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Abstract— Using the inverse sensor model has been popular
in occupancy grid mapping. However, it is widely known
that applying the inverse sensor model to mapping requires
certain assumptions that are not necessarily true. Even the
works that use forward sensor models have relied on methods
like expectation maximization or Gibbs sampling which have
been succeeded by more effective methods of maximum a
posteriori (MAP) inference over graphical models. In this
paper, we propose the use of modern MAP inference methods
along with the forward sensor model. Our implementation and
experimental results demonstrate that these modern inference
methods deliver more accurate maps more efficiently than
previously used methods.

I. INTRODUCTION

Mobile robot problems like navigation, path planning,
localization and collision avoidance require an estimate of
the robot’s spatial environment; this underlying problem is
called robot mapping [2]. Even in environments in which
maps are available, the environment may change over time
necessitating a mapping ability on the mobile robot. Robot
mapping hence remains an active field of research [3]–
[5] as it is an important problem in application areas like
indoor autonomous navigation, grasping, reconstruction and
augmented reality.

Although robot mapping can be performed in many
ways—metric or topological; with range sensors, like sonar
[6], laser scanners [6] and RGBD [7], or bearing-only sensors
[8], [9]—metric mapping with range sensors is the most
common. Bearing-only sensors provide estimates up to scale;
topological maps still require local metric estimates for
certain problems like navigation. We hence focus on metric
mapping with range sensors, specifically, laser scanners.

Occupancy grid mapping (OGM) is a popular and useful
range-based mapping method [10], [11]. It affords a simple
implementation and avoids a need to explicitly seek and
match landmarks in the environment [12], [13]. In contrast,
it discretizes the environment into cells, squares (2D) or
cubes (3D), and associates a random variable with each cell
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that represents the probability of the cell being occupied or
free. Also, unlike surface-based approaches [14], [15], OGM
makes it easier to query obstacles, hence collisions, which
is critical for applications like robot navigation.

OGM methods vary in how cell occupancy is estimated,
but most methods make use of an inverse sensor model
that assumes the occupancy of each cell can be estimated
independently of the other cells in the map [7], [10], [11],
[16]. The main reason for using this independence assump-
tion is computational efficiency. However, the assumption
is inaccurate and can lead to overconfident estimates of
occupancy in noisy observations [5], [6].

To overcome this limitation, Thrun [6] proposes the use
of a forward sensor model and expectation maximization
to estimate occupancy. Following this line of work, more
recently, Merali et al. [5] defines a Gibbs sampling algorithm
based on a conditional estimate of cell occupancy given the
rest of the map. Although these methods have relaxed the
assumptions of independence, they remain computationally
expensive and hence limited in applicability. For example,
it is widely known that Gibbs sampling is computationally
expensive and can get caught in local maxima [17].

In contrast, in this paper, we explore the use of mod-
ern inference algorithms for more effective occupancy grid
mapping with forward sensor models. Our contribution in
this paper is two fold. Firstly, we introduce the factor graph
approach to the occupancy grid mapping problem, which,
to the best of our knowledge, has not been applied to this
problem. This factor graph formalism makes it plausible to
apply modern fast inference algorithms, such as loopy belief
propagation [18] and dual decomposition [19].

Secondly, we introduce a class of higher order factors
for our factor graph approach. Factor graph inference is
exponential in neighborhood size, which requires us to focus
on a certain sub-class of factors for tractability, such as the
linear constraint-nodes [20] or pattern-based factors [21]. We
extend the pattern-based factors, which explicitly compute
the potential only for certain factors matching a given set
of patterns and otherwise assign a constant. Whereas the
pattern-based factors in [21] define each pattern with a
fixed value for each node, we generalize these pattern-based
factors by allowing for free nodes whose value does not
impact the computed marginal.

We implement these contributions for effective occupancy
grid mapping with a forward sensor model and test our
work on both simulated and real data. Our experiments
demonstrate the effectiveness of our novel OGM approach,
especially, dual decomposition.



