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We do not inherit the earth from our ancestors, we borrow it from our children. 
 
         Native American song 
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Only those who will risk going too far can possibly find out how far one can go. 
 

Thomas S. Eliot (1915-1965)
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SUMMARY 
 

 The forest biorefinery concept involves converting a pulp mill into a multi-

purpose biofuels, biomaterials, and biopower production facility in which these products 

are produced in an environmentally compatible and sustainable manner. A key challenge 

in this process is the recovery of lignin from process streams such that it can be utilized 

in a variety of innovative green chemistry processes.  

 The first part of this thesis presents a study based on green prospects for the paper 

industries current (black liquor) and future (ethanol organosolv) lignin rich solutions. The 

first study examines the fundamental chemical structure of LignoBoost derived lignin 

recovered from Kraft pulping streams using an acid precipitation/washing methodology. 

Functional group analysis and molecular weight profiles were determined by nuclear 

magnetic resonance (NMR) and size exclusion chromatography. These findings gave 

valuable insight into the physical properties and the determining chemical properties of 

this currently underutilized, renewable bioresource. A known chemical structure and 

composition provided valuable data to optimize a subsequent controlled catalytic 

deoxygenation and liquefaction step for high yield biooil production.  

 The second study is based on the future second generation bioethanol production 

process, where ethanol produced from lignocellulosic materials will bring about the co-

production of significant amounts of under-utilized lignin. The study examines the 

potential of conventional heterogeneous and novel homogeneous catalysts for the 

selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages of ethanol organosolv 

lignin to convert it from a low grade fuel to potential fuel precursors or other value added 



 xxix

chemicals. The experimental data demonstrated that aryl-O-aryl and aryl-O-aliphatic 

linkages could be cleaved and the hydrogenated lignin had a decrease in oxygen 

functionality and the formation of products with lower oxygen content. 

 The second part of this thesis reports the development and optimization of a novel 

qualitative method for the determination of the various types of hydroxyl groups present 

in biodiesel production streams. In the first study, the use of 2-chloro-4,4,5,5-tetramethyl-

1,3,2-dioxaphospholane (TMDP) as a phosphitylation reagent for quantitative 31P-NMR 

analysis of the hydroxyl groups in biodiesel process samples has been developed. 

Subsequently a characteristic chemical shifts library is developed with model compounds 

to provide quantitative data on the concentration of alcohol, free glycerol, partially 

hydrolyzed triglycerides and free fatty acids in a rapid manner.  

 The last part of this thesis depicts the results of an industrial trial based on the 

novel biodiesel analytical method developed earlier. Due to optimized sample preparation 

and signal acquisition, the novel TMDP/31P–NMR method can handle samples through 

the whole production line regardless of process step or feedstock used, becoming a novel 

research tool for process step optimization and for the characterization of biodiesel and 

its processing components.  
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CHAPTER 1 

1 INTRODUCTION 
 

1.1 Introduction 

1.1.1 Biorefinery Project 

 Sustainability is undoubtedly one of the most important cornerstones of energy 

independence, rendering it desirable to utilize all biomaterial in the most efficient 

manner. Society’s challenge is to not only develop new green technologies and products, 

but also to help establish commercial practices to become green industrial practices. For 

these reasons, the forest biorefinery is an evolving vision of wood utilization in an 

environmentally sustainable and economically viable manner; it is used to convert paper 

mills that currently produce primarily pulp and paper to biorefineries which produce 

biopower, biofules and biomaterials in addition to pulp and paper.1 In this dissertation 

(Chapter 4) a novel green industrial method was tested at commerce practices following 

the methodology described above.  

 During chemical pulping, lignin is chemically degraded and extracted from wood 

in an aqueous environment in a pressure reactor.2 The approach when NaSH is used in 

the cooking process along with caustic (NaOH) to delignify wood is referred to as Kraft 

pulping.3 In turn, the paper industry produces residual lignin in a form of a caustic side 

stream. Currently, this material is burned in a low efficiency Thompson recovery furnace 

to recover energy and cooking chemicals.2 A continuing interest in this field is the desire 
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to recover fractions of lignin from the Kraft cooking liquors for biopower, biochemical 

and biomaterial utilization.1 

 In the case of a future commercial cellulitic ethanol plant, since only the 

carbohydrate fraction is utilized during the fermentation step, the production of ethanol 

based on lignocellulosic materials will bring about the coproduction of significant 

amounts of under-utilized lignin. Due to these reasons the second study (Chapter 5) 

examines the potential to convert ethanol organosolv lignin from a low grade fuel to 

potential fuel precursors or other value added chemicals. 

 

1.1.2 Biodiesel Project 

 In the case of a conventional commercial biodiesel process, regardless of source 

the conversion of triglycerides and/or fatty acids to biodiesel involves a 

transesterification step. The transesterification step is required to impart favourable fuel 

properties since direct use of plant oils with conventional diesel engines has been 

reported to result in coking and trumpet formation on the fuel injectors, carbon deposits, 

gelling of lubricating engine oil and incomplete combustion.4 The efficiency of the 

production steps and the quality of the products is monitored by measuring the 

concentration of free, mono and disubstituted glycerols, methanol and free fatty acids. 

Along with the chemical and biochemical developments done in the last decade, there is a 

constant need for new and improved analytical techniques to monitor the quality of 

incoming feedstocks and their respective conversion products. Current analytical methods 

include HPLC,5 GC ,6 spectroscopic (i.e., MS,7 NIR,8) and wet chemical techniques9 (i.e., 

potentiometric, iodometric titration) which are often time-consuming typically due to 
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sample preparation, extended analysis time and/or complicated data analysis. The second 

part of this thesis describes our effort to invent (Chapter 6) and later to fully develop 

(Chapter 7, Chapter 8) a novel analytical method, to provide quantitative information on 

biodiesel constituents through the whole biodiesel production line in a rapid manner, 

regardless of feedstock or process step employed. 

 

2.1 Objectives 

2.1.1 Biorefinery Project 

 To address the challenges described above and meet with our goal to utilize lignin 

in the most efficient manner given the established commercial practice (Kraft pulping) 

and the future industrial process (cellulitic ethanol), the following major objectives were 

set: 

 Determine the fundamental chemistry during LignoBoost lignin precipitation 

from black liquor. 

 Characterize the fundamental chemical structure of the recovered lignin by 

functional group analysis and molecular weight profiles. 

 Determine the optimal reaction conditions for ethanol organosolv lignin (EOL) 

hydrogenation. 

 Select conventional heterogeneous and design novel homogeneous catalysts for 

the selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages in the 

lignin biopolymer. 
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 Find catalyst systems with high lignin hydrogenolysis yield, and follow the 

changes in physical and chemical properties of the EOL during hydrogenation. 

 Determine/propose fundamental hydrogenation/hydrogenolysis reaction 

mechanisms. 

 

2.1.2 Biodiesel Project 

 Our goal was to develop a novel analytical method that will provide quantitative 

information on biodiesel constituents through the whole biodiesel production line in a 

rapid manner, regardless of feedstock or process step employed. To address these 

challenges described above, the following major objectives were set: 

 Invent a rapid quantitative analytical technique for the determination of 

substitution patterns on partially esterified glycerols. 

 Establish an NMR chemical shift data library, to be able to follow all major 

biodiesel constituents through the entire production line. 

 Optimize the reaction mixture and physphitylation protocol so that the analytical 

method will be able to handle samples from all major process streams from a 

commercial industrial process. 

 Tailor the pulse program for biodiesel constituents and reduce the analysis time to 

a minimum, so the method will be able to provide quantitative data quickly. 

 Test the developed analytical protocol on industrial trials utilizing different feed 

stocks and process conditions. 
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CHAPTER 2 

2 LITERATURE REVIEW 
 

2.1 Fossil Fuels vs. Biofuels 

 Due to the increasing global energy demand and limited fossil fuel reserves, one 

of the most daunting challenges facing science in the 21st century is to deliver solutions 

for addressing global energy needs in the future in a sustainable manner.1 There is also an 

increasing awareness that the utilization of fossil raw materials and fuels increase the net 

discharge of carbon dioxide (CO2) in the atmosphere and contribute to the “green house 

effect”.10 Thus, beside the energy problem, the other important challenge is to predict 

how Earth’s ecosystems will respond to global climate change. CO2 is considered to be 

the most prevalent greenhouse gas, and the build up of CO2 causes global climate change. 

11, The desire to maintain sustainable development has led to an increasing interest in 

society for biofuels and the conversion of renewable biomass resources to liquid fuels.12  

 Biofuels are biomass-based components for transport fuels, which are an 

interesting sustainable option for the transport sector. Unlike the combustion of fossil 

fuels which releases CO2 that was captured several hundred million years ago, CO2 

released by during the utilization of a biomass based fuel is balanced by CO2 captured in 

the recent growth of the biomass, resulting in far less net impact on greenhouse gas 

levels.13 (Figure 1) Since biomass utilization can be considered as a closed carbon cycle, 

the production and usage of biofuels is expected to reduce the net CO2 emission 

significantly.14 
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Broken cycleClosed cycle

FossilsBiomass

http://www.baff.info/english/  
(2004)  

Figure 1. Carbon cycle for utilizing fuels from biomass - and fossils based production. 
 

 Until recently, the need for biofuels remained generally a low priority, as 

petroleum supply and demand curves were satisfactorily addressed.12 Nonetheless, global 

petroleum demands have increased steadily from 56.2 x 106 barrels/day in 1975 to 85.9 x 

106 barrels/day in 2007.15 The impact of this growth in demand, and limited global 

production capacity has been foretold by several organizations and individuals.1,16 

Coupled with these concerns, the contribution of combustion CO2 from fossil fuels to 

climate change has been noted in several recent reviews.17,18 The relationship between the 

greenhouse gas emission produced by human activity and the increase of their average 

saturation levels in the atmosphere is obvious. Figure 2 depicts the changes in the 

atmospheric CO2 levels and the fossil fuel carbon emission through the last millennia.19,20 

 



 7

 

250

270

290

310

330

350

370

390

1000 1200 1400 1600 1800 2000

Year

A
tm

o
s

p
h

e
ri

c
 C

O
2 

(p
p

m
v

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

F
o

s
s

il 
fu

e
l c

a
rb

o
n

 e
m

is
s

io
n

 (
M

M
T

) 

Atm. level Global emission
 

 
Figure 2. Changes in the atmospheric CO2 levels and the anthropogenic fossil fuel 

related carbon emission through the last millennia. 
 

 As described by Hoffert et al., future reductions in the ecological footprint of 

energy generation will reside in multi-faceted approach that includes the use of hydrogen, 

wind, nuclear, solar power, and fossil fuels (from which carbon is sequestered) and 

biofuels.21 In addition to the need to develop novel green technologies to reduce our 

carbon emission in the future, existing green and low impact energy generation 

technologies should be implemented in existing industrial practices. A review by Pacala 

and Socolov shed light on a portfolio of existing technologies capable of meeting the 

world's energy needs over the next 50 years and of limiting atmospheric CO2 to a 

trajectory that avoids a doubling of the preindustrial concentration.22 By upgrading 

current industrial practices while implementing already existing green technologies at an 

industrial scale or increasing the amount and quality of implementation in industry, it is 

proposed that over the next fifty years the atmospheric CO2 concentration can be limited 

on 500±50 ppm to prevent most damaging climate change.22 



 8

 In the short term, the market-place and societal concerns suggest that biofuels are 

one of the most attractive solutions for our transportation energy needs. Given that ~70% 

of United States’ petroleum consumption is transportation related and that ~25% is for 

materials, it is clear that efficient production of biofuels and biomaterials will become 

one of this generation’s greatest challenges. 23 

 

2.2 Problem Statement 

 The global primary energy production was 460 quadrillion British thermal unit 

(BTU) in 2005 wherein fossil fuels accounted for 86% of all energy produced 

worldwide.15 In 2007 the world crude oil production totaled 74 million barrels per day, 

and by 2025 projected economic growth is anticipated to increase global demands for 

liquid fuels by another 50%.24 The impact of this growth in demand and the dwindling 

supply of our geological reserves has led to an increased interest in renewable 

resources.12 To be able to fulfill a sustainable and environmentally friendly method to 

cover our increasing energy requirements, there is a need for a new renewable carbon 

resource.  

 In 2008, 62.1% of the United States’ petroleum consumption is covered by 

imports, which cost 354 billion dollars.24 Thus, besides the obvious environmental 

benefits, the use of renewable raw materials to replace fossil fuels will have tremendous 

economic benefits, including the reduction of the crude oil dependency25, trade deficit 

reduction26and the development of a strong biomass industry which will lead to the 

creation of jobs and the strengthening of agricultural markets.27  
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 Biomass is an abundant resource with an annual global production rate of 170 x 

109 metric tons.28 Even though biomass is the oldest known renewable resource and has 

been used ever since man learned how to make fire, it currently contributes only 3.6% of 

the United States’ primary energy supplies.24 There is a wide variety of industrial29,30, 

agricultural31,32,33,34, and communal35 resources available, which could provide suitable 

raw material for biofuel production. These potential renewable resources mentioned 

above are summarized under Section 2.3. 

 To be able to cover our global energy needs, the chosen renewable resources must 

have high energy content, be available in high volumes and be easily accessible at a low 

cost. Without the fulfillment of these four requirements the economical viability of the 

proposed renewable resource is questionable.1 

 

2.3 Potential Renewable Resources 

 In nature, energy is mainly stored in the form of carbohydrates or hydrocarbons. 

As an abundant bio-renewable resource, carbohydrates can be found as; cellulose, 

hemicellulose and starch. Hydrocarbons are found as; fatty acids and triglycerides. 

Carbohydrates are easily accessible in the form of lignocellulosic materials whereas 

hydrocarbons are in the form of plant vegetable oils and animal fats.  

 Utilizing changes in agricultural and forest land use with existing novel 

techniques and with the future implementation of promising -but currently lab-scale 

industrial methods-- the estimated amount of biomass sustainably removable from forest 

lands is 368 million dry tons and from agricultural lands is close to 1 billion dry tons 
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annually in the United States.36 Figure 3 and Figure 4 summarizes the potential forest and 

agricultural reserves in the United States. 

 

Figure 3. Summary of potentially available forest resources in the United States. 
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Figure 4. Summary of potentially available agriculture resources in the United States. 
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2.3.1 Lignocelluloses 

 Lignocellulosic materials are one of the world’s largest renewable biochemical 

resources with 77 x 109 metric tons annual biosynthesis rate which may be available for 

large scale biofuel production.37 Lignocellulosic materials could provide a rich 

sustainable feedstock for several biorefinery technologies.1 Wood, or in general 

lignocellulosic material, contains cellulose, hemicellulose, lignin and extractives. The 

term “holocellulose” is often used to describe the total carbohydrate contained in a plant 

or microbial cell. Holocellulose is therefore comprised of cellulose and hemicellulose. 

Table 1 summarizes the typical distribution of major chemical constituents for several 

dominant wood resources.38,39,40,41 

 

Table 1. Mayor chemical constituents of different softwood and hardwood species. 
 
 Wood Macromoleculesa 
Wood Species Cellulose (%) Lignin (%) Hemicelluloses (%) 
Softwoods    
Picea glauca 41 27 31 
Abies balsamea 42 29 27 
Pinus strobes 41 29 27 
Tsuga canadensis 41 33 23 
Norway spruce 46 28 25 
Loblolly pine 39 31 25 
Thuja occidentalis 41 31 26 
Hardwoods      
Eucalyptus globulus 45 19 35 
Acer rubrum 45 24 29 
Ulmus americana 51 24 23 
Populus tremuloides 48 21 27 
Betula papyrifera 42 19 38 
Fagus grandifolia 45 22 29 
aall samples were analyzed extractives free 
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 These three biopolymers are not just individual units in a plant cell wall but are 

intimately interrelated. Lignin-carbohydrate complexes (LCC) in wood have been 

extensively investigated and have been shown to be associated with hemicelluloses.42,43 

Figure 5 provides a schematic illustration of the integration of lignin, hemicellulose and 

cellulose at the cell wall level. 44,45,46 

 

 

 
 

Figure 5. Schematic of plant cell wall utilization of lignin, hemicellulose and cellulose. 
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2.3.1.1 Cellulose 

 Cellulose is the most abundant biopolymer on Earth with a 100 x 109 metric tons 

annual biosynthesis rate.1 It is the predominant polysaccharide in wood which is a 

homopolymer of (14)-linked -D-glucopyranosyl units with a degree of polymerization 

(DP) ranging from a couple of hundred up to several thousand. Table 2 summarizes the 

number of polymer units in different cellulose containing materials.47,48,49,50,51 

 

Table 2. Degree of polymerization (DP) in different cellulose containing materials. 
 

Material DP 
Native form 

Algae 20.000 
Cotton (unprocessed)  15.000 
Loblolly pine (SW) 12000 
Jack pine (SW) 10.300 
Aspen (HW) 7900 
Corn stover  7000 
Eucalyptus (HW) 6000 
Poplar (HW) 5500 
Wheat straw 4000 
Bacterial cellulose 2000-5000 

Manmade 
Cotton (processed)  2000 
Kraft pulp (Unbleached) 1600 
Kraft pulp (Bleached) 1300 
Sulfite pulp (Bleached) 1255 
Raylon 305 

 
 

 In their native form, the glucopyranose units in the cellulose chain are in their 

thermodynamically most stable chair form with the -CH2OH and -OH groups in 

equatorial position; only ~2% is in other forms.52 Due to the cellulose highly organized 

structure, in its native form it reaches a relatively high-degree of crystallinity averaging 

50-70% (see Figure 6).53 
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Figure 6. Cellobioside building unit in the cellulose polymer. 
 

 Cellulose can exhibit several different supra-molecular structures, including 

amphorous, para-crystalline and crystalline.54,55 Native cellulose has been shown to be 

composed of two different crystalline forms, referred to as Iα and Iβ.
 56,57,58,59,60  Cellulose 

Iα is dominant in bacterial and algal cellulose. Iβ crystalline form is dominant in higher 

plants such as cotton, ramie and wood.  

 Studies by Iversen and Larsson have proposed the occurrence of a para-crystalline 

component in cellulose which is less ordered than crystalline Iα and Iβ allomorphs, but 

more ordered than amorphous domains.61,62 These differences in crystalline packing 

forces and order have a broad impact on a variety of chemical63,64 and enzymatic 

reactions with cellulose that can effect possible future industrial applications. Table 3 

summarizes the relative amounts of crystallinity and para-crystallinity in different 

cellulose containing materials and the effect of a chemical or a mechanical treatment in 

its relative abundance.65 
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Table 3. The relative amounts (%) of different cellulose forms estimated from solid-state 
cross-polarization/magic angle spinning 13C nuclear magnetic resonance spectra. 

 

Material 
Cristalline 
cellulose I. 

Para-crystalline Accessible fibril 
surface 

Native form 
Valonia (Algae) 81.0 12.0 nd 
Cladophora (Algae) 63 17.4 0.7 
Birch wood (HW) 3.8 19.1 4.3 

Manmade 
Birch pulp (Kraft) 7.1 33.3 1.6 
Birch pulp (hydrolysed* 24 h) 31.9 25.6 6.6 
Cladophora (hydrolysed* 4h) 75.4 7.4 1.7 
Cladophora (milled 10** min) 27.6 26.1 4.3 
*  2.5 M HCl at 100°C. 
** Ball milled. 

 
 

2.3.1.2 Hemicelluloses 

 The major hemicelluloses in softwoods are galactoglucomannans, and 

arbinoglucuronoxylan and minor amounts of arabinogalactan, xyloglucan and other 

glucans. The predominant hemicelluloses for hardwoods are glucomannan and 

glucuronoxylan with lesser amounts of galactans and glucans.  

 Hardwood glucuronoxylan and softwood arabinoglucuronoxylan both have a 

backbone of (14)-linked -D-xylopyranosyl units, but exhibit differences in branching 

and substitution patterns. In the former, the C2-OH and C3-OH are partially acetylated 

(i.e., 3.5 – 7.0 acetyl groups/10 xylose) and are lesser amounts of (12)-linked pyranoid 

4-O-methyl--D-glucuronic acid units. For softwoods, the xylan polymer is not 

acetylated and typically is branched with (12)-linked pyranoid 4-O-methyl--D-

glucuronic acid and (13)-linked -L-arabinofuranosyl units with an arabinose:uronic 

acid:xylose ratio of 1:2:8. 
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 Galactoglucomannan is far more important than arabinoglucuronoxylan to the 

hemicellulose chemistry of softwoods contributing 15-20% of the dry wood mass. This 

polysaccharide is comprised of (14)-linked β-D-glucopyranosyl and D-

mannopyranosyl units that are partially acetylated at the C2-OH and C3-OH and partly 

substituted by (16)-linked -D-galactopyranosyl units. Softwoods generally have two 

different types of galactoglucomannans: one being highly branched with a 1:1:3 ratio of 

galactose:glucose:mannose and another that is less branched with a 0.1:1:3 ratio 

galactose:glucose:mannose. In hardwoods, the glucomannan polymer has little or no 

branching with a typical glucose:mannose ratio of 1:1.5.66 
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Figure 7. Representative plant hemicelluloses, I:galactoglucomannans and II: 
arabinoglucoronoxylan 

 

 A series of publications by Willfoer et al. have provided one of the most 

definitive analyses of carbohydrates present in industrially important wood resources.67,68 

Representative data from this study are summarized in Table 4 The hemicellulose 
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content, the main heteropolysaccharides and their degree of polymerization (DP) is 

summarized in Table 5 in case of hardwoods (HW) and softwood (SW).69,70 

 

Table 4. Relative distribution of hemicellulose sugars in select wood resources. 
 
Wood 
Species* 

Ara Xyl Gal Glc Man Rha GlcA GalA 4-O-
MeGlcA

Total**

% 
Softwood 
Picea abies 
sapwood 0.14 0.61 0.17 0.37 1.00 0.02 0.03 0.16 0.10 24.6 
heartwood 0.17 0.69 0.28 0.35 1.00 0.03 0.04 0.20 0.12 24.9 
Pinus banksiana 
sapwood 0.18 0.57 0.18 0.40 1.00 0.02 0.05 0.13 0.10 27.2 
heartwood 0.22 0.75 0.37 0.43 1.00 0.03 0.06 0.17 0.14 29.3 
Hardwood 
Betula Pendula 
stemwood 0.02 1.00 0.06 0.08 0.04 0.02 0.01 0.10 0.16 33.6% 
Populus tremuloides 
sapwood 0.03 1.00 0.04 0.11 0.05 0.03 0.01 0.12 0.13 29.1 
heartwood 0.03 1.00 0.04 0.12 0.09 0.03 0.01 0.12 0.13 28.8 
*    Salmen and Olsson 1998; Ebringerova et. al 2005. 
**  mass sugar units/mass dry wood. 

 
 

Table 5. Relative amount (%), distribution and degree of polymerization of major 
hemicelluloses in case of different softwood and hardwood species. 

 

Material 
Hemicellulose 

content 
Degree of 

polymerization 
Softwood   
Loblolly pine 15.3 --- 
Black Spruce 17.4 --- 
Galactogucomannan ~20 40-100 
Gluconoxylan 5-10 50-185 
Hardwood   
Birch  33 --- 
Gluconoxylan 15-30 ~200 
Gluconomannan 2-5 ~70 
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2.3.1.3 Lignin 

 Of the three major biopolymers that constitute wood, lignin is distinctly different 

from the other macromolecular polymers. Lignin is one of the most complex natural 

polymers in regards its chemical structure and composition. It is formed by oxidative 

coupling of 4-hydroxyphenylpropanoids (monolignols) that differ in their degree of 

methoxylation.71 Figure 8 depicts the three phenyl propane precursors of lignin and the 

carbon numbering in lignin. Because of its chemical composition, lignin is hydrophobic 

and acts like a coating around the cellulose fibrils. After cellulose, lignin is the second 

most abundant biopolymer on earth. Biosphere has an estimated 300 x 109 metric tons of 

lignin with a 20 x 109 metric tons annual biosynthesis rate.9  
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Figure 8. The three building blocks of lignin. 
 

 This polyphenolic polymer is synthesized by enzymatic dehydrogenative 

polymerization of 4-hydroxyphenyl propanoid units.72 Figure 9 depicts the radical 

resonance structures of coniferyl alcohol after dehydrogenated by peroxidase.73 
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Figure 9. Radical resonance structures of coniferyl alcohol after dehydrogenated by 
peroxidase. 

 

 There are two main theories on lignin biosynthesis: one belief is that the assembly 

of lignin is controlled biochemically by dirigent proteins, while the other is that after the 

enzymes dehydrogenate the monoligols to radicals, they randomly couple each other and 

the growing lignin polymer.74,75 The dominant linkages in softwood lignin are depicted in 

Figure 10. As an example, Figure 11 and Figure 12 show the mechanism for the 

formation of two predominant linkages in lignins: the oxidative coupling of 4-

hydroxyphenylpropanoid units to form β-O-4 ether isomers and dibenzodioxocin 

respectively.76 
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Figure 11. The formation of β-O-4 ether isomers in lignin. 
 



 21

MeO

OH

O

OMe

OMe

O

B

MG
* or MS

*

(monoligol radical)

G-(5-5)-G

radical coupling

(B-O-4)

MeO

OH

O

OMe

OMe

O

OH

quinone methide
(intermediate)

internal trapping

MeO

O

O

OMe

OMe

OH

OH

Dibenzodioxocin

HO

 
 

Figure 12. The formation of dibenzodioxocin units in lignin. 
 

 In a recent publication by Laurence et al. numerous facts for the proposed model 

of absolute structural control versus sole random chemical coupling were reviewed.77 

Biosynthesis of lignin based on random coupling would not result in completely irregular 

lignin as various positions of the radicals have different reactivity and the supply of 

monomers is well controlled.78 The phenylpropanoids are linked to each other by various 

ether and carbon-carbon inter unit linkages creating a three-dimensional highly cross-

linked polymer. The dominant linkages and the abundance of some of the functional 

groups found in softwood lignin are summarized in Table 6 and Table 7 respectively.79 

The schematic representation of a proposed softwood lignin structure is depicted in 

Figure 13.3 
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Table 6. Proportions of different types of linkages connecting the phenylpropane units in 

softwood lignin. 
 

Linkage type 
 

Dimer structure Approximate 
percentage 

β-O-4 Phenylpropane β-aryl ether 45-50 
α-O-4 Phenylpropane α-aryl ether 6-8 
β-5 Phenylcoumaran 9-12 
5-5 Biphenyl and dibenzodioxocin 18-25 
4-O-5 Diaryl ether 4-8 
β-1 1,2-Diaryl propane 7-10 
β-β β-β-Linked structures 3 

 

 

Table 7. Functional groups in softwood lignin (per 100 C9 units). 
 

Functional Group Softwood Lignin 
Methoxyl 92-97 
Phenolic hydroxyl 15-30 
Benzyl alcohol 30-40 
Carbonyl 10-15 
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Figure 13 Example for structure of native softwood lignin. 
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 Current review by Argyropoulos et al. suggested that most likely the lower limit 

for the DP for native softwood lignin is approximately 60 yielding a molecular weight 

(MW) of ~11.000, while the higher limit is 90 -100 phenyl propanoid units.80 Table 8 

summarizes several commercially available technical lignin resources and their measured 

MW with different analytical methods.81,82,83 

 

Table 8. Molecular weight of technical lignin samples with different analytical methods. 
 

Raw material 
 

Lignin extraction 
method 

Analytical 
method 

Mw Mn Mw/Mn 

Mixed softwood Kraft lignin SEC 9735 2755 3.5 
Bagasse Soda pulping SEC 8481 2684 3.2 
Mixed hardwood Sulfite pulping SEC 4317 2173 2.0 
Mixed hardwood Organosolv SEC 3959 511 7.7 
Aspen Steam explosion SEC 22876 2977 7.7 
Spruce Dioxane extracted SEC 3800 --- --- 
Spruce Dioxane extracted VPO --- 2400 --- 
Spruce Dioxane extracted ESI-MS 2500 --- --- 
Spruce Oxygen-organosolv SEC 3700 --- --- 
Spruce Oxygen-organosolv VPO --- 1700 --- 
Spruce Oxygen-organosolv ESI-MS 1900 --- --- 
Eucalyptus Dioxane extracted VPO  2150 --- 
Eucalyptus Dioxane extracted ESI-MS 2400 --- --- 
Eucalyptus Kraft lignin VPO --- 650 --- 
Eucalyptus Kraft lignin ESI-MS 800 --- --- 
Loblolly pine MWL GPC 13500 7590 1.8 
Loblolly pine OS-MWL GPC 16800 6530 2.6 
Loblolly pine EOL GPC 2440 1191 1.7 
Mixed Softwood LignoBoost (pH 9.5)* SEC 2979 1795 1.7 
Mixed Softwood LignoBoost (pH 10.5)** SEC 2939 1694 1.7 

  *    BL pH lowered to 9.5 during LignoBoost lignin precipitation. 
  **  BL pH lowered to 10.5 during LignoBoost lignin precipitation. 
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2.3.2 Triglycerides and Fatty Acids 

 Triglycerides and fatty acids are starting feed stocks for the biodiesel production. 

