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I. Research Objectives  

The objective of the supported research was a continuation of the 
principal investigator's analysis of decision processes with arbitrary 
decision sets, with special emphasis on two classical payoff functions. 
The first was a process with single fixed goal in which the objective is 
to maximize the probability of reaching the goal, and to minimize the 
expected time to the goal. A specific objective was to determine whether 
one can do-as well with stationary strategies as he can with strategies 
which take the whole past into account. The second object of study was 
the average reward payoff in finite state decision processes, a specific 
objective being to determine whether or not strategies based only on the 
current time and state are as good as those which take the whole past 
into account. 

II. Status of the Research  

A complete, affirmative answer was found to the first question; 
in every dynamic programming or gambling problem with single fixed goal 
and finite state space, there exists a stationary strategy which not only 
uniformly (nearly) maximizes the probability of reaching the goal, but 
also uniformly (nearly) minimizes the expected time to the goal. Techniques 
in the proof of this result were considerably generalized to answer several 
questions about decision processes with arbitrary state spaces and total- 
cost criteria. It was shown that in a countable state decision process 
with non-negative costs depending on the current state, the action taken, 
and the following state, there is always available a Markov strategy which 
uniformly (nearly) minimizes the expected total cost. If the costs are 
strictly positive and depend only on the current state, there is even a 
stationary strategy with the same property. 

Investigations of these results led peripherally to several results 
in optimal stopping theory, and in classical probability theory. Universal, 
best possible constants were found which compared the optimal expected 
return of a decision maker with the expected supremum of a sequence of 
random variables. For example, it was found that for every sequence of 
independent random variables taking only values between zero and one, the 
difference between the optimal stop rule expectation and the expected value 
of the supremum of the random variables is no more than one-fourth. Results 
in classical probability stemming from this research include a stronger form 
of the Borel-Cantelli Lemma, and a very general conditioning principle for 
strong laws which conclude the partial sums converge almost surely. 

For the question of existence of good Markov strategies in decision 
processes with average reward criteria, various partial results have been 
obtained, including examples showing that the limit of good strategies 
for the discounted reward payoff is not necessarily average-reward good. 
This research is still in progress and it is hoped that a complete answer 
to the finite state case is not far away. 
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Conditional Generalizations of Strong Laws Which 

Conclude the Partial Sums Converge Almost Surely 

T.P. Hill 1 

Abstract 

Suppose that for every independent sequence of random variables 

satisfying some hypothesis condition H, it follows that the partial 

sums converge almost surely. Then it is shown that for every ar-

bitrarily-dependent sequence of random variables, the partial sums 

converge almost surely on the event where the conditional distri-

butions (given the past) satisfy precisely the same condition H. 

Thus many strong laws for independent sequences may be immediately 

generalized into conditional results for arbitrarily-dependent 

sequences. 

AMS(MOS) subject classifications (1970) Primary 60F15; 
Secondary 60G45. 

1Partially supported by AFOSR Grant F49620-79-C-0123. 
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CONDITIONAL GENERALIZATIONS OF STRONG LAWS 

1. Introduction  

If every sequence of independent random variables having 

property A has property B almost surely, does every arbitrarily-

dependent sequence of random variables have property B almost 

surely on the set where the conditional distributions have 

property A? 

Not in general, but comparisons of the conditional Borel-

Cantelli Lemmas, the conditional three-series theorem, and many 

martingale results with their independent counterparts suggest that 

the answer is affirmative in fairly general situations. The 

purpose of this note is to prove Theorem 1, which states, in 

part, that if "property B" is "the partial sums converge", then 

the answer is atways affirmative, kegatdtess of "property A". 

Thus many strong laws for independent sequences (even laws yet 

undiscovered) may be immediately generalized into conditional 

results for arbitrarily-dependent sequences. 

2. Main Theorem  

In this note, Y = (Y 1 ,Y2 ,••) is a sequence of random 

variables on a probability triple (Q,a,P), Sn  = Yl  + Y 2  +•••+ Yn , 

and F
n is the sigma field generated by Y i ,•••,Y

n
. Let Tr n (•,•) 

be a regular conditional distribution for Yn given Fn-1' and 

= (Tr
l' 7

2'
.••)• Let B denote the Borel a-field on JR, and B 

the product Borel c-field onle 3 ; let P(1R) denote the space of 



probability measures on (IR,8), and let C= P(1R) x P(M) x.... 

As a final convention, let L(X) denote the distribution of 

the random variable X. 

Let BE Ir. With the above notation, the question this 

note addresses is: when is the following statement (S) true? 

(S) If AC C is such that (X1 ,X2'
•••) E B a.s. whenever X

1
,X

2' 

are independent and (L(X 1 ),L(X 2 ),••) EA, then for arbitrary Y, 

YE B a.s. on the set where ILEA. 

A partial answer is given by 

Theorem 1.  (S) holds in the following three cases: 

n 
(i) B = {(r 1 ,r 2' •••) ElR : y r j  converges}; 

(ii) B = lim 	 rn  E Ad; and 

(iii) B = lim supn±w {(r i ,r 2 ,---): rn  E An }, 

where An E 5, n = 1,2,•••). 

3. Applications of Theorem 1  

As a first application of Theorem 1, consider the two well-

known conditional results: Levy's conditional form of the Borel-

Cantelli Lemmas [4, p. 249], 

(1) For any sequence of random variables Y 1 ,Y 2 ,••• taking only 

the values 0 and 1, X Y is finite (infinite) almost surely 
1 n  

where X EYn IF -1 ) is finite (infinite); 1 

and the conditional three-series theorem [e.g., 5, p. 66], 

2 



Co 
	 Co 

P(lYn 1-?.c1Fn_ i ), 	X E[Yn  
1 	 1 

I F 	] and 
n-1 ' 

3 

(2) For any sequence of random variables Y 1 ,Y 2 ,•••, the partial 

sums Sn 
converge almost surely on the event where the three 

series 

X ELY
n
2 	1

n-1 ] - E
2
EYn 

I(lYn Ic)IF
n-1

11 all converge. 
1 

Both results (1) and (2) follow immediately from Theorem 1 

and their classical counterparts for independent sequences. 
U 

Similarly, in many martingale theorems the independent case is 

also the extremal one. As a second application of Theorem 1, for 

example, note that the following martingale results of Doob 

L2, p. 320] and of Chow HA follow immediately from (i) and the 

special case of independence: 

