for the appearance of localized deformations, thus giving

practicality to the concept. The analysis is supported by preliminary numerical and

experimental investigations on a cantilever truss-core beam. The dynamic behavior of

the Eppler 420 airfoils with chiral core is then investigated both numerically, through

a model developed using a commercial FE package, and experimentally.

6.1 Preliminary investigations: dynamic analysis of a truss-
core beam with chiral core

The ability to obtain useful deformed configurations with low input power levels, and

the authority provided by the chiral geometry offer an alternative to more traditional

morphing concepts. Shape control of structural components can be achieved by em-

ploying active materials, such as electroactive polymers (EAP) [5], or mechanisms

composed of actuators. In the former case, the material may not be suitable for load-

carrying applications, while the latter case may be difficult to implement, as actua-

tors usually require a control system and add significant mass. Consequently, chiral

truss-core assemblies are proposed as a novel technique to obtain useful deformed

configurations, as they offer a scalable geometry, and thus a scalable frequency re-

sponse, low energy input requirements, and multifunctional characteristics, whereby

load-carrying and dynamic shape control capabilities may be combined.

6.1.1 Numerical dynamic model using spectral elements

The dynamic behavior of each element of a truss-core cantilever beam is described

through dynamic equations derived from distributed parameter models [27, 28]. This

allows the accurate prediction of the dynamic response of the structure over a wide

frequency range, without the need for refinement of the discretization as frequency

increases. The elements are oriented in the plane of the structure x, y according to
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the core topology. The dynamic behavior of each element is described in the local

reference system L = (ξ, η), rotated with respect to the global reference system

G = (x, y) of the angle α (see fig. 98). The model contains elements of various

lengths, some of which are very small. Timoshenko beam theory is thus considered

to prevent lack of accuracy in the description of relatively short members through

Euler-Bernoulli theory.

Figure 98: Global and local reference systems, with associated element degrees of
freedom

6.1.2 Distributed Parameter Model in the Local Reference System

The equations of motion and boundary conditions governing the longitudinal and

transverse vibrations of a beam element can be derived by applying Hamilton’s prin-

ciple: ∫ t2

t1

δ(T − U + W )dt = 0, (96)

where δ(.) denotes the first variation, t1 and t2 are the initial and final time, T and

U are respectively the kinetic and the strain energy of the beam, and W is the work

done by the external forces. Each element is considered as a Timoshenko beam, and

includes axial degrees of freedom. In the local reference system, the beam’s strain

energy can be expressed as:

U =
1

2

∫ L

0

[
EAu2

,ξ + EIφ2
,ξ + κAG(w,ξ − φ)2

]
dξ, (97)
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where E, G are the Young’s and shear moduli of the beam material, A, I are the

area and the second moment of area of the beam cross section, and κ is the shear

coefficient. Also, in eq. (97), u = u(ξ, t), w = w(ξ, t) denote the axial and transverse

deflection of the beam, while φ = φ(ξ, t) is the rotation of the cross section at location

ξ and time t. Finally, the following notation (¦),ξ = ∂(¦)
∂ξ

is used to denote partial

differentiation. Finally, the kinetic energy is given by

T =
1

2

∫ L

0

[
ρA(u2

,t + w2
,t) + ρIφ2

,t

]
dx, (98)

where ρ is the density of the beam material.

6.1.3 Dynamic Stiffness Matrix formulation

In the local frame, a set of three differential equations describes the beam’s longitu-

dinal and transverse vibration. For harmonic motion at frequency ω the equations of

motion can be expressed in matrix form as follows:

z,ξ(ξ) = Az(ξ), (99)

where A is a matrix of constant coefficients, and where

z = [ u w φ u,ξ w,ξ φ,ξ ]T (100)

is the state vector describing the axial and bending behavior of the considered beam

element at frequency ω. In the current development, lower case bold letters indicate

vectors, while capital bold case letters indicate matrices. A general solution of eq. (99)

can be expressed as:

z(ξ) = eAξz(0) (101)

which relates the vector z at the generic location ξ to that at ξ = 0. An alternative

expression for the state vector can be introduced to contain generalized displacements

and stress resultants at the considered location. A vector y can be defined as:

y = [ u w φ N V M ]T , (102)
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where N(ξ) = EAu,ξ, V (ξ) = κGA(w,ξ − φ),M(ξ) = EIφ,ξ are respectively the axial

resultant, the shear force and the bending moment at location ξ. The vectors y and

z are simply related through the following expression:

y(ξ) = Gz(ξ), (103)

where G is the constitutive matrix containing the material and cross sectional prop-

erties of the beam element. Eqs. (101) and (103) can be used to obtain a relation

between state vectors at two locations on the element:

y(ξ) = GeAξG−1y(0)

y(ξ) = T (ξ)y(0), (104)

where T (ξ) is the ”transfer matrix” of the beam, calculated at location ξ. The transfer

matrix relates generalized displacements and forces at the two ends of the element

(ξ = L):

y(L) = T (L)y(0). (105)

Eq. (105) then can be expanded as follows:




uf

ff


 =




T11 T12

T21 T22







ui

fi


 , (106)

where ui,uf and fi,ff respectively are the generalized displacements and forces at

the initial and final node. Eq. (106) can be rearranged to obtain:

fL
e = KL

de
uL

e , (107)

where fL
e = (fi − ff )

T , uL
e = (ui uf )

T , and where KL
de

is the dynamic stiffness

matrix of the element, which is obtained as:

KL
de

=




−T−1
12 T11 T−1

12

T21 − T22T
−1
12 T11 T22T

−1
12


 . (108)
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In eq. (107), the subscript e denotes vectors pertaining to the element, while su-

perscript L indicates that the expression is obtained in the local reference system

L = (ξ, η). The generalized displacements of points within the element are expressed

in terms of the nodal degrees of freedom:

u(ξ) = N(ξ)uL
e , (109)

where N (ξ) is the matrix of the dynamic interpolation functions, which is obtained

from the transfer matrix formulation given above. The dynamic stiffness matrix for

the element is obtained from the beam’s distributed parameter model for harmonic

motion at frequency ω. Within the validity of Timoshenko approximations, the model

reproduces the exact displacements of the considered element. Accordingly, a single

finite element is sufficient to fully characterize the response of a beam.

The components of the beam’s longitudinal and transverse displacements u,w in

the global reference system G = (x, y) are given in terms of the rotation angle α

in fig. 98. The dynamic stiffness formulation in the global reference system KG
de

is

defined in terms of the stiffness matrix in local coordinates through a rotation matrix

defined in term of the angle α.

Assembly for all the elements of the truss-core beam yields the discretized equation

of motion for the considered structure, which has the well known form:

f = Kdu, (110)

where u,f , Kd are the vector of the degrees of freedom of the entire structure, the

vector of the equivalent external nodal loads, and the assembled dynamic stiffness

matrix. Solution of the equation for an assigned set of external loads at given fre-

quency yields the amplitude of the displacements at each node. The displacements

within each element can then be obtained through the general elemental solution and

the dynamic interpolation functions described by eq. (109).
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6.1.4 Numerical Results

The numerical model described in sec. 6.1.1 is first used to predict the dynamic re-

sponse of the truss-core beam shown in fig. 99. The baseline configuration features

two identical constraining layers of thickness tb1 = 0.81 mm, and a core of thick-

ness tc = 6.9 cm. The total length of the beam is Lb = 0.5 m. Both the core

and constraining layers are made of aluminum (Young’s Modulus E = 71 GPa,

density ρ = 2700 kg/m3, Poisson’s ratio ν = 0.33). The chiral configuration is

characterized by the following parameters (see fig. 17): R = 2.82 cm, r = 0.56

cm, L = 2.59 cm, θ = 30◦, β = 26.9◦. The wall thickness of the ligaments is

0.81 mm, while the wall thickness of the nodes is 0.89 mm. The beam is fixed at

the right end and free at the left end. Finally, the out-of-plane thickness is 2.54 cm.