The method widely used to produce biodiesel is transterification which involves 

triglycerides from vegetable oils or animal fats and an alcohol in the presence of a 

catalyst, yielding glycerol and the corresponding alkyl fatty ester. Figure 14 shows the 

structure of a typical triglyceride, a saturated and an unsaturated fatty acid.84 
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Figure 14. (a) Chemical structure of an unsaturated fat triglyceride, where substituting 

fatty acids from top to bottom: palmitic acid, cis-oleic acid and trans-oleic acid. (b) 
Common fatty acids in oil crops used for biodiesel production. 
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 As shown in Figure 14, triglycerides are basically esterified glycerol with three 

fatty acids. Fat in food as well in body fat exists in the form of triglycerides, making it the 

main constituent of vegetable oil and animal fats. Today’s multi-feedstock facilities can 

produce high quality biodiesel by utilizing fats from various origins.85 Depending on the 

source, biodiesel feedstocks can be categorized into three groups: pure plant oil (PPO), 

waste vegetable oil (WVO) and animal fat. 86 These various feedstocks and their main 

properties will be reviewed.  

 

2.3.2.1 Pure Plant Oil 

 Since the chain length of the fatty acids in naturally occurring triglycerides can 

vary in length, most natural fats contain a complex mixture of individual triglycerides. 

Depending on the specie utilized, the difference in chemical composition can result in 

changes in a wide variety of physical behaviors (i.e. viscosity, melting point) which can 

affect the reaction conditions used through the biodiesel production and also the 

properties of the final biodiesel product. Table 9 shows the fatty acid composition of 

some major pure plant oils.87  
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Table 9. The fatty acid profiles of various pure plant oils (PPO). 
 

PPO 12:0* 14:0* 16:0* 18:0* 18:1* 18:2* 18:3* 20:0* 20:1* 22:1*
Soybean trace trace 6-10 2-5 20-30 50-60 5-11    

Hi oleic 
rapeseed 

  4.3 1.3 59.9 21.1 13.2    

Hi erucic 
rapeseed 

  3.0 0.8 13.1 14.1 9.7 7.4  50.7 

Corn  1-2 8-12 2-5 19-49 34-62 trace    

Palm trace 1.0 42.8 4.5 40.5 10.1 0.2    

Peanut   8-9 2-3 50-65 20-30     

Olive   9-10 2-3 73-84 10-12 trace    

Cottonseed  0-2 20-25 1-2 23-35 40-50 trace    

Coconut 46.5 19.2 9.8 3.0 6.9 2.2     

Linseed oil   4-7 2-4 25-40 35-40 25-60    

Tung oil   3-4 0-1 4-15  75-90    

    *  Fatty acids designated (carbon chain length : unsaturation) i. e; (18:1) stands for Oleic acid. 
 

 

 Virgin oil feedstock, rapeseed and soybean oils are most commonly used. 

Soybean oil alone accounts for about ninety percent of all fuel stocks in the United 

States.84 At the same time, the positive attributes of PPO need to be balanced against the 

limited global production of plant oils since the production of vegetable oils for use as 

fuels is limited by the agricultural capacity of a given economy. 

 It is important to note that soybeans are also a food resource thus; from the 

soybeans used to produce biodiesel, 81% of the soybean’s yield is protein that enters the 

market for either human consumption or animal feed.85 Due to these production 

limitations, there is a constant search for next generation technologies that may address 

these problems by technological advances and/or increase soybean yields from existing 

acreage.88 
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2.3.2.2 Waste Vegetable Oil 

 In contrast to PPO, WVO is a byproduct of other industries thus; its prospects for 

use as fuel are limited by the capacities of other industries. Since the available supply is 

drastically less than the amount of petroleum-based fuel that is burned for transportation 

and home heating, this local solution does not scale well.85  

 In 2001, the United States was producing in excess of 2.9 billion U.S. gallons of 

waste vegetable oil annually, primarily from industrial deep fryers in potato processing 

plants, snack food factories and fast food restaurants.89 It is proposed that if all 2.9 billion 

gallons could be collected and used to replace the energetically equivalent amount of 

petroleum, almost 1% of US oil consumption could be offset. Since the use of waste 

vegetable oil as a fuel competes with some other uses of the commodity, this can have a 

negative effect on its price as a fuel; and as an input, it may increases its cost of other 

uses as well. Yellow grease is distinct from brown grease; as yellow grease is typically 

used-frying oils from deep fryers, whereas brown grease is sourced from grease 

interceptors. Table 10 shows the representative fatty acid composition of yellow and 

brown grease feasible for biodiesel production.90 

 

Table 10. The fatty acid profiles of various animal fats. 
 

Feedstock 14:0* 16:0* 18:0* 18:1* 18:2* 18:3* 20:0* 22:1*
Yellow grease 1.3 17.3 12.4 54.7 8.0 0.7 0.3 0.5 
Brown grease 1 24 10 50 15    

         *  Fatty acid designated (carbon chain length : unsaturation) i. e; (18:1) stands for Oleic acid. 
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2.3.2.3 Animal Fats 

 Animal fats used as a feedstock for the biodiesel industry include the white 

greases such as tallow, lard, chicken fat and fish oils.85 Animal fats usually are by-

products of the meat industry. Although it would not be efficient to raise animals simply 

for their fat, utilizing product streams for biodiesel production that would otherwise be 

discarded, adds value to the livestock industry. Currently, even multi-feedstock biodiesel 

facilities can produce biodiesel from a wide variety of feedstocks, all the biodiesel 

produced from animal fats could only replace a small percentage of the petroleum diesel 

usage. Table 11 shows the fatty acid composition of some animal fat based feedstock 

proposed for biodiesel production.87 

 

Table 11. The fatty acid profiles of various animal fats. 
 

Animal fat 14:0* 16:0* 18:0* 18:1* 18:2* 18:3* 20:0* 22:1*
Lard 1-2 28-30 12-18 40-50 7-13 0-1   
Chicken 0-1 26-33 7-10 32-36 16-21 0-1 1-2 0-1 
Tallow 3-6 24-32 20-25 37-43 2-3    

          *  Fatty acid designated (carbon chain length : unsaturation) i. e; (18:1) stands for Oleic acid. 
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2.4 Current major biofuels 

 The interest and development of biofuels has grown exponentially over the last 

few years in response to the need to develop sustainable energy resources and to address 

climate change.1 Currently the two major biofuels available on the market are bioethanol 

and biodiesel. Henry Ford and Rudolph Diesel are well known for their contribution to 

the industrial revolution and modern automotive history. What is frequently over-looked 

is that they both envisaged, at one time, that their engines would be powered by biofuels, 

such as bioethanol and peanut oil, respectively.91,92 Bioethanol currently contributes ~7% 

to the total U.S. transportation fuels mix and another ~1.3% is based on biodiesel.24,93 

Currently, bioethanol and biodiesel are the most successful fossil fuel supplements. The 

absolute annual biodiesel potential of the U.S. is estimated to be 3.2 billion gallons.36 The 

current biodiesel production capacity in the U.S. is 400 million gallons and is projected to 

double within the next two years.1 Although this is less than the current bioethanol 

production, recent research efforts in algae-oil production could significantly change this 

outlook.84 To make a substantial contribution to this nation’s energy portfolio, biofuels 

production needs to grow substantially over the next decade by a factor 10 or more. 

  In December, 2007, the U.S. government signed comprehensive energy 

legislation, the Energy Independence and Security Act, into law which amends the 

renewable fuel standards and sets a goal to increase U.S. production up to 36 billion 

gallons by 2022.94 The positive economic impact of reaching this goal is proposed to add 

$1.7 trillion to the gross domestic products, generate an additional $436 billion to U.S. 

household income and $209 billion in federal tax receipts while creating 1.1 million new 
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jobs in all sectors of the economy between now and 2022.93 Beside the obvious economic 

benefits, renewable fuels are also offering environmental benefits by reducing the 

greenhouse gas emission and increase the energy security of the nation by reducing 

dependence on foreign oil.1 Figure 15 depicts the annual biofuel production in the U.S. 

from 1981 and the projected growth based on the renewable fuels act. 
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Figure 15. The annual U.S biofuel production from 1981; starch based first generation 

bioethanol (blue), cellulosic second generation bioethanol (green), biodiesel and 
undifferentiated advanced biofuels (brown) and the projected USA growth according to 

the Renewable Fuels Act* up to 2022 (pink). 
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2.4.1 Bioethanol 

2.4.1.1 Starch Based Bioethanol 

 Current interest in bioethanol mainly lies in first generation bioethanol wherein 

ethanol is produced from starch or sugar found in a wide variety agricultural crops by 

fermentation.1 First generation bioethanol production today is most often based on grains 

such as wheat, barley, corn or sugar cane. 95 During the last decade advances in 

biotechnology have reduced the cost of the first generation bioethanol by nearly 25%.24 

However, the economy and technology of fuel-ethanol production is strongly linked to 

the locally available raw material.  

 The first step of the bioethanol production is the conversion of the starting 

biomass resource to a feedstock for fermentation, i.e. some form of fermentable sugar. In 

case of the first generation bioethanol production, the process involves a biomass 

feedstock that already contains free fermentable sugars. Sugarcane in Brazil or sugar 

beets in France are examples of biomass containing substantial amounts of directly 

fermentable sugars, in the mentioned cases sucralose.95 In most plant materials, however, 

sugars are found in the form of polysaccharides such as starch cellulose or hemicellulose. 

These polymer molecules must first be processed to liberate the sugar monomers for 

fermentation.  

 The ethanol production of the U.S. is based almost entirely on the degradation of 

starch from corn.24 Processing starch to yield free sugars is a well-established process 

with the usage of enzymes, like α-amylases, glucoamylases and glucose isomerases.96 

The change in the U.S. ethanol production capacity through the last decade is shown in 

Figure 16. 
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Figure 16. The annual U.S starch based fuel ethanol production from 1981 to 2008.* 
 

 In 2004, 3.41 Bgal of starch ethanol fuel were produced from 1.26 billion bushels 

of corn by 81 ethanol plant, utilizing 11% of all corn grain harvested in the U.S.93 By the 

end of 2005, with the completion of 16 additional plants, the production increased to 4.4 

Bgal. Although the capacity more than doubled between 2000 to 2004 and later almost 

doubled again from 2004 to 2008, ethanol only satisfied less than 8% of the U.S. 

transportation-energy demand in 2009.24 

 In the U.S., ethanol is processed in a corn wet or in a corn dry mill.97 Corn wet 

mills fractionate the corn grain for oil and germ before converting the starch to 

fermentable sugars or for other valuable food products such as maltodextrins or high-
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fructose corn syrup. The corn fiber by-product is ususlly sold for animal feed. In corn dry 

mills, the grain is first ground, then broken into sugars--monomers by enzymes--before 

fermentation. Unlike in the wet mill, the grain is not fractionated thus, the only by-

product is the remaining solids which are a highly nutritious protein source and used in 

livestock feed. 

 With the modern first generation bioethanol processes utilized in the U.S., a 

bushel of corn yields about 2.5 gal ethanol from wet-mill processing and about 2.8 gal 

from dry grind.98 Some 75% of corn ethanol production is from dry mill facilities and 

25% from wet mills. 

 It has been debated considerably about how useful bioethanol will be in replacing 

fossil fuels in vehicles utilizing feedstocks from potential food resources. Beside 

concerns related to the large amount of arable land required for crops, the energy and 

pollution balance of the whole cycle of ethanol production is also debated. Recent 

developments with cellulosic ethanol production and commercialization may allay some 

of these concerns. 

 

2.4.1.2 Cellulosic Ethanol 

 Cellulosic ethanol is considered the second generation bioethanol.97 Compared to 

the first generation bioethanol which utilizes free fermentable sugars and starch which are 

a potential food resource, the second generation bioethanol is produced from non-food 

carbohydrates such as cellulose and hemicellulose. The process of making alcohol from 

lignocellulosic biomass, in principle, is relatively simple: after hydrolysis and a 

subsequent fermentation, the ethanol can be refined by distillation (see Figure 17).99  
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http://www.baff.info/english/  
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Figure 17. Cellulosic fuel ethanol production using dilute acid hydrolysis and its closed 
carbon cycle. 

 

2.4.1.2.1 Conversion of Lignocellulosic Biomass to Fermentable Sugar Solution 

 Bioethanol is made by fermentation, which implies the need for a fermentable 

resource for the microorganism. There are basically three techniques available for the 

conversion of the sugar content in lignocellulosic biomass into fermentable sugar 

solution. These are the one-step acid hydrolysis, the two steps dilute acid hydrolysis and 

the enzymatic hydrolysis.100 
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 An important drawback of the acid hydrolysis is that in addition to the sugars, 

several by-products are formed or released during the hydrolysis process. The most 

important by-products are inhibitors such as furans, carboxylic acids and phenolic 

compounds.101,102 When hemicellulose depolymerized, xylose, mannose, acetic acid, 

galactose and glucose are liberated. The degradation product of cellulose is glucose. At 

high temperature and pressure, xylose and other pentoses can be further degraded to 

furfural. Similarly, the hexose degradation leads to the formation of 5-hydroxymethyl 

furfural (HMF). These two furan derivates can, in turn, react further. HMF can be broken 

down to formic acid and levulinic acid, while furfural can be further degraded to formic 

acid or it can polymerize. Furthermore, partial breakdown of lignin can generate phenolic 

compounds. The nature, composition and concentration of these compounds are 

dependent on the hydrolysis conditions and have a profound influence on the production 

rate of biofuels from the hydrolyzate.103,104 Table 12 summarizes the main compounds 

and their concentration in a hydrolyzate produced by two steps dilute acid hydrolysis 

from Spruce. 
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Table 12. Compounds determined in a Spruce hydrolyzate produced by two steps dilute 
acid hydrolysis for bioethanol fermentation. 

 
Group of compounds Compounds** Concentration [g/L]
Sugars   
 Glucose 25.7 
 Mannose 6.5 
 Galactose 3.7 
 Xylose 3.5 
 Cellobiose 0.7 
 Arabinose 0.6 
Furan derivatives   
 5-Hydroxy-methyl-furfural 5.9 
 Furfural 1.0 
Aliphatic acids   
 Levulinic acid 2.6 
 Acetic acid 2.4 
 Formic acid 1.6 
Phenolic compounds   
 Vanilin 0.12 
 Dihydroconiferylalcohol 0.098 
 Coniferyl aldehyde 0.035 
 Vanillic acid 0.034 
 Hydroquinone 0.017 
 Catechol 0.009 
 Acetoguaiacone 0.007 
 Homovanillic acid 0.005 
 4-Hydroxy-benzoic acid 0.005 
Hibbert’s ketones   
 G*-CHOHCOCH3 0.048 
 G*-COCOCH3 0.029 
 G*-CH2COCH2OH 0.028 
 G*-COCHOHCH3 0.025 
 G*-CH2COCH3 0.016 

         *     G*, Guaiacyl = 4-hydroxy-3-methoxyphenyl. 
         **   Produced with residence time, 7 min; reaction temperature, 222°C; and 0.5% sulfuric acid (w/w). 
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 There are several strategies for reducing the negative effects of the inhibitors in 

the hydrolyzate. First, the hydrolysis conditions can be optimized not only with respect to 

maximum sugar yields but also to low inhibitor formation.104 Detoxification prior to 

fermentation is another option. If the natures of the inhibitors are known, a detoxification 

method can be chosen for a particular type of hydrolyzate such as alkali, sulfite, 

evaporation, anion exchange or enzymatic treatments.105,106  

 Genetic engineering of the fermenting micro-organism is a third possibility.107 As 

a fourth option, one may select specific strains of micro-organisms based on evolutionary 

changes--after adaptation of the micro-organism to inhibitory hydrolyzate.108 Alternative 

fermentation strategies, such as fed-batch techniques also could be employed to decrease 

the effect of the inhibitors.109 

 

2.4.1.2.2 The Fermentation Stage 

 After the hydrolysis, the produced sugar solution undergoes a subsequent 

fermentation step and the biofuel can be later refined. For bioethanol production the 

widely used microorganisms that are able to ferment sugars to ethanol can be either 

yeasts or bacteria.110 The production yield is obviously a crucial role in determining the 

feasibility of a large-scale industrial production, thus all of the available sugars in the 

hydrolyzate must be converted to ethanol. For a long time, microbiologists thought that 

many of the sugars contained in biomass were unfermentable. Over the past decades, new 

methods in molecular biology, protein chemistry and genetic engineering have led to an 

increasing number of new strains, exhibiting improved characteristics to ferment the full 

spectrum of sugars available in hydrolyzates.111,112,113  
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 To be able to decrease the production cost of biofuels and make it competitive 

with gasoline, there is a great need for enhanced glucohydrolysis, pretreatments and 

fermentation technologies. When enzymatic hydrolysis is used, depending on the 

connection between the hydrolysis and the subsequent fermentation step, four different 

fermentation strategies can be distinguished. 

 

SHF (Separated Hydrolysis and Fermentation) 

 In this process the hydrolysis and the fermentation goes in two separated reactors. 

With this technology, optimal reaction circumstances can be set for the enzymatic 

hydrolysis, and for the fermentation. The drawback of this system is the high capital cost 

derived by the two reactors.114 

 

SSF (Simultaneous Saccharification and Fermentation) 

 This approach involves enzymatic hydrolysis and the ethanol production from the 

synthesized sugar which goes in the same reactor. By the SSF, a higher yield can be 

achieved compared to the SHF; but, the reaction time is longer because of the different 

temperature optimum of the hydrolysis and fermentation. The SSF fermentation runs 

approximately 50°C, thus thermo tolerant yeast strains are required for this technique.115  
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Biostil:  

 Biostil is a continuous ethanol production system by fermentation which is an 

SHF with a distillation stage.116  

 

DMC (Direct Microbial Conversion) 

 In this process enzymes are produced by the same microbe that is involved with 

the fermentation. The enzyme production, the cellulose hydrolysis and the fermentation 

go in the same reactor. By the available technology with this fermentation strategy the 

yields are still low and the byproducts formation is substantial. It is proposed that by the 

usage of genetic modification, compatible fermentation yields could be achieved with 

DMC.117 

 

2.4.1.3 Corn Ethanol vs. Cellulosic Ethanol 

 Both corn-derived ethanol and cellulosic ethanol are renewable liquid 

transportation fuels that can be readily integrated with petroleum based fuels and their 

infrastructure. This provides a strong incentive for the development of innovative new 

bioethanol technologies. This existing infrastructure and capability suggest that once a 

practical/profitable bioethanol-related technology is developed, the technology could be 

quickly implemented. The deciding factor of its success on the marketplace will be the 

benefits to the nation’s economic growth and to the quality of the environment. 
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 Beside its biorenewable nature, the attractiveness of bioethanol as a potential 

substance for replacement of conventional fossil fuel lies on its low net carbon dioxide 

release compared to that of burning fossil fuels.97 Unfortunately, when the whole biofuel 

production cycle is analyzed, it is noted that several process steps still require the 

utilization of energy provided from fossil origins.118 Even if energy corps requires energy 

inputs for production, processing and transportation, a future successful bioethanol 

industry must have a substantial positive energy balance. This balance has been described 

by the fossil energy-replacement ratio (FER), which compares the energy yielded from 

the source with the amount of energy from fossil fuels used to produce it. Figure 18 

compares the FER in case of four energy sources.119 

 

Projected

Current

F
o

s
s

il
E

n
e

rg
y

R
a

ti
o

Cellulosic
Ethanol

Biorefinery

Corn
Ethanol

Gasoline Electricity

0

1

10.3

2

9

11

10

0.81

1.36

0.45

 
 

Figure 18. Comparison of energy yields with energy expenditures.  
(Fossil energy-replacement ratio = Energy delivered / Fossil energy used) 
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 Figure 18 shows the main benefit of using a second generation bioethanol over 

the first generation bioethanol; that is to say, bioethanol derived from lignocellulosic 

resources has a much higher FER ratio than when corn starch is used. It is also shown 

that the FER ratios in case of the biomass derived fuels are higher than both conventional 

energy resources, demonstrating their better sustainability. In addition to time, a mature 

bioenergy economy will substitute biomass-derived energy sources for fossil fuel, further 

reducing its net emissions.120 Even ethanol derived from lignocellulosic biomass has a 

higher FER ratio and can be produced cost competitively with the market price of corn-

starch ethanol; the economical competitiveness with gasoline still remains an issue. 

 

2.4.2 Biodiesel 

 Although bioethanol represents the predominant first generation biofuel, biodiesel 

continues to garner regional support and in the U.S. it represents approximately 6.5% of 

the biofuels market.121 Despite this limited market share, biodiesel has several strong 

attributes which suggest that its usage will continue to grow in the future. Attractive 

properties of biodiesel include ease of incorporation into existing fuels distribution 

systems, ready utilization in modern diesel combustion engines, growing demand and 

favourable exhaust emission profiles.86 

 Unfortunately these positive attributes need to be balanced against the limited 

global production of plant oils and animal renderings needed to propel growth in this 

industry. Table 13 summarizes the proposed main biodiesel feedstocks and their 

produced annual amounts for potential biodiesel production in the U.S. by 2016.122 
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Table 13. Projected biodiesel feedstocks and their proposed annual production in the 
U.S. by 2016. 

 
Feedstock * Resource U.S. Potential 

[million gallons]***
PPO Refined vegetable oil 1700 
 Natural expansion of feedstocks by 2016 1800 
 Corn oil from ethanol production ** 750 
WVO Recycled restaurant oil (yellow grease) 380 
 Recycled trap grease (brown grease) 525 
Animal fats (white grease) 300 

Total feedstocks for biodiesel production by 2016 5455 
         *      Pure plant oil (PPO), Waste vegetable oil (WVO). 
         **    Based on proposed U.S. ethanol production by 2015. 
         ***  Calculated as biodiesel equivalent volume from feedstock weight. 
 
 

 As summarized in Table 13, the prospective available feedstock for biodiesel 

production will be over 5 billion gallons--which is almost 10% of the 60 billion gallon 

diesel marketplace.123 In contrast the U.S. produced only 500 million gallons of biodiesel 

in 2007, less than 1% of the diesel pool.88 Table 14 summarizes the available oil crops, 

their typical oil yield and cultivation area needed to cover 50% of the U.S transportation 

oil needs.124 

 

Table 14. Comparison of several available oil corps for biodiesel production to meet 50% 
of the United States’ transportation oil needs. 

 
Crop Oil yield 

[L/ha] 
Land area needed 

[M ha] 
Percent of existing 

U.S. cropping area*
Corn 172 1540 846 
Soybean 446 594 326 
Canola 1190 223 122 
Jatropha 1892 140 77 
Coconut 2689 99 54 
Oil palm 5950 45 24 
Microalgae** 58.700 4.5 2.5 
Microalgae*** 136.900 2 1.1 
*      For meeting 50% of all transport fuel needs of the United States. 
**    30% oil (by wt) in biomass. 
***  70% oil (by wt) in biomass. 
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 Table 14 demonstrates that even in the case of a high-yielding oil crop such as oil 

palm, 24% of the total U.S. cropland will need to be devoted to its cultivation to meet 

only 50% of the U.S. transportation oil needs. This data clearly shows that oil crops 

cannot scientifically contribute to replacing fossil fuels in the near future. One of the 

most promising next generation of technologies that may address current production 

limitations is the development of algae energy farms for the efficient production 

triglycerides for biodiesel. Regardless of source, the conversion of triglycerides to 

biodiesel involves a transesterification step as shown in Figure 19. 

 

 

Figure 19. Transesterification reaction for biodiesel production R1-4 are hydrocarbon 
groups. 

 

 The transesterification step is required to impart favourable fuel properties as 

direct use of plant oils with conventional diesel engines results in; coking and trumpet 

formation on the fuel injectors, carbon deposits, gelling of lubricating engine oil and 

incomplete combustion.125 Transesterification of triglycerides, as shown in Figure 19, has 

been shown to mitigate these problems yielding a valuable, renewable biofuel resource. 

Many alcohols have been used in this reaction and influence final biodiesel properties; 

the most commonly employed alcohol used commercially is methanol.126,127 Table 15 

shows the change in melting point and cetane number of fatty acids and their methyl 

esters. 
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Table 15. Formula, molecular weight and properties of fatty acids and their methyl 
esters. 

 
Fatty acid 
Methyl ester 

Formula Acronym Molecular 
weight 

Melting point 
[°C] 

Cetane 
number 

 

Palmitic acid 
Methyl palmitate 
 

 
C16H32O2

C17H34O2

 
C16:0 

 
256.4 
270.5 

 
63-64 
30.5 

 
--- 
74.5 

 

Stearic acid 
Methyl stearate 
 

 
C18H36O2

C19H38O2

 
C18:0 

 
184.5 
198.5 

 
70 
39 

 
--- 
86.9 

 

Oleic acid 
Methyl oleate 
 

 
C18H34O2

C19H36O2

 
C18:1 

 
282.5 
296.5 

 
16 
-20 

 
--- 
47.2-55 

 

Linoleic acid 
Methyl linoleate 
 

 
C18H32O2

C19H34O2

 
C18:2 

 
280.5 
294.5 

 
-5 
-35 

 
--- 
28.5-42.2 

 

Linolenic acid 
Methyl linolenate 
 

 
C18H30O2

C19H32O2

 
C18:3 

 
278.4 
292.5 

 
-11 
-52/-57 

 
--- 
20.6-22.7 

 
 

 The data in Table 15 indicates that the two important properties of fatty 

compounds of fuel vary with the chain of the fatty acid or ester. Cetane number of the 

methyl ester increases with increasing chain length and increasing saturation. Melting 

point also rises with augmenting chain length and increasing saturation. Therefore, the 

fatty acid profile is the major factor influencing the fuel properties of a biodiesel fuel; 

analytical methods for its determination are of great significance.87,89  

 Although commonly manufactured from natural gas, gasification of biomass in 

the future could yield a bio-based source of methanol.128 A host of catalysts and 

conditions have been used to accomplish the transesterification step including assorted 

acids, bases, enzymes and physical treatments.129,130 The base- and acid-catalyzed 
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transesterification reaction conditions are summarized in Table 16, and their reaction 

mechanism is depicted in Figure 20 and in Figure 21.87 

 

Table 16. Reaction conditions for general base- and acid-catalysed transesterification 
conditions for biodiesel production. 

 
Catalyst Homogeneous 

catalysts 
Heterogeneous 

catalysts 
Alcohol/TriGly 

[mol/mol] 
Catalyst/Oil 

[wt. %] 
Reaction 

rate 
 

Base 
NaOH, KOH, 

NaOMe, 
KOMe, Na, 

NaH 

Metal oxides, 
ion exchange 
resins, fixed 

bed 

 
6 : 1 

 
0.3-1.5 

 
Fast 

 
Acid 

H2SO4, HCl, 
H3PO4, ion 
exchange 
catalyst 

 
--- 

 
10-40 : 1 

 
5-25 

100 
times 
slower 

than base
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Figure 20. Reaction mechanism for base-catalyzed transesterification during biodiesel 
production. Where B is a base and R1-4 are hydrocarbon groups. 
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Figure 21. Reaction mechanism for acid-catalyzed transesterification during biodiesel 
production. Where R1-3 are hydrocarbon groups. 

 

 Mono-alkyl esters and glycerin are the main products of the catalytic 

transesterification step. Glycerin is denser than the mono-alkyl esters and can be gravity-

separated with the use of a settling vessel. After the glycerin is separated, the supernatant 

is washed with water to remove contaminants. The wash water is heavier than the mono-

alkyl esters and during the washing sequence it absorbs contaminants, such as excess 

methanol, catalyst, soap, free and partial glycerols.131 A common biodiesel production 

sequence utilizes several washing cycles to lower the concentration of process 

containments before the methanol recovery.86 (Figure 22) 
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Figure 22 Outline of a commercial biodiesel production line. 

 
 
 After the washing sequence, the mono-alkyl ester stream enters into a subsequent 

alcohol recovery stage, where the remaining excess alcohol is removed through 

distillation and recycled for reuse. After the washing sequence and the alcohol recovery, 

the purified product is the desired biodiesel. To carry the designation “biodiesel fuel” the 

final purified fatty acid ester product must meet specifications set by the latest American 

(ASTM D 6751-08) and European (DIN EN 14214) standards.132,133 To meet these 

standards, a common biodiesel production line utilizes downstream alcohol recovery and 

biodiesel purification steps to reach a low contamination level in the final product.134 
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Table 17. The American and European specifications for pure biodiesel (B100) prior to 
use or blending with diesel fuel. 

 
Property ASTM D 6751-08 

limit 
DIN EN 14214 

limit 
Unit 

Acid Number maximum 50 maximum 50 mgKOH/g 
Calcium and magnesium 5 --- ppm 
Carbon residue maximum 0.050 maximum 0.3 wt% 
Cetane number minimum 47 minimum 51 No. 
Cloud point report report °C 
Cold soak filterability maximum 360 maximum 360 sec 
Copper strip corrosion maximum 3 Class 1 No./Rating 
Density --- 860 - 900 Kg m3 -1 

Distillation - Atmospheric 
equivalent temperature 
90% recovery 

 
maximum 360 

 
--- 

 
°C 

Flash point minimum 130 minimum 101 °C 
Glycerin – Free maximum 0.020 maximum 0.02 wt% 
Monoglyceride --- maximum 0.80 wt% 
Diglyceride --- maximum 0.20 wt% 
Triglyceride --- maximum 0.20 wt% 
Glycerin – Total maximum 0.240 maximum 0.25 wt% 
Iodine value --- 120 unit 
Kinematic viscosity - 40°C 1.9 – 6.0 1.9 – 6.0 mm2 sec-1 

Linolenic acid methyl ester --- 12 wt% 
Methanol content maximum 0.20 maximum 0.20 wt% 
Oxidation stability minimum 3 minimum 6 hours 
Phosphorus content 10 10 ppm 
Polyunsaturated (>4 double 
bonds) methyl esters 

--- maximum 1.00 wt% 

Sodium and potassium maximum 5 maximum 5 ppm 
Sulfated ash maximum 0.02 maximum 0.02 wt% 
Sulfur (S15) maximum 15.0 --- ppm 
Sulfur (S500) maximum 500 --- ppm 
Total contamination --- maximum 24.0 ppm 
Viscosity 40°C --- 3.50 – 5.00 mm2 

Water content --- maximum 500 ppm 
Water and sediment maximum 0.050 maximum 0.050 Vol.% 
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 After transesterification, the separated glycerin phase is contaminated with 

alcohol, unused catalyst, soaps, free and partial glycerols.135 In a commercial process the 

stream undergoes a subsequent neutralization step. (Figure 22) If a base is used as 

catalyst during the transesterification step, the separated glycerin phase is neutralized 

with an acid. After neutralization, commercial crude glycerin is produced by removing 

the water and alcohol in a subsequent distillation step.  

