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If I’m an advocate for anything, it’s to move. As far as you can, as much as you can.

Across the ocean, or simply across the river. Walk in someone else’s shoes or at least eat

their food. It’s a plus for everybody.

Anthony Bourdain



For my wife, Minami, and our dog, Leo.
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SUMMARY

Over the last decade, natural and climate-related disasters have caused the deaths of

over 400,000 people internationally and around one trillion dollars of damage in the United

States alone. Researchers predict these numbers will rise due to the impacts of climate

change and urbanization. This has led to an increased demand for effective and efficient

disaster response that will decrease the loss of life and cost of response. One area of

improvement for first responder success is in the area of situational awareness. First re-

sponders have limited situational awareness of the environment, limiting the actionable

information to decide where to go and how to get there. There is a need for efficient data

storage and effective algorithms to explore the 3D urban environments during disasters so

first responders can coordinate and navigate safely and consistently.

External sensing is one solution that has been used in the past to help first responders

make informed decisions. In particular, autonomous unmanned aerial systems have proven

the capability to provide support and situational awareness during disasters in the past thirty

years. Small aerial systems can now operate under challenging environments and perform

exceptionally, partly because of the advancements in battery energy storage, sensor and

flight controller weight, and data-driven decision-making. However, recent disasters have

shown that they are still limited in flight by guidance constraints. The systems must be

capable of rapid monitoring over large areas and in challenging stochastic environments.

The two most significant concerns for autonomous aerial systems are limited energy and

uncertain obstructions.

Recent work has sought to address these limitations in guidance performance by im-

proving path planning, control, and state estimation. However, unanswered questions re-

main regarding the ability of these systems to respond efficiently and effectively in low-

altitude, 3D flight over large areas. Previous literature has compared different trajectory

planning algorithms like RRT* and A* and evaluated the sensitivity to the dimensionality
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and scale of the planning problem to minimize the computational time and optimize the

path before deployment of the systems. However, the literature lacks a detailed investiga-

tion into the performance of trajectory planning algorithms in urban environments with the

assumptions of 3D flight, low-altitude navigation, and multiple risk metrics to maximize

flight safety and mission success.

Furthermore, many current research topics are focused on the onboard decision-making

and planning of these vehicles to account for the unknown. However, disaster events are

challenging to model and computationally expensive to simulate. Therefore, this work

seeks to develop a framework and software environment to investigate the requirements

for offline planning algorithms and risk models to prepare for disaster response and active

situational awareness. These strategies and tools can be used by first responders to evaluate

how to best prepare for scenarios and to produce flight plans in real-time during disaster

events.

The following work seeks to address gaps in literature through the development of

a framework for aerial system situational awareness for evaluating and comparing algo-

rithms, datasets, and scenarios. The framework provides tools to evaluate new methods

against benchmarks and forms a new benchmark for evaluating mapping and planning al-

gorithms. The primary contributions are systematic improvements to the rapid mapping

of urban environments and the high-dimensional trajectory planning in the urban maps.

The computationally efficient urban model methodology is developed by optimizing tech-

niques and sourcing the best datasets. A 3D, kinodynamic constrained, risk-aware planner

is developed using a sampling-based planning approach and formal reasoning of urban risk

metrics.

Experiments investigate four stages in the modeling and simulation environment and

determine the best data structures, algorithms, and parameters for optimal performance.

A quadcopter is assumed to be the vehicle of interest, and a set of cities are selected for

experimentation. The experiments build upon one another leading to a final experiment
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demonstrating the models and algorithms’ success in preparing aerial system trajectories.

The four stages are mapped from the four research questions that seek to address four

items for aerial system situational awareness in disaster response: decision-making, path

planning, safe flight, and experimentation.

First, a rapid urban map is needed to plan accurate paths through the environment.

Therefore, an investigation into data structures and algorithms for modeling the terrain

and obstacles is performed. The most efficient and informative modeling methods are

selected, which include a Gaussian Process used for terrain models and a geospatial data

processing environment for matching buildings and other structures to the terrain. The new

rapid urban map methodology is evaluated using specific toolsets against benchmark maps

stored at cityJSON files. The framework can produce and visualize any region of interest

with accessible terrain and structure data. However, environmental changes may cause

available datasets to become inaccurate. Therefore, a deep learning approach is selected

for urban landcover prediction using satellite imagery that provides updated and detailed

obstacle maps. Furthermore, this additional step provides new labels of the environment

that is useful for disaster response.

Second, an algorithm is selected for high-dimensional, kinodynamic trajectory planning

in 3D urban maps. Sampling-based methods have successfully solved high-dimensional

motion-planning problems through stochastic exploration. Current limitations exist for tra-

jectory planning with good finite-time performance and in large maps that leverage black-

box dynamic models. The assumption is made that expensive dynamic models are nec-

essary for the prediction of energy while maneuvering in windy conditions. Therefore,

forward-propagation dynamics models or black-box dynamic functions are used, with a

quadcopter model selected for experiments. The Stable-Sparse-RRT, SST, algorithm is

selected as an improvement to the original kinodynamic RRT algorithm with additions

that promote sparsity and convergence while keeping near-optimality guarantees. SST has

shown successful performance for robots and aerial systems for finite-time performance.
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Next, the computational limitations for finite-time solutions are improved by investigat-

ing alternative forward-propagation methods for the black-box dynamic models. The de-

velopment of motion primitives is demonstrated using a rapid trajectory planner from an

acceleration-based thrust and attitude setpoint quadcopter model. The differential dynamic

programming algorithm is used to iteratively improve a nominal trajectory with a smooth

and stable set of controls.

Third, a risk-aware planning approach is leveraged to provide confidence in mission

success. Risks are defined as internal or external uncertainties that can be mapped to the

probability of mission success. The risk metrics include the concern of running out of en-

ergy in flight updated with a Kalman Filter, the potential for collision with an obstacle or

the terrain, and the failure to collect sensor data on essential targets. The three risk metrics

are mapped through exponential risk functions. Energy and collision risks are stored as

distributions and mapped to a single risk value using the statistical measure of Conditional-

Value-at-Risk (CVaR). Alternatively, the viewpoint risk is inversely mapped to a knowledge

function with predefined thresholds. The CVaR and viewpoint risk metrics are combined

into a single quantitative metric relating to the minimal likelihood of worst-case scenarios.

Heuristics are included for each risk metric to provide information that improves conver-

gence and paths in finite-time performance using the informed SST algorithm additions.

Lastly, the three modules are combined into a framework with rapid urban maps and a

risk-aware planner. The framework’s capability is evaluated against benchmarks for mis-

sion success, performance, and speed while creating a unique set of benchmarks from

open-source data and software. A series of experiments demonstrate the mission success

and performance improvements of the planner, and the simulation environment provides

insight into offline planning limitations through Monte Carlo simulation with environment

wind and system dynamics noise. Additions are made to the planner for multi-target plan-

ning that improves the ability to visit multiple goal locations and then return home before

running out of battery energy. The framework is demonstrated in Atlanta, Georgia, in a
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flood scenario where likely flood zones are used as landmarks for situational awareness.

The final algorithm, Informed Risk-aware SST, iRASST, is compared to other algorithms

in the final demonstration and shows improvements across all performance metrics.

The contribution of the work is a framework for advancing planning algorithms and

formal risk reasoning for similar problems in complex, 3D environments. The framework

is developed through three modules. One, rapid urban mapping methods are evaluated to

balance computational cost and accuracy. Two, an efficient planning algorithm explores the

rapid urban map in a simulation environment capable of metrics for aerial vehicles in low-

altitude, 3D flight. Three, the planning algorithm is reinforced with risk-aware exploration

that maximizes the chance of mission success when considering energy, collisions, and

situational awareness data acquisition, specifically in disaster response scenarios.

The efficient and kinodynamic constrained trajectory planner with risk-minimizing ob-

jectives is proven to provide consistent situational awareness to first responders more effec-

tively and efficiently than previously available methods. The mission success, completion

time, and sensor outputs are compared against benchmark algorithms. The framework and

software environment are made available to use as benchmarks in the field with the hope

that this serves as a foundation for increasing the effectiveness of first responders in the

already challenging task of urban disaster response.
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1

INTRODUCTION TO AERIAL SYSTEM DISASTER RESPONSE

Recent data shows the immense human cost of both natural events and violent conflicts. For

example, in the past three years of the National Oceanic and Atmospheric Administration’s

documented major disasters, there have been 50 events causing 553 deaths and costing

$243.3 billion. For the majority of the writing of this thesis, the COVID-19 pandemic has

been plaguing the world and is still disrupting people’s lives. Furthermore, there were over

100 disasters during the first six months of the COVID-19 pandemic, at least ten of which

impacted over 250,000 people [1]. Other significant natural disasters, such as the California

wildfires of Summer 2020 and the Texas winter storm of February 2021, occurred during

this period. Additionally, domestic and military conflicts in Syria, Afghanistan, Azerbaijan,

and Ukraine have threatened lives globally. Additional events of the past three years are

summarized in Table 1.1.

1.1 Disaster Events

A disaster is defined as a severe event causing significant destruction that prevents a com-

munity from functioning. The word disaster comes from the French word désastre and the

Italian word disastro, which translates roughly to ’ill-starred’, or perhaps more appropri-

ately to ”not favored by the stars.” 1 In modern English, the word disaster is often used

regarding some horrible event that impacts one or more people. The consumption of dis-

asters as entertainment has increased dramatically in pop culture, especially in cinema:

natural disasters serve as both setting and antagonist in Hollywood blockbusters such as

”2012,” ”Twister,” and ”The Day After Tomorrow.” This interest in the cinematic depiction

of these events is paralleled by Americans becoming simultaneously more aware of and

1https://www.etymonline.com/word/disaster
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prepared for disasters, according to the Federal Emergency Management Agency’s disaster

preparedness survey2. For years, government and non-governmental organizations have

sought to better understand and prepare for disasters. However, the ability of organiza-

tions to prepare and respond to disaster events is diminished by the inherent and chaotic

unpredictability of both natural and man-made disasters.

1.1.1 Types of Major Disasters

A disaster event can be caused by the natural shifts within the planet, by a deliberate act

of destruction, or by an act of negligence. According to Murphy in [2], these are cate-

gorized as ”Natural Disasters,” ”Man-made disasters,” and ”Mining, mineral, or energy-

related disasters,” respectively. Natural disaster events include flooding, structure collapse,

and explosions. These events often occur sequentially or simultaneously, which multiplies

confusion and disruption for those affected [3]. For example, extreme weather events can

increase the likelihood of floods, avalanches, and forest fires. Similarly, earthquakes and

volcanic eruptions can lead to tsunami waves and flooding. Furthermore, as seen during the

past three years, global epidemics can reduce first responder availability and delay response

times, resulting in even worse human and structural damage.

In 2017, Hurricane Irma, Hurricane Harvey, and Hurricane Maria repeatedly caused

havoc on the Gulf Coast and its surrounding region. These powerful storms brought high-

speed winds and nonstop rain, a combination that led to flooding and significant structural

damage. In 2021, Hurricane Ida caused record-breaking flooding from the southeast to

New York City. The infrastructure throughout the United States proved to be unprepared

for these events. Meanwhile, local and federal government agencies have had significant

challenges investing in disaster resilience [4].

2https://community.fema.gov/story/2020-NHS-Data-Digest-Summary-Results
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Table 1.1: Major Disaster Events since the Start of this Thesis

Event Description Year
Covid-19 Pandemic Limitation of human interaction and global supply chains 2020-

Beirut Explosion An explosion at the Port of Beirut caused deaths and destruction 2020
California Wildfires Relocation and major destruction of structures 2020
Texas Winter Storms Loss of power and limited movement of residents 2021

Germany / Belgium Flooding Flooding of cities and loss of life 2021
China’s Henan province Flooding Major flooding of streets 2021

Hurricane Ida (Louisiana) Major winds and flooding damaging structures and infrastructure 2021
Tropical Storm Ida (New York City) Subways and streets flooded with water limiting transportation 2021

Seaside Florida Condo Collapse Loss of life from structural collapse 2021
Earthquake in Haiti Major destruction of destabilization of region 2021

Russian Invasion of Ukraine Military strikes causing urban disaster zones 2022-

Table 1.2: The Deadliest and Costliest Recent Disaster Events in the United States

Event Date Cost (billions $ Deaths
Hurricane Maria 2017 98.1 2,981

Ohio Valley Midwest Tornadoes 2011 12.5 321
Hurricane Irma 2017 54.5 97

Hurricane Harvey 2017 136.3 89
Hurricane Sandy 2012 77.4 159

1.1.2 The Cost of Disasters

According to the International Federation of Red Cross and Red Crescent Societies, over

410,000 people were killed from extreme weather and climate-related disaster events in

the past ten years [1]. The National Oceanic and Atmospheric Administration (NOAA)

has documented 285 disasters totaling $1.875 trillion from 1980-2020 [5] . The frequency

and fury of these events are increasing, with 56 events causing over 1,000 deaths and $315

billion of damage between 2019 and 2021. Some of the deadliest and costliest events in

recent history are documented in Table 1.2. The Dixie fire required over 6,000 people

working around the clock and cost over $610 million for three months of fire containment3.

In the past ten years, natural disaster events constituted 83% of all major events causing

loss of life and property [1]. The dangers of these natural disaster events are only increasing

in the 21st century. According to the Intergovernmental Panel on Climate Change, 2021

has provided even more certain data that human influence has warmed the atmosphere and

3https://www.nytimes.com/interactive/2021/10/11/us/california-wildfires-dixie.html
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that widespread changes are occurring at an increasing rate [6]. In addition, urban areas

continue to grow and become more congested [7, 8], raising fears that the cost ofof lives

and damages will only increase in the future [9]. The UN predicts that 58% of the world

population will be living in urban areas by 20504. The concerns for the impact of climate

change and urbanization on disaster events and emergency response are only growing. In

the initial days of the COVID-19 pandemic, there was a theory that urban regions were

growing less crowded from people who wanted to avoid dense areas5. However, a mid-

2021 analysis by the New York Times found that ”...as disruptive as the pandemic has

been in nearly every aspect of life, it does not appear to have altered the underlying forces

shaping which places are thriving or struggling ”6. It is clear that the growth of urban cities

is not stopping anytime soon, not even from life-changing pandemics.

1.2 Disaster Response and Rescue

Although the history of the word disastro has connections to an astrological sense of un-

controllable fate, modern onlookers expect government and social organizations to be pre-

pared to prevent and respond to disasters. Current operations involve local and federal

agencies coordinating through programs such as Federal Emergency Management Agency

(FEMA)’s Urban Search And Rescue (SAR)7 or Hurricane Planning and Response8 pro-

gram. FEMA also coordinates with the Department of Homeland Security (DHS) to re-

search new and novel disaster response technology. Other example organizations include

the Maui Search and Rescue and San Diego Search and Rescue groups. The access to re-

sources differs from group to group. However, for both government and non-government

organizations, the operation cost is accrued in both the monetary cost of operation and in

4https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html

5https://www.nytimes.com/interactive/2020/05/16/nyregion/nyc-coronavirus-moving-leaving.html
6https://www.nytimes.com/interactive/2021/04/19/upshot/how-the-pandemic-did-and-didnt-change-

moves.html
7https://www.fema.gov/emergency-managers/national-preparedness/frameworks/urban-search-rescue
8https://www.fema.gov/emergency-managers/risk-management/hurricanes
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the sense of safety and comfort for the human response teams [10, 1].

First responders and local volunteers often engage in dangerous and complex situations.

When it comes to these complex, dirty, and dangerous missions, data must be distributed

rapidly [3]. Data acquisition may be needed during search and rescue, medical transporta-

tion, or reconnaissance in rural and urban environments [2]. Regardless of the type of

mission, disaster situations often make collecting and communicating data extremely diffi-

cult. For example, the 9/11 attacks featured many brave men and women heading directly

into what was equivalently the mouth of a dragon — an unprecedented and incalculably

dangerous situation. The smoke and fire were intense, and overhead debris and hazards

could collapse anytime [11]. Since this event, there has been a heightened focus in the

United States on advanced technological solutions that decrease the risk to humans and

increase the probability of mission success.

1.2.1 Technological Advancements for Disaster Response

No matter the method of destruction, humankind continues to find solutions to live on

this ever-changing planet. Humankind’s resilience is shown through the modern disaster

preparedness and response infrastructure. Formal disaster response often features three

phases of structured tasks: prevention, response, and relief. The response phase occurs in

both urban and open areas, could involve uncertain environments, and may involve search,

reconnaissance, inspection, and general navigation. Practical and trustworthy operations

are necessary to improve the response and recovery phase by maximizing the information

and communication during the mission [9]. Son in [9] sought to improve the methods

for communicating and digesting information in a disaster response scenario through the

perception, interpretation, and prediction tasks. Figure 1.1 outlines the flow of information

through the disaster response mission and the three key tasks of perception, interpretation,

and projection.

Figure 1.2 provides an architecture for how first responders must make decisions with
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the flow of information from the environment and previous training. The mission objective

and current state are inherently linked to the communication between the responder and

the command station. Improvements can and have been made to the response mission

through improving communication, data visualization, and training. However, limitations

in data accessibility, data processing, and complex decision-making require technological

improvements that may or may not exist in the market today. Therefore, research today

seeks new approaches to mission planning and novel technology infusion.

Figure 1.1: Emergency Response Situational Awareness

Figure 1.2: Disaster Response Architecture and Current Areas of Improvement

Work in [9] and [12] sought to improve situational awareness of emergency responders

through enhanced perception, interpretation, and projection of information. The idea is

that the data acquired can be enhanced with better sensing, and the data processing can be

upgraded with new tools or algorithms. Improved situational awareness allows first respon-

ders to make the best decisions in a disaster scenario when coupled with preparedness and

training. Fabbri et al. in [13] investigated risk management and used remote sensing for
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disaster response. Cases include mapping infrastructure such as roads for disaster recovery

efforts or detecting major hazards for response decisions. In [14], a low-cost UAV is used

to assist emergency response by providing high-resolution, real-time imagery with special

consideration of the image format and georeferencing parameters.

A 2014 report by the United Nations Office for the Coordination of Humanitarian Ef-

forts (OCHA) detailed the potential of Unmanned Aerial System (UAS) for disaster re-

sponse by examining case studies in the Philippines, Haiti, and the Democratic Republic of

Congo [15]. OCHA examined the capabilities and limitations of UAS for damage surveil-

lance, medical package delivery, and peacekeeping. The responses to these emergency

situations are often dangerous tasks. For example, rescuers must use small boats and heli-

copters to search for lost persons in the region during major flooding events.

One recent example is Hurricane Harvey in Houston, Texas. Remotely piloted UAVs

from multiple sources were used for accessing, surveying, and mapping. Similarly, during

the Hard Rock building collapse in New Orleans, Louisiana, UAVs were deployed to check

the stability of the building before first responders were allowed to enter. Further examples

include aerial support conducted after Hurricane Maria, multiple unmanned explorations

into the Fukushima nuclear plant following its meltdown, and aerial package delivery of

medical supplies during the COVID-19 pandemic. These are a small subset of scenarios

in the past decade that have demonstrated the capability of aerial systems for situational

awareness in life-saving applications, where the replacement of the human with autonomy

and the extension of the eyes through the use of cameras have provided advanced disaster

response and search and rescue roles. There is still a critical need for advanced tech-

nological solutions that take humans out of danger and complete the mission safely and

effectively. These new technologies could improve the life-saving missions of search and

rescue, medical delivery, or security surveillance.

Another scenario of interest during the year 2022 is that of wartime response. Rus-

sia’s invasion of Ukraine has resulted in the mass destruction of urban centers. UAS have
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been applied on a decentralized and case-by-case basis. Recent articles about Brinc9 have

demonstrated some of these examples.

In 2004, Kumar, Rus, and Singh demonstrated in [16] that there is potential for au-

tonomous sensor networks, such as in the case of a burning building. The experiment

showed that firefighters could use the external sensing capability but could not actively

control them during the mission. In addition, the extremities of the environment clarified

that the systems must be able to perceive in smoke and heat. Therefore, more work was

still needed in autonomous navigation and active perception. A year later, in [17], Schurr et

al. addressed fire and other disaster threats with an integrated team of humans and agents

with what they called ”adjustable autonomy.” Experiments were conducted in simulation

using the DEFACTO tool, and the outcomes showed that humans might sometimes dimin-

ish the autonomous systems’ success. In the 15 years since, a wide range of research has

looked into disaster robotics, including Robin Murphy’s Disaster Robotics book released in

2014 [2]. This array of experiments concluded that networked autonomous systems could

replace humans in many tasks and improve the recovery of humans and supplies during

emergency scenarios.

Autonomous systems have thus been leveraged for first responders and emergency re-

sponse in the consumer marketplace. In the last year, companies developing these technolo-

gies have caught the eyes of investors, such as when BRINC10 raised a 25 million dollar

series A funding. Clearly, the technical and commercial success has made UAS a viable

option for providing situational awareness during disaster response.

1.3 Aerial and Autonomous Systems

UAS continue to rapidly expand in use across many application areas such as package de-

livery, construction surveillance, and disaster response [18]. UAS are suited well for these

”dull, dirty, dangerous” missions because of their small footprint and agile flight capabil-
9https://www.washingtonpost.com/world/2022/03/24/ukraine-war-drones/

10https://brincdrones.com/
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ities. Their advanced use has benefited from advancements in onboard sensing, control

algorithms, and communication architectures that allow for complex flight and estimation

in real-time. UAS are often employed in these scenarios to remove the human from the

”loop,” thus improving the safety and consistency of various tasks within the missions de-

scribed earlier.

The success of UAS is built on the advancements in MEMs, GPS localization, compute

power, and electric propulsion. This has led to the explosion of their design, development,

and demonstration showing off the skills of efficient, agile, and autonomous flight.

Disaster response and search and rescue missions already include a range of aerial

systems in operation. This has only increased in recent years with the advancements of

small unmanned aerial systems or SUAS. However, the general use has been by human-

controlled helicopters or by various SUAS that have limited capabilities. The application

of swarm UAS has been applied in less critical scenarios but has proven successful in

distributing sensing. Therefore, the technological advancements of these systems may be

the key to improving the mission effectiveness of rescue teams and local first responders.

Autonomous aerial and ground systems have been successfully applied in many sce-

narios, including SAR and disaster response [2, 19, 9, 20, 21, 22, 23, 24, 25, 15]. Also,

recent work has utilized swarms of UAVs for railway evacuation in [26]. A higher-level

investigation of the integration of UAS for emergency management is examined in [27].

The use of autonomous robotics and unmanned aerial systems for search and explo-

ration has been an area of interest for many years. In some cases, these systems have

provided support, such as the four-legged robots that searched the Fukushima Daiichi nu-

clear power plant11. There are still many problems to be solved in this area since UAS

must be able to operate in complex conditions, see Figure 1.3. These scenarios require ad-

vanced capabilities such as operating in GPS-denied, limited-vision, or high-sensor noise

scenarios. Weather, obstacles and adversarial agents are some difficulties for UAS operat-

11https://www.nytimes.com/2017/11/19/science/japan-fukushima-nuclear-meltdown-fuel.html
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ing in these applications. The operation of autonomous systems at a small scale and cost

requires tradeoffs between flexibility and capability, cost and efficiency, safety and speed,

and performance and consistency.

Additional limitations and complications exist for emergency response, however. The

systems must be able to make autonomous decisions in difficult situations with the potential

for extended periods. In addition, the size, speed, and cost of these systems must be reduced

because of both the platform limitations and the cost-limited critical response timeline.

”Unmanned aircraft can fly lower than traditional aircraft and achieve the same if not better

quality data at a lower cost for small to medium sized surveys,” stated the US Department

of Transportation12. Furthermore, smaller aerial systems have demonsrated their ability to

collect improved data for planning, mapping, and surveillance. Therefore, the assumption

is made that the smaller aerial systems will lower the overall cost, but further independent

research is needed to investigate the cost of deploying multiple systems and how this cost

compares to traditional methods with larger manned aircraft.

Figure 1.3: Drone Disaster Response. Graphic produced with the approval of the creator,
Alexander Parmley, from http://www.aparmley.com

The history of aerial systems hinges on the advancements of the reduced platform,

the propulsion and electrical energy components, and the improved computational power

of CPUs and GPUs. The primary interest in aerial systems for emergency response and

disaster relief has come from government entities such as FEMA and DHS in the United
12https://www.fhwa.dot.gov/uas/resources/hif20034.pdf
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States. For example, FEMA has partnered with the Florida State University Center for

Disaster Risk Policy since 2017, with the most recent funding applied to the Surfside condo

collapse.

The application of these systems has varied from emergency response, search and res-

cue, and medical transportation [28] and the demonstration of this concept has already

been tested in the marketplace through examples such as Auterion for medical supplies

delivery13, EHang for fire rescue14, Skydio for situational awareness15 and Kitty Hawk for

emergency response16. The interest in these systems in the marketplace has been built from

the years of research into autonomy and robotics for disaster response. Non-governmental

organizations and non-profits such as the Small UAVG Coalition and UAViators are also

investing in aerial systems for humanitarian applications since there may be a delay in

the technologies being sold for this less lucrative application. Much of the progress for

modern use has come from academia, specifically through the robotics and aerospace com-

munities. Research into these topics in the modern sense stretches back to 1992 in AI and

Cognitive Science [29], where multiple UAVs were used to collect data for FEMA. Key

researchers in this field have been making advancements since 2004 [16]. Recent events

such as the International Conference on Robotics and Automation for Humanitarian Ap-

plications, the World Robot Summit 2020, and the 2021 IEEE International Symposium

on Safety, Security, and Rescue Robotics have pushed the boundaries of the research to

real-world scenarios with new algorithms and datasets being published. The foundations

can be found in the Disaster Robotics Book [2, 23] and Geological Disaster Monitoring

Based on Sensor Networks in 2019 [30].

There is a wide range of literature on aerial systems’ application to search or naviga-

13https://auterion.com/auterion-partner-quantum-systems-performs-first-ever-medical-vtol-flight-
downtown-in-a-large-city-delivering-covid-19-samples-to-a-laboratory/

14https://www.ainonline.com/aviation-news/business-aviation/2020-08-03/emergency-first-response-
could-boost-urban-air-mobility

15https://www.skydio.com/blog/skydio-drone-autonomy-for-situational-awareness/
16https://evtolinsights.com/2021/02/kitty-hawk-and-falck-to-explore-possibility-of-using-heaviside-evtol-

aircraft-for-emergency-response-missions
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tion cases. Autonomous aerial and ground systems have successfully performed in various

scenarios, including search and rescue and disaster response [2, 19, 9, 20, 21, 22, 23, 24,

25, 15]. UAS has been tested and studied for search and rescue applications, package de-

livery, GPS-denied navigation, crowded navigation, and autonomous landing, in addition

to many other applications. The implementations have included lidar and camera sensors,

SLAM and clustering algorithms, and many different planning and control schemes. Not

only have extensive tests been done in simulation, but also on hardware in real-world en-

vironments. For example, Lingqvist et al. in [31] demonstrated a subterranean search and

rescue mission leveraging point cloud data and a camera stream for localization and reac-

tive local planning. Greenwood et al. in [25] deployed a UAV after the hurricanes in 2017

to evaluate the ability to assess the damage.

In recent years, aerial systems have been used for search and rescue and during the

collapse of structures. For example, during the Surfside condo response, aerial systems

were used for producing two-dimensional and three-dimensional maps. Mapping and pho-

togrammetry have been the most common use for aerial systems in the past ten years, and

extensive research has gone on to improve the accuracy and fidelity of the solutions [32].

Classical photogrammetry methods have utilized ground control points to calibrate and

align the aerial images; however, the advancements in inertial sensors and computer vision

methods have led to current results using the localization of the camera sensor to calibrate.

Then, feature matching methods are used that are robust to noise in the alignment measure-

ments. Success in this application has led to mapping software and sensors being widely

available to the general public.

The primary use for UAS during search and rescue is as an extension of human vi-

sion. Extending sight provides improved situational awareness, as discussed in the previous

chapter. Aerial systems have only recently been allowed to fly Beyond Visual Line of Sight

(BVLOS), but the ability to stream video and send commands from afar has been achieved
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for many applications. In fact, the FAA has waivers to approve this operation17, and NASA

is continuing to invest in the future of flight corridors and UAS traffic management18.

For continued advancements, there is a consensus that more autonomous or semi-

autonomous behaviors will be required to provide safer, more efficient responses. Ex-

amples of this are detailed in [20, 22, 33, 24]. The autonomy of robotic systems has

advanced rapidly in recent years with improvements to onboard sensing and artificial in-

telligence. However, as demonstrated in self-driving vehicles and urban air mobility, the

in-field requirements that are set must be high. Progress continues, and Atkins has defined

four levels of automation for Advanced Air Mobility (AAM)19, which are ”No capability,

Limited, Nominal, Comprehensive .”Autonomy represents a system’s ability to reason and

make decisions, requiring some level of intelligence formed from sorting through data and

finding rules or patterns [34].

According to Murphy [2], the capability of these autonomous systems must include

the ability to operate in unpredictable environments, navigate in wireless-denied environ-

ments, and coordinate in a ’tactical, organic system.’ In work by Scherer [35], the task

of low-altitude navigation and obstacle avoidance is given major attention as a capability

of aerial systems. Choi in [36] demonstrated a two-stage process for obstacle avoidance

in crowded urban environments and detailed the computational limitations and complex-

ity of accurate models in simulations. Donato in [37] was focused on emergency landing

for rotorcraft; however, it provides insight into the data fusion for predicting the risk in

the environment. Pfieffer in [38] sought to use ground vehicles for navigating through an

unknown environment, demonstrating the amount of data and testing required to prove suc-

cessful, even in situations without the requirements of emergency scenarios. Overall, UAS

must be capable of quick responses, effective decisions, safe maneuvers, and autonomous

operations.

17https://www.faa.gov/uas/public safety gov/public safety toolkit/media/TBVLOS Waiver Final.pdf
18https://www.nasa.gov/press-release/langley/nasa-enters-space-act-agreement-with-longbow
19https://nari.arc.nasa.gov/sites/default/files/attachments/atkins AAM panel.pdf
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1.4 Research Gaps

Disaster response can be improved by further leveraging the autonomy and athleticism of

UAS for first responder situational awareness. Current systems exist to be piloted by first

responders, and academic work has been interested in aerobatic and efficient flight plan-

ning. However, a systematic investigation of the best data processing and planning algo-

rithms has not been studied. Therefore, the overarching research objective of this work is to

determine the optimal application of UAS to autonomously monitor disaster environments

for situational awareness through autonomous navigation and decision-making.

There remain critical challenges that current systems fail to address completely. UAVs

are limited in their ability to fly over large areas because of the energy cost of the flight.

Crowded environments have been addressed by fast onboard decision-making and avoid-

ance; however, the system is often required to balance multiple tasks and objectives while

also performing reactive avoidance. Low-altitude flight, in general, involves more uncer-

tainty than when flying at a high altitude. In addition, any prior information of the map has

now become inaccurate and less reliable.

The use of aerial systems for these emergency response scenarios requires detailed

planning at multiple levels of implementation and a range of different algorithms. For

example, system-level dynamics, sensors, and power requirements must all be considered.

In addition, the algorithms for control and path planning must consider the system-level and

operations-level requirements. All this must occur under a high level of autonomy to keep

humans out of danger and to maximize mission success. Many of these scenarios require

operating with high levels of uncertainty and in complex regions for navigation. Therefore,

UAS must navigate and make decisions in these complex regions while considering speed

and efficiency at the system level to assist in these critical, life-saving missions.