The excitation configuration shown in fig. 99 is considered in the simulation. The

Figure 99: Truss-core beam with chiral core

excitation frequency is a harmonic torque of frequency varying from 0 to 3000 Hz,

to cover a large number of structural resonances. At low excitation frequencies, the

influence of the core topology is only limited to increasing or decreasing the bend-

ing stiffness of the complete assembly, and the beam approximately behaves as a

homogeneous beam. Examples of the deformed configurations at low frequencies are

depicted in figs. 100.a and 100.b, which respectively show the ODS’s corresponding to

the first two natural frequencies. The end of the low-frequency region is signaled by

intra-cell resonance [80], as the wavelength becomes of the order of the core elements’

length. Intra-cell resonance is here investigated as the phenomenon responsible for the
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complex deformation patterns observed in this class of structures. A selection of de-

formed configurations featuring intra-cell resonance is shown in figs. 100.c and 100.d.

In particular, at the selected frequencies local deformations appear on the constrain-

ing layers. This phenomenon then is the focus of the experimental validation, and

more generally, of the current study. In particular, it is interesting to observe that

the relative phase between the localized deformations can be changed by controlling

the excitation frequency.

(a) ω = 121Hz

(b) ω = 392Hz

(c) ω = 1821Hz

(d) ω = 2386Hz

Figure 100: Deformed configurations at various excitation frequencies

6.1.5 Experimental set-up

A proof-of-concept truss-core beam has been built with the objective of demonstrating

the particular dynamic behavior of chiral assemblies. Geometry and materials for the

experimental specimen have been selected with the goal of maintaining simplicity

of fabrication while utilizing off-the-shelf components. The radius r of the nodes,
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the length of the ribs, and the wall thickness of both ribs and nodes are chosen to

allow bending deformation of the ribs with low deformation of the nodes. This is a

necessary condition to ensure the peculiar ”unfolding” behavior of deformed chiral

honeycombs [60, 76]. Both the core ribs and the constraining layers are fabricated

from standard alloy 6061 T6 aluminum sheet (Young’s modulus E = 7.0 GPa,

density ρ = 2700 Kg/m3, Poisson’s ratio ν = 0.33). The ribs are 2.90 cm long,

and have a wall thickness of 0.81 mm, which corresponds to the standard thickness

of 0.032 in in aluminum sheets. The nodes are fabricated from aluminum tubing of

diameter 1.11 cm (7/16 in), with wall thickness t = 0.89 mm (0.035 in). The top and

bottom constraining layers are 49.24 cm long and their wall thickness is equal to 0.81

mm. Finally, the out-of-plane thickness of the structure is equal to 2.54 cm. Given

these dimensions and the geometry shown in fig. 99, the parameter L becomes equal

to 2.59 cm, while the distance between the nodes R is equal to 2.82 cm. Due to the

thickness of the ribs, the ratio L/R decreases from a nominal value of 0.919 to 0.892.

The complete truss-core beam is composed of 53 nodes and 112 ribs. The overall

dimensions of the structure are Lb = 0.5 m, and tc = 6.9 cm. The experimental

specimen was assembled by first constructing a wooden template to ensure correct

positioning of the nodes (fig. 101.a). Finally, the constraining layers and ribs were

welded to the nodes using the 3M epoxy adhesive DP −190 to obtain the completed

assembly shown in fig. 101.b.

The structure is constrained at one end by two vices which rigidly clamp both

the core and the constraining layers. The considered measurement setup shown in

fig. 102.a consists of the Polytec PSV-400 laser scanning head, the Polytec PSV-400

M2 data acquisition system and signal processing, a LDS V203 shaker, and a 10-lb

force transducer, mounted on the shaker’s stinger. In order to simulate the case of

an applied torque, a threaded steel axle is inserted in one of the core nodes, and

it is secured to the assembly with nuts. A solid steel plate 2.4 cm long is welded
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(a)

(b)

Figure 101: Wooden template (a) and completed truss-core assembly (b)
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on one end of the steel axle. The shaker then applies a torque to the core of the

assembly as shown in fig. 103. Finally, The vibration of the structure is characterized

by measuring the velocity of points belonging to a 1281-point measurement grid on

the constraining layer facing the laser head.

Figure 102: Experimental setup and testing equipment

Figure 103: Mechanism for torque actuation at one node

6.1.6 Experimental results

Fig. 104 shows a comparison between measured and analytical operational deflection

shapes, at frequencies belonging to the low frequency regime, while figs. 105, show

deformations at high frequencies, which present very well marked localized deforma-

tions near the free end of the beam, with the rest of the constraining layers nearly
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undeformed.

The unique behavior of chiral truss-core beams observed from numerical and ex-

perimental analyses shows that, when the excitation frequency is such that wave-

lengths become of the order of the core components’ length, energy is transferred

from the location of excitation to specific locations on the constraining layers, with-

out generating global deformations, as shown in figs. 104 and 105. The onset of

intra-cell resonance is determined by natural frequencies corresponding to specific

geometric and constitutive parameters. This suggests that the actuation frequen-

cies producing localized deformations may be scaled to favor particular operation

deflection shapes for a given application. Finally, localized deformations on the con-

straining layers appear to be a dominant characteristic of the dynamic response of

chiral-core assemblies, since two distinct forcing frequencies, for example, produce

localized deformations (figs. 105) with opposite phase. This indicates that the on-

set of different types of local deformations can be simply controlled by changing the

excitation frequency.

6.2 Dynamic Shape Control of a Chiral Truss-Core Airfoil

6.2.1 overview

The same FE model developed for the analysis of the static compliance of chiral truss-

core airfoils presented in sec. 5.6.1 is employed to investigate the dynamic response of

such unusual airfoil configurations. The analysis is however fully linear as only linear

modes and related natural frequencies need to be predicted. The model however

includes structural details such as fillets between ligaments and nodes which simulate

the actual geometry of the manufactured samples.

The three samples depicted in fig. 75 are used for the experimental investigations.

As for their corresponding numerical models, the assemblies were clamped at the

leading-edge location, and were excited by a dynamic point load at the trailing edge.

163



(a) ω = 121Hz

(b) ω = 102Hz

(c) ω = 392Hz

(d) ω = 427Hz

Figure 104: Experimental (b,d) and numerical (a,c) operational deflection shapes

The load varies as a random signal to excite the structure over a broad frequency

band. As for the truss-core beam, the scanning laser doppler vibrometer records the

structural velocities and extrapolates the corresponding displacements at the top and

bottom portion of the Eppler 420 profile.

6.2.2 Numerical and experimental results

Similarly to the findings presented in [89] and sec. 6.1, the response of chiral, truss-core

airfoils in the low frequency regime is characterized by global modes resembling those

of a homogeneous cantilever structure. This is evident from the selection of ODSs of

two of the Eppler 420 samples, which have been chosen to illustrate the salient aspects

of their dynamic response (see figs. 106 through 109). In each figure the deformed

configurations on the left side depict numerical results, while those on the right side

correspond to results obtained from the experiments. The first aspect that transpires
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(a) ω = 1821Hz

(b) ω = 1867Hz

(c) ω = 2386Hz

(d) ω = 2027Hz

Figure 105: Experimental (b,d) and numerical (a,c) operational deflection shapes
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from the results is the similarity in response corresponding to the first and second

natural frequencies among the discussed configurations. All three Eppler 420 samples

demonstrate similar qualitative behavior at low frequencies whereby global deforma-

tions dominate the dynamic response. Characteristic localized deformations on the

airfoil profile, stemming from the unusual dynamic behavior of the chiral honeycomb

as a truss-core, are depicted in figs. 107.a and 109.a. Localized deformations appear

in different locations of the airfoil profile depending on configuration and excitation

frequency. Worthy of mote, figs. 107.b show clearly the phenomenon of intra-cell

resonance, where the truss-core presents much larger dynamic deformations than the

airfoil profile. The presented results indicate that localized ODSs are obtained by ex-

citing the airfoil assemblies at various natural frequencies, and suggest the potential

application in the field of flow control, where, for example, vortices may be controlled

by dynamically exciting the airfoil. Else wave drag may be reduced by exploiting

induced shock-wave coalescence as a result of “kinks” appearing on the airfoil profile.