 For several industries, such as food, personal care, pharmaceutical and petrol, 

glycerol is utilized as a starting material or an additive, adding to the market value of this 

by-product and to the economical aspect of the transesterification process.136 After the 

methanol recovery, the produced glycerol stream has an 80-88 wt% glycerin content and 

can be sold as a crude glycerin or can be further purified up to 98+ wt% to be sold as 

refined glycerol.137 The refined glycerol has a higher market value and can be used 

directly. It also has the potential to be used as a starting material to convert it into other 

value added products, such as polyesters, nylons or valuable intermediates like propylene 

glycol or 1,3-propanediol by the chemical or the pharmaceutical industry.138 

 

2.5 Integrating Biofuel and Pulp production 

 As outlined in the U.S.D.A.-D.O.E. ‘Billion Ton’ report, United States’ 

agriculture and forestry reserves have the potential to address about a third of the current 

petroleum demand.139 Shifting societal dependency from petroleum resources to 

renewable biomass resources have been proposed to have several positive ramifications, 

including enhanced national security, improved balance of trade, rural employment 

opportunities, and environmental performance parameters along with net reductions in 
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CO2 emissions. Although the contribution of agro crops for biofuels production has been 

scrupulously examined, the potential for the forest products industry to contribute to this 

effort is frequently over-looked.140  

 Forest ecosystems constitute the world’s largest accessible source of biomass that 

may be available for biofuel production in large scale.1 The forest and agriculture 

industry can support renewable raw materials for the production of alternative biofuels. 

Lignocellulosic materials are the richest, yet one of the cheapest natural renewable 

resources in the world.141 Table 18 summarizes the cost of some typical major 

lignocellulosic bioresources together with currently used and promising future energy 

corps suitable for biofuel production. 142,143,144  

 

Table 18. Cost of typical industrial bioresources and new generation lignocellulosic 
energy corps in the US, 2008. 

 
Lignocellulosic bioresource Cost ($/ton) 
Timber*  
Southern pine (SW) 40 
Spruce and Douglas Fir (SW) 20 
Oak (red, white, black) (HW) 37 
  
Current agricultural energy corps  
Corn 281 
Soybean 213 
  
New generation energy corps**  
Switch grass, Corn stover 35-45 
Hybrid poplar, Eucalyptus 40-50 

           *   Calculated as; standard cord is 1.4 SW or 1.6 HW short tons. 
           ** Calculated farm-gate value for economical feasibility with existing technologies. 
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 In 2002, North American pulp manufacturers produced approximately 62 million 

tons of paper and paperboard from 61 million tons of softwood pulpwood and 44 million 

tons of hardwood pulpwood.145 The forest products industry is one of the few nationally 

based industries that have the necessary skill set and infrastructure available to collect 

sufficient biomass for the rapid development and commercialization of 

biofuel/biochemical technologies within the next 5-10 years.146  

 

2.5.1 Current Pulp Manufacturing Technologies 

 Prior to any pulping operations, wood needs to be debarked and in most cases 

chipped. The bark and waste wood are burned in a furnace to capture its energy value, 

which generated 316 trillion BTU in the U.S. in 2002.147 After debarking and chipping, 

wood samples are typically processed into pulp by one of two competing technologies.  

 In short, the wood can be defiberlated mechanically into mechanical pulp with 

90+% yields which thereby utilize all three of the major wood biopolymers148, or by 

chemical pulping which utilizes NaOH and NaSH (i.e., kraft pulping reagents) to 

delignifing wood. A typical U.S. kraft pulp mill will manufacture 350,000 tons of air-

dried pulp/year which requires approximately 630,000 tons of wood. Typical kraft 

pulping conditions for bleach pulp grades are summarized in Table 19 and changes in 

wood fiber composition during kraft pulping are summarized in Table 20.149  
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Table 19. Softwood and hardwood kraft pulping conditions.2,150,151 
 

 Softwood Hardwood 
Active alkali on dry wood 17 - 21 % 14 – 18 % 
Liquor sulfidity (Na2S) 25 % 25 % 
Max. cooking temperature/ oC 170  170  
Total cooking time/min 112 - 174 63 – 95 
Kraft cook completed at lignin 
content 

 
5 % 

 
2 % 

   
Yield 48 – 43 49 – 47 

 

 
Table 20. Typical wood chemical distribution for wood before and after kraft pulping.152 
 

Component Wood Components  Kraft Pulp Components 
       Pine              Birch                     Pine                Birch 

As a % of Original Wood 
Cellulose 38 – 40 40 – 41  35 34 
Glucomannan 15 - 20 2 - 5   5 1 
Xylan 7 - 10 25 – 30  5 16 
Other carbohydrates 0 - 5 0 – 4  - - 
Lignin 27 - 29 20 – 22  2 – 5 1.5 – 3 
Extraneous compounds 4 - 6 2 - 4  0.25 < 0.5 
 
 

 The delignification during the kraft cooking cycle proceeds in three distinct 

phases. Figure 23 depicts the three phases, the lignin content and reaction time in the case 

of a conventional SW kraft pulping.152 
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Figure 23. Lignin content (% on wood) vs. reaction time for conventional softwood kraft 
pulping. 

 

 The first phase of kraft pulping is commonly refereed to as the initial phase. In 

case of a conventional kraft pulping process, this occurs during the first 20-25 minutes of 

the cooking at temperatures of 150°C and under. The initial phase is mainly controlled by 

diffusion and the ~30% of the original lignin is removed from the chips during this time. 

The second phase of kraft pulping is called the bulk phase. In case of a conventional kraft 

pulping process, it stands for the cooking times between 25-100 minutes at temperatures 

150-170°C. Most of the lignin is removed in this phase and it is controlled by chemical 

reactions rather than by diffusion. The last phase of kraft pulping is called the final or 

residual phase. In this phase the rate of delignification significantly decreases; begins 

when ~90% of the lignin has been removed and marks the end of the cooking. 

 During kraft pulping, lignin degradation reactions that are desirable lead to the 

liberation of lignin fragments and enhance their dissolution. The two main degradation 

reactions during kraft pulping involve the cleavage of α-aryl ether bonds and β-aryl ether 
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bonds. The reactivity of such linkages depends on its activation energy and the type of 

moiety present relative to the propane side chain.153 At lower cooking temperatures 

during the initial phase, α-aryl ether linkages are cleaved by the conversion of the 

phenolate unit into the corresponding quinone methide (QM) intermediate. Initial phase 

lignin chemistry is depicted in Figure 24. 
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Figure 24. Kraft pulping; Initial phase lignin chemistry. 
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 The first two steps involve an alkali assisted rearrangements, where the phenolate 

unit is converted into the QM intermediate if a suitable leaving group is present in the α-

carbon. At optimal cooking conditions, the reaction proceeds by an addition of a 

hydrosulfide anion which yields a benzyl mercaptide structure. The mercaptide anion 

subsequently forms a thriirane intermediate by a nucleophilic attack on the β-carbon. The 

elimination of the β-aryloxy group leads to further fragmentation. Higher temperatures 

and increased alkali concentrations during the initial phase can lead to an undesired 

alternative chemical route. With the elimination of the terminal hydroxymethyl group as 

formaldehyde, the QM intermediate can be converted to alkali-stable enol ether and 

inhibit the polymer from further fragmentation.154 

 During the bulk phase, through a nucleophilic attack of an ionized hydroxyl group 

present on α or γ-carbon, will lead to the cleavage of β-aryl ether linkages in nonphenolic 

units. During fragmentation, the forming β-aryloxy fragment will convert into the 

corresponding QM intermediate regenerating initial phase molecules. Figure 25 

summarizes the cleavage of a β-aryl ether linkage by an ionized hydroxyl from the α-

carbon during bulk phase cooking conditions. 
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Figure 25. Kraft pulping; Bulk phase lignin chemistry. 155,156 
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 During chemical pulping, lignin is chemically degraded and extracted from wood 

in aqueous environment, removing 85-93% of the lignin and approximately 56-71% of 

the hemicelluloses. The dissolved lignin and carbohydrates are discarded in a form of a 

caustic side stream--black liquor. Currently, this material is burned in a low efficiency 

Thompson recovery furnace to recover energy and cooking chemicals. For further 

delignification to remove the residual lignin in the delignified pulp, it can undergo 

subsequent bleaching sequences to reach the desired lignin content for the production of 

pulp, paper and paperboard.157  

 

2.5.2 Future Prospects for Pulp Manufacturing and Bioresources for Biorefinery 

 After the Kraft pulping cycle, the BL and the described valuable chemicals in it 

are burned in a low efficiency Thompson recovery furnace to recover energy and cooking 

chemicals. Although the recovery furnace has been refined through generations, it 

remains the single largest capital investment in a kraft pulp mill and is not amendable to 

incremental increases in production. Hence, for several pulp mills the capacity of the 

recovery furnace dedicates the pulp mill’s production capacity. A continuing interest in 

this field is the desire to recover fractions of carbohydrates and/or lignin from the Kraft 

cooking liquors for biopower, biochemical and biomaterial utilization. 
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2.5.2.1 Carbohydrates 

 The loss of select wood polysaccharides during kraft pulping is a natural outcome 

of kraft pulping conditions. As summarized in Table 20, kraft pulping of softwood pulps 

leads to an extensive removal of glucomannans,158 and for hardwoods a loss of xylans.159 

During kraft pulping, these extracted hemicelluloses are degraded into low-value 

isosaccharinic acids.160,161 The sugars and lignin extracted during kraft pulping162 are 

subsequently concentrated and incinerated in a recovery furnace. The heating values of 

several major components in BL are summarized in Table 21.163 

 

Table 21. Heating values for some components in black liquor. 
 
 

                                         *  TDS: Total dissolved solids. 
 
 

 Table 21 shows that the heating value of kraft BL (i.e. the amount of heat released 

during combustion) varies on the wood species being pulped. If the heating values 

summarized in Table 21 are combined with the chemical composition of the BL, it can be 

calculated that the extracted hemicelluloses only provides ~25% of energy resources for a 

recovery furnace. Since the bulk of the energy is derived from the combustion of lignin, 

the carbohydrate fraction in the BL is an under-utilized renewable resource during the 

energy recovery.164,165  

Component Heating value 
[kJ/kg TDS*] 

Softwood lignin 26.900 
Hardwood lignin 25.100 
Carbohydrates 13.600 
Resins, fatty acids 37.700 
Sodium sulphide 13.900 
Sodium thiosulphate   5.800 
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2.5.2.2 Lignin Structures Recovered After Kraft Cooking 

 After the kraft pulping, the lignin is separated into two fractions: the dissolved 

lignin that is discarded with the BL and the residual lignin that remains in the pulp. The 

lignin content of a typical conventionally-produced kraft pulp is in the range of 4-5%.153 

Pulping to lower lignin contents under these conditions causes a severe degradation to the 

carbohydrate fraction resulting in a pulp with poor papermaking qualities. The reasons 

for the poor selectivity of kraft pulping have been the subject of much debate. One reason 

given is that the structure of the residual lignin that remains in the fiber at the end of the 

cook has a low reactivity towards the pulping chemicals, making its fragmentation and 

dissolution difficult.166,167,168 Alternatively, it has been proposed that dissolution is 

hindered by attachment of the residual lignin to carbohydrates forming lignin-

carbohydrate complexes (LCC).169,170  

 After the chemical pulping, the chemically-degraded soluble lignin fraction is 

extracted from wood providing the dissolved lignin in the BL, while the insoluble and/or 

condensed lignin fraction in the pulp fraction provides the residual lignin. The molecular 

composition of the residual and dissolved lignin after kraft cooking are depicted in Table 

22.171  
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Table 22. Number of functional groups per 100 carbon atoms in spruce mill wood lignin 
(MWL) and in the residual and dissolved lignin after a Kraft cook (kappa# 30.5). 

 
Type of Carbon MWL Residual lignin Dissolved lignin

Carbonyl 0.8 - 0.3 
Carboxyl - 2.1 1.5 
Olefinic + Substituted 
Aromatic C 

39 54 39 

Aliphatic CHX-OR 23.6 9.5 10.1 
Methoxyl 11.2 9.1 8.9 
Aliphatic CHX 4.9 10.4 16.0 

 
 

 There are three categories of reactions that are believed to occur during kraft 

delignification: 1) degradation reactions that liberate lignin fragments and enhance 

solubility, 2) condensation reactions in which lignin fragments recombine to form alkali 

stable linkages, and 3) other reactions in which no net fragmentation occurs but alkali 

stable structures--like LCC, stilbenes and vinyl ethers--are formed, making additional 

fragmentation difficult.172 The increased olefinic and substituted aromatic functional 

groups in the residual lignin compared to MWL in Table 22 are due to condensation 

reactions, while the decreased methoxyl content after kraft cooking is due to the 

nucleophilic attack and cleavage of the methoxyl moietes by hydroxyl anions.171 These 

various reactions and their significance concerning the structural features of residual and 

dissolved lignins will be reviewed.  
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2.5.2.2.1 Degradation Reactions 

 The type of lignin reactions that occur during kraft pulping can be classified as 

degradation and condensation reactions. Degradation reactions are desirable, since they 

lead to lignin fragmentation and enhancement in solubility in aqueous media. The two 

main degradation mechanisms, the initial phase- and the bulk phase delignification 

mechanism, are depicted in section: 2.5.1 Current Pulp Manufacturing Technologies. 

 

2.5.2.2.2 Condensation Reactions 

 In contrast to the degradation reactions, condensation reactions lead to the 

formation of alkali-stable linkages and are, therefore, less desirable during 

delignification. During the initial phase the hydrogen sulfide and sodium hydroxide 

anions have to compete with the lignin nucleophiles for QM intermediates. Figure 26 

illustrates the proposed competitive addition of external nucleophile and an internal 

nucleophile with a C5 resonance structure.173 
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Figure 26. Competitive addition of external and internal nucleophiles to quinone methide 
intermediates. 

 

 Since the addition of the nucleophile to the QM is reversible, the competition is 

not only depending on the nucleophicity of the species, but also the product undergoing 

an irreversible reaction. In case of a good leaving group on the β-carbon (aryl ether) the 

cleavage of the β-aryl ether will predominate over condensation reactions.174 During 

condensation reactions, the QM acts as an acceptor and the phenolate ion acts as the 

nucleophile. The addition of the nucleophile is followed by abstraction of a proton and 

rearomatization. The forming C-C bond in the condensation product is alkali stable, 

survives the cook and either ends up in the residual lignin or lowers the solubility of a 

dissolved lignin by increasing its aromatic character and DP.  
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 Figure 26 depicts the competitive addition of an internal nucleophile with a C5 (#5 

carbon on the aromatic ring) resonance structure. An additional route for condensation 

reactions involving an internal nucleophile is the alkali-promoted condensation reaction. 

As shown in Figure 24, higher temperatures and increased alkali concentrations during 

the initial phase can lead to an undesired, alternative chemical route involving the 

formation of formaldehyde with the elimination of the terminal hydroxymethyl group. 

The forming formaldehyde with two QM intermediates can form alkali stable C-C bond 

in the condensation product that survives the cook and ends up in the residual lignin.175 

The condensation reaction involving two phenolic ions and formaldehyde has been drawn 

schematically in Figure 27. 
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Figure 27. Alkali-promoted condensation reaction of phenolic units.  

R: are H or aroxyl groups. 
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2.5.2.2.3 Lignin Carbohydrate Complexes 

 Both the residual lignin and the dissolved lignin contain LCC. While it believed to 

be present in the native wood, it mainly forms during the kraft cooking cycle.176,177 There 

are several different linkage types between lignin and carbohydrate and they can be 

generalized as either being alkali sensitive or alkali stable.178  

 The alkali sensitive linkages are cleaved under the harsh alkali conditions of the 

kraft cook. The formation of an alkali sensitive phenolic LCC linkage is depicted in 

Figure 28.  
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Figure 28. Formation of lignin carbohydrate complex (LCC) under Kraft pulping 
conditions. (phenolic) 
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 Figure 28 shows the reaction between carbohydrate and a phenolic lignin 

fragment during the initial phase. Phenolic LCC formation can happen after the first two 

steps in the initial phase delignification, when, after the cleavage of the α -aryl ether and 

the rearrangements to the QM intermediate, instead of an addition of a hydrosulfide anion 

yielding a benzyl mercaptide structure, a carbohydrate hydroxyl attacks the α –carbon to 

form the LCC. Due to the free phenolic hydroxyl, the formed structure is alkali sensitive 

and not stable under kraft cooking conditions. 

 The alkali stable linkages that survive the kraft cook, have been suggested to be 

present in kraft pulps and have been proposed to contribute to the difficulty in removing 

lignin at the end of the kraft cook. 179 The formation of an alkali stable non-phenolic LCC 

linkage is depicted in Figure 29.  
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Figure 29. Formation of lignin carbohydrate complexes (LCC) under Kraft pulping 
conditions. (non-phenolic) 
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 Figure 29 summarizes the reaction between a carbohydrate and a non-phenolic 

lignin fragment under the bulk phase. Non-phenolic LCC formation can happen after the 

second step in the bulk phase delignification, after the nucleophilic attack of an ionized 

hydroxyl group present on α or γ-carbon lead to the cleavage of β-aryl ether linkages. For 

LCC formation, instead of the addition of a hydroxyl anion depicted in bulk phase 

delignification, the other hydroxyl group becomes ionized also and forms an epoxy 

linkage either between the α-β or β-γ carbons. When the highly reactive epoxy linkage is 

attacked by a carbohydrate hydroxyl group, it ties the lignin fragment to cellulose or 

hemicellulose. The LCC formed with non-penolic lignin fragments are alkali stable and 

difficult to remove.  

 

2.5.3 Promising Lignin Conversion Methods 

 The distinct difference between the chemical and physical properties of lignin and 

fossil fuels mainly result from their higher oxygen content and the difference in their 

carbon chain length.180 Previous attempts to decrease the degree of polymerization and/or 

the oxygen content of lignin have involved various transformations, including 

hydrothermal decarboxylation181, pyrolysis182, carbonization183, metal-catalyzed 

decarboxylation184,185,186, metal-catalyzed hydrogenation187, and hydrogenolysis.188 

Examples of these various reactions and their significance concerning the structural 

features of the lignin after conversion will be reviewed. 
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2.5.3.1 Lignin Hydrogenation and Hydrogenolyis 

 During hydrogenolysis, the hydrogen is utilized for the cleavage of C-O inter-

lignin linkages. During hydrogenation, carbon-carbon or a carbon-oxygen double bonds 

is saturated by hydrogen: the H/C ratio is elevated, but depolymerization does not occur. 

Figure 30 depicts the differences between lignin hydrogenation and hydrogenolysis.  

 

a/

b/

MeO

O

OH

OMe

O

MeO

O

OH

OMe

O

/Hydrogenation/

MeO

O

OH

OMe

O

MeO

OH

OMe

O

/Hydrogenolysis/ OH

+ 3H2

+ H2

 

 
Figure 30. Example for hydrogenation (a) and hydrogenolysis (b) of a β-O-4 lignin 

dimer.  
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 Previous lignin hydrogenation studies employed either high temperatures (> 

200ºC) and/or high H2 pressures (>7 MPa), or strong acidic or basic media. Depending on 

the reaction conditions, up to 60-80% conversion of the starting lignin to liquefied 

mixtures was obtained. These mixtures contained hydrogenated products such as o- and 

p-cresol, phenol and p-ethylphenol.189,190,191 The knowledge concerning the chemical 

mechanisms involved in these harsh conditions, the reusability of the catalyst, and 

tailoring the selectivity of the hydrogenation towards specific lignin groups is 

improved.192,193  

 Recent hydrogenation studies with colloidal Ru or mono-, di- and tetra-nuclear 

Ru-Arene complexes as catalyst on milled wood lignin indicate that a 50% decrease in 

DP can be accomplished. However these catalyst systems are designed for the 

hydrogenation of the aromatic ring in the lignin polymer, the decrease in DP during the 

hydrogenation suggests that hydrogenolysis of the biopolymer also happened 

simultaneously.194,195 Table 23 summarizes the extent of aromatic hydrogenation of 

several ruthenium containing catalyst systems on MWL. 

 

Table 23. Extent of aromatic hydrogenation of a mill wood lignin catalyzed by various 
Ru systems. 

 
Ru catalyst system* Ru conc. [mM] Time [h] Conversion (%)
RuCl3.3H2O/3.5 TOA  3.0 24 56.4 
RuCl3.3H2O/3.5 TOA 3.0 96 64.9 
RuCl3.3H2O/7 TOA 1.5 24 33 
    
RuCl3.3H2O/3.5 TOA/TPPMS 1.9 24 21 
RuCl3.3H2O/3.5 TOA/TPPMS 1.9 72 48 
    
Ru2Cl4(C6Me6) 2.2 24 5 
Ru2Cl4(C6Me6)/3 Na2CO3 0.7 72 5 

        *  80 °C under 50 bar in 2:1:1 PrOH:H2O:CH3OCH2CH2OH. 
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 Hydrogenation with phosphine ligand containing ruthenium complexes of carbon-

carbon double bond and/or carbon-oxygen bond containing chemicals has provided 

additional insight on how to tailor the catalytic selectivity towards carbon-oxygen bond 

cleavage over carbon-carbon double bond hydrogenation.196,197 The expectation is that 

selective hydrogenolysis of lignin leads to potential fuel precursors or other value added 

chemicals by oxygen decrement and hydrogen increment and to products with lower 

molecular weight by reductive cleavage of C-O-C bonds.198 Despite the extensive 

research, lignin still has a low commercial value and only combusted as a low grade fuel. 

 

2.5.3.2 Lignin Liquefaction  

 Lignin liquefaction is mainly conducted on high temperatures by flash 

pyrolysis.182 While there are a variety of catalytic and non-catalytic pyrolysis techniques 

for biomass and lignin liquefaction, flash pyrolysis techniques are conducted primarily at 

relatively high temperatures: 300-500°C with a short resident time only ranging between 

1-90 minutes.199 Table 24 summarizes several liquefaction techniques on lignin or lignin 

containing feedstock and their bio-oil yields.200 
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Table 24. Bio-oil yields in case of different lignin and lignocellulosic liquefaction 
techniques with reaction conditions. 

 
Staring material Technique T 

[°C] 
Gas 

/pressure 
Space 
time 
[min] 

Bio-oil 
yield 
[%] 

Pinus insignis, 
 

Fast pyrolysis 
(Zeolite: HZSM-5) 

400 N2/ Atm. 
 

5 64 

Raw pyrolytic bio-oil 
(SW) 

Fast pyrolysis 
(Zeolite: HZSM-5) 

450 Atm. 30 86 

Thio lignin* High pressure 
catalytic hydrogenation 

400-
450 

H2/200 bar 30 80 

Eucalyptus gummifera 
 

Carbonization 400 Sealed 90 52 

* Precipitated from BL with flue gas (CO2) at pH 8.5. 
 
 

 During the catalytic liquefaction of lignin retrieved from BL, it is important that 

the catalyst not be deactivated by sulfur. Since the sulfur content in lignin obtained from 

BL can be as high as 5%, conventional commercial catalyst such as nickel, molybdenum 

and copper can not used.153 Another requirement is that the activity of the catalyst should 

be high enough so that the reaction does not stop at tar formation, which is the first stage 

reaction, but advances to tar decomposition, which is the second stage during 

pyrolysis.201 With recent advances in the control of feedstock, water content, temperature 

ramping and control of the space and time on stream, most of the problems created by 

coke formation can be avoided.202,203  

 Given that novel pyrolysis yields ranging between 60 and 80% and the produced 

biomass pyrolysis oil has heating values between 16-18 MJ kg-1 on dry basis, it is of great 

interest in the valorization of the bio-oils as a fuel or fuel substitutes. However the use of 

crude biomass pyrolysis oil as fuel for diesel engines has several limitations. The oils 

produced by the pyrolysis of biomass, due to the high levels of oxygen, may be highly 

viscous and corrosive, relatively unstable and may exhibit a poor heating value.204 As a 
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low-cost solution that avoids the adaptation and technological modifications of diesel 

engines, these limitations can be partially solved by preparing bio-oil/diesel emulsions. 

 Despite the extensive research on this field, there are still serious limitations such 

as; pH in the range of 2.5-3.4, high corrosiveness and instability.205 Thus, before 

pyrolytic oils can be used as a regular fuel, it is essential to upgrade the crude bio-oil to 

impart favourable fuel properties. There is a wide variety of reaction mechanisms 

published in the field of upgrading of pyrolytic oils and they are essentially involve the 

removal of oxygen. Promising methods for upgrading pyrolytic oils involves reactions, 

such as deoxygenation, decarboxylation and decarbonylation of the oil constituents, as 

well as cracking, oligomerisation, alkylation, isomerisation, cyclisation and 

aromatisation.206,207  

 

2.5.3.3 LignoBoost 

 As mentioned in section 2.5.1 (Current Pulp Manufacturing Technologies), 

today’s modern chemical pulp mills have the potential of producing excess heat and/or 

power. However, the recovery boiler is often the bottleneck in the process due to its high 

investment cost, thus preventing an increase in production. Recently, a green process 

referred to as “LignoBoost” provides a viable separation of lignin from kraft cooking 

liquors by employing carbon-dioxide to precipitate lignin from alkaline 

solutions.208,209,210,211  
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 This process reduces the heat of combustion of the BL before it is burned in the 

recovery boiler by removing a fraction of the lignin in BL thus, the lignin can be exported 

from the process and used in other applications. The application of this process involves 

acidification of an alkaline cooking liquor with CO2, precipitation, filtration and 

washing.212,213,214 Figure 31 shows the schematic diagram of the lignin extraction process 

by LignoBoost. 
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Figure 31. Schematic diagram of the lignin extraction section (LigniBoost) in the 
chemical recovery sytem. 
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 BL contains both organic and inorganic components, with approximately 50% of 

the organic part being lignin.215 The composition of BL obtained from SW is summarized 

in Table 25.216 

 

Table 25. The chemical species in kraft black liquor obtained from North American 
softwood species. 

 
Chemical component Concentration 

[w/w-% dry basis] 
Lignin 30-45 
Hydroxy acids 25-30 
Extractives 3-5 
Acetic acid 5 
Formic acid 3 
Methanol 1 
Suphur 3-5 
Sodium 15-20 

 
 

 One obvious consequence of the extraction of a substantial fraction of lignin is 

that the properties of the BL will change; important properties include viscosity, boiling 

point elevation and heating value.217 Viscosity has a significant influence on heat transfer 

during evaporation, on capacity of the pumps and on size of the droplets in the recovery 

boiler system; however, the reduction in viscosity is only pronounced when lignin-lean 

black liquor (LLBL) at dry contents is above 40%.218 Furthermore, a change in the 

composition of BL affect the interaction of the ions and the water molecules when lignin 

is removed from the liquor; this, in turn, affect the boiling point elevation and, thus, the 

total available temperature difference at a given temperature of live steam and 

condensing water in the evaporators. Since the boiling point elevation of LLBL levels off 

approximately 40% dry contents and above, in contrast to the original BL, the process 
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problem is easily avoidable.219 Table 26 summarizes the dry content before (BL) and 

after (LLBL) the LignoBoost delignification process at different final pHs in case of SW 

and HW BL samples.220  

 

Table 26. Dry content of original black liquor (BL) and lignin-lean black liquor (LLBL) 
utilizing different softwood and hardwood kraft cooking processes for LignoBoost lignin 

precipitation. 
 

Black liquor Dry content 
of BL [%] 

pH of 
BL 

Dry content 
of LLBL [%] 

pH of 
LLBL 

Hardwood 29.7 13.4 25.7 9.2 
Softwood 37.2 13.3 25.7 9.9 
Softwood 31.5 13.1 28.0 9.0 
Softwood 41.0 13.8 34.8 10.1 
Mixed softwood 
and hardwood 

42.3 13.7 35.9 10.0 

 
 

 Study on the precipitated lignin’s polymer structure has shown that it is mainly 

the high molecular lignin that is precipitated from BL during the LignoBoost process.221 

Thus, not only does the liquor LLBL have a lower lignin concentration, but the lignin 

also has a lower molecular weight than that of the liquor BL. The lignin recovered by the 

LignoBoost process has been shown to be a valuable green resource for biopower 

production.222 This method not just enables lignin to be exported in the form of a solid 

biofuel but also gives the opportunity to transform it into materials of higher 

value.223,224,225 
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2.5.4 The Integrated Biorefinery Concept 

 Sustainability is undoubtedly one of the most important cornerstones of energy 

independence, rendering it desirable to utilize all biomaterial in the most efficient manner 

possible. Society’s challenge is not only to develop new green technologies and products, 

but also to help establish commercial practices to become green industrial practices.  

