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Georgia institute of Technology 
Atlanta, Georgia 30332 

College of Engineering 
School of Electrical Engineering 
Digital Signal Processing Laboratory 

April 20, 1983 

Ken Fischer 
Defense Communication Engineering Center 
1860 Weikle Avenue 
Reston, VA 22090 

Dear Ken, 

We started work on the contract (DCA 100-83-L-0027) on March 28. We have, at 
this point, hired a graduate research assistant at 1/3 time to participate in 
the project. The student, Eric Farges, is a potential Ph.D. candidate, and 
should be very helpful. His main functions will be computer programming and 
monitoring, and data-base management. 

Besides mapping out and planning our strategy, our effort has gone into 
generating the new sets of distortions. At present, the sub-band coder has 
been written and debugged. To gain experience on the computer, we are letting 
Eric write the channel vocoder. The writing of the other coders is in 
progress. 

If you have other questions or wish to know more details concerning our 
progress, do not hesitate to contact Tom or myself. 

Sincerely, 

Mark A. Clements 
cic 

A Unit of the University System of Georgia 	 An Equal Education and Employment Opportunity Institution 
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Georgia Institute of Technology 

Atlanta, Georgia 30332 

(hr.A_JC Qkums  t 
College of Engineering 
School of Electrical Engineering 
Digital Signal Processing Laboratory 

TECH 

May 31, 1983 

Mr. Ken Fischer 
Defense Communications Engineering Center 
1860 Weikle Avenue 
Reston, VA 22090 

Dear Ken, 

This is the monthly letter report on contract DCA-100-83-L-0027. As per your 
request, I have layed out the major tasks on the project as a chart, and have 
indicated the state of each task. 

We have been concentrating on the extention of the distorted data base, and 
have made good progress in that regard. Most of the work here is in the 
development of the ATC, the APC with runlength coding, and the channel 
vocoder. The APC distortion runs are now complete, and the ATC and channel 
vocoder programs should be available very soon. The Banded Pole Distortion 
and APC with noise feedback both only consist of applying existing programs, 
and they can be completed quite quickly. 

In the Aural Modeling area, we are still in the literature search phase, and 
this is progressing. 

Our expectation is that the distortions will all be completed in the early 
summer, and the emphasis in the summer will be on the objective measures. 

Sincerely, 

Thomas P. Barnwell, III 
Professor 

cic 

A Unit of the University System of Georgia 	 An Equal Education and Employment Opportunity Institution 
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Georgia Institute of Technology 
Atlanta, Georgia 30332 

College of Engineering 
School of Electrical Engineering 
Digital Signal Processing Laboratory 

TECH 

June 30, 1983 

Mr. Ken Fischer 
Defense Communications Engineering Center 
1860 Weikle Avenue 
Reston, VA 22090 

Dear Ken, 

This is the monthly letter report on contract DCA-100-83-L-0027. With the 
help of the sample report you sent us, we hope our report is in the format you 
desire. We are still making progress in generating the distorted data base, 
with the adaptive transform coder finished, and the channel vocoder nearing 
completion. 

The other tasks are proceeding as planned, with no major difficulties 
encountered. 

Sincerely, 

Mark A. Clements 
Assistant Professor 

c lc 

A Unit of the University System of Georgia 	 An Equal Education and Employment Opportunity Institution 



A Brief Description of Tasks 
Contract No. DCA100-83-L-0027 

Task No. 	 Description 	 Man-Months 

1. Distorted data-base generation  

1.1 	 Adaptive transform coder 	 1 

1.2 	 Adaptive predictive coding (noise feedback) 	 .5 

1.3 	 Adaptive predictive coding (run length coder) 	 .5 

1.4 	 Subband coder 	 .5 

1.5 	 Banded pole distortion 	 1 

1.6 	 Channel vocoder 	 1 

2. Aural Modeling  

2.1 	 Literature Search 	 1 

2.2 	 Programs 	 1 

2.3 	 Evaluation 	 1 

3. Composite Objective Measures  

3.1 	 Parametric Correlations 	 2 

3.2 	 Improved Designs 	 1 

4. Monthly reports 	 1 

5. Final Report 	 2 

6. Proofing and Reproduction 	 .5 

Total 	 14 
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Georgia Institute of Technology 
Atlanta, Georgia 30332 

College of Engineering 
School of Electrical Engineering 
Digital Signal Processing Laboratory 

TECH 

September 2, 1983 

Mr. Ken Fischer 
Defense Communications Agency 
1860 Wiehle Avenue 
Reston, VA 22090 

Dear Ken, 

When preparing to write the August letter report, we discovered that, though 
an oversight, the July letter report had not gone out on schedule. We are 
hence including both reports in this mailing. I am sorry for any 
inconvenience this may cause you. 

Sincerely, 

Thomas P. Barnwell, III 
Professor of Electrical Engineering 

cic 

A Unit of the University System of Georgia 	 An Equal Education and Employment Opportunity Institution 
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Georgia Institute of Technology 

Atlanta, Georgia 30332 

College of Engineering 
School of Electrical Engineering 
Digital Signal Processing Laboratory 

TECH 

September 1, 1983 

Mr. Ken Fischer 
Defense Communications Agency 
1860 Wiehle Avenue 

,Reston, VA 22090 

Dear Ken, 

This is the montly letter report for contract DCA-100-83-L-0027. Progress for 
the month of August is summarized on the enclosed charts. The work in August 
was impeded by computer failures which destroyed some of the channel vocoder 
programs. This, plus staff vacations during this period, caused progress to 
be less than in other months; however, we do not feel that the overall project 
schedule has been adversely affected. 

Sincerely, 

Thomas P. Barnwell, III 
Professor of Electrical Engineering 

cic 

A Unit of the University System of Georgia 	 An Equal Education and Employment Opportunity Institution 
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Georgia Institute of Technology 
Atlanta, Georgia 30332 

College of Engineering 
School of Electrical Engineering 
Digital Signal Processing Laboratory 

TECK 

November 11, 1983 

Ken Fischer 
Defense Communications Engineering Center 
1860 Weikle Ave. 
Reston, VA 22090 

Dear Ken, 

This is the monthly letter report on contract DCA-100-83-L-0027. 

After a few rough weeks because of computer and other problems, the research 
appears once again progressing at a good rate. The two major areas of 
development are in the hearing-based models and in the parametric quality 
estimators. In the first area, the report of the literature survey is 
complete (a draft is included) and the programs for implementing the measures 
are reasonably far advanced. In the parametric measures area, the application. 
of multidimensional scaling techniques has led to a much better understanding 
of the issues and the sources of variance. This is now leading to the design 
of new measures to reduce this variance. 

Sincerely, 

Thomas P. Barnwell, III 
Professor 

cic 

A Unit of the University System of Georgia 	 An Equal Education and Employment Opportunity Institution 



A Brief Description of Tasks 
Contract No. DCA100-83-L-0027 

Task No. 	 Description 	 Man-Months 

1. Distorted data-base generation  

1.1 	 Adaptive transform coder 	 1 

1.2 	 Adaptive predictive coding (noise feedback) 	 .5 

1.3 	 Adaptive predictive coding (run length coder) 	 .5 

1.4 	 Subband coder 	 .5 

1.5 	 Banded pole distortion 	 1 

1.6 	 Channel vocoder 	 1 

2. Aural Modeling  

2.1 	 Literature Search 	 1 

2.2 	 Programs 	 1 

2.3 	 Evaluation 	 1 

3. Composite Objective Measures  

3.1 	 Parametric Correlations 	 2 

3.2 	 Improved Designs 	 1 

4. Monthly reports 	 1 

5. Final Report 	 2 

6. Proofing and Reproduction 	 .5 

	

Total 	 14 
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MODELING OF HUMAN HEARING FOR OBJECTIVE 
SPEECH QUALITY ASSESSMENT 

Distortions of speech resulting from coding can only be detected if the 

magnitude of the distortion is greater than the resolution of the human 

auditory system. Once a distortion is perceivable, a subjective evaluation of 

the degree of distortion relates to the scaling properties of the auditory 

system. (The auditory system includes both the peripheral and central 

components). Our modeling approach will not deal specifically with speech 

perception, but rather, with the basic psychophysics of hearing. We will 

specifically restrict ourselves to look only at differences in coded and 

uncoded speech and try to quantify the differences. This approach obviously 

cannot adddress all issues, but for the coders under consideration it should 

be of some merit. It is expected that our models will more readily agree with 

subjective results for waveform coder type distortions than more complex 

distortions due to the lack of higher order modeling. Some of the key issues 

with hearing will be temporal, frequency, and intensity resolutions and 

scalings. 

Frequency differentiation appears to be comprised of at least two 

separate phenomena. 

Perception of pitch as with sinusoidal tones, can be accurate to within 

0.3%. This phenomenon, however, is applicable only to signals with specific 

periodicity, or complex tones comprised of harmonically related components. 

If only a few inharmonic pure tones are presented, observers can still hear 

each one individually, but as the number increases to 7 or more, partials are 

not perceived. 

Frequency resolution in complex signals is determined by other basic 

properties. Most theories use the notion of critical bands which correspond 

1 



to the presumed filtering action of the auditory system. None of the many 

attempts to explain psychophysical results of critical band measurements in 

terms of the peripheral auditory physiology up through the auditory nerves 

have satisfactorily explained all observed phenomena. Our belief is that this 

filtering is determined in higher neural mechanisms, and that such data as 

auditory nerve tuning curves are not good models for speech perception. Table 

I lists a set of critical bands which span the spectrum. Note the non-uniform 

bandwidths and spacing. 

In terms of filtering theory, temporal and frequency resolution are 

inversely related. Consequently, as bandwidths increase, more precision in 

timing becomes apparent. Nerve latency data suggests a lower limit of around 

2 ms. The worst resolution would be for lower frequency bands, with rise 

times of roughly 10 ms. With speech, however, conflicting requirements 

appear. If high frequency channels have 2 ms resolution, individual pitch 

periods are resolved; but we have assumed that pitch perception is not 

peripheral. However, resolution clearly exists in psychophysical experiments 

using click stimuli. Different tradeoffs for different application would be 

the answer to this dilemma. 

Intensity is perceived as a nonlinear function of the energies in the 

various critical bands. The first step is in terms of envelope detection. 

Various mechanisms have been postulated, which include many different types of 

nonlinearities followed by linear filtering, resulting in a slowly varying 

signal for each channel. The second step is in terms of relating their enve-

lopes to perceived loudness; JND's, or other measures. 

Masking is a mechanism undoubtedly arising from both peripheral and 

central processing. Critical band measurements often involve steady-state 

signals masking other signals-simultaneous masking. But masking also occurs 

2 



between signals separated in time. Most of the nonsimulataneous masking 

theories involve exponential decay of masking functions with time and some 

include frequency-dependent time constants. 

Objective Measures  

To assess quality of coded and distorted speech using aural models, we 

must try and take into account the audibility of differences in the signals. 

Since we are assuming all of the distortions in the study are perceivable, the 

task becomes one of quantifying these differences. 

The ear's frequency resolving ability strongly suggests a spectral analy-

sis should be done to both the reference (original) speech and the distorted 

speech. Analysis which parallels critical band filters will be performed. A 

number of alternatives exist for computation of the critical band-spectrum. 

The three of interest to us will be derived from LPC spectra, D!T's of 

windowed speech (Time Dependent Fourier Transforms), and filter bank 

analysis. The ear shows little sensitivity to phase as long as components are 

not within critical bands, and appears to respond to energy as a function of 

frequency. Our analysis will be in terms of short-time spectral densities. 

We will denote the energy: IV(n,s,d,8)1 2  where n is the time index, s the 

speaker, d the distortion (d=cP means no distortion) and 8 is a discrete 

variable representing the critical band over which the energy is summed. In 

the LPC method, a high density DFT of the LPC filter is computed, and the 

energy in critical bands is summed. A similar procedure can be performed on 

the OFT of the speech samples of the frame. In each case, the windows for 

summation in the frequency domain should look like Figure 1 for auditory 

modeling. The pre-emphasis of roughly 3dB/octave inherent in the wider band-

widths must be compensated. The problem with the previously mentioned 

3 



computations is that although bandwidths increase with frequency, time resolu-

tion is not proportionally enhanced. If actual filtering is performed, the 

auditory information can be preserved. To this end, we perform digital 

filtering and envelope detection where critical band energies are sampled 

faster for wider bandwidth channels than narrow ones. For this analysis, the 

"n" in the spectral representation would not be the same for all channels, and 

we therefore would adopt the notation V(n,m,s,d,O) where m tells which energy 

envelope sample in a given frame n is being observed, and the frame length is 

assumed to be of sufficient length to contain at least one sample of each 

channel. 

Once critical band spectra are computed for original and undistorted 

data, comparisons are to be made. Sensation and auditory nerve firing rates 

require a nonlinear scaling of the energy envelopes. One of the easier non-

linearities to work with is the logarithm. For an isolated filter's energy at 

an isolated time, the critical band spectral distance between the reference 

and distorted speech should be a monotonic function of the magnitude 

difference of the log energies of the two. In this case, the distance would 

be of the form: 

F = f 07(nrs ' 41°111  11-V(n,s,d,B-1  

Previous work by Barnwell suggests that f1(•) should be (•) where P is to be 

determined. Combining the influences of different critical bands must also be 
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performed. If one assumes the band's importance is dependent on its level, 

the measure: 

L-1 	 V(n,s,d,01  p 
F = { A GO  [f 2 1V 	010 	

I (n,s,0,120 log.A 	  
u -VCn,s,d,8 I 11  

= 

f2 should be in the form of f20• = (•) or log(•) in our case. 

The log measures assume that the perceptual difference in two sounds of 

different intensity depends on the ratio of the two intensities. However, it 

has been shown that the perceptual dimensional doubles with each 10dB 

increase, leading to a power function rather than log. To accurately incorpo-

rate this into our model, we need to preserve this relation. Our function 

should appear as: 

F = It(2 
1101og 10 -10log io i2 1/10_1)  

where il and i 2  are the two intensities to be compared. This reduces to 

KU ) 3  -1) if i 1 , > i2  and 1C(C7-i
3  -1) if i2  > i i . 

2 	 &
2
1 

Taking this over all frequencies and weighting its results in: 
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L-1 	 „ IV(n,s,(1) 6&)1'
6  

F
n 

= I IV(n,s,d,e )1 1" I 	
d 	t  

1 	 d 
14 	 V(n,s,(-

.

), e
1 

1 .6 

v(n,„{(1 }, e 
where the numerator of 	d 	uses $ or d, whichever makes that the 

V(n,s,(7), et  
larger term. The K scal ng is apendent on overall level and is taken care of 

by the term raised to the B. Note that 

F
n 

= 	1V(n,s,d,0
L

I 0-.6  1v(103,440 ) .6 - w(n,s,d,0) .6 1. 

In the special case of 0 = .6 (scale by perceived loudness), the measure is 

roughly: 

,.6 	", 	..6, 
n = 	 - vo,s,d,v 	1 

For spectral measures Barnwell used the form 
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L, 1 
F
n 

= [ 	IV(n•s•f,8
it

I 	ICV(o,s,(0,8) 6  - v(n,s,d,8 ) 6 ( P i l lP  
2.=0 

where e was not a critical band output. In a similar manner, we would want 

to test various values of y, 8, and P. Our prediction would be 

that y=0, 8=.6, and P=1 would be similar to the best combinations of 

parameters. (Even though this was not the best for Barnwell's earlier 

spectral distance measures, his results differed for frequency variant and 

invariant measures, indicating the near frequency grouping we use might also 

give different results.) It is not unreasonable to think, however, that a 

very large value of p, for example, might be best since perhaps maximum dif-

ferences give rise to quality judgments. 

Another method which could be used for quantifying distortion will be to 

measure the number of JND's by which each channel differs, and sum them up. 

The overall listening level, in the testing was adjusted by listeners and not 

controlled. We will assume a roughly 75-80 dB listening level. From this, we 

will need to estimate the level in each critical band. Reference to tables 

such as in Stevens and Davis can be used to find JND's in each channel. The 

frame distance should then be of the form: 

L-1 

Fn 	[ / IV(4)1VJND ]P11/1) 
L=0 
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where different values of y and P will be tried, and JND L 
= number of JND's 

difference in the test and original speech frames. 

An additional technique would employ articulation index notions. 

Kryter's method divides the frequency scale into 1/3-octave bands. Signal to 

noise ratios are computed for each band, with a maximum of 30 dB allowed in 

each, and weights which he has determined are applied. This method would give 

a frame distance of: 

L-1 
Fn = 	ws  max[0, min(log V(.00

1 )-log IV(401)-V(d,Ot l, 30] 
L=0 

The feature setting this apart from frequency variant SNR measures is the 

weighting wt  which is found in the literature. 

Another issue to be considered is the integration time course of the 

quality assessment. Masking of one stimulus by another which is 

non-simultaneous has been observed by many experimentors. Because the effect 

is more dramatic when the masker precedes the target (forward masking) than 

the reverse (backward masking), only forward masking will be considered. If 

one stimulus is followed by another, the latter is not perceived unless it has 

at least a particular intensity as a function of temporal separation. Various 

experiments indicate that masking decays exponentially in dB with linear time 

separation. The time constant T for a 1000 Hz stimulus is roughly 75 ms. In 

other words, if the masking level of a stimulus is 80 dB at t=0, at t=75, it 

8 



will be 80/e dBm30 dB. If the masking level at time t for frequency 6 1  is 

M(t, 61), it will be M(t, 61)/e at (t=tt  or M(t,6)=M(0,6)e). 

It also appears that T is inversely related to the BW of the filters. 

This would suggest a different time constant ranging from 150 ms for 500 Hz 

and below, to 20 ms at 3500 Hz. If we are looking at 10 ms. frames, a parti-

cular ratio denoting decay exists for each filter. 	Denote r(0t) 

= e
-10/ 

Ts r(61) where 6i 
is the 1000 Hz channel = e

-10/75 = .875, for 

example. 	The masking is then specifiable by a difference equation: If 

M(n, 0) = masking level of frame n at frequency 0, then M(n+1, 0) 

r(0)M(n, 0) + logV(n+1, s,c0,6). The audibility of distortions would depend on 

both the master level as well as distortion level. The previously specified 

formulas for Fn remain simular, but with a function of M(•) instead of V(•). 

We anticipate this technique to mainly help with additive colored noise type 

distortions, as well as impulsive noise. 

Frame Combinations  

Somehow, the final measure should combine the individual frame 

measurers. Hopefully, overall level differences will not be reflected, but 

distortions in loud frames should perhaps be weighted more than soft ones. 

LPC gains and signal energy are not necessarily good measures of loudness. A 

better method would involve summation of loudness in individual critical 

bands, where each band's loudness is proportional to the energy raised to the 

9 



.3 power. The final measure should have the form: 

I Fnlin/1 Lil 
n 	n 

where Ln = the loudness for frame n. 

10 



TABLE I 
EXAMPLES OF CRITICAL BANDWIDTH 

Number 
Center 

frequency 
(Hz) 

Critical 
band 
(Hz) 

Lower cutoff 
frequency 

(Hz) 

Upper cutoff 
frequency 

(Hz) 

1 50 - - 100 
2 150 100 100 200 
3 250 100 200 300 
4 350 100 300 400 
5 450 110 400 510 
6 570 120 510 630 
7 700 140 630 770 
8 840 150 770 920 
9 1,000 160 920 1,080 

10 1,170 190 1,080 1,270 
11 1,370 210 1,270 1,480 
12 1,600 240 1,480 1,720 
13 1,850 280 1,720 2,000 
14 2,150 320 2,000 2,320 
15 2,500 380 2,320 2,700 
16 2,900 450 2,700 3,150 
17 3,400 550 3,150 3,700 
18 4,000 700 3,700 4,400 
19 4,800 900 4,400 5,300 
20 5,800 1,100 5,300 6,400 
21 7,000 1,300 8,400 7,700 
22 8,500 1,800 7,700 9,500 
23 10,500 2,500 9,500 12,000 
24 13,500 3,500 12,000 15,500 

811 	FREQUENCY (kH2) 	6 

FIG. 1: EXCITATION WINDOWS 12. 14, 16. I 18 
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CHAPTER 1 

INTRODUCTION 

1.1 Task History 

The research effort reported here was performed in the Digital Signal 

Processing Laboratory of the School of Electrical Engineering at the Georgia 

Institute of Technology. In this effort, the Georgia Institute of Technology 

was the prime contractor and the Dynastat Corporation of Austin, Texas operated 

as a subcontractor. The monitoring officer at the Defense Communications 

Engineering Center was Mr. Kenneth Fischer. 

This task, which sought to develop new compactly computable objective 

measures for the prediction of subjective quality assessments of speech coding 

systems, followed previous work by both Georgia Tech [1.1-1.13] and the 

Dynastat Corp. [1.5] [1.14] [1.15] in relate areas. In this study, all of the 

research work was performed at Georgia Tech, while the Dynastat Corporation's 

sole function was to perform the required subjective quality evaluations. 

1.2 Technical Background  

In recent years, considerable effort has been devoted to the development 

of efficient digital speech coding algorithms for the transmission and storage 

of speech signals. These algorithms represent a wide range of approaches to 

the speech coding problem, and a correspondingly wide range of data rates, 

computational intensities, and perceived distortion characteristics. At the 

high data rates, such simple systems as mu-law and A-law PCM coders operate 

with toll quality at around 64K bps. At intermediate rates (32K bps-9.6K bps) 

such systems as DM [1.16], ADM [1.17][1.18], DPCM [1.19], ADPCM [1.20], APC 

[1.21], SBC [1.22], and ATC [1.23][1.24] are currently being used and proposed. 

In addition 'gapped analysis' [1.20][1.25] or 'harmonic scaling' [1.26] is also 
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effective in reducing bit rates in this range. 	At the lower data rates (2.4K 

bps-200 bps), fixed rate pitch excited LPC [1.27-1.29] and channel [1.30-1.32] 

vocoders are being used, and variable rate [1.33][1.34], vector quantized 

[1.35][1.36], and recognition/synthesis [1.37][1.38] systems are being 

proposed. In addition, considerable progress is now being made in the 9.6-2.4K 

bps range by such techniques as noise feedback [1.39] and run-length-coding 

[1.40] in APC and parametric excitation representations in residual excited 

vocoders [1.41][1.42]. 

The problem of rating and comparing these systems from the standpoint of 

user acceptance is a difficult one, since the candidate systems are usually 

highly intelligible. Hence, context free intelligibility tests such as the DRT 

[1.47] and the NET [1.48] may not suffice to resolve small differences in 

acceptability. User preference tests, such as the PARM [1.15], the QART 

[1.15], and the more modern DAM [1.16] can be effective in assessing quality, 

but they all suffer from the inherent drawbacks of subjective tests. These 

include both the great care which must be exercised to obtain repeatable 

subjective results and the corresponding expense and lack of flexibility 

associated with such testing. 

Objective acceptability measures, on the other hand, do not suffer from 

many of the problems of subjective tests [1.1-1.13]. 	On the whole, they are 

easy to administer and many have proved to be very reliable [1.15]. 	Likewise, 

many objective measures can be implemented in real-time or near-real-time, 

which vastly extends their flexibility. Also, objective measures may often be 

used directly in the design of speech coding systems in ways which are not 

possible with subjective measures. 

The problem is that it would be naive to believe that any simple, 

compactly computable objective measure could ever be designed which would 

always correlate well with subjective quality results across a large ensemble 
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of coding and other distortions. 	Despite our poor understanding of the speech 

perception process at present, we can assuredly state that the human listener 

is an active perceiver who uses his immense knowledge of the language, the 

talker, and the semantic and syntactic context to 'fill in the gaps' in the 

perceived speech. Hence, it is clear that no objective measure which does not 

use semantic, syntactic, and talker related information can ever be expected to 

perform well across all possible speech distortions, and such measures are 

clearly not possible with our current knowledge. On the other hand, it is fair 

to say that with the possible exception of very low bit rate 

recognition/synthesis systems, the distortions found in speech coding systems 

are not synchronized with the semantic, syntactic, or talker related features 

of the speech signal. 

The challenge in the design of compactly computable objective measures is 

hence to realize maximum utility from a set of intrinsically imperfect 

procedures. Until recently, the relative performance of different objective 

measures in terms of their ability to predict subjective quality results has 

not been well understood. However, in a recent study funded by the Defense 

Communications Agency (DA100-78-C-003) [1.5] and later by the National Science 

Foundation (ECS-801-6712) the relative performances of many objective speech 

quality measures have been addressed in detail [1.1-1.13]. In many ways, the 

research which is being reported in this document can be considered to be a 

continuation of e these studies. 

1.3 The Technical Approach 

In the earlier research, the emphasis was on comparing and quantifying the 

performance of a large number of parametric variations of simple objective 

measures. The basic methodology employed in both the earlier research and in 

this research, which is based on correlation analyses between objective and 
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subjective speech quality measures applied across a large ensemble of coded and 

distorted speech, is described in detail in Chapter 2 of this report. At 

onset of this research, about 2000 objective measures had been studied using 

about 140,000 individual correlation analyses. 

The experimental and research environment developed in the previous 

research efforts offers a unique opportunity for the design, implementation, 

and evaluation of new, more complex objective speech quality measures. On the 

one hand, the body of the research performed over the last five years has 

provided a good understanding of the relative performance of a large number of 

individual objective measures. On the other hand, the experimental environment 

itself both offers an efficient method for testing objective measures and also 

represents an outstanding resource for the design of new objective measures. 

In this context, the goal of this research was to use the existing resources to 

maximum advantage in developing and evaluating a new set of objective measures 

for the efficient prediction of the user acceptance of speech coding systems. 

Two particular application areas for objective quality measures are 

particularly appropriate to the concerns of the Defense Communications Agency. 

The first is the area of designing devices for field testing the performance of 

digital coding systems which are either being installed or which may have been 

degraded by system failures. The second is the area of developing techniques 

to be used in conjunction with subjective quality measures for improving the 

resolving power or reducing the cost of system acceptability assessment. This 

research explicitly addressed both of these areas. 

The constraints imposed by the two applications areas are quite different. 

Algorithms to be used by quality assessment devices in the field must be 

compactly computable to allow for their implementation on modern signal 

processing hardware. Likewise, they should be extremely sensitive to any 

system degradation, and should indicate with high resolution whether the system 
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is 'working correctly'. 	In addition, if the system quality is degraded, such 

algorithms should give good estimates of the loss of quality due to the 

degradation. The general applicability of these devices to a very large class 

of coding systems is of secondary concern in this environment, since the 

ensemble of coding systems is limited. The key research question in this area, 

therefore, is given computational constraints, how large a class of distorting 

systems can be effectively addressed by composite objective measures. 

On the other hand, algorithms to be used primarily for quality assessments 

must conform to a different set of constraints. First, of course, since they 

may be performed in non-real-time, they may be moderately computationally 

intense (as compared to the highly computationally intense iterative measures 

employed in digital coder design). 	Likewise, they must address a far broader 

range of distortions if they are to be effective. 	In this regard, it may be 

possible to develop objective measures tuned to some general distortion 

characteristics (e.g. waveform coders, pitch excited vocoders, or frequency 

domain coders), but any such dynamic variation in the application of the 

objective measure algorithm must also be driven objectively. To design such 

measures effectively, it is important to configure the algorithms in a 

perceptually relevant way. Stated another way, if a broad class of distortions 

are to be included, objective measures should be designed to estimate 

quantities which are directly related to the quality degradations perceived by 

humans. 

The design of objective speech quality measures for these two applications 

areas were addressed in the context of a three part study. Although in some 

sense all three parts address both application areas, the first two parts were 

particularly intended to address issues germane to the general quality 

assessment problem, while the third part addressed the field quality testing 
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1.4 Objective Measures Based On Signal Processing Models For The Inner Ear 

The first part of the research dealt specifically with designing new 

objective speech quality measures based on signal processing models for the 

inner ear. A detailed description of this research and its results is given in 

Chapter 4. 

Briefly, the question of designing and assessing objective measures based 

on aural models was addressed in a three phase study. In the first phase, 

models related to those previously proposed along with possible augmentations 

were studied, and a set of parameterized objective measures were developed. In 

the second phase, the control parameter space was studied using correlation 

analysis techniques described in Chapter 2. In the final phase, the optimized 

objective measures from phase two were combined with other objective measures 

to form improved composite measures. 

For the most part, the objective measures studied here can be considered 

to be parameterized, frequency-variant spectral distance measures. In the 

original research [1.5], the best of this class of measure was found to have a 

correlation coefficient of .60 across all distortions for frequency-invariant 

spectral distance measures, and a correlation coefficient of .71 for frequency-

variant spectral distance measures. The new measures designed in this research 

were able to achieve a correlation coefficient of .78 across the same 

distortion ensemble. 	This can be considered to be a good, although no 

spectacular, improvement for this class of measure. 	The best results were 

obtained for measures designed using the principals first suggested by Dennis 

Klatt [1.49]. Based on these and other related results, it is a reasonable 

conjecture that the level of performance achieved here is near the maximum 

which can be expected from simple, fully parameterized spectral distance 

measures. 
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1.5 Parametric Objective Quality Measures  

Two of the attractive features of the DAM [1.14] are that its parametric 

subjective quality estimates serve to give insight into the perceived nature as 

well as the perceived level of the distortion and the regression model which 

relates the parametric subjective qualities to the estimated system 

acceptability gives insight on the relative importance of different parametric 

qualities. If an objective measure is to succeed over a large class of 

distorting systems, then it must somehow incorporate information related to the 

perceived nature of the distortion. 

Part two of this study was aimed at designing a better objective quality 

measure based on individual parametric objective measures. A detailed 

description of this research is given in Chapter 5. In the first phase of this 

study, multi - dimensional scaling was used to characterize the relationship 

between the objective measures previously designed, the isometric subjective 

speech quality measures, and the parametric subjective speech quality measures. 

This initial analysis proved to be the key to designing better objective 

measures in that it characterized the problem in such a way that the design 

issues became obvious. In the second phase, a regression analysis was 

performed which showed exactly which parametric measures are most important in 

predicting system acceptability. 	As a result of this regression analysis, a 

subset of parametric subjective measures was identified for further study. 	In 

the ensuing phases, a specific objective measure was designed to predict each 

of the parametric subjective measures in the subset. This design was done 

interactively using statistical analysis techniques on the speech quality data 

bases. 