14



1.4.1 Current State of the Art

In the current commercial or defense market, there is a limited number of aerial systems

for accomplishing missions exactly or similar to the disaster scenarios detailed in previous

sections. Research is active for navigating complex, unknown environments like indoor,

GPS-denied environments or crowded urban streets. The current state of the art for small

unmanned systems is the limited success of companies like Parrot, DJI, Skydio, and Shield

AI. Parrot and DJI provide constrained cases of obstacle avoidance for the average con-

sumer taking pictures or doing photogrammetry. Skydio is using multiple cameras onboard

to track objects and avoid others from all directions, applying first to cinematography but

now showing use for first responders. Shield AI provides similar results for the United

States military when service members explore an enemy structure. In addition, Edgybees

has demonstrated the success of using aerial systems and cameras for situational awareness.

Near-Earth Autonomy and Daedelean have shown how cameras and other sensors can be

combined to find safe landing zones and improve state estimation.

A range of questions remains regarding how to advance these systems to the required

level of operations needed. Most importantly, can these advanced sensing techniques and

autonomous agents provide better situational awareness and successfully move first re-

sponders out of danger? For navigating the environment, what planning algorithms are

necessary for efficient flight, and how can this be investigated in a modeling and simulation

environment?

This research focuses on four key subjects of autonomous UAS situational awareness.

One, flight planning is limited by the computation and data available offline after a disaster

event. Large amounts of data are required, and flight planning must be available over large

areas of space. For example, consider that the scale of the California Wildfires in 2021

was over seven thousand square miles and that most urban centers in the United States

have high-density population centers over 50 to 300 square miles. Two, decision-making

requires informative actions from the available data of the environment. Third, safe flight
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ensures that mission-affecting failure events do not occur and that there is a high level of

confidence. Lastly, experimentation through concise and productive modeling and Monte

Carlo simulation provides insight into the success of future real-world scenarios.

1.4.2 Trajectory Planning

LaValle, in the book Planning Algorithms [39], details the essential ingredients of the

planning problem. Fundamentally, the planning problem is a search problem exploring the

set of possible configurations in discrete or continuous state space. Examples of a motion

planning problem include the Piano Mover’s Problem or the challenge of the Rubik’s cube.

The difficulty lies in the curse of dimensionality of the search space and the computational

requirements of solving a path with constraints.

For a problem to be solved, there must be a defined state representing the discrete or

continuous representation of the agent, the vehicle or system of interest. The planning

problem is inherently a search problem exploring the set of possible configurations in the

state space. The time is represented as a discrete or continuous variable to track the chang-

ing state of the system. The plan of the agent can be described as actions, which are simply

the functions transitioning the agent from one state to another. This could be controls of a

dynamic system or movements of a puzzle. Of course, the decision of the actions and set

of states require the definition of the initial and goal states and the bjective criterion. The

final result, a combined set of states and actions, is the plan. Often the critical problem is

not necessarily whether a path exists but whether the path is the best as compared through

a like-to-like metric with all other paths.

Given a system defined by a state x and an environment decomposed into cells in the

same dimensionsX . Whether this is considered a set of voxels, also known as grid cells, or

a graph, with nodes and edges; the problem can be defined as the search for a path P , which

is a sequence of vertices P = (v1, v2, ..., vn). In this example, assume the vertices are in

the same configuration space, X , as the system’s state, so that vi ∈ X ∀i ∈ (1, n). The
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problem may have multiple solutions that can be compared through an objective function.

There is also a hierarchy to the path planning problem. This can be divided into global

and local planning [35, 40]. Global is generally the high-level planning done before flight

from a start to goal location and relies on map knowledge. Local planning occurs inflight

and is focused on navigating the environment from waypoint to waypoint, whether for

tracking, search and rescue, or following. For example, in [41], Kang explains that ”this

local trajectory optimization is combined with a global path search algorithm which pro-

vides a useful initial guess to the nonlinear optimization solver.” Likewise, Choi in [36, 42]

a preflight and in-flight distinction is made to plan aerial vehicle flights through an urban

environment.

The motion planning problem is often considered when working with agent transitions

that are in continuous state spaces. Research into this area has existed since the 1970s, and

much interest falls into the field of control theory or dynamic stability. On the other hand,

working in discrete spaces can be considered a path planning or simply a search problem.

A common framework is to consider discrete states within a continuous world using tree

structures like Hidden Markov Models.

Algorithms to solve for feasible or optimal paths differ in mathematical theory and

technical implementation. For instance, there is a long history of optimal control problems

with both linear and nonlinear dynamic systems. A receding horizon approach is common

for onboard planning, as detailed in the tutorial by Mattingley et al. [43]. Alternatively,

the problem can be set up through assumptions or linearization as a convex optimization

problem. A detailed explanation and tutorial for convex trajectory generation are found in

[44]. Advanced methods that enforce convexity can balance the accuracy and computa-

tional efficiency of the problem, as detailed in work by Blackmore et al. [45].

Algorithms that operate in the discrete space make additional assumptions on the search

space by constraining the resolution of each dimension and limiting the actions that can be

made moving from state to state. The first step approach would be to formulate the prob-
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lem as a graph, where the system state is a node in a discretized state space. The Breadth

First Search (BFS) algorithm can be implemented with a few lines of code to find the

optimal problem through recursively solving for all paths. However, the search time com-

plexity is O(|V |+ |E|), where |V | is the number of nodes and |E| is the number of edges.

Improvements in convergence start with leveraging dynamic programming and eventually

lead to the A* algorithm that improves upon the efficiency of Dijkstra’s algorithm by using

a heuristic in the cost-to-go function. The total cost function at step n, f(n), is the combi-

nation of the running cost, g(n), and the heuristic, h(n), as in Equation 1.1. The algorithm

seeks to minimize this by sorting through nodes in a priority queue.

f(n) = g(n) + h(n) (1.1)

The requirement is that the heuristic function, h(n), is admissible and consistent. An

admissible heuristic always overestimates the true distance, h(n) ≥ d(n). A consistent

heuristic means the optimal path is guaranteed to be found without processing any node

more than once, h(n) ≤ c(n, q, n′) + h(n′) where q is the action taken to go to the next

node n’. If these parameters are met for the heuristic, then the A* algorithm is guaranteed to

be complete, optimal, and efficient, with the fewest nodes needed to find the optimal path.

For finite-time performance, it should be noted that no matter the heuristic, the algorithm

is optimal. However, the choice affects the number of search nodes required and, thus, the

time and memory to compute the solution. For A*, all nodes are stored in the memory, and

it requires exponential time to solve.

Kim et al. in [46] addressed UAM trajectory planning using Mixed Integer Linear

Programming, MILP, which reduces the problem to a sequential optimization problem.

Simplifying assumptions are required, including a single flight altitude and linear dynam-

ics. If the system of interest and the environment for application are unknown or complex

alternative methods may be needed. In particular, sampling-based planning through a ran-

domized search algorithm can be used for a discrete search tactic in a continuous state
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space. Sampling-based methods leverage a stochastic technique and can guarantee com-

pletion and optimality when using particular algorithms. Examples include probabilistic

roadmaps or Rapidly exploring Random Tree, RRT [47]. RRT leverages efficient tree data

structures, cost-based tree pruning, and random sampling for asymptotically optimal solu-

tions and guaranteed completeness. More details are provided in Chapter 4.

The primary questions that exist when interested in finite-time, real-world performance

relate to the dimensionality and resolution of the graph. For example, the potential paths

of an aerial vehicle through a 3D environment are shown in Figure 1.4. Initial state x(t0)

and final state x(tf ) are defined in 3D continuous space, with all positions between creating

infinite many solutions. Consider two alternative paths, p1 and p2, which avoid the obstacles

in two different ways. A sampling-based planner can generate trajectories of this form with

a tradeoff in the performance, for instance, whether the path that goes in between the two

obstacles can be found by using random search strategies. More details are discussed in

Chapter 4.

Figure 1.4: A trajectory planner seeks to find a series of states, x, that avoid obstacles from
time, t0 to tf , with potentially infinite paths, pi
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Motion Planning Background

Consider the generic motion planning problem, where the state space is inX , action/control

space in U , and time, t. The objective is to minimize the objective function, J , while

satisfying the constraints, g, as seen in Equation 1.2. The objective has a discrete and

continuous form, which results in solutions through discrete steps of a differential equations

solver.

J =
n∑

i=0

c(xi, ui, ti) s.t. g(xi, ui) < 0 ∀ i

J =

∫ n

0

L(xi, ui, ti) s.t. g(xi, ui) < 0 ∀ i
(1.2)

Trajectory planning for robotics has been regarded as a computationally expensive task

because of the many complications that must be considered [23]. For one, robotic sys-

tems, whether aerial, ground or otherwise, each have unique uncertainties and constraints

from the sensor inputs and kinematics. Also, the difficulty in path planning is with the

processing time required to solve and the limited information about the system dynamics

and environment. If the dynamics are modeled precisely, and the space is known exactly,

then the optimal path can be solved, and the decision is how much time is allowed. This

will continue as a tradeoff when more complex scenarios occur, and multiple techniques

may be needed for planning an optimal path.

Motion planning has been solved in the past by expensive algorithms requiring expo-

nential time and improvements that led to combinatorial methods of constructing roadmaps.

A more straightforward solution has been to define potential fields through a vector field to

’push’ or ’pull’ the agent through the environment. Recent advancements have increased

the use of sampling-based methods. The curse of dimensionality is often recognized as a

significant issue if an exact search is required. Therefore, there is usually an interest in

keeping the dimensionality small, ignoring dynamic environments, and using heuristic ap-
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proaches to approximate the best path. These methods usually have asymptotically optimal

paths, for example, the Rapidly Exploring Random Tree (RRT) algorithm [39].

Trajectory planning is critical to performing collision-free, dynamically-feasible flights

at low altitudes. If efficient and safe 3-dimensional paths can be planned offline, then

overall mission performance will be significantly improved, and the concept of operations

for the entire team can be managed more effectively. The choice of the best algorithm and

models to use depend particularly on the assumptions and outputs desired and the required

computational resources for the algorithms required. Future chapters will explore this in

detail.

1.4.3 Decision-Making

There remains a gap in literature on how to prepare for disaster scenario response, other

than traditional search strategies. Disaster scenarios are unique and difficult to model.

Furthermore, the mission planning for an aerial vehicle has traditionally been controlled

in a decentralized manner, meaning that individual pilots make decisions based on local

information and communication. However, prior information and simulation studies could

provide insight into where the aerials systems should prioritize searching based on the

objectives and system constraints.

1.4.4 Safe-Flight

There is now a wide range of applications for aerial systems, from package delivery to ur-

ban air mobility, that requires a framework for safety-critical or risk-aware flight planning

and motion planning. However, the focus has been on local onboard planning instead of

offboard large-scale global planning. The scale and uncertainty of offline planning raise

concerns with the previously developed methods. UAS must account for many environ-

ment feedback signals and epistemic and aleatoric uncertainties in flight. For example, see

Figure 1.5 where risks such as wind, limited power, or obstructions are constantly plaguing
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aerial systems.

Figure 1.5: Internal and External Risks for UAS Operations. Graphics reproduced with the
approval of the creator, Alexander Parmley, from http://www.aparmley.com

1.4.5 Modeling and Simulation

Another important distinction is whether an environment is known or unknown. If the en-

vironment is completely known, a map with all information needed to plan an optimal path

exists. Therefore, the only requirement is to find a planning algorithm that trades accu-

racy and computation. However, the more common case, particularly in disaster response

scenarios, is an unknown environment. A good example would be someone using a hand-

held map of the city. However, new construction or flooding has changed the location of

buildings or limited the accessibility of streets. An accurate but efficient modeling and sim-

ulation environment is necessary for exploring the tradeoffs and evaluating the performance

of the algorithms and data needed to make smart decisions and fly safe trajectories.

The dynamics of the system or the environment can be modeled using chaotic systems

or nonlinear dynamic systems. Data and validation techniques improve the confidence

that mathematical models represent the systems accurately. A modeling and simulation

environment that can access models, algorithms, and data efficiently allows for repeated

cases, efficient verification, and complex experiments.
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1.5 A Framework for SAFER Response

From Scherer’s [35] investigation into low-altitude rotorcraft flight and Pfieffer’s [38] re-

search for map-less navigation in uncertain environments, it can be said that the avoidance

of obstacles during navigation is one of, if not the most critical requirement for mission

success. This is because of the high level of difficulty in avoiding safely and the catas-

trophic circumstances if there is a failure to avoid. The question remains how to most

effectively and efficiently bring these systems to use for many applications. This requires

an understanding of the cost, performance, and logistical limitations. The technological

advancements for emergency response in situational awareness and the integration with

networked autonomous systems provide the template for implementing a new safe and ef-

fective solution. The overarching research objective is therefore defined as the following.

Research Objective
Perform a systematic investigation of the best data and planning algorithms through

current technology and tools for unmanned aerial systems to supplement first responders’
situational awareness.

This work seeks to develop a modular framework that can be evaluated and tested in

multiple scenarios with trade studies and sensitivity analyses. The framework is named

SAFER (Safer Autonomy For Emergency Response). The next chapter provides an overview

of the SAFER framework and background literature to formulate the current gaps in this re-

search area. Disaster scenarios are difficult to model, and therefore the SAFER framework

addresses the flight planning problem entirely offline.
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2

A FRAMEWORK FOR DISASTER RESPONSE WITH UNMANNED AERIAL

SYSTEMS

Autonomous or semi-autonomous unmanned aerial systems for emergency response have

been explored for over 20 years with work such as in [16, 12, 17]. However, there is

a lack of investigation into the current technology that meets safety-critical, real-world

scenario requirements. A detailed explanation of aerial systems autonomy is found in [34].

This work investigates a modular framework that can be evaluated and tested in multiple

scenarios with sensitivity analysis and Monte Carlo simulation.

The overarching hypothesis is that the effectiveness of aerial systems for providing

situational awareness in disaster response is dependent on the trajectory planning, decision

making, safe flight prediction tasks, and modeling assumptions. Therefore, the algorithms

and data to form a 3D representation of the environment and to plan dynamically-feasible

paths must be explored in a simulation environment that must balance the computational

load and the accuracy. By modeling the uncertainty, the effectiveness of the models can be

explored through Monte Carlo experiments and sensitivity analysis.

2.1 Urban Map Modeling

The environment must be represented to perform a successful plan from the start to the

goal. The best setup is an a priori one, where a map with complete knowledge of the state

space and obstacles can be referred to as free-space and obstacle-space. The modeling of

the environment is detailed extensively in [34]. If a detailed map is unavailable, as is often

true in real-world applications, it must be predicted or approximated using data. Examples

of this are using point cloud data to build 3-dimensional maps of structures. However, if

detailed point cloud data is unavailable, a lower-resolution or lower-fidelity environment
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representation may be required. Predicting or approximating maps using a single data

source has limitations. Combining multiple sources through decision trees or data fusion

can improve accuracy, reliability, and consistency.

2.2 Offline Aerial Flight Planning

Flight planning conducted offline for aerial system trajectories are an area of research with

many applications. Examples include trajectory generation, landing exploration, or opera-

tions analysis. There are many ways to solve this problem, as introduced in Chapter 1. An

overview is seen in Table 2.1.

There are four primary methods to solve the obstacle avoidance problem, and each

has its advantages and disadvantages. Stochastic methods assume that a good solution is

formed using a randomized path that is iteratively improved. Methods such as Rapidly-

exploring Random Tree, RRT, are powerful because of the fast computational time that is

not limited by non-convex or high-dimensional spaces. However, RRT may have difficulty

finding solutions quickly, and some results may be sub-optimal. Advancements such as

RRT* can guarantee optimality, but there are still trade-offs to consider. Potential field

methods represent the environment with particles and force fields that cause the system in

question to be pushed or pulled around the space. Methods such as Force Maps are simple

to set up but do not guarantee collision-free paths and may need to be tuned for various

applications. Road map methods utilize a graph or grid structure in the environment to

plan paths from a start to a goal node or cell. Algorithms such as the A* algorithm use

search heuristics and can guarantee collision-free paths while solving the problem very

quickly. The computation time largely depends on the search space size and the heuristic.

Geometric or optimization methods solve for guaranteed collision-free paths using the true

or approximated geometric information and objective functions. These methods may be

complex to implement and are dependent on the types of vehicles and obstacles of the

scenario.
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Table 2.1: Planning Selections and Pros and Cons

Method Details Pros Cons Use?

Sampling-based
Stochastic search in

continuous space
Flexible with

guarantees Parameter sensitivity ✓

Heuristic Search Grid search in discrete space
Efficient in

low dimensions
Exhaustive without a

good heuristic X

Optimal Control
Continuous dynamics
prepared for TPBVP

Accurate
and optimal

Computationally expensive
and case dependent X

Optimization
System and constraint

relaxations Fast solvers Limited accuracy X

Previous research has investigated planning algorithms for urban map models. For ex-

ample, a demonstration of two common path planning algorithms investigated in [48] is

seen in Figure 2.1. The A* and RRT* algorithms formed different paths, but performed

similarly in terms of speed and total distance when applied in a 2D occupancy grid. Ochoa

in [49] also investigated individual algorithms in urban environments to begin to under-

stand the capabilities and limitations of trajectory planning algorithms. However, a deeper

investigation into the critical requirements through a modeling and simulation environment

has been lacking.

Figure 2.1: Global Planning in Washington DC 2D occupancy grid with A* and RRT*,
from [48]

Sampling-based planners are selected as the method for offline aerial flight planning

because they are capable of the core capabilities needed. Sampling-based planners are ca-
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pable of collision-free trajectories, feasible dynamic solutions, and optimal trajectories with

custom objective functions. Furthermore, the randomized search pattern, essentially an in-

direct shooting search algorithm, allows exploring uncertainty environments and reusing

search patterns for updated trajectories. Chapter 4 investigates this in detail while demon-

strating the success when using black-box dynamic models and targeting finite-time solu-

tion quality.

For complex aerial vehicles, the dynamics are critical to stable flight performance.

When considering trajectory planning, the dynamics must play an essential role in find-

ing feasible and optimal plans. For example, in [50], the dynamic constraints must be

considered in the planning, and similarly in [51]. In [52], the dynamics are not required

to be defined in an equality constraint; instead, a black-box simulation is used to forward

propagate that state. All of these techniques require varying forms of computationally ex-

pensive processes. In other examples, dimensionality reduction or a linearized form of the

dynamics is used to simplify the problem. Additionally, trim states may be defined and

explored to find a path within the feasible manifold of the complete configuration space.

The maneuver or state is often referred to as a Motion Primitive (MP).

2.3 Safe Flight Under Uncertainty

Feasible or single-metric optimal trajectories from offline aerial flight planning can be chal-

lenging to acquire. However, the foundational algorithms have proved successful. Uncer-

tainties in how to plan these paths remain, especially for complex missions in uncertain

environments. The question remains on how best to define the objective or how to leverage

special measures called risk metrics.

Recent research for global path planning and offline planning has been applied to urban

air mobility emergency landing and unmanned aerial vehicle flight planning. Hu et al. in

[53] linearly combined three risk maps and then compared the Dijkstra, A*, and Ant Colony

planning. Primatesta in [54, 55, 56] and Ding in [57] investigated how risk indicators such
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as population density and obstacle data can be used to make decisions on safe flight zones

with UAVs or safe landing spots for rotorcraft in the case of an emergency. Geographical

and population data was used for offline risk map creation. In a similar study, Hu et al.

in [58] ran a sensitivity analysis on parametrized features in a linear combination. Di

Donato [59] and Harmsel [60] combined obstacle, terrain, and density maps to form a

costmap, while Slama et al. [61] combined obstacle maps with area terrain types to find

the least risky paths for emergency landing. Primatesta [55] and others have implemented

population risk and categorized selections as the probability of an accident, probability

of fatality, sheltering effect, and population density, with the use of population, land use,

obstacles, and restricted airspace datasets.

2.4 Recent Contributions to Research

A series of theses from the last 20 years have bridged the gap for autonomous and aerial

systems applications in the world today. For example, the consideration of risk has been

shown in [62] and [63], but this did not consider sampling-based planning improvements

from [35] and [64]. Furthermore, the literature lacks an investigation into this application

of autonomous aerial vehicles for urban distance response along low-altitude and long-

distance flights.

Previous work has compared different algorithms one-to-one like RRT, A*, BIT* in

[49]; however, this was 2D planning which removes many of the critical constraints from

low altitude 3d planning. [65] explored different metrics and tracked them across flight,

adding limits and constraints, and [37] used a risk map created from offline population

and environment datasets. However, this was not the approach in a formal risk reasoning

approach as in [62]. Xiao and others, such as in [66] approached risk metrics in flight plan-

ning but have not applied this specifically to disaster response scenarios. Those that have

applied to real-world scenarios often demonstrate package delivery or emergency landing

where there are different constraints and objectives.
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Gaps remain in the field, however. For instance, the concept of risk reasoning must

continue to be formalized for urban risk metrics, in particular for risk from both internal

states and external hazards. Safety guarantees from offline planning are still limited by

the accuracy of modeling and probabilistic methods. Sampling-based planners have shown

success with simple distance or energy-based objectives but have not been leveraged for

risk metrics in much detail.

2.5 SAFER Framework Contributions

Previous work has explored aerial autonomous systems’ ability to navigate complex envi-

ronments, but not in a self-contained system of systems framework. Ochoa directly com-

pared planning algorithms RRT, A*, and BIT* in [49]; however, this was in 2-dimensions,

which removes many of the critical constraints from low altitude 3d planning. Low altitude

3D planning is focused in more detail by Scherer in [35]. However, the focus is on tracking

waypoints from a high-level planner and on landing safely. Ochoa in [49] explored the key

metrics to track during flight, but the work was missing a formal risk reasoning approach as

was done by Xiao in [62]. Xiao and others have approached risk through the view of prob-

abilistic measures that can guarantee mission success and minimize the change of mission

failure under large uncertainties. Other examples include the use of Conditional-Value-at-

Risk in [66, 69, 70]. This approach has not yet been applied to the types of environments

and uncertainties that occur in disaster response scenarios.

This work develops a modeling and simulation environment using openly available

tools and datasets to investigate the safe and efficient aerial response for disaster situational

awareness using low-altitude 3D motion planning, rapid urban map models, and formal

risk reasoning for safe offline flight plans. The framework for managing the data and flight

planning is inspired by previous works such as in [71, 72, 65]. Continuations of the formal

risk reasoning are extended from work in [62] and [63], but while applying sampling-based

planning improvements for low-altitude urban flight from [35], and [64]. Overall, this
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work focuses on offline flight planning and how to best model uncertainties and prepare

for the worst-case scenarios with the available data. The algorithms are combined in a

modular framework encompassing a modeling and simulation environment for UAS in

disaster scenarios. An example flight plan and outputs for the final demonstration include a

flight plan that minimizes risks and can complete flight path objectives as seen in Figure 2.2.

Time, risk, and energy metrics are tracked along a flight to measure safety and efficiency

while the flight passes through zones for data collection in an urban map.

Research Plan
Develop a framework and software environment for functional and safe aerial disaster

response that is modular and flexible to perform Monte Carlo simulations.

Figure 2.2: Final Implementation Concept

The thesis is structured as follows. Chapter 3 investigates the best approaches to rapidly

produce a 3D informative urban map for solving optimal paths. The appropriate data and

algorithms are compared for time and accuracy. Machine learning methods are leveraged

when the necessary data is unavailable. Chapter 4 explores the best trajectory planning al-

gorithms to find efficient algorithms capable of exploring 3D paths through the urban maps.

Algorithms are systematically evaluated to determine which one meets the requirements for

this application. Chapter 5 examines the planning problem using a formal reasoning of risk,

a function that maps to the probability of mission failure. A risk-aware planning algorithm
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is developed to explore the urban map with the primary objective of maximizing the prob-

ability of mission success. Chapter 6 explores this planning technique for specific disaster

scenarios of interest and evaluates the methods from the three previous chapters against

benchmarks. Chapter 7 summarizes the results and presents conclusions while including

future work ideas.
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3

RAPID URBAN MAPPING WITH LIMITED DATA

3.1 Introduction

The SAFER framework enables offline aerial flight planning for disaster response through

a modeling and simulation environment. The environment must be able to represent aerial

system planning accurately for the area of the interest, so that it accounts for the constraints

and objectives inherent to the planning problem in real-time deployment. Therefore, an ac-

curate map of the environment must be formed quickly during the offline planning task,

which will likely be in the midst of disaster response. An increased level of information

is needed to make informed decisions while operating under computational constraints.

In other words, first responders leverage external sensing to decide where to go and how

to get there during uncertain and chaotic situations. The urban disaster response problem

requires large-scale urban maps to plan where responders and aerial sensing units should

deploy. The offline model of the environment suffers from data uncertainty and availability

that makes the problem even more difficult. As an example of simplifying the problem,

Kim and Atkins in [73] used a reduced vertex map of an urban environment with a visibil-

ity graph for planning flight paths. The compression of the map reduced the accuracy of

the optimal paths since the visibility graph is not as accurate as a full graph in the dimen-

sionality of the guidance system. Similarly, Choi in [74] formed a Voronoi grid in an urban

map for a UAS delivery system to solve a reduced order version of the planning problem.

Each of these methods required the existence of an urban map to find feasible, collision-

free flight paths. Current literature lacks an investigation for the best map models when

computational resources are limited, and data is not easily accessible. Furthermore, there

is no investigation into supplementary methods for mapping 3D maps and environment
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features when data is missing and limited. This chapter’s primary concern is the problem

of the Rapid Urban Map, RUM, where a map for planning is generated quickly for use in

real-time or in offline Monte Carlo simulation environments. The following chapters use

the rapid urban map to plan and evaluate map metrics. Therefore, the map model must

be capable of a few functions including collision checking, feature labeling, and resource

tracking.

The strategy used for this work is to separate the terrain, structures, and other obstacles

into individual layers for data processing and auxiliary data collection. The modular frame-

work allows each layer to be processed individually using the best algorithm and available

data as shown in the next sections. Each feature is combined into the RUM data structure

and aligned into a local coordinate reference system with units of meters to allow for plan-

ning metrics and measurements to be stored and evaluated quickly. A custom map structure

is formed from the independent layers and efficiently stored, queried, and visualized.

3.2 Background

A model of the environment is stored in a custom map data structure to efficiently iden-

tify collision-free trajectories, predict trajectory quality using urban metrics, and recognize

important objects in the environment. The model starts with a geometric decomposition

of the urban environment, primarily from obstacles such as buildings. Various methods

for spatially dividing the data and constructing it into geometric primitives like lines and

polygons are found in [34]. Previous literature has investigated efficient and informative

methods for 3D and geospatial data in the past. However, the methods vary widely in the

data types and sources, and the best approach for 3D trajectory planning lacks a detailed

investigation. There exists simulation environments and map tools specifically for visual-

ization, construction or climate modeling, and autonomous vehicle research. Each option is

often selected based on the accuracy, cost, and ease-of-use for the stakeholders of interest.
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3.2.1 Urban Map Modeling

Figure 3.1 shows previous works demonstrating the breadth of literature on this topic. On

the left, Harris et al. leverage a Digital Elevation Model (DEM) and high-resolution aerial

imagery to predict safe landing zone clusters [75]. On the right, Kim et al. sourced building

data in the Miami area to create obstruction maps for UAM flight planning and landing at

different altitudes. In another work, Primatesta et al. form binary maps for planning safe

flights over urban environments using elevation and population data [56]. In addition, Choi

processed LiDAR datasets for large cities and divided the data into building clusters using

resampling, and principal component analysis [42].

Figure 3.1: Previous demonstrations of Urban Map Models from the author’s previous
works in [75] and [46]

Previous work by Harris et al. in [48] investigated the urban map modeling problem

specifically for aerial vehicle emergency landing. Geospatial datasets for population den-

sity were used to represent the number of people in an area, while structure information

from OpenStreetMap, OSM, was used for 3D obstacles. The data was sliced at a single

height and combined to use as a costmap for planning. The methodology aimed to estimate

obstacles at a single height while providing critical information about the safety of landing

at a specific point on the ground in a safe cluster polygon. Therefore, improvements are

needed for the disaster response scenario. Figure 3.1 shows how Seulki and Harris used

similar geospatial data processing, but focused on finding the occupancy of an urban area at
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a specific altitude. A Mixed-Integer-Linear-Programming algorithm solved for the optimal

path using a linear dynamics model and time step constraints.

3.2.2 Geospatial Information Systems

Data for large-scale mapping requires geospatial references to match external datasets and

visualize features together. Matching features to one another requires the definition of a

coordinate reference system, CRS. The EPSG Geodetic Parameter Dataset or EPSG reg-

istry provides lists and specifications of different geodetic coordinate systems, from units

of degrees to meters. The most well-known geodetic coordinate system is EPSG:4326 or

WGS 84, which is used by the Global Positioning System, GPS. WGS 84 is defined by

latitude and longitude coordinates in units of degrees. The conversion of georeferenced

datasets from WGS 84 to a local meter-based coordinate reference system depends on the

area of interest since it is a projection to Euclidean space.

In the United States, a large amount of GIS data is available from regional data hubs.

City, county, or state GIS teams across the country have created easy-to-use sites to access

extensive data about the city. However, the data availability is limited by the region of in-

terest. The data structures, such as shapefile or GeoTIFF, and the data acquisition methods,

like sensor reading or hand labeling, affect the information available for map formation. In

addition, data samples’ accuracy and uncertainty differ for each dataset.

3.3 Research Question 1

Consider the trivial solution where a digital elevation model, DEM, exists and details the

terrain with high-precision georeferenced coordinates of ground height. In addition, all

structures exist in a georeferenced dataset. Resampling methods that use nearest-neighbors

or average functions on the local data can modify the data to any desired resolution, though

the accuracy may be changed. An example of this is seen for Los Angeles County terrain

data in Figure 3.2, where the color variation indicates a unique data sample that is later used
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for collision checking and feature projection. The memory and spatial search constraints

become a concern for a large area of an urban environment with many features. A search

of the grid for a specific location will result in a linearO(n) time complexity, or preferably

a log O(log(n)) time complexity with the use of binary heap. However, by increasing the

area of a map by 2, the number of cells has increased by 22 = 4. For example, if the

area of interest is 100 km2 and is discretized into a grid with 10-meter width and length

cells, the number of objects, {o1, ..., on}, increases to one million. This example of the

curse of dimensionality [76] requires careful consideration when building an accurate and

informative urban map and promotes alternative methods. The trivial solution that directly

combines the DEM and structure data in a discretized grid does not scale well and must be

improved.

Figure 3.2: Digital Elevation model (DEM) and structure height data for 3D height map.
Left side: Grid resolution reduced 10x through resampling; Right side: Grid resolution for
1 km cells

Previous research has investigated the efficient mapping problem through geometric

modeling and data clustering algorithms. However, the foundational question remains for

this problem.

Research Question 1
What data structures and machine learning algorithms successfully generate urban map

models with open-source data and tools for disaster response with field robotics?

The hypothesis is that the urban map model can be formed by independently examining

the most critical layers and combining them into a custom software structure that allows
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for flexible examination and visualization. Furthermore, the hypothesis is also that supple-

mentary data can be used to fill in the gaps in open-source datasets. Efficient data structures

and modern machine learning algorithms can be examined within a single modeling and

simulation framework to benchmark and validate the urban mapping performance.

