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Georgia institute of Technology
Atlanta, Georgia 30332

College of Engineering
School of Electrical Engineering
Digital Signal Processing Laboralory

April 20, 1983

Ken Fischer

Defense Communication Engineering Center
1860 Weikle Avenue

Reston, VA 22090

Dear Ken, .

We started work on the contract (DCA 100-83-L-0027) on March 28. We have, at
this point, hired a graduate research assistant at 1/3 time to participate in
the project. <The student, Eric Farges, is a potential Ph.D. candidate, and
should be very helpful. His main functions will be computer programming and
monitoring, and data-base management.

Besides mapping out and planning our strategy, our effort has gone into
generating the new sets of distortions. At present, the sub-band coder has
been written and debugged. To gain experience on the computer, we are letting
Eric write the channel vocoder. The writing of the other coders is in
progress.

If you have other questions or wish to know more details concerning our
progress, do not hesitate to contact Tom or myself.

Sincerely,

Mark A. Clements
cle

A Unit of the University System of Georgia An Equal Education and Employment Opportunity Institution
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Georgia Institute of Techriology g

Atlanta, Georgia 30332

MK @Qomat;

College of Engineering
School of Electrical Engineering
Digital Signal Processing Laboratory

TECH

Mr. Ken Fischer

Defense Communications Engineering Center
1860 Weikle Avenue

Reston, VA 22090

Dear Ken,

This is the monthly letter report on contract DCA-100-83-L-0027. As per your
request, I have layed out the major tasks on the project as a chart, and have
indicated the state of each task.

We have been concentrating on the extention of the distorted data base, and
have made good progress in that regard, Most of the work here is in the
development of the ATC, the APC with runlength coding, and the channel
vocoder. The APC distortion runs are now complete, and the ATC and channel
vocoder programs should be available very soon. The Banded Pole Distortion
and APC with noise feedback both only consist of applying existing programs,
and they can be completed quite quickly.

In the Aural Modeling area, we are still in the literature search phase, and
this is progressing.

Our expectation is that the distortions will all be completed in the early
summer, and the emphasis in the summer will be on the objective measures.

Bincerely,

Thomas P. Barnwell, III
Professor

clc

A Unil of the University Sysiem of Georgia An Equal Education and Employment Opportunity Institution
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Adaptive transform Coder
APC [Noise Feedback]

APC [Runlength Coder]
8BC

Banded Pole Distortion
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Literature Search
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Evaluation
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Task in progress
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Georgia Institute of Technology
Atlanta, Georgia 30332

College of Engineering
School of Electrical Engineering
Digital Signal Processing Laboratory

TECH

June 30, 1983

Mr. Ken Fischer

Defense Communications Engineering Center
1860 Weikle Avenue

Reston, VA 22090

Dear Ken,

This is the monthly letter report on contract DCA-100-83-L-0027. With the
help of the sample report you sent us, we hope our report is in the format you
desire. We are still making progress in generating the distorted data base,
with the adaptive transform coder finished, and the channel vocoder nearing

completion,

The other tasks are proceeding as planned, with no major difficulties
encountered.

Sincerely,

Mark A. Clements
Assistant Professor

clc

A Unit of the University System of Georgia An Equal Education and Employment Opportunity Institution
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A Brief Description of Tasks
Contract No. DCA100-83-L-0027

Description

Distorted data-base generation

Adaptive transform coder

Adaptive predictive coding (noise feedback)
Adaptive predictive coding (run length coder)
Subband coder

Banded pole distortion

Channel vocoder

Aural Modeling

Literature Search
Programs

Evaluation

Composite Objective Measures

Parametric Correlations
Improved Designs

Monthly reports

Final Report

Proofing and Reproduction

Total

Man-Months
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Georgia Institute of Technology
Atlanta, Georgia 30332

College of Engineering
School of Electrical Engineering
Digital Signal Processing Laboratory

TECH

September 2, 1983

Mr. Ken Fischer

Defense Communications Agency
1860 Wiehle Avenue

Reston, VA 22090

Dear Ken,

When preparing to write the August letter report, we discovered that, though
an oversight, the July letter report had not gone out on schedule, We are
hence including both reports in this mailing. I am sorry for any

inconvenience this may cause you.

Sincerely,

Thomas P. Barnwell, III
Professor of Electrical Engineering

clc

A Unit of the University System of Georgia An Equal Education and Employment Opportunity Institution
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Generation of Distorted Data Base

Adaptive transform Coder
APC [Noise Feedback]

APC [Runlength Coder)
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Contract No. DCA100-83-1-0027
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Georgia Institute of Technology
Atlanta, Georgia 30332

College of Engineering
School of Electrical Engineering
Digital Signal Processing Laboratory

TECH

September 1, 1983

Mr. Ken Fischer

Defense Communications Agency
1860 Wiehle Avenue
. Reston, VA 22090

Dear Ken,
This is the montly letter report for contract DCA-100-83-L-0027. Progress for

the month of August is summarized on the enclosed charts. The work in August
was impeded by computer failures which destroyed some of the channel vocoder
pPrograms, This, plus staff vacations during this period, caused progress to
be less than in other months; however, we do not feel that the overall project
schedule has been adversely affected.

Sincerely,

Thomas P. Barnwell, III
Professor of Electrical Engineering

cle

/

e {* \\‘
L 0001 )
G

A Unit of the University System of Georgia An Equal Education and Employ'mem Opportunity Institution
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Georgia Institute of Technology
Atlanta, Georgia 30332

College of Engineering
School of Electrical Engineering
Digital Signal Processing Laboratory

November 11, 1983

Ken Fischer

Defense Communications Engineering Center
1860 Weikle Ave.

Reston, VA 22090

Dear Ken,
This is the monthly letter report on contract DCA-100-83-L-0027.

After a few rough weeks because of computer and other problems, the research
appears once again progressing at a good rate. The two major areas of
development are in the hearing-based models and in the parametric quality
estimators. In the first area, the report of the 1literature survey is
complete (a draft is included) and the programs for implementing the measures
are reasonably far advanced. In the parametric measures area, the application.
of multidimensional scaling techniques has led to a much better understanding
of the issues and the sources of variance. This is now leading to the design
of new measures to reduce this variance.

Sincerely,

Thomas P. Barnwell, III
Professor

cle

A Unit of the University System of Georgia An Equal Education and Employment Opportunity Institution



A Brief Description of Tasks
Contract No. DCA100-83-L-0027

Task No. Description Man-Months

1. Distorted data-base generation

1.1 Adaptive transform coder ]
1.2 Adaptive predictive coding (noise feedback) 5
1.3 Adaptive predictive coding (run length coder) .5
1.4 Subband coder : .5
1.5 Banded pole distortion 1
1.6 Channel vocoder 1
2. Aural Modeling

2.1 Literature Search ' 1
2.2 .Programs 1
2.3 Evaluation 1
3. Composite Objective Measures

3.1 Parametric Correlations 2
3.2 Improved Designs 1
a. Monthly reports o
5. Final Report 2
6. Proofing and Reproduction .5

Total 14
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MODELING OF HUMAN HEARING FOR OBJECTIVE
SPEECH QUALITY ASSESSMENT

Distortions of speech resulting from coding can only be detected if the
magnitude of the distortion 1is greater than the resolution of the human
auditory system. Once a distortion is perceiyable, a subjective evaluation of
the degree of distortion relates to the scaling properties of the auditory
system. (The auditory system includes both the peripheral and central
components) . Our modeling approach will not deal specifically with speech
perception, but rather, with the basic psychophysics of hearing. wé will
specifically restrict ourselves to look only at differences in coded and
uncoded speech and try to quantify the differences. This approach obviously

cannot adddress all issues, but for the coders under consideration it should

be of some merit. It is expected that our models will more readily agree with
subjective results for waveform coder type distortions than more complex
distortions due to the lack of higher order modeling. Some of the key issues
with hearing will be temporal, frequency, and intensity resolutions and
scalings.

Frequency differentiation appears to be comprised of at 1least two
separate phenomena.

Perception of pitch és with sinusoidal tones, can be accurate to within
0.3%. This phenomenon, however, is applicable only to signals with specific
periodicity, or complex tones comprised of harmonically related components.
If only a few inharmonic pure tones are presented, observers can still hear
each one individually, but as the number increases to 7 or more, partials are
not perceived.

Frequency resolution in complex signals is determined by other basic

properties. Most theories use the notion of critical bands which correspond



to the presumed filtering action of the auditory system. None of the many
attempts to explain psychophysical results of critical band measurements in
terms of the peripheral auditory physiology up through the auditory nerves
have satisfactorily explained all Qbserved phenomena. Our belief is that this
filtering is determihed in higher neural mechanisms, and that such data as
auditory nerve tuning curves are not good modéls for speech perception. Table
I lists a set of critical bands which span the spectrum. Note the non-uniform
bandwidths and spacing.

In terms of filtering theory, temporal and frequency resolution are
inversely related. Consequently, as bandwidths increase, more precision in
timing becomes apparent. Nerve latency data suggests a lower limit of around
2 ms. The worst resolution would be for lower frequency bands, with rise
times of roughly 10 ms. With speech, however, conflicting requirements
appear. If high frequency channels have 2 ms resolution, individual pitch
periods are resolved; but we have assumed that pitch perception is not
peripheral. However, resolution clearly exists in ésychophysical experiments
using click stimuli. Different tradeoffs for different application would be
the answer to this dilemma.

Intensity is perceived as a nonlinear function of the energies in the
various critical bands. The first step is in terms of envelope detection.
Various mechanisms have been postulated, which include many different types of
nonlinearities followed by linear filtering, resulting in a slowly varying
signal for each channel. The second step is in terms of relating their enve-
lopes to perceived loudness; JND's, or other measures.

Masking is a mechanism undoubtedly arising from both peripheral and
central processing. Critical band measurements often involve steady-state

signals masking other signals-simultaneous masking. But masking also occurs



between signals separated in time. Most of the nonsimulataneous masking
theories involve exponential decay of masking functions with time and some

include frequency-dependent time constants.

Objective Measures

To assess quality of coded and distorted speech using aural models, we
must try and take into account the audibility of differences in the signals.
Since we are assuming all of the distortions in the study are perceivable, the
task becomes one of quantifying these differences.

The ear's frequency resolving ability strongly suggests a spectral analy-
sis should be done to both the reference (original) speech and the distorted
speech. Analysis which parallels critical band filters will be performed. A
number of alternatives exist for computation of the critical band-spectrum.
The three of interest to us will be derived from LPC spectra, DFT's of
windowed speech (Time Dependent Fourier Transforms), and filter bank
analysis. The ear shows little sensitivity to phase as long as components are
not within critical bands, and appears to respond to energy as a function of
frequency. Our analysis will be in terms of short-time spectral densities.
We will denote the energy: IV(n,s,d,B)I2 where n is the time index, 8 the
speaker, d the distortion (d=¢ means no distortion) and 6 is a discrete
variable representing the critical band over which the energy is summed. 1In
the LPC method, a high density DFT of the LPC filter is computed, and the
energy in critical bands is summgd. A similar procedure can be performed on
the DFT of the speech samples of the frame. 1In each case, the windows for
summation in the frequency domain should look like Figure 1 for auditory
modeling. The pre-emphasis of roughly 3dB/octave inherent in the wider band-

widths must be compensated. The problem with the previously mentioned



computations is that although bandwidths increase with frequency, time resolu-
tion is not proportionally enhanced. If actual filterin§ is performed, the
auditory information can be preserved. To this end, we perform digital
filtering and envelope detection where critical band energies are sampled
faster for wider bandwidth channels than narrow ones. For this analysis, the
"n® in the spectral representation would not be the same for all channels, and
we therefore would adopt the notation V(n,m,s,d4,9) where m tells which energy
envelope sample in a given frame n is being observed, and the frame length is
assumed to be of sufficient length to contain at least one sample of each
channel.

Once critical band spectra are computed for original and undistorted
data, comparisons are to be made. Sensation and auditory nerve firing rates
require a nonlinear scaling of the energy envelopes. One bf the easier non-
linearities to work with is the logarithm. For an isolated filter's energy at
an isolated time, the critical band spectral distance between the reference
and distorted speech should be a monotonic function of the magnitude
difference of the log energies of the two. In this case, the distance would

be of the form:

= V(n s,@ e
F f‘l[_V(n:s,d:_e]

Previous work by Barnwell suggests that fq(°) should be (-)P where P is to be

determined. Combining the influences of different critical bands must also be



performed. If one assumes the band's importance is dependent on its level,

the measures

L-1 ’ v(n,s,d,9

1.P
F {2.20 [f2|V(n,s,¢,6£||20 10910[m] }

f, should be in the form of f5(°*) = (°) or log(*) in our case.

The log measures assume that the perceptual difference in two sounds of
different intensity depends on the ratio of the two intensities. However, it
has been shown that the perceptual dimensional doubles with each 104B
increase, leading to a power function rather than log. To accurately incorpo-
rate tﬁis into our model, we need. to preserve this relation. Our function

should appear as:

110log,,i,-1010g,,i,1/10_
F = K(2 10™1 1072 1)

where i, and i, are the two intensities to be compared. This reduces to
i i :
K 1.3 2.3
() -1 if iy, > i3 and K((z/ "~ -1) if i; > i4.
i, i,
Taking this over all frequencies and weighting its results in:



L-1 8 IV(n,s, (g) el,|.6
Fn = E Iv‘n:s'drez)l | a 3 - 11
2=0 v(n's'(f¢)' e.I'.

V(n,s, {g}' e"l

where the numerator of uses ¢ or 4, whichever makes that the

d
V(n,s,(—) f 2 ez
larger term. The K scaling is dependent on overall level and is taken care of

by the term raised to the B. Note that

Fn = 2 |V(n,8,d,9£| B_.s

IV(n,s, 1’092) -6 - V(n,s,4,9) .6|o
2

In the special case of B = .6 (scale by perceived loudness), the measure is

roughly:

Fn = E |V(n,S,¢,e£).6 - V(n's'd,el).sl

For spectral measures Barnwell used the form



L~-1
Fo=[ L Vs, 00,0 1(Vin,s, 4,0 ° - Vin,5,a,0,) 81F]'/F
=0

where 92 was not a critical band output. 1In a similar manner, we would want
to test various values of v, §, and P, Our prediction would be
that y=0, 6=.6, and P=1 would be similar to the best combinations of
parameters. (Even though this was not the best for Barnwell's earlier
spectral distance measures, his results differed for frequency variant and
invariant measures, indicating the near frequency grouping we use might also
give different results.) It is not unreasonable to think, however, thag a
very large value of p, for example, might be best since perhaps maximum Aif-
ferences give rise to gquality judgments.

Another method which could be used for quantifying distortion will be to
measure the number of JND's by which each channel differs, and sum them up.
The overall listening level, in the testing was adjusted by listeners and not
controlled. We will assume a roughly 75-80 dB listening level. From this, we
will need to estimate the level in each critical band. Reference to tables
such as in Stevens and Davis can be used to find JND's in each channel. The

frame distance should then be of the form:

L-1
=[] vy t]®
=0



where different values of Y and P will be tried, and JNDl = number of JND's
difference in the test and original speech frames.

An additional technique would employ articulation index notionms.
Kryter's method divides the frequency scale into 1/3-octave bands. Signal to
noise ratios are computed for each band, with a maximum of 30 4B allowed in
each, and weights which he has determined are applied. This method would give

a frame distance of:

L-1

F_ ngo w, max[0, min(log V(¢,8,)-1log IV(¢,8,)-V(d,0,], 30]

The feature setting this apart from frequency variant SNR measures is the

weighting w, which is found in the literature.

L

Another issue to be considered is the integration time course of the
quality assessment. Masking of one stimulus by another which is
non-simultaneous has been observed by many experimentors. Because the effect
is more dramatic when the masker precedes the target (forward masking) than
the reverse (backward masking), only forward masking will be considered. If
one stimulus is followed by another, the latter is not perceived unless it has
at least a particular intensity as a function of temporal separation. Various
experiments indicate that masking decays exponentially in dB with linear time

separation. The time constant T for a 1000 Hz stimulus is roughly 75 ms. In

other words, if the masking level of a stimulus is 80 dB at t=0, at t=75, it



will be 80/e dB=30 dB. If the masking level at time t for frequency 02 is

-t/18

M(t, 92), it will be M(t, 62)/e at [t=T, or M(t,ez)#l(o,ez)e 1.

L
It also appears that T is inversely related to the BW of the filters.
This would suggest a different time constant ranging from 150 ms for 500 Hz

and below, to 20 ms at 3500 Hz. If we are looking at 10 ms. frames, a parti-

cular ratio denoting decay exists for each filter. Denote (6
- e-10/-r -10/75 _

!.)
s r(ei) where 61 is the 1000 Hz channel = e .875, for
example. The masking is then specifiable by a difference equation: If
M(n, 8) = masking level of frame n at frequency 6, then M(n#l, 6) =
£(9)M(n, 9) + logV(n+1, s,¢,0). The audibility of distortions would depend on
both the master level as well as distortion level. The previously specified
formulas for Fn remain simular, but with a function of M(°) instead of V(*).

We anticipate this technique to mainly help with additive colored noise type

distortions, as well as impulsive noise.

Frame Combinations

Somehow, the final measure should combine the individual frame
measurers. Hopefully, overall level differences will not be reflected, but
distortions in loud frames should perhaps be weighted more than soft ones.
LPC gains and signal energy are not necessarily good measures of loudness. A
better method would involve summation of 1loudness in individual critical

bands, where each band's loudness is proportional to the energy raised to the



.3 power. The final measure should have the form:

! Faln/ ! Ln

where I‘n = the loudness for frame n.

10



TABLE 1
EXAMPLES OF CRITICAL BANDWIDTH

Center Critical Lower cutoff Upper cutoff
Number frequency band frequency frequency

© (H2) (Hz) (Hz2) (Hz)
1 50 - - 100
2 150 100 100 200
3 250 100 200 300
4 350 100 300 400
5 450 110 400 . 510
6 570 120 510 630
7 . 700 140 630 70
8 840 150 T70 820
9 1,000 160 820 1,080
10 1,170 190 1,080 1,270
11 1,370 210 1270 1,480
12 1,600 240 1,480 1,720
13 1,850 280 1,720 2,000
4 2,150 320 2,000 2,320
15 2,500 380 2,320 2,700
16 2,900 450 2,700 3,150
17 3,400 550 3,150 3,700
18 4,000 700 3,700 4,400
19 4,800 900 4,400 5,300
20 5,800 1,100 5,300 6,400
21 7.000 1,300 6,400 7,700
22 8,500 1,800 7,700 9,500
23 10,500 2,500 9,500 12,000
24 13,500 3,500 12,000 15,500

. o

i N

gl

gl

] FREQUENCY (kHZ) 6

FIG. 1: EXCITRTION VINDOVWS 12, 14, 16, & 18
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Mr. Ken Fischer

Defense Communications Engineering Center
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Reston, Virginia 22090

Dear Ken:

This is the monthly letter report of DCA-100-83-L-0027. The research is
progressing at a good rate. Major areas of effort have centered around
data-base management and preparation of audio tapes for subjective testing.
Aural modeling 1s proceeding well with most of the programming in an ad-
vanced stage. Some interesting results are coming from the parametric
studies with the discovery that certain long-term measures can be useful

in predicting subjective parametric descriptions.

Sincerely,

Mark A. Clements
Assistant Professor
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A Brief Description of Tasks
Contract No. DCA100-83-L-0027

Task No. Description Man-Months

1. Distorted data-base generation

1.1 Adaptive transform coder ]

1.2 Adaptive predictive coding (noise feedback) .5

1.3 Adaptive predictive coding (run length coder) .5

1.4 Subband coder .5

1.5 Banded pole distortion 1

1.6 Channel vocoder 1

2. Aural Modeling

2.1 Literature Search 1

2.2 Programs 1

2.3 Evaluation 1

3. Composite Objective Measures

3.1 Parametric Correlations 2

3.2 Improved Designs 1

4, Monthly reports 1

5. Final Report 2

6. Proofing and Reproduction .5
Total 14
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CHAPTER 1

INTRODUCT ION

1.1 Task History

The research effort reported here was performed in the Digital Signal
Processing Laboratory of the School of Electrical Engineering at the Georgia
Institute of Technology. In this effort, the Georgia Institute of Technology
was the prime contractor and the Dynastat Corporation of Austin, Texas operated
as a subcontractor. The monitoring officer at the Defense Communications
Engineering Center was Mr. Kenneth Fischer.

This task, which sought to develop new compactly computable objective
measures for the prediction of subjective quality assessments of speech coding
systems, followed previous work by both Georgia Tech [1.1-1.13] and the
Dynastat Corp. [1.5] [1.14] [1.15] in relate areas. In this study, all of the
research work was performed at Georgia Tech, while the Dynastat Corporation's

sole function was to perform the required subjective quality evaluations.

1.2 Technical Background

In recent years, considerable effort has been devoted to the development
of efficient digital speech coding algorithms for the transmission and storage
of speech signals. These algorithms represent a wide range of approaches to
the speech coding problem, and a correspondingly wide range of data rates,
computational intensities, and perceived distortion characteristics. At the
high data rates, such simple systems as mu-law and A-law PCM coders operate
with toll quality at around 64K bps. At intermediate rates (32K bps-9.6K bps)
such systems as DM [1.16], ADM [1.17][1.18], DPCM [1.19], ADPCM [1.20], APC
[1.21], SBC [1.22], and ATC [1.23][1.24] are currently being used and proposcd.

In addition ’'gapped analysis® [1.20][1.25] or 'harmonic scaling’' [1.26] is also



effective in reducing bit rates in this range. At the lower data rates (2.4K
bps-200 bps), fixed rate pitch excited LPC [1.27-1.29] and channel [1.30-1.32]
vocoders are being used, and variable rate [1.33][1.34], vector quantized
[1.35][1.36], and recognition/synthesis [1.37]{1.38] systems are Dbeing
proposed. In addition, considerable progress is now being made in the 9.6-2.4K
bps range by such techniques as noise feedback [1.39] and run-length-coding
[1.40] in APC and parametric excitation representations in residual excited
vocoders [1.41][1.42].

The problem of rating and comparing these systems from the standpoint of
user acceptance 1is a difficult one, since the candidate systems are usually
highly intelligible. Hence, context free intelligibility tests such as the DRT
[1.47] and the MRT [1.48] may not suffice to resolve small differences in
acceptability. User preference tests, such as the PARM [1.15], the QART
[1.15], and the more modern DAM [1.16] can be effective in assessing quality,
but they all suffer from the inherent drawbacks of subjective tests. These
include both the great care which must be exercised to obtain repeatable
subjective results and the corresponding expense and lack of flexibility
associated with such testing.

Objective acceptability measures, on the other hand, do not suffer from
many of the problems of subjective tests [1.1-1.13]. On the whole, they are
easy to administer and many have proved to be very reliable [1.15]. Likewise,
many objective measures can be implemented in real-time or mnear-real-time,
which vastly extends their flexibility. Also, objective measures may often be
used directly in the design of speech coding systems in ways which are not
possible with subjective measures.

The problem is that it would be naive to believe that any simple,
compactly computable objective measure could ever be designed which would

always correlate well with subjective quality results across a large ensemble



of coding and other distortions. Despite our poor understanding of the speech
perception process at present, we can assuredly state that the human listener
is an active perceiver who uses his immense knowledge of the language, the
talker, and the semantic and syntactic context to 'fill in the gaps’ in the
perceived speech. Hence, it is clear that no objective measure which does not
use semantic, syntactic, and talker related information can ever be expected to
perform well across all possible speech distortions, and such measures are
clearly not possible with our current knowle&ge. On the other hand, it is fair
to say that with the possible exception of very low bit rate
recognition/synthesis systems, the distortions found in speech coding systems
are not synchronized with the semantic, syntactic, or talker related features
of the speech signal.

The challenge in the design of compactly computable objective measures is
hence to realize maximum utility from a set of intrinsically imperfect
procedures. Until recently, the relative performance of different objective
measures in terms of their ability to predict subjective quality results has
not been well understood. However, in a recent study funded by the Defense
Communications Agency (DA100-78-C-003) [1.5] and later by the National Science
Foundation (ECS-801-6712) the relative performances of many objective speech
quality measures have been addressed in detail [1.1-1.13]. In many ways, the
research which 1is being reported in this document can be considered to be a
continuation of these studies.

1.3 The Technical Approach

In the earlier research, the emphasis was on comparing and quantifying the
performance of a large number of parametric variations of simple objective
measures. The basic methodology employed in both the earlier research and in

this research, which is based on correlation analyses between objective and



subjective speech quality measures applied across a large ensemble of coded and
distorted speech, 1is described in detail in Chapter 2 of this report. At
onset of this research, about 2000 objective measures had been studied using
about 140,000 individual correlation analyses.

The experimental and research environment developed in the previous
research efforts offers a unique opportunity for the design, implementation,
and evaluation of new, more complex objective speech quality measures. On the
one hand, the body of the research performed over the last five years has
provided a good understanding of the relative performance of a large number of
individual objective measures. On the other hand, the experimental enviromment
itself both offers an efficient method for testing objective measures and also
represents an outstanding resource for the design of new objeciive measures.
In this context, the goal of this research was to use the existing resources to
maximum advantage in developing and evaluating a new set of objective measures
for the efficient prediction of the user acceptance of speech coding systems.

Two particular application areas for objective quality measures are
particularly appropriate to the concerns of the Defense Communications Agency.
The first is the area of designing devices for field testing the performance of
digital coding systems which are either being installed or which may have been
degraded by system failures. The second is the area of developing techniques
to be wused in conjunction with subjective quality measures for improving the
resolving power or reducing the cost of system acceptability assessment. This
research explicitly addressed both of these areas.

The constraints imposed by the two applications areas are quite different.
Algorithms to be used by quality assessment devices in the field must be
compactly computable to allow for their implementation on modern signal
processing hardware. Likewise, they should be extremely sensitive to any

system degradation, and should indicate with high resolution whether the system



is 'working correctly’. In addition, if the system quality is degraded, such
algorithms should give good estimates of the loss of quality due to the
degradation. The general applicability of these devices to a very large class
of coding systems is of secondary concern in this environment, since the
ensemble of coding systems is limited. The key research question in this area,
therefore, is given computational constraints, how large a class of distorting
systems can be effectively addressed by composite objective measures.

On the other hand, algorithms to be used primarily for quality assessments
must conform to a different set of constraints. First, of course, since they
may be performed in non-real-time, they may be moderately computationally
intense (as compared to the highly computationally intense iterative measures
employed in digital coder design). Likewise, they must address a far broader
range of distortions if they are to be effective. In this regard, it may be
possible to develop objective measures tuned to some general distortion
characteristics (e.g. waveform coders, pitch excited vocoders, or frequency
domain coders), but any such dynamic variation in the application of the
objective measure algorithm must also be driven objectively. To design such
measures effectively, it 1is important to configure the algorithms in a
perceptually relevant way. Stated another way, if a broad class of distortions
are to be included, objective measures should be designed to estimate
quantities which are directly related to the quality degradations perceived by
humans.

The design of objective speech quality measures for these two applications
areas were addressed in the context of a three part study. Although in some
sense all three parts address both application areas, the first two parts were
particularly intended to address issues germane to the general quality

assessment problem, while the third part addressed the field quality testing



1.4 Objective Measures Based On Signal Processing Models For The Inner Ear

The first part of the research dealt specifically with designing new
objective speech quality measures based on signal processing models for the
inner ear. A detailed description of this research and its results is given in
Chapter 4.

Briefly, the question of designing and assessing objective measures based
on aural models was addressed in a three phase study. In the first phase,
models related to those previously proposed along with possible augmentations
were studied, and a set of parameterized objective measures were developed. In
the second phase, the control parameter space was studied using correlation
analysis techniques described in Chapter 2. In the final phase, the optimized
objective measures from phase two were combined with other objective measures
to form improved composite measures.

For the most part, the objective measures studied here can be considered
to be parameterized, frequency-variant spectral distance measures. In the
original research [1.5], the best of this class of measure was found to have a
correlation coefficient of .60 across all distortions for frequency-invariant
spectral distance measures, and a correlation coefficient of .71 for frequency-
variant spectral distance measures. The new measures designed in this research
were able to achieve a correlation coefficient of .78 across the same
distortion ensemble. This can be considered to be a good, although no
spectacular, improvement for this class of measure. The best results were
obtained for measures designed using the principals first suggested by Dennis
Klatt [1.49]. Based on these and other related results, it is a reasonable
conjecture that the level of performance achieved here is near the maximum

which can be expected from simple, fully parameterized spectral distance

measures.