On the whole, the results of this part of the research were very good. In 

particular, it was possible to identify exactly where the previously proposed 

objective measure were breaking down, and further, it was possible to see 
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exactly what had to be done to correct the problem. What had to be done, in 

this context, was to design particular new objective measures which predicted 

particular parametric speech quality measures. The result of this effort was a 

number of new parametric objective measures which did an exceptional job at 

predicting many of the important parametric subjective measures. 

In effect, what has been designed and studied here is an objective version 

of the DAM. The test will provide an overall acceptability estimate and set of 

parametric quality estimates for individual perceived qualities. It would be 

naive, of course, to expect such a measure to perform comparably with the DAM 

itself. Hawever, such a test along with a complete statistical analysis of its 

projected performance, should prove very valuable in path screening of systems 

before the application of subjective quality tests and in providing 

analytically tractable information on the nature of the distortion for use in 

the coder design problem. 

It would be misleading to imply that this study was completely successful. 

In particular, the performance of the new parametric objective measures was 

varied, and whereas some performed extremely well, others were not as suc-

cessful. Nevertheless, it is fair to say that these results represent a major 

improvement in our understanding and our ability to implement objective speech. 

quality measures. 

1.6 Classified Objective Measures  

The third part of the research was a systematic study of classified 

objective measures as applied to distortion subsets. A classified objective 

measure is one which performs differently based on 'classification information' 

which is available. This information may be an external input to the measure 

(such as an operator supplied classification) or it may be an internally 

supplied parameter (such as an objective classification of sound segments into 

8 



approximate linguistic categories). 	The details of this research are found in 

Chapter 6. 

The research on classified objective measures really had two goals. 	The 

first goal was to investigate the use of classified measures for very narrow 

classes of measures. The purpose of this part of the study was to design 

measures appropriate for field testing communications systems where the class 

of system in use was known. 	The second goal was to design new, broad based 

classified measures for a large ensemble of distortions. 	The basic approach 

used in this part of the research was to use statistical techniques to identify 

distortion subsets for which the subjective measures could be predicted well by 

the objective measures under study. 

It is fair to say that the research on the classified objective measures 

was the least successful of the three approaches. It is true that the work 

clearly illustrated the viability of using narrowly classified objective 

measures for field testing applications. It is also true that it was clearly 

illustrated that the distorted data base could be partitioned so that high 

quality classified objective measures could be designed for use with a large 

distortion ensemble. The problem was that the members of the required 

distortion subsets appeared to be so dissimilar in both their perceptual 

characteristics and their signal characteristics that we were unable to 

adequately specify either objective or subjective rules for classifying the 

distortion. This does not really prove that this approach is without merit. 

It means, rather, that at this time we have not been able to discover 

distortion classification techniques which work well enough to prove out the 

approach. 

The Distortion Ensemble Augmentation 

The final task which was addressed as part of this research contract was 

the augmentation of the existing distortion ensemble from 264 distortions to 
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318 distortions. 	Fundamentally , two classes of distortions were included in 

these new distortions. 	The first were a set of speech coding techniques which 

had been developed and become common since the original data bases were 

developed in 1978. These new coding distortions included subband coders, 

adaptive transform coders, ADPCM with noise feedback, multi-pulse LPC, and 

channel vocoders. 	The second were a new set of 'banded pole distortion' 

controlled distortions [1.5]. 	The purpose of these new controlled distortions 

was to increase the overall spread of subjective responses, which had been 

inadequate in the first study. The new coding and controlled distortions are 

described in detail in Chapter 3. 

The basic design criterion for all of the distortions was to have each 

range from 'barely perceivable' to 'moderately distorted'. All of the new 

distortions met this criterion with the possible exception of the channel 

vocoder, for which the spread in subjective responses was slightly less than 

desired. 

10 



REFERENCES 

[1.1] 	T.P. Barnwell and W.D. Voiers, 'An Analysis of Objective Measures for 
User Acceptance of Voice Communications Systems,' Final Report to the 
Defense Communications Agency, DCA100-78-C-0003, September 1979. 

[1.2] 	T.P. Barnwell, III, A.M. Bush, R.M. Mersereau, and R.W. Schafer, 
'Speech Quality Measurement,' Final Report DCA/DCEC F30602-77-C-0118, 
June 1977. 

[1.3] 	T.P. 	Barnwell, 	III, 	R.W. 	Schafer, 	and A.M. 	Bush, 	'Tandem 
Interconnections of ITC and CVSD Digital Speech Coders,' Final Report, 
DCA 100-76-6-0073, 15 November 1977. 

[1.4] 	T.P. Barnwell, III and A.M. Bush, 'Statistical Correlation Between 
Objective and Subjective Measures for Speech Quality,' 1978 
International Conference on Acoustics, Speech, and Signal Processing, 
April 1978. 

[1.5] 	T.P. Barnwell and W.D. Voiers, 'Objective Fidelity Measures for Speech 
Coding Systems,' presented at the meeting of the Acoustical Society of 
America, Honolulu, December 1978. 

[1.6] 	T.P. Barnwell, 'Objective Fidelity Measures for Speech Coding Systems,' 
Acoustical Society of America, Vol. 65, No. 6, December 1979. 

[1.7] 	T.P. Barnwell, 'Correlation Analysis of Subjective and Objective 
Measures 	for Speech Quality,' 1980 International Conference on 
Acoustics, Speech, and Signal Processing, Denver, Colorado, April 1980. 

[1.8] 	T.P. Barnwell, 'A Comparison of Parametrically Different Objective 
Speech Quality Measures Using Analysis with Subjective Quality 
Results,' 1980 International Conference on Acoustics, Speech, and 
Signal Processing, Denver, Colorado, April 1980. 

[1.9] 	T.P. Barnwell and P. Breitkopf, 'Segmental Preclassification for 
Improved Objective Speech Quality Measures,' Proc. of ICASSP '81, 
March 1981. 

[1.10] T.P. Barnwell, III, 'On the Standardization of Objective Measures for 
Speech Quality Testing,' Proceedings of 1982 NBS Workshop on Standards  
for Speech Recognition and Synthesis, Washington, DC, March 1982. 

[1.11] T.P. Barnwell, III, and S.R. Quackenbush, 'An Analysis of Objectively 
Computable Measures for Speech Quality Testing,' Proc. of ICASSP '82, 
May 1982. 

[1.12] S.R. Quackenbush and T.P. Barnwell, III, 'An Approach to Formulating 
Objective Speech Quality Measures,' Proc. 15th Southeastern Symposium 
on System Theory, Huntsville, Alabama, March 28-29, 1983. 

[1.13] S.R. Quackenbush and T.P. Barnwell, III, 'The Estimation and Evaluation 

1 1 



of Pointwise Nonlinearities for Improving the Performance of Objective 
Speech Quality Measures,' Proc. ICASSP '83, Boston, Mass., April 1983. 

[1.14] W.D. Voiers, 'Diagnostic Acceptability Measure for Speech,' 1977  
International Conference on Acoustics, Speech, and Signal Processing, 
Hartford, CN, May, 1977. 

[1.15] W.D. Voiers et al., 'Methods of Predicting User Acceptance of Voice 
Communications Systems,' Final Report, DCA 100-74-C-0056, DCA, DCEC, 
Reston, VA, July 1976. 

[1.16] N. S. Jayant, 'Digital Coding of Speech Waveforms: PCM, DPCM, and DM 
Quantizers,' Proceedings of IEEE , May 1974. 

[1.17] N. 	S. 	Jayant, P. Cummiskey, and J. L. Flanagan, 'Design and 
Implementation of an Adaptive Delta Modulator,' Proc. of IEEE Int. 
Conf. Speech Communications , Boston, MA, April 1972. 

[1.18] N. S. Jayant, 'Adaptive Delta Modulator with a One-Bit Memory,' Bell 
System Tech. Journal , vol. 49, March 1970. 

[1.19] M. D. Paeb and T. H. Glisson, 'Minimum Mean-Squared-Error Quantization 
in Speech PCM and DPCM,' IEEE Trans. on Comm., April 1972. 

[1.20] T. P. Barnwell, III, A. M. Bush, J. B. O'Neal, and P. W. Stroh, 
'Adaptive Differential PCM Speech Transmission,' Final Report to the 
Defense Communications Agency, RADC-TR-74-177, July 1974. 

[1.21] B. S. Atal and M. R. Schroeder, 'Adaptive Predictive Coding of Speech 
Signals,' Bell System. Tech. Journal , October 1970. 

[1.22] R. E. Crochiere, S. A. Webber, and J. L. Flanagan, 'Digital Coding of 
Speech in Sub-bands,' Proc. 1976 IEEE Int. Conf. on ASSP, pp. 233-236, 
March 1976. 

[1.23] R. Zelinski and P. Noll, 'Approaches to Adaptive Transform Coding of 
Speech at Low Rates,' IEEE Trans. on Acoustics, Speech, and Signal 
Processing , vol. ASSP-27, no. 1, Feb. 1979. 

[1.24] J. M. Tribolet and R. E. Crochiere, 'Frequency Domain Coding of 
Speech,' IEEE Trans. on ASSP , vol. ASSP-27, no. 5, October 1979. 

[1.25] T. P. Barnwell, III and A. M. Bush, 'Gapped ADPCM for Speech 
Digitization,' Proc. of NEC , October 1974. 

[1.26] D. Malah, 'Time Domain Algorithm for Harmonic Bandwidth Reduction and 
Time Scaling of Speech Signals,' IEEE Trans. on ASSP , vol. ASSP-27, 
April 1979. 

[1.27] B. S. Atal and S. L. Hanaver, 'Speech Analysis and Synthesis by Linear 
Prediction of the Speech Waveform,' Journal of Acoustical Soc. of 
America , vol. 50, 1971. 

[1.28] F. Itakura and S. Saito, 'Analysis Synthesis Telephony Based on the 
Maximum Likelihood Method,' Proc. Sixth Int. Congr. Acoust. , 1968. 

12 



[1.29] J. Makhoul, 'Linear Prediction: A Tutorial Review,' Proc. IEEE , vol. 
63, 1975. 

[1.30] H. Dudley, 'Remaking Speech,' J. Acoust. Soc. Am. , vol. 11, 1939a. 

[1.31] B. Gold and C. M. Rader, 'The Channel Vocoder,' IEEE Trans. on Audio 
and Electroacoustics , vol. AU-15, no. 4, pp. 148-160, Dec. 1967. 

[1.32] J. N. Holmes, 'Dynamic Encoding as Applied to a Channel Vocoder,' IEEE 
Trans. Comm. Syst. , vol. 11, 1963. 

[1.33] D. T. Magill, 'Adaptive Speech Compression for Pocket Communications 
Systems,' Telecommun. Conf. Rec. , IEEE Publ. 73 CHO 805-2, 29D 1-5, 
1973. 

[1.34] P. E. Papamichalis and T. P. Barnwell, III, 'A Dynamic Programming 
Approach to Variable Rate Speech Compression,' Proc. 1980 Int. Conf. 
ASSP , Denver, CO, April 1980. 

[1.35] A. Buzo, A. H. Gray, R. M. Gray, and J. D. Markel, 'Speech Coding Based 
Upon Vector Quantization,' IEEE Trans. on ASSP, vol. ASSP-28, no. 5, 
pp. 562-547, October 1980. 

[1.36] D. Wong, B. H. Juang, and A. H. Gray, 'Recent Developments in Vector 
Quantization for Speech Processing,' Proc. 1981 Int. Conf. on ASSP , 
pp. 1-4, Atlanta, GA, April 1981. 

[1.37] B. T. Oshika, 'FACP Speech Recognition/Transmission Systems,' Final 
Technical Report, RADC-TR-78-193, System Development Corporation, 
August 1978. 

[1.38] R. Schwartz, J. Klovstad, J. Makhoul, and J. Sorensen, 'A Preliminary 
Design of a Phonetic Vocoder Based on a Diphone Model,' Proc. 1980 
Int. Conf. on ASSP , pp. 32-35, Denver, CO, April 1980. 

[1.39] B. S. Atal and M. R. Schroeder, 'Improved Quantizer for Adaptive Coding 
of Speech Signals at Low Rates,' Proc. 1980 Int. Conf. on ASSP , pp. 
535-538, Denver, CO, April 1980. 

[1.40] M. R. Schroeder, 'Predictive Coding of Speech Signals and Subjective 
Error Criteria,' Trans. 1978 Int. Conf. on ASSP , pp. 573-576, 1978. 

[1.41] B. S. Atal, 'A New Model of LPC Excitation for Producing Natural 
Sounding Speech at Low Bit Rates,' Proc. 1982 Int. Conf. on ASSP , pp. 
614-617, Paris, France, May 1982. 

[1.42] L. B. Almeida and J. M. Tribolet, 'A Spectral Model for Nonstationary 
Voiced Speech,' Proc. of 1982 Int. Conf. on ASSP , pp. 1303-1306, 
Paris, France, May 1982. 

[1.43] B. 	S. 	Atal, 	'Efficient Coding of LPC Parameters by Temporal 
Decomposition,' Proc. ICASSP 1983, pp 81-84. 

[1.44] M. Berouti, H. Garten, P. Kabal, and P. Mermelstein, 'Efficient 

13 



Computation and Ending of the Multipulse Excitation for LPC,' Proc. 
ICASSP 1984, pp 10.1-10.4. 

[1.45] G. A. Senenseib, A. J. Milbourn, A. H. Lloyd, and I. M. Warrington, 'A 
Non-Iterative Algorithm for Obtaining Multipulse Excitation for Linear 
Predictive Speech Coders,' Proc. Icassp 1984, pp 10.5-10.8. 

[1.46] I. M. Trancoso, R. Garcia-Gomez, and J. M. Tribolet, 'A Study of Short 
Time Phase and Multipulse LPC,' Proc. ICASSP 1984, pp 10.9-10.12. 

[1.47] W. D. Voiers, 'Research on Diagnostic DRT Evaluation of Speech 
Intelligibility,' Final Report AFSC No. F19628-70-C-0182, 1973. 

[1.48] J. D. Griffiths, 'Rhyming Minimal Contrasts: A Simplified Diagnostic 
Articulation Test,' J. Acoust. Soc. Am. , vol. 42, no. 1, pp. 236-241, 
1967. 

[1.49] D.H. Klatt, 	'Prediction of perceived phonetic distance from critical- 
band spectra: 	a first step,' Proceedings  of International Conference  
on Acoustics, Speech  and Signal Processing,  1982, Paris, pp. 1278-1281. 

14 



CHAPTER 2 

THE TESTING OF OBJECTIVE MEASURES 

2.1 Background  

As was noted in the introduction, this research project is essentially a 

continuation of a research project funded by the Defense Communications Agency 

in 1978 entitled An Analysis of Objective Measures for User Acceptance of 

Voice Communications Systems [2.1]. The goal of the original work was to study 

the viability of using relatively simple, objectively computable measures for 

estimating the results of subjective speech quality tests. As part of the 

original research, a statistical technique for measuring the expected 

performance of objective speech quality measures was designed, implemented, and 

tested [2.1]. 

Much of the effort in the original research program was directed towards 

the goal of quantitatively evaluating the performance of many of the 

(relatively) simple objective quality measures which had been previously 

proposed and used in speech processing. The original study involved over 

40,000 correlation analyses based on over 2000 separate objective speech 

quality measures. Most of these objective measures were parametric variations 

of compactly computable fidelity measures. The major accomplishment of this 

early work was that it gave for the first time a degree of quantitative insight 

into the way in which many objective measures performed relative to one another 

as well as to subjective quality estimates. This study showed, for example, 

that the relatively simple log area ratio measure performed as well as the more 

complex log spectral distance measures [2.1]. Likewise, the short-time 

frequency-variant SNR was found to be an outstanding measure for wave-form 

coders [2.1]. In addition, the effects of frequency variant [2.2][2.3] and time 

variant [2.4] objective measures were investigated in some detail. All of these 
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results served to provide much-needed insight into the fundamental nature of 

perception of speech distortion and the associated foundations of speech coder 

acceptability. 

In another sense, however, the first study generated more questions than 

it answered. A basic feature of the approach used in both the current and 

original research programs is that the experimental procedure requires immense 

amounts of data reduction and data storage. This is a result of the very 

large size of the data bases involved (about 6 X 10
9 
bytes of data storage) as 

well as the very large number of objective measures which can be studied in a 

single experiment. Stated simply, although it takes a great deal of effort to 

generate a single result, it takes little additional effort to generate many 

results. Hence, the experimenter is faced with the choice of either an 

intrinsically slow iterative design procedure or an immense data reduction task 

between experiments. As a result, the earlier research program was able to 

perform an extensive study of the class of simple objective speech quality 

measures, but it was only able to perform a limited study of the more complex 

and specialized measures. In particular, it performed an initial study of 

composite objective measures, which are single objective measures formed as 

combinations of several other objective measures, and parametric objective 

measures, which seek to estimate the parametric subjective speech qualities 

[2.1]. 

An important result of the original research program was that most of the 

simple objective measures currently in use, along with their parametric 

variations, do not perform very well when applied to a large class of 

dissimilar distorting systems. In particular, the highest correlation 

coefficient derived for a single, frequency-invariant objective measure applied 

across all distortions was in the range of .60 to .65 [2.1][2.2][2.5]. This 
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level of performance is not good enough to be of great utility for either 

quality assessment or coder design. However, a few initial experiments were 

performed on composite objective speech quality measures, which were formed as 

weighted sums of sets of dissimilar simple objective measures. Despite the fact 

that these early experiments used a broad statistical approach, which 

incorporated no special insight in regard to either the nature of the data 

bases or the nature of speech perception, the results were very promising. In 

particular, one composite measure was tested which attained a correlation score 

of .88 across the entire distortion ensemble. Because of the nature of the 

analysis procedures, however, it was not possible to interpret this result 

adequately in a broad sense. For example, the measure's robustness, as well as 

to what extent this measure's performance was due to the statistical properties 

of the data bases rather than fundamental properties of speech perception, are 

not clear. 

In short, two basic points emerged from the results of the original 

research program. First, it seemed clear that new objective measures could be 

designed whose performance substantially exceeded the performance of the 

objective measures currently in use. Second, it also seemed clear that 

considerable additional work would be required in order to design these new 

measures. Due to the large size of the data bases involved and due to the 

computational intensity of the statistical estimation tasks, the original 

research had only begun the task of effectively using the data bases to design 

new objective speech quality measures. What was required was more in-depth look 

at the available data. 

2.2 The Basic Testing Procedures  

The objective speech quality measures of interest in this study can all be 

defined in terms of the model of Figure 2.2-1. In general, these objective 

measures are computed from an input or undistorted speech data set, S, and an 
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output or distorted speech data set, SQ. The output speech data set is formed 

by passing the input speech data set through the speech communications system 

under test. It should be noted that two features of this research are first, 

the objective measures studied generally require both the input and output 

speech data sets and, second, the tests are always performed on a actual speech 

data. In particular, exactly the same speech data is always used for both the 

objective and subjective speech quality measures. 

For the purposes of this research, objective measures may be very simple, 

such as the traditional signal-to-noise ratio, or they can be very complex. A 

complex measure might use such diverse quantities as a spectral or other 

parametric distance between the input and output speech data sets; objectively 

computable distance measures specifically designed to predict subjective 

quality for a class of distortions; objectively computable distance measures 

specifically designed to predict parametric subjective quality; semantic, 

syntactic, or phonemic information extracted from the input speech data set; or 

the characteristics of a talker's vocal tract or glottis. The objective 

measures studied as part of this research program make no explicit use of 

semantic, syntactic, or phonemic information, but they do utilize all of the 

other classes of information listed above. If an objective measure satisfies 

the triangle inequality and other conditions shown in Figure 2.2-1, then it is 

a metric. Although metrics have many desirable properties, an objective measure 

need not be a metric to be of interest. 

The procedure developed for the testing of objective speech quality 

measures is illustrated in Figures 2.2-2 and 2.2-3. Figure 2.2-2 describes the 

procedure for untrained objective measures, while Figure 2.2-3 describes the 

procedure for trained objective measures. The entire procedure is based on an 

input speech data set called the undistorted speech data base which in this 

study, consists of one set of twelve Harvard phonemically balanced sentences, 
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spoken by each of four talkers. 	The four talkers included a low-pitch male, 

two moderate-pitch males, and a moderate-pitch female. 	The 48 sentences were 

filtered using a tenth order elliptic lowpass filter with a 3.2 kilohertz 

cutoff frequency, and were sampled at an eight kilohertz rate with 12-bit A-to-

D converter. This particular format was chosen so that the input speech signals 

would be approximately toll quality, although the speech samples were not 

passed through a highpass filter, as would occur for true telephone speech. 

The entire undistorted speech data base contained about four minutes of speech. 

All of the sampled speech in this study was stored on magnetic media as 16-bit 

integer data in digital form. 

The distorted speech data base was generated by applying a large number of 

distortion generation (e.g., digital coding) systems to the signals in the 

undistorted speech data base. The distorting systems were generally implemented 

as FORTRAN programs designed for the network of minicomputers and array 

processors comprising the Georgia Tech Digital Signal Processing Laboratory 

[see Appendix A]. In every instance, great care was taken to synchronize the 

input and output speech signals at least on a frame-by-frame basis, and on a 

sample-by-sample basis whenever possible. This completely eliminated the 

problem of synchronizing the undistorted and distorted speech signals, and the 

synchronization problem was not addressed by this research. At the beginning 

of this research contract, the distorted speech data base contained speech 

generated by 264 distorting systems, for a total of 4x12x264=12672 sentences, 

or 14.42 hours of distorted speech. As part of this research, an additional 58 

distorting systems were added, bringing the total to 15456 sentences, or 17.59 

hours of distorted speech. The details of the pre-existing data base are 

described in section 2.3, while the new speech distortions are described in 

Chapter 3. 

The third major component of the objective measure testing procedure is 
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the subjective data base, which is formed by applying a subjective speech 

quality measure to all the distortions in the distorted speech data base. In 

this study, the subjective test used was the Diagnostic Acceptability Measure, 

or DAM, developed by William D. Voiers at the Dynastat Corporation [2.1][2.6]. 

This is a widely used subjective quality test of the mean opinion score variety 

in which subjects are asked to assign a number to their perception of the 

quality of the speech samples under consideration, and a final system quality 

score is derived from these individual quality assessments. The DAM test has 

the great advantage that it not only gives isometric quality assessments, such 

as perceived acceptability or perceived pleasantness, but also gives estimates 

of parametric subjective qualities as well. The latter of these include such 

things as system fluttering, SF, or system lowpass, SL. In addition, the DAM 

also allows subjects to differentiate between background and foreground  

distortions. Details of the DAM and the subjective data base are discussed in 

section 2.4 and Chapter 3. 

Two broad classes of objective speech quality measures which were 

addressed as part of this study were untrained objective measures; and trained  

objective measures. In the former, all the parameters which control the 

objective measure are fully specified as part of the definition of the 

objective measure itself. In the latter, some of the control parameters for the 

objective measures are statistically optimized using the data in the three data 

bases. 

The untrained objective measures are tested as shown in Figure 2.2-2. 

First, the objective quality measure is applied to all of the distortions in 

the distorted speech data base, using the undistorted speech data base as 

reference. 	Second, a statistical correlation analysis is done between the 

results from the objective measure and corresponding results from 	the 
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subjective data base. The results from the statistical analysis are used as a 

figure-of-merit for comparing different objective speech measures. 

Two figures-of-merit have been used throughout this research program. The 

first is an estimate of the correlation coefficient between the objective 

quality measure, 0(d) (where d is the index of the distortion) and the 

subjective quality measure, S(d). This estimate is given by 

(S(d)-(d))(0(d)-0(d))) 

2.2-1 

(S(d)-(d)) 2 ] 112 [; (0(d)-6(d)) 2 1 112  

This results in a minimum variance linear estimate of the subjective quantities 

from the objective quantities given by 

pa 

S(d) = S(d) + 	(0(d)-0(d)) 	 2.2-1 

0 

where a
s 

and a are the estimated standard deviation for the subjective and 
0 

objective measures respectively. It would not be correct to attribute any 

absolute validity to this estimated correlation coefficient in relation to 

other studies. For example, since we have not randomly sampled the universe of 

all coding distortions, our correlation estimates are biased by the content of 

our distortion ensemble. Therefore, correlation estimates computed in this way 

are only meaningful when comparing objective measures over exactly the same 

distortion ensemble, and such estimates should certainly not be compared 

otherwise. 

A more universal figure-of-merit can be computed if the objective estimate 

of the subjective data is viewed as a linear regression analysis. The desired 

figure-of-merit is the expected standard deviation of error when the subjective 
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results are estimated entirely from the objective results, given by 

—2 	"2 1/2 
a
e
= [E[(S-D(S10))

2 
 ]]

1/2 
 = [as (1 - p )] 2.2-3 

This estimate, which incorporates the variance of the subjective data base as 

well as the correlation coefficient, is a more pleasing figure-of-merit since 

it can be viewed as an actual performance estimate. 

The trained objective measures are tested as shown in Figure 2.2-3. 	The 

primary difference between the trained and the untrained measures is that the 

trained measures are defined using some number of unspecified parameters, 

whereas untrained measures are defined with all parameters specified. Trained 

objective measures are tested using the two-pass procedure of Figure 2.2-3. In 

the first pass, the regression coefficients for the objective measure under 

test are set so as to maximize the correlation between the objective and 

subjective results. Then, in the second pass, this now fully specified 

objective measure is tested exactly like an untrained measure. In this 

procedure, if the data in the training set is the same as the data in the 

testing set, then the figures-of-merit estimate an upper bound on the 

performance of the objective measure under test. If separate training and 

testing sets are used, then the figures-of-merit form an actual performance 

estimate. 

2.3 The Distorted Speech Data Base  

As previously discussed, the distorted speech data base is generated from 

the undistorted speech data base through the application of a large number of 

distorting systems. 	each of which is uniquely identified by its type of 

distortion and its level of distortion. 	In general, each type of distortion 

was realized with six (or sometimes twelve) levels of distortion. Whenever 
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possible, these levels were set to span the perceived range from barely  

perceivable to moderately distorted. Table 2.3-1 summarizes the distortions 

used in this research. 

As can be seen from Table 2.3-1, some of distortions in the distorted data 

base already existed at the beginning of this research program, while others 

were generated as part of this research. The pre-existing distortions are 

described in detail in a previous DCA report [2.1], while the new distortions 

are described in Chapter 3 of this report. The purpose of this section is to 

briefly review the distortions which were generated as part of the previous DCA 

research program. 

2.3.1 Coding Distortions  

The purpose of the coding distortions was to include in the distorted 

speech ensemble a reasonable cross-section of the digital coding techniques. 

Those included in the original data base were chosen from among systems which 

were either in use or under active development in 1978. As can be seen from 

Table 2.3-1, these coding distortions can be roughly divided into two classes: 

waveform coders and vocoders. The waveform coders included six time-domain 

coders (ADM, CVSD, APCM, ADPCM, and APC) and one frequency domain coder (ATC). 

The vocoders were all based on linear predictive coding techniques, and 

included two voice excited (now more commonly call residual excited) vocoders 

(VEV) and one pitch excited vocoder (LPC). 

Among the waveform coders, two different adaptive delta modulators were 

included in the distortion ensemble: ADM and CVSD. The ADM system, which was 

based on a technique proposed by Jayant [2.7] used a one-bit memory to control 

its quantizer adaption and one-tap-linear predictor in which the predictor 

constant was chosen to minimize the mean square prediction error at the 

operating bit rates across the entire input speech set. In addition, the 

quantizer attack and decay rates were chosen to be equal [2.1] [2.7]. The 
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Coding Distortions 
	

Number of Cases 	Added During Current Study 

ADPCM 	 6 	 No 
APCM 	 6 	 No 
CVSD 	 6 	 No 
ADM 	 6 	 No 

APC 	 6 	 No 
LPC Vocoder 	 6 	 No 
VEV 	 12 	 No 
ATC-1 	 6 	 No 
ATC-2 	 6 	 Yes 
SBC 	 6 	 Yes 
ADPCM+Noise Feedback 	 6 	 Yes 
MP-LPC 	 6 	 Yes 
Channel Vocoder 	 6 	 Yes 

Controlled Distortions 

Additive Noise 	 6 	 No 
Low Pass Filter 	 6 	 No 
High Pass Filter 	 6 	 No 
Band Pass Filter 	 6 	 No 
Interruption 	 12 	 No 
Clipping 	 6 	 No 
Center Clipping 	 6 	 No 
Quantization 	 6 	 No 
Echo 	 6 	 No 

Frequency Variant 
Controlled Distortion 

Additive Color Noise 	 36 	 No 
Banded Pole Distortion-1 	78 	 No 
Banded Frequency Distortion 	36 	 No 
Banded Pole Distortion-2 	24 	 Yes 

Table 2.3-1 Summary of Coding and Controlled Distortions in the Distorted 
Data Base 
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system was operated at 8, 12, 16, 24, and 32 KBPS, and the uncoded speech was 

included in this set as the sixth distortion level. 

The CVSD realization used was one which had been generated as part of a 

separate Defense Communications Research Program [2.8]. This CVSD had been 

specifically optimized for tandeming with pitch excited LPC vocoders, although 

no tandems were included in this study. Just as for ADM, the single predictor 

coefficient for each CVSD bit rate was set to match the statistics of the 

undistorted speech ensemble. All of the CVSD systems had a minimum step size of 

10 and an expansion ratio of 166 [2.1][2.8]. The CVSD was operated at the same 

bit rates as the Jayant ADM above. 

The only difference between the two adaptive PCM systems (APCM and ADPCM) 

was that ADPCM used a one-tap fixed predictor (value .92) while APCM used no 

predictor. Both systems used a feedback exponential quantizer adaption 

technique similar to the approach used in CVSD [2.1][2.8]. Both systems were 

operated at bit rates of 12.7, 18.6, 22.5, 25.3, 27.6, and 29.6 Kbps. 