Careful consideration of existing and new data processing algorithms provides insight

into an efficient and flexible framework for rapid urban mapping. Previous works show that

many geospatial algorithms can efficiently form 3D urban maps if the tradeoff of spatial

accuracy and computational complexity are balanced appropriately. Therefore, this chap-

ter investigates whether these algorithms produce maps with accuracy within a reasonable

amount and compare which algorithms work best for different scenarios. Furthermore,

advanced techniques are used to leverage supplementary data to predict environmental fea-

tures through data-driven methods and are compared to benchmark methods.

Two experiments are required to answer research question 1. First, a 3D urban map

representation is needed for future planning algorithms to explore. The map needs to be

created rapidly with the available datasets. Efficient storage and querying of the map are

needed for the modeling and simulation environment to be applicable to flight planning.

Second, the data pipeline must be upgraded to account for missing data when building

a rapid urban map. The missing data is addressed using available visual spectrum and

elevation raster data and training a convolutional neural network to predict environmental

features, including structure locations.

The framework has the location, time, bounds, resolution, GIS data formats, satellite

imagery source, and any additional constraints as inputs. The framework should result in a

3D map object available for visualization, collision-checking, and urban label classification

at the selected resolution. An outline of the framework for Rapid Urban Mapping, RUM, is

seen in Figure 3.3. The data selections, map algorithms, and integration of map layers are

detailed in this chapter, while the use of the map in planning is discussed in future chapters.
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Figure 3.3: RUM Framework

3.4 Urban Map Creation

The rapid urban map, RUM, methodology starts with the selection of data from open-

source resources that are useful and accessible. The available data is transformed into a

map through four independent layers: terrain, structures, urban features, and weather. The

four classes are chosen based on previous literature and are handled independently in order

to analyze each layer one at a time. This also allows for a flexible framework as well. More

details for each layer are shown in Table 3.1, where the source data, data structures, and

other advanced functions are listed from previous literature and experiments. The classes

provide information on 3D navigation, local feature items, and how systems operate in the

local environment. Today’s foundations of the urban map modeling techniques demon-

strated in literature are found in the books for modeling the terrain [77] and 3D structural

environment [78]. The modeling approach and integration strategy for the layers within the

framework are discussed in the following sections.
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Table 3.1: Map Data Options

Classification Source Data Data Structures Queries/Functions Advanced

Terrain USGS digital elevation model,
LiDAR points, USG InSAR

B-spline interpolation, NURBS
surface, gaussian process,

linear interpolation

Height query collision,
Terrain label classification Offline surface optimization

Buildings OpenStreetMap, Geo Datahubs,
prediction model Occupancy grid, signed distance field,

Polygon primitives, potential field
Collision check,

Feature label classification

Elevation matching
Storage approximation

Infrastructure
and Urban Features OpenStreetMap, Geo Datahubs Feature labels for disaster response

Weather 3D model and average wind,
CFD Simulations, weather station data

Vector field, Gaussian process,
potential field Flight dynamics wind Gust modeling for urban planning

3.4.1 Terrain Model

The terrain model provides crucial information for knowing where the aerial system cannot

navigate, as the terrain limits the flight path’s altitude. However, it also provides the infor-

mation or verification of where other structures are bound to the Earth. As detailed in the

trivial solution in Figure 3.2, a brute force approach can be taken where a digital elevation

model is used directly to query the nearest position for elevation information. However,

since this model will be used in the mapping and planning stage, the computational time

of generating the data and the accuracy are essential to consider. Therefore, models are

compared for how they best approximate digital terrain models and are evaluated for com-

putation and accuracy metrics.

Previous approaches for terrain modeling include the Gaussian process, GP, by Choi

et al. [79], non-uniform rational basis spline (NURBS) by Choi et al. [80, 42, 74] and

other spline or tessellation methods. The approaches vary in performance and have varying

theoretical and experimental success. However, they have not been directly compared for

a rapid urban map. The choice is made to compare three methods that cover the majority

of terrain modeling approaches and vary in complexity. The B-spline, NURBS, and GP

models are selected. Each model is implemented using available Python packages and

open-source data. B-spline and Gaussian process models are implemented from the Scipy

package [81], and the NURBS model is implemented with the NURBS Python package

[82].
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Experiment Overview

Experiments are conducted on a 983 squared kilometer region in LA county with sea-level

terrain and rolling mountains in close vicinity. The terrain data is from a USGS Digital

Elevation Model, DEM, that is reduced to a rectangular region of interest and transformed

into a local meter-based coordinate reference system. Parameter optimization is conducted

on each method to minimize the residual to a 1-meter resolution DEM before comparing

the models to each other. Data resampling in the Google Earth Engine tool uses a nearest

neighbors approach and is used for downsampling 1-meter data to lower resolutions. All

experiments are run using a Windows laptop with an Intel(R) Core(TM) i7-7700HQ CPU

@ 2.80GHz.

B-Spline

The B-spline surface construction is defined in coordinates (u, v) with basis functions

(Ni,p(u), Nj,q(v)). The variables p and q are the degree of the surface in the u and v direc-

tion, respectively. Algorithms to construct B-spline surfaces select a set of control points,

pi,j and knot vectors, U, V , resulting in a surface in homogenous coordinates defined by the

linear combination of the B-spline basis functions.

p(u, v) =
m∑
i=0

n∑
j=0

Ni,p(u)Nj,q(v)pi,j (3.1)

The surface of a B-spline can be fit using a set of data points. Since the B-spline is a

linear combination of basis functions, the surface can be solved using least squares mini-

mization. There are two metrics of interest when interpolating data with a surface model.

One is the difference between the predicted value and the observed value, or residual. The

other is the difference between the predicted value and the true value, or error. A visualiza-

tion for 1D data is shown in Figure 3.4. The residual can tell how well a model is trained

to the observed data, but the error provides insight into how well the model generalizes to
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the true shape of the terrain.

Figure 3.4: Example for Residual and Error

A tradeoff exists between a model’s computational time and accuracy for rapid urban

mapping. In Figure 3.5, the computational time and residual per sample are shown for dif-

ferent resolutions of the training datasets. The DEM model is a 1-meter resolution dataset

that is resampled to lower resolutions to reduce the computational overhead and evaluate

how the model’s performance changes depending on the input size. Figure 3.5 and the re-

spective figures for the other terrain models show columns for the time to train the model in

blue and to query the model for the estimated height, ẑ, in yellow. The line plot shows the

per sample residual in meters, which ranges from zero to over 20 meters for the B-spline.

ẑ = model(x, y) (3.2)

The model can also be evaluated against the original 1-meter DEM model to find the to-

tal error. The Mean Squared Error in Equation 3.3 is calculated using the 10-meter B-spline

model and results in an error per sample of 20.2 meters. The MSE is compared against the

other two models to determine the model that performs best at 10-meter resolution.

MSE =
∑
i

(ŷ − y)2 (3.3)
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Figure 3.5: Computation Time and Residual for B-Spline Training

NURBS

An extension of the B-spline using homogeneous coordinates is the non-uniform rational

B-spline, NURBS. The surface form differs from B-splines by weighting the control points,

wi,j . The equations defining the B-spline curves are in Equation 3.4 and Equation 3.5.

s(u, v) =
k∑

i=0

t∑
j=0

Ri,j(u, v)pi,j (3.4)

Ri,j(u, v) =
Ni,p(u)Nj,m(v) wi,j∑k

p=1

∑t
q=0Np,n(u) Nq,m(v)wp,q

(3.5)

An iterative solution to the surface fitting follows a sequence of knot insertion, knot

removal, and degree elevation to find the surface with minimal residual. The NURBS

model has been used for terrain modeling successfully and is detailed in [83, 79]. The

training results are seen in Figure 3.6, where the residuals and computational time for

fitting the surface are very similar to B-spline. However, while the residual is reduced by

about 1-meter, the computational time to query the surface for the height at a position is
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significantly higher. Furthermore, at the 10-meter resolution, the training time has now

become significantly greater, though it is still small.

Figure 3.6: Computation Time and Residual for NURBS Training

While the residual and time are significantly higher for NURBS at a 10-meter reso-

lution, the error per sample is lower at 16.93 meters, which is a 16% improvement on

B-spline. This fact confirms the assumptions that the more complex NURBS model can

better fit the terrain in mountainous areas, where the terrain changes are nonlinear and mul-

timodal. However, as shown by the comparison of NURBS and B-spline, the more complex

the model, then the more parameters and training are required.

Gaussian Process

Gaussian processes (GPs) are non-parametric models that can fit data using Gaussian prob-

ability distribution in the function space. The model is defined by a unique mean and

covariance function for the surface fit of interest. Gaussian processes are often used for

regression because of the ability to find the best fit over the distribution of all possible fits

for the data. The GP is a discriminative model, not a generative model, but evaluates the

data points over a distribution of functions.
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Table 3.2: Radial Basis Function Parameters

Noise Std Length Scale Length Bounds
5 15 [1e-1, 1e3]

G(X) ∼ GP (m(X), k(X,X ′)) (3.6)

The mean function, m(X) and the covariance function, k(X,X ′) represent a distribu-

tion over functions [84]. The covariance function, otherwise known as the kernel function,

models the relationships between the data points. The commonly used Radial Basis Func-

tion, RBF, kernel equation is seen in Equation 3.7. The GP training algorithm involves

an optimization problem where the design variables are the hyperparameters of the ker-

nel function, and the objective function is the maximum marginal likelihood estimation

function. The GP model was used for terrain modeling in [79, 84].

k(x, x′) = e−
||x−x||2

2σ2 (3.7)

The RBF kernel is selected for the GP model because of the previous success and the

few parameters required. The parameters are compared over a set of 30 tests, and the best

parameters are seen in Table 3.2. Since the GP training is computationally expensive, a

separation parameter is included that skips every n data points. Training time is then kept

closer to that of B-spline or NURBS, using the same resolution for the dataset. In addition,

a constant kernel is used to scale the RBF kernel depending on the terrain data type.

The Gaussian Process differs from the other two models in a unique way. The residual

continues decreasing as the resolution gets very small, for example, from 10-meter to 1-

meters. As expected, a more complex model improves in accuracy as the data resolution

and dataset size increase. The concern is that the computational time to train the model

is significantly higher, with up to 100% more time. However, as detailed earlier, the GP

model provides not an interpolated height value but a mean and variance for the output.
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Figure 3.7: Computation Time and Residual for GP Training

The total error for the GP model at a 10-meter resolution is 16.97, which is approxi-

mately equal to the NURBS error. However, as shown earlier, the GP error improves by

reducing the training dataset resolution, as shown in Figure 3.7, and therefore outperforms

the NURBS model. Furthermore, the GP model outputs not only a prediction value but

also the variance of the prediction, as shown in Equation 3.8. A visualization of the perfor-

mance compared to the other two models is shown in Figure 3.8. The comparison between

the three models is discussed in the next section.

µz, σ
2
z = GP (x, y) (3.8)

Model Comparison

A 2D slice of the terrain model predictions is shown in Figure 3.9. The shape is generally

tracked by all three of the terrain models, but each model differs in accuracy and con-

sistency. The B-spline model tends to track training points too tightly, resulting in poor

predictions at more extreme jumps in terrain. The NURBS model lags behind the changes,
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Figure 3.8: Terrain Model Surface Visualizations on LA

resulting in a consistent error. However, the general shape of the environment is tracked

well, as shown in Figure 3.8. The average error per sample from two hundred thousand data

points at 1-meter resolution was 79, 42, and 32 for B-spline, NURBS, and GP, respectively.

The comparison of the models at a 10-meter resolution is shown in Table 3.3. While the B-

spline algorithm is much faster to compute, it results in a lower accuracy model, as may be

expected by its simplicity compared to the other two methods. The NURBS model shows

slightly better accuracy in this test case while computing significantly faster. However, the

Gaussian Process model’s direct modeling of the uncertainty through a probability distri-

bution makes it powerful. For this reason, the GP model is selected to use moving forward
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Table 3.3: Terrain Model Comparison

Resolution: 10 m (10x) B-Spline NURBS GP DEM
Error per sample to Truth @ 1m 79.27 41.92 32.73 0
Residual per sample in training 0.35 4.10 1.62 0
Computational Time to Train (s) 32.63 104.10 141.99 60.0 (load)

Query Time (s) (per 1000) 0.011 0.58 0.36 1.43 * 1000
Bayesian Outputs Sample residual Sample residual σ2 in Z 10 cm RMSE

Storage Size (kilobytes) 161 191 783 54,793

for terrain modeling.

Figure 3.9: 2D Slice of Terrain Models in X-Z

3.4.2 Structures

The other primary risk of collision or danger in the flight path is 3D structures and build-

ings. The positions of buildings in most urban metros have been mapped through commu-

nity sources like OpenStreetMap, but the data is often incomplete and lacks high-quality

standards. Some urban metros have Geo datahub sources with validated structure maps

that have quality standards for upkeep and distribution. The datasets are often provided in

Shapefile formats, which represent each structure with a polygon. The polygon approxi-

mates the shape of the building in the coordinate reference system selected by projecting
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the geometric object. A data pipeline is created to process these structure models and map

them onto the terrain model.

The 3D extrusion of the structures requires additional data. An assumption is made that

the structures extend in the z-axis together, even though many structures have angled or

tiered roofs. The elevation of the z-coordinate of each building is found by querying the

terrain model in Equation 3.9. The extension in the z-axis is found by using the height fea-

ture from the structure dataset, D, assuming the data is available as shown in Equation 3.10.

ẑ0 = τ(x, y) (3.9)

ẑi = τ(x, y) +D(i,′ height′) (3.10)

Building shapes are approximated to rectangular objects and then stored by the maxi-

mum latitude and longitude bounds. This can cause distortion to the polygon and add an

undefined buffer around each obstacle because of the orientation of the coordinate system

transformations and the principal axes. An improvement is made by aligning the structures

with the local coordinate axes and discretizing them into the desired resolution, as shown

in Figure 3.10. The height parameter, h, is used to scale the cell matching to the matching

structure and is constant for the polygon representing the structure. The resolution, r, mod-

ifies the number of cells to compute for each structure. The angle, λ, represents the shift

from the building’s principal axes to align to the grid. The r and λ values are selected from

an iteration of the threshold parameters discussed in the next section.

Similar to the terrain data, when searching for occupied positions in space, the use of

an efficient data structure can improve speed and accuracy. In particular, collision checks

against buildings repeatedly occur during planning, and the distance to structures and be-

tween structures may be solved thousands of times. A commonly used solution to this

problem is to leverage a K-d tree data structure or the k-nearest neighbors, KNN, algo-
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Figure 3.10: Building Discretization and Height Formation

Table 3.4: Comparison of Brute Force and K-Nearest-Neighbors search whether a position
is occupied in the map

Buildings for Collision Check Brute Force KNN (K=5)
1,358 8.06E-4 1.63E-4

135,800 9.06E-3 (100x) 3.26E-4 (2x)

rithm. This reduces the search to find the nearest objects from O(k ∗ n) to O(k ∗ log(n)).

In an experiment in the Manhattan area of New York City, a subset of 1,358 structures

demonstrated the speed increase between the brute force search and KNN approaches The

results shown in Table 3.4 confirm the theoretical improvement since log(100) = 2.

Structure Data Discretization

The structure representation can be approximated or reduced to improve speed and reduce

memory for searching for map obstructions. For example, consider the basic form of the al-

gorithm for searching for collisions along a given path in 3D space. First, each 3D position,

xi, is considered for a path with s positions and must find the closest of n obstacles using

a binary search. Then, the closest obstacle, or obstacles, ok are checked if they occupy the

space of the state xi. This results in a time complexity of O(s ∗ log(n) ∗ c). Other than

reducing the points or number of structures, which is a function of the planner and map,

the only other improvement is to speed up the time to check whether an obstacle causes a

collision, c. In other words, this is the time to check if position xi is occupied by an obsta-

cle ok. Therefore, if the obstacles are discretized too small, the number of checks becomes
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Table 3.5: Structure Discretization Experiment using Washington DC Boundary Zone

Inputs Outputs
Side Length (km) Threshold Count Area Ratio Overlap Ratio

1.0 0.90 152 0.851 0.849
2.0 0.60 42 0.957 0.892
0.5 0.95 676 0.922 0.921

a bottleneck in the algorithm. A demonstration of the shape discretization using the Wash-

ington DC boundary is detailed in Table 3.5 and Figure 3.11. Parameter selection is critical

to getting the correct accuracy while not requiring large amounts of cells. In the scale of

kilometers, the DC boundary can be filled up to about 85% with minimal overlap using 1

km length grid cells. These results are preferred compared to the additional area and large

amount of grid cells of the alternative input selections. However, alternative methods to

buffer the grid and align the data is available with external tools. Therefore, the Feature

Manipulation Engine, FME, Workbench tool [85] is used in the next section for verification

and examination of the structure mapping method.

Figure 3.11: Structure Discretization Experiment using Washington DC Boundary Zone

Verification and Validation

The FME Workbench is a model-based, graphical tool for analyzing 2D or 3D geospatial

data. The tool compiles data together in a graph and passes information through functions

for sorting and visualizing data based on 3D spatial data, class features, and metadata. The

pipeline for using FME is shown in Figure 3.35. A series of building approximation meth-
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ods are implemented and evaluated in FME to compare the accuracy and time for each

method while verifying the models and validating existing datasets. The validation data is

the cityGML model of New York City available from the City of New York Geo Datahub.

The results are shown in Figure 3.12, where the clear indication is that a bounding box

method increases the total volume of the map, resulting in a buffer around obstacles. The

volume error can be contained within 15% by using a 10-meter discretization. This varies

from the previous section, as the FME tool sets a low threshold value and maximizes the

coverage of the structure, causing a large buffer around the 3D object. The computational

time reduces significantly if a large discretization is used, for example, 20-meters. Exam-

ples of this through images is seen in Figure 3.13 and Figure 3.14. In addition, the volume

error and calculation time between the use of a bounding box and the rotated polygon of

the building objects is minimal and not a concern. The labels with ’BB’ indicate that a

rectangular bounding box was placed around the structure with the shape along the global

axes. The labels with ’City’ indicate that the structures directly from the city dataset were

discretized along the direction that best forms the square grid cells.

Figure 3.12: Changing Volume and Computational Time for Differential Structure Approx-
imations

Recent advancements in urban modeling include the standards of cityJSON and cityGML,

with tools and documentation primarily coming from Delft University of Technology (TU

Delft). The standardization and ease of use from available functions are exciting but are
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Figure 3.13: Bounding Box Buffer on Buildings and Terrain Validation

Figure 3.14: Discretization Impact on Buffer

more suited for future work. The current environment suffers from large files and program-

ming inconsistency with this work. For example, the New York City file is over 3 GB in

size, and there is no standard python package that can easily preprocess this file. There-

fore, the custom RUM framework outperforms the standards for this application. However,

the standards should be further investigated in the future and can be a great source for

verification and validation.

3.4.3 Weather

Previous explorations or wind mapping for simulated flights have mostly been for flow

over terrain without structures or for low-resolution climate models with structures. Urban

wind modeling is largely impacted by the buildings and structures, and thus often requires

Computational Fluid Dynamic, CFD, simulations to accurately represent the wind speed
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and direction in urban canyons and alleyways. Previous literature has successfully demon-

strated accurate urban wind maps using these techniques, but the algorithms and data sets

are computationally expensive and requires additional complex models to accurately model

the atmosphere and flow dynamics.

As a simplifying assumption, the wind in this work is treated as a constant wind field

with an added gust model to account for structures and aerial system movement. The

Global Wind Atlas1 is used for accessing data and exploring the temporal nature of wind.

The gust is modeled using the Dryden gust model that is affected by structures in the vicin-

ity. The model provides enough insight into smaller aerial systems while avoiding complex

urban map CFD runs. The Dryden model is used with an additional noise parameter for

the uncertainty from building gusts and weather changes. The Dryden model parameters,

L, and σ, seen in Equation 3.11, are computed offline over the map of interest, and the gust

model is queried when needed during the flight simulation as a random sampling, shown in

Equation 3.12. The total wind vector is the combination of the wind field and the stochastic

gust vector.

G(s) = σ

√
2L

πV

1 + 2
√
3L
s

(1 + 2L
V
s)2

U(s) (3.11)

W⃗V = W⃗F (x, y) +G(s) (3.12)

3.4.4 Summary and Results

The RUM methodology successfully creates 3D representations of urban environments us-

ing open-source datasets and efficient algorithms. The map is divided into four layers

including terrain and structures, and open-source data is sourced to rapidly form an accu-

rate map for use in planning algorithms. The RUM maps take between 20 seconds to five

minutes to form depending on the area and parameters selected. The B-spline, NURBS,

1https://globalwindatlas.info/
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and Gaussian Process models are compared for terrain modeling of a large-scale and moun-

tainous region in Los Angeles County. The Gaussian Process model is selected for having

the lowest error at a 10-meter resolution and for the usefulness with Bayesian outputs. The

Bayesian outputs will be used in Chapter 5. Structures are formed using open-source data,

mainly from Geo datahubs from the cities of interest. The data is optimized for storage and

collision checking using geospatial transformations and polygon fitting.

The environment is successfully used to find 3D collision-free paths. A 3D path is

found that explores New York City without colliding into structure or terrain models using

the RRT algorithm detailed in Chapter 4. The algorithm can explore down city corridors

with the blue dots representing nodes and the final path shown in green. More discussion

on the planner is featured in Chapter 4.

A summary of the different urban maps created using the RUM pipeline is shown in

Figure 3.15. The metropolitan areas of Los Angeles, New York City, and Atlanta are

selected to 3D maps capable of visualization and future planning work. For all the maps, a

structure discretization size of 20 meters is used, and the DEM is resampled to 10 meters.

A validation study is conducted in the Atlanta area. The Google Earth platform is used to

visualize geometric primitives, points, and lines. The Earth Engine and FME Workbench

are used to verify the software and validate the mapping of data to the RUM model.

The full pipeline summarizing the flow of data is seen in Figure 3.35. As a demonstra-

tion of the RUM pipeline, a portion of Atlanta, Georgia, is modeled and verified in the FME

software. The data for Atlanta is compiled from OpenStreetMap’s structure data and the

USGS 3D Elevation Program’s 1-meter Digital Elevation Model from OpenTopography2.

The map is seen in Figure 3.15 and Figure 3.16.

Now that a rapid urban map is formed from structure and terrain data, the question

remains of how the same methodology can be achieved when data is missing or when addi-

tional feature types of necessary for aerial situational awareness tasks. For example, open

2https://opentopography.org
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Figure 3.15: Rapid Urban Map Model Examples

source data is often missing the location of smaller structures or has inaccurate height data

for dense areas. Furthermore, the primary objective of situational awareness requires addi-

tional insight into the trajectory from land cover features. The following section explores

these methods of predicting urban map features to address this limitation.

3.5 Urban Map Updates

The urban map requires knowledge of the environment’s structures and other obstacles.

While terrain data is mostly consistent year-to-year, the locations of buildings and low-

altitude obstacles change, especially during times of economic growth. Therefore, there

is a gap in how to build rapid urban maps when there are outdated geospatial datasets.

For example, the city of Atlanta has grown rapidly in the past ten years, which has changed

both the terrain and building structures, as seen in Figure 3.17. New construction has begun,

with some new buildings being built and some buildings being torn down. There is a need

for a data-driven technique that can predict urban region labels, specifically structures and
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Figure 3.16: Rapid Urban Map Model of Atlanta, Georgia

low-altitude obstacles.

Many companies now rely on updated maps to provide customers with traffic informa-

tion or simulate navigation for future autonomous vehicles and there is an extensive market

for accessing these up-to-date 3D maps. This area of research has grown in recent years

with the growth of realistic video games and autonomous vehicle navigation. Companies

such as MAXAR3 are now devoted to providing digital twins of cities. These ”living cities”

or digital twins of urban regions are computationally expensive to create and, therefore,

costly to access. The assumption is made that the maps are too expensive for stakeholders,

and the level of detail is not necessary for the maps in this work. Furthermore, Monte Carlo

simulations require a fast, efficient tool that is not dependent on a large-scale digital twin.

Therefore, an alternative method is needed to supplement the data for the RUM method.

Landcover predictions or urban feature labels are needed to define the model. Two public

datasets predict the land cover across the United States. The USGS National Landcover

Database (NLCD) is a 30-meter resolution dataset that provides landcover classification la-

bels for the United States. The database leverages Landsat4 satellite multispectral data, and

3https://blog.maxar.com/earth-intelligence/2022/digital-twins-power-autonomous-navigation-with-
precision3d

4https://www.usgs.gov/landsat-missions
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Figure 3.17: Difference in Aerial Views of Atlanta (Westside and Midtown) circa 2015 to
2019 from NAIP imagery

the most recent release is in 2019. The dataset covers 20 different land cover classifications

and additional impervious labels. This level of disaggregation is not required for the rapid

urban map, though, and the 30-meter resolution fails to precisely detect individual features

like buildings. Furthermore, the database is only updated every 2-3 years and therefore is

missing changes in the environment, such as in Figure 3.17. The Google Dynamic World

landcover prediction, GDW is a 10-meter resolution near-real-time dataset that provides

9 class label probabilities. The predictions are generated from Sentinel-25 L1C images

with clouds filtered. The comparison between the labels are available in the Appendix in

Figure B.3. The dataset roughly provides the features of interest; however, the urban envi-

ronment is still defined by the labels of ”Built-up area” and ”Bare Ground,” which do not

include precise locations for structures in the environment. The resolution is successful for

creating informative maps but is less than desired for producing accurate urban maps for

5https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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planning and visualization. For example, Figure 3.18 shows the differences between the

maps of NLCD, GDW, and the custom labels from RUM that will be presented later in the

chapter. However, this comparison reveals that the detail and information provided by the

two other methods are much less than desired, specifically in an urban environment and for

this urban mapping task.

Figure 3.18: Comparison of Labels and Resolution of NLCD, GDW, and RUM Landcover
Mapping in Washington D.C.

In the last ten years since the Deep Learning Revolution restarted with ImageNet [86],

the field of deep learning for imagery has exploded. The capability of convolutional neural

networks was proven in the earlier years of Artificial Intelligence, AI, and the modern

computational resources and open-source software packages like Tensorflow and Pytorch

have led to rapid growth. Now, any student or researcher with a laptop can deploy and train

convolutional neural networks and more. Network architectures continue to improve with

models such as ResNet, UNet [87], and Pix2Pix [88]. The broad set of features detected

from the visual spectrum data is possible because of the rich features that are both semantic

and geometric [89], which eyes see as textures, depth, and color. The increased accessibility

of image datasets has improved training during the modern phase of the deep learning

revolution. In recent years, Andrew Ng has urged for a shift in focus for data-centric AI6,

as opposed to the previous model-centric approach. For these reasons, many works have

investigated deep learning applications and datasets for learning to predict environmental

features, as opposed to model architecture modifications.
6https://landing.ai/data-centric-ai/
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Convolutional neural networks, CNNs, are deep neural networks that leverage a spatial

relationship between nearby data samples. One of the key reasons that CNNs are used is

because of the use of convolution rather than matrix multiplication in their layers, as de-

tailed by Goodfellow in [90]. This is achieved using kernel multiplications (convolutions),

nonlinear activation functions, and pooling stages to form a CNN output. In addition, Back-

propagation is used for gradient-based parameter updates to speed up training, especially

when using graphical processing units, GPUs.

The assumption is made that the problem can be solved in part by supervised learning.

There exists a set of labels, y, that are assigned to data feature samples x̃, and a CNN

model f(x,w), defined by weights, w, is to be trained through a loss function J(y, ŷ) by

gradient-based weight updates.

3.5.1 Learning-based Map Updates with Aerial Imagery

Extensive work has investigated how to develop maps for urban environments with struc-

tures and other obstacles. For example, work by Wang et al. in [91] leveraged remote sens-

ing data to accurately characterized urban structures in 3D. In particular, Landsat imagery

and elevation data are used to build an urban map. Previous works have demonstrated the

ability to detect informative features from the environment using visual information from

bird’s-eye view data, such as satellite or aerial fly-over images. This data can be used to

detect objects [92] or classify the land cover of the environment [93]. It has been used for

applications, including road and infrastructure mapping [94], as well as flood mapping [95,

96]. Emergency response applications have used aerial imagery in the past for situational

awareness, whether to detect missing persons [97] or to monitor wildfires [98]. Various

methods do this, and pattern recognition techniques using machine learning are often dis-

cussed as classical computer vision. Modern-day research in this field often leverages deep

learning and convolutional neural networks because they are powerful at learning the crit-

ical features within a dataset of images. More details are available in Computer vision
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algorithms and applications [99] by Szeliski.

In recent years, Convolutional Neural Networks have become the standard for these

types of problems because of a few important features. CNNs leverage sparse interactions,

parameter sharing, and equivariant representations that allow for efficient learning, high-

dimensional latent spaces, and spatial relationships between features. Mathematically, the

CNN is efficient by using convolution as opposed to matrix multiplication and is robust

because the pooling layer promotes approximately invariant features from minor changes

to the input.

Figure 3.19: Previous Applications of the U-NET Architecture from [100] and [75]

Neupane et al. in [101] performed a review and meta-analysis of deep learning-based

semantic segmentation methods for detecting urban features in satellite images. This in-

cluded an extensive table documenting past frameworks, classes, models, and reported

performance metrics. This review formalized the knowledge that Deep Learning performs

well with aerial imagery and multi-label classification tasks. The convolutional neural net-

work models range from ResNet to VGG-16 to various takes on U-Net. Previous research

leveraged the U-Net architecture for detecting utility poles [100] and for classifying land-

ing zone risk [75] as shown in Figure 3.19. Neupane also introduced the case for leveraging

Generative Adversarial Networks, GAN, for high-resolution, multi-class feature learning.

One method applied a conditional GAN to Sentinel-2 imagery to classify water, develop-

ments, forests, grass, pastures, and cultivated labels [102]. Another example used high-
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resolution imagery from monocular satellites to detect the classes trees, buildings, mixture,

and pagodas. The network succeeded after optimizing the parameters [103]. In SatGAN,

the Pix2Pix cGAN was used, but with modifications to the loss with a perceptual recon-

struction loss metric [104]. This can be compared to similar applications where a CNN is

used for building, grassland, dense vegetation, waterbody, barren land, road, and shadow;

however, the result is dependent on patch size [105], a problem that GANs do not have.

A GAN is a CNN architecture that takes a Bayesian modeling approach and assumes

the problem to be an image-to-image translation. The development of GANs is based

on the game theoretic idea and features two networks, the generator and discriminator,

competing in performance during training [90]. Conditional GANs, cGANs, seek to learn

a conditional distribution p(x|y) as opposed to the marginal distribution p(x). For this and

many other reasons, the GAN is flexible to the input and output data as long as it is treated

as an image-to-image translation problem and the data distributions are similar. This has

caused the architecture to be used both for classification and style transfer. More recently,

the GAN has been used for image-to-image translation of aerial imagery. Therefore, this

works seeks to investigate the use of cGANs for urban landcover prediction with a custom

dataset.