1.5 Parametric Objective Quality Measures

Two of the attractive features of the DAM [1.14] are that its parametric
subjective quality estimates serve to give insight into the perceived nature as
well as the perceived level of the distortion and the regression model which
relates the ©parametric subjective qualities to the estimated system
acceptability gives iﬂsight on the relative importance of different parametric
qualities. If an objective measure is to succeed over a large class of
distorting systems, then it must somehow incorporate information related to the
perceived nature of the distortion.

Part +two of this study was aimed at designing a better objective quality
measure based on individual parametric objective measures. A detailed
description of this research is giv;n in Chapter 5. In the first phase of this
study, multi-dimensional scaling was used to characterize the relationship
between the objective measures previously designed, the isometric subjective
speech quality measures, and the parametric subjective speech quality measures.
This initial analysis proved to be the key to designing better ijective
measures in that it characterized the problem in such a way that the design
issues became obvious. In the second phase, a regression analysis was
performed which showed exactly which parametric measures are most important in
predicting system acceptability. As a result of this regression analysis, a
subset of parametric subjective measures was identified for further study. In
the ensuing phases, a specific objective measure was designed to predict each
of the parametric subjective measures in the subset. This design was done
interactively wusing statistical analysis techniques on the speech quality data
bases.

On the whole, the results of this part of the research were very good. In
particular, it was possible to identify exactly where the previously proposed

objective measure were breaking down, and further, it was possible to see



exactly what had to be done to correct the problem. What had to be done, in
this context, was to design particular new objective measures which predicted
particular parametric speech quality measures. The result of this effort was a
number of new parametric objective measures which did an exceptional job at
predicting many of the important parametric subjective measures.

In effect, what has been designed and studied here is an objective version
of the DAM. The test will provide an overall acceptability estimate and set of
parametric quality estimates for individﬁal perceived qualities. It would be
naive, of course, to expect such a measure to perform comparably with the DAM
itself. However, such a test along with a complete statistical analysis of its
projected performance, should prove very valuable in Poth screening of systems
before the application of subjective quality tests and in providing
analytically tractable information on the nature of the distortion for use in
the coder design problem.

It would be misleading to imply that this study was completely successful.
In particular, the performance of the new parametric objective measures was
varied, and whereas some performed extremely well, others were not as suc-
cessful. Nevertheless, it is fair to say that these results represent a major
improvement in our understanding and our ability to implement objective speech.
quality measures.

1.6 Classified Objective Measures

The third part of the research was a systematic study of classified
objective measures as applied to distortion subsets. A classified objective
measure is one which performs differently based on 'classification information’
which 1is available. This information may be an external input to the measure
(such as an operator supplied classification) or it may be an internally

supplied parameter (such as an objective classification of sound segments into



approximate linguistic categories). The details of this research are found in
Chapter 6.

The research on classified objective measures really had two goals. The
first goal was to investigate the use of classified measures for very mnarrow
classes of measures. The purpose of this part of the study was to design
measures appropriate for field testing communications systems where the class
of system in use was known. The second goal was to design new, broad based
classified measures for a large ensemble of distortions. The basic approach
used in this part of the research was to use statistical techniques to identify
distortion subsets for which the subjective measures could be predicted well by
the objective measures under study.

It 1is fair to say that the research on the classified objective measures
was the least successful of the three approaches. It is true that the work
clearly illustrated the viability of wusing narrowly classified objective
measures for field testing applications. It is also true that it was clearly
illustrated that the distorted data base could be partitioned so that high
quality classified objective measures could be designed for use with a large
distortion ensemble. The problem was that the members of the required
distortion subsets appeared to be so dissimilar in both their perceptual
characteristics and their signal characteristics that we were unable to
adequately specify either objective or subjective rules for classifying the
distortion. This does not really prove that this approach is without merit.
It means, rather, that at this time we have not been able to discover
distortion classification techniques which work well enough to prove out the
approach.

The Distortion Ensemble Augmentation

The final task which was addressed as part of this research contract was

the augmentation of the existing distortion ensemble from 264 distortions to



318 distortions. Fundamentally , two classes of distortions were included in
these new distortions. The first were a set of speech coding techniques which
had been developed and become common since the original data bases were
developed in 1978. These new coding distortions included subband coders,
adaptive transform coders, ADPCM with noise feedback, multi-pulse LPC, and
channel vocoders. The second were a new set of 'banded pole distortion’
controlled distortions [1.5]. The purpose of these new controlled distortions
was to increase the overall spread of subjective responses, which had been
inadequate in the first study. The new coding and controlled distortions are
described in detail in Chapter 3.

The basic design criterion for all of the distortions was to have each
range from ‘'barely perceivable’ to ‘moderately distorted’. All of the new
distortions met this criterion with the possible exception of the channel
vocoder, for which the spread in subjective responses was slightly less than

desired.

10



[1.

[1

[1.

[1

[1

[1.

[1

[1

[1.

[1.

[1.

[1.

[1.

1]

.2]

3]

.4]

.5]

6]

.71

.8]

9]

10]

11]

12]

13]

REFERENCES

T.P. Barnwell and W.D. Voiers, 'An Analysis of Objective Measures for
User Acceptance of Voice Communications Systems,’ Final Report to the
Defense Communications Agency, DCA100-78-C-0003, September 1979.

T.P. Barnwell, III, A.M. Bush, R.M. Mersereau, and R.W. Schafer,
'Speech Quality Measurement,' Final Report DCA/DCEC F30602-77-C-0118,
June 1977.

T.P. Barnwell, IIT, R.W. Schafer, and A.M. Bush, 'Tandem
Interconnections of LPC and CVSD Digital Speech Coders,’ Final Report,
DCA 100-76-6-0073, 15 November 1977.

T.P. Barnwell, III and A.M. Bush, 'Statistical Correlation Between
Objective and Subjective Measures for Speech Quality,’ 1978
International Conference on Acoustics, Speech, and Signal Processing,
April 1978.

T.P. Barnwell and W.D. Voiers, 'Objective Fidelity Measures for Speech
Coding Systems,’ presented at the meeting of the Acoustical Society of
America, Honolulu, December 1978.

T.P. Barnwell, 'Objective Fidelity Measures for Speech Coding Systems,’
Acoustical Society_gz America, Vol. 865, No. 6, December 1979.

T.P. Barnwell, ’'Correlation Analysis of Subjective and Objective
Measures for Speech Quality,’ 1980 International Conference on
Acoustics, Speech, and Signal Processing, Denver, Colorado, April 1980.

T.P. Barnwell, 'A Comparison of Parametrically Different Objective
Speech  Quality Measures Using Analysis with Subjective Quality
Results,’ 1980 International Conference on Acoustics, Speech, and

Signal Processing, Denver, Colorado, April 1980.

T.P. Barnwell and P. Breitkopf, ’Segmental Preclassification for
Improved Objective Speech Quality Measures,’' Proc. of ICASSP 81,
March 1981.

T.P. Barnwell, III, 'On the Standardization of Objective Measures for
Speech Quality Testing,’ Proceedings of 1982 NBS Workshop on Standards
for Speech Recognition and Synthesis, Washington, DC, March 1982.

T.P. Barnwell, III, and S.R. Quackenbush, 'An Analysis of Objectively
Computable Measures for Speech Quality Testing,’ Proc. of ICASSP '82,
May 1982.

S.R. Quackenbush and T.P. Barnwell, III, 'An Approach to Formulating
Objective Speech Quality Measures,' Proc. 15th Southeastern Symposium
on System Theory, Huntsville, Alabama, March 28-29, 1383.

S.R. Quackenbush and T.P. Barnwell, III, 'The Estimation and Evaluation

11



[1.

[1.

[1.

[1.

[1.

[1.

[1.

[1

[1.

[1.

[1

[1

[1.

[1

[1

14]

15]

16]

17]

18]

19]

20]

.21]

221

23]

.24]

.25]

26]

.27]

.28]

of Pointwise Nonlinearities for Improving the Performance of Objective
Speech Quality Measures,' Proc. ICASSP '83, Boston, Mass., April 1983.

W.D. Voiers, ’'Diagnostic Acceptability Measure for Speech,’' 1977
International Conference on Acoustics, Speech, and Signal Processing,
Hartford, CN, May, 1977.

W.D. Voiers et al., ‘'Methods of Predicting User Acceptance of Voice
Communications Systems,’' Final Report, DCA 100-74-C-0056, DCA, DCEC,
Reston, VA, July 1976.

N. S. Jayant, 'Digital Coding of Speech Waveforms: PCM, DPCM, and DM
Quantizers,’' Proceedings of IEEE , May 1974.

N. S. Jayant, P. Cummiskey, and J. L. Flanagan, 'Design and
Implementation of an Adaptive Delta Modulator,’ Proc. of IEEE Int.
Conf . Speech Communications , Boston, MA, April 1972.

N. S. Jayant, 'Adaptive Delta Modulator with a One-Bit Memory,' Bell
System Tech. Journal , vol. 49, March 1970.

M. D. Paeb and T. H. Glisson, 'Minimum Mean-Squared-Error Quantization
in Speech PCM and DPCM,' IEEE Trans. on Comm., April 1972.

T. P. Barnwell, III, A. M. Bush, J. B. 0'Neal, and P. W. Stroh,
'Adaptive Differential PCM Speech Transmission,' Final Report to the
Defense Communications Agency, RADC-TR-74-177, July 1974.

B. S. Atal and M. R. Schroeder, 'Adaptive Predictive Coding of Speech
Signals,' Bell System. Tech. Journal , October 1970.

R. E. Crochiere, S. A. Webber, and J. L. Flanagan, 'Digital Coding of
Speech in Sub-bands,’ Proc. 1976 IEEE Int. Conf. on ASSP, pp. 233-236,
March 1976.

R. Zelinski and P. Noll, ‘Approaches to Adaptive Transform Coding of
Speech at Low Rates,’ IEEE Trans. on Acoustics, Speech, and Signal
Processing , vol. ASSP-27, no. 1, Feb. 1979.

J. M. Tribolet and R. E. Crochiere, ’'Frequency Domain Coding of
Speech,’ IEEE Trans. on ASSP , vol. ASSP-27, no. 5, October 1979.

T. P. Barnwell, III and A. M. Bush, 'Gapped ADPCM for Speech
Digitization,’' Proc. of NEC , October 1974.

D. Malah, ’Time Domain Algorithm for Harmonic Bandwidth Reduction and
Time Scaling of Speech Signals,’ IEEE Trans. on ASSP , vol. ASSP-27,
April 1979.

B. S. Atal and S. L. Hanaver, 'Speech Analysis and Synthesis by Linear
Prediction of the Speech Waveform,' Journal of Acoustical Soc. of
America , vol. 50, 1971.

F. Itakura and S. Saito, ‘'Analysis Synthesis Telephony Based on the
Maximum Likelihood Method,’ Proc. Sixth Int. Congr. Acoust. , 1968.

12



[1

[1
[1

[1

[1

[1

[1

[1

[1.

[1

[1

[1

[1.

[1

[1.

[1

.29]

.30]

.31]

.32]

.33]

.34]

.35]

.36]

37]

.38]

.39]

.40]

41]

.42]

43]

.44]

J. Makhoul, 'Linear Prediction: A Tutorial Review,' Proc. IEEE , vol.
63, 1975.

H. Dudley, 'Remaking Speech,’' J. Acoust. Soc. Am. , vol. 11, 1939a.

B. Gold and C. M. Rader, ’'The Channel Vocoder,' IEEE Trans. on Audio
and Electroacoustics , vol. AU-15, no. 4, pp. 148-160, Dec. 1967.

J. N. Holmes, 'Dynamic Encoding as Applied to a Channel Vocoder,' IEEE
Trans. Comm. Syst. , vol. 11, 1963.

D. T. Magill, ‘'Adaptive Speech Compression for Pocket Communications
Systems,’ Telecommun. Conf. Rec. , IEEE Publ. 73 CHO 805-2, 29D 1-5,
1973.

P. E. Papamichalis and T. P. Barnwell, III, 'A Dynamic Programming
Approach to Variable Rate Speech Compression,’ Proc. 1980 Int. Conf.
ASSP , Denver, CO, April 1980.

A. Buzo, A. H. Gray, R. M. Gray, and J. D. Markel, 'Speech Coding Based
Upon Vector Quantization,’ IEEE Trans. on ASSP, vol. ASSP-28, no. 5,
Pp. 562-547, October 1980.

D. Wong, B. H. Juang, and A. H. Gray, 'Recent Developments in Vector
Quantization for Speech Processing,’ Proc. 1981 Int. Conf. on ASSP ,
pp. 1-4, Atlanta, GA, April 1981.

B. T. Oshika, °'FACP Speech Recognition/Transmission Systems,’ Final
Technical Report, RADC-TR-78-193, System Development Corporation,
August 1978.

R. Schwaftz. J. Klovstad, J. Makhoul, and J. Sorensen, ‘A Preliminary
Design of a Phonetic Vocoder Based on a Diphone Model,’ Proc. 1980
Int. Conf. on ASSP , pp. 32-35, Denver, CO, April 1980.

B. S. Atal and M. R. Schroeder, 'Improved Quantizer for Adaptive Coding
of Speech Signals at Low Rates,’' Proc. 1980 Int. Conf. on ASSP , pp.
535-538, Denver, CO, April 1980.

M. R. Schroeder, 'Predictive Coding of Speech Signals and Subjective
Error Criteria,’ Trans. 1978 Int. Conf. on ASSP , pp. 573-576, 1978.

B. S. Atal, 'A New Model of LPC Excitation for Producing Natural
Sounding Speech at Low Bit Rates,’ Proc. 1982 Int. Conf. on ASSP , pp.
614-617, Paris, France, May 1982. ‘

L. B. Almeida and J. M. Tribolet, ’'A Spectral Model for Nonstationary
Voiced Speech,’' Proc. of 1982 Int. Conf. on ASSP, pp. 1303-1306,
Paris, France, May 1982.

B. S. Atal, 'Efficient Coding of LPC Parameters by Temporal
Decomposition,' Proc. ICASSP 1983, pp 81-84.

M. Berouti, H. Garten, P. Kabal, and P. Mermelstein, ’'Efficient

13



[1

[1

[1

[1

.45]

.46]

.47]

.48]

.49]

Computation and Ending of the Multipulse Excitation for IPC,' Proc.
ICASSP 1984, pp 10.1-10.4.

G. A. Senenseib, A. J. Milbourn, A. H. Lloyd, and I. M. Warrington, ’'A
Non-Iterative Algorithm for Obtaining Multipulse Excitation for Linear
Predictive Speech Coders,’' Proc. Icassp 1984, pp 10.5-10.8.

I. M. Trancoso, R. Garcia-Gomez, and J. M. Tribolet, 'A Study of Short
Time Phase and Multipulse LPC,’' Proc. ICASSP 1984, pp 10.9-10.12.

W. D. Voiers, 'Research on Diagnostic DRT Evaluation of Speech
Intelligibility,' Final Report AFSC No. F19628-70-C-0182, 1973.

J. D. Griffiths, 'Rhyming Minimal Contrasts: A Simplified Diagnostic
Articulation Test,' J. Acoust. Soc. Am. , vol. 42, no. 1, pp. 236-241,
1967.

D.H. Klatt, 'Prediction of perceived phonetic distance from critical-
band spectra: a first step,’ Proceedings of International Conference
on Acoustics, Speech and Signal Processing, 1982, Paris, pp. 1278-1281.

14



CHAPTER 2

THE TESTING OF OBJECTIVE MEASURES

2.1 Background

As was noted in the introduction, this research project is essentially a
continuation of a research project funded by the Defense Communications Agency

in 1978 entitled An Analysis of Objective Measures for User Acceptance of

Voice Communications Systems [2.1]. The goal of the original work was to study

the viability of using relatively simple, objectively computable measures for
estimating the results of subjective speech quality tests. As part of the
original research, a statistical technique for measuring the expected
performance of objective speech quality measures was designed, implemented, and
tested [2.1].

Much of the effort in the original research program was directed towards
the goal of quantitatively evaluating the performance of many of the
(relatively) simple objective quality measures which had been previously
proposed and used in speech processing. The original study involved over
40,000 correlation analyses based on over 2000 separate objective speech
quality measures. Most of these objective measures were parametric variations
of compactly computable fidelity measures. The major accomplishment of this
early work was that it gave for the first time a degree of quantitative insight
into the way in which many objective measures performed relative to one another
as well as to subjective quality estimates. This study showed, for example,

that the relatively simple log area ratio measure performed as well as the more

complex log spectral distance measures [2.1]. Likewise, the short-time

frequency-variant SNR was found to be an outstanding measure for wave-form

coders [2.1]. In addition, the effects of frequency variant [2.2][2.3] and time

variant [2.4] objective measures were investigated in some detail. All of these
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results served to provide much-needed insight into the fundamental nature of
perception of speech distortion and the associated foundations of speech coder
acceptability.

In another sense, however, the first study generated more questions than
it answered. A Dbasic feature of the approach used in both the current and
original research programs is that the experimental procedure requires immense
amounts of data reduction and data storage. This is a result of the very
large size of the data bases involved (about 6 X 109 bytes of data storage) as
well as the very large number of objective measures which can be studied in a
single experiment. Stated simply, although it takes a great deal of cffort to
generate a single result, it takes little additional effort to generate many
results. Hence, the experimenter is faced with the choice of either an
intrinsically slow iterative design procedure or an immense data reduction task
between experiments. As a result, the earlier research program was able to
perform an extensive study of the class of simple objective speech quality
measures, but it was only able to perform a limited study of the more complex
and specialized measures. In particular, it performed an initial study of
composite objective measures, which are single objective measures formed as
combinations of several other objective measures, and parametric objective
measures, which seek to estimate the parametric subjective speech qualities
[2.1].

An important result of the original research program was that most of the
simple objective measures currently in use, along with their parametric
variations, do not perform very well when applied to a large class of
dissimilar distorting systems. In particular, the highest corrclation
coefficient derived for a single, frequency-invariant objective measure applied

across all distortions was in the range of .60 to .65 [2.1][2.2][2.5]. This
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level of performance is not good enough to be of great wutility for either
quality assessment or coder design. However, a few initial experiments were
performed on composite objective speech quality measures, which were formed as
weighted sums of sets of dissimilar simple objective measures. Despite the fact
that these early experiments used a broad statistical approach, which
incorporated no special insight in regard to either the nature of the data
bases or the nature of speech perception, the results were very promising. In
particular, one composite measure was tested which attained a correlation score
of .BB across the entire distortion ensemble. Because of the nature of the
analysis procedures, however, it was not possible to interpret this result
adequately in a broad sense. For example, the measure’s robustness, as well as
to what extent this measure's performance was due to the statistical properties
of the &ata bases rather than fundamental properties of speech perception, are
not clear.

In short, two basic points emerged from the results of the original
research program. First, it seemed clear that new objective measures could be
designed whose performance substantially exceeded the performance of the
objective measures currently in use. Second, it also seemed clear that
considerable additional work would be required in order to design these new
measures. Due to the large size of the data bases involved and due to the
computational intensity of the statistical estimation tasks, the original
research had only begun the task of effectively usfng the data bases to design
new objective speech quality measures. What was required was more in-depth look
at the available data.

2.2 The Basic Testing Procedures

The objective speech quality measures of interest in this study can all be
defined in terms of the model of Figure 2.2-1. In general, these objective

measures are computed from an input or undistorted speech data set, S, and an
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output or distorted speech data set, S.. The output speech data set is formed

Q

by passing the input speech data set through the speech communications system

under test. It should be noted that two features of this research are first,
the objective measures studied generally require both the input and output
speech data sets and, second, the tests are always performed on a actual speech
data. In particular, exactly the same speech data is always used for both the
objective and subjective speech quality measures.

For the purposes of this research, objective measures may be very simple,
such as the traditional signal-to-noise ratio, or they can be very complex. A
complex measure might use such diverse quantities as a spectral or other
parametric distance between the input and output speech data sets; objectively
computable distance measures specifically designed to predict subjective
quality for a class of distortions; objectively computable distance measures
specifically designed to predict parametric subjective quality:; semantic,
syntactic, or phonemic information extracted from the input speech data set; or
the characteristics of a talker's vocal tract or glottis. The objective
measures studied as part of this research program make no explicit use of
semantic, syntactic, or phonemic information, but they do utilize all of the
other classes of information listed above. If an objective measure satisfies
the triangle inequality and other conditions shown in Figure 2.2-1, then it is
a metric. Although metrics have many desirable properties, an objective measure
need not be a metric to be of interest.

The procedure developed for the testing of objective speech quality
measures is illustrated in Figures 2.2-2 and 2.2-3. Figure 2.2-2 describes the
procedure for untrained objective measures, while Figure 2.2-3 describes the
procedure for trained objective measures. The entire procedure is based on an

input speech data set called the undistorted speech data base which in this

study, consists of one set of twelve Harvard phonemically balanced sentences,
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spoken by each of four talkers. The four talkers included a low-pitch male,
two moderate-pitch males, and a moderate-pitch female. The 48 sentences were
filtered using a tenth order elliptic lowpass filter with a 3.2 kilohertz
cutoff frequency, and were sampled at an eight kilohertz rate with 12-bit A-to-
D converter. This particular format was chosen so that the input speech signals
would be approximately toll quality, although the speech samples were not
passed through a highpass filter, as would occur for true telephone speech.
The entire undistorted speech data base contained about four minutes of speech.
All of the sampled speech in this study was stored on magnetic media as 16-bit
integer data in digital form.

The distorted speech data base was generated by applying a large number of

distortion generation (e.g., digital coding) systems to the signals in the
undistorted speech data base. The distorting systems were generally implemented
as FORTRAN programs designed for the network of minicomputers and array
processors comprising the Georgia Tech Digital Signal Processing Laboratory
[see Appendix A]. In every instance, great care was taken to synchronize the
input and output speech signals at least on a frame-by-frame basis, and on a
sample-by-sample basis whenever possible. This completely eliminated the
problem of synchronizing the undistorted and distorted speech signals, and the
synchronization problem was not addressed by this research. At the beginning
of this research contract, the distorted speech data base contained speech
generated by 264 distorting systems, for a total of 4x12x2684=12672 sentences,
or 14.42 hours of distorted speech. As part of this research, an additional 58
distorting systems were added, bringing the total to 15456 sentences, or 17.59
hours of distorted speech. The details of the pre-existing data base are
described in section 2.3, while the new speech distortions are described in
Chapter 3.

The third major component of the objective measure testing procedure is
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the subjective data base, which is formed by applying a subjective speech

quality measure to all the distortions in the distorted speech data base. In

this study, the subjective test used was the Diagnostic Acceptability Measure,

or DAM, developed by William D. Voiers at the Dynastat Corporation [2.1][2.8].

This is a widely used subjective quality test of the mean opinion score variety

in which subjects are asked to assign a number to their perception of the
quality of the speech samples under consideration, and a final system quality
score i3 derived from these individual quality assessments. The DAM test has
the great advantage that it not only gives isometric quality assessments, such

as perceived acceptability or perceived pleasantness, but also gives estimates

of parametric subjective qualities as well. The latter of these include such

things as system fluttering, SF, or system lowpass, SL. In addition, the DAM

also allows subjects to differentiate between background and foreground
distortions. Details of the DAM and the subjective data base are discussed in
section 2.4 and Chapter 3.

Two broad classes of objective speech quality measures which were

addressed as part of this study were untrained objective measures; and trained

objective measures. In the former, all the parameters which control the

objective measure are fully specified as part of the definition of the
objective measure itself. In the latter, some of the control parameters for the
objective measures are statistically optimized using the data in the three data
bases.

The untrained objective measures are tested as shown in Figure 2.2-2.
First, the objective quality measure is applied to all of the distortions in
the distorted speech data base, using the undistorted speech data base as
reference. Second, a statistical correlation analysis is done between the

results from the objective measure and corresponding results from the
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subjective data base. The results from the statistical analysis are used as a
figure-of-merit for comparing different objective speech measures.

Two figures-of-merit have been used throughout this research program. The
first is an estimate of the correlation coefficient between the objective
quality measure, O(d) (where d is the index of the distortion) and the

subjective quality measure, S(d). This estimate is given by

Z (S(d)-5(d)) (0(d)-0(d)))

P = S 2.2-1

[Z (S(d)-§(d))2]1’2[2 (0(d)-0(a))*1*"?

This results in a minimum variance linear estimate of the subjective quantities
from the objective quantities given by
po
S(d) = S(d) + --% (0(d)-0(d)) 2.2-1

%

where ;s and 30 are the estimated standard deviation for the subjective and
objective measures respectively. It would not be correct to attribute any
absolute validity to this estimated correlation coefficient in relation to
other studies. For example, since we have not randomly sampled the universe of
all coding distortions, our correlation estimates are biased by the content of
our distortion ensemble. Therefore, correlation estimates computed in this way
are only meaningful when comparing objective measures over exactly the same
distortion ensemble, and such estimates should certainly not be compared
otherwise.

A more universal figure-of-merit can be computed if the objective estimate

of the subjective data is viewed as a linear regression analysis. The desired

figure-of-merit is the expected standard deviation of error when the subjective
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results are estimated entirely from the objective results, given by
~ 2,,1/72 ~2 ~2,,1/2
o = [E[(S-D(5]0))"11""" = [e (1 - p")] 2.2-3

This estimate, which incorporates the variance of the subjective data base as
well as the correlation coefficient, is a more pleasing figure-of-merit since
it can be viewed as an actual performance estimate.

The trained objective measures are tested as shown in Figure 2.2-3. The
primary difference between the trained and the untrained measures is that the
trained measures are defined using some number of unspecified parameters,
whereas untrained measures are defined with all parameters specified. Trained
objective measures are tested using the two-pass procedure of Figure 2.2-3. In
the first pass, the regression coefficients for the objective measure under
test are set =0 as to maximize the correlation between the objective and
subjective results. Then, in the second pass, this now fully specified
objective measure is tested exactly like an untrained measure. In this
procedure, if the data in the training set is the same as the data in the
testing set, then the figures-of-merit estimate an upper bound on the
performance of the objective measure under test. If separate training and
testing sets are used, then the figures-of-merit form an actual performance
estimate.

2.3 The Distorted Speech Data Base

As previously discussed, the distorted speech data base is generated from

the undistorted speech data base through the application of a large number of
distorting systems. each of which is uniquély identified by its type of
distortion and its level of distortion. In general, each type of distortion

was realized with six (or sometimes twelve) levels of distortion. Whenever
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possible, these levels were set to span the perceived range from barely

perceivable to moderately distorted. Table 2.3-1 summarizes the distortions

used in this research.

As can be seen from Table 2.3-1, some of distortions in the distorted data
base already existed at the beginning of this research program, while others
were generated as part of this research. The pre-existing distortions are
described in detail in a previous DCA report [2.1], while the new distortions
are described in Chapter 3 of this report. The purpose of this section is to
briefly review the distortions which were generated as part of the previous DCA
research program.

2.3.1 Coding Distortions

The purpose of the coding distortions was to include in the distorted
speech ensemble a reasonable cross-section of the digital coding techniques.
Those included in the original data base were chosen from among systems which
were either in use or under active development in 1978. As can be seen from
Table 2.3-1, these coding distortions can be roughly divided into two classes:
waveform coders and vocoders. The waveform coders included six time-domain
coders (ADM, CVSD, APCM, ADPCM, and APC) and one frequency domain coder (ATC).
The vocoders were all based on linear predictive coding techniques, and
included two voice excited (now more commonly call residual excited) vocoders
(VEV) and one pitch excited vocoder (LPC).