II. BACKGROUND AND RELATED WORK

A main contribution of our paper is the application of
modern MAP algorithms to occupancy grid mapping. Al-
though there are many MAP inference algorithms [22] that
work well for various problems, in this paper, we focus on
belief propagation [18] and dual decomposition [19] mainly
because of their ability to handle higher order factors.

Belief propagation (BP) [23] was introduced as an al-
gorithm to compute marginals over trees. Surprisingly, it
was found to work well on graphs with loops. Later it
was found that the convergent solution to belief propagation
corresponds to the minima of the so-called Bethe free en-
ergy [24], which not only provided a theoretical justification
for application of belief propagation to graphs with loops,
but also solves the convergence problem by providing an
objective function which can be minimized directly. Later,
Fractional BP [25] was introduced. Inspired by the Bethe
free energy formulation of BP, it suggested using a better
free energy approximation by scaling the terms appropriately
in the message update equation.

In an independent work, Wainwright et al. [26] introduce
Tree Re-Weighted (TRW) message passing algorithm that
uses re-weighting of edges and messages similar to Frac-
tional BP. They also formulate the MAP estimation problem
as a linear program over the so-called marginal polytope. The
Langrangian dual of this LP problem is convex and provides
the upper bound to the original problem. The family of
algorithms that optimize the Lagrangian dual of the original
combinatorial problem are called dual decomposition (DD).
The dual of the problem can be decomposed in different
ways, for example, as set of spanning trees in TRW [26]
or one problem per factor [19]. Kolmogorov et al. [18]
improved over the work of [26] to introduce a convergent
algorithm called TRW-S. More recently, accelerated dual
decomposition [27] was introduced that provably converges
the upper bound faster than earlier approaches by smoothing
the Lagrangian dual of the problem.

Another contribution of our paper is how we perform
efficient inference with higher order factors (or potentials).
Many researchers approach this problem by considering a
class of functions for which higher order factors can used
efficiently, for example, Potetz et al. introduce a class of
potentials called linear constraint nodes [20] and Komodakis
et al. approach pattern-based class of potentials [21]. An-
other approach to handle higher order potentials [28] is to
adaptively restrict the sample space of nodes by using initial
estimates. Our work proposes a generalization of the pattern-
based potentials of [21] allowing for free nodes to appear
within a pattern.

III. PROBLEM DEFINITION

Consider a robot—equipped with a laser scanner—moving
in a static environment, and assume the position of the robot
associated with each laser measurement is given. Our task
is to estimate occupied regions and free regions, so that
the robot can avoid collisions with occupied regions and
plan its movement in free regions. We divide the area to be

mapped into N discrete cells. Let xi denote the state of cell
i, which can take values from label set Li = {0, 1}, where
0 (resp. 1) denotes that the cell is free (resp. occupied). For
convenience, we denote the full map (the state for all N
cells) as x = [xi]

>
1≤i≤N taking values from sample space

Ω =
∏

1≤i≤N Li.
Let zf denote the f th laser range measurement when

captured from (known) pose gf . The problem is to find the
probability of all cells of in the map being occupied given
all t observations, z = [zf ]>1≤f≤t and g = [gf ]>1≤f≤t:

p(xi = 1|z,g) =
∑

x∈Ω:xi=1

p(x|z,g) ∀1 ≤ i ≤ N . (1)

Alternatively, we can focus on the maximum posterior map:

x∗ = arg max
x∈Ω

p(x|z,g). (2)

Problems (1) and (2) are related but yield different results.
While (1) is useful to keep track of uncertainty in an
incremental fashion, (2) provides a more meaningful result
in the joint occupancy configuration maximizing posterior
probability. Clearly, a naı̈ve solution to either problem would
have complexity that is exponential in the number of cells.
We hence focus on an approximate solution to this problem.

A. Mapping with an inverse sensor model

Commonly used occupancy grid mapping algorithms [7],
[10], [11] make the simplifying assumption that each grid
cell is independent of all other map cells:

p(x|z,g) =
∏

1≤i≤N

p(xi|z,g) . (3)

The probability of each cell can be easily computed inde-
pendent of each other, by a simple Bayes formulation:

p(xi|z,g) =
p(zt, gt|xi, z1:t−1,g1:t−1)p(xi|z1:t−1,g1:t−1)

p(zt, gt|z1:t−1,g1:t−1)
.