Data Selection

High-resolution aerial imagery is difficult to access without special privileges or by paying

for services. In recent years, many companies and nations have increased the resolution and

frequency of satellite imagery. Some commercial imaging satellites provide high-resolution

imagery, such as Worldview-3 by Digital Globe7. However, the cost of this data makes it in-

feasible for this research. For example, if the entire region of Washington DC was required,

then the total cost for the 179 km2 would be approximately $2,506. At the estimated rate

of $14 per km2, the entire United States would be over $100 million. More information on

7http://worldview3.digitalglobe.com/
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Table 3.6: Aerial Dataset Options

Data Resolution Accessibility Scale

Geo Data Hubs Mostly visual spectrum From 3 inches to 1 meter
Dependent on providers

(ex. DC collected every 6-7 years)
Limited locations,
ex. DC, Vermont

Copernicus Sentinel-2
13 spectral bands: visible and NIR at 10 meters,

red edge and SWIR at 20 meters,
and atmospheric bands at 60 meters resolution

Global 5-day revisit frequency

LANDSAT-8 Eleven bands 30-meter Global two-week revisit frequency

NAIP Red, Green, Blue, Infrared 1-meter
Three-year cycle during

agricultural growing season Continental United States

the cost of satellite imagery is available from LandInfo8. An overview of the aerial dataset

options that are available at no cost is provided in Table 3.6. The NAIP imagery source is

used for this research since it provides a limited set of inputs and an above-average reso-

lution, at 1-meter, that should be available from other sources for humanitarian or national

security applications.

3.5.2 Approach to Urban Labeling

The assumption has been that open-source data is used, primarily from Geo Data hubs.

Since this data was generated in the past, it is not 100% accurate and will not be avail-

able over the entire region of interest for every class. In other words, the labeled data for

supervised learning that is available has limitations in quantity, quality, and resolution.

A deep learning approach is selected because of deep neural networks’ ability to un-

derstand and classify visual and multispectral data. Networks can perform efficiently even

when there are many features and large amounts of data. Since the dataset is limited and

may contain classifications that have not been validated, the choice is made to use a Con-

ditional GAN, or Generative Adversarial Network. The model architecture is selected to

be the Pix2Pix [88] conditional GAN with the proven U-Net encoder-decoder for semantic

segmentation. Semantic segmentation allows classifications for each pixel and is, there-

fore, able to localize and distinguish borders. The Pix2Pix process, shown in Figure 3.20,

requires a generator and a discriminator network, or an encoder-decoder network. The

Pix2Pix model in this work made use of a modified U-Net [87] for the generator, and the

8https://landinfo.com/
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original PatchGAN classifier detailed in the Pix2Pix paper [88].

Figure 3.20: Pix2Pix Model

Process and Tools

The resolution of the predictions and the large-scale areas of interest results in computa-

tionally expensive datasets. Therefore, the Google Cloud ecosystem is selected to host the

majority of the data management responsibilities. This also demonstrates that anybody is

capable of performing similar analyses with a simple laptop and internet connection. The

Google infrastructure provides many tools that are useful for the following research. The

Google infrastructure is utilized primarily because of the access to geospatial data analysis

with Earth Engine, GPUs through Google Colab, and data storage through Google Drive.

The full suite of tools is seen in Figure 3.21 which shows the flow of data through the

software. TensorFlow is utilized for machine learning and neural network training. It is a

Python library set up well to work with the Google pipeline of data and training. Tensor-

Flow leverages automatic differentiation using symbolic derivatives to solve the backprop-

agation updates quickly, particularly on GPUs. Furthermore, it has direct access to storage

tools like Google Drive and Google Buckets, removing any local data passing step.
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Figure 3.21: Process and Tools used for Storage, Prediction, and Visualization

Data and Model Preparation

Data is sourced from open-source Geo Datahubs like the Washington DC Open Dataset9.

A mix of raster and vector data is transferred to the Google Earth Engine cloud, where

cloud servers perform reprojection, rasterization, and resampling. The data is compiled

into a training dataset using FeatureCollection objects in Google Earth Engine and then

converted to TFRecord Tensorflow data structures.

The input channels for an image-to-image translation are generally the red, green, and

blue, RGB, labels of a visual spectrum image. This work leverages these inputs as well

as infrared and relative elevation change data. The visual spectrum channels are accessed

through the National Agriculture Imagery Program, NAIP, dataset. While the data is only

updated every three years, the assumption is made that similar datasets can be acquired

by scouting missions or from paid-satellite datasets. Elevation data is accessed from the

USGS 1-meter resolution Digital Elevation Model (DEM). This totals five input channels

and three output labels that map to nine total classes, detailed in the next section. All the

data is resampled to a 1-meter resolution. The data is selected from three zones of interest

9https://opendata.dc.gov/
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Table 3.7: Geometric Information of Data Zones for Training and Evaluating Network

Area km2 Zone Coordinates Location

54.93

[-74.02338505859373, 40.77270079459629],
[-74.02338505859373, 40.71339424172864],
[-73.92450810546873, 40.71339424172864],
[-73.92450810546873, 40.77270079459629]

New York City

23.80

[-76.99174342918374, 38.915923048582165],
[-76.99174342918374, 38.9034336851992],
[-76.97191654014566, 38.9034336851992],

[-76.97191654014566, 38.915923048582165]

Washington DC

64.70

[-80.46629978204919, 25.905113119924145],
[-80.46629978204919, 25.72833302279588],
[-80.137396583807, 25.72833302279588],
[-80.137396583807, 25.905113119924145]

Miami

22.05

[-84.43555103393705, 33.807222834172975],
[-84.43555103393705, 33.77012946510827],
[-84.37770114990384, 33.77012946510827],
[-84.37770114990384, 33.807222834172975]

Atlanta

that are documented in Table 3.7.

The data labels for Washington DC are seen in Figure 3.22 and include labels for struc-

tures, greenspaces, roads, parking lots, sidewalks, water, trees, and poles. The classifica-

tions are selected based on a combination of rapid urban map need, datahub availability,

and predicted influence in spatial relationships. A rasterized image of the training data is

shown for verification. The urban feature labels are mapped to red, green, blue (RGB)

values. The mapping to this 3-dimensional latent feature space is hypothesized to improve

training in this problem since previous investigations showed promising results, as in [48].

Later, the results are compared for both RGB labels and one-hot encodings for a subset of

the nine classes.

Insight can be gained for visualization of the distribution of labels and channels of

the training data. The distribution of the input channels and the output classes for the

Washington DC zone is shown in Figure 3.23 and Figure 3.24. Note that the elevation

data is shifted far to the left since the location selected was near sea level and mostly

flat. The visual spectrum channels exist mostly between 80 and 220. In Figure 3.24 the

distribution of labels has been converted into the respective classes. It is clear that there
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Figure 3.22: Urban Cover Labels for DC Area

are a lot of unknown/background labels. However, for individual 256x256 patches, the

unknown pixels are distributed throughout, as is shown in later examples. Furthermore,

some patches will be filtered if the number of unknown pixels is high. The channel and

class histograms for NYC are found in Figure 3.25, Figure 3.26 and for Miami are found in

Figure 3.27, Figure 3.28. Through the combined datasets, there is good coverage for both

the input channels and the output labels. It is expected that a large portion of the United

States would fall into a distribution similar to these three datasets.

The data is divided into subsets to keep data for tracking the training progress and eval-

uating the generalized performance. 90% of data is used, with the 10% left out for further

verification in later chapters. Of the remaining data, 80% is used for training, 10% for

evaluation, and 10% for testing performance. That data is divided into smaller samples

and optimized for training with TensorFlow using TFRecord files. Data is randomly sam-

pled from the three dataset zones from Table 3.7. The data is accessed from a Google

EarthEngine ImageCollection object and converted into the target, label TFRecord files for
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Figure 3.23: DC Channels

Figure 3.24: DC Classes

Figure 3.25: NYC Channels
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Figure 3.26: NYC Classes

Figure 3.27: Miami Channels

Figure 3.28: Miami Classes
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training. First, the data is converted into height, width, and channel (H,W,C) dimensions,

then the image is resized to 286 x 286 and randomly cropped back to 256 x 256. This adds

random jitter to the dataset as documented in similar tasks. The image is normalized, with

the channels (R,G,B,N) converted from bytes in (0,255) to (-1,1). The elevation channel

is normalized in each batch using the minimum elevation, emin, value, with the range con-

verted from (emin, emin+100) to (-1, 1). The class labels are normalized to the range (-1, 1).

Next, 50% of the data and labels are mirrored for data augmentation. Lastly, poor samples

are filtered out for the two cases where a majority of the 256 x 256 image is background or

water. A ratio of 40% is used for the filtering decision.

The Pix2Pix architecture is extensively detailed in the original paper [88]. The gener-

ator is the U-Net architecture originally developed in [87] with slight modifications. The

U-Net model is built from a downsampling encoder and an upsampling decoder, thus giv-

ing it the ”U” name. The discriminator is the PatchGAN classifier, similar to the one from

[106]. The PatchGAN discriminator attempts to classify if a 30 x 30 patch of an image

sample is real or not real. It attempts this task on both a real, or target, image and a fake, or

generated, image. This promotes the competitive nature of the generator to improve until

the discriminator cannot tell the difference between a real or generated label. The generator

and discriminator models, as produced by TensorFlow, are seen in Figure B.1.

Training the Pix2Pix

The training process involves 256x256 pixel patches at a 1-meter resolution, meaning each

patch is 256 squared meters in area. The CNN kernel remains at a 256 size as well, and

the dataset is compiled with a batch size of 1, as recommended in the original Pix2Pix

paper. The discriminator overwhelms the generator in a few training epochs if a larger

batch size is used. The loss function from the Pix2Pix paper is used, which includes both

generator and discriminator loss functions. The generator loss function is a combination

of a min-max optimization function seeking the minimize the generator loss and maximize
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the discriminator loss, seen in Equation 3.14. A sigmoid cross-entropy loss or binary cross

entropy is used to learn the weights, and is seen in Equation 3.13. The multi-label cross-

entropy for label x is summed over all labels for binary cross entropy.

B(x)multi =
∑
x

{−(p(x) ∗ log(q(x) + (1− p(x)) ∗ log(1− q(x))} (3.13)

G∗ = argmin
G

max
D
LcGAN(G,D) + λLL1(G) (3.14)

The discriminator loss function also leverages a binary cross entropy over the output.

This includes both a real loss and generated loss, from the real images and the generated

images respectively. For both the generator and discriminator, the Adam optimizer is used

because of past proof of the success of the algorithm. Adam is a first-order gradient-based

optimization algorithm that improves stability and convergence through adaptive estimates

of lower-order moments.

Google Colab provides GPUs that are highly capable of learning tasks. The Tesla P100,

with a CUDA GPU Compute10 capability of 6.0 with 16 GB of RAM is used for train-

ing. The cloud architecture is leveraged for efficient training and uses consistent storing of

checkpoints of the architecture weights. The discriminator loss, generator loss, and sub-

components of GAN and L1 loss are computed over the evaluation dataset and tracked

over training time to check performance and stability. The goal when training GANs is to

balance the Discriminator and Generator training loss. In other words, neither should be

winning the game. The target should generally be 0.69 for each, representing a log(2) like-

lihood or perplexity of 2. This means that the discriminator is equally uncertain whether

the image is fake or real.

The results from the trained model are seen in Figure 3.29 and confirm the success in

10developer.nvidia.com/cuda-gpus

71



learning the output distributions that match the ground truth labels. For one, the distinction

between the background and structures, as well as between greenery and water, is success-

ful. On the one hand, the training for this network failed to find the pole locations, as

shown in the second row, second column. However, correct labels of the core classes like

water are predicted even when the training dataset is lacking from the water predictions.

Therefore, the GAN is performing as expected and forming a good output that matches the

distribution of the input data even under noisy labels.

Figure 3.29: Results for Pix2Pix Model on Prediction Data using RGB Encoding

Care must be taken when training the Pix2Pix on a noisy dataset. For example, if

training is allowed to continue for too long, then the discriminator will become an expert at

predicting whether an image is real or fake. An overtrained discriminator limits the GANs

capability and can cause instability in training. Therefore, improvements in the dataset

or additional tricks during training should be investigated for improvements, and this is

discussed further in the conclusion.

Evaluating the Pix2Pix

After the Pix2Pix has been trained, the three-channel encoding of the classes in the RGB

structure must be mapped to the class labels. This provides some flexibility in class predic-
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Table 3.8: Class Levels

Label Encodings Label Names

Level 1
[[0,255,0], [0,0,255],[128,128,128],[90,90,90],

[125,125,125],[155,0,155],[0,120,10],[205,255,0], [0,0,0]]
[[’parks’,’water’,’parking’,’sidewalk’,

’roads’,’buildings’,’trees’,’poles’, ’unknown’]
Level 2 [[0,255,0], [0,0,255],[125,125,125],[155,0,155], [0,0,0]] [’greenery’,’water’,’concrete’,’buildings’, ’unknown’]

tion since the outputs are in a higher-dimensional feature embedding space. A visualization

of the idea is shown in Figure 3.30. The labels can be selected by using a distance-based

metric. For example, consider the case of a single sample compared to three classes, the

purple, red, and blue crosses. Take the L2 distances to each class to be [1, 8, 7]. Three

techniques could be used for the evaluation of the encoding to class. First, the closest label

could be selected, resulting in a one-hot encoding of [1, 0, 0]. Second, a distance-based

likelihood metric could be used such as 1/di
1/

∑
j dj

, which results in likelihoods of [0.79, 0.11,

0.9]. Lastly, the softmax function could be used to apply a normalized exponential function

and produce likelihood metrics for each class through the function σ(zi) = ezi∑
j e

zj where

zi = 1/xi. This results in likelihoods of [0.54, 0.22, 0.23]. The following results use the

distance-based likelihood metric since it is the simplest to visualize. The mapping from

encoding space to the 1-dimensional class space is shown with the two class levels defined

for experiments, seen in Table 3.8.

Figure 3.30: Mapping RGB Embedded Labels to Classes

Four quantitative evaluation metrics are used, seen in Table 3.9. Each evaluation metric
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Table 3.9: Evaluation Metrics for Semantic Segmentation Predictions

Evaluation Metric Evaluation Calculation
Pixel mean-square error (1/n)(1/m)

∑n
i=1

∑m
j=1(Y (i, j)− Ŷ (i, j))2

Pixel Accuracy TPi + TNi/(TPi + TNi + FPi + FNi)
F-score 2 × precision x recall / (precision + recall)
Mean Intersection-Over-Union TPi/(TPi + FPi + FNi)

Table 3.10: Prediction Set Performance Metrics for Level-1 Classes with RGB Labels

Parks Water Parking Sidewalk Road Bulding Tree Pole Unknown
Per Class Pixel Accuracy 89.69 83.80 0.00 0.50 55.40 83.89 0.27 0.01 55.88

F1 Score 0.86 0.85 0.00 0.00 0.65 0.80 0.00 0.00 0.58
IoU Score 0.91 0.98 0.97 0.99 0.90 0.84 0.99 0.99 0.78

has pros and cons in its use. For example, The F-score is not good at comparing between

different methods. At the same time, the mean squared error is not informative about the

ability to generalize to other datasets, as explained in [88]. All three metrics are used in the

results, and successful models are expected to perform well across all three metrics.

3.5.3 Network Performance

The results after training for over 200,000 epochs are seen in Figure 3.29. The model

can successfully predict buildings and parks, the core classes for urban mapping. The

performance metrics for pixel accuracy, F1 and IOU scores are in Table 3.10. The IOU

score and F1 score hover around 80%, showing a quality output over a dataset with a

similar distribution to the training data.

Performance in the smaller classes, such as tree or pole, is unsuccessful. This is ex-

pected since the majority of these classes were only available in the Washington DC dataset.

The RGB encoding allows the number of classes to be reduced by simply remapping the

Table 3.11: Pix2Pix RGB to 5 Labels Confusion Matrix Values

Numbers x 106 Greenery Water Concrete Structures Unknown
True Positives 19.0 27.0 23.7 18.0 19.7
False Positives 1.78 0.21 0.88 1.70 2.09
False Negatives 0.39 0.18 1.18 1.70 3.26
True Negative 7.32 1.13 2.8 7.10 3.50
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Table 3.12: Evaluation Metrics for RGB Output Pix2Pix Model for Level 2 Classes (5
Labels)

Greenery Water Concrete Structures Unknown
Per Class Pixel Accuracy 94.95 86.39 70.14 81.13 51.73

F1 Score 0.87 0.85 0.73 0.81 0.57
IoU Score 0.90 0.99 0.92 0.84 0.79

Pix2Pix outputs to new a new set of labels. For example, the labels can be reduced to

the five key classes where the network has shown success. The classes are selected for

parks, water, roads, buildings, and unknown, and classified as greenery, water, concrete,

structures, and unknown. The results after training for the same number of epochs as the

previous model are seen in Figure B.2, and the evaluation metrics are detailed in Table 3.12.

The results improve the performance of greenery, water, and concrete, while resulting in

small changes in structures and unknown labels. Since these are the classes that performed

well in the 9-class predictions, the results are expected. For example, the training data

samples can be visualized in the RGB encoding space with the 9- and 5-class labels. In

Figure 3.31, samples from the training data on the right is shown in a 3D plot and compared

in L2 distance to each of the nine classes. Then, four of the five level-2 classes are shown

forming groups with samples in regions of the 3D space. The results show issues with

water predictions, which are actually building shadows. Some samples exist in the color

space between water, concrete, and structures, which potentially could indicate a new class

related to shadows. The approach could provide insight into unknown classes by using

clustering algorithms to find new, untrained classes, but this is left for future work.

Comparison to One-hot Encoding

The hypothesis that the RGB encoding improves results is proven true by the experiment.

The Pix2Pix model and data are reconfigured by altering the three channels for the train-

ing data to have five channels for five unique classes in a one-hot encoding. The Pix2Pix

model is modified to output the likelihood of each class. The five level-2 classes are se-
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Figure 3.31: Mapping Samples of Test Data to Classes in the RGB Encoding Space

lected in place of the nine level-1 classes to reduce the computational load for training.

Table 3.13 details the results, where performance is reduced as compared to the RGB en-

coding training. The important classes of greenery and concrete see over a 50% reduction

in pixel accuracy, while structures and unknown see about a 50% reduction as well. Struc-

ture predictions from the one-hot encoding training have a decent F1 and IOU score, but the

reduction in accuracy is clear from examining the visualization of the results. The outputs

are less precise, with structure predictions having less detailed borders. Furthermore, the

one-hot encoding causes a failure to predict the unknown class. This could be fixed by first

reducing the filtering done before training, where large portions of unknown labels were

removed. Alternatively, the model could ignore the unknown channel and take the softmax

of the other channels’ predictions. By setting a prediction threshold, any predictions with

a likelihood less than the threshold on all classes would fall into the unknown class. It is

expected that this would improve the unknown predictions and the other classes. However,

the performance cannot improve enough to match the RGB encoding model’s accuracy.

More data and additional tracking tricks are expected to improve both models. The hypoth-
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Table 3.13: Evaluation Metrics for 5-Channel One-hot Encoding Output Pix2Pix Model
for Level 2 Classes (5 Labels)

Greenery Water Concrete Structures Unknown
Per Class Pixel Accuracy 6.36 74.98 18.39 48.56 0.00

F1 Score 0.12 0.51 0.29 0.62 0.00
IoU Score 0.49 0.86 0.89 0.82 0.39

esis is confirmed and shows that training a GAN on noisy datasets with limited accuracy

can be improved by mapping to a lower-dimensional feature space instead of training many

channels in a traditional one-hot encoding method.

Comparison to Benchmarks

A comparison between the classes of NLCD and Google DW is shown in Figure B.3.

This mapping can be used to directly compare labels of the truth and prediction labels to

gain insight into the information from each. The comparison between the predictions is

visualized in Figure 3.32 and color legend information can be found on the data sources in

Google Earth Engine11. The results show improvements that are evident in the resolution

and detail of predictions. The Pix2Pix predictions are 30 times the resolution of NLCD

and ten times the resolution of GDW. NLCD and GDW are unable to provide detailed

structures, and the GDW shows incorrect greenery and water predictions in the Atlanta

data. The areas where the benchmarks perform well are with precise greenery from NLCD

and detailed road types from NLCD’s impervious classes. In general, the large number of

classes the two benchmarks are able to predict is powerful but more useful for large-scale

analysis or more general landcover maps.

3.5.4 Results

The output of the Pix2Pix network is an image of labeled pixels, which must be transformed

into vector objects for efficient storage and use in the RUM framework. Each pixel must

be matched and shaped into polygons to speed up any spatial calculations and for faster
11https://developers.google.com/earth-engine/datasets
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Figure 3.32: Comparison of labels for NLCD (top left), Impervious Labels for NLCD (top
right), Google Dynamic World (bottom left), and Custom RUM Labels (bottom right)

visualization. Traditionally, the solution to this problem is called vectorization, or image

tracing. Image tracing is often referenced for applications such as converting JPEG images

to SVG graphic files. At the same time, vectorization is often the name for converting

large spatial datasets from raster to vector files. The simplest method is to track continuous

paths of pixels that match the same class and then fit with one or more polygons. If the

pixels do not have clear boundaries, then clustering may be needed before vectorization, as

demonstrated in work by the author in [75].

The total pipeline is now demonstrated for the Atlanta area of interest from Figure 3.1

and is compared to the previous RUM model in the FME workbench. The FME city map

model using the Pix2Pix feature labels with the 3D buildings extruded from the structures

label is seen in Figure 3.33. The height of the discretized building polygons is approximated

using the nearest height value in the open-source structure dataset. The colored labels in

the FME model come from the Pix2Pix predictions, which can be understood better using
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a histogram of predictions in Figure 3.34.

Figure 3.33: Atlanta Model for 3D Structures and Urban Feature Labels in FME Software

Figure 3.34: Atlanta 5 Channel Predictions Histogram

3.6 Summary and Future Work

A rapid urban map method named RUM is demonstrated to successfully represent a re-

gion of a city using open-source or predicted datasets. Open-source data is collected and

transformed into an efficient storage and query source for trajectory planning in 3D. The

accuracy of the maps is within the minimum bounds if a discretization is selected with

a high threshold and small cell size for the structures or if buffers for the bounding box

are allowed, which results in 60% more volume, but fully encapsulates structures 99% on
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average. The terrain is modeled with the NURBS or Gaussian Process since they show

improvements on the simpler B-spline model for mountainous terrain. GP has the smallest

average error and provides the unique capability of Bayesian outputs. The building, terrain,

and weather models are also constrained by parameters that are controlled by computational

limitations.

If data is missing then the Pix2Pix GAN is able to predict with aerial or satellite im-

agery, which is converted into the same format and used in the same framework. Further-

more, additional features are available to identify key areas or risky flight paths. Structure

prediction was successful with scores of about 0.80 for pixel accuracy, F1, and IOU score,

while additional features such as greenspaces, water areas, and roads scored just below this

level. The FME Workbench tool is used for verification of the structure models, the terrain

matching, and the urban landcover prediction labels. Visual verification and validation with

a cityGML model of New York City confirm success in urban map model, which is seen in

Figure 3.35. The 3D urban map models are now available for subsequent experiments and

the following chapters address how to plan trajectories within these urban maps.

Figure 3.35: Pipeline for Evaluation of Urban Map Model using FME Benchmark

Future additions to the RUM framework include improved training for the Pix2Pix

model, fusing additional data, and taking up the cityJSON standard. Pix2Pix training is-

sues include non-convergence, where the models do not converge, mode collapse, where
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the generator produces limited modes, and slow training, where the gradient to train the

generator vanishes. One solution is to use instance noise, or regularization [107] to im-

prove. Suppose the real data distribution, P , and the data distribution of the generative

model, Q are not overlapping well. In that case, the discriminator can start to predict real

vs. fake perfectly. This leads to instabilities in training as the generator cannot change

weights productively to beat the discriminator. One solution to this is to add a Gaussian

model of instance noise. This is expected to expand the real and generated distributions

to achieve significant overlap between the two. As expected, the noise should make the

discriminator’s job harder and make it more difficult to predict real and fake. In [107],

Roth shows that the same effect can be achieved by regularizing the norm of discriminator

gradients instead of adding noise to samples directly. There are even more advancements

for improving cGANs other than convergence modifications, such as adding a dual-branch

structure, as explained by Liu et al. in [108]. In addition, more training in new and unique

distributions of input and output data will improve generalized performance. There exists

additional data for each of the training locations that could be labeled or validated, and

more data is easily accessible through verified OpenStreetMap datasets or from other Geo

Datahubs like Los Angeles, Denver, and Houston. In addition, future work should leverage

the cityJSON and cityGML standards for benchmarking and model comparisons. Then,

future validation and verification could be improved by leveraging tools for CityGML or

CityJSON like va3lidity and 3d-building-metrics.
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4

EFFICIENT THREE-DIMENSIONAL OFFLINE KINODYNAMIC PLANNING

4.1 Introduction

Aerial system trajectory planning has advanced rapidly in the past 20 years from the in-

creased availability, applicability, and reliability. As mentioned in earlier chapters, there

is an extensive list of algorithms to solve the trajectory problem. The accuracy, mission

type, and objectives are factors in the choice of an algorithm. For example, the rocket

landing problem, successfully demonstrated by SpaceX, has been solved mostly through

convex optimization problems derived specifically for rocket dynamics during landing. The

convexification of the problem, as detailed in [45], is key to the modern-day success.

In this work, the goal is to find optimal trajectories through the use of an offline planner

that can provide insight into how aerial systems can respond to disaster scenarios. Disaster

response missions require aerial systems to maneuver through the complex environment to

collect data and provide situational awareness for first responders. Aerial systems’ capabil-

ity to provide situational awareness has been proven in the past by piloted demonstrations

and autonomous research experiments. However, specific insights into the system capabil-

ity and performance are needed to maximize mission success and first responder safety.

This chapter focuses on the kinodynamic planner in low-altitude, 3D environments.

First, an argument is made for the Stable-Sparse RRT algorithm. Next, the algorithm is

put to the test against the kinodynamic version of RRT with multiple generated maps and

using a quadcopter dynamics model with four control inputs sampled for open-loop control.

The SST algorithm is then investigated for the best performance for the maps created from

Chapter 3. The algorithm is evaluated over multiple urban maps and with external wind

and internal noise parameters. The computational requirements of the dynamics model are
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investigated and an improved method for small-scale maps is demonstrated.

Trajectory Planning Background

Consider a system modeled with continuous dynamics that is defined by differential equa-

tions, with vector variables for the state, x, and control, u, a scalar variable for time, t, and

differential equations for the state evolution f(x, u, t). The state and control are bounded

by the state space X and control space U. An accurate model of the system may require

a high-dimensional representation of each space, either through a discrete or continuous

domain, the latter of which is represented in Equation 4.1.

ẋ(t) = f(x(t), u(t)), x(t) ∈ X, u(t) ∈ U (4.1)

The first target is to determine whether a feasible path or trajectory exists at all. For a

feasible path to exist, there must be a set of controls u0 to uk or a control policy u(t) that

takes the system from the initial position, x0, to a position in the goal set, Xgoal. The set of

controls that achieve this is shown in Equation 4.2.

{(u0, ..., uk) ∈ U | x(t) =
∫ t

0

f(x(τ), u(τ))dτ ∈ Xgoal} (4.2)

A feasible path is defined as the set of controls and states that can be achieved from

the initial state of the system to the goal state. An additional constraint is the avoidance of

obstacles guaranteeing a collision-free path. The environment, Q, is defined by geometric

primitives or collision functions in R3 space. A map can be discretized during planning

to consider each obstacle, oi, for collision checks. In simple terms, a collision check is

a function that compares the current and future states of the system and determines if the

system will touch one or more obstacles.

A trajectory path that exists is defined as σ(t). An additional parameter of a trajectory

path is that the states x(t) must not enter the space of obstacles, Xobs, and the controls u(t)
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must stay in the bounds of feasible control inputs, Ufeasible.

σ(t) =

∫ t=tf

t=0

f(x(t), u(t))dt

The motion planning problem seeks to find a set of actions, or controls, to move from

one configuration to another. This depends on the model for both the system, x, the envi-

ronment, Q, and the controls, u. An optimal path must meet all the previous constraints

of feasibility and collision-free paths while extending this to comparing all possible paths

with a single cost function, J(x(t), u(t), f(x, u, t)). The optimal path, σ∗, is guaranteed to

be better than all other paths for a given cost function, as defined in Equation 4.3.

σ∗(t) = argminu(t)

∫ t=tf

t=0

J(x(t), u(t), f(x, u, t))dt (4.3)

The cost function or objective function, named by pessimists and optimists respectively,

evaluates a trajectory through the state, control, or other temporal parameters that are stored

along the trajectory. An initial approach the the trajectory problem commonly uses the

ℓ2 − norm or L2 vector norm. Also used for euclidean distance calculations, the L2 norm

is calculated over the length of the vector by Equation 4.4, where x is the vector connecting

two points x1 and x2 and d(x1, x2) is the euclidean distance formula.

∥x∥ =

√√√√ n∑
k=1

|xk|2 ∝ d(x1, x2) =

√√√√ n∑
k=1

(xi1 − xi2)2) (4.4)

More advanced cost functions measure differences directly in the control variables or

other metrics related to energy, time, or mission performance. Aerial system trajectory

planning most often looks to optimize on one or more of these metrics, as will be introduced

later in the chapter.
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Aerial Flight Planning

A flight trajectory generated for disaster response must meet specific standards, as dis-

cussed in the previous section. These can be thought of as constraints in the optimization

problem. For one, the flight must be feasible for the dynamic system to achieve. For exam-

ple, consider the energy of the aerial system during flight. The available expendable energy

from a Lithium-Polymer battery on standard unmanned aerial systems is limited, and the

exact value may not be known. Next, the path should be optimal upon arrival at the goal

location. The goal may be defined as a region with a bound around it to ensure success

even when an exact state cannot be achieved with an acceptable error.

Optimality is a subjective factor that may change based on the mission or stakeholder.

Examples include time, distance, energy, and safety. These metrics must be easily calcu-

lated, given the trajectory search algorithm. In addition, the solution of one or more paths

must meet the computational requirements. This may lead to limits on the computational

time, which would prioritize the finite-time performance of the algorithm.

Approaches that simplify the dynamics and solve the constrained optimization problem

have been implemented in the past, such as work by Cinar in [109]. In addition, alternative

methods that look to simplify the approximate the system along a finite horizon problem at

discrete time steps is seen by Lee in [110]. The issue remains that the high-dimensionality

of the state and control space of the vehicle, the nonlinearities in constraints and objective

functions, and the coupled differential equations make the optimization problem complex.

The problem cannot be guaranteed to have a solution without applying linearization and

convexification to reduce the problem to a convex optimization problem. Therefore, alter-

native solutions are preferred, as further explained in the aerial trajectory planning litera-

ture.

There are many algorithms to solve trajectory or motion planning problems, such as

optimization-based methods, grid-based methods, and sampling-based methods. For ex-

ample, previous work in [75] and [49] examined different planning algorithms in an urban
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environment at a predefined altitude. This work features high-dimensional dynamic sys-

tems that must plan trajectories in large, 3D, crowded maps with uncertainty included. Four

key criteria are used to select the best set of algorithms to use for planning.

4.1.1 Algorithm Selection

Four criteria of interest are investigated to determine the best approach to the problem. For

one, the algorithm must be capable of both soft and hard constraints. For example, the

avoidance of obstacles must be a hard constraint to prevent any collisions, but the con-

straint on the distance to the goal target for a path should be soft, therefore less restrictive.