Among the waveform coders, two different adaptive delta modulators were
included in the distortion ensemble: ADM and CVSD. The ADM system, which was
based on a technique proposed by Jayant [2.7] used a one-bit memory to control
its quantizer adaption and one-tap‘linear predictor in which the predictor
constant was chosen to minimize the mean square prediction error at the
operating bit rates across the entire input speech set. In addition, the

quantizer attack and decay rates were chosen to be equal [2.1] [2.7]. The
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Coding Distortions Number of Cases Added During Current Study

ADPCM 6 No

APCM 6 No

CVsSD 6 No

ADM 6 No

APC 6 No

LPC Vocoder 6 No

VEV 12 No

ATC-1 6 No

ATC-2 6 Yes
SBC 6 Yes
ADPCM+Noise Feedback 6 Yes
MP-LPC 6 Yes
Channel Vocoder 6 Yes
Controlled Distortions

Additive Noise 6 No

Low Pass Filter 6 No

High Pass Filter 6 No

Band Pass Filter 6 No

Interruption 12 No

Clipping 6 No

Center Clipping 6 No

Quantization 6 No

Echo 6 No

Frequency Variant

Controlled Distortion

Additive Color Noise 36 No

Banded Pole Distortion-1 78 No

Banded Frequency Distortion 36 No

Banded Pole Distortion-2 24 Yes

Table 2.3-1 Summary of Coding and Controlled Distortions in the Distorted
Data Base
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system was operated at 8, 12, 16, 24, and 32 KBPS, and the uncoded speech was
included in this set as the sixth distortion level.

The CVSD realization used was one which had been generated as part of a
separate Defense Communications Research Program [2.8]. This CVSD had been
specifically optimized for tandeming with pitch excited LPC vocoders, although
no tandems were included in this study. Just as for ADM, the single predictor
coefficient for each CVSD bit rate was set to match the statistics of the
undistorted speech ensemble. All of the CVSD systems had a minimum step size of
10 and an expansion ratio of 166 [2.1][2.8]. The CVSD was operated at the same
bit rates as the Jayant ADM above.

The only difference between the two adaptive PCM systems (APCM and ADPCM)
was that ADPCM used a one-tap fixed predictor (value .92) while APCM used no
predictor. Both systems used a feedback exponential quantizer adaption
technique similar to the approach used in CVSD [2.1][2.8]. Both systems wecre
operated at bit rates of 12.7, 18.6, 22.5, 25.3, 27.6, and 29.6 Kbps.

The Adaptive Predictive Coder [2.9] simulated in this study used a tenth
order, time varying, linear predictor which was updated every fifteen msec. The
LPC coefficients were generated using the autocorrelation method [2.10], and
were quantized using inverse sine quantization [2.11]. The residual encoder was
of the adaptive feed forward type, and used a three level quantizer. The APC
was operated at rates of 13.3, 13.9, 14.5, 15.2, and 15.8 Kbps. The sixth
distortion level used unquantized (32-bit floating point) LPC coefficients.

The adaptive transform coder (ATC), was, by modern standards, a relatively
primitive transform coder. In particular, it was based on the original work by
Zelinski and Noll [2.12] but wused an LPC based spectral estimation procedure
to assign the bits to its different channels [2.1]. This is somewhat similar to
the technique later used by Tribolet and Crochiere [2.13], but without their

pitch utilization technique. The LPC coefficients were also quantized, and the
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transform coder was operated at rates of 20, 16, 12, 11, 9.6, and 8 Kbps.

Both of the so called voice excited vocoders (VEV) were really residual
excited vocoders where only the lower frequencies of the residual signal were
retained in the transmitted signal. At the synthesizer, the high frequencies in
the excitation signal were regenerated using a hard-limiting operation and an
additional tenth order LPC whitening filter. Like the APC and the pitch excited
LPC vocoder, the VEV's used an inverse sine quantizer for the LPC coefficients.
The adaptive quantizer for the decimated residual signal was of the feed-
forward type, and the fundamental difference between the two VEV systems was in
the rate at which the residual signal was transmitted; 5615 and 7400 bps,
respectively. The first VEV operated at rates of 9.5, 8.8, B.1, 7.5, 6.9, and
6.6 Kbps, while the second VEV operated at rates of 11.3, 10.6, 9.9 9.3, 8.7,
and 8.4 Kbps.

The pitch excited LPC vocoder also used an inverse sine quantization
procedure for the LPC coefficients, and a differential encoder for the pitch
and gain information. The pitch detector used was of the homomorphic type,
although some pitch period and voicing errors were manually corrected. This was
an intentional attempt to force the primary distortion in the coder to be from
the vocal tract representation and not from pitch errors. The LPC vocoder used
a fifteen msec frame interval, and operated at data rates of 1.8, 2.4, 3.0,
3.7,and 4.3 Kbps. The sixth distortion level used unquantized (32-bit floating
point) LPC coefficients.

2.3.2 Controlled Distortions

A large portion of the distortions generated in the original research
program were not explicit coding distortions, but were controlled distortions.
Each of these distortions were included for one of two reasons. Either they

were considered to be examples of specific types of subjectively relevant
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distortions, or they were considered to be a type of distortion which does
occur in coding systems, but which does not occur in isolation.
There were fundamentally two classes of controlled distortions in the

initial distorted speech data base: simple distortions; and frequency variant

distortions. The frequency variant distortions were included for two main
reasons. First, they could be used to measure the relative importance of
different types of distortions when they are applied in different frequency
bands. Second, frequency variant controlled distortions offer an enviromment in
which frequency variant objective measures could be expected to be relatively
uncorrelated between frequency bands.

Table 2.3-1 give a summary of the controlled distortions wused in the
original study. The simple controlled distortions included additive mnoise,
lowpass filtering, highpass filtering, bandpass filtering, interruption,
clipping, center <clipping, quantization, and echo. The frequency variant
distortions included additive colored noise, banded pole distortion, and banded
frequency distortion.

Most of the simple controlled distortions can be described in only a few
words. The additive noise, for example, was white and Gaussian, and the
resulting waveforms had SNR’s of 30, 24, 18, 12, 6, and 0 dB. Likewise, both
the highpass and lowpass filtering distortions had cutoff frequencies of 400,
800, 1300, 1900, 2600, and 3400 Hertz. The bandpass filters had passbands of
0-400, 400-800, 800-1300, 1300-1900, 1900-2600, and 2600-3400 Hertz. It should
be noted here that all of the bandpass distortions and some of the lowpass and
highpass distortions were quite severe, and were unique in that regard.

The fnterruption distortions were implemented by multiplying the input
speech signals by periodic waveforms which alternated between the values one
and zero. Two different periods were used for these signals: the long period,

which was 125 msec; and the short period, which was 37.5 msec. The level of
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distortion for interruption was varied by changing the duty cycle of the
periodic waveforms.

Both of the clipping distortions were implemented using a threshold at
which the waveform was appropriately clipped. In terms of a percentage of the
available dynamic range of the input speech signals, these were given by 15%,
7.6%, 3.8%, 3.05%, 1.53%, and .76% for clipping, and by 7.6%, 3.8%, 1.9%, .76%,

38%, and .19% for center clipping.

The quantization distortion was implemented as a fixed, linear PCM system
which used 64, 48, 32, 24, 16, and 12 levels per sample. This corresponded to
bit rates of 48, 44.7, 40, 36.7, 32, and 28.7 Kbps, respectively. Finally, the
echo distortion was formed by adding a delayed version of the input speech
signal back to itself. The delays used were 1.25, 6.25, 12.5, 25, 62.5, and 125
msec.

The original study included a total of three types of frequency variant

distortions. The first, additive colored noise, was designed to approximate

waveform coder distortions in a frequency variant way. The second, banded pole
distortion, was designed to approximate distortions typical of vocal tract
modeling vocoders and APC’s in a frequency variant way. Finally, banded

frequency distortion was designed to approximate the distortions found in ATC's

and adaptive subband coders in a frequency variant way. All of the frequency
variant distortions operated in six frequency bands. The band limits used were
0-400, 400-800, 800-1300, 1300-1900, 1900-2600, and 2600-3400 Hertz.

The additive colored noise was formed by first bandlimiting white Gaussian
noise, and then adding the resulting signal to the original speech signals. In
all, six different additive colored noise distortions were included, one for
each of the frequency bands listed above. Using six distortion levels per

distortion type resulted in 36 separate distorting systems.
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The banded pole distortion was realized in four steps. First, an LPC
analysis was performed, and a residual signal generated. Second, the LPC
polynomials were factored and the pole locations were perturbed within one of
the frequency bands. Third, the LPC coefficients were regenerated by
multiplying together the individual perturbed poles. Finally, a distorted
speech signal was generated by passing the residual signal through the
regenerated LPC filter. The entire procedure is described in detail in Chapter
3 of this report. The pole perturbations were performed in both the radial and
angular directions for all six frequency bands. These, plus two full-band
distortions, resulted in a total of 78 separate distortions.

The banded frequency distortion was based on a short-time Fourier
transform (STFT) representation for the speech signal. Fundamentally, the
banded frequency distortion added noise to the STFT of the speech signal in
bands. The noise was white and Gaussian, and was always added in phase with the
original signal. This means that the noise was added to the magnitude of the
STFT while leaving the angle undisturbed. Once again, the six frequency bands
combined with six distortion levels resulted in 36 separate distortions.

2.4 The Subjective Data Base

The emphasis in this research has always been on highly intelligible
coding techniques for wuse in toll quality applications. For this class of
systems, context free intelligibility tests, such as the DRT and the MRT, are
not particularly effective. This is because these high quality systems
generally crowd the high end of the intelligibility scale, and hence are not
well resolved by intelligibility alone. In addition, for high quality systems,
-it is generally acknowledged that user acceptance depends on factors other than
intelligibility. The ideal type of test for this class of systems is some form

of communicability test [2.16] in which a user’s performance is measured on

some complex or difficult task which utilizes the speech coding system
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directly. Unfortunately, communicability tests are not reasonable for this
research for two reasons. First, such tests are intrinsically expensive, and
the cost of generating the large subjective data bases required here would be
prohibitive. Second, in order to perform such tests, real-time realizations
for the distorting systems are required, which would also be prohibitively
expensive.

The only reasonable compromise approach left is to use a subjective

preference test of the mean opinion score type. In such tests, subjccts are

asked to rate speech material on a subjective scale, and the distorting
system’'s acceptability is estimated from these ratings. Subjective preference
tests have the advantage that they are much less expensive to administer than
communicability tests and they do mot require real-time realizations for the
speech distortion systems. Such tests have the disadvantage that they must
deal with the subtle nature of subjective preferences and they may require the
use of a large number of subjects in order to increase the test’s resolving
power to an acceptable level.

The subjective preference test chosen for this work was the Diagnostic
Acceptability Measure (DAM) developed by the Dynastat Corporation. This
particular test was chosen for several reasons. First, it is a very carefully
conceived and designed measure which has been widely used and verified.
Second, since it is a widely used test, its results are accepted and understood
by a large number of people. Third, and most important for this research, the
DAM is a very fine-grained test which measures not only such isometric

subjective quantities as acceptability, but a large number of parametric

quantities as well. This, in effect, generates a feature set which forms a
fine-grained perceptual signature for each distortion. As will become obvious

from the experimental results, without the information provided by these
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parametric measures, the design of high-performance objective speech quality
measures would be very difficult.

All of the Diagnostic Acceptability Measures generated as part of both the
previous research program and this research program were administered by the
Dynastat Corporation under subcontract to Georgia Tech.

As with most mean-opinion subjective tests, the DAM requires listeners to
characterize the distorted speech in absolute, rather than relative, judgments.
However, the DAM is unique in two specific ways. First, it combines the
indirect parametric approach with the more conventional isometric approach,
which, as previously noted, results in a much more fine-grained estimate of the
speech quality. Second, the DAM allows listeners to distinguish between system
and background distortion in making their judgments.

The rating form used in the DAM test is shown in Figure 2.4-1. The
subjects rate the distorted speech on ten parametric system scales, seven
parametric background scales, and three isometric scales. Factor analysis was
previously used [2.1] to reduce the input data to the form of Figure 2.4-2.
The twenty original subjective scales are reduced to fourteen output scales:
six parametric system qualities (SF, SH, SD, SL, SI, and SN); four parametric
background qualities (BN, BB, BF, and BR); and three isometric qualities
(Intelligibility, Pleasantness, and Acceptability). From all these parameters,

a total Composite Acceptability (CA) is estimated.

Previous research on the Paired Acceptability Rating Method (PARM) [2.15]
has shown that much of the apparent randomness in user preference tests is
actually attributable to stable differences in listener preferences. The DAM
uses this fact to pgood advantage through the careful. tracking of wuser

performance by the use of anchors and probes. This information is then used to

improve the resolving power of the DAM through the statistical correction of
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user responses. The total DAM output for a single type of distortion 1s
illustrated in Figure 2.4-3.

At the beginning of this research program, the subjective speech data base
contained the complete DAM results for the 1056 talker-distortion combinations
in the initial distorted speech data base [2.1]. As the result of this
research, an additional 232 combinations were added. A fairly detailed
discussion of the initial subjective data base was included in the previous
research report, and the interested reader is referred there for detailed
information [2.1].

On the whole, it is a fair statement that the original subjective data
base met its design goals. That is to say that it excited the appropriate
range of perceived distortions, it excited all of the various parametric
scales, and it represented a reasonable ensemble of coding distortions for the
time at which it was designed (1978). There were a few specific exceptions to
this statement, however. For example, a few of the controlled distortions
could be characterized as severe rather than moderate. These included most of
the bandpass distortions and some of the highpass and lowpass distortions. In
addition, although the banded pole distortion generated subjective scores in
the correct range, the spread of the distortion levels was not really wide
enough. This result will be discussed more fully in Chapter 3. Many of the
detailed features of the subjective data base will also be discussed in Chapter

4, Chapter 5 and Chapter 6.
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CHAPTER 3

NEW SPEECH DISTORTIONS

The purpose of this chapter is to describe the new coding distortions

which were added to the distorted speech data base as part of this research

program. As discussed in the previous chapter, the distorted speech data base
is a major component in the procedure for designing and testing the new objec-
tive speech quality measures. In general, this data base is formed by
applying coding and controlled distortions to all of the sentences in the

undistorted speech data base. The undistorted speech data base contains a

total of four sets of twelve sentences, where the sentences were all drawn from
a set of phonemically balanced sentences. Since the emphasis in this study was
on communications systems which, at a minimum, come close to achieving toll
quality, the undistorted sentence sets were digitized at the toll quality
standard. In other words, the sentences were all band-limited to 3.2 kilohertz,
sampled at eight kilohertz, and quantized to twelve bits (linear) resolution.
In addition, the timing of the sentences within the sentence sets was
constrained so that the distorted speech could be used directly as input for
the Diagnostic Acceptability Measure (see Chapter 2 for more details). Hence,
both the subjective quality estimates and the objective quality estimates in
the study were always performed on exactly the same speech data.

All of the distorting systems generated as part of this study were
implemented as programs (usually in FORTRAN) on the network of general purpose
computers and array processors which forms the Georgia Tech Digital Signal
Processing Laboratory [Appendix A]. As was discussed in Chapter 2, the
distorting - systems were implemented so as to maintain either sample-level or
frame-level synchronization between the undistorted input speech and the

distorted output speech. Hence, the problem of synchronizing the distorted and
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undistorted speech was entirely avoided, and that problem was not addressed as
part of this research. Both the distorted and undistorted speech sentence
sets were always stored as sixteen bit integer data in disk or tape files.

The original distorted speech data base which was available at the
beginning of this research effort [3.1] was described Section 2.3. In all, this
data base included 264 distorting systems applied to twelve sentences for each
of four talkers, for a total of 4 X 12 X 264 = 12672 sentences. The sentences
are always presented at exactly 4.096 second intervals, resulting in a total
distorted speech data base of 14.418 hours of distorted speech.

Fundamentally, the distorted speech data base forms the ensemble of
distortions over which the statistical estimations used in the design and
testing of the objective speech quality measures are performed (see Chapter 2
for more details). In an ideal statistical sense, these distortions should be
a randomly selected sample from the set of all coding distortions. This, of
course, is a meaningless statement for all practical applications, since
clearly there exists no reasonable procedures for approaching this ideal. What
was done instead was to design a distortion ensemble which is representative of
the particular communications environments of interest.

The distortion ensemble in the original study was generated to conform to
several specific design criteria. First, since the interest of the Defense
Communications Agency is primarily in medium-to-high quality speech com-
munications systems, all of the distortions were designed to span the

perceptual range from barely perceivable to moderately distorted. In

particular, the distortions included primarily systems of high intelligibility
whose quality differences are most appropriately measured by mean-opinion
speech quality tests such as the DAM. Second, since the final goal has always

been to find objective speech quality measures to be used in conjunction with
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speech coding systems, a number of coding systems were included in the
distortion ensemble. In the original distorted speech data base, these were
primarily representatives of the speech coding systems of interest in the 1978
time frame (see Table 2.3-1). Finally, since it is obvious that in order to
design good objective speech quality measures, the fundamental mechanisms of
speech perception must be addressed, a number of wide-band and frequency-
variant controlled distortions were also included. For more detailed
descriptions of all these distortions, the reader is referred to the previous
DCA report (DA100-78-C-0003) [3.1] and to [3.2-3.13].

It is important to understand that, from a statistical viewpoint, all of
the estimates performed using the distortion ensemble are biased by the
procedures used in choosing the representative distortions. Stated another way,
all of the results of this research must be viewed as estimates of the

performance of the objective speech quality measures when operating over the

distortion wuniverse which is represented by the distortion ensemble. Hence,

the validity of the results are fundamentally limited by the choice of
distortions. By any measure, the data bases involved in this study are large
(probably the largest available anywhere), and their associated statistical
resolving power is correspondingly high. Nevertheless, they are still not
nearly large enough to support a claim of universal validity.

The purpose of this chapter is to describe in detail the augmentations to
the distorted speech data base which were performed as part of this research
project. These additions were motivated by two problems with the existing data
base. First, the results of the DAM tests which were performed as part of the
original study indicated some deficiencies with certain of the frequency
variant controlled distortions, specifically with the Banded Pole Distortions.
Second, since 1978 a number of new and important speech coding techniques have

been introduced, and these new coding distortions needed to be included in the
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distorted speech data base in order to maintain the validity of the ensemble.

3.1 Banded Pole Distortion

Over the past decade, linear predictive analysis as become one of the

dominant techniques in speech coding. This technique has been used in many
different coding systems operating at many different bit rates. These coding
systems include the pitch-excited LPC vocoder , the vector-quantized pitch-

excited LPC vocoder, the residual-excited LPC vocoder, the Adaptive Predictive
Coder, the Multi-pulse excited LPC vocoder, the Adaptive Transform Coder, and
many more. All of these systems have the common feature that, as part of the
speech coding procedure, they quantize and transmit frames of LPC coefficients
in some form. In all systems where this is done, this quantization causes
distortion and is perceived as distortion by listeners.

Because the quantization of LPC coefficients is such a common feature in
modern speech coding systems, it is clear that understanding how to correctly
predict subjective responses to this class of distortion must be one of the
primary goals of this research. The problem is that the relation between LPC
quantization distortion and human perception is not a simple one. LPC
quantization techniques generally quantize some transformed parameter set
derivable from the IPC feedback coefficients, such as the inverse-sine
transformed PARCOR coefficients, the log area ratios, or the line spectral
pairs. Such distortions are not frequency localized and are generally spread
over the entire frequency range of the signal. Human hearing, on the other
hand, is a frequency variant phenomena and responds primarily to {frequency-
localized and time-localized events. When viewed in the frequency domain, LPC
quantization has the effect on moving the roots of the LPC polynomial, and
hence the poles of the LPC vocal tract transfer function, in both bandwidth and

frequency. Small variations in frequency, though easily perceivable, have
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little impact on the level of perceived distortion. Bandwidth variations,
however, can have dramatic perceptual effects. Bandwidths which are too narrow
cause clearly perceivable 'chirps, while bandwidths which are too large cause
the speech to sound 'muffled.

In actual coding systems, the LPC coefficient quantization distortions
always encompass the entire frequency range and always occur in conjunction
with other classes of distortion as well. If the perceptual effects of this
distortion are to be well understood, then controlled distortions need to be
generated which present the LPC quantization distortion in isolation and in a

frequency variant way. In the previous DCA research, the distorting system

shown in Figure 3.1-1 was used to generate the pole distortion. In this system,
the speech is first pre-emphasized using a second order filter, and then a
framed LPC analysis is performed. The results of the LPC analysis is then used
to inverse filter the original speech, giving an approximation of the glottal
wave excitation [3.3].

Following the inverse filtering operation, the poles of the vocal tract
function are then found by factoring the LPC polynomial. Then the banded pole
distortion is applied by first identifying all the poles within a fixed
frequency range, and then moving the poles slightly in either frequency or
bandwidth, or both. This ’'jittering’ of the poles is controlled by two uniform
random number generators. The ’'frequency range,' FR, factor gives the fange of
frequency, in Hertz, in which the poles are allowed to move. The ’bandwidth

factor,’ BF, is a multiplicative factor controlling the bandwidth motion by
distorted radius = (undistorted radius)[1+(BF)r] 3.1-1

where r is a uniform random number which ranges between plus one and minus one.
Once the pole locations are distorted, they are recombined to form a new set of

LPC coefficients, a’'(k). These coefficients are then used to implement a new
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vocal tract filter to create the distorted speech. The pole distortions
included in the original distortion ensemble are summarized in Table 3.1-1 and
the results of the DAM analysis of these distortions are shown in Figures 3.1-
24, 3.1-2F, 3.1-3M, and 3.1-3F.

A study of the DAM results shown in Figures 3.1-2M - 3.1-3F reveals some
basic problems with the distortions used in the original study. The problem is
that certain of the distortion classes did not exhibit an adequate variation in
perceived distortion. This 1is particularly true for the case of {frequency
distortion 1in the ranges 200-400 Hz, 1900-2600 Hz, and 2600-3400 Hz, but is
also true for radial distortion in the range of 2600-3400 Hz. An examination
of the control parameters for the banded pole distortion shown in Table 3.1-1
indicates that this is a fundamental problem, since the frequency variations
used were already very large when compared to the dimensions of the frequency
bands. In short, the bands used were too narrow for clearly perceivable
distortions are to be generated.

Based on these observations, a new set of banded pole distortions, based
on only four bands, was generated. As before, the bands were chosen to have
approximately equal frequency content on a MEL scale. The control parameters
for this study are shown in Table 3.1-2. Notice that in this study, the banded
pole distortions were chosen so as to exhibit both pole-frequency and pole-
bandwidth variations. The results of the DAM tests applied to these
distortions will be discussed in the following section.

3.2 Effects of Banded Pole Distortions on Subjective Responses

Figures 3.2-1, 3.2-2, 3.2-3, and 3.2-4 show the effect of frequency
variant pole distortion for 0-420 Hz., 420-900 Hz., 900-1600 Hz., and 1600-3200
Hz. respectiveiy. From these figures, it is clear that, for all frequency
ranges, the scales which are most dramatically effected are SF (system

fluttering) and BF (background fluttering). Hence, the effect of quantizing
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Distortion
Band (Hertz)

200-400
400-800
800-1300
1300-1900
1900-2600
2600-3400

Distortion
Band (Hertz)

0-400
400-800
800-1300
1300-1900
1900-2600
2600-3400

Banded Pole Distortion
Frequency Distortion

Frequency Range (Hertz)

1 2 3 4 5 6
20 40 60 80 100 120
20 40 60 80 100 120
50 90 130 170 210 250
50 90 130 170 210 250
100 150 200 250 300 250
150 200 250 300 350 400
Bandwidth Distortion
Variation Factor
1 2 3 4 5 6
.025 .05 .075 .1 .2 .3
.025 .05 .075 .1 .2 .3
.025 .05 .075 .1 .2 .3
.025 .05 .075 .1 .2 .3
.025 .05 .075 .1 .2 .3
.025 .05 .075 .1 .2 .3

Table 3.1-1 Summary of Control Parameters for the Banded Pole Distortions
Implemented as Part of the Original Research

Distortion
Band (Hertz)

50-420
420-900
900-1600
1600- 3200

Banded Pole Distortion

Frequency Range (Hertz)

Variation Factor

10
20
25
80

2

20
40
50
160

3

30
60
75
240

4

40
80
100
320

5

5
1
1

0
00
25

400

6

55

120
150
500

.01
.01
.01
.01

3

.02
.02
.02
.02

.04
.04
.04
.04

4

.08
.08
.08
.08

.16
.16
.16
.16

.32
.32
.32
.32

Table 3.1-2 Summary of Control Parameters for the Banded Pole Distortions
Implemented as Part of the Current Research
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the pole locations for LPC analysis can best be characterized as ‘fluttering’
and ‘chirping’. It is also clear that all frequency bands result in an
acceptably wide range of perceived distortions. Hence, the new pole
distortions met their fundamental design criteria.

3.3 Coding Distortions

As previously noted, the basic reason for the introduction of new
coding distortions into the distorted speech data base was to add to the
distortion ensemble examples of classes of coding distortions which have become
common since the original definition of the data bases in 1978. In all, there
were five new classes of coding distortions introduced, resulting in a total of
34 new distortions and extending to 94 the total number of coding distortions
in the distorted speech data base. As always, the new coding distortions were
simulated using general purpose computers, and were designed to have zero phase
reconstruction whenever possible. If this was not possible, they were designed
to have at least frame-by-frame synchronization with the undistorted speech.

3.3.1 Multi-Pulse Linear Predictive Coder

Since its introduction in 1981 [3.14], the Multi-pulse Linear Predictive
Coder (MPLPC) has been one of the most extensively reported and studied [3.15-
3.17]] techniques for medium-to-low bit rate speech coding. For nearly a
decade before 1981, researchers had been searching for ways to improve the
quality of speech at the bit rates between the medium-bit-rate waveform coders
(down to about 16 Kbps) and the low-bit-rate pitch-excited vocoders (down to
about 2.4 Kbps), but 1little progress had been made. MPLPC is the first
technique to show real promise in this area.

MPLPC is really a form of residual excited vocoder where the excitation
information 1is generated and encoded in a special way. MPLPC derives its
advantage from extensive utilization of the speech model and the LPC-estimated

vocal tract transfer function. A block diagram of the MPLPC vocoder used in
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this study is shown in Figure 3.3.1-1. In this system, the speech signal is
first divided into two channels: the analysis channel, in which the LPC
analysis and coding is performed; and the residual channel, in which the
residual coding is performed. In the analysis channel, the first step is to
apply a pre-emphasis filter of the form

1 -2

H(z) = l-blz -b2z 3.3.1-1

where the coefficients of the filter, b1 and b2' have been set so as to
estimate the spectral shaping effect of the glottal pulse [3.4]. The output
from this filter is then used as input to an autocorrelation LPC analysis
routine which performs a tenth order LPC analysis and gives an estimated vocal

tract filter of the form

3.3.1-2

This 10th order transfer function is then both coded for transmission and, in a
separate operation, corrected to include the spectral shaping effects of the

pre-emphasis filter, giving the 12th order transfer function

V' (z) = 3.3.1-3
10
[1— 2 anz_n ][l-blz_l-bzz_z]

n=1

In the residual channel, the original sampled speech signal is first

passed through an all-pass filter whose transfer function is given by
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= b2 2 %4b 2 %41 3.3.1-4

-2

A(z)

-1
1+blz +bzz

This filter has the effect of approximately correcting for the non-minimum
phase components of the original speech signal [3.4], which in turn, has the
effect of both making the speech signal more peaky in appearance and also
making the vocal tract model, V’'(z), more nearly correct in a phase (as well
as in a spectral) sense.

The heart of the MPLPC is the Multi-Pulse Estimation and FEncoding

functions shown in the analysis channel in Figure 3.3.1-1. This function uses
the phase corrected speech signal, s°'(n), and the spectrally corrected vocal
tract parameters, a’',£ ... a’ in an iterative procedure to choose a set of

1 12’

residual pulses to be coded and transmitted. The entire procedure is performed
in frames (60 samples per frame in this study) of which only a small number of
pulses are kept for transmission (2 to 10 pulses in this study). Because of
the sparse nature of the multi-pulse signal, run-length coding can be used to
reduce the bit rate in the MPLPC residual signal.