(a) numerical model ω = 82.6Hz (left), experimental results ω = 69Hz (right)

(b) numerical model ω = 318.7Hz (left), experimental results ω = 305Hz (right)

Figure 106: First and second ODSs for configuration a with 2 cells across the airfoil
thickness, and L/R = 0.60
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(a) numerical model ω = 948.9Hz (left), experimental results ω = 1039Hz (right)

(b) numerical model ω = 1888.5Hz (left), experimental results ω = 1844Hz (right)

Figure 107: High frequency ODSs for configuration a

(a) numerical model ω = 84.9Hz (left), experimental results ω = 73 Hz (right)

(b) numerical model ω = 339.6 Hz (left), experimental results ω = 331 Hz (right)

Figure 108: First and second ODS for configuration b with 3 cells across the airfoil
thickness, and L/R = 0.60

(a) numerical model ω = 1528.2Hz (left), experimental results ω = 1500Hz (right)

(b) numerical model ω = 1652.7Hz (left), experimental results ω = 1794Hz (right)

Figure 109: High frequency ODSs for configuration b
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CHAPTER VII

VIBRATIONS WAVE PROPAGATION IN CHIRAL

LATTICES

7.1 Introduction

The response of cellular materials to different operating conditions, wether that be

mechanical loading, thermal loading, or electromagnetic loading for example, strongly

depends upon their topology or spatial arrangement, providing ample authority in

the design of novel structured configurations. In the case of the chiral topology,

as transpired from analyses of the static response both in plane and out of plane

in chapters 3 and 4 respectively, the topology parameter L/R greatly affects the

equivalent mechanical properties. This alone provides ample opportunities to select

the best topology for a given task or application. Cellular solids, however, while

long known and commonly exploited for disparate uses in traditional engineering

applications have recently become the focus of significant research efforts to uncover

their dynamic properties.

Periodic cellular materials are defined by the spatial repetition of an irreducible

geometric domain or unit cell, and their topology, moreover, strongly affects the

propagation characteristics of elastic waves. The periodicity or group of a given

lattice, in fact, determines frequency bands within which the propagation of elastic

waves is permitted (pass bands) or forbidden (band gaps or stop bands). Anisotropy

in the elasto-dynamic behavior of periodic structural assemblies, furthermore, can be

exploited to steer or guide waves in specific directions (beaming) [83, 75].

Significant authority afforded by structural lattices - a deterministic subclass of

cellular solids - on phenomena such as band gaps and wave-beaming, owing to the
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large number of possible configurations and advances in manufacturing capabilities,

suggest their employment as alternatives to elastic composites with periodic mass and

stiffness modulations, or phononic crystals. The selection of the periodic material

distribution in phononic crystals, in particular, is based on the need to generate band

gaps at specified frequencies, and/or to guide elastic waves along a desired path [77]. A

thorough classification of unit cell classes of periodic cellular structures and associated

elasto-dynamic behavior, already undertaken by [83, 75] for such topologies as the

hexagonal, triangular, and Kagomé lattices to name a few, may provide the possibility

of designing structured materials with easily selectable wave-propagation behavior.

The unique characteristics of phononic materials are currently exploited in a num-

ber of applications which include sensing devices based on resonators, acoustic logic

ports, wave-guides and filters based on surface acoustic waves (SAW). Synthesis

of phononic materials with desired band-gap and wave-guiding characteristics has

achieved promising maturity, mostly through the application of topology and mate-

rial optimization procedures [51, 85, 50]. Although very effective, such techniques

may require intensive computations and may lead to complex geometries difficult to

manufacture and whose performance may lack in robustness. The application of pe-

riodic structural networks as phononic materials may potentially lead to a simplified

design process, where a limited number of continuously varying parameters defines

the geometry of a predefined cellular topology [23]. The successful application of

this approach clearly requires identifying lattice configurations that provide sufficient

design flexibility, as well as with strongly dependent elasto-dynamic properties upon

a limited number of geometric parameters defining the lattice configuration.

This observation motivates the investigation of the wave propagation character-

istics of the chiral structural lattice considered here. The design flexibility and the

unique properties of this cellular configuration, originally proposed by [76, 100], are

documented in a number of recent papers by the authors [89, 90], are here evaluated
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in terms of wave propagation characteristics with the intent of broadening the already

promising features offered by more traditional configurations such as triangular and

hexagonal lattices proposed by [83, 75]. The influence of the unit-cell configuration

on band-gaps and wave-guiding properties is investigated through a numerical model

constructed considering chiral cellular topologies as assemblies of beams connected

to form a frame structure. Specifically, a compact description of the dynamic behav-

ior of the chiral assembly is provided by an elasto-dynamic discretization based on

Timoshenko beam elements [19]. Finally Bloch Theorem is employed to obtain dis-

persion surfaces, band diagrams, and to investigate the dependency of group speeds

and phase velocities on frequency and direction of wave propagation. The findings

presented in the following sections reveal a unique wave-propagation behavior featur-

ing a surprisingly high band-gap density as well as strong energy focusing dependent

on frequency and wavenumber. Such intriguing properties suggest the chiral topology

to be a basis for the development of meta-materials gaining their properties from the

targeted design of their periodic structure.

7.2 Analysis of Free Wave Propagation

7.2.1 Bloch Theorem

The characteristics of elastic wave propagation in structural lattices can be determined

by employing Bloch theorem [12]. The displacement w of a point P of the reference

unit cell corresponding to a wave propagating at frequency ω can be expressed as:

w(rP ) = wP0e
iωt−k·rP , (111)

where wP0 is the wave amplitude, and k is the wave vector. According to Bloch

theorem, the displacement of the point corresponding to P at location ρp(n1, n2) can
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be written in terms of the displacement of the reference unit cell as follows:

w(ρP ) = w(rP )ek·(ρP−rP ),

= w(rP )en1k1+n2k2 , (112)

where ki = k ·ei with i = 1, 2. Bloch theorem, as described by eq. 112, states that the

proportionate change in wave amplitude occurring from cell to cell does not depend

on the cell location within the periodic system. The wave propagation characteristics

of the periodic assembly thus can be fully identified through the analysis of the

reference unit cell. In eq. (112), ki = δi + iεi (i = 1, 2) is a complex number, whose

real part δi defines the amplitude attenuation as a wave propagates from one cell

to the next, and it is known as attenuation constant. The imaginary part εi defines

the change of phase across each cell, and it is often called phase constant. In the

analysis of wave propagation without amplitude attenuation, δi is typically set to 0,

and attention is devoted to determining the relation between phase constants εi and

temporal frequency ω.