(3) If {y
d 

 F
n 	

1} is a martingale difference sequence, then 

CO 

Sn converges a.s. where y BEYn IFn-1 
< 00; and 

1 

(4) If {Y
n
,F

n 	1} is a martingale difference sequence 

and {bn 	is a sequence of positive constants 

Co 

such that E bn <co, then S
n 

converges almost surely where 
1 

co 
X bl-P/2  BF:1Y

n I P IFn-1 ] > cc,  for some p> 2. 
1 n  

Via Theorem 1(i) one may deduce immediately a conditional 

generalization of practically any result for sequences of inde-

pendent random variables in which the conclusion is "S n converges 

almost surely." Although the above applications all have hypotheses 

CO 



involving conditional moments, virtually any hypothesis conditions 

will carry over. As one final example, consider the well-known fact 

[e.g., 5, p. 1021 that if Y 1 ,Y2 ,••• are independent and Sn converges 

in probability, then Sn  converges almost surely. Theorem 1 allows 

the generalization of this fact given by Theorem 2 below. 

Definition. A sequence of probability measures (p 1 ,p 2 ,•••) SurriZ 

in probability if, for any independent sequence of random variables 

XI,X2,--withL(X)= p i' 
it follows that X

1 	
X
n converges 

in probability to some random variable X. 

Theorem 2. Let Y1 ,Y 2 ,••• be an arbitrary sequence of random variables. 

Then Sn converges almost surely on the set where the conditional 

distributions II sum in probability. 

4. Proof of Theorem 1. 
co 

For fixed B E B , consider the statement 

(S') 
	

P(tw: PH(w) (B) = 	nY B = 0, 

where P H (w) 
is the product measure Tr

1
(W) X ff 2 (W) X***On 

(Pe r e). 

Without loss of generality, assume (S1,a,P) is complete. 

Lemma 1. (S) 	(S'). 
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Proof. "=>" Let A = 	E C: 	= 1}. Then fw:P il(w) (B) = 1} = 

= {w:11(w) E A}, so P({w:PTIM 
(B)=1}ny B) = P({w:11(w)ElOnY B) = 0. 

"<=" Since lw:11(w)EAl c {w:PJIM 
(B) = 1} E a, it follows (by com-

pleteness) that P({w:11(w)EA} nTieB) = P({w:P n(w) (B) = 1} nT B) = 0. El 

Proof of Theorem 1. 

For (i), Lemma 1 implies it is enough to show that (S') holds 
n 

forB={(r i ,r 2 ,—)EIR:Xr.converges}. Let (Q,a,P) be a copy of 
J 

(0,a,P), and (enlarging this new space if necessary) for each wER, 

let Z 1 (w), Z 2 (w),••• be a sequence of independent random variables 

on (2,a,P) with L(Zn (w)) =
n (w), (that is, P(Zn

(w)EE) = ffn (w,E) = 

= P(Y
n EEIY1 (w),•,Yn-1 (w)). Then 

(B)=1} n 	B). (5) P({w:P H(w) 

=P({w:Z 1 	 n (w) converges a.s. (in f2,a,m), ¶ B) 

00 	 m 
=P({ w: the three series X P(1Z

n
(w)1_>_.1), X E(Z

n
(w)•I(IZ

n
11), and 

1 	 1 
CO 

y n (w)-I(1Z
n 1.1)) all converge} n 	B) 

CO 

=P({event where the three series y poyn kiFn_ i ), 
1 

X E(Y 
n 	 1 
.I(1Yn l 1)1F11-1 ), and y EE(y 2n .i(lyn Ni)lFn_1 ) - 

- E
2 
(Y I ( I Y 

n
1 <1) 1 

Fn-1)  I all converge} n 	
B) = 0 , n  

where the first equality in (5) follows by the definition of 

Z
n (w), the second by Kolmogorov's Three-Series Theorem and inde-

pendence of the {Z i (w)}, the third by definition of Z n (w) and 'E n , 

and the last by the conditional three series theorem (2). This 

completes the proof of (i). 
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For (ii) and (iii), application of the same technique using, 

in place of the three-series theorems, the classical and (Levy's) 

conditional form (1) of the Borel-Cantelli lemmas yields the 

desired conclusion. Ll 

5. Remarks  

The class of sets B E ea  for which (S) and (S') hold is not 

closed under complementation; a counterexample to the converse 

of the conditional three-series theorem due to Dvoretzky and to 

Gilat [3] demonstrates that (S) does not hold in general for 

B = "S
n does not converge". Whether (S) holds for such useful 

sets as "Sn/ n 0", or "lim sup S n/an   = 1", is not known to the 

author. 

Acknowledgement. The author is grateful to Professor Lester Dubins 

for several useful conversations. 
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Comparisons of Stop Rule and Supremum Expectations of 

i.i.d. Random Variables 

(Stop Rule and Supremum Expectations) 

by 

T.P. Hill
1 

 Robert P. Kertz 

Abstract 

Implicitly defined (and easily approximated) universal con-

stants 1.1 <an < 1.6, n=2,3,•, are found so that if X 1 ,X2 ,— 

are i.i.d. non-negative random variables and if T n  is the set 

of stop rules for X1 ,...,Xn , then E(maxiX 1 ,••.,Xn 1) < an  sup{EXt :tETn }, 

and the bound a
n 

is best possible. Similar universal constants 

i.i.d. random variables 

taking values only in [a,b], then E(max{X 1 ,•••,Xn }) 

sup{EXt :tETn } + bn (b-a), where again the bound b n  is best possible. 

In both situations extremal distributions for which equality is 

attained (or nearly attained) are given in implicit form. 

1. Partially supported by AFOSR Grant F49620-79-C-0123 
AMS 1980 subject classifications. Primary 60G40, Secondary 62L15, 
90C99. 
Key Words and Phrases. Optimal Stopping, extremal distributions, 
inequalities for stochastic processes. 
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51. Introduction. 