(4)

Assuming a static world, p(zt, gt|xi, z1:t−1,g1:t−1) =
p(zt, gt|xi), as is commonly done, the above equation (4)
can be simplified [5] to:

p(xi|z,g) =
1

Z ′
p(xi|zt, gt)
p(xi)

p(xi|z1:t−1,g1:t−1) (5)

=
1

Z ′pt−1(xi)

∏
1≤f≤t

p(xi|zf , gf ) , (6)

where Z ′ is a normalizing factor that is independent of xi,
p(xi) is the prior probability for cell xi and p(xi|zf , gf ) is
called the inverse sensor model.

B. Mapping with a forward sensor model

However, the independent cell assumption is inaccurate
and can lead to overconfident estimates of occupancy in
noisy observations [5], [6]. In the absence of the independent
cell assumption, we can still factorize the posterior probabil-
ity in terms of a forward sensor model.

In this formulation, we make two assumptions, a) static
world assumption, p(zt|x,g) = p(zt|x, gt) and b) pose-map



independence, p(gt|x, z1:t−1,g1:t−1) = p(gt|z1:t−1,g1:t−1).
With these assumptions, the posterior evaluates [5] to

p(x|z,g) =
1

Z
p(zt|x, gt)p(x|z1:t−1,g1:t−1) (7)

=
1

Z
p(x)

∏
1≤f≤t

p(zf |x, gf ) , (8)

where Z is a normalizing constant independent of x and p(x)
is the prior. For the rest of the paper we assume no prior
information about the maps, hence the prior is a constant
and included in the normalizing constant Z.

The problem of estimating the occupancy map is in-
tractable with the above formulation, as it still depends on
the entire map, which has an exponential sample space. How-
ever, we can make use of the fact that a laser measurement f
depends only on a small portion of the map xf ⊆ x, hence
simplifying the formulation to:

p(x|z,g) =
1

Z

∏
1≤f≤t

p(zf |xf , gf ) . (9)

The term p(zf |xf , pf ) is called the forward sensor model.
With this formulation, we are in a position to describe
the problem as factor graph. The above simplification is
necessary to keep the factor graph sparsely connected and
hence tractable.

C. Representation as a factor graph

The occupancy grid mapping problem can be expressed as
energy minimization over a factor graph. Let all cells in the
map be the variable nodes V and all the laser measurements
be factor nodes F . There exists an undirected edge (i, f),
if and only if the laser range measurement p(zf |xf , gf )
depends on the cell occupancy xi. In this paper, we assume
that each laser range measurement depends on only those
cells that the laser passes through for given pose gf . Let E
be set of all such edges:

E = {(i, f) : i ∈ V, f ∈ F, laser f passes through cell i} .
(10)

The bipartite graph G = (V, F,E) represents the structure of
factorization in (9) and is hence called a factor graph [18].
Note that neighborhood n(i) of any variable node i only
consists of the factors nodes, n(i) ⊆ F ∀i ∈ V and vice
versa. Fig. 1 shows the factor graph diagrammatically. Note
that observed nodes form the part of factor and are not part
of the factor graph.

In terms of factor graph G the problems (1) and (2) along
with factorization obtained in (9) can be written as:

Pi(xi = li) =
∑

x∈Ω:xi=li

P (x) ∀i ∈ V (11)

x∗ = arg max
x∈Ω

P (x) (12)

P (x) =
1

Z

∏
f∈F

Pf (xf ) , (13)

where li ∈ Li denotes an element from the label set Li of
node i ∈ V . By representation of occupancy grid mapping as

Grid cells

Factor Graph
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Unknown Map Variable

Observed Mesurement variable

Observed Pose variable

Factor Nodes

Factor Graph Edeges

Fig. 1. Representation of occupancy grid mapping as factor graph

factor graph the following equivalence holds true, Pi(xi =
li) ≡ p(xi = li|z,g), P (x) ≡ p(x|z,g) and Pf (xf ) ≡
p(zf |xf , gf ).