Two, the approach must handle high-dimensional, nonlinear black-box dynamic functions

and environmental uncertainty. Many algorithms require approximations of the dynamics

and uncertainty to be able to for probabilistic solutions. Third, the algorithm needs to be

successful in finite-time performance, where paths are smooth and are able to be reused or

improved in the future. This work is not focused on real-time planning, but the speed of

the offline planner is critical for Monte Carlo simulation speed. Lastly, access to optimal

solutions, albeit in infinite time, is necessary for confidence in the planner and use under

challenging problems. Sampling-based planners have proven successful in the past in these

areas as discussed in Chapter 2 and are selected for investigation.

4.2 Background

Sampling-based methods leverage a stochastic technique and can guarantee completion

and optimality with particular algorithms such as probabilistic roadmaps or Rapidly ex-

ploring Random Tree (RRT) [111]. Completion and optimality are important for a plan-

ning algorithm as they ensure continued improvement over wall-clock time and guarantee

an eventual solution if one exists. Probabilistic completeness guarantees that over infinite

iterations, the planner will find a solution if one exists. If all possible paths are Σ, the

probability that a feasible path, σ, exists for the state space, start, and goal at iteration, n, is
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equal to 1, as seen in Equation 4.5.

lim
n−→∞

P(σ ∈ Σ(X, x0, xg,U, n)) = (1 | Σ(X, x0, xg,U) ̸= ∅) (4.5)

Asymptotic optimality goes further and says that over infinite iterations, the best path

will be optimal. The cost function is evaluated over a trajectory path, such that it takes in

the set of states and outputs a scalar quantity that can be used as a measure to minimize

or maximize as seen in Equation 4.6. Therefore, over an infinite set of trajectories found

over infinite iterations, the best path at iteration n, σn, will be the best optimal path, σ∗, as

shown in Equation 4.8.

J(σn(t)) =

∫ tf

t=0

c(x(t), u(t), t)dt (4.6)

J(σ∗) ≤ J(σn) ∀ n (4.7)

P ( lim
n−→∞

σn == σ∗) = 1 (4.8)

Some algorithms meet the standard of asymptotic near optimality, which is a less re-

strictive property saying that the optimal trajectory, σ∗, will be within some bound, ∆opt,

to the best trajectory found over infinite iterations, σn s.t. n −→ ∞. Finite-time perfor-

mance may be the same for an asymptotic optimal and asymptotic near-optimal algorithm,

however, and the finite-time performance should be evaluated relative to the near-optimal

bound, ∆opt, as shown inEquation 4.9.

P ( lim
n−→∞

∥∥σn − σ∗∥∥ ≤ ∆) = 1 (4.9)
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Sampling-based Planning Overview

The general framework of a sampling-based planner follows six steps, as detailed in [39].

First, the graph, G(V,E) is initialized with the first node, V1, and no edges, E = ∅. The

graph must ensure nodes are in Cfree, the configuration space defined for the system where

it is free of obstacles and restrictions. Second, a vertex, vi ∈ V is selected for expansion.

This could be a random selection or biased by some measure, but a node must always have

only a single parent to keep the graph as an undirected graph or tree. Third, the expansion

from the current node vi to a new node vj forms the start, or continuation, of a path σn

in which all nodes are in free space, see Equation 4.10. Fourth, a new edge is generated

if it holds true that the path is feasible, as in Equation 4.11. Fifth, the current path, σn,

is evaluated to see if it is a complete path from the start node, v1 to the goal node, vg.

Sixth, the previous steps from step 2 are repeated and iterated until one solution is found,

or otherwise, a termination condition is satisfied.

{σn(v1, ..., vg) | (vi) ∈ Cfree ∀ i} (4.10)

ei,j = (vi, vj) | feasible(vi, vj) == True (4.11)

Each node, vi, stores state information for the trajectory. The stored information may be

as simple as the 2D or 3D position but could also include control and second-order dynamic

states. The feasibility of paths can be checked at each expansion of the node vi to vj or may

occur over multiple segments of a path. Each algorithm addressed each of the steps in a

different way that may provide asymptotic performance guarantees or success in specific

problems. The Rapidly Exploring Random Trees algorithm, or RRT, has demonstrated

both theoretical guarantees and applicable success over many problems and has become

a default starting point for sampling-based planners. The RRT algorithm is detailed by

Lavelle in [39].
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4.2.1 Rapidly Exploring Random Trees

If an exhaustive search for paths in 3D space is planned, the best 3-dimensional polynomial-

time approximate algorithms have a time complexity of 22O(N) [112]. However, RRT as

detailed in [111] has log-linear time complexity O(nlogn). The RRT* algorithm, seen

in algorithm 1, furthered the theory by guaranteeing asymptotic optimality in [47]. The

RRT* algorithm provides probabilistic completeness and asymptotically optimal guaran-

tees. Asymptotic optimality is guaranteed according to Theorem 38 in [47] such that the

ratio of the volume of the space to the volume of the unit sphere, (µ(XFree)/ζd), is con-

strained by Equation 4.12.

γRRT∗ > (2(1 + 1/d))1/d(µ(XFree)/ζd)
1/d (4.12)

Algorithm 1: RRT*(X,x0, N, γ)
Data: x0 ∈ X,N > 0
Result: p∗ = t1, x1|...|tf , xf ∈ P
cost(p∗) ≤ cost(pi)∀pi ∈ P ;
V ← {x0} ;
E = ∅ ;
G = {V,E} ;
for N do

xrand ← SampleFree(X) ;
xnearest ← Nearest(G, xrand) ; /* Node Selection */
xnew ← Steer(xnearest, xrand) ;
if CollisionFree(xselected, xnew) then

xnear ← Near(xnew, γRRT∗, G) ;
xparent ← ChooseParent(xnear, xnearest, xnew) ; /* Connect along
min-cost */
G← Insert(xparent, xnew, G) ;
G← Rewire(G, xnear, xparent, xnew) ; /* Rewire the Tree */

end
end

Recent literature has revisited the RRT and RRT* algorithm to update the theoretical

guarantees [113] and general performance metrics [114]. However, most of the recent lit-
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erature has sought to add new features and tune the internal functions for specific problems

of interest. A summary of algorithm advancements as of 2016 is found in [115]. Joshi

in [116] summarized the more recent focus for sampling-based planner improvements as

algorithms like RRT# [117], FMT* [118] and BIT* [119] that leverage heuristics and dy-

namic programming for faster convergence. In addition, algorithms like RABIT* [120] and

TIE [116] improve the sampling methods through rejection sampling and reachability sets,

respectively.

In addition, there has been plenty of research into path refinements, such as improv-

ing SO3 or SO2 paths using spline curves. Optimization-based refinement like CHOMP

[121], GuSTO [122], and ccSQP [123] have proven successful at smoothing and improv-

ing paths. Other techniques exist that involve the controller or onboard flight, like Model

Predictive RRT[124]. Moreover, the AI and neural network revolution of the 2010s has led

to many applications for autonomous systems and robotics. For example, Lichter in [125]

constructed three networks, including an autoencoding network, a dynamics network, and

a collision checking network. These networks sought to mimic the primary functionalities

of a sampling-based planning algorithm explained by Lichter to be state sampling, local

steering, and collision checking.

4.2.2 Kinodynamic Planning

Vehicle Kinodynamics, as detailed in [111], are constraints for obstacle avoidance and re-

quire graph search constraints of reachability or feasibility of nodes. Recent literature exists

for kinodynamic-constrained, sampling-based planning applied to UAVs in urban environ-

ments [126]. However, works such as this often leverage methods that do not provide

safety guarantees or statistical confidence, like the artificial potential field and point-mass

dynamic models. Some techniques include kinodynamic RRT or RRT with differential con-

straints, which require the feasibility of the edge transitions between nodes in the search

tree. The internal procedure is called a steering function and is a topic of research for
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sampling-based planning. The dynamic function can be solved using the constrained TP-

BVP, which is computationally challenging. However, alternative approaches have lever-

aged the forward-propagation of the dynamics model directly in the planning algorithm.

The assumption is made that expensive dynamic models are necessary for the predic-

tion of energy and maneuvering in windy conditions and that aerial system configurations

vary widely. In addition, it is assumed that decision-makers and stakeholders interested in

the disaster response framework may not know the configuration of the aerial systems be-

fore investigation. Therefore, forward-propagation dynamics models or black-box dynamic

functions are used, and a quadcopter model is developed as a representative model.

Aerial systems that operate under kinodynamic constraints must be modeled mathemat-

ically to search for trajectories with a sampling-based kinodynamic planner. The simplest

form of a dynamic aerial model could be used, assuming a point-mass in 3D with linearized

dynamics about a forward flight state. However, this would limit the trajectories that could

be found and would result in inaccuracies when the actual system attempts to follow the

path. Traditionally, an aerial system is defined by 12 degrees of freedom through the kine-

matic and dynamic equations. A detailed explanation by Etkin can be found in [127].

However, the standard 12-dof vehicle with aerodynamic force and moment calculations are

often computationally expensive to use, and high fidelity models are expensive to model.

4.3 Research Question 2

For aerial system disaster response, there is a need for feasible, efficient flight paths gen-

erated within the urban maps model created in Chapter 3. Sampling-based planning algo-

rithms have proven successful in finding optimal or near-optimal trajectories with complex

dynamic models. However, there has not been a systematic investigation using a modeling

and simulation environment to determine the best methods for predicting flight paths in

realistic environments. Therefore the primary question for this chapter is as follows.
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Research Question 2
What trajectory planning algorithm consistently and efficiently finds offline kinodynamic

paths in 3D while operating with unknown dynamics in uncertain environments?

The hypothesis is that sampling-based planning methods, proven in the past for field

robotics, perform well under finite-time constraints and are able to generate near-optimal

trajectories for both small-scale and large-scale flight missions. Sampling-based methods

can find fast, efficient routes through the map using black-box dynamic models and both

soft and hard constraints. Parameter optimization and algorithm improvements can lead to

improved performance, and algorithm performance is limited by the availability of time and

data. Furthermore, the modeling and simulation framework can be used as a benchmark

demonstration for preflight collision-free, confidently safe paths for deployment in disaster

response missions by demonstrating repeated flights in maps using Monte Carlo simulation.

Two experiments are set up to evaluate the hypotheses. First, a sampling-based plan-

ning algorithm is selected as a baseline method and then improved upon using a systematic

evaluation of techniques to enhance individual functions. The algorithm is demonstrated in

multiple urban maps and evaluated on the ability to find feasible and optimal paths in finite

time. The computational load in both memory and time is compared against the baseline

methods and investigated for improvements. Second, the planner’s performance is explic-

itly evaluated with regard to the dynamic models and, thus, the kinodynamic constraints.

The dynamic model’s impact on the final path and the computational time to compute op-

timal paths is evaluated. Alternative methods for computing dynamic forward propagation

through motion primitives are investigated to assess if they increase or decrease accuracy,

computational load, and efficiency.

An overview of the pipeline to experiment with and evaluate the planning algorithms is

shown in Figure 4.1. The pipeline takes as inputs the map, the algorithm, and the dynamics

model and produces trajectory details, computational requirements, and flight performance.

Stochastic results are inherent to the planning algorithm but also come from the wind and
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noise models and any randomness in the map creation.

Figure 4.1: Planning Experiment Overview

4.4 Efficient and Effective Sampling-based Planner

The RRT algorithm has been widely used for aerial vehicle navigation in the past, usually

with modifications to account for the kinodynamic constraints through a steering function

or a forward propagation expansion. However, many methods run into convergence or op-

timality concerns when applied to high-dimensional models and large search spaces. As

concisely explained by Choudhury in [64], the goal of the trajectory planner is to find ”in-

formative sparse likely paths” for these aerial systems. Informative, meaning paths that are

likely to be optimal, and sparse, meaning spread out within the search space to limit mem-

ory and exhaust the general search space in less time. While there have been many methods

to improve upon the RRT algorithm, the Stable-Sparse-RRT, SST, algorithm provides key

features that are proven to work well and meet the limits and objectives of this research

application. SST is well-suited for planning using kinodynamic constraints because of

the Monte Carlo propagation function. The algorithm handles uncertainty in challenging

environments well by finding sparse paths quickly that can be compared with statistical
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confidence measures. SST has been applied for field robots with finite-time performance

that still finds near-optimal paths, as demonstrated by Littlefield in [128].

4.4.1 Stable-Sparse-RRT

The SST algorithm, introduced by Littlefield in [52], can guarantee asymptotic optimality

even when only a forward propagation model of the dynamics is available, thereby remov-

ing the need for an approximation from a steering function or a complex TPBVP solver.

The algorithms consider the dynamics in the cost of building the tree, then forward propa-

gate the dynamics to sample a new feasible point. The propagation methods use either the

controls of the vehicle or a higher level trajectory state that uses trimmed flight conditions.

These are often referred to as maneuver automata or motion primitives.

The propagation-based SST algorithm is demonstrated for vertical takeoff and land-

ing, VTOL, aircraft in the work by Nurimbetov [129]. The vehicle plans a flight path by

taking off vertically, transitioning to a fixed-wing flight model, and then planning a series

of maneuvers to the goal location. The success of SST was previously demonstrated for

VTOL trajectory generation in [130, 131] with example trajectories shown in Figure 4.2.

The primary contribution from the work in [130, 131] was the addition of bias terms in the

cost function and sampling function to produce smooth flight paths with predefined motion

primitives of trimmed flight states. A 12-DOF electric VTOL aircraft was developed for

forward propagation of the dynamics using cruise, climb, transition, and more flight states.

Takeoff and landing flight maneuvers were added to the start and end of the trajectory using

logic constraints within the algorithm.

The SST algorithm in algorithm 2 starts by initializing the priority queue sets and near-

est neighbor data structures and then loops for N iterations through the functions of selec-

tion, propagation, and pruning. The BestFirstSelection function chooses a node to expand

from by randomly selecting the search space, X , and selecting the neighbor within the ra-

dius, ∆BN , with the lowest cost, c(vi). If no node exists, the closest node is selected. The
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Figure 4.2: Trajectory generation for VTOL vehicles using SST from [131]

next steps are as follows. Next, the forward propagation dynamics model is applied from

randomly selected control or motion primitive, MP, sets, U , and a randomly selected time,

Tprop, using the MonteCarloProp function. A new state, xnew, is generated that needs to

check for feasibility before a new node is stored. The node and edge are stored in the tree

if the path between the two nodes is feasible and collision free as reported by the Colli-

sionFree function, and the node is locally the best within a distance, ∆S , to a witness node,

w ∈ W , as reported by LocallyBestNode. Lastly, the nodes that are marked inactive by

LocallyBestNode, and are thus dominated by another node in the range of a witness node,

are randomly selected to be pruned in PruneDominatedNodes.

The MonteCarloProp function for the propagation of the random controls along the

trajectory holds properties that bound the difference between any two trajectories. The

proof states that the worst-case upper bound on the error between trajectories that start

at a single node is as in Equation 4.13. This assumes any two controls are such that

δu = supt(||v(t) − v′(t)||) and the system dynamics hold as Lipschitz continuous with

bounded input, bounded output conditions in the small scale. The asymptotically near-

optimal property is measured by the bound of the optimal path cost, shown in Equation 4.14
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Algorithm 2: Stable-Sparse-RRT(X, U, x0, Tprop, N, ∆BN , ∆S)
Data: x0 ∈ X, N > 0, ∆BN + 2∆S ≥ ∆
Result: p∗ = {t1, x1|...|tf , xf} ∈ P
cost(p∗) ≤ cost(pi) ∀ pi ∈ P ;
Vactive ← x0, Vinactive ← {} ;
E ← {}, G = {Vactive

⋃
Vinactive, E};

w0.x← x0 , w0.p = x0 , W ← {w0} ;
for N do

xselected ← BestF irstSelection(X, Vactive,∆BN) ; /* Node Selection

*/
xnew ←MonteCarloProp(xselected, U, Tprop) ; /* Node Dynamic
Propagation */
continue ; /* Feasibility & Neighborhood Checks */
if CollisionFree(xselected, xnew) then

if LocallyBestNode(xnew,W,∆S) then
Vactive ← Vactive

⋃
{xnew} ;

E ← E
⋃
{xselected, xnew};

PruneDominatedNodes(xnew, V, E) ; /* Node Removal */
end

end
end

Table 4.1: SST Parameters

Parameter Description Example Value
Propagation Time (s) Max time for uniform sampling of dynamics propagation (5.0, 100.0)
Number of Iterations Base number of iterations to run the SST algorithm (500, 10000)
∆bn (Best Node) The radius for checking for the best node near randomly sample node (3.0, 25.0)
∆s (Best Witness) The radius for checking for best node around witness nodes (5.0, 60.0)

Shrink Factor Factor for reducing the radius size (0.75, 0.95)
Total SST Number of times to run SST (1, 5)

||σ(T )− σ′(T )|| < KuTe
KxT δu (4.13)

∆(c∗) = (1 +
Kc ∗ δ
c∆

)× c∗ ≥ c∗ (4.14)

The list of key parameters is found in Table 4.1. These include the propagation time for

the forward propagation function, as well as the radius values, ∆’s, for comparing sampled

and witness nodes. The addition of the last two parameters, shrink factor and total num-
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ber of SST runs, to the SST algorithm defines the asymptotically optimal algorithm: SST*

[52]. At each subsequent SST run, the SST* algorithm will increase the number of runs

required while shrinking the size of the search ∆. This will leverage the asymptotically

optimal behavior of solutions with relatively fast convergence. Decreased values will pro-

mote more locally optimal nodes found to propagate from, representing more exploration.

An important consideration from the SST theory is that the inequality must hold so that

∆BN + 2∆S ≥ ∆ given the robust clearance, ∆. This also assures that ∆BN balances the

exploration and path quality, and ∆S balances the sparsity and adaptability. The strategy

for SST* is to reduce the radii of the ∆ parameters, while increasing the number of iter-

ations to find a better path at that size of ∆. This is done by iteratively running the SST

algorithm and updating the parameters with the following equations, where ϵ is the shrink

factor, N0 is the base number of iterations, and T is the total number of iterations.

∆bn = ∆bn × ϵ (4.15)

∆s = ∆s × ϵ (4.16)

N = (1 + log(j))× e−(3+1)∗j ×N0 (4.17)

The distance metric used in the algorithm is the 3D euclidean distance. The optimal

path cost would be a straight line connecting the start and goal location. The distance metric

is also used when comparing the distance of a node to the goal location d = ||xi − g||, for

determining whether a path has been formed, and for comparing the distance of nodes to

the local witness node, d = ||xi − wj||.
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Table 4.2: k-Nearest Neighbor Experiment for Time Complexity for 100,000 nodes with
90% active, k=20 and r=250

Name Time Complexity Processing
Time (s)

Query Time
K times (s)

Brute Force
Array O(n2) 0.032

0.381
0.001 (KD)

K-Nearest-
Neighbors O(nlogn) 5.642 0.001

Software Implementation

An additional check is needed to filter out unavailable nodes for constrained nearest neigh-

bor search problems. As later explained, the tree-search algorithm may use boolean equal-

ity constraints that must be checked. Therefore, the nearest neighbor software class is

developed to check for specific state variables when checking local neighbors. Since this

method must be computed many times, the speed of nearest neighbor functions for these

large search size problems must be investigated. The brute force can approach the K-d tree

performance with the use of a k-nearest neighbor, KNN, structure in which the nodes are

sorted and organized as they are compared against the current node in the array.

Table 4.2 shows that the brute force and KNN methods have different performance

results, with the brute force approach able to build the tree quicker but is much slower

to query for a set of k-nearest-neighbors. This query is repeated many times in the node

sampling stage of a sampling-based algorithm. Another selected solution is to use a KNN

algorithm to search for the k neighbors in the brute force array nearest neighbors method.

Adding a KD-tree data structure for sorting the array can approach the KNN performance

without the expensive tree building and rebuilding for problems when applied on the scale

of 100,000 nodes.
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4.4.2 Dynamic Model

The forward propagation dynamics model is a quadrotor, or quadcopter, that is controlled

by two levels of control loops that follow the same translation and rotation kinematics in

3D space. The first model is defined with propellers that are directly controlled by motor

rotation rates, ω. The second model plans paths through thrust, T , and attitude targets,

(ϕ, θ, ψ), that are followed with a smooth acceleration-based tracking model. The two are

related using the attitude dynamics of a quadrotor that matches the total thrust and body

rotation rates assumed from the attitude targets to the four motor rotation speeds. The

problem starts with a root finding problem with four unknowns, ω1, ω2, ω3, ω4, and four

equations, FB
z , L,M,N . The four equations are the body z-axis force, and the roll, pitch,

and yaw moments. The aircraft arm lengths, d, yaw drag, e, and moment of inertia, I , are

also required. The initial conditions to the root solver, f(x) = 0, are the motor speeds for

the hovering condition, where Fz = 0.

F1 = T − kT ∗ (ω2
1 + ω2

2 + ω2
3 + ω2

4)

F2 = (ṗ− l)Ixx − d ∗ (ω2
1 − ω2

2 − ω2
3 + ω2

4)

F3 = (q̇ −m)Iyy − d ∗ (ω2
1 + ω2

2 − ω2
3 − ω2

4)

F4 = (ṙ − n)Izz − e ∗ (ω2
1 − ω2

2 + ω2
3 − ω2

4)

(4.18)

The decision is made to create a set of stable maneuver automata to forward propagate

the system from one state to another. The setpoint model is selected for experiments in the

next section and the parameters selected are seen in Table 4.6. Further details are available

in subsection 4.5.1.

Even with accurate modeling of the system and environment, uncertainty causes inac-

curacies that may be hard to account for unless it is modeled explicitly. Uncertainty can

be split into two categories, aleatoric and epistemic. Aleatoric uncertainty is representative
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of random events, while epistemic uncertainty comes from the lack of knowledge of the

system or process. The quadcopter dynamics are the most critical item for understanding

uncertainty in this work because of both kinds of uncertainty. The two areas of uncertainty

are prepared as two uncertainty models for internal acceleration noise and external wind

disturbance. The noise causes changes in the acceleration terms of the system using a zero-

centered Gaussian distribution, therefore requiring a single parameter, σa. The wind model

changes the translational velocity of the system using the wind triangle that relates ground

speed to airspeed. The wind model, W , is a function of the environment, and the gust

model, D, which was detailed in Chapter 3.

The system dynamics are treated as a continuous set of differential equations, as de-

tailed earlier. However, the equations now include additional terms for the uncertainty in

the forward propagation. The translational and rotational translation terms in Equation 4.19

now include internal and external noise from the inner loop additive noise, ν, and the envi-

ronmental wind, W .

ẍt = f(xt, ut, σa) +W (4.19)

Dynamic modeling assumptions have disturbances in the acceleration of the vehicle as

shown in Equation 4.20. This could be from sensor noise, control saturation, or model

mismatching, and is approximated as a Gaussian random variable, σa ∼ N (µa, σ
2
a). The

wind from the static wind field, W, and Dryden gust model, G, affects the dynamics through

the wind-axis velocity and the wind triangle, shown in Equation 4.21.

ẍ′ = ẍ+ σa (4.20)

vW = vB −RB
WWmag −RB

WGmag (4.21)
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4.4.3 Experiments

A simulation environment is prepared that leverages the maps built in Chapter 3, as to

compare algorithm performance and discover how the SST algorithm performs for aerial

system response. The environment leverages a Python object-oriented approach with the

tree-based planning algorithms built using an inheritance class structure, allowing for new

algorithms to leverage the functionalities of previous methods. Separate modules for map

building and dynamic modeling, which can be accessed through internal class functions,

are used to repeat experiments for multiple models and use multiple planners quickly. The

urban maps are supplemented with controlled 3D environments of randomly generated or

custom obstacle fields. Visualization functions use Plotly [132] and Matplotlib [133].

The environment is prepared to examine two algorithms, RRT and SST. The hypothesis

is that SST performs better in the maps of interest, and a series of experiments is prepared

to determine if this is true and what are the performance improvements. A preliminary

experiment is demonstrated in Figure 4.3 where the RRT and SST have the same dynamic

model and objective function. The algorithms are compared for an empty 3D environment

of 30 meters in length, width, and height. It is clear that the stochastic tree expansion limits

RRT as compared to SST, which has a sparse search expansion. SST is able to find paths

quicker and converges to paths that are lower cost than RRT on average. Thanks to the

sparse search method, this is done with fewer overall nodes. As a verification, the path is

compared against the straight line path between the start and goal points and is within one

meter for the euclidean distance measurement.

Stable-Sparse-RRT Performance

The SST algorithm is a powerful tool for finding paths in high-dimensional search space

through a sparse search expansion and randomized control actions. The capabilities of SST

to find trajectories in 3D space using a quadrotor system are explored through a series of

experiments that seek to compare and contrast the algorithm with the vanilla version of the
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Figure 4.3: RRT and SST Performance in Verification Experiment, RRT nodes and path in
yellow and SST nodes and path in blue

precursor, kinodynamic RRT. Parameters are detailed in each section, but some parameters

are kept constant throughout the results section unless explicitly mentioned. The constant

assumptions include a collision check every 1-meters, dynamic propagation at a timestep of

0.1 seconds, and visualization background processes set to active. The experiments are set

up in the framework in a way any future user would be able to replicate, with a predefined

set of user inputs, or ”knobs,” that can be changed to evaluate performance. These ”knobs”

include the parameters of each algorithm, the wind and noise injection parameters, and the

map creation and location.

Comparison to RRT

The SST algorithm is first compared against the baseline kinodynamic RRT algorithm that

features the same dynamics and similar propagation parameters. The experiment displays

the sparse nature of SST compared to RRT in a random 3D environment with 1000 node

checks. The SST algorithm converges on the maximum number of nodes much more

quickly than RRT since the witness nodes replace local nodes that are better and prune

ones that have a higher cost. In addition, SST Converges to better solutions and finds larger

improvements in later iterations as shown in Figure 4.4.

The experiment is repeated over a range of map sizes and with different obstacles to

evaluate the distribution of results from the two algorithms. The number of nodes, cost

of the final path, and computation time are compared for the two algorithms as shown in
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Figure 4.4: RRT vs. SST in Random 3D Environment with Comparisons of Time, Number
of Nodes, and Path Cost

Table 4.3: RRT vs. SST in Random Obstacle Maps Performance Comparison

RRT SST
Found Path 87% 100%
Lower Cost 42% 58%

Fewer Nodes 13% 87%

Figure 4.5 with RRT in red and SST in blue.

Figure 4.5: RRT vs. SST Multiple Runs in Random Obstacle Maps

Next, a more difficult map is introduced, similar to what was created in the original

SST paper by Littlefield [52]. The ”hole-in-the-wall” map is used to compare RRT and

SST performance in a more complex map, where there is a significant improvement in per-

formance from paths going through the holes in the wall instead of going around the walls.

The results are seen in Figure 4.6, where the SST algorithm demonstrates the ability to use
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51% fewer nodes while having a 13% higher chance of finding a path but at a 16% higher

cost when using these parameters. However, if the parameters are changed by reducing

the bounds of the propagation time parameters and reducing the values of ∆BN and ∆S ,

then the performance is improved. A couple of outlier cases from the 2000 iteration con-

straint keep the SST performance from being even better. Comparing the algorithms on

a case-by-case basis results in SST having a lower cost path 61% of the time, using 31%

fewer nodes and converging to the solution 50% faster on average. The converged paths

are only 10% better on average, but this is to be expected for the finite-time performance of

SST with a single set of parameters. The SST* algorithm, which guarantees asymptotically

near-optimal paths, can be leveraged when longer runtimes are available.

Figure 4.6: RRT vs. SST Hole in the Walls

Application in Urban Maps

Now, urban maps are used to test the ability for the algorithm over large distances with

terrain and structure obstacles. The performance of RRT and SST on two urban maps

generated from Chapter 3 is shown in Figure 4.7 and Table 4.4, where the SST algorithm

demonstrates its sparsity and consistency. The experiment was run with limits on the algo-
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Table 4.4: RRT and SST Solution Probability for 2000 iterations for Two Urban Maps
Locations

RRT SST Change
LA 33% 93% 60%

NYC 47% 100% 53%

rithm iterations but also for the SST algorithm to use the same number of nodes. Therefore,

demonstrating the improved ability to find trajectories over a large search space with the

same or fewer nodes compared to RRT.

Figure 4.7: RRT vs. SST Comparison for Two Urban Map Locations

Figure 4.8 shows the final trajectories in demonstrations for each map. The results

show how trajectories are formed over terrain changes and around building obstacles. The

primary benefits of SST over large urban maps are shown to be sparsity and consistency.

RRT can be defined as more random, causing the algorithm to get caught in poor search

spaces and need more memory. Furthermore, the SST algorithm proves the capability of

sampling-based planners that was hypothesized. The algorithm is able to find trajectories

that change in altitude by climbing over terrain and that aggressively maneuver around

obstacles by dodging buildings.

The time to compute the flights is expensive because of the quadcopter dynamics model

requirements to calculate the smooth flight path. This is similar to the issue in previous
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Figure 4.8: RRT vs. SST Trajectories through Terrain and Structures for Los Angeles (Left)
and New York City (Right)

works [130, 131]. The assumption was made that the dynamics model would account

for accurate flight paths over long distances and calculate energy metrics while being im-

pacted by environmental and system uncertainties. Therefore, solutions like linearization

or response surface models are not leveraged in this work. Instead, motion primitives are

explored that can perform smooth flight paths quicker while improving the planning algo-

rithm by selecting only relevant flight maneuvers. It is hypothesized that this will lead to a

speed improvement and convergence of better paths in finite-time limits.

4.5 Motion Primitive Formation for Efficient Planning

Frazzoli in [134] describes how the path planning problem tends to grow exponentially with

respect to the dimension of the configuration space. The configuration space could grow

rather large for complex and high-dimensional dynamic systems. One solution to the curse

of dimensionality occurring in complex dynamics trajectory planning was demonstrated by

the maneuver automaton as detailed by Frazzoli in [134] and explained in more detail by

Lavalle [39]. The maneuver automaton, alternatively defined and named motion primitives,

can provide efficient queries of kinodynamically constrained paths. Previous works have

approached this by simplifying the dynamics for point-to-point navigation, as by Mueller

in [135]. Other approaches, such as [136], solve a discrete set of trajectory problems using

an optimal control formulation, which is then sampled during planning. This idea has

been examined as relates to lattice-based motion planning, where a discrete set of forward
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propagation states are selected for planning.

Finding trim states for maneuver automata has been employed in the past for complex

aerial vehicles, such as by Schouwenaars et al in [137]. The methodology sought to com-

pute offline and open-loop trajectories that generates a maneuver library. The final result

was a set of 48 trimmed maneuvers that had been computed with external uncertainties

included while solving for the open-loop trajectories.

This work leverages this idea to build a set of open-loop trajectories by querying the

quadcopter model along promising vehicle maneuvers in an offline simulation framework

and then improving the quality of the flight path of an open-loop lower-order dynamics

model. First, the initial trajectory is flown by the acceleration-based quadcopter tracking

model. Next, the lower-order motor speed controls are solved using the kinodynamic equa-

tions and attitude dynamics and found by use of a root solver matching the forces and

moments. Next, the trajectory is iteratively improved using the Differential Dynamic Pro-

gramming (DDP) algorithm. The result is a lattice-based motion primitive set of climbs,

turns, cruise, and hover for a quadcopter.

4.5.1 Dynamic Models

The UAS model of interest is a quadcopter, as seen in Figure 4.9, and is a slightly modified

version of the work from [138]. The world reference frame W and the body fixed frame B

are used for defining the system dynamics and are related through the rotation matrixRWB.