Let Tn 
denote the set of stop rules for random variables 

Xv —,Xn .Ifthe{X.}are independent and non-negative, then 

it has been shown [4] that 

(1) E(max{X1 ,—X11 }) :5 2 sup{EXt :tETn } and 

that 2 is the best possible bound, and [2] that in fact strict in-

equality holds in all but trivial cases. If the {X i } are independent 

and take values only in Ea,b], then 

(2) E(max{X1 ,--,Xn }) 5 sup{EXt :tETn } + (1/4)(b-a), 

and 1/4 is the best possible bound [3]. Probabilistic interpreta-

tions have been given for these results: (1) says that the optimal 

return of a gambler (player using non-anticipating stop rules) is 

at least half that of the expected return of a prophet (player 

with complete foresight) playing the same game; and (2) says that 

a side payment of 1/8 the game limits, paid by the prophet to the 

gambler, makes the game at least favorable for the gambler. 

If the random variables in question are not only independent, 

but also identically distributed, then it turns out that the gam-

bler's situation improves, and the constants "2" and "1/4" in (1) 

and (2) respectively can be improved (lowered). The purpose of this 

paper is to determine these improvements. Probabilistically, the 

main results give the minimal odds and side payments, respectively, 

needed to achieve fairness for a gambler matched against a prophet 

playing the same game(in which the random variables are independent 



2, 

and identically distributed (i.i.d.)), 

Implicitly defined (and easily approximated) universal constants 

1.1 < an  < 1.6, n=2,3,•••, are found (e.g.,a2 =
% 
 1.171 , aloo=

% 
 1.337 , 

a10,000=1.341) satisfying the first main result, 

Theorem A. If n >1 and X1
,X••,Xn 

are i.i.d. non-negative random 

	

variables, then E(max{X 1 ,•••,Xn }) 	an 
sup{EXt :tETn

}. Moreover, 

an 
is the best possible bound and is not attained except in the 

trivial cases X1 
is almost surely 0 or has infinite expectation. 

Similar universal constants 0 <bn 
 < 1/4 are found (e.g., b 2

=.0625, 

b100 = .110, b10,000 = .111 satisfying the second main result, 

Theorem B. If Xl'•••,Xn are i.i.d. random variables taking values 

only in Ca,b1, then E(max{X1 ,•••,Xn }) s sup{EXt :tETIl } + bn (b-a), 

	

(equivalently, E(min{X1 ,••,Xn }) 	inf{EXt :tern }-bn (b-a)) and 

bn 
is the best possible bound and is attained. 

In Proposition 4.4 actual distributions are given implicitly 

(but again, in easily approximated form) for which equality in Theorem 

A nearly holds; Proposition 5.3 likewise gives extremal distributions 

for which equality in Theorem B holds. 

§2. Preliminaries. 

For random variables X and Y, X v Y denotes the maximum of X and 

Y, X
+ 

= X v 0, and EX denotes the expectation of X. For n=1,2,•••,E n (X)= 

E(X1
v...vX

n ), and Vn (X) = sup{EXt :tETn }, where X1 ,...,Xn  are i.i.d. 

random variables each with distribution that of X. 



Throughout the remainder of this paper, all random variables will 

be assumed to have finite expectation. 

The first lemma, a special case of [1, p. 50], is included for 

ease of reference. 

Lemma 2.1. (i) Vn (X) = E(X vVn_ 1 (X)) for all n > 1; and 

(ii) if t*ETn is the stop rule defined by t* = j <=-> {t*>j-1 and 

	

X. 	V n- .(X)), then EXt * = Vn (X). 

Lemmas 2.4 and 2.5 are probabilistic results which will be used 

in the proofs of TheoremsA and B to restrict attention to simple 

random variables of special form. In setting up this reduction, a 

definition and a special case of a result (Lemma 2.2) from [3] 

are useful. 

Definition 2.2. For random variable Y and constants 0 <a <b < co, 

let Ya denote a random variable with Y
b = Y if Y I [a,b], = a with 
a 

probability (b-a)-1 fYE[a,b] (b-Y), and = b otherwise. 

Lemma 2.3. Let Y be any random variable and 0 5 a < b < co. Then 

EY = EYa , and if X is any random variable independent of both Y and 

) y , then E(X v Y) 5 E(X v Ya
b

. 

	

a 	
, 

It may be seen that Y b is the distribution with maximum variance a 

which both coincides with Y off [a,b] and has expectation EY. 

Lemma 2.4. Let n > 1 and X be any random variable taking values in 

[0,1]. Then there exists a simple random variable Y, taking on only 

the values 0, Vi (X), V2 (X),•••,Vn_ 1 (X), and 1, and satisfying both 
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Vi (Y) = V.(X) for j=1,2,•,n, and E n
(Y) 	En (X). 

Proof. Define Y through Definition 2.2 by 

V, (X) ) V2 (X) 	1 
Y 	X 	 The conclusion follows easily from 0 	V1 (X) 	n-1 (X) • 

Lemmas 2.1 and 2.3. ❑ 

Lemma 2.5. For n > 1, let X be a simple random variable taking 

values 0 < V1  (X)<—<Vn-1 (X) < 1 with probabilities p 0 , 

respectively, and let s j  = p o+•••+pj  and s_ 1=1. Then: 

(i) V. 00 = V1 (X) El+s 0 
 +s

0  s 1 
 +•.-+s 0 s 1 •-• 

(ii) V
1
(X) = (1-sn-1

)/E(1-sn-1 )(1+s0 +s 0  s 1  +•.-+s 0 
wsn-3 )+s 0 s 1 ••-sn-2 J;  

and 

(iii) En
(X)=V

1 

	

	 0 1 	0 1 	n-2 	n-1 
(X)[(l+s +s s +•-•+ss )+ss•••s(l+s+•-•+sn-1 ) 

0 0 1 	 n-1 

-(s
n
0+s01 s

n
+.

. 	0•..s
n-3

sn-2
)]. 

Proof.For(i),observethatbyLemma2.1,V.00 = V.(X)p. + 
3. 