IV. MARKOV CHAIN MONTE CARLO METHODS
(METROPOLIS HASTINGS)

We implement and evaluate a generalization of Mer-
ali’s [5] Gibbs sampling algorithm for estimating maps.
Metropolis Hastings is another popular MCMC algorithm
used for sampling from complex probability distributions.
Gibbs sampling can be shown to be a specialization of
Metropolis Hastings [29].

Metropolis Hastings requires a transition probability
Q(x′|xr), that depends on current sample xr and guides the
random walk in the high-dimensional space. We randomly
sample a point x′ from from Q(.) and it is either accepted
or rejected based on the acceptance probability a:

a =
P (x′)Q(xr|x′)
P (xr)Q(x′|xr) . (14)

If a ≥ 1, then the new point x′ is accepted otherwise it
is accepted with probability a. Here acceptance means that
the point in the next iteration is taken as the sampled point
otherwise the earlier point is retained. The interested reader
is referred to [17], [29] for further details about Metropolis
Hastings.

For our experiments, we choose a symmetric uniform
transition probability. We uniformly sample a cell from the
map and flip the state of the sampled cell to get the proposal
point x′. This is equivalent to sampling from the probability
density:

Q(x′|xr) =

{
1
N if ‖x′ − xr‖1 = 1

0 otherwise
, (15)

where N is the number of cells in the map and ‖.‖1 is the
L1-norm. The first case in (15) enforces that only one cell
(or dimension) in the map can change its state. Since this is a
symmetric transition probability, the acceptance ratio is just



the ratio of target probabilities. Also note that the ratio of
probability distributions can be efficiently computed because
of the factorization obtained in (13):

a =
P (x′)

P (xr)
=

∏
f∈n(i) Pf (x′f )∏
f∈n(i) Pf (xrf )

, (16)

where i is the (sampled) cell whose state is different in x′

and xr, and n(.) denotes the neighborhood of a vertex in
graph G. The above simplification uses the fact that only
those terms that depend on the state of ith cell need to be
computed. By definition of graph G, only the neighboring
factors f ∈ n(i) depend on the state of cell i.

It is in general difficult to detect when the sampling
algorithm has converged. In practice, we often run the
sampling algorithm for a fixed number of iterations. Alg. 1
lists the pseudo code for Metropolis Hastings algorithm.

Algorithm 1: Metropolis Hastings
Data: Factor Graph G = (V, F,E);
Maximum number of iterations N ;
Result: xr
Initialize the map x0 randomly.;
r = 0;
while r < N do

Randomly choose a cell i : i ∈ V ;
Flip its state x′i = ¬xri in xr to get x′;
Compute acceptance probability a by (16);
Sample random number q : 0 ≤ q ≤ 1;
if a ≥ 1 or a ≥ q then

Accept proposed point, xr+1 = x′;
else

Reject proposed point, xr+1 = xr;
r ← r + 1;

A. Heat map

As we uniformly sample cells from the map, we notice that
not all cells are equally important in mapping. There are three
kinds of regions in an occupancy map: occupied, free and
unexplored. Sampling and analyzing a cell in an unexplored
region is not very helpful as we do not have any evidence
for the region. On the other hand, the central regions of free
areas are not very interesting as all factors usually agree on
their state. The uncertainty tends to lie along the boundaries
of free and occupied regions. This is the region we want to
focus on.

We hence employ a heat map to bias our sampling along
the boundaries of free and occupied regions. We maintain a
vector of cells xh that form the “interesting” region of the
map. In our experiments, we take the last cell spanned by
each laser measurement as an “interesting” cell and add it
to the heat map, xh. We use a sampling bias of 1 : 4 for
cells outside the heat map to cells within the heat map. We
compare both Metropolis Hastings with and without the heat
map in our experiments.

V. MODERN INFERENCE ALGORITHMS

As discussed in Sec. II, last decade gave rise to faster
and more accurate MAP inference algorithms [22]. Because
of their ability to handle higher order factors [20], [21], we
explore belief propagation and dual decomposition in the
problem of occupancy grid mapping.