The Adaptive Predictive Coder [2.9] simulated in this study used a tenth 

order, time varying, linear predictor which was updated every fifteen msec. The 

LPC coefficients were generated using the autocorrelation method [2.10], and 

were quantized using inverse sine quantization [2.11]. The residual encoder was 

of the adaptive feed forward type, and used a three level quantizer. The APC 

was operated at rates of 13.3, 13.9, 14.5, 15.2, and 15.8 Kbps. The sixth 

distortion level used unquantized (32-bit floating point) LPC coefficients. 

The adaptive transform coder (ATC), was, by modern standards, a relatively 

primitive transform coder. In particular, it was based on the original work by 

Zelinski and Noll [2.12] but used an LPC based spectral estimation procedure 

to assign the bits to its different channels [2.1]. This is somewhat similar to 

the technique later used by Tribolet and Crochiere [2.13], but without their 

pitch utilization technique. The LPC coefficients were also quantized, and the 
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transform coder was operated at rates of 20, 16, 12, 11, 9.6, and 8 Kbps. 

Both of the so called voice excited vocoders (VEV) were really residual 

excited vocoders where only the lower frequencies of the residual signal were 

retained in the transmitted signal. At the synthesizer, the high frequencies in 

the excitation signal were regenerated using a hard-limiting operation and an 

additional tenth order LPC whitening filter. Like the APC and the pitch excited 

LPC vocoder, the VEV's used an inverse sine quantizer for the LPC coefficients. 

The adaptive quantizer for the decimated residual signal was of the feed-

forward type, and the fundamental difference between the two VEV systems was in 

the rate at which the residual signal was transmitted; 5615 and 7400 bps, 

respectively. The first VEV operated at rates of 9.5, 8.8, 8.1, 7.5, 6.9, and 

6.6 Kbps, while the second. VEV operated at rates of 11.3, 10.6, 9.9 9.3, 8.7, 

and 8.4 Kbps. 

The pitch excited LPC vocoder also used an inverse sine quantization 

procedure for the LPC coefficients, and a differential encoder for the pitch 

and gain information. The pitch detector used was of the homomorphic type, 

although some pitch period and voicing errors were manually corrected. This was 

an intentional attempt to force the primary distortion in the coder to be from 

the vocal tract representation and not from pitch errors. The LPC vocoder used 

a fifteen msec frame interval, and operated at data rates of 1.8, 2.4, 3.0, 

3.7,and 4.3 Kbps. The sixth distortion level used unquantized (32-bit floating 

point) LPC coefficients. 

2.3.2 Controlled Distortions  

A large portion of the distortions generated in the original research 

program were not explicit coding distortions, but were controlled distortions. 

Each of these distortions were included for one of two reasons. Either they 

were considered to be examples of specific types of subjectively relevant 
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distortions, or they were considered to be a type of distortion which does 

occur in coding systems, but which does not occur in isolation. 

There were fundamentally two classes of controlled distortions in the 

initial distorted speech data base: simple distortions; and frequency variant  

distortions. The frequency variant distortions were included for two main 

reasons. First, they could be used to measure the relative importance of 

different types of distortions when they are applied in different frequency 

bands. Second, frequency variant controlled distortions offer an environment in 

which frequency variant objective measures could be expected to be relatively 

uncorrelated between frequency bands. 

Table 2.3-1 give a summary of the controlled distortions used in the 

original study. The simple controlled distortions included additive noise, 

lowpass filtering, highpass filtering, bandpass filtering, interruption, 

clipping, center clipping, quantization, and echo. The frequency variant 

distortions included additive colored noise, banded pole distortion, and banded 

frequency distortion. 

Most of the simple controlled distortions can be described in only a few 

words. The additive noise, for example, was white and Gaussian, and the 

resulting waveforms had SNR's of 30, 24, 18, 12, 6, and 0 dB. Likewise, both 

the highpass and lowpass filtering distortions had cutoff frequencies of 400, 

800, 1300, 1900, 2600, and 3400 Hertz. The bandpass filters had passbands of 

0-400, 400-800, 800-1300, 1300-1900, 1900-2600, and 2600-3400 Hertz. It should 

be noted here that all of the bandpass distortions and some of the lowpass and 

highpass distortions were quite severe, and were unique in that regard. 

The interruption distortions were implemented by multiplying the input 

speech signals by periodic waveforms which alternated between the values one 

and zero. Two different periods were used for these signals: the long period, 

which was 125 msec; and the short period, which was 37.5 msec. The level of 
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distortion for interruption was varied by changing the duty cycle of the 

periodic waveforms. 

Both of the clipping distortions were implemented using a threshold at 

which the waveform was appropriately clipped. In terms of a percentage of the 

available dynamic range of the input speech signals, these were given by 15%, 

7.6%, 3.8%, 3.05%, 1.53%, and .76% for clipping, and by 7.6%, 3.8%, 1.9%, .76%, 

38%, and .19% for center clipping. 

The quantization distortion was implemented as a fixed, linear PCM system 

which used 64, 48, 32, 24, 16, and 12 levels per sample. This corresponded to 

bit rates of 48, 44.7, 40, 36.7, 32, and 28.7 Kbps, respectively. Finally, the 

echo distortion was formed by adding a delayed version of the input speech 

signal back to itself. The delays used were 1.25, 6.25, 12.5, 25, 62.5, and 125 

msec. 

The original study included a total of three types of frequency variant 

distortions. The first, additive colored noise, was designed to approximate 

waveform coder distortions in a frequency variant way. The second, banded pole 

distortion, was designed to approximate distortions typical of vocal tract 

modeling vocoders and APC's in a frequency variant way. Finally, banded 

frequency distortion was designed to approximate the distortions found in ATC's 

and adaptive subband coders in a frequency variant way. All of the frequency 

variant distortions operated in six frequency bands. The band limits used were 

0-400, 400-800, 800-1300, 1300-1900, 1900-2600, and 2600-3400 Hertz. 

The additive colored noise was formed by first bandlimiting white Gaussian 

noise, and then adding the resulting signal to the original speech signals. In 

all, six different additive colored noise distortions were included, one for 

each of the frequency bands listed above. Using six distortion levels per 

distortion type resulted in 36 separate distorting systems. 
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The banded pole distortion was realized in four steps. First, an LPC 

analysis was performed, and a residual signal generated. Second, the LPC 

polynomials were factored and the pole locations were perturbed within one of 

the frequency bands. Third, the LPC coefficients were regenerated by 

multiplying together the individual perturbed poles. Finally, a distorted 

speech signal was generated by passing the residual signal through the 

regenerated LPC filter. The entire procedure is described in detail in Chapter 

3 of this report. The pole perturbations were performed in both the radial and 

angular directions for all six frequency bands. These, plus two full-band 

distortions, resulted in a total of 78 separate distortions. 

The banded frequency distortion was based on a short-time Fourier 

transform (STFT) representation for the speech signal. Fundamentally, the 

banded frequency distortion added noise to the STFT of the speech signal in 

bands. The noise was white and Gaussian, and was always added in phase with the 

original signal. This means that the noise was added to the magnitude of the 

STFT while leaving the angle undisturbed. Once again, the six frequency bands 

combined with six distortion levels resulted in 36 separate distortions. 

2.4 The Subjective Data Base  

The emphasis in this research has always been on highly intelligible 

coding techniques for use in toll quality applications. For this class of 

systems, context free intelligibility tests, such as the DRT and the MRT, are 

not particularly effective. This is because these high quality systems 

generally crowd the high end of the intelligibility scale, and hence are not 

well resolved by intelligibility alone. In addition, for high quality systems, 

it is generally acknowledged that user acceptance depends on factors other than 

intelligibility. The ideal type of test for this class of systems is some form 

of communicability test [2.16] in which a user's performance is measured on 

some complex or difficult task which utilizes the speech coding system 
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directly. 	Unfortunately, communicability tests are not reasonable for this 

research for two reasons. 	First, such tests are intrinsically expensive, and 

the cost of generating the large subjective data bases required here would be 

prohibitive. Second, in order to perform such tests, real-time realizations 

for the distorting systems are required, which would also be prohibitively 

expensive. 

The only reasonable compromise approach left is to use a subjective 

preference test of the mean opinion score type. In such tests, subjects are 

asked to rate speech material on a subjective scale, and the distorting 

system's acceptability is estimated from these ratings. Subjective preference 

tests have the advantage that they are much less expensive to administer than 

communicability tests and they do not require real - time realizations for the 

speech distortion systems. Such tests have the disadvantage that they must 

deal with the subtle nature of subjective preferences and they may require the 

use of a large number of subjects in order to increase the test's resolving 

power to an acceptable level. 

The subjective preference test chosen for this work was the Diagnostic 

Acceptability Measure (DAM) developed by the Dynastat Corporation. 	This 

particular test was chosen for several reasons. 	First, it is a very carefully 

conceived and designed measure which has been widely used and verified. 

Second, since it is a widely used test, its results are accepted and understood 

by a large number of people. Third, and most important for this research, the 

DAM is a very fine-grained test which measures not only such isometric 

subjective quantities as acceptability, but a large number of parametric 

quantities as well. 	This, in effect, generates a feature set which forms a 

fine-grained perceptual signature for each distortion. 	As will become obvious 

from the experimental results, without the information provided by these 
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parametric measures, the design of high-performance objective speech quality 

measures would be very difficult. 

All of the Diagnostic Acceptability Measures generated as part of both the 

previous research program and this research program were administered by the 

Dynastat Corporation under subcontract to Georgia Tech. 

As with most mean-opinion subjective tests, the DAM requires listeners to 

characterize the distorted speech in absolute, rather than relative, judgments. 

However, the DAM is unique in two specific ways. First, it combines the 

indirect parametric approach with the more conventional isometric approach, 

which, as previously noted, results in a much more fine-grained estimate of the 

speech quality. Second, the DAM allows listeners to distinguish between system 

and background distortion in making their judgments. 

The rating form used in the DAM test is shown in Figure 2.4-1. 	The 

subjects rate the distorted speech on ten parametric system scales, seven 

parametric background scales, and three isometric scales. Factor analysis was 

previously used [2.1] to reduce the input data to the form of Figure 2.4-2. 

The twenty original subjective scales are reduced to fourteen output scales: 

six parametric system qualities (SF, SH, SD, SL, SI, and SN); four parametric 

background qualities (BN, BB, BF, and BR); and three isometric qualities 

(Intelligibility, Pleasantness, and Acceptability). From all these parameters, 

a total Composite Acceptability (CA) is estimated. 

Previous research on the Paired Acceptability Rating Method (PARM) [2.151 

has shown that much of the apparent randomness in user preference tests is 

actually attributable to stable differences in listener preferences. The DAM 

uses this fact to good advantage through the careful tracking of user 

performance by the use of anchors and probes. This information is then used to 

improve the resolving power of the DAM through the statistical correction of 
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Figure 2.4-2. 	STRUCTURE OF THE DAM 

Signal Quality Measures 

SF 1,7 Fluttering Amplitude- 
Bubbling Modulated Speech 

SH 3,5 Distant Highpassed 
Thin Speech 

SD 4,14 Rasping Peak Clipped 
Crackling Speech, Quantized 

Speech 

SL 2 Muffled Lowpassed 
Smothered Speech 

SI 8,10 Irregular Interrupted 
Interrupted Speech 

SN 0 Nasal Bandpassed Speech 
Whining Vocoded Speech 

Background Quality Measures 

BN 11,13 Hissing Guassian Noise 
Rushing 

BB 15 Buzzing 60-120 Hz Hum 
Humming 

BF 12,17 Chirping 
Bubbling 

Errors in narrow 
band systems 

BR 16 Rumbling 
Thumping 

Low frequency 
noise 

Total Quality Measures 

Quality 
Rating 

Scales Used 
Representative 

Descriptors Exemplars 

Intelligibility 18 Intelligible Undegraded Speech 

Pleasantness 19 Pleasant Undegraded Speech 

Acceptability 20 Acceptable Undergraded Speech 
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user responses. 	The total DAM output for a single type of distortion is 

illustrated in Figure 2.4-3. 

At the beginning of this research program, the subjective speech data base 

contained the complete DAM results for the 1056 talker-distortion combinations 

in the initial distorted speech data base [2.1]. 	As the result of this 

research, an additional 232 combinations were added. 	A fairly detailed 

discussion of the initial subjective data base was included in the previous 

research report, and the interested reader is referred there for detailed 

information [2.1]. 

On the whole, it is a fair statement that the original subjective data 

base met its design goals. That is to say that it excited the appropriate 

range of perceived distortions, it excited all of the various parametric 

scales, and it represented a reasonable ensemble of coding distortions for the 

time at which it was designed (1978). 	There were a few specific exceptions to 

this statement, however. 	For example, a few of the controlled distortions 

could be characterized as severe rather than moderate. 	These included most of 

the bandpass distortions and some of the highpass and lowpass distortions. 	In 

addition, although the banded pole distortion generated subjective scores in 

the correct range, the spread of the distortion levels was not really wide 

enough. This result will be discussed more fully in Chapter 3 Many of the 

detailed features of the subjective data base will also be discussed in Chapter 

4, Chapter 5 and Chapter 6. 
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CHAPTER 3 

NEW SPEECH DISTORTIONS 

The purpose of this chapter is to describe the new coding distortions 

which were added to the distorted speech data base as part of this research 

program. As discussed in the previous chapter, the distorted speech data base 

is a major component in the procedure for designing and testing the new objec-

tive speech quality measures. In general, this data base is formed by 

applying coding and controlled distortions to all of the sentences in the 

undistorted speech data base. The undistorted speech data base contains a 

total of four sets of twelve sentences, where the sentences were all drawn from 

a set of phonemically balanced sentences. Since the emphasis in this study was 

on communications systems which, at a minimum, come close to achieving toll 

quality, the undistorted sentence sets were digitized at the toll quality 

standard. In other words, the sentences were all band-limited to 3.2 kilohertz, 

sampled at eight kilohertz, and quantized to twelve bits (linear) resolution. 

In addition, the timing of the sentences within the sentence sets was 

constrained so that the distorted speech could be used directly as input for 

the Diagnostic Acceptability Measure (see Chapter 2 for more details). Hence, 

both the subjective quality estimates and the objective quality estimates in 

the study were always performed on exactly the same speech data. 

All of the distorting systems generated as part of this study were 

implemented as programs (usually in FORTRAN) on the network of general purpose 

computers and array processors which forms the Georgia Tech Digital Signal 

Processing Laboratory [Appendix A]. As was discussed in Chapter 2, the 

distorting systems were implemented so as to maintain either sample-level or 

frame-level synchronization between the undistorted input speech and the 

distorted output speech. Hence, the problem of synchronizing the distorted and 
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undistorted speech was entirely, avoided, and that problem was not addressed as 

part of this research. Both the distorted and undistorted speech sentence 

sets were always stored as sixteen bit integer data in disk or tape files. 

The original distorted speech data base which was available at the 

beginning of this research effort [3.1] was described Section 2.3. In all, this 

data base included 264 distorting systems applied to twelve sentences for each 

of four talkers, for a total of 4 X 12 X 264 = 12672 sentences. The sentences 

are always presented at exactly 4.096 second intervals, resulting in a total 

distorted speech data base of 14.418 hours of distorted speech. 

Fundamentally, the distorted speech data base forms the ensemble of 

distortions over which the statistical estimations used in the design and 

testing of the objective speech quality measures are performed (see Chapter 2 

for more details). 	In an ideal statistical sense, these distortions should be 

a randomly selected sample from the set of all coding distortions. This, 

course, is a meaningless statement for all practical applications, since 

clearly there exists no reasonable procedures for approaching this ideal. What 

was done instead was to design a distortion ensemble which is representative of 

the particular communications environments of interest. 

The distortion ensemble in the original study was generated to conform to 

several specific design criteria. First, since the interest of the Defense 

Communications Agency is primarily in medium-to-high quality speech com-

munications systems, all of the distortions were designed to span the 

perceptual range from barely perceivable to moderately distorted. In 

particular, the distortions included primarily systems of high intelligibility 

whose quality differences are most appropriately measured by mean-opinion 

speech quality tests such as the DAM. Second, since the final goal has always 

been to find objective speech quality measures to be used in conjunction with 
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speech coding systems, a number of coding systems were included in the 

distortion ensemble. In the original distorted speech data base, these were 

primarily representatives of the speech coding systems of interest in the 1978 

time frame (see Table 2.3-1). Finally, since it is obvious that in order to 

design good objective speech quality measures, the fundamental mechanisms of 

speech perception must be addressed, a number of wide-band and frequency-

variant controlled distortions were also included. For more detailed 

descriptions of all these distortions, the reader is referred to the previous 

DCA report (DA100-78-C-0003) [3.1] and to [3.2-3.13]. 

It is important to understand that, from a statistical viewpoint, all of 

the estimates performed using the distortion ensemble are biased by the 

procedures used in choosing the representative distortions. Stated another way, 

all of the results of this research must be viewed as estimates of the 

performance of the objective speech quality measures when operating over the 

distortion universe which is represented by the distortion ensemble. Hence, 

the validity of the results are fundamentally limited by the choice of 

distortions. By any measure, the data bases involved in this study are large 

(probably the largest available anywhere), and their associated statistical 

resolving power is correspondingly high. Nevertheless, they are still not 

nearly large enough to support a claim of universal validity. 

The purpose of this chapter is to describe in detail the augmentations to 

the distorted speech data base which were performed as part of this research 

project. These additions were motivated by two problems with the existing data 

base. First, the results of the DAM tests which were performed as part of the 

original study indicated some deficiencies with certain of the frequency 

variant controlled distortions, specifically with the Banded Pole Distortions. 

Second, since 1978 a number of new and important speech coding techniques have 

been introduced, and these new coding distortions needed to be included in the 
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distorted speech data base in order to maintain the validity of the ensemble. 

3.1 Banded Pole Distortion 

Over the past decade, linear predictive analysis as become one of the 

dominant techniques in speech coding. 	This technique has been used in many 

different coding systems operating at many different bit rates. 	These coding 

systems include the pitch-excited LPC vocoder , the vector-quantized pitch-

excited LPC vocoder, the residual-excited LPC vocoder, the Adaptive Predictive 

Coder, the Multi-pulse excited LPC vocoder, the Adaptive Transform Coder, and 

many more. All of these systems have the common feature that, as part of the 

speech coding procedure, they quantize and transmit frames of LPC coefficients 

in some form. In all systems where this is done, this quantization causes 

distortion and is perceived as distortion by listeners. 

Because the quantization of LPC coefficients is such a common feature in 

modern speech coding systems, it is clear that understanding how to correctly 

predict subjective responses to this class of distortion must be one of the 

primary goals of this research. 	The problem is that the relation between LPC 

quantization distortion and human perception is not a simple one. 	LPC 

quantization techniques generally quantize some transformed parameter set 

derivable from the LPC feedback coefficients, such as the inverse-sine 

transformed PARCOR coefficients, the log area ratios, or the line spectral 

pairs. Such distortions are not frequency localized and are generally spread 

over the entire frequency range of the signal. Human hearing, on the other 

hand, is a frequency variant phenomena and responds primarily to frequency-

localized and time-localized events. When viewed in the frequency domain, LPC 

quantization has the effect on moving the roots of the LPC polynomial, and 

hence the poles of the LPC vocal tract transfer function, in both bandwidth and 

frequency. Small variations in frequency, though easily perceivable, have 
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little impact on the level of perceived distortion. 	Bandwidth variations, 

however, can have dramatic perceptual effects. Bandwidths which are too narrow 

cause clearly perceivable 'chirps, while bandwidths which are too large cause 

the speech to sound 'muffled. 

In actual coding systems, the LPC coefficient quantization distortions 

always encompass the entire frequency range and always occur in conjunction 

with other classes of distortion as well. If the perceptual effects of this 

distortion are to be well understood, then controlled distortions need to be 

generated which present the LPC quantization distortion in isolation and in a 

frequency variant way. In the previous DCA research, the distorting system 

shown in Figure 3.1-1 was used to generate the pole distortion. In this system, 

the speech is first pre-emphasized using a second order filter, and then a 

framed LPC analysis is performed. The results of the LPC analysis is then used 

to inverse filter the original speech, giving an approximation of the glottal 

wave excitation [3.3]. 

Following the inverse filtering operation, the poles of the vocal tract 

function are then found by factoring the LPC polynomial. Then the banded pole 

distortion is applied by first identifying all the poles within a fixed 

frequency range, and then moving the poles slightly in either frequency or 

bandwidth, or both. This 'jittering' of the poles is controlled by two uniform 

random number generators. The 'frequency range,' FR, factor gives the range of 

frequency, in Hertz, in which the poles are allowed to move. The 'bandwidth 

factor,' BF, is a multiplicative factor controlling the bandwidth motion by 

distorted radius = (undistorted radius)[1+(BF)r] 	 3.1-1 

where r is a uniform random number which ranges between plus one and minus one. 

Once the pole locations are distorted, they are recombined to form a new set of 

LPC coefficients, a'(k). These coefficients are then used to implement a new 
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vocal tract filter to create the distorted speech. 	The pole distortions 

included in the original distortion ensemble are summarized in Table 3.1-1 and 

the results of the DAM analysis of these distortions are shown in Figures 3.1-

2M, 3.1-2F, 3.1-3M, and 3.1-3F. 

A study of the DAM results shown in Figures 3.1-2M - 3.1-3F reveals some 

basic problems with the distortions used in the original study. The problem is 

that certain of the distortion classes did not exhibit an adequate variation in 

perceived distortion. This is particularly true for the case of frequency 

distortion in the ranges 200-400 Hz, 1900-2600 Hz, and 2600-3400 Hz, but is 

also true for radial distortion in the range of 2600-3400 Hz. An examination 

of the control parameters for the banded pole distortion shown in Table 3.1-1 

indicates that this is a fundamental problem, since the frequency variations 

used were already very large when compared to the dimensions of the frequency 

bands. In short, the bands used were too narrow for clearly perceivable 

distortions are to be generated. 

Based on these observations, a new set of banded pole distortions, based 

on only four bands, was generated. As before, the bands were chosen to have 

approximately equal frequency content on a MEL scale. The control parameters 

for this study are shown in Table 3.1-2. Notice that in this study, the banded 

pole distortions were chosen so as to exhibit both pole-frequency and pole-

bandwidth variations. The results of the DAM tests applied to these 

distortions will be discussed in the following section. 

3.2 Effects of Banded Pole Distortions on Subjective Responses  

Figures 3.2-1, 3.2-2, 3.2-3, and 3.2-4 show the effect of frequency 

variant pole distortion for 0-420 Hz., 420-900 Hz., 900-1600 Hz., and 1600-3200 

Hz. respectively. From these figures, it is clear that, for all frequency 

ranges, the scales which are most dramatically effected are SF (system 

fluttering) and BF (background fluttering). Hence, the effect of quantizing 
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Banded Pole Distortion 

Frequency Distortion 

Frequency Range (Hertz) 

Distortion 1 2 3 4 5 6 

Band (Hertz) 

200-400 20 40 60 80 100 120 

400-800 20 40 60 80 100 120 

800-1300 50 90 130 170 210 250 

1300-1900 50 90 130 170 210 250 

1900-2600 100 150 200 250 300 250 

2600-3400 150 200 250 300 350 400 

Bandwidth Distortion 

Variation Factor 

Distortion 1 2 3 4 5 6 

Band (Hertz) 

0-400 .025 .05 .075 .1 .2 .3 

400-800 .025 .05 .075 .1 .2 .3 

800-1300 .025 .05 .075 .1 .2 .3 

1300-1900 .025 .05 .075 .1 .2 .3 

1900-2600 .025 .05 .075 .1 .2 .3 

2600-3400 .025 .05 .075 .1 .2 .3 

Table 3.1-1 Summary of Control Parameters for the Banded Pole Distortions 

Implemented as Part of the Original Research 

Banded Pole Distortion 

Frequency Range (Hertz) Variation Factor 

Distortion 1 2 3 4 5 6 1 2 3 4 5 6 

Band (Hertz) 

50-420 10 20 30 40 50 55 .01 .02 .04 .08 .16 .32 

420-900 20 40 60 80 100 120 .01 .02 .04 .08 .16 .32 

900-1600 25 50 75 100 125 150 .01 .02 .04 .08 .16 .32 

1600-3200 80 160 240 320 400 500 .01 .02 .04 .08 .16 .32 

Table 3.1-2 Summary of Control Parameters for the Banded Pole Distortions 
Implemented as Part of the Current Research 
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Figure 3.1-3F 	Effects of pole-frequency distortion on DAM scores 
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the pole locations for LPC analysis can best be characterized as 'fluttering' 

and 'chirping'. 	It is also clear that all frequency bands result in an 

acceptably wide range of perceived distortions. 	Hence, 	the new pole 

distortions met their fundamental design criteria. 

3.3 Coding Distortions  

As previously noted, the basic reason for the introduction of new 

coding distortions into the distorted speech data base was to add to the 

distortion ensemble examples of classes of coding distortions which have become 

common since the original definition of the data bases in 1978. In all, there 

were five new classes of coding distortions introduced, resulting in a total of 

34 new distortions and extending to 94 the total number of coding distortions 

in the distorted speech data base. As always, the new coding distortions were 

simulated using general purpose computers, and were designed to have zero phase 

reconstruction whenever possible. If this was not possible, they were designed 

to have at least frame-by-frame synchronization with the undistorted speech. 

3.3.1 Multi-Pulse Linear Predictive Coder  

Since its introduction in 1981 [3.14], the Multi-pulse Linear Predictive 

Coder (MPLPC) has been one of the most extensively reported and studied [3.15-

3.17]] techniques for medium-to-low bit rate speech coding. For nearly a 

decade before 1981, researchers had been searching for ways to improve the 

quality of speech at the bit rates between the medium-bit-rate waveform coders 

(down to about 16 Kbps) and the low-bit-rate pitch-excited vocoders (down to 

about 2.4 Kbps), but little progress had been made. MPLPC is the first 

technique to show real promise in this area. 

MPLPC is really a form of residual excited vocoder where the excitation 

information is generated and encoded in a special way. MPLPC derives its 

advantage from extensive utilization of the speech model and the LPC-estimated 

vocal tract transfer function. A block diagram of the MPLPC vocoder used in 
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this study is shown in Figure 3.3.1-1. In this system, the speech signal is 

first divided into two channels: the analysis channel, in which the LPC 

analysis and coding is performed; and the residual channel, in which the 

residual coding is performed. In the analysis channel, the first step is to 

apply a pre-emphasis filter of the form 

H(z) = 1-b 1 z -1 -b2z-2 	 3.3.1-1 

where the coefficients of the filter, b 1 
and b2, have been set so as to 

estimate the spectral shaping effect of the glottal pulse [3.4]. The output 

from this filter is then used as input to an autocorrelation LPC analysis 

routine which performs a tenth order LPC analysis and gives an estimated vocal 

tract filter of the form 

V(z) - 

1 

 

3.3.1-2 

10 
-n 

1- 1 a
n
z 

n=1 

 

This 10th order transfer function is then both coded for transmission and, in a 

separate operation, corrected to include the spectral shaping effects of the 

pre-emphasis filter, giving the 12th order transfer function 

V'(z) - 

1 

 

3.3.1-3 

10 

[1- 	a
n
z-11  ][ 1-b

1
z
-1

-b
2
z

2] 

n=1 

 

In the residual channel, the original sampled speech signal is first 

passed through an all-pass filter whose transfer function is given by 
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A(z) = 
b2 z

-2
+b z

-2
+1 
	

3.3.1-4 

1+b
1  z

-1
+b

2
z
-2 

This filter has the effect of approximately correcting for the non-minimum 

phase components of the original speech signal [3.4], which in turn, has the 

effect of both making the speech signal more peaky in appearance and also 

making the vocal tract model, V'(z), more nearly correct in a phase (as well 

as in a spectral) sense. 

The heart of the MPLPC is the Multi-Pulse Estimation and Encoding  

functions shown in the analysis channel in Figure 3.3.1-1. This function uses 

the phase corrected speech signal, s'(n), and the spectrally corrected vocal 

tract parameters, a'
1 

... a' 12 , in an iterative procedure to choose a set of 

residual pulses to be coded and transmitted. The entire procedure is performed 

in frames (60 samples per frame in this study) of which only a small number of 

pulses are kept for transmission (2 to 10 pulses in this study). Because of 

the sparse nature of the multi-pulse signal, run-length coding can be used to 

reduce the bit rate in the MPLPC residual signal. 

The 	iterative procedure for finding the multi-pulse locations and 

magnitudes used in this study can be summarized as follows. First, the ordinary 

residual signal [e o (n)] is formed, giving 

12 

eo (n)= s'(n) - 	a'(k) s'(n-k) 
	

3.3.1-5 

k=1 

Next, the modified vocal tract impulse response,  hw(n), is computed as 
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hw(n)=0 
	

n=0 	 3.3.1-6(a) 

12 

hr(n) = 	a'(k)71chw(n-k) 
	

1< n < M-1 
	

3.3.1-6(b) 

k=1 

where 7 and M are control parameters of the coder. Then the modified vocal 

tract autocorrelation filter, rw(n), is computed as 

rw(n) = w(n) * hw(-n) 	 3.3.1-7 

Using rw(n) and h
w
(n), the pulse locations and pulse amplitudes are computed in 

the following iterative procedure. First, the pulse index, p, is set to zero ( 

p <-- 0 ) and f (n) is computed as 

fp (n)= e0 (n) • rw(n) 	 3.3.1-8 

Then the time index which maximizes If (n)I is found giving N0 , the location of 

the p
th 

pulse (for p=0 first). The approximate amplitude of the p th 
pulse is 

then computed as 

Ap  = 	f (N ) 
	

3.3.1-9 

M-1 

h2w(m) 

m=0 

Once A is computed, the pulse index is incremented (p --> p+1), and then f (n) 

is computed as 

f
p
(n) = f

p-1
(n)-A

p
r
w
(n-N

p
) 
	

3.3.1-10 

The above steps are repeated until the desired number of pulse locations, 

N ...N 
0 	P-1' are found. The pulse amplitudes found by this procedure are sub- 

optimal, and once the pulse locations are found, a new set of P amplitudes can 
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be found in one step [3.14]. 