The iterative procedure for finding the multi-pulse locations and

magnitudes used in this study can be summarized as follows. First, the ordinary

residual signal [eo(n)] is formed, giving

12
eo(n)= s'(n) - 2 a'(k) s'(n-k) 3.3.1-5
k=1

Next, the modified vocal tract impulse response, hw(n), is computed as
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h_(n)=0 n=0 3.3.1-6(a)
w

12
h (n) = 2 a'(k)‘ykhw(n-k) 1<n <M1 3.3.1-6(b)
k=1

where vy and M are control parameters of the coder. Then the modified vocal

tract autocorrelation filter, rw(n). is computed as

rw(n) = hw(n) * hw(—n) 3.3.1-7

Using rw(n) and hw(n), the pulse locations and pulse amplitudes are computed in
the following iterative procedure. First, the pulse index, p, is set to zero (

p <-- 0 ) and fp(n) is computed as
= * -
fp(n) eo(n) r_(n) 3.3.1-8

Then the time index which maximizes |fp(n)| is found giving NO' the location of
the pth pulse (for p=0 first). The approximate amplitude of the pth pulse is

then computed as

A = f (N) 3.3.1-9
P p
M-1
2
) B2 _(m)
m=0

Once Ap is computed, the pulse index is incremented (p --> p+1), and then fp(n)

is computed as
f n) =f n)-A r (n-N 3.3.1-10
p( ) p-l( ) p 1!7( p)

The above steps are repeated until the desired number of pulse locations,
NO"'NP—I' are found. The pulse amplitudes found by this procedure are sub-

optimal, and once the pulse locations are found, a new set of P amplitudes can
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be found in one step [3.14].

In this study, the intent was to generate a class of distortions which
were typical of MPLPC, and not specifically to implement any particular
algorithm. Hence, no actual run-length coding was performed and no precise bit
rates were computed. In addition, the unquantized LPC vocal tract parameters
were used to generate the synthetic speech.

Another feature of the MPLPC is that once an estimate of the multi-pulse
residual signal is known, it is possible to use that signal to obtain an
improved estimate of the LPC vocal tract parameters. In this study, three
different pulse rates (2/80, 6/80, and 10/80) were combined with original and
improved LPC vocal tract parameters in order to form the six members of the
MPLPC distortion sets.

3.3.2 Adaptive Transform Coder

One of the more successful methods for frequency domain speech coding is
the adaptive transform coder (ATC). The basic concept on which the ATC is
based involves encoding a spectral representation of the speech rather than the
time domain waveform. The steps involved in the coding are: 1) windowing and
transforming a segment of speech, 2) producing a model of the spectrum from LPC
analysis and pitch detection, 3) dynamically allocating a predetermined number
of bits among the transform coefficients using the model spectrum, and 4)
adaptively quantizing the coefficients to the number of bits allocated. The
decoder requires both the quantized transform coefficients and the quantized
LPC parameters of the model spectrum in order to resynthesize a speech
waveform. From these parameters, the bit allocations and adaptation parameters
which were used in the quantizers can be computed. Resynthesis results from
decoding of the transform, inverse transformation, and overlap-add combination
of adjacent segments.

Our particular procedure follows closely with that of Tribolet and
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Crochiere [3.18] with some modifications. The transform used in our analysis

was the Discrete-Cosine-Transform (DCT) which is defined by:

M-1
Vé(k) = 2 v(n)c(k)cos[ (2n+1)mk/2M] . 3.3.2-1
n=0
The inverse DCT is defined as
1 M-1
v(n) = - 2 Vé(k)c(k)cos[(2n+1)ﬂk/2M], 3.3.2-2
M -0
where in both formulas:
k=0,1,...,M-1 and,
c(k) = 1 k=0 3.5.2-3
2 k=1,2, JM-1

Note that this transform is real, and involves computation of M equally spaced
frequency components from zero to the sampling frequency. The reasons for this
particular transform's use include the fact that its coefficients are always
real, it is relatively simple to compute (efficient algorithms involving FFT's
exist), and it is purported to be immune to windowing effects when quantized.
For the balance of the discussion, we will assume an 8kHz sampling rate
for the digitized speech, since this was the case for all of the speech
materials used in this study. The windows used for the analysis were 256 point
trapezoids with a value of one for the center 240 points, and tapering linearly
to zero on both sides. Adjacent segments were overlapped by 16 points, making
an overall rate of one frame every 30 ms. A DCT of length 256 was applied for

each segment.
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In addition to the DCT analysis, another analysis was performed
independently on data for spectrum modeling. A twelfth order LPC analysis
using a 256 point windows was performed every 30 msec. Pitch detection was
performed by an interactive, semi-automatic procedure to so as to minimize the
probability of pitch and voicing error. These two components give rise to a
smooth spectrum, of(k), and a pitch spectrum, op(k), which are combined to a
model spectrum cs(k)=0f(k)0p(k). The estimate of(k) was computed using a
discrete Fourier transform (DFT) for the quantized linear prediction model over
the first half of the unit circle. The pitch spectrum, op(k), DFT of is

computed by windowing and then taking the

2]
p(n) = ) (@8 (n-mL) 3.3.2-4
m=0
where L is the pitch and G is the ratio of the Lth lag autocorrelation term of
the speech segment to the zeroth lag.

The bit assignment was a function of a weighted version of the log of
os(k). This form of the bit assignment was specifically chosen so as to hide
some of the quantization noise under the high energy spectral peaks. The
algorithm was iterative and attempted to allocate B bits over M points,

according to the formula
b(k) = max {0, min[int[logz(os(k)of"zs(k)) + 8], Nmax]} 3.3.2-5

where b(k) is the number of bits assigned to transform coefficient Vc(k),

int[a] truncates a to an integer, and max[a,b] and min[a,b] take the maximum
and minimum respectively of the two arguments, MNmax is the maximum number of
bits allowed for any one coefficient, and 8 is the parameter which is

iteratively adjusted to make

62



M-1
2 b(k) = B. 3.3.2-6
k=0
The parameters Nmax and B depend on the desired bit rate for the coding.

It is valid to assume that Vé(k) is a zero mean Gaussian random variable
(given only Us(k) for estimation purposes) with variance equal to Us(k). The
quantization procedure, therefore, consists of normalizing Vc(k) by Us(k) and
then applying a non-uniform b(k)-bit quantizer optimized for a Gaussian process
of unit variance. Parameters for the quantizer were taken from Max [3.19].

In all, N bits per segment are allowed for an (NxB000)/240=Nx33.3 bits per
second rate. Of these, B bits are 'main information’ and N-B bits are ’side
information,’ which include LPC reflection coefficients, LPC gain, pitch gain
(G from equation (3.3.2-5), and pitch.

Resynthesis involves identical computation of b(k), cs(k), Vf(k), and
Up(k), which are used to calculate the quantized versiéns of Vé(k) from the
main information. An inverse DCT is then computed, and an overlap add is
performed with the previous segment. The parameters use to control the
adaptive transform coder are summarized in Table 3.3.2-1.

3.3.3 Subband Coder

In recent years, subband coders for digital speech coding at medium bitr
rates have been widely studies in the literature [3.20][3.21]. In the basic
subband coding procedure (Figure 3.3.3-1), the speech is first split into
frequency bands using a bank of bandpass filters. The individual bandpass
signals are then decimated and encoded for transmission. At the receiver, the
channel signals are decoded, interpolated, and added together to form the
received signal. The subband coder derives its quality advantage by limiting

the quantization noise from the encoding/decoding operation largely to the band
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Bit Rate

16 kb/s
12 kb/s
9.6 kb/s
8 kb/s
6 kb/s
4.8 kb/s

Number Bits In

Side Information

Per Frame

51

44

44

44

44

44

Maximum Number
of Bits Per
Coefficient

Number of Bits
For Transform
Quantization

445
316
244
204
136

100

Table 3.3.2-1 Control Parameters for the Adaptive Transform Coder (ATC-2)
Coding Distortion
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in which it is generated, thereby taking advantage of known properties of aural
perception [3.22].

The basic component of octave-band tree-structured subband coders is the
two-band analysis/reconstruction system shown in Figure 3.3.3-2. In this
system, the analysis is performed by the two frequency selective filters,
H,(e’) and H ('), which are nominally a half-band lowpass and a half-band
highpass filter respectively. To preserve the system sampling rate, both
channels are critically decimated at a rate of two-to-one, resulting in the two
sub-sampled signals, Yb(ejw) and Yl(ejw), given by
jo/2 jw)z

jo/2 _e]wlz

Y, (e’)

(1/2)[H0(e )X(e )+H0(—e )X( )] 3.3.3-1a

jw/2 jo/2 jw/2 _ejw/Z

Yl(ej‘”) (1/2) [H, (7*%)x(e?"%)4m, (- 19%)x( )] 3.3.3-1b

In the reconstruction section, the bands are recombined, giving

~

X(e¥) = (1/2) [H (I)6 (7)4H, (716, (1) 1x(e1®)
+(1/2) [Hy (-e7)6 (7)) 481 (-e1)6, (1) 1x(-e1)

3.3.3-2

The frequency response of the two-band linear system component is contained in
the first term of equation 3.3.3-2, while the second term contains the
aliasing. In the classic QMF solution, the aliasing is removed by defining the

reconstruction filters as

E.
e
|

= Hl(-er) 3.3.3-3a

~—
1

= -HO(-er) 3.3.3-3a

This assignment forces the aliasing to zero, and results in a total system

frequency response, C(ejw), of
c(el®) = (1/2)H0(e1°’)H1(-e"”)-(1/2)H1(e1“’)H0(-e1‘”) 3.3.3-4
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In the conventional solution, the high-pass filter [Hl(e]m)] and low-pass
filter [Hb(ejm)] are chosen to be frequency shifted versions of each other,

i.e.

Hl(eJm)=Hb(-eJm) 3.3.3-5

For this class of analysis/reconstruction system, exact reconstruction requires

that
H&elm) - H{elm) =2 3.3.3-6

A number of authors using various methods have designed FIR filters which
approximate this condition. The analysis/reéonstruction systems used in this
study all were based on quadrature mirror filters design by Johnston [3.23],
and the systems were simulated as described by Barnwell [3.21]. The APCM
coders used in this study are based on work by Jayant [3.24]. The adaptive
quantizer in these systems are controlled by the dynamic steps-size A(n), given

by
A(n) = A(n-1) x Fle(n-1)] 3.3.3-7

where c¢(n) is the nth code word and F[ ] is a preset control function. The
control functions for the APCM coders used in this study are given in Table

3.3.3-1, while the control parameters for the individual systems are shown in

Table 3.3.3-2.

3.3.4 Channel Vocoder

The channel vocoder which was realized was a thirty band system which
occupied the frequency range of 0-3.8 kilohertz. A block diagram for each o(
the channels (analysis and synthesis ports) is given in Figure 3.3.4-1.

The filters in both the analysis and synthesis filter banks were all

realized using recursive elliptic filters implemented as a cascade of second
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APCM Coders for Subband Coding

Magnitude of Code Word [|c(n)]]

Number of Bits 0 1 2 3 4 5 6 7
per Sample
4 .9 .9 .9 .9 1.2 1.8 2.0 2.4
3 .85 .9 1.4 2.0
2 | .85 1.9

Table 3.3.3-1 Control Function F[ ] for the APCM Coders Used in the Imple-
mentation of the Subband Coders

Subband Coder Control Parameters

Coder Number 1 2 3 4 b6 Harmonic Bit Rate
of Scaling
Bands
SUB-1 5 4 4 2 2 2 No 16000
SUB-2 5 3 3 2 2 2 No 14000
SUB-3 4 4 3 2 2 No 12000
SUB-4 5 4 4 2 2 2 Yes 8000
SUB-5 5 3 3 2 2 2 Yes 7000
SUB-6 4 4 3 2 2 Yes 6000

Table 3.3.3-2 Control Parameters for the Six Subband Coders Implemented as
Part of This Study
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order sections. All of the {filters had an identical bandwidth of 120 Hz. The
characteristics of each of the filters are given in Table 3.3.4-1. Exactly the
same filters were used in the corresponding analysis and synthesis banks for
each channel.

The filtered speech signal xi(n) was divided into frames of N samples.
After some experimentation, N was chosen to be 215 in the final realization.
Then, for each frame, the normalized square root of the energy of the windowed

signal xi(n) is computed as

N 172
Y [w(m)x(n)] 2
y, (m) = Lt R 3.3.4-1
N
Y ¥2(n)
n=1

\

where m is the frame number and n indexes through all the points in the frame.

A Hamming window function was used used for w(n), given by

w(n) =0.54 - 0.46 cos(??@) 3.3.4-2
N

For the channel coding, a uniform quantizer was used for the positive
signal yi(m). In the {final realizations, the numbers of bits used were
9,10,11,12,14 and 16 (unquantized version) respectively.

The pitch period estimations used for the channel vocoder were exactly the
same as those use for the adaptive transform coder (see section 3.3.2). These
pitch period signals were generated using a semi-automatic pitch detection
program which minimized pitch and voicing erro;s. The pitch periods were
estimated every 120 samples (15 msec). The excitation signal, p(n), is

generated as follows: for unvoiced sounds, a uniformly distributéd white random
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Filter Bank for the Channel Vocoder Implementation

Filter # Low Cutoff High Cutoff Order
. Frequency Frequency
(kHz) (kHz)
1 0 0.120 8
2 0.120 0.240 12
3 0.240 0.360 12
4 0.360 0.480 12
5 0.480 0.600 12
6 0.600 0.720 12
7 0.720 0.840 12
8 0.840 0.960 12
9 0.960 1.080 12
10 1.080 1.200 12
11 1.200 1.320 12
12 1.320 1.440 12
13 1.440 1.560 12
14 1.560 1.680 12
15 1.680 1.800 12
16 1.800 1.920 12
17 1.920 2.040 12
18 2.060 2.160 12
19 2.160 2.280 12
20 2.280 2.600 12
21 2.600 2.520 12
22 2.520 2.640 12
23 2.640 2.760 12
24 2.760 2.880 12
25 2.880 3.000 12
26 3.000 3.120 12
27 3.120 3.240 12
28 3.240 3.360 12
29 3.360 3.480 12
30 3.480 3.600 12

Table 3.3.4-1 Filter Bank Characteristics for the Implementation of the Channel
Vocoder Distortions
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Control Parameters for the Channel Voocder Distortion

System Number Bits Per Channel
1 9
2 10
3 11
41 12
5 ' 14
6 16

Bit Rate per Channel
(Bits/Second)
600
667
733
800
933

1067

Table 3.3.4-2 Control Parameters for the Channel Vocoder Distortion. For this
Distortion, the Sampling Rate was 8 kHz., the Frame Size was 120
Samples, and the Number of Channels was Thirty.
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process with standard deviation GN is used; for voices sounds, a periodic

pulse train with the correct period and amplitude Gp is used. The choice of

the gains GN and G_ was critical. A ratio G /G,=10 was found to be
P Pp N

appropriate.

In the receiver, the excitation p(n) is multiplied by the transmitted
signal ti(m) to create zi(n). This signal, in turn, is filtered to generate
the channel signals, si(n), which are all summed to create the output speech
signal. The control parameters for the channel vocoder are summarized in Table

3.3.4-2

3.3.5 ADPCM with Noise Feedback

In this context, noise feedback refers to a class of analysis procedures,

introduced by Atal and Schroeder [3.26], which can be applied at the
transmitter of either an APC and ADPCM speech coding system in order to
systematically control the spectral shape of the coding noise generated at the

receiver. The reason for doing this is to take advantage of the aural noise

masking effect which has been studied in psychoacoustics. This effect,
compactly étated, is that in aural perception, a strong signal source will
tend to mask less strong noise sources which are located close to it in
frequency. Hence, it is desirable to shape the coding noise in such a way that
the noise energy is placed near the speech signal energy in the short-time
frequency domain.

The fundamentals of the noise feedback technique are illustrated in Figure
3.3.5-1. A key feature of this technique is that it is applied only at the
transmitter of APC or ADPCM systems, and the receivers which are used are
standard, unmodified APC or ADPCM receivers. Both APC and ADPCM encode a
residual signal, e(n), which is obtained by passing the original signal through
either a variable (APC) or fixed (ADPCM) whitening filter. In the traditional

system, after quantization, the residual signal, E(z), is given by
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E(z) = [1-P(2)]S(z) + [1-P(z)]A(z) 3.3.5-1

where P(z) is the transfer function of the prediction filter, S(z) is the z-
transform of the original speech signal and A(z) is the z-transform of the
quantization noise signal, ’a(n). At the receiver, an estimate of the original
signal, S'(z). is created by passing the transmitted residual signal through

the inverse whitening filter, giving
S'(z) = E(z)/[1-P(z)] = S(z) + A(=z) 3.3.5-2

Hence, in an ordinary ADPCM or APC, the output signal is the sum of the input
signal and the quantization noise signal. Since the quantization noise is
nearly white, then the noise is distributed uniformly across the entire
frequency band, independent of the short-time frequency spectrum of the speech.

In a noise feedback approach (Figure 3.3.5-1), the quantization noise is
explicitly filtered separately from the speech signal, and the residual signal

can be written as
E(z) = [1-P(2z)]S(z) + [1-F(z)]A(=) 3.3.5-3

giving an estimated speech signal at the receiver of

S'(z) = E(z)/[1-P(z)] = S(z) + [1-F§z; A(z) 3.3.5-4
1-P(z

Hence the approximately white noise signal, A(z), is passed through the filter
whose transfer function is given by [1-F(z)]/[1-P(z)]. Clearly, by varying the
characteristics of F(z) on a frame-by-frame basis (since P(z) is always known
ﬁhether it is fixed or time-varying), it is possible to shape the noise to any
desired shape. An important poiht here is that the minimum noise energy always

occurs for no noise shaping, i.e. F(z)=P(z). Hence, the effect of noise
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feedback is always both to shape the noise and to increase the overall noise
energy.
In this study, the coding system utilized was always an ADPCM coder with a

single tap fixed predictor, and the noise feedback filter was designed so that

10
1 - 2 anz—11
1-F(z) = n=1
1-P(z) 10
1 - 2 a ynz-n
n
n=1
where vy is a control parameter, and P(z) = .92_1. The control parameters used

for this distortion are shown in Table 3.3.5-1.

3.4 Effects of Coding Distortions on Subjective Responses

3.4.1 The Effects of Multi-Pulse LPC on Subjective Responses

The effects of Multi-Pulse LPC on subjective responses are illustrated in
Figure 3.4.1-1. There are several point which should be noted here. First,
the Multi-Pulse LPC is capable of generating quite high quality systems at
relatively low bit rates. In fact, the only coding system in this study which
resulted in better quality was an ATC which operated at about twice the
equivalent bit rate of the Multi-Pulse LPC. Second, the technique of using the
estimated excitation function to improve the LPC analysis (systems 2, 4, and 6
of the MPLPC distortion) gives a consistent improvement for the lowest bit
rates (2/80) but has little impact at the higher rates. Third, the MPLPC tends
to excite a broad class of parametric distortion scales, including SF (system
fluttering), SH (system highpass), SL (system lowpass), and SD (system
distorted) as well as BF (background fluttering). However, on many of these

scales the responses are bi-modal depending on whether there are enough pulses

7



Control Parameters for ADPCM with Noise Feedback

Coder Quantizer Y Number of Predictor
Levels LPC Taps Coefficient
NF-1 4 8 10 9
NF-2 6 .8 10 .9
NF-3 8 .8 10 .9
NF-4 12 8 10 9
NF-5 16 .8 10 .9
NF-6 32 .8 10 .9
ADP-1 4 1 -- .9
ADP-2 6 1 -- .9
ADP-3 8 | 1 -- .9
ADP-4 12 1 -- .9

Table 3.3.5-1 Control Parameters for the ADPCM Systems with and without
Noise Feedback Used in this Study
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in the residual representation to support the true pitch. If this effect is

corrected, most of the perceived distortion occurs on the SF and BF scales.

3.4.2 The Effects of the Adaptive Transform Coder on Subjective Responses

The results of the subjective quality evaluation of the ATC is shown in
Figure 3.4.2-1. The ATC clearly lives up to its billing as a high quality
waveform coder for medium bit rates, with near toll quality performance at 16
Kbps. Like the MPLPC, the ATC excites a number of parametric quality scales.
Clearly, the ATC distortion is mostly perceived as SF (system fluttering) and
BF (background fluttering). However there are also non-trivial deviations
shown on the SN (system nasal), SD (system distorted), and SL (system lowpass)
scales. The spread of subjective quality results for this distortion is

excellent, so the fundamental design criteria as been met.

3.4.3 The Effects of the Subband Coder on Subjective Responses

Figure 3.4.3-1 shows the results of the subband coder distortions on
subjective quality. Like all of the previous distortions, the subband coder
distortion exhibits a good range of subjective responses. The subband coder
also exhibits a distinct bi-modal behavior for a number of parametric scales,
specifically SF (system fluttering), SN (system nasal), and BF (background
fluttering). This is a direct reflection of the inclusion or exclusion of time
domain harmonic scaling in the subband coding system. The basic subband coder
distortion shows up mostly on the SD (system distorted) scale, while the TDHS
excites mostly the SF (system fluttering), SN (system nasal), and BF
(background fluttering) parametric scales.

3.4.4 The Effects of the Channel Vocoder on Subjective Responses

The subjective results for the Channel Vocoder distortion are shown in
Figure 3.4.4-1. Of all the coding distortions in this study, the channel

vocoder was the least successful in generating a good range of subjective
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responses. However, the results are still adequate for use in the subjective
data base. It is clear from Figure 3.4.4-1 that most of the channel vocoder
distortion shows up on the SN (system nasal) and BN (background noisy) scales.

3.4.5 The Effects of the ADPCM with Noise Feedback on Subjective Responses

Figure 3.4.5-1 shows the results of the subjective quality tests applied
to the ADPCM-NF distortion. As can be seen from Figure 3.4.5-1, this
distortion exhibits a good range of subjective responses. Almost all of the
distortion shows up on the SD (system distorted) parametric scale, as is
typical of many waveform coder systems. One of the claims made for the noise
feedback approach is that for equivalent bit rate systems, noise feedback
generally results in improved quality over systems without noise feedback.
Figure 3.4.5-2 shows the results of subjective tests applied to equivalent
ADPCM systems without noise feedback for the four lowest bit rate systems.
Clearly, from these tests it appears that there is no measurable advantage to

using noise feedback.

3.5 The Effect of the New Distortions on the Correlation Analyses

Once the new distortions were incorporated into the existing data bases,
extensive tests were conducted to find the impact of the new distortions on
both the correlation coefficients computed in this study and those computed in
previous studies. The basic result of these analyses was that the correlation
coefficients computed on the old data bases and those computed on the new data
bases were very similar, and all the previously stated results were still valid

for the expanded distortion ensemble.
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CHAPTER 4

MODELING OF HUMAN HEARING FOR OBJECTIVE
SPEECH QUALITY ASSESSMENT

4.1 Background and Theory

Distortions of speech resulting from coding can only be detected if the
magnitude of the distortion is greater than the resolution of the human
auditory system. Once a distortion is perceivable, a subjective evaluation of
the degree of distortion relates to the scaling properties of the auditory
system. (The auditory system includes both peripheral and central components.)
Our modeling approach will not deal specifically with speech perception, but
rather, with the basic psychophysics of hearing. We will specifically restrict
ourselves to look only at differences in coded and uncoded speech and try to
quantify these differences. This approach obviously cannot address all issues,
but for the coders under consideration it should be of some merit. Due to the
lack of higher order modeling, it is expected that our models will more readily
agree with subjective results for waveform coder type distortions than more
complex distortions. Some of the key issues with hearing will be frequency,
temporal, and intensity resolutions as well as their perceptual scalings.

Frequency differentiation appears to be comprised of at least two separate
phenomena, one for stimuli composed of harmonically related components (pitch)
and another for more general stimuli.

Pitch perception can be accurate to within 0.3%, but is applicable only to
signals with specific periodicity. When the complex tones (stimuli composed of
multiple sinusoids) have inharmonic components, (roughly seven or more) they
cannot be perceived individually. This is the point where the pitch detection
ability of human observers becomes too confused to function. Current
indications are that pitch perception is a highly central neural process which

must be modeled at a level much beyond the auditory periphery, and will
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therefore be considered beyond the scope of our analysis.

Frequency resolution in general signals is much poorer than pitch
perception for periodic signals and is determined by other basic properties.
Most theories use the notion of critical bands which correspond to the presumed
filtering action of the auditory system. None of the many attempts to explain
psychophysical measurements of critical bands measurements solely on the basis
peripheral auditory physiology up through the auditory nerve have been
satisfactory. It is probable that a portion of this filtering is effected in
more central neural mechanisms, and that such data as auditory nerve tuning
curves would provide an incomplete model for speech perception. We therefore
believe the most appropriate frequency analysis should be based on
psychoacoustical measurements. Table 4.1-1 lists a set of experimentally
determined critical bands which span a large fraction of the audible spectrum.
Note the non-uniform bandwidths and center frequency spacing.

A well-known property of linear filters is the inverse proportionality of
temporal and frequency resolution (bandwidths versus risetime). Consequently,
as a filter’s bandwidth increases, more precision in timing is possible. Nerve
latency data suggests a lower limit for auditory resolution of around 2 ms.
Low frequency stimuli give significantly worse resolution due to the
corresponding narrower bandwidths of the low frequency channels, however, and
temporal resolution in this range is roughly 10 ms. Although such stimuli as
clicks can be resolved even when separated by as little as 2 ms, undesirable
effects emerge when speech perception is modeled with such acuity. For
example, pitch periods of a voiced segment of speech would be resolved. Since
our analysis does not include the provision for using this information, an
overall model resolution of no better than 10 ms for any channel is

appropriate.
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Filter Number Center Frequency Bandwidth

1. 50.00 70.000
2. 120.00 70.000
3. 190.00 70.000
4. 260.00 70.000
5. 330.00 70.000
6. 400.00 70.000
7. 470.00 70.000
8. 540.00 77.372
9. 617.37 86.005

10. 703.37 95.339
11. 798.71 105.411

12. 904.12 116.256

13. 1020.38 127.914
14. ' 1148.30 140.423
15. 1288.72 153.823

16. 1442 .54 168.154
17. 1610.70 183.457
18. 1794.16 199.776
19. 1993.93 217.153

20. 2211.08 235.631

21. 2446.71 255.255

22. 2701.97 276.072

23. 2978.04 298.126

24. 3276.17 321.465

25. 3597.63 346.136

Table 4.1-1 Critical Band Center Frequencies and Bandwidths Used.
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Intensity 1is perceived as a nonlinear function of the energies in the
various critical bands. The first step of analysis is filter output envelope
detection. Various mechanisms have been postulated, which include many
different types of nonlinearity followed by linear filtering, resulting in a
slowly varying signal for each channel. The second step involves relating the
envelopes to perceived loudness, JND's (just noticeable differences), or other
measures.

Masking is a mechanism undoubtedly arising from both peripheral and

central processing. Critical band measurements often involve steady-state
signals masking other signals, or simul taneous masking. Critical band
decompositions naturally model this masking. Another form of masking occurs
between signals sepa;ated in time. Most of the nonsimultaneous masking

theories involve exponential decay of masking functions with time with or
without frequency-dependent time constants.

4.2 Analysis Procedures

To assess the quality of coded and distorted speech using aural models, we
must take into account the audibility of differences in the signals. Since we
are assuming all of the distortions in the study are perceivable, the task
becomes one of quantifying these differences.

The ear’'s frequency resolving ability strongly suggests a spectral
analysis should be done to both the reference (original) speech and the
distorted speech. Hence, 1in this study, analysis paralleling critical band
filtering was performed. Of the many alternatives for the computation of the
critical band-spectrum, such as LPC spectra, DFT's of windowed speech (Time
dependent Fourier Transforms), and filter bank analysis, we chose the first énd
the last. The ear shows little sensitivity to phase as long as components are
not within critical bands, and appears to respond to energy as a function of

frequency. Our analysis involved short-time spectral densities. We will
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denote the energy: |V(n,s.d,m)|2 where n is the time index, s the speaker, d
the distortion (d=b means no distortion) and m is a discrete variable
representing the critical band over which the energy is summed. In the LPC
method, a high density DFT of the LPC spectrum is computed, and the energy in
critical bands is summed. The windows for summation in the frequency domain
should 1look 1like Figure 4.2-1 for auditory modeling. The pre-emphasis of
roughly 3 dB/octave inherent in the wider bandwidths must be compensated. The
problem with the previously mentioned computations is that although bandwidths
increase with frequency, time resolution is not proportionally enhanced. To
this end, we perform digital filtering and envelope detection instead, where
critical band energies can be sampled faster for wider bandwidth channels than
narrow ones.