A. Belief Propagation

The sum product algorithm over factor graphs [18] is a
powerful yet simple algorithm to compute marginals of ex-
pression, of the form (1), that can be decomposed into factors
of the form (9). The algorithm provides exact marginals in
the case when the graphs have no loops. For graphs with
loops the algorithm has been shown to converge in most of
practical problems.

The sum product algorithm works by sending messages
along the edges of the factor graph. The messages can be
understood as the beliefs of the source node about destination
states. Mathematically, these beliefs are the probabilities of
the destination states marginalized over the neighbours of
the source except the destination itself. These messages are
defined on a directed edge, with a different message value
for each state of the variable node involved.

Let µrf→i(li) represent the message from node i ∈ V
to node f ∈ F for state xi = li at any iteration r of
the algorithm. With a similar convention we take µri→f (li)
to denote an update in the opposite direction. We use the
following equations to update the messages on an edge
depending on whether the direction of the edge is from
variable node to factor node or vice versa:

µr+1
f→i(li) =

∑
xf∈Ωf :xi=li

Pf (xf )
∏

j∈n(f)\i

µrj→f (xj) (17)

µr+1
i→f (li) =

∏
h∈n(i)\f

µrh→i(li) , (18)

where Ωf =
∏
i∈n(f) Li denotes the sample space of the

neighborhood of factor f in graph G. On convergence, the
belief of variable nodes can be computed by the product of
incoming messages:

P (xi = li) =
∏

f∈n(i)

µrf→i(li) . (19)

This is called the sum product belief propagation (BP)
algorithm.

One can compute the maximizing assignment instead of
marginals by computing the max product instead of sum
product in (17) and finally choosing the maximizing assign-
ment of incoming messages:

µr+1
f→i(li) = max

xf∈Ωf :xi=li
Pf (xf )

∏
j∈n(f)\i

µrj→f (xj) (20)

x∗i = arg max
xi∈Li

∏
f∈n(i)

µrf→i(li). . (21)

This form of the algorithm is called max product BP.
Belief propagation was initially designed to work on factor

graphs without loops. In such a case one can start message



updates from the leaf nodes and a node can be “triggered”
to pass on the messages when messages from all but one
neighbors are available. However, for graphs with loops
various update sequences have been suggested that vary from
problem to problem. For example, in vision problems, where
the factor graph is a 2D grid, horizontal and then vertical
sweeps have been shown to produce good results. For our
implementation, we choose random update sequence, i.e., a
random edge is selected from the graph for each iteration of
message update.

B. Subgradient Dual decomposition

The dual decomposition algorithm employs the theory of
Lagrangian duals to find a convex upper bound of the original
combinatorial optimization problem. Here we explain the
implementation of the algorithm without going into math-
ematical proofs. The interested reader is referred to [19],
[21], [27] for proofs and more variations of the algorithm.

The underlying idea for dual decomposition is to split
the maximization problem into slave problems that can be
efficiently maximized. In a factor graph formulation the
natural slave problem is one corresponding to each factor:

xf = arg max
xf

Pf (xf )
∏

i∈n(f)

exp
(
−µif (xfi )

)
, (22)

where xf = {xfi }i∈n(f) is the optimum assignment as de-
termined by the corresponding slave problem. And µif (xfi )
is the message (also the Lagrangian multiplier) from node
i to f about state xfi . The above slave problem is usually
written in the form of negative log likelihood:

xf = arg min
xf

θf (xf ) +
∑
i∈n(f)

µif (xfi ) , (23)

where θf (xf ) = − logPf (xf ) is the negative log likelihood
corresponding to the factor.

In each iteration of the algorithm all slave problems are
allowed to choose their optimum assignment independently.
If all the factors agree on the assignments, then we have
reached the global optimum. Often this is not the case.
In case of disagreement, we decrease the belief of all the
disagreeing slave problems about their respective optimums
by sending appropriate messages. It can be shown that as
long as we can increment the messages by decreasing step
size in each iteration, the algorithm is guaranteed to converge
to an approximate solution of the original problem [19].