In this study, the intent was to generate a class of distortions which 

were typical of MPLPC, and not specifically to implement any particular 

algorithm. Hence, no actual run-length coding was performed and no precise bit 

rates were computed. In addition, the unquantized LPC vocal tract parameters 

were used to generate the synthetic speech. 

Another feature of the MPLPC is that once an estimate of the multi-pulse 

residual signal is known, it is possible to use that signal to obtain an 

improved estimate of the LPC vocal tract parameters. In this study, three 

different pulse rates (2/80, 6/80, and 10/80) were combined with original and 

improved LPC vocal tract parameters in order to form the six members of the 

MPLPC distortion sets. 

3.3.2 Adaptive Transform Coder  

One of the more successful methods for frequency domain speech coding is 

the adaptive transform coder (ATC). The basic concept on which the ATC is 

based involves encoding a spectral representation of the speech rather than the 

time domain waveform. The steps involved in the coding are: 1) windowing and 

transforming a segment of speech, 2) producing a model of the spectrum from LPC 

analysis and pitch detection, 3) dynamically allocating a predetermined number 

of bits among the transform coefficients using the model spectrum, and 4) 

adaptively quantizing the coefficients to the number of bits allocated. The 

decoder requires both the quantized transform coefficients' and the quantized 

LPC parameters of the model spectrum in order to resynthesize a speech 

waveform. From these parameters, the bit allocations and adaptation parameters 

which were used in the quantizers can be computed. Resynthesis results from 

decoding of the transform, inverse transformation, and overlap-add combination 

of adjacent segments. 

Our particular procedure follows closely with that of Tribolet and 
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Crochiere [3.18] with some modifications. 	The transform used in our analysis 

was the Discrete-Cosine-Transform (DCT) which is defined by: 

M-1 

Arc (k) = 	v(n)c(k)cos[(2n+1)Trk/2M]. 	 3.3.2-1 

n=0 

The inverse DCT is defined as 

1 M-1 

v(n) = - 	Vc(k)c(k)cos[(2n+1)Trk/2M], 
M 

k=0 

where in both formulas: 

3.3.2-2 

k=0,1,...,M-1 and, 

c(k) = 1 k=0 	 3.5.2-3 
2 k=1,2,...,M-1 

Note that this transform is real, and involves computation of M equally spaced 

frequency components from zero to the sampling frequency. The reasons for this 

particular transform's use include the fact that its coefficients are always 

real, it is relatively simple to compute (efficient algorithms involving FFT's 

exist), and it is purported to be immune to windowing effects when quantized. 

For the balance of the discussion, we will assume an 8kHz sampling rate 

for the digitized speech, since this was the case for all of the speech 

materials used in this study. The windows used for the analysis were 256 point 

trapezoids with a value of one for the center 240 points, and tapering linearly 

to zero on both sides. 	Adjacent segments were overlapped by 16 points, making 

an overall rate of one frame every 30 ms. 	A DCT of length 256 was applied for 

each segment. 
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In addition to the DCT analysis, 	another analysis was performed 

independently on data for spectrum modeling. 	A twelfth order LPC analysis 

using a 256 point windows was performed every 30 msec. 	Pitch detection was 

performed by an interactive, semi-automatic procedure to so as to minimize the 

probability of pitch and voicing error. These two components give rise to a 

smooth spectrum, a f (k), and a pitch spectrum, a (k), which are combined to a 

model spectrum a
s
(k)=a

f
(k)a (k). The estimate a

f
(k) was computed using a 

discrete Fourier transform (DFT) for the quantized linear prediction model over 

the first half of the unit circle. The pitch spectrum, a (k), DFT of is 

computed by windowing and then taking the 

oo 

P(n) = / (611212 ) 8 (n-mL) 
	

3.3.2-4 

m=0 

where L is the pitch and G is the ratio of the Lth lag autocorrelation term of 

the speech segment to the zeroth lag. 

The bit assignment was a function of a weighted version of the log of 

s
(k). This form of the bit assignment was specifically chosen so as to hide 

some of the quantization noise under the high energy spectral peaks. The 

algorithm was iterative and attempted to allocate B bits over M points, 

according to the formula 

b(k) = max 0, min[int[log 2 (as (k)a f ' 25 (k)) + 8], Nmaxli 	3.3.2-5 

where b(k) is the number of bits assigned to transform coefficient V c (k), 

int[a] truncates a to an integer, and max[a,b] and min[a,b] take the maximum 

and minimum respectively of the two arguments, Nmax is the maximum number of 

bits allowed for any one coefficient, and 8 is the parameter which is 

iteratively adjusted to make 
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M-1 

b(k) = B. 	 3.3.2-6 

k=0 

The parameters Nmax and B depend on the desired bit rate for the coding. 

It is valid to assume that Vc (k) is a zero mean Gaussian random variable 

(given only a s
(k) for estimation purposes) with variance equal to a s (k). The 

quantization procedure, therefore, consists of normalizing Vc (k) by a s (k) and 

then applying a non-uniform b(k)-bit quantizer optimized for a Gaussian process 

of unit variance. Parameters for the quantizer were taken from Max [3.19]. 

In all, N bits per segment are allowed for an (Nx8000)/240=Nx33.3 bits per 

second rate. Of these, B bits are 'main information' and N-B bits are 'side 

information,' which include LPC reflection coefficients, LPC gain, pitch gain 

(G from equation (3.3.2-5), and pitch. 

Resynthesis involves identical computation of b(k), a s (k), Iff (k), and 

(k), which are used to calculate the quantized versions of Vc (k) from the 

main information. 	An inverse DCT is then computed, and an overlap add is 

performed with the previous segment. The parameters use to control the 

adaptive transform coder are summarized in Table 3.3.2-1. 

3.3.3 Subband Coder  

In recent years, subband coders for digital speech coding at medium bit 

rates have been widely studies in the literature [3.20][3.21]. 	In the basic 

subband 
	

coding procedure (Figure 3.3.3-1), the speech is first split into 

frequency bands using a bank of bandpass filters. 	The individual bandpass 

signals are then decimated and encoded for transmission. 	At the receiver, the 

channel signals are decoded, interpolated, and added together to form the 

received signal. 	The subband coder derives its quality advantage by limiting 

the quantization noise from the encoding/decoding operation largely to the band 
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Bit 	Rate Number Bits In 
Side Information 
Per Frame 

Maximum Number 
of Bits Per 
Coefficient 

Number 	of Bits 
For Transform 
Quantization 

16 	kb/s 51 5 445 

12 	kb/s 44 4 316 

9.6 	kb/s 44 4 244 

8 	kb/s 44 4 204 

6 	kb/s 44 4 136 

4.8 kb/s 44 4 100 

Table 3.3.2-1 Control Parameters for the Adaptive Transform Coder (ATC-2) 
Coding Distortion 
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in which it is generated, thereby taking advantage of known properties of aural 

perception [3.22]. 

The basic component of octave-band tree-structured subband coders is the 

two-band analysis/reconstruction system shown in Figure 3.3.3-2. In this 

system, the analysis is performed by the two frequency selective filters, 

H
0 
 (e jw) and H

1
(e jw), which are nominally a half-band lowpass and a half-band 

highpass filter respectively. To preserve the system sampling rate, both 

channels are critically decimated at a rate of two-to-one, resulting in the two 

sub-sampled signals, Yo (e jw) and lye jw), given by 

Y-0 (e jw ) = (1/2)[H
0 
 (ejwa)X(

ejw/2)+H
0( 

ejo/2)x( ejw/2), 	
3.3.3-la 

lyejw) = (1/2)[H
1
(ejwaYX(e

jw/2)+H 
I
(_ejw/2):(_ejw/2)] 	

3.3.3-lb 

In the reconstruction section, the bands are recombined, giving 

X(e jw) = (1/2)[H0 (e jw)G0 (e jw )+111 (e jw )G1 (e jw )]X(e jw ) 

+(1/2)[H
0 
 (-e jw)G

0 
 (e .")+H (-e lw)G

1 
 (e lw)]X(-e 1w ) 

3.3.3-2 

The frequency response of the two-band linear system component is contained in 

the first term of equation 3.3.3-2, while the second term contains the 

aliasing. In the classic WI' solution, the aliasing is removed by defining the 

reconstruction filters as 

Go (e jw) = H1 (-e Jw ) 
	

3.3.3-3a 

G
1 
 (e jw) = -H

0 
 (-e jw ) 
	

3.3.3-3a 

This assignment forces the aliasing to zero, and results in a total system 

frequency response, C(e jw), of 

C(e jw) = (1/2)H0 (e Jw)ly-e jw)-(1/2)H1 (e jw)H0 (-e jw ) 	 3.3.3-4 
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In the conventional solution, the high-pass filter [11 1 (e jn] and low-pass 

filter [H
0 
 (e jn] are chosen to be frequency shifted versions of each other, 

i.e. 

	

H
1 
 (e ic° )=H

0 
 (-e jw ) 
	

3.3.3-5 

For this class of analysis/reconstruction system, exact reconstruction requires 

that 

	

II6e i(6 ) - lice j(6 ) = 2 	 3.3.3-6 

A number of authors using various methods have designed FIR filters which 

approximate this condition. The analysis/reconstruction systems used in this 

study all were based on quadrature mirror filters design by Johnston [3.23], 

and the systems were simulated as described by Barnwell [3.21]. 	The APCM 

coders used in this study are based on work by Jayant [3.24]. 	The adaptive 

quantizer in these systems are controlled by the dynamic steps-size A(n), given 

by 

A(n) = A(n-1) x F[c(n-1)] 	 3.3.3-7 

where c(n) is the n
th 

code word and F[ ] is a preset control function. 	The 

control functions for the APCM coders used in this study are given in Table 

3.3.3-1, while the control parameters for the individual systems are shown in 

Table 3.3.3-2. 

3.3.4 Channel Vocoder  

The channel vocoder which was realized was a thirty band system which 

occupied the frequency range of 0-3.6 kilohertz. 	A block diagram for each 

the channels (analysis and synthesis ports) is given in Figure 3.3.4-1. 

The filters in both the analysis and synthesis filter banks were all 

realized using recursive elliptic filters implemented as a cascade of second 
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APCM Coders for Subband Coding 

Magnitude of Code Word [1c(n)1] 

Number of Bits 
per Sample 

4 

0 

.9 

1 

.9 

2 

.9 

3 

.9 

4 

1.2 

5 

1.6 

6 

2.0 

7 

2.4 

3 .85 .9 1.4 2.0 

2 .85 1.9 

Table 3.3.3-1 Control Function F[ ] for the AMU Coders Used in the Imple-
mentation of the Subband Coders 

Subband Coder Control Parameters 

Coder Number 
of 

1 2 3 4 5 Harmonic 
Scaling 

Bit Rate 

Bands 

SUB-1 5 4 4 2 2 2 No 16000 

SUB-2 5 3 3 2 2 2 No 14000 

SUB-3 4 4 3 2 2 No 12000 

SUB-4 5 4 4 2 2 2 Yes 8000 

SUB-5 5 3 3 2 2 2 Yes 7000 

SUB-6 4 4 3 2 2 Yes 6000 

Table 3.3.3-2 Control Parameters for the Six Subband Coders Implemented as 
Part of This Study 
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Figure 3.2.4.1 Block Diagram of Channel i. 



order sections. All of the filters had an identical bandwidth of 120 Hz. The 

characteristics of each of the filters are given in Table 3.3.4-1. Exactly the 

same filters were used in the corresponding analysis and synthesis banks for 

each channel. 

The filtered speech signal x.(n) was divided into frames of N samples. 

After some experimentation, N was chosen to be 215 in the final realization. 

Then, for each frame, the normalized square root of the energy of the windowed 

signal x i (n) is computed as 

N 

[w(n)x(n)] 2  

1/2 

n=1 
3.3.4-1 y i (m) 

N 

w2 (n) 

n=1 

where m is the frame number and n indexes through all the points in the frame. 

A Hamming window function was used used for w(n), given by 

w(n) =0.54 - 0.46 cos(-27-1111 ) 	 3.3.4-2 
N 

For the channel coding, a uniform quantizer was used for the positive 

signal y i (m). In the final realizations, the numbers of bits used were 

9,10,11,12,14 and 16 (unquantized version) respectively. 

The pitch period estimations used for the channel vocoder were exactly the 

same as those use for the adaptive transform coder (see section 3.3.2). These 

pitch period signals were generated using a semi-automatic pitch detection 

program which minimized pitch and voicing errors. 	The pitch periods were 

estimated every 120 samples (15 msec). 	The excitation signal, p(n), is 

generated as follows: for unvoiced sounds, a uniformly distributed white random 
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Filter Hank for the Channel Vocoder Implementation 

Filter # Low Cutoff 
Frequency 

(kHz) 

High Cutoff 
Frequency 

(kHz) 

Order 

1 0 0.120 8 
2 0.120 0.240 12 
3 0.240 0.360 12 
4 0.360 0.480 12 
5 0.480 0.600 12 
6 0.600 0.720 12 
7 0.720 0.840 12 
8 0.840 0.960 12 
9 0.960 1.080 12 

10 1.080 1.200 12 
11 1.200 1.320 12 
12 1.320 1.440 12 
13 1.440 1.560 12 
14 1.560 1.680 12 
15 1.680 1.800 12 
16 1.800 1.920 12 
17 1.920 2.040 12 
18 2.060 2.160 12 
19 2.160 2.280 12 
20 2.280 2.600 12 
21 2.600 2.520 12 
22 2.520 2.640 12 
23 2.640 2.760 12 
24 2.760 2.880 12 
25 2.880 3.000 12 
26 3.000 3.120 12 
27 3.120 3.240 12 
28 3.240 3.360 12 
29 3.360 3.480 12 
30 3.480 3.600 12 

Table 3.3.4-1 Filter Hank Characteristics for the Implementation of the Channel 
Vocoder Distortions 
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Control Parameters for the Channel Voocder Distortion 

System Number Bits Per Channel Bit Rate per Channel 
(Bits/Second) 

1 9 600 

2 10 667 

3 11 733 

4 12 800 

5 14 933 

6 16 1067 

Table 3.3.4-2 Control Parameters for the Channel Vocoder Distortion. 	For this 
Distortion, the Sampling Rate was 8 kHz., the Frame Size was 120 
Samples, and the Number of Channels was Thirty. 
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process with standard deviation G
N 

is used; 	for voices sounds, a periodic 

pulse train with the correct period and amplitude G is used. 	The choice of 

the gains G. and Gp  was critical. 	A ratio G.13/G=10  was found to be 

appropriate. 

In the receiver, the excitation p(n) is multiplied by the transmitted 

signal t
i
(m) to create z . (n). This signal, in turn, is filtered to generate 

the channel signals, s.(n), which are all summed to create the output speech 

signal. The control parameters for the channel vocoder are summarized in Table 

3.3.4-2 

3.3.5  ADPCM with Noise Feedback  

In this context, noise feedback refers to a class of analysis procedures, 

introduced by Atal and Schroeder [3.25], which can be applied at the 

transmitter of either an APC and ADPCM speech coding system in order to 

systematically control the spectral shape of the coding noise generated at the 

receiver. The reason for doing this is to take advantage of the aural noise  

masking effect which has been studied in psychoacoustics. This effect, 

compactly stated, is that in aural perception, a strong signal source will 

tend to mask less strong noise sources which are located close to it in 

frequency. Hence, it is desirable to shape the coding noise in such a way that 

the noise energy is placed near the speech signal energy in the short-time 

frequency domain. 

The fundamentals of the noise feedback technique are illustrated in Figure 

3.3.5-1. A key feature of this technique is that it is applied only at the 

transmitter of APC or ADPCM systems, and the receivers which are used are 

standard, unmodified APC or ADPCM receivers. Both APC and ADPCM encode a 

residual signal, e(n), which is obtained by passing the original signal through 

either a variable (APC) or fixed (ADPCM) whitening filter. In the traditional 

system, after quantization, the residual signal, E(z), is given by 
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Figure 3.3.5-1. ADPCM with Noise Feedback. 



E(z) = [1-P(z)]S(z) + [1-P(z)]A(z) 	 3.3.5-1 

where P(z) is the transfer function of the prediction filter, S(z) is the z-

transform of the original speech signal and A(z) is the z-transform of the 

quantization noise signal, a(n). At the receiver, an estimate of the original 

signal, S'(z), is created by passing the transmitted residual signal through 

the inverse whitening filter, giving 

	

S'(z) = E(z)/[1-P(z)] = S(z) + A(z) 	 3.3.5-2 

Hence, in an ordinary ADPCH or APC, the output signal is the sum of the input 

signal and the quantization noise signal. Since the quantization noise is 

nearly white, then the noise is distributed uniformly across the entire 

frequency band, independent of the short-time frequency spectrum of the speech. 

In a noise feedback approach (Figure 3.3.5-1), the quantization noise is 

explicitly filtered separately from the speech signal, and the residual signal 

can be written as 

	

E(z) = [1-P(z)]S(z) + [1-F(z)]A(z) 	 3.3.5-3 

giving an estimated speech signal at the receiver of 

S'(z) = E(z)/[1-P(z)] = S(z) + 1 - 1-F(z)1A(z) 
	

3.3.5-4 
1-P(z)j 

Hence the approximately white noise signal, A(z), is passed through the filter 

whose transfer function is given by [1-F(z)]/[1-P(z)]. Clearly, by varying the 

characteristics of F(z) on a frame-by-frame basis (since P(z) is always known 

whether it is fixed or time-varying), it is possible to shape the noise to any 

desired shape. An important point here is that the minimum noise energy always 

occurs for no noise shaping, i.e. F(z)=P(z). Hence, the effect of noise 
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feedback is always both to shape the noise and to increase the overall noise 

energy. 

In this study, the coding system utilized was always an ADPCM coder with a 

single tap fixed predictor, and the noise feedback filter was designed so that 

10 

1 - 1 az
-n 

1-F(z) 	= 	n=1
n 

 
1-P(z) 	 10 

1 - L any
n
z
-n  

n=1 

where y is a control parameter, and P(z) = .9z -1
. The control parameters used 

for this distortion are shown in Table 3.3.5-1. 

3.4 Effects  of Coding Distortions  on Subjective Responses  

3.4.1 The Effects  of Multi-Pulse  LPC on Subjective Responses  

The effects of Multi-Pulse LPC on subjective responses are illustrated in 

Figure 3.4.1-1. There are several point which should be noted here. First, 

the Multi-Pulse LPC is capable of generating quite high quality systems at 

relatively low bit rates. In fact, the only coding system in this study which 

resulted in better quality was an ATC which operated at about twice the 

equivalent bit rate of the Multi-Pulse LPC. Second, the technique of using the 

estimated excitation function to improve the LPC analysis (systems 2, 4, and 6 

of the MPLPC distortion) gives a consistent improvement for the lowest bit 

rates (2/80) but has little impact at the higher rates. Third, the MPLPC tends 

to excite a broad class of parametric distortion scales, including SF (system 

fluttering), SH (system highpass), SL (system lowpass), and SD (system 

distorted) as well as BF (background fluttering). However, on many of these 

scales the responses are bi-modal depending on whether there are enough pulses 
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Control Parameters for ADPCM with Noise Feedback 

Coder Quantizer 
Levels 

Number of 
LPC Taps 

Predictor 
Coefficient 

NF-1 4 .8 10 .9 

NF-2 6 .8 10 .9 

NF-3 8 .8 10 .9 

NF-4 12 .8 10 .9 

NF-5 16 .8 10 .9 

NF-6 32 .8 10 .9 

ADP-1 4 1 .9 

ADP-2 6 1 .9 

ADP-3 8 1 .9 

ADP-4 12 1 .9 

Table 3.3.5-1 Control Parameters for the ADPCM Systems with and without 
Noise Feedback Used in this Study 
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in the residual representation to support the true pitch. 	If this effect is 

corrected, most of the perceived distortion occurs on the SF and BF scales. 

3.4.2 The Effects of the Adaptive Transform Coder on Subjective Responses  

The results of the subjective quality evaluation of the ATC is shown in 

Figure 3.4.2-1. The ATC clearly lives up to its billing as a high quality 

waveform coder for medium bit rates, with near toll quality performance at 16 

Kbps. Like the MPLPC, the ATC excites a number of parametric quality scales. 

Clearly, the ATC distortion is mostly perceived as SF (system fluttering) and 

BF (background fluttering). However there are also non-trivial deviations 

shown on the SN (system nasal), SD (system distorted), and SL (system lowpass) 

scales. The spread of subjective quality results for this distortion is 

excellent, so the fundamental design criteria as been met. 

3.4.3 The Effects of the Subband Coder on Subjective Responses  

Figure 3.4.3-1 shows the results of the subband coder distortions on 

subjective quality. 	Like all of the previous distortions, the subband coder 

distortion exhibits a good range of subjective responses. 	The subband coder 

also exhibits a distinct bi-modal behavior for a number of parametric scales, 

specifically SF (system fluttering), SN (system nasal), and BF (background 

fluttering). This is a direct reflection of the inclusion or exclusion of time 

domain harmonic scaling in the subband coding system. The basic subband coder 

distortion shows up mostly on the SD (system distorted) scale, while the TDHS 

excites mostly the SF (system fluttering), SN (system nasal), and BF 

(background fluttering) parametric scales. 

3.4.4 The Effects of the Channel Vocoder on Subjective Responses  

The subjective results for the Channel Vocoder distortion are shown in 

Figure 3.4.4-1. Of all the coding distortions in this study, the channel 

vocoder was the least successful in generating a good range of subjective 
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responses. 	However, the results are still adequate for use in the subjective 

data base. 	It is clear from Figure 3.4.4-1 that most of the channel vocoder 

distortion shows up on the SN (system nasal) and BN (background noisy) scales. 

3.4.5 The Effects of the ADPCM with Noise Feedback on Subjective Responses  

Figure 3.4.5-1 shows the results of the subjective quality tests applied 

to the ADPCM-NF distortion. 	As can be seen from Figure 3.4.5-1, this 

distortion exhibits a good range of subjective responses. 	Almost all of the 

distortion shows up on the SD (system distorted) parametric scale, as is 

typical of many waveform coder systems. One of the claims made for the noise 

feedback approach is that for equivalent bit rate systems, noise feedback 

generally results in improved quality over systems without noise feedback. 

Figure 3.4.5-2 shows the results of subjective tests applied to equivalent 

ADPCM systems without noise feedback for the four lowest bit rate systems. 

Clearly, from these tests it appears that there is no measurable advantage to 

using noise feedback. 

3.5 The Effect of the New Distortions on the Correlation Analyses  

Once the new distortions were incorporated into the existing data bases, 

extensive tests were conducted to find the impact of the new distortions on 

both the correlation coefficients computed in this study and those computed in 

previous studies. The basic result of these analyses was that the correlation 

coefficients computed on the old data bases and those computed on the new data 

bases were very similar, and all the previously stated results were still valid 

for the expanded distortion ensemble. 
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CHAPTER 4 

MODELING OF HUMAN HEARING FOR OBJECTIVE 
SPEECH QUALITY ASSESSMENT 

4.1 Background and Theory 

Distortions of speech resulting from coding can only be detected if the 

magnitude of the distortion is greater than the resolution of 	the human 

auditory system. 	Once a distortion is perceivable, a subjective evaluation of 

the degree of distortion relates to the scaling properties of the auditory 

system. (The auditory system includes both peripheral and central components.) 

Our modeling approach will not deal specifically with speech perception, but 

rather, with the basic psychophysics of hearing. We will specifically restrict 

ourselves to look only at differences in coded and uncoded speech and try to 

quantify these differences. This approach obviously cannot address all issues, 

but for the coders under consideration it should be of some merit. Due to the 

lack of higher order modeling, it is expected that our models will more readily 

agree with subjective results for waveform coder type distortions than more 

complex distortions. Some of the key issues with hearing will be frequency, 

temporal, and intensity resolutions as well as their perceptual scalings. 

Frequency differentiation appears to be comprised of at least two separate 

phenomena, one for stimuli composed of harmonically related components (pitch) 

and another for more general stimuli. 

Pitch perception can be accurate to within 0.3%, but is applicable only to 

signals with specific periodicity. When the complex tones (stimuli composed of 

multiple sinusoids) have inharmonic components, (roughly seven or more) they 

cannot be perceived individually. 	This is the point where the pitch detection 

ability of human observers becomes too confused to function. 	Current 

indications are that pitch perception is a highly central neural process which 

must be modeled at a level much beyond the auditory periphery, and will 
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therefore be considered beyond the scope of our analysis. 

Frequency resolution in general signals is much poorer than pitch 

perception for periodic signals and is determined by other basic properties. 

Most theories use the notion of critical bands which correspond to the presumed 

filtering action of the auditory system. None of the many attempts to explain 

psychophysical measurements of critical bands measurements solely on the basis 

peripheral auditory physiology up through the auditory nerve have been 

satisfactory. It is probable that a portion of this filtering is effected in 

more central neural mechanisms, and that such data as auditory nerve tuning 

curves would provide an incomplete model for speech perception. We therefore 

believe the most appropriate frequency analysis should be based on 

psychoacoustical measurements. Table 4.1-1 lists a set of experimentally 

determined critical bands which span a large fraction of the audible spectrum. 

Note the non-uniform bandwidths and center frequency spacing. 

A well-known property of linear filters is the inverse proportionality of 

temporal and frequency resolution (bandwidths versus risetime). Consequently, 

as a filter's bandwidth increases, more precision in timing is possible. Nerve 

latency data suggests a lower limit for auditory resolution of around 2 ms. 

Low frequency stimuli give significantly worse resolution due to the 

corresponding narrower bandwidths of the low frequency channels, however, and 

temporal resolution in this range is roughly 10 ms. Although such stimuli as 

clicks can be resolved even when separated by as little as 2 ms, undesirable 

effects emerge when speech perception is modeled with such acuity. For 

example, pitch periods of a voiced segment of speech would be resolved. Since 

our analysis does not include the provision for using this information, an 

overall model resolution of no better than 10 ms for any channel is 

appropriate. 
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Filter Number Center Frequency Bandwidth 

1. 50.00 70.000 
2. 120.00 70.000 
3. 190.00 70.000 
4. 260.00 70.000 
5. 330.00 70.000 
6. 400.00 70.000 
7. 470.00 70.000 
8. 540.00 77.372 
9. 617.37 86.005 
10. 703.37 95.339 
11. 798.71 105.411 
12. 904.12 116.256 
13. 1020.38 127.914 
14. 1148.30 140.423 
15. 1288.72 153.823 
16. 1442.54 168.154 

17. 1610.70 183.457 
18. 1794.16 199.776 
19. 1993.93 217.153 
20. 2211.08 235.631 
21. 2446.71 255.255 
22. 2701.97 276.072 
23. 2978.04 298.126 
24. 3276.17 321.465 
25. 3597.63 346.136 

Table 4.1-1 Critical Band Center Frequencies and Bandwidths Used. 
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Intensity is perceived as a nonlinear function of the energies in the 

various critical bands. The first step of analysis is filter output envelope 

detection. Various mechanisms have been postulated, which include many 

different types of nonlinearity followed by linear filtering, resulting in a 

slowly varying signal for each channel. The second step involves relating the 

envelopes to perceived loudness, JND's (just noticeable differences), or other 

measures. 

Masking is a mechanism undoubtedly arising from both peripheral and 

central processing. Critical band measurements often involve steady-state 

signals masking other signals, or 	simultaneous masking. 	Critical band 

decompositions naturally model this masking. Another form of masking occurs 

between signals separated in time. Most of the nonsimultaneous masking 

theories involve exponential decay of masking functions with time with or 

without frequency-dependent time constants. 

4.2 Analysis Procedures  

To assess the quality of coded and distorted speech using aural models, we 

must take into account the audibility of differences in the signals. Since we 

are assuming all of the distortions in the study are perceivable, the task 

becomes one of quantifying these differences. 

The ear's frequency resolving ability strongly suggests a spectral 

analysis should be done to both the reference (original) speech and the 

distorted speech. 	Hence, in this study, analysis paralleling critical band 

filtering was performed. 	Of the many alternatives for the computation of the 

critical band-spectrum, such as LPC spectra, DFT's of windowed speech (Time 

dependent Fourier Transforms), and filter bank analysis, we chose the first and 

the last. The ear shows little sensitivity to phase as long as components are 

not within critical bands, and appears to respond to energy as a function of 

frequency. Our analysis involved short-time spectral densities. We will 
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denote the energy: IV(n,s,d,m)1 2  where n is the time index, s the speaker, d 

the distortion (d=i means no distortion) and m is a discrete variable 

representing the critical band over which the energy is summed. In the LPC 

method, a high density DFT of the LPC spectrum is computed, and the energy in 

critical bands is summed. 	The windows for summation in the frequency domain 

should look like Figure 4.2-1 for auditory modeling. 	The pre-emphasis of 

roughly 3 dB/octave inherent in the wider bandwidths must be compensated. 	The 

problem with the previously mentioned computations is that although bandwidths 

increase with frequency, time resolution is not proportionally enhanced. To 

this end, we perform digital filtering and envelope detection instead, where 

critical band energies can be sampled faster for wider bandwidth channels than 

narrow ones. 

Once critical band spectra were computed for original and undistorted 

data, comparisons were made. Sensation and auditory nerve firing rates require 

a nonlinear scaling of the energy envelopes. For an isolated filter's energy 

at an isolated time (one frame), the critical band spectral distance between 

the reference and distorted speech frame for that channel should be a monotonic 

function of the magnitude difference of the non-linearly scaled energies in the 

two. Here, the distance would be of the form: 

D
M 

= [If
1
[V(n,s,i,m)] - f

1 
 [ign,s,d,m)]1] 
	

4.2.1 

where f
1 ( ) is a non-linearity such as a logarithm or power 	function. 

Combination of the different frequency band contributions to the overall frame 

distance requires both a nonlinearity applied to D in , as well as a weighting 

which we assume will depend on the band's energy. 