7.2.2 Reciprocal lattice and first Brillouin zone

Given the direct lattice space defined by the lattice vector basis E = (e1, e2), one may

define a reciprocal lattice, which is described by the basis B = (b1, b2), whose basis

vectors are given by:

bi · ej = δij, (113)

where δij is the Kronecker delta. The reciprocal lattice vectors for the considered

periodic chiral assembly are given by:

bI
1 =

(
1

2R cos θ
, 1

2(R sin θ)

)T

,

bI
2 =

(
− 1

2R cos θ
, 1

2(R sin θ)

)T

. (114)

In the reciprocal lattice, the wave vector k = 2πλ can be expressed as:

k = k1b1 + k2b2, (115)
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so that, according to the definition of reciprocal lattice given in eq. (113):

k · e1 = k1. (116)

While the direct lattice defines the spatial periodicity of the considered domain, the

reciprocal lattice describes the periodicity of the frequency-wavenumber relation. This

can be easily demonstrated by replacing p, where k = 2πp, with p′ = p+m1b1+m2b2

in eq. (112), with m1, m2 integers to obtain:

w(ρp) = w(rp)e
n1k′1+n2k′2 , (117)

where

k′i = 2πp′ · ei = ki + 2πmi, i = 1, 2. (118)

Eq. (118) indicates that the wavenumber in a 2-D lattice is a periodic function of the

wave vector k in the reciprocal lattice. Hence, full representation of the dependency

of the wave-vector upon frequency is obtained by investigating its variation over a

single period. In a 2-D lattice, the period corresponds to a region in the reciprocal

lattice whose area equals the area of the reciprocal lattice’s unit cell, known as first

Brillouin zone. Given the reciprocal lattice vectors, the first Brillouin zone is obtained

by selecting any point in the reciprocal lattice as the origin and by connecting it to

all neighboring points. The perpendicular bisectors constructed on the connecting

lines, also known as Braggs lines, define the first Brillouin zone [12]. Fig. 110 shows

the reciprocal lattice vectors and the first Brillouin zone in the cartesian frame and

in the reciprocal lattice space. The symmetry of the first Brillouin zone can be

utilized to identify a subregion, known as irreducible Brillouin zone, which is the

smallest frequency-wavenumber space necessary to determine wave dispersion for a

given lattice. The irreducible Brillouin zone for the chiral lattice is also highlighted

in fig. 110, while the coordinates of the points OAB defining its boundaries are listed

in Table 9.
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Table 9: Coordinates of corner points of the irreducible Brillouin zone for chiral
lattices

Cartesian frame Reciprocal lattice frame

O (0, 0) (0, 0)

A ( −1
2R cos θ

, 0) (-1
2
, 1

2
)

B ( −1
R cos θ

, 1
6R sin θ

) (-1
3
, 2

3
)

i1

i2
b
1

b
2

O
A

B

(a)

b1

b2

O

A

B

(b)

Figure 110: First and irreducible Brillouin zones and reciprocal lattice vectors in
cartesian and reciprocal lattice spaces
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Figure 111: Chiral lattice unit cell with associated geometric parameters

7.2.3 Discretized equation of motion for the unit cell

The behavior of the unit cell can be conveniently described through a discretized equa-

tion of motion in matrix form, and by defining the cell’s interaction with its neighbors

(fig. 112). The unit cell depicted in fig. 111 is modeled via finite element discretization

whereby components of the unit cell are treated as rigidly connected beams featuring

axial, transverse, and rotational DOF’s, whose behavior is governed by Timoshenko

beam theory [19]. Application of standard finite-element procedures [19] yields the

unit cell’s equations of motion, which can be expressed as:

(
K − ω2M

)
u = f , (119)

where ω is the frequency of wave propagation, K and M are the global mass and

stiffness matrices of the cell, while u, f are respectively the vectors containing gen-

eralized nodal displacements and forces of interaction of the cell with its neighbors,

defined as:

u = { u0 u1 u2 u3 u4 u5 ui }T ,

f = { f0 f1 f2 f3 f4 f5 0 }T . (120)

In eq. (120) the subscripts 0, 1, · · ·, 5 follow the notation described in fig. 112, while
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u ,
3 f3

u ,
4 f4

u ,
5 f5

u ,
0 f0

u ,
1 f1

u ,
2 f2

u ,
 i f i

Figure 112: Unit cell discretization and detail of internal and boundary degrees of
freedom and interaction forces

subscript i denotes the degrees of freedom of internal cell nodes. Fig. 112 also shows

the considered unit cell discretization, highlights the internal nodes (white circles),

and lists boundary nodes and forces (dark squares). The considered cell discretization

approximates the circles as a sequence of straight beams, avoiding the complexity

associated with a finite element discretization of curved elements [7], and has been

chosen based on convergence studies performed on the dispersion relations in the

frequency range considered relevant for the analysis presented in what follows. A

detailed description of this convergence study is here omitted for the sake of brevity.

The proposed discretization, moreover, captures up to 198 wave modes, while the

current analysis only considers wave modes up to the 20th thus avoiding numerical

error at high-frequencies due to spatial or nodal sampling. Finally, eq. (120) relies

on the assumption that no external forces are applied, and that only the interaction

forces with neighboring cells appear in the cell’s equation of motion.
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7.2.4 Evaluation of dispersion relations

According to Bloch theorem, periodic boundary conditions relate the cell’s generalized

displacements, while equilibrium conditions are enforced to the generalized forces

applied to consecutive cells:

u3 = ek1u0,

u4 = ek1+k2u1,

u5 = ek2u2, (121)

and

f3 = −ek1f0,

f4 = −ek1+k2f1,

f5 = −ek2f2. (122)

Eq’s. (121) and (122) can be rewritten in matrix form as follows:

u = Tu ur, (123)

f = Tf fr, (124)

where ur = { u0 u1 u2 ui }T , and Tf = T T
u . Substituting eq. (121) into eq. (119),

and pre-multiplying the resulting equations by TH
u , with ()H denoting a complex

conjugate transpose, yields:

[Kr(k1, k2)− ω2Mr(k1, k2)] ur = 0, (125)

where Kr(k1, k2), Mr(k1, k2) are reduced stiffness and mass matrices. Eq. (125) con-

stitutes an eigenvalue problem whose solution defines the dispersion characteristics

of the lattice. Its solution requires imposing two of the three unknowns k1, k2, ω,

and solving for the third. In the current approach, wave motion without attenua-

tion is investigated. Accordingly, k1, k2 are generally imposed as imaginary numbers
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k1 = iε1, k2 = iε2 which vary within the first Brillouin zone. The solution of eq. (125)

yields the frequency of wave propagation, corresponding to the assigned pair k1, k2.

Solutions obtained for k1, k2 spanning the entire first Brillouin zone define the disper-

sion surfaces of the lattice, here denoted as ω = ω(k1, k2). The number of surfaces

obtained corresponds to the dimensions of the eigenvalue problem in eq. (125), which

in turn, is defined by the number of reduced DOF’s ur. Each surface describes the

wavenumber-frequency relation for the corresponding wave mode.

7.2.5 Phase speeds and group velocities.

Dispersion surfaces allow the evaluation of phase and group velocities and their depen-

dency on frequency and direction of propagation. The wave vectors in the reciprocal

and geometric space are respectively expressed as:

k = k1b1 + k2b2 = ξ1i1 + ξ2i2.

The phase velocity at a given frequency ω is given by:

cph =
ω

k
u, (126)

where k = |k| and u is a unit vector in the direction of the wave vector (u =

k/k). The information provided by the phase velocity is essentially the same as that

obtained from constant-frequency contours of the dispersion surfaces. In fact, for non-

dispersive media, the two representations can be combined in the form of slowness

curves [3]. In the case of periodic lattices, useful information is provided by direct

representation of the phase speed. Such description elucidates the increasingly disper-

sive and orthotropic nature of wave propagation as frequency ω increases. The phase

speed cph is evaluated by selecting iso-frequency contours from dispersion surfaces at

a desired frequency value. The angular range spanned by the corresponding set of

wavenumbers is then computed to obtain the angular variation of the phase speed

in terms of direction. For a general non-dispersive, isotropic medium, this operation

yields a circle whose radius is independent of frequency.
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Important indications regarding the energy flow associated with the propagation

of wave packets within the lattice are provided by the group velocity, which can be

evaluated as follows:

cI
g =

(
∂ω
∂ξ1

, ∂ω
∂ξ2

)T

. (127)

The group velocity defines the direction of energy flow within the structure, and can

be used to identify preferential or forbidden directions of wave propagation [83]. Such

forbidden propagation zones are the result of interference phenomena resulting from

the propagation of waves at the same frequency and different wave-vector directions,

and can be observed over a broad range of frequencies in anisotropic materials and

structures [101]. Results presented in the following sections will show how disper-

sion and anisotropy in chiral lattices strongly influence the characteristics of wave

propagation particularly as frequency increases.