Pseudocode for dual decomposition (DD) is provided in
Alg. 2. Apart from input factor graph G = (V, F,E) and
label set {Li}i∈V introduced in Sec III-C, dual decomposi-
tion depends on a step size α. We note that step size is an
important attribute and affects the speed of the algorithm. For
illustration, we show the convergence of dual decomposition
with different step sizes on cave dataset in Fig. 2. Note that
erring on the higher side causes oscillations, while erring on
the lower side can cause convergence to be too slow.

Upon convergence or completing a maximum number
of iterations, we can compute the optimal assignment for

0 100 200 300 400 500 600
Time (clock seconds)

2.78

2.80

2.82

2.84

2.86

2.88

2.90

To
ta

le
ne

rg
y

of
th

e
gr

ap
h

×108

Step size=20
Step size=50
Step size=100
Step size=200
Step size=500

Fig. 2. The rate of convergence in subgradient dual decomposition depends
on step size

Algorithm 2: Subgradient Dual Decomposition
Data:
Factor Graph G = (V, F,E)
Step size α > 0
Maximum number of iterations N
Result: Labels {xfi }(i,f)∈E , Messages {µif (xi)}
µif (xi)← 0 ∀(i, f) ∈ E, xi ∈ Li
r ← 1
while r < N do

for f ∈ F do

xf ← arg min
xf

(
θf (xf ) +

∑
i∈n(f)

µif (xfi )

)
// For disagreeing nodes

for i ∈ V : ∃f, f ′ ∈ n(i) : xf
′

i 6= xfi do
for f ∈ n(i) do

µif (xfi )← µif (xfi ) + α
r

r ← r + 1

variable nodes with disagreeing slaves from the messages:

xi = arg max
xi∈Li

∑
f∈n(i)

µif (xi). (24)

Note that the above equation is only valid for disagreeing
slaves. When the slaves agree, we can simply pick the agreed
upon value.

Dual decomposition is an optimization algorithm; hence
it only solves the MAP problem (12), but not the marginal
problem (11), which may be considered a limitation.

VI. HIGHER ORDER FACTORS AND EFFICIENCY

The message update equation (17) in the BP algorithm
and the slave minimization (23) in the DD algorithm are, in
general, exponential in the size of neighborhood of factor f ,
which is computationally expensive for higher order factor
graphs. This motivates us to seek a generic class of factors
that can be efficiently applied to the belief propagation
(BP) and dual decomposition (DD) algorithms. We begin
by introducing common forward sensor models that need to



fit our class of factors followed by their generalization and
then their application to the BP and DD algorithms.

A. Forward sensor models
Forward sensor models estimate the sensor reading given

the environment. In this section, we describe two commonly
used sensor models a) Gaussian and b) piecewise constant
sensor models.

1) Gaussian sensor model (GSM): Assuming Gaussian
noise σ, the range measurement by a laser sensor is given
by:

p(zf |xf , gf ) =
1√
2πσ

exp

(
− (z̄f (xf , gf )− zf )2

2σ2

)
, (25)

where z̄f (xf , gf ) is the distance of first occupied cell in xf
starting from pose gf .

2) Piecewise constant sensor model (PCSM): It is com-
mon in graphical models to have simple factors that assign
high probability to expected configurations and low proba-
bility to all other states. Hence, we propose the following
factor, which we use in all our experiments,

p(zf |xf , gf ) =
1

Z


1 if xf = Rf1

exp(−900) if xf = Rf2

exp(−1000) otherwise
, (26)

where Z is the normalization constant, Rf1 = [0, 0 . . . 0, 1]>

denotes the all-free-but-last-occupied cell pattern and Rf2 =
[0, 0 . . . 0, 0]> denotes all free cells. The second case indi-
cates that we are more averse to estimating the reflecting cell
closer to the robot as compared to estimating it away from
the robot.