89 



FREQUENCY WV 

Figure 4.2-1 Critical Band Filters. 
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L-1 

F
n 

= 	[f
2
(V(ns

'
dm)f

3
(D
m
)] 
	

4.2.2 

n=0 

where the index of summation, n, covers all critical bands. 	Previous work 

suggests that f 3 ( ) should be I  I P  where P is a positive integer, and f 2 ( ) is 

a monotonic non-linearity such as logarithm or a power function. Combination 

of frames to arrive at an overall measure is accomplished in a similar manner: 

W
n
f
4
(F
n

)  
Overall distance = 	n 	 .3 

W
n 

where W
n 

is a weighting function denoting frame n's overall importance, and 

f
4
( ) is usually the inverse function of f

3
( ). 	In our study, we only used 

f 3 = I I P 
 and f

4  = I 1 1/13 - Note that these choices amount to computing L 

norms for L dimensional vectors comprised of the nonlinearly transformed 

magnitude spectral samples. 

This established framework allows for a large number of theories to be 

tested. The f
1
( ) nonlinearity can be modeled by the JND structure for bands, 

or instead by the form that perceived loudness takes on as a function of 

intensity. In the first case, a logarithm should be used, and in the second, a 

non-integer power function is appropriate. By the same logic, f 2 ( ) should 

take on a similar form, although the two non-linearities need not be the same. 

We can also allow the functions to estimate at maximum and minimum value. 	As 

mentioned, f
3
( ) and f

4
( ) are of the form I IP and  I 11/13- 	This allows 

frequency based combinations to follow as L norm measures. 	Another more 

complex set of measures we called Klatt measures were employed, and will be 
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described in more detail below. 

4.2.1 Log Spectral Distance Measures  

According to the notion that the perceived intensity of one stimulus to 

another is proportional to the ratio of the two intensities (Fechner's law) or 

that intensity resolvability is proportional to intensity (Weber's law), the f l 

 nonlinearity should be logarithmic. With the notation that F(n.s,d) is the 

frame distance for speaker s, frame n, and distortion d 

F
n 

= F(n,s,d) - 

L-1 
s

'
m) 

' 11/(n,s,0,m)1711oe "1/(n' 	11 
V(n,s,d,m) m=0 

1/P 

4.2.1.1 

L-1 

hr(n,s,40,m)1 7  

m=0 

was used. 

4.2.2 Power Function Spectral Measures  

Psychophysical measurements point to significant modeling errors obtained 

from application of Fechner's or Weber's law. 	A more accurate model states 

that the perceptual intensity doubles for every N dB increase 	is usually set 

to 10). Therefore, if we let i ll)  and i 2p  be the perceived intensities, and 

and i
2 be the actual intensities, the relation is: 

 

log2 (---
lp  

) = N log10 ( 11 ) 

 '2p 	 i2 

4.2.2.1 

or 

1p= 2 (N/10)log
10 (7) 

i
2p 	

12 4.2.2.2 
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Band Number Weight 

1 .003 
2 .003 
3 .003 
4 .007 
5 .010 
6 .016 
7 .016 
8 .017 
9 .017 
10 .022 
11 .027 
12 .028 
13 .030 
14 .032 
15 .034 
16 .035 
17 .037 
18 .036 
19 .036 
20 .033 
21 .030 
22 .029 
23 .027 
24 .026 
25 .026 

Table 4.2.2-1 Articulation Index Weights 
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= 2
(N/10)(log2 10) (log2 ( 1 1)) 

i
2 

4.2.2.3 

= 2 log2 [(i 1 /i 2 ).3N/10] 	 4.2.2.4 

i2)  .03N 
4.2.2.5 

Therefore perceived intensity grows as magnitude to the .06N power. 	If N=10, 

this exponent becomes .6. 	A general form in which the exponent is left a free 

parameter, 8, would result in: 

f 1  (x) = x8 

Therefore: 

L-1 

Or(n.s.i.m)) y IV(n,s.e,m) 8-3/( 1 ,s,d,m) 8 1 P  

m=0 

L-1 

V(n,s4,m) 

m=0 

F
n 

4.2.2.6 

1/P 

4.2.2.7 

4.2.3 Articulation  Index Approximation 

Although our goal is to characterize the quality of speech rather than its 

the intelligibility of speech, there should be some similarities in estimation 

methods for both. One set of procedures useful for predicting intelligibility 

from a description of signal to noise ratio as a function of frequency falls 

under the category of articulation theory. 	The computed value, articulation 

index, can be calculated in a variety of ways. 	Kryter's method [4.1] divides 

the frequency scale into 1/3-octave bands. 	Signal to noise ratios (SNR's in 

dB) are computed for each band, with a maximum of 30 dB, and a minimum of 0 dB 

allowed in each band. Band specific weights, listed in Table 4.2.2-1, are 

applied to each SNR, and these weighted values are summed. 
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There are a number of differences between this method and our approach. 

First of all, our filters are not 1/3-octave, but rather are critical bands. If 

anything, our analysis should be an improvement over Kryter's analysis which is 

only a critical band approximation. The weights which are used for the 1/3-

octave filter bank can be interpolated to produce the appropriate weights for 

our procedure. Second, in our framework, only approximate SNR's are computed. 

This is accomplished by observing the differences in the original and the 

distorted filter bank signal energies. Third, we do not look at long term 

SNR's, but merely averages over many frames. With the differences kept in 

mind, our version of the articulation index gives a frame measure of: 

L-1 

F
n 	

W = 	maxiO, min[20log
10

V(4,,m -20log io lVA),m)-11(d,m)1,3013. 	4.2.3.1a m 
m= 0 

L-1 

= W N 

m=0 

4.2.3.1b 

So that additional degrees of freedom could be incorporated into the model, we 

allowed an energy dependent frequency weighting as well as L norm for 

frequency band combinations. The resulting frame distances: 

L-1 

/ IvIn.s.i.mgY (N)P 

 m=0 

L-1 

IV(n,s,i,m)rY  
m=1 

F
n 

= 

1/P 

4.2.3.2 

appear similar to the log spectral distances. 
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4.2.4 Forward Masking Models  

Simultaneous masking of signals is modeled by the critical band analysis, 

which describes masking as a function of frequency separation. Temporal 

masking, masking of one stimulus by another separated in time, also occurs. 

Because the effect is more dramatic when the masker precedes the target 

(forward masking) than the reverse (backward masking), only forward masking was 

considered. Various experiments indicate that masking level decays 

exponentially in dB with linear time [4.2] separation. The time constant for a 

1000 Hz stimulus is roughly 75 ms. In other words, if the masking level of a 

stimulus is 80 dB at t=0, at t=75 it will be 80/e dB=30 dB. Denote T
1 
the time 

constant for frequency m. If the masking level at time t for frequency m and a 

stimulus which is no longer present is M(t,m), it would be M(t,m)/e at t=t+T 1 

 or M(t+t1 ,m)=M(t,m)/e. This amounts to a frequency dependent smoothing for 

each filter's envelope which can be accomplished by: 

M(n+1,s,1,m) = r004(n,s,i,m)+20log 	 4.2.4.1 
10 

The constant r(m) specifies the amount of smoothing and is frequency dependent. 

The new values, M(n,s,4,m), can be placed into the same framework as V( ) in 

the log spectral distance measures. 

4.2.5 Klatt-Type Measures  

One interesting frame distance measure which was originally formulated for 

speech perception modeling has been presented by Klatt [4.3]. This measure was 

based on the observation that certain distortions (e.g., addition of a spectral 

tilt) may result in large psychoacoustic differences, but charge the perceived 

phonetic units very little. Four basic points were proposed by Klatt: 

1) Frequency decomposition should be made which is based on critical- 
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bands. 

2) Intensities within the frequency bands should be measured in dB SPL. 

3) The slopes of the log critical-band spectra should be compared rather 

than the spectra themselves. 

4) Differences in slopes of the log critical-band spectra should be 

weighted in a manner which weights peaks more than valleys. 

Klatt's basic distance was of the form 

D12 = 	7110[S1(i)-S2(012 
	

4.2.5.1 

i 

where S1 and S2 are spectral slopes and W(i) is the weighting for each band. 

By suitable adjustment of free parameters, correlation between 

experimentally obtained phonetic distance judgments using isolated, synthetic, 

steady-state vowels and the above measure achieved a correlation of .93 using 

this objective measure. Our feelings were that although these tasks are quite 

different from ours, some of the same factors may be involved in subjective 

phonetic distance judgments as in subjective quality evaluations. 

4.3 Objective Measures  

In this section we will describe the implementation of the objective 

measures which were introduced earlier. 

4.3.1 Filter-Bank Analysis  

The critical-band filters were designed in accordance with measurements 

and theory presented by Patterson [4.4]. Filter shapes were Gaussian, with the 

center frequencies and bandwidths listed in Table 4.1-1. 	Twenty-five filters 

were used to cover the spectrum 04000 Hz. 	All filters were designed using a 

97-point Hamming window. 	Finite impulse response filtering was performed on 

the original and distorted waveforms, and RMS values were computed every 10 
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msec using a 20 msec Hamming window. 

4.3.2 Frame Combinations  

The main concentration of our objective measures work involved exploration 

of how the 10 ms frames from the distorted and original speech signals should 

be compared. 	For a given set of frame distances, F(n,s,d), objective quality 

was computed by simply averaging F(n,s,d) over n. 	In the previous study, 

Barnwell and Voiers had found that weighting frames by some function of their 

energies did not improve the performance of the objective measures tested 

[4.5]. We use this result as justification of our procedure. 

4.3.3 Frequency Weighted Objective Measures  

In the log spectral measures, frame distances were of the form shown in 

equation 4.2.1.1. 	Here L=25, and the m index denotes the different critical 

band channels. 	The free parameters were 7 and P. 	The values used were 

y=0,.2,.4,.6,1.0, and P=.2,.5,1,2,3. 

The power function spectral measures were as in equation 4.2.2.7, with 

free parameters y, P, and 8. The values used were y=0,1,; P=1,2,3,; and 

8=.2,.3,.6, 1.0, 1.5, and 2.0. 

The articulation index approximation as in equation 4.2.3.2 left the free 

parameters 7=0,.2,.4,.6,1.0, and P=.2,.5,1,2, and 3. Also, in order to 

investigate the effect of the value of the weighting vector W listed in Table 

4.2, all experiments were repeated with no weighting, i.e., a weighting vector 

with all elements of W equal to 1. 

The forward masking models in accordance with Duifuis [4.2] allowed 

exponential decay of the log intensities. 	The frame measure was generated as 

shown in 4.2.1.1 but with M from equation 4.2.3.2 substituted for V. 	Because 

of earlier results, we fixed y at 0, and let P and r(m) (specifying rate of 

decay - see equation 4.13) vary. 	The range for P was .2,.5,1,2, and 3, and 

r(m) varied over the range 0,.2,.5,.9,.95. 	Note that the value 0 is the 
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extreme of case of no masking or a time constant of 0, and the other values 

lead to time constants of 6, 14, 95, and 195 ms respectively. 

For the Klatt-type measures, we use Klatt's basic form as listed in 

equation 4.2.4.1, with slight modification. First, we define the slope of the 

spectrum as 

S(n,s,d,m)=201og 10 [y(n,s,d,m+1)]-201og 10 [V(n,s,d,m)] 	4.3.3.1 

where V( ) is as before. 	Due to the fact that we have 25 spectral values, the 

index varies between 1 and 24. 	Not wishing to restrict ourselves to L 2  

norms, we modified 4.2.4.1 to allow a free parameter, P, which gave a frame 

distance: 

24 

2 Mr(m)1S(n,s,i,m)-S(n,s,d,m)I 
P 	1/P 

m= 1 

F(n,s,d) = 4.3.3.2 

W( ) depends on both the distorted and original frames, and is specified by 

M(m)=DV(i,m)+W(d,m)]/2, 	 4.3.3.3 

where W(d,m) depends solely on the spectrum V(n,s,d,k), for k=1 to 24. 

W(d,m) = 
	 C

l  

[C 1+maxV(n,s,d,k)-V(n,s,d,m) ] 
k 

C
2 

4.3.3.4 
[C2+local V(n,s,d,m)-V(n,s,d,m)] 

max m 

The max V(n,s,d,k) term indicates the maximum value V(n,s,d,k) achieves as k is 
m 

varied, and local V(n,s,d,m) indicates the value V(n,s,d,k) takes on at the 
max m 

closest peak to frequency band m. 	The free parameters are C l , C2, and P. 
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Values chosen were C =10 20 30 40 50 60 100 and 1000, C
2 

= .5,1,2,10,100, and 

1000, P=.5,1,2. Please note that for the cases C
1 
and C

2 
large, the weighting 

approaches 1 for all frequencies. 

4.3.4 Trained Measures  

Outside of critical bands, minimal auditory interaction takes place. 	In 

speech, however significant correlations exist across bands. In addition, for 

the set of distortions in our tests, individual frequency band distances should 

show some correlation with each other. A way of accounting for this would be 

to find the best linear combination of frequency based distances for predicting 

subjective quality. 	This procedure would amount to choosing a weighting 

vector, 	Il(m),m=1,2,...,25, to maximize objective and subjective quality 

correlation. 	In this study, optimum vectors were computed for four contexts. 

The first two contexts weighted different frequency bands for the log spectral 

measure as in equation 4.2.1.1, but with the constraints: ..11=0 and P=2, giving 

the form: 

/ m' 
 log V(n,s,.m) 12 

m 	V(n,s,d,m) 
F
n 

= 4.3.4.1 

In one, all 25 bands were employed, whereas in the second, five bands were 

determined by summing filter energies in groups of 5 at a time. A similar 

procedure was performed for the power-law spectral distance, where y, 8, and P 

for equation 4.2.2.7 were set to 0,.2, and 2 respectively, giving frame 

distances of: 

1/2 
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2 W IVIn,s,,,m)
8 
 -V(n,s,d,m)

81 
 

m 

1/2 	
4.3.4.2 F

n 
= 

In this, both 5 and 25 band analyses were performed. 

The two results of each analysis of interest are the actual weighting 

vector as well as the correlation achieved. 

4.4 Results  

The computed objective measures were calculated with the composite 

acceptability subjective measure described in Chapter 2. The figure-of-merit 

used in this portion of the research was the magnitude of the estimated 

correlation coefficients, p. 

4.4.1 Log-Spectral Distance Measures 

Log-spectral distance measures of the form given in equation 4.13 were 

tested using the free parameters given in section 4.3.3. The following 

observations were made. 

1. For P held fixed, and y varied, best correlation resulted from y=0.0, for 

all values of P. 	Furthermore, the degree of correlation invariably 

decreased as y moved further away from 0.0 in value. 

2. For y held fixed, and P varied, best correlation resulted from P=2 or P=3 

with P=1 giving reasonably close performance. 	Values of P less than 1 

were inferior in performance to the larger values in all cases. 

3. Of the 25 combinations of parameters, the top five were: 
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P 	 IPI 

2 

.2 

3 

1 

2 

2 

2 

larger 	than 1. 

.71 

.16 

.51 

.58 

.72 

.93 

.72 

Pole 

Rank P 7 

1. 2.0 0.0 

2. 2.0 0.2 

3. 3.0 0.0 

4. 1.0 0.0 

5. 3.0 0.2 

Id (correlation coefficient) 

.715 

.707 

.705 

.703 

.702 

Subsets of the distortions which fit into particular categories were 

observed also. ADPCM and CVSD type distortions led to almost perfect 

correlation, as one might expect since the set is highly restrictive. Larger 

sets which included pole distortions, coding distortions, wide-band 

distortions, controlled distortions, added colored noise, added white noise, 

and banded distortions, were tested. Each of these included a minimum of six 

sets of distortions (most contained more) giving at least 144 data points for 

correlation analysis. Listed below are the best set of parameters for each set 

of distortions. 

Distortion 7 

Waveform Coders (WFC) .4 

Pole Distortions (PD) 1. 

Coding (CODE) 0 

Wide-band (WBD) .2 

Controlled (CON) 0 

Colored Noise (FN) 0 

Banded (BD) 0 

Most of these fit the pattern of small 7 and P 

distortions were not matched well at all by any set of parameters. This can be 

attributed to the small spread of the subjective composite acceptability 
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although P=1.0 and P=3.0 were not much worse. 

The best five combinations of parameters were: 

'Y 8 P 

0.0 0.2 2.0 

0.0 0.2 1.0 

0.0 0.3 1.0 

0.0 0.2 3.0 

0.0 0.3 2.0 

Ip I 
.721 

.719 

.714 

.712 

.695 

results in this set of distortions. This problem is discussed in detail in 

Chapter 3. 	In general, however, results are fairly consistent across 

distortions. 	The high correlation of objective quality with composite 

acceptability of added noise distortions, no doubt reflects the fact that 

audibility of noise and perceived quality are closely related. 

4.4.2 Power Function Spectral Distance Measures  

Power function distance measures with frame distances of the form given in 

equation 4.10 were computed with parameters listed in section 4.3.3. After 

running correlation analyses, the following observations were made. 

1. For y and P held fixed, correlation was always best for 8=0.2, with 8=0.3 

yielding comparable but slightly worse results. 	In addition, as y 

increased in value, performance monotonically decreased. 

2. For P and 8 held fixed, performance was generally best for 8=0. Only when 

P and 8 were far from their best values did /=1.0, give better correlation 

than /=0.0, and then only slightly better. 

3. For 8 and y held fixed, performance was generally superior for P=2.0, 

4. 

Rank 

1. 

2. 

3. 

4. 

5. 

When subsets of distortions were observed as described in the previous 

section, the best set of parameters in terms of correlation were: 
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Distortion 

WFC 

PD 

CODE 

WBD 

CON 

FN 

BD 

11 8 P 

0.0 0.6 1.0 

0.0 0.6 3.0 

0.0 0.2 2.0 

0.0 0.2 1.0 or 2.0 

0.0 0.2 2.0 

0.0 0.2 2.0 

0.0 0.3 1.0 

IPI 

.77 

.60 

.52 

.58 

.74 

.92 

.71 

Again, a consistent picture emerged in that 7 should be 0.0 and P could be 1.0, 

2.0, or 3.0 with little difference. Only waveform coders and pole distortions 

led to a 8 different from 0.2 or 0.3. As with log spectral measures, good 

prediction of colored noise distortion acceptability was possible. 

4.4.3 Articulation Index  

Measures of the form in equation 4.12 were tested with the parameters as 

described in section 4.3.2. When weighted by the vector in Table 4.2, the 

following results were noted. 

1. Very little variation in performance existed for the entire set of 

parameters, with best correlation coefficients of .67 and worst .58. 

2. For y held fixed, the best value for P was either 0.2 or 0.5. 

3. For P fixed, the best values of y tended to be small, although, not always 

zero. 

4. The top 5 systems were: 
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Rank 7 P 

1. 0.0 0.5 

2. 0.2 0.2 

3. 0.4 0.2 

4. 0.0 0.2 

5. 0.2 0.5 

The unweighted measures were also tested in an identical manner with the 

same values for the parameters. Results which were very similar to the 

previous tests were achieved. 

1. 	The top 5 systems were: 

Rank 	 7 	 P 	 IPI 

1. 0.2 0.2 .67 

2. 0.4 0.2 .67 

3. 0.0 0.2 .67 

4. 0.0 0.5 .67 

5. 0.6 0.2 .67 

2. For P held fixed, better results where generally achieved with y small. 

3. For Y held fixed, in all cases, correlation was a monotonically decreasing 

function of P. 

4. The spread was much larger than in the weighted case. 

For the original articulation index characterization, the parameters 7=0 

and P=1 should have been used. 	These led to scores of .65 and .64 for the 

weighted and unweighted cases, respectively. 	These values were not far from 

the maxima achieved. In the regular log spectral distance measure, 7=0 and P=1 

led to a correlation of .70. 

IPI 

.67 

.67 

.67 

.67 

.67 
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Distortion subsets were also tested on the unweighted measure with the 

following results: 

Distortion 	 7 	 P 	 IPI 

WFC 	 0 	 0.2 	 .70 

PD 	 1 	 0.2 	 .30 

CODE 	 0 	 0.5 	 .63 

MBD 	 ALL IDENTICAL 	 .40 

CON 	 0 	 0.2 	 .54 

FN 	 0 	 0.2 	 .90 

BD 	 0 	 0.5 	 .68 

For all but the pole distortions (which as mentioned earlier, gave little 

spread in subjective quality) small values of 'y were best. 	The prevalence of 

values of P less than 1 appears throughout. 	For the additive colored noise 

distortion, as expected, good correlation was achieved. 

4.4.4 Forward Masking Models  

Log spectral distance measured were also formulated to use frequency 

dependent levels, where the levels were computed as in equation 4.1.3 with 

decay rates described in section 4.3.3. In all cases, for P held fixed, 

maximum correlation was achieved for a time constant of 0 for all channels, or 

no additional forward masking. The same result was observed for all the 

distortion subsets. The best results for the various time constants are listed 

below. 

Time Constant 
	

IpI 
0 ms .717 
6 .708 

14 .694 
95 .675 

195 .627 
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4.4.5 Klatt-Type Measures  

Correlation tests were run on the Klatt-type measures as described in 

section 4.3.2. The following points were noted: 

1. For all combinations of parameters C
1 
and C

2' 
using P=1 gave superior 

correlation to using P=2. 	In most cases P=0.5 outperformed P=2, and in a 

few instances outperformed P=1. 

2. For P fixed at 0.5, 1 and 2 rankings were as follows: 

Rank C
1  

C
2 

P 

1. 10. 0.5 2 

2. 10. 1.0 2 

3. 20. 0.5 2 

4. 10. 2.0 2 

5. 30. 0.5 2 

6. 20. 1.0 2 

Rank C
1  

C
2 

P 

1. 40. 100. 1. 

2. 40. 1000. 1. 

3. 40. 10. 1. 

4. 50. 10. 1. 

5. 50. 100. 1. 

Rank C
1  

C
2 

P 

1. 1000. 1000. 0.5 

2. 100. 1000. 0.5 

3. 60. 1000. '0.5 

4. 50. 1000. 0.5 

5. 40. 1000. 0.5 

IPI 

.694 

.693 

.691 

.691 

.690 

.689 

IPI 

.736 

.736 

.735 

.735 

.735 

IPI 

.735 

.734 

.733 

.733 

.733 

107 



For P=0.5 or 1.0, many other combinations resulted in correlations of 

roughly 0.73. 

The interpretation for the meaning of C 1  is that as it increases, the 

difference between the largest frequency band intensity and the intensity of 

the frequency band examined becomes less important. Similarly, as C2 

 increases, the difference between the intensity of the examined band and that 

of the closest local maximum becomes less important. Note from equation 

4.3.3.4 that since all intensities are in decibels, and differences are 

actually ratios, the measure is normalized for overall gain. Therefore, no 

terms similar to the energy weighting terms which were used in the previously 

described measures were used in this measure. The difference terms in equation 

4.3.3.4 vary between 0 and 60, with the bulk confined to the 0 to 40 range. 

The different values of P led to different choices for C
1 
and C2. In his 

initial experiments, for phonetic distance, Klatt essentially used only P=2. 

He found optimum values of C 1  and C2  to be 20 and 1 respectively. As is 

evident from the table above, near maximum correlation for P=2 was achieved 

with just such a combination. 	For P=1, and C 1  fixed, C2  tended to be larger, 

although a wide range was spanned. 	For P=1 and C
2 
fixed, C

1 
tended to give 

best results when it was roughly equal to 40. When P was 0.5, maximum 

correlation was achieved for C
2
=1000, and C

1 
large. We find it interesting 

that when P was 0.5, the best weighting was none at all, for P=1, the weighting 

was moderate, and for P=2, the best weighting was substantial. The most 

asthetically pleasing of these is the P=0.5, C 1=1000, C2=1000 case, which was 

one of the best combinations tested. Here we see distance as a combination of 

square roots of differences between spectral slopes with no weighting. 

Differences in slopes are the same as differences between the tangents of the 

corresponding angles. Since the inverse tangent function has much the same 
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shape as the square root function, it may be that an important factor is angle, 

or something similar. 

As with the other measures, various subsets of distortions were explored. 

The parameters giving best correlation for some of them are listed below: 

Distortion 	C
1 	

C
2 	

P 	IPI 

RFC 

CODE 

WED 

CON 

FN 

BD 

We observe good correlation for additive noise and waveform coder distortions. 

Other types of distortions were not modeled as well with a notable deficiency 

in coding distortions. 

4.4.6 Trained Measures  

Measures as described in section 4.3.4 were analyzed for optimum values 

for ID. 	Table 4.4.6-1 lists the values achieved for the 25 and 5 band cases 

for log-spectral distance. 	Given optimum weightings, we observe substantially 

better performance for the 25 band case. 	Also, comparing optimum weighted 

performance with unweighted for the 25 band case, we see improvement in log-

spectral measures from 1p1=.72 to .78. 	With power-law measures, 	the 

improvement is only from .72 to .74. The five-band weighted log-spectral 

measure gives results close to the 25 band optimum whereas the five-band 

weighted power-law measure is markedly inferior. 

We see no clear interpretation for the meaning of the weights in Table 

4.4.6 - 1. 	The large number of zeros in the table indicates the high degree 

1000. 100. 2 .79 

1000. 1000. 1 .53 

1000. 0.5 0.5 .61 

100. 1000. 0.5 .73 

1000. 1000. 2 .90 

40. 1000. 1 .77 
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Band Log Spectral 
Distance Weights 

Pourer Law 
Distance Weights 

1 -80.8 -8.4 
2 106.2 7.0 
3 0.0 0.0 
4 0.0 19.2 
5 103.1 -19.3 
6 -140.5 0.0 
7 0.0 -6.4 
8 0.0 0.0 
9 0.0 0.0 
10 -32.9 2.3 
11 0.0 -8.3 
12 0.0 0.0 
13 0.0 5.8 
14 0.0 0.0 
15 -27.6 -10.2 
16 0.0 -2.9 
17 -48.4 0.0 
18 0.0 -13.3 
19 0.0 33.5 
20 15.5 -41.6 
21 0.0 -13.5 
22 -76.4 0.0 
23 0.0 -17.2 
24 0.0 0.0 
25 25.3 12.5 

Combined 
Band 

1 9.7 .47 
2 -16.3 -1.75 
3 -4.8 -1.31 
4 -10.7 -1.71 
5 -9.1 -1.65 

Table 4.4.6-1 Trained Weights for the Trained Measures 
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redundancy in many of the channels for the distortion set in our data-base. 

In an attempt to see if the optimum weights were robust, we conducted a 

few experiments. First, various subsets of distortions were evaluated for 

correlation of objective and subjective data. The results are listed below: 

Distortion 

WFC 

CODE 

!MD 

CON 

FN 

BD 

In almost all cases, 

Ipl 
.81 

.60 

.69 

.83 

.94 

.70 

correlations were superior to those reported in 

section 4.4.1. 	This shows that the weights give improvements pretty much 

across the board, giving some hope of robustness. 

Another simple experiment consisted of extending the duration over which 

the measure was computed by roughly 40%. Objective and subjective quality were 

then recorrelated with a resulting coefficient of .717. This number is almost 

identical to that achieved with the unweighted log spectral distance over the 

same interval. When weighted measures were calculated over the interval not 

used in training, the correlation coefficient was only .56 Also unweighted 

log-spectral distances computed over the same interval as the weighted measures 

were trained on resulted in correlation of .75. The conclusion we draw from 

these data is that the training of the weights gives an only minor improvement 

(e.g., .75 .to .78) when testing occurs over the same intervals used in 

training. 	When we include additional speech outside of these intervals, the 

trained measures lose their advantage. 	We feel, therefore, that the weighting 



coefficients computed in training have little or no meaning in themselves. 

4.5 Discussion 

The measures we tested were in many cases similar to those used is 

previous work by Barnwell and Voiers [4.5]. The main property the auditory-

based measures had in common was the critical band based spectral analysis. 

Various additional aspects will be examined. 

Tests similar to our log-spectral and power-law measures but using 

uniformly spaced samples of LPC spectra were made on the same data-base by 

Barnwell and Voiers. In both cases, optimum parameters closely matched those 

observed by us. For example y=0 in both sets of measures was best. Both 

studies also found the best exponent for power-law spectral distances to be 

0.2. With these values the same, however, critical band spectral analyses led 

to correlations of .72 and .72 whereas, LPC spectral distances led to 

correlations of .60. Clearly the non-uniform spacing of bands was preferable. 

In the earlier study, non uniformly spaced LPC spectral samples were also 

computed by lumping 32 uniformly spaced samples into 6. Both log spectral and 

power-law measures achieved maximum correlations of .68, which are comparable 

to critical-band performance. Another factor which will be addressed shortly 

involves the fact that the LPC spectral analysis had poorer time resolution 

than the critical band analysis. 

The articulation index approximation sought to measure short-time signal 

to noise ratios using critical band spectra. A wider class of distortions 

could be tested than with a time-domain short-time SNR, but at the expense of 

precision. This is evident from a result obtained by Barnwell and Voiers in 

which time domain short time SNR's had correlations of .78 with subjective 

acceptability of waveform coders. 	The articulation index measure achieved 

correlation of only .70 with the same subset. 	However, a correlation of .67 

was possible for the set of all distortions where the time domain system could 

112 



only be used on a few of them. 	The weighting function applied to the 

traditional articulation index was shown in our context to give no more than 

slight improvement over unity weighting, which demonstrates a possible 

discrepancy between quality and intelligibility requirements. 

The forward masking models tended to diminish the time resolution of the 

spectral analysis. 	A time constant of zero amounted to the 10 ms time 

resolution of the critical band analysis. 	Considering the degradation that 

occurred when this was extended to 16 ms (p=.717 went to p=.708), it may be 

possible that the 10 ms frames were too wide. 	The frequency variant measures 

of Barnwell mentioned above had a resolution of 15 ms. 	Comparing our critical 

band analysis smoothed to 16 ms resolution correlation result of .708 to 

Barnwell's .68, we see a close correspondence. In view of these facts, one may 

question the importance of the precision with which we formulated the spectral 

analysis, and argue that most any reasonable frequency variant spectral 

analysis choice may be virtually equivalent. The filter bank approach appears 

to have been worth a few percentage points in correlation, perhaps because of 

the increased time resolution. This could possibly be compensated for by a 

smaller LPC analysis windows, however. 