 The forest biorefinery is an evolving vision of wood utilization in an 

environmentally sustainable and economically viable manner to produce biopower, 

biofuels and biomaterials, including paper.1 On an annual basis the U.S pulp and paper 

industry collects and processes 142 x 106 short tons of wood for the production of paper 

products.98 That could be equally employed to produce 14-128 x 106 barrels of fuel oil.226 

As illustrated in Figure 32, a modern pulp and paper mill employs 70% of the 

technologies needed to contribute to a modern biorefinery, which provides a strong 

incentive for the development of innovative biorefinery technologies.227 This existing 

infrastructure and capability suggest that once a practical/profitable wood-based 

biorefining technology is developed, the technology would be quickly implemented in the 

market place. Figure 32 provides an overview of a proposed biorefinery combining the 

currently used pulp mill operations depicted in section 2.5.1 (Current Pulp Manufacturing 

Technologies) with the proposed techniques described in section 2.5.2 (Future Prospects 

for Pulp Manufacturing and Bioresources for Biorefinery) and in section 2.5.3 (Promising 

Lignin Conversion Methods). 
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Figure 32 Overview of proposed biorefinery (broken lines) – pulp mill operations (solid 

lines). 
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CHAPTER 3 

3. EXPERIMENTAL MATERIALS AND PROCEDURES 
 

3.1 Materials 

3.1.1 Chemicals 

 All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

used as received. Solvents were purchased from VWR (West Chester, PA, USA). All 

gases were ultra high purity and purchased from Airgas (Radnor Township, PA, USA). 

For hydrogenation catalysts syntheses, all chemicals used were high purity (>98%). All 

solvents were dry and saturated with ultra high purity (UHP) nitrogen. Dionized water 

(DW) was degassed with UHP nitrogen. Catalyst synthesis and preparation were all 

performed using Schlenk-techniques. Schlenk techniques other air sensitive chemical 

handling methods are depicted in section 3.2.2.1 (Storage and Handling of Air Sensitive 

Chemicals). 

 

3.1.2 Wood samples 

 For studies on ethanol organosolv lignin (EOL), a single Loblolly pine (Pinus 

taeda) tree, visually free of disease and compression wood was obtained from the 

University of Georgia research plot in Baldwin County, GA, USA. The wood was 

manually debarked and chipped using a mechanical chipper. 
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3.1.3 Lignin Samples 

 LignoBoost lignin samples were separated from a commercial soft wood kraft 

pulping liquor and EOL from Loblolly pine (Pinus taeda) chips. Lignin samples are 

prone to degradation by oxidation or UV light. Hence, EOL, industrial black liquor and 

LignoBoost lignin samples are stored at -20ºC, while dried purified lignin samples are 

stored in a light protected desiccator until further use. 

 

3.1.4 Biodiesel Samples 

 Due to the fact that industrial biodiesel samples are not sterile and they are 

mixtures of alcohols, fatty acids, glycerol, mono, and disubstituted glycerides, they are 

prone to biodegradation.187 To acquire an accurate analytical data, it is essential that no 

change happens in the sample composition between the times of sampling till analysis. 

Thus, industrial biodiesel samples were stored in a light protected sample holder at -20ºC 

until analysis. Glycerol samples were obtained from the National Renewable Energy 

Laboratory and the United States Department of Agriculture (Washington, DC, USA), 

industrial process samples were obtained from Piedmont Biofuels (Pittsboro, NC, USA) 

and BDI-BioDiesel International AG (Graz, Austria). 
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3.2 Handling and Safety 

3.2.1 LigniBoost Lignin Characterization Experiment 

 During industrial LignoBoost sample purification the pH of the initial sample is 

adjusted to a value of 6 with aqueous sulfuric acid (2 M) and stirred for 1 h. Depending 

on the industrial process sample, during the pH adjustment the sample is prone to 

substantial gas release. In case of kraft liquor samples, the forming gas mainly contains 

carbon dioxide and hydrogen sulfide. Since hydrogen sulfide is a highly toxic and 

flammable gas, this step has to be done in the fume hood. 

As a last step of the purification, the extracted retentate was dissolved in dioxane:water 

(9:1) solution (1 g L-1). Dioxane combine with atmospheric oxygen on standing to form 

peroxides, hence the used dioxane should be distilled over NaBH4 before solvent 

preparation. Since distillation of p-dioxane concentrates these peroxides appropriate 

precautions should be taken due to the increasing danger. Dioxane distillation should be 

always performed in a fume hood using shield. The distillation should never go dry and 

the apparatus should never leave unattended. The remaining dioxane and NaBH4 should 

be diluted with water (1:1, v/v) and treated as waste. 
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3.2.2 Ethanol Organosolv Lignin Hydrogenolysis Experiment 

3.2.2.1 Storage and Handling of Air Sensitive Chemicals 

 Activated hydrogenation catalysts are extremely sensitive to oxidation hence they 

were stored in an anaerobic glove-box (Figure 33) to avoid any contact with air and 

humidity.  

 

 

Figure 33. Glove-box set for air sensitive chemical storage. 
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 The moisture and oxygen free atmosphere was produced with a HE-493 DRI 

TRAIN (VAC, Hawthorne, CA, USA). The unit replaces the air from the box with dry, 

inert gas that is later continuously cycled through a purifier which removes moisture and 

oxygen contamination. The system maintained an inert atmosphere with less than one 

ppm by volume moisture and oxygen in a hermetically sealed system. Inert atmosphere 

glove box was kept at a higher pressure than the surrounding air, so that any microscopic 

leaks are mostly leaking inert gas out of the box instead of letting air in. 

Chemicals and equipments were moved in and out through a vacuum chamber attached to 

the box. Before moving them into the box, the oxygen and moisture should be removed 

from the atmosphere of the chamber by three vacuum cycles (15 min, 10 min and 5 min) 

pressurized from the box atmosphere between. 

The recirculating gas continuously undergoes moisture and oxygen removal. Due to 

contamination from sources such as: diffusion through the rubber gloves in the glove box, 

insertion of contaminated parts into the glove box or use of make up gas which is not 

completely free of moisture (UHP Nitrogen under 800 psi) or oxygen, the catalyst inside 

the HE-493 DRI TRAIN system must be regenerated every 1-2 months.228 (Figure 34) 
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Figure 34. The side view (A) and the front view (B) of the HE-493 DRI TRAIN unit 

showing the circulation valves (1,2), the regeneration programmer (3), the forming gas 
line (4), the flow meter (5), release valve (6) and the tube for the condensate (7).  

 

 Regeneration is accomplished by isolating the purifier from the glove box by 

closing the circulation valve “1” and “2”. The regeneration process is performed by 

activating the regeneration programmer which is an integral part of the unit “3”, allowing 

an automatic regeneration of the purifier. The purification capability of the catalyst bed is 

regenerated using forming gas (~4% Hydrogen/Nitrogen) “4” at fixed flow rate of one-

third cubic foot per minute “5”. Both the absorbed oxygen and the water are leaving the 
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system in the form of steam. Due to the pressure release and to lead away the condensed 

water, the release valve (6) should be open and the exit hole should be connected with a 

tube (7). However the amount of the condensed water is depending on the amount of the 

absorbed oxygen and water by the catalyst bed, a collection basket is suggested to use. As 

total the regeneration cycle contains; 3 hours heating and purging followed by an 

overnight evacuation/vacuum period. The purifier is then refilled from the glove box by 

first closing the release valve and later opening the circulation outlet valves.228  

 For synthesis and preparation of air sensitive chemicals before hydrogenation runs 

a Schlenk-line was utilized with UHP nitrogen (Figure 35). 

 

 

 
Figure 35. Schlenk-line set up for air sensitive catalyst preparation. 
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3.2.2.2 Pressure Vessels, Hydrogenation 

 Since hydrogenation studies were performed pressurized reactor using high 

temperatures (up to 250°C) and UHP hydrogen gas at pressures (5+ MPa) it is essential to 

use safety cautions. 

Hydrogen poses a number of hazards to human safety, from potential detonations and 

fires when mixed with air to creating a severely deficient supply of oxygen to the body in 

its pure, oxygen-free form. Due to these safety concerns, hydrogenation experiments 

were performed in a fume hood using shield, on-line temperature control, cooling and 

safety gas shut-off valves. (see Figure 36 and Figure 37) 

 

 

Figure 36. Parr 4560 reactor with a Parr 4842 set for hydrogenation. 
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Figure 37. Safety shut-off valve connected to a hydrogen (CGA-350) regulator. 

 

3.2.3 Biodiesel Analysis Experiment 

 Since the exact composition of an industrial process sample is unknown, it is 

essential to use safety cautions such as; lab coat, chemical-resistant gloves and safety 

goggles when these samples are handled or prepared for analysis. 

The used phosphitylating agents; 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 

(TMDP) and 2-chloro-1,3,2-dioxaphospholane (DOP) are highly corrosive, cause burns 

and reacts violently with water. These chemicals should be always used in a fume hood, 

close to a safety shower and an eye wash stations. Use caution and protective equipments 

such as; lab coat, chemical-resistant gloves, safety goggles and if necessary a face shield. 

When used, avoid breathing the dust and the white fume that forms after opening the vial 

and avoid any exposure. In case of a spill, cover it with dry lime or soda ash, pick up and 

keep it in a closed container, and hold for waste disposal. Ventilate the area and wash 

spill site after material pick up is complete. 
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3.3 Experimental Procedures 

3.3.1 Experimental Procedures for LignoBoost Lignin Characterization and 

Pyrolysis 

3.3.1.1 Lignin Separation by LignoBoost 

 Lignin separation from a commercial Scandinavian softwood Kraft pulping liquor 

was accomplished following published methods.229,230 In brief, the kraft cooking liquor 

(BL) was precipitated (P) with pressurized carbon dioxide (CO2) then filtered (F). Two 

different final pH conditions were used for precipitation: 10.5 and 9.5, the obtained 

fractions subsequently get lyophilized and provided unwashed crude samples. (Figure 38) 

 

Figure 38. Precipitation of lignin from black liquor (BL) using LignoBoost technique at 
pH 9,5 and 10,5, and its separation to precipitate (P) and filtrate (F). 
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3.3.1.2 Lignin Purification 

 For detailed structural analysis of the unwashed lignin samples isolated in Section 

3.3.1.1, additional purification was required. The initial LignoBoost samples were diluted 

in DW to 5 wt% solid content. Next EDTA-2Na+ was added to the aqueous solution (5.00 

g L-1) to facilitate metal-ion removal and the pH was adjusted to a value of 6 with 

aqueous sulfuric acid (2 M) and stirred for 1 h at RT. Subsequently, the pH was further 

lowered to a value of 3 facilitating lignin precipitation.231 The resulting samples were 

frozen (-20°C) over night, thawed and filtered through medium sintered glass funnel at 

0°C. Retentates were mixed with pH 3 aqueous sulfuric acid solution up to 5 wt% and the 

filtration process was repeated three times for effective salt removal. All filtrates were 

collected, the solvent was removed under reduced pressure and the remaining solid 

provided the salt fraction. Retentates were air dried, Soxhlet extracted with pentane to 

remove free sulfur and dissolved in p-dioxane:water (9:1) solution (1 g L-1). After 

filtration through a medium sintered glass funnel the solvent was removed under reduced 

pressure. The resulting solid provided purified lignin samples which were stored in a 

freeze dried form at -20°C until analysis. Figure 39 depicts the flow diagram of the lignin 

purification process used. 
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Figure 39 Lignin separation and purification from LignoBoost black liquor precipitate. 
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3.3.1.3 Purified LignoBoost Lignin Pyrolysis 

 The pyrolysis of the different biomass samples was accomplished using a micro-

reactor designed for this study. The temperature for the pyrolysis was maintained at 

400oC, with the biomass residing on the heating element for 2 min. After 2 min, the char 

was removed from the top of the heating element by a sweeping arm fixed to the reactor, 

and another sample was dropped on to the plate. The biomass samples were dropped onto 

the heating plate in 50 mg increments up to 1.2 g. Helium was used as a purge gas and 

also as a means of maintaining an inert environment. The resulting gases were fed to a 

condenser immersed in liquid nitrogen. At the end of the experiment, the condenser was 

allowed to heat back up to room temperature, and the bio-oil samples were collected. 

 

 
 

Figure 40. The experimental lignin pyrolysis setup used for bio-oil production. 
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3.3.2 Experimental Procedures for Ethanol Organosolv Lignin Hydrogenolysis 

3.3.2.1 EOL Extraction 

 EOL was extracted from loblolly pine chips using a modified literature procedure 

of Pan et al.232 In brief, chips were grounded using a Wiley mill with a 4-mesh screen. 

The passing fraction was collected and Soxhlet extracted with 2:1 (v/v) benzene/ethanol 

mixture for 24 h followed by a further extraction with ethanol for 24 h. (Figure 41)  

 

 
 

Figure 41. Soxhlet extractor used for ethanol organosolv lignin preparation. 
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The extractives free wood was air dried in a vacuum oven for (40ºC, 10-30 torr, 24 h) and 

stored at -20ºC. Wood chips (200 g) were mixed with 65% aqueous ethanol solution in a 

1:7 (w/w) wood/liquid ratio in a 4 L stainless steel Parr reactor (Moline, IL, USA). Under 

stirring (150 r min-1) concentrated (96%) H2SO4 was injected to the reaction mixture in a 

1.1:100 (w/w) H2SO4/wood ratio. The mixture was heated (2-4ºC min-1) up to 170ºC and 

cooked for 1 h. After the vessel had cooled to room temperature, the spent liquid phase 

was discarded and the chips were washed three times with hot 65% aqueous ethanol (300 

mL). The ethanol washes were combined and the dissolved lignin was precipitated by 

adding three volumes of DW. The lignin precipitate was filtered and dried in a vacuum 

oven (40ºC, 10-30 torr, 24 h) and stored in a light protected desiccator at room 

temperature (RT) until further use. Using 200 g woodchip per extractions, on average the 

recovery yield was 16 g EOL. (Figure 42) 

 

 
 

Figure 42. Picture of ethanol organosolv lignin from different resources. 
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3.3.2.2 Preparation of the Hydrogenation Catalysts 

 Ru(Cl)2(PPh3)3 was synthesized as previously described by Armit et. al.233 

RhCl(PPh3)3 was synthesized as previously described by J. A. Osborn et. al.234 Co/Mo 

was activated following published methods235,236 from aluminum supported 3.5% CoO 

and 14% MoO3. Ru-PVP was synthesized as previously described by Ning Yan et. al.237 

following the technique of W.Yu et. al238. The dry catalysts were stored in a glove-box 

under dry nitrogen pressure at RT until further use. 

 

3.3.2.3 Hydrogenation 

 Hydrogenation studies were performed in a Parr 4560 reactor with a Parr 4842 

temperature controller (Moline, IL, USA), charged with catalyst (50 mg) and EOL (500 

mg). The closed reactor was purged with nitrogen several times. During the borane/iodine 

catalytic hydrogenation, the catalyst consisted 25 mg sodium borohydride (0.66 mmol) 

and 25 mg iodine (0.20 mmol).239 Using a gas-tight syringe, degassed ethanol (50 mL) 

was introduced under nitrogen pressure and the closed reactor was then purged several 

times with hydrogen under stirring (200 r min-1) at RT. The reaction mixture was then 

pressurized (5 MPa) with 100% hydrogen or with 5 ppm (v/v) hydrogen sulfide/hydrogen 

mixture when Co/Mo was used as a catalyst and heated to the desired temperature (2-4 ºC 

min-1). After stirring for 20 h, the reactor was cooled to room temperature (RT) and 

hydrogen was slowly released in the fume hood. The reaction mixture was introduced 

into a Schlenk-flask under nitrogen pressure and stored at -20°C until further analysis. 
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3.3.3 Experimental Procedures for Biodiesel Analysis 

3.3.3.1 Sample Preparation and Phosphitylation for Preliminary Experiments 

 The potential ability to characterize hydroxyl groups of glycerol-related 

compounds was assessed using DOP and TMDP as the phosphitylating agent. Initial 

studies were conducted primarily with analytical pure compounds to establish a data base 

of chemical shifts and later demonstrate the applicability on a commercial biodiesel and 

glycerol sample. 

 

3.3.3.1.1 Reaction Mixture Preparation and Phosphitylation with DOP 

 A solvent mixture consisting of anhydrous pyridine:deuterated chloroform in 

1.6:1 ratio with ~3.60 mg/mL chromium acetylacetonate as relaxation agent and ~4.00 

mg/mL cyclohexanol as internal standard was prepared and stored at -20ºC until sample 

preparation. For phosphitylation, the biodiesel sample (150 µL) or the glycerol sample 

(10 µL) was mixed with the solvent mixture (500 µL), stirred for several minutes and 

then reacted with DOP (100 µL) at RT and stirred for 1-2 min. The reaction mixture was 

then transferred into an NMR tube and 31P–NMR spectrum was recorded. 

 

3.3.3.1.2 Reaction Mixture Preparation and Phosphitylation with TMDP 

 A solvent mixture consisting of anhydrous pyridine:deuterated chloroform:N,N-

dimethylformide in 1:1.2:1 ratio with ~3.60 mg/mL chromium acetylacetonate as 

relaxation agent and ~4.00 mg/mL cyclohexanol as internal standard was prepared and 

stored at -20ºC until sample preparation. For phosphitylation, the biodiesel sample (150 
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µL) or the glycerol sample (10 µL) was mixed with the solvent mixture (500 µL), stirred 

for several minutes and then reacted with TMDP 100 (µL) at RT and stirred for 1-2 min. 

The reaction mixture was then transferred into an NMR tube and 31P–NMR spectrum was 

recorded. 

 

3.3.3.2 NMR Analysis on Industrial Biodiesel Process Samples 

3.3.3.2.1 NMR Chemical Shift Assignment 

 After the preliminary experiments, to establish a database of 31P-NMR chemical 

shift information on relevant biodiesel precursors, a series of representative samples on 

analytical pure compounds were acquired treated with TMDP and analyzed by 31P-NMR. 

All chemical shifts reported are relative to the product of TMDP with cyclohexanol, 

which has been observed to give a sharp signal at 144.9 ppm. 

 

3.3.3.2.2 Optimized TMDP/31P–NMR Method for Industrial Biodiesel Samples 

 A solvent mixture consisting of anhydrous pyridine:deuterated chloroform:N,N-

dimethylformamide in 1:1.2:1 ratio with ~3.60 mg/mL chromium acetylacetonate 

(Cr(acac)3) as relaxation agent and ~4.00 mg/mL cyclohexanol as internal standard was 

prepared and stored at -20 ºC until sample preparation. For phosphitylation, the industrial 

biodiesel sample (150 µL), industrial glycerol sample (10 µL) or the biodiesel precursor 

(10 mg) was mixed with the solvent mixture (500 µL), stirred for several min and then 

reacted with TMDP (100 µL) at RT and stirred for 1-2 min. The reaction mixture was 

then transferred into an NMR tube and 31P–NMR spectrum was recorded. 
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3.4 Analytical Analysis Procedures 

3.4.1 NMR Spectroscopy for Lignin Studies 

 All NMR analysis on lignin samples were carried out using a 400 MHz DMX 

Bruker spectrometer (Billerica, MA, USA) at 25°C. For PPh3-ligand containing catalysts, 

a 500 MHz Bruker system (Billerica, MA, USA) at 25°C was used. 

 

3.4.1.1 Qualitative 1H-NMR Characterization of Lignin 

 Qualitative 1H–NMR spectra were acquired on dried lignin samples (15-20 mg) 

dissolved in deuterated dimethyl sulfoxide (DMSO–d6) (450 μL). Qualitative 1H-NMR 

spectra were recorded under the following conditions: 2.0 s pulse delay, 30° pulse angle, 

15 ppm sweep width, 16 scans, a time domain of 32K, 16 acquisition transients and 0.3 

Hz line broadening.  

 

3.4.1.2 Qualitative 13C-NMR Characterization of Lignin 

 Qualitative 1H–NMR and 13C–NMR spectra were acquired on dried lignin 

samples (80–120 mg) dissolved in DMSO–d6 (450 μL). Qualitative 13C-NMR spectra 

were recorded under the following conditions: 1.0 s pulse delay, 30° pulse angle, a time 

domain of 32K and a minimum of 10K acquisition transients. 
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3.4.1.3 Quantitative 1H-NMR Characterization of Lignin 

 An anhydrous, internal standard solution was prepared by first adding 30 mL of 

DMSO-d6 to pre-dried 4 Å molecular sieves for 24 hr using 99.9-100% DMSO-d6. Extra 

precaution should be taken so as to remove almost all of the water present in the solvent. 

Pentafluorobenzaldehyde (PFB) was weighed out into a 25 mL volumetric flask (~20 

mg), which was then filled with the anhydrous DMSO-d6. The DMSO-d6 transfer was 

halted halfway through to allow the PFB to dissolve completely before the flask was 

filled to the mark. The NMR sample was prepared by adding 0.45 mL of internal 

standard solution into a known weight of dry lignin (20 to 25 mg). The lignin was 

previously dried under vacuum (~20 mm Hg) for a minimum of 24 h. 240,241 Internal 

standard solution and NMR samples were prepared in a glove box under a moisture free 

atmosphere. 

Quantitative 1H-NMR spectra were recorded under the following conditions: 15.0 s pulse 

delay, 90° pulse angle, 15 ppm sweep width, 100 scans, a time domain of 32K, 32 

acquisition transients and 0.3 Hz line broadening.  

 

3.4.1.4 Quantitative 31P-NMR Characterization of Lignin 

 Quantitative 31P–NMR spectra were acquired on dry lignin samples (~25 mg) 

dissolved in a solvent mixture consisting of 1.6:1 (v/v) anhydrous pyridine/deuterated 

chloroform with chromium(III) acetylacetonate (~3.6 mg mL-1) as relaxation agent and 

cyclohexanol (~4.0 mg mL-1) as internal standard following published methods.242,243 

Quantitative 31P–NMR analysis was acquired under the following conditions: 25.0 s pulse 
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delay, inverse–gated decoupling (Waltz–16), 90° pulse angle, a time domain of 32K with 

one degree of zero filling, 100 acquisition transients and 4.0 Hz line broadening. 

 

3.4.1.5 Quantitative 31P-NMR Characterization of PPh3-ligand Containing catalysts 

 Quantitative 31P–NMR spectra were acquired on dry PPh3-ligand containing 

catalysts (~20 mg) by transferring into NMR tubes under nitrogen pressure and 

dissolving in degassed CDCl3 (450 μL). After NMR sample preparation, the 31P–NMR 

spectra were immediately recorded. Quantitative 31P–NMR analysis was acquired under 

the following conditions: 2.5 s pulse delay, inverse–gated decoupling (Waltz–16), 90° 

pulse angle, a time domain of 32K with one degree of zero filling, 200 acquisition 

transients and 4.0 Hz line broadening. 

 

3.4.2 NMR Spectroscopy for Biodiesel Studies 

 All NMR analysis on lignin samples were carried out using a Bruker Avance-400 

spectrometer operating at frequencies of 161.951 MHz for 31P at 25°C in a magnetic field 

of 9.4 Tesla. 

 

3.4.2.1 Quantitative 31P-NMR Characterization for Preliminary Experiments 

 During the preliminary experiments, quantitative 31P-NMR spectra were recorded 

with a 25–second pulse delay, inverse–gated decoupling (Waltz–16), 8 μs (90° pulse), a 

time domain of 32K with one degree of zero filling, 100 acquisition transients and were 

processed using a line broadening of 4.0 Hz.  
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3.4.2.2 Spin-lattice Relaxation Time Measurement 

 The 31P spin-lattice (T1) relaxation times were measured using standard inversion 

recovery pulse sequence (recycle delay-180°-τ-90°-acquistion) with 8 μs (90° pulse), 16 

μs (180° pulse), 20 s recycle delay and 8 scans. Standard software (TopSpin 2.1) supplied 

with the Bruker instrument and IGOR Pro 6 was used for fitting the recorded relaxation 

[M(τ)/Mo=1-Co*exp(-τ/T1)] to obtain relaxation values. 

 

3.4.2.3 Optimized Quantitative 31P-NMR Characterization for Industrial Biodiesel 

Process Samples  

 The NMR pulse program optimized for biodiesel constituents for a 400 MHz 

Bruker system at 25 °C utilizes a 5 s pulse delay, inverse–gated decoupling (Waltz–16) to 

avoid NOE effects, 90° pulse angle, a time domain of 32 K with one degree of zero 

filling, 4.0 Hz line broadening and only 16 acquisition transients. 

 

3.4.3 Solubility Measurement of Hydrogenated EOL 

 After hydrogenation, the lignin fraction from the ethanol phase provided a soluble 

hydrogenated EOL fraction. The soluble and insoluble phases were separated at RT by 

centrifugation (2500 r min-1, 10 min) and concentrated under reduced pressure. The 

insoluble EOL fraction was dissolved in dimethyl sulfoxide (DMSO), metallic particles 

were separated by centrifugation (2500 r min-1, 10 min) and product was recovered under 

reduced pressure at 50°C. Typically, the mass yield recovery of lignin was 97±1%. 
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3.4.4 Lignin MWD Analysis 

 Molecular weight distribution analysis was performed by GPC of acetylated 

lignin samples. Dry lignin (~20 mg) was acetylated by stirring with 1:1 (v/v) acetic 

anhydride/pyridine mixture (2 mL) at room temperature for 72 h. The solvent mixture 

was removed under reduced pressure at 50°C. The acetylated lignin was dissolved in 

chloroform (50 mL) and washed with water (20 mL). The chloroform phase was dried 

over anhydrous MgSO4 and then concentrated under reduced pressure. The dry acetylated 

lignin was then dissolved in THF (~1 mg mL-1) for GPC analysis. Instrument: HP 1090 

HPLC equipped with a DAD-UV/VIS detector (New Castle, DE, USA) at 270 nm. 

Columns: 7.8 mm Ø 300 mm Waters styragel HR4, HR3, and HR1 (Milford, MA, USA). 

GPC data were calibrated based on polystyrene standards. Weight average (Mw) and 

number average molecular weight (Mn) were determined by following the calculation 

strategy of Baumberger et al. for whole curve integration.244 

 

3.4.5 Lignin DSC Measurements 

 The Tg of the starting EOL were determined using a TA Instruments Q100 DSC 

(New Castle, DE, USA). Lignin samples (1 mg) were placed in aluminum pans, sealed 

and heated (10°C min-1) up to 225°C under nitrogen purge (50 mL min-1). The difference 

in the amount of heat required to increase the temperature of a sample is recorded and the 

Tg is determined by EXCEL. 
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3.4.6 Elemental Microanalysis 

3.4.6.1 Elemental Microanalysis for LignoBoost Studies 

 Carbon and hydrogen analysis were performed by combustion, oxygen analysis 

was performed by pyrolysis and sulfur analysis was performed by flask combustion 

followed by ion chromatography by Atlantic Microlab Inc. (Norcross, GA, USA). 

 

3.4.6.2 Elemental Microanalysis for EOL Hydrogenolysis Studies 

 Carbon and hydrogen analysis were performed by combustion, oxygen analysis 

was performed by pyrolysis and iodine analysis was performed by flask combustion 

followed by ion chromatography by Atlantic Microlab Inc. (Norcross, GA, USA). 

 

3.4.7 Error Analysis 

3.4.7.1 Error Analysis for EOL Hydrogenolysis Studies 

 
 The accuracy of all analytical techniques used during the EOL hydrogenation 

experimental series were determined by the comparison of the analytical data of three 

experimental runs performed under the same reaction conditions. The error margin was 

measured; ±1.5% for solubility, ±1.6% for GPC, ±1.6% for quantitative 1H-NMR, ±2.0% 

for qualitative 31P-NMR and ±0.7% for DSC. MWD curves were calibrated based on 

polystyrene standards and fitted with a second degree polynomial with a ±2^-13% 

deviation. 
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3.4.7.2 Error Analysis for Biodiesel Studies 

 The standard deviation, sensitivity and quantitative accuracy were determined 

from five separate measurements using a solvent mixture containing analytically pure 

99+% biodiesel precursors and cyclohexanol as an internal standard. The sensitivity of 

the TMDP/31P–NMR technique was calculated to have a 1.9 µmol/mL lower limit of 

detection. The error margin of the technique was measured to be ±1.1%.  
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CHAPTER 4 

4. LIGNOBOOST LIGNIN CHARACTERIZATION1 AND 

PYROLYSIS2 FOR BIO-OIL PRODUCTION 

 

4.1 Introduction 

 The forest biorefinery concept involves converting a pulp mill into a multi-

propose biofuels, biomaterials, and biopower production facility. In which these products 

are made in an environmentally compatible and sustainable manner. A key challenge in 

this process is the recovery of lignin from process streams such that it can be utilized in a 

variety of innovative green chemistry processes. This study examines the fundamental 

chemical structure of lignin recovered from Kraft pulping streams using an acid 

precipitation/washing methodology. Functional group analysis and molecular weight 

profiles were determined by nuclear magnetic resonance (NMR) and size exclusion 

chromatography (SEC). 

 Sustainability is undoubtedly one of the most important cornerstones of energy 

independence rendering it desirable to utilize all biomaterial in the most efficient manner. 

Society’s challenge is to not only develop new green technologies and products but also 

help established commerce practices become green industrial practices. The forest 

                                                 
1 This manuscript was submitted for publication in Green Chemistry, 2009. It is entitled as “A Green 
Prospect for Paper Industry’s Lignin Rich Solutions”. The other authors are Arthur J. Ragauskas and 
Matyas Kosa from School of Chemistry and Biochemistry at the Georgia Institute of Technology and Hans 
Theliander from Forest Products and Chemical Engineering at the Chalmers University, Sweden. 
 