B. Generalization to pattern-based factors
We define a class of pattern-based higher order factors

that are a generalization of those discussed by Komodakis et
al. [21]. These are factors of the form:

p(zf |xf , gf ) =

{
ψm if xf ∼ Rm ∀1 ≤ m ≤M
ψmin otherwise

,

(27)

where Rm is one of the mutually exclusive M patterns and
expression xf ∼ Rm denotes that vector xf “matches”
pattern Rm. A pattern, Rm = (nm0 (f), rm), is defined
by a non-empty set of fixed nodes nm0 (f) ⊆ n(f) that
are expected to have desired values rm, while the state of
remaining free nodes can take any value from the label set. A
configuration xf “matches” pattern Rm if the state of fixed
nodes is the same as the desired values, xi = rmi ∀i ∈ nm0 (f).

It is clear that PCSM (26) is an instance of pattern-based
factors. It is also possible to represent GSM (25) as a pattern-
based factor. We use the fact that the term z̄f (xf , gf ), just
depends on the first occupied cell. We define pattern Rm

such that the first occupied cell is the mth cell in n(f):

nm0 (f) = n(f)1:m (28)
rm = {rmi = 0}i∈n(f)1:m−1

and rmn(f)m
= 1 (29)

Rm = (nm0 , r
m) , (30)

where n(f)k is the kth cell that is traced by the laser. With
this formulation, we will have M = n(f) patterns to describe
the GSM in the form (27) with ψm given by

ψm =
1√
2πσ

exp

(
− (δ(m)− zf )2

2σ2

)
, (31)

where δ(m) is the distance of mth cell from the robot starting
point gf . Also note that in this formulation the only case for
otherwise is the one when all cells are 0 (or free).

C. Efficient sum product

To efficiently compute (17) for the pattern-based factors
defined we need the messages to be normalized. We assume
that the messages µri→f (li) are normalized over the label
set Li to sum up to one,

∑
li∈Li

µri→f (li) = 1. Using the
messages as a probability measure for the state of source
nodes, we can compute the probability of each pattern being
true:

p(xf ∼ Rm|xi = li)

=

0 if i ∈ nm0 (f) and li 6= rmi∏
j∈nm

0 (f)\i
µrj→f (rmj ) otherwise .

(32)

The message update equation (17) can be written in terms
of probability of patterns:

µr+1
f→i(li) =∑

m≤M

ψmp(xf ∼ Rm|xi = li) + ψminpotherwise , (33)

where potherwise = 1−∑m≤M p(xf ∼ Rm|xi = li).
The message update can be computed in O(M |n(f)|)

using (33), instead of O(L
|n(f)|
i ) in the general case. Note

that for GSM the number of patterns is same as the size of
neighborhood, while for PCSM the number is fixed. Hence,
the message update step is quadratic in neighborhood size
for GSM and linear for PCSM.

D. Efficient dual decomposition

We note that slave function (23) is composed of two terms:
the factor itself and the messages. While minimizing for each
pattern we can make use of the fact that the value of θf is
constant for a pattern and hence we need to focus only on
minimizing the messages. Minimizing the messages is trivial
as each term can be minimized independently.

While minimizing the otherwise case of patterns, we
must ensure the exclusivity from explicit patterns. If the
space for the otherwise case is small (like in the Gaussian
sensor model), we simply go over the entire space to find
the minimum value. Otherwise, we keep finding the n-best
minimizations of messages until we get a minimization that
does not match any of the patterns already considered. For
example, for the piecewise constant sensor model, there are
only two patterns that need to be checked for exclusion.
Hence, the otherwise term can be easily minimized by find-
ing the three best assignments that minimize the messages
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Fig. 3. Comparison of convergence rate of different algorithms on occupancy grid mapping. From left to right, convergence rate on three datasets is
shown: 1) cave, 2) hospital section and 3) albert-b [1] dataset. While sampling methods like Metropolis hastings converge quickly they stay far from
optimum energy. On the other hand modern inference algorithms like belief propagation and dual decomposition reach closer to an optimum value. The
legends are listed only once for clarity.

term. Note that message update for max product BP (20),
can be done by following exactly the same logic.

VII. EXPERIMENTS

We run experiments on simulated as well real data.
The simulated data is generated using Player/Stage [30]
project. We use multiple map bitmaps bundled along with
player/stage library. The robot motion is generated using
the wander driver. The robot is allowed to wander in the
map for 2 minutes aggregating approximately 270,000 laser
measurements.