. 	(X) P. 	
n-1 	n-1 

+ —+V (X)p 	+ 1.p
n 
	s. V. + s V3+1 	 3-1 3-1(X). Since 

n-1 n-1 Vi (X) .+•••+V(X)p 	+ l*pn 	 1 
= V1 (X) - Ey(x)p 	

V. P3 	 1 +...+ v 3-1 (x)  Pj-1 7,  

the desired conclusion follows easily by induction on j. 

Conclusion (ii) follows since V1 (X)=V1 (X)(s 1 -s 0 )+—+ 

+ Vn-1(X)(sn-1-sn-2)  + (1-sn-1)  by solving the equations in (i) 

for V1  in terms of s 0 ,s 1 ,•,sn_ 1 . 
n=1 

For (iii), note that En (X) =I  V4 (X)(s;-s;
-1

) + 
(s-srr11-1),  and 

j=1 
apply (i) and (ii). ❑ 
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For the proof of Theorem A the following complements to 

Definition 2.2. and Lemmas 2.3 and 2.4 are given. 

Definition 2.6.  For random variable Y and constants a >a > 0 satis-

fying a•P(Y> a) > fy>a  Y, let Ya,a  denote a random variable with 

Ya,a 
= Y if Y1Ea,00), =a with probability (a-a) -1 (a-Y), and Y>a 

=a otherwise. 

Lemma 2.7.Let Y be any random variable and 0 5 a < 00. Then for all 

a sufficiently large, EY=EYa,a and if X is any random variable 

independent of both Y and Ya,a , then E(XvY) s E(X v Ya,a).  This last 

inequality is strict if and only if P(X > a) •P(Y>a) > 0. 

Proof.  That EY=EYa,a is immediate. For the remainder assume P(Ya) > 0 

and fix any X independent of both Y and {Y a,a }. From the definition 

of Ya,a'the  convexity of the function 4)(y) = E(Xvy), and the inde-

pendence of X and Y, it follows that E(X v Ya,a)  is a non-decreasing 

function of a and limco-co  E(X v Ya,a ) = fY<aX v Y + E(X v a)P(Y > a) + E(Y-a)
+ , 

with the limit being attained if P(X > a) -1) (Y > a) = 0. The conclusion 

follows from these results and the dichotomy that fy<aXvy + 

E(X v a) P(Y a) + E(Y-a)
+ 

> E(X v Y) if P(X > a)-P(Y > a) > 0, and 

=E (X v Y) if P (X > a) • P (Y > a) = 0. The strict inequality in this dicho-

tomy follows since for P (X > a) • P (Y > a) > 0, 

Xa,Y_>_a 	 X?_a,Ya (X-a+Y-a) - 	 E(X-a) v (Y-a)] = f 	C(X-a) A (Y -a)] > 0. 

If P(Y>a)>0, then {Y,a} are random variables which coincide with 

Y off Ca,00), have expectation EY, and have variances which increase 

to infinity. 



Lemma 2.8. Let n> 1 and X be any non-negative unbounded (ess sup X = +co) 

random variable. Then there exists a non-negative bounded random 

variable. Then there exists a non-negative bounded random variable 

Y satisfying both V.(Y) = V.(X) for j=1,2,•,n, and En (Y) > En (X). 

Proof. Define Y through Definition 2.6 by Y = Xv  (X)a . Then n-1 	' 

the conclusion follows from Lemmas 2.1 and 2.7 for a sufficiently 

large. ❑ 

§3. Definition of the constants {an } and {bn }. 

The purpose of this section, which is purely analytical (non-

probabilistic) in nature, is to define the constants {an } and {bn } 

appearing in Theorems A and B, respectively, and to concurrently 

develop results useful in the proofs of these theorems. 

Definition 3.1. For n > 1 and W,X E CO 3 0D), let On (w,x) = (n/(n-1)). 

w (n-1)/n + x/(n-1). For aECO,00), define inductively the functions 

nj ,n , 3=0, 1 , — ,n, by n n (a) = (t n (0,a), and n i,n (a) = 

Lemma 3.2. . 	is continuous, non-negative, strictly increasing and 3,n 

concave for all n > 1, and all j=0,1,••,n. 

Proof. Fix n > 1; proof will be by induction on j. First observe that 

n o,n  is continuous, and for a>0, r1 0,n (a) 	0 ' r10,n(a) > 0, and 

n6 ,n (a) = 0 (where ( )' denotes differentiation with respect to a). 

Assume j-1,n 
is continuous and for a>0, that n j 1,n 	 j (a) > 0, n' -1  (a) >0, - 

and nj-1,n
(a)_<. 0. Then it is clear that n j,n is continuous, and for 



a>0, n i,n (a) >0, n ,n! 	(a) > 0, and W! ,n (a)  = 	j-1,n(a)]-1/n . j 	 3 

-1 	 -1 
[ ( -n 	) 	 n  (a) ) 	(ri 3-1,n (a))2 11-1,n(a)7 	0 111 

Definition 3.3. Let Gn : [0,c0) + ]R be the function Gn(a)=nn-1,n(a). 

Proposition 3.4. (a) For all aECO 3 1], Gn (a) 5- aE(n/(n-1)) n-l] + 

E1-((n-1)/n)
n-1 ]; and (b) there is a unique number an > 0 for which 

Gn (an ) = 1. Moreover, a n < 1, and for ad:0,an I, aC(n/(n-1))
n-1] 5_ Gn (a). 

Proof. Let 1Pn (w,x) = (n/(n-1))w+ x/(n-1) for w,x,E[0,03). For (a), 

defineinductivelythefunctionsu i,n (a) , 0 	j 	n-1, 

aEE0,1], by (11301(a) = n (0,a) and u j,n (a) = q)n (u i _i,n (a) + c n  a), 

where c
n=n

-1 
 ((n-1)/n) n-1 . It will be shown that. (a) 	a. a 	(a) ,n 	,n 

O,n (a)  
for all a€CO 3 1]. First observe that n 	= a/(n-1), and assume 

nj-1,n (a) 	aj-1,n(a) . Since x (n-1)/n  + c , it follows that 

11. 	(a) = (n/(n-1))(n.-1,n 	
(n-1)/n (a)) 	+ a/(n-1) 	(n/(n-1))' 3,n 	 3  

(n-1)/n 
(0 	(a)) 	+ a/(n-1) 5_ (n/(n-1))(u 	(a)+c)+0./(n-1)=c i,n (a)- j-1,n 	 j- , 1n 	n 

For 3=n-1, this yields %-1,n (a)  = Gn (a) 	an-1,n(a) =a[(n/(n-1)) n-l] + 

[1-((n-1)/n) n-1 ], completing the proof of (a). 