2 This manuscript was published and presented at the Abstracts of Papers, 237th ACS National Meeting, 
Salt Lake City, UT, United States, March 22-26, (2009), CELL-191. It is entitled “New energy: Fuel 
resources from kraft pulping”. The other authors are Arthur J. Ragauskas and Matyas Kosa from School of 
Chemistry and Biochemistry at the Georgia Institute of Technology and Hans Theliander from Forest 
Products and Chemical Engineering at the Chalmers University, Sweden. 
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biorefinery is an evolving vision of wood utilization in an environmentally sustainable 

and economically viable manner to produce biopower, biofuels and biomaterials, 

including paper.245 

 During chemical pulping, lignin is chemically degraded and extracted from wood 

in aqueous environment in a pressure reactor at pH values of 13-14 and temperatures of 

140-170°C.246,247 These conditions remove 85-93% of the lignin and approximately 56-

71% of the hemicelluloses.246,247,248 The approach when NaSH is used in the cooking 

process along with caustic to delignify wood is referred to as Kraft pulping. In the United 

States alone the pulp and paper industry collects and processes ~108 million tones of 

pulpwood for the production of pulp, paper and paperboard annually.246 In turn, the paper 

industry produces over 50 million tons of residual lignin per year worldwide in a form of 

a caustic side stream.246 Currently, this material is burned in a low efficiency Thompson 

recovery furnace to recover energy and cooking chemicals. A continuing interest in this 

field is the desire to recover fractions of lignin from the Kraft cooking liquors for 

biopower, biochemical and biomaterial utilization. Recently, a green process referred to 

as “LignoBoost” provides a viable separation of lignin from these cooking liqours by 

employing carbon-dioxide to precipitate lignin from alkaline solutions.248,249,250 (Equation 

1-2) 

L-OH + OH- ↔ L-O- + H2O 

Equation 1. Lignin precipitation by lowering the pH. 
 

CO2(g) ↔ CO2(aq) 

CO2(aq) + 2OH- ↔ CO3
2- + H2O 

Equation 2. Lowering pH by carbon-dioxide gas injection. 
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 The application of this process involves acidification of an alkaline cooking liquor 

with CO2, precipitation, filtration and washing.251 Process integration and mill trials have 

tested this process from an engineering and economic point of view.252 The lignin 

recovered by the LignoBoost process has been shown to be valuable green resource for 

biopower production.253 This method enables lignin to be exported in the form of a solid 

biofuel and also gives the opportunity to transform it into materials of higher value.254 

 

 

Figure 43. Lignin recovered by the LignoBoost process and its proposed value added 
commercial products after chemical conversion. 
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 Recognizing the possibilities in recovering lignin from black liquor via CO2 

precipitation and washing, we became interested in the detailed chemical composition 

and structure of the lignin isolated anticipating that this data could facilitate future 

applications of this bioresource. These findings will provide valuable insight of the 

physical and its determining chemical properties of this currently under utilized 

renewable bioresource. A known chemical structure and composition can help to 

optimize a subsequent controlled high yield catalytic conversion by pyrolysis. Pyrolysis 

with a chemically characterized feedstock gives the opportunity for a controlled catalytic 

deoxygenation and liquefaction of the precipitated lignin fractions for high yield bio-oil 

production. Herein, we wish to report the characterization of LignoBoost derived lignin 

and its pyrolysis in terms of molecular weight profiles and functional group properties. 

 

4.2 Experimental Section 

4.2.1 Materials 

 Lignin separated from commercial Scandinavian soft wood Kraft pulping liquor, 

all reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used as 

received. Solvents were purchased from VWR (West Chester, PA, USA). All gases were 

ultra high purity and purchased from Airgas (Radnor Township, PA, USA). 

 

4.2.2 LignoBoost Lignin Separation from Kraft Pulping Liquor 

 Lignin separation from Kraft pulping liquors using LignoBoost technique is 

described in Chapter 3. (3.3.1.1 Lignin Separation by LignoBoost) 
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4.2.3 LignoBoost Lignin Purification 

 Lignin separation and purification of LignoBoost lignin precipitated from Kraft 

pulping liquors is described in Chapter 3. (3.3.1.2 Lignin Purification) 

 

4.2.4 NMR Measurements on Purified LignoBoost Lignin samples 

 Qualitative 1H, qualitative 13C, quantitative 1H and quantitative 31P NMR analysis 

procedures on purified lignin samples are described in Chapter 3. (3.4.1 NMR 

Spectroscopy for Lignin Studies) 

 

4.2.5 SEC Measurements on Purified LignoBoost Lignin samples 

 Analysis procedure for SEC measurements on purified LignoBoost samples is 

described in Chapter 3. (3.4.4 Lignin MWD Analysis) 

 

4.2.6 Pyrolysis of LignoBoost Lignin  

 Pyrolysis of characterized purified LigniBoost lignin is described in Chapter 3. 

(3.3.1.3 Purified LignoBoost Lignin Pyrolysis) 
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4.3 Results and Discussion 

4.3.1 Mass Balance and Elemental Analysis Data 

 After purification of the unwashed samples, the lignin content of the initial 

LignoBoost samples could be determined. The mass balance data showed that the initial 

unpurified dry samples had varying amounts of lignin as the following (in wt%): 25.8% 

in BL, 73.3% in P 9.5, 71.3% in P 10.5, 11.1% in F 9.5 and 20.0% in F 10.5. Figure 44 

shows the mass balances of the purification step normalized to 10.00 g crude samples. 

Mass values of H2SO4 and EDTA added through filtrations were subtracted from the 

figure for better transparency. 

 

 

Figure 44. Mass balances of the purification process from black liquor (BL) precipitated 
lignin (P) at pH 9,5 and 10,5, and its filtrate (F). 

 

 This data clearly shows that treatment of the pulping liquor with CO2 yields a lignin 

rich stream and a filtrate fraction that is enriched in salts. The pH 9.5 treatment 
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condition resulted in a better separation of lignin. Results of the elemental analysis 

are consistent with the mass balance data and shows that the purified lignin samples 

contain only organic elements up to 97.1 %. Results of the elemental analysis on the 

crude, salt and purified fractions are shown in Figure 45; C, H, O and S contents were 

measured and are depicted in weight percentage (wt. %). The non measured (NM) 

regions in all weight compositions come from alkali and alkali earth metals as well as 

silica, aluminium and BL trace elements.255 

 

 

                          *   H: Hydrogen, C: Carbon, O: Oxygen, S: Sulfur, NM: Not measured. 

 
Figure 45. Elemental analysis of the LignoBoost crude samples and the purified (Pur) 

samples of black liquor (BL) precipitated lignin (P) and its filtrate (F) at pH 9,5 and 10,5, 
and the salt fraction (SF), prepared from commercial Scandinavian soft wood kraft 

pulping liquor. 
 

 Figure 45 shows that the precipitate is enriched in lignin while the filtrate fraction 

is enriched in salt. The data also shows that the separation is better at lower pH which 

findings are consistent with Figure 44. Results on the purified (F 10.5-Pur) and salt 
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fractions (F 10.5-SF) shows the high efficiency of the purification method. While the 

purified fraction enriched in organic elements up to 99.62 %, the SF is enriched 

inorganics. Simililar purifification yields were achieved in case of all crude samples. 

 

4.3.2 NMR Data of the Purified LignoBoost Lignin Samples  

 To evaluate the primary components present in the initial LignoBoost fractions 

and in their purified samples, qualitative 1H and 13C NMR measurements were conducted 

(Figure 46) following literature methods.256,257 
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Figure 46. Example for structure of native lignin, and qualitative 1H and 13C-NMR 
spectrum of purified black liquor LignoBoost sample. (Solvent: DMSO-d6). 
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 Qualitative NMR data shows that during the purification step, sugars and fatty 

acids were removed with salts and salt-EDTA complexes from the initial LignoBoost 

samples and ended up in the SF. With the lignin purification method used in this study, 

the chemicals earlier used to bring lignin into solution can be separated from the crude 

samples. This allows the process chemicals to be returned to the main stream and reused, 

while it also produces lignin with 95-97% purity, resulting in a higher environmental and 

economic efficiency 

 To selectively follow the structural changes of the lignin biopolymer on the 

molecular level, quantitative 1H-NMR measurements were conducted on the purified 

fractions. The differences between the process fractions and the changes in the 

distribution of selected lignin moieties at different final pHs are shown in Table 27.  

 

Table 27. Partial hydrogen content [mol mol-1] % of different lignin functional groups in 
the ratio of all H containing functional groups as determined by quantitative 1H-NMR. 

 

*   BL: black liquor, P: precipitated lignin, F: filtrate at pH 9,5 and 10,5. 
 

 

Sample name * Hydrogen content of selected groups (mol mol-1 % relative to all H cont. groups) 
 Carboxylic acid Formyl Phenolic Aromatic, 

Vinyl 
Aliphatic Methoxyl Aliphatic 

 (13.50-10.50) 
ppm 

(10.10-9.35) 
ppm 

(9.35-8.00) 
ppm 

(8.00-6.00) 
ppm 

(6.00-4.05) 
ppm 

(4.05-3.45) 
ppm 

(2.25-0.00) 
ppm 

 -C(O)OH -C(O)H =HC-OH CH=CH 
CH2=CH 

CH-O 
C-CH2-O 

-OCH3 C-CH2-C 
C-CH3 

Black liquor 1.26 1.50 6.73 20.22 8.44 45.84 14.42 
P 9.5 1.06 0.90 4.19 18.75 5.92 52.42 16.70 
P 10.5 0.81 0.98 3.66 19.69 8.22 49.16 16.04 
F 9.5 1.71 1.61 6.16 19.82 7.89 41.25 17.35 
F 10.5 1.22 1.67 5.73 19.58 6.78 44.58 16.87 
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 Quantitative 1H-NMR shows that the F lignin has more carboxylic and phenolic 

groups while P is enriched in methoxyl moieties. The hydroxyl group content on the 

lignin polymer plays a crucial role on determining the solubility of the biopolymer.256,257 

Selective phosphitylation of the hydroxyl groups on the lignin polymer with 2-chloro-

4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP), followed by quantitative 31P-NMR 

measurement provides a facile monitoring of the changes in the hydroxyl content of the 

lignin polymer throughout the process.257 

 

Table 28. Hydroxyl content of different purified LignoBoost fractions as determined by 
quantitative 31P-NMR after derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane, from commercial Scandinavian soft wood kraft pulping liquor. 
 

*   BL: black liquor, P: precipitated lignin, F: filtrate at pH 9,5 and 10,5. 
 
 

 Table 28 shows that the total hydroxyl content of F 9.5 and F 10.5 lignins are 56% 

and 45% higher respectively, than their analogous P fractions which is consistent with the 

results from 1H-NMR analysis. In addition, pH 9.5 conditions resulted in 69% higher 

hydroxyl content in the F fraction and a 35% increase in the P fraction than when pH 10.5 

was applied. The pKa values of phenolic lignin groups are between 9.4 and 10.85 hence 

at pH 9.5 and 10.5 these groups get protonated consequently affecting the solubility of 

the polymer by determining –lowering- its charge. A polymer with a higher total 

Sample name Total –OH content  Hydroxyl content of selected groups (µmol mg-1) 
 (µmol mg-1)  Aliphatic hydroxyl Condensed phenolic Guaiacyl 

phenolic  
Carboxylic 
hydroxyl 

 (149.0-133.8) 
ppma 

 (149.0-145.6) 
ppma 

(144.4-140.4) 
ppma 

(140.4-137.6) 
ppma 

(136.0-133.8) 
ppma 

Black liquor 6.37  1.49 1.73 2.46 0.69 
P 9.5 4.30  1.11 1.14 1.47 0.59 
P 10.5 3.18  0.91 0.85 1.03 0.39 
F 9.5 6.74  1.27 1.80 2.55 1.11 
F 10.5 5.76  1.22 1.57 2.20 0.78 
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hydroxyl and charge content has better solubility and remains in solution thereby 

enriching the F phase under our reaction conditions. 

 

4.3.3 SEC Data of the Purified LignoBoost Lignin Samples 

 Changes in the polymer structure of the lignin were followed by molecular mass 

distribution analysis with size exclusion chromatography (SEC) on the purified fractions 

using acetylated lignin samples.257 Polystyrene equivalent weight average molecular 

weight (Mw), number average molecular weight (Mn) and polydispersity (PD) were 

determined using calculation strategies from Baumberger for whole curve integration. 258 

Mw/Mn gives PD that directly shows how accurate it is to evaluate a peak as one and not 

as a sum of multiple peaks. (Table 29) 

 

Table 29. Size exclusion chromatography results for purified and acetylated LignoBoost 
lignin samples from commercial Scandinavian soft wood kraft pulping liquor. 

 
Sample* Mw

** Mn
** PD 

BL 3601 812 4.44
P 10.5 2939 1694 1.73
F 10.5 2718 795 3.42
P 9.5 2979 1795 1.66
F 9.5 2101 735 2.86

  *     BL: black liquor, P: precipitated lignin, F: filtrate at pH 9,5 and 10,5. 
  **   Polystyrene standards were used with Mw 1.200-195.000 g mol-1 

 
 

 SEC data shows that P samples were enriched in the lower MW fraction in the 

200-300 g mol-1 region which represents a lignin DP of 1-2 units.259 Their peaks were 

recognizable and easy to separate from the main peak resulted from the higher Mw lignin 

fractions.258  
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 While on the contrary in case of F and BL samples, no additional peaks were 

recognizable in the lower MW region and their SEC curves were integrated as one peak 

and as a result their respective PD’s got 2-3 times larger than in case of the precipitates. 

These results are consistent with previous research data of Wallmo.260 It is noteworthy 

that polydispersity of all separated lower MW peaks fell between 1.02 and 1.12 (data not 

shown) that confirms the validity of the calculation strategy used. 

 

4.3.4 Pyrolysis Data on Purified LignoBoost Lignin Samples 

 With a known chemical composition in hand, a subsequent pyrolysis step could 

be optimized for a high yield bio-oil production. Yields have been compared in case of 

crude BL, crude P 9.5 and purified P 9.5 samples. The results on bio-oil yields are 

summarized in Table 30. 

 

Table 30. Bio-oil yields from LignoBoost lignin feed stocks precipitated from 
commercial Scandinavian soft wood kraft pulping liquor at pH: 9.5. Pyrolysis conditions: 

400°C with 2 min resident time. 
 

 Pyrolysis oil 
yield 

Solid yield 
(Char) 

Unaccounted 
(Gas) 

LignoBoost sample [wt%] [wt%] [wt%] 
Black liquor (crude) 33.16 64.14 2.71 
P 9.5 (crude) 31.53 67.55 0.92 
P 9.5 (extracted) 42.98 42.25 14.78 

 
 

 Table 30 clearly shows that the highest bio-oil yield is provided by the purified 

precipitate that had the highest lignin content in the feedstock. The elemental 

composition of the product fractions was followed by elemental analysis and the data is 

summarized in Table 31. 
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Table 31. Elemental analysis on bio-oils produced from LignoBoost lignin feed stocks 
precipitated from black liquor (BL) at pH: 9.5. Pyrolysis conditions: 400°C with 2 min 

resident time. 
 
 Measured Element 
 Hydrogen Carbon Oxygen Sulfur NM 
Sample name* [wt%] [wt%] [wt%] [wt%] [wt%] 
Black Liquor 3.63 35.14 33.80 4.13 23.30 
BL Solid 2.36 36.06 30.24 1.53 29.81 
BL Pyr. Oil 8.88 67.69 17.18 2.19 4.06 
P 9.5 Crude 4.54 51.65 31.42 2.30 10.09 
P 9.5 Crude Solid 4.14 58.53 20.82 1.28 15.23 
P 9.5 Crude Pyr. Oil 7.69 64.02 23.30 2.94 2.05 
P 9.5 Extracted 5.87 62.73 28.56 1.67 1.17 
P 9.5 E. Solid 4.67 71.67 22.07 0.97 0.62 
P 9.5 E. Pyr. Oil 7.22 64.67 23.22 3.19 1.70 
*     BL: black liquor, P: precipitated lignin at pH 9,5, E: extracted purified lignin, NM: not measured. 
 
 

 In Table 31 the NM regions in all weight compositions come from alkali and 

alkali earth metals as well as silica, aluminium and BL trace elements.260 This data is 

consistent with Table 30 showing that the inorganic salt remained unreacted during our 

pyrolysis conditions. This finding combined with the fact that only the lignin fraction 

contributed to bio-oil production, resulted in an increased yield in case of the purified 

lignin feedstock observed in Table 31. 

 Since our project is aiming to convert biomass to fossil fuel substitutes, it is 

essential to understand the main chemical and physical properties of these chemicals. The 

distinct differences between the chemical and physical properties of lignin and fossil 

fuels mainly result from their different oxygen contents and the difference in their carbon 

chain length.198 Lignin’s O/C content is higher and its H/C molar ratio is lower than in 

gasoline or diesel. The carbon chain length of the lignin building unit is between the 
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gasoline and diesel range. Table 32 summarizes the main chemical and physical 

properties of the lignin feedstock and the final bio-oil compared with major fossil fuels. 

 

Table 32. The main chemical and physical properties of fossil fuels, LignoBoost lignin 
precipitated from black liquor at pH: 9.5 (P9.5) and the final pyrolysis oil. Pyrolysis 

conditions: 400°C with 2 min resident time. 
 
  Gasoline Gasoil 

/diesel 
LignoBoost 
lignin (P9.5) 

LignoBoost 
lignin (P9.5) 

Pyr. Oil 
Carbon chain length 5-10 12-20 [9-10]n --- 
O/C molar ratio 0 0 0.34 0.26 
H/C molar ratio 1-2 ~2 1.12 1.34 
Phase behavior 
(ambient T) 

liquid liquid solid liquid 

Polarity a-polar a-polar a-polar a-polar 
Preferred structure branched/ 

aromatic 
/cyclic/ 

unsaturated 

linear/ 
saturated 

Branched (3D) --- 

 
 

 Table 32 shows that the O/C ratio of the bio-oil is decreased by 24% and its H/C 

ratio increased by 20% compared to the purified LignoBoost lignin feedstock. Increased 

hydrogen content with decreased oxygen content suggests that during pyrolysis the 

oxygen leaves by either deoxygenation or decarboxylation. Unfortunately the chemical 

composition of the final products does not provide sufficient insight into the fundamental 

chemistry. During the pyrolysis of the purified P 9.5 phase 14.78% of the feedstock left 

by the gas phase. With the composition of the gas phase in hand, the fundamental 

chemistry during pyrolysis could be solved. 
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4.4 Conclusions 

 In conclusion, the entering BL separates into phase P which is enriched in lignin 

and into phase F which is enriched in salts, together with sugars and short chain acids 

from the original BL. Lower final pH resulted in a better lignin separation. The 

LignoBoost sample purification method used in this study is efficient and the SEC data 

obtained on the purified P phase showed that the fraction is enriched in the 200-300 g 

mol-1 region, making it a viable staring feedstock for a future biofuel or biomaterial 

production step. Quantitative NMR data showed that phase F is enriched in carboxylic 

and phenolic groups while phase P in methoxyl moieties. Under our reaction conditions 

the total hydroxyl content of phase F at pH 9.5 was 56% higher, while at pH 10.5 it was 

45% higher than phase P that led to the higher solubility of the lignin biopolymer. A 

lower final pH resulted in a 69% enrichment of the total hydroxyl content in the F 

fraction while only a 35% increase in the P fraction, which resulted in a better lignin 

separation when lower pH was employed. These findings gave valuable insight of the 

physical and its determining chemical properties of this currently under utilized 

renewable bioresource. A known chemical structure and composition can help to 

optimize a future controlled high yield catalytic conversion. With our pyrolysis setup, we 

reached bio-oil yields up to 43%, and the highest yield of the purified lignin feedstock 

was 36% higher than in case of an unpurified lignin feedstock. Compared to the starting 

purified lignin, the bio-oil’s O/C decreased by 24% and the H/C ratio increased by 20%. 

However this change in molecular composition led to improved physical-chemical 

properties –liquerification- toward fossil fuels, its fundamental 

deoxigenation/decarboxilation chemistry is unsolved.  
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CHAPTER 5 

5. CATALYTIC HYDROGENOLYSIS OF ETHANOL 

ORGANOSOLV LIGNIN 3 

 

5.1 Introduction 

 The production of ethanol based on lignocellulosic materials will bring about the 

coproduction of significant amounts of under-utilized lignin. This study examines the 

potential of conventional heterogeneous and novel homogeneous catalysts for the 

selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages of ethanol organosolv 

lignin to convert it from a low grade fuel to potential fuel precursors or other value added 

chemicals. The development of hydrogenolysis conditions that effectively increase the 

solubility of lignin were initially examined with Ru(Cl)2(PPh3)3 and demonstrated the 

ability to decrease the molecular weight and enhance the solubility of the lignin polymer. 

Later studies examined several heterogeneous and homogeneous hydrogenation catalysts 

at optimized reaction conditions resulting; 96.4% solubility with Ru(Cl)2(PPh3)3, increase 

in H/C ratio with Raney-Ni, Pt/C and extensive monomer formation with NaBH4/I2. The 

changes in molecular structure of lignin were followed by size exclusion 

chromatography, qualitative and quantitative NMR spectroscopy and elemental analysis. 

These studies demonstrated that aryl-O-aryl and aryl-O-aliphatic linkages could be 

                                                 
3 This manuscript was published in [Holzforschung (DOI: 10.1515/HF.2009.097)] Reproduced by the 
permission of Walter de Gruyter GmbH & Co. KG with K. G. Saur Verlag and Max Niemeyer Verlag. It is 
entitled as “Organosolv lignin hydrogenolysis to value added chemicals”. The other authors are Arthur J. 
Ragauskas and Kasi David from School of Chemistry and Biochemistry at the Georgia Institute of 
Technology and George J. P. Britovsek from the Department of Chemistry at the Imperial College of 
London, United Kingdom. 
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cleaved and the hydrogenated lignin had a decrease in oxygen functionality and the 

formation of products with lower oxygen content. 

 Global energy demand has increased by 120% over the last four decades and 

projected economic growth is anticipated to increase by +50% in 2025.25 Accompanying 

these energy requirements and the dwindling supply of geological reserves has been 

renewed interest in renewable bioresources. Currently, biomass based resources 

contribute ~3% of the world’s primary energy supplies.34 Biomass is an abundant 

resource with an annual global production rate of 17x1010 metric tons which consists of 

approximately 75% carbohydrates, 20% lignin and 5% other products.261,262 The 

biosphere is estimated to have 3x1011 metric tons of lignin with an annual biosynthesis 

rate of 2x1010 metric tons.263 The O/C and H/C molar ratios in lignin are lower than in 

carbohydrates and the carbon chain length of the basic building unit is between the 

gasoline and diesel range.264,265,266 

 

Table 33. The main chemical and physical properties of fossil fuels and major 
biopolymers. 

 
 Gasoline Gas oil/diesel Carbohydrate Lignin 

Carbon chain 
length 

5-10 12-20 [5-6]n [9]n 

O/C molar ratio 0 0 1 0.3-0.4 
H/C molar ratio 1-2 ~2 2 0.7-1.1 
Phase behavior 
(ambient T) 

liquid liquid solid liquid-solid 

Polarity a-polar a-polar polar a-polar 
Preferred 
structure 

branched/aromatic 
/cyclic/unsaturated

linear/saturated linear/cyclic branched 

 
 



 120

 

 The distinct differences between the chemical and physical properties of the listed 

biomaterials and fossil fuels mainly result from their higher oxygen contents and the 

difference in their carbon chain length.187 Previous attempts to decrease the degree of 

polymerization and/or the oxygen content of biomass has involved various 

transformations, including hydrothermal decarboxylation,181 pyrolysis,182 

carbonization,183 acid-catalyzed dehydration,267,268 metal-catalyzed 

decarboxylation,184,185,186 metal-catalyzed hydrogenation,187 and hydrogenolysis.188 

Despite the extensive research, lignin still has a low commercial value and mainly just 

simply combusted as a low grade fuel. 

 In focus of the present study is a recently optimized ethanol organosolv process 

providing a high yield recovery of carbohydrate and lignin.269 The aim is to examine a 

series of hydrogenation conditions to identify catalytic hydrogenolysis conditions for the 

selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages of the lignin polymer. 

 Previous lignin hydrogenation studies employed either high temperatures (> 

200ºC) and/or high H2 pressures (>7 MPa), or strong acidic or basic media. Depending on 

the reaction conditions, up to 60-80% conversion of the starting lignin to liquefied 

mixtures was obtained. These mixtures contained hydrogenated products such as; o- and 

p-cresol, phenol and p-ethylphenol.270,271,272 The knowledge is improved concerning the 

chemical mechanisms involved in these harsh conditions, the reusability of the catalyst, 

and tailoring the selectivity of the hydrogenation towards specific lignin groups.273,274  
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 Recent hydrogenation studies with colloidal Ru or mono-, di- and tetra-nuclear 

Ru-Arene complexes as catalyst on milled wood lignin indicate that a 50% decrease in 

the degree of polymerization (DP) can be accomplished.275,276 Hydrogenation with 

phosphine ligand containing ruthenium complexes of carbon-carbon double bond and/or 

carbon-oxygen bond containing chemicals has provided additional insight on how to 

tailor the catalytic selectivity towards carbon-oxygen bond cleavage over carbon-carbon 

double bond hydrogenation.277,278 

 During hydrogenolysis, the hydrogen is utilized under harsh conditions for the 

cleavage of C-O inter-lignin linkages. During hydrogenation, carbon-carbon or a carbon-

oxygen double bonds are saturated by hydrogen: the H/C ratio is elevated but 

depolymerization does not occur. The expectation is that selective hydrogenolysis of 

lignin leads to potential fuel precursors or other value added chemicals by oxygen 

decrement and hydrogen increment and to products with lower molecular weight by 

reductive cleavage of C-O-C bonds.187  

 The aim of the present work was to investigate the performance and fundamental 

chemistry of several heterogeneous catalysts (Co/Mo, Raney-Ni, Pd/C, Pt/C) and 

homogeneous catalysts (NaBH4/I2, RhCl(PPh3)3, Ru(Cl)2(PPh3)3, Ru(H)(Cl)(PPh3)3, 

Ruthenium-polyvinylpyrrolidone nanoparticle (Ru-(PVP)) on a hydrogenolysis/ 

hydrogenation on organosolv lignin. The structure of the synthesized catalysts were 

examined by NMR and fundamental chemistry of the hydrogenation reactions was 

examined by differential differential scanning calorimetry (DSC), elemental analysis, 

molecular weight distribution (MWD) analysis, 1H-NMR and 31P-NMR spectroscopy. 
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5.2 Experimental Section 

5.2.1 Materials 

 A single Loblolly pine (Pinus taeda) tree, visually free of disease and 

compression wood, was obtained from the University of Georgia research plot in 

Baldwin County, GA, USA. The wood was manually debarked and chipped using a 

mechanical chipper. From the hydrogenation catalysts, Ru(Cl)2(PPh3)3, RhCl(PPh3)3 and 

Ru(PVP)-nanoparticle were synthesized, all other were purchased from Sigma-Aldrich 

(St. Louis, MO, USA) and used as received. Solvents were purchased from VWR (West 

Chester, PA, USA). All gases were ultra high purity and purchased from Airgas (Radnor 

Township, PA, USA). 

 

5.2.2 Preparation of SW EOL 

 Softwood (SW) ethanol organosolv lignin (EOL) preparation from Loblolly pine 

chips are described in Chapter 3. (3.3.2.1 EOL Extraction). 
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5.2.3 Catalyst Synthesis 

 Ru(Cl)2(PPh3)3, RhCl(PPh3)3 and Ru(PVP)-nanoparticle sythesis, and Co/Mo 

activation are described in Chapter 3. (3.3.2.2 Preparation of the Hydrogenation 

Catalysts). 

 

5.2.4 Catalytic Hydrogenation  

 Catalytic hydrogenation is described in Chapter 3. (3.3.2.3 Hydrogenation). 

 

5.3 Results and Discussion 

5.3.1 Determining the Structure of Ru(Cl)2(PPh3)3
 and RhCl(PPh3)3 in Solution  

 It is shown that even small alternations of the structure of a catalyst can have a big 

effect on conversion yields and selectivity.277,278 The dissociation of the tri-

phenylphosphine (PPh3) ligand is a known phenomenon.279 Thus it is essential to 

understand how the structure of Ru(Cl)2(PPh3)3
 and RhCl(PPh3)3 will be altered after 

dissolution. 

 

5.3.1.1 RuCl2(PPh3)3 

RuCl2(PPh3)3; 
31P NMR (CDCl3):  -5,48 (s), 39,55 (d), 40,85 (d), 38-44 (m), 47,29 (d), 

51,08 (d). (see: Appendix A.2.2) 
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 However in solution the extensive dissociation of the (PPh3)-ligand from the 

RuCl2(PPh3)3 complex is a known phenomena, its nature highly temperature dependent 

and still not fully understood.233 The dissociation is clearly shown by the singlet at (–

5,48 ppm), which stands for the free (PPh3)-ligand. The broad peak around (41,1 ppm) 

and the two doublet at (47,29 ppm) and (51,08 ppm) are consistent with the previous 

results measured at 25C, and stands for the highly fluctuating trigonal-bipiramid (I) in 

RuCl2(PPh3)3 and for the cis-dimer (II) in RuCl2(PPh3)2.233 The two dimers at (39,55 

ppm) and (40,85 ppm) are connected and their coupling frequency is 183 Hz, thus we 

suggest that these two peaks stand for the proposed distorted trans-dimer (IV) in 

RuCl2(PPh3)2. These structures are depicted in Equation 3. 
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Equation 3. The proposed dissociation pathway of RuCl2(PPh3)3 and the formation of 

cis/trans-dimers of RuCl2(PPh3)2. 
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5.3.1.2 RhCl(PPh3)3 

RhCl(PPh3)3; 
31P NMR (CDCl3):  -5,50 (s), 30,08 (d), 30,97 (d), 46,81 (t), 47,99 (t), 

50,99 (s), 52,21 (s). (see: Appendix A.2.1) 

 The two doublets at (30,08 ppm) and (30,97 ppm) stand for the two 

symmetrically situated phosphine ligand. The two triplets at (46,81 ppm) and (47,99 

ppm) stand for the third ligand as coupling with the two symmetrical ligands and the 

ruthenium. The dissociation of the phosphine ligand is shown by the singlet at (–5,50 

ppm), which stands for the free (PPh3)-ligand and the two singlet at (50,99 ppm) and 

(52,21 ppm) which stand for the symmetrical dimer coupled with ruthenium. We 

suggest that unlike RuCl2(PPh3)3, it is a monomer-monomer not a monomer-dimer 

equilibrium. These structures are depicted in Equation 4. 
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L L
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Equation 4. The proposed dissociation pathway of RhCl(PPh3)3 and the formation of 

RhCl(PPh3)2. 
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5.3.2 The Effect of Temperature on SW EOL Hydrogenation 

 Based on the experimental results quoted in the introduction (Section 5.1), our 

initial studies examined RuCl2(PPh3)3 as catalyst for SW EOL hydrogenolysis. 

