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± SE of experiments performed in triplicate. ROS/RNS 
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as fold increase over control, probe-treated cells not exposed to 

stimulant. Data shown are means ± SE of triplicate experiments. 
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RO2 + NO). Characteristic fragments for each system are labeled. 
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free media. Data shown are means ± standard error of triplicate 

exposure experiments. 
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cells exposed to stimulant-free media. Data shown are means ± 

standard error of triplicate exposure experiments. All filter 

exposures produced similar results. 
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Figure C-3 van Krevelen plot for various SOA systems. Data points are 

colored by SOA system (red: isoprene, yellow: α-pinene, green: 

β-caryophyllene, light blue: pentadecane, blue: m-xylene, and 

purple: naphthalene), shaped according to formation conditions 

(circle: dry, RO2 + HO2; square: humid, RO2 + HO2; and triangle: 

dry, RO2 + NO), and sized by TNF-α and IL-6 levels. SOA 

precursors are shown as stars, colored by SOA system. 
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pinene, green: β-caryophyllene, light blue: pentadecane,           

blue: m-xylene, and purple: naphthalene). 

Figure D-1 Representative dose-response curve of ROS/RNS produced as a 

result of filter exposure (Expt. 7). ROS/RNS is expressed as a fold 

increase over control (probe-treated cells incubated with 

stimulant-free media); dose is expressed as mass in the filter 

extract (µg). Data shown are means ± standard error of 

experiments performed in triplicate. The dose-response curve was 

fitted using the Hill equation and the area under the curve (AUC) 

is shown. 
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conditions in the presence of NO using A) ammonium sulfate seed 

particles (Expt. 3) and B) iron sulfate seed particles (Expt. 4). 

Naphthalene and NO concentrations were monitored using a GC-

FID and chemiluminescence NOx monitor, respectively. Aerosol 

mass concentrations were determined using SMPS volume 

concentration and assuming an aerosol density of 1 g cm-3. It 

should be noted that aerosol mass concentrations have not been 

corrected for particle wall loss. 
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Figure D-3 Aerosol mass spectra of SOA formed from the photooxidation of 

naphthalene under humid conditions in the presence of NO using 

various seed (red bars: ammonium sulfate; blue markers: iron 

sulfate). Each row represents a different initial naphthalene 

concentration (30, 75, 150, and 300 ppb). Characteristics 

fragments are labeled. Ions greater than m/z 120 are shown in the 

inset of each mass spectrum. 
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Figure D-4 Comparison between mass spectra of SOA formed from the 

photooxidation of naphthalene under humid conditions in the 

presence of NO using various seeds. A 1:1 line is shown for 

reference. 
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Figure D-5 Difference (FS seeded SOA – AS seeded SOA) between 

normalized mass spectra of SOA formed from the photooxidation 

of naphthalene under humid conditions in the presence of NO 

using various seeds. 
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Figure D-6 Average carbon oxidation state (OS̅̅̅̅
c) for naphthalene SOA 

spanning a range of organic mass loading (ΔMo). SOA from this 

study was generated in a humid chamber in the presence of 

different seed particles (ammonium sulfate or iron sulfate), OH 

radical precursor (H2O2), and NO. 
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Figure D-7 ROS/RNS produced as a result of exposure to FeSO4 (red: 

aerosolized into the chamber at experimental concentration, 

collected onto a filter, and extracted into media; blue: aqueous 

seed solution diluted in media). ROS/RNS is expressed as a fold 

increase over probe-treated control cells incubated with stimulant-

free media. Data shown are means ± standard error of triplicate 

exposure experiments. 
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Figure D-8 Method for estimating the mass of seed collected onto each filter 

(Expt. 6). A double exponential was used to characterize seed 

particle wall loss (using seed concentrations obtained from the 

SMPS as a function of time). The fitted seed concentration as a 

function of time was then integrated over the filter collection 

period (shown as the shaded region). To obtain the total mass of 

seed collected, the integral (40.78 µg m-3) was multiplied by the 

volumetric flow rate (1.72 m3 hr-1, for an estimated total seed mass 

of 70.14 µg on the filter for this experiment). 
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Figure D-9 Intrinsic OP for naphthalene SOA spanning a range of average 

carbon oxidation states (OS̅̅̅̅
c). SOA from this study was generated 

in a humid chamber in the presence of different seed particles 

(ammonium sulfate or iron sulfate), OH radical precursor (H2O2), 

and NO. Error bars represent a 15% coefficient of variation (Fang 

et al., 2015c). Data from previous studies were included for 

comparison (Tuet et al., 2017b). 
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SUMMARY 

Many studies have established associations between exposure to air pollution, or 

atmospheric particulate matter (PM) and adverse health effects. An increasing array of 

studies have suggested oxidative stress as a possible mechanism by which PM-induced 

health effects arise, and many chemical and cellular assays have been developed to study 

PM-induced oxidant production. While significant progress has been made in recent years, 

there are still many gaps in this area of research that have not been addressed. Many prior 

studies have focused on aerosol of primary origin (e.g., aerosol emitted from combustion 

engines) even though aerosol formed from the oxidation of volatile species, secondary 

organic aerosol (SOA), have been shown to dominate even in urban areas. Current SOA 

health studies are limited and as such, the health effects of SOA are poorly characterized 

and there is a lack of perspective in terms of the relative toxicities of different SOA 

systems. Additionally, while chemical assays have elucidated constituents associated with 

adverse health endpoints, the applicability of these results to cellular responses has not 

been well established.  

The overall objective of this study was to better understand the oxidative properties 

of different types and components of PM mixtures (especially SOA) through systematic 

laboratory chamber experiments and ambient field studies. Ambient PM samples were 

collected from urban and rural sites in the greater Atlanta area as part of the Southeastern 

Center for Air Pollution and Epidemiology (SCAPE) study, and the concentrations of 

water-soluble species (e.g., water-soluble organic carbon (WSOC), brown carbon (BrC), 

metals) were characterized using a variety of instruments. Laboratory studies were 
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conducted in the Georgia Tech Environmental Chamber (GTEC) facility to generate SOA 

under well-controlled photooxidation conditions. Precursors of biogenic (isoprene, α-

pinene, β-caryophyllene) and anthropogenic (pentadecane, m-xylene, naphthalene) origin 

were oxidized under various formation conditions (dry vs. humid, NOx, ammonium sulfate 

vs. iron sulfate seed particles) to produce SOA of differing chemical composition and mass 

loading. A suite of instruments were utilized to monitor gas- and particle-phase species.  

For all aerosol samples, chemical oxidative potentials were determined for water-

soluble extracts using a semi-automated dithiothreitol (DTT) assay system. To investigate 

cellular effects post-exposure, we optimized an assay to measure reactive oxygen and 

nitrogen species (ROS/RNS) produced as a result of exposure to PM extracts. Optimized 

parameters include cell density (2 x 104
 cells well-1

 for murine alveolar macrophages and 

3.33 x 104
  cells well-1 for neonatal rat ventricular myocytes), probe concentration (10 µM), 

and sample incubation time (24 hrs). Results from both ambient and laboratory-generated 

aerosol demonstrate that ROS/RNS production was highly dose-dependent and non-linear 

with respect to PM dose. Of the dose-response metrics investigated in this study (maximum 

response, threshold, EC50, Hill slope, and area under the dose-response curve (AUC)), we 

found that the AUC was the most robust parameter whose informativeness did not depend 

on dose range.  

For the ambient study, a positive, significant correlation was observed between 

ROS/RNS production as represented by AUC and chemical oxidative potential as 

measured by DTT for summer samples. Conversely, a relatively constant AUC was 

observed for winter ambient samples regardless of the corresponding DTT activity. We 

also identified several PM constituents (WSOC, BrC, Fe, and Ti) which were significantly 
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correlated with AUC for summer samples. Although few metal correlations were observed, 

exposure to laboratory-prepared metal solutions induced ROS/RNS production, indicating 

that a lack of correlation does not necessarily translate to a lack of response. Collectively, 

these results suggest that complex interactions may occur between PM species. 

Furthermore, the strong correlation between organic species and ROS/RNS response 

highlights a need to understand the contribution of organic aerosol, especially 

photochemically driven SOA, to PM-induced health effects. 

In terms of laboratory-generated aerosol, precursor identity influenced oxidative 

potentials significantly, with isoprene and naphthalene SOA having the lowest and highest 

DTT activities, respectively. Both precursor identity and formation condition significantly 

influenced inflammatory responses induced by SOA exposure, and several response 

patterns were identified for SOA precursors whose photooxidation products share similar 

carbon chain length and functionalities. The presence of iron sulfate seed particles did not 

have an apparent effect on oxidative potentials, however, a higher level of ROS/RNS 

production was observed for all SOA formed in the presence of iron sulfate compared to 

ammonium sulfate. This effect was primarily attributed to differences in aerosol carbon 

oxidation state (OS̅̅̅̅
c). In the presence of iron, radical concentrations are elevated via iron 

redox cycling, resulting in more oxidized species. An exponential trend was also observed 

between ROS/RNS and OS̅̅̅̅
c for all naphthalene SOA, regardless of seed type or aerosol 

formation condition. This may have important implications as aerosol have an atmospheric 

lifetime of a week, over which OS̅̅̅̅
c increases due to continued photochemical aging, 

potentially resulting in more toxic aerosol. Finally, in the context of ambient samples, 

laboratory-generated SOA induced comparable or higher levels of ROS/RNS. Oxidative 
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potentials for all laboratory SOA systems, with the exception of naphthalene which was 

higher, were all comparable with oxidative potentials observed in ambient samples. These 

results suggest that the health effects of SOA are important considerations for 

understanding the health implications of ambient aerosol. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation to study air pollution 

Exposure to particulate matter (PM), defined as liquid or solid particles suspended 

in the air, is a leading global human health risk (Lim et al., 2012; Gakidou et al., 2017). 

Over the past few decades, there have been multiple epidemiological studies reporting 

associations between elevated PM concentrations and increased incidences of 

cardiopulmonary morbidity and mortality (Li et al., 2008; Pope III and Dockery, 2006; 

Brunekreef and Holgate, 2002; Dockery et al., 1993; Hoek et al., 2013; Anderson et al., 

2011; Pope et al., 2002; Lim et al., 2012). A recent commission by The Lancet on air 

pollution and health also makes the assertion that “[air] pollution is the largest 

environmental cause of disease and premature death in the world today” (Landrigan et al., 

2017), indicating the growing importance of understanding aerosol induced health effects.  

More recent studies have also found significant associations between 

cardiopulmonary health effects and particle oxidative potential (Bates et al., 2015; Fang et 

al., 2016; Yang et al., 2016; Weichenthal et al., 2016). Furthermore, findings from 

toxicological studies suggest that PM-induced oxidant production, including reactive 

oxygen and nitrogen species (ROS/RNS), may be a possible mechanism for PM-induced 

health effects (Li et al., 2003a; Tao et al., 2003; Castro and Freeman, 2001; Gurgueira et 

al., 2002). Other potential mechanisms have also emerged from recent studies, including 

alteration of the brain’s innate immune response (Calderón-Garcidueñas et al., 2008) and 

activation of vascular responses via blood DNA hypomethylation (Bellavia et al., 2013). 

Nevertheless, despite these additional possible mechanisms, PM-induced oxidative stress 

wtuet3
Sticky Note
Accepted set by wtuet3



 2 

remains the current paradigm for PM-induced health effects (Li et al., 2003a). Specifically, 

oxidative species generated as a result of PM exposure can initiate cellular inflammatory 

cascades, and prolonged stimulation of these cascades can lead to oxidative stress, cellular 

damage (e.g., lipid peroxidation, protein oxidation, and nucleic acid alteration), and chronic 

inflammation for which there is an established link to cancer (Wiseman and Halliwell, 

1996; Hensley et al., 2000; Philip et al., 2004). Collectively, these findings suggest that a 

possible link exists between PM exposure and observed health endpoints. 

1.2 Previous assays developed to study PM-induced health effects 

Multiple chemical and cellular assays have been developed to measure PM-induced 

oxidant production and elucidate constituents responsible for oxidant production (Kumagai 

et al., 2002; Cho et al., 2005; Fang et al., 2015c; Landreman et al., 2008). In biological 

systems, ROS/RNS are formed by mitochondria (Murphy, 2009) or the reaction between 

oxygen and reducing agents present in the cell, such as NADPH and NADH (Frei, 1994). 

PM species can react with these reducing agents to initiate a series of redox reactions that 

ultimately produce superoxide anions, which can further react to produce hydrogen 

peroxides (e.g., Rattanavaraha et al., 2011).  

The reaction between oxygen and reducing agent is the basis of cell-free chemical 

assays, where an anti-oxidant surrogate (e.g., dithiothreitol, DTT; ascorbic acid, AA; or 

other species present in the respiratory tract lining fluid) is used to simulate biologically 

relevant redox reactions. In the presence of redox-active species in the PM sample, an 

electron is transferred between the surrogate anti-oxidant (e.g., DTT) and molecular 

oxygen. This reaction consumes DTT and produces a superoxide anion (Kumagai et al., 
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2002; Cho et al., 2005). Consumption of DTT (or other anti-oxidant surrogate) then 

provides a measure of the concentration of redox-active species in a sample (Fang et al., 

2015c; Cho et al., 2005; Kumagai et al., 2002). These chemical assays are generally 

performed in buffered solutions (pH ~ 7.4) at 37 °C to simulate biologically relevant 

conditions (Fang et al., 2015c). 

In principle, the superoxide anion produced in these cell-free chemical assays can 

react further to produce other ROS/RNS species, including hydrogen peroxide (H2O2) or 

the hydroxyl radical (OH•) (Kumagai et al., 2002). As a result, oxidative potentials 

measured using these assays, particularly DTT activities, have frequently been used to 

represent ROS/RNS production. However, a study comparing the consumption of DTT and 

the generation of ROS, specifically OH• and H2O2, has recently shown that DTT 

consumption and actual ROS generation are not equivalent (Xiong et al., 2017). In fact, 

metal species known to be highly active in DTT oxidation (i.e., Cu) produced negligible 

ROS, while other metals known to be largely inactive in DTT oxidation (i.e., Fe) 

contributed significantly to ROS production in mixtures with other aerosol components 

(Xiong et al., 2017).  

Cellular assays, on the other hand, utilize a non-fluorescent probe that reacts with 

ROS/RNS and produces a fluorescent compound post-reaction. The measured fluorescence 

is proportional to the concentration of ROS/RNS produced as a result of PM exposure 

(Landreman et al., 2008). In cellular systems, cells may also generate ROS/RNS as a 

signaling molecule and/or upregulate antioxidant defenses in response to stimuli (Wiseman 

and Halliwell, 1996), which affect the measured ROS/RNS production. The cellular assay 

utilized in this study measures ROS/RNS produced by the cell in response to PM exposure. 
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Redox-active species in the aerosol, the concentration of which is measured by chemical 

assays, can induce cellular ROS/RNS production and may hence be measured by the 

cellular assay as well. Furthermore, it may be possible for particle-bound ROS/RNS to 

diffuse across the cell membrane and react with the ROS/RNS probe. This is the basis of 

another acellular chemical assay, which has been used previously to study the oxidative 

properties of PM (Møller et al., 2009). Therefore, there exists some overlap between the 

types of ROS/RNS measured by both chemical and cellular assays.  

1.3 PM components associated with adverse health 

Epidemiological studies and various assays have associated numerous PM 

components with adverse health effects. The potential contributions of metals have been 

explored extensively as many metals are redox-active and hence may produce ROS/RNS 

via Fenton-like reactions (Frei, 1994; Chevion, 1988). Many studies report findings that 

support the adverse influence of metals on PM-induced health effects. Epidemiological 

studies have found strong associations between metals, namely Fe, Ni, and Zn, and 

mortality (Burnett et al., 2001). These observations are supported by toxicological studies, 

where various oxidative properties (e.g., cytotoxicity, inflammatory cytokine release) were 

found to be most significant in metal-containing samples (Akhtar et al., 2010; Pardo et al., 

2015). Strong correlations between oxidative properties (e.g., neutrophil influx and 

oxidative potential) and water-soluble metals have also been reported (Huang et al., 2003; 

Charrier and Anastasio, 2012; Charrier et al., 2015; Verma et al., 2010).  

Similarly, organic carbon constituents have been found to be toxicologically 

relevant. Verma et al. (2009) found that DTT activity was strongly associated with water-
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soluble organic carbon (WSOC), and a subsequent study on the relative contributions of 

water-soluble and water-insoluble PM fractions to oxidative potentials further suggested 

the importance of hydrophobic organic compounds, such as humic-like substances 

(HULIS) (Verma et al., 2012). These findings led to the development of a novel technique 

to isolate various fractions of HULIS and the observation that highly DTT-active HULIS 

components were polar in nature (Verma et al., 2015b). The importance of HULIS and 

polycyclic aromatic hydrocarbons (PAH) to particle redox potential have been implicated 

in additional studies as well (Dou et al., 2015; Saffari et al., 2014b; Antinolo et al., 2015; 

Li et al., 2003b). Another study comparing the relative oxidative potentials of various 

organic aerosol subtypes reported DTT activities on par or higher than that of ambient PM, 

further implicating the importance of organic species to PM-induced health effects (Verma 

et al., 2015a).  

Besides investigations utilizing chemical oxidative potential, inhalation and 

exposure studies have found that organic carbon constituents may play a significant role in 

PM-induced adverse effects (Kleinman et al., 2005; Hamad et al., 2015). Kleinman et al. 

(2005) exposed ovalbumin-sensitized BALB/c mice to PM collected downwind of a 

freeway in Los Angeles and observed significant correlations between enhanced 

inflammatory and allergic responses and organic and elemental carbon constituents. 

Similarly, an in vitro study utilizing a macrophage-based assay to assess oxidative stress 

found an association between WSOC from biomass burning and ROS production (Hamad 

et al., 2015). Despite these findings, many inhalation and exposure studies involved limited 

data sets and low-throughput methods, while the applicability of chemical oxidative 

potentials to cellular responses have not been established.  
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1.4 Motivation to study secondary organic aerosol (SOA) toxicity 

Ambient PM consists of a complex mixture of hundreds to thousands of species. 

Organic aerosol constitute a significant portion of PM and can be further divided into 

primary organic aerosol (POA) and secondary organic aerosol (SOA) (Kanakidou et al., 

2005; Jimenez et al., 2009). POA are directly emitted as PM from a variety of sources, such 

as vegetation, fossil fuel combustion, and power plant operation. SOA, on the other hand, 

are formed from the oxidation of volatile species followed by gas-particle partitioning 

(Hallquist et al., 2009; Kroll and Seinfeld, 2008). Currently, many pollution control 

strategies and policies are focused on primary emissions. Field studies, however, have 

shown that SOA mass loadings often dominate over POA, even in urban environments 

(Zhang et al., 2007; Jimenez et al., 2009; Ng et al., 2010). In the past, many health studies 

focused on primary emissions, such as PM emitted from diesel and gasoline exhaust (Bai 

et al., 2001; Kumagai et al., 2002; McWhinney et al., 2013a; Turner et al., 2015), or were 

conducted on particles that were not representative of ambient exposures (Koike and 

Kobayashi, 2006).  

More recent studies explored the potential health implications of SOA 

(McWhinney et al., 2013b; Rattanavaraha et al., 2011; Kramer et al., 2016; Lund et al., 

2013; McDonald et al., 2010; McDonald et al., 2012; Baltensperger et al., 2008; Arashiro 

et al., 2016; Platt et al., 2014). The oxidative potentials and cellular responses measured in 

these studies demonstrated that pure SOA could indeed contribute to PM-induced health 

effects. McWhinney et al. (2013b) and Kramer et al. (2016) measured the oxidative 

potentials of naphthalene and isoprene SOA, respectively. Both SOA systems were found 

to be redox active, however, there was a lack of perspective due to the large range of 
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oxidative potentials that remained unexplored. The oxidative potentials of additional 

particle systems, including aged diesel exhaust particles and SOA generated in the presence 

of a simulated urban environment, were also explored in a study by Rattanavaraha et al. 

(2011), although a lack of perspective still exists regarding the relative toxicities of 

different SOA systems. 

Results from cellular exposure studies also included different measures of response 

(e.g., ROS/RNS, gene expression, inflammatory markers) and were inconclusive, with 

some studies reporting significant response as a result of SOA exposure and others 

observing little to no response (Arashiro et al., 2016; Lund et al., 2013; McDonald et al., 

2010; McDonald et al., 2012; Baltensperger et al., 2008). Mice and rats exposed to α-pinene 

and toluene SOA exhibited negligible pulmonary inflammation and a mild cardiovascular 

response (McDonald et al., 2010; McDonald et al., 2012). A subsequent exposure study 

investigating the cardiovascular effects of α-pinene and toluene SOA formed in the 

presence of different gaseous components also reported limited biological responses, 

however, significant differences in SOA-mediated toxicity were observed depending on 

the specific chemistry under which the SOA was formed (Lund et al., 2013). In contrast to 

these observations, significant and distinct responses were reported for multiple pulmonary 

cell culture systems exposed to SOA in another study (Baltensperger et al., 2008). In vitro 

exposures to isoprene SOA also induced significant cellular responses, such as increased 

expression of inflammation-related genes (Arashiro et al., 2016; Lin et al., 2017; Lin et al., 

2016). These differences in cellular responses may, in part, be due to the different exposure 

doses and different cellular endpoints explored in each study, resulting in difficult direct 

comparisons between studies. Consequently, there is a lack of perspective in terms of the 
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relative toxicities of individual SOA systems formed from various precursors, and it is 

unclear whether responses resulting from SOA exposure are indeed toxic compared to 

other sources and subtypes of PM.  

Finally, the potential health implications arising from organic aerosol formed in the 

presence of redox-active metals have also not been explored, even though this formation 

condition can be atmospherically relevant as these metals are readily emitted via 

combustion and various mechanical processes (Charrier and Anastasio, 2012; Fang et al., 

2015a). Moreover, both components (metals and organics) have been shown to have 

considerable health effects in previous studies (Akhtar et al., 2010; Pardo et al., 2015; 

Burnett et al., 2001; Huang et al., 2003; Kleinman et al., 2005; Hamad et al., 2015; Verma 

et al., 2015b; Li et al., 2003b; McWhinney et al., 2013b; Antinolo et al., 2015). This 

formation of organic aerosol in the presence of metals may therefore produce aerosol that 

is highly detrimental to health. Furthermore, organic aerosol have a lifetime of 

approximately one week, over which continued photochemical aging can alter their 

physical and chemical properties (Seinfeld and Pandis, 2016). These changes have 

potential health implications that have not be explored. 