The trained measures give an upper limit on what is possible for the 

particular measures tested. 	Although the results are hard to interpret, they 

allude to the fact that not all 25 filter bands are necessary. 	This result is 

highly dependent on the distortion set we used, and enough degrees of freedom 

existed with the weighting vector to encourage artifactual results. Again, 

however, this procedure tends to indicate that precise critical band analysis 

may be unnecessary for good results. 

The Klatt-type measures performed best of all. 	Two factors may account 

for its superior results over the log-spectral measures: 1) use of spectral 
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slopes rather than spectral magnitude, 2) the particular weighting function 

used. 	Consider the log spectral distance with 7=0, and the Klatt measure with 

C
1 

and C
2 

large. 	The measures are essentially identical except for spectral 

slopes being used in the latter case as opposed to log spectra in the former. 

For P=1, the log spectral measure gives correlation of .70 and the Klatt 

measure gives .73. However, for P=1, the former gives p=.72 and for the latter 

p=.67. Therefore, simply converting from log spectra to slopes does not always 

lead to improvement. It should be noted, however, that given the same number 

of free parameters, the best Klatt-type measures outperformed the best critical 

band spectral distance measures. One of the best performing of the Klatt 

measures used unity weighting, however (with P=.5), which supports the idea 

that the slopes, rather than the weights, are important. Our conclusion will 

be that there is significant potential in this type of measure, and that it is 

the combination of slopes and weights which makes it unique. 

4.6 Conclusion 

We feel that several statements can be made in summary. 

1) Simple psychophysical models do not model subjective quality extremely 

well. 	For example, the psychoacoustical growth of loudness exponent of 0.6, 

when put into the critical band model, performed much worse than an exponent of 

0.2. 	Our belief is that degradations not modelable by simple distortions go 

much beyond the auditory periphery in their perception, and are inextricably 

linked to more central neural processes. 	The emergence of an exponent of 0.2 

in several instances is quite puzzling, and possible explanations are under 

close scrutiny. 

2) The precise Gaussian shaped critical-band filter bank characteristics 

may be of little importance as long as a fair number of roughly logarithmically 

spaced channels are used. 

3) Time resolution better than 10 ms may be desirable. 	One suggestion is 
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that short windows allow differences in transient phenomena (e.g. bursts) to be 

measured. 

4) Simple speech perception models, such as the Klatt type measures, may 

be of great value in the task of predicting subjective quality. Further 

expansion of our work to other models, we feel, has great potential. 

115 



REFERENCE 

[4.1] 	Kryter, K.D., 'Methods for calculation and use of the articulation 
index,' J. Acoust. Soc. America, vol. 34, pp. 1689-1697, Nov. 1962. 

[4.2] 	Duifuis, H., 'Consequences of peripheral frequency selectivity for 
nonsimultaneous masking,' J. Acoust. Soc. America, vol. 54, pp. 1471-
1488, Dec. 1973. 

[4.3] 	Klatt, D.H., 'Prediction of perceived phonetic distance from critical- 
band spectra: 	a first step,' Proceedings of International Conference 
on Acoustics, Speech and Signal Processing, 1982, Paris, pp. 1278-1281. 

[4.4] 	Patterson, R.D., 'Auditory filter shapes derived with noise stimuli,' 
J. Acoust. Soc. America, vol. 60, pp 640-654, March 1976. 

[4.5] 	Barnwell, T.P. and Voiers, W.D., 'An analysis of objective measures for 
user acceptance of voice communications systems,' Final Report, DCA 
Contract DA100-78-C-0003, 1979. 

116 



CHAPTER 5 

PARAMETRIC OBJECTIVE MEASURES 

5.1 Desirability of Estimating Subjective Parametric Quality 

The purpose of any speech communications system is to permit users to 

communicate easily and effectively via speech. A minimum criterion for 

effective communication is that the speech communications link be able to 

reproduce a highly intelligible version of the user's speech. However, speech 

systems which reproduce merely intelligible speech usually do not perform well 

with a casual speech style, and hence are not easy to use. Higher quality 

speech reproduction permits a more natural speech style and promotes more 

effective communication since important semantic cues for speech 

communications, talker emotional state, or other talker qualities can be 

transmitted. Users can be expected to judge a speech communications system 

relative to their experiences in face-to-face conversation, and for each 

individual there will be a level of degradation for which a speech 

communication system will no longer be acceptable. If this minimum acceptable 

level is extended into a continuum of levels of acceptability, then a better 

criterion for easy and effective communication might be for the user to 

subjectively rate the system in terms of how acceptably it reproduces the 

user's speech. 

The Diagnostic Acceptability Measure's Composite Acceptability scale is 

exactly this kind of subjective quality assessment (see Chapter 2). It 

provides valuable information for assessing quality and complexity tradeoffs in 

speech communication systems. Unfortunately, because of the vague and all-

encompassing nature of subjective acceptability, the Diagnostic Acceptability 

Measure, or DAM, composite acceptability measure is difficult to track using 

objective measures. The quality of acceptability does not give any clues as to 
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the appropriate functional form for a corresponding objective measure. 

There is, however, more than one quality assessment in the Diagnostic 

Acceptability Measure, and most of these are considerably more specific in 

scope then the composite acceptability scale. Table 5.1.1 lists the entire set 

of quality assessments which are provided by the DAM. Whereas the composite 

acceptability scale does not suggest a corresponding objective measure, many of 

the parametric subjective quality scales do. Therefore it is reasonable to 

expect that objective measures can be designed which will track these more 

specific parametric subjective qualities successfully. Once these specific 

objective measures are designed, they can be combined in a linear or nonlinear 

functional form and, using regression analysis, a measure for composite 

acceptability can be developed. Such objective measures would also have the 

advantage of providing additional diagnostic information about the nature of 

the perceived distortion which would not be available from an estimate of 

Composite Acceptability alone. 

5.2 Theory  

5.2.1 Multiple Linear Regression Analysis  

A potentially effective procedure for combining a number of individual 

estimates 	of parametric qualities into a single estimate of Composite 

Acceptability is to use a multiple linear regression model. 	In such a model, 

the linear relationship between subjective and objective is hypothesized as: 

Y- 1 
= p + / px.. + E. 

u 	j=1 
5.2.1-1 

where y, the dependent variable, is the isometric or parametric subjective 

quality and the :x.'s, the independent variables, are the objective measure 

variables[5.1].Ther3.'saremodelparameterstobeestimatedande.is the 
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DIAGNOSTIC ACCEPTABILITY MEASURE 
PARAMETRIC SIGNAL QUALITIES: 

INDEX MNEMONIC 	DESCRIPTORS 

SIGNAL QUALITY 

1 
	

SF 
	

fluttering bubbling 
2 
	

SH 
	

distant, thin 
3 
	

SD 
	

rasping, crackling 
4 
	

SL 
	

muffled, smothered 
5 
	

SI 
	

irregular, interrupted 
6 
	

SN 
	

nasal, whining 
7 
	

TSQ 
	

total signal quality 

EXEMPLARS 

AM speech 
highpassed speech 
peak clipped speech 
lowpassed speech 
interrupted speech 
bandpassed speech 

BACKGROUND QUALITY 

8 	BN hissing, rushing Gaussian noise 
9 BB buzzing, humming 60 Hz hum 
10 BF chirping, bubbling 
11 BR rumbling, thumping low freq. noise 
12 TBQ total background quality 

TOTAL QUALITY 

13 
	

II 	raw or isometric intelligibility 
14 
	

IP 
	

raw or isometric pleasantness 
15 
	

IA 
	

raw or isometric acceptability 
16 
	

I 	parametric intelligibility 
17 
	

P 	parametric pleasantness 
18 
	

A 
	

parametric acceptability 
19 
	

CA 
	

composite acceptability 

Table 5.1-1 A list of the subjective speech quality scales in the Diagnostic 
Acceptability Measure. 
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error in the model for each observation. 	Subscript j is the index of the 

independent, or objective measure, variable and subscript i is the index of the 

observation, or the speaker and distortion system in the data base. Since 

observations in the distorted speech data base entail both a speaker and a 

distortion system, the observation index will more frequently indicate this 

explicitly as y(s,d), where s indicates the speaker and d indicates the 

distortion system. The P . are estimated in the classical manner by minimizing 

the mean square error, e
i
, over all distortion systems in the data base. The 

resulting model, which is the desired objective measure, is: 

y= p + / p.x.. o j=1  	ij 5.2.1-2 

In order for this model to be valid, the following assumptions must be 

satisfied: 

1. The model errors e.
1 
 are uncorrelated. 

2. The error e has zero mean. 

3. The error e has constant variance a 2 . 

4. The relationship between y i  and x i  is, in fact, approximately 
linear. 

To assess the validity of these assumptions, we must investigate the source of 

the error term. The underlying force which determines the quality responses in 

the subjective data base is the types of distortions in the distorted speech 

data base. 	Therefore the distorted sentences are, fundamentally, the 

independent variables in that they are specified exactly. 	The x.'s, which are 

the objective measure variables, can be thought of as complex transformations 

of the distorted speech waveforms. Once the transformation is fixed, the x i 's 

are exactly specified. Therefore the error term, e, should be interpreted as 
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error in the subjective assessment of the quality of the distorted speech 

samples. With this established, the above assumptions can now be evaluated. 

First, the errors must be uncorrelated. In any subjective test this is 

insured by randomizing the order in which the data is presented for evaluation. 

This prevents any evaluation bias based on previous subjective judgments of 

similar speech segments from occurring. Dynastat Corporation used such a 

' randomized order in the presentation of the DAM materials, so this assumption 

should be valid. 

Second, the error must have zero mean, and third, the error must have 

constant variance. These two assumptions need to be examined together. The 

subjective assessments of speech quality in the subjective data base are all 

mean opinion scores, that is, they are based on the judgments of several 

individuals. Before individual opinions are averaged together, they are 

adjusted to eliminate the effects of that individual's preference biases (see 

Chapter 2). This means that each individual's assessment error is transformed 

to have zero mean and constant variance relative to the other listeners in the 

test. Furthermore, new listeners undergo a training period prior to the actual 

test, and can only proceed if they show a relatively small and constant quality 

judgment error relative to the other listeners, across a variety of distorted 

speech samples. Therefore, because individual judgments are adjusted to 

conform to a group norm and because listeners are carefully trained, 

assumptions two and three should be valid. 

Fourth, the relationship between dependent and independent variables 

should be approximately linear. If this is not true, then the assumption of 

constant error variance will most likely be violated. In practice, one assumes 

that the relationship is linear, does the regression analysis, and then checks 

to see that the error variance is constant. This check is most easily done by 
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looking at a plot of error, or residual, for each observation versus the 

predicted value for each observation. If the model does exhibit non-constant 

variance,thenatransformationofsomeorallethex.'s may mitigate this 

problem. Using transformations, the relationship between independent and 

dependent variables can be linearized. If the residuals indicate that higher 

order terms in x
i 
are needed, these terms can be thought of as adding an 

additional independent variable which is simply a transformation of one of the 

original x i 's. In this way a polynomial model can be built within the framework 

of the original regression model. 

5.2.2 Monotonic Regression Analysis  

Monotonic regression is similar to simple linear regression in that the 

objective is to pass a curve through a set of points such that an objective 

function is minimized. In the case of monotonic regression, however, the curve 

need not have a parameterized functional form, such as y = ax + b, but rather 

must simply be a monotonically increasing or decreasing curve. This is a case 

of regression under order restrictions, and is thoroughly covered by R.E. 

Barlow [5.2]. In both types of regression there are three principal variables: 

the independent variable x i , the dependent variable, 
yi 

. 	and the estimated 

dependent variable y i *, where the subscript i is the observation index. Again, 

in both cases the objective function to minimize is the sum of the squared 

erroroverallobservations,wheretheerrorise..(y. - y.*). However, in 

monotonic regression the only restriction on y i *, besides minimization of 

squared error, is monotonicity, such that y i * < yi+1 * if x i  < xi+1 . The 

inequality relating the y i ss is 'less than' for monotonically increasing 

.regression and is 'greater than' for monotonically decreasing regression. 

Figure 5.2.2-1(a) shows a monotonically increasing regression curve fit and 

Figure 5.5.2-1(b) shows a monotonically decreasing curve fit. In these Figures 

x. is the frequency index of a power spectrum, y.. The independent variable x. 
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Figure 5.2.2-1 Part (a) shows a monotonicly increasing curvefit to a data set 
and part (b) shows a monotonicly decreasing curvefit. In both 
parts the x—axis is the value of {x.}. On the y—axis the value 
of {y.) is indicated by the symbol 6 and the solid line is the Y, 
monotonic curvefit to fy). 
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is therefore a simple scaling of the observation index i. 

The 'Up-and-Down Blocks' algorithm, developed by J.B. Kruskal [in 5.2] 

is an efficient method of computing a monotonic regression. Understanding the 

algorithm first requires defining several terms: In the following discussion 

assume that the dependent variable, x., is arranged in ascending order such 

that x.
1  < x. for all i from 1 to N-1 and that there are N elements in the  1+1 

dependent variable data set. 

BLOCK - a set of consecutive elements y. through y
k' 

j < k. The value of a 

block is equal to the average of the elements in that block. 

UP-SATISFIED and DOWN-SATISFIED - consider three consecutive blocks, B-, B, 

and B+. For monotonically increasing regression block B is said to be up-

satisfied if the average of the elements of B is less than the average of the 

elements in B+. For monotonicly increasing regression block B is said to be 

down-satisfied if the average of the elements of B is greater than the average 

of the elements in B-. For monotonicly decreasing regression the previous two 

inequalities are reversed. Additionally, any block containing y N, is 

automatically up-satisfied and any block containing y i  is similarly down-

satisfied. 

A flowchart of the algorithm for performing monotonic regression is 

shown in Figure 5.2.2-2. The algorithm begins with the independent variable 

data set partitioned into N blocks of one element per block. At each stage in 

the algorithm one block is designated as 'active'. Three choices are available 

for an active block. If the active block is not up-satisfied then it is 

combined with the next higher block. If the active block not down-satisfied 

then it is combined with the next lower block. If the active block is up-

satisfied and down-satisfied then the next higher block becomes active. At the 

start the first block is active and the algorithm is terminated when the 

highest active block is up-satisfied. The values of the blocks at termination 
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PU 

(  STOP ) 

Figure 5.2.2-2 The 'Up—and—Down Blocks' algorithm. The abbreviations shown in 
the algorithm are described as follows: 

AB — active block. At the start the block containing y l  is the active block. 
The algorithm terminates if the active block contains y N . 

US — up satisfied. The conditional tests if the active block is up 
satisfied. 

DS — down satisfied. The conditional tests if the active block is down 
satisfied. 

PD — pool down. The current block is merged with the next lower block. This 
new block becomes the active block. 

PU — pool up. The current block is merged with the next higher block. This 
new 	block becomes the active block. 

NH — next higher. The active block is now the next higher block. 
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are the desired y i * and are the best monotonically increasing fit to the data 

y. subject to minimizing the sum of the squared error. If, at termination, a 

block contains more that one element, for example y. through yk , then each 

corresponding estimate of the dependent variable, y.*through yk*, is equal to 

the value of the block containing Y.throughyk . 

For the work done in this study the most significant result of monotonic 

regression is the statistic 'stress', which is the error variance divided by 

the dependent variable variance. This can be expressed as: 

(e.) 2 
j=1  

Stress =  	 5.2.2-1 
N 

1 (y. - Y.)
2 

i=1 	1 	1 

The stress of a monotonically increasing regression provides a measure 

of how closely a set of y i 's conform to a monotonically increasing function. 

If the set is perfectly monotonic increasing then the resultant stress is zero, 

and if the set is perfectly monotonic decreasing then the resultant stress is 

one. 

An extension of monotonic regression is uni-modal regression. This 

regression technique fits a uni-modal curve to the data set under the 

constraint that the sum of the squared error is minimized. This analysis can be 

broken down into three steps. In the first step the mode of y i * is found. 

Assume that the observation index of the mode is M. If the mode of y i * is to be 

a global maximum, then the second step is to do a monotonically increasing 

regression on the points y 1  through and the third step is to do a 

monotonically decreasing regression on the points y 1  through yN . If the mode 

of 3%* is to be a global minimum, then the second step is to do a monotonically 
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decreasing regression on the points y l  through ym  and the third step is to do a 

monotonically increasing regression on the points ym.1.1  through yN. Stress is 

still expressed as in equation 5.2.2-1. 

Finding the mode of y i * requires two monotonic regressions. As a side-

note, if all intermediate results in these regressions are saved, these 

results being all block values for blocks 1 through the active block for each 

algorithm step, then the regressions required in steps two and three are 

already done and all three steps can be combined into one procedure. However, 

for the sake of clarity, the more straightforward three step approach will be 

described here. If the mode of y i * is a global maximum then a forward 

monotonically increasing regression and a backward monotonicly increasing 

regression are done. A forward regression is simply the regression performed 

by the up-and-down blocks algorithm. In a backward regression, however, 	the 

starting active block is yN  and the active block progresses from yN  to yl ; 

hence the name backward. This can be accomplished by reversing the indices on 

the data sets x. and y., using the up-and-down blocks algorithm and then re-

establishing the indices. In reversing the indices the following mapping is 

performed: 

x. --> x_ 

	

1 	 n-i+1 
y. YN-1+1 

In re-establishing the indices the same mapping is used again with the 

provision that the index of is is also reversed. For both forward and backward 

regressions the intermediate stress at each step in the algorithm must be 

computed. Intermediate stress values are computed using equation 5.2.2-1 with N 

replaced by the index of the current active block. Figure 5.2.2-3 shows the 

results of forward and backward regression on a data set. The curve labeled 

'F' is the intermediate stress for the forward regression and the curve labeled 

'B' is the intermediate stress for the backward regression. The curve labeled 
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Figure 5.2.2-3 Stress curves for a unimodal maximum monotonic regression. The 
curve 'F' is the stress at each step for a foreward ascending 
monotonic regression. The curve 'B' is the stress at each step 
for a backward ascending monotonic regression. The curve 'S' is 
the sum of curves F and B at each step. The mode in the 
regression is the index associated with the minimum of curve S. 
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'S' is the sum of the two curves 'F' and 'B'. The desired quantity, the index 

of the mode of y i •, is equal to the index of the global minimum in the curve 

'S', since this is the mode for which the final stress is minimum. With the 

mode of y i • established, the forward and backward regressions of steps two and 

three are computed as previously described and a value of stress for the uni-

modal regression is be computed. 

5.2.3 Multidimensional Scaling  

In the context of this study, multidimensional scaling, or MDS, is a 

tool used to graphically examine the relationship between several objective and 

subjective speech quality measures. It maps similarity between quality 

measures, as measured by correlation, into distances between quality measures 

as measured in an N-dimensional space. Using this technique, the relationship 

between many measures can be studied by examining a graph, as opposed to 

scanning a large table of correlation values. The principles of 

multidimensional scaling are best set forth by R.N. Shepard [5.3][5.4] and J.B. 

Kruskal [5.5][5.6]. In order to discuss the theory of multidimensional 

scaling, several terms need to first be defined: 

OBJECT - the thing or event to be investigated. In this study objects are 

subjective or objective speech quality measures. 

PROXIMITY - also referred to as similarity, this is a measure of the distance 

between objects as quantified by the magnitude of a correlation coefficient or 

some other distance measure. 

DATA MATRIX - MDS operates on proximities associated with pairs of objects. 

It is convenient to think of proximities among N objects as entries in an N by 

N data matrix, where the entry in row i column j, m..
ij

, is the proximity of 

object i to object j. If we assume that the measure of proximity is a metric, 

then m..
ij  is equal to m.. and the data matrix is symmetric. Furthermore if we 

assume that the proximity of an object to itself is constant for all objects, 
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zero for example, then the data matrix contains only (N)(N-1)/2 unique entries. 

For the applications in this study these assumptions are valid, so the data 

matrix can effectively be reduced to a lower triangular matrix of 00(N-1)/2 

proximities. 

REALIZATION SPACE - the output of a multidimensional scaling is a table of 

coordinates which locate each object in the realization space. The distance 

metric in this space is Euclidean and the dimensionality of the space can be 

varied by the user. The distance between objects in the realization space is a 

function of the proximity associated with the two objects. The distance 

between object i and object j in the realization space is denoted as d..*. 
ij 

The dimensionality of a the realization space is an important issue. 	For N 

objects it can be shown that the realization space spans at most N-1 dimensions 

for metric scaling and N-2 dimensions for non-metric scaling [5.7]. If the data 

is error free, then this dimensionality may be appropriate, though with noisy 

data some dimensions may be accounting for noise only. Lower dimension spaces 

tend to smooth out data noise since, with fewer object coordinates to estimate 

from the data, the coordinates have greater statistical reliability. 

METRIC and NON-METRIC SCALING - scaling can be divided into these two broad 

categories. Mapping proximities in the data matrix into distances in the 

realization space in general requires a transformation on the proximities. If 

the function which transforms proximities to distances in the realization space 

is linear, then the scaling is metric. If the function is merely monotonic 

then the scaling is non-metric. Transformed proximities can be thought of as 

estimates of inter-object distances in the realization space. The transformed 

proximity associated with object i and object j is denoted as d... 
11 

STRESS - points are placed in the realization space such that they minimize 

an error function, defined as follows: 
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N N 

L 	/ (d.. - c17.) 
i=1 j=1 	1

j 	I] 

N N 

1 	L (d i .) 
i=1 j=1 	I  

STRESS measures the differences between the distance between points in the 

realization space and the estimated distance between points as specified by the 

transformed proximities. 	In another sense it measures how well the dimension 

of the realization space suits the data. 	The value of STRESS should guide the 

experimenter in choosing the appropriate dimensionality for the realization 

space. A rough interpretation of stress is as follows: 

OZ perfect 
5% very good 
10% good 
20% fair 

As an example of metric MDS, consider the data in Table 5.2.3-1 in which 

proximities are actually distances, in miles, between ten cities in the United 

States. MDS can be used with a linear transformation of the proximities 

(actually a simple scaling) to construct a 'map' of the U.S. as in Figure 

5.2.3-1. Since this data was measured from a very nearly two dimensional space 

(the surface of United States land mass) the realization space need not be 

larger than two dimensions. In this example the STRESS, or error of fit in the 

realization space, would be small and nearly constant for realization space 

dimensionality greater than one. Figure 5.2.3-1 illustrates another important 

aspect of MDS: the Euclidean distance measure used in the realization space is 

rotation and reflection invariant, which means that the resultant configuration 

of points can have any angular orientation in the realization space. MDS 

STRESS - 

1/2 

5.2.3-1 
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CITES ATLA. CHIC. DE W WIJS LA. W1A61 NI SI SEAL vr 

s 
ill1/111 11  

587 e12 701 1936 604 748 2139 2182 543 

587 920 940 1745 1188 713 1658 1737 597 

1212 920 979 831 1726 1631 949 MI 1494 

701 140 879 1374 966 420 1645 OM 1220 

1936 1745 831 1374 2339 2451 347 959 2300 

604 1188 1726 968 2339 1092 2594 2734 923 

748 713 1631 1420 2451 1092 2571 2408 205 

2139 6158 949 445 347 2594 2571 678 2442 

2182 1737 1021 1891 959 2734 2406 678 2329 

543 597 1494 1220 2300 923 205 2442 2329 

Table 5.2.3-1 Airline distances between ten U.S. cities [8]. 

MIAMI 

Figure 5.2.3-1 'Map' of ten cities in the U.S. as produced by multidimensional 
scaling of the data in table 5.2.3-1. 
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produces a configuration of points, but it is up to the researcher to identify 

the orientation and meaning of spacial dimensions in that configuration. 

As an example of non-metric scaling, consider Figure 5.3.2-1(a). This 

is a two-dimensional scaling of the similarity between parametric quality 

measures in the DAM. In this scaling, parametric quality measures are the 

objects, and hence are represented as points in the plot. Figure 5.3.2-1(b) is 

a key for identification of these points. 	The similarity between two measures 

is represented by the proximity of their points in the plot. 	The functional 

measure of similarity between two measures is simply the magnitude of the 

correlation coefficient relating these two measures across the ensemble of 

distortion systems in the data base. 	This scaling is non-metric because the 

transformationofm..toyieldd..
1.1 
 is monotonic. 	That is, if you were to 

1 
constructorderedpairs:(m

1.1 
 ..,d

1
..), and then rank the m..'s in descending 

1.1 

order,theircorrespondingd..'s would also be ranked in descending order. This 
ij 

is the only restriction on the transformation. 

5.3 Parametric Objective Measures  

5.3.1 Regression Analysis  

Regression analysis has been done on the subjective quality data base by 

itself to determine to what extent the most desired subjective quality, 

composite acceptability, can be estimated from some subset of the remaining 

parametric subjective qualities. 	For two reasons only a subset of the 

remaining parametric qualities are considered. 	First, some of the subjective 

qualities are general in nature, rather than specific. 	These qualities are 

total signal or background quality, and overall intelligibility, pleasantness 

and acceptability. The whole motivation for this phase of.the study was to 

focus on narrow rather than broad quality categories, with the assumption that 

these would be easier to objectively estimate. Second, it is of interest, out 

of efficiency and expediency, to investigate how few of the parametric 
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Figure 5.3.2-1(a) The results of multidimensional scaling of the subjective 
qualities in the Diagnostic Acceptability Measure. Points 
represent subjective qualities. The similarity of 
subjective qualities was measured by the magnitude of the 
correlation coefficient relating the two qualities. The 
plot is of a two dimensional realization space whose origin' 
is at the center of mass of the point configuration. 
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SYMBOL MNEMONIC 	QUALITY 

SIGNAL QUALITY 

A 	SF 	fluttering bubbling 

B SH 	distant, thin 

C 	SD 	rasping, crackling 

D SL 	muffled, smothered 

E SI 	irregular, interrupted 

F 	SN 	nasal, whining 

G TSQ 	total signal quality 

BACKGROUND QUALITY 

H BN 	hissing, rushing 

I 	BB 	buzzing, humming 

J 	BF 	chirping, bubbling 

K BR 	rumbling, thumping 

L TBQ 	total background quality 

TOTAL QUALITY 

M 	II 	raw or isometric intelligibility 

N IP 	raw or isometric pleasantness 

O IA 	raw or isometric acceptability 

P I 	parametric intelligibility 

Q P 	parametric pleasantness 

R 	A 	parametric acceptability 

S CA 	composite acceptability 

Figure 5.3.2-1(b) Key to symbols in Figure 5.3.2-1(a). 
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subjective qualities are needed to adequately estimate composite acceptability. 

Fewer terms in the model for composite acceptability means fewer objective 

measures to build for each term and hence less computation in the composite 

acceptability objective measure. 

The model for estimating composite acceptability from the parametric 

subjective qualities is identical to equation 5.2.1-2, except for these re-

definition of terms: y. is the composite acceptability score for distortion 

systemi,x..is a parametric subjective quality score for distortion system i. ij 

In all cases the regression analysis was done over the entire 1056 distortion 

systems. 

It should be noted that this regression analysis is simply an extraction 

of the model originally used by Dynastat to compute composite acceptability 

from the parametric subjective qualities. For this reason one should expect 

very good regression modeling results. This expectation was, in fact, realized 

by the analysis. However, good modeling results were also achieved by using 

only a subset of all the parametric subjective qualities to estimate composite 

acceptability, which is new and very encouraging information. 

Three regression studies were run on the subjective data base. 	The 

first represents an upper limit on how well composite acceptability can be 

estimated based on all of the available information and using only linear 

regression models. Table 5.3.1-1(a) lists the parametric qualities used in 

this analysis. Note that total signal, total background, and parametric 

intelligibility, pleasantness and acceptability were not used because these are 

in fact composite qualities based on the qualities which were included in the 

model. The results of the analysis, listed in Table 5.3.1-1(b), is that 99.9% 

of the variability of composite acceptability was explained by the included 

variables (R-square = .9990). This is nearly perfect, indicating that the 

parametric subjective qualities included in the model together contain all the 
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INDEX 	MNEMONIC 

SIGNAL QUALITY 

DESCRIPTORS 

1 SF fluttering bubbling 

2 SH distant, thin 

3 SD rasping, crackling 

4 SL muffled, smothered 

5 SI irregular, 	interrupted 

6 SN nasal, whining 

BACKGROUND QUALITY 

8 BN hissing, rushing 

9 BB buzzing, humming 

10 BF chirping, bubbling 

11 BR rumbling, thumping 

TOTAL QUALITY 

13 	II 	raw or isometric intelligibility 

14 	IP 	raw or isometric pleasantness 

15 	IA 	raw or isometric acceptability 

(a) 

Multiple R 	 .9995 	Standard error of estimate 	.3153 
Multiple R square 	.9990 

Analysis of Variance 

Source of 	Sum of 	Degrees of 	Mean 
Variation 	Squares 	Freedom 	Square 	F Ratio 

Regression 	102252. 	 13 	7865. 	 79135. 
Residual 	 103. 	 1042 	 .0994 

(b) 

Table 5.3.1-1 Part (b) shows the results of linear regression analysis with the 
subjective qualities listed in part (a) as independent variables and composite 
acceptability as dependent variable. 
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information present in the composite acceptability quality. 	As stated 

previously, this is to be expected since this analysis merely extracts nearly 

the same model used by Dynastat to compute composite acceptability. 

The second analysis was limited to using only the signal and background 

qualities as independent variables of the regression model used to estimate 

composite acceptability. However this analysis was slightly different in that 

forward stepwise regression was used as a means of identifying the most 

important of these parametric qualities. As the name implies, stepwise 

regression is a stepwise or iterative technique used for independent variable 

selection. In the first step the variable which explains the most variation in 

the dependent variable is included in the model and all model statistics are 

computed. In all subsequent steps, the variable which, when added to the 

current model, helps explain the most variation in the dependent variable, is 

included in the model and all model statistics are computed. In this way, a 

useful, though sub-optimal, ranking of the independent variables is obtained by 

the degree to which the variables contribute to the model. In addition, at 

every step a regression model for the included independent variables is 

obtained. 

Table 5.3.1-3 shows the results of this analysis. 	Listed are the 

parametric qualities in the order in which they entered the model, the 

multiple-R, or correlation coefficient, the multiple-R squared, or fraction of 

variability explained, and the increase in multiple-R square. The results show 

that two qualities dominate the rest in terms of contribution to the model. 