Hydrogenation runs were performed from 50 to 200°C. The changes of the ethanol 

solubility and the average molar mass data of the hydrogenated SW EOL are summarized 

in Table 34. 

 

Table 34. Solubility in ethanol and average molar mass data (Mw, Mn) of the untreated 
softwood ethanol organosolv lignin (EOL), blank runs and when RuCl2(PPh3)3 used as a 

catalyst at different temperatures for 20 hours. 
 

Reaction 
conditions 

Soluble fraction Insoluble fraction 

  
(% dry 

wt.) 

Mw 
(g mol-1) 

Mn 
(g mol-

1) 

  
(% dry 

wt.) 

Mw 
(g mol-1) 

Mn 
(g mol-1) 

EOL  52.1 2440 1191 47.9 219790 79025 
Blank       
50°C  50.1 2205 1090 49.9 258650 77000 
200°C 40.0 1781 712 11.0  

49.0 
(charred)

211580 
--- 

72415 
--- 

RuCl2(PPh3)3       
50°C 59.1 2317 1100 40.9 258460 63918 
100°C 72.0 2405 1094 28.0 320480 90490 
150°C 73.0 2416 1091 27.0 348030 119520 
175°C  96.4 2142 893 3.6 330580 103490 
200°C 80.7 2221 980 19.3 265700 73229 
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 DSC analysis indicated that the glass transition temperature (Tg) of the starting 

EOL was 147.8 ±1°C. Ethanol solubility of the hydrogenated lignin significantly 

increased if treated above Tg of the starting EOL (Table 34). The Mw of the soluble phase 

of hydrogenated EOL decreased by ~10% to 2100-2200 g mol-1 which represents a lignin 

DP of 10-11 units.101 The weight average of the insoluble lignin fraction after 

hydrogenation increased by 50% at reaction temperatures of >100°C due to condensation 

reactions of the lignin polymer.280,281 When no catalyst was added at 200°C, 49.0% of all 

EOL was charred. However, under the same reaction conditions with RuCl2(PPh3)3 the 

EOL solubility increased by 40.7% and no charring was observed. 

 When the hydrogenation reaction temperature was higher than the EOL Tg, the 

solubility of the treated EOL increased from 73.0% at 150°C to 96.4% at 175°C and 

80.7% at 200°C. The decrease in the formation of the lower molecular weight fraction at 

200°C is attributed to the thermal instability of the catalyst.222 Based on these results, the 

optimal reaction temperature for the catalyst screening on SW EOL was chosen to be 

175°C. 

 

5.3.3 Catalyst screening for SW EOL hydrogenation 

 In previous works, it has been demonstrated that carbon-oxygen bond cleavage 

can be catalyzed by several conventional heterogeneous hydrogenation catalysts such as: 

platinum, palladium and nickel,282,283,284 and homogeneous catalysts such as: ruthenium, 

rhodium, and borane with iodine.285,286,287,288,289 These results provided valuable insight 

into the design of selective hydrogenolysis conditions for the cleavage of aryl-O-aryl and 
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aryl-O-aliphatic linkages in lignin. The catalytic efficiency of several conventional and 

novel catalysts (Table 35) for SW EOL hydrogenation was evaluated at 175°C. 

 

Table 35. Selected hydrogenation catalysts for ethanol organosolv lignin hydrogenolysis. 
 

 
 

 Under our standard reaction conditions, homogeneous catalysts in general 

increased the solubility of treated SW EOL to a greater extent when compared to the 

heterogeneous catalysts. When RuCl2(PPh3)3 was used, the solubility of the hydrogenated 

lignin in ethanol increased to 96.4%, resulting a nearly complete solubilization and a 

12.2% decrease in Mw. Compared to the untreated SW EOL, the solubility decreased in 

case of Co/Mo or Ru-PVP as catalysts, the Mw of the soluble phase decreased by 15.4% 

and 20.2%, respectively (Table 36). 

Homogeneous catalysts 
 
Borane/Iodine NaBH4/I2, 1/1 w/w 
  
Rhodium RhCl(PPh3)3 
  
Ruthenium Ru(Cl)2( PPh3)3   
 Ru(H)(Cl)( PPh3)3 
 Ru-PVP nanoparticle 

Heterogeneous catalysts 
 
Cobalt/Molybdenum (Co/Mo) 3.5% CoO, 14% MoO3 (Aluminum-supported) 
  
Nickel Raney-Ni 
  
Palladium 10% Carbon-supported (Pd/C) 
  
Platinum 5% Carbon-supported (Pt/C) 



 129

Table 36. Solubility in ethanol, average molar mass data (Mw, Mn) and polydispersity 
(Mw/Mn) of the soluble phase for the untreated ethanol organosolv lignin (EOL), the blank 

run and after hydrogenation with different catalysts at175°C for 20 hours. 
 

Reaction conditions Solubility in 
ethanol 

(% dry wt.) 

Mw 
 

(g mol-1) 

Mn 
 

(g mol-1) 

Mw/Mn 
 
 

     
EOL 52.1 2440 1191 2.0 
     
Blank 65.0 2030 1026 2.0 
     
Heterogeneous catalysts     
Co/Mo 54.3 1717 1075 1.6 
Raney-Ni 71.8 2225 1148 1.9 
Pd/C 69.8 2050 995 2.1 
Pt/C 76.5 2069 953 2.2 
     
Homogeneous catalysts     
NaBH4/I2 72.4 1079 404 2.7 
RhCl(PPh3)3 76.3 1878 787 2.4 
Ru(Cl)2( PPh3)3 96.4 2142 893 2.4 
Ru(H)(Cl)( PPh3)3 77.2 1974 837 2.4 
Ru-(PVP) 58.1 1620 902 1.8 

 
 

 While ethanol solubility significantly increased in most cases, the Mw of the 

soluble phase only decreased by ~20% to 1900-2100 g mol-1, which represents a lignin 

DP of 9-10 units. However, when the MWD are examined (Figure 47), an increase of the 

lower MW fraction can be observed in the 200-300 g mol-1 region (DP = 1-2 units) when 

compared to the blank run. This finding was most pronounced with NaBH4/I2 as catalyst. 
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Figure 47. Apparent molar distributions (polystyrene standard equivalent) of the soluble 
fraction of the blank run and when NaBH4/I2 was used as catalyst for softwood ethanol 

organosolv lignin hydrogenation at 175°C for 20 hours. 
 

5.3.4 Investigation of the Reaction Mechanism: Hydrogenation vs. Hydrogenolysis 

 Both hydrogenolysis and hydrogenation of lignin results in the enrichment of the 

saturated aliphatic region in the 1H-NMR spectra.290 Quantitative 1H-NMR measurements 

provided a reliable means of monitoring the enrichment of the hydrogen containing 

groups (Figure 48). 
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Figure 48. Qualitative 1H-NMR of the softwood EOL soluble fraction in case of the 
untreated ethanol organosolv lignin(EOL) and when Raney-Ni was used as catalyst at 

175°C for 20 hours. (solvent: DMSO-d6). 
 

 The solubility, and the data of gel permeation chromatography (GPC) and NMR 

spectra indicate that the EOL undergoes condensation reactions above 100°C. 

Accordingly, the DP of the insoluble fraction is increased from ~1000 up to ~1700 units. 

Lower MW fractions were formed during hydrogenation when smaller fragments of the 

EOL polymer underwent hydrogenolytic cleavage. When the DP of the insoluble polymer 

decreases to 10-12 monomeric units, the hydrogenated lignin fragments become soluble 

in ethanol. 
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 Highest yields were achieved when Raney-Ni, Pt/C, NaBH4/I2 or RuCl2(PPh3)3 

were used as catalyst. In case of RuCl2(PPh3)3, the free PPh3 ligands, which dissociated 

from the RuCl2(PPh3)3 complex, contaminate the soluble fraction.233 Thus, quantitative 

elemental analysis was performed on soluble fractions of the SW EOL for experiments 

with Raney-Ni, Pt/C, or NaBH4/I2 as catalyst. 

 Haenel et al. reported in the context of hydrogenation studies with borane and 

iodine catalysts for coal liquefaction about high catalytic activity towards aromatic 

compounds, increasing the original coal’s aliphatic carbon content from 11% up to 

60%.288 Previous hydrogenation studies with Raney-Ni or Pt/C both have shown catalytic 

activity towards carbon-carbon double bond hydrogenation and also carbon-oxygen bond 

cleavage.290  

The aim of the present study is to identify catalytic hydrogenolysis conditions for the 

selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages of the lignin polymer. 

The fundamental hydrogenation chemistry of SW EOL was monitored by elemental 

analysis (Table 37), 1H and 31P-NMR. 

 

Table 37. Elemental analysis and H/C molar ratio data of the soluble fraction of the 
untreated softwood ethanol organosolv lignin (EOL), the blank run and after 

hydrogenation with different catalysts at 175°C for 20 hours. 
 
Used catalyst Measured element (w/w) H/C 
 H C O (mol/mol) 
EOL 5.85 65.33 27.81 1.07 
Blank 6.55 67.19 26.25 1.16 
Raney-Ni 6.69 67.65 24.65 1.18 
Pt/C 6.59 67.45 25.51 1.17 
NaBH4/I2 9.66 63.23 27.06 1.83 
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 The elemental analysis shows an increase in the H/C ratio in all cases. The 

enrichment of the hydrogen containing groups in the soluble phase was followed by 

quantitative 1H-NMR (Table 38). 

 

Table 38. Hydrogen content of the soluble fraction of the untreated softwood ethanol 
organosolv lignin (EOL), the blank run and after hydrogenation with different catalysts at 

175°C for 20 hours as determined by quantitative 1H-NMR. 
 
Used 
catalyst 

Total 
H 

content 

 Hydrogen content of selected groups (µmol mg-1) 

 (µmol 
mg-1) 

 Carboxylic 
acid 

Formyl Phenolic Aromatic, 
Vinyl 

Aliphatic Aliphatic

 (13.50-
0.00)  
ppm* 

 (13.50-
10.50) 
ppm* 

(10.10-
9.35) 
ppm* 

(9.35-
8.00) 
ppm* 

(8.00-
6.00) 
ppm* 

(6.00-
4.05) 
ppm* 

(2.25-
0.00) 
ppm* 

   -C(O)OH -C(O)H =HC-OH CH=CH 
CH2=CH 

CH-O 
C-CH2-O 

C-CH2-C 
C-CH3 

EOL 50.91  --- 0.00 1.20 12.53 5.26 3.28 
Blank 64.58   --- 0.00 2.11 15.60 5.42 8.85 
Raney-
Ni 73.34   --- 0.04 

1.96 
14.13 6.42 20.75 

Pt/C 74.04   --- 0.13 3.05 16.12 5.57 15.71 
NaBH4/I2 143.29  0.83 1.43 2.29 23.91 10.16 55.03 
* Li and Lundquist 1994; Ragauskas et al. 1997; Moe and Ragauskas 1999; Runge and Ragauskas 1999. 

 

 Based on the increment of the lower MW fraction it is obvious that 

hydrogenolysis has taken place, and the decrease in the aromatic content is a clear 

indication of simultaneous hydrogenation of the aromatic ring. The increase in hydrogen 

content both in regions of phenolic groups and oxygen containing aliphatic groups is an 

indication of a hydrogenolytic cleavage of aryl-O-aryl and aryl-O-aliphatic linkages, but 

this effect is pronounced only in the case of Pt/C as catalyst. The enrichment in the non-

oxygen containing aliphatic group content is an indication of the simultaneous 
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hydrogenation by saturation of the carbon-carbon double bonds of the aryl and aliphatic 

groups.  

 The analytical data provided by the GPC and NMR measurements showed that 

each catalyst provided different final product after SW EOL hydrogenation. Based on 

previous literature and the analytical data provided by quantitative NMR, we propose 

three distinct reaction mechanism that could lead either hydrogenation or hydrogenolysis 

of the starting biopolymer. 

 

5.3.4.1 Proposed Reaction Mechanism Using Heterogeneous Metal Catalysts 

 During heterogeneous hydrogenation on metal surfaces such as; Raney-Ni, carbon 

supported platinum and carbon supported palladium, the reaction is proposed to take 

place on the surface of the metal catalyst.283 Based on our quantitative 1H-NMR data 

combined with previous literature data, our proposed reaction mechanism is depicted in 

Equation 5. 
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Equation 5. The proposed reaction mechanism for heterogeneous hydrogenation (a) and 
hydrogenolysis (b) on catalyst surface with metal-hydride. 
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 As the first step, the hydrogen molecules react with the metal atoms at the catalyst 

surface while their σ-bond is broken and replaced with weaker metal-hydride bonds. 

During the second step, the π-bond in case of the C-C double bond or the σ-bond in case 

a C-O bond interacts with the metal catalyst weakening it metal-hydrate bond. As a result 

a hydrogen atom is transferred from the catalyst surface to one of the carbons (C=C) or 

oxygen (C-O). As the third step; during hydrogenation the π-bond (C=C) of the alkene 

interacts with the metal catalyst weakening its bond while a second hydrogen atom is 

transferred from the catalyst surface forming the alkane. During hydrogenolysis (C-O) 

when the second hydrogen atom is transferred from the catalyst surface to the carbon, the 

weakened σ-bond get cut and the hydrogenolysis happened. At the last step the products 

are released from the catalyst’s surface, allowing it to accept additional hydrogen 

molecules for a subsequent catalytic cycle. 

 

5.3.4.2 Proposed Reaction Mechanism Using Homogeneous Metal Catalysts 

 During homogeneous hydrogenation has been performed using RhCl(PPh3)3, 

RuCl2(PPh3)3 and Ru(H)(Cl)(PPh3)3 as catalysts. Our P31-NMR data described in section 

5.3.1 (Determining the Structure of Ru(Cl)2(PPh3)3 and RhCl(PPh3)3 in Solution) 

provided valuable information on the structural behavior of these Wilkinson catalysts. 

Combining this acquired analytic data with literature from previous experiments using 

the same Ru and Rh catalyst systems gave valuable data on the reaction mechanism 

during our hydrogenation reactions.277,278 The proposed reaction mechanism for 

RhCl(PPh3)3 is depicted in Equation 6.  
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Equation 6. The proposed mechanism for hydrogenation (a) and hydrogenolysis (b) with 
RhCl(PPh3)3 catalyst. 

 



 138

 As the first step, it is proposed that the PPh3 is readily lost due to steric crowding. 

This step is consistent with our data where the dissociation of the phosphine ligand has 

been clearly shown by the singlet at (–5,50 ppm) in the P31-NMR spectrum, which 

stands for the free (PPh3)-ligand and the two singlet at (50,99 ppm) and (52,21 ppm) 

that stand for the symmetrical dimer coupled with ruthenium. 

 Previous literature shown that the Rh-PPh3 hydrogenation catalyst system is 

compatible with a variety of functional groups (ketones, esters, carboxylic acids, nitriles, 

nitro groups, and ethers) and indicates that the metal hydride intermediate is primarily 

covalent in character.278,287 Due to these findings, we propose that in case of a reaction of 

a π-electron system (Equation 6/a) as the next step, the catalyst forms a metal-hydride 

intermediate, that coordinative bonds to the unsaturated C-C bond leading to the 

saturation of the double bond. In case of an oxygen containing C-O σ-electron system 

(Equation 6/b), the cationic metal center due to it’s electrophillic character, coordinates to 

the oxygen rather to the carbon leading to a hydrogenolysis by the formation first of the 

hydroxyl product and later the hydrogenated carbon group. 

 When RuCl2(PPh3)3 and Ru(H)(Cl)(PPh3)3 were used as catalysts, literature 

suggests that Ru has a strong tendency to perform a heterolytic activation of H2 instead of 

oxidative addition to make a metal dihydride. This can occur either via hydrogenolysis or 

heterolytic cleavage mechanisms.257 Complexation of the dihydrogen to the metal leads 

to a decrease in H-H σ-bond character. This decrease in bonding leaves it with a partial 

positive charge hence making it more acidic, or easier to deprotonate with a ‘base’. Based 

on these findings combined with our P31-NMR data and proposed catalyst structures 
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depicted in section 5.3.1.1 (RuCl2(PPh3)3), the proposed RuCl2(PPh3)3 activation step is 

depicted in Equation 7.  

 

 

Equation 7. The proposed mechanism for heterolytic activation of RuCl2(PPh3)2 
catalyst by σ-bond metathesis and heterolytic cleavage. 

 

 As it is shown in Equation 7, both hydrogenolysis (σ-bond metathesis) and 

heterolytic cleavage mechanism give the same net result. The proposed catalytic cycle for 

activated RuCl2(PPh3)2 is depicted in Equation 8.257  
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Equation 8. The proposed mechanism for hydrogenation (a) and hydrogenolysis (b) with 
activated RuCl2(PPh3)2 catalyst.  
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 Beside the activation step, the obvious difference between the proposed catalytic 

cycle between Rh and Ru is that while the oxidation state of the Rh during the cycle is 

changing between (+3) and (+1), there is no change in oxidation state of the Ru (+2). 

With all utilized Wilkinson catalysts, our quantitative H1-NMR measurements shown an 

increase in hydrogen content both in regions of phenolic groups and oxygen containing 

aliphatic groups which is an indication of a hydrogenolytic cleavage of aryl-O-aryl and 

aryl-O-aliphatic linkages. The enrichment in the non-oxygen containing aliphatic group 

content is an indication of the simultaneous hydrogenation by saturation of the carbon-

carbon double bonds of the aryl and aliphatic groups. This is an indication that both 

reaction proposed in (Equation 6,8/a&b) has happened under our reaction conditions. 

 Since the coordination of the metal hydride to the substrate is the rate determining 

step, we propose that the ratio of hydrogenation and hydrogenolysis is determined by the 

electrophillic character of cationic metal center and its favor towards nucleophillic attack 

on oxygen containing σ-electron system over a carbon-carbon π-electron system by 

alkene coordination. 
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5.3.4.3 Proposed Reaction Mechanism for I2/BH4 System 

 It is well known that NaBH4 decomposes in protic solvents (like alcohols).291 It is 

proposed that the extent of this undesired side reaction being a function of the alcohol 

and experimental conditions used such as: concentration and temperature (T). Equation 9 

represents the decomposition reaction in ethanol, which is the solvent of choice in our 

experimental setup. 

 

4 EtOH + NaBH4  (EtO)4B
-Na+ + 4H2 
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Equation 9. The decomposition reaction of NaBH4 in ethanol. 

 

 After the hydrogenation experiments, the iodine is separated from the reaction 

media as a solid dark-purple pastille under our reaction conditions. Due to this 

observation, our proposed reaction mechanisms will avoid NaI formation. Based on our 

product distribution and previous literature data, thee main pathways were postulated for 

the hydrogenation and hydrogenolysis of SW EOL. Regioselective reduction and ether 

cleavage is depicted in Equation 10.  
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Equation 10. The proposed mechanism for hydrogenation (a) and hydrogenolysis (b) 
with NaBH4/I2 catalyst system. (R: H or OEt; R’, R”: Aliphatic or aryl group) 

 

 Equation 10 shows that both the hydrogenation and the hydrogenolysis assume a 

six member cyclic model.292 Both reaction mechanism starts with the initial coordination 

of the borane with the carbonyl (a) or etherial (b) oxygen.293 In both cases the second step 

is the hydride addition to the allyl system forming the boro ether, that followed by a 

subsequent complexation of the dihydrogen to the borane. The proposed reaction 

mechanism will lead to increased oxygen containing aliphatic and vinyl group formation 

in the final product, which is consistent with our quantitative H1-NMR measurements. It 

worth mentioning that the proposed reaction pathways involve a hydride addition, thus 

the coordinating borane has to have a free hydrogen and as a conclusion this reaction can 

not work with (EtO)3B. 
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 The third proposed pathway is postulated for the reduction of carbonyl species 

with NaBH4 involving the protic solvent. Figure 49 shows the transition state of the 

reduction of carbonyl specie with borohydrate anion assisted by ethanol as the protic 

solvent.294 

Et O
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B

H

H

H

H C
R

R'
O H O

Et  
 

Figure 49. Postulated transition state for reduction of carbonyl specie with NaBH4 in 
ethanol. 

 

 In the light of the above consideration combined with previous research data, two 

initial step could be considered during carbonyl hydrogenation.294 The first step could 

involve both linear and six-member cyclic mechanisms leading to interchangable 

intermediates depicted in Equation 11. Since the coordinating borane specie has to have a 

free hydrogen to form the proposed transition state involved in the initial step, a 

borohydrate anion can enter four times into the proposed reaction cycle before forming 

the unreactive (EtO)4B
-. 
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Equation 11. Postulated reaction pathways for the reduction of carbonyl specie with 
NaBH4 in ethanol. (R, R’: Aliphatic or aryl group) 
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 The enrichment in the oxygen containing aliphatic group content is an indication 

that the reaction proposed in Equation 10 and/or Equation 11 has happened under our 

reaction conditions. It is worth mentioning that while in the first two proposed reactions 

the borane specie is a catalyst, in the third reaction mechanism it is a reactant, and the 

initial borohydrate anion is not regenerated.  

 The fourth proposed pathway is based on the common mechanism via 

hydroboration of aromatic π-bonds at high temperatures leading to Caryl-Calkyl bond 

hydrogenolysis and partial hydrogenation.295 Equation 12 shows that reversible 

hydroboration can occur on the alkylated π-bond at C1 or at C2 positions. As the second 

step, rearomatization is possible by hydrogenolysis or hydrogenation. Hydrogenolysis 

can happen by the elimination of the aliphatic fraction (dehydroboration) or the aromatic 

group (deorganoboration) leading to cleavage. As an alternative route, hydrogenation can 

occur by reversible hydroboration of aromatic π-bonds followed by B-C hydrogenolysis. 

It is noteworthy that while during hydrogenolysis the borane specie is a reactant, during 

hydrogenation it is a catalyst. It could lead to an increased hydrogenation ratio over 

hydrogenolysis which can result in an increased aliphatic group formation in the final 

product. This finding is consistent with our quantitative H1-NMR measurements. 
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Equation 12. The proposed mechanism for softwood ethanol organosolv lignin 
hydrogenation and hydrogenolysis catalyzed by organoboranes.  

(R, R’: Aliphatic or aryl group, R”: H or OEt) 
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5.3.5 Quantitative Analytical Tool to Follow Hydrogenation and Hydrogenolysis 

 The hydrogenolytic cleavage of an interlinking aryl-O-aryl and aryl-O-aliphatic 

linkage increases the hydroxyl group content of the final product. The hydrogenation of 

the aromatic ring decreases the phenol concentration and elevates the concentration of 

aliphatic hydroxyl groups. Selective phosphitylation of the hydroxyl groups on the lignin 

polymer with TMDP, followed by quantitative 31P-NMR measurements provided a 

reliable means of monitoring these changes (Equation 13, Figure 50, Table 39).231  

 

 
Equation 13. Phosphitylation of a free hydroxyl group on the lignin polymer with 2-

chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
 

 
 
Figure 50. Qualitative 31P-NMR of the soluble fraction of the untreated softwood ethanol 

organosolv lignin (EOL) after derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-
dioxaphospholane. 
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Table 39. Hydroxyl content of the soluble fraction of the untreated softwood ethanol 
organosolv lignin (EOL), the blank run and after hydrogenation with different catalysts at 

175°C for 20 hours as determined by quantitative 31P-NMR after derivatized with 2-
chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 

 
Used 
catalyst 

Total –OH 
content 

Hydroxyl content of selected groups 

 (µmol mg-1) Aliphatic 
hydroxyl 

Total 
phenolic 

 

Carboxylic 
hydroxyl 

 (149.0-133.8) 
ppma 

(149.0-145.6) 
ppma 

(144.4-137.6) 
ppma 

(136.0-
133.8) 
ppma 

EOL 4.80 1.00b 1.05 0.00 
Blank 4.66 0.87 1.12 0.00 
Raney-Ni 5.14 1.21 1.12 0.00 
Pt/C 5.05 1.01 1.14 0.00 
NaBH4/I2 5.33 1.08 0.81 0.38 

                a Granata and Argyropoulos. [Ref. 231] 
                b EOL aliphatic hydroxyl value is used as reference for hydroxyl content of selected groups. 
 
 

 The results of 31P-NMR analysis of the starting and treated SW EOL indicated 

that the hydrogenolysis was accompanied by a 5-11% increase in total hydroxyl group 

content for the treated SW EOL. Furthermore, the greatest increase in hydroxyl group 

content was observed to be due aliphatic hydroxyl groups except when NaBH4/I2 was 

employed, where carboxylic acid hydroxyl groups were detected in agreement with the 

results of 1H-NMR. However, the increase of the aliphatic hydroxyl group content could 

be the result of either a cleavage of an aryl-O-aliphatic group, or the hydrogenation of a 

phenolic ring. While both hydrogenation and hydrogenolysis can affect the absolute value 

of the aliphatic hydroxyl content, the observed increase in the overall hydroxyl content on 

the treated SW EOL is a clear indication of hydrogenolysis. Thus, based on the elevated 

concentration of the total phenolic and aliphatic hydroxyl groups, we suggest that 

hydrogenolytic cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages occurred. 
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5.4 Conclusion 

 Selective hydrogenolysis could provide an economically feasible route to convert 

lignin from a low grade fuel to potential fuel precursors or other value added chemicals 

by decreasing the carbon chain length, while increasing the H/C ratio and lowering the 

O/C ratio. We propose that the lower temperature limit for a high yield hydrogenation is 

determined by the chosen lignin’s glass transition temperature. The upper temperature 

limit is determined by the stability of the catalyst and the charring of the biopolymer at 

higher temperatures. In general, homogeneous catalysts provided higher yields, but they 

were difficult to separate from the final products and have stability problems at elevated 

temperatures. The opposite is true for heterogenous catalysts. The highest hydrogenation 

yields were obtained with NaBH4/I2, Raney-Ni, RuCl2(PPh3)3 or Pt/C. Our data shows 

that each catalyst has different hydrogenative selectivity towards aryl-O-aryl and aryl-O-

aliphatic linkages over carbon-carbon double bonds, and hydrogenation simultaneously 

happened with hydrogenolysis. 
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CHAPTER 6 

6. QUANTITATIVE ANALYSIS OF PARTIALLY SUBSTITUTED 

BIODIESEL GLYCEROLS 4 

 

6.1 Introduction 

 
 The interest and development of biofuels has grown exponentially over the last 

few years in response to the need to develop sustainable energy resources and address 

climate change.296,297 Currently, bioethanol and biodiesel are the most successful fossil 

fuel supplements. The absolute annual biodiesel potential of the US is estimated to be 3.2 

billion gallons.298 The current biodiesel production capacity in the US is 400 million 

gallons which is projected to double within the next two years.299,300 Although this is less 

than the current bioethanol production, recent research efforts in algae-oil production 

could significantly change this outlook.301 Biodiesel production involves the 

transesterification of triglycerides from vegetable and algae oils or animal fats yielding 

glycerol and the corresponding alkyl fatty ester as summarized in Figure 51. 

 

                                                 
4 This manuscript was published in [Journal of Biobased Material and Bioenergy, 2009, 3(1), 108-111] 
Reproduced by the permission of Dr. H.S. Nalwa, JBMBE. It is entitled as “Quantitative NMR analysis of 
partially substituted biodiesel glycerols”. The other authors are Arthur J. Ragauskas from School of 
Chemistry and Biochemistry at the Georgia Institute of Technology, Thomas Dyer from the Institute of 
Paper Science and Technology at the Georgia Institute of Technology and Teresa L. Alleman from the 
National Renewable Energy Laboratory, CO, USA. 
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Figure 51. Transesterification reaction for biodiesel production, 
R1-3 are hydrocarbon groups. 

 

The transesterified ester typically has excellent diesel-like properties and research 

efforts are ongoing to develop new chemical applications for glycerol as the conventional 

applications have been unable to fully utilize the world growth in glycerol.302,303 

Although a wide variety of alcohols can be used for the transesterification reaction to 

influence the properties of the final biodiesel product, the most frequently employed 

alcohol is methanol.304 

About 90% of the biodiesel produced in the US is based on soybean oil as the raw 

material.305 The efficiency of the production steps and the quality of the product is 

monitored by measuring the concentration of free, mono and disubstituted glycerols, 

methanol and free fatty acids. For these constituents the currently used analytical 

methods are primarily chromatographic; high pressure liquid chromatography (HPLC), 

306 gas chromatography (GC),307 spectroscopic; mass spectroscopy (MS), 308 near infrared 

spectroscopy (NIRS),309 and wet chemical techniques (potentiometric, iodometric 

titration)310 which are often time consuming typically due to sample preparation, 

extended analysis time and/or complicated data analysis. Because of these limitations 
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there is a clear need for a rapid and accurate quantitative analysis technique for biodiesel 

constituents. 