1.5 Scope and overview 

This dissertation covers several important gaps in the area of aerosol toxicity, with 

a specific focus on providing perspective on SOA toxicity and comparing aerosol toxicity 

results from different assays. Chapter 2 focuses on the development and optimization of a 

cellular assay for measuring ROS/RNS produced as a result of aerosol exposure. The 

optimized assay was then used to analyze a large set of ambient samples to evaluate 
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whether results from chemical assays are representative of cellular responses. In chapters 

3 and 4, chemical oxidative potentials and cellular ROS/RNS productions were evaluated 

for various laboratory SOA systems generated from different precursors under different 

formation conditions. Additional cellular responses were also evaluated to provide further 

insight. Chapter 5 then discusses the effect of aerosol age and redox-active metals on 

aerosol toxicity. Finally, chapter 6 summarizes the main findings of this dissertation and 

provides recommendations for future work.  
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CHAPTER 2: DOSE-DEPENDENT INTRACELLULAR ROS/RNS 

PRODUCTION FROM PM EXPOSURE – COMPARISON TO 

OXIDATIVE POTENTIAL AND CHEMICAL COMPOSITION 

2.1 Background 

Adverse health effects resulting from particulate matter (PM) exposure have 

received considerable attention with increasing epidemiological studies associating 

elevated PM concentrations with increases in cardiopulmonary hospitalizations and 

mortality, specifically increases in lung cancer, asthma, chronic obstructive pulmonary 

disease, arrhythmia, and ischemic heart disease (Li et al., 2008; Pope III and Dockery, 

2006; Brunekreef and Holgate, 2002; Dockery et al., 1993; Hoek et al., 2013; Anderson et 

al., 2011; Pope et al., 2002). Contributions from PM-associated deaths worldwide also rank 

among the top 10 global risks (Lim et al., 2012), and in 2013, the World Health 

Organization classified PM as a Group I carcinogen (Loomis et al., 2013). Toxicology 

studies suggest that PM-induced oxidative stress may play a role in initiating these adverse 

effects (Li et al., 2003a; Tao et al., 2003; Castro and Freeman, 2001; Gurgueira et al., 

2002). Specifically, PM-induced reactive oxygen/nitrogen species (ROS/RNS) production 

can initiate inflammatory cascades, and prolonged stimulation of these cascades can lead 

to oxidative stress and cellular damage, including lipid peroxidation, protein oxidation, and 

DNA/RNA alteration (Wiseman and Halliwell, 1996; Hensley et al., 2000). Additionally, 

there is a well-established link between chronic inflammation and cancer (Philip et al., 

2004). A possible link between PM exposure and observed health endpoints therefore 

exists as PM can generate ROS/RNS via redox reactions and by inducing cellular pathways 

that produce ROS/RNS (Rattanavaraha et al., 2011; Becker et al., 2005). 
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Despite these associations, the specific mechanisms and components responsible 

for PM-induced oxidative stress have not been fully explored. Metals have received 

considerable attention in this regard as many are redox active and can produce ROS/RNS 

via Fenton-like reactions (Frei, 1994; Chevion, 1988). For instance, studies with standard 

reference materials and PM samples have found that oxidative potential, cytotoxicity, and 

inflammatory responses were most significant in metal-containing samples (Akhtar et al., 

2010; Pardo et al., 2015). Epidemiological studies have also found that specific metals (Fe, 

Ni, and Zn) were more strongly associated with mortality than fine particle (PM2.5) mass 

alone (Burnett et al., 2001). Additionally, Huang et al. (2003) showed that water-soluble 

metals in concentrated ambient particles were correlated with increased neutrophil influx 

and blood fibrinogen in humans. Besides metals, organic carbon components were also 

found to be toxicologically relevant in inhalation and exposure studies (Kleinman et al., 

2005; Hamad et al., 2015), and ROS have been linked to quinones, polycyclic aromatic 

hydrocarbons (PAHs), and other oxygenated aromatics, such as humic-like substances 

(Verma et al., 2015b; McWhinney et al., 2013b; Li et al., 2003b; Antinolo et al., 2015). 

Many of these studies, however, involve limited data sets and low-throughput methods. 

Chemical assays have been developed and widely used to determine PM oxidative 

potential. In these assays, an anti-oxidant (e.g. DTT; ascorbic acid, AA; or other species 

present in the respiratory tract lining fluid) is used to simulate redox reactions that would 

occur in biological systems (Kumagai et al., 2002; Cho et al., 2005). PM catalyzes electron 

transfer from the anti-oxidant to oxygen, and anti-oxidant decay provides a measure of 

redox-active species in the sample. These assays can be automated and high-throughput 

systems exist for DTT and AA (Fang et al., 2015c). Studies involving oxidative potential 
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as measured by DTT have shown strong correlations with redox metals (Charrier and 

Anastasio, 2012; Charrier et al., 2015; Verma et al., 2010), water-soluble organic carbon 

(WSOC), and PAHs (Verma et al., 2012; Verma et al., 2009; Saffari et al., 2014b). 

However, the question remains as to whether chemical assays are representative of cellular 

responses.  

In this study, alveolar macrophages and ventricular myocytes were exposed to 

ambient PM extracts over a wide dilution series to fully capture dose-dependent reactive 

oxygen and nitrogen species (ROS/RNS) production and obtain dose-response parameters. 

The PM filters were collected at multiple rural and urban sites in the greater Atlanta area 

during the Southeastern Center for Air Pollution and Epidemiological (SCAPE) study. 

Response parameters were then compared with chemical oxidative potential, measured by 

DTT (Verma et al., 2014), to determine whether results from chemical assays represent 

cellular responses. Finally, water-soluble PM components were compared with cellular 

response parameters to elucidate components associated with ROS/RNS production. 

Spatial and seasonal trends were also investigated for each comparison. 

2.2 Methods 

2.2.1 Alveolar macrophage cell line.  

Alveolar macrophages are closely involved in foreign particle clearance and 

inflammatory signaling and were thus chosen as cells representing the first line of defense 

against environmental insults (Oberdörster, 1993; Oberdörster et al., 1992). Immortalized 

murine alveolar macrophages (MH-S, ATCC®CRL-2019™) were cultured in RPMI-1640 

media supplemented with 10% fetal bovine serum (FBS, Quality Biological, Inc.), 1% 
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penicillin-streptomycin, and 50 µM β-mercaptoethanol (BME) at 37 °C and 5% CO2. Prior 

to sample exposure, MH-S cells were seeded at 2 x 104
 cells well-1 onto 96-well plates pre-

treated with 10% FBS in phosphate buffered saline (PBS, Cellgro). For seeding and 

thereon, all culture media was supplemented with 10% FBS without BME addition since 

BME is a reducing agent that may interfere with ROS/RNS measurement. Seeded plates 

were then incubated overnight to allow cells to adhere and acclimate. 

2.2.2 Ventricular myocyte isolation and culture 

Primary ventricular myocytes were chosen as an alternate active cell type to 

investigate, as cardiac health is known to be affected by pollution. Neonatal rat ventricular 

myocytes (NRVM) were harvested from 2-day-old neonatal Sprague-Dawley rats (Charles 

River Laboratories) based on pre-established protocol (Grosberg et al., 2012). Isolated cells 

were resuspended in M199 culture medium supplemented with 10% FBS, 10 mM HEPES, 

0.1 mM MEM non-essential amino acids, 3.5 g L-1 glucose, 2 mM L-glutamine, 2 mg L-1 

vitamin B12, and 50 U mL-1 penicillin. Prior to seeding, several iterations of pre-plating 

were performed to increase the cardiomyocyte purity to 90 – 98%. Cells were then seeded 

onto 96-well plates pre-coated with polydimethylsiloxane (PDMS, Dow Corning Sylgard 

184) and fibronectin (FN, Fisher Scientific) at 3.33 x 104 cells well-1. Seeded plates were 

incubated at 37 °C and 5% CO2 and cultured for 2 days prior to exposure. Approximately 

24 hrs after seeding, cells were washed with PBS to remove dead cells and the media was 

replaced. From 48 hrs on, 2% FBS was used for culturing and exposure. 
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2.2.3 PM collection and extraction 

Ambient PM2.5 samples were collected from multiple urban (Jefferson Street, 

Roadside, Georgia Tech) and rural (Yorkville) sites around the greater Atlanta area (Figure 

A-1) between June 2012 and October 2013 as part of the Southeastern Center for Air 

Pollution and Epidemiology (SCAPE) study (Verma et al., 2014; Fang et al., 2015a; Xu et 

al., 2015a; Xu et al., 2015b). High-volume samplers (ThermoAndersen) were used to 

collect particles over 23 hrs onto pre-baked quartz filters (Pallflex®Tissuquartz™). 

Collected samples were wrapped in pre-baked aluminum foil and stored at -20 °C until 

extraction and analysis (Fang et al., 2015c). For this study, ambient samples were selected 

to span the range of extrinsic (per volume of air sampled) and intrinsic (per mass of PM) 

DTT activities observed in SCAPE (Verma et al., 2014). 

 The concentrations of various water-soluble species in the PM samples were 

determined and reported in previous studies (Fang et al., 2015a; Fang et al., 2015b). 

Specifics on PM chemical characterization are described elsewhere (Fang et al., 2015a). 

Briefly, filter samples were sectioned and extracted in deionized (DI) water for chemical 

analysis. WSOC and brown carbon (BrC) absorption were then measured using an 

automated system comprised of an autosampler, a liquid waveguide capillary cell, a 

spectrophotometer, and a total organic carbon analyzer (Verma et al., 2014). A XactTM
 625 

automated multi-metals monitor was used to determine water-soluble metal concentrations 

using acidified water-soluble extracts (Fang et al., 2015a).  Elemental and organic carbon 

were also determined using a thermal/optical transmittance analyzer on sections of filter 

samples (Verma et al., 2014). 
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 In this study, collected particles were extracted following the procedure described 

in Fang et al. (2015a) with modifications for cellular exposure. Briefly, filter samples were 

sectioned into 1.45 cm2-punches and extracted in cell culture media for measuring cellular 

ROS/RNS production or DI water for determining oxidative potential. Punches were 

submerged in extraction medium and sonicated for 30 min using an Ultrasonic Cleanser 

(VWR International). Extracts were then filtered using 0.45 µm PTFE syringe filters 

(Fisherbrand™) to remove quartz fibers, which are known to elicit inflammatory responses 

(Fubini and Hubbard, 2003; Knaapen et al., 2002). Prior to exposure, media extracts were 

supplemented with FBS and diluted over ten dilutions to obtain a dose-response curve from 

1x to 0.00125x, with 1x being the undiluted extract. 

2.2.4 Pure metal solutions 

Concentrated pure metal solutions were prepared by dissolving metal salts 

[Cu(II)SO4, ZnCl2, C6K2O12Ti, Cr(III)Cl3, Fe(II)SO4, Mn(II)SO4] in DI water to a final 

concentration of 400 mM (Cu, Zn), 200 mM (Ti, Cr, Mn), and 1000 mM (Fe). Prior to 

exposure, metal solutions were diluted 1000x in FBS-supplemented media to produce the 

“1x” solution. These concentrations were chosen to span the observed range for these 

metals in SCAPE (Verma et al., 2014). 

2.2.5 Oxidative potential 

PM oxidative potential was measured in previous studies using a semi-automated 

DTT assay system (Fang et al., 2015c). Details of this high-throughput system are 

described elsewhere (Fang et al., 2015c), and oxidative potential results from SCAPE have 

been reported and extensively discussed in the context of PM composition and source 
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apportionment in prior publications (Verma et al., 2014; Fang et al., 2015a; Verma et al., 

2015a). Briefly, the method consisted of three main steps: (1) oxidation of DTT by redox-

active species, (2) reaction of residual DTT with DTNB to form 2-nitro-5-mercaptobenzoic 

acid (TNB), repeated at specific time intervals, and (3) measurement of TNB to determine 

DTT consumption. 

2.2.6 Intracellular ROS/RNS measurement 

ROS/RNS were detected using 5-(and-6)-carboxy-2’,7’-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA, Molecular Probes C-400), a 

cell-permeable compound that becomes deacetylated intracellularly and is better retained 

than other commonly used probes due to its additional negative charges (Chen et al., 2010; 

Uchida et al., 2004). The deacetylated ROS/RNS probe (carboxy-DCFH) is subsequently 

oxidized by cellular ROS/RNS to produce a fluorescent compound (carboxy-DCF). The 

protocol established by Landreman et al. (2008), which measured ROS production from 

alveolar macrophages exposed to diesel exhaust particles, was used as a general reference 

for assay development and optimization in this study. The optimized ROS/RNS assay, 

shown schematically in Figure 2-1, consisted of the following major steps: (1) pre-

treatment of 96-well plates, (2) seeding of cells, (3) treatment of cells with ROS/RNS 

probe, (4) exposure of probe-treated cells to samples, and (5) detection of ROS/RNS. 
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Figure 2-1. Cellular assay optimized for measuring ROS/RNS production as a result of 

PM exposure. Major steps include: (1) pre-treatment of wells, (2) seeding of cells onto 

wells, (3) incubation of cells with carboxy-H2DCFDA, (4) incubation of probe-treated cells 

with samples or controls, and (5) detection of carboxy-DCF (proportional to ROS/RNS) 

using microplate reader. 

In the first step, 96-well plates were pre-treated to reduce cell aggregation near 

hydrophobic walls and ensure a uniform cell density throughout the well. Next, wells were 

seeded at a density optimized for ROS/RNS measurement (MH-S) or predetermined to 

form a confluent monolayer tissue (NRVM) (Grosberg et al., 2012). MH-S cell density was 

optimized with the following considerations: (1) too few cells could result in saturation 

where different PM samples yield the same ROS/RNS signal, and (2) too many cells could 

result in overcrowding stress and increased background ROS/RNS production. 

Approximately 24 hrs after seeding, the cell culture media was removed and cells 

were washed with PBS. 120 µL of ROS/RNS probe diluted to a final concentration of 10 

µM was then added to each well and incubated for 40 min at 37 °C and 5% CO2. After 

probe treatment, the probe solution was removed and replaced with 120 µL of PM extract 

or control solution. All controls were dissolved or extracted in cell culture media 
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supplemented with FBS. Positive controls included LPS (1 µg mL-1), H2O2 (100 µM), and 

reference filter extract (10 filter punches mL-1, 1 per filter sample, from various ambient 

filters collected at the Georgia Tech site). LPS and H2O2 have been shown to induce 

oxidative stress and inflammation in macrophages (Chen et al., 2007; Tang et al., 2007), 

whereas reference filter extract contains ambient particles that should elicit similar cellular 

pathways as filter samples of interest. Negative controls include blank filter extract (2 

punches mL-1) and control cells (probe-treated cells exposed to media only, no stimulants). 

After sample/control addition, cells were incubated for 24 hrs. This sample incubation time 

was chosen to maximize positive and negative response signal separation (Figure A-2). 

After 24 hrs, samples and controls were removed and replaced with PBS. Fluorescence was 

then measured (ex/em: 485/525 nm) using a microplate reader (BioTek Synergy H4). 

Cellular metabolic activity was determined for selected samples using the MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Biotium). Briefly, 

samples were removed after exposure and replaced with media containing MTT. Cells were 

then incubated for 4 hrs, during which the dye was reduced by cellular NAD(P)H to 

produce an insoluble purple salt. Finally, dimethyl sulfoxide was used to solubilize the salt 

and absorbance at 570 nm was measured using a microplate reader. 

2.2.7 Statistical analysis 

Linear regressions between cellular response and oxidative potential or PM 

composition were evaluated using Pearson’s correlation coefficient. Significance was 

determined using multiple imputation to calculate the total variance associated with the 

slope of each regression. Details of this method are given in Pan and Shimizu (2009). 
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Briefly, fit parameters were assumed to be normally distributed and 10 parameter 

“estimates” were obtained for each parameter using the average and standard deviation 

determined from the fit. Estimates were then plotted against the component of interest to 

obtain 10 fits, each with a corresponding slope. The generated slopes and variances were 

then used to calculate the between and within variance to obtain the total variance. Finally, 

the student’s t-test and a 95% confidence was used to calculate and evaluate the associated 

p-values. 

2.3 Results 

2.3.1 PM-induced dose-dependent ROS/RNS production 

ROS/RNS production, expressed as fold increase in fluorescence over control cells, 

was measured over 10 dilutions for each PM sample. A representative dose-response curve 

with three distinguishable regions is shown in Figure 2-2. In the first region, there exists a 

dose below which there is no observable difference in response compared to control cells. 

Next, there is a region where response increases with dose. Finally, there exists a dose 

beyond which there is no further increase in response. 
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Figure 2-2. Representative dose-response curve of ROS/RNS produced as a result of 

ambient PM exposure (filter ID: YRK 07/10/12). ROS/RNS production is expressed as 

fold increase over control, defined as probe-treated cells incubated with stimulant-free 

media. Dose is expressed as either (a) mass in extract (µg) or (b) volume of air sampled 

(m3). Data shown are means ± SE of exposure experiments performed in triplicate. Hill 

equation (HE) parameters shown include: max response, Hill slope (rate at which max 

response is attained), EC50 (dose at which 50% of max response is attained), threshold 

(dose at which response is 10% above baseline), and AUC (area under the dose-response 

curve). 

To characterize each dose-response, the Hill equation, used extensively in 

pharmacology to determine drug dose-response relationships (Goutelle et al., 2008; Hill, 

1910), was applied to each data set to obtain response parameters. These parameters, 

labeled in Figure 2-2a, include the max response attained as a result of PM exposure, the 

rate at which the max response is attained once there is response (Hill slope), the dose at 

which 50% of the max response is attained (EC50), and the dose at which response is 10% 

above the fitted baseline (threshold).  

In addition to the classical dose-response shown in Figure 2-2, some samples 

exhibited behaviors that required adjustments to analysis methods (Figure A-3): 



 21 

(1) Maximum response not attained: the Hill equation was applied and the 

maximum response was estimated from the fit. Fitted parameters in these cases 

were generally associated with large uncertainties.  

(2) Decreased response at higher doses: doses after the initial decrease in 

response were excluded from the fit. MTT for selected filters showed a decrease 

in cell viability at the same dose where ROS/RNS production decreased.  

(3) No response above baseline at all doses: a maximum response of 1 and a 

threshold equal to the highest dose investigated was assigned. EC50 and Hill 

slope were not calculated. 

The area under the fitted dose-response curve (AUC), labeled in Figure 2-2b, was 

also considered as a measure of the overall effect of PM exposure across the dose range 

investigated (Huang and Pang, 2012). Doses (in µg) were converted to volume of air 

sampled to obtain dose-response curves across the same dose range. Uncertainties 

associated with AUC determination were approximated by averaging AUCs calculated by 

fitting dose-response data with each point removed systematically. Max response and Hill 

slope values did not change with dose conversion. Furthermore, the uncertainties 

associated with AUC determination were low for all samples investigated, including those 

with non-classical dose-response behaviors. 

2.3.2 ROS/RNS production and oxidative potential 

AUC per volume of air sampled (AUCvolume) and AUC per mass of PM (AUCmass) 

were compared with extrinsic and intrinsic DTT activity, respectively. Results are shown 
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in Figure 2-3, colored by season for both cell types. It is noted that the DTT activity results 

have been reported previously in Verma et al. (2014) For summer filters, AUCvolume was 

significantly correlated with DTT activity (n = 47, R = 0.63, p < 0.05), but a relatively 

constant AUCvolume was observed for winter samples (n = 32). A statistically significant 

correlation between AUCmass and DTT activity (Figure 2-3b) was observed for summer 

data, while no correlation was observed for winter data. No other dose-response parameter 

was significantly correlated with DTT activity (Figure A-4) and no spatial trends were 

observed. 

 

Figure 2-3. AUC per volume of air sampled (a) and per mass of PM (b) as determined by 

Hill equation fits to ROS/RNS dose-response data for ambient samples spanning a wide 

range of (a) extrinsic and (b) intrinsic DTT activity. Each data point represents a single 

ambient filter for which a dose-response was obtained (10 dilutions performed in 

triplicate). Data points are colored by season as determined by solstice and equinox dates 

between June 2012 and October 2013. Linear regressions and Pearson’s correlation 

coefficients are shown for summer and winter filter samples. n = 104 ambient filters (10 

spring, 47 summer, 15 autumn, and 32 winter); * indicates significance, p < 0.05 

2.3.3 ROS/RNS production and PM composition 

Absolute mass concentrations and relative mass fractions of all water-soluble PM 

components (Fang et al., 2015a) were compared with AUCvolume and AUCmass, respectively. 

Seasonal trends for these correlations are shown in Figure 2-4. For summer filters, 
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AUCvolume was significantly correlated with WSOC (R = 0.66), brown carbon absorption 

(BrC, R = 0.62), titanium (Ti, R = 0.71), and iron (Fe, R = 0.65) (Figure 2-4), while AUCmass 

was significantly correlated with titanium fraction (R = 0.66) and chromium fraction (Cr, 

R = 0.79) (Figure A-5). For winter filters, a relatively constant AUCvolume was observed for 

WSOC, BrC, and Fe, while no statistically significant correlations were observed for 

AUCmass and water-soluble PM constituents. Other correlations, including metals grouped 

by source apportionment result (Fang et al., 2015a), were not statistically significant (Table 

A-1 and Table A-2). 
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Figure 2-4. AUC per volume of air sampled for ambient samples spanning a wide range 

of (a) water-soluble organic carbon (WSOC), (b) brown carbon (BrC), (c) titanium (Ti), 

and (d) iron (Fe). Each data point represents a single ambient filter for which a dose-

response was obtained (10 dilutions performed in triplicate) and fitted using the Hill 

equation. Data points are colored by season as determined by solstice and equinox dates 

between June 2012 and October 2013. Linear regressions and Pearson’s correlation 

coefficients are shown for summer and winter filter samples. n = 104 ambient filters (10 

spring, 47 summer, 15 autumn, and 32 winter); * indicates significance, p < 0.05. Removal 

of the sample with high WSOC introduces a slight slope (0.03) in the winter correlation, 

which is still relatively flat (panel a). 