For real data, we have used the albert-b-laser dataset
provided by C. Stachniss from University of Freiburg. The
dataset was captured by a B21r robot with a SICK PLS
moving through a lab at University of Freiburg. This data
set was obtained from the Robotics Data Set Repository
(Radish) [1].

To evaluate the convergence rate of each algorithm, we
plot total energy (negative log likelihood) of the graph with
respect to CPU ticks used by the algorithm. The plots of
energy convergence with respect to time for cave dataset is
shown in Fig. 3. This data clearly show the improvement
from moving to belief propagation and dual decomposition,
which, in all cases, leads to lower energies faster than our
baselines. DD outperforms BP in typical cases.

In all our experiments we do not use any occupancy prior,
although Merali et al. [5] suggest using an occupancy prior of
0.3 for better convergence. We use a step size of 50 for dual
decomposition and piecewise constant sensor model. Also,
we prefer piecewise constant sensor model over Gaussian
sensor model because of the former being faster which is a
consequence of having fewer patterns in the pattern-based
factor formulation. We have implemented the algorithms in
C++ and the code is available at the authors’ websites.

A. Discussion

As is evident from the convergence comparison in Fig. 3,
sampling algorithms (Metropolis Hastings with/without
heatmap) are liable to getting stuck in a local minima.
This is also an artifact of the simple transition probability
where we flip only one cell at a time. Even from the
qualitative results for sampling algorithms (Fig. 4), we see
that the walls are thinner than the corresponding results in

other algorithms which shows the inability of sampling-
based algorithms to form lower energy and thicker walls
for the piecewise constant sensor model. The downside of
being biased towards thinner walls is evident in the albert-b
dataset (see Fig 4), as we get ragged walls for the sampling
algorithms.

VIII. CONCLUSION AND FUTURE WORK

Dual decomposition is faster because it focuses on dis-
agreeing nodes. However, step size is a crucial parameter
that affects the speed of convergence. On the other hand,
sum product belief propagation does not depend on any pa-
rameter, but has no preference for the disagreeing nodes. This
combination obviously hints towards an algorithm where we
perform belief propagation over disagreeing nodes only. The
state of art variations of these algorithms, like Sequential
Tree Re-Weighted (TRW-S) belief propagation [31], accel-
erated dual decomposition [27], are steps in this direction.
Also, a recent comparative study [22] points towards other
candidate methods, e.g. polyhedra based methods, that out-
perform than the dual decomposition class of methods. Even
without using these more recent algorithmic developments,
we get stronger performance than methods used so far. This
only serves to prove our assertion that modern inference
methods should be used for occupancy grid mapping.
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D. Batra, S. Kim, B. X. Kausler, J. Lellmann, N. Komodakis, et al., “A
comparative study of modern inference techniques for discrete energy
minimization problems,” in CVPR, 2013.

[23] J. Pearl, “Fusion, propagation, and structuring in belief networks,”
Artificial Intelligence, vol. 29, no. 3, pp. 241 – 288, 1986.

[24] J. S. Yedidia, W. T. Freeman, Y. Weiss, et al., “Generalized belief
propagation,” in NIPS, 2000.

[25] W. Wiegerinck, T. Heskes, et al., “Fractional belief propagation,” in
NIPS, 2003.

[26] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on trees: message-passing and linear programming,”
Information Theory, IEEE Transactions on, vol. 51, no. 11, pp. 3697–
3717, 2005.

[27] V. Jojic, S. Gould, and D. Koller, “Accelerated dual decomposition for
MAP inference,” in ICML, 2010.

[28] X. Lan, S. Roth, D. Huttenlocher, and M. J. Black, “Efficient belief
propagation with learned higher-order markov random fields,” in
ECCV, 2006.

[29] D. J. MacKay, “Introduction to monte carlo methods,” in Learning in
graphical models. Springer, 1998, pp. 175–204.

[30] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th International Conference on Advanced Robotics, 2003.

[31] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 28, no. 10, pp. 1568–1583, 2006.