Once critical band spectra were computed for original and undistorted
data, comparisons were made. Sensation and auditory nerve firing rates require
a nonlinear scaling of the energy envelopes. For an isolated filter’s energy
at an isolated time (one frame), the critical band spectral distance between
the reference and distorted speech frame for that channel should be a monotonic
function of the magnitude difference of the non-linearly scaled energies in the

two. Here, the distance would be of the form:
D = [|f1[V(n.s.l>,m)] - fl[V(n.s.d,m)]l] 4.2.1

where fl( ) is a non-linearity such as a logarithm or power function.
Combination of the different frequency band contributions to the overall frame
distance requires both a nonlinearity applied to Dm' as well as a weighting

which we assume will depend on the band’'s energy.
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4

L-1
F o= ) [1,(V(n.s.d.m)1 (D )] 4.2.2
n=0
where the index of summation, n, covers all critical bands. Previous work

suggests that f3( ) should be | |P where P is a positive integer, and fz( ) is
a monotonic non-linearity such as logarithm or a power function. Combination

of frames to arrive at an overall measure is accomplished in a similar manner:

th4(Fn)

Overall distance = n
) w
n
n
where Wh is a weighting function denoting frame n's overall importance, and
f4( ) 1is usually the inverse function of f3( ). In our study, we only used
IIP =II]./P

and f

4 Note that these choices amount to computing L

3 =
norms for L dimensional vectors comprised of the nonlinearly transformed
magnitude spectral samples.

This established framework allows for a large number of theories to be
tested. The fl( ) nonlinearity can be modeled by the JND structure for bands,
or instead by the form that perceived loudness takes on as a function of
intensity. In the first case, a logarithm should be used, and in the second, a

non-integer power function is appropriate. By the same logic, fz( ) should

take on a similar form, although the two non-linearities need not be the same.

We can also allow the functions to estimate at maximum and minimum value. As
. P 1/P .

mentioned, f3( ) and f4( ) are of the form | | and | | . This allows

frequency based combinations to follow as Lp norm measures. Another more

complex set of measures we called Klatt measures were employed, and will be
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described in more detail below.

4.2.1 Log Spectral Distance Measures

According to the notion that the perceived intensity of one stimulus to
another is proportional to the ratjo of the two intensities (Fechner's law) or
that intensity resolvability is proportional to intensity (Weber’'s law), the f1
nonl inearity should be logarithmic. With the notation that F(n,s,d) is the

frame distance for speaker s, frame n, and distortion d

L-1 1/P
P
2 |V(n,s,¢,m)|7|log[-Y£9:§:§:@)]|
=0 V(n,s,d,m)
P s Fmed) = [P L

L-1
) Vn.s.p.m]
=0

was used.

4.2.2 Power Function Spectral Measures

Psychophysical measurements point to significant modeling errors obtained
from application of Fechner's or Weber's law. A more accurate model states
that the perceptual intensity doubles for every N dB increase (N is usually set
to 10). Therefore, if we let i1p and i2p be the perceived intensities, and il.

and i2 be the actual intensities, the relation is:

i1 i1
log2 T-E) =N log10 (T—) 4.2.2.1
2p ‘2

1

or

i i
_1p _ 2(N/lO)log10 (}})
i 2

4.2.2.2
12p
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Band Number
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Table 4.2.2-1 Articulation Index Weights
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Weight

.003
.003
.003
.007
.010
.016
.016
.017
.017
.022
.027
.028
.030
.032
.034
.035
.037
.036
.036
.033
.030
.029
.027
.026
.026



_ 5(N/10)(10g,10) (logy( 1))

T 4.2.2.3
2
i 2logz[(llllz).fiN/lO] 4.2.2.4
_ ¢+ ,« y-03N
= (11/12) 4.2.2.5
Therefore perceived intensity grows as magnitude to the .06N power. If N=10,
this exponent becomes .6. A general form in which the exponent is left a free
parameter, 3, would result in:
fl(x) = x8 4.2.2.8
Therefore:
L-1 1/P
2 V(n.s.b.m))7|V(n,s. b.m)>-V(n,5.d,m)°|"
Fo= |- . 4.2.2.7
n
L-1
2 V(n,s.b,m) Y
m=0

4.2.3 Articulation Index Approximation

Although our goal is to characterize the quality of speech rather than its
the intelligibility of speech, there should be some similarities in estimation
methods for beoth. One set of procedures useful for predicting intelligibility

from a description of signal to noise ratio as a function of frequency falls

under the category of articulation theory. The computed value, articulation
index, can be calculated in a variety of ways. Kryter's method [4.1] divides
the frequency scale into 1/3-octave bands. Signal to noise ratios (SNR’s in

dB) are computed for each band, with a maximum of 30 dB, and a minimum of 0 dB
allowed in each band. Band specific weights, listed in Table 4.2.2-1, are

applied to each SNR, and these weighted values are summed.
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There are a number of differences between this method and our approach.
First of all, our filters are not 1/3-octave, but rather are critical bands. If
anything, our analysis should be an improvement over Kryter's analysis which is
only a critical band approximation. The weights which are used for the 1/3-
octave filter bank can be interpolated to produce the appropriate weights for
our procedure. Second, in our framework, only approximate SNR's are computed.
This 1is accomplished by observing the differences in the original and the
distorted filter bank signal energies. Third, we do not look at 1long term
SNR's, but merely averages over many frames. With the differences kept in

mind, our version of the articulation index gives a frame measure of:

L-1
F_ = 2 W max{0, min[2010g10V(l$.m)-2010g10|V(l’,m)—V(d,m)| ,3013. 4.2.3.1a
m=0
L-1
= 2 WN 4.2.3.1b
m
m=0

So that additional degrees of freedom could be incorporated into the model, we
allowed an energy dependent frequency weighting as well as Lp norm for

frequency band combinations. The resulting frame distances:
L-1 1/P

P
2 [V(n,s, $.m)|Y(N)
S R |- S 4.2.3.2
L-1
2 [V(n,s.$,m)|"

m=1

appear similar to the log spectral distances.
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4.2.4 Forward Masking Models

Simultaneous masking of signals is modeled by the critical band analysis,
which describes masking as a function of frequency separation. Temporal
masking, masking of one stimulus by another separated in time, also occurs.
Because the effect is more dramatic when the masker precedes the target
(forward masking) than the reverse (backward masking), only forward masking was
considered. Various experiments indicate that masking level decays
exponentially in dB with linear time [4.2] separation. The time constant for a
1000 Hz stimulus is roughly 75 ms. In other words, if the masking level of a
stimulus is 80 dB at t=0, at t=75 it will be 80/e dB=30 dB. Denote Tl the time
constant for frequency m. If the masking level at time t for frequency m and a
stimulus which is no longer present is M(t,m), it would be M(t,m)/e at t.=t.+'rl
or M(t+t1,m)#M(t,m)/e. This amounts to a frequency dependent smoothing for
each filter's envelope which can be accomplished by:

M(n+1,s,é,m) = r(m)M(n,s,$.m)+2010g V(n+1,s,$.m). 4.2.4.1

10
The constant r(m) specifies the amount of smoothing and is frequency dependent.
The new values, M(n,s,&.m), can be placed into the same framework as V( ) in

the log spectral distance measures.

4.2.5 Klatt-Type Measures

One interesting frame distance measure which was originally formulated for
speech perception modeling has been presented by Klatt [4.3]. This measure was
based on the observation that certain distortions (e.g., addition of a spectral
tilt) may result in large psychoacoustic differences, but charge the perceived

phonetic units very little. Four basic points were proposed by Klatt:

1) Frequency decomposition should be made which is based on critical-
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bands.
2) Intensities within the frequency bands should be measured in dB SPL.
3) The slopes of the log critical-band spectra should be compared rather
than the spectra themselves.
4) Differences in slopes of the log critical-band spectra should be

weighted in a manner which weights peaks more than valleys.

Klatt's basic distance was of the form

D,, = ) W(i)[S1(1)-52(i)]? 4.2.5.1
i
where S1 and S2 are spectral slopes and W(i) is the weighting for each band.

By suitable adjustment of free parameters, correlation between
experimentally obtained phonetic distance judgments using isolated, synthetic,
steady-state vowels and the above measure achieved a correlation of .93 wusing
this objective measure. Our feelings were that although these tasks are quite
different from ours, some of the same factors may be involved in subjective
phonetic distance judgments as in subjective quality evaluations.

4.3 Objective Measures

In this section we will describe the implementation of the objective
measures which were introduced earlier.

4.3.1 Filter-Bank Analysis

The critical-band filters were designed in accordance with measurements

and theory presented by Patterson [4.4]. Filter shapes were Gaussian, with the

center frequencies and bandwidths listed in Table 4.1-1. Twenty-five filters
were used to cover the spectrum 0-4000 Hz. Al]l filters were designed using a
97-point Hamming window. Finite impulse response filtering was performed on

the original and distorted waveforms, and RMS values were computed every 10
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msec using a 20 msec Hamming window.

4.3.2 Frame Combinations

The main concentration of our objective measures work involved exploration
of how the 10 ms frames from the distorted and original speech signals should
be compared. For a given set of frame distances, F(n,s,d), objective quality
was computed by simply averaging F(n,s,d) over n. In the previous study,
Barnwell and Voiers had found that weighting frames by some function of their
energies did not improve the performance of the objective measures tested
[4.5]. We use this result as justification of our procedure.

4.3.3 Frequency Weighted Objective Measures

In the log spectral measures, frame distances were of the form shown in
equation 4.2.1.1. Here L=25, and the m index denotes the different critical
band channels. The free parameters were y and P. The values used were
v=0,.2,.4,.6,1.0, and P=.2,.5,1,2,3.

The power function spectral measures were as in equation 4.2.2.7, with
free parameters y, P, and §. The values used were +v=0,1,; P=1,2,3,; and
$=.2,.3,.6, 1.0, 1.5, and 2.0.

The articulation index approximation as in equation 4.2.3.2 left the free
parameters +v=0,.2,.4,.6,1.0, and P=.2,.5,1,2, and 3. Also, 1in order to
investigate the effect of the value of the weighting vector W listed in Table
4.2, all experiments were repeated with no weighting, i.e., a weighting vector
with all elements of W equal to 1.

‘The forward masking models in accordance with Duifuis [4.2] allowed
exponential decay of the log intensities. The frame measure was generated as
shown in 4.2.1.1 but with M from equation 4.2.3.2 substituted for V. Because
of earlier results, we fixed vy at 0, and let P and r(m) (specifying rate of
decay - see equation 4.13) vary. The range for P was .2,.5,1,2, and 3, and

r(m) varied over the range 0,.2,.5,.9,.95. Note that the value 0 is the
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extreme of case of no masking or a time constant of 0, and the other values
lead to time constants of 6, 14, 95, and 195 ms respectively.

For the Klatt-type measures, we use Klatt's basic form as listed in
equation 4.2.4.1, with slight modification. First, we define the slope of the

spectrum as

S(n,s,d.m)=2010g10[V(n,s.d,m+1)]-2010g10[V(n,s,d,m)] 4.3.3.1
where V( ) is as before. Due to the fact that we have 25 spectral values, the
index varies between 1 and 24. Not wishing to restrict ourselves to Lz

norms, we modified 4.2.4.1 to allow a free parameter, P, which gave a frame

distance:

24
F(n,s,d) = 2 W(m)|S(n,s,b,m)-S(n,s,d.m)|P 1/ 4.3.3.2

=1

W( ) depends on both the distorted and original frames, and is specified by
W(m)=[W($,m)+W(d,m)]/2, 4.3.3.3

where W(d,m) depends solely on the spectrum V(n,s,d,k), for k=1 to 24.

Cl
W(d,m) =
[Cl+maxV(n,s,d,k)-V(n,s,d,m)]
k
C
+ 2 4.3.3.4
[C2+local V(n,s,d,m)-V(n,s,d,m)]
max m

The max V(n,s,d,k) term indicates the maximum value V(n,s,d,k) achieves as k is

m .

varied, and local V(n,s,d,m) indicates the value V(n,s,d,k) takes on at the
max m

closest peak to frequency band m. The free parameters are Cl‘ C2' and P.

99



Yalues chosen were C1=10,20.30,40,50,60.100, and 1000, C2 = .5,1,2,10,100, and
1000, P=.5,1,2. Please note that for the cases C1 and C2 large, the weighting
approaches 1 for all frequencies.

4.3.4 Trained Measures

Outside of critical bands, minimal auditory interaction takes place. In
speech, however significant correlations exist across bands. In addition, for
the set of distortions in our tests, individual frequency band distances should
show some correlation with each other. A way of accounting for this would be

to find the best linear combination of frequency based distances for predicting

subjective quality. This procedure would amount to choosing a weighting
vector, W(m),m=1,2,...,25, to maximize objective and subjective quality
correlation. In this study, optimum vectors were computed for four contexts.

The first two contexts weighted different frequency bands for the log spectral
measure as in equation 4.2.1.1, but with the constraints: +y=0 and P=2, giving

the form:

e 1/2
2 Whllog Y‘?z?:@:?! |
m Y(n,s,d,m)
R B 4.3.4.1
n
W
m
m

In one, all 25 bands were employed, whereas in the second, five bands were
determined by summing filter energies in groups of 5 at a time. A similar
procedure was performed for the power-law spectral distance, where vy, 3, and P
for equation 4.2.2.7 were set to 0,.2, and 2 respectively, giving frame

distances of:

100



) 5 812 | 1/2
Fa [ 2 Vs bm’-vins.dm)’ I 4.3.4.2
m
w
m
m

In this, both 5 and 25 band analyses were performed.

The two results of each analysis of interest are the actual weighting
vector as well as the correlation achieved.
4.4 Results

The computed objective measures were calculated with the composite
acceptability subjective measure described in Chapter 2. The figure-of-merit
used in this portion of the research was the magnitude of the estimated
correlation coefficients, p.

4.4.1 Log-Spectral Distance Measures

Log-spectral distance measures of the form given in equation 4.13 were
tested using the free parameters given in section 4.3.3. The following

observations were made.

1. For P held fixed, and vy varied, best correlation resulted from ¥y=0.0, for
all values of P. Furthermore, the degree of correlation invariably
decreased as ¥ moved further away from 0.0 in value.

2. For v held fixed, and P varied, best correlation resulted from P=2 or P=3
with P=1 giving reasonably close performance. Values of P less than 1
were inferior in performance to the larger values in all cases.

3. Of the 25 combinations of parameters, the top five were:
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Rank P v |p| (correlation coefficient)

1. 2.0 0.0 .715
2. 2.0 0.2 .707
3. 3.0 0.0 .705
4. 1.0 0.0 .703
5. 3.0 0.2 .702

Subsets of the distortions which fit into particular categories were

observed also. ADPCM and CVSD type distortions led to almost perfect

correlation, as one might expect since the set is highly restrictive. Larger

sets which included pole distortions, coding distortions, wide-band

distortions, controlled distortions, added colored noise, added white noise,

and banded distortions, were tested. Each of these included a minimum of six

sets of distortions (most contained more) giving at least 144 data points for
correlation analysis. Listed below are the best set of parameters for each set

of distortions.

Distortion v P |
Waveform Coders (WFC) .4 2
Pole Distortions (PD) 1. .2
Coding (CODE) 0 3
Wide-band (WBD) .2 1
Controlled (CON) 0 2
Colored Noise (FN) (1] 2
Banded (BD) 0 2

Most of these fit the pattern of small ¥y and P larger than 1. Pole
distortions were not matched well at all by any set of parameters. This can be

attributed to the small spread of the subjective composite acceptability
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results in this set of distortions. This problem is discussed in detail

Chapter 3. In general, however, results are fairly consistent

distortions. The high correlation of objective quality with

acceptability of added noise distortions, no doubt reflects the

audibility of noise and perceived quality are closely related.

4.4.2 Power Function Spectral Distance Measures

across

composite

fact that

in

Power function distance measures with frame distances of the form given in

equation 4.10 were computed with parameters listed in section 4.3.3.

running correlation analyses, the following observations were made.

1. For v and P held fixed, correlation was always best for 8§=0.2, with §=0.3

After

yielding comparable but slightly worse results. In addition, as ¥

increased in value, performance monotonically decreased.

2. For P and 8 held fixed, performance was generally best for 8=0.

Only when

P and 3 were far from their best values did y=1.0, give better correlation

than y=0.0, and then only slightly better.

3. For 3 and Y held fixed, performance was generally superior

although P=1.0 and P=3.0 were not much worse.

4. The best five combinations of parameters were:

Rank ¥ L] P
1. 0.0 0.2 2.0
2. 0.0 0.2 1.0
3. 0.0 0.3 1.0
4. 0.0 0.2 3.0
5. 0.0 0.3 2.0

When subsets of distortions were observed as described in

section, the best set of parameters in terms of correlation were:
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Distortion vy ] P |
WIFC 0.0 0.6 1.0

PD 0.0 0.6 3.0

CODE 0.0 0.2 2.0

WBD 0.0 0.2 1.0 or 2.0

CON 0.0 0.2 2.0

FN 0.0 0.2 2.0

BD 0.0 0.3 1.0

Again, a consistent picture emerged in that <y should be 0.0 and P could be 1.0,
2.0, or 3.0 with little difference. Only waveform coders and pole distortions
led to a & different from 0.2 or 0.3. As with log spectral measures, good
prediction of colored noise distortion acceptability was possible.

4.4.3 Articulation Index

Measures of the form in equation 4.12 were tested with the parameters as
described in section 4.3.2. When weighted by the vector in Table 4.2, the

following results were noted.

1. Very little variation in performance existed for the entire set of
parameters, with best correlation coefficients of .87 and worst .58.

2. For ¥ held fixed, the best value for P was either 0.2 or 0.5.

3. For P fixed, the best values of v tended to be small, although, not always
ZETOo.

4. The top 5 systems were:
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Rank Y P ol

1 0.0 0.5 67
2. 0.2 0.2 .87
3. 0.4 0.2 .87
4. 0.0 0.2 .87
5. 0.2 0.5 .87

The unweighted measures were also tested in an identical manner with the
same values for the parameters. Results which were very similar to the

previous tests were achieved.

1. The top 5 systems were:

Rank Y P ol
1. 0.2 _ 0.2 .67
2. 0.4 0.2 .87
3. 0.0 0.2 .67
4. 0.0 0.5 .87
5. 0.6 0.2 .87

2. For P held fixed, better results where generally achieved with y small.
3. For ¥ held fixed, in all cases, correlation was a monotonically decreasing
function of P.

4. The spread was much larger than in the weighted case.

For the original articulation index characterization, the parameters vy=0
and P=1 should have been used. These led to scores of .65 and .64 for the
weighted and unweighted cases, respectively. These values were not far from
the maxima achieved. In the regular log spectral distance measure, y=0 and P=1

led to a correlation of .70.
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Distortion subsets were also tested on the unweighted measure with the

following results:

Distortion ¥ P lel
WFC 0 0.2 .70
PD 1 0.2 .30
CODE 0 0.5 .63
WBD ALL IDENTICAL .40
CON 0 0.2 .54
FN 0 0.2 .90
BD 0 0.5 .68

For all but the pole distortions (which as mentioned earlier, gave little
spread in subjective quality) small values of ¥ were best. The prevalence of
values of P less than 1 appears throughout. For the additive colored mnoise
distortion, as expected, good correlation was achieved.

4.4 .4 Forward Masking Models

Log spectral distance measured were also formulated to use frequency
dependent levels, where the levels were computed as in equation 4.1.3 with
decay rates described in section 4.3.3. In all cases, for P held fixed,
maximum correlation was achieved for a time constant of 0 for all channels, or
no additional forward masking. The same result was observed for all the
distortion subsets. The best results for the various time constants are listed

below.

Time Constant |p|
0 ms L7
6 .708
14 .694
95 .675
195 .627
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4.4.5 Klatt-Type Measures

Correlation tests were run on the Klatt-type measures as described in

section 4.3.2. The following points were noted:

1. For all combinations of parameters C1 and C2' using P=1 gave superior
correlation to using P=2. In most cases P=0.5 outperformed P=2, and in a
few instances outperformed P=1.

2. For P fixed at 0.5, 1 and 2 rankings were as follows:

Rank c, c, P el

1. 10. 0.5 2 .694
2. 10. 1.0 2 .693
3. 20. 0.5 2 .691
4. 10. 2.0 2 .691
5. 30. 0.5 2 .690
6. 20. 1.0 2 .689
Rank c, c, P ol

1. 40. 100. 1. .736
2. 0. 1000. 1. .736
3. 40. 10. 1. .735
4. 50. 10. 1. .735
5. 50. 100. 1. .735
Rank c, C, P Iel

1. 1000. 1000. 0.5 .735
2. 100. 1000. 0.5 .734
3. 60. 1000. 0.5 .733
4, 50. 1000. ols .733
5. 40, 1000. 0.5 .733
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For P=0.5 or 1.0, many other combinations resulted in correlations of
roughly 0.73.

The interpretation for the meaning of C1 is that as it increases, the
difference between the largest frequency band intensity and the intensity of
the frequency band examined becomes less important. Similarly, as Cz
increases, the difference between the intensity of the examined band and that
of the closest local maximum becomes less important. Note from -equation
4.3.3.4 that since all intensities are in decibels, and differences are
actually ratios, the measure is normalized fqr overall gain. Therefore, no
terms similar to the energy weighting terms which were used in the previously
described measures were used in this measure. The difference terms in equation
4.3.3.4 vary between 0 and 60, with the bulk confined to the 0 to 40 range.

The different values of P led to different choices for C1 and Cz. In his
initial experiments, for phonetic distance, Klatt essentially used only P=2.
He found optimum values of C1 and Cz to be 20 and 1 respectively. As is
evident from the table above, near maximum correlation for P=2 was achieved
with just such a combination. For P=1, and C1 fixed, Cz tended to be larger,
although a wide range was spanned. For P=1 and Cz fixed, C1 tended to give
best results when it was roughly equal to 40. ¥Yhen P was 0.5, maximum
correlation was achieved for C2=1000, and C1 large. We find it interesting
that when P was 0.5, the best weighting was none at all, for P=1, the weighting
was moderate, and for P=2, the best weighting was substantial. The most
asthetically pleasing of these is the P=0.5, C1=1000, C2=1000 case, which was
one of the best combinations tested. Here we see distance as a combination of
square roots of differences between spectral slopes with no weighting.

Differences in slopes are the same as differences between the tangents of the

corresponding angles. Since the inverse tangent function has much the same
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shape as the square root function, it may be that an important factor is angle,
or something similar.
As with the other measures, various subsets of distortions were explored.

The parameters giving best correlation for some of them are listed below:

Distortion C1 C2 P |p|
WFC 1000. 100. 2 .79
CODE 1000. 1000. 1 .53
WBD 1000. 0.5 0.5 .61
CON 100. 1000. 0.5 .73
FN 1000. 1000. 2 .90
BD | 40. 1000. 1 .77

We observe good correlation for ad&itive noise and waveform coder distortions.
Other types of distortions were not modeled as well with a notable deficiency
in coding distortions.

4.4.6 Trained Measures

Measures as described in section 4.3.4 were analyzed for optimum values
for Wﬁ. Table 4.4.6-1 lists the values achieved for the 25 and 5 band cases
for log-spectral distance. Given optimum weightings, we observe substantially
better performance for the 25 band case. Also, comparing optimum weighted
performance with unweighted for the 25 band case, we see improvement in log-
spectral measures from |p|=.72 to .78. With power-law measures, the
improvement is only from .72 to .74. The five-band weighted log-spectral
measure gives results close to the 25 band optimum whereas the five-band
weighted power-law measure is markedly inferior.

We see no clear interpretation for the meaning of the weights in Table

4.4.6-1. The large number of zeros in the table indicates the high degree of
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Band Log Spectral Power Law

Distance Weights Distance Weights

1 -80.8 -8.4

2 106.2 7.0

3 0.0 0.0

4 0.0 19.2
5 103.1 -19.3
6 -140.5 0.0
7 0.0 -6.4
8 0.0 0.0
9 0.0 0.0
10 -32.9 2.3
11 0.0 -8.3
12 0.0 0.0
13 0.0 5.8
14 0.0 0.0
15 -27.6 -10.2
16 0.0 -2.9
17 -48.4 0.0
18 0.0 -13.3
19 0.0 33.5
20 15.5 -41.6
21 0.0 -13.5
22 -76.4 0.0
23 0.0 -17.2
24 0.0 0.0
25 25.3 12.5
Combined

Band

1 9.7 .47
2 -16.3 -1.75
3 -4.8 -1.31
4 -10.7 -1.71
5 -9.1 -1.65

Table 4.4.6-1 Trained Weights for the Trained Measures
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redundancy in many of the channels for the distortion set in our data-base.
In an attempt to see if the optimum weights were robust, we conducted a
few experiments. First, various subsets of distortions were evaluated for

correlation of objective and subjective data. The results are listed below:

Distortion |p|
WFC .81
CODE ' .60
WBD .69
CON .83
FN .94
BD .70

In almost all cases, correlations were superior to those reported in
section 4.4.1. This shows that the weights give improvements pretty much
across the board, giving some hope of robustness.

Another simple experiment consisted of extending the duration over which
the measure was computed by roughly 40%. Objective and subjective quality were
then recorrelated with a resulting coefficient of .717. This number is almost
identical to that achieved with the unweighted log spectral distance over the
same interval. When weighted measures were calculated over the interval not
used in training, the correlation coefficient was only .56. Also unweighted
log-spectral distances computed over the same interval as the weighted measures
were trained on resulted in correlation of .75. The conclusion we draw from
these data is that the training of the weights gives an only minor improvement
(e.g.. .75 .to .78) when testing occurs over the same intervals used in
training. When we include additional speech outside of these intervals, the

trained measures lose their advantage. We feel, therefore, that the weighting
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coefficients computed in training have little or no meaning in themselves.

4.5 Discussion

The measures we tested were in many cases similar to those used is
previous work by Barnwell and Voiers [4.5]. The main property the auditory-
based measures had in common was the critical band based spectral analysis.
Various additional aspects will be examined.

Tests similar to our log-spectral and power-law measures but using
uniformly spaced samples of LPC spectra were made on the same data-base by
Barnwell and Voiers. In both cases, optimum parameters closely matched those
observed by us. For example y=0 in both sets of measures was best. Both
studies also found the best exponent for power-law spectral distances to be
0.2. With these values the same, however, critical band spectral analyses led
to correlations of .72 and .72 whereas, LPC spectral distances led to
correlations of .60. Clearly the non-uniform spacing of bands was preferable.
In the earlier study, non uniformly spaced LPC spectral samples were also
computed by lumping 32 uniformly spaced samples into 6. Both log spectral and
power-law measures achieved maximum correlations of .68, which are comparable
to critical-band performance. Another factor which will be addressed shortly
involves the fact that the LPC spectral analysis had poorer time resolution
than the critical band analysis.

The articulation index approximation sought to measure short-time signal
to noise ratios using critical band spectra. A wider class of distortions
could be tested than with a time-domain short-time SNR, but at the expense of
precision. This 1is evident from a result obtained by Barnwell and Voiers in
which time domain short time SNR's had correlations of .78 with subjective
accéptability of waveform coders. The articulation index measure achieved
correlation of only .70 with the same subset. However, a correlation of .67

was possible for the set of all distortions where the time domain system could
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only be used on a few of them. The weighting function applied to the
traditional articulation index was shown in our context to give no more than
slight improvement over unity weighting, which demonstrates a possible
discrepancy between quality and intelligibility requirements.

The forward masking models tended to diminish the time resolution of the
spectral analysis. A time constant of zero amounted to the 10 ms time
resolution of the critical band analysis. Considering the degradation that
occurred when this was extended to 16 ms (p=.717 went to p=.708), it may be
possible that the 10 ms frames were too wide. The frequency variant measures
of Barnwell mentioned above had a resolution of 15 ms. Comparing our critical
band analysis smoothed to 16 ms resolution correlation result of .708 to
Barnwell’'s .68, we see a close correspondence. In view of these facts, one may
question the importance of the precision with which we formulated the spectral
analysis, and argue that most any reasonable frequency variant spectral
analysis choice may be virtually equivalent. The filter bank approach appears
to have been worth a few percentage points in correlation, perhaps because of
the increased time resolution. This could possibly be compensated for by a
smaller LPC analysis windows, however.