The body forces acting on the system can be described proportionally to the square of the

rotation speed of the propellers, ω2, by the constant kT . The body moments, M, L, and N,

can be described similarly. The equations are detailed below using i ∈ [1, 4] to denote the

different motor and rotor pairings. The thrust constant is defined as kT and the moment

constant as kτ .

Fi = kTω
2
i (4.22)
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Mi = kτω
2
i ∗ (−1)i (4.23)

The angular rates, Ω, and moment of inertias, J , describe the attitude dynamics. The

aerodynamic forces, Fa, on the body can then be defined as proportional to the force of

each rotor by the factor kD. External disturbances can be represented by Fe. A subset of

the resulting equations of motion are shown in the following equations.

ẋ = v (4.24)

v̇ =
1

m
(RWBFT −RWBFa + Fe) (4.25)

ṘWB = RWBΩ (4.26)

RWB =


cos(α)cos(β) sin(β) sin(alpha)cos(β)

−cos(α)sin(β) cos(β) −sin(α)sin(β)

−sin(α) 0 cos(α)

 (4.27)

JΩ̇ = −Ω× JΩ + A



ω2
1

ω2
2

ω2
3

ω2
4


(4.28)

The dynamics model must account for the inner loop dynamics for trajectory tracking.

Therefore, a model of the low-level attitude controller is constructed with the desired an-

gular rate of the system as the input, and the gain, k, and time constant, τ , as the tuning

parameters. The model was tested in flight simulation for closed-loop feedback control to

tune the parameters to the desired open-loop performance. Experiments show that bounded
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Figure 4.9: Quadcopter Model for Flight Simulation

θ̇ and ϕ̇ values when tracking targets keep the system in stable flight conditions while also

improving the reaction time of quick maneuvers.

ϕ̇ =
1

τϕ
(kϕϕcmd − ϕref ) (4.29)

θ̇ =
1

τθ
(kθθcmd − θref ) (4.30)

Drag on the aircraft is taken to be a force that is defined by the Raleigh drag equa-

tion in Equation 4.31. The constants for drag, cd and the aerodynamic lift area, A, are

selected from the literature, while the temporal parameters like density, ρ, and velocity, v,

are calculated during the state transition.

D =
1

2
ρv2cdA (4.31)

The energy consumption can be modeled in many different ways. There exists literature

that has explored this for quadcopters and VTOL, for example, a first principles approach

by Rodrigues in [139, 140]. A further expanded calculation of power in multiple flight

modes is conducted by Stolaroff in [141]. Many of these models stem from the key paper

for quadrotor helicopter dynamics and power calculation by Hoffmann in [142].

Quadcopter dynamics results from using formulas from quadcopter energy modeling.
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Assuming a forward flight, the model is adapted from Hoffmann in [142] and is detailed

in [139, 140]. Alternative techniques attempt to model from data. For example, in [66],

data on a quadcopter is used to train a deep neural network to estimate the energy use over

the flight in an accurate and computationally efficient manner. However, without direct

access to accurate and informative data, these methods are unsuccessful. Therefore, the

Hoffman model from [142], is used. The power calculation relies on an estimate of the

induced velocity, vi, and then solving the implicit equation at different flight conditions.

The efficiency term, µ, is used to tune the calculation for the model of interest.

Pmin = T (v ∗ sin(α) + vi) (4.32)

vi =
2T

πnD2ρ
√

(vcos(α)2) + (vsinα + vi)2
(4.33)

P = Pmin/µ (4.34)

The M100 DJI Matrice is selected to model because of the availability of data and

previous experiments. The model is defined with parameters found in [143] or estimated

from information in the DJI website, shown in Table 4.5. The energy model is validated

against data from [144], with an example of flight energy data seen in Figure 4.10. The

quadcopter model’s hover power output has a mean of 456 W and a standard deviation of

16, while the flight data has a mean of 459 W and a standard deviation of 28. The mean

power error is only 0.66% and is deemed to be acceptable for the limited maneuver set of

interest.

Table 4.5: DJI M100 Parameters

Mass, m (kg) Drag
Coefficient, Cd

Moment Inertias
Ixx, Iyy

Thrust constant
k T

Drag constant,
K d

Battery
Mass Ratio

Battery
Energy Density

3.71 0.65 0.155, 0.166 1.85E-5 1.0E-2 0.15 200
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Figure 4.10: DJI M100 Hover Data for Quadcopter Model compared to Experimental Data

4.5.2 Stable Maneuver Automaton

Improved dynamic modeling for kinodynamic constrained trajectory planning requires a

maneuver automaton framework to compute offline open-loop trajectories rapidly and ef-

ficiently. The initial maneuvers that are used in the previous section’s results are the uni-

formly randomly sampled controls in terms of roll, pitch, yaw, and thrust force that keep the

vehicle capable of closed-loop stability. The values for the parameters are seen in Table 4.6.

Table 4.6: Random Control Target Motion Primitive Parameters

Dynamics Setup Heading
Command

Roll
Command

Pitch
Command

Thrust
Command Times (s)

Min 0 -2 -2 34.29 5
Max 360 2 2 37.90 20

The dynamic system is defined as a continuous set of differential equations but is solved

in discretized time steps. Therefore, the difference between each time step, ∆T , must be

selected as a tradeoff between accuracy and time. In Figure 4.11, the time steps of 0.01,

0.10, 0.20, and 0.25 are compared for 5 random motion primitive selections. Values equal

to or greater than 0.30 resulted in large errors that were not beneficial to show. Each time
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step and motion primitive combo was repeated five times to get a quick distribution of

results under windy and noisy flights. Overall, the time step selections here were able to

keep flight path errors within a few meters along the entire flight, and energy estimates

within 0.5 Watt-hours, W-Hr. The runtime increases for smaller time step values but is not

dramatically different except for the 0.01 value.

Figure 4.11: Energy, Flight Path, and Runtime Performance for 5 Motion Primitives with
Different Time Step (dt) Values

The equations from LQR theory found in section A.4 are used to evaluate the existence

of closed-loop stable paths for motion primitive paths, in particular when there is wind or

noise in the dynamics. This is important as the tracked paths will be achieved through a

closed-loop controller when the mission is attempted. Therefore, if the open-loop controls

can be improved through closed-loop control, the assumption of the open-loop path being

a lower-bound estimate of performance is achieved.

Figure 4.12 shows the motion primitives tested for flight stability. Trajectories in green
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are open-loop stable and retained within the motion primitive set. The paths in yellow

are not open-loop stable but are closed-loop stable. These are filtered out of the motion

primitive set in use, for now, but confirm the hypothesis that all trajectories within the

frames of the motion primitive parameters are closed-loop stable.

Figure 4.12: Motion Primitives Indicating Open Loop (Green) or Closed Loop (Yellow)
Stability

4.5.3 Learning Motion Primitives

Examples using motion primitives or accurate steering functions from two states are exten-

sive in literature. For example, work such as by Mueller in [135] used closed-form equa-

tions that can be quickly solved and are generated for specific vehicle primitives, which

have been prepared to minimize an aggressiveness cost function. In [134], motion primi-

tives are defined as time-parameterized curves that form a maneuver library for the system

dynamics of interest. These primitives can be interconnected to form complete, feasible,

and optimal trajectories while reducing the computational complexity of the solution that

is often referred to as lattice-based planning.

Much work has investigated motion primitives for constrained path planning or kinody-
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namic motion planning. Work such as [145] and [146] leverage motion primitives to search

directly in a state lattice. It is common to solve the motion primitive problem using opti-

mal control methods, in particular, a two-point boundary value problem (TPBVP). Another

method developed an efficient trajectory library using filtering by Viswanathan in [147].

Results for the motion primitives involved setting up the rapid quadcopter point-to-point

model and then leveraging Differential Dynamic Programming to improve the accuracy and

robustness of the trajectory. This allows handling any black-box dynamics model with any

parameters to create a motion primitive set. A Latin hypercube sampling method is used

to choose the state targets that mark the primitives because the Latin hypercube sampling

should produce an even distribution across the state space.

Differential Dynamic Programming

DDP, or Differential Dynamic Programming, is selected as it has shown success in cases

with nonlinear dynamics that are difficult to linearize, such as the inverted pendulum prob-

lem. DDP is described in detail in [148] and has proven successful in similar applications

from a previous work by Hyunki and Harris [149], where the algorithm is used to produce

energy-optimal trajectories for hybrid VTOL aircraft. DDP utilizes local dynamic pro-

gramming methods and a quadratic approximation of the Q function. A pseudo-hamilton

is formed from the second-order expansion of the Q-function. Also, the optimal control is

defined as a perturbation from a nominal control.

DDP can be referenced as a shooting method as it relates to optimal control. The control

and state are always feasible and the problem is solved using unconstrained optimization.

More specifically, DDP iteratively updates on a nominal control set by solving forward

passes of the dynamics and objective function, calculating second-order approximations

to the state and control dynamics about each discrete time step, and then backpropagating

an update function. The updates culminate in Equation 4.35b, which is effectively a line

search in the optimal control space. The parameter γ is the learning rate, ki is the feedback
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gain, Ki is the feed-forward gains, x is the state vector, and u is the input vector. ki and Ki

are determined by the quadratic expansion of the objective function. The controls during

the forward propagation are bound with soft constraints through a squashing function seen

in Equation 4.36a and detailed in [148]. The algorithm is summarized in algorithm 3.

δu = ki +Kiδx (4.35a)

ui+1 = ui + γδu (4.35b)

xi+1 = f(xi, g(ui)) (4.36a)

g(u) =
bu − bl

2
tanh(u) +

bu + bl
2

(4.36b)

Algorithm 3: DDP(X,x0, N, γ)
Data: Input: x̄0, xf , ū, γ, Qf , Q, R.
Result: Output: J∗, u∗

Init(x̄0, xf , ū, γ, Qf , Q, R) ;
while |Ji − Ji−1| > ϵ do

forward propagation of the dynamics with ui, Ai, Bi ;
backward propagation of quadratic expansion of the objective function
Qo, Qx, Qu, Qxx, Quu, Qux ;

state propagation from quadratic expansion of the objective function
ui+1 = ui + γδu ;

calculation of new objective function J(ui+1) ;
end

The objective function is defined as in previous literature as Equation 4.37, where xN

and xt are the states at the final time step, N, and every other time step, t. xf and xn are

the desired final state, f, and the nominal stares from a reference trajectory formed from the

nominal control un. ut are the applied controls at time step t, which will update from the

previous line search equations. The matrices Qf , Q, and R act as the weight parameters
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for the quadratic cost function, and apply to the final state, path state, and control inputs,

respectively.

J = (xN − xf )TQf (xN − xf ) +
N−1∑
0

(xt − xn)TQ(xt − xn) + uTt Rut (4.37)

4.5.4 Experiments

The nominal control is formed using the inverse attitude dynamics root solver introduced

earlier. A point-to-point tracking planner that seeks to minimize acceleration errors is used

to form a path of thrust and angular setpoints, which was defined as the output of the

quadcopter model. The inverse model estimates the quadcopter motor speeds, ωi, to achieve

the forces and moments over time. Any error in the inverse solution is expected to be fixed

during the DDP algorithm. The state cost, Q, and control cost, R, are normalized from 0

to 1 combined before passing into the DDP cost function. The DDP algorithm iteratively

solves for trajectories that minimize the quadratic cost function. An example of the results

are seen in Figure 4.13. Trajectories are improved by reducing the final position error by

15% and reducing the energy use by 5% on average.

The selected states and the resulting trajectories are seen as a lattice of maneuvers in

Figure 4.14. The lattice of maneuvers is accessible as a set of motor speeds, ω{1,2,3,4},

and can be queried during the sampling-based planner expansion. Figure 4.15 shows the

maneuvers selected for two maps. The results are produced much quicker, with a reduction

of trajectory iterations from an average of 2.15 seconds to 0.15 seconds, a speed increase of

13 times. The maneuvers are smooth enough that they can be limited for any time from T0

to Tf and are assumed to be easily stabilized. Figure 4.14 shows the flight patterns limited

by the minimum time step used in the SST algorithm.

The control actions, or motion primitives, are demonstrated in both generated and urban

maps in large-scale map sparsity and solution quality with finite-time runs. This is because
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Figure 4.13: Motion Primitive Solution showing the Original Trajectory in Green and DDP
Improved Trajectory in Blue

Figure 4.14: Motion Primitive Lattice
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Figure 4.15: Empty Map and Atlanta Urban Map Trajectory Results using Motion Primitive
Control Actions

of the consolidation of states in the lattice shape and limited distance covered by the lattice

motion primitives that always return to a hover state. In small-scale maps, this is much more

successful than in large-scale maps. Therefore, improvements to create motion primitives

for longer flight maneuvers would be needed for further use in urban map settings.

4.6 Summary and Future Work

The sampling-based planning algorithm SST is combined with a forward propagation dy-

namics model and compared to the kinodynamic RRT algorithm. SST performs better

across the random 3D maps and the urban maps created from the previous chapter. Time

constraints lead to the creation of random motion primitives for an acceleration-based track-

ing model to be replaced with direct motor speed values that are learned for a lattice prim-

itive creation algorithm. The algorithm generates nominal flight paths and improves them

using the DDP algorithm.

Speed improvements could be achieved by learning the power or energy for the dynam-

ics at each time step. The energy could be predicted using publicly available data for the

M100 as in [144] and using surrogate models as in [66]. In addition, adding reachability

constraints can provide further guarantees in the dynamic propagation model that the mo-

tion primitives used are safe and stable. More discussion and background is available in
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section A.4.

The two experiments provide the ability for an aerial system model to efficiently explore

3D maps and produce flight trajectories with both attitude and thrust targets, as well as

direct motor speed values, in noisy and windy conditions. Furthermore, the algorithms are

proven to be successful in large maps with obstructions.

There still exists concerns for the energy along the flight as well as the situational

awareness outcomes of the 3D trajectories. Therefore, further investigation is needed into

the commonly referred to area of research, risk-aware planning. The next chapter intro-

duces this concept and explores a novel approach to modeling and optimizing a risk-aware

planning algorithm for aerial situation awareness in disaster response.
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5

RISK-AWARE PLANNING WITH INFORMED SPARSE ROUTING

5.1 Introduction

Extensive work is ongoing for applying ground or aerial robots to complex environments

like vehicle racing1 or underground caves2. However, the application of urban disaster en-

vironments is still underdeveloped, especially at this time of increased disaster frequency

and growth of interest from private companies like Brinc 3 and Skydio4. For example, re-

cent work by Best et al. in [150] investigated multi-robot systems in complex, multifarious

environments. This work leveraged a global planner of RRT-Connect with vision-based

viewpoint states that seek to visualize new areas in the environment. Alternatively, low-

altitude urban planning was investigated for the best metrics by Ochoa in [65]. However,

this work was focused on 2D planning and not focused on disaster response.

Search and rescue operations in the setting of a natural disaster allow different vantage

points at low altitudes, as shown by Scherer in [35], where generating the safest possible

paths is not trivial. The concept of aerial flight safety is explored in detail by Donato

in [37]. Furthermore, ”additional research is needed to incorporate risk metrics for urban

flight planning, such as system, actuator, sensor, and weather-related risks, to extend current

fixed-altitude maps to full 3D cost maps to support full 3D flight planning” as explained by

Ochoa in [49]. Ochoa and Atkins in [65] define the risk or cost of flight through map-based

and path-based metrics for urban flight planning of UAS. However, this work focuses on

static risk metrics that do not consider the vehicle, environmental changes, and uncertainties

during a disaster or SAR event.

1https://www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
2https://www.darpa.mil/program/darpa-subterranean-challenge
3https://brincdrones.com/
4https://www.skydio.com/public-safety
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This chapter presents a novel method to leverage the uncertainty of the environment

and dynamic models to predict the risk of mission failure along a flight trajectory and

find optimal flight paths for visual data collection. The approach includes investigating

the algorithms and models for predicting outcomes of risk metrics along a flight trajectory

while leveraging the planner from Chapter 4.

5.2 Background

The primary objective is to find a feasible set of configurations from the start to the goal lo-

cation. Flight planning requires a series of decisions to perform the mission optimally. For

one, the data of interest can dramatically change the type of processing and the method to

solve the problem. Next, some form of costmap is necessary when exploring the environ-

ment. The costmap may be as simple as an occupancy grid to prevent obstacles but could

be more advanced and represent the probability of failure for the mission, which we will

call a riskmap. Next, an algorithm is required to solve the problem, avoid an exhaustive

search and find the best solution as soon as possible with guarantees. Lastly, an objective

is necessary to decide what makes a path optimal. For instance, the RRT algorithm and

A* algorithm will traditionally seek to minimize the Euclidean distance, which is a first

approximation to the true objective, for example, total energy use.

Xiao, Dufek, and Murphy formally defined risk as the probability of not completing

the path, or in other words, mission failure [151]. Xiao continued this in [62] by formal-

izing risk metrics to distinguish conditional probabilities of mission failure, for example,

collisions and energy, that unifies all adverse effects into a single numerical metric. Further

details are found in [152]. Previous risk metrics have been defined as the probability of

collision, control failure, or loss of localization but not as a formal representation of mis-

sion failure. Previous works by Di Donato [59], and Harmsel [60] applied risk prediction

to rotorcraft emergency landing. A safe landing zone and flight path were required to pro-

vide confidence to rotorcraft operating in crowded environments. Graph search algorithms
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that accounted for dynamic constraints were used to plan feasible flight paths. The target

locations for the flight path were chosen by using offline data on the ground terrain and

population density. Therefore, proven examples have shown how costmap formation and

flight planning can be used for aerial navigation and decision-making.

An alternative strategy to flight metrics has been to create risk maps, or costmaps, of

the environment that can be computed before flight and updated with in-flight metrics.

Combining datasets can provide richer features or improve the robustness of noise in the

decision-making process. Fusion, if done correctly, increases the amount of actionable

intelligence. For example, urban segmentation is performed by Montoya-Zegarra et al.

in [153], using a three-step process: context-aware classification, hypotheses generation,

and inference. First aerial data provides predictions on buildings and roads, and then a

digital surface model is used to improve candidates through matching and pruning. The

result is labeled asphalt, roads, trees, and grass. Similarly, Singh et al. in [154] combined

geometric and semantic landing zone evaluations by filtering onboard low-resolution lidar

and Support Vector Machine training with fly-over high-resolution lidar, respectively.

The methods of preparing the dataset and combining them are what make a costmap

formation algorithm. Consider Figure 5.1, where terrain and population information is

combined into a riskmap. Often, these datasets are not compatible. For example, one may

be raster data, while another is vector data. The resolution and uncertainty of the data will

likely not be the same. For instance, census tracts often represent population density data,

while terrain classification or slope could be at the resolution of inches from lidar or visual

data.

Temporal or dynamic data can also be considered, adding another dimension to the

costmap. Another step of prediction or estimation may be required now that the labels

are not independent of another external variable. An example would be weather data used

during flight planning, as by Kim in [155], which may lead to a database query or a weather

forecasting model request.
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Figure 5.1: Combining Data Layers for Riskmap or Costmap in [48]

Many works in recent years have taken advantage of the safety guarantees provided by

CVaR constraints because of the fact that, unlike chance constraints, CVaR constraints are

coherent, convex, and distinguish between tail events. In [66], Choudhry used CVaR to

measure the risk of a distribution of paths from Monte Carlo simulation, and in [63], Fan

used Monte Carlo simulation to learn the CVaR metric for use as a risk assessment. In

[69] the safety risk measures the conditional expectation of the distance between the robot

position y(t) and the safe region. Therefore, CVaR is a proven technique for using statistical

data to measure mission risk through the tail of the distribution, or worst-case events.

5.3 Research Question 3

The framework addresses flight safety when applied to offline flight planning for disaster

response. The response during field robotics applications requires safe flight decisions

even when the environment and system have large amounts of uncertainty. In addition, the

framework seeks to address the gap in modeling and measuring situational awareness to

improve flight patterns. The research question is considered as follows.
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Research Question 3
How can risk measures be incorporated into trajectory planning algorithms to gain

confidence for safe and informative flight in uncertain environments?

The hypothesis is that a formal analysis of the most critical risk metrics and the use of a

single statistical measure of risk in the planning algorithm can measure the safety of flight

maneuvers, therefore leading to more robust and informative trajectories. The assumption

is that all risk measures can be defined entirely through the energy used in flight, the dis-

tance to collision with an obstacle, and the data collected for first responders at special

landmarks. Furthermore, the methodology seeks to provide confidence in mission success

by finding improved paths with faster convergence and better finite-time performance.

The experiment is divided into two tasks to investigate the development of a risk-aware

sampling-based planner and the efficiency and accuracy of risk metrics in formal reason-

ing. The experiment formally defines and models the risk metrics that should be used for

aerial flight for situational awareness. The risk models are evaluated on how they can be

used in the risk-aware planning algorithm and to determine the most informative modeling

approach for each. Then, the experiment develops and improves the risk-aware planning

algorithm using advancements to the sampling-based planner from Chapter 4.

5.4 Risk Reasoning for Safe Flight

Previous methods for path planning often employ the classic quote, ”optimism in the face

of uncertainty.” This, however, can be dangerous when faced with many unknowns and

uncertainties during flight. Therefore, it is best to account for as many of the unknowns as

possible. This is the foundation of why risk-aware planning is utilized.

Risk is considered to be a functional,F , which takes as input the risk metric function,R,

and the risk mapping function,M, and transforms the state, environment, and other inputs,

E, into a risk vector, C in configuration space.
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Table 5.1: Definitions of Risk Terms

Risk A cost or constraint considering probabilistic uncertainties
Risk Map Data structure to store risk values in appropriate subspace

Risk Metric Mapping between system state or actions to risk values
Risk Value Used to compare states or nodes of a path

E ∈ Rk −→
F(R,M)

C ∈ Rd

The risk metric function is defined to solve for a risk vector in risk space, Rr, and

the risk mapping function transforms the vector from risk space into configuration space.

Previous methods include Gaussian Process and Factor Graphs as in [156] and [157]. The

four key definitions for risk reasoning and risk-aware planning are seen in Table 5.1.

5.4.1 Risk Under Uncertainty

Conditional-Value-at-Risk (CVaR) is a coherent, convex metric and can distinguish be-

tween tail events better than chance constraints [70]. CVaR, seen in Figure 5.2, has tra-

ditionally been used in risk management for financial planning; however, in recent years

has been adopted for risk-aware planning for dynamic systems. In [158], Sharma et al.

leverage the Conditional Value at Risk to find risk-aware paths, where the goal was to max-

imize the CVaR of travel efficiency or the inverse of travel failure. CVaR is a coherent and

averse risk measure thatcan be expressed as a minimization formula and preserves convex-

ity as explained in [70]. Background information on probability theory, Gaussian random

variables, and more are found in section A.1.

The derivation of CVaR starts with a random variable X , which is used to represent

some concept of loss or risk. VaR, for a confidence bound α, is seen in Equation 5.1. The

formula from Rockafellar [159] is seen in Equation 5.2.

V aRα(X) = min {z | FX(z) ≥ α} ∀ α ∈ [0, 1] (5.1)
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Figure 5.2: Conditional Value at Risk for Distributions with percentile α

CV aRα(X) =

∫ ∞

−∞
zdF α

X(z) (5.2)

Fα
X(z) =


0 when z < V aRα(X)

FX(z)−α
1−α

when z ≥ V aRα(X)

Value-at-Risk, VaR, can be difficult to optimize for certain distributions. If a nor-

mal distribution is assumed for the random variable, X, then VaR is proportional to the

standard deviation. If the assumption is made then X ∼ N(µ, σ2) and the cumula-

tive distribution function of X is FX(z). Equation 5.3 shows the formula for solving

with k(α) =
√
2 erf−1(2α − 1) and erf(z) = (2

√
π)

∫ z

0
e−t2dt. CVaR is then also

proportional to the standard deviation, with the formula in Equation 5.4 and ka(α) =

(
√
2π exp(erf−1(2α− 1))2(1− α))−1

V aRα(X) = F−1
X (α) = µ+ k(α)σ (5.3)
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CV aRα(X) = E[X|X ≥ V aRα(X)] = µ+ k1(α)σ (5.4)

For the full derivations, see Rockafellar [159]. For more details on closed form so-

lutions for different distributions, like Weibull and gaussian, see [160]. For example, the

Weibull distribution exists with a closed form solution for the CVaR, as detailed in [160].

5.4.2 Energy Risk

Consider the battery energy level risk as the user risk function for energy. The risk of the

battery running out and the vehicle failing before the mission is complete is a function of

the state and actions of the vehicle. The energy used from the battery changes depending

on small factors in the trajectory of states and the inputs applied. Energy is a traverse-

dependent metric, as detailed in [151]. However, if the running measure of the energy is

assumed a Gaussian distribution, then the energy risk can be measured from not only the

predicted values, but the updated probability distribution. A local-dependence constraint is

assumed in addition to the Gaussian assumption.

Previous work demonstrated the CVaR metric in [63] and [66]. The formulation for the

risk function from the latter is considered and modified to fit the energy model of interest.

In this formulation, the assumption is that the State-of-Charge, SOC, value is provided by

the electric powertrain observer. The SOC is a value between 0 and 100 when viewed as

a percentage, and for this work is essentially a linearized estimation of available energy

remaining. Modern small aerial systems often operate with a Lithium Polymer battery and

the SOC estimate here is as simplified way to estimate the energy available from the battery.

Determining the energy available from batteries is still a topic of discussion, for instance

see [131], but a general rule of thumb currently is to not go below 20-30% remaining SOC.

The energy risk metric function is defined in Equation 5.5. The risk function G takes

the input, x, and the current limit, e, and outputs a numerical value for use in the CVaR

formula. Before this is done, though, the additional parameters in the formula must be
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Table 5.2: Energy Risk Function Parameters Selected

γ b λ
Value 10 20 1

examined. The function has two parameters, γ, and λ. However, λ is clearly limited to a

range of values greater than 0 and is explainable as a bound to the range of x − e. The γ

remains as a tunable parameter that controls the scaling of the risk quantity in the output.

G(x) = exp
( γ

max{x− b, λ}
)

(5.5)

The parameters of b, λ, and γ can be solved for the function shape and risk output

desired. After initial experimentation, the values are selected as b = 10, λ = 10, and

γ ∈ [0, 30] When selecting b = 20 and λ = 1 as initially desired since a SOC at 20% is

often considered a limit, the exponential function scales too dramatically at the low ends

of x. The function is shown in Figure 5.3 and Figure 5.4 for the set value of γ. The value

of γ is set equal to 10, which maxes the risk function out at the value of 10. The formula

for determining the value is found in Equation 5.6 and the final parameters are shown in

Table 5.2.

γ = c ∗ log(Rmax) (5.6)

Considering the case of the variable X we can examine the distribution after the data

is passed through the risk function, G(X). First, it is assumed that the estimate of energy

available is the percentage of SOC and that it is a random variable that can is observed to

match a Gaussian distribution. The example shown in Figure 5.5 assumes a mean of 50

W-hr, and a standard deviation of 2. If this distribution is sampled and passed through the

risk function, G(X), the resulting distribution is seen in Figure 5.5. The distribution now

represents the distribution of risk for the current energy state. The CVaR metric introduced

previously is now used to map the distribution of risk to a single scalar value. As a demon-
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Figure 5.3: Energy Risk Function with varying γ

Figure 5.4: Energy Risk Function

stration, the distribution is modified to have a standard deviation of 5, and the risk metric

for all value across the distribution is plotted over the distribution seen in Figure 5.6. For

this distribution, samples with a risk of 1, which is scaled to 10 in the risk function, are

unlikely but possible. This is seen more clearly in the plot of the risk distribution where the

mean, VaR, and CVaR can be compared, seen in Figure 5.7. The CVaR critically accounts

for the worst-case scenarios, resulting in a value of around 3.2 compared to the mean value

of around 2.25.

Consider fitting a distribution to a sampling of data represented in a histogram. Dis-

tributions such as Gaussian, gamma, Weibull, and exponential are shown in Figure A.1
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Figure 5.5: Gaussian Random Variable, X and Risk Distribution, G(X)

Figure 5.6: Distribution of Energy and Resulting CVaR Risk Value, scaled to a max of 1

using the Python package, Fitter5. Two examples of distribution shape are shown in Fig-

ure A.1, when the distribution closely resembles a Gaussian and when high-risk values shift

the distribution to the right. Alternate distributions are able to catch the right tail values,

such as Weibull and gamma. However, when more high-risk samples collect at the value

of 10, all the way to the right, no single distribution mode can fit the samples well. At-

tempts were made to fit the Gaussian and Weibull distributions, and the solutions to the

CVaR calculation of those two distributions are available in past sections and in the Ap-

pendices. However, the decision is made to use the sampling formula for CVaR for the risk

distributions to catch the tail-end risks better. If the X is a sampling of the distribution X.

5https://fitter.readthedocs.io/en/latest
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Figure 5.7: Distribution of Risk and Values of CVaR and VaR from input X ∼ N (40, 52)

The VaR and CVaR can be calculated from the sampled set X through Equation 5.7 and

Equation 5.8, which represents the α quantile of the data and the mean of the α quantile.

V aR(X,α) = x | x ≥ α ∗X (5.7)

CV aR(X,α) = mean( x | x ≥ V aR(X,α)) (5.8)

5.4.3 Collision Risk

Previous approaches that measured the risk of collision include Ochoa in [65], where a risk

proximity metric, m(x, y, z) = min(d/dthresh, 1) is used for normalizing the distance and

mapping to a risk value. However, the uncertainty of obstacle and system positions was not

included in the risk metric, m, and the function is linear, which misses the nonlinearity of

risk. Therefore, the decision is made to model collision similarly to the energy risk.

The risk of a collision is defined through a distribution of the distance to the closest

obstruction, d ∼ N (µ, σ2). The distribution is mapped by calculating the nearest structure

using the nearest neighbors, and then projecting the position to the terrain surface model.

Both the structure data and the terrain model output a mean and standard deviation for

distance, and the most constraining values are used for forming the distance distribution
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Table 5.3: Collision Risk Function Parameters Selected

a γ b c ρ
Value 10 1.5 5 0 15

shown in Figure 5.10. The risk function is mirrored from the energy risk formula and

defined in Equation 5.9. The parameters used for experiments are seen in Table 5.3 and a

plot of the risk function is shown in Figure 5.9. The distance distribution mapped to the

risk distribution, and the resulting CVaR values are seen in Figure 5.10.

R(d) −→ G(d) = A ∗ e−γ max(d−b,c)/ρ (5.9)

The parameters are selected by examining the open-loop dynamics that were first in-

troduced in Chapter 4. Wind and noise are added to the dynamic maneuvers from the

motion primitives. The wind magnitudes are randomly changed from zero to five meters

per second in a random direction, with the additional wind gusts formed from the Dryden

model. Acceleration noise was randomly selected between zero and 0.25. The resulting

position error distribution is seen in Figure 5.8. The distribution has a mean of 24.1 and

a standard deviation of around 10. Therefore, the collision risk function is defined such

that under windy conditions and open-loop flight the risk will indicate a worst-case risk

that is avoided if possible. The collision risk function with the final parameters is seen in

Equation 5.9.

5.4.4 Situational Awareness Risk

Previous literature has investigated the sensor coverage problem as a viewpoint orienteer-

ing optimization. The method could be using a sensor radius, ray tracing, or an offline

viewpoint field where the space is discretized to a finite set of positions and sensor angle.