2.3.4 Comparison between MH-S and NRVM 

AUCmass data for ambient filters investigated using both cell types are shown in 

Figure 2-5. A total of 18 filters were analyzed with both cellular assays. AUCmass was 

significantly correlated between the cell types (R = 0.80, p < 0.05). No seasonal or spatial 

trends were observed. 
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Figure 2-5. AUC per mass of PM for MH-S and NRVM. Each data point represents a 

single filter dose-response obtained from 10 dilutions (1x to 0.00125x) performed in 

triplicate. An orthogonal regression and the corresponding Pearson’s coefficient is shown. 

A 1:1 line is shown for reference. n = 18 ambient filters; * indicates significance, p < 0.05. 

2.4 Discussion 

2.4.1 Cellular ROS/RNS assay optimization 

In the present study, MH-S and NRVM were exposed to PM extracts containing 

water-soluble components in an assay optimized for measuring ROS/RNS production 

(Figure 2-1). Previous cellular assays (Saffari et al., 2014a; Landreman et al., 2008) were 

used as a general guideline for method optimization. For this study, the following 

parameters were optimized using MH-S and later adapted for NRVM: cell density, 

ROS/RNS probe concentration, and sample incubation time (Table A-3). Optimization 

experiments with stimulant-free, probe-treated cells showed that 1 x 105 cells well-1, 
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commonly used in prior studies (Landreman et al., 2008; Hamad et al., 2015; Saffari et al., 

2014a), produced a higher ROS/RNS baseline with greater signal variability. Likewise, 

studies have shown that cells experienced oxidative stress under crowded conditions (Sung 

et al., 2006; Murray et al., 2004). A lower cell density, 2 x 104 cells well-1, produced a low 

baseline and was visually consistent with low-density reference images (ATCC). Further 

optimization experiments also showed that probe concentrations ≥ 30 µM resulted in 

visually enlarged cells and membrane irregularities similar to those observed under 

crowded conditions. These observations suggest that ROS/RNS productions observed 

using higher probe concentrations, such as 45 µM (Saffari et al., 2014a; Daher et al., 2014), 

may be due to basally stressed cells and may not accurately reflect PM exposure. Finally, 

a time series experiment (Figure A-2) showed that a significant fold increase in ROS/RNS 

production was not observed until 8 – 24 hrs. This is much longer than exposure times used 

in previous cellular assays, typically ~ 2.5 hrs (Hu et al., 2008; Saffari et al., 2014a; Daher 

et al., 2014), but is in accordance with the LPS peak response time found in other 

inflammatory assays (Haddad, 2001). The final assay parameters are as follows: 2 x 104
 

cells well-1 (MH-S), 3.33 x 104
 cells well-1 (NRVM), 10 µM ROS/RNS probe, and 24 hrs 

sample incubation. 

In addition to parameter optimization, a dose-response approach was used in this 

study. Prior studies using the macrophage assay involved normalizing raw fluorescence 

measurements to a positive control (e.g., zymosan or H2O2) in order to obtain a single value 

for comparison with DTT activity (Gali et al., 2015; Saffari et al., 2014a). However, studies 

involving inflammatory stimulants and cellular endpoints, including IL-6, IL-8, NF-κB, 

and TNF-α, showed that endpoints generally followed a sigmoidal dose-response curve 
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(Haddad, 2001; Yoo et al., 2013; Hardin et al., 2008). Here, we demonstrated clearly that 

ROS/RNS production from PM exposure was non-linear, highly dose-dependent, and 

could not be represented by a single concentration measurement. Furthermore, the specific 

dose-response region captured for each filter depended strongly on the dilution range used. 

A narrow dilution range could only capture the full response behavior for certain filters 

and may result in overestimates and underestimates for filters of lower and higher potency, 

respectively. Additionally, in this study, ROS/RNS production was reported as a fold 

increase over control cells to take into account variability between batches of cells (basal 

cellular ROS production). This normalization scheme was chosen to reduce uncertainty in 

ROS/RNS production, since signals were observed to increase with increasing response 

and were especially variable with positive controls. 

Another common scheme used in prior studies involved obtaining a linear slope for 

macrophage ROS production over a few dilutions (Wang et al., 2013). However, as 

demonstrated in this study, the dose-response curve (Figure 2-2) is highly non-linear and 

the slope varies significantly depending on the dose range chosen. Furthermore,  large-

scale pharmacology studies showed that different dose-response metrics were correlated 

with different subsets of drugs, highlighting the importance of considering information 

from multiple dose-response metrics (Fallahi-Sichani et al., 2013). For comparison studies 

where a single measure was required, the same study demonstrated that AUC was robust 

whereas other metrics varied in informativeness depending on dose. Another study 

involving simulation and experimental results also demonstrated that AUC was the most 

robust metric in classifying and ranking drugs (Huang and Pang, 2012). Conversely, EC50 

and Hill slope were found to be less reliable and more unstable due to their sensitivity to 
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dose range, especially in cases where either the base or maximum response are not 

observed (Beam and Motsinger-Reif, 2014). In the current study, all dose-response metrics 

were considered to avoid missing important information. Still, AUC was found to be the 

most robust metric in this study. 

2.4.2 Comparison between MH-S and NRVM 

To determine whether PM-induced ROS/RNS production varied between cell types 

that participate in the first line of defense (macrophages) and other active cells that would 

be exposed to pollution less directly (cardiomyocytes), all response parameters were 

compared for both cell types. AUCmass was significantly correlated between the cell types 

(R = 0.80, p < 0.05) (Figure 2-5). Both macrophages, which participate in the immune 

response, and ventricular myocytes, which contract to pump blood, are active cells. Thus, 

the strong correlation suggests that the ROS/RNS response may be similar for different 

active cell types. However, the response is likely to be different for structural cells that are 

largely inactive and warrants future studies. 

2.4.3 Associations between ROS/RNS production and oxidative potential 

To determine whether chemical oxidative potential (i.e. DTT activity) is 

representative of cellular responses, all response parameters (AUCmass, AUCvolume, 

threshold, Hill slope, EC50, max response) were compared with DTT activity (Figure 2-3 

and Figure A-4). Distinct seasonal trends were observed for correlations between 

AUCvolume and extrinsic DTT activity (Figure 2-3a). A strong, statistically significant 

correlation was observed for summer filters. Conversely, with the same sample variability 

as measured by root-mean-squared error (Table A-4), a relatively constant AUCvolume was 
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observed regardless of DTT activity for winter filters. Spring and autumn samples in the 

present study (Figure A-6) do not span the observed DTT range and the sample size is too 

small (n = 10 and 15, respectively) to determine statistical significance, however, the 

majority of spring and autumn responses fall within summer and winter prediction 

intervals. This suggests that spring and autumn samples may exhibit overall trends that fall 

somewhere between summer and winter trends.  AUCmass was also significantly correlated 

with intrinsic DTT activity for summer samples (Figure 2-3b), however, no statistically 

significant correlation was observed for winter samples. The observed seasonal differences 

suggest that a simple correlation does not exist for oxidative potential as measured by DTT 

and cellular ROS/RNS responses and appear to be dependent on PM composition (section 

4.4). However, due to its automation and high throughput, DTT may serve as a useful tool 

for screening samples for cellular analysis, as low DTT will most likely correspond to a 

low cellular response. 

Other dose-response parameters were not significantly correlated with DTT 

activity. The lack of correlation with other parameters may be the result of large 

uncertainties associated with parameter determination for samples that did not attain a 

maximum response. Indeed, AUC was the most robust measurement with low associated 

uncertainties and did not require samples to attain maximum response. This is in agreement 

with other drug studies, where AUC was the most reliable measure for differentiating drug 

performance (Huang and Pang, 2012; Haibe-Kains et al., 2013). Collectively, these results 

suggest that DTT activity may not fully represent every aspect of the cellular ROS/RNS 

response, as each dose-response parameter serves as a different measure of toxicity. Since 
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DTT was significantly correlated with AUC for summer samples, DTT may be more 

indicative of the overall effect of PM, which AUC represents. 

Although neither EC50 nor max response was correlated with DTT activity or 

composition, a significant positive correlation was found between these parameters for all 

filters investigated (Figure A-7). This is in contrast to the expected anti-correlation, where 

a more potent sample (lower EC50) would induce more ROS/RNS production (higher max). 

Previous studies investigating anti-oxidant activities found a significant correlation 

between EC50 and anti-oxidant concentration (Zhang et al., 2006; Chiang et al., 2015). It is 

therefore possible that certain species in more potent samples are involved in anti-oxidant 

production pathways, resulting in neutralization of ROS/RNS species and thus a lower 

maximal ROS/RNS production. Alternatively, species may induce cellular protective 

pathways that prevent or reverse oxidative damage, thus reducing cellular damage and 

possibly enabling cells to produce more ROS/RNS. Studies with pro-inflammatory and 

anti-inflammatory molecules generally did not include correlations with Hill slope or 

threshold, however these parameters could potentially better capture other cellular 

pathways or simply include contributions from a combination of cellular events. Further 

studies are required to test these hypotheses. 

2.4.4 PM constituents associated with AUC 

To assess whether a good predictor exists for cellular ROS/RNS production, all 

cellular response parameters were compared with water-soluble PM constituents, mass 

fractions of constituents, and constituents grouped by sources (Table A-1 and Table A-2). 

Distinct seasonal patterns for AUCvolume correlations with composition were observed for 



 31 

WSOC, a surrogate of secondary organic aerosol (SOA), BrC, and to a lesser extent Ti and 

Fe (Figure 2-4), where a statistically significant correlation with AUCvolume was found for 

summer samples and a relatively flat AUCvolume was found for winter samples. 

The observed seasonal variability could potentially be explained by chemical 

composition, as PM collected during different seasons at the sampling sites differ in mass 

concentration and chemical composition (Fang et al., 2015a; Verma et al., 2014; Verma et 

al., 2015a; Xu et al., 2015a; Xu et al., 2015b). Similarly, seasonal variability has been 

observed for sources of organic species. Using positive matrix factorization (PMF) analysis 

of high-resolution aerosol mass spectrometry (HR-ToF-AMS) data, Xu et al. (2015b) 

showed that organic aerosol at these sites are dominated by SOA, which can be further 

deconvolved into different subtypes. With more intense photochemistry in summer, the 

correlation between AUCvolume and WSOC for summer samples may reflect contributions 

from photochemical SOA and/or aged SOA (Xu et al., 2015b). There may also be 

significant contributions from less-oxidized and more-oxidized oxygenated organic aerosol 

(LO-OOA and MO-OOA, respectively), which are present at higher concentrations in 

summer due to stronger photooxidation and emissions of biogenic volatile organic 

compounds (Xu et al., 2015b). This further highlights the importance of understanding the 

contribution of SOA to PM-induced health effects, especially those arising from 

photochemical oxidation reaction pathways. 

Similarly, seasonal variability observed for AUCvolume vs. BrC may be the result of 

different sources of BrC inducing different cellular pathways. Although biomass burning 

is the predominant source of BrC, especially in winter, BrC may also have non-negligible 

contributions from aged SOA (Hecobian et al., 2010). Furthermore, while BrC was 
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observed in both summer and winter during the filter collection period (Verma et al., 2014), 

biomass burning organic aerosol (BBOA) was not resolved from PMF analysis of HR-ToF-

AMS data in summer, suggesting an unknown source of BrC other than biomass burning 

(Xu et al., 2015b). The cellular ROS/RNS assay may only be sensitive to BrC from the 

unknown source, rather than BBOA. This is further supported by the low AUCs observed 

for winter samples even though BBOA was previously found to be highly redox active 

compared to ambient PM and other sources of organic aerosol (Verma et al., 2015a). 

Additionally, it is possible that some BrC species may not pass through the cell membrane 

or that transport through the membrane may be hindered once a certain intracellular 

concentration is attained, resulting in a consistent response regardless of concentration. 

This may be especially true for humic-like substances, a source of BrC from biomass 

burning that includes large molecular weight hydrophobic compounds (Sullivan and 

Weber, 2006). Transport of large compounds across the cellular membrane could be 

impeded, which may result in lack of increased response. While size-dependent impedance 

on cellular transport has been observed for macromolecules (Matsukawa et al., 1997) and 

nanoparticles (Sheng-Hann et al., 2010), further studies may be needed to establish this for 

atmospheric aerosol. 

Among the metal species, only Fe and Ti were significantly correlated with 

AUCvolume for summer filters. Both are transition metals with positive oxidation states that 

have been correlated with DTT activity, a measure of the concentration of redox active 

species, and shown to participate in reactions that generate ROS/RNS (Verma et al., 2009; 

Fang et al., 2015a; Charrier and Anastasio, 2012; Halliwell and Gutteridge, 1984; Saffari 

et al., 2013). Furthermore, Fe (II) may produce ROS/RNS via Fenton-like reactions (Sutton 
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and Winterbourn, 1989), while Ti (IV) may interfere with protein structure by interacting 

with cysteines or forming other proteins complexes (Tinoco and Valentine, 2005; Conroy 

and Park, 1968). Titanium dioxide (TiO2) is also known to induce pulmonary inflammation 

(Bermudez et al., 2004). No other response parameter was correlated with any metals, and 

no spatial trends were observed for any species. This is in contrast with previous ROS 

studies using filter samples collected in California where correlations with Fe, Cu, Cr, Pb, 

Mn, Zn, As, Ni, and V were observed (Saffari et al., 2014a; Daher et al., 2014; Wang et 

al., 2013; Hu et al., 2008). However, this is not surprising as previous studies used different 

metrics (e.g. measurement at single PM dose, linear slope from few PM doses, etc.) to 

represent ROS production. While Hill slope is similar to the linear slope method used in 

some of these studies, we found this metric to be strongly influenced by dose range and 

previous pharmacology studies also found this metric less reliable (Beam and Motsinger-

Reif, 2014). Still, correlations between DTT activity and K, Mn, Fe, Cu and Zn were also 

previously reported in SCAPE studies (Verma et al., 2014). The lack of correlation with 

other metals, however, does not reflect a lack of response in the present study. Exposure to 

pure metal salt solutions at concentrations observed in ambient filters induced dose-

dependent ROS/RNS production (Figure A-8). These results demonstrate that complex 

interactions may occur such that a simple sum of individual effects cannot recapitulate 

observed response. For example, while metals induce ROS/RNS production, complex 

interactions between species may hinder metal-cell interactions or individual organic 

species may have a greater contribution that masks metal contributions. Verma et al. (2012) 

previously showed that certain metals (V, Zn, and Fe) were retained on a C-18 column, 

which largely removes hydrophobic compounds. This supports the hypothesis that certain 
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metals may be involved in metal-organic complexes, which may be too large to freely 

diffuse across the cell membrane and interact with cellular components that promote 

ROS/RNS production.  

Furthermore, the relative WSOC:metal ratio may mediate this effect, where a 

higher WSOC:metal ratio may exhibit more metal-cell hindrance due to enhanced metal-

organic complex formation. In the present study, the WSOC:metal ratio averages from 18 

– 23, whereas the ratio ranges from 0.98 – 3 for ambient samples from California (Hu et 

al., 2008; Daher et al., 2014; Saffari et al., 2014a). This substantial difference could explain 

the few correlations between cellular response and metal concentrations observed in the 

present study, where a significant portion of metals may be complexed with organics. 

However, while metal-organic complexes have been observed in aqueous solutions 

(Horcajada et al., 2010; Rue and Bruland, 1995), further studies are required to establish 

this for organics and metals present in PM extracts. Interactions with proteins in FBS, 

added to PM extracts to prevent cell starvation, may also be possible and could either 

promote or prevent species-cell interactions depending on whether the protein involved 

participates in cell interactions or not, respectively (Sarkar, 1989; Thierse et al., 2004). 

These interactions may be important considerations as proteins, sugars, and lipids are also 

present in the alveolar fluid, however, further studies are required to establish whether PM 

species participate in these interactions. 

2.5 Implications 

PM-induced intracellular reactive oxygen/nitrogen species (ROS/RNS) production 

from 104 filters collected from the greater Atlanta area was measured using an optimized 
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alveolar macrophage and ventricular myocyte cellular assay. Results from this study 

demonstrate that a wide dose range (instead of a single point) should be considered to 

accurately compare cellular responses between different PM samples. Furthermore, 

multiple dose-response metrics (i.e., max response, EC50, Hill slope, threshold, AUC) 

should be examined as each metric may serve as a different measure of toxicity. Overall, 

AUC was found to be the most robust metric, as its informativeness did not depend on dose 

range.   

Seasonal differences in the correlation between water-soluble DTT activity, a 

measure of the concentration of redox-active species in the sample, and intracellular 

ROS/RNS produced as a result of interactions between PM species and cells were also 

observed in this study, which may be largely driven by PM composition. Nevertheless, 

DTT may serve as a useful tool to screen samples for cellular analysis. It should be noted 

that only the water-soluble DTT activity and water-soluble PM components were 

considered in this study. Results may differ for total DTT activity, where water-insoluble 

components would also be present. 

Thus far, most aerosol health studies have focused on the effects of primary 

pollutants, though ambient studies have repeatedly shown that SOA dominates ambient 

fine PM, even in urban centers (Zhang et al., 2007).  In this study, the observed correlations 

between cellular ROS/RNS production and organic species (WSOC, BrC) in summer 

samples highlight the importance of understanding the contribution of organic aerosol, 

especially photochemically-driven summertime SOA, to PM-induced health effects. 

Furthermore, results from the current study also show that PM species cannot be treated as 

individuals in water-soluble PM extracts. While few water-soluble metals were correlated 
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with ROS/RNS response, exposure to individual metals induced measureable ROS/RNS 

production. These results suggest that complex interactions may occur between PM 

species, resulting in the involvement of multiple cellular pathways such that that the overall 

cellular response cannot be approximated by a simple sum of the individual effects of 

components. Mixture effects may therefore be an important consideration in future studies. 

This study highlights the need to systematically investigate ROS/RNS production from 

different PM mixtures. In particular, generating well-characterized PM mixtures in 

laboratory experiments and measuring their cellular ROS/RNS response could provide 

fundamental data to interpret results from ambient mixtures.   
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CHAPTER 3: CHEMICAL OXIDATIVE POTENTIAL OF 

SECONDARY ORGANIC AEROSOL GENERATED FROM 

BIOGENIC AND ANTHROPOGENIC PRECURSORS 

3.1 Background  

Numerous epidemiological studies have found associations between elevated 

particulate matter (PM) concentrations and increased incidences of cardiopulmonary 

disease, including increases in lung cancer, asthma, chronic obstructive pulmonary disease, 

arrhythmia, and ischemic heart disease (Li et al., 2008; Pope III and Dockery, 2006; 

Brunekreef and Holgate, 2002; Dockery et al., 1993; Hoek et al., 2013; Anderson et al., 

2011; Pope et al., 2002). Furthermore, ambient PM pollution ranked among the top 10 

global risk factors in the 2010 Global Burden of Disease Study, with significant 

contributions from cardiopulmonary diseases and lower respiratory infections (Lim et al., 

2012). Recent epidemiological studies have also found an association between particle 

oxidative potential and various cardiopulmonary health endpoints (Bates et al., 2015; Fang 

et al., 2016; Yang et al., 2016; Weichenthal et al., 2016), and results from toxicology 

studies suggest that PM-induced oxidant production, including reactive oxygen and 

nitrogen species (ROS/RNS), is a possible mechanism by which PM exposure results in 

adverse health effects (Li et al., 2003a; Tao et al., 2003; Castro and Freeman, 2001; 

Gurgueira et al., 2002). These species can initiate inflammatory cascades, which may 

ultimately lead to oxidative stress and cellular damage (Wiseman and Halliwell, 1996; 

Hensley et al., 2000). Prolonged stimulation of inflammatory cascades may also lead to 

chronic inflammation, for which there is a well-established link between chronic 

inflammation and cancer (Philip et al., 2004). Collectively, these findings suggest a 
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possible link between PM exposure and epidemiologically associated health endpoints as 

PM can contain ROS/RNS and generate ROS/RNS via redox reactions and by inducing 

cellular pathways that produce ROS/RNS. 

Chemical assays in which an anti-oxidant is used to simulate redox reactions that 

would occur in biological systems have been developed to study the oxidative potential of 

PM samples (Kumagai et al., 2002; Cho et al., 2005). In these assays, redox-active species 

in PM samples catalyze electron transfer from the anti-oxidant (e.g., dithiothreitol, DTT; 

ascorbic acid, AA; etc.) to oxygen, and anti-oxidant decay provides a measure of the 

concentration of redox-active species in the sample (Fang et al., 2015c). These assays have 

been utilized extensively to characterize ambient PM samples and source apportionment 

regressions have been applied to DTT activity results to identity PM sources that may be 

detrimental to health (Bates et al., 2015; Fang et al., 2015a; Verma et al., 2015a; Verma et 

al., 2014). Results from these regressions, as well as inhalation and exposure studies, 

suggest that organic carbon constituents may play a significant role in PM-induced health 

effects (Li et al., 2003b; Kleinman et al., 2005; Hamad et al., 2015; Verma et al., 2015b). 