7.3 Results

Results reported in the current and following sections consider a lattice made of

aluminum (Young’s modulus E = 71 GPa, Poisson’s ratio ν = 0.33, and density

ρ = 2700 Kg/m3). A reference configuration defined by the geometric dimensions

listed in Table 10 is first employed to present salient characteristics of wave prop-

agation in a chiral lattice. The same reference configuration is also employed in

subsequent parametric studies to highlight the influence of geometric arrangement on

wave propagation characteristics of chiral lattices. Results are presented in terms of

the non-dimensional frequency Ω:

Ω =
ω

ω0

, (128)

where:

ω0 = π2

√
Et2b

12ρL4
, (129)

corresponds to the first flexural frequency of a ligament of length L assumed in a

simply supported configuration. Although simple supports do not reproduce the
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Table 10: Reference lattice dimensions

Parameter Value
Ligament length L = 26.4 mm

Ligament wall thickness tb = 0.5 mm
Node radius r = 6.4 mm

Node wall thickness tc = 0.5 mm
Slenderness ratio tb/L = 1/52

Topology parameter L/R = 0.90

actual boundary conditions on the ligaments, the expression of ω0 has been selected as

a reference measure of frequencies at which the internal members of the lattice undergo

resonance, and for which the dynamic deformations of the lattice are dominated by

local behavior.

7.3.1 Dispersion surfaces

Fig. 113 presents contours of dispersion surfaces corresponding to the first four wave

modes of the lattice defined by the dimensions in Table 10. The first Brillouin zone,

represented in fig. 113 is superimposed to the iso-frequency contours to highlight the

correctly captured periodicity of the frequency-wavenumber spectrum. Furthermore,

the irreducible Brillouin zone, depicted in fig. 113 as a shaded gray area, effectively

describes all the characteristics of dispersion by taking advantage of the symmetry

present in the the first Brillouin zone.

The hexagonal symmetry of the chiral lattice clearly transpires in the elasto-

dynamic response represented in fig. 113, where six-lobed contour curves denote the

dispersion relations of all considered wave modes, a feature that becomes more appar-

ent as frequency increases. A very interesting attribute of the first two wave modes,

moreover, is provided by the “leveling-off” of the dispersion surfaces which appear to

change rapidly at low frequencies, and become virtually flat as frequency increases.

This behavior is indicated by the presence of a large number of iso-frequency contour

lines at low wavenumbers, and by their much lower density towards the edges of the
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Figure 113: Iso-frequency contours of the dispersion surfaces and detail of first and
irreducible Brillouin zone
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first Brillouin zone (see figs. 113.a and b). The opposite happens for the third and

fourth modes, which are characterized by rapid changes at high wavenumbers and

almost flat surfaces around k1, k2 ≈ 0 (see figs. 113.c and d). This implies that the

wave speeds associated with wave modes 3 and 4 change significantly within the first

Brillouin zone. The low wavenumber behavior of the dispersion surfaces is illustrated

in fig. 114, which presents dispersion relations in terms of the wave-vector compo-

nents in the cartesian frame ξ1, ξ2. As previously noted for the reciprocal lattice space

(fig. 113), the same information displayed in a cartesian frame (fig. 114) confirms the

hexagonal symmetry of the considered geometry. Finally, the circular iso-frequency

contour curves associated with low frequency and wave number depicted in figs. 114.a

and 114.b. suggest isotropic elasto-dynamic behavior of the chiral lattice in the first

and second wave-modes.

7.3.2 Band diagrams

A convenient representation of the chiral lattice dispersion characteristics is provided

in the form of band diagrams, whereby the frequency of wave propagation is plot-

ted against the amplitude of the wave vector as it varies along the contours of the

irreducible Brillouin zone. Fig. 115 compares the band diagram for the reference

lattice specified in Table 10 with that of a lattice defined by a topology parameter

L/R = 0.60 (see fig. 18). The remaining parameters are retained as for Table 10.

In order to maintain the ligament length L unchanged, variations in the topology

parameter are made to coincide with variations in the distance between the node

centers R, and node radius r.

The band diagram associated with topology parameter L/R = 0.90 (fig. 115.a)

highlights very interesting characteristics, some of which confirm the conclusions made

from the analysis of the dispersion surfaces. Namely, the curve corresponding to the

third mode appears almost flat, which implies that wave packets of this particular
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Figure 115: Band diagrams for L/R = 0.90 and L/R = 0.60 lattices
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polarization propagate very slowly within the lattice, and may have a behavior which

is closer to that of standing waves over most of the wavenumber spectrum. The two

lowest modes, typically associated to P (longitudinal) and S-polarized (transverse)

modes in solid materials, are approximately non-dispersive up to Ω ≈ 1. This is

common in most cellular structures, and it is often used as the basis for the quasi-

static approximation of their equivalent mechanical properties [75, 41]. In [75], for

example, it is shown how the equivalent shear and bulk moduli for hexagonal and

triangular lattices can be obtained through the following relations:

cP =

√
G∗ + K∗

ρ∗
, cS =

√
G∗

ρ∗
, (130)

where cP , cS respectively denote the long-wavelength approximations of the phase

speeds of P and S waves, while G∗, K∗, ρ∗ are the equivalent shear and bulk moduli,

and equivalent density of the lattice. These relations are based on the expressions

of the phase speeds of an isotropic elastic medium in plane stress. In fig. 115.a.,

the first two modes within the non-dispersive range appear practically overlapped,

which indicates that the two modes propagate virtually at the same phase speeds, i.e.

cP ≈ cS. The assumption that in the low frequency range the chiral lattice behaves

according to the laws of two-dimensional elasticity for an isotropic medium would

lead to the conclusion that G∗ >> K∗, which would seem to confirm the results from

previous investigations predicting an in-plane Poisson’s ratio ν ≈ −1 [76]. It is how-

ever important to underline that, due to the lattice topology producing non-central

forces [60] as well as rotation of the nodes or circles, the two-dimensional equations of

elasticity for isotropic materials in plane stress may not accurately describe the equiv-

alent behavior of the lattice, even at long wavelengths. The consideration of higher

order elasticity models, such as micropolar continuum theories, may be needed in

order to capture nodal rotations and their effect on the mechanical properties of the

structure [60]. Homogenized mechanical properties for chiral lattice configurations

similar to the one analyzed in the current work have been analyzed in [44] using
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flexural-hinging-stretching models based on the approach formulated by [66]. Chi-

ral lattices considered by [44] present a transversely isotropic, elasto-static behavior,

confirming that structural chirality has no effect on the elasto-static properties of a

material [60]. In-plane orthotropic, elasto-static properties, however, also characterize

chiral tessellations of order n, where n denotes the number of ligaments connecting

nodes or circles [44]. In contrast to analytical analyses appeared in the literature

so far [44, 76], the current FE model features nodes or circles with in-plane flexural

and axial deformation behavior capturing anisotropic elasto-static/dynamic behavior

related to the first-order moduli of elasticity [10]. The identification of equivalent

mechanical properties for the lattice through the asymptotic analysis of the disper-

sion relations goes beyond the scope of the present work and is the subject of current

investigations.