For (b), define inductively the functions p. (a), 0 	j 	n-1, 3,n 

aEE0,1], by p 0,n (a)  = )/1 (° ' a) 

 first be shown that 

(3) 	p. 	(a) 5. n. 	(a), for 0 	j 	n-1 and all ae[0,1] with G (a) 	1. 3,n 	3,n 

7 

and pi,n(a) 	1P(1-ti_i ,n (a),a). It shall 



Given aE[0,11 with Gn (a) < 1, observe that 
P O,n (a)  = n O,n (a) 

 .a/(n-1), and assume that p. j-1,n (a) 	nj-1,n(a)• Since 

0 	n 	(a) (a) = G(a) 	1 and x 	x
(n-1)/ 

for 0,n 	lin h-1,n 	n  

xE[0,1], it follows that p. 	(a) = (n/(n-1)) p. 
-1,n(a) 

 + a/(n-1) 
3,n 	 j  

j -1,n (n/(n-1)) n 	
+a/(n-1) _< 	 nj-1,n 	

(n-1)/n 
. (n/(n-1))( 	(a)) 	+ a/(n-1) = 

n. (a), completing the proof of (3). nj,n 

If Gn (a) s 1 for all a€[0,1], then it would follow from (3) that 

Gn(1) =nn-1,n (1) 	
Pn-1,n (1) = (n/(n-1)) n-1 > e-1 > 1, a contradic- 

tion. Thus there exists a nE(0,1) with Gn (an ) = 1; the uniqueness of 

an follows from the strict monotonicity of n n-1,n 
proved in Lemma 

3.2. 0 

Example 3.5. (a) For n=2, (1) 2 (w,x) = 2Nica--+ x, G2 (a) = 2Vc7+ a, and 

a2= 3 - 2V
-2-- 2)  .171. 

(b) a
3 	

0.221, a4 '=‘' 0.248, a 5 	0.264, a10 24  0.301, a 100 	0.337, 

and a10,000 = 0.341. 

Although the authors believe that the a n 's are strictly monotone 

increasing with limit e
-1 , they have established only the general 

quantitative information about them given in the following proposition 

Proposition 3.6. For all n > 1, 

(a) Un/(n-1 )in-1  ((n/(n -1)) -1)7 -1  s an < C(n/(n-1)) n-1 1-1 ; and 

(b) (3e) -1  <an  < (e-1)-1. 



Proof. Part (a) follows from Proposition 3.4 with a=an . Part (b) 

m 
follows from (a) since (n/(n-1))

n
'4e, and (n/(n-1)) 

n-1 
 /- e. ❑ 

Definition 3.7. Let Hn
:E0,1] +7R be the function 

Hn W = (n -1)-Enn,n ") 	nn-1,n ( " ].  

Proposition 3.8. For each n > 1 there is a unique number [S II E [0,1] 

such that Hn (8n
) = 1. Moreover, 0 < 8 n 

< 1. 

Proof. Let f(x) = (n/(n-1))x (n-1)/n 	x, let g(8) = f(nn-1,n (" 

and let u be the linear function u(8) = (1-8)/(n-1). Then Hn (8)=1 

if and only if 

(4) 	g(8) = u(8). 

Let an 
be as in Proposition 3.4(b). By Lemma 3.2, nn-1,n is strictly 

increasing from 0 to 1 on CO,a11 7. Since f is strictly increasing 

on COW, it follows that g is strictly increasing on [0,a n ], and 

since g(0) = 0 and g(an )=1/(n-1), it follows that (4) has a unique 

solution in [0,a n ]. It remains only to show that (4) has no solution 

on Ean ,1]. This will be accomplished by exhibiting a function t which 

lies between g and u on [an ,1], and which has no points in common 

with u. 

Let kn = (n/(n-1)) n-1, let do = 1-((n-1)/n)
n-1 , and let 



1 0 

t(8) = f(kn 8 + dn ) for 8E[0,1]. Since f is decreasing on E1,00), in 

order to show that g(8) = fei n-1,n (M 	f(kn13 
	do 	= t(8) on 

Can ,1], it suffices to show that 

(5) 1 n-1 n
0) 	(3k

n 
+ d

o for 8 E Ean' 1J. , 

The first inequality in (5) follows since nn-1 n is strictly , 

increasing (Lemma 3.2) and since nn-1,n (an )  = 1; and the second 

by Proposition 3.4(a). 

In order to show that t > u on Ca
n
41, it is enough to show 

that t > u on [1pn, 	 n 1], where bn = k
-1

(1-dn  ), since bn 	
a
n 

by 

Proposition 3.6(a). Since 1 < e - e -1  n/(n-1) < k n  + do  < (n/(n-1)) n 

 and f is decreasing on [1,c0), it follows that t(1) = f(kn +dn ) > 

> f((n/(n- 1)) n ) = 0 = u(1). But since u(bn ) < (n-1) -1  = t(bn ), and 

t is concave, it then follows that t > u on Lb n ,1J, completing the 

proof. ❑ 

Example 3.9.  (a) For n=2, H2 (8) = 2(2 N7F 	m1/2 - + 	 281/2, and 8 2= 1/16. 

(b) 83 % = .077 , 84 % = .085 , 8 5  = 
% 
 .090 , 810 1100 ' (31001

110 , 

8 10,000 	.111 .  

Definition 3.10.  For n > 1, let an  = 1 + an , and bn 
= 8n 
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1 1 

§4. Proof of Theorem A and its extremal distributions. 