In particular, humic-like substances (HULIS) and oxygenated polyaromatic hydrocarbons 

(PAH) have been shown to contribute significantly to the redox activity of water-soluble 

PM samples (Verma et al., 2012; Verma et al., 2015a; Dou et al., 2015; Verma et al., 2015b; 

Lin and Yu, 2011). Recently, Tuet et al. (2016) also showed that there is a significant 

correlation between intracellular ROS/RNS production and organic species (water-soluble 

organic carbon and brown carbon) for summer ambient samples, which suggests that 

photochemically-driven secondary organic aerosol (SOA) may be important in PM-

induced oxidative stress. 
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Many prior studies have focused on the health effects of primary emissions, such 

as PM directly emitted from diesel and gasoline engines (Bai et al., 2001; Kumagai et al., 

2002; McWhinney et al., 2013a; Turner et al., 2015). Conversely, few studies have 

explored the potential health implications of SOA, which are formed from the oxidation of 

volatile organic compounds (VOCs) (McWhinney et al., 2013b; Rattanavaraha et al., 2011; 

Kramer et al., 2016; Lund et al., 2013; McDonald et al., 2010; McDonald et al., 2012; 

Baltensperger et al., 2008; Arashiro et al., 2016; Platt et al., 2014), even though field studies 

have shown that SOA often dominate over primary aerosol even in urban environments 

(Zhang et al., 2007; Jimenez et al., 2009; Ng et al., 2010). The few studies that exist focus 

on SOA generated from a single class of hydrocarbon precursor or on SOA formed in a 

simulated urban background (Kramer et al., 2016; McWhinney et al., 2013b; Rattanavaraha 

et al., 2011; Arashiro et al., 2016; McDonald et al., 2012). While studies on oxidative 

potential have shown that SOA is indeed redox active, the combined range of oxidative 

potentials observed for individual SOA systems is quite large and remains unexplored 

(McWhinney et al., 2013b; Kramer et al., 2016). Furthermore, results from cellular 

exposure studies are inconclusive, with some studies finding significant response from 

SOA exposure and others finding little to no response. The exposure dose also differed 

from study to study, which may result in inconclusive results. This also highlights a need 

to consider dose-response relationships as demonstrated recently in Tuet et al. (2016). 

Comparisons between the observed cellular endpoints from exposure to SOA formed from 

individual precursors are also lacking (Baltensperger et al., 2008; Lund et al., 2013; 

McDonald et al., 2010; McDonald et al., 2012; Arashiro et al., 2016). As such, there is a 

lack of perspective in terms of different individual SOA systems and their contributions to 
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PM-induced health effects, making it unclear whether certain responses are indeed toxic 

for a range of sources and subtypes of PM. However, as cellular assays and animal 

inhalation experiments are more complex, a systematic study on the oxidative potential of 

individual SOA systems may be warranted first. 

In the present study, the water-soluble oxidative potential of SOA generated from 

various precursors under different reaction conditions was measured using the DTT assay 

(henceforth referred to as OPWS-DTT). While numerous cell-free assays have been developed 

to measure oxidative potential, the DTT assay is well-suited for the purposes of this study 

due to its proven sensitivity to organic carbon constituents and correlation with organic 

carbon (Janssen et al., 2014; Visentin et al., 2016). Furthermore, there are many previous 

studies reporting the DTT activities of laboratory-generated SOA and ambient samples for 

comparison purposes (Kramer et al., 2016; Bates et al., 2015; McWhinney et al., 2013a; 

McWhinney et al., 2013b; Verma et al., 2015a; Xu et al., 2015a; Xu et al., 2015b; Fang et 

al., 2015c; Lu et al., 2014). VOCs were chosen to represent the major classes of compounds 

known to produce SOA upon oxidation by atmospheric oxidants and to include precursors 

of both anthropogenic and biogenic origins (Table B-1). Biogenic precursors include 

isoprene, α-pinene, and β-caryophyllene, while anthropogenic precursors include 

pentadecane, m-xylene, and naphthalene. Isoprene was chosen as it is the most abundant 

non-methane hydrocarbon, with estimated global emissions around 500 Tg yr-1 (Guenther 

et al., 2006). α-pinene and β-caryophyllene were chosen as representative, well-studied 

monoterpenes and sesquiterpenes, respectively. Both classes of compounds contribute 

significantly to ambient aerosol (Eddingsaas et al., 2012; Hoffmann et al., 1997; Tasoglou 

and Pandis, 2015; Goldstein and Galbally, 2007). α-pinene emissions (~50 Tg yr-1) are also 
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on the same order of global anthropogenic emissions (~110 Tg yr-1) (Guenther et al., 1993; 

Piccot et al., 1992). Similarly, anthropogenic precursors were chosen to include a long-

chain alkane (pentadecane), a single-ring aromatic (m-xylene), and a poly-aromatic 

(naphthalene). These classes of compounds are emitted as products of incomplete 

combustion (Robinson et al., 2007; Jia and Batterman, 2010; Bruns et al., 2016) and have 

been shown to have considerable SOA yields (e.g., Chan et al., 2009; Ng et al., 2007b; 

Lambe et al., 2011). In addition to precursor identity, the effects of humidity (dry vs. 

humid) and NOx (differing peroxyl radical (RO2) fates, RO2 + HO2 vs. RO2 + NO) on 

OPWS-DTT were investigated, as these conditions have been shown to affect the chemical 

composition and mass loading of SOA formed (Chhabra et al., 2010; Chhabra et al., 2011; 

Eddingsaas et al., 2012; Ng et al., 2007b; Loza et al., 2014; Ng et al., 2007a; Chan et al., 

2009; Boyd et al., 2015). Finally, intrinsic OPWS-DTT was compared with bulk aerosol 

composition, specifically elemental ratios, to investigate whether there is a link between 

OPWS-DTT and aerosol composition. 

3.2 Methods 

3.2.1 Chamber experiments 

SOA from the photooxidation of biogenic and anthropogenic VOCs were generated 

in the Georgia Tech Environmental Chamber (GTEC) facility. Details of the facility are 

described elsewhere (Boyd et al., 2015). Briefly, the facility consists of two 12 m3
 Teflon 

chambers suspended inside a 6.4 m x 3.7 m (21 ft x 12 ft) temperature-controlled enclosure, 

surrounded by black lights (Sylvania 24922) and natural sunlight fluorescent lamps 

(Sylvania 24477). Multiple sampling ports from each chamber allow for gas- and aerosol-
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phase measurements, as well as introduction of reagents. Gas-phase measurements include 

O3, NO2, and NOx concentrations as measured by an O3 analyzer (Teledyne T400), a cavity 

attenuated phase shift (CAPS) NO2 monitor (Aerodyne), and a chemiluminescence NOx 

monitor (Teledyne 200EU) respectively. Additionally, a gas chromatography-flame 

ionization detector (GC-FID, Agilent 7890A) was used to monitor hydrocarbon decay and 

estimate hydroxyl radical (OH•) concentration. In terms of aerosol-phase measurements, 

aerosol volume concentrations and distributions were measured using a Scanning Mobility 

Particle Sizer (SMPS, TSI), while bulk aerosol composition was determined using a High 

Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne; 

henceforth referred to as the AMS) (DeCarlo et al., 2006). HR-ToF-AMS data was 

analyzed using the data analysis toolkit SQUIRREL (v. 1.57) and PIKA (v. 1.16G). 

Elemental ratios (O:C, H:C, and N:C) were obtained using the method outlined by 

Canagaratna et al. (2015), and used to calculate the average carbon oxidation state (OS̅̅̅̅
c) 

(Kroll et al., 2011). Temperature and relative humidity (RH) were monitored using a hydro-

thermometer (Vaisala HMP110). 

Experimental conditions, given in Table 3-1, were designed to probe the effects of 

humidity, RO2 fate, and precursor hydrocarbon on OPWS-DTT. All experiments were 

performed at ~25 °C under dry (RH < 5%) or humid (RH ~ 45%) conditions. Prior to each 

experiment, the chambers were flushed with pure air for ~24 hrs. For humid experiments, 

the chambers were also humidified by means of a bubbler filled with deionized (DI) water 

during this time. Seed aerosol was then injected by atomizing a 15 mM (NH4)2SO4 seed 

solution (Sigma Aldrich) until the seed concentration was approximately 20 µg m-3. It is 

noted that for experiment 7 (isoprene SOA under RO2 + HO2 dominant, “humid” 
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conditions), experimental conditions deviated due to extremely low SOA mass yields. For 

this experiment, an acidic seed solution (8 mM MgSO4 and 16 mM H2SO4) was used under 

dry conditions to promote SOA formation via the IEPOX uptake pathway, which has a 

higher SOA mass yield compared to the IEPOX + OH pathway and contributes 

significantly to ambient OA (Surratt et al., 2010; Lin et al., 2012). 

Table 3-1. Experimental conditions for chamber experiments.  

Experiment Compound 
OH 

precursor 

Relative 

humidity 
[HC]0 [SOA]c 

(%) (ppb) (µg m-3) 

1a isoprene H2O2 < 5% 97 5.73 

2a α-pinene H2O2 < 5% 191 119 

3a β-caryophyllene H2O2 < 5% 36 221 

4a pentadecane H2O2 < 5% 106 9.71 

5a m-xylene H2O2 < 5% 450 89.3 

6a naphthalene H2O2 < 5% 178 128 

7 isoprene H2O2 < 5%b 97 17.1 

8 α-pinene H2O2 40% 334 154 

9 β-caryophyllene H2O2 42% 63 230 

10 pentadecane H2O2 45% 106 23.5 

11 m-xylene H2O2 45% 450 13.9 

12 naphthalene H2O2 44% 431 132 

13 isoprene HONO < 5% 970 148 

14 α-pinene HONO < 5% 174 166 

15 β-caryophyllene HONO < 5% 21 80.8 

16 pentadecane HONO < 5% 74 35.7 

17 m-xylene HONO < 5% 431 153 

18 naphthalene HONO < 5% 145 142 

a
 These experiments were repeated to establish reproducibility; b Acidic seed (8 mM MgSO4 

and 16 mM H2SO4) was used instead of 8 mM (NH4)2SO4; 
c Average SOA concentration 

in the chamber during filter collection 
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Once the seed concentration stabilized, hydrocarbon was added by injecting a 

known volume of hydrocarbon solution [isoprene, 99%; α-pinene, ≥ 99%; β-caryophyllene, 

> 98.5%; pentadecane, ≥ 99%; m-xylene, ≥ 99%; naphthalene, 99% (Sigma Aldrich)] into 

a glass bulb and passing zero air at 5 L min-1 over the solution until fully evaporated (~10 

min). For pentadecane and β-caryophyllene, the glass bulb was gently heated to ensure full 

evaporation (Tasoglou and Pandis, 2015). Naphthalene was injected by passing pure air 

over the solid, as outlined in previous studies (Chan et al., 2009). After hydrocarbon 

injection, OH precursor was added to the chamber. Experiments were conducted under 

various NOx conditions where different RO2 reaction pathways prevailed. For RO2 + HO2 

experiments, hydrogen peroxide (H2O2) was used as the OH precursor. H2O2 (50% aqueous 

solution, Sigma Aldrich) was injected using the method described for hydrocarbon 

injection to achieve an H2O2 concentration of 3 ppm, which yielded OH concentrations on 

the order of 106 molec cm-3. For RO2 + NO experiments, nitrous acid (HONO), was used 

as the OH precursor. HONO was prepared by adding 10 mL of 1% wt aqueous NaNO2 

(VWR International) dropwise into 20 mL of 10% wt H2SO4 (VWR International) in a glass 

bulb. Zero air was then passed over the solution to introduce HONO into the chamber 

(Chan et al., 2009; Kroll et al., 2005). Photolysis of HONO yielded OH concentrations on 

the order of 107 molec cm-3. NO and NO2 were also formed as byproducts of HONO 

synthesis. Once all the H2O2 evaporated (RO2 + HO2 experiments) or NOx concentrations 

stabilized (RO2 + NO experiments), the UV lights were turned on to initiate 

photooxidation. 

 

 



 45 

3.2.2 Aerosol collection and extraction 

Aerosol samples were collected onto 47 mm TeflonTM filters (0.45 µm pore size, 

Pall Laboratory) for approximately 1.5 hrs at a flow rate of 28 L min-1. For each experiment, 

two filters (front filter and backing filter) were loaded in series to account for possible 

sampling artifacts (Conny and Slater, 2002). Total mass collected was determined by 

integrating the SMPS volume concentration as a function of time over the filter collection 

period and using the total volume of air collected. Volume concentrations were integrated 

using time-dependent data. Background filters containing seed and OH precursor (H2O2 or 

HONO) only at experimental conditions were also collected to account for potential H2O2 

or HONO uptake, which may influence oxidative potential. Collected filter samples were 

placed in sterile petri dishes, sealed with Parafilm M®, and stored at -20 °C until extraction 

and analysis (Fang et al., 2015c). Prior to determining OPWS-DTT, collected particles were 

extracted in DI water by submerging the filter and sonicating for 1 hr using an Ultrasonic 

Cleanser (VWR International) (Fang et al., 2015a). Sonication steps were performed in 30 

min intervals with water replacement after each interval to reduce bath temperature. After 

sonication, extracts were filtered using 0.45 µm PTFE syringe filters (Fisherbrand™) to 

remove insoluble material (Fang et al., 2015c). All filter samples were extracted within 1-

2 days of collection and analyzed immediately following extraction. 

3.2.3 Oxidative potential 

The decay of DTT, a chemical species that reacts with redox-active species in a 

sample via electron transfer reactions, was used as a measure of oxidative potential (Cho 

et al., 2005; Kumagai et al., 2002).  The intrinsic OPWS-DTT of aerosol samples, as well as 
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method blanks and positive controls (9,10-phenanthraquinone), was determined using a 

semi-automated DTT system. Specifics of the high-throughput system are detailed in Fang 

et al. (2015c). Briefly, the method consisted of three main steps: (1) oxidation of DTT by 

redox-active species in the sample, (2) reaction of residual DTT with DTNB to form 2-

nitro-5-mercaptobenzoic acid (TNB), repeated at specific time intervals, and (3) 

measurement of TNB to determine DTT consumption. After each time interval and 

between samples, the system was flushed with DI water. 

3.3 Results and Discussion 

3.3.1 Laboratory-generated aerosol 

Over the course of each experiment, gas and aerosol composition was continuously 

monitored. A typical time series for NO, NO2, gas-phase hydrocarbon concentration, and 

aerosol mass concentration is shown in Figure 3-1 for naphthalene photooxidation under 

RO2 + NO dominant reaction conditions. Hydrocarbon decay was monitored using GC-

FID, while initial gas-phase hydrocarbon concentrations were determined using the 

chamber volume and mass of hydrocarbon injected. Following irradiation, NO decreased 

due to reaction with RO2 from hydrocarbon oxidations. Nevertheless, ozone formation was 

suppressed owing to the high NO concentration throughout the experiment. Aerosol growth 

is observed shortly after initiation of photooxidation (i.e., turning on the lights) due to the 

efficient photolysis of HONO, which produced a high OH concentration on the order of 

107
 molec cm-3. Once HONO was completely consumed, no further decay in the parent 

hydrocarbon and growth in aerosol mass were observed. 
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Figure 3-1. Typical reaction profile for a chamber experiment under RO2 + NO dominant 

conditions. NO and NO2 concentrations were monitored by CAPS NO2 and 

chemiluminescence NOx monitors, respectively. Hydrocarbon decay was monitored using 

GC-FID, while initial hydrocarbon (naphthalene) concentrations were determined using 

the chamber volume and mass of hydrocarbon injected. Aerosol mass concentrations were 

determined using volume concentrations obtained from SMPS and assuming an aerosol 

density of 1 g cm-3. While typical SOA density is about 1.4 g cm-3, it varies with 

hydrocarbon precursor identity and reaction conditions, and a density between ~1.0–1.6 g 

cm-3 has been reported in previous studies (Ng et al., 2007a; Ng et al., 2007b; Chan et al., 

2009; Tasoglou and Pandis, 2015; Bahreini et al., 2005; Ng et al., 2006). The use of a 

density of 1 g cm-3 is to facilitate easier comparisons with past and future studies. Results 

from future studies can be scaled accordingly for comparison with the current work. Mass 

concentrations have been corrected for particle wall loss (Nah et al., 2017). 

For each experiment, aerosol chemical composition was also monitored using the 

AMS. The average AMS mass spectra (Figure B-1) for all VOC systems were consistent 

with those reported in previous studies (Chhabra et al., 2010; Chhabra et al., 2011). For 

RO2 + NO dominant experiments, the NO+:NO2
+

 ratio has been used extensively in 

previous studies to differentiate between organic and inorganic nitrates (Farmer et al., 
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2010; Fry et al., 2009; Boyd et al., 2015; Xu et al., 2015b). The observed NO+:NO2
+ ratio 

for all RO2 + NO dominant experiments (4.2 – 6.1) was higher than that observed for 

inorganic (ammonium) nitrates (~2.3), which indicates that these peaks are likely from 

organic nitrates rather than inorganic nitrates. The observed range is also consistent with 

values measured in previous organic nitrate studies for similar VOC systems and ambient 

studies (Bruns et al., 2010; Sato et al., 2010; Xu et al., 2015b). Elemental ratios (O:C, H:C, 

and N:C) were also obtained for each SOA system using the AMS. The aerosol systems 

investigated span a wide range of O:C ratios, as observed in previous laboratory and field 

studies (Chhabra et al., 2011; Lambe et al., 2011; Jimenez et al., 2009; Ng et al., 2010). 

3.3.2 Effect of SOA precursor and formation condition on oxidative potential 

To investigate whether different types of SOA differ in toxicity, the OPWS-DTT, a 

measure of the concentration of redox-active species present in a sample, was measured 

for SOA generated from six VOCs under three conditions (see Table 3-1 for specifics). The 

blank-corrected OPWS-DTT, represented on a per mass (µg) basis, are shown in Figure 3-2. 

Uncertainties associated with OPWS-DTT determination were approximated using a 15% 

coefficient of variation, in accordance with previous studies using the same semi-

automated system (Fang et al., 2015c). The OPWS-DTT of all backing filters and background 

filters were also measured and found to be within the uncertainty for blank Teflon filters, 

which indicates that there were no observable sampling artifacts, gaseous absorption onto 

Teflon filters, or H2O2/HONO uptake onto seed particles. 
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Figure 3-2. Intrinsic DTT activities for SOA generated from various hydrocarbon 

precursors (ISO: isoprene, AP: α-pinene, BCAR: β-caryophyllene, PD: pentadecane, MX: 

m-xylene, and NAPH: naphthalene) under various conditions (red circles: dry, RO2 + HO2; 

blue squares: humid, RO2 + HO2; and black triangles: dry, RO2 + NO). Dry, RO2 + HO2 

experiments were repeated to ensure reproducibility in SOA generation and collection. 

Error bars represent a 15% coefficient of variation (Fang et al., 2015c). 

Overall, it is clear that the hydrocarbon precursor identity influenced OPWS-DTT, 

with naphthalene having the highest intrinsic DTT activity (Figure 3-2). All other 

hydrocarbon precursors investigated produced SOA with relatively low intrinsic OPWS-DTT 

(~9 – 45 pmol min-1 µg-1). For isoprene, the SOA in this study was generated through 

different reaction pathways, including isoprene photooxidation under different RO2 fates 

and IEPOX reactive uptake to acidic seed particles. Although these different conditions 

produced different products and SOA compositions (Xu et al., 2014; Surratt et al., 2010; 

Chan et al., 2010), the OPWS-DTT is very similar. It is important to note that the intrinsic 
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OPWS-DTT for SOA generated under all conditions in this study are in agreement with the 

isoprene-derived OA factor resolved from positive matrix factorization (PMF) analysis of 

ambient AMS data (Xu et al., 2015a; Xu et al., 2015b; Verma et al., 2015a). The isoprene-

derived OA from ambient measurements is largely attributed to IEPOX uptake, but 

possibly contains some contribution from other isoprene oxidation pathways (Xu et al., 

2015a; Xu et al., 2015b). The similarity between laboratory-generated and ambient 

isoprene SOA suggests that isoprene SOA may have low OPWS-DTT regardless of reaction 

conditions. A previous laboratory chamber study by Kramer et al. (2016) also measured 

the DTT activity of isoprene SOA produced via different pathways, including SOA formed 

from direct photooxidation of isoprene. It was found that isoprene SOA formed under 

“high-NOx” conditions was more DTT active than that formed under “low-NOx” 

conditions. These results are in contrast with those obtained in this study, where the OPWS-

DTT of isoprene SOA was similar regardless of reaction condition. However, we caution 

that 1) the SOA measured in Kramer et al. (2016) was formed under different experimental 

conditions, and 2) they utilized a different method for measuring DTT consumption (i.e., 

different extraction solvent, different initial DTT concentration, different method for 

quantifying DTT activity), therefore the results from their study and ours may not be 

directly comparable. For instance, for isoprene photooxidation experiments, the “low-

NOx” conditions in Kramer et al. (2016) corresponded to “5 ppm isoprene and 200 ppb 

NO”, where the reaction regime was largely defined by the VOC/NOx ratio. It has been 

shown previously that SOA formed under the same VOC/NOx conditions can be drastically 

different and the use of this metric might not necessarily reflect the actual peroxyl radical 

fate (Ng et al., 2007b; Kroll and Seinfeld, 2008; Wennberg, 2013). In our study, the “low-
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NOx” experimental condition is defined by the fate of peroxyl radicals directly, i.e., no NOx 

added, but with the presence of H2O2 to enhance the RO2 + HO2 reaction pathway, which 

is dominant in ambient environments when NOx levels are low. 

α-pinene, β-caryophyllene, and pentadecane produced low OPWS-DTT across all 

conditions explored in this study (Figure 3-2). Specifically, the SOA formed under 

different reaction conditions do not appear to have significantly different OPWS-DTT, even 

though different NOx conditions have been shown to affect SOA loading and composition 

due to competing RO2 chemistry (Chan et al., 2009; Eddingsaas et al., 2012; Loza et al., 

2014; Ng et al., 2007a). For instance, under conditions that favor RO2 + NO, organic 

nitrates are formed, whereas under conditions that favor RO2 + HO2, organic peroxides are 

the predominant products. In this study, the formation of organic nitrates is evident in the 

RO2 + NO experiments with the relatively higher NO+:NO2
+ ratio in the AMS mass spectra.  

It is possible that the organic peroxides and organic nitrates formed from the oxidation of 

these precursors are both not highly redox active, such that the overall OPWS-DTT is similar 

even though the products differ. Further studies are required to establish this. 

Similarly, the OPWS-DTT of SOA formed from m-xylene under conditions that favor 

different RO2 fates were not significantly different. Since OPWS-DTT is intended as a 

measure of redox activity, the reaction products’ ability to participate in electron transfer 

may explain this lack of difference (e.g., lack of conjugated systems and associated pi 

bonds with unbound electrons). Under both RO2 + HO2 and RO2 + NO pathways, a large 

portion of m-xylene oxidation products do not retain the aromatic ring (Vivanco and 

Santiago, 2010; Jenkin et al., 2003). Therefore, these products may have similar OPWS-DTT 

as reaction products of α-pinene, β-caryophyllene, and pentadecane, which also do not 



 52 

contain an aromatic ring. Under humid conditions, aerosol formed from the oxidation of 

m-xylene were more DTT active than those formed under dry conditions. The AMS mass 

spectra for aerosol formed under humid conditions also differs notably for several 

characteristic fragments (Figure B-2), which may explain the difference observed in OPWS-

DTT. More specifically, m/z 44, which serves as an indication of oxidation (O:C ratio) (Ng 

et al., 2010), is very different for this experiment (dry signal: 0.098 vs. humid signal: 0.15). 