The trained measures give an upper limit on what is possible for the
particular measures tested. Although the results are hard to interpret, they
allude to the fact that not all 25 filter bands are necessary. This result is
highly dependent on the distortion set we used, and enough degrees of freedom
existed with the weighting vector to encourage artifactual results. Again,
however, this procedure tends to indicate that precise critical band analysis
may be unnecessary for good results.

The Klatt-type measures performed best of all. Two factors may account

for its superior results over the log-spectral measures: 1) use of spectral
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slopes rather than spectral magnitude, 2)‘the particular weighting function
used. Consider the log spectral distance with y=0, and the Klatt measure with
C1 and C2 large. The measures are essentially identical except for spectral
slopes being used in the latter case as opposed to log spectra in the former.
For P=1, the log spectral measure gives correlation of .70 and the Klatt
measure gives .73. However, for P=1, the former gives p=.72 and for the latter
p=.67. Therefore, simply converting from log spectra to slopes does not always
lead to improvement. It should be noted, however, that given the same number
of free parameters, the best Klatt-type measures outperformed the best critical
band spectral distance measures. One of the best performing of the Klatt
measures used unity weighting, however (with P=.5), which supports the idea
that the slopes, rather than the weights, are important. Our conclusion will
be that there is significant potential in this type of measure, and that it is

the combination of slopes and weights which makes it unique.

4.6 Conclusion

We feel that several statements can be made in summary.

1) Simple psychophysical models do not model subjective quality extremely
well. For example, the psychoacoustical growth of loudness exponent of 0.6,
when put into the critical band model, performed much worse than an exponent of
0.2. Our belief is that degradations not modelable by simple distortions go
much beyond the auditory periphery in their perception, and are inextricably
linked to more central neural processes. The emergence of an exponent of 0.2
in several instances is quite puzzling, and possible explanations are under
close scrutiny.

2) The precise Gaussian shaped critical-band filter bank characteristics
may be of little importance as long as a fair number of roughly logarithmically
spaced channels are used.

3) Time resolution better than 10 ms may be desirable. One suggestion is
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that short windows allow differences in transient phenomena (e.g. bursts) to be
measured.

4) Simple speech perception models, such as the Klatt type measures, may
be of great value in the task of predicting subjective quality. Further

expansion of our work to other models, we feel, has great potential.
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CHAPTER 5

PARAMETRIC OBJECTIVE MEASURES

5.1 Desirability of Estimating Subjective Parametric Quality

The purpose of any speech communications system is to permit wusers to
communicate easily and effectively via speech. A minimum criterion for
effective communication is that the speech communications link be able to
reproduce a highly intelligible version of the user's speech. However, speech
systems which reproduce merely intelligible speech usually do not perform well
with a casual speech style, and hence are not easy to wuse. Higher quality
speech reproduction permits a more natural speech style and promotes more
effective communicat ion since important Semantic cues for speech
communications, talker emotional state, or other talker qualities can be
transmitted. Users can be expected to judge a speech communications system
relative to their experiences in face-to-face conversation, and for each
individual there will be a level of degradation for which a  speech
communication system will no longer be acceptable. If this minimum acceptable
level 1is extended into a continuum of levels of acceptability, then a better
criterion for easy and effective communication might be for the user to
subjectively rate the system in terms of how acceptably it reproduces the
user’'s speech.

The Diagnostic Acceptability Measure's Composite Acceptability scale is
exactly this kind of subiective quality assessment (see Chapter 2). It
provides valuable information for assessing quality and complexity tradeoffs in
speech communication systems. Unfortunately, because of the vague and all-
encompassing nature of subjective acceptability, the Diagnostic Acceptability
Measure, or DAM, composite acceptability measure is difficult to track using

objective measures. The quality of acceptability does not give any clues as to
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the abpropriate functional form for a corresponding objective measure.

There is, however, more than one quality assessment in the Diagnostic
Acceptability Measure, and most of these are considerably more specific in
scope then the composite acceptability scale. Table 5.1.1 lists the entire set
of quality assessments which are provided by the DAM. Whereas the composite
acceptability scale does not suggest a corresponding objective measure, many of
the parametric subjective quality scales do. Therefore it is reasonable to
expect that objective measures can be designed which will track these more
specific parametric subjective qualities successfully. Once these specific
objective measures are designed, they can be combined in a linear or nonlinear
functional form and, wusing regression analysis, a measure for composite
acceptability can be developed. Such objective measures would also have the
advantage of providing additional diagnostic information about the nature of
the perceived distortion which would not be available from an estimate of
Composite Acceptability alone.

5.2 Theory

5.2.1 Multiple Linear Regression Analysis

A potentially effective procedure for combining a number of individual
estimates of parametric qualities into a single estimate of Composite
Acceptability is to use a multiple linear regression model. In such a model,

the linear relationship between subjective and objective is hypothesized as:

K
y. = BO + E B.x.. +e€. 5.2.1-1
where y, the dependent variable, 1is the isometric or parametric subjective
quality and the xj's. the independent variables, are the objective measure

variables [5.1]. The Bj's are model parameters to be estimated and €, is the
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INDEX  MNEMONIC

DIAGNOSTIC ACCEPTABILITY MEASURE
PARAMETRIC SIGNAL QUALITIES:

SIGNAL QUALITY

XA N -

DESCRIPTORS EXEMPLARS
SF fluttering bubbling AM speech
SH distant, thin highpassed speech
SD rasping, crackling peak clipped speech
SL muffled, smothered lowpassed speech
SI irregular, interrupted interrupted speech
SN nasal, whining bandpassed speech
TSQ total signal quality

BACKGROUND QUALITY

8
9
10
11
12

TOTAL QUALITY

Table

13
14
15
16
17
18
19

BN hissing, rushing Gaussian noise
BB buzzing, humming 60 Hz hum

BF chirping, bubbling

BR rumbl ing, thumping low freq. noise
BQ total background quality

II raw or isometric intelligibility

IP raw or isometric pleasantness

IA raw or isometric acceptability

I parametric intelligibility

P parametric pleasantness

A parametric acceptability

CA composite acceptability

5.1-1 A list of the subjective speech quality scales in the Diagnostic

Acceptability Measure.
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error in the model for each observation. Subscript j is the index of the
independent, or objective measure, variable and subscript i is the index of the
observation, or the speaker and distortion system in the data base. Since
observations in the distorted speech data base entail both a speaker and a
distortion system, the observation index will more frequently indicate this
explicitly as y(s,d), where s indicates the speaker and d indicates the
distortion system. The Bj are estimated in the classical manner by minimizing
the mean square error, ei. over all distortion systems in the data base. The

resulting model, which is the desired objective measure, is:

K
y = BO +]ZlBjxij 5.2.1-2

In order for this model to be valid, the following assumptions must be

satisfied:

1. The model errors ei are uncorrelated.

2. The error € has zero mean.

3. The error € has constant variance o?.

4. The relationship between y. and x. is, in fact, approximately

linear. ! 1

To assess the validity of these assumptions, we must investigate the source of
the error term. The underlying force which determines the quality responses in
the subjective data base is the types of distortions in the distorted speech
data base. Therefore the distorted sentences are, fundamentally, the
independent variables in that they are specified exactly. The xi's. which are
the objective measure variables, can be thought of as complex transformations
of the distorted speech waveforms. Once the transformation is fixed, the xi's

are exactly specified. Therefore the error term, €, should be interpreted as
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error in the subjective assessment of the quality of the distorted speech
samples. With this established, the above assumptions can now be evaluated.

First, the errors must be uncorrelated. In any subjective test this is
insured by randomizing the order in which the data is presented for evaluation.
This prevents any evaluation bias based on previous subjective judgments of
similar speech segments from occurring. Dynastat Corporation wused such a
randomized order in the presentation of the DAM materials, so this assumption
should be valid.

Second, the error must have zero mean, and third, the error must have
constant variance. These two assumptions need to be examined together. The
subjective assessments of speech quality in the subjective data base are all
mean opinion scores, that is, they are based on the judgments of several
individuals. Before individual opinions are averaged together, they are
adjusted to eliminate the effects of that individual's preference biases (see
Chapter 2). This means that each individual’s assessment error is transformed
to have zero mean and constant variance relative to the other listeners in the
test. Furthermore, new listeners undergo a training period prior to the actual
test, and can only proceed if they show a relatively small and constant quality
judgment error relative to the other listeners, across a variety of distorted
speech samples. Therefore, because individual judgments are adjusted to
conform to a group norm and because listeners are carefully trained,
assumptions two and three should be valid.

Fourth, the relationship between dependent and independent variables
should be approximately linear. If this is not true, then the assumption of
constant error variance will most likely be violated. In practice, one assumes
that the relationship is linear, does the regression analysis, and then checks

to see that the error variance is constant. This check is most easily done by
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looking at a plot of error, or residual, for each observation versus the
predicted value for each observation. If the model does exhibit non-constant
variance, then a transformation of some or all of the xi's may mitigate this
problem. Using transformations, the relationship between independent and
dependent variables can be linearized. If the residuals indicate that higher
order terms in x5 are needed, these terms can be thought of as adding an
additional independent variable which is simply a transformation of one of the
original xi's. In this way a polynomial model can be built within the framework
of the original regression model.

5.2.2 Monotonic Regression Analysis

Monotonic regression is similar to simple linear regression in that the
objective is to pass a curve through a set of points such that an objective
function is minimized. In the case of monotonic regression, however, the curve
need not have a parameterized functional form, such as y = ax + b, but rather
must simply be a monotonically increasing or decreasing curve. Thi§ is a case
of regression under order restrictions, and is thoroughly covered by R.E.
Barlow [5.2]. In both types of regression there are three principal variables:
the independent variable X, the dependent variable ;e and the estimated
dependent variable yi‘. where the subscript i is the observation index. Again,
in both cases the objective function to minimize is the sum of the squared
error over all observations, where the error is €, = (yi - yi‘). However, in
monotonic regression the only restriction on yi‘, besides minimization of
squared error, i3 monotonicity, such that yi‘ < yi+1‘ if x, < X" The
inequality relating the yi‘s is 'less than’ for monotonically increasing
.regression and is ’greater than' for monotonically decreasing regression.
Figure 5.2.2-1(a) shows a monotonically increasing regression curve fit anq

Figure 5.5.2-1(b) shows a monotonically decreasing curve fit. In these Figures

X, is the frequency index of a power spectrum, Y- The independent variable X,
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5.2.2-1 Part (a) shows a monotonicly increasing curvefit to a data set
and part (b) shows a monotonicly decreasing curvefit, In both
parts the x—axis is the value of {x. }., On the y—axis the value
of {y.} is indicated by the symbol D and the solid line is the
monotonic curvefit to {yi].
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is therefore a simple scaling of the obsérvation index 1i.

The 'Up-and-Down Blocks®' algorithm, developed by J.B. Kruskal [in 5.2]
is an efficient method of computing a monotonic regression. Understanding the
algorithm first requires defining several terms. In the following discussion
assume that the dependent variable, X, is arranged in ascending order such
that X, < X1 for all i from 1 to N-1 and that there are N elements in the
dependent variable data set.

BLOCK - a set of consecutive elements yj through Yy j < k. The value of a
block is equal to the average of the elements in that block.

UP-SATISFIED and DOWN-SATISFIED - consider three consecutive blocks, B-, B,
and B+. For monotonically increasing regression block B is said to be up-
satisfied 1if the average of the elements of B is less than the average of the
elements in B+. For monotonicly increasing regression block B is said to be
down-satisfied if the average of the elements of B is greater than the average
of the elements in B-. For monotonicly decreasing regression the previous two
inequalities are reversed. Additionally, any block containing YN is
automatically wup-satisfied and any block containing Y, is similarly down-
satisfied.

A flowchart of the algorithm for performing monotonic regression is
shown in Figure 5.2.2-2. The algorithm begins with the independent variable
data set partitioned into N blocks of one element per block. At each stage in
the algorithm one block is designated as ‘active’. Three choices are available
for an active block. If the active block is not wup-satisfied then it is
combined with the next higher block. If the active block not down-satisfied
then it is combined with the next lower block. If the active block is wup-
satisfied and down-satisfied then the next higher block becomes-active. At the
start the first block is active and the algorithm is terminated when the

highest active block is up-satisfied. The values of the blocks at termination
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5.2.2-2 The 'Up—and-Down Blocks' algorithm. The abbreviations shown in
the algorithm are described as follows:

active block. At the start the block containing y. is the active block.
The algorithm terminates if the active block contains y. .

up satisfied. The conditional tests if the active block is up
satisfied.

down satisfied. The conditional tests if the active block is down
satisfied. )

pool down. The current block is merged with the next lower block., This
new block becomes the active block.

pool up. The current block is merged with the next higher block. This
new block becomes the active block,

next higher, The active block is now the next higher block.
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are the desired yi‘ and are the best monotonically increasing fit to the data
yi subject to minimizing the sum of the squared error. If, at termination, a
block contains more that one element, for example yj through Yy then each
corresponding estimate of the dependent variable, yj‘ through yk‘, is equal to
the value of the block containing yj through Yy

For the work done in this study the most significant result of monotonic
regression is the statistic 'stress’', which is the error variance divided by

the dependent variable variance. This can be expressed as:

Stress = -------------- 5.2.2-1

The stress of a monotohically increasing regression provides a measure
of how closely a set of yi's conform to a monotonically increasing function.
If the set is perfectly monotonic increasing then the resultant stress is zero,
and if the set is perfectly monotonic decreasing then the resultant stress is
one.

An extension of monotonic regression is uni-modal regression. This
regression technique fits a uni-modal curve to the data set under the
constraint that the sum of the squared error is minimized. This analysis can be
broken down into three steps. In the first step the mode of yi‘ is found.
Assume that the observation index of the mode is M. If the mode of yi‘ is to be
a global maximum, then the second step is to do a monotonically increasing
regression on the points Y4 t.hrough.y:M and the third step is to do a
monotonically decreasing regression on the points Vi1 through N If the mode

of yi‘ is to be a global minimum, then the second step is to do a monotonically
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decreasing regression on the points Y, through Vi and the third step is to do a
monotonically increasing regression on the points Vi1 through IN Stress is
still expressed as in equation 5.2.2-1.

Finding the mode of yi' requires two monotonic regressions. As a side-
note, if all intermediate results in these regressions are saved, these
results being all block values for blocks 1 through the active block for each
algorithm step, then the regressions required in steps two and three are
already done and all three steps can be combined into one procedure. However,
for the sake of clarity, the more straightforward three step approach will be
described here. If the mode of yi' is a global maximum then a forward
monotonically increasing regression and a backward monotonicly increasing
regression are done. A forward regression is simply the regression performed
by the up-and-down blocks algorithm. In a backward regression, however, the
starting active block is N and the active block progresses from IN to Yy
hence the name backward. This can be accomplished by reversing the indices on
the data sets X and Y using the up-and-down blocks algorithm and then re-
establishing the indices. In reversing the indices the following mapping is

performed:

X 2 Wi
i IN-i+1

In re-establishing the indices the same mapping is used again with the
provision that the index of yi’ is also reversed. For both forward and backward
regressions the intermediate stress at each step in the algorithm must be
computed. Intermediate stress values are computed using equation 5.2.2-1 with N
replaced by the index of the current active block. Figure 5.2.2-3 shows the
results of forward and backward r;gression on a data set. The curve labeled
'F' is the intermediate stress for the forward regression and the curve labeled

'B* 1is the intermediate stress for the backward regression. The curve labeled
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Figure 5.2.2-3 Stress curves for a unimodal maximum monotonic regression., The
curve 'F' is the stress at each step for a foreward ascending
monotonic regression., The curve ‘B’ is the stress at each step
for a backward ascending monotonic regression. The curve 'S’ is
the sum of curves F and B at each step. The mode in the
regression is the index associated with the minimum of curve S.
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'S’ is the sum of the two curves 'F' and 'B'. The desired quantity, the index
of the mode of yi‘, is equal to the index of the global minimum in the curve
'S', since this is the mode for which the final stress is minimum. With the
mode of yi‘ established, the forward and backward regressions of steps two and
three are computed as previously described and a value of stress for the uni-
modal regression is be computed.

5.2.3 Multidimensional Scaling

In the context of this study, multidimensional scaling, or MDS, is a
tool used to graphically examine the relationship between several objective and
subjective speech quality measures. It maps similarity between quality
measures, as measured by correlation, into dis;ances between quality measures
as measured in an N-dimensional space. Using this technique, the relationship
between many measures can be studied by examining a graph, as opposed to
scanning a large table of correlation values. The principles of
multidimensional scaling are best set forth by R.N. Shepard [5.3][5.4] and J.B.
Kruskal [5.5][5.8]. In order to discuss the theory of multidimensional
scaling, several terms need to first be defined:

OBJECT - the thing or event to be investigated. In this study objects are
subjective or objective speech quality measures.

PROXIMITY - also referred to as similarity, this is a measure of the distance
between objects as quantified by the magnitude of a>corre1ation coefficient or
some other distance measure.

DATA MATRIX - MDS operates on proximities associated with pairs of objects.
It is convenient to think of proximities among N objecté as entries in an N by
N data matrix, where the entry in row i column j, mij' is the proximity of
object i to object j. If we assume that the measure of proximity is a metric,
then mij is equal to mji and the data matrix is symmetric. Furthermore if we

assume that the proximity of an object to itself is constant for all objects,
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zero for example, then the data matrix contains only (N)(N-1)/2 unique entries.
For the applications in this study these assumptions are valid, so the data
matrix can effectively be reduced to a lower triangular matrix of (N)(N-1)/2
proximities. '

REALIZATION SPACE - the output of a ﬁultidimensional scaling is a table of
coordinates which locate each object in the realization space. The distance
metric in this space is Euclidean and the dimensionality of the space can be
varied by the user. The distance between objects in the realization space is a
function of the proximity associated with the two objects. The distance
between object i and object j in the realization space is denoted as di.‘.
The dimensionality of a the realization space is an important issue. For N
objects it can be shown that the realization space spans at most N-1 dimensions
for metric scaling and N-2 dimensions for non-metric scaling [5.7]. If the data
is error free, then this dimensionality may be appropriate, though with noisy
data some dimensions may be accounting for noise only. Lower dimension spaces
tend to smooth out data noise since, with fewer object coordinates to estimate
from the data, the coordinates have greater statistical reliability.

METRIC and NON-METRIC SCALING - scaling can be divided into these two broad
categories. Mapping proximities in the data matrix into distances in the
realization space in general requires a transformation on the proximities. If
the function which transforms proximities to distances in the realization space
is linear, then the scaling is metric. If the function is merely monotonic
then the scaling is non-metric. Transformed proximities can be thought of as
estimates of inter-object distances in the realization space. The transformed
proximity associated with object i and object j is denoted as di"

STRESS - points are placed in the realization space such that they minimize

an error function, defined as follows:
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STRESS = |-—--cccmmmmm e 5.2.3-1

| i=1 j=1

STRESS measures the differences between the distance between points ih the
realization space and the estimated distance between points as specified by the
transformed proximities. In another sense it measures how well the dimension
of the realization space suits the data. The value of STRESS should guide the
experimenter in choosing the appropriate dimensionality for the realization

space. A rough interpretation of stress is as follows:

0% perfect
5% very good
10% good

20% fair

As an example of metric MDS, consider the data in Table 5.2.3-1 in which
proximities are actually distances, in miles, between ten cities in the United
States. MDS can be used with a linear transformation of the proximities
(actually a simple scaling) to construct a 'map’ of the U.S. as in Figure
5.2.3-1. Since this data was measured from a very nearly two dimensional space
(the surface of United States land mass) the realization space need not be
larger than two dimensions. In this example the STRESS, or error of fit in the
realization space, would be small and nearly constant for realization space
dimensionality greater than one. Figure 5.2.3-1 illustrates another important
aspect of MDS: the Euclidean distance measure used in the realization space is
rotation and reflection invariant, which means that the resultant configuration

of points can have any angular orientation in the realization space. MDS
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CITES LTLACHIC. DENVHOUS LA. MAM NY SF seat O3

ATUANTA S87 @212 70I H36 604 T48 2139 2182 543
CHICAGO 587 920 940 IT45 uB8 T3 838 737 397
DENVER 2 %20 679 831 726 K31 949 1021 1494

HOUSTON T 940 87 1374 968 K20 1645 891 (220
LOS ANGELES [1936 1743 831 O74 2339 2451 347 959 2300

MIAM 604 188 I726 968 2339 1092 2594 2734 923
NEWYORK [748 713 1631 1420 2481 1092 2571 2408 205
SANFRANCISOO| 2139 1858 949 1645 347 2594 2571 678 2442
SEATTLE  [2182 1737 1021 1891 9359 2734 2408 678 2329

WASHINGTONDC] S43 597 M94 1220 2300 923 203 24422329

Table 5.2.3-1 Airline distances between ten U,S. cities [8].

* NEW YORK

WASHINGTON

ATL.ANTA

MIAM)
)

0A¢§i£$

Figure 5.2.3-1 ’'Map’ of ten cities in the U.S. as produced by multidimensional
scaling of the data in table 5.2.3-1,
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produces a configuration of points, but it is up to the researcher to identify
the orientation and meaning of spacial dimensions in that configuration.

As an example of non-metric scaling, consider Figure 5.3.2-1(a). This
is a two-dimensional scaling of the similarity between parametric quality
measures in the DAM. In this scaling, parametric quality measures are the
objects, and hence are represented as points in the plot. Figure 5.3.2-1(b) is
a key for identification of these points. The similarity between two measures
is represented by the proximity of their points in the plot. The functional
measure of similarity between two measures is simply the magnitude of the
correlation coefficient relating these two measures across the ensemble of
distortion systems in the data base. This scaling is non-metric because the
transformation of mij to yield dij is monotonic. That is, if you were to

construct ordered pairs: ( ), and then rank the mij's in descending

m.., d..
1) 1]

order, their corresponding dij's would also be ranked in descending order. This

is the only restriction on the transformation.

5.3 Parametric Objective Measures

5.3.1 Regression Analysis

Regression analysis has been done on the subjective quality data base by
itself to determine to what extent the most desired subjective quality,

composite acceptability, can be estimated from some subset of the remaining

parametric subjective qualities. For two reasons only a subset of the
remaining parametric qualities are considered. First, some of the subjective
qualities are general in nature, rather than specific. These qualities are

total signal or background quality, and overall intelligibility, pleasantness
and acceptability. The whole motivation for this phase of -the study was to
focus on narrow rather than broad quality categories, with the assumption that
these would be easier to objectively estimate. Second, it is of interest, out

of efficiency and expediency, to investigate how few of the parametric
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SYMBOL MNEMONIC QUALITY

SIGNAL QUALITY

A SF fluttering bubbling

B SH distant, thin

c SD rasping, crackling

D SL muffled, smothered

E | SI irregular, interrupted
F SN nasal, whining

G TSQ total signal quality

BACKGROUND QUALITY

H BN hissing, rushing

| BB buzzing, humming

J BF chirping, bubbling

K BR rumbling, thumping

L TBQ total background quality

TOTAL QUALITY

M II raw or isometric intelligibility
N IP raw or isometric pleasantness

0 IA raw or isometric acceptability
P I parametric intelligibility

Q P parametric pleasantness

R A parametric acceptability

S

CA composite acceptability

Figure 5.3.2-1(b) Key to symbols in Figure 5.3.2-1(a).
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subjective qualities are needed to adequately estimate composite acceptability.
Fewer terms in the model for composite acceptability means fewer objective
measures to build for each term and hence less computation ih the composite
acceptability objective measure.

The model for estimating composite acceptability from the parametric
subjective qualities 1is identical to equation 5.2.1-2, except for these re-
definition of terms: Y; is the composite acceptability score for distortion
system i, xij is a parametric subjective quality score for distortion system i.
In all cases the regression analysis was done over the entire 1056 distortion
systems.

It should be noted that this regression analysis is simply an extraction
of the model originally used by Dynastat to compute composite acceptability
from the parametric subjective qualities. For this reason one should expect
very good regression modeling results. This expectation was, in fact, realized
by the anafysis. However, good modeling results were also achieved by using
only a subset of all the parametric subjective qualities to estimate composite
acceptability, which is new and very encouraging information.

Three regression studies were run on the subjective data base. The
first represents an upper limit on how well composite acceptability can be
estimated based on all of the available information and using only linear
regression models. Table 56.3.1-1(a) lists the parametric qualities used in
this analysis. Note that total signal, total background, and parametric
intelligibility, pleasantness and acceptability were not used because these are
in faet composite qualities based on the qualities which were included in the
model. The results of the analysis, listed in Table 5.3.1-1(b), is that 99.9%
of the variability of composite acceptability‘was explained by the included
variables (R-square = .9990). This is nearly perfect, indicating that the

parametric subjective qualities included in the model together contain all the
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INDEX MNEMONIC DESCRIPTORS

SIGNAL QUALITY

1 SF fluttering bubbling

2 SH distant, thin

3 SD rasping, crackling

4 SL muffled, smothered

5 SI irregular, interrupted
6 SN nasal, whining

BACKGROUND QUALITY

8 BN hissing, rushing
9 BB buzzing, humming
10 BF chirping, bubbling
11 BR rumbling, thumping

TOTAL QUALITY

13 II raw or isometric intelligibility
14 IP raw or isometric pleasantness
15 IA raw or isometric acceptability
(a)
Multiple R .9995 Standard error of estimate .3153

Multiple R square .9990

Analysis of Variance

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio
Regression 102252. 13 7865 . 79135.
Residual 103. 1042 .0994
(b)

Table 5.3.1-1 Part (b) shows the results of linear regression analysis with the
subjective qualities listed in part (a) as independent variables and composite
acceptability as dependent variable.
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information present in the composite acceptability quality. As stated
previously, this is to be expected since this analysis merely extracts nearly
the same model used by Dynastat to compute composite acceptability.

The second analysis was limited to using only the signal and background
qualities as independent variables of the regression model used to estimate

composite acceptability. However this analysis was slightly different in that

forward stepwise regression was used as a means of identifying the most
important of these parametric qualities. As the name implies, stepwise
regression is a stepwise or iterative technique used for independent variable
selection. In the first step the variable which explains the most variation in
the dependent variable is included in the model and all model statistics are
computed. In all subsequent steps, the variable which, when added to the
current model, helps explain the most variation in the dependent variable, is
included in the model and all model statistics are computed. In this way, a
useful, though sub-optimal, ranking of the independent variables is obtained by
the degree to which the variables contribute to the model. In addition, at
every step a regression model for the included independent variables is
obtained.

Table 5.3.1-3 shows the results of this analysis. Listed are the
parametric qualities in the order in which they entered the model, the
multiple-R, or correlation coefficient, the multiple-R sqﬁared, or fraction of
variability explained, and the increase in multiple-R square. The results show
that two qualities dominate the rest in terms of contribution to the model.
These are SD, which by itself accounts for 43 percent of the variatioﬂ of CA,
and SL which, along with SD, accounts for 66 percent of the variation of CA.
These results are not too surprising, in that the histograms (Figures 5.4.2-1
and 5.4.2-1) for these two qualities show a much larger variance than any of

the other parametric subjective qualities. Since SD and SL themselves have a
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Step Entered Multiple 2 Incregse

No. R R in R
1 SD, rasping, crackling .8541 .4278 .4278
2 SL, muffled, smothered .8120 .6594 .2316
3 SF, fluttering, bubbling .8648 .7478 .0885
4 BN, hissing, rushing .9039 .8171 .0692
5 BF, chirping, bubbling .9175 .8418 . 0248
6 SI, irregular, interrupted .9380 .8798 .0380
7 SH, distant, thin . 9494 .9014 .0216
8 BB, buzzing, humming .9518 .9059 . 0045
9 BR, rumbling, thumping .9524 .9070 .0011
Table 5.3.1-2 Results of stepwise regression. Subjective qualities are listed

in the order in which they entered the model. At each step, the columns of
numbers show the multiple R, multiple R-squared and increase in multiple R-
squared, respectively.
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large variance, they help to explain a larger portion of the variance in
composite acceptability. Another encouraging result is that only seven
parametric qualities are needed, SD through SH, to raise the correlation
coefficient for the model above .90. Thefefore only seven of the thirteen
subjective qualities included in the previous regression study are needed to
explain 95 percent of the variation in composite acceptability, and the
remaining five subjective qualities explain less than 5 percent of the
variation of composite acceptability. This analysis suggests that objective
measures for only seven of the parametric subjective qualities need to be
designed, since the remaining subjective qualities contribute little to the
estimation of composite acceptability.