Definition 4.1. For a random variable X with V n (X) >0, let Rn
(X) = 

E
n
(X)/V

n
(X), n =  

Probabilistically, Rn (X) is the odds which must be given 

a gambler playing against a prophet (faced with the same n 

random variables each with distribution that of X) in order to 

make the game fair for the gambler.[In terms of Rn , Theorem A 

simply states that Rn (X) < an  for all distributions X, and 

that the bound an is the best possible.] 

Proof of Theorem A. Fix n> 1. The case where X has infinite expectation 

is trivial, so assume EX<00. First, it shall be shown that it suffices 

to consider random variables taking values in [0,1] by proving that 

(6) for any random variable X, there exists a random variable Y 

taking values in [0,1] for which Rn (X) 5 Rn (Y). 

For random variable X, from Lemma 2.8 there exists a bounded random 

variable Z such that Rn (X) 5 Rn (Z). Define Y=Z/(supremum of Z); 

then Y is a random variable taking its values in [0,1] and 

Rn (X) 5 Rn (Z) = Rn (Y). This establishes (6). 

By Lemma 2.4, attention may be further restricted to simple ran-

dom variables X taking on the values 0, V 1 (X),•••,Vn_ 1 (X), 

and 1(with probabilities p 0 ,p1 ,•,pn  respectively).Let sj=p0-1-•••+pj 
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for j=0,•,n-1 and let s_ 1=1. Now, if s n_ 1=0 or 1, then X is constant 

and Rn (X)=1;if 
0<sn-1<1,  then 0 < V

1
(X)<•<V

n-1 (X) < 1 and from 

Lemma 2.5 Rn (X) = Rn (s 0 ,—,sn_ i ) where Rn(s 	
n- is the func- 

tion defined for s. > 0, j=0,•,n-1, by 
- 

(7) Rn (s 0 ,s 1 ,—,sn_
1
) = 

(n-1 
sn n-2 L s3 	 —sn-3 n-1 0 s 1 	sn-2 -s 0-s 0 s 1 	0 

J= 1  1 + 	=1  

1+ s
0  s 0  s 1 

 +•••+ s 0 s 1 •••sn- 

The conclusion of Theorem A follows once‘it is shown that 

A 0'n-1 	
A 

(8) there exists a unique point (s 	) with 0 < s o<—<sn-2 <sn-1=  

for which Rn (s 0' 	n-1 ) < Rn (s0n-1) = an for all 

n-1 ) with 0 	s0 -  <...<sn-2 < S in- < 1, 

where an was given in Definition 3.10. 

For each (so, .",sn_i  ) with 0= ,---<sn_i  < 1, Rn (s 0 ,—,sn-1 )=1, s j  

and for each (s 0 ,•,sn_ i ) with 0 < s 0 
 < s

1 - 
 <---<sn-1 < 1, 

R
n
(s0n-1 ) < Rn (s o 	 If the function rn (s 0' 	n-2 ) 

 is defined for sj  0, j=0,•,n-2,by rn (s 0 ,•••,sn-2 ) = 

Rn (s o , ••• ,s 	,1), then the proof of (8) follows from showing that n- 
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(9) there is a unique point (s o ,— ,sn 2 ) with 0 < s <-..< 0 	sn-2  < 1 

for which max{r n (s 0' ...,sn-2' )- 0 	s0 <--.<sn-2 < 1} = 

= rn (s 0 n-2) = an. 

First, verify that the following four statements are equivalent for 

(s0'' sn-2 ) with s >0 for j=0,•..,n-2: 

9r 
(10a) 	Ds. (s0'' sn-2 ) = 0 for j=0,-..,n-2; 

J 

n-1 (10b) 	 s. 	(1-s. 	)+...+ 3+1 	n-z 	 3+1 	3+1 	3+2 . 

	

n- (1-s
n 	

(s 	s 	)(1+s
j+1

+s
j+1

s j+2+...+s j+1
•••s 

n-2 	n 0' 	' n-2 	 n-2' 

=0 for 0 s j < n- 4, 

- 	 -1 ns
n-2 	

nsn
n-3 + (1-sn-2 )-rn (s0n-2)•(1+sn-2 )=0, and 

n-1 n-ns
n-2 -r  n  (s 0 	n-2 ) = 0; 

n (10c) 	(n-1)s j+1= ns j  -1 + (n-1)s
n 

for 0 	j 	n-3, and 0 

n- n-1 = nsn-2
1  + (n-1)sn ' and at (s 0" sn-2 ) satisfying these 

0  

n-2 equations, rn (s 0 ,•••,sn_ 2 ) = 1 +(n-1)s 1(1) ; and 

(10d) letting a=(n-l)s n
0' 3 n.,n (a) = s, for 0 < j < n-2, 

1= n
n-1,n (a) = Gn (a), and at (s 0 ,•••,s11-2 ) satisfying these 

equations, rn (s 0 ,•••,sn_ 2 ) = 1 + (n-1)s 11:1 = 1+a. 
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Let Bc1
a n-1  be the region B = {(s 0 ,•••,sn_ 2 ); s j  0 for 

j=0,•••,n-2}. By (10a-d) and Proposition 3.4 there is a unique 

point (s 0 ,•••,sn_ 2 ) in the interior of B at which rn/s.i =0 for 

j=0,•••,n-2, and at this point r n (s 0 ,---,sn_ 2 ) = 1 + (n-l)s o
n 
 > 1. 

Thus the maxima and minima for r n in B, if they exist, occur at 

(s0's
n-2 ) or on the boundary of B. However, if s j =0 for some 

j=0,•••,n-2, or if S. +co for some or all j=0,•,n-2, then 

rn (s 0 ,..., 11-2 ) <l. Thus the maximum for rn in B is at (g 	s 0" n-2 ).  

Since 0 < s0 <•••<6
n-2 

< 1 from (10d), Definition 3.1, and Lemma 3.2, 

and since {(s o , ---,sn_ 2 ); 0 	 < 1} c B, it follows that 

(10d), Proposition 3.4, and Definition 3.10 imply that (9) holds. 