It is possible that the degree of oxidation may be an important factor for SOA formed from 

the same hydrocarbon, and systematic chamber studies investigating changes in O:C for 

SOA formed from a single hydrocarbon precursor would be valuable. Previous studies 

involving the effect of humidity on SOA composition also yield mixed results, with some 

finding significant changes in SOA composition and yields (Nguyen et al., 2011; Wong et 

al., 2015; Healy et al., 2009; Stirnweis et al., 2016) and others reporting little difference 

(Boyd et al., 2015; Edney et al., 2000; Cocker III et al., 2001). Humidity effects are 

therefore highly hydrocarbon-dependent. Further study into the specific oxidation 

mechanisms and products in the photooxidation of aromatic hydrocarbon under dry and 

humid conditions may be warranted to understand the difference in DTT activity. 

For naphthalene, the OPWS-DTT measured for SOA generated under dry, RO2 + HO2 

dominant conditions is in agreement with that measured by McWhinney et al. (2013b), 

which generated naphthalene SOA under similar chamber conditions using the same OH• 

radical precursor. These values should be directly comparable as the same standard method 

described by Cho et al. (2005) was used to obtain the oxidative potentials in both 

McWhinney et al. (2013b) and this study. The OPWS-DTT of naphthalene aerosol also 

appears to be strongly influenced by humidity and RO2 fate (Figure 3-2), with higher 
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toxicities observed for aerosol formed under both humid and RO2 + NO dominant 

conditions. The effect of RO2 fate may be explained by the different products known to 

form from RO2 + HO2 and RO2 + NO reaction pathways. Many of the same products, 

including naphthoquinones and all of the ring-opening derivatives of 2-

formylcinnamaldehyde, are formed under both reaction conditions (Kautzman et al., 2010). 

Naphthoquinones are also known to be DTT active and have been shown to account for 

approximately 21% of the DTT activity observed for naphthalene SOA (Charrier and 

Anastasio, 2012; McWhinney et al., 2013b). In addition to these products, nitroaromatics 

including nitronaphthols and nitronaphthalenes are formed under RO2 + NO conditions 

(Kautzman et al., 2010). The nitrite group next to the aromatic ring in these products may 

further promote electron transfer between nitroaromatics and DTT, resulting in more DTT 

consumption and a higher OPWS-DTT. This effect was not observed for m-xylene SOA due 

to the formation of predominantly ring-opening products (Vivanco and Santiago, 2010; 

Jenkin et al., 2003). The presence of an aromatic ring in SOA products may therefore be 

important for determining oxidative potentials and polyaromatic precursors may yield 

products of substantial toxicity. This is further supported by the observation that the AMS 

mass spectra for highly DTT active naphthalene SOA contains peaks at m/z 77 and m/z 91, 

which are indicative of aromatic phenyl and benzyl ions (Chhabra et al., 2010; McLafferty 

and Tureček, 1993). Additionally, peaks indicative of aromatic compounds greater than 

m/z 120 were observed with similar mass spectral features as those reported for aerosol 

generated from naphthalene oxidation by OH• radicals in previous studies (Riva et al., 

2015). Aromatic species are also exclusive to HULIS (Sannigrahi et al., 2006), and ambient 
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data have shown that HULIS is a significant aerosol component contributing to OPWS-DTT 

(Verma et al., 2015b; Verma et al., 2012; Dou et al., 2015; Lin and Yu, 2011). 

Bulk aerosol elemental ratios (O:C, H:C, and N:C) were also determined for each 

SOA system as different types of aerosol are known to span a wide range of O:C (Chhabra 

et al., 2011; Lambe et al., 2011). All elemental ratios were stable during the filter collection 

period and could thus be represented by a single value. To visualize these differences in 

oxidation, the van Krevelen diagram was utilized (Figure 3-3), as changes in the slope of 

data points within the van Krevelen space can provide information on SOA 

functionalization (Heald et al., 2010; Van Krevelen, 1950; Ng et al., 2011). Starting from 

the precursor hydrocarbon, a slope of 0 indicates addition of alcohol groups, a slope of -1 

indicates addition of carbonyl and alcohol groups on separate carbons or addition of 

carboxylic acids, and a slope of -2 indicates addition of ketones or aldehydes. Previous 

studies show that both laboratory-generated and ambient OA occupy a narrow van 

Krevelen space with a slope of ~-1 – -0.5 (Heald et al., 2010; Ng et al., 2011). Ambient 

data included in Figure 3-3 are for different organic aerosol subtypes resolved from PMF 

analysis of AMS data collected in the southeastern U.S. (Verma et al., 2015a; Xu et al., 

2015a; Xu et al., 2015b). 
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Figure 3-3. van Krevelen plot for various SOA systems. Data points are colored by SOA 

system (red: isoprene, yellow: α-pinene, green: β-caryophyllene, light blue: pentadecane, 

blue: m-xylene, and purple: naphthalene), shaped according to reaction conditions (circle: 

dry, RO2 + HO2; square: humid, RO2 + HO2; and triangle: dry, RO2 + NO), and sized by 

intrinsic DTT activity. OA factors resolved from PMF analysis of ambient AMS data are 

shown as black markers, also sized by intrinsic DTT activity. Hydrocarbon precursors are 

shown as stars, colored by SOA system. Specifics on site locations and factor resolution 

methods are described elsewhere. COA: cooking OA, BBOA: biomass burning OA, 

Isoprene-OA: isoprene-derived OA, MO-OOA: more-oxidized oxygenated OA (Verma et 

al., 2015a; Xu et al., 2015a; Xu et al., 2015b). 

The laboratory-generated aerosol span the range of H:C and O:C observed in the 

ambient. As seen in Figure 3-3 (data points sized by intrinsic OPWS-DTT), while different 

reaction conditions produced aerosol of differing composition (i.e., different O:C and H:C), 

the intrinsic OPWS-DTT does not appear to be affected by these differences. On the other 
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hand, the hydrocarbon precursor identity influences OPWS-DTT substantially. It has been 

shown that ambient OA from different sources can become increasingly oxidized 

(increasing O:C ratio) with atmospheric aging (Jimenez et al., 2009; Ng et al., 2011). Based 

on the results shown in Figure 3-3, it appears that a higher O:C ratio did not correspond to 

a higher OPWS-DTT. This is true for both the laboratory-generated SOA in this study and the 

different OA subtypes resolved from ambient data (Verma et al., 2015a; Xu et al., 2015a; 

Xu et al., 2015b). Nevertheless, the O:C ratios for individual systems (i.e. SOA formed 

from the same hydrocarbon precursor) may affect the intrinsic OPWS-DTT. Indeed, for 

several SOA systems (β-caryophyllene, pentadecane, and m-xylene), SOA with higher O:C 

ratios also had a higher intrinsic OPWS-DTT (Figure 3-2 and Figure 3-3). For SOA systems 

formed under RO2 + NO dominant conditions, N:C ratios were also determined to 

investigate if there is a link between N:C and intrinsic DTT activity (Figure B-3). Again, 

with the exception of naphthalene SOA, the intrinsic OPWS-DTT does not appear to be 

affected by N:C ratio even though the systems explored span a wide range of N:C. This is 

consistent with that observed in the van Krevelen diagram and further emphasizes the 

importance of hydrocarbon identity in determining oxidative potentials. 

3.3.3 Comparison to other types of PM 

In order to evaluate how the oxidative potential of individual SOA systems 

compares to other sources and subtypes of PM, the intrinsic OPWS-DTT from this study are 

compared to values reported in the literature (Figure 3-4). Comparatively, SOA formed 

from the photooxidation of isoprene, α-pinene, β-caryophyllene, pentadecane, and m-

xylene were not very DTT active and produced low intrinsic OPWS-DTT. The OPWS-DTT of 

these aerosol systems were also within the range of various OA subtypes resolved from 
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ambient data. The method for determining intrinsic OPWS-DTT for various OA subtypes is 

provided in Appendix B.  

 

Figure 3-4. Intrinsic DTT activities for chamber SOA, various PM subtypes resolved from 

ambient data, and diesel exhaust particles. It should be noted that the DTT activity for 

isoprene SOA in Kramer et al. (2016) was determined using a different DTT method and 

may not be directly comparable. All other studies shown used the method outlined in Cho 

et al. (2005). DTT activities obtained in this study are shaped by reaction condition (circle: 

dry, RO2 + HO2; square: humid, RO2 + HO2; triangle: dry, RO2 + NO). Specifics on site 

locations and factor resolution methods are described elsewhere. DTT activities for Beijing 

and Atlanta are averages obtained across multiple seasons. Isoprene-OA: isoprene-derived 

OA, MO-OOA: more-oxidized oxygenated OA, BBOA: biomass burning OA, COA: 

cooking OA, LDGV: light-duty gasoline vehicles, HDDV: heavy-duty diesel vehicles, 

BURN: biomass burning, DEP: diesel exhaust particles (Kramer et al., 2016; McWhinney 

et al., 2013b; Verma et al., 2015a; Bates et al., 2015; McWhinney et al., 2013a; Xu et al., 

2015a; Xu et al., 2015b; Lu et al., 2014; Fang et al., 2015c). 

As noted earlier, the OPWS-DTT for isoprene SOA generated in this study is similar 

to the isoprene-derived OA factor from ambient data. The other ambient OA factors include 

a highly oxidized MO-OOA (more-oxidized oxygenated OA) factor resolved from PMF 
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analysis of ambient OA data, as well as an oxidized organic aerosol factor containing 

contributions from biogenic SOA (other OC) resolved using the chemical mass balance 

(CMB) method with ensemble-averaged source impact profiles (Bates et al., 2015; Xu et 

al., 2015a; Xu et al., 2015b; Verma et al., 2014). While sources of MO-OOA have not been 

identified, studies have shown that the aerosol mass spectra for various sources of OA 

approach that of MO-OOA as it ages (Ng et al., 2010) and it has been speculated that MO-

OOA may contain aerosol from multiple aged sources (Xu et al., 2015b). Furthermore, 

MO-OOA has been shown to have widespread contributions across urban and rural sites, 

as well as different seasons (Xu et al., 2015a; Xu et al., 2015b). On the other hand, 

naphthalene SOA was highly DTT active with an OPWS-DTT on the order of biomass burning 

OA [BBOA (Verma et al., 2015a), BURN (Bates et al., 2015)]. The BBOA and BURN 

factors were resolved using different source apportionment methods and as such, the range 

for comparison is large. Here, we focus on BBOA as Verma et al. (2015a) previously 

showed that BBOA had the highest intrinsic DTT activity among all OA subtypes resolved 

from PMF analysis of ambient AMS data collected in the southeastern U.S. (see Figure 3-4 

for comparison). Because naphthalene aerosol formed under RO2 + NO dominant 

conditions may be even more redox active than BBOA and anthropogenic emissions are 

more abundant in urban environments with higher NOx, this system warrants further 

systematic studies. It should however be noted that comparisons of intrinsic DTT activities 

between SOA from a pure VOC and an ambient source is difficult. BBOA is a source that 

contains many compounds, some of which may not be redox active. Thus, although it may 

contain highly DTT-active components with high intrinsic activities, the overall intrinsic 

activity will be much lower. As a result, a direct comparison with pure naphthalene SOA 
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on a per mass basis is tenuous. However, naphthalene SOA formed under urban conditions 

(RO2 + NO) also produces nitroaromatics, which may induce DNA breaks and induce other 

mutagenic effects (Baird et al., 2005; Helmig et al., 1992). As such, aerosol formed from 

photooxidation of PAHs may be a particularly important OA source in terms of PM health 

effects. 

Other common sources of PM are those related to traffic. Previous studies have 

determined that products of incomplete combustion include quinones capable of 

participating in redox reactions, including the oxidation of DTT (Kumagai et al., 2002; 

McWhinney et al., 2013a). The SOA systems investigated, including isoprene, α-pinene, 

β-caryophyllene, pentadecane, and m-xylene produced SOA that were less DTT active than 

diesel exhaust particles (DEP) collected from light-duty diesel vehicle (LDDV) engines 

operated under various conditions (McWhinney et al., 2013a) and resolved for heavy-duty 

diesel vehicles (HDDV) from ambient data (Bates et al., 2015). It should be noted that the 

DTT activity reported for DEP includes both water-soluble and water-insoluble fractions 

(total DTT activity), whereas the DTT activity measured for SOA is water-soluble. 

However, there should be very little contribution from water-insoluble species to SOA 

(McWhinney et al., 2013a). Conversely, the intrinsic OPWS-DTT of naphthalene SOA was 

on par with that of light-duty gasoline vehicles (LDGV) and higher than that of HDDV and 

DEP (Verma et al., 2014; Bates et al., 2015). Since naphthalene may also be emitted from 

gasoline and diesel combustion (Jia and Batterman, 2010), traffic-related controls may be 

extremely important to control these highly DTT active sources. Furthermore, since SOA 

often dominate over POA even in urban centers (Zhang et al., 2007; Ng et al., 2011), even 
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SOA that is only slightly DTT active may contribute significantly to PM-induced health 

effects. 

3.4 Implications 

The water-soluble oxidative potential, as measured by DTT consumption, was 

determined for SOA generated from six different hydrocarbon precursors under three 

conditions of varying humidity and RO2 fate. Results from this study demonstrate that 

hydrocarbon precursor identity influenced intrinsic SOA oxidative potential substantially. 

The biogenic and anthropogenic precursors investigated yielded SOA with OPWS-DTT 

ranging from 9 – 205 pmol min-1 µg-1, with isoprene SOA and naphthalene SOA having 

the lowest and highest intrinsic OPWS-DTT respectively. In general, OPWS-DTT for biogenic 

SOA were lower than those for anthropogenic SOA. Therefore, to evaluate overall 

oxidative potentials of ambient SOA, hydrocarbon precursor emissions and their 

corresponding SOA formation potential must be considered. Moreover, it may be possible 

to roughly estimate regional oxidative potentials using individual intrinsic OPWS-DTT of 

different types of SOA in conjunction with VOC emissions and SOA loadings in models. 

For instance, DTT activities of aerosol collected in Beijing, China (77 – 111 pmol min-1 

µg-1) (Lu et al., 2014), where anthropogenic emissions dominate, more closely resemble 

the OPWS-DTT of naphthalene SOA, whereas ambient aerosol collected in the southeastern 

U.S. have DTT activities (25 – 36 pmol min-1 µg-1) (Fang et al., 2015c) that more closely 

resemble those of biogenic SOA. It may therefore be informative to investigate whether 

concentration addition can be applied to DTT consumption by exploring well-characterized 

PM mixtures. 
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Chamber reaction conditions, including relative humidity and specific RO2 fate, 

influenced SOA elemental composition substantially and affected OPWS-DTT in a 

hydrocarbon-specific manner, although hydrocarbon identity was by far the most 

influential in determining OPWS-DTT. For several VOCs (isoprene, α-pinene, β-

caryophyllene, and pentadecane), the reaction conditions had a negligible effect on OPWS-

DTT, which suggests that the organic peroxides and organic nitrates formed from the 

oxidation of these precursors may have similarly low redox activity. An investigation on 

the redox activity of individual known photooxidation products, including organic 

peroxides and organic nitrates, may elucidate further information on the lack of reaction 

condition effect. Similarly, nitroaromatics may explain the difference observed between 

naphthalene aerosol formed under different RO2 reaction pathways as the nitrite group may 

promote electron transfer and result in a higher OPWS-DTT. This effect was not observed for 

m-xylene SOA, due to the formation of predominantly ring-opening products. The loss of 

the aromatic ring may also explain the differences in intrinsic OPWS-DTT. For instance, 

naphthalene SOA, which contains many aromatic ring-retaining products, is as redox active 

as BBOA, one of the most DTT active aerosol subtypes found in ambient studies. On the 

other hand, m-xylene SOA with predominantly aromatic ring-breaking products is much 

less redox active and the measured OPWS-DTT is lower than that of traffic-related sources 

and several OA subtypes (BBOA and cooking OA, COA). This further supports earlier 

findings (Verma et al., 2015b) that the poly-aromatic ring structure may be an important 

consideration for understanding SOA redox activity, which may have implications for 

cellular redox imbalance (Tuet et al., 2016). Furthermore, nitroaromatics and 

polyaromatics may also have significant health effects beyond redox imbalance, including 
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various mutagenic effects (Baird et al., 2005; Helmig et al., 1992). As such, hydrocarbon 

precursors forming aromatic ring-retaining products may be the most important to consider 

in PM-induced health effects, in terms of oxidative potential. This is consistent with many 

studies using DTT to show oxidative potential associated with sources related to 

incomplete combustion (Bates et al., 2015; Verma et al., 2014; McWhinney et al., 2013b) 

and the identification of HULIS (Verma et al., 2015b; Dou et al., 2015; Lin and Yu, 2011), 

and more specifically, quinones as key components contributing to oxidative potential 

(Verma et al., 2014). Finally, redox-active metals are also emitted by traffic through 

mechanical processes, such as brake and tire wear (Charrier and Anastasio, 2012; Fang et 

al., 2015a). These species have not be considered in the chamber experiments explored in 

this study. Inclusion of redox-active metals in future SOA experiments may be valuable to 

further understand the  roles of SOA and metal species in overall redox activity.  



 63 

CHAPTER 4: INFLAMMATORY RESPONSES TO SECONDARY 

ORGANIC AEROSOL GENERATED FROM BIOGENIC AND 

ANTHROPOGENIC PRECURSORS 

4.1 Background 

Particulate matter (PM) exposure is a leading global risk factor for human health 

(Lim et al., 2012) with numerous studies reporting associations between elevated PM 

concentrations and increases in cardiopulmonary morbidity and mortality (Li et al., 2008; 

Pope III and Dockery, 2006; Brunekreef and Holgate, 2002; Dockery et al., 1993; Hoek et 

al., 2013; Anderson et al., 2011; Pope et al., 2002). A possible mechanism for PM-induced 

health effects has been suggested by toxicology studies, wherein PM-induced oxidant 

production, including reactive oxygen and nitrogen species (ROS/RNS), initiates 

inflammatory cascades thus resulting in oxidative stress and cellular damage (Li et al., 

2003a; Tao et al., 2003; Castro and Freeman, 2001; Gurgueira et al., 2002; Wiseman and 

Halliwell, 1996; Hensley et al., 2000). Furthermore, prolonged stimulation of these 

inflammatory cascades may lead to chronic inflammation, for which there is a recognized 

link to cancer (Philip et al., 2004). Together, these findings suggest that a possible 

relationship exists between PM exposure and observed health effects. 

Various assays have been developed to study PM-induced oxidant production, 

including cell-free chemical assays that measure the oxidative potential of PM samples 

(Kumagai et al., 2002; Cho et al., 2005; Fang et al., 2015c) as well as cellular assays that 

measure intracellular ROS/RNS produced as a result of PM exposure (Landreman et al., 

2008; Tuet et al., 2016). Cell-free assays simulate biologically relevant redox reactions 
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using an antioxidant species (e.g. dithiothreitol, DTT; ascorbic acid, AA). The antioxidant 

is oxidized via electron transfer reactions catalyzed by redox-active species in the PM 

sample and its rate of decay serves as a measure of the concentration of redox-active 

species present (Fang et al., 2015c). On the other hand, cellular assays utilize a fluorescent 

probe (e.g. carboxy-H2DCFDA) that reacts with ROS/RNS and the measured fluorescence 

is proportional to the concentration of ROS/RNS produced as a result of PM exposure 

(Landreman et al., 2008; Tuet et al., 2016). Both types of assays have been utilized 

extensively to characterize a variety of PM samples and identify sources that may be 

detrimental to health (Verma et al., 2015a; Saffari et al., 2015; Fang et al., 2015a; Bates et 

al., 2015; Li et al., 2003b; Tuet et al., 2016). In particular, numerous studies suggest that 

organic carbon constituents, especially humic-like substances (HULIS) and oxygenated 

polyaromatic hydrocarbons (PAH), may contribute significantly to PM-induced oxidant 

production (Li et al., 2003b; Kleinman et al., 2005; Hamad et al., 2015; Verma et al., 2015b; 

Lin and Yu, 2011). Furthermore, recent measurements of ROS/RNS production and DTT 

activity using ambient samples collected in summer and winter around the greater Atlanta 

area showed that there is a significant correlation between summertime organic species and 

intracellular ROS/RNS production, suggesting a possible role for secondary organic 

aerosol (SOA) (Tuet et al., 2016). The same study also reported a significant correlation 

between ROS/RNS production and DTT activity for summer samples, while a relatively 

flat ROS/RNS response was observed for winter samples spanning a similar DTT activity 

range (Tuet et al., 2016). These results highlight a need to consider multiple endpoints as 

a simple correlation may not exist between different endpoints, especially cellular 

responses that may result from complicated response networks. 
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Despite these findings, there are still many gaps in knowledge regarding PM-

induced health effects. The current work will focus on the relative toxicities of different 

SOA systems, as field studies have repeatedly shown that SOA often dominate over 

primary aerosol (e.g., PM emitted directly from combustion engines) even in urban 

environments (Zhang et al., 2007; Jimenez et al., 2009; Ng et al., 2010). Furthermore, in 

recent years, there have been an increasing number of studies on the health effects of SOA 

formed from the oxidation of emitted hydrocarbons, demonstrating their potential 

contribution to PM-induced health effects (McWhinney et al., 2013b; Rattanavaraha et al., 

2011; Kramer et al., 2016; Lund et al., 2013; McDonald et al., 2010; McDonald et al., 

2012; Baltensperger et al., 2008; Arashiro et al., 2016; Platt et al., 2014; Gallimore et al., 

2017). However, the cellular exposure studies involving SOA focused on SOA formed 

from a single precursor and included different measures of response (e.g. ROS/RNS, 

inflammatory biomarkers, gene expression, etc.) (Arashiro et al., 2016; Lund et al., 2013; 

McDonald et al., 2010; McDonald et al., 2012; Baltensperger et al., 2008; Lin et al., 2017). 