The use of a View Information Field for accurate scene reconstruction is seen in [161].

The actual orientation of the aerial system is solved in planning in [162] and [163]. These
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Figure 5.8: Open-Loop Dynamics under Wind and Noise Disturbances

methods are successful but computationally expensive.

A common approach is to model the view of an onboard camera sensor using the scale

of coverage through the formula in Equation 5.10 where f is the camera focal length, and

H is the flight altitude above ground. The sensor size of the camera and pixel size can

then be translated to the coverage on the ground and an estimate of whether objects can be

detected in the image.

scale =
f

H
(5.10)

However, those constraints limit the trajectory planner’s ability to navigate based on the

previous two risks. Therefore, the viewpoint risk or situational awareness risk is defined as

a spatial and attitude risk or cost that is reduced by controls that maneuver the system close

to landmarks. This is unique to the previous two risk functions as the CVaR metric is not

used.

The risks are defined by distributions of the distance to the landmark, d ∼ N (µd, σ
2
d),

and the angle to landmark, ϕ ∼ N (µϕ, σ
2
ϕ). The distributions are passed through the

knowledge function in Equation 5.11, and the mean is taken as the likely amount of in-
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Figure 5.9: Collision Risk Function

Figure 5.10: Distance Normal Distribution and resulting Risk Distribution and CVaR

formation acquired on the landmark, Li. Each landmark updates for the remaining risk

through the equation, Equation 5.12. The knowledge function and risk function plots for a

single landmark, i, are seen respectively in Figure 5.11 and Figure 5.12. The total risk for

all landmarks is taken to be the mean in order to balance the total risk with the improvement

of reducing the risk of a single landmark.

k(d, i) = e−fmax(d−t,c) (5.11)
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r(k, i) = eγ/max(k−b,l) (5.12)

Insight from previous work by Kurz et al. in [164] is used to make assumptions on the

viewpoint knowledge function. The same camera system is assumed to be accessible as the

Canon EOS 1Ds Mark III camera with a 50mm Zeiss lens. The knowledge function pa-

rameters are selected based on these assumptions and the limitations assumed for acquiring

useful information about a landmark through the camera. The 1000-meter and 150-meter

targets are seen in the viewpoint knowledge plot in Figure 5.11. The number of sensor

samples is matched with the risk level from the knowledge metric, and the results are seen

in the viewpoint risk function in Figure 5.12. The targets of 50% and 90% knowledge are

shown to be the critical points for the risk function.

Figure 5.11: Viewpoint Knowledge Risk Reduction Function

5.4.5 Combined Risks

As mentioned earlier, the overall risk of the trajectory represents the probability of mission

failure. For this reason, critical targets are mapped to realistic parameters for each of the

risk metrics. The energy, collision, and viewpoint risk take internal and external inputs to

decide how the worst-case scenarios map to a single scalar value, respectively. The three
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Figure 5.12: Viewpoint Risk Function

can be combined by mapping each metric independently or by combining them together.

A summary of the risk metrics used in this work is found in Figure 5.13. Each metric, as

seen in the risk mapping and function columns, has unique parameters which were chosen

in the previous sections. Visual examples of the risks are seen with demonstrations of

when they cause high-risk values. The energy risk grows for long-range flights relative to

the energy available. The collision risk increases in tight spaces where terrain or structures

must be flown by to arrive at the goal. The viewpoint risk is only necessary when landmarks

are included, but if so, the initial risk is from the lack of viewpoint knowledge.
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5.5 Risk-Aware Planning

The primary objective is safer flight, through the SAFER framework. Trajectory planning

literature has slowly drifted towards the use of risk-aware planning to approach safe flight

in general, whether for the safety of the vehicle or the surrounding people and property.

Jasour in [165] defined risk-aware planning as the task of finding ”state trajectories and

control policy to satisfy safety constraints and control objectives, in the presence of proba-

bilistic uncertainties.” Xiao et al. in [151] generally define risk for motion planning as ”the

probability of the robot not being able to finish the path.” Xiao sought to address the formal

definition by proposing three major risk categories; locale-, action-, and traverse-dependent

risk. This definition and a complete risk-aware planner are introduced and applied to the

borehole entry problem, where the three categories are expressed in a ”Universe of all risk

elements” and labeled for the dependence on risk elements or agent state history. Sharma

et al. in [166] applied a risk-theoretical measure CVaR to define risk to find safer paths for

ground vehicles in disasters. Semantic segmentation is applied to aerial images to repre-

sent the map’s accessibility, however, this is noted as a risk-neutral approach. Therefore,

additional information on the uncertainty of the semantic predictions to form a risk-aware

approach. Risk metrics in past works have often used this measure of Conditional-Value-at-

Risk (CVaR), which has been used in the past for expected shortfall in the financial risk of

investment portfolios. CVAR is tunable using the parameter α, which defines the expected

tail loss or likelihood of event failures. Other work has represented risk using the metric of

entropy as in [167]. The definition of entropy is modified from the uncertainty degree of a

system from information theory to a combination of expectation and entropy.

If the risk can be statistically represented, it removes the arbitrary nature of riskmaps.

This is reminiscent of [168] by Gelman and Yao that notes uniform priors or subjective pri-

ors are poor and incoherent for Bayesian inference. In many cases, the solution has been to

consider a frequentist view of statistics or otherwise assume the powerful Gaussian distri-
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bution as a prior. However, there is literature expressing the importance and proper process

of leveraging accurate prior information, such as Gelman et al. in [169]. Alternatively, the

likelihood of risk of an event can be represented by a mapping developed by NASA, which

reduced a decision to three color-coded risk levels as detailed in [170]. If assumptions are

required, such as in the case of space robot operations, this systematic mapping may be

more productive than attempting to form accurate priors.

The representation of risk requires a formal definition using probability theory and

propositional logic. The probability of mission success is then the multiplication of the

probability of each successive state conditioned the previous states as in Equation 5.13.

The probability of not finishing the path is as in Equation 5.14.

P (F ) = P (Ff ...F0) = Πn
i=0P (Fi|F0,...,i−1) (5.13)

P (F̄ ) = 1 = Πn
i=0Π

r
k=1(1− rk(s1, ..., si) (5.14)

Figure 5.14: Costmap for the Risk of Landing when Risk-aware Planning is applied to a
Rescue Mission. Graphics reproduced with the approval of the creator, Alexander Parmley,
from http://www.aparmley.com

This work features the three risk metrics outlined in the previous section and summa-

rized in Figure 5.13. The overall objective of the risk-aware approach is to minimize the

P (failure), which can be considered as in Figure 5.14, through the three independent risk

metrics. Each metric maps to a single scalar risk value; however, the risk of a trajectory

must be further defined. The three metrics make the problem a multi-objective optimiza-
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tion, and the shift of the risk distribution over the trajectory can be combined through risk

thresholds, summing the risks, taking the max or mean, or another way.

R(σ) = max(ri) ∀ i ∈ sigma (5.15)

R(n) = max(R1, R2, R3) (5.16)

5.5.1 Background

Planning within a riskmap or costmap is not trivial, particularly in the applications of inter-

est in this work. Planning algorithms for the configuration of the space of an aerial system

can be computationally expensive, depending on the assumptions and constraints imposed.

Planning methods include heuristic grid search approaches like Dijkstra and A*, stochastic

graph search like Markov Decision Process or RRT, geometry optimized algorithms like

Model Predictive Control, or approximated dynamics like Differential Dynamic Program-

ming.

Previous works have applied advanced techniques such as memory-less planners, graph

neural networks, or factor graphs. In addition, alternative routing approaches, such as by

Scherer et al. in [34], considered dynamic events during flight and the uncertainty in path

predictions with unknown vehicle dynamics. Based on the success of the SST algorithm

in Chapter 4, the SST algorithm is selected to integrate into the risk-aware planning frame-

work. Three planning algorithms, EASST, iEASST, iRASST, are introduced and explored

using an object-oriented software environment. Additions to the planner are made until all

risk metrics are included and the risk-aware planner is capable of efficient planning.

5.5.2 Energy-aware SST

The first planner leverages the energy risk metric introduced in the previous section. Energy

is tracked along the tree expansion using a Kalman Filter, which is briefly described in
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Equation 5.17 as the combination of the measured value, zk, and the previous estimation,

X̂k−1, through the linear Kalman gain, K. The predicted energy updates are estimated by

factoring the mean and standard deviation of energy in hover with the time and speed of the

dynamic states. The Kalman filter helps to smooth the estimates and tracks the Gaussian

uncertainty, especially over long flight prediction steps.

x̂k = K ∗ Zk + (1−K) ∗ X̂k−1 (5.17)

The Kalman filter requires an estimate for the estimate propagation over time. For the

energy use, a scaled hover energy is used by scaling by the thrust and angle setpoints of

the motion primitive and using offline data to form a mean, µe, and standard deviation, σe

for the estimate. An example of the energy and standard deviation over time is shown in

Figure 5.15.

Figure 5.15: Mean Energy and one and three σ for Flight through Generated Map

The algorithm will stop the search at a node that tracks the mean SOC to be below 20%

or if the risk is equal to or greater than the limit 10. Figure 5.16 demonstrates the flight

of the SST and Energy-aware SST algorithms by simulating the quadcopter model through
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the optimal paths found after 500 iterations. The total energy use for the SST algorithm

approaches 33%, while the EASST algorithm is only 20%. This is achieved by finding

paths that minimize the risk of energy, as opposed to the euclidean distance. However,

EASST lacks insight into when and where to expand nodes, causing paths that get stuck in

local minimum during finite-time runs with default parameters. Therefore, improvements

are desired that can improve the speed of convergence and solution quality.

Figure 5.16: Reflying Paths and Tracked Energy for SST and EASST Algorithms

5.5.3 Informed Energy-Aware SST

Arslan and Tsiotras in [171] leveraged machine learning-guided predictions for efficient

sampling and steering. In [172], a GAN and LSTM are used to generate efficient heuristics

in a 2D sampling-based planner to improve the sampling process towards the goal. Work

by Wang et al. in [173] demonstrated the NRRT* that utilizes a nonuniform sampling

distribution generated from a CNN model. Another technique for learning leveraged the

latent space of planning problems that can be learned as in [125] where ” the learned latent

space is constructed through an auto encoding network, a dynamics network, and a collision

checking network, which mirrors the three main algorithmic primitives of SBMP, namely

state sampling, local steering, and collision checking” [125].

Informed sampling in [174] demonstrates an improvement to the random sampling of
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stochastic search algorithms through a minimum-path-length problem using the L2 in-

formed set from the L2 norm. Informed sampling approaches were generally defined [111]

as methods that reject samples that do not improve the current best estimate of the solu-

tion. Informed RRT* in [175] uses direct informed sampling to speed up the time to find

the asymptotically optimal path from RRT*. The difference exists when the first path is

found, and the sampling focuses on the areas where the path can be improved. This is done

through direct sampling of the ellipsoidal heuristic, Xf . Improved convergence rates can

be achieved by using informed trees as in BIT* and RABIT* [120].

Littlefield and Bekris in [176] shows how the SST can be improved with informed sam-

pling demonstrated on dynamic systems in the real world. Littlefield and Bekris in [177]

show how Dominance-Informed Regions can provide informative sampling that improves

convergence for kinodynamic motion planning. Then in [178], Sivaramakakrishnan and

Littlefield develop an algorithm to appropriately balance an exploitation-exploration trade-

off using neural networks to infer local maneuvers for a robotic system with dynamics.

However, the informed SST algorithm detailed by Littlefield is selected as a balance of

algorithm complexity and improvement.

Informed SST introduces five key advancements that are suited well for field robots as

detailed in [176]. One, a deterministic sampling is used to decide which node to select

for forward propagation of the dynamic model. Two, heuristics are defined to guide the

exploration through both a running cost and a cost-to-goal, or heuristic cost, comparison.

Three, the motion primitive maneuvers are mixed with random control selections to keep

probabilistic completeness guarantees. Four, the locally optimal control decision is selected

from a set of forward propagation maneuvers that are compared to local witness nodes by

risk value and heuristic value. Fifth, a branch and bound technique forces the search to go

towards low cost-to-go by continuously sampling along paths with low heuristics

As demonstrated by Littlefield in [176, 128], a heuristic can improve convergence. Just

as for the A* algorithm, the heuristic must be admissible and consistent. The main idea is
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that the heuristic function, h(n), is defined to be a lower bound estimate of the optimum

cost to the goal as seen in Equation 5.18. The heuristic function influences which nodes

are selected by sorting all nodes in two priority queues. The priority queues use a heap

structure to efficiently sort nodes with the lowest combined cost at the top of the list. The

nodes with the lowest cost, f(n), are continuously selected and kept at the front of the list

in the node expansion. The MonteCarloProp function leverages the name even further by

forward propagating from the node multiple times using either the motion primitives or

random controls. The number of samples, m, and the likelihood the sample is chosen for

further expansion depends on the quality function, detailed in Equation 5.19. The node’s

variable, p, is the priority value which increases from 1 to 10 based on the number of times

it has been selected. The node’s cost, or risk value, is indicated by the variable c.

h(n) ≤ h∗(n) (5.18)

q(n) = (
1

n.c/goal.c+ h(n)/h(n0

)n.p (5.19)

The heuristic function must take into consideration one or more of the risk metrics in-

troduced earlier, and therefore three components of the heuristic function are introduced.

The energy to the goal heuristic defined in Equation 5.21 is the energy distribution pre-

dicted to travel from the current node to the goal node. The assumption is that a straight

line to the goal is flown at the current average speed so that the scaled hover energy rate can

be summed over the full time of flight. The collision heuristic is a function of previous dis-

tances to obstacles, while the viewpoint heuristic is calculated by measuring the difference

in viewpoint knowledge of the closest landmark.

h(n) = h(n)e + h(n)c + h(n)v (5.20)
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h(n)e = CV aR(G(E)) | E −→ d(n, g) (5.21)

The total path risk is measured in two ways. For one, the overall path risk can be defined

as the risk at the final node, the goal node. Alternatively, the risk can be defined as the risk

at the β quantile of the risk set or the mean of the risk set.

R(σ) = R(ngoal) (5.22)

R(σ) = R(quantile(σ, β)) or R(mean(σ)) (5.23)

First, the informed heuristics for the energy risk metric is explored and compared to the

previous algorithms introduced. The algorithm named iEASST shows major improvements

for the EASST algorithm and is favored over the original SST for most maps of interest.

Generated Maps

The iEASST, EASST, and SST algorithms are compared for performance and consistency

over randomly generated maps and urban maps. First, the algorithms are evaluated over

four generated maps. Map ”14” is the ”hole-in-the-wall” map introduced in Chapter 4. The

maps named with the format ”r#-##” are randomly generated maps that are defined by the

scale, from one to 5 times in size, and the number of obstacles, from zero to 200 obstacles.

The scale increases the bounds and the distance of the goal from the start. The obstacles

are randomly dispersed in the environment and range from 5 to 25 meters in height and

width. The results for the planners on all four maps are shown in Figure 5.17 and detail

the best performers in the time to find a solution, the number of iterations the first solution

was found, and the total energy used across the trajectory. Detailed outputs are found in

Table B.2.

The iEASST algorithm is shown to produce lower energy trajectories consistently across
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the maps while requiring fewer iterations. In addition, while the EASST algorithm has

trouble finding solutions in the set number of iterations, the iEASST fixes the problems

and outperforms the SST algorithm, as seen in Table 5.4. The reason for this has to do

with how the energy risk metric changes the expansion of the tree and reduces the sparsity

across the entire map. Sparse nodes exist along energy efficient directions, but iEASST is

needed to speed up the search with the energy risk metrics to consistently find solutions.

Figure 5.17 details the performance in detail across the four generated maps, where the

iEASST algorithm is consistently better than EASST and SST for total energy use. EASST

algorithms are expected to find similar trajectories over infinite time runs, but in finite-time

performance iEASST outperforms by EASST. However, the settings for the experiments

and the costly dynamic functions for the randomized control states result in iEASST find-

ing the first solution in more time than the other algorithms. Therefore, reducing the num-

ber of iterations or setting tighter time constraints could disrupt the iEASST algorithm’s

performance. Therefore, future work could investigate the optimized parameters and per-

formance limitations for each map.

Table 5.4: SST, iEASST, and EASST Success Rate on 3D generated maps

60 runs Each SST iEASST EASST
All [%] 95.56 98.89 66.67

RUM Maps

The three algorithms are evaluated across the three urban map models generated in Chapter

3. iEASST performs the best, as shown by the metrics in Table 5.5 and Table 5.6. In

particular, the performance on the Atlanta maps demonstrates the exceptional ability to

find solutions over large maps, where the sparsity of the original SST algorithm is lacking

until it is run for more iterations. The iEASST algorithm’s use of the heuristics leads to a

sparse nature of nodes around the goal, as opposed to over the entire search space.

Results in Figure 5.17 show how in generated 3D maps, the iEASST algorithm may
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Figure 5.17: SST, iEASST, and EASST performance on 3D generated maps
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take longer in some maps to find the first solution. However, the final solution within

the finite-time experiments is much improved regarding energy use over the flight. Fig-

ure 5.18 examines the performance over the three rapid urban map models. The results

in Figure 5.18 similarly indicate the success of the iEASST algorithm. The iEASST al-

gorithm finds trajectories in the three urban maps, Atlanta, Los Angeles, and New York

City, that are all less energy and time to fly. The energy of the flight is 30% improved over

the EASST algorithm, and the flight path is 15% improved. The only map in which the

iEASST algorithm does not provide an average improvement in these metrics is the NYC

map. The NYC map has many obstacles in the environment, and the planner must balance

the constraints of avoiding collisions with the risk of energy.

The performance on the Atlanta map in Figure 5.19 shows additional insight into the

performance of iEASST. First, it is clear that the SST algorithm is now lacking behind the

other algorithms when it comes to the trajectories’ flight time and energy. When wind and

noise conditions increase, the range of solution quality grows and ultimately begins to fail.

The EASST algorithm experiences similar difficulties in finding a solution within the 3000

iterations, but the solutions found perform significantly better than SST. Most importantly,

however, is the performance of iEASST. The algorithm consistently performs well under

windy and noisy conditions, finding the closest to an optimal path within 100 seconds of

flight and 20 W-hr of energy. Wind conditions over four m/s, with gusts approaching six

m/s, and internal noise with a standard deviation of over 0.4 limit the planner’s ability but

do not constrain it. In fact, while the flight time is generally increased, the energy of the

flight stays the same. Therefore, the planner can, through local heuristics and witness nodes

that experience the effect of wind and noise, find alternative paths that minimize the energy

risk.

The performance of the iEASST algorithm is improved as compared to the EASST

algorithm. This is achieved by adding the informed heuristics and the improved branch

and bound functions. However, the algorithm optimizes with respect to a single risk factor,
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Table 5.5: SST, iEASST, and EASST performance on urban maps

SST iEASST EASST
ATL [%] 75 92 25
LA [%] 48 41 33

Table 5.6: SST, iEASST, and EASST Energy and Flight Time in the Atlanta urban map

Map: ATL SST iEASST EASST
Avg Energy (W-hr) 89.53 52.41 66.88
Avg Flight Time (s) 628.45 367.29 432.36

Success (%) 82% 100% 27

Figure 5.18: SST, IEASST, EASST Energy and Flight Time in urban maps

energy, which is not always the best decision, for example see the results in the NYC map.

So far, the risk of collision and data collection were not included. The following section

introduces the last version of the planner, which considers all risk metrics during optimal

trajectory planning.
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5.5.4 Informed Multi-Risk-Aware SST for Aerial Disaster Response

The final algorithm, which combines all the risk metrics and planning algorithm improve-

ments together, is iRASST. The algorithm is detailed in algorithm 6, where the informed

SST additions have been added such as BestHeuristic and BranchAndBound, and the

core multi-risk additions have been added within theCalculateRisk andCalculateHeuristic

functions, seen in algorithm 5 and algorithm 4 respectively. The algorithms provide the

general structure but are condensed in this work. More details into the best data structures

and efficient implementation methods are found in [128] and [176]. All the risk metrics

are now represented as soft constraints, which forces the algorithm to find trajectories that

balance the three risks for an optimal path. The heuristic function shown in algorithm 4

remains a risk estimate of only energy, as to keep the admissible and consistent assump-

tions. The assumption then holds that this is a lower bound of risk, where all viewpoints

are achieved and no collisions occur while flying straight line, energy-efficient, paths to the

goal.

Algorithm 4: CalculateHeuristic(N)

for lmk in landmarks do
d← distance(N.x, lmk) ;
t← time(d, V ) ;
e← energy(t, V ) + e ;

end
g ← EnergyRisk(eµ, evar) h, r ← CV aR(gµ, gvar) ;

Algorithm 5: CalculateRisk(N)

Oµ, Oσ2 ← NearestObstacle(N) ;
c← CollisionRisk(Oµ, Oσ2) ;
di, ϕi ← LandmarkRay(N) ;
vi ← V iewpointRisk(di, ϕi) ∀ i ∈ Landmarks ;
v ← mean(v1, ..., vi, ..., vk) ;
Eµ, Eσ2 ← EnergyUse(N) e← EnergyRisk(Eµ, Eσ2)
R← RiskCombination(c, v, e) ;
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Algorithm 6: iRASST(X, U, x0, Tprop, N, ∆W )
Data: x0 ∈ X, N > 0, ∆W

Result: p∗ = {t1, x1|...|tf , xf} ∈ P
risk(p∗) ≤ risk(pi) ∀ pi ∈ P ;
Vactive ← x0, Vinactive ← {} E ← {}, G = {Vactive

⋃
Vinactive, E};

w0.x← x0 , w0.p = x0 , W ← {w0} ;
P ← PriorityQueue([]) , Q← PriorityQueue([]) ;
for N do

xselected ← InformedBestSelection(X, Vactive,∆W ;
xnews ←MultiMonteCarloProp(xselected, Ui,...,mTprop) ;
R← CalculateRisk(Xselected, α) ;
H ← CalculateHeuristic(Xselected) ;
xnew = BestHeuristic(xnews, H) ;
if CollisionFree(xselected, xnew) then

if LocallyBestNode(xnew,W,∆W , R,H) then
if BranchAndBound(xnew, R,H then

Vactive ← Vactive
⋃
{xnew} ;

E ← E
⋃
{xselected, xnew};

PruneDominatedNodes(xnew, V, E) ;
end

end
end
P,Q← UpdatePriorityQueues(xnew)

end
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All risk metrics generally increase to the max risk in the three regions indicated in Fig-

ure 5.20. On the left, red nodes indicate a high viewpoint risk before any detections are

made. In the middle, the collision risks increase dramatically as the flight requires maneu-

vering through the buildings. On the right, flights that continue to search the environment

ends at the maximum energy risk.

.

Figure 5.20: iEASST, and iRASST, and SST in New York City demonstrating all risk
metrics

The overall results in Table 5.7 show that the algorithm has longer flight times and a

higher energy cost when energy risk is not the primary constraint but results in a much

lower path risk. The collision and viewpoint risk metrics take priority for these scenarios,

meaning that safer flights that ensure landmarks are detected and avoid getting close to

structures and terrain perform better on average. For example, in the results from the

NYC map the flight path requires 6% more energy and 10% more flight time. However,

visualization of the path shows that the extra flight time and energy comes from routes

around tight corridors in the NYC map. Easier detection of landmarks may have also played

a part in the path selection, but the primary reason is to limit high risk values from potential

obstacle collisions. Further investigation using real vehicles or high-fidelity simulation

environments is needed to fully understand the tradeoff between risk metrics.
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Table 5.7: Path Performance Results for iRASST

LA NYC
SST iEASST iRASST SST iEASST iRASST

Path Energy [W-hr] 37.0 29.39 49.3 35.9 27.9 31.1
Path Flight Time [s] 406 276 293 296 234 243

Path Risk 6.5 6.0 2.8 7.4 6.4 5.0

Table 5.8: Planning Algorithms Playbook

Long Distances Many Obstacles Windy / Gusty
Complexity SST SST EASST
Performance iEASST iEASST iEASST
Consistency iEASST iRASST iRASST

Time SST EASST EASST

5.6 Summary and Future Work

If there are no landmarks nor tall structures, or the viewpoint and collision risk are less

important to a stakeholder using the framework, then the iRASST algorithm is not the

correct choice. This chapter’s results outline the best circumstances for each planner, and

this is summarized in an algorithm playbook for deciding which algorithm to use depending

on generalized maps in Table 5.8 and specific maps in Table 5.9.

Additional risk metrics could provide more complete guarantees of flight safety. Some

Table 5.9: Planner Playbook on Urban Maps

RUM Map
Details

Planner
Outcomes

NYC
Many Obstructions

Collision and Energy Risk key iRASST

LA
Mountainous Terrain

Energy and Collision Risk Key iEASST

ATL
Large Scale with Many Landmarks

Energy and Viewpoint Risk Key iRASST

HIW
Small Scale with Hard to Find Path

Collision Risk Key Informed SST
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metrics have been demonstrated in literature in the past, such as Scherer’s use of a time

to collision metric in [35] Also, GPS localization using a Geometric Dilution of Precision

model was demonstrated as a flight metric by Ochoa in [65]. In addition, consistent com-

munication with other aerial systems or with a base station is critical to relaying updated

flight paths or data collected. Engineers involved in this field have suggested that commu-

nication should be included when evaluating flight risk and, therefore, should be included

in future work.

The Informed SST improvements could also be furthered using tricks from DIRT [128]

and TIE [63], or by leveraging sensor entropy reduction [179]. Camera viewpoint models

can be improved with the vast literature on the subject. Work by Xiao [62] and Choi [83]

have demonstrated camera viewpoint models, while work such as [162] and [163] have

solved the viewpoint orienteering problem explicitly.

Recent work by Larsson et al. in [180] has explicitly explored the multi-objective risk

optimization for trajectory planning using hierarchical tree structures, signal encoders, and

information-theoretic methods. Pareto efficient solutions are presented in the information

plane, resulting in a linear optimization problem. Xiao in [62] also investigated multi-

objective risk through a Pareto-optimal trajectory search. This can be considered as a linear

combination of risk metrics to optimize for mission success over all possible scenarios.

R(X) = αR1(X) + βR2(X) + χR3(X) + ...

One question still remains. How does this perform over realistic disaster response mis-

sions? Chapter 6 demonstrates the framework in a realistic scenario to see how well the

framework can be leveraged.
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6

DISASTER SITUATIONAL AWARENESS FROM AERIAL TRAJECTORY

PLANNING

6.1 Introduction

The risk-aware planner can manage multiple risk metrics to find the most viable solutions

to maximize mission success, as shown in Chapter 5. This was demonstrated within the

framework that combines rapid urban mapping and safe 3D trajectory planning. The frame-

work now forms a new benchmark to evaluate additional planning algorithms and new risk

metrics or uncertainty models. Furthermore, visualization packages allow the 3D maps,

trajectory paths, and color-coded risks to be presented quickly. All this is done using open-

source software, tools, and publicly available datasets while running on a single laptop.

Therefore, it can be claimed that the framework is a novel approach to benchmarking aerial

trajectory planning and urban mapping for disaster response applications.

Now that algorithms have been selected and optimized for urban mapping and trajectory

planning, the question remains on how the full framework can be leveraged for actual

disaster response scenarios. What limitations exist, and how can they be solved for risk-

aware planning with limited data when applied to disaster response scenarios? Disaster

response scenarios with uncertainty models and optimized planners provide insight into

the capabilities of offline planning for response times and success rates. This can feed

down into system-level metrics for energy and viewpoint design and performance targets.

In order to answer the overarching research question of whether these algorithms and

data selections improve UAS operations for situational awareness, the full framework is

implemented using a combination of real data and Monte Carlo simulation.
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6.1.1 Disaster Response Areas of Interest

Industry interest is growing for responding to and predicting disasters as shown by com-

panies like Nearmap1. Recent research has attempted to give insight into likely or already

flooded areas using tools FloodNET [95]. However, Geodatahubs used as resources in

Chapter 3 often have resources precomputed regarding likely disaster zones. For exam-

ple, the Georgia Emergency Management & Homeland Security Agency provides geospa-

tial datasets on flood zones in the Atlanta area. The data and environment used for the

experiments are shown in Figure 6.1. The raw dataset is a set of polygons representing

documented flood zones. The centroid is used to reduce the polygon to a single 3D point

to reduce the computations during viewpoint knowledge checks. Just as in Chapter 5, the

landmark risks are initialized to be near max risk to influence paths that find the landmarks

in the environment.

Figure 6.1: Final Demo in Atlanta with Flood Zones in Blue and Structures in Purple, and
the mapped landmark points as pink circles

1https://www.nearmap.com/us/en/aerial-view-maps-about-us
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Initial results reveal that landmark detection can falter when the landmarks are spread

too far from the start and goal location. The energy and collision risks influence the trajec-

tory more quickly, and some landmarks are ignored within the finite-time runs of around

5000 iterations. Therefore, the algorithm needs to have multi-goal characteristics to per-

form a more realistic trajectory. The objective is not necessarily a point-to-point search

anymore, but rather a multi-goal search.

6.2 Multi-Goal iRASST

One final modification to the planning algorithm is selected to promote faster convergence

and improve finite-time performance. Initially, the landmark risk was treated independently

to the heuristics for reaching the goal node. However, this causes flight patterns that miss

landmarks and may run into local optima or risk thresholds. Therefore, the decision is

made to modify the landmark visits to be forced through multiple goals. A list of all the

landmarks, the original goal defined, and the start node are joined together to define the

positions in which viewpoint risk must be minimized, and a minimum clearance must be

achieved. The Return-To-Home (RTH) feature is included by the landmark visit queue end-

ing with the start location, as shown in Equation 6.1. This does limit the accuracy of the

optimal path by flying to the nearest landmark and following a pattern based on what land-

marks still require knowledge acquisition. However, the solution converges much faster

than the iRASST algorithm because the initial maneuvers target partial paths that reduce

viewpoint risk first and then look to find better paths when it comes to energy and collision

risk. The algorithm is referred to as Informed Disaster Risk-Aware SST, iDRASST.

L = [L1, L2, ..., Ln−1, G, S] (6.1)

During flight, the landmark data is approximated with the knowledge function defined

in Chapter 5. In addition, the Pix2Pix urban feature predictions from Chapter 3 are used
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to track the flight environment and confirm the landmark is the expected landcover type.

After human-robot coordination is integrated, this information can all be relayed to a first

responder.

Results for a preliminary demonstration is shown in Figure 6.2. The scenario features

a large-scale, mostly empty 3D environment, and therefore the landmarks are found rather

quickly at the start of the flight. This leads to the risk factor rapidly decreasing down

to about 3. However, the quickest flights to reach the goal and then return home to the

start location require close maneuvers with obstacles. This leads to two instances of 9-

10 risk values. As a demonstration of all three risks, the final path to return to the start

location is initiated from over 1000 meters away, resulting in a large uncertainty of the

energy use over the flight. Furthermore, the large uncertainty leads to a large jump in risk

that approaches the max value of 10. The total predicted energy remains around 50%, and

therefore, the uncertainty of the final flight maneuver would lead to alternative path options

if the algorithm continued to search.

The results are stochastic and change based on user inputs for the scenario. These

inputs, referred to as knobs, allow the user to change system-level assumptions or envi-

ronmental factors. For example, the viewpoint risk may be inaccurate for a UAS with a

smaller camera onboard, and therefore the distance and scaling factors for the viewpoint

knowledge function are changed. Alternatively, the scenario of interest could be just af-

ter a devastating storm, and the wind and gust parameters need to be scaled to higher and

more uncertain wind speeds. These parameters are all available for users or stakeholders to

modify before simulation.