An additional feature of the chiral lattice defined by L/R = 0.90 transpiring

from the band diagram of fig. 115.a is the presence of two large band gaps, cen-

tered approximately at Ω = 2.1 and Ω = 4.5, which suggests the considered lattice

configuration as a superior phononic meta-material than what would be possible by

employing other known geometries. Among the configurations investigated by [75],

in fact, the triangular lattice was the only arrangement to feature a band gap at low

frequencies. The chiral lattice, hence, appears as a superior candidate at least for

applications requiring stop-band capabilities, in that it features low-frequency band

gaps of considerable extent. A comparison of the chiral and triangular lattices (the

latter obtained by letting L/R → 1) is provided by the parametric studies presented

in the following sections.

Fig. 115.b shows the band diagram of a lattice characterized by a ratio L/R =

0.60. The changes in modal structure, modal density and band-gap location are very

evident, demonstrating how a single configurational parameter strongly affects the

dispersion characteristics of the lattice. The L/R = 0.60 lattice, in particular, is
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characterized by a low-frequency band gap, which separates the first two branches

from the third. In addition, the slope of the first two branches and the corresponding

wave velocities are significantly lower than for the L/R = 0.90 lattice.

An attempt to explain the occurrence of band gaps between different sets of dis-

persion branches as the geometry of the lattice varies can be undertaken through the

analysis of the associated wave modes shown in fig. 116. Fig. 116.a. displays the

modes corresponding to the first five dispersion branches of the L/R = 0.90 lattice,

calculated at the vertices O, A, and B of the irreducible Brillouin zone. The first

and second mode at O correspond to a rigid-body mode, while the modes associated

with locations A and B show how propagation for these polarizations occurs mostly

through bending of the ligaments. The third mode is characterized by rotation of the

circular node, while the fifth mode is the first for which relevant deformations of the

circle can be observed. In particular, the mode at A corresponds to the lower bound

of the second band gap which suggests how its occurrence may be related to relevant

deformations of the circles within the unit cell. The fourth mode is not presented

due to its lack of distinctive features and for the sake of brevity. Wave modes asso-

ciated with L/R = 0.60 and depicted in fig. 116.b. seem to confirm the notion that

the generation of the lowest band gap is mostly associated with significant internal

deformations of the circles. Such deformations are evident for the second mode at A,

which corresponds to the lower limit of the first band gap of the L/R = 0.60 lattice.

This behavior also suggests that the circles may behave as internal inclusions in the

lattice and that their stiffness and mass may be properly selected to achieve desired

band-gap characteristics.

Band-gap occurrence estimated via unit cell analysis is verified by computing the

harmonic response of lattices of finite extent for frequencies of excitation varying

within the range considered in the band diagrams of fig. 115. The lattices comprise

13×17 chiral unit cells, and they are considered as simply supported along their edges.
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Figure 116: First, second, third and fifth wave modes at vertices O, A, and B of
the irreducible Brillouin zone

A harmonic load is applied at the center of the lattice according to the configuration

shown in fig. 117. The same discretization and finite-element formulation used for

the unit cell analysis are employed for the generation of the discretized model of the

finite lattice. The resulting finite-element model predicts the lattice displacements at

nodal locations, whose root mean square sum is computed to estimate the response

characteristics of lattices of finite extent at various frequencies. The results for the

two lattices (L/R = 0.90 and L/R = 0.60) clearly show the presence of band gaps, at

the frequencies predicted by the unit cell analysis and demonstrate the corresponding

strong filtering effects on the response of the finite lattice (fig. 118).

7.3.3 Influence of unit cell geometry on band gaps.

The results presented in the previous section suggest the need for an investigation

of the influence of unit cell geometry on width and location of possible band gaps.

Specifically, attention is devoted to the effects of node wall thickness tc and of the
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(a)

(b)

Figure 117: Configuration of finite lattice for evaluation of harmonic response and
detail of loading configuration

topology parameter L/R. Both parameters affect the relative density of the lattice,

defined as follows:

ρ∗
ρ

=
2
√

3

3

(2πrtc + 3Ltb)

R2
. (131)

The relation between stiffness and mass of the circles and of the ligaments strongly

affects the location and extent of band gaps. An obvious way to specify stiffness and

mass of the circles is to change their wall thickness tc, while reducing the L/R ratio

corresponding to an increase in the radius r, and in turn to a reduction in the bending

stiffness. figs. 119 and 120 show how the relative density is affected by tc and L/R,

where the subscript ′o′ is used to denote the dimensions of the lattice listed in Table 10

used as a reference in the parametric studies to follow.

The extent and location of band gaps, as related to circle wall thickness, is evalu-

ated for two lattices defined by L/R = 0.60 and L/R = 0.90. The results in fig. 121,
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Figure 118: Root mean square response of finite lattices subjected to harmonic
loads

where band gaps are represented as dark regions, show large sensitivity of the elasto-

dynamic behavior of chiral lattices with respect to the circles’ wall thickness tc. This

indicates tc is a crucial design parameter which can be properly selected to obtain

band gaps at desired frequencies. It is interesting to observe how large band gaps at

higher frequencies appear as having a center frequency which increases with tc. This

suggests that the resulting added stiffness of the nodes causes their bending defor-

mation to occur at higher frequencies, and confirms how this is a leading mechanism

for band gap occurrence (see fig. 116). Finally, the first gap for L/R = 0.90 lattice

189



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

L / R

ρ* ρs/

Figure 119: Relative-density dependence upon L/R, - - - tc/tc0 = 0.2, — tc/tc0 = 1

0.5 1 1.5 2 2.5 3

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

t

ρ* ρs

/ tc co

/

0.03

Figure 120: Relative-density dependence upon tc/tc0 , - - - L/R = 0.90, — L/R =
0.60

appears to become independent upon tc for tc/tc0 > 1, which may indicate that the

increase in stiffness is counterbalanced by the corresponding increase in mass.

A second study considers the dependence of band gaps upon topology parameter

L/R. Results for two values of wall thickness are presented in fig. 122. Specifically,

results in fig. 122.a are obtained for the minimum value of the previously considered tc

range, i.e. tc/tc0 = 0.2, which corresponds to extremely thin circles, while the results

in fig. 122.b are associated with the reference wall-thickness value tc/tc0 = 1. Fig. 122

elucidates how the topology parameter L/R can be used as a tuning parameter for

band gaps. The range of variation of L/R explores all the possible topologies which

vary from a packed assembly of circles (see fig. 18) obtained for L/R → 0, to the

triangular lattice corresponding to L/R → 1. It is interesting to note that for the

190



0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

Ω

t / tc co

(a) L/R = 0.60

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

Ω

t / tc co

(b) L/R = 0.90

Figure 121: Band gap dependence upon tc/tc0

latter (i.e. L/R → 1), the obtained band gaps match exactly those predicted for a

triangular lattice as reported in [75].

The results presented in figs. 121 and 122 demonstrate the design flexibility of the

considered periodic lattice configuration. Of the two considered parameters, the wall

thickness tc appears as the most interesting one, as it allows tuning of the band gap

distribution to be performed without the need for changes in the overall topology of

the assembly. From this perspective, one may envision a manufacturing procedure
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which is able to generate the chiral lattice, and allows the flexibility to modify the

wall thickness of the circles either locally, to introduce a discontinuity in periodicity,

or over a number of consecutive cells defining a path along which acoustic waves need

to be guided.

7.3.4 Phase Speeds and Group Velocities

A final analysis considers the dependence of phase speeds and group velocities upon

frequency, direction, and lattice topology. The evaluation of wave speeds provides
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important indications on the anisotropic nature of the lattice within a specified fre-

quency range, it shows the existence of preferential directions of propagation and

energy flow, and defines the dispersive nature of the medium. Dispersion, direc-

tionality and anisotropy all lead to wave-interference phenomena, which can be also

exploited for effective focusing of the acoustic energy associated with propagating

waves [83, 101]. Attention is devoted to the wave velocities of the first three modes,

which could be directly associated with the wave modes of an equivalent isotropic

medium, with the purpose of estimating the equivalent mechanical properties of the

lattice along the lines of [75, 41].