As a result, there is a lack of understanding in terms of the relative toxicity of individual 

SOA systems. Recently, Tuet et al. (2017b) systematically investigated the DTT activities 

of SOA formed from different biogenic and anthropogenic precursors and demonstrated 

that intrinsic DTT activities were highly dependent on SOA precursor identity, with 

naphthalene SOA having the highest DTT activity. As a result, a systematic study on the 

cellular responses induced by these SOA systems may provide similar insights. 

Furthermore, cellular responses may complement these previously measured DTT 

activities to elucidate a more complete picture of the health effects of PM. 
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In the present study, alveolar macrophages were exposed to SOA generated under 

different formation conditions from various SOA precursors. Cellular responses induced 

by SOA exposure were measured, including intracellular ROS/RNS production and levels 

of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Intracellular ROS/RNS 

production serves as a general indicator of oxidative stress, whereas TNF-α and IL-6 are 

pro-inflammatory cytokines indicative of the inflammatory response (Henkler et al., 2010; 

Kishimoto, 2003; Wang et al., 2003). TNF-α is a hallmark biomarker involved in triggering 

a number of cellular signaling cascades. More specifically, TNF-α is involved in the 

activation of NFκB, which regulates the expression of a variety of genes involved in 

inflammation and cell death, and the activation of protein kinases, which regulate various 

signaling cascades (Witkamp and Monshouwer, 2000). IL-6 has both pro- and anti-

inflammatory effects, and may directly inhibit TNF-α (Kamimura et al., 2004). 

Furthermore, both cytokines are produced at relatively high levels in MH-S cells, ensuring 

a high signal-to-noise ratio and thus reliable measurements (Matsunaga et al., 2001; Chen 

et al., 2007). Precursors were chosen to include major classes of biogenic and 

anthropogenic compounds known to produce SOA upon atmospheric oxidation (Table 

C-1). The selected biogenic precursors include: isoprene, the most abundant non-methane 

hydrocarbon (Guenther et al., 2006); α-pinene, a well-studied monoterpene with emissions 

on the order of global anthropogenic emissions (Guenther et al., 1993; Piccot et al., 1992); 

and β-caryophyllene, a representative sesquiterpene. Both monoterpenes and 

sesquiterpenes have been shown to contribute significantly to ambient aerosol (Eddingsaas 

et al., 2012; Hoffmann et al., 1997; Tasoglou and Pandis, 2015; Goldstein and Galbally, 

2007). Similarly, the anthropogenic precursors include: pentadecane, a long-chain alkane; 
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m-xylene, a single-ring aromatic; and naphthalene, a poly-aromatic. These compounds are 

emitted as products of incomplete combustion (Robinson et al., 2007; Jia and Batterman, 

2010; Bruns et al., 2016) and have considerable SOA yields (Chan et al., 2009; Ng et al., 

2007b; Lambe et al., 2011). In addition to precursor identity, the effects of humidity (dry 

vs. humid) and NOx levels (different predominant peroxyl radical (RO2) fates, RO2 + HO2 

vs. RO2 + NO) on SOA cellular inflammatory responses were investigated, as different 

formation conditions have been shown to affect aerosol chemical composition and mass 

loading, which could in turn result in a different cellular response (Chhabra et al., 2010; 

Chhabra et al., 2011; Eddingsaas et al., 2012; Ng et al., 2007b; Loza et al., 2014; Ng et al., 

2007a; Chan et al., 2009; Boyd et al., 2015). Finally, correlations between bulk aerosol 

composition, specifically elemental ratios, and cellular inflammatory responses were 

investigated to determine whether there is a link between different inflammatory responses 

and aerosol composition. 

4.2 Methods 

4.2.1 Alveolar macrophage cell line 

Exposures were conducted using immortalized murine alveolar macrophages (MH-

S, ATCC®CRL-2019TM) as they are the first line of defense against environmental insults 

(Oberdörster, 1993; Oberdörster et al., 1992). The particular cell line also retains many 

properties of primary alveolar macrophages, including phagocytosis as well as the 

production of ROS/RNS and cytokines (Sankaran and Herscowitz, 1995; Mbawuike and 

Herscowitz, 1989). MH-S cells were cultured in RPMI-1640 media supplemented with 

10% fetal bovine serum (FBS, Quality Biological, InC.), 1% penicillin-streptomycin, and 
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50 µM β-mercaptoethanol (BME) at 37°C and humid air containing 5% CO2. For exposure 

experiments, MH-S cells were seeded at a density of 2 x 104
 cells well-1

 onto 96-well plates 

pre-treated with 10% FBS in phosphate buffered saline (PBS, Cellgro). For seeding and all 

assay procedures thereon, FBS-supplemented cell culture media without BME addition 

was used as BME is a reducing agent that may interfere with inflammatory measurements. 

4.2.2 Chamber experiments 

SOA formed from the photooxidation of biogenic and anthropogenic precursors 

were generated in the Georgia Tech Environmental Chamber (GTEC) facility. Details of 

the facility have been described elsewhere (Boyd et al., 2015). Briefly, the chamber facility 

consists of two 12 m3
 Teflon chambers suspended within a 21 x 12 ft temperature-

controlled enclosure. Black lights and natural sunlight fluorescent lamps surround the 

chambers, and multiple sampling ports allow for injection of reagents, as well as gas- and 

aerosol-phase measurements. Gas-phase O3, NO2, and NOx concentrations were monitored 

using an O3 analyzer (Teledyne T400), a cavity attenuated phase shift (CAPS) NO2 monitor 

(Aerodyne), and a chemiluminescence NOx monitor (Teledyne 200EU) respectively, while 

hydrocarbon decay was monitored using a gas chromatography-flame ionization detector 

(GC-FID, Agilent 7890A). Hydrocarbon decay was also used to estimate hydroxyl radical 

(OH•) concentrations. For aerosol-phase measurements, a Scanning Mobility Particle Sizer 

(SMPS, TSI) was used to measure aerosol volume concentrations and distributions, while 

a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne; 

henceforth referred to as the AMS) was used to determine bulk aerosol composition 

(DeCarlo et al., 2006). AMS data was analyzed using the data analysis toolkit SQUIRREL 

(v. 1.57) and PIKA (v. 1.16G). Elemental ratios, including O:C, H:C, and N:C, were 
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obtained using the method outlined by Canagaratna et al. (2015) and used to calculate the 

average carbon oxidation state (OS̅̅̅̅
c) (Kroll et al., 2011). Temperature and relative 

humidity (RH) were also monitored using a hydro-thermometer (Vaisala HMP110). 

Experiments were designed to probe the effects of humidity, RO2 fate, and 

precursor identity on cellular inflammatory responses induced by different SOA formed 

under these conditions (Table 4-1). All chamber experiments were performed at ~25 °C 

under dry (RH < 5%) or humid (RH ~ 45%) conditions. Chambers were flushed with pure 

air (generated from AADCO, 747-14) for ~24 hrs prior to each experiment. During this 

time, chambers were also humidified for humid experiments by means of a bubbler filled 

with deionized (DI) water. Seed aerosol was injected by atomizing a 15 mM (NH4)2SO4 

seed solution (Sigma Aldrich) to obtain a seed concentration of ~20 µg m-3. It should be 

noted that experimental conditions deviate for experiment 7 (isoprene SOA under RO2 + 

HO2 dominant, “humid” conditions) due to low SOA mass yields. For this experiment, an 

acidic seed solution (8 mM MgSO4 and 16 mM H2SO4) and a dry chamber were used to 

promote SOA formation via the isoprene epoxydiol (IEPOX) uptake pathway. This 

pathway has been shown to contribute significantly to ambient OA and has a higher SOA 

mass yield compared to the IEPOX + OH pathway (Surratt et al., 2010; Lin et al., 2012; 

Xu et al., 2015a). 
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Table 4-1. Experimental conditions for photooxidation SOA.  

Experiment SOA precursor OH precursor 

Relative 

humidity 
[HC]0 

(%) (ppb) 

1 isoprene H2O2 <5% 97 

2 α-pinene H2O2 <5% 191 

3 β-caryophyllene H2O2 <5% 36 

4 pentadecane H2O2 <5% 106 

5 m-xylene H2O2 <5% 450 

6 naphthalene H2O2 <5% 178 

7 isoprene H2O2 <5%a 97 

8 α-pinene H2O2 40% 334 

9 β-caryophyllene H2O2 42% 63 

10 pentadecane H2O2 45% 106 

11 m-xylene H2O2 45% 450 

12 naphthalene H2O2 44% 431 

13 isoprene HONO <5% 970 

14 α-pinene HONO <5% 174 

15 β-caryophyllene HONO <5% 21 

16 pentadecane HONO <5% 74 

17 m-xylene HONO <5% 431 

18 naphthalene HONO <5% 145 

a
 Acidic seed (8 mM MgSO4 and 16 mM H2SO4) was used instead of 8 mM (NH4)2SO4 

SOA precursor was then introduced by injecting a known amount of hydrocarbon 

solution [isoprene, 99%; α-pinene, ≥ 99%; β-caryophyllene, > 98.5%; pentadecane, ≥ 99%; 

m-xylene, ≥ 99%; naphthalene, 99% (Sigma Aldrich)] into a glass injection bulb and 

passing pure air over the solution until it fully evaporated. For pentadecane and β-

caryophyllene, the glass bulb was also heated gently during hydrocarbon injection to ensure 

full evaporation (Tasoglou and Pandis, 2015). Naphthalene was injected by passing pure 
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air over solid naphthalene flakes as described in previous studies (Chan et al., 2009). OH 

precursor was then introduced via injection of hydrogen peroxide (H2O2) for RO2 + HO2 

experiments or nitrous acid (HONO) for RO2 + NO experiments. For H2O2, a 50% aqueous 

solution (Sigma Aldrich) was injected using the same method described for hydrocarbon 

injection to achieve an H2O2 concentration of 3 ppm. This amount yielded OH 

concentrations on the order of 106 molec cm-3. For HONO injections, HONO was first 

prepared by adding 10 mL of 1% wt aqueous NaNO2 (VWR International) dropwise into 

20 mL of 10% wt H2SO4 (VWR International) in a glass bulb. Zero air was then passed 

over the solution to introduce HONO into the chamber (Chan et al., 2009; Kroll et al., 

2005). Photolysis of HONO yielded OH concentrations on the order of 107 molec cm-3. NO 

and NO2 were also formed as byproducts of HONO synthesis. Once all the H2O2 evaporated 

(RO2 + HO2 experiments) or NOx concentrations stabilized (RO2 + NO experiments), the 

UV lights were turned on to initiate photooxidation.  

4.2.3 Aerosol collection and extraction 

Aerosol samples were collected onto 47 mm TeflonTM filters (0.45 µm pore size, 

Pall Laboratory). The total mass collected onto each filter was determined by integrating 

the SMPS time-dependent volume concentration over the filter collection period and 

multiplying by the total volume of air collected. SMPS volume concentrations were 

converted to mass concentrations by assuming a density of 1 g cm-3 to facilitate comparison 

between studies. To account for potential H2O2 or HONO uptake, background filters were 

also collected. These filters were collected when only seed particles and OH precursor 

(H2O2 or HONO) were injected into the chamber under otherwise identical experimental 

conditions. All collected samples were placed in sterile petri dishes, sealed with Parafilm 
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M®, and stored at -20 °C until extraction and analysis (Fang et al., 2015c). Collected 

particles were extracted following the procedure outlined in Fang et al. (2015a) with 

modifications for cellular exposure. Briefly, filter samples were submerged in cell culture 

media (RPMI-1640) and sonicated for two 30 min intervals (1 hr total) using an Ultrasonic 

Cleanser (VWR International). In between sonication intervals, the water was replaced to 

reduce bath temperature. After the final sonication interval, sample extracts were filtered 

using 0.45 µm PTFE syringe filters (Fisherbrand™) to remove any insoluble material and 

supplemented with 10% FBS (Fang et al., 2015c). 

4.2.4 Intracellular ROS/RNS measurement 

ROS/RNS were detected using the assay optimized in Tuet et al. (2016). Briefly, 

the assay consists of five major steps: (1) pre-treatment of 96-well plates to ensure a 

uniform cell density, (2) seeding of cells onto pre-treated wells at 2 x 104 cells well-1, (3) 

incubation with ROS/RNS probe (carboxy-H2DCFDA, Molecular Probes C-400) diluted 

to a final concentration of 10 µM, (4) exposure of probe-treated cells to samples and 

controls for 24 hrs, and (5) detection of ROS/RNS using a microplate reader (BioTek 

Synergy H4, ex/em: 485/525 nm). Positive controls included bacterial cell wall component 

lipopolysaccharide (LPS, 1 µg mL-1), H2O2 (100 µM), and reference filter extract (10 filter 

punches mL-1, 1 per filter sample, from various ambient filters collected at the Georgia 

Tech site, while negative controls included blank filter extract (2 punches mL-1) and control 

cells (probe-treated cells exposed to media only, no stimulants). 

A previous study on the ROS/RNS produced induced by exposure to ambient PM 

samples found that ROS/RNS production was highly dose-dependent and could therefore 
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not be represented by measurements taken at a single dose (Tuet et al., 2016). Here, we 

utilize the dose-response curve approach described in Tuet et al. (2016). For each aerosol 

sample, ROS/RNS production was measured over ten dilutions and expressed as a fold 

increase in fluorescence over control cells. A representative dose-response curve is shown 

in Figure 4-1. For comparisons to other inflammatory endpoints and chemical composition, 

ROS/RNS production was represented using the area under the dose-response curve 

(AUC), as AUC has been shown to be the most robust metric for comparing PM samples 

(Tuet et al., 2016).  

 

Figure 4-1. Representative dose-response curve of ROS/RNS produced as a result of filter 

exposure (naphthalene SOA formed under dry, RO2 + NO dominant conditions). 

ROS/RNS is expressed as a fold increase over control cells, defined as probe-treated cells 

incubated with stimulant-free media. Dose is expressed as mass in extract (µg). Data shown 

are means ± standard error of triplicate exposure experiments. The Hill equation was used 

to fit the dose-response curve and the area under the dose-response curve (AUC) is shown. 
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4.2.5 Cytokine measurement  

Secreted levels of TNF-α and IL-6 were measured post-exposure (24 hrs) using 

enzyme-linked immunosorbent assay (ELISA) kits following manufacturer’s 

specifications (ThermoFisher). This time point was chosen to enable comparison with 

ROS/RNS levels (also measured at 24 hrs, optimized in Tuet et al. (2016)) and to ensure a 

high signal for both cytokines. Previous literature have shown that TNF-α and IL-6 

production peak around 4 and 24 hrs, respectively (Haddad, 2001). However, while TNF-

α production peaks earlier, the signal at 24 hrs is well above the detection limit of the assay, 

and previous studies have utilized this time point to measure both cytokines (Haddad, 2001; 

Matsunaga et al., 2001). Nonetheless, it should be noted that these measurements represent 

a single time point in the cellular response. All measurements were carried out using 

undiluted cell culture supernatant. For each aerosol sample, TNF-α and IL-6 were 

measured over seven dilutions and represented as a fold increase over control. Similarly, 

the AUC was used to represent each endpoint for comparison purposes. 

4.2.6 Cellular metabolic activity 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay 

(Biotium) was used to assess cellular metabolic activity. Briefly, supernatants containing 

sample extracts were removed after the exposure period and replaced with media 

containing MTT. Cells were then returned to the incubator for 4 hrs, during which the 

tetrazolium dye was reduced by cellular NAD(P)H-dependent oxidoreductases to produce 

an insoluble purple salt (formazan). Dimethyl sulfoxide was then used to solubilize the salt 
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and the absorbance at 570 nm was determined using a microplate reader (BioTek Synergy 

H4). 

4.2.7 Statistical analysis 

Linear regressions between bulk aerosol composition and cellular inflammatory 

responses were evaluated using Pearson’s correlation coefficient, and the significance of 

each correlation coefficient was determined using multiple imputation, which calculated 

the total variance associated with the slope of each regression. Details of this method are 

described in Pan and Shimizu (2009). Briefly, response parameters (i.e. AUCs for each 

endpoint) were assumed to follow a normal distribution. Ten “estimates” were obtained for 

each response using the average and standard deviation determined from the dose-response 

curve fit. These estimates were then plotted against bulk aerosol composition (e.g. O:C, 

H:C, and N:C) to obtain ten fits, and the slopes and variances generated from these fits 

were used to calculate the between and within variance. Finally, a Student’s t-test was used 

to calculate and evaluate the associated p-values using a 95% confidence interval.   

4.3 Results and Discussion 

4.3.1 Effect of SOA precursor and formation condition on inflammatory response 

To investigate whether SOA formed from different precursors elicited different 

inflammatory responses, levels of ROS/RNS, TNF-α, and IL-6 were measured after 

exposing alveolar macrophages to SOA generated from six VOCs generated under three 

formation conditions (Table 4-1). The AUC per mass of SOA (µg) in the extract for 

ROS/RNS, TNF-α and IL-6 are shown in Figure 4-2, shaped by SOA formation condition. 
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It should be noted that all responses were normalized to probe-treated control cells to 

account for differences between endogenous levels of ROS/RNS produced in cells 

(Henkler et al., 2010). Uncertainties associated with AUC were determined by averaging 

the AUCs obtained by fitting dose-response data with each point removed systematically, 

following the methodology described in Tuet et al. (2016). ROS/RNS production was also 

measured for background filters and found to be within the uncertainty of control cells, 

indicating that there was no evidence for significant H2O2 or HONO uptake onto seed 

particles (Figure C-1). Furthermore, exposure to filter extract did not result in decreases in 

metabolic activity as measured by the MTT assay for all SOA systems investigated (Figure 

C-2). Since results from MTT may represent the number of viable cells present, changes 

in inflammatory endpoints did not likely result from changes in the number of cells exposed 

(i.e. decreases in response cannot be attributed to cell death). 
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Figure 4-2. Area under the dose-response curve for various inflammatory responses 

induced as a result of SOA exposure: ROS/RNS, IL-6, and TNF-α. SOA were generated 

from various precursors (ISO: isoprene, AP: α-pinene, BCAR: β-caryophyllene, PD: 

pentadecane, MX: m-xylene, and NAPH: naphthalene) under various conditions (circles: 

dry, RO2 + HO2; squares: humid, RO2 + HO2; and triangles: dry, RO2 + NO). Lines 

connecting the same inflammatory response for SOA generated from the same precursor 

under different formation conditions are also shown. 

For all inflammatory responses measured (levels of ROS/RNS, TNF-α, and IL-6), 

SOA precursor identity and formation condition influenced the level of response, as 

demonstrated by the range of values obtained from different SOA precursors and different 

formation conditions (Figure 4-2). Despite having a clear effect, no obvious trends were 

observed for each variable (precursor or formation condition) on individual responses. This 

is in contrast to that observed for the oxidative potential as measured by DTT (OPWS-DTT) 

for these samples, where only precursor identity influenced OPWS-DTT substantially (Tuet 

et al., 2017b). However, this may not be surprising as DTT is a chemical assay, which only 
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accounts for the potential of species to participate in redox reactions (Cho et al., 2005), 

whereas cellular assays account for many complicated cellular events involved in intricate 

positive and negative feedback loops. Due to the considerably different classes of 

compounds chosen as SOA precursors, aerosol compositional changes between different 

precursors were generally larger than those between different formation conditions of the 

same precursor (see Figure 4-3a) (Tuet et al., 2017b). DTT may only be sensitive to larger 

differences arising from different precursors, whereas cellular assays could also be 

sensitive to differences between different formation conditions and chemical composition 

of the same precursor. Moreover, while Tuet et al. (2017b) showed that the intrinsic OPWS-

DTT
 spanned a wide range, with isoprene and naphthalene SOA generating the lowest and 

highest OPWS-DTT, these bounds were less clear for cellular responses. While isoprene and 

naphthalene SOA still generated the lowest and highest inflammatory responses in general, 

a few exceptions exist (e.g. ROS/RNS levels induced by pentadecane SOA formed under 

dry, RO2 + HO2 dominant conditions, Figure 4-2). 
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Figure 4-3. van Krevelen plot for various SOA systems sized by ROS/RNS levels (panel 

A) and correlation between ROS/RNS levels and average carbon oxidation state (panel B). 

Data points are colored by SOA system (red: isoprene, yellow: α-pinene, green: β-

caryophyllene, light blue: pentadecane, blue: m-xylene, and purple: naphthalene), shaped 

according to formation conditions (circle: dry, RO2 + HO2; square: humid, RO2 + HO2; and 

triangle: dry, RO2 + NO). SOA precursors are shown as stars, colored by SOA system. * 

indicates significance, p < 0.05.   
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Though no apparent trends in individual inflammatory responses were observed as 

a function of SOA precursor identity or formation condition, several patterns among all 

three inflammatory responses were observed for SOA precursors whose products share 

similar chemical structures (i.e., similar carbon chain length and functionalities). Exposure 

to isoprene SOA induced the lowest levels of TNF-α and IL-6 among the aerosol systems 

studied (Figure 4-2). Furthermore, isoprene SOA generated from different pathways (i.e. 

photooxidation under different RO2 fates and reactive uptake of IEPOX) (Surratt et al., 

2010; Xu et al., 2014; Chan et al., 2010) produced similar responses for each inflammatory 

endpoint. These results suggest that different isoprene SOA products (Surratt et al., 2010; 

Xu et al., 2014; Chan et al., 2010) may induce similarly low inflammatory responses and 

are consistent with the intrinsic OPWS-DTT obtained for these SOA samples, where isoprene 

SOA generated the lowest OPWS-DTT
  of all SOA systems studied and the OPWS-DTT was 

similar for all SOA formation conditions explored (Tuet et al., 2017b). This finding is in 

contrast to a previous study by Lin et al. (2016), where methacrylic acid epoxide (MAE)-

derived SOA was found to be substantially more potent than IEPOX-derived SOA. 

However, while exposure to MAE-derived SOA induced the upregulation of a larger 

number of oxidative stress response genes than IEPOX-derived SOA, the fold change of 

several genes reported in Lin et al. (2016) are actually similar (e.g., ALOX12, NQO1). 