That the bound an is sharp is clear from the above reasoning 

(see also Proposition 4.4.). ❑ 

Example 4.2. Let X,,X 2 ,••• be non-negative i.i.d. random variables 

(with positive finite expectations). Calculations of {a n }  indicate 

that E(X 1 vX2 )<1.172 sup{EXt:tET2}; 	 vX100) <1.338 sup{EXt :t€T100 ) 

and E(X1
v•••vX

10,000
)<1.342 sup{EXt :tET10,000 }.  

Corollary 4.3. Let X1 ,X
2' 	

be i.i.d. non-negative random variables 

and let T denote the stop rules for X1 ,X2 , 	. Then E(sup Xi ) 

-1 
(1+(e-1) 	) sup{EXt

:tET}. 

Proof. Apply Proposition 3.6(b) to Theorem A. 	❑ 

It is perhaps of some interest to indentify distributions for 

which equality in Theorem A is nearly attained. For this purpose 

the following parameters are collected here. Fix n > 1. Let 
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a
n 

E (0,1) be the unique solution of Gn (an ) = 1 from Proposition 3.4. 

For j=0,•••,n-2, s j  is given by s = (fl j,n (an
l/n andpj by 

10 0=S 0 , p j =s i -s i _ l  for j=1,...,n-2, and P n_ 1
=1-sn_ 2 . 

Proposition 4.4. For each n> 1 and e >0 there exists a simple 

random variable X = X(n,c) with P(X=0)=p0 , P(X=Vj (X))=p i  for 

j=0,-..,n-2, P( X=Vn_ 1 (X)) E (pn_ i-c,pn_ i ) and P(X=1) < c 

satisfying Rn (X) > an-c and hence Rn (X) > Rn (X)-e for every non-nega-

tive random variable X. 

Proof. For e>0 sufficiently small consider the random variables 

X=X(n,e) taking values 0 < V i (X) <• • •<Vn_ 1 (X) <1 with probabilities 

po,..•,p
n-2 ,pn-1-6, e respectively; the valuesVj  (X), j=0,•••,n-1, 

can be computed from Lemma 2.5 (i,ii). From the proof of Theorem A 

it is clear that Rn (X(n,c)) an as C)0). 	0  

Example 4.5. (a) For n=2, (p o ,p i ) 1  (0.414,0.586). Calculations indi- 

cate that the random variable X taking values 0, 2.41421 x10-5 , and 

1 with probabilities 0.41421, 0.58578, and 10
-5 respectively satisfies 

R2 (X) > R2 (X)-10
-4 for every non-negative random variable X. 

(b) For n=10, (p 0 ,•••,p9 ) = (0.711925, 0.070190, 0.047863, 0.037426, 

0.030936, 0.026304, 0.022730, 0.019837, 0.017423, 0.015367)). 

For e>0 small consider the random variables X=X(n,e) taking 

values 0, 	 6•1/9 , and 1 with probabilities P 0 ,•••,P 8 , 
ti  

p 9-c, and e respectively, where (v i ,•••,v9 ) = (3.32872, 5.69852, 

7.55198, 9.09031, 10.4247, 11.6234, 12.7317, 13.7818, 14.7974). For 

e>0 sufficiently small R10 (X) > R10(X) - 10 -3 for every random variable 

X. 
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The assumption of non-negativity in Theorem A is essential, as 

the following example shows. 

Example 4.6.  Let X be uniformly distributed on [0,1] (so 

En  (X)> Vn (X) for all n > 1). For e>0, let Y E=X- Vn (X) + e. Then 

En  (Y E )= En (X) - Vn (X) + c, and Vn (Y E ) = e, so 1 + (En (X)-Vn (X))/e = 

Rn (Y E )4,  Do as E)0. 

§5. Proof of Theorem B and its extremal distributions. 

Definition 5.1.  For a random variable X taking values in [0,1], 

let Dn (X) = En (X)-Vn (X), n=1,2,---. 

Probabilistically, Dn (X) is twice the side payment which must be paid 

to a gambler playing against a prophet (faced with the same n 

independent random variables each with distribution that of X) 

in order to make the game fair for the gambler. In terms of Dn , 

the conclusion of Theorem B is that D
n
(X) <bn for all n, and that 

the bound bn is the best possible and is attained. 

Proof of Theorem B.  Without loss of generality (add, or multiply 

by, suitable constants) a=0 and b=1. By Lemma 2.4, it may be 

assumed that X is a simple random variable taking on the values 

•••,V(X), 0, Vl (X), 	n_1 	and 1 with probabilities p o ,pi ,---,pn  

respectively. Let s i =pepi+•..+p i  for 0 < j < n+1, and let s_ i  = 1. 

By Lemma 2.5, for 0 < s n-1  < 1 (otherwise X is constant and D n (X) 

Dn (X)=Dn (s 0 ,s 1 ,•••,sn_ 1 ) where D n (s0'' sn-1 ) is the continuous fun, mi

defined on { (s o  e • •, sn_ i ) ; 0 :5_ s o<- -<sn_l < 1} u { (s o  , • • • , sn _ 1 ) ; 0 < sn-1 < 

and s >0 for j=0,•••,n-2} by 



(11) D 
n  (s0 ,s1" 

••• sn-1 ) = 0 if 0=s 	.***<sn-1 
= 1, 

and = 

(n-il 
(1-s n_ 1 ) 	si1_ 1)s o s 

' =1 

n 	n ...s 	 s ...s 	sn  

	

n-2 0 0 1 	0 1 	n-3 n-2 

  

(1-sn-1
)(1+s0+s0s1+...+s s ...s n-3

) + s 0
s
1 	

Sri-2 

otherwise. 

It remains only to show that 

(12) 	maxiDn (s o ,s 1 ,— ,sn_i ) ; 0 	so 	 11 = bn . 