The third regression analysis was all possible subsets analysis, done to
better support the conclusions reached by the stepwise regression analysis.
Stepwise regression is, in general, a sub-optimal method for independent
variable selection. In a given step only those variables not yet included are
examined, without regard for the appropriateness of the variables already
included. In contrast, all possible subsets is an optimal method of variable
selection since it examines all the independent variables at each step and
chooses that subset of n variables (n being the step number) which best
explains the variation in the dependent variable. Therefore this analysis
method will find the set of parametric subjective qualities that will yield the
best estimate of composite acceptability, under the restriction that the set
contain only n members.

The results of this analysis are listed in Table 5.3.1-3. For each
subset of size n, the table lists the corresponding multiple R squared,
multiple R and also indicates the parametric qualities included in that subset.
In this method of analysis, a specific ordering of importance of parametric

qualities is more difficult than with stepwise regression. Since the regression
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Parametric Quality Number in Subset

12345678910

1 SD, rasping, crackling XXXXXXXXXX
2 SL, muffled, smothered XXXXXXXXX
4 BN, hissing, rushing XXXXXXX
6 SI, irregular, interrupted XXXXXX
5 BF, chirping, bubbling XXXXXX
7 SH, distant, thin XXXXX
3 SF, fluttering, bubbling XX XXXX
8 BB, buzzing, humming XXX
9 BR, rumbling, thumping XX
10 SN, nasal, whining X
Number in Subset Multiple
| R° R

1 0.427 0.653

2 0.659 0.812

3 0.747 0.864

4 0.816 0.903

) 0.866 0.931

6 0.885 0.941

7 0.901 0.949

8 0.905 0.951

9 0.906 0.952

10 0.908 0.952

Table 5.3.1-3 Results of all possible subsets regression analysis with the ten
signal and background parametric qualities as dependent variables and composite
acceptability as the independent variable. The columns of X's indicates the
qualities included in the regression model for a given number of dependent
variables (as indicated by the row of numbers above). For comparison, the
column of numbers on the left is the order in which the parametric qualities
entered the regression model in stepwise regression analysis. Below are listed
the multiple R and multiple r squared for each subset of size n.
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model is totally re-evaluated for each subset size, there is no one order of
variable entry. The table lists parametric qualities in approximate order of
entry under all possible subsets regression, and also indicates, by the numbers
in the leftmost column, the order in which the qualities entered under stepwise
régression. The most notable difference between the two types of analysis
concerns the quality SF. Under stepwise regression this variable entered in
step three, where wunder all possible subsets SF entered in subset three,
dropped out in subset five and re-entered in subset seven. Therefore stepwise
analysis overemphasizes the importance of SF. However, for the remaining
parametric qualities the two analysis methods yield quite similar results.

Two conclusions can be drawn from the results of regression analysis on
the subjective data base. First, that parametric subjective qualities can be
used to construct a model which provides excellent estimates of subjective
composite acceptability. And second, that some subset of these parametric
qualities can be wused to construct a model which provides estimates of
composite acceptability which are nearly as good as estimates made by the full
model . Given these conclusions, it is then highly desirable to construct
objective measures which provide good estimates of the parametric subjective
qualities, since these objective measures, combined into one large model, can
be expected to provide improved estimates of subjective composite
acceptability.

5.3.2 Multidimensional Scaling Analysis

Multidimensional scaling was done on the subjective data base to qualify
the perceptual relationship between the parametric subjective qualities and the
overall subjective qualities, and in particular composite acceptability.
Figure-5.3.2-1(a) shows the results of a multidimensional scaling analysis done
on the subjective data base. All nineteen subjective qualities were included

in the scaling, and Figure 5.3.2-1(b) lists the key for identifying the
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subjective qualities in the plot. For this analysis, the similarity between
subjective qualities was equal to the magnitude of the correlation coefficient
between the two qualities as computed over all the distortion systems in the
data base. A descending monotonic regression was done on the similarities, so
that a similarity nearly equal to 1.0 mapped into a distance nearly equal to
zero. Because the transformation from similarity to distance was monotonic,
the scaling was non-metric.

The analysis was done for several realization space dimeﬁsions. Figure
5.3.2-2 shows the decrease in configuration stress for increasing
dimensionality. This curve does not have a distinct 'knee’, where the best
tradeoff between stress and dimensionality would occur, but a realization space
of dimension four does yield a stress of 6 percent, which indicates a good fit.
The plot in Figure 5.3.2-1(a) is for a realization space of only two
dimensions, with a stress of 18.9 percent. This is rather high, indicating
only a fair correspondence between the plot and the actual correlations between
subjective qualities. Even so, the plot is easy to comprehend and the axes of
the plot are amenable to perceptual interpretation. These two facts argue for
using a two rather than four dimensional realization space, despite its high
stress value.

The plot shows composite acceptability near the center of the space. The
other high level qualities, intelligibility, pleasantness, and acceptability,
are centered closely around composite acceptability indicating that qualities
in the center of the realization space are general in nature. The left side of
the realization space contains most of the signal qualities while the right
side contains the background qualities, suggesting that the horizontal axis
measures a signal versus background quality degradation dichotomy. Similarly,
the bottom of the plot contains qualities whose exemplars are mostly fluttering

or interrupted, while the top of the plot has qualities which exemplify
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primarily noisy distortions. Therefore the vertical axis seems to‘measure a
noisy versus fluttering quality degradation. Finally, total signal quality and
total background quality are both nearly centered within their respective
signal or background parametric qualities.

One can conclude from this multidimensional scaling that the parametric
qualities in the subjective data base do, in fact, measure different subjective
qualities since all the parametric qualities are widely spaced in the
realization space. Parametric qualities closely spaced in the realization space
would indicate a large degree of redundant information. Another point is that,
in two dimensions, we can associate perceptual qualities with the axes of the
realization space. And finally, we note that composite acceptability is nearly
in the center of the realization space, which agrees with the fact that it is

an overall quality measure, and does not measure only a specific perceived
quality as do those measures located near the edges of the realization space.

5.4 Parametric Objective Measures

This section of the report discusses specific objective measures which
have been used to estimate parametric subjective quality. The approach used in
designing an objective measure was to first understand the subjective quality
it must estimate. The subjective scores provide a key to this understanding.
Distortions which register a subjective quality score widely deviating from the
average are exemplary of that quality, and hence provide insight into the
physical or objective nature of that subjective measure. This approach to
understanding the meaning of subjective quality scales will be discussed in
detail for each of the parametric qualities identified as most important by the
regression analysis in section 5.3.1. Before proceeding, however, the meaning
of the term 'distortion’ should be clarified. In the distorted speech data
base, each distortion is comprised of four talkers with six distortion levels

for each talker (Chapter 2). In the following analysis these 24 distortion
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systems are grouped together and are referred to simply as a distortion.

5.4.1 SD: Rasping, Crackling

This subjective quality describes the degree to which speech is rasping
or crackling. Table ©5.4.1-1 lists the distortions which excite the system
distorted scale. For each distortion the minimum, maximum and range of quality
scores associated with that distortion are listed. The degree to which a
distortion exemplifies a parametric quality is related to either the range, or
spread, of the distortion on the parametric quality scale or to the maximum
quality score on that scale. The latter case occurs when a distortion does not
have a large range, but instead scores uniformly low on the subjective quality
scale, and therefore indicatives that the entire distortion exemplifies that
quality. The 1list in Table 5.4.1-1 is ordered according to the range of 'the
distortion quality scores so that, in general, the distortions most exhibiting
the subjective quality fall at the top of the list.

The dominant physical or objective characteristics the distortions in
Table 5.4.1-1 have in common is that they involve nonlinearities which distort
the waveform and therefore smear energy across the spectrum. This smearing is
particularly noticeable at higher frequencies where the speech level is
naturally lower and more easily dominated by noise from nonlinearities. Also
present are additive noise distortions, which bolster the hypothesis that
noise, either correlated to the speech power and arising from nonlinearities or
uncorrelated and arising from an additive process, is the objective character
of this subject;ve quality.

As mentioned in section 5.3.1, system distorted accounts for a very
large fraction of the variance of composite acceptability, some 60%. This is
principally because of the large number of distortions which excite the system

distorted scale. The histogram in Figure 5.4.1.1 gives another perspective on
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SD rasping, crackling

DISTORTION MAX MIN RANGE
center clipping 83.90 50.70 33.20
CvsD 85.40 53.40 32.00
ADM 85.40 57.70 27.70
peak clipping 81.50 55.70 25.80
quantization 71.90 47.80 24.10
400 - 800 Hz noise 83.40 61.80 21.60
1900 - 2600 Hz noise 85.10 65.00 20.10
1300 - 1900 Hz noise 86.80 68.60 18.20
BD 400 - 800 79.70 61.70 18.00
800 - 1300 Hz noise 85.80 68.90 16.90
APCM 77.70 60.90 16.80
BD 2600 - 3400 83.30 68.10 15.20
2600 - 3400 Hz noise 84.40 69.40 15.00
LPC 83.00 69.50 13.50
broadband additive noise 85.10 73.90 11.20
ECHO 87.60 76.40 11.20
0 - 400 Hz noise 86.20 75.10 11.10
lowpass filtering 85.10 74.10 11.00
BD 100 - 400 91.60 80.80 10.80
VEV 7 76.90 66.20 10.70
ADPCM 78.50 67.90 10.60
PD 1900 - 2600, radial 87.20 76.80 10.40
BD 100 - 3500 73.40 63.50 9.90

Table 5.4.1-1 Distortions which most prominently excite subjective quality
SD, listed in order of decreasing significance.

147



FREGUENCY CF OCCURANCE

.100

rasplng, crackling

-* " ] ’ ’
T " ] [} [
I |
) [ ] [} L} :
L J
" L] » ’
e & ® ® & @» *® ® & & © @ © ®w e » ©®© © o o o = o l4 e =« o =
L 3 ' U [} 14
‘ﬁ 1] ] » ’
+ [} (] ] , (]
A- L 4 » ]
llllllllllllllllllllllllllll
0 [] "
+
] ] [} L}
AW.
- L} L [ ] []
+ ] 0 [] [}
..................... -« - - - - - -
[} L [] ¢
-
[ ’ 4 L}
L3
4 L [} ] (]
- 0 q 9 ]
- * & = e T = = o o " = = e e o P ® ~je o = ®* = o o e+ =
T ’ ' ' '
-
L ’ ’ L]
<+
4 0 ’ é) ]
o o " . 2 .

" 40 60 80 100
SUBJECTIVE QUALITY

Figure 5.4.1-1 Histogram showing the value of subjective quality SD (x—axis)

the frequency of occurance of the SD subjective quality

value (y-axis),

VS.

148



this issue. The horizontal axis is the SD subjective quality score. A
subjective quality of 85 is very good, or nearly complete absence of the
quality SD, while a 20 is very poor, or highly distorted. The vertical axis is
the frequency of occurrence of a given value of the SD quality score when taken
over all speakers and all distortion systems in the data base. A case by case
examination of the data in this histogram would show that points which fall in
the left tail of the distribution are members of the distortions listed in
Table 5.4.1-1.

Research ‘efforts up tp this point have been unabie to identify a
good measure for this subjective speech quality. Efforts to measure the
energy of the noise resulting from the nonlinear speech distortions have
been largely unsuccessful because the noise energy is dominated by the
speech energy. Because of this, calculating the noise power in a
straightforward manner, such as by taking the difference between the power
spectrums of the distorted and the original speech, is extremely prone to
error.

Experiments thus far, however, indicate that a good measure for
estimating SD might be some function of the difference between the
level of the noise floor and the level of the excitation spectrum in a
voiced segment of the distorted speech spectrum. The spectrum of an
undistorted voiced speech frame is characterized by an impulsive spectrum
due to the voiced excitation with a slowly varying envelope due to vocal
tract filtering. The quantity to be measured, which could be called
correlated SNR, is the difference between the level of a pitch peak and its
adjacent valley, where both levels are measured on a log scale. The
motivation for ﬁeasuring this quantity is that speech which is distorted by
a nonlinearity will have a slightly smeared spectrum and hence will have the

difference between these two levels diminished. An objective measure for
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estimating SD could be Dbased on the correlated SNR of the distorted
speech, summed over all speech frames, normalized by the correlated SNR of
the original speech, also summed over all speech frames.

5.4.2 SL: Muffled, Smothered

This subjective quality describes the extent to which speech is muffled
or smothered. Table 5.4.2-1 lists the distortions which excite this subjective
scale. Most prominent of these is the low pass distortion which, since it
eliminates high frequencies, fits well with the subjective quality of muffled.
The low band bandpass'distortions also produce a similar muffled quality. The
other distortions fit better with the subjective quality of smothered. The
highpass and the high bands of the bandpass bandlimiting distortions eliminate
or diminish speech energy in the miadle of the zero to 3600 Hz speech band
which, produces the perceptual effect of smothered. The two waveform coders,
CVSD and ADM also diminish the mid-band energy of the coded speech with respect
to the original speech and hence produce the same smothered effect. The
remaining two distortions listed in Table 5.4.2-1 are narrow band additive
noise, both injecting noise in the low to middle part of the speech spectrum.
These distortions can be thought of as smothered in that they produces a noise
masking of the speech.

Like the subjective quality SD, SL has a relatively diverse mix of
distortions which excite it. There are, however, far fewer types of
distortions which produce severe SL quality degradations. This can be seen
from the relatively small number of entries in Table 5.4.2-1 and from Figure
5.4.2-1. This Figure shows the frequency of occurrence of a specific level of
the quality SL across the ensemble of all distortions. It is strikingly
different from the corresponding Figure for SD in that the main lobe for

quality SL is narrower and its left tail is longer and lower. This indicates
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SL. muffled, smothered

DISTORTION MAX MIN RANGE
lowpass filtering 83.20 46.30 36.90
CvVsD 87.50 62.40 25.10
bandpass filtering 77.60 53.40 24f20
ADM 87.10 68.30 18.80
center clipping 84.10 66.70 17.40
highpass filtering 79.20 62.40 16.80
400 - 800 Hz noise 85.50 69.20 16.30
800 - 1300 Hz noise 86.20 73.00 13.20

Table 5.4.2-1 Distortions which most prominently excite subjective quality
SL, listed in order of decreasing significance.

Multiple R .7342 Standard error of estimate 3.5679
Multiple R square .5391

Analysis of Variance

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Ratio
Regression 15142. 14 1081. 84.
Residual 12946. 1017 12.

Table 5.4.2-2 Summary of regression model used to estimate subjective quality
SL.

151



FREQUENCY OF OCCURANCE

8
=

o et
4 . H
' v
- ~
1 S R ST
0 1 ' 3
- C
o - .
) A SRR Y
- ' a
< ' >
m , "
D [ ]
, 3
B8R - - st 0
r Z S
g . 0
-~ . 3
! 0
8 ________ 0O
8_ [ ]

Figure 5.4.2-1 Histogram showing the value of subjective quality SL (x—éxis)
vs. the frequency of occurance of the SL subjective quality
value (y—axis).

152



that the same range of quality degradation is provided by fewer distortion
types.

There are primarily two types of distortions which excite the subjective
scale SL. These are bandlimiting distortions and narrowband noise distortions.
This suggests that a composite objective measure would be most appropriate for
tracking subjective quality SL.' The objective measure tried has, for its first
component, a frequency variant spectral distance measure and, for its second
component, a frequency variant noise measure. An important point as yet
unmentioned concerning SL is that the bandlimiting and additive noise
distortions which exemplify SL are time invariant systems. Therefore their
distortion characteristics should be recoverable from the time averaged
spectrum of the reference and distorted speech waveforms. The method used to
estimate the spectrum of the waveforms was to pass the waveform through a

filter bank and compute the mean square value of each filter output for each

utterance. This is the same critical band filter bank used for studying aural
based objective measure in Chapter 4. In this way an estimate of the power in
frequency bands for an entire utterance is obtained. The power in bands could

be combined, as appropriate, to provide coarser estimates of the reference and
distortion spectrum. Broader bands were found to produce more easily
interpreted objective measures.

The spectral distance objective measure has the following form:

O1(s,d,k) = loglo('MIN( MAX(----------- . THhin)' THhax) ) 5.4.2-1

In the preceding equations, V(.,s,d,k) and V(..s.b,k) are the mean square

values in the band k for the distorted and reference waveforms, respectively.

Again, this average is taken over the entire utterance. Th . and TH are
min max

parameters of the measure. The objective variables O0i1(s,d,k) were then
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transformed into a new distance variable, O1*(s,b,k), which has coarser
frequency resolution. Instead of having 25 bands O1* had only five bands, and

is obtained by summing O1(s,d,k) as follows:

01*(s,d, k)  01(s.d,k)

Band No. Band No.
1 1- 5
2 6 - 10
3 11 - 15
4 16 - 20
5 21 - 25

In addition, a monotonic and uni-modal regression was done on the
function O1(s,d,k) and stress for the functional forms lowpass, highpass,
bandpass and band reject was computed. Computing stress for the functional
form of lowpass requires computing a monotonically increasing regression,
highpass requires a decreasing regression. Bandpass requires computing a global
maximum wuni-modal regression and band reject requires a global minimum wuni-
modal regression. The motivatioﬁ for computing these stresses was to measure
the extent to which the distortion applied to the speech had one of these
bandlimiting functional forms. The total number of independent variables wused
this objective measure was seven: five spectral distance variables for five
frequency bands and two stress variables, one for the functional form lowpass,
represented as 01*(s,d,6), and one for bandpass, represented as 01*(s,d,7). The
remaining stress variables did not significantly contribute to the regression
model .

The second part of the composite measure is>an additive noise measure.

The functional form of this measure is as follows:

02(s,d.k) = log ,( (1/NF) 2 V(f.s,d.k) +1) 5.4.2-2
f
S
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where fS are all silent frames in the reference utterance and NF is the number
of silent {frames. Like the spectral distance measure, the 25 bands in
02(s,d,k) are combined to form five bands in a new additive noise measure,
02*(s,d,k). The five variables in this measure are thé noise power in the
extended bands as measured during intervals of known speech inactivity in the
distorted signal.

The two measures were combined in a linear function with weights

determined by regression analysis. The resultant measure was formulated as:

[T g BN ]
n N~ o

O, (s.,d) = B, + BleI‘(s.d.j) +

B2.02%(s.d,j) 5.4.2-3
1 j ]

J 1

where OSL(s,d) represents the objective estimate of the subjective quality SL.
Table 5.4.2-2 shows the results of the multiple linear regression

analysis used to formulate O The performance of this measure is only fair,

SL°
as its correlation with SL is .74, which corresponds to an explanation of only
557% of the variability in the subjective quality SL. In all probability this
poor performance is due to the difficulty of modeling the diverse mix of
distortions which excite SL. This was, never the less, the best objective

measure for this parametric quality.

5.4.3 SF: Fluttering, Bubbling

This subjective quality quantifies the degree to which the speech signal
has a fluttering or bubbling quality. Table 6.4.3-1 lists those distortions
which excite the SF subjective scgle. The dominant distortion in this table is
by far pole distortions. The controlled pole distortions explicitly alter the
original speech pole locations, while the parametric coder disto;tions based on

an all-pole vocal tract model distort the speech pole locations in a more
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SF  fluttering bubbling

DISTORT ION

interrupted, period = 1024

LPC

PD 400 -

800, frequency

interrupted, period = 300

VEV 13

VEV 7

PD 1300

PD 400

APC

BD 400 -

ECHO

2600

100

000 -

1300

BD
BD
FD 800
PD
FD
PD

2600

1900, frequency

800, radial

800

3400

3500

1300, frequency
400, radial
1900, radial

3400, radial

center clipping

Table 5.4.3-1

Distortions which most prominently excite subjective
SF, listed in order of decreasing significance.

85.

85.

85.

80.

84.

83.

87.

83.

86.

83.

88.

79.

80.

84.

88.

88.

87.

85.
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50

30

80

90

90

30

90

60

60

20

60

80

40

10

60

60

50

60

MIN

50.

o1.

52.

48.

60.

60.

66.

63.

67.

64.

70.

62.

63.

68.

72.

73.

72.

72.

90

10

60

70

70

30

30

90

30

40

80

90

90

10

90

10

60

10

RANGE

34.
-34.
33.
32.
24.

23.

21

19.

19.

18.

17.

16.

16.

16.

15.

15.

14.

13.

60

20

20

20

20

00

.60

70

30

80

80

90

50

00

70

50

90

50

quality



complex way through modeling errors and parameter quantization. Two prominent
exceptions are the first and fourth table entries: the interrupted distortions.
These are understandably perceived as fluttering because their interruptions
are periodic. The presence of these interrupted distortions in Table 5.4.3-1
suggests that it is the periodic quality of the controlled and coder pole
distortions which correlate most highly with subjective fluttering and
bubbling.

Though it is clear that the source of degradations in the subjective
quality fluttering or bubbling is primarily due to LPC pole position errors,
this research was unable to identify a good measure for such errors. The
interrupted component of SF could clearly be estimated by the elements of the
SI objective measure, but this still leaves pole position errors or, more
precisely, formant frequency and bandwidth errors, to be estimated. Further
experimentation needs to be done to determine the dggree to which
formant frequency and formant bandwidth are correlated to SF.

In order to perform such experiments one needs a means of determining
formant frequency and bandwidth for a given speech frame. The vocal tract
system function as derived from LPC analysis is a good starting point for
finding these parameters. The difficulty in processing this smoothed
spectrum is that formant frequencies correspond to local maximums of the
spectrum and are therefore hard to track. One must estimate and in some
sense remove the global spectral tilt before attempting to estimate
formant frequencies. Once the formants are known, calculating their
bandwidths is relatively straightforward.

Once formant frequency and bandwidth can be reliably estimated,
some function of the degree of variability of these parameters would seem
to be a good physical correlate to subjective fluttering. One

possibility is to match the first three formants in the original and the
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Figure 5.4.3-1 Histogram showing the value of subjective quality SF (x—axis)
vs. the frequency of occurance of the SF subjective quality
value (y-axis).
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distorted speech frames and to calculate the variance of the difference
between the distorted and original formant frequencies for each of the three
pairs. The variance would be computed over the set of all speech frames. The
same calculation could be done for formant bandwidth. These six objective
measure variables would then be the basis for an objective measure for
estimating SF.

5.4.4 BN: HissingL Rushing

This scale specifies the extent to which the background of the
distorted signal has a hissing or rushing quality. Table 5.4.4-1 lists those
distortions which most excite the BN subjective scale. This scale is in
contrast to the ones discussed thus far in that a very homogeneous set of
controlled distortions excite this subjective quality, namely additive noise
distortions. The middle frequency narrowband additive noise distortions have
the greatest perceptual impact, with the broadband additive noise being
perceived as almost the same degree of distortion. At the bottom of the table
is quantization distortion which is not an anomaly since, for medium to fine
quantization levels, the quantization noise is nearly uncorrelated with the
signal and is understandably perceived as a background process.

From the evidence of the distortions which excite the BN subjective
scale, a function which measures additive noise would be an appropriate
objective measure for this scale. The objective measure used is that of
equation 5.3.2-2, but here it is used by itself to estimate BN. The measure
02(s,d,k) is transformed into 02*(s,d,k) in order to consolidate the mumber of
bands. The transformation is as follows:

02+(s,d k) 02(s.d.k)

Band No. Band No.
N 1 1- 5
2 6 - 16
Note that bands 17 through 25 were not used in this measure. The objective
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BN hissing, rushing

DISTORTION

800 -_1300 Hz noise

broadband additive noise

400 - 800 Hz noise
0 - 400 Hz noise
1300 - 1900 Hz noise
2600 - 3400 Hz noise
1900 - 2600 Hz noise
quantization

80.

83.

79.

85.

8z.

87.

84.

85.

40

40

10

80

10

20

00

30

MIN RANGE
49.30 31.10
54.00 29.40
50.40 28.70
66.40 19.40
69.60 12.50
74.80 12.40
72.80 11.20
75.60 9.70

Table 5.4.4-1 Distortions which most prominently excite subjective
BN, listed in order of decreasing significance.

Multiple R .9136
Multiple R square .8346

Analysis of Variance

Source of Sum of

Variation Squares
Regression 28598.
Residual 5667.

Standard error

Degrees o
Freedom
2

1053

f

of estimate

Mean
Square
14299.

2.3199

F-Ratio
2656.

Table 5.4.4-2 Summary of regression model used to estimate subjective

BN.
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final objective measure used to estimate BN was then:

[ g [ V)

= * j 5.3.3-1

Oay(s:d) = Bg + L B;02°(s.d.0)
The performance of this measure is extremely good. The objective
measure results are shown in Table 5.4.4-2. The primary reason for such good

performance, correlation of .90, is that all distortions which excite BN are
very similar and hence can be modeled well as a group. Another reason is that
there are relatively few distortions which excite BN, as can be seen from the
narrow central lobe and the low left tail of Figure 5.4.4-1. This means that
the regression model need only account for the variance of these few
distortions, and can approximate the quality scores of the other distortions
with a constant. Of all parametric objective measures studied, this measure
was by far the most successful.

5.4.5 BF: Chirping, Bubbling

This subjective quality quantifies the degree to which the speech
background has a chirping or bubbling quality. Table 5.4.5-1 1lists those
distortions which excite the BF subjective scale. This scale is very similar to
SF, or signal fluttering and bubbling. The principal differences are, first,
that interrupted does not excite BF where it was at the top of the list for SF.
This is wunderstandable since an interruption of the speech waveform is a
distortion entirely associated with the speech signal and produces no spurious
or uncorrelated background distortion. The second difference is that high band
narrowband noise distortions excite the BF scale, where they did not excite SF.
These distortions are most likely perceived as chirping background distortions.
The rest of the distortions listed in Table 5.4.5-1 are for the most part the

same distortions associated with SF, 1listed in Table 5.4.3-1. Therefore an

161



FREQUENCY OF OCCURANCE
150 200 .2

o
5
o
=]
=

o +—t-
L [ ] ) [ ] ] m
h ' . » .
4 . ‘ ’ ’ tIJ
1 1 ' ' ’ pd
N . . . ’
ot -~~~ 7"~ " °~° ’ -t .n -ttt |. =TT
Tl ‘
@ . : . . I
E 1 . ] ] ] m
i o ' o .n o .u R 1. o i
o a [} [] (] j
| ’ ’ . ' ‘c)
-
< . ' ' . -
m [} ] [ ] [ ]
' ' ' ’ -)
(®)
C R N S Y B 5&
> ’ ' ' '
- T
::: ¢ ] ] . [
< L a
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BF

chirping,
bubbling

DISTORTION
PD 1300 -

PD 800

1900 -

400 -

400 -

000 -

800 -

383 383§

1300 -

VEV 7

PD 2600 -

PD 2600 -

APC

PD 1900 -

PD 2600 -

BD 2600

1900,

1300,

2600,
800,
800,
400,

1300,

1900,

3400,

3400,

2600,
3400,

3400

radial

frequency

radial
radial
frequency
radial
radial

frequency

frequency

radial

frequency

frequency

2600 - 3400 Hz noise

BD 100 -

3500

1900 - 2600 Hz noise

BD 400 -

800

1300 - 1900 Hz noise

BD 1300 -
quantizati

BD 800 -

1900

on

1300

85.

86.

85.

85.

85.

85.

85.

87.

86.

7.

76.

86.

90.

84.

87.

87.

83.

85.

81

83.

83.

86.

83.

85.

81

70

40

10

10

30

20

70

00

40

50

50

60

10

.80

60

50

40

00

10

.60
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MIN

54.

57.

56.

57.

59.

59.

59.

65.

66 .

59.

59.

70.

74.

69.

72,

73.

70.

72.

69.

71

71

74.

71

74.

70.

40

20

00

90

60

90

70

60

10

30

80

80

70

80

.60

.80

70

.90

10

80

RANGE

31.

29.

29.

7.

26.

26.

25.

21

20.

18.

16.

16.

15.

15.

15.

13.

12.

12.

12.

12.

11

11

11.

11

10.