Several of these genes directly affect the production of inflammatory cytokines measured 

in this study. For instance, studies have observed that arachidonate 12-lipoxygenase 

(ALOX12) products induce the production of both TNF-α and IL-6 in macrophages (Wen 

et al., 2007). As such, a similar response level regardless of SOA formation condition may 

be observed depending on the biological endpoints measured. Thus, it is possible that the 
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inflammatory cytokines measured in this study are involved in pathways concerning those 

genes, resulting in a similar response level regardless of SOA formation condition. 

Similarly, exposure to SOA generated from the photooxidation of α-pinene and m-

xylene resulted in similar inflammatory responses for all three formation conditions (Figure 

4-2). These cellular assay results are consistent with results from the DTT assay where the 

OPWS-DTT was not significantly different between SOA formed under different formation 

conditions (Tuet et al., 2017b). Response levels induced by these two SOA systems are 

also similar across all three inflammatory measurements investigated (Figure 4-2). This 

suggests that products from both precursors may induce similar cellular pathways resulting 

in the production of similar levels of inflammatory markers. Indeed, there are several 

similarities between products formed from the photooxidation of α-pinene and m-xylene. 

For instance, a large portion of α-pinene and m-xylene oxidation products under both RO2 

+ HO2 and RO2 + NO pathways are ring-breaking products with a similar carbon chain 

length (Eddingsaas et al., 2012; Vivanco and Santiago, 2010; Jenkin et al., 2003). As a 

result of this similarity, products from both SOA systems may interact with the same 

cellular targets and induce similar cellular pathways, resulting in a similar response 

regardless of precursor identity and formation condition. These observations further imply 

that the chemical structures (e.g., carbon chain lengths and functionalities) of oxidation 

products may be important regardless of PM source/precursor. 

A different pattern was observed for β-caryophyllene and pentadecane SOA, where 

the IL-6 response spanned a much larger range than ROS/RNS and TNF-α (Figure 4-2). 

This is in contrast to the trends observed for the OPWS-DTT for β-caryophyllene and 

pentadecane SOA, where OPWS-DTT was similar regardless of formation condition (Tuet et 
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al., 2017b). This suggests that there are differences between organic peroxides and organic 

nitrates formed from certain precursors that influence cellular responses, but are not 

captured by redox potential measurements. Less is known about the effects of humidity on 

SOA formation and chemical composition for all SOA systems investigated, as most 

laboratory chamber studies in literature have been conducted under dry conditions. 

Specifically here, very high levels of IL-6 were observed post-exposure to pentadecane 

SOA formed under humid conditions. Prior studies reported opposing findings with some 

showing a significant effect of water on aerosol formation and chemical composition 

(Nguyen et al., 2011; Wong et al., 2015; Healy et al., 2009; Stirnweis et al., 2016), while 

others found little influence (Edney et al., 2000; Boyd et al., 2015; Cocker III et al., 2001). 

It is clear that humidity effects are highly hydrocarbon-dependent and further studies into 

the specific products formed under humid conditions are required to understand how these 

differences in chemical composition may translate to different cellular endpoints. 

Nonetheless, the known products formed from the photooxidation of these hydrocarbons 

may provide some insight into the inflammatory responses observed. While there are no 

prior studies involving pentadecane oxidation products, it is expected that the oxidation 

products will be similar to those reported in the oxidation of dodecane (i.e. same 

functionalities with a longer carbon chain) (Loza et al., 2014). It is therefore likely that 

pentadecane oxidation products resemble long chain fatty acids and could potentially insert 

into the cell membrane (Loza et al., 2014), as previous studies have shown that fatty acids 

can feasibly insert into the cell membrane bilayer (Khmelinskaia et al., 2014; Cerezo et al., 

2011). This insertion could potentially affect membrane fluidity, which is known to affect 

cell function substantially although the specific effect depends strongly on the particular 



 83 

modification and cell type of interest (Baritaki et al., 2007; Spector and Yorek, 1985). In 

some cases, these alterations lead to the induction of apoptosis, which involves pathways 

leading to the production of TNF-α (Baritaki et al., 2007; Wang et al., 2003). TNF-α can 

then induce the production of IL-6, which once produced can also inhibit the production of 

TNF-α in a feedback loop (Kishimoto, 2003; Wang et al., 2003). These cellular events are 

consistent with the observed inflammatory response induced by pentadecane SOA 

exposure, where there is a high IL-6 response and a lower TNF-α response. The low 

ROS/RNS response observed is also in line with these cellular events, as IL-6 exhibits anti-

inflammatory functions, which can neutralize ROS/RNS production. These responses are 

less pronounced for β-caryophyllene aerosol, which may be due to the shorter carbon chain 

observed in known products (Chan et al., 2011). While β-caryophyllene and pentadecane 

are both C15 precursors, β-caryophyllene is a bicyclic compound and many SOA products 

retain the 4-membered ring, resulting in a shorter carbon backbone (Chan et al., 2011). As 

a result, fewer products may insert into the cell membrane, leading to a lesser response 

compared to pentadecane SOA exposure. These observations, particularly those for 

pentadecane SOA, suggest that aerosol from meat cooking may have health implications, 

as fatty acids comprise a majority of these aerosol (Mohr et al., 2009; Rogge et al., 1991). 

Naphthalene exhibits a different, more distinct pattern compared to the rest of the 

SOA systems investigated, with a large range observed for both TNF-α and IL-6 under 

different formation conditions (Figure 4-2). Higher levels of ROS/RNS were also observed 

as a result of exposure to naphthalene aerosol irrespective of SOA formation condition. 

Similarly, the OPWS-DTT of naphthalene SOA previously measured by Tuet et al. (2017b) 

was an outlier among all SOA systems investigated, as the measured OPWS-DTT was at least 
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twice that of the next highest SOA system. These observations are consistent with the 

formation of specific SOA products such as naphthoquinones, which are known to induce 

redox-cycling in cells and are formed under both RO2 + HO2 and RO2 + NO pathways 

(Henkler et al., 2010; Kautzman et al., 2010). Consequently, aerosol generated from 

naphthalene may induce higher levels of inflammatory responses than other SOA due to 

this process (Henkler et al., 2010; Lorentzen et al., 1979). However, as shown by the high 

levels of IL-6, exposure to naphthalene SOA may also induce anti-inflammatory pathways 

not captured by OPWS-DTT measurements. Moreover, a clear increasing trend is apparent for 

TNF-α and IL-6 produced upon naphthalene SOA exposure, with a higher level of both 

cytokines observed for aerosol formed under RO2 + NO dominant and humid conditions. 

Previously, the effect of different RO2 fates on SOA OPWS-DTT
 was attributed to the 

different products known to form under both pathways (Tuet et al., 2017b). The same 

explanation applies for cellular measurements as SOA products that promote electron 

transfer reactions with antioxidants can result in redox imbalance as measured by OPWS-

DTT
 and the induction of related cellular pathways such as ROS/RNS and cytokine 

production (Tuet et al., 2017b). Finally, naphthalene SOA induced cellular responses 

outside of those observed for other aerosol systems, with higher levels of all inflammatory 

markers than other SOA systems. As shown previously for OPWS-DTT, naphthalene may be 

an outlier due to aromatic ring-containing products, which may then induce different 

cellular pathways compared to other aerosol systems investigated, the products of which 

do not contain aromatic rings. Additionally, many known aerosol products formed from 

the photooxidation of naphthalene have functionalities that resemble those of 

dinitrophenol, which is known to decouple phosphorylation from electron transfer (Terada, 



 85 

1990). It is therefore possible that the aromatic functionality present in the majority of 

naphthalene SOA products results in the involvement of very different cellular pathways, 

leading to outlier inflammatory endpoint responses. Various products of naphthalene 

oxidation such as nitroaromatics and polyaromatics are known to have mutagenic 

properties and may induce the formation of DNA adducts (Baird et al., 2005; Helmig et 

al., 1992). As such, it is possible that these products may induce health effects via other 

pathways as well and naphthalene SOA exposure may have effects beyond redox 

imbalance and oxidative stress. 

Bulk aerosol elemental ratios (O:C, H:C, and N:C) were determined for each SOA 

system investigated. Different types of organic aerosol are known to span a wide range of 

O:C, which may be utilized as an indication of oxidation, and the van Krevelen diagram 

was used to visualize whether changes in O:C and H:C ratios corresponded to changes in 

levels of inflammatory response (Figure 4-3a and Figure C-3) (Chhabra et al., 2011; Lambe 

et al., 2011; Ng et al., 2010). Changes in the slope within the van Krevelen space provide 

information on SOA functionalization (Heald et al., 2010; Van Krevelen, 1950; Ng et al., 

2011). Beginning from the precursor hydrocarbon, a slope of 0 indicates alcohol group 

additions, a slope of -1 indicates carbonyl and alcohol additions on separate carbons or 

carboxylic acid additions, and a slope of -2 indicates ketone or aldehyde additions. 

As seen in Figure 4-3a, the laboratory-generated aerosol span a large range of O:C 

and H:C ratios. Both SOA formation condition and precursor identity influenced elemental 

ratios, however, precursor identity generally had a larger effect as evident by the clusters 

observed for different SOA precursors. Despite these differences in chemical composition, 

there were no obvious trends between O:C or H:C and any inflammatory endpoint 
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measured. This is similar to that observed for chemical oxidative potential as measured by 

DTT, where a higher O:C did not correspond to a higher oxidative potential for both 

laboratory-generated and ambient aerosol (Tuet et al., 2017b). This is likely due to the 

different formation conditions used to generate SOA, which may not be directly 

comparable. Nevertheless, a significant correlation (p < 0.05) was observed between 

ROS/RNS and OS̅̅̅̅
c (Figure 4-3b). This positive correlation is not surprising, as a higher 

average oxidation state would likely correspond to a better oxidizing agent. Future studies 

should evaluate the effect of the degree of oxidation for SOA formed from the same SOA 

precursor under the same formation condition to investigate whether atmospheric aging of 

aerosol (which typically leads to increases in the degree of oxidation) affects inflammatory 

responses. Finally, the N:C ratio was also determined for SOA systems formed under 

conditions that favor the RO2 + NO pathway (Figure C-4) and were found to span a large 

range. Similarly, there was no obvious trend between N:C ratios and the inflammatory 

endpoints measured. 

4.3.2 Relationship between inflammatory responses 

To visualize whether there exists a relationship between inflammatory markers 

measured, levels of TNF-α and IL-6 are shown in Figure 4-4, sized by ROS/RNS. With the 

exception of naphthalene SOA, the inflammatory cytokine responses for all aerosol 

systems investigated follow an exponential curve (Figure 4-4, shown in black) where there 

appears to be a plateau for TNF-α levels. Along this curve, ROS/RNS levels also appear to 

increase with increasing inflammatory cytokine levels to a certain point, after which 

ROS/RNS levels decrease. These observations are in line with the interconnected effects 

of both cytokines. While both TNF-α and IL-6 have pro-inflammatory effects that may 
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lead to the increase of ROS/RNS production, the individual pathways are also involved in 

many complicated stimulation and inhibition loops and there is extensive cross-talk 

between both pathways. For instance, TNF-α induces the production of glucocorticoids, 

which in turn inhibits both TNF-α and IL-6 production (Wang et al., 2003). IL-6 also 

directly inhibits the production of TNF-α and other cytokines induced as a result of TNF-

α (e.g. IL-1) and stimulates pathways that lead to the production of glucocorticoids 

(Kishimoto, 2003). As a result, increases in IL-6 may be accompanied by decreases in 

TNF-α, resulting in the observed plateau. Furthermore, ROS/RNS levels may represent a 

fine balance between anti-inflammatory and pro-inflammatory effects. Both cytokines are 

involved in the acute phase reaction and can affect ROS/RNS levels via pro-inflammatory 

pathways. IL-6 also exhibits some anti-inflammatory functions and may thus lower 

ROS/RNS levels as well. These interconnected pathways could account for the observed 

parabolic pattern for ROS/RNS production. Exposure to naphthalene SOA resulted in 

responses outside of those observed for other aerosol systems, likely due to the formation 

of aromatic ring-retaining products as discussed in the previous section. 
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Figure 4-4. Area under the dose-response curve per mass of SOA for various inflammatory 

responses induced as a result of SOA exposure. Data points are sized according to 

ROS/RNS level. SOA were generated from various SOA precursors (red: isoprene, yellow: 

α-pinene, green: β-caryophyllene, light blue: pentadecane, blue: m-xylene, and purple: 

naphthalene) under various conditions (circles: dry, RO2 + HO2; squares: humid, RO2 + 

HO2; and triangles: dry, RO2 + NO). A fitted curve excluding naphthalene data is shown 

as a guide. Shaded regions for each system, colored by SOA precursor, are also shown to 

show the extent of clustering and provide a visualization for the different patterns observed. 

4.3.3 Comparison with ambient data 

To evaluate how the oxidative potential and ROS/RNS production of the SOA 

systems investigated compare in the context of ambient samples, the measurements 

obtained in this study were plotted with those obtained in our previous study involving 

ambient samples collected around the greater Atlanta area (Figure 4-5) (Tuet et al., 2016). 

These ambient samples were analyzed using the same methods for determining oxidative 
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potential (DTT assay (Cho et al., 2005; Fang et al., 2015c)) and ROS/RNS production 

(cellular carboxy-H2DCFDA assay (Tuet et al., 2016)). Furthermore, the same extraction 

protocol (water-soluble extract) was followed in both studies (Tuet et al., 2016). Results 

from both studies are therefore directly comparable. Previously, a significant correlation 

between ROS/RNS production and oxidative potential as measured by DTT was observed 

for summer ambient samples. In the same study, correlations between ROS/RNS 

production and organic species were also observed for summer ambient samples, and it 

was suggested that these correlations may reflect contributions from photochemically 

produced SOA (Tuet et al., 2016). 

 

Figure 4-5. ROS/RNS production and intrinsic DTT activities for chamber SOA and 

ambient samples collected around the greater Atlanta area. All samples were analyzed 

using the method outlined in Cho et al. (2005) and Tuet et al. (2016). Ambient samples are 

colored by season as determined by solstice and equinox dates between June 2012 and 

October 2013 (Tuet et al., 2016). A fitted curve for laboratory-generated samples is shown 

as a guide. 
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Figure 4-5 shows that laboratory-generated SOA oxidative potential is comparable 

to that observed in ambient samples, with the exception of naphthalene SOA, which 

produced higher DTT activities due to its aromatic ring retaining products (Tuet et al., 

2017b; Kautzman et al., 2010). Laboratory-generated SOA also induced similar or higher 

levels of ROS/RNS compared to ambient samples. There are many possible explanations 

for the observed higher response for some SOA samples. For instance, individual, single 

precursor SOA systems were considered in this study, whereas ambient aerosol contains 

SOA from multiple precursors as well as other species that are not considered in this study 

(e.g. metals). Interactions between SOA from different precursors is likely to occur and 

may result in different response levels. Complex interactions between SOA and other 

species present in the ambient (e.g. metals or other organic species) are also likely involved 

(Tuet et al., 2016). Previous studies have also suggested the possibility of metal-organic 

complexes. For instance, Verma et al. (2012) showed that certain metals were retained on 

a C-18 column, which is utilized to remove hydrophobic components, suggesting that these 

metals were likely complexed and removed in the process. Further chamber studies 

involving photochemically generated SOA and metals may elucidate these interactions. 

Furthermore, there are likely species present in the ambient that do not contribute to 

ROS/RNS production. That is, while certain species contribute to the mass of PM, there is 

little to no ROS/RNS production associated with these species. Ambient samples where 

these species comprise a significant fraction will have a low per mass ROS/RNS production 

level. Finally, only three SOA formation conditions were investigated in this study. There 

are multiple other possible oxidation mechanisms that lead to the formation of SOA in the 

ambient, which were not accounted for in this study. Nonetheless, despite the low 
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ROS/RNS levels observed post SOA exposure, there is an association between ROS/RNS 

production and DTT activity (Figure 4-5). These results suggest that our previous findings 

based on ambient filter samples may be extended to SOA samples. That is, while the 

relationship between ROS/RNS production and DTT activity is complex, DTT may serve 

as a useful screening tool as samples with low DTT activities are likely to produce low 

levels of ROS/RNS (Tuet et al., 2016). 

4.4 Implications 

Levels of ROS/RNS, TNF-α, and IL-6 were measured after exposing cells to the 

water-soluble extract of SOA generated from the photooxidation of six SOA precursors 

under various formation conditions. Although previous epidemiological and ambient 

studies have found correlations between metals and various measures of health effects 

(Verma et al., 2010; Pardo et al., 2015; Burnett et al., 2001; Huang et al., 2003; Akhtar et 

al., 2010; Charrier and Anastasio, 2012), the measured levels of TNF-α, IL-6, and 

ROS/RNS obtained in this study demonstrate that organic aerosol alone can induce a 

cellular response. This was previously observed for the oxidative potential as measured by 

DTT activity as well, where the same laboratory-generated organic aerosol samples 

catalyzed redox reactions and resulted in measureable DTT decay in the absence of metal 

species (Tuet et al., 2017b). 

Results from this study also show that SOA precursor identity and formation 

condition influenced response levels, with naphthalene SOA producing the highest cellular 

responses of the SOA systems investigated. As discussed previously, the aromatic 

functionality present in many naphthalene photooxidation products may be an important 
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consideration for health effects. It may therefore be worthwhile to investigate other 

anthropogenic aromatic ring-containing precursors as well and to closely study the cellular 

effects of naphthalene SOA products given its high response. Several patterns were also 

noted for SOA systems whose products shared similar functionalities and chemical 

structures. For instance, photooxidation productions from pentadecane and β-

caryophyllene share similarities with long chain fatty acids and may participate in 

membrane insertions, whereas many known products of naphthalene photooxidation are 

mutagens capable of inducing cellular pathways beyond those that affect cellular redox 

balance (Baird et al., 2005; Helmig et al., 1992). Given these observations, it may be 

possible to roughly predict responses based on known SOA products as SOA systems 

whose products share similar functionalities and carbon chain length are likely to induce 

similar cellular pathways and produce similar levels of various inflammatory endpoints. 

Exposure studies involving individual classes of SOA products may elucidate further 

details as to whether these types of predictions would be plausible. Moreover, such studies 

could be used to determine whether the hypothesized cellular pathways are indeed involved 

and whether certain cellular functions are indeed affected by specific products (e.g. 

membrane insertion by pentadecane photooxidation products and oxidative 

phosphorylation decoupling by naphthalene photooxidation products). 

Mixture effects may be another important consideration as ambient PM contains 

SOA formed from multiple SOA precursors. As a result, precursor emissions and their 

corresponding SOA formation potential must be considered to fully assess PM health 

effects. Furthermore, it may be worthwhile to investigate various prediction models for 

multi-component mixtures to bridge the gap between laboratory studies and real ambient 
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exposures. For instance, concentration addition may not apply as ambient aerosol is formed 

in the presence of multiple precursors and the SOA produced may induce response levels 

completely different from those observed for single precursor SOA systems that comprise 

the mixture. Interactions between organic components and metal species have also been 

suggested in previous studies (Verma et al., 2012; Tuet et al., 2016) and may influence 

responses significantly. While these interactions were not considered in the current study, 

there may be evidence to support the plausibility of mixture effects as ambient PM samples 

produced lower levels of ROS/RNS than that of any single SOA system investigated. 

Laboratory chambers can serve as an ideal platform to investigate mixture effects, as 

experiments can be conducted under well-controlled conditions where the aerosol chemical 

composition and health endpoints can be determined.  

Additionally, this study confirms that while there is not one simple correlation 

between oxidative potential and cellular responses for different PM samples, the DTT assay 

may serve as a useful screening tool as a low DTT activity will likely correspond to a low 

cellular response. Furthermore, while ROS/RNS may serve as a general indicator of 

oxidative stress, there may be instances where a low level of ROS/RNS does not necessary 

indicate a lack of cellular response. In the current study, ROS/RNS levels were associated 

with levels of inflammatory cytokines for the majority of SOA systems investigated. 

However, aerosol formed from the photooxidation of pentadecane induced low levels of 

ROS/RNS production and relatively high levels of both cytokines (i.e. higher than expected 

given the ROS/RNS level measured). These results suggest that at least one additional 

measure (e.g. inflammatory cytokines) may be required to fully interpret ROS/RNS 

measurements. Finally, several limitations must be considered before generalizing results 
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from this study to in vivo exposures. For instance, only one cell type was explored in this 

study, whereas an organism consists of multiple tissues comprised of multiple cell types. 

Interactions between different cell types and tissue systems were not considered in this 

study. Furthermore, the doses investigated may not fully represent real world exposures 

due to differences in exposure routes and potential recovery from doses due to clearance. 

Nevertheless, this study provides perspective on the relative toxicities of different SOA 

systems which future studies can build upon. 
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CHAPTER 5: OXIDANT PRODUCTION INDUCED BY 

NAPHTHALENE SECONDARY ORGANIC AEROSOL: EFFECT OF 

REDOX-ACTIVE METALS AND PHOTOCHEMICAL AGING 

5.1 Background 

Air pollution exposure ranks among the top ten global human health risks (Lim et 

al., 2012) with multiple epidemiological studies reporting associations between various 

cardiopulmonary health effects, elevated particulate matter (PM) concentrations (Li et al., 

2008; Pope III and Dockery, 2006; Brunekreef and Holgate, 2002; Dockery et al., 1993; 

Hoek et al., 2013; Anderson et al., 2011; Pope et al., 2002; Lim et al., 2012), and particle 

oxidative potential (OP) (Bates et al., 2015; Fang et al., 2016; Yang et al., 2016; 

Weichenthal et al., 2016). Toxicological studies suggest PM-induced oxidant production 

as a possible mechanism linking PM exposure and observed health effects (Li et al., 2003a; 

Tao et al., 2003; Castro and Freeman, 2001; Gurgueira et al., 2002). Multiple chemical and 

cellular assays have been developed and utilized to measure PM-induced oxidant 

production. For instance, cell-free chemical assays that utilize an antioxidant to simulate 

biologically relevant redox reactions and ultimately measure the redox potential of PM 

(Kumagai et al., 2002; Cho et al., 2005) and cellular assays that employ a probe capable of 

reacting with reactive oxygen and nitrogen species (ROS/RNS) produced as a result of PM 

exposure (Landreman et al., 2008; Tuet et al., 2016) have been developed. Both types of 

assay have been used in prior studies to elucidate chemical species associated with oxidant 

production (Fang et al., 2015c; Bates et al., 2015; Fang et al., 2015a; Verma et al., 2015a; 

Verma et al., 2014; Li et al., 2003b; Kleinman et al., 2005; Hamad et al., 2015; Verma et 

al., 2015b; Verma et al., 2012; Dou et al., 2015; Lin and Yu, 2011; Tuet et al., 2016). 
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Despite these efforts, the specific constituents responsible for the overall health effects 

induced by PM exposure remain unclear as ambient mixtures are complex. 