In all results, velocities are normalized with respect to the phase velocity of the

first mode estimated for k → 0, ω → 0, which corresponds to the long wavelength,

low frequency range where group and phase speeds are expected to be approximately

equal.

Results for phase speeds corresponding to the first three modes for lattices defined

by topology parameters L/R = 0.60 and L/R = 0.90 are shown respectively in fig. 123

and 124. These results are obtained for lattices with all other dimensions fixed to

the values listed in Table 10. Fig. 123 presents polar plots of the phase speed for

various values of normalized frequency. Curves for phase speeds corresponding to

first and second modes are approximately circular at low frequencies, while they

highlight the lattice anisotropy as frequency increases. Specifically, the polar curves

clearly show the six-fold symmetry of the lattice, which is represented by lobes which

become more and more relevant as frequency increases. A general trend for the

first and second mode shows a decreasing phase speed as frequency increases. This

behavior is in agreement with the fact that the corresponding dispersion branches

in fig. 115.b are characterized by a decreasing slope as the wave vector approaches

the edges of the first Brillouin zone. It is also interesting to note that the third

mode shows a cut-off frequency at Ω ≈ 1, and a very limited variation over the first
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Brillouin zone. The presence of a cut-off frequency and an almost flat dispersion

branch correspond to a phase speed which approximately varies hyperbolically with

respect to the wavenumber. This is confirmed by the strong variation in phase speed

which is observed over the considered frequency range for the third mode. Similar

considerations can be set forth from the analysis of the results for L/R = 0.90 shown

in fig. 124, indicative of a behavior which is non-dispersive and isotropic over a much

larger range of normalized frequencies and wavenumbers if compared to the L/R =

0.60 lattice for which strong directionality can be already observed at Ω ≈ 0.3.

Group velocity dependence upon frequency and direction for the considered con-

figurations are presented in figs. 125 and 126. As expected, the group speeds for the

first two modes in the low frequency limit are nearly identical to the corresponding

phase speeds, confirming the non-dispersive behavior for long wavelengths. As fre-

quency increases, however, group velocities show a very complex behavior which is

characterized by caustics (cusps in group velocity distributions) of the kind observed

in anisotropic media [101]. Such caustics are associated with strong energy focusing

for propagating wave packets, resulting from interference between the various wave

components propagating in the lattice plane. The third mode features very low group

velocities in particular for L/R = 0.90, which is also a distinctive characteristic for

this class of lattices.

The appearance of caustics in the group velocity diagrams of all considered wave

modes and configurations is to be attributed to inflection points in the wave-front

diagrams of fig. 114. To demonstrate the focusing of energy along preferential direc-

tions, the third wave mode corresponding to topology parameter L/R = 0.90 and

normalized frequency Ω = 1.92 is chosen as an example. The wave front associated

with the aforementioned configuration is presented in fig. 127.a. An arbitrarily chosen

set of wave vectors, numbered 1-9, corresponds to as many group velocities (c̄g) direc-

tions, also numbered 1-9. While the set of wave vectors approximately spans 90◦, the
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corresponding group velocity directions, which are normal to the corresponding wave

front, appear to be mostly confined to two orientations as depicted in fig. 127.b. If a

large set of wave vectors spanning 360◦ is considered (fig. 127.c), the corresponding

group velocity vectors are mostly oriented in six directions as shown in fig. 127.d.

In certain instances however, it is possible to have the direction of group velocity

coincide to that of wave vectors. This may occur only if the wave vector direc-

tion coincides with a symmetry axis of the frequency/wavenumber spectrum [101].

Collinearity of wave vectors and associated group velocity directions is confirmed in

fig. 127.c, where the dashed arrow describes a group-velocity vector collinear to a

given wave vector. The hexagonal symmetry of the chiral lattice, which also tran-

spires in the frequency/wavenumber spectrum, then produces at least six such loci.

Such occurrences nevertheless are not predominant for the chosen wave mode and

frequency given the apparent elasto-dynamic anisotropy. If iso-frequency contours

were to be perfectly circular, on the other hand, they would indicate that the direc-

tion of group velocity is always parallel to that of wave vectors, and moreover, that

the frequency/wavenumber spectrum possesses infinite axes of symmetry. This may

be the case for isotropic media, or in the case of low-frequency/wavelength regions

corresponding to the first and second wave modes reported in fig. 124 and 126. To

contrast isotropic wave propagation to the case presented above, the reader is referred

to fig. 128, which corresponds to the first wave mode, topology parameter L/R = 0.90

and normalized frequency Ω = 0.30. The same 9 wave vectors employed previously are

superimposed onto the circular wave front currently considered. The corresponding

group velocity vectors depicted in fig. 128.a and b are clearly aligned with their re-

spective wave vectors. If a large set of wave vectors spanning 360◦ is considered, the

corresponding group velocities evenly span the entire frequency/wavenumber spec-

trum as presented in fig. 128.c and d, indicating isotropic elasto-dynamic behavior.

In conclusion, the energy focusing suggested by caustics present in all considered
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wave modes notably features a complex dependency upon frequency ω; the orientation

and extent of cusps in group velocity diagrams, in fact, change according to both wave

modes and frequencies. Chiral lattices, hence, offer considerable authority for steering

elastic waves along desired directions. This could be accomplished by simply changing

the excitation frequency of a disturbance-producing source.

7.4 Summary

In-plane wave propagation in chiral lattices is investigated through the application of

Bloch analysis. The considered lattice features in-plane hexagonal geometry as well

as chirality, and it is characterized by a set of parameters which significantly affect

its elasto-dynamic behavior. The occurrence of band gaps, anisotropic behavior, and

the dispersive characteristics of the considered lattices are evaluated for various com-

binations of characteristic geometric parameters. Of particular relevance are unique

features such as strongly anisotropic behavior at higher frequencies, the significant

dependence of band gap widths and center frequency on a limited set of character-

istic geometric parameters, and the occurrence of caustics. The presented results

suggest the possibility of utilizing the considered class of lattices for the design of

novel phononic meta-materials.
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(c) Mode 3: - - - Ω = 1.00, · · · Ω = 1.15, — Ω = 1.20

Figure 123: Phase velocity versus frequency for a lattice with L/R = 0.60
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Figure 124: Phase velocity versus frequency for a lattice with L/R = 0.90
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(c) Mode 3: - - - Ω = 1.00, · · · Ω = 1.15, — Ω = 1.20

Figure 125: Group velocity components versus frequency for a lattice with L/R =
0.60
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(c) Mode 3: - - - Ω = 1.84, · · · Ω = 1.92, — Ω = 1.97

Figure 126: Group velocity components versus frequency for a lattice with L/R =
0.90
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CHAPTER VIII

CONCLUDING REMARKS

8.1 summary

The research presented in this work investigates the elasto-static and elasto-dynamic

response of hexagonal chiral lattices, which are composed of circular elements of acting

as nodes connected by ribs or ligaments. Chirality denotes a geometry not invariant

to reflections, or in other words, not symmetric to its mirror image. Hexagonal

symmetry on the other hand is responsible for isotropic mechanical behavior. Previous

findings documented in the literature reported that the chiral lattice is characterized

by elastic properties strongly dependent upon a reduced set of geometric parameters,

large-deformation capabilities, and a negative, in-plane Poisson’s ratio equal to −1

characteristic of auxetic materials. These features instilled curiosity and motivated

the research presented herein.