These are SD, which by itself accounts for 43 percent of the variation of CA, 

and SL which; along with SD, accounts for 66 percent of the variation of CA. 

These results are not too surprising, in that the histograms (Figures 5.4.2-1 

and 5.4.2-1) for these two qualities show a much larger variance than any of 

the other parametric subjective qualities. Since SD and SL themselves have a 
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Step 
No. 

Entered Multiple 2 
 R 	R 

Incre2se 
in R 

1 SD, rasping, crackling .6541 .4278 .4278 

2 SL, muffled, smothered .8120 .6594 .2316 

3 SF, 	fluttering, bubbling .8648 .7478 .0885 

4 BN, hissing, rushing .9039 .8171 .0692 

5 BF, chirping, bubbling .9175 .8418 .0248 

6 SI, 	irregular, 	interrupted .9380 .8798 .0380 

7 SH, distant, thin .9494 .9014 .0216 

8 BB, buzzing, humming .9518 .9059 .0045 

9 BR, rumbling, thumping .9524 .9070 .0011 

Table 5.3.1-2 Results of stepwise regression. 	Subjective qualities are listed 
in the order in which they entered the model. At each step, the columns of 
numbers show the multiple R, multiple R-squared and increase in multiple R-
squared, respectively. 
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large variance, they help to explain a larger portion of the variance in 

composite acceptability. Another encouraging result is that only seven 

parametric qualities are needed, SD through SH, to raise the correlation 

coefficient for the model above .90. Therefore only seven of the thirteen 

subjective qualities included in the previous regression study are needed to 

explain 95 percent of the variation in composite acceptability, and the 

remaining five subjective qualities explain less than 5 percent of the 

variation of composite acceptability. This analysis suggests that objective 

measures for only seven of the parametric subjective qualities need to be 

designed, since the remaining subjective qualities contribute little to the 

estimation of composite acceptability. 

The third regression analysis was all possible subsets analysis, done to 

better support the conclusions reached by the stepwise regression analysis. 

Stepwise regression is, in general, a sub-optimal method for independent 

variable selection. In a given step only those variables not yet included are 

examined, without regard for the appropriateness of the variables already 

included. In contrast, all possible subsets is an optimal method of variable 

selection since it examines all the independent variables at each step and 

chooses that subset of n variables (n being the step number) which best 

explains the variation in the dependent variable. Therefore this analysis 

method will find the set of parametric subjective qualities that will yield the 

best estimate of composite acceptability, under the restriction that the set 

contain only n members. 

The results of this analysis are listed in Table 5.3.1-3. For each 

subset of size n, the table lists the corresponding multiple R squared, 

multiple R and also indicates the parametric qualities included in that subset. 

In this method of analysis, a specific ordering of importance of parametric 

qualities is more difficult than with stepwise regression. Since the regression 
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Parametric Quality 	 Number in Subset 

1 2 3 4 5 6 7 8 9 10 

1 	SD, rasping, crackling 	XXXXXXXXXX 
2 	SL, muffled, smothered 	XXXXXXXXX 
4 	BN, hissing, rushing 	 XXXXXXX 
6 	SI, irregular, interrupted 	 XXXXXX 
5 	BF, chirping, bubbling 	 XXXXXX 
7 	SH, distant, thin 	 XXXXX 
3 	SF, fluttering, bubbling 	XX 	XXXX 
8 	BB, buzzing, humming 	 X X X 
9 	BR, rumbling, thumping 	 X X 
10 SN, nasal, whining 	 X 

Number in Subset Multiple 

R2 

1 0.427 0.653 
2 0.659 0.812 
3 0.747 0.864 
4 0.816 0.903 
5 0.866 0.931 
6 0.885 0.941 
7 0.901 0.949 
8 0.905 0.951 
9 0.906 0.952 

10 0.906 0.952 

Table 5.3.1-3 Results of all possible subsets regression analysis with the ten 
signal and background parametric qualities as dependent variables and composite 
acceptability as the independent variable. The columns of X's indicates the 
qualities included in the regression model for a given number of dependent 
variables (as indicated by the row of numbers above). For comparison, the 
column of numbers on the left is the order in which the parametric qualities 
entered the regression model in stepwise regression analysis. Below are listed 
the multiple R and multiple r squared for each subset of size n. 

141 



model is totally re-evaluated for each subset size, there is no one order of 

variable entry. The table lists parametric qualities in approximate order of 

entry under all possible subsets regression, and also indicates, by the numbers 

in the leftmost column, the order in which the qualities entered under stepwise 

regression. 	The most notable difference between the two types of analysis 

concerns the quality SF. 	Under stepwise regression this variable entered in 

step three, where under all possible subsets SF entered in subset three, 

dropped out in subset five and re-entered in subset seven. Therefore stepwise 

analysis overemphasizes the importance of SF. However, for the remaining 

parametric qualities the two analysis methods yield quite similar results. 

Two conclusions can be drawn from the results of regression analysis on 

the subjective data base. First, that parametric subjective qualities can be 

used to construct a model which provides excellent estimates of subjective 

composite acceptability. And second, that some subset of these parametric 

qualities can be used to construct a model which provides estimates of 

composite acceptability which are nearly as good as estimates made by the full 

model. Given these conclusions, it is then highly desirable to construct 

objective measures which provide good estimates of the parametric subjective 

qualities, since these objective measures, combined into one large model, can 

be expected to provide improved estimates of subjective composite 

acceptability. 

5.3.2 Multidimensional Scaling Analysis  

Multidimensional scaling was done on the subjective data base to qualify 

the perceptual relationship between the parametric subjective qualities and the 

overall subjective qualities, and in particular composite acceptability. 

Figure•5.3.2-1(a) shows the results of a multidimensional scaling analysis done 

on the subjective data base. All nineteen subjective qualities were included 

in the scaling, and Figure 5.3.2-1(b) lists the key for identifying the 
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subjective qualities in the plot. 	For this analysis, the similarity between 

subjective qualities was equal to the magnitude of the correlation coefficient 

between the two qualities as computed over all the distortion systems in the 

data base. A descending monotonic regression was done on the similarities, so 

that a similarity nearly equal to 1.0 mapped into a distance nearly equal to 

zero. Because the transformation from similarity to distance was monotonic, 

the scaling was non-metric. 

The analysis was done for several realization space dimensions. 	Figure 

5.3.2-2 shows the decrease in configuration stress for increasing 

dimensionality. This curve does not have a distinct 'knee', where the best 

tradeoff between stress and dimensionality would occur, but a realization space 

of dimension four does yield a stress of 6 percent, which indicates a good fit. 

The plot in Figure 5.3.2-1(a) is for a realization space of only two 

dimensions, with a stress of 16.9 percent. This is rather high, indicating 

only a fair correspondence between the plot and the actual correlations between 

subjective qualities. Even so, the plot is easy to comprehend and the axes of 

the plot are amenable to perceptual interpretation. These two facts argue for 

using a two rather than four dimensional realization space, despite its high 

stress value. 

The plot shows composite acceptability near the center of the space. The 

other high level qualities, intelligibility, pleasantness, and acceptability, 

are centered closely around composite acceptability indicating that qualities 

in the center of the realization space are general in nature. The left side of 

the realization space contains most of the signal qualities while the right 

side contains the background qualities, suggesting that the horizontal axis 

measures a signal versus background quality degradation dichotomy. Similarly, 

the bottom of the plot contains qualities whose exemplars are mostly fluttering 

or interrupted, while the top of the plot has qualities which exemplify 
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Figure 5.3.2-2 Graph of stress (y—axis) vs. dimension of realization space (z—
axis) for the multidimensional scaling of figure 5.3.2-1(a). 
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primarily noisy distortions. 	Therefore the vertical axis seems to measure a 

noisy versus fluttering quality degradation. Finally, total signal quality and 

total background quality are both nearly centered within their respective 

signal or background parametric qualities. 

One can conclude from this multidimensional scaling that the parametric 

qualities in the subjective data base do, in fact, measure different subjective 

qualities since all the parametric qualities are widely spaced in the 

realization space. Parametric qualities closely spaced in the realization space 

would indicate a large degree of redundant information. Another point is that, 

in two dimensions, we can associate perceptual qualities with the axes of the 

realization space. And finally, we note that composite acceptability is nearly 

in the center of the realization space, which agrees with the fact that it is 

an overall quality measure, and does not measure only a specific perceived 

quality as do those measures located near the edges of the realization space. 

5.4 Parametric Objective Measures  

This section of the report discusses specific objective measures which 

have been used to estimate parametric subjective quality. The approach used in 

designing an objective measure was to first understand the subjective quality 

it must estimate. The subjective scores provide a key to this understanding. 

Distortions which register a subjective quality score widely deviating from the 

average are exemplary of that quality, and hence provide insight into the 

physical or objective nature of that subjective measure. This approach to 

understanding the meaning of subjective quality scales will be discussed in 

detail for each of the parametric qualities identified as most important by the 

regression analysis in section 5.3.1. 	Before proceeding, however, the meaning 

of the term 'distortion' should be clarified. 	In the distorted speech data 

base, 	each distortion is comprised of four talkers with six distortion levels 

for each talker (Chapter 2). 	In the following analysis these 24 distortion 
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systems are grouped together and are referred to simply as a distortion. 

5.4.1 SD: Rasping, Crackling  

This subjective quality describes the degree to which speech is rasping 

or crackling. Table 5.4.1-1 lists the distortions which excite the system 

distorted scale. For each distortion the minimum, maximum and range of quality 

scores associated with that distortion are listed. The degree to which a 

distortion exemplifies a parametric quality is related to either the range, or 

spread, of the distortion on the parametric quality scale or to the maximum 

quality score on that scale. The latter case occurs when a distortion does not 

have a large range, but instead scores uniformly low on the subjective quality 

scale, and therefore indicatives that the entire distortion exemplifies that 

quality. The list in Table 5.4.1-1 is ordered according to the range of the 

distortion quality scores so that, in general, the distortions most exhibiting 

the subjective quality fall at the top of the list. 

The dominant physical or objective characteristics the distortions in 

Table 5.4.1-1 have in common is that they involve nonlinearities which distort 

the waveform and therefore smear energy across the spectrum. This smearing is 

particularly noticeable at higher frequencies where the speech level is 

naturally lower and more easily dominated by noise from nonlinearities. Also 

present are additive noise distortions, which bolster the hypothesis that 

noise, either correlated to the speech power and arising from nonlinearities or 

uncorrelated and arising from an additive process, is the objective character 

of this subjective quality. 

As mentioned in section 5.3.1, system distorted accounts for a very 

large fraction of the variance of composite acceptability, some 60%. This is 

principally because of the large number of distortions which excite the system 

distorted scale. The histogram in Figure 5.4.1.1 gives another perspective on 

146 



SD 	rasping, crackling 

DISTORTION MAX MIN RANGE 

center clipping 83.90 50.70 33.20 

CVSD 85.40 53.40 32.00 

ADM 85.40 57.70 27.70 

peak clipping 81.50 55.70 25.80 

quantization 71.90 47.80 24.10 

400 - 	BOO Hz noise 83.40 61.80 21.60 

1900 - 2600 Hz noise 85.10 65.00 20.10 

1300 - 1900 Hz noise 86.80 68.60 18.20 

BD 	400 - 	800 79.70 61.70 18.00 

800 - 1300 Hz noise 85.80 68.90 16.90 

APCM 77.70 60.90 16.80 

BD 2600 - 3400 83.30 68.10 15.20 

2600 - 3400 Hz noise 84.40 69.40 15.00 

LPC 83.00 69.50 13.50 

broadband additive noise 85.10 73.90 11.20 

ECHO 87.60 76.40 11.20 

0 - 	400 Hz noise 86.20 75.10 11.10 

lowpass filtering 85.10 74.10 11.00 

BD 	100 - 	400 91.60 80.80 10.80 

VEV 7 76.90 66.20 10.70 

ADPCM 78.50 67.90 10.60 

PD 1900,- 2600, radial 87.20 76.80 10.40 

BD 	100 - 3500 73.40 63.50 9.90 

Table 5.4.1-1 Distoitions which most prominently excite subjective quality 
SD, listed in order of decreasing significance. 
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this issue. 	The horizontal axis is the SD subjective quality score. A 

subjective quality of 85 is very good, or nearly complete absence of the 

quality SD, while a 20 is very poor, or highly distorted. The vertical axis is 

the frequency of occurrence of a given value of the SD quality score when taken 

over all speakers and all distortion systems in the data base. A case by case 

examination of the data in this histogram would show that points which fall in 

the left tail of the distribution are members of the distortions listed in 

Table 5.4.1-1. 

Research efforts up to this point have been unable to identify a 

good measure for this subjective speech quality. Efforts to measure the 

energy of the noise resulting from the nonlinear speech distortions have 

been largely unsuccessful because the noise energy is dominated by the 

speech energy. Because of this, calculating the noise power in a 

straightforward manner, such as by taking the difference between the power 

spectrums of the distorted and the original speech, is extremely prone to 

error. 

Experiments thus far, 	however, indicate that a good measure for 

estimating SD might be some function of the difference between the 

level 	of the noise floor and the level of the excitation spectrum in a 

voiced segment of the distorted speech spectrum. 	The spectrum of an 

undistorted voiced speech frame is characterized by an impulsive spectrum 

due to the voiced excitation with a slowly varying envelope due to vocal 

tract filtering. The quantity to be measured, which could be called 

correlated SNR, 	is the difference between the level of a pitch peak and its 

adjacent valley, where both levels are measured on a log scale. The 

motivation for measuring this quantity is that speech which is distorted by 

a nonlinearity will have a slightly smeared spectrum and hence will have the 

difference between these two levels diminished. An objective measure for 
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estimating SD could be based on the correlated SNR of the distorted 

speech, summed over all speech frames, normalized by the correlated SNR of 

the original speech, also summed over all speech frames. 

5.4.2 SL: Muffled, Smothered  

This subjective quality describes the extent to which speech is muffled 

or smothered. Table 5.4.2-1 lists the distortions which excite this subjective 

scale. 	Most prominent of these is the low pass distortion which, since it 

eliminates high frequencies, fits well with the subjective quality of muffled. 

The low band bandpass distortions also produce a similar muffled quality. The 

other distortions fit better with the subjective quality of smothered. The 

highpass and the high bands of the bandpass bandlimiting distortions eliminate 

or diminish speech energy in the middle of the zero to 3600 Hz speech band 

which, produces the perceptual effect of smothered. The two waveform coders, 

CVSD and ADM also diminish the mid-band energy of the coded speech with respect 

to the original speech and hence produce the same smothered effect.. The 

remaining two distortions listed in Table 5.4.2-1 are narrow band additive 

noise, both injecting noise in the low to middle part of the speech spectrum. 

These distortions can be thought of as smothered in that they produces a noise 

masking of the speech. 

Like the subjective quality SD, SL has a relatively diverse mix of 

distortions which excite it. 	There are, however, far fewer types of 

distortions which produce severe SL quality degradations. 	This can be seen 

from the relatively small number of entries in Table 5.4.2-1 and from Figure 

5.4.2-1. 	This Figure shows the frequency of occurrence of a specific level of 

the quality SL across the ensemble of all distortions. 	It is strikingly 

different from the corresponding Figure for SD in that the main lobe for 

quality SL is narrower and its left tail is longer and lower. This indicates 

150 



SL 	muffled, smothered 

DISTORTION MAX MIN RANGE 

lowpass filtering 83.20 46.30 36.90 

CVSD 87.50 62.40 25.10 

bandpass filtering 77.60 53.40 24.20 

ADM 87.10 68.30 18.80 

center clipping 84.10 66.70 17.40 

highpass filtering 79.20 62.40 16.80 

400 - 	800 Hz noise 85.50 69.20 16.30 

800 - 1300 Hz noise 86.20 73.00 13.20 

Table 5.4.2-1 Distortions which most prominently excite subjective quality 
SL, listed in order of decreasing significance. 

Multiple R 	 .7342 Standard error of estimate 3.5679 
Multiple R square 	.5391 

Analysis of Variance 

Source of 	Sum of Degrees of Mean 
Variation 	Squares Freedom Square F Ratio 

Regression 	15142. 14 1081. 84. 
Residual 	12946. 1017 12. 

Table 5.4.2-2 Summary of regression model used to estimate subjective quality 
SL. 
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that the same range of quality degradation is provided by fewer distortion 

types. 

There are primarily two types of distortions which excite the subjective 

scale SL. These are bandlimiting distortions and narrowband noise distortions. 

This suggests that a composite objective measure would be most appropriate for 

tracking subjective quality SL. The objective measure tried has, for its first 

component, a frequency variant spectral distance measure and, for its second 

component, a frequency variant noise measure. An important point as yet 

unmentioned concerning SL is that the bandlimiting and additive noise 

distortions which exemplify SL are time invariant systems. Therefore their 

distortion characteristics should be recoverable from the time averaged 

spectrum of the reference and distorted speech waveforms. The method used to 

estimate the spectrum of the waveforms was to pass the waveform through a 

filter bank and compute the mean square value of each filter output for each 

utterance. 	This is the same critical band filter bank used for studying aural 

based objective measure in Chapter 4. 	In this way an estimate of the power in 

frequency bands for an entire utterance is obtained. 	The power in bands could 

be combined, as appropriate, to provide coarser estimates of the reference and 

distortion spectrum. Broader bands were found to produce more easily 

interpreted objective measures. 

The spectral distance objective measure has the following form: 

V(:,s,d,k) 
O1(s,d,k) = 1og 10 ( MIN( MAX( 	  , 

min), 
 ), TH 	) ) 	5.4.2-1 

V(:,s,i,k) 	
mIn 	max 

In the preceding equations, V(.,s,d,k) and V(.,s4,k) are the mean square 

values in the band k for the distorted and reference waveforms, respectively. 

Again,thisaverageistakenovertheentireutterance.Th.and TEL
ax 

are 
min 

parameters of the measure. 	The objective variables 01(s,d,k) were then 
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transformed into a new distance variable, 01•(s,b,k), which has coarser 

frequency resolution. Instead of having 25 bands 01• had only five bands, and 

is obtained by summing O1(s,d,k) as follows: 

01•(s,d,k) 
	

O1(s,d,k) 
Band No. 	Band No. 

1 1 - 	5 
2 6 - 	10 
3 11 - 	15 
4 16 - 20 
5 21 - 25 

In addition, a monotonic and uni-modal regression was done on the 

function O1(s,d,k) and stress for the functional forms lowpass, highpass, 

bandpass and band reject was computed. Computing stress for the functional 

form of lowpass requires computing a monotonically increasing regression, 

highpass requires a decreasing regression. Bandpass requires computing a global 

maximum uni-modal regression and band reject requires a global minimum uni-

modal regression. The motivation for computing these stresses was to measure 

the extent to which the distortion applied to the speech had one of these 

bandlimiting functional forms. The total number of independent variables used 

this objective measure was seven: five spectral distance variables for five 

frequency bands and two stress variables, one for the functional form lowpass, 

represented as 01•(s,d,6), and one for bandpass, represented as 01*(s,d,7). The 

remaining stress variables did not significantly contribute to the regression 

model. 

The second part of the composite measure is an additive noise measure. 

The functional form of this measure is as follows: 

02(s,d,k) = 1°g10( (1/NI!) 1 V (f,s,d,k) +1) 
f s  

5.4.2-2 
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where f are all silent frames in the reference utterance and NF is the number 

of silent frames. Like the spectral distance measure, the 25 bands in 

02(s,d,k) are combined to form five bands in a new additive noise measure, 

02•(s,d,k). The five variables in this measure are the noise power in the 

extended bands as measured during intervals of known speech inactivity in the 

distorted signal. 

The two measures were combined in a linear function with weights 

determined by regression analysis. The resultant measure was formulated as: 

7 	 5 

0
SL

(s,d) = po + / pi.ovqs,d,j) + / 132.02•(s,d,j) 	 5.4.2-3 
j=1 	I 	 i= 1 	j  

where 0
SL

(s,d) represents the objective estimate of the subjective quality SL. 

Table 5.4.2-2 shows the results of the multiple linear regression 

analysis used to formulate The The performance of this measure is only fair, 

as its correlation with SL is .74, which corresponds to an explanation of only 

55% of the variability in the subjective quality SL. In all probability this 

poor performance is due to the difficulty of modeling the diverse mix of 

distortions which excite SL. This was, never the less, the best objective 

measure for this parametric quality. 

5.4.3 SF: Fluttering, Bubbling  

This subjective quality quantifies the degree to which the speech signal 

has a fluttering or bubbling quality. Table 5.4.3-1 lists those distortions 

which excite the SF subjective scale. The dominant distortion in this table is 

by far pole distortions. The controlled pole distortions explicitly alter the 

original speech pole locations, while the parametric coder distortions based on 

an all-pole vocal tract model distort the speech pole locations in a more 
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SF 	fluttering bubbling 

DISTORTION MAX MIN RANGE 

interrupted, period = 1024 85.50 50.90 34.60 

LPC 85.30 51.10 34.20 

PD 	400 - 	800, frequency 85.80 52.60 33.20 

interrupted, period = 300 80.90 48.70 32.20 

VEV 13 84.90 60.70 24.20 

VEV 7 83.30 60.30 23.00 

PD 1300 - 1900, frequency 87.90 66.30 21.60 

PD 	400 - 	800, radial 83.60 63.90 19.70 

APC 86.60 67.30 19.30 

BD 	400 - 	800 83.20 64.40 18.80 

ECHO 88.60 70.80 17.80 

BD 2600 - 3400 79.80 62.90 16.90 

BD 	100 - 3500 80.40 63.90 16.50 

PD 	800 - 1300, frequency 84.10 68.10 16.00 

PD 	000 - 	400, radial 88.60 72.90 15.70 

PD 1300 - 	1900, radial 88.60 73.10 15.50 

PD 2600 - 3400, radial 87.50 72.60 14.90 

center clipping 85.60 72.10 13.50 

Table 5.4.3-1 Distortions which most prominently excite subjective quality 
SF, listed in order of decreasing significance. 
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complex way through modeling errors and parameter quantization. 	Two prominent 

exceptions are the first and fourth table entries: the interrupted distortions. 

These are understandably perceived as fluttering because their interruptions 

are periodic. The presence of these interrupted distortions in Table 5.4.3-1 

suggests that it is the periodic quality of the controlled and coder pole 

distortions which correlate most highly with subjective fluttering and 

bubbling. 

Though it is clear that the source of degradations in the subjective 

quality fluttering or bubbling is primarily due to LPC pole position errors, 

this research was unable to identify a good measure for such errors. The 

interrupted component of SF could clearly be estimated by the elements of the 

SI objective measure, but this still leaves pole position errors or, more 

precisely, formant frequency and bandwidth errors, to be estimated. Further 

experimentation needs to be done to determine the degree to which 

formant frequency and formant bandwidth are correlated to SF. 

order to perform such experiments one needs a means of determining 

formant frequency and bandwidth for a given speech frame. The vocal tract 

system function as derived from LPC analysis is a good starting point for 

finding these parameters. The difficulty in processing this smoothed 

spectrum is that formant frequencies correspond to local maximums of the 

spectrum and are therefore hard to track. One must estimate and in some 

sense remove 	the global spectral tilt before attempting 	to estimate 

formant 	frequencies. 	Once the formants are known, calculating their 

bandwidths is relatively straightforward. 

Once formant frequency and bandwidth can be 	reliably estimated, 

some function of the degree of variability of these parameters would seem 

to be 	a good physical 	correlate 	to subjective 	fluttering. 	One 

possibility is to match the first three formants in the original and the 
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distorted speech frames and to calculate the variance of the difference 

between the distorted and original formant frequencies for each of the three 

pairs. 	The variance would be computed over the set of all speech frames. The 

same calculation could be done for formant bandwidth. These 	six objective 

measure variables would then be the basis for an objective measure for 

estimating SF. 

5.4.4  BN: Hissing, Rushing  

This scale specifies the extent to which the background of the 

distorted signal has a hissing or rushing quality. 	Table 5.4.4-1 lists those 

distortions which most excite the BN subjective scale. 	This scale is in 

contrast to the ones discussed thus far in that a very homogeneous set of 

controlled distortions excite this subjective quality, namely additive noise 

distortions. The middle frequency narrowband additive noise distortions have 

the greatest perceptual impact, with the broadband additive noise being 

perceived as almost the same degree of distortion. At the bottom of the table 

is quantization distortion which is not an anomaly since, for medium to fine 

quantization levels, the quantization noise is nearly uncorrelated with the 

signal and is understandably perceived as a background process. 

From the evidence of the distortions which excite the BN subjective 

scale, a function which measures additive noise would be an appropriate 

objective measure for this scale. 	The objective measure used is that of 

equation 5.3.2-2, but here it is used by itself to estimate BN. 	The measure 

02(s,d,k) is transformed into 02*(s,d,k) in order to consolidate the number of 

bands. The transformation is as follows: 

02•(s,d,k) 
	

02(s,d,k) 
Band No. 	Band No. 

1 
	

1 - 5 
2 
	

6 - 16 

Note that bands 17 through 25 were not used in this measure. 	The objective 
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BN hissing, rushing 

DISTORTION 	 MAX MIN 	RANGE 

800 - 1300 Hz noise 80.40 49.30 31.10 

broadband additive noise 83.40 54.00 29.40 

400 - 	 800 Hz noise 79.10 50.40 28.70 

0 - 	 400 Hz noise 85.80 66.40 19.40 

1300 - 1900 Hz noise 82.10 69.60 12.50 

2600 - 3400 Hz noise 87.20 74.80 12.40 

1900 - 2600 Hz noise 84.00 72.80 11.20 

quantization 85.30 75.60 9.70 

Table 5.4.4-1 Distortions which most prominently excite subjective quality 
BN, listed in order of decreasing significance. 

Multiple R 	 .9136 Standard error of estimate 2,3199 
Multiple R square 	.8346 

Analysis of Variance 

Source of 	Sum of Degrees of Mean 
Variation 	Squares Freedom Square F•Ratio 

Regression 	28598. 2 14299. 2656. 
Residual 	 5667. 1053 5. 

Table 5.4.4-2 Summary of regression model used to estimate subjective quality 
BN. 
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final objective measure used to estimate BN was then: 

2 

0 (s,d) = po + / P.02*(s,d,j) 
BN 

j=1 
5.3.3-1 

The performance of this measure is extremely good. 	The objective 

measure results are shown in Table 5.4.4-2. 	The primary reason for such good 

performance, correlation of .90, is that all distortions which excite BN are 

very similar and hence can be modeled well as a group. Another reason is that 

there are relatively few distortions which excite BN, as can be seen from the 

narrow central lobe and the low left tail of Figure 5.4.4-1. This means that 

the regression model need only account for the variance of these few 

distortions, and can approximate the quality scores of the other distortions 

with a constant. Of all parametric objective measures studied, this measure 

was by far the most successful. 

5.4.5 BF: Chirping, Bubbling  

This subjective quality quantifies the degree to which the speech 

background has a chirping or bubbling quality. Table 5.4.5-1 lists those 

distortions which excite the BF subjective scale. This scale is very similar to 

SF, or signal fluttering and bubbling. The principal differences are, first, 

that interrupted does not excite BF where it was at the top of the list for SF. 

This is understandable since an interruption of the speech waveform is a 

distortion entirely associated with the speech signal and produces no spurious 

or uncorrelated background distortion. The second difference is that high band 

narrowband noise distortions excite the BF scale, where they did not excite SF. 

These distortions are most likely perceived as chirping background distortions. 

The rest of the distortions listed in Table 5.4.5-1 are for the most part the 

same distortions associated with SF, listed in Table 5.4.3-1. Therefore an 
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BF 
chirping, 
bubbling 

DISTORTION MAX MIN RANGE 
PD 1300 - 1900, radial 85.70 54.40 31.30 

PD 	800 - 1300, frequency 86.40 57.20 29.20 

LPC 85.10 56.00 29.10 

PD 1900 - 2600, radial 85.10 57.90 27.20 

PD 	400 - 	800, radial 85.30 59.20 26.10 

PD 	400 - 	800, frequency 85.60 59.60 26,00 

PD 	000 - 	400, radial 85.20 59.60 25.60 

PD 	800 - 1300, radial 87.50 65.90 21.60 

PD 1300 - 1900, frequency 86.90 66.30 20.60 

VEV 7 77.40 59.00 18.40 

VEV 13 76.20 59.90 16.30 

PD 2600 - 3400, frequency 86.70 70.70 16.00 

PD 2600 - 3400, radial 90.00 74.60 15.40 

APC 84.40 69.10 15.30 

PD 1900 - 2600, frequency 87.50 72.30 15.20 

PD 2600 - 3400, frequency 87.50 73.80 13.70 

BD 2600 - 3400 83.60 70.80 12.80 

2600 - 3400 Hz noise 85.10 72.70 12.40 

BD 	100 - 3500 81.80 69.80 12.00 

1900 - 2600 Hz noise 83.60 71.60 12.00 

BD 	400 - 	800 83.50 71.80 11.70 

1300 - 1900 Hz noise 86.40 74.70 11.70 

BD 1300 - 1900 83.00 71.90 11.10 

quantization 85.10 74.10 11.00 

BD 	800 - 1300 81.60 70.80 10.80 
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objective measure for estimating BF should be similar to a measure for SF. 

Referring back to the multidimensional scaling of the subjective data base, 

Figure 5.3.2-1, one can see that SF and BF are both at the bottom of the plot 

and are rather close together, confirming the fact that the two quality scales 

detect perceptually similar distortions. 

This research was unable to identify good objective measures for BF. 

This 	is 	largely to be expected since SF was 	also difficult 	to 

objectively estimate. The same insight into objective measures for SF, as 

discussed in section 5.4.3, largely holds true for objective measures for BF. 

The primary difference is that objective estimates of interrupted are not 

needed for estimating BF while objective estimates of background noise are. 

The latter objective estimates are discussed in section 5.4.4. 