Organic aerosol constitute a significant portion of ambient PM (Kanakidou et al., 

2005; Jimenez et al., 2009), and multiple field studies have repeatedly shown that 

secondary organic aerosol (SOA, formed from the oxidation of volatile organic compounds 

in the atmosphere) often dominate over aerosol of primary origin (e.g., aerosol emitted 

directly from combustion engines), even in urban centers (Zhang et al., 2007; Jimenez et 

al., 2009; Ng et al., 2010). While there have been several recent studies regarding the health 

effects of SOA (McWhinney et al., 2013b; Rattanavaraha et al., 2011; Kramer et al., 2016; 

Lund et al., 2013; McDonald et al., 2010; McDonald et al., 2012; Baltensperger et al., 2008; 

Arashiro et al., 2016; Platt et al., 2014; Tuet et al., 2017b), there are still important gaps in 

knowledge that have not been addressed. For instance, organic aerosol have a lifetime of 

approximately one week (Seinfeld and Pandis, 2016); continued photochemical aging can 

alter the chemical and physical properties of aerosol, which may have implications on 

resulting health effects. These potential effects have not been fully explored as the majority 

of current studies have focused on freshly formed SOA (McWhinney et al., 2013b; Lin et 

al., 2017; Lin et al., 2016; Tuet et al., 2017a; Tuet et al., 2017b). In addition, the presence 

of redox-active metals on SOA health effects have not been considered even though 

laboratory studies have shown that the presence of metal-containing seeds influences SOA 

formation and chemical composition (Chu et al., 2014; Chu et al., 2012; Chu et al., 2017; 

Daumit et al., 2016), and these metals are readily emitted via various processes (e.g., traffic, 

mechanical processes, combustion) (Charrier and Anastasio, 2012; Fang et al., 2015a). 

Furthermore, redox-active metals such as iron may participate in redox cycling, as well as 
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Fenton-like reactions (Frei, 1994; Chevion, 1988). These reactions produce radicals 

capable of enhancing the degree of oxidation of organic aerosol when internally mixed 

with organic aerosol, resulting in stronger oxidizing agents that may induce more 

ROS/RNS production upon cellular exposure (Tuet et al., 2017a). Depending on the source, 

iron may exist in either coarse or fine mode, with a majority in the coarse mode and a small 

fraction in the fine mode (Fang et al., 2017a; Allen et al., 2001; Espinosa et al., 2001). As 

such, there exists some overlap between the size distributions of iron and submicron 

organic aerosol, which is sufficient for iron to serve as a catalyst in Fenton-like reactions 

in some fraction of the organic aerosol. 

In the present study, naphthalene photooxidation SOA were generated in the 

presence of metal-containing (iron (II) sulfate, FS) and inorganic (ammonium sulfate, AS) 

seed. For both seed types, a series of laboratory chamber experiments with different initial 

naphthalene concentrations was conducted to produce aerosol of various degrees of 

oxidation. Multiple samples were also collected from a single experiment to obtain aerosol 

of different photochemical age. Oxidant production was measured using chemical and 

cellular assays (i.e., water-soluble OP as determined by dithiothreitol (DTT) consumption 

(Fang et al., 2015c) and intracellular ROS/RNS production as detected using carboxy-

H2DCFDA (Tuet et al., 2016)). Tuet et al. (2017a; 2017b) recently investigated the water-

soluble oxidative potential and cellular ROS/RNS production for SOA formed from 

common biogenic and anthropogenic precursors. Here, we choose to focus on naphthalene 

SOA as it was shown to have the highest response among different SOA systems 

previously studied in Tuet et al. (2017a; 2017b). 
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5.2 Methods 

5.2.1 Naphthalene aerosol generation 

Naphthalene photooxidation SOA (naphthalene + hydroxyl (OH•) radical) was 

generated under humid conditions in the presence of NO in the Georgia Tech 

Environmental Chamber (GTEC) facility. Briefly, the facility consists of two 12 m3 

TeflonTM chambers suspended inside a temperature-controlled enclosure surrounded by 

black lights (Sylvania 24922) and natural sunlight fluorescent lamps (Sylvania 24477) 

(Boyd et al., 2015). Each chamber is equipped with multiple sampling ports for reagent 

introduction and various gas- and aerosol-phase measurements. NO2, NOx, and O3 were 

monitored using a cavity-attenuated phase shift (CAPS) NO2 monitor (Aerodyne), a 

chemiluminescence NOx monitor (Teledyne 200EU), and an O3 analyzer (Teledyne T400), 

respectively. Hydrocarbon concentration was monitored using a gas chromatography flame 

ionization detector (GC-FID, Agilent 7890A) and hydroxyl radical concentration was 

calculated from the hydrocarbon decay. Aerosol volume concentrations and size 

distributions as well as bulk aerosol compositions were measured using a scanning mobility 

particle sizer (SMPS, TSI) and a high resolution time-of-flight aerosol mass spectrometer 

(HR-ToF-AMS, Aerodyne; henceforth referred to as the AMS), respectively (DeCarlo et 

al., 2006). AMS data were analyzed using data analysis toolkits SQUIRREL (v. 1.57) and 

PIKA (v. 1.16), while elemental ratios (O:C, H:C, and N:C) were determined using the 

method outlined in Canagaratna et al. (2015). O:C and H:C ratios were then used to 

calculate the average carbon oxidation state (OS̅̅̅̅
c) (Kroll et al., 2011). Finally, temperature 

and relative humidity (RH) were monitored using a hydro-thermometer (Vaisala 

HMP110). 
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Experimental conditions, given in Table 5-1, were designed to probe the effects of 

metal seed and aerosol chemical composition on OP and intracellular ROS/RNS 

production. All experiments were performed at ~ 25 °C under humid conditions (RH ~ 

50%). Prior to each experiment, chambers were flushed with pure air and humidified using 

a bubbler filled with deionized (DI) water. Once the desired humidity was reached, seed 

aerosol was injected by atomizing seed solution (15 mM (NH4)2SO4 for ammonium sulfate 

(AS) experiments and 15 mM FeSO4 for iron sulfate (FS) experiments (Sigma Aldrich)) 

until the seed concentration inside the chamber was approximately 30 µg m-3. Naphthalene 

was then injected by passing pure air at 5 L min-1 over solid naphthalene flakes (99%, 

Sigma Aldrich) (Chan et al., 2009). NO (500 ppm, Matheson) and OH precursor (H2O2, 

50% aqueous solution, Sigma Aldrich) were injected afterwards to attain an initial NO 

concentration of 300 ppb and an H2O2 concentration of 3 ppm, which yielded OH 

concentrations on the order of 106 – 107 molec cm-3. Once all reagent concentrations 

stabilized, UV lights were switched on to initiate photooxidation. 
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Table 5-1. Experimental conditions for naphthalene SOA.  

Experiment Hydrocarbon Seed 

Relative 

humidity 
[HC]0 [NO]0 [SOA]c 

(%) (ppb) (ppb) (µg m-3) 

1 naphthalene ASa
 51% 32 315 11.7 

2 naphthalene FSb 50% 32 303 7.28 

3 naphthalene ASa 49% 92 368 66.7 

4 naphthalene FSb 48% 84 214 24.0 

5d naphthalene ASa 54% 186 344 187 

6 naphthalene FSb 52% 182 321 149 

7 naphthalene ASa 53% 342 320 348 

8 naphthalene FSb 51% 331 295 369 

a
 Ammonium sulfate seed (15 mM (NH4)2SO4); 

b
 Iron sulfate seed (15 mM FeSO4);                            

c Average SOA concentration in the chamber during filter collection; d Experiment was 

repeated and multiple filters were collected over the course of the experiment to investigate 

the effects of photochemical aging   

5.2.2 Aerosol collection and extraction 

Aerosol samples were collected at peak growth onto 47 mm TeflonTM filters (0.45 

µm pore size, Pall Laboratory) for 1.6 hrs at a flow rate of 29 L min-1. The total mass 

collected on each filter was determined by integrating time-dependent SMPS volume 

concentrations over the filter collection period and multiplying the integrated value by the 

total volume of air collected. A density of 1 g cm-3 was assumed to facilitate comparison 

between studies, as SOA density varies with precursor identity and formation condition 

(Ng et al., 2007a; Ng et al., 2007b; Chan et al., 2009; Tasoglou and Pandis, 2015; Bahreini 

et al., 2005; Ng et al., 2006). Background filters only containing seed (AS or FS), OH 

precursor (H2O2), and NO at experimental conditions were also collected to account for 

potential H2O2 uptake onto seed particles since this may affect oxidative potential and 
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ROS/RNS measurements. After collection, filters were placed in sterile petri dishes, sealed 

with Parafilm M®, and stored at -20 °C until extraction and analysis (Fang et al., 2015c). 

Collected filter samples were extracted following the procedure outlined in Fang et 

al. (2015a) with modifications for cellular exposure described in Tuet et al. (2016). Briefly, 

filters were submerged in extraction media (DI water for OP and cell culture media (RPMI-

1640) for ROS/RNS) and sonicated for two 30 min intervals using an Ultrasonic Cleanser 

(VWR International). Post-sonication, sample extracts were filtered using a 0.45 µm 

polytetrafluoroethylene (PTFE) syringe filter (Fisherbrand™) to remove insoluble material 

(Fang et al., 2015c) and extracts for cellular exposure were supplemented with 10% fetal 

bovine serum (FBS). 

5.2.3 Oxidative potential 

The intrinsic water soluble oxidative potential as measured by DTT (OP) of 

naphthalene aerosol, method blanks, and positive controls (9,10-phenanthraquinone) were 

determined using a semi-automated DTT system, described in detail in Fang et al. (2015c).  

Briefly, the method consisted of three major steps: (1) oxidation of DTT by redox-active 

species in the extract, (2) reaction of remaining DTT with 5,5-dithio-bis-(2-nitrobenzoic 

acid) (DTNB) to form 2-nitro-5-mercaptobenoic acid (TNB), and (3) measurement of TNB 

at 412 nm. 

5.2.4 Intracellular ROS/RNS measurement 

Murine alveolar macrophages (MH-S, ATCC®CRL-2019™) were cultured in 

RPMI-1640 media supplemented with 10% FBS, 1% penicillin-streptomycin, and 50 µM 
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β-mercaptoethanol (BME) at 37 °C and 5% CO2. ROS/RNS were detected using the assay 

described in Tuet et al. (2016). The assay consisted of five steps: pre-treatment of 96-well 

plates with 10% FBS in phosphate buffered saline (PBS), (2) seeding of cells at 2 x 104 

cells well-1, (3) incubation of cells with ROS/RNS probe (10 µM, carboxy-H2DCFDA, 

Molecular Probes C-400), (4) exposure of cells to samples and controls for 24 hrs, and (5) 

detection of ROS/RNS using a microplate reader (BioTek Synergy H4, ex: 485 nm, em: 

525 nm). Positive controls included bacterial cell wall component, lipopolysaccharide 

(LPS, 1 µg mL-1), H2O2 (100 µM), and reference filter extract (10 filter punches mL-1, 1 

per filter sample, from various ambient filters collected at the Georgia Tech site (Tuet et 

al., 2016); negative controls included blank filter extract and control cells (probe-treated 

cells exposed to media only, no stimulants). 

For each filter sample, intracellular ROS/RNS production was measured over ten 

doses to fully capture dose-response relationships (Figure D-1). At each dose, ROS/RNS 

levels were normalized to basal ROS/RNS production (Henkler et al., 2010) (i.e. ROS/RNS 

produced from probe-treated control cells) and corrected for changes in relative cellular 

metabolic activity (Zhang et al., 2016) (measured using MTT, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide, assay) (Biotium) prior to fitting dose-response 

curves. Area under the dose-response curve (AUC) was then used to represent ROS/RNS 

for comparison to chemical oxidative potential as AUC is the most robust metric for 

comparing different PM samples (Tuet et al., 2016). 
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5.2.5 Cellular metabolic activity 

MTT was used to assess cellular metabolic activity post-exposure. Sample extracts 

were removed after the exposure period (24 hrs), replaced with media containing MTT, 

and returned to the incubator for 4 hrs. Dimethyl sulfoxide was then added to solubilize the 

insoluble purple salt formed from the reduction of the tetrazolium dye and the absorbance 

at 570 nm was measured using a microplate reader (BioTek Synergy H4). 

5.3 Results and Discussion 

5.3.1 Laboratory-generated aerosol 

Experiments were conducted in the Georgia Tech Environmental Chamber (GTEC) 

facility. Typical time series for NO, NO2, O3, gas-phase naphthalene concentrations, and 

aerosol mass concentrations are shown in Figure D-2 for the two seed particles 

investigated. In both cases, NO decreased due to reaction with peroxyl radicals (RO2), 

which are important radical intermediates formed from hydrocarbon oxidation, and whose 

fates affect the oxidation products and SOA formation (Kroll and Seinfeld, 2008; Orlando 

and Tyndall, 2012). Aerosol growth was observed shortly following the initiation of 

photooxidation (i.e., turning on the lights). Most of the hydrocarbon was consumed in two 

hours and peak aerosol mass was reached. In general, FS seeded experiments (Figure D-2b) 

yielded less aerosol mass compared to AS seeded experiments (Figure D-2a). Previous 

studies exploring the effect of iron sulfate seed on aerosol formation (e.g., α-pinene and 

toluene photooxidation SOA in the presence and absence of iron sulfate seed) have also 

reported on the decreasing effect of iron sulfate seed on SOA yield, that is less aerosol 

mass was formed in the presence of iron sulfate seed (Chu et al., 2012; Chu et al., 2014).  
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Aerosol chemical composition was monitored using a high resolution time-of-flight 

aerosol mass spectrometer (HR-ToF-AMS, Aerodyne; henceforth referred to as the AMS) 

for all chamber experiments. The average, normalized AMS mass spectra (Figure D-3) are 

consistent with those reported in previous studies (Chhabra et al., 2010; Riva et al., 2015). 

A fragmentation pattern characterized by distinct ions at m/z 77, 91, 105, 119, 133, 147, 

and 160, was observed, which is likely representative of phenylalkyl fragments 

(McLafferty and Tureček, 1993). Differences in AMS mass spectra between aerosol 

formed in the presence of AS and FS seed were observed as well (Figure D-4 and Figure 

D-5). Elemental ratios (O:C, H:C, and N:C) of SOA were also determined using the AMS, 

and average aerosol carbon oxidation states (OS̅̅̅̅
c = 2 O:C – H:C) (Kroll et al., 2011) of 

SOA were calculated. O:C ratios and OS̅̅̅̅
c were higher for all FS seeded SOA compared to 

AS seeded SOA (Table D-1). This is consistent with previous laboratory studies, where the 

presence of iron sulfate seed resulted in the generation of more oxidized aerosol (higher 

O:C and OS̅̅̅̅
c) due to Fenton-type reactions (Daumit et al., 2016). Additionally, for both 

AS and FS seeded SOA, OS̅̅̅̅
c followed a decreasing trend with the mass of organic aerosol 

formed (ΔMo), which is consistent with semi-volatile partitioning (Odum et al., 1996; 

Donahue et al., 2006) (Figure D-6). Specifically, more SOA was formed in experiments 

with a higher initial naphthalene concentration. With a higher aerosol mass loading, more 

volatile species (with a lower O:C and OS̅̅̅̅
c) will also partition into the particle phase, thus 

lowering the overall OS̅̅̅̅
c of the aerosol. 
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5.3.2 Effect of iron seed on cellular ROS/RNS production 

To investigate whether the presence of metal-containing seed particles affected 

SOA toxicity, chemical and cellular oxidant production was measured for naphthalene 

SOA formed in the presence of iron-containing seed vs. inorganic seed (denoted OPseed + 

SOA or ROS/RNSseed + SOA, where seed = FS or AS, where applicable). ROS/RNS production, 

expressed as the area under the dose-response curve (AUC) per mass of SOA (µg) in the 

filter extract, is shown in Figure 5-1, colored by seed type. AUC was used as previous drug 

and aerosol studies have shown that it is the most robust dose-response metric, whose 

informativeness does not rely on the presence of a baseline or maximum response (Tuet et 

al., 2016; Huang and Pang, 2012). It should be noted that for all experiments, FS seeded 

SOA exposure resulted in higher ROS/RNS levels compared to AS seeded SOA. This 

observed difference can potentially be attributed to both the seed itself (FS vs. AS) and 

organic aerosol formed in the presence of difference seeds.  
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Figure 5-1. ROS/RNS produced as a result of naphthalene SOA exposure and 

corresponding ROS/RNS response from pure iron sulfate seed. ROS/RNS are expressed as 

the area under the dose-response curve (AUC). SOA were generated from the 

photooxidation of naphthalene in the presence of different seed particles (ammonium 

sulfate or iron sulfate), OH• radical precursor (H2O2), and NO. Data from previous studies, 

where SOA were generated in the presence of ammonium sulfate seed, were included for 

comparison. Initial hydrocarbon concentrations for other experiments are as follows: dry, 

RO2 + HO2 (178 ppb); humid, RO2 + HO2 (431 ppb); and dry, RO2 + NO (146 ppb) (Tuet 

et al., 2017b). 

The seed effect was explored by exposing cells to pure iron sulfate seed. Exposure 

to both aerosolized (injected into the chamber, collected onto a filter, and extracted into 

media; see methods section and SI for details on filter collection and extraction) and 

aqueous (seed solution diluted in media) iron sulfate resulted in ROS/RNS levels that fall 

along the same dose-response curve (Figure D-7). This suggests that the aerosolization, 

collection, and extraction process does not alter the iron sulfate in a way which changes its 

ROS/RNS inducing ability. We then use this dose-response curve to estimate the ROS/RNS 
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response attributable to the presence of iron sulfate alone (ROS/RNSFS) in SOA 

experiments. For each FS seeded SOA experiment, the seed mass collected onto the filter 

was approximated by fitting a double exponential (Nah et al., 2017) to the seed 

concentration time series (in the absence of chemical reactions, prior to aerosol formation) 

and integrating the fitted function over the filter collection period (Figure D-8). The 

corresponding ROS/RNSFS response as a result of exposure to this seed mass was then 

calculated using the iron sulfate dose-response curve (Figure D-7). These calculations were 

only performed for FS seeded SOA as exposure to ammonium sulfate seed has previously 

been shown to induce negligible ROS/RNS response at similar seed mass concentrations 

(Tuet et al., 2017a). The ROS/RNSFS response based on the determined iron sulfate seed 

mass accounted for about 2 – 12 % of the measured ROS/RNSFS + SOA response. It should 

be noted that these estimated contributions are only simple approximations to provide 

perspective as concentration addition may not apply for cellular responses. Nevertheless, 

these results are interesting as pure iron sulfate seed induced relatively low ROS/RNS 

production compared to that induced by the collected samples (i.e., ROS/RNSFS << 

ROS/RNSFS + SOA). This suggests that the measured ROS/RNSFS + SOA response may be 

predominantly attributed to organic components. These results confirm the importance of 

organic species to aerosol health effects, and previous studies on ROS/RNS produced as a 

result of aerosol exposure have also found significant correlations between the 

concentration of water soluble organic carbon (WSOC) and ROS/RNS response (Hamad 

et al., 2015; Saffari et al., 2013; Zhang et al., 2008; Daher et al., 2012). 

The degree of oxidation is a parameter of interest for organic aerosol, as 

atmospheric photochemical aging occurs over an aerosol’s lifetime, yielding more oxidized 
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species and aerosol with a higher OS̅̅̅̅
c (Kroll et al., 2011). The observed difference in 

ROS/RNS levels between AS and FS seeded SOA is likely an effect of the degree of 

oxidation, where the presence of iron serves to increase the oxidation of species via Fenton-

like reactions (Table D-1) (Frei, 1994; Chevion, 1988). In fact, a positive exponentially 

decreasing trend was observed between ROS/RNS levels and OS̅̅̅̅
c of aerosol for all 

experiments (Figure 5-2). These results are consistent with our previous study on the 

ROS/RNS levels of SOA generated from various precursors, where a significant positive 

correlation was observed between ROS/RNS and OS̅̅̅̅
c (Tuet et al., 2017a). Results from 

this study therefore further support the idea that more oxidized products are likely better 

oxidizing agents which can induce higher levels of ROS/RNS. In addition, the observed 

trend suggests that different seed types do not affect the ROS/RNS response as both AS 

and FS seeded SOA fall on the same ROS/RNS vs OS̅̅̅̅
c curve. 
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Figure 5-2. Exponential trend between ROS/RNS levels and average carbon oxidation 

state (OS̅̅̅̅
c) for naphthalene photooxidation SOA generated in the presence of different seed 

particles (ammonium sulfate or iron sulfate), OH• radical precursor (H2O2), and NO. 

ROS/RNS production are expressed as the area under the dose-response curve (AUC). 

Error bars were determined using the methodology outlined in Tuet et al. (2016). Data from 

previous studies were included for comparison (Tuet et al., 2017b). OS̅̅̅̅
c ranges for less 

oxidized oxygenated organic aerosol (LO-OOA) and more oxidized OOA (MO-OOA) are 

shaded for context (Kroll et al., 2011). 

It is also interesting to note that the ROS/RNS levels for filter samples collected 

over the course of a single experiment (Expt. 5) roughly follow the time series for aromatic 

phenyl and benzyl ions measured by the AMS (m/z 77 and 91, respectively, Figure 5-3). 

Previous studies comparing cellular inflammatory responses from naphthalene and m-

xylene SOA have suggested that aromatic-retaining products