The yield of the transesterification step and the quality of the final product can be 

determined by measuring the free hydroxyl groups in the reaction mixture. In lignin 

chemistry, phosphytilation of hydroxyl groups with 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane (TMDP) followed by 31P-NMR analysis has become a powerful 

technique to characterize the chemical nature of carboxylates, phenoxy and aliphatic 

hydroxyl groups.311,312,313,314 Employing this technique, partially substituted glycerol 

samples (i.e., see Figure 52) and biodiesel samples were phosphitylated with TMDP and 

analyzed. 

 

 

Figure 52. Phosphitylation of 1,2-diacylglycerol with 2-chloro-4,4,5,5-tetramethyl-1,3,2-
dioxaphospholane at c-position. R1,2 are hydrocarbon groups. 

 

6.2 Experimental Section 

6.2.1 Materials 

Commercial biodiesel samples received from the National Renewable Energy 

Laboratory (Golden, CO, USA), all precursors and reagents were purchased from Sigma-

Aldrich (St. Louis, MO, USA) and used as received.  
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6.2.2 Sample Preparation and Phosphitylation 

 Sample preparation and phosphitylation is described in Chapter 3. (3.3.3.1.2 

Reaction Mixture Preparation and Phosphitylation with TMDP) 

 

6.2.3 NMR Measurements on Biodiesel Precursors and Commercial Samples 

 The NMR pulse program used for chemical shift assignment and for commercial 

biodiesel samples is depicted in Chapter 3. (3.4.2.1 Quantitative 31P-NMR 

Characterization for Preliminary Experiments) The method for chemical shift assignment 

is depicted in Chapter 3. (3.3.3.2.1 NMR Chemical Shift Assignment) 

 

6.3 Results and Discussion 

6.3.1 Initial 31P-NMR Chemical Shift Database of Biodiesel Precursors 

To establish a database of 31P-NMR chemical shift information on relevant 

biodiesel precursors, a series of representative pure samples were acquired treated with 

TMDP and analyzed by 31P-NMR. The results of this analysis are summarized in Table 

40. 
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Table 40. Chemical shift assignments for 31P-NMR spectrum of biodiesel standards after 
phosphitylation of free hydroxyl groups with 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* All samples were referenced to an internal standard of cyclohexanol at δ 
144.9 ppm. 
** Quantitative accuracy measured. 

 

 

 
δ 31P-
NMR 
(ppm)* 

 
Designated 

phosphitylated 
position 

Glycerol derivatives   
Mono-substituted   
1-Monopalmitoleoyl-rac-glycerol** 146.2 O-b 
 147.6 O-c 
1-Octanoyl-rac-glycerol 146.2 O-b 
 147.4 O-c 
2-Oleoylglycerol 147.8 O-a & O-c 
Di-substituted   
1,2- Dioleoylglycerol 147.7 O-c 
1,3- Dioleoylglycerol 146.4 O-b 
Tri-substituted/ transesterified   
Glyceryl trioleate ----- ----- 
   
Fatty acids   
Saturated   
Hexanoic acid** 134.3 O-a 
Palmitic acid 134.4 O-a 
Stearic acid 134.4 O-a 
Unsaturated   
Oleic acid 134.4 O-a 
Linoleic acid 134.3 O-a 
Linolenic acid 134.3 O-a 
   
Biodiesel production by-products   
Free Glycerol** 147.1 O-a & O-c 
 146.1 O-b 
Methanol 147.9 O-a 
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 When the spectrum was recorded on the fully substituted glyceryl trioleate which 

has no free hydroxyl group no signal has been detected. This result ensures that the 

TMDP reagent only reacts with free hydroxyl groups and no side reaction occurs under 

our reaction conditions. 

 Di-substituted glycerol derivatives have only one free hydroxyl group which 

yields only one 31P-NMR signal after phosphitylation. A phosphitylated terminal 

glyceride hydroxyl group; Oc yields a signal at δ 147.8 whereas a secondary; Ob hydroxyl 

derivative provides 31P-NMR absorption at δ 146.4. 

In the case of the mono-substituted glycerol derivatives and free glycerol, 

phosphitylation can occur on two or three hydroxyl groups depending on the degree of 

substitution. By integrating the spectra recorded on the symmetrical compound; free 

glycerol, the difference in the chemical shift of terminal hydroxyl groups and the 

secondary hydroxyl group could be measured. With the chemical shift differences in 

hand, the signals for phosphitylated primary and secondary hydroxyl groups in case of 

the mono-substituted glycerol derivatives were assigned. 

Typically, a terminal hydroxyl group treated with TMDP yielded a signal from δ 

147.0-147.8 whereas a secondary hydroxyl group yielded a signal from δ 146.1-146.4 in 

the 31P-NMR spectrum. 

 Another key component to industrial sources of biodiesel is the presence of free 

fatty acids. As summarized in Table 40, several fatty acids were derivatized and analyzed 

by 31P-NMR. These results suggest that for the fatty acids studied the length of the 

hydrocarbon chain or the degree of unsaturation has little or no effect on the chemical 

shifts. 
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 A common biodiesel production line utilizes a downstream alcohol recovery and 

biodiesel purification step.315 However those processes are not 100% efficient thus the 

final product always has contamination from the alcohol used for the catalytic 

transesterification of the parent oil. Soybean oil is a mixture of C16 and C18 fatty-acid 

substituted glycerols. The phosphitylated fatty acids and mono-substituted standards in 

Table 40 shows, that differences between chain lengths of the substituting fatty acid had 

little or no effect on the chemical shift measured in case of the substituted compounds 

studied. Thus the method can be used to selectively measure the differences between 

different substitution levels.  

 

6.3.2 Quantitative TMDP/ 31P–NMR Analysis of Commercial Biodiesel Samples 

With cyclohexanol used as an internal standard, the quantitative accuracy of the 

TMDP/ 31P–NMR technique was calculated in case of mono-phosphitylated carboxylic-

acid group, di- and tri-phosphitylated hydroxyl groups. The accuracy of all quantitative 

measurements were within 95+%.  

The main step during biodiesel production is the catalytic transesterification of 

triglycerides. By selectively measuring the amount of glycerol with different substitution 

levels, the yield of this step and the quality of the final biodeiesel can be determined. 

 The phosphitylation/NMR analysis method has been tested on original biodiesel 

samples processed from soybean oil (Figure 53). The quantitative data have been 

compared with conventional analytical methods as summarized in Table 41. 
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Figure 53. Quantitative 31P-NMR spectra of two commercial biodiesel sample produced 
from soybean oil with cyclohexanol as an internal standard, derivatized with 2-chloro-

4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
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With cyclohexanol used as an internal standard, the concentration of various biodiesel 

constituents can be readily calculated and the results of this analysis are summarized in 

Table 41. 

 

Table 41. Measured data of various biodiesel constituents with conventional techniques 
and with phosphitylation with subsequent 31P-NMR for biodiesel sample. 

 
Component Conventional technique used Data 

Measured 
Phosphitylation 
with31P-NMR 

Free Glycerol Chromatographic (LC/GC)* 

(weight %) 
0.01 0.03 

Mono Glycerol Chromatographic (LC/GC)* 

(weight %) 
1.4 1.8 

Di Glycerol Chromatographic (LC/GC)* 

(weight %) 
1.7 1.9 

Tri Glycerol Chromatographic (LC/GC)* 

(weight %) 
0.3 --- 

Fatty acids Potentiometric titration 
(mgKOH/g)** 

0.3 0.3 

Methanol Chromatographic (LC/GC) 

(weight %)* 
--- 0.04 

*    Following analytical method: Ref. 4. 
**  Following analytical method: Ref: 5. 

 
 

The TMDP/ 31P–NMR technique has the capability to become a qualitative 

method for biodiesel analysis of partially hydrolyzed triglycerides yielding valuable data 

which currently can require up to three different methods at this moment.  
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6.4 Conclusions 

Within the conventional techniques used, chromatographic methods usually are 

preferred over wet chemical methods which are often time consuming as they can require 

complex sample preparation. While many individual compounds can be separated with 

chromatographic techniques, even with one of the most up to date silyl-derivatized GC 

method reported, often some overlap in elution time occurs in complex mixtures.4 

 On the other hand the TMDP/ 31P–NMR technique provides a rapid and accurate 

quantitative method. Since the spectroscopic information is related to the structure of the 

compound and the phosphitylating agent employed, it provides a spectra with good 

separation even in case of a complex sample, becoming a novel research tool for the 

characterization of biodiesel and its processing components. 
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CHAPTER 7 

7. QUANTITATIVE 31P-NMR ANALYSIS OF COMMERCIAL 

BIODIESEL GLYCEROL5 

 

7.1 Introduction 

 
 The challenges of energy sustainability and climate change have to begun to 

impact scientific research, social policy and business practices. Although bioethanol 

represents the predominant first generation biofuel, biodiesel continues to garner regional 

support and in the U.S. it represents approximately 6.5% of the biofuels market. 316 

Despite this limited market share, biodiesel has several strong attributes which suggests 

that its usage will continue to grow in the future. Attractive properties of biodiesel 

include ease of incorporation into existing fuels distribution systems, ready utilization in 

modern diesel combustion engines, growing demand and favourable exhaust emission 

profiles.85 Of course, these positive attributes need to be balanced against the limited 

global production of plant oils and animal renderings needed to propel growth in this 

industry. One of the most promising next generation of technologies that may address 

current production limitations is the development of algae energy farms for the efficient 

production triglycerides for biodiesel. 317 Regardless of source, the conversion of 

triglycerides to biodiesel involves a transesterification step as shown in Figure 54. 

                                                 
5 This manuscript was published in [FUEL, 2009, 88(9), 1793-1797] Reproduced by the admission of the 
Copyright Clearance Center's Rightslink. It is entitled as “Phosphitylation and Quantitative 31P-NMR 
Analysis of Partially Substituted Biodiesel Glycerols”. The other authors are Arthur J. Ragauskas from 
School of Chemistry and Biochemistry at the Georgia Institute of Technology, and Cherie J. Ziemer and 
Brial J. Kerr from the ARS-USDA. 
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Figure 54. Transesterification reaction for biodiesel production R1-4 are hydrocarbon 
groups. 

 

 The transesterification step is required to impart favourable fuels properties as 

direct use of plant oils with conventional diesel engines has been reported to result in 

coking and trumpet formation on the fuel injectors, carbon deposits, gelling of lubricating 

engine oil and incomplete combustion. 318 Transesterification of triglycerides, as shown 

in Figure 54, has been shown to mitigate these problems yielding a valuable renewable 

biofuel resource. Many alcohols have been used in this reaction and influence final 

biodiesel properties the most common employed commercially used alcohol is methanol. 

319,320 Although commonly manufactured from natural gas, in the future gasification of 

biomass could yield a bio-based source of methanol. 321 A host of catalysts and 

conditions have been used to accomplish this reaction including assorted acids, bases, 

enzymes and physical treatments. 322,323 Along with these chemical and biochemical 

developments a constant need exists for new and improved analytical techniques to 

monitor the quality of incoming feedstocks and their respective conversion products. 

Current analytical methods include HPLC 324, GC 325, spectroscopic (i.e., MS 326, NIR 327) 

and wet chemical techniques (i.e., potentiometric, iodometric titration) 328 which are often 

time consuming typically due to sample preparation, extended analysis time and/or 

complicated data analysis.  
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 Chapter 6 describes, a novel approach to characterizing mixtures of multi-

substituted glycerol’s which involves an initial phosphitylation of hydroxyl groups of 

substituted glycerol with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) 

followed by 31P-NMR analysis. 329 These initial studies were conducted primarily with 

analytical pure compounds to establish a data base of chemical shifts and demonstration 

of the applicability to a commercial biodiesel sample. This study examines the 

application of this methodology to a broad spectrum of glycerol samples from 

commercial operations and to evaluate the applicability of alternative phospitylation 

agent 2-chloro-1,3,2-dioxaphospholane (DOP). 

 

 
Figure 55. Phosphitylation of partially substituted glycerols with 2-chloro-1,3,2-

dioxaphospholane (DOP) or with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 
(TMDP). 

 

7.2 Experimental Section 

7.2.1 Materials 

Commercial glycerol and biodiesel samples received from the Agricultural 

Research Service, United States Department of Agriculture (Ames, IA, USA), all 

precursors and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

used as received.  
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7.2.2 Sample Preparation and Phosphitylation 

 Sample preparation and phosphitylation with DOP is described in Chapter 3. 

(3.3.3.1.1 Reaction Mixture Preparation and Phosphitylation with DOP) Sample 

preparation and phosphitylation with TMDP is described in Chapter 3. (3.3.3.1.2 

Reaction Mixture Preparation and Phosphitylation with TMDP) 

 

7.2.3 NMR Measurements on Biodiesel Precursors and Commercial Glycerol and 

Biodiesel Samples 

 The NMR pulse program used for chemical shift assignment and for commercial 

glycerol samples is depicted in Chapter 3. (3.4.2.1 Quantitative 31P-NMR 

Characterization for Preliminary Experiments) The method for chemical shift assignment 

is depicted in Chapter 3. (3.3.3.2.1 NMR Chemical Shift Assignment) 

 

7.3 Results and Discussion 

7.3.1 DOP vs TMDP 

 The efficient conversion of trigylcerides to glycerol and alkyl esters is predicated 

on complete conversion and separation of biodiesel for glycerol. The optimization of this 

reaction requires analysis of the amounts of glycerol, alcohol, mono and disubstituted 

glycerols present in the product mixture. The potential ability to characterize hydroxyl 

groups of glycerol-related compounds was assessed using DOP and TMDP as the 

phosphitylating agent.  
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a/ 

 

b/ 

 

 
Figure 56. 31P-NMR of glycerol derivatized with (a) 2-chloro-1,3,2-dioxaphospholane 

and with (b) 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
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a/ 

 

b/ 

 

 
Figure 57. 31P-NMR of ~85% 1,3-Dioleoylglycerol and ~15% 1,2-Dioleoylglycerol 
mixture derivatized with (a) 2-chloro-1,3,2-dioxaphospholane and with (b) 2-chloro-

4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
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 Figure 56 and Figure 57 summarizes the 31P-NMR spectra for derivatized glycerol 

and for a mixture of ~85% 1,3-dioleoylglycerol and ~15% 1,2-dioleoylglycerol. These 

results suggest that TMDP provides greater spectral resolution of the individual hydroxyl 

groups of glycerol-derivatives and hence is the reagent of interest for additional studies. 

 

7.3.2 Extended 31P-NMR Chemical Shift Database of Biodiesel Precursors 

 

Table 42. 31P-NMR chemical shifts for partially substituted glycerols, fatty acids, 
alcohols and glycerol after phosphitylated with 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane. 
 
 

* All samples were referenced to an internal standard of cyclohexanol at δ 144.9 ppm. 
** Quantitative accuracy measured 

 

 
δ 31P-NMR 

(ppm)* 

 
Designated 

phosphitylated 
position 

Glycerol derivatives   
Mono-substituted   
1-Mono-substituted C16-C18 ** 146.2-146.3 O-b 
 147.6-147.8 O-c 
2- Mono-substituted C16-C18  147.8-147.9 O-a/c 
Di-substituted    
1,2- Dioleoylglycerol ** 147.7 O-c 
1,3- Dioleoylglycerol ** 146.4 O-b 
Tri-substituted/ transesterified   
Glyceryl trioleate ----- ----- 
Fatty acids   
Saturated   
C6-C18 ** 134.3-134.4  
Mono- and Di-unsaturated    
C18    134.3-134.4  
Biodiesel production by-products   
Free glycerol ** 147.1 O-a/c 
 146.1 O-b 
Methanol **  147.9  
Ethanol   146.3  
Isopropanol 146.4  
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 As summarized in Table 42, 31P-NMR analysis of glycerol, mono and 

disubstituted glycerols treated with TMDP provides characteristic chemical shifts that can 

be readily assigned to specific substitution patterns. The standard deviation, sensitivity 

and quantitative accuracy were determined from five separate measurements using a 

solvent mixture containing analytically pure 99+% biodiesel precursors and cyclohexanol 

as an internal standard. The sensitivity of the TMDP/31P–NMR technique was calculated 

to be 2.1 nmol/ml with a 1.9 µmol/ml lower limit of detection. The error margin of the 

technique was measured to be ±1.1%. 

 TMDP procedure only reacts with free hydroxyl groups and no side reaction 

occurs under the reaction conditions employed.328 The spectroscopic information is 

related to the structure of the compound and the phosphitylating agent employed.330 If the 

amount of the sample is known, by integrating the spectra and using an internal standard 

the amount of the biodiesel processing components can be calculated.331 Figure 58 

demonstrates the characterization of a mixture of common constituents during biodiesel 

production, utilizing cyclohexanol as an internal standard to facilitate quantification.  
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Figure 58. Analysis of solvent mixture consisting of methanol:glycerol:1,3-
dioleoylglycerol:hexanoic-acid in 3:1:1:5 ratio, phosphylited with 2-chloro-4,4,5,5-

tetramethyl-1,3,2-dioxaphospholane using cyclohexanol as internal standard. 
 

7.3.2 Quantitative TMDP/ 31P–NMR Analysis of Commercial Glycerol Samples 

 Following this same procedure a series of commercial glycerol samples acquired 

from biodiesel operations using different feedstock were phosphitylated and analyzed by 

31P-NMR. The qualitative results of this analysis are summarized in Figure 59. The 

quantitative data have been compared with conventional analytical methods on 

commercial glycerol sample produced from tallow and summarized in Table 43. 
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a/ 

 

b/ 

 
 
Figure 59. Quantitative 31P-NMR spectra of glycerol samples from commercial biodiesel 
operations phosphylited with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane using 

cyclohexanol as internal standard based on (a) soy oil, (b) tallow, (c) restaurant grease 
and (d) poultry fat. 
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c/ 

 

 

d/ 

  
 

Figure 59. Quantitative 31P-NMR spectra of glycerol samples from commercial biodiesel 
operations phosphylited with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane using 

cyclohexanol as internal standard based on (a) soy oil, (b) tallow, (c) restaurant grease 
and (d) poultry fat. 
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Table 43. Measured data of various constituents with conventional technique 332 and with 
phosphitylation with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane using 

cyclohexanol as internal standard and subsequent 31P-NMR on commercial glycerol 
sample produced from tallow. 

 
 

 Technique used 
Component Conventional TMDP / 31P-NMR  

 (weight %) (weight %) 
Free glycerol --- 75.9 
Mono substituted glycerol --- 7.7 
Total glycerol 81.9 83.6 
Fatty acids 0.0 0.0 
Methanol 0.1 0.1 

 
 

 In addition, the fatty acid ester product must meet specifications to carry the 

designation “biodiesel fuel” set by the latest American (ASTM D 6751-08) and European 

(DIN EN 14214) standards.333 Elevated glycerin values in the biodiesel are indicators of 

incomplete esterification reactions and predictors of excessive carbon deposits in the 

engine, while elevated acid number can lead to corrosion and may be a symptom of water 

in the fuel. 334 In America the limit for total glycerin concentration is 0.24 wt%, for acid 

number 0.80 mg KOH/g. In Europe the limit for total glycerin concentration is 0.25 wt%, 

for acid number 0.50 mg KOH/g. Following our procedure, commercial biodiesel 

samples can be rapidly analyzed for alcohol, free fatty acids and the presence of glycerol 

derivates containments as shown in Figure 60.  
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a/ 

 

b/ 

 
 
Figure 60. Quantitative 31P-NMR spectra of two commercial biodiesel samples produced 

from soybean oil, using cyclohexanol as an internal standard, derivatized with with 2-
chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
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7.4 Conclusions 

 TMPD is shown to be a better phosphitylating agent than DOP for the 

characterization of biodiesel and its processing components. It provides a spectrum with a 

good separation and high quantitative accuracy even in case of a complex sample. The 

yield of the transesterification step and the quality of the final product can be determined 

by measuring the free hydroxyl groups in the reaction mixture. The TMDP/31P–NMR 

technique provides a rapid and accurate quantitative method, becoming a novel research 

tool for the biodiesel industry. The novel solvent mixture used in this study is capable of 

handling samples with high hydroxyl content e.g. pure glycerol sample, therefore the 

technique can be used for samples throughout the whole production line, from the parent 

oil up to the biodiesel and glycerol streams. The above mentioned study, where the novel 

TMDP/31P–NMR method is tested on samples throughout the whole production line in a 

rapid manner is described in Chapter 8. 
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CHAPTER 8 

8. OPTIMIZATION AND INDUSTRIAL TRIAL OF THE NOVEL 

TMDP/31P-NMR METHOD 6 

 

8.1 Introduction 

 The method widely used to produce biodiesel is transterification which involves 

triglycerides from vegetable oils or animal fats and an alcohol in the presence of a 

catalyst. The reaction yields mono-alkyl esters of the fatty acids with excellent diesel like 

properties and glycerol as a by-product.335 However a common biodiesel production line 

utilizes a down-stream alcohol recovery and biodiesel purification step, the final product 

can be contaminated with partially substituted glycerols, glycerol, free fatty acids, 

residual alcohol and catalyst.336 These by-products of the biodiesel production are 

considered contaminants and they alter the physical-chemical properties of the final 

product and can create engine problems such as engine deposits, corrosion and failure.337  

 The efficiency of the process steps utilized during the biodiesel production and 

the quality of the final products can be monitored by measuring the concentration of these 

contaminants. Currently, primary analytical methods involve chromatography (HPLC, 

GC),338,339 spectroscopy (MS, NIR)340,341 and wet chemical techniques (potentiometric, 

iodometric titration)342 which are often time consuming due to sample preparation, 

extended analysis time and/or complicated data analysis. Because of these limitations 

                                                 
6 This manuscript was accepted for publication in the Journal of Physical Chemistry A It is entitled as “A 
Rapid Quantitative Analytical Tool for Characterizing the Preparation of Biodiesel”. The other authors are 
Arthur J. Ragauskas and Marcus Foston from School of Chemistry and Biochemistry at the Georgia 
Institute of Technology. 
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there is a clear need for a rapid and accurate quantitative analysis technique for biodiesel 

constituents. 

 Nucleic magnetic resonance (NMR) analysis when applied to phosphitylated 

hydroxyl groups has been shown to be a rapid quantitative analytical tool to characterize 

alcohols, phenols and carboxylic acid groups. Accordingly, our laboratory has been 

focused on developing 31P-NMR methods for the quantitative characterization of 

biodiesel process samples using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 

(TMDP) as a phosphitylating agent. (Figure 61) Since the spectroscopic information is 

related to the structure of the compound and the phosphitylating agent employed, it 

provides a spectra with good separation and high accuracy even in case of complex 

mixtures.343 This work has been described in Chapter 6 and Chapter 7, while the 

TMDP/31P–NMR technique has been tested for quantifying biodiesel processing 

components such as; alcohols, partially substituted glycerols and free fatty acids from 

final biodiesel and later from final glycerol samples.344  

 

 
 

Figure 61. Phosphitylation of a free hydroxyl group with 2-chloro-4,4,5,5-tetramethyl-
1,3,2-dioxaphospholane. 
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 The present work describes our effort to fully develop this method to be able to 

provide quantitative information through the whole production line in a rapid manner, 

regardless of feedstock or process step employed. A comprehensive database of 31P-NMR 

chemical shift information of relevant biodiesel precursors has been established with 

analytical pure compounds and the NMR pulse sequence has been optimized for 

industrial samples. The application of the optimized TMDP/31P–NMR method was 

demonstrated on two series of industrial process samples utilizing first pure vegetable oil 

and later waste vegetable oil as feedstock. 

 

8.2 Experimental Section 

8.2.1 Materials 

 Commercial glycerol and biodiesel samples received from Piedmont Biofuels 

(Pittsboro, NC, USA) and BioDiesel International AG (Graz, Austria), all precursors and 

reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used as 

received. 

 

8.2.2 Sample Preparation and Phosphitylation 

 Sample preparation and phosphitylation with TMDP is described in Chapter 3. 

(3.3.3.1.2 Reaction Mixture Preparation and Phosphitylation with TMDP) 
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8.2.3 NMR Method Optimization 

 The method for chemical shift assignment is depicted in Chapter 3. (3.3.3.2.1 

NMR Chemical Shift Assignment) The protocol to determine the spin-lattice relaxation 

times is depicted in Chapter 3. (3.4.2.2 Spin-lattice Relaxation Time Measurement)  

 

8.2.4 Optimized NMR Measurements on Biodiesel Precursors and Commercial 

Glycerol and Biodiesel Samples 

 The optimized method used for industrial biodiesel process samples is depicted in 

Chapter 3. (3.3.3.2.2 Optimized TMDP/31P–NMR Method for Industrial Biodiesel 

Samples). The optimized NMR pulse program is depicted in Chapter 3. (3.4.2.3 

Optimized Quantitative 31P-NMR Characterization for Industrial Biodiesel Process 

Samples) 

 

8.3 Results and Discussion 

8.3.1 NMR Pulse Program Optimization 

 Phosphytilation of hydroxyl groups with TMDP followed by 31P-NMR analysis 

has become a powerful technique in lignin chemistry to characterize the chemical nature 

of carboxylates, phenoxy and aliphatic hydroxyl groups.345,346,347 During our initial 

studies in Chapter 6 and Chapter 7, the pulse delay and the number of acquisition 

acquired was selected based on our past experiences with lignocellulosics samples and 

not for biodiesel constituents.348,349 
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 To develop a novel rapid analytical method it is essential to tailor the pulse 

program for biodiesel constituents and reduce the analysis time to a minimum. Using a 

paramagnetic relaxational agent such as (Cr(acac)3) provides a reliable means to 

significantly reduce the pulse delay time when acquiring quantitative 31P-NMR spectra of 

organic compounds.328 To establish a database of phosphorous-31 spin lattice relaxation 

times on relevant biodiesel precursors, a series of representative pure samples were 

acquired treated with TMDP and analyzed by 31P-NMR in the presence and in the 

absence of a relaxation agent. The results of this analysis are summarized in Table 44. 

 

Table 44. Spin-lattice relaxation time of biodiesel precursors after phosphitylation of free 
hydroxyl groups with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) in 

the presence and in the absence of a relaxation agent. 
 
 Relaxation time (ms)* 

Compound name With (Cr(acac)3) Without (Cr(acac)3) 
 
 
Glycerol derivates C16-C18 

C1

C2

C3 O3

O2

O1H2

H

H2  

  

1-Monosubstituted 701 1241 
1,2-Disubstituted 617 1183 
1,3-Disubstituted 584 1146 
Fatty acids    
Saturated C16 785 1298 
Unsaturated C18 797 1365 
Biodiesel production by-products   
Free glycerol 629 1156 
Methanol 912 1391 
Analysis by-products   
Cyclohexanol (internal standard) 855 1347 
TMDP 947 1422 
TMDP hydrolyzate 745 1254 

* Typical error average is determined from three consecutive measurements: ± 15 ms. 
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 The maximum spin-lattice relaxation time (T1) relaxation time belongs to 

unreacted TMDP, and in the presence of the relaxation agent its T1 relaxation is 

approximately half that in the absence of (Cr(acac)3). Our measured data on the effect of 

Cr(acac)3 as a relaxation agent on spin-lattice relaxation times are consistent with 

previous data published by Argyropoulos.350 Measurement shows that the biodiesel 

precursor with the longest relaxation time is methanol with T1 of 912 ms. A quantitative 

NMR method has to obtain accurate signal areas after Fourier transform thus, a 

sufficiently long recycle delay or time between excitation pulses should be used to allow 

full relaxation of all the nuclei in the sample. Therefore, a T1 of 912 ms requires a recycle 

delay time of at least 5 s allowing 99.3% of 31P nuclei in the sample to fully relax, and 

satisfying conditions to obtain a quantitative spectra.349 The NMR pulse program 

optimized for biodiesel constituents for a 400 MHz Bruker system at 25°C utilizes 

depicted in Chapter 3. (3.4.2.3 Optimized Quantitative 31P-NMR Characterization for 

Industrial Biodiesel Process Samples)  

 The standard deviation, sensitivity and quantitative accuracy were determined 

from five separate measurements using a solvent mixture containing analytically pure 

99+% biodiesel precursors and cyclohexanol as an internal standard. The results of this 

analysis are summarized in Table 45. The sensitivity of the TMDP/31P–NMR technique 

remained at 1.9 µmol/mL lower limit of detection with an error margin of ±1.1%.2 Due to 

the optimization of the acquisition program, compared to our initial studies the analysis 

time reduced from 50 min to 80 s.84,328 All spectra acquired on the industrial samples in 

this article were recorded using the optimized NMR program parameters. 
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Table 45. Measured quantitative data of an analytically pure solvent mixture of various 
biodiesel constituents with phosphitylation using 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane and cyclohexanol as internal standard, followed by 31P-NMR using the 
optimized pulse program. 

 
 Concentration (mmol/mL) 

Compound name Solvent mixture Detected* 
Cyclohexanol  0.056 (internal standard) 
1,2-Dioleoylglycerol 0.012 0.012±1 
1,3- Dioleoylglycerol 0.002 0.002±1 
Free glycerol 0.137 0.136±2 
Hexanoic acid 0.399 0.395±4 
Methanol 0.740 0.734±7 
* Error averages are determined from five consecutive measurements. 
 
 

8.3.2 Finalized 31P-NMR Chemical Shift Database of Biodiesel Precursors  

 During transesterification the entering triglyceride reacts with an alcohol in the 

presence of an acid or base catalyst to yield the corresponding alkyl esters and glycerol. 