6.3 Final Demonstration

The SAFER framework is completed with a set of rapidly generated maps, kinodynamic

planning algorithms, and risk-aware optimization. The software environment is prepared

with visualization and verification tools that allow users and stakeholders to investigate
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Figure 6.2: Final Demo in Randomly Generated Map

scenarios, tune parameters, and explore knobs that can change the results and produce in-

sight. The framework requires a dynamic system model, used as a black-box function, and

geospatial datasets, assumed to be open-source. The planning, data, and mapping algo-

rithms process the data and models in a scenario of interest and use the model, algorithm,

and environment parameters provided. Single or repeated demonstrations are then possi-

ble through the SAFER framework, which outputs visualizations of the map and flight,

detailed trajectory information with system and environment states, and risk metrics for

energy, collisions, viewpoint knowledge of landmarks, and essentially the risk of mission

failure. The framework is represented in Figure 6.5 and is used in this manner for the final

demonstration.

The mapping and planning algorithms are demonstrated within the Atlanta flood zone

map. The visualization and performance of the iDRASST algorithm are shown in Fig-

ure 6.3 and Figure 6.4 respectively. The change of risk over the flight changes based on

the three risk factors: energy, collision, and viewpoint. The resulting path is visualized in

Google Earth Engine to demonstrate the ability of the framework to model real-world flight

paths. The results show that the iDRASST algorithm also performs successfully for faster

convergence and safer flight paths. Safer flight paths are defined by lower energy use, be-

ing generally far enough away from obstacles, and gaining situational awareness through
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viewpoint models of key landmarks. The iDRASST algorithm forces all landmarks to be

successfully detected and reduced to zero risk before returning to home. The demonstration

in Figure 6.3 is the optimal flight path over a set of simulations run under windy and noisy

scenarios. The total energy use for flight is over 50 Watt-hours, the flight time is around

20 minutes, and the mean risk is approximately 4. The max risk of 10 is met at the start,

caused by viewpoint risk, and when the flight path goes close to structures at low-altitude.

The final risk of 5 is caused by moving towards the goal, but also getting close to structures

at a low-altitude. As in previous research, the takeoff and landing maneuvers may need to

be added as subroutines within the algorithm through start and goal edge constraints.

Figure 6.3: Visualization of Path for Atlanta, GT Campus Flood Zones

Figure 6.4: Risk and Energy for Path
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For disaster response applications such as the example in Atlanta, the system and sensor

performance is critical for success, as clearly shown by the risk metrics. This introduces

another capability of the SAFER framework, which is to use simulated scenarios to map

mission performance to system, or systems of systems, design variables. For example, the

energy use required to detect all the landmarks in Figure 6.4 is quickly approaching high-

risk levels below 40%, and therefore similar missions may require increased energy avail-

ability through a more efficient aerial system or larger battery. Note that the current model

is a quadcopter, and therefore a fixed-wing unmanned system may demonstrate improved

behavior as long as viewpoint knowledge acquisition can be assumed similarly successful

to the quadcopter model. In addition, the takeoff position, or alternative takeoff and landing

positions, maybe more useful when multiple operators or multiple aerial systems are in use.

Experiments that seek to optimize system performance or concept of operations design are

left for future research.

6.4 Summary and Future Work

The iRASST algorithm is demonstrated in the multi-goal setting to examine the effective-

ness of performing complete Return-To-Home routes that simultaneously avoid the risk of

mission failure and gain viewpoint information about landmarks. The performance shows

improvement over traditional methods and is compared directly to the SST algorithms from

Chapters 4 and 5. The framework could be great for disaster response teams to deploy au-

tonomous aerial systems for situational awareness. If real-time behaviors are integrated,

the aerial systems can be enlisted to collect data while avoiding energy-constraining and

obstacle-dense paths. Therefore, guaranteeing a successful data collection missing without

needing hardware-in-the-loop simulation, but instead only offline trajectory planning in the

SAFER framework.

Faigl in [68] explores many different techniques and algorithms to implement multi-

goal planning that improves upon the traditional Traveling Salesman Problem for 3D tra-
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jectory planning applications. In addition, the environment could be used to investigate

onboard data visualization for safe flight planning in Human-Robot coordination. Future

work could benefit from leveraging tools to provide in-flight, real-time feedback, which

will require flight testing and sensor tuning.

Figure 6.5: Overview of Final Demonstration Experiment
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7

CONCLUSION AND FUTURE WORK

Disaster response missions are dynamic and dangerous events for first responders, and ac-

tive situational awareness is critical for effective decision-making. In recent years, the tech-

nological advancements of unmanned aerial assets have successfully extended the range

and output of visual sensors. Aerial assets have demonstrated their capability in disas-

ter response missions via decentralized operations. However, the current market lacks the

technology infusion to quickly and effectively integrate UAS tightly into the response team.

Moreover, literature lacks a systematic investigation of the algorithms, datasets, and tools

for aerial system trajectory planning in urban disasters that optimize mission performance

and guarantee success.

This work develops a framework and software environment to investigate the require-

ments for offline planning algorithms and flight risk models when applied to aerial assets

exploring urban disaster zones. The framework is constructed by creating rapid urban

maps, demonstrating efficient flight planning algorithms, and integrating formal risk mea-

sures that are demonstrated in scenario-driven experiments and Monte Carlo simulations.

First, rapid urban mapping strategies are compared for efficient processing and storage

through independent obstacle and terrain layers. Open-source data is used when available

and is supplemented with an urban feature prediction model trained on satellite imagery us-

ing deep learning. Second, sampling-based planners are evaluated for efficient and effective

trajectory planning of nonlinear aerial dynamic systems. The algorithms are shown to find

collision-free, kinodynamic feasible trajectories using stochastic open-loop control models.

Alternative open-loop control commands are formed to improve the planning algorithm’s

speed and convergence. Third, a risk-aware implementation of the planning algorithm is

developed that considers the uncertainty of energy, collisions, and onboard viewpoint data
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and then maps them to a single measure of the likelihood of mission failure.

7.1 Summary of Research Questions

Three modules are combined in a framework where the rapid urban maps and risk-aware

planner are evaluated against benchmarks for mission success, performance, and speed

while creating a unique set of benchmarks from open-source data and software. The three

modules address the three core research questions raised during the thesis.

Research Question 1
What data structures and machine learning algorithms successfully generate urban map

models with open-source data and tools for disaster response with field robotics?

The hypotheses for research question 1 are summarized as follows.

• Hypothesis 1.1: Independent layers form accurate urban maps and individual layer

algorithms require a software framework to evaluate accuracy and speed for unique

scenarios

• Hypothesis 1.2: Data-driven models supplement the lack of data in open-source

datasets for structures and other urban landcover labels

Two experiments address the question through the Rapid Urban Map, RUM, framework

that produces three example maps for Los Angeles, New York City, and Atlanta. The first

assumption is that four independent layers define the urban map for urban disaster trajectory

planning. The four layers are terrain, structures, weather, and urban landcover features.

Terrain and structures define the 3D spatial information, weather defines the flight behavior

in different wind and atmospheres, and urban landcover features describe the environment

around a flight path. In experiment one, open-source data and Python packages are used in

experiments for the terrain approximation and structure discretization. In experiment two,

public aerial datasets and TensorFlow tools are used for urban landcover prediction.
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The first experiment shows that the rapid urban map module generates a 3D structure

and terrain map within 20 meters of truth data and in less than five minutes. The FME

Workbench tool performs verification of the accuracy and speed. The Python framework

demonstrates that the Gaussian Process, GP, terrain model performs better than B-spline

and NURBS models in small-scale, mountainous environments at 10-meter resolution. The

GP’s error to the 1-meter truth dataset is around 30 meters per sample and is generated in

about two minutes. However, environments with relatively flat terrain and wider structures

generally perform well using the simplest model, B-spline, and a 20-meter or more dis-

cretization of the structures that can be generated in under one minute for small to medium

maps. GP is the most complex model and performs the best in complex terrain, but a

Bayesian model also predicts the variance of the prediction. The hypothesis is proven cor-

rect by the two sub-experiments for structure and terrain modeling and the integration with

weather and gust data. An urban map model is accurately and efficiently formed after the

use of the RUM framework to evaluate the proper terrain model between B-spline, NURBS,

and Gaussian Process, and then the efficient structure distribution parameters of resolution

and volume threshold.

The second experiment explores supplementary data for structures and other urban

landcover features. The Pix2Pix Generative Adversarial Network, GAN, which uses a

3-channel encoding for nine labels, predicts structures, greenspaces, water, and roads with

high accuracy according to the F1, IOU, and pixel accuracy metrics. Structure predic-

tions result in over 80% per-class pixel accuracy and over 0.80 for F1 and IOU scores. In

addition, greenspace predictions result in almost 95% per-class pixel accuracy and about

0.90 F1 and IOU scores. The evaluation metrics are generated over a subset of the custom

dataset that is not used during training. The example map for Atlanta, Georgia, represents a

10-kilometer squared region with over 300 structures, relatively flat terrain, and the five key

Pix2Pix urban landcover classes transformed into vector polygons. The storage size is less

than 300 MB and can be generated in less than 5 minutes. The hypothesis is proven correct
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that the data-driven method supplements the missing data and provides additional features

not available in previous methods. All the experiments prove successful and consistent

using exclusively open-source data and a single laptop.

Research Question 2
What trajectory planning algorithm consistently and efficiently finds offline kinodynamic

planning algorithms in 3D while operating with unknown dynamics in uncertain
environments?

The hypotheses for research question 2 are summarized as follows.

• Hypothesis 2.1: Sampling-based planners that leverage black-box dynamics models

have a good finite-time performance by leveraging ’informative sparse likely paths’

• Hypothesis 2.2: Computational efficiency of the algorithm for Monte Carlo simula-

tion relies on efficient queries of the dynamics model that is improved by approxi-

mating maneuvers from the black-box model

Two experiments demonstrate the sampling-based planner’s effectiveness and efficiency

with small-scale and large-scale maps and black-box dynamic models. The cost of trajec-

tories after a finite-time experiment, limited by search iterations, is compared between the

RRT and SST algorithms. Monte Carlo simulations demonstrate the SST algorithm’s abil-

ity to find consistently efficient flight paths even with wind speeds of five meters per sec-

ond, gusts that double the wind speed, and zero-centered Gaussian noise in the acceleration

equations of the dynamics.

The first experiment demonstrates why the sampling-based planning algorithm is se-

lected for forming collision-free, 3D offline flight paths with a black-box dynamics model

of a quadcopter. Sampling-based planners prove successful for efficient and optimal flight

paths through randomly generated and rapid urban maps, even under wind and noise un-

certainty. The Stable-Sparse-RRT, SST, algorithm is shown to improve trajectories for

minimum Euclidean distance more consistently and efficiently than the RRT algorithm,
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with a 50% improvement in finite-time path convergence for large-scale urban maps. The

key parameters for the SST algorithm are the dynamic propagation time bounds, Tmin and

Tmax, as well as the radius values for finding the best node and nearest witness, ∆BN and

∆S .

The second experiment explores the forward propagation dynamics and details how the

black-box model is replaced with a lattice of predefined maneuvers, or motion primitives,

that is 5-15 times more computationally efficient. The motion primitives are generated

using an inverse lower-order dynamics model to track motor speeds and the Differential

Dynamic Programming, DDP, algorithm to iteratively improve the final position and energy

use of the path.

Research Question 3
How can risk measures be incorporated into trajectory planning algorithms to gain

confidence for safe and informative flight in uncertain environments?

The hypothesis for research question 3 is summarized as follows.

• Hypothesis 3.1: A formal analysis of the most important risk metrics and the use of

a single statistical measure of risk in the planning algorithm measures the safety of

flight maneuvers leading to more robust and informative trajectories. Risks include

energy use in flight, the distance to collision with an obstacle, and the data collected

for first responders at special landmarks.

The same maps and dynamic models are demonstrated for experiment 3. However,

three trajectory planning algorithms that incorporate risk into the cost function are com-

pared to the original SST algorithm for flight time, energy, and average risk. Energy-aware

SST, EASST, incorporates the risk metric as a Gaussian random variable tracked with a

Kalman Filter, and the informed Energy-Aware SST, iEASST, adds heuristics to make bet-

ter decisions for adding edges that lead to faster convergence to near-optimal paths. The

informed Risk-Aware SST, iRASST, algorithm leverages all three risk metrics and must
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balance energy, collision, and viewpoint risk along the flight. Situational awareness and

collision performance under uncertainty is constrained within tight bounds when using

iRASST.

The risk-aware planning algorithm generates optimal paths based on three risk metrics

of energy, collision, and viewpoint risk and quantifies the likelihood of worst-case events

using the Conditional-Value-at-Risk, CVaR, metric. The sampling-based planning algo-

rithm is improved with informative paths, and three versions of the algorithm are compared

for the best performance in different scenarios. Energy risk added to the planning algorithm

results in 5-35% energy reduction and 20-30% more consistency in finite-time convergence

for flight paths in large-scale urban maps. All three risk metrics in the planning algorithm

generally result in more energy use than the planner with only energy risk but reduce the

mean flight path risk by 10-50% depending on the environment, energy available, and view-

point landmarks. In summary, flight paths result in less energy when using iEASST, and if

collision and viewpoint risk are necessary, iRASST reduces the overall risk of the flight. A

playbook outlines the appropriate algorithm in specific scenarios

The three hypotheses and experiments lead to conclusions for the overarching research

objective.

Overarching Research Objective
Perform a systematic investigation of the best data and planning algorithms through

current technology and tools for unmanned aerial systems to supplement first responders’
situational awareness.

A final experiment in an Atlanta flooding scenario demonstrates the framework’s full

capability with the rapid urban map displaying essential features and the trajectory planner

reporting flight time, energy consumption, and total risk. Furthermore, the simulation envi-

ronment provides insight into offline planning limitations through Monte Carlo simulations

with environment wind and system dynamics noise. The iRASST algorithm is modified to

the Informed Disaster Risk-Aware SST, iDRASST, algorithm by replacing the single land-
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mark search list with a queue of landmark goal points. The viewpoint risk is updated the

same as before. However, the updated algorithm requires all landmark targets to be found

before heading towards the final goal, which is the original start location. Therefore, the

algorithm incorporates the necessary Return-To-Home functionality. The algorithm im-

proves the consistency of iRASST by 50% when landmarks are not along the path or are

challenging to detect.

7.2 Summary of Contributions

This dissertation outlines a methodology and provides a framework for experimenting with

aerial systems for situational awareness during disaster response missions. The complete

list of contributions is summarized here.

7.2.1 Framework and Tools

A complete framework and software environment is developed in python, with modules that

each operate as an independent framework for mapping, planning, and risk-aware planning,

respectively. The Rapid Urban Map, RUM, framework allows for algorithm comparisons

for terrain, structures, and wind models. Unique class structures that can be used by internal

tools and the trajectory planning class are available to use or expand. The sampling-based

planner framework starts with a first principles tree-based planner and expands from RRT

and SST to the risk-aware planning algorithms introduced. The risk metrics and the CVaR

measure are defined to calculate risk values based on the different planner and dynamic

model inputs, depending on which risk metric is used. All flight performance and risk met-

rics are stored along the flight and can be visualized in one of two visualization platforms,

Matplotlib and Plotly. The visualization tools allow for key metrics to be visualized while

verifying constraints for terrain and structures. An overview of the software environment

is shown in Figure 7.1.

All framework modules integrate with open-source data sets and public software pack-
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Figure 7.1: The SAFER Software Environment

ages. External tools like FME Workbench and Google Earth are used for statistical and

visual verification and validation. Google packages and tools like TensorFlow, Colab, and

Earth Engine are used for the RUM’s Pix2Pix data creation, training, visualization, and

transformation.

7.2.2 Benchmark and Demonstrations

A series of experiments are outlined through the chapters that lead to new or alternative

benchmarks for the three modules and research questions. The mapping and planning tasks

each have unique playbooks to use for deciding the best algorithm to apply for a scenario.

For instance, the B-spline algorithm is suggested for regions that are not mountainous and

are large in size. Another example is that the iEASST algorithm is suggested for scenar-

ios where energy is the most critical metric and fast convergence is important. Overall,

four unique planning algorithms are generated during the planning chapters. The Stable-

Sparse RRT, SST, algorithm is upgraded to the EASST, iEASST, iRASST, and iDRASST

algorithms. Each algorithm is evaluated for its pros and cons of use.

The complete framework operates as a preflight planning and simulation tool that could

function for active response planning or for investigating system and system of systems

capabilities during simulated events. This is demonstrated in a flooding scenario in Atlanta,
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and Figure 7.2 shows the final demo flight path in Google Earth for verification. The

framework and software environment are made available to use as benchmarks in the field

to serve as a foundation for increasing first responders’ safety in the challenging task of

urban disaster response.

Figure 7.2: Final Demonstration Flight Waypoints in Atlanta, Visualized in Google Earth

7.3 Next Steps and Future Work

The experiments demonstrate a methodology for aerial disaster response and situational

awareness that is capable with current technology and a single laptop in the field. There-

fore, flight experiments could be implemented to continue the validation of trajectory per-

formance and risk measures. However, real-world use in disaster scenarios, rather than

academic settings, does require more advanced communication and a mobile operating

base that needs to be investigated. Specific items for improvements to the modules’ algo-

rithms or software framework are detailed at the end of the previous chapters. However, a

few of the most important future work topics are introduced and explained.

Additional risk models have been leveraged in the past, such as in [49], that include
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localization error models using GPS satellites and Geometric Dilution of Precision, GDOP.

In addition, communication issues could be modeled to account for communication back

with first responders. For example, work in [181] investigated UAV positioning in an ob-

structive environment, where buildings and trees can disrupt communication signals. Com-

munication maps were created for modeling communication risk in [182]. In addition,

FAA regulations that were not considered in this work could be integrated into the colli-

sion or viewpoint risk metrics depending on the limitations, or they could be added as hard

constraints in the flight zones that indicate feasible flight states. Chapter 1 claimed that

more autonomous or semi-autonomous behavior is needed for aerial system integration

with first responders. For the SAFER framework planning algorithm to be effective, the

aerial systems must be capable of autonomous and Beyond Visual Line of Sight, BVLOS,

flight. However, the level of autonomy, or semi-autonomy, still needs to be determined for

optimal human-robot interaction with first responders.

For trajectory planning, alternative methods to sampling-based could be explicitly com-

pared in the new benchmarking environment with rapid urban maps to determine the capa-

bilities and limitations as compared to alternative methods, such as Mixed Integer Linear

Programming, MILP. Multi-agent planning should be considered as the organization and

coordination of the multiple aerial systems in use can provide additional insight into the

optimal navigation or risk in the area, therefore requiring a plan of operations and coordi-

nation of the multiple systems as in [183] and [184]. Lastly, new simulation environments

that improve the dynamics, collision, and sensor models could be used for simulations with

high-fidelity dynamics and graphic rendering engines. This step can lead to physical ex-

periments with real aircraft to gain insightful knowledge on real-time planning constraints.
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APPENDIX A

ADDITIONAL THEORY

A.1 Probability and Statistics

The fundamentals of probability theory are assumed throughout the dissertation. In par-

ticular, the assumption of Gaussian random variables is used in every chapter whether for

machine learning, uncertainty modeling, or energy estimation. A Gaussian, scalar random

variable, X , is defined as having a probability density function p(x) as in Equation A.1.

Gaussian random variables are commonly deployed for two reasons. One, the central limit

theorem established that when independent random variables are combined the normalized

sum is approximately normally distribution. More specifically, the sample means approx-

imate a Gaussian distribution more and more as the sample size of random variables gets

larger. Two, the Gaussian random variable has many properties that make mathematical

formulas simple and closed-form. The Gaussian random variable can be defined by the

two parameters shown in Equation A.1 and the expectation is equal to the sample mean.

LetX be a scalar random variable with a probability density function p(x) and the function

of interest be f(x). The general formula for the expectation of a random variable is in

Equation A.2.

p(x) =
1√

2 ∗ πσ
e−

(x−µ)2

2σ2 (A.1)

E[f(X)] =

∫ ∞

−∞
f(x)p(x)dx (A.2)

In Chapter 5, the risk distributions are investigated as to whether or not they can be

approximated as Gaussian random variables. It is discovered that when high risk values
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are encountered the Gaussian or Weibull distributions fail to catch the tail-end of the dis-

tribution. Addition details are shown here by examining the distributions using the python

package Fitter. The package is used to demonstrate how different distributions fit to the

sampled Gaussian distribution and the resulting risk distribution. Figure A.1 visualizes

the fits for the following distributions: Gaussian, gamma, Log-normal, Weibull, Rayleigh,

uniform, exponential. Weibull performs better than Gaussian in catching tail-end risks as

shown in Figure A.1.

Figure A.1: Fitting Data to Distribution, Visualization with the Python Package Fitter

A.2 Weibull Distribution and CVaR Formula

The Weibull distribution has parameters, shape, scale, and location. The location parameter

is a fallout from the other variables, therefore the shape, k, and the scale, λ, are only needed.
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The random variable is X ∼ Weibull(λ, k), where the parameters are both real numbers

greater than zero. From probability theory the first and second moments, or expectation

and variance respectively, are as E[X] = λΓ(1+ 1
k
) and σ2(X) = λ2[Γ(1+ 2

k
)−Γ(1+ 1

k
)2]

where the gamma function is Γ(a) =
∫ (

0
∞)pa−1e−pdp. The CDF and PDF are then

F (x) = 1− e1(x/λ)k

f(x) =


k
λ
(x
λ
)k−1e−(x/λ)k x > 0

0 x < 0

The VaR and CVaR formulas are used for risk mapping of Weibull and Gaussian dis-

tributions. The formulas for the Weibull distribution is shown in the following equations.

ΓU(a, b) =
∫∞
b
pa−1e−pdp is the upper incomplete gamma function.

V aR(X) = qα = λ(− ln(1− α))1/k

CV aR(X) = q̄α =
λ

1− α
ΓU(1 +

1

k
,− ln(1− α))

An alternative to using the Gaussian or Weibull CVaR formulas is to derive the CVaR

formula directly for the risk function. A partial solution to the derived expectation formula

for the energy risk is shown here, as a start to the full CVaR derivation. The work can be

expanded to find the closed-form solution to the CVaR in future work (hint: integration

by parts). Take the fact that the random variable X is Gaussian, X ∼ N (µ, σ2). For the

risk function defined for energy risk, G(X), and the random Gaussian variable with normal

distribution, p(x), the expectation is solved in Equation A.3.

E[f(X)] =

∫ ∞

−∞
exp

( γ

max{x− b, λ}
) 1√

2πσ
exp (−(x− µ)2

2σ2
)dx (A.3)
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Using the exponential product rule, the property that constants can move out of the

integral and the domain of x through the max() function, results in the following formula.

E[f(X)] =
1√
2πσ

(

∫ λ

xL

exp (γ/λ− (x− µ)2

2σ2
)dx+

∫ xu

λ

exp (
γ

x− b
− (x− µ)2

2σ2
)dx)

A.3 Aerial Planning and Control

Background information that is used when experimenting with the aerial dynamics model

and comparing trajectory planning algorithms is detailed in this section. For one, back-

ground into optimal control techniques is important when deciding to approach the prob-

lem alternatively with sampling-based planning. In addition, linear control theory is used

when evaluating motion primitive stability.

Optimal control problems for continuous systems and constraints require a formal set

up to prepare to solve. The dynamic system is assumed a set of differential equations such

that ẋ = f(x, u, t) and with boundary conditions for the state, x, and time, t. the objective

is to minimize the performance index, or objective function, which is a combination of a

running and final cost.

J = Φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)

Preparing to solve this constrained optimization problem leads to the formation of the

Hamiltonian, with two paths forward. Sticking with the continuous realm, an open-loop or

closed-loop assumption can be made resulting in either the Pontryagin’s Minimum Prin-

ciple or the Hamilton-Jacobi Bellman Equations. The HJB partial differential equations

are difficult to solve because of the high non-linearity and strict constraints. A discrete

approach can be taken, leveraging dynamic programming methods to form the Bellman

equations. However, these suffer from the curse of dimensionality of high-dimensional
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state spaces. Advanced methods improve upon this through shooting or direct collocation

methods or by framing the problem to approximate the optimal solution.

One solution to this is to assume the dynamics to be linear and formulate the Linear

Quadratic Regulator (LQR) problem. The LQR problem requires solving the Algebraic

Ricatti Equation, which has a wide range of accurate, computationally efficient methods in

literature.

Continuous : ATP + PA− PBR−1BTP +Q = 0

Discrete : P = ATPA− (ATPB)(R +BTPB)−1(BTPA) +Q

(A.4)

A.4 Linear System Stability

First, a linear-time-invariant (LTI) system with state feedback control as in Equation A.5 is

assumed.

ẋ = Ax+Bu u = Kx (A.5)

From linear system theory [185] it is known that a system can be proven to be stable by

defining a Lyapunov function, V (x), that holds from three facts.

• V (0) = 0

• V (x) ≥ 0 ∀x ̸= 0

• V̇ (x) ≤ 0 ∀x ̸= 0

Let the Lyapunov function be defined as V = xTPx where P is a symmetric matrix

parametrized by time, t, so that P (t) = P T (t). The derivation of the optimal closed loop

feedback control is as follows.
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V̇ (x) =
δ

δt
V (x) =

δ

δt
[xT (t)P (t)x(t)] = ẋT (t)P (t)x(t)+xT (t)P (t)ẋ(s)+xT (t)Ṗ (t)x(t)

Take ẋ(t) = Ax(t) +Bu(t) = (A+BK(t))x(t)

V̇ (x) = {(A+BK)x}TPx+ xTP{(A+BK)x}+ xT Ṗ x

V̇ (x) = xT{ATP + PA+KTBTP + PBK + Ṗ}x

For the Lyapunov equation to hold, the equation must be equal or less to zero. There-

fore, a matrix Q that is positive-semi-definite is assumed to exist.

Ṗ = ATP + PA+KTBTP + PBK +Q

Assuming the solution to the optimal closed loop control input, the continuous-time

differential ricatti equation is the following.

Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q

As proven in previous works, if the problem is assumed to be an infinite horizon prob-

lem, the limit can be taken as t −→ ∞, meaning Ṗ (t) −→ 0 and P (t) −→ P∞. This

results in the continuous-time algebraic ricatti equation, CARE, in Equation A.6. Alterna-

tively, the CARE equation can be formed from setting up the same problem as a constrained

optimization problem through the Hamiltonian, detailed by Bertsekas in [186].

ATP + PA− PBR−1BTP +Q = 0 (A.6)

If linearized dynamics are considered, ẋ = Ax(t) + Bu(t), then the forward reachable
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sets can be defined as quick and efficient calculations shown in Equation A.7 [116], or

from hyper-sphere approximations shown in Equation A.8 [187]. This integration is left

for future work.

Rf [t0, t] = {x ∈ X | ∀ u s.t. x = e−A(t−t0)xs −
∫ t

t0

e−A(t−τ)Bu(τ)dτ} (A.7)

F [t0, t] = {x ∈ X | ∥x− eA(t−t0)xs∥2 ≤ r(t0, t, umax)} (A.8)
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APPENDIX B

SUPPLEMENTARY RESULTS

B.1 Stable Sparse RRT Detailed Results

Tables documenting the results from comparing RRT and SST, then comparing iEASST

and SST, are included in the following section. Table B.1 shows the detailed results from

Chapter 4’s comparison of the RRT and SST algorithms. The performance of the algorithm

is compared for changing parameters of sampling radius, dynamic propagation time, wind

speed, noise variance, number of obstacles in map, scale of the map, and the number of

iterations to run the algorithms. The table shows how the selection of the SST time param-

eters is important to improving the cost as compared to RRT. SST consistently uses less

nodes across all map sizes, however.

Table B.2 compares three of the algorithms from Chapter 5 in four generated 3D maps,

with boxplots of the results found in Figure 5.17. The tables provide detailed insight of the

key outcomes for adding the energy risk metric to form EASST and in adding informed

heuristics to form iEASST. Tmin and Tmax are the minimum and maximum times for

SST’s uniform distribution of dynamic propagation time. DW is the witness radius, ∆W ,

and DS is the sampling radius, ∆S . A is the acceleration noise standard deviation and W is

the average wind speed magnitude before adding the Dryden gust model. The algorithms’

performances are measured by the total number of nodes formed, the final node’s risk

value (euclidean cost for SST), the total time to compute, the flight energy, and the flight

time. The clearest indication of the iEASST algorithm’s success is the flight energy and

time values compared to SST on map 14. In addition, the flight performance of iEASST

does not seem directly affected by wind and noise, as the algorithm finds alternative flight

manuevers that result in efficient paths.
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B.2 Pix2Pix Supplemental Figures

This section provides additional figures that were not included in the core of Chapter 3.

The Pix2Pix generator and discriminator as described by the TensorFlow package is shown

in Figure B.1. The generator on the left is a flowchart of the encoder-decoder network, U-

Net, showing how it uses skip connections from previous layers. The input is a 256x256x5

tensor, for the five input channels of the training data, and the output is a 256x256x3 tensor,

for the three output channels that represent the class labels in the RGB encoding. The right

is the discriminator network that takes as input the generated image and target image, for

real training data samples. The output is a 30x30 prediction of real or fake data and is

compared to an array of zeros or ones depending on if the data is fake or not.

Figure B.1: Generator and Discriminator Models Respectively, Produced by Tensorflow

Figure B.2 visualizes the results from the 5-channel one-hot encoding that was used
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to compare against the 3-channel RGB encoding results. The display is provided here to

compare the results qualitatively to the RGB encoding results. For instance, no unknown

labels are seen and the structure predictions are not as precise nor do they have as clean

edges. For this model, the default appears to become the parks label as opposed to the

unknown label. This may have to do with the order of the labels in the one-hot encoding,

or more generally, because of the use of a unique class for the unknown label as opposed

to a prediction threshold.

Figure B.2: Training Results for 5-Channel One-hot Encoding

The Pix2Pix predictions were originally hypothesized to improve upon current bench-

marks from USGS Landcover data and Google Dynamic World predictions. A mapping

between the labels is shown in Figure B.3 to help in matching the visual results shown in

Chapter 3. In addition, the contrast of the quantity of classes and detail of the class types is
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clear between the benchmark data sources and the RUM’s Pix2Pix predictions.

Figure B.3: Mapping Between Labels of NLCD and Dynamic World to Custom RUM
Labeling
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APPENDIX C

KEY SOFTWARE RESOURCES

C.1 Python Tools

A special thanks to the developers and contributors of the following python packages. The

packages are used throughout the SAFER software framework and are required for the final

demonstration experiment.

• Geopandas

• Rasterio

• Numpy

• SciPy

• NURBS-Python (https://github.com/orbingol/NURBS-Python)

• cvar-energy-risk-deep-model ( https://github.com/castacks/cvar-energy-risk-deep-model)

• MatPlotlib

• Plotly

The Google cloud ecosystem and infrastructure were critical to the geospatial data pro-

cessing and deep learning sections of this thesis. Google Earth Engine and Google Colab

helped complete the project, while using a single laptop, the Lenovo Thinkpad P51.

C.2 Data and Software Access

If you would like access to the data or software, please email the author at caleb.harris94@gatech.edu,

or contact him through ResearchGate or LinkedIn.
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