In-plane properties are determined with a refined analysis based on previous stud-

ies of the lattice’s mechanical behavior documented in the literature. In-plane, equiva-

lent elastic constants are determined through existing analytical methods and numer-

ical models owing to the complexity of the structural topology. Specifically, Young’s

modulus and Poisson’s ratio indicate that the chiral lattice features in-plane isotropic

behavior, confirming previously documented analyses. In the literature on auxetic

materials moreover, high shear stiffness resulting from the negative Poisson’s ratio

is often mentioned. The shear modulus for the chiral lattice, however, is found to

be generally lower than that of the triangular lattice, but higher than that of square

and hexagonal topologies. The estimated Young’s modulus is the lowest of all con-

sidered periodic cellular solids. Poisson’s ratio, shear modulus and Young’s modulus
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are proportional to the cube of the relative density. This is a characteristic of lat-

tices whose mechanical behavior is dominated by bending deformations of slender,

beam-like members. Out-of-plane elastic constants are determined with a 2-D repre-

sentation of the unit cell. The shear modulus is the same in the x and y-directions

but different than the in-plane value, suggesting transversally-isotropic mechanical

behavior. Upper and lower-bound analytical estimates of the shear modulus are re-

fined with finite-element models to include effects of out-of-plane thickness. The

out-of-plane Young’s modulus is also computed. Both shear and stiffness moduli are

found to be proportional to the relative density.

Large deformation capabilities previously suggested in the literature are exploited

to design a truss-core airfoil for both passive and active-morphing applications. The

relative density and topology of the truss-core strongly affect the compliance of the

proposed assemblies. Three aluminum truss-core-airfoil samples are manufactured

and tested to confirm the compliance indicated by numerical models. An improved

manufacturing technique, furthermore, has been employed to produce a chiral macro

cell made of carbon-fiber material. The use of composite materials in particular allows

embedding sensors within the truss-core members lending feasibility to the presented

morphing concepts. Large-displacement capabilities are confirmed for both the alu-

minum truss-core-airfoil samples and the composite chiral macro cell. Numerical

simulations of composite truss-core airfoils indicate that the achievable camber-wise

deflections are twice as large than for the aluminum models. The unique dynamic re-

sponse of chiral-core assemblies, furthermore, is exploited to design truss-core beams

and airfoils with operational-deflection shapes denoted by localized deformations or

kinks. In the case of truss-core airfoils in particular, the location of localized de-

flections can be controlled simply by selecting the appropriate excitation frequency.

Importantly, operational deflection shapes are the result of excitation coinciding with

204



natural frequencies of the assembly, indicating high actuation authority. The alu-

minum airfoil samples were tested and corroborated the presence of kinks in good

agreement with numerical models.

Finally, the elasto-dynamic response of the chiral lattice is investigated to assess

the lattice’s applicability as a phononic meta-material. Analyses of wave-propagation

characteristics indicate a large number of stop bands of significant extent within the

frequency range of the first ten wave modes resulting from the resonating of two

topologically-distinct components: namely, nodes and ligaments. Dynamic deforma-

tions of the nodes are found to significantly affect elastic wave propagation, center

frequency and stop-band magnitude. The presence of caustics in group-velocity dia-

grams indicates wave-focusing capabilities.

8.2 Research Contributions

The research presented in this thesis provides the following unique contributions:

¦ assessment of the in-plane and out-of-plane elastic properties of the chiral lat-

tice;

¦ design of chiral truss-core airfoils for both passive and active-morphing appli-

cations;

¦ design of chiral truss-core assemblies with dynamic morphing capabilities via

operational-deflection shapes featuring localized deformations;

¦ determination of the elasto-dynamic behavior of the chiral lattice with respect

to phononic characteristics;

8.3 Limitations of the presented research

The complexity of the chiral topology hindered analytical determination of the in-

plane mechanical properties for configurations with deformable circles, which are
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instead based on corrected expressions obtained for simplified configurations. Exist-

ing techniques to determine equivalent elastic properties rely on the presence of a

central joint, within the unit cell, at which internal components meet. Additional

simplifications to derive elastic properties of cellular solids take advantage or reflec-

tion symmetry of the unit cell. The chiral lattice, however, features neither a central

joint nor reflection symmetry. The resulting unit-cell analysis is hyperstatic. While

various techniques that address redundant problems are available, they require the

evaluation of potential energy, displacement-compatibility conditions and constitutive

laws. Attempts to utilize these techniques lead to intractable analytical expressions

resulting from the geometric complexity of the chiral lattice.

Expectations of in-plane, high shear stiffness of the chiral lattice associated with

a negative Poisson’s ratio, commonly mentioned in the literature, have been contra-

dicted. The chiral lattice, in fact, is shown to be more compliant for shear-loading

conditions than the triangular lattice.

The dependency of out-of-plane shear modulus on geometric parameters is equally

complex. While upper and lower-bounds of the shear stiffness are expressed analyt-

ically, the influence of out-of-plane thickness requires the use of an interpolating

polynomial.

8.4 Recommendations for Future work

8.4.1 Analytical methods for non-central cellular solids

While the shortcomings of the research presented in this thesis are certainly not wel-

come, they provide ample opportunities for future studies. In particular, existing

analytical techniques to determine the elastic properties of cellular solids are most

easily applicable to configurations denoted by reflection symmetry and the presence

of a central joint. To this end, the formulation of novel analytical methods to handle

non-central topologies would be of great scientific interest. The design of complex
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deterministic cellular solids, for example, would be facilitated. Additional opportuni-

ties lay in the determination of micropolar constants, which may aid in clarifying the

unusual internal stress distribution within the lattice when expanded or compressed.

8.4.2 Influence of manufacturing constraints on chiral lattices

The unique mechanical properties discussed in chapter 3 rely upon small lattice fea-

tures such as circles, which do influence the global structural response even for van-

ishing radius. The limitations imposed by manufacturing constraints my hinder or at

least alter the highly sensitive behavior to the topological characteristics of the lattice.

Analytical models to assess to influence of deviations from the nominal lattice con-

figuration, such as fillets where ligaments meet the circular components for example,

may establish the sensitivity of mechanical behavior to manufacturing shortcomings.

8.4.3 Chiral honeycomb-core sandwich panels

Although it is found that the out-of-plane shear stiffness of chiral honeycombs is lower

than that of current core geometries, such as the hexagonal honeycomb, additional

considerations drive the design of sandwich panels. Core buckling for example is a

very important characteristic. Preliminary studies of the bucking response of the

chiral lattice based on linear analyses are documented in the literature. Complete

investigations to determine the influence of imperfections however would provide a

better assessment of chiral honeycombs as core components for sandwich panels.

8.4.4 Flow control via dynamic morphing

Dynamic operational-deflection shapes of truss core airfoils also provide unique op-

portunities for future research. The high actuation authority provided by the fact the

localized deformations are associated with natural frequencies of the assembly indi-

cates that truss-core airfoils may be employed for flow control. Previous studies on

the dynamics of fluids in presence of oscillating walls, in fact, indicated a significant
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drag reduction. Computational-fluid-dynamic simulations may then indicate if the

kinks of truss-core airfoils can used to reduce drag or delay stall for example.

8.4.5 Phononic meta-materials

The most promising research possibilities stemming from the work presented in this

thesis, however, is the design of phononic meta-materials with periodic cellular solids.

In a 2-D framework the chiral lattice has already demonstrated very promising char-

acteristics. Future work should hence be devoted to designing three-dimensional

assemblies derived from the geometric arrangement of the chiral topology. An addi-

tional degree of freedom in the design of acoustic meta-materials may be provided

by the inclusion of fluids in the periodic crystal. In particular, acoustic absorption

provided by porous cell walls may affect band-gap extent and center frequency, and

it may also provide additional impedance effects useful for steering elastic waves in

desired directions.
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