5.4.6 SI: Irregular, Interrupted  

This parametric quality scale describes the degree to which the speech 

signal is irregular and interrupted. 	Table 5.4.6-1 lists distortions which 

excite this subjective scale. 	The most prominent distortion is the slow 

periodic interruption, with the fast periodic interruption falling in the 

middle of the table. 	These two distortions certainly produce perceptually 

interrupted speech. 	It is difficult to find an objective quality which is 

common to the remainder of the distortions which excite SI. They most likely 

excite the subjective quality irregular, rather than interrupted. The remaining 

distortions are not totally disjoint, however. Both APCM and ADPCM excite SI, 

and the two highest bands of the narrowband additive noise excite SI. Several 

pole distortions also excite SI. 

Since interrupted is the most important aspect of the SI scale and since 

this quality is easy to model objectively, the measure used for estimating SI 

was designed to respond only to interruptions of the speech waveform. In 

particular the average number of consecutive frames for which the distorted 
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SI 	irregular, 	interrupted 

DISTORTION MAX MIN RANGE 

interrupted, period = 1024 87.90 38.40 49.50 

ADM 91.00 49.60 41.40 

2600 - 3400 Hz noise 87.10 62.50 24.60 

ADPCM 85.00 60.50 24.50 

center clipping 87.60 63.90 23.70 

interrupted, period = 300 86.80 66.20 20.60 

APCM 85.20 65.10 20.10 

ECHO 89.90 76.20 13.70 

PD 	800 - 1300, frequency 89.50 76.50 13.00 

PD 1900 - 2600, radial 89.90 77.80 12.10 

PD 	000 - 	400, radial 89.60 79.10 10.50 

PD 1900 - 2600, frequency 89.20 79.30 • 	9.90 

1900 - 2600 Hz noise 87.10 78.70 8.40 

Table 5.4.6-1 Distortions which most prominently excite subjective quality 

SI, listed in order of decreasing significance. 

Multiple R 	 .8483 Standard error of estimate 2.6043 

Multiple R square 	.7196 

Analysis of Variance 

Source of 	 Sum of Degrees of Mean 
Variation 	 Squares Freedom Square F Ratio 

Regression 	17454. 4 4363. 643. 
Residual 	 6802. 1003 6. 

Table 5.4.6-2 Summary of regression model used to estimate subjective quality 
SI. 
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speech energy was either below a specified threshold or above the threshold is 

measured as a gauge of interruption. 	The measure is best expressed using 

intermediate variables as follows: 

1og10 ( 	( 	(1/FL) L 	X(m,s,d) 	)
05 

m
f  

) 

RATIO(f,s,d) - 5.4.6-1 

1og 10 ( 	( 	(1/FL) 2 	X(m,s,0) 	)0.5  
mf 

) 

ON(s,d) = Average run length of frames for which 
(RATIO(f,s,d) > TH) 5.4.6-2 

OFF(s,d) = Average run length of frames for which 
(RATIO(f,s,d) < TH) 5.4.6-3 

0(s,d,1) 	= OFF(s,d) 5.4.6-4 

OFF(s,d) 
0(s,d,2) 	- 	  5.4.6-5 

(ON(s,d) + OFF(s,d)) 

0(s,d,3) 	= 0(s,d,l) 5.4.6-6 

0(s,d,4) 	= 0(s,d,2) 5.4.6-7 

4 

0 	(s d) = p 	+ 	/ p.0(s,d,j) si 	0 	j=1  
5.4.6-8 

Parameters FL and TH can be varied as desired to alter the measure. 	Parameter 

FL is the number of samples in a frame of speech and parameter TH specifies the 

threshold between objectively interrupted and non-interrupted speech. 	In the 

formula specifying RATIO, m f  is the index of the speech samples comprising 

frame f. 	The objective measure variables are specified in equations 5.4.6-4 

through 5.4.6-7. 	Note that the last two objective variables are simply the 

first two objective variables squared. 	Therefore the final objective measure 

specified in equation 5.4.6-8 is actually a multiple linear and polynomial 

regression equation. 
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The results of using regression analysis to find the best estimate, Osi , 

of quality SI are shown in Table 5.4.6.2. The measure performed reasonably 

well, as measured by a multiple R of .85, with the restriction that not all the 

distortions were included in the analysis. 	Specifically, /WPM, APCM and ECHO 

were not included in the analysis. 	ECHO was excluded because it was not 

representative of typical speech coder distortions. However, ADM.( and APCM 

were excluded because their distortions were not being modeled well by this 

objective measure. Leaving them out greatly improved the correlation with SI. 

As mentioned previously, these two coder distortions most likely produce a 

subjectively irregular distortion. This is, admittedly, a rather major 

shortcoming of this objective measure, but a future composite measure made up 

of this measure and another measure which does track perceived irregularity 

would rectify this deficiency. 

5.4.7 SH: Distant,  Thin 

This last subjective quality measures the degree to which the distorted 

speech sounds distant or thin. The distortions which most dramatically excite 

this parametric quality scale are bandlimiting distortions, specifically 

highpass and bandpass distortions. 	These two distortions are ordered one and 

two in Table 5.4.7-1. 	For the higher bands, the bandpass filtering is very 

similar to highpass filtering so it is reasonable that these two distortions 

are grouped together. They indicate that highpass filtering is the most 

important objective correlate to speech being perceived as distant and thin. 

Two seemingly out of place distortions found in Table 5.4.7-1 are CVSD and 

lowpass filtering. On closer inspection CVSD does in fact produce a 

bandlimiting distortion which slightly decreases the energy of speech in a 

broad band centered at approximately 2000Hz. So the only feature these two 

distortions have in common is that they both diminish speech energy in mid 

band, although lowpass filtering eliminates virtually all out of band energy. A 

169 



SH 	distant, thin 

DISTORTION MAX MIN RANGE 

highpass filtering 84.70 54.20 30.50 

bandpass filtering 85.00 60.60 24.40 

0 - 	400 Hz noise 86.90 75.40 11.50 

CVSD 90.30 79.30 11.00 

lowpass filtering 87.90 78.00 9.90 

peak clipping 87.10 79.60 7.50 

Table 5.4.7-1 Distortions which most prominently excite subjective quality 
SH, listed in order of decreasing significance. 

Multiple R 	 .8540 Standard error of estimate 2.4545 
Multiple R square 	.7293 

Analysis of Variance 

Source of 	Sum of Degrees of Mean 
Variation 	Squares Freedom Square F Ratio 

Regression 	17023. 6 2837. 470. 
Residual 	 6319. 1049 6. 

Table 5.4.7-2 Summary of regression model used to estimate subjective quality 
SH. 
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possible conclusion is that like SL, SH is correlated to a decrease in mid-band 

speech energy. 	Other distortions which excite SH are peak clipping and the 

lowest band of narrowband additive noise. 	Peak clipping smears energy across 

the entire spectrum which is perceived primarily as high frequency distortion 

due to the low level of speech energy at high frequencies. Therefore these two 

distortions produce noise at opposite ends of the spectrum. This effect may be 

correlated to the quality distant and thin. 

The objective measure used to estimate SR concentrated on the principle 

objective feature of SH which is highpass filtering. The objective measure is 

a spectral distance measure which is identical to the one used to estimate SL, 

specified in equations 5.3.2-1 and including the subsequent transformation to 

reduce the number of bands to five. The objective distance variables are 

combined in a regression equation for estimating SH as follows: 

5 

0 (s
' 
 d) = p + / P.O' ,d,j) 	 5.4.7-1 

SH 	0 	j=1  

Table 5.4.7-2 shows the results of this analysis. Performance for this measure 

was significantly better than for the measure which estimates SL. For this 

measure a correlation of .85 was obtained. This is primarily due to the fact 

that the distortions which produce most of the variance in SH, highpass and 

bandpass filtering, are relatively homogeneous and therefore can be effectively 

modeled. 

5.5 Discussion 

In the previous section we have presented four parametric objective 

measures. 	The performance of these measures range from very good (a 

correlation of 0.90 for BN) to fair (a correlation of 0.74 for SL). 	Though 

these results are quite good, 	they are more 	remarkable because 	the 
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objective 	measures 	estimated subjective quality over the entire distorted 

data base, (with the exception of O si .) This is encouraging because it 

indicates that these objective measures are applicable to a broad range 

of speech distortions. 

Objective measures with similar performance could not be found for 

subjective qualities SD, SF and BF, though the probable form of measures for 

estimating these subjective qualities was discussed. Further analysis is 

necessary to better understand the physical manifestations of these perceptual 

qualities before good measures for them can be designed. 

In designing each parametric objective measure, we have attempted to 

build regression models in which all of the regression weights have 

an intuitively satisfying physical interpretation. The ability to assign a 

meaning to the regression coefficients is a check on the appropriateness of 

the regression model. 	More complex models with relatively meaningless 

regression weights have been avoided. 	Even though such models are able to 

provide improved performance, 	it is suspected that they do so by accounting 

for variations in the noise of the data and do not provide 	improved 

modeling of the subjective speech perception process. 

In some cases the parametric objective measure results may have 

utility by themselves. 	For example, 	a low score on the BN objective 

measure 	may 	indicate excessive additive noise distortion 	in the 

speech system, while a low score on the SF objective measure may indicate 

insufficient quantization levels in the vocal tract parameters of an LPC based 

speech coder. In general, the parametric measures yield specific information 

which may be extremely useful in diagnosing the cause of voice quality 

degradation in a communications system. 

	

However, 	for verification of overall performance of 	a 	speech 

communication network, 	an objective measure for composite acceptability 
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is needed. Such a measure can be used in the design of speech communication 

systems and in the field maintenance of speech systems. Given that we have 

a full set of parametric objective measures which provide good estimates of 

SD, SL, SF, BN, BF, SI and SH, the essential information in these parametric 

measures, the objective measure variables, can be used to build a measure of 

composite acceptability. The form of the objective measure would be as 

follows: 

o 	p + / p.o. . 
CA 	

0 j=1 I  
5.5-1 

where i is an index over speakers and distortion systems and j is an index 

over the included objective measure variables. 	The variables O.. 	are 
1,1 

the 	same objective variables used 	in constructing the parametric 

measures, though they are now lumped together in a single regression model 

andeachisimightedbya13.unique to this new model. A problem with 

equation 5.5-1 is that it models CA as a linear combination of the 

objective measure variables. This inadequacy can be lessened if interaction 

terms, or product terms involving the objective measure variables, 

are added to the model. 

The key to designing a good measure for composite acceptability 

is to represent all 	significant 	perceptual dimensions of acceptability 

in the model. 	This point was illustrated by the multidimensional 

scaling 	analysis of the subjective data base in section 5.3.2. 	Because 

the objective measure variables used in equation 5.5-1 	contain all 

the 	information needed to estimate the most 	significant 	parametric 

subjective qualities, 	they 	in some sense span the perceptual space 	of 

subjective composite acceptability. 	It is therefore reasonable to 	expect 
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that this measure for CA will perform as well as any of the individual 

measures of parametric subjective quality. 
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CHAPTER 6 

PRECLASSIFIED OBJECTIVE SPEECH QUALITY MEASURES 

6.1 Introduction 

In the previous two chapters, two distinct approaches to the design of 

objective speech quality measures were studied in some detail. Chapter 4 

studied the use of aural models in designing objective measures while Chapter 5 

studied the use of parametric objective measures for the same purpose. Both of 

these approaches met with some degree of success. This chapter introduces and 

develops yet another separate approach to designing objective quality measures: 

that of preclassifying (or labeling) the distortions before the application of 

the objective measures. 	The basic procedure used in this approach has three 

steps. 	In the first of these, each speech distortion to be measured is 

assigned to a specific class of distortions. 	This classification may be done 

either objectively or subjectively, although objective classification is much 

more desirable. Once all of the distortions are classified, then separate 

objective measures are designed for each separate class of distortion. 

Finally, these separate classified objective measured are combined to form a 

single, broadly based objective measure. 

It is simple to show that the preclassification of distortions leads to 

vast variations in the performance of simple objective measures. Figure 6.1-1 

shows a plot of the correlation coefficient for a log spectral distance measure 

as a function of the value of p in the L norm [6.1]. The results are shown 

separately for the cases in which the objective measure is applied to all 

distortions in the distorted data base, 	and three distortion subsets: 

controlled distortions, waveform coders, and all coders. 	Clearly, the log 

spectral distance measure performs much better on some of these distortions 

than on others. 	The point here is that if the distortions could be correctly 
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Figure 6.1-1 Plot of Log Spectral Distance Measures as a Function of p in the 
L Norm for Four Different Distortion Classes 
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classified, then objective measures which had been specifically designed for 

the proper class could be applied, resulting in better overall performance. 

6.2 Objective Measures for Narrow Distortion Classes  

There are really two questions to be addressed here. 	The first question 

is given a good measure for classifying measures, what is the expected 

improvement in the overall performance of the objective measures. If the 

performance improvement is small, then there is no need for more extensive 

study. If the answer to the first question is positive, then the second 

question is how to assign objectively a particular distortion to a particular 

class in order to realize the expected improvement. 

Figures 6.2-1 and 6.2-2 show the composite acceptability (CA) results for 

the the six distortion levels of CVSD and APC respectively. In both cases, the 

results are displayed parametrically as a function of talker. 	There are two 

points which should be noted from these figures. 	First, for each individual 

talker, these results could be well represented by a first or second order 

regression model. Second, there is a considerable and consistent spread of 

results between the talkers. Hence, subjective measure results from one talker 

are not necessarily good predictors of subjective measure results from another 

talker. Clearly, a good classified objective measure must also exhibit this 

talker selectivity if it is going to be a good predictor of subjective 

responses. 

Figures 6.2-3 and 6.2-4 illustrate the use of narrowly classified simple 

objective measures for CVSD and APC. The measures illustrated on these plots 

include the log spectral distance measure with linear regression, the log 

spectral distance measure with non-linear regression, and the short-time 

frequency variant SNR. Clearly, the performance of these simple measures is 

substantially improved by the classification process. 

Figures 6.2-5 and 6.2-6 illustrate the use of narrowly classified 
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OBJECTIVE ESITMATES FOR CVSD FROM CLASSIFIED SIMPLE MEASURES 
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Simple Classified Objective Measures 
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OBJECTIVE ESITMATES FOR APC FROM CLASSIFIED SIMPLE MEASURES 
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composite objective measures for CVSD and APC. 	In each case, the measure used 

was trained specifically to predict only the distortions in the two classes. 

The objective measures used were the short-time frequency-variant SNR, a linear 

multi-regression composite measure, and a non-linear multi-regression composite 

measure [6.1]. As can be seen from these plots, the performance of each of the 

narrowly defined objective measures is, on the whole, very good. Indeed, a 

comparisons with Figures 6.2-1 and 6.2-2 show that these narrow objective 

measures are better predictors of CA than individual one-talker subjective 

measures. 	Figures 6.2-7 and 6.4-8 illustrate the reason for this good 

performance. 	These figures show the objective and subjective estimates of 

composite acceptability for the linear composite measure as a function of 

individual talker. Clearly, this measure has good talker selectivity. 

Based on the above discussion, it is possible to make two general 

statements. First, if the class of distortions of interest are narrow enough, 

then it is possible to design composite measures which predict the subjective 

quality with remarkable accuracy. This is an important fact if the goal is to 

determine if a known coding system is performing up to standard and to measure 

the level of the reduced performance if it is not. Second, if the class of 

distortions of interest is broad, then the required task is to classify the 

candidate into a narrow class so as to gain the advantage discussed above. So 

the fundamental question reduces to finding procedures to classify distortions 

objectively. 

6.3 Identification of Homogeneous Subsets in the Distorted Data Base 

6.3.1 Introduction 

There are two broad approaches to searching for improved objective 

speech quality measures. The first is to find measures which provide improved 

quality estimates over a broad range of distortions. The second is to find 

measures which provide improved quality estimates over a restricted range of 
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OBJECTIVE ESITMATES FOR APC FROM CLASSIFIED COMPOSITE MEASURES 
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distortions. As stated, the two approaches are the same except for the number 

or type of distortions that are considered in the analysis. The second approach 

can be simplified, and the two approaches can be made more distinct if the 

problem is restated as follows: the first approach searches for an objective 

quality measure given a set of speech distortions, while the second approach 

searches for a set of speech distortions given an objective quality measure. In 

both cases the criterion to be satisfied by the search is maximization of the 

correlation between the objective measure of speech quality and the subjective 

measure of speech quality over the speech distortions considered. This section 

reports on work done using the second approach as a means of improving 

objective speech quality measures. 

One can think of the second approach as an objective classification 

procedure in which speech distortions are objectively categorized into two 

classes: one class contains the distortions used to assess the objective 

measure's performance and the other class contains the distortions to be 

ignored. The approach is similar to that of restricting objective measures to 

operate only on certain classes of distortions, such as waveform coders; but 

here the classes of distortions are specified objectively rather than 

heuristically. The intent is to select a set of distortions objectively which, 

to a great extent, is homogeneous with respect to the relationship between 

their objectively measured speech quality and their subjectively measured 

speech quality. It was hoped that these homogeneous sets of distortions would 

provide two insights into the objective measure being studied. First, that they 

would show what kinds of specific distortions are best matched to an objective 

measure and, second, that they. would indicate, by means of common features of 

the set's members, what overall physical characteristics of the distortions are 

being measured by the objective quality measure to provide the estimate of 

subjective speech quality. The next step in this process would be, of course, 
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to use these insights to adjust or reformulate an objective measure to give a 

better performance over a given class of speech distortions. 

In order to further motivate the approach of searching for homogeneous 

subsets as a means of improving objective measures, consider an experiment 

using the log area ratio objective measure. The experiment consists of three 

regression analyses. In the first analysis a sixth order polynomial regression 

model was used: 

6 

CA. = p + 	p.o.! + E. 
0 j1 " 

6.3-1 

in which the objective measure variable, O i  was the log area ratio measure, and 

the dependent variable, CA i , was composite acceptability. The regression 

coefficients, P. were estimated using the entire set of 44 speech distortions. 

Subscript j is an index over the order of the model term and subscript i is an 

index over the 1056 speaker-distortion systems in the distorted speech data 

base. The resulting correlation of subjective composite acceptability to the 

regression model's estimated composite acceptability was 0.67, so that the log 

area ratio objective measure was able to account for only 44.4 percent of the 

variance of composite acceptability. This result is comparable to the 

performance of several other simple objective measures, though this performance 

of subjective is not sufficient for providing reliable estimates 

quality. Table 6.3-1 summarizes these results. 

The second regression analysis used the same form as 

speech 

equation 6.3-1, 

except that the data set was restricted: just four waveform coder distortions 

were included in the analysis, as specified in Table 6.3-2(a). The results of 

the analysis, shown in Table 6.3-2(b), are that over the distortion subset 

specified the log area ratio objective measure was able to account for 49.9 
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Regression 
Degree 	Coefficient 

0 	67.21 
1 	-14.10 
2 	 5.99 
3 	-1.44 
4 	 .18 
5 	 -.01 
6 	 .00 

Multiple R-square 	.44395 

Table 6.3-1 The results using a sixth order polynomial regression model to 
estimate composite acceptability. The objective measure was the 
log area ratio distance measure. 

Waveform distortions included in the analysis: 

Adaptive differential pulse code modulation (ADPM) 
Adaptive pulse code modulation (APCN) 
Continuously variable slope delta modulation (CVSD) 
Adaptive predictive coder (APC) 

(a) 

Regression 
Degree 	Coefficient 

0 	75.73 
1 	68.94 
2 	-110.80 
3 	56.09 
4 	-12.98 
5 	 1.41 
6 	-0.06 

Multiple R-square 	.49913 

(b) 

Table 6.3-2 Part (a) lists the four distortions over which the sixth order 
polynomial regression analysis was done. Part (b) lists the 
results of the regression analysis. The objective measure uses 
was the log area ratio measure. 
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percent of the variance of composite acceptability. 	This is a surprisingly 

small improvement as compared to its performance over the entire set of speech 

distortions. 

The central issue in this experiment is to find out why the log area 

ratio objective measure performed so poorly over an apparently homogeneous set 

of waveform coder distortions. One method of investigating this issue is to 

hypothesize that each distortion conforms to a distinctly different regression 

model as opposed to a single model as in equation 6.3-1. A means to explore 

this hypothesis is to use an indicator variable regression model, stated as 

follows: 

CA i  = (0 0  + 131z1  + 13 2z2+ (33Z3)  + (p4  + 05z 1  + p6z2  + 07z3 )o i  + e i  

6.3-2 

Note that this is a linear regression model as opposed to the polynomial 

regression model used in the previous analysis. The variables Z. which have 

the value either zero or one, are indicator variables, so called because they 

indicate to which distortion data 0. belongs to as follows: 

Waveform Coder 
Z
1 

Z
2 

Z
3 

Distortion 

0 0 0 ADPCM 
1 0 0 APO& 
0 1 0 CVSD 
0 0 1 APC 

The indicator variables permit each distortion to have a unique slope and 

intercept in the regression model. The results of the analysis are shown in 

Table 6.3-3. The model has improved dramatically, in that it now accounts for 

83 percent of the variance of composite acceptability. Hence the hypothesis 

that each distortion has a unique model was proven true. In particular, Table 

6.3-3 shows that coefficients 05  through 137  are not statistically different 

from zero, so that the major difference between models for each distortion is 
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Variable 
Regression 
Coefficient 

0 60.10 
1 -4.75 
2 -0.23 
3 16.10 
4 11.29 
5 0.94 
6 -0.45 
7 0.26 

Multiple R 	 .9126 
Multiple R-square 	.8329 

Table 6.1-3 Results of the indicator variable regression model analysis. 
Again, the objective measure used was the log area ratio measure. 
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that they each have a different intercept value. This is dramatically 

illustrated in Figure 6.3-1. The solid lines are the regression curves for each 

of the four speech distortions. One can see that they have a similar slope but 

distinctly different intercepts. The dashed curve is the regression curve 

obtained from the previous sixth order polynomial regression analysis of this 

data set. The polynomial curve did not represent the underlying model of any of 

the distortions very well, and hence had poor performance. 

What this experiment clearly illustrates is that a heuristically chosen 

group of speech distortions, such as a group of waveform coders, does not 

guarantee a homogeneous set of distortions relative to their regression models. 

It therefore seems reasonable to use a blind statistical approach, as will be 

discussed in the following section, to select speech distortions which do have 

similar regression models and can therefore be grouped together and operated on 

by a given objective measure to estimate subjective composite acceptability. 

6.3.2 The Objective Classification Procedure  

The distortion classification procedure assumes that the objective 

measure is specified, and that it is a measure with only one objective measure 

variable. The objective measures that were considered are a group of the best 

simple objective measures proposed by Barnwell and Voiers [6.1]. Given the 

objective measure, the procedure finds the 44 distortion subsets, with number 

of members one through 44 respectively, which provide the best correlation 

between the objective measure and subjective composite acceptability. The 

procedure can be divided into two sections. The first section of the procedure 

searches through all possible distortion subsets for the subset of size N which 

provides the greatest correlation between the selected objective measure and 

composite acceptability. The correlation is computed only over the members of 

the subset. Let this subset of size N be called SN . This would be the only 

section of the procedure were it not for the very large number of computations 

194 



SU
B J

EC
T

IV
E

 Q
UA

L
IT

Y 

60.. 

CVSD APC 

2.10 	 3.50 	 4.90 
	

6.30 

OBJECTIVE MEASURE 

Figure 6.3-1 Each of the four solid curves represents the best linear 
regression curve fit for each of four distortions. The dashed 
line represents the best sixth order regression curve fit for all 
four distortions taken together. 

195 



44! 

14  
(44-N)! N! 

(6.3-3) 

involved as the number of members in the subset grows larger. In the 

investigation of all subsets of size N the number of correlations that must be 

computed is equal to the number of combinations of 44 items taken N at a time, 

Or: 

An exhaustive search of all subsets of all sizes would then require a number of 

correlation calculations equal to the sum of 44 items taken N at a time for N 

equals one to 44, a number which exceeds 10
12
. Because of this excessive 

number of calculations, the first part of the procedure was only done for 

subsets of size one through five. 

The second part of the procedure circumvents the problem of burdensome 

calculations at the expense of being sub-optimal. This part searches for a 

distortion not already a member of set SN-1 which, when added to SN_ 1 , produces 

a new set SN  which provides the greatest correlation between the objective 

measure and composite acceptability. Again, the correlation is computed over 

the set SN. This step is repeated for N equals 6 through 44. The entire 

algorithm is summarized in Figure 6.3.2-1. 

6.3.3 Results of Objective Classification into Homogeneous Subsets  

The results of the subset classification experiment are, in general, 

inconclusive. The graph in Figure 6.3.3-1 shows how the correlation coefficient 

for the best subset varies with the number of members in each subset for each 

of the objective measures studied. These results look quite promising: for 

each of the four measures, a subset of fifteen distortions , or one-third of 

the total number of distortions, had a correlation of better than 0.90. 

Therefore all of these objective measures are producing very good estimates of 

subjective composite acceptability for each of the distortions in the subsets. 

These results are less encouraging when one examines the types of distortions 
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START 

N=1 

SEARCH THROUGH ALL SUBSETS 
OF SIZE N AND DESIGNATE THE 

SUBSET WITH THE MAXIMUM 
CORRELATION AS SN  

N=N+1 

NO 

SEARCH THROUGH ALL REMAINING 
DISTORTIONS FOR THE DISTORTION 
WHICH, WHEN ADDED TO SN-1 

YIELDS A SUBSET 
WITH THE MAXIMUM CORRELATION. 

LET THIS SUBSET BE SN . 

N=N+1 

NO 

( STOP 

Figure 6.3.2-1 A flowchart illustrating the algorithm used in selecting the 
best distortion subsets for a given objective measure. 
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contained in the subsets. Table 6.3.3-1 lists the distortions contained in the 

subset of fifteen distortions for each of the objective measures presented in 

Figure 6.3.3-1. 

The most remarkable aspect of these subsets is that each contains a very 

diverse group of distortions. This is quite the contrary of what was hoped in 

this experiment. A close examination of each subset reveals that there are one 

or two groups of the same distortion type within each subset. For example, the 

subset associated with the log spectral distance measure contains three 

contiguous bands of additive narrowband noise distortions and two contiguous 

bands of angular pole distortions. Similarly, the subset associated with the 

Itakura distance measure contains three contiguous bands of additive narrowband 

noise and four bands of angular pole distortions. The subset associated with 

the log area ratio distance measure contains three bandlimiting filtering 

distortions, three contiguous additive narrowband noise distortions and three 

contiguous banded in-phase noise distortions. Though there are these limited 

similarities between distortions in the subsets, in general there is not enough 

commonality between distortions to make any firm conclusions regarding the type 

of distortions which are best suited for the objective measures. Since it is 

not clear what general qualities these distortions have in common, it is even 

less clear what physical qualities of those distortions are being measured to 

yield the undeniably good estimates of subjective composite acceptability. 

Hence we are, unfortunately, unable to make hypotheses about the underlying 

mechanisms which, in a statistical sense, make this set homogeneous. 

6.3.4 Conclusions  

Intuitively the blind statistical method for choosing homogeneous 

distortion subsets, as presented in this section, has merit in that it 

identifies, by the very nature of the algorithm, near-optimal subsets. For all 

objective measures investigated the performance over subsets containing one- 
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Log Spectral Distance 
Measure: 

center clipping 
400 — 800 Hz noise 
PD 1900 — 2600, frequency 
PD 2600 — 3400, radial 
ADPCM 
PD 200 — 400, frequency 
BD 13 00 — 1900 
APCM 
VEV 7 
VEV 13 
800 — 1300 Hz noise 
peak clipping 
PD 1300 — 1900, frequency 
0 — 400 Hz noise 
APC  

Nonlinear Spectral Distance 
Measure: 

800 — 1300 Hz noise 
PD 2600 — 3400, frequency 
PD 200 — 400, frequency 
400 — 800 Hz noise 
VEV 13 
VEV 7 
APC 
BD 1300 — 1900 
APCM 
PD 2600 — 3400, radial 
0 — 400 Hz noise 
BD 800 — 1300 
center clipping 
PD 1300 — 1900, frequency 
quantization 

Log Area Ratio Distance 
Measure: 

bandpass filtering 
2600 — 3400 Hz noise 
PD 2600 — 3400, frequency 
PD 200 — 400, frequency 
BD 1900 — 2600 
1900 — 2600 Hz noise 
BD 100 — 400 
1300 — 1900 Hz noise 
PD 2600 — 3400, radial 
highpass filtering 
BD 800 — 1300 
lowpass filtering 
BD 1300 — 1900 
APC 
PD 1900 — 2600, frequency 

Itakura Distance 
Measure: 

800 — 1300 Hz noise 
BD 1300 — 1900 
PD 200 — 400, frequency 
ADP CM 
center clipping 
PD 2600 — 3400, radial 
APCM 
PD 1900 — 2600, frequency 
0 — 400 Hz no 
peak clipping 
PD 1300 — 1900, frequency 
BD 100 — 3500 
400 — 800 Hz noise 

PD 800 — 1300, radial 
PD 400 — 800, frequency 

Table 6.3.3-1 The homogeneous subsets of fifteen distortions for 	four 
objective measures. The subsets provide maximum correlation 
between the objective measure and composite acceptability. 
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third of the total number of distortions was, in fact, very good, with 

correlation with composite acceptability exceeding 0.90 in all cases. These 

facts promote the blind statistical approach as opposed to a heuristic approach 

to choosing distortion subsets. Unfortunetly, whereas a heuristic approach 

based on grouping common distortion types, by its very nature, yields 

physically homogeneous subsets, the blind statistical approach yields subsets 

which are fragmented, containing small groups of diverse distortion types. This 

is largely unsatistfying, in that no broad conclusions can be drawn as to the 

physical or perceptual nature of distortions which are best matched to the 

objective measure being investigated. 

This 	is not to say that the statistical approach for grouping 

distortions is entirely rejected, but merely that it is inconclusive based on 

an initial set of experiments. The conclusion at this stage is, however, that 

insight into the underlying mechanisms which cause an objective measure to be a 

good match to a certain set of distortions, and hence permit the objective 

measure make good estimates of subjective quality, are best found through other 

experimental approaches. In particular, it is felt that investigation of 

objective measures for estimating parametric subjective qualities would yield 

more insight into these issues. 
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