First observe that the following representations hold for 

(s 0 ,•••,sn_ i ) with s.>0 for j=0,•••,n-2 and 0 < s
n-1 

< 1: 

al) 
(13) 	-5-a - (.1 1/s 0 )Epn—(n-1)s07; 

0 
ap
n 	s . 

al)
n 	 n-1 	 = p i s ()  ••• s i [Dn+ns j  -(n-l)si+1 ] for 0 < j <n-3; s . 3+1 as 3. +1 	j as. 

n 	 al)
n  sn-1 (1-s

n-1
) 
 3s 	 s0 	 n sn-2 EDn+nsn-1-(n-l)sn-1' I-and n-1 

sn-2 asn-2 =111 -2  

alp
n  - (-1.11s0...sn-2/(1-s

n-1 )
2
)EDn 	n-1 

-1+nsn-1 -(n-1)sn  asn-1 

where 11 1=V1 (s 0 , ...,sn_1),  the expression in Lemma 2.5(ii). From (13) 

it can be deduced that the following three statements are equivalent 

for(s o ,w,sn_ i )withs.>0 for j=0,...,n-2 and 0 < sn_i  < 1. 

3D 
(14a) Tg-

n  
(s o ,m,sn_ 1 )=0 for j=0,—,n-1; 

n ,b) -ns-1 	
0 -(n-l)sn + (n-1)s j+1 = 0 for j=0,—,n-2, 

-nsn
n-1  
-1 - (n-1)s

n + (n-l)snn_1 +1=0, and at (s 0 	
satisfying 

these n equations, Dn (s 0 ,•••,sn_ i ) = (n-l)sr(1) ; and 
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(14c) letting 8=(n-1)4, then n i,n (8) = si; for 0 < j <n-1, 

1=(n-1)(nn,n (f3)-n n-1,n (13))  = H n (8), and at (s 	s 	) 0" n-1 

satisfying these n equations, D n (s o , ...,sn_1 )= (n-l)so = 8. 

Let C be the region C={(s 0'  ---,sn-1 ); 0 < s 0  <-.Ks — — n-l— < 1}. 
A 

Over this region C, Dn  <1, as can be seen by considering Dn  as 

the difference of E n  (s 	sn-1  ) and V n (s 0" sn-1 ), the expressions 

in Lemma 2.5 (iii) and (i) respectively. Hence, for (s o ,... ,sn_ i ) 

in C satisfying (14c), 0 <Dn (s o ,•••,sn_ i )=8<1, and only solutions of 

H
n
(8)=1 in CO 3 1] are of interest. From this fact, Proposition 3.8, 

and (14a-c), there is a unique point (s 0' ...,sn-1 ) in the interior of 

C at which aDn/as i  = 0 for j=0,•••,n-1, and at this point Dn (s o ,... ,sn_ i  

rb
0 

 n =(n-l)s >0. Thus the maxima and minima for D n in C occur at 

(s ...,sn-1)  or on the boundary of C. 

Consider the behavior of Dn at and near the boundary of C. If 

s 0=0 or sn_ 1=1 (or both), then Dn (s 0 ,•••,sn_ 1 )=0. Let (s o ,... s n-1 )  

be a boundary point of C satisfying 0< 0 <.--_ 

It can be shown from (13) that either Dn (s 0 ,...,s11-1 )<0 or 

ap 	r3 	 aD 	aD 
(-1,1)-( Ti—n ' a,

11  

' 	
) >0 if 0 < j <n 3 and (-1,1-s n_ 1 ).( asn 	' as 	

n 
 ) 

j+1 	 n-2 	n-1 

if j=n-2. From this observation one can find a point (s --.,s 	) 

	

0 , 	n-1 

in the interior of C with D n  Dn (s 0 ,  • 	'
s 
 n-1 ). Thus the 

rx, 
maximum for Dn in C is at (s 0 ,•••,sn_1 ), and (12) follows. 

That the bound bn is best possible is clear from the above reasoning 

(see also Proposition 5.3). ❑ 

<5 j s j+1 <•••<sn-1 <1.  
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Example 5.2.  Let X 1 ,X2 ,•••be i.i.d. random variables taking values 

in CO 3 1J. Calculations of {b n } indicate that E(X 1 vX2 )-sup{EXt :teT2 } 

0.0625; E(X i v• • • vxioo) sup{EXt :tETioo } 0.1101; and 

E(Xl v...vX 	)-supfEX :tET 10,000 	t 	10,000/ 0.113. 

In the present(additive comparison)case, unique extremal dis-

tributions (for which equality in Theorem B holds) can be given 

explicitly. For this purpose the following parameters are collected 

here.Fix n > 1. Let 1311  E (0,1) satisfy Hn ( n )=1 as in Proposition 3.8. 

For j=0,•,n-1, s j  is given by kj =( -1 j,n (13n ))1/n  and ipj j  by 

p o=s
% 
 0 , p j =s

%  
j -s j _ i  for j=1,•••,n-1, and i'511=1-lin_ i • 

Proposition 5.3.  For each n >1, let M(n) be the simple random 

variable taking values 0, 11 1 (Y),•••,Vn_ 1 ( rYj ), and 1 with probabilities 

p o ,-- ► pn  respectively. Then Dn (Y)=bn . 

Note that the values V11),--.,Vn-1()  can be computed from Lemma 2.5 

(i,ii) through 1 0  

ti 

Example 5.4.  (a) Y(2)=0,1/2, and 1 with probabilities 1/4, 1/2, and 
% 

1/4 respectively, and D 2 (Y(2))=b 2=1/16. 

(b) Y(10) --1" 0, .166, .272, .347, .404, .449, .486, .517, .545, 

.570, 1 with probabilities = .638, .067, .048, .039, .033, .029, 

.026, .023, .021, .019, .054 respectively and D 10 ((10)) = b10 
= .100. 



§6. Remarks. 	
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It is easy to see that for any fixed distribution X, 

Rn (X) 	1 and Dn
(X) -4- 0 as n-4.03, that is, lim

n4-00
E(X1 v---vXn ) = 

limn}. sup{EXt
:tET

n
} where X 1 ,X2' 	

are independent random variables 

each with distribution that of X. 

The parenthetical conclusion in Theorem B that 

E(min{X1 " Xn  }) 	
inf{EXt

:tern } - n (b-a) is immediate by symmetry. 

In contrast, no corresponding universal constant exists for ratio 

comparisons of E(minfX1 ,•••,X 11 1) and inf{EXt :tETn }. See example 

4.1 in [3]. 

Although the authors believe that the constants {an } 

and Oc.n I are monotonically increasing, and hence convergent, they 

have not been able to demonstrate this nor identify the limits. 
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