30

20

10

20

10

00

60

.60

60

40

30

00

40

20

70

80

40

00

00

.70

.70

10

.00

80
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objectiveb measure for estimating BF should be similar to a measure for SF.
Referring back to the multidimensional scaling of the subjective data base,
Figure 5.3.2-1, one can see that SF and BF are both at the bottom of the plot
and are rather close together, confirming the fact that the two quality scales
detect perceptually similar distortions.

This research was unable to identify good objective measures for BF.
This is largely to be expected since SF was also difficult to
objectively estimate. The same insight into objective measures for SF, as
discussed in section 5.4.3, largely holds true for objective measures for BF.
The primary difference is that objective estimates of interrupted are not
needed for estimating BF while objective estimates of background noise are.
The latter objective estimates are discussed in section 5.4.4.

5.4.6 SI: Irregular, Interrupted

This parametric quality scale describes the degree to which the speech
signal is irregular and interrupted. Table 5.4.6-1 lists distortions which
excite this subjective scale. The most prominent distortion is the slow
periodic interruption, with the fast periodic interruption falling in the
middle of the table. These two distortions certainly produce perceptually
interrupted speech. It is difficult to find an objective quality which is
common to the remainder of the distortions which excite SI. They most likely
excite the subjective quality irregular, rather than interrupted. The remaining
distortions are not totally disjoint, however. Both APCM and ADPCM excite SI,
and the two highest bands of the narrowband additive noise excite SI. Several
pole distortions also excite SI.

Since interrupted is the most important aspect of the SI scale and since
this quality is easy to model objectively, the measure used for estimating SI
was designed to respond only to interruptions of the speech waveform. In

particular the average number of consecutive frames for which the distorted
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SI

irregular, interrupted

DISTORTION MAX

interrupted, period = 1024 87.90
ADM 91.00
2600 - 3400 Hz noise 87.10
ADPCM 85.00
center clipping 87.60
interrupted, period = 300 86.80
APCM 85.20
ECHO 89.90
PD 800 - 1300, frequency 89.50
PD 1900 - 2600, radial 89.90
PD 000 - 400, radial 89.60
PD 1900 - 2600, frequency 89.20
1900 - 2600 Hz noise 87.10

MIN

38.

49.

62.

60.

63.

66.

65.

78.

78.

7.

79.

79.

78.

40

60

50

50

20

20

10

20

50

80

10

30

70

RANGE

49.

41

24.

24.

23.

20.

20.

13.

13.

12.

10.

50

.40

60
50
70
60
10
70
00
10

50

.90

.40

Table 5.4.6-1 Distortions which most prominently excite subjective

SI,

listed in order of decreasing significance.

Multiple R .8483
Multiple R square .7196

Analysis of Variance

Source of Sum of
Variation Squares
Regression 17454.
Residual 6802.
Table

SI.

Standard error of estimate

Degrees o
Freedom
4

1003

166

f

Mean

Square
4363.
6.

2.6043

F Ratio
643.

5.4.6-2 Summary of regression model used to estimate subjective

quality

quality
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speech energy was either below a specified threshold or above the threshold is
measured as a gauge of interruption. The measure is best expressed using

intermediate variables as follows:

log, ( (1/FL)2 X(m,s,d) )°°°)
RATIO(f,s,d) = ----------------cmmmmmmmm e 5.4.6-1
2 0.5
loglo( ( (1/FL) X(m,s,0) ) )

My

ON(s,d) = Ayerage run length of frames for which

(RATIO(f,s,d) > TH) 5.4.6-2
OFF(s,d) = Average run length of frames for which
(RATIO(f,s,d) < TH) 5.4.6-3
0(s,d,1) = OFF(s,d) . 5.4.6-4
OFF(s,d)
0(s,d,2) = --------mmmmmmmeme - 5.4.6-5
(ON(s,d) + OFF(s,d))
0(s,d,3) = 0(s,d,1) 5.4.6-6
O(s,d,4) = 0(s,d,2) 5.4.6-7
4
OSI(s,d) = Bo + -2 BjO(s,d.j) 5.4.6-8
j=1 .
Parameters FL and TH can be varied as desired to alter the measure. Parameter

FL is the number of samples in a frame of speech and parameter TH specifies the
threshold between objectively interrupted and non-interrupted speech. In the
formula specifying RATIO, m, is the index of the speech samples comprising
frame f. The objective measure variables are specified in equations 65.4.6-4
through 65.4.6-7. Note that the last two objective variables are simply the
first two objective variables squared. Therefore the final objective measure

specified in equation 5.4.6-8 is actually a multiple linear and polynomial

regression equation.
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The results of using regression analysis to find the best estimate, OSI'
of quality SI are shown in Table 5.4.6.2. The measure performed reasonably
well, as measured by a multiple R of .85, with the restriction that not all the
distortions were included in the analysis. Specifically, ADPCM, APCM and ECHO
were not included in the analysis. ECHO was excluded because it was not
representative of typical speech coder distortions. However, ADPCM and APCM
were excluded because their distortions were not being modeled well by this
objective measure. Leaving them out greatly improved the correlation with SI.
As mentioned previously, thesé two coder distortions most likely produce a
subjectively irregular distortion. This is, admittedly, a rather major
shortcoming of this objective measure, but a future composite measure made up
of this measure and another measure which does track perceived irregularity
would rectify this deficiency.

5.4.7 SH: Distant, Thin

This last subjective quality measures the degree to which the distorted
speech sounds distant or thin. The distortions which most dramatically excite
this parametric quality scale are bandlimiting distortions, specifically
highpass and bandpass distortions. These two distortions are ordered one and
two in Table 5.4.7-1. For the higher bands, the bandpass filtering is very
similar to highpass filtering so it is reasonable that these two distortions
are grouped together. They indicate that highpass filtering is the most
important objective correlate to speech being perceived as distant and thin.
Two seemingly out of place distortions found in Table 5.4.7-1 are CVSD and
lowpass filtering. On closer inspection CVSD does in fact produce a
bandlimiting distortion which slightly decreases the energy of speech in a
broad band centered at approximately 2000Hz. éo the only feature these two
distortions have in common is that they both diminish speech energy in mid

band, although lowpass filtering eliminates virtually all out of band energy. A
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SH distant, thin

DISTORTION
highpass filtering
bandpass filtering

0 - 400 Hz noise
CvsD

lowpass filtering

peak clipping

MAX

84.70

85.00

86.90

90.30

87.90

87.10

MIN

54.20

60.60

75.40

79.30

78.00

79.60

RANGE

30.50

24.40

11.50

11.00

9.90

7.50

Table 5.4.7-1 Distortions which most prominently excite subjective
SH, listed in order of decreasing significance.

Multiple R .8540
Multiple R square .7293

Analysis of Variance

Source of Sum of

Variation Squares
Regression 17023.
Residual 6319.

Standard error of estimate 2.4545

Degrees of
Freedom
6

1049

Mean
Square F Ratio
2837. 470.
6.

Table 5.4.7-2 Summary of regression model used to estimate subjective

SH.
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possible conclusion is that like SL, SH is correlated to a decrease in mid-band
speech energy. Other distortions which excite SH are peak clipping and the
lowest band of narrowband additive noise. Peak clipping smears energy across
the entire spectrum which is perceived primarily as high frequency distortion
due to the low level of speech energy at high frequencies. Therefore these two
distortions produce noise at opposite ends of the spectrum. This effect may be
correlated to the quality distant and thin.

The objective measure used to estimate SH concentrated on the principle
objective feature of SH which is highpass filtering. The objective measure is
a spectral distance measure which is identical to the one used to estimate SL,
specified in equations 5.3.2-1 and including the subsequent transformation to
reduce }he number of bands to five. The objective distance variables are

combined in a regression equation for estimating SH as follows:

5
OSH(s,d) = Bo + jglﬂjO‘(s.d,j) 5.4.7-1

Table 5.4.7-2 shows the results of this analysis. Performance for this measure
was significantly better than for the measure which estimates SL. For this
measure a correlation of .85 was obtained. This is primarily due to the fact
that the distortions which produce most of the variance in SH, highpass and
bandpass filtering, are relatively homogeneous and therefore can be effectively
modeled.

5.5 Discussion

In the previous section we have presented four parametric objective
measures. The performance of these measures range from very good (a
correlation of 0.90 for BN) to fair (a correlation of 0.74 for SL). Though

these results are quite good, they are more remarkable Dbecause the
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objective measures estimated subjective quality over the entire distorted
data base, (with the exception of OSI.) This is encouraging because it
indicates that these objective measures are applicable to a broad range
of speech distortions.

Objective measures with similar performance could not be found for
subjective qualities SD, SF and BF, though the probable form of measures for
estimating these subjective qualities was discussed. Further analysis is
necessary to better understand the physical manifestations of these perceptual
qualities before good measures for them can be designed.

In designing each parametric objective measure, we have attempted to
build regression models in which all of the regression weights have
an intuitively satisfying physical interpretation. The ability to assign a

meaning to the regression coefficients is a check on the appropriateness of

the regression model. More complex models with relatively meaningless
regression weights have been avoided. Even though such models are able to
provide improved performance, it is suspected that they do so by accounting

for variations in the noise of the data and do not provide improved
modeling of the subjective speech perception process.

In some cases the parametric objective measure results may have

utility by themselves. For example, a low score on the BN objective
measure may indicate excessive additive noise distortion in the
speech system, while a low score on the SF objective measure may indicate

insufficient quantization levels in the vocal tract parameters of an LPC based
speech coder. In general, the parametric measures yield specific information
which may be extremely useful in diagnosing the cause of voice quality
degradatioﬁ in a communications system.

However, for verification of overall performance of a speech

communication network, an objective measure for composite acceptability
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is needed. Such a measure can be used in the design of speech communication
systems and in the field maintenance of speech systems. Given that we have
a full set of parametric objective measures which provide good estimates of
SD, SL, SF, BN, BF, SI and SH, the essential information in these parametric

measures, the objective measure variables, can be used to build a measure of

composite acceptability. The form of the objective measure would be as
follows:
m
= + 2 5.5-1
OCA Bo i=1 Bjoi.j

where i is an index over speakers and distortion systems and j is an index

over the included objective measure variables. The variables Oi.j are
the same objective variables used in constructing the parametric
measures, though they are now lumped together in a single regression model
and each is weighted by a Bj unique to this new model. A problem with

equation 5.5-1 is that it models CA as a linear combination of the
objective measure variables. This inadequacy can be lessened if interaction
terms, or product terms involving the objective measure variables,
are added to the model.

The key to designing a good measure for composite acceptability
is to represent all significant perceptual dimensions oI acceptability
in the model. This point was illustrated by the multidimensional
scaling analysis of the subjective data base in section 5.3.2. Because

the objective measure variables wused in equation 5.5-1 contain all

the information needed to estimate the most significant parametric
subjective qualities, they in some sense span the perceptual space of
subjective composite acceptability. It is therefore reasonable to expect
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that this measure for CA will perform as well as any of the individual

measures of parametric subjective quality.
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CHAPTER 6

PRECLASSIFIED OBJECTIVE SPEECH QUALITY MEASURES

6.1 Introduction

In the previous two chapters, two distinct approaches to the design of
objective speech quality measures were studied in some detail. Chapter 4
studied the use of aural models in designing objective measures while Chapter 5
studied the use of parametric objective measures for the same purpose. Both of
these approaches met with some degree of success. This chapter introduces and
develops yet another separate approach to designing objective quality measures:

that of preclassifying (or labeling) the distortions before the application of

the objective measures. The basic procedure used in this approach has three
steps. In the first of these, each speech distortion to be measured is
assigned to a specific class of distortions. This classification may be done

either objectively or subjectively, although objective classification is much
more desirable. Once all of the distortions are classified, then separate
objective measures are designed for each separate class of distortion.

Finally, these separate classified objective measured are combined to form a

single, broadly based objective measure.

It is simple to show that the preclassification of distortions leads to
vast variations in the performance of simple objective measures. Figure 6.1-1
shows a plot of the correlation coefficient for a log spectral distance measure
as a function of the value of p in the Lp norm [6.1]. The results are shown
separately for the cases in which the objective measure is applied to all
distortions in the distorted data base, and three distortion subsets:
controlled distortions, waveform coders, and all coders. Clearly, the log
spectral distance measure performs much better on some of these distortions

than on others. The point here is that if the distortions could be correctly
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Figure 6.1-1 Plot of Log Spectral Distance Measures as a Function of p in the
L. Norm for Four Different Distortion Classes
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classified, then objective measures which had been specifically designed for
the proper class could be applied, resulting in better overall performance.

6.2 Objective Measures for Narrow Distortion Classes

There are really two questions to be addressed here. The first question
is given a good measure for classifying measures, what is the expected
improvement in the overall performance of the objective measures. If the
performance improvement is small, then there is no need for more extensive
study. If the answer to the first question is positive, then the second
question is how to assign objectively a particular distortion to a particular
class in order to realize the expected improvement.

Figures 6.2-1 and 6.2-2 show the composite acceptability (CA) results for
the the six distortion levels of CVSD and APC respectively. In both cases, the
results are displayed parametrically as a function of talker. There are two
points which should be noted from these figures. First, for each individual
talker, these results could be well represented by a first or second order
regression model. Second, there is a considerable and consistent spread of
results between the talkers. Hence, subjective measure results from one talker
are not necessarily good predictors of subjective measure results from another
talker. Clearly, a good classified objective measure must also exhibit this
talker selectivity if it is going to be a good predictor of subjective
responses.

Figures 6.2-3 and 6.2-4 illustrate the use of narrowly classified simple
objective measures for CVSD and APC. The measures illustrated on these plots
include the log spectral distance measure with linear regression, the log
spectral distance measure with non-linear regression, and the short-time
frequency variant SNR. Clearly, the performance of these simple measures is
substantially improved by the classification process.

Figures 6.2-5 and 6.2-6 illustrate the use of mnarrowly classified
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OBJECTIVE ESITMATES FOR CVSD FROM CLASSIFIED SIMPLE MEASURES
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Figure 6.2-3 Objective Estimates for Composite Acceptability (CA) for CVSD from
Simple Classified Objective Measures
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Figure 6.2-4 Objective Estimates for Composite Acceptability (CA) for APC from
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composite objective measures for CVSD and APC. In each case, the measure used
was trained specifically to predict only the distortions in the two classes.
The objective measures used were the short-time frequency-variant SNR, a linear
multi-regression composite measure, and a non-linear multi-regression composite
measure [6.1]. As can be seen from these plots, the performance of each of the
narrowly defined objective measures is, on the whole, very good. Indeed, a
comparisons with Figures 6.2-1 and 6.2-2 show that these narrow objective
measures are better predictors of CA than individual one-talker subjective
measures. Figures 6.2-7 and 6.4-8 1illustrate the reason for this good
performance. These figures show the objective and subjective estimates of
composite acceptability for the linear composite measure as a function of
individual talker. Clearly, this measure has good talker selectivity.

Based on the above discussion, it is possible to make two general
statements. First, if the class of distortions of interest are narrow enough,
then it is possible to design composite measures which predict the subjective
quality with remarkable accuracy. This is an important fact if the goal is to
determine if a known coding system is performing up to standard and to measure
the level of the reduced performance if it is not. Second, if the class of
distortions of interest is broad, then the required task is to classify the
candidate into a narrow class so as to gain the advantage discussed above. So
the fundamental question reduces to finding procedures to classify distortions
objectively.

6.3 Identification of Homogeneous Subsets in the Distorted Data Base

6.3.1 Introduction

There are two broad approaches to searching for improved objective
speech quality measures. The first is to find measures which provide improved
quality estimates over a broad range of distortions. The second is to {find

measures which provide improved quality estimates over a restricted range of
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CVSD as a Function of Talker and Distortion Level
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distortions. As stated, the two approaches are the same except for the number
or type of distortions that are considered in the analysis. The second approach
can be simplified, and the two approaches can be made more distinct 1if the
problem is restated as follows: the first approach searches for an objective
quality measure given a set of speech distortions, while the second approach
searches for a set of speech distortions given an objective quality measure. In
both cases the criterion to be satisfied by the search is maximization of the
correlation between the objective measure of speech quality and the subjective
measure of speech quality over the speech distortions considered. This section
reports on work done using the second approach as a means of improving
objective speech quality measures.

One can think of the second approach as an objective classification
procedure in which speech distortions are objectively categorized into two
classes: one class contains the distortions used to assess the objective
measure's performance and the other class contains the distortions to be
ignored. The approach is similar to that of restricting objective measures to
operate only on certain classes of distortions, such as waveform coders; but
here the classes of distortions are specified objectively rather than
heuristically. The intent is to select a set of distortions objeétively which,
to a great extent, is homogeneous with respect to the relationship between
their objectively measured speech quality and their subjectively measured
speech quality. It was hoped that these homogeneous sets of distortions would
provide two insights into the objective measure being studied. First, that they
would show what kinds of specific distortions are best matched to an objective
measure and, second, that they would indicate, by means of common features of
the set’s members, what overall physical characteristics of the distortions are
being measured by the objective quality measure to provide the estimate of

subjective speech quality. The next step in this process would be, of course,
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to use these insights to adjust or reformulate an objective measure to give a
better performance over a given class of speech distortions.

In order to further motivate the approach of searching for homogeneous
subsets as a means of improving objective measures, consider an experiment
using the log area ratio objective measure. The experiment consists of three
regression analyses. In the first analysis a sixth order polynomial regression
model was used:

6

cs 4 )a ol ]
CAi Bo +j=1[3j0i + ei 6.3-1

in which the objective measure variable, 0i was the log area ratio measure, and
the dependent variable, CAi' was composite acceptability. The regression
coefficients, Bj were estimated using the entire set of 44 speech distortions.
Subscript j is an index over the order of the model term and subscript i is an
index over the 1056 speaker-distortion systems in the distorted speech data
base. The resulting correlation of subjective composite acceptability to the
regression model’s estimated composite acceptability was 0.67, so that the log
area ratio objective measure was able to account for only 44.4 percent of the
variance of composite acceptability. This result 1is comparable to the
performance of several other simple objective measures, though this performance
is not sufficient for providing reliable estimates of subjective speech
quality. Table 6.3-1 summarizes these results.

The second regression analysis used the same form as equation 6.3-1,
except that the data set was restricted: just four waveform coder distortions
were included in the aﬂalysis. as specified in Table 6.3-2(a). The results of
the analysis, shown in Table 6.3-2(b), are that over the distortion subset

specified the log area ratio objective measure was able to account for 49.9
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Table

Table

Regression
Degree Coefficient

67.21
-14.10
5.99
-1.44
.18
-.01
.00

oUW~ O

Multiple R-square .44395

6.3-1 The results using a sixth order polynomial regression model to
estimate composite acceptability. The objective measure was the
log area ratio distance measure.

Waveform distortions included in the analysis:

Adaptive differential pulse code modulation (ADPCM)
Adaptive pulse code modulation (APCM)

Continuously variable slope delta modulation (CVSD)
Adaptive predictive coder (APC)

(a)

Regression
Degree Coefficient

75.73
68.94
-110.80
56.09
-12.98
1.41
-0.06

QU= O

Multiple R-square .49913
(b)
6.3-2 Part (a) lists the four distortions over which the sixth order
polynomial Tregression analysis was done. Part (b) lists the

results of the regression analysis. The objective measure uses
was the log area ratio measure.
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percent of the variance of composite acceptability. This is a surprisingly
small improvement as compared to its performance over the entire set of speech
distortions.

The central issue in this experiment is to find out why the log area
ratio objective measure performed so poorly over an apparently homogeneous set
of waveform coder distortions. One method of investigating this issue is to
hypothesize that each distortion conforms to a distinctly different regression
model as opposed to a single model as in equation 6.3-1. A means to explore
this hypothesis is to use an indicator variable regression model, stated as

follows:

CAi = (Bo + [?,IZ1 + BZZZ+ 3323) + ([34 + [3521 + BSZZ + [?:723)0i + Ei
6.3-2
Note that this 1is a linear regression model as opposed to the polynomial
regression model used in the previous analysis. The variables Zj, which have
the value either zero or one, are indicator variables, so called because they
indicate to which distortion data Oi belongs to as follows:

Waveform Coder

Z1 22 Z3 Distortion
0 0 0 ADPCM

1 0 0 APCM

0 1 0 CVSD

0 0 1 APC

The indicator variables permit each distortion to have a unique slope and
intercept in the regression model. The results of the amalysis are shown in
Table 6.3-3. The model has improved dramatically, in that it now accounts for
83 percent of the variance of composite acceptability. Hence the hypothesis
that each distortion has a unique model was proven true. In particular, Table
6.3-3 shows that coefficients Bs through B7 are not statistically different

from zero, so that the major difference between models for each distortion is
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Regression
Variable Coefficient

60.10
-4.75
-0.23
16.10
11.29

0.94
-0.45

0.26

N LUN-O

Multiple R .9126
Multiple R-square .8329

Table 6.1-3 Results of the indicator variable regression model analysis.
Again, the objective measure used was the log area ratio measure.
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that they each have a different intercept value. This is dramatically
illustrated in Figure 6.3-1. The solid lines are the regression curves for each
of the four speech distortions. One can see that they have a similar slope but
distinctly different intercepts. The dashed curve is the regression curve
obtained from the previous sixth order polynomial regression analysis of this
data set. The polynomial curve did not represent the underlying model of any of
the distortions very well, and hence had poor performance.

What this experiment clearly illustrates is that a heuristically chosen
group of speech distortions, such as a group of waveform coders, does not
guarantee a homogeneous set of distortions relative to their regression models.
It therefore seems reasonable to use a blind statistical approach, as will be
discussed in the following section, to select speech distortions which do have
similar regression models and can therefore be grouped together and operated on
by a given objective measure to estimate subjective composite acceptability.

6.3.2 The Objective Classification Procedure

The distortion classification procedure assumes that the objective
measure is specified, and that it is a measure with only one objective measure
variable. The objective measures that were considered are a group of the best
simple objective measures proposed by Barnwell and Voiers [6.1]. Given the
objective measure, the procedure finds the 44 distortion subsets, with number
of members one through 44 respectively, which provide the best correlation
between the objective measure and subjective composite acceptability. The
procedure can be divided into two sections. The first section of the procedure
searches through all possible distortion subsets for the subset of size N which
provides the greatest correlation between the selected objective measure and
composite acceptability. The correlation is computed only over the members of
the subset. Let this subset of sige N be called SN. This would be the only

section of the procedure were it not for the very large number of computations
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Figure 6.3-1 Each of the four solid curves represents the best linear
regression curve fit for each of four distortions. The dashed
line represents the best sixth order regression curve fit for all
four distortions taken together.
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involved as the number of members in the subset grows larger. In the
investigation of all subsets of size N the number of correlations that must be
computed is equal to the number of combinations of 44 items taken N at a time,
or:
CN R el (6.3-3)
(44-N)! N!
An exhaustive search of all subsets of all sizes would then require a number of
correlation calculations equal to the sum of 44 items taken N at a time for N
equals one to 44, a number which exceeds 1012. Because of this excessive
number of calculations, the first part of the procedure was only done for
subsets of size one through five.
The second part of the procedure circumvents the problem of burdensome
calculations at the expense of being sub-optimal. This part searches for a

distortion not already a member of set SN-l which, when added to S

N-1 produces

a new set SN which provides the greatest correlation between the objective
measure and composite acceptability. Again, the correlation is computed over
the set SN. This step is repeated for N equals 6 through 44. The entire
algorithm is summarized in Figure 6.3.2-1.

6.3.3 Results of Objective Classification into Homogeneous Subsets

The results of the subset classification experiment are, in general,
inconclusive. The graph in Figure 6.3.3-1 shows how the correlation coefficient
for the best subset varies with the number of members in each subset for each
of the objective measures studied. These results look quite promising: for
each of the four measures, a subset of fifteen distortions , or one-third of
the total number of distortions, had a correlation of better than 0.90.
Therefore all of these objective measures are producing very good estimates of
subjective composite acceptability for each of the distortions in the subsets.

These results are less encouraging when one examines the types of distortions
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Figure 6.3.2-1 A flowchart illustrating the algorithm used in selecting the
best distortion subsets for a given objective measure.
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contained in the subsets. Table 6;3.3-1 lists the distortions contained in the
subset of fifteen distortions for each of the objective measures presented in
Figure 6.3.3-1.

The most remarkable aspect of these subsets is that each contains a very
diverse group of distortions. This is quite the contrary of what was hoped in
this experiment. A close examination of each subset reveals that there are one
or two groups of the same distortion type within each subset. For example, the
subset associated with the log spectral distance measure contains three
contiguous bands of additive narrowband noise distortions and two contiguous
bands of angular pole distortions. Similarly, the subset associated with the
Itakura distance measure contains three contiguous bands of additive narrowband
noise and four bands of angular pole distortions. The subset associated with
the log area ratio distance measure contains three bandlimiting filtering
distortions, three contiguous additive narrowband noise distortions and three
contiguous banded in-phase noise distortions. Though there are these limited
similarities between distortions in the subsets, in general there is not enough
commonal ity between distortions to make any firm conclusions regarding the type
of distortions which are best suited for the objective measures. Since it is
not clear what general qualities these distortions have in common, it is even
less clear what physical qualities of those distortions are being measured to
yield the undeniably good estimates of subjective composite acceptability.
Hence we are, unfortunately, unable to make hypotheses about the underlying
mechanisms which, in a statistical sense, make this set homogeneous.

6.3.4 Conclusions

Intuitively the blind statistical method for choosing homogeneous
distortion subsets, as presented in this section, has merit 1in that it
identifies, by the very nature of the algorithm, near-optimal subsets. For all

objective measures investigated the performance over subsets containing one-
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Log Spectral Distance
Measure:

center clipping

400 - 800 Hz noise

PD 1900 — 2600, frequency
PD 2600 - 3400, radial
ADPCM

PD 200 - 400, frequency
BD 1300 - 1900

APCM

VEV 7

VEV 13

800 - 1300 Hz mnoise

peak clipping

PD 1300 - 1900, frequency
0 - 400 Hz noise

APC

Log Area Ratio Distance
Measure:

bandpass filtering

2600 - 3400 Hz noise

PD 2600 — 3400, frequency
PD 200 - 400, frequency
BD 1900 - 2600

1900 - 2600 Hz noise

BD 100 - 400

1300 - 1900 Hz noise

PD 2600 - 3400, radial
highpass filtering

BD 800 - 1300

lowpass filtering

BD 1300 - 1900

APC

PD 1900 - 2600, frequency

Nonlinear Spectral Distance
Measure:

800 - 1300 Hz noise

PD 2600 - 3400, frequency
PD 200 - 400, frequency
400 - 800 Hz noise

VEV 13

VEV 7

APC

BD 1300 - 1900

APCM

PD 2600 - 3400, radial

0 - 400 Hz noise

BD 800 - 1300

center clipping

PD 1300 - 1900, frequency
quantization

Itakura Distance
Measure:

800 - 1300 Hz noise
BD 1300 - 1900
PD 200 - 400, frequency
ADPCM
center clipping
PD 2600 - 3400, radial
APCM
PD 1900 - 2600, frequency
0 - 400 Hz noise
peak clipping
PD 1300 - 1900, frequency
BD 100 - 3500
400 - 800 Hz noise
PD 800 - 1300, radial
PD 400 - 800, fregquency

Table 6.3.3-1 The homogeneous subsets of fifteen distortions for four
objective measures, The subsets provide maximum correlation
between the objective measure and composite acceptability.
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third of the total number of distortions was, in fact, very good, with
correlation with composite acceptability exceeding 0.90 in all cases. These
facts promote the blind statistical approach as opposed to a heuristic approach
to choosing distortion subsets. Unfortunetly, whereas a heuristic approach
based on grouping common distortion types, by its very mnature, yields
physically homogeneous subsets, the blind statistical approach yields subsets
which are fragmented, containing small groups of diverse distortion types. This
is largely unsatistfying, in that no broad conclusions can be drawn as to the
physical or perceptual nature of distortions which are best matched to the
objective measure being investigated.

This is not to say that the statistical approach for grouping
distortions is entirely rejected, but merely that it is inconclusive based on
an initial set of experiments. The conclusion at this stage is, however, that
insight into the underlying mechanisms which cause an objective measure to be a
good match to a certain set of distortions, and hence permit the objective
measure make good estimates of subjective quality, are best found through other
experimental approaches. In particular, it is felt that investigation of
objective measures for estimating parametric subjective qualities would yield

more insight into these issues.
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