Currently the most widely used feed stocks for biodiesel production are pure vegetable 

oils, waste vegetable oils and animal fats. The composition and the fatty acid chain length 

in the entering parent oil and on the partially substituted glycerols and unreacted 

triacylglycerols after the transesterification step is dependent on the feedstock 

used.351,352,353  To be able to develop an analytical method that can be applied through the 

whole production line for differing feedstock it is essential to establish a database of 31P-

NMR chemical shift information on relevant biodiesel intermediates, alcohol and by-

products. A series of representative pure samples were acquired, treated with TMDP and 

analyzed by 31P-NMR. The results of this analysis are summarized in Table 46. 
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Table 46. 31P-NMR chemical shifts for partially substituted glycerols, fatty acids (a), and 
alcohols, glycerol, analysis by-products (b) after phosphitylated with 2-chloro-4,4,5,5-

tetramethyl-1,3,2-dioxaphospholane (TMDP). 
 

Glycerol derivatives 
Mono-

substituted 
Di-substituted Tri-

substituted 

a H2Ca

HCb

H2Cc

Oa

Ob

Oc  a a,b a,c a,b,c 
Phosphitylated 

hydroxyl 
O-b O-c O-c O-b N/A 

 
Fatty 
acid 

Lipid chain          
Lauric 146.2 147.5  --- 146.5 No signal 134.5 

Myristic 146.2 147.5  --- 146.4 No signal 134.5 

Palmitic 146.2* 147.6* 147.9 146.4 No signal 134.4* 

Stearic 146.2 147.4 147.9 146.4 No signal 134.4* 

Oleic 146.1 147.4 147.7* 146.4* No signal 134.4* 

Linoleic 146.2 147.4 147.7 146.4 No signal 134.3* 

Linolenic --- ---  ---  --- --- 134.3* 

δ 31P Signal (ppm) 
** 

146.1-
146.2 

147.4-
147.6 

147.7-
147.9 

146.4-
146.5 No signal 

134.3-
134.5 

*   Chemical shift data from [83,330]. 
** All samples were referenced to an internal standard of cyclohexanol at δ 144.9 ppm. 

 

b δ 31P Signal
(ppm) 

Phosphitylated 
hydroxyl 

Biodiesel production by-products     
Free glycerol 147.1* O-a/c 
 146.1* O-b 
Methanol 147.8   
Ethanol 146.3*   
Isopropanol 146.4*   

Analysis production by-products     
TMDP 174.7   
TMDP hydrolyzate 132.0   
Cyclohexanol (internal standard) 144.9*   

       *   Chemical shift data from [83,330]. 
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 When the spectrum was recorded on the fully substituted glyceryl trioleate which 

has no free hydroxyl group no signal has been detected. As anticipated, the 

phosphitylation reaction conditions used in this study reacts only with free hydroxyl 

groups and no side reaction occurs under the conditions employed. Di-substituted 

glycerol derivatives have only one free hydroxyl group which yields only one 31P-NMR 

signal after phosphitylation. The phosphitylated terminal glyceride hydroxyl group Oc 

(see Table 46) yields a signal at δ 147.7-147.9 whereas a secondary Ob hydroxyl 

derivative provides a 31P-NMR absorption at δ 146.4-146.5. Signals for primary and 

secondary hydroxyl groups in case of the 1-mono-substituted glycerol derivatives are 

found at δ 147.4-147.6 and δ 146.1-146.2 respectively.  

 Another key component in industrial sources of biodiesel is the presence of free 

fatty acids. The 31P NMR analysis of several phosphitylated fatty acids are summarized in 

Table 46. These results indicate that the length of the hydrocarbon chain or the degree of 

unsaturation has little or no effect on the chemical shift, yielding a signal at δ 134.3-

134.5. All chemical shifts recorded on relevant biodiesel precursors were consistent with 

data from our preliminary studies.84,328 
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8.3.3 Analysis of Industrial Process Samples 

 With a comprehensive database of 31P-NMR chemical shift information in hand 

on relevant biodiesel precursors, the technique can be applied on process samples such 

as; parent oil (PO), after transesterification (AT), biodiesel before wash (BW), biodiesel 

after one wash (A1W), final biodiesel (FB), separated glycerol before neutralization (SG) 

and final demethylated glycerol (DG). The commercial sampling points to acquire the 

test samples are shown in Figure 62. 

 

 
Note: Sampling points as; PO: parent oil, AT: after transesterification, BW: biodiesel before wash, A1W: 
biodiesel after one wash, FB: final biodiesel, SG: separated glycerol before neutralization, DG: final 
demethylated glycerol. 
 

Figure 62. Sampling points used through the biodiesel production line. 
 

 Regardless of the feedstock, the conversion of triglycerides to biodiesel involves a 

transesterification step. Transesterification of the parent oil is the main step during 

biodiesel production and is required to impart favourable fuel properties. Direct use of 

plant oils with conventional diesel engines will result in coking and trumpet formation on 

the fuel injectors, gelling of lubricating engine oil, incomplete combustion and carbon 

deposits.354 To be able to achieve a high conversion yield and a low contaminant level, it 
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is essential to have accurate information on the incoming feedstock and on the leaving 

product. High levels of by-product formation during the catalytic step will lead not just 

an underutilized feedstock due to the low conversion yields, but also to a highly 

contaminated stream entering the washing sequence. Figure 63 demonstrates the 

TMDP/31P–NMR method on a series of commercial feedstock samples acquired from 

biodiesel operations.  

 
 
Figure 63. Quantitative 31P-NMR spectra of parent oil samples of waste vegetable oil (a) 
and soybean oil (b) with cyclohexanol as an internal standard, derivatized with 2-chloro-

4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
 

 The yield of the transesterification step and the quality of the final product can be 

determined by measuring the free hydroxyl groups in the reaction mixture. The 

TMDP/31P–NMR method can selectively follow the concentration of alcohol, free 

glycerol, partially hydrolyzed triglycerides and free fatty acids in a rapid manner from the 

entering feedstock to the leaving product, becoming a novel research tool for process 

optimization of the catalytic transesterification step. Results of utilizing different 

transesterification conditions on the same feedstock are shown in Figure 64. 
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Figure 64. Quantitative 31P-NMR spectra of samples taken after the transesterification 
step utilizing different process conditions using soybean oil as feedstock with 

cyclohexanol as an internal standard, derivatized with2-chloro-4,4,5,5-tetramethyl-1,3,2-
dioxaphospholane. 

 

 Mono-alkyl esters and glycerin are the main products of the catalytic 

transesterification step. Glycerin is denser than the mono-alkyl esters and can be gravity-

separated with the use of a settling vessel. After the glycerin is separated, the supernatant 

is washed with water to remove contaminants. The wash water is heavier than the mono-

alkyl esters and during the washing sequence it absorbs contaminants such as: excess 

methanol, catalyst, soap, free and partial glycerols.132 A common biodiesel production 

sequence utilizes several washing cycles to lower the concentration of process 

containments before the methanol recovery. By being able to selectively follow the level 

of contamination after each washing cycle, the washing efficiency can be calculated and 

the sequence can be optimized. Figure 65 demonstrates the TMDP/31P–NMR method on 

samples taken entering the washing sequence and after one washing cycle. 
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Figure 65. Quantitative 31P-NMR spectra shows the washing efficiency of a soybean oil 
based commercial process on samples taken before wash (a) and after the first washing 
cycle (b) with cyclohexanol as an internal standard, derivatized with 2-chloro-4,4,5,5-

tetramethyl-1,3,2-dioxaphospholane. 
 

 After the washing sequence, the mono-alkyl ester stream enters into a subsequent 

alcohol recovery stage, where the excess alcohol remaining is removed through 

distillation and recycled for reuse. After the washing sequence and the alcohol recovery, 

the purified product is the desired biodiesel. Quantitative 31P-NMR spectra on 

commercial finished biodiesel samples utilizing different feed stocks are shown in Figure 

66. 
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Figure 66. Quantitative 31P-NMR spectra of final biodiesel samples from soybean oil (a) 
and waste vegetable oil (b) with cyclohexanol as an internal standard, derivatized with 2-

chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
 

 Quantitative 31P-NMR spectra of final biodiesel samples show that different 

feedstock resulted in final biodiesel products with different compositions. To carry the 

designation “biodiesel fuel” the final purified fatty acid ester product must meet 

specifications set by the latest American (ASTM D 6751-08) and European (DIN EN 

14214) standards.355,356 To meet these standards, a common biodiesel production line 

utilizes downstream alcohol recovery and biodiesel purification steps to reach a low 

contamination level in the final product.357 The optimized TMDP/31P–NMR method has a 

1.9 µmol/mL lower limit of detection that allows following the level of contamination 

through all purification steps. By selectively measuring the amount of alcohol, fatty acids 

and glycerols at different substitution levels, the yield of these process steps and the 

quality of the final biodiesel can be determined in a rapid manner. 
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 After transesterification, the separated glycerin phase is contaminated with 

alcohol, unused catalyst, soaps, free and partial glycerols.133 In a commercial process, the 

stream undergoes a subsequent neutralization step. If a base is used as catalyst during the 

transesterification step, the separated glycerin phase is neutralized with an acid. After 

neutralization, commercial crude glycerin is produced by removing the water and alcohol 

in a subsequent distillation step. The yield of each step can be followed by analyzing the 

composition of the entering and the product steams. Quantitative 31P-NMR spectra on 

glycerol samples leaving the settling vessel before neutralization and after the distillation 

stage are shown in Figure 67. 

 
 

Figure 67. Quantitative 31P-NMR spectra on glycerol samples from soybean oil based 
commercial process of the separated glycerol before neutralization (a) and of the final 

demethylated glycerol (b) with cyclohexanol as an internal standard, derivatized with 2-
chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 
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 For several industries such as; food, personal care, pharmaceutical and petrol, 

glycerol is utilized as a starting material or an additive, adding to the market value of this 

by-product and the economic of the transesterification process.358 After the methanol 

recovery, the produced glycerol stream has a 80-88 wt% glycerin content and can be sold 

as a crude glycerin or can be further purified up to 98+ wt% to be sold as refined 

glycerol.5 The refined glycerol has a higher market value and can be used directly or has 

a potential to be used as a starting material to convert it into other value added products 

such as; polyesters, nylons or valuable intermediates like propylene glycol or 1,3-

propanediol by the chemical or the pharmaceutical industry.26 To be able to sell and use 

the glycerol by-product as an additive or a starting material in a subsequent industrial 

process, it is essential to determine the composition and contamination levels during the 

purification steps and in the final glycerol product. Figure 67 shows that beside samples 

from the biodiesel streams, the solvent mixture used in this study is also capable handling 

samples from the glycerol streams, and the optimized TMDP/31P–NMR method provides 

spectra with good separation regardless of the process step used. 
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8.4 Conclusions 

 A novel qualitative method has been developed for the determination of the 

various types of hydroxyl groups present in biodiesel production streams. The use of 2-

chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane as a phosphitylation reagent for 

quantitative 31P NMR analysis of the hydroxyl groups in biodiesel process samples has 

been fully developed. This experimental protocol allows for rapid analysis of biodiesel 

mixtures of alcohols, fatty acids, glycerol, mono, and disubstituted glycerides. 

Characteristic chemical shifts ranges were developed with model compounds and used to 

fully characterize the conversion triglyceride samples to biodiesel for two commercial 

production processes. 

 We have demonstrated that the TMDP/31P–NMR technique has the capability to 

become a promising research tool for the biodiesel industry. This methodology provides 

quantitative data on the concentration of alcohol, free glycerol, partially hydrolyzed 

triglycerides and free fatty acids in a rapid manner, which currently can require up to 

three different methods.  

 Since the spectroscopic information acquired by the TMDP/31P–NMR technique 

is related to the structure of the compound and the phosphitylating agent employed, it 

provides a spectra with good separation even in case of a complex sample, becoming a 

rapid and accurate quantitative method. Due to optimized sample preparation and signal 

acquisition used in this study, our TMDP/31P–NMR method can handle samples through 

the whole production line regardless of process step or feedstock used, becoming a novel 

research tool for process step optimization and for the characterization of biodiesel and 

its processing components. 
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CHAPTER 9 

9. OVERALL CONCLUSIONS 
 

 The original idea to develop new green technologies and products from future 

possible industrial lignin rich solutions while helping currently used commerce practices 

become green industrial practices were met at the first part of this thesis. First in Chapter 

4 when LignoBoost technique was used in case of a commercial softwood kraft pulping 

liquor, it enabled lignin to be exported in the form of a solid biofuel and also gave the 

opportunity to transform it into materials of higher value. A novel high yield purification 

method has been developed yielding purified samples up to 97% lignin content, and later 

all products fractions were characterized. The chemical structure analysis of lignin in all 

process streams was determined. Under our reaction conditions the total hydroxyl content 

of phase F at pH 9.5 was 56% higher, while at pH 10.5 it was 45% higher than phase P 

that led to the higher solubility of the lignin biopolymer. A lower final pH resulted in a 

69% enrichment of the total hydroxyl content in the F fraction while only a 35% increase 

in the P fraction, which resulted in a better lignin separation when lower pH was 

employed. These findings gave valuable insight on the fundamental chemistry during 

LignoBoost lignin precipitation from BL, while its known chemical structure and 

composition can help to optimize a subsequent controlled high yield pyrolysis for biooil 

production. Preliminary studies achieved pyrolysis oil yields up to 42.98 wt% with 24% 

decrease in the O/C ratio and 20% increase in the H/C ratio when compared to the 

purified LignoBoost lignin feedstock. 
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 As a second step, it was shown in Chapter 5 that a selective hydrogenolysis could 

provide an economically feasible route to convert lignin from a low grade fuel to 

potential fuel precursors or other value added chemicals by decreasing the carbon chain 

length, while increasing the H/C ratio and lowering the O/C ratio. The development of 

hydrogenolysis conditions that effectively increase the solubility of lignin were initially 

examined with Ru(Cl)2(PPh3)3 and demonstrated the ability to decrease the molecular 

weight and enhance the solubility of the lignin polymer. Later studies examined several 

heterogeneous and homogeneous hydrogenation catalysts at optimized reaction 

conditions resulting; 96.4% solubility with Ru(Cl)2(PPh3)3, increase in H/C ratio with 

Raney-Ni, Pt/C and extensive monomer formation with NaBH4/I2. We proposed that the 

lower temperature limit for a high yield hydrogenation is determined by the chosen 

lignin’s glass transition temperature, while the upper temperature limit is determined by 

the stability of the catalyst and the charring of the biopolymer at higher temperatures. In 

general, homogeneous catalysts provided higher yields, but they were difficult to separate 

from the final products and have stability problems at elevated temperatures. The 

opposite was true for heterogeneous catalysts. The highest hydrogenation yields were 

obtained with NaBH4/I2, Raney-Ni, RuCl2(PPh3)3 or Pt/C. Our data showed that each 

catalyst has different hydrogenative selectivity towards aryl-O-aryl and aryl-O-aliphatic 

linkages over carbon-carbon double bonds, and hydrogenation simultaneously happened 

with hydrogenolysis. 

 In the second part of this thesis, the original idea to develop a novel analytical 

method that will provide quantitative information on biodiesel constituents through the 

whole biodiesel production line in a rapid manner, regardless of feedstock or process step 
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employed were met. In Chapter 6, it was demonstrated that the TMDP/31P–NMR 

technique has the capability to become a promising research tool for the biodiesel 

industry. This methodology provides quantitative data on the concentration of alcohol, 

free glycerol, partially hydrolyzed triglycerides and free fatty acids in a rapid manner, 

which currently can require up to three different methods.  

 In Chapter 7, it was shown that since the spectroscopic information acquired by 

the TMDP/31P–NMR technique is related to the structure of the compound and the 

phosphitylating agent employed, it provides a spectra with good separation even in case 

of a complex sample, becoming a rapid and accurate quantitative method. In Chapter 8, it 

was demonstrated that due to optimized sample preparation and signal acquisition, the 

TMDP/31P–NMR method can handle samples through the whole commercial production 

line regardless of process step or feedstock used, becoming a novel research tool for 

process step optimization and for the characterization of biodiesel and its processing 

components. 
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CHAPTER 10 

10. RECOMMENDATIONS FOR FUTURE WORK 
 

10.1 Recommendations for the LigniBoost Project 

 With a known chemical structure and composition in hand, a subsequent 

controlled high yield catalytic conversion by pyrolysis could be optimized. In our 

preliminary studies, we utilized a rapid pyrolysis (2 min, 400 °C) and achieved bio-oil 

yields up to 43% while decreasing its O/C ratio by 24%. Some particularly attractive 

options to optimize reaction conditions for increased bio-oil yields are follows: 

 

 Utilizing different heating profiles and resident times. 

 Selectively sample light and heavy pyrolysis oils and determine their product 

distribution. 

 A known product distribution and chemical structure could provide information 

on the fundamental chemistry, which could be utilized for optimization of the 

pyrolysis parameters. 

 The chemistry during pyrolysis could be modified by the addition of selected 

metal catalysts for the production of additional value added final products. 
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10.2 Recommendations for the EOL Hydrogenolysis Project 

 Our data shows that each catalyst has different hydrogenative selectivity towards 

aryl-O-aryl and aryl-O-aliphatic linkages over carbon-carbon double bonds, and 

hydrogenation simultaneously happened with hydrogenolysis. Our approach was 

sufficient for an initial screening experimental series to search for possible candidates to 

convert lignin from a low grade fuel to potential fuel precursors or other value added 

chemicals. However to gain insight into the fundamental chemistry of selected catalyst 

systems, and being able to optimize the reaction conditions for a high hydrogenative 

selectivity towards aryl-O-aryl and aryl-O-aliphatic linkages over carbon-carbon double 

bonds, a new approach is needed. Such an approach and research data from preliminary 

test runs are depicted in Sections 10.2.1 – 10.2.3. 

 

10.2.1 Designing the suitable model compound for softwood lignin 

 The lack of success to convert lignin into valuable fine chemicals relies on its 

highly complex structure and difficult separation of its native form. Lignin in its native 

state (protolignin) is a three dimensional amorphous polymer, which exact structure 

remains virtually unknown. Fortunately, through extensive research many of the main 

structural features of lignin have been worked out and the dominant linkages have been 

determined and are summarized in Table 47.185 

 

 



 196

Table 47. Proportions of different types of linkages connecting the phenylpropane units 
in softwood lignin. 

 
Linkage type Dimer structure Approximate  

percentage 
β-O-4 Phenylpropane β-aryl ether 45-50 
α-O-4 Phenylpropane α -aryl ether 6-8 
β-5 Phenylcoumaran 9-12 
5-5 Bipheny; and Dibenzodioxocin 18-25 

4-O-5 Diaryl ether 4-8 
β-1 1,2-Diaryl propane 7-10 
β-β β-β-Linked structures 3 

 
 

 The β-Aryl ether structure is the dominant linkage in the native lignin structure. 

However during conventional kraft pulping the principal pathway of lignin 

depolymerization happens by the fragmentation of α and β-O-Aryl linkages, the (β-O-4) 

is still one of the dominant linkage in the residual black liquor (BL).359 Since the β–Aryl-

ether structure is the main interlinking unit both at the native state of lignin and in the BL, 

it was an obvious pick to design a model compound based on its structure for our 

hydrogenation studies. 

OCH3

O

O

OCH3

 linkage in lignin and BL

O

OCH3

OH

Model compound

HO

OH

OCH3

Conyferyl alcohol, the main
building block of lignin in sof twood  

 
Figure 68. The model compound Phenol, 4-[2-(2-methoxyphenoxy)ethyl], designed to 

mimic the (β-O-4) linkage in the native lignin and in the black liquor. 
 



 197

10.2.2 Preparation and characterization of Phenol, 4-[2-(2-methoxyphenoxy)ethyl] 

“the model compound” 

 Our first attempt based on the conventional Williamson ether synthesis using 2-

(4-hydroxyphenyl)ethyl-chloride and guaiacol-sodium salt. However despite the use of 

different protection groups and various solvents, the selectivity and yields were remained 

low (<10%). Phenol, 4-[2-(2-methoxyphenoxy)ethyl] was successfully synthesized with a 

different approach in three steps. 

 

10.2.2.1 Preparation of 1-Tosyloxy-2-(4-tosyloxyphenyl)ethane 

 First step is the protection of the 2-(4-Hydroxyphenyl)ethanol forming the 

protected tosylate ester 1-Tosyloxy-2-(4-tosyloxyphenyl)ethane. 

 

HO

OH

+ 2 S
O

O

Cl

N

- 40 C

TsO

OTs

 
 

Equation 14. Protection by tosylation of the 2-(4-Hydroxyphenyl)ethanol forming the 
protected tosylate ester 1-Tosyloxy-2-(4-tosyloxyphenyl)ethane. 

 
 

 5,0 g of 2-(4-Hydroxyphenyl)ethanol (36,2 mmol) dissolved in 50 ml of pyridine 

and cooled to -40C. 15,2 g p-toluenesulfonyl-chloride (79,6 mmol) in 100 ml of pyridine 

was added drop wise for the solution, under vigorous stirring. The vigorous stirring was 

maintained at -40C for 2 h. The resultant mixture was placed in a freezer overnight and 

then poured into ice-water 400 ml. The tosylate was extracted with ether (3 X 250 ml). 
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The combined organic fraction was washed with ice-cold aqueous hydrochloric acid 

(50% by volume, 3 X 300 ml) and then with water (2 X 250 ml), dried over anhydrous 

magnesium sulphate, and finally the solvent removed by rotary evaporator. The residue 

was recrystallized from 10:3:2 ligroin (30-60):ether:dichloromethane. 1-Tosyloxy-2-(4-

tosyloxyphenyl)ethane obtained in ~42% yield as white needle shape crystals. 

1H NMR (CDCl3)  2,44 (s, 3H), 2,45 (s, 3H), 2,91 (t, 2H), 4,16 (t, 2H), 6,87 (d, 2H) 7,01 

(d, 2H), 7,30 (m, 4H), 7,68 (m, 4H). 

 

10.2.2.2 Preparation of 1-Tosyloxyphenyl-4-[2-(2-methoxyphenoxy)ethyl] 

 Second step is the synthesis of 1-Tosyloxyphenyl-4-[2-(2-methoxyphenoxy)ethyl] 

from the protected tosylate ester with guaiacol.  

 

TsO

OTs

+
H3CO

HO K2CO3

O

(72 Hours)
TsO

O

OCH3

 

Equation 15. Synthesis of 1-Tosyloxyphenyl-4-[2-(2-methoxyphenoxy)ethyl] from the 
protected tosylate ester with guaiacol. 

 

 1,65 g 1-Tosyloxy-2-(4-tosyloxyphenyl)ethane (3,7 mmol), 0,45 g guaiacol (3,6 

mmol) and 0,76 g oven dried potassium carbonate (5,5 mmol) dissolved in acetone 20 ml 

and refluxed for 72 h under vigorous stirring. After the filtering and solvent removal, the 

resulting light brown oil dissolved in dichloromethane (20 ml) and washed with aqueous 

HCl (3M, 10 ml). The organic layer was washed with water (2 X 20 ml) and the original 
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aqueous layer was extracted with dichloromethane (30 ml). The combined 

dichloromethane extracts were dried over anhydrous magnesium sulphate, and the 

solvent removed by rotary evaporator. The 1H NMR analysis indicated that the crude 

mixture contained; ~80% product, ~5% unreacted starting material contaminated with 

~15% 4-tosyloxystyrene as the elimination by-product of the reaction. 

 

10.2.2.3 Preparation of Phenol, 4-[2-(2-methoxyphenoxy)ethyl] 

 Third step is the cleavage of the remaining protecting group from the (β-O-4)-

ether with methanol, resulting in Phenol, 4-[2-(2-methoxyphenoxy)ethyl]. 

 

TsO

O

OCH3

MeOH

K2CO3

(72 Hours)
HO

O

OCH3

 
 

Equation 16. Cleavage of the tosyl protecting group from 1-Tosyloxyphenyl-4-[2-(2-
methoxyphenoxy)ethyl] to form the (β-O-4)-model compound: Phenol, 4-[2-(2-

methoxyphenoxy)ethyl]. 
 

 

 The crude reaction mixture from step two with 3,8 g oven dried potassium 

carbonate (27 mmol) dissolved in methanol (50 ml) and refluxed for 72 h under vigorous 

stirring. The reaction mixture was mixed with dichloromethane (50 ml) filtered and 

washed with aqueous HCl (3M, 10 ml). The organic layer was washed with water (2 X 30 

ml), dried over anhydrous magnesium sulphate, and the solvent removed by rotary 

evaporator. The residue was recrystallized from 33%ethyl acetate in hexane. 
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Phenol, 4-[2-(2-methoxyphenoxy)ethyl] obtained in ~75% yield as white fluffy crystals. 

Which resulting a 32% overall yield on 2-(4-Hydroxyphenyl)ethanol after three steps. 

1H NMR (CDCl3)  3,09 (t, 2H), 3,87 (s, 3H), 4,17 (t, 2H), 4,65 (s, 1H), 6,77 (d, 2H) 6,91 

(m, 4H), 7,15 (d, 2H); (see: Appendix A.1.1) 

13C NMR (CDCl3)  34,75, 55,92, 69,94, 111,96, 113,02, 115,32, 120,95, 121,13, 129,86, 

130,11, 148,16, 149,26, 154,28; (see: Appendix A.1.2) 

MS-EI m/z (relative intensity) 244 (14), 152 (9), 137 (5), 124 (11), 125 (12), 121 (100), 

107 (5), 103 (7), 93 (13), 92 (8), 91 (11), 84 (9), 77 (14), 65 (7), 49 (7), 43 (12); (see: 

Appendix A.1.3) 

 

10.2.3 The Test Hydrogenation of 4-[2-(2-methoxyphenoxy)ethyl] with Raney-Ni 

 With the model compound in hand, the hydrogenation runs can be performed on 

analytically pure model compound with selected catalysts. Since beside the solvent and 

the catalyst, 4-[2-(2-methoxyphenoxy)ethyl] is the only compound in the starting reaction 

mixture, by carefully analyzing the product mixture the fundamental chemistry could be 

determined. Since the model compound has two aromatic rings and two aryl-O-aliphatic 

linkages, the hydrogenative selectivity could be calculated. Due to the simplicity of the 

model compound compared to the native lignin structure, by following the product 

distribution in the final mixture, it provides a reliable means to gain insight into the 

fundamental chemistry and optimize the reaction conditions for the production of desired 

value added chemicals. 
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 After the reaction, the Raney-Ni catalyst is separated by centrifugation and the 

solvent removed under reduced pressure. The residue is dissolved in CDCl3 and NMR 

spectra are recorded. (Appendix A.3.1) shows the H1-NMR spectra recorded before and 

after the hydrogenation run on the blank run (no catalyst) and using Raney-Ni as catalyst. 

 The change in the H1-NMR spectra is a clear indication of the hydrogenative 

activity of the selected catalyst towards aryl-O-aliphatic and/or carbon-carbon double 

bonds. By separating the products by chromatography, and analyzing their structure by 

Gas chromatography-mass spectroscopy (GC-MS) the yield and hydrogeative selectivity 

can be determined. (Appendix A.3.2) shows the LC-MS spectra recorded on the products 

of the model compound hydrogenation using Raney-Ni as catalyst. 

 This approach utilizing a model compound provides an easy new method to 

determine the fundamental chemistry and hydrogenative selectivity of the selected 

catalysts during hydrogenation. Due to the nature of the model compound and the low 

number of possible products, the compounds in the final mixture are easily separable, 

thus the yields can be determined providing a reliable means for reaction condition 

optimization for selected catalysts systems. 
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APPENDIX A 

NMR AND MASS SPECTRA OF NEW COMPOUNDS 
 

 

A.1 NMR and ESI-MS Spectra of the Model Compound  

Phenol, 4-[2-(2-methoxyphenoxy)ethyl] 

 

HO

O

OCH3

 

 

… 



 203

A.1.1 1H-NMR Spectrum of Compound Phenol, 4-[2-(2-methoxyphenoxy)ethyl] in CDCl3 
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A.1.2 13C-NMR Spectrum of Compound Phenol, 4-[2-(2-methoxyphenoxy)ethyl] in CDCl3 
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A.1.3 ESI-MS Spectrum of Compound Phenol, 4-[2-(2-methoxyphenoxy)ethyl] in CDCl3 
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A.2 31P-NMR Spectra of Synthesized Catalysts  

 

 

RhCl(PPh3)3,  

 

Rh
Ph3P

PPh3

Ph3P Cl

I

 

 

 

 

RuCl2(PPh3)3  

 

Ru
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Cl

PPh3  
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A.2.1 31P-NMR Spectrum of Compound RhCl(PPh3)3 in CDCl3 
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A.2.2 31P-NMR Spectrum of Compound RuCl2(PPh3)3 in CDCl3 
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A.3 H-NMR and LC-MS Spectra of the Model Compound Phenol, 4-[2-(2-

methoxyphenoxy)ethyl] Hydrogenated with Raney-Ni. 

 

Phenol, 4-[2-(2-methoxyphenoxy)ethyl] 

 

HO

O

OCH3
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A.3.1 1H-NMR Spectrum of Phenol, 4-[2-(2-methoxyphenoxy)ethyl] Hydrogenated in Ethanol with Raney-Ni in CDCl3.  

(50 bar H2, 150°C, 20 hours) 
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A.3.1 LC-MS Spectrum of Phenol, 4-[2-(2-methoxyphenoxy)ethyl] Hydrogenated in Ethanol with Raney-Ni in CDCl3.  

(50 bar H2, 150°C, 20 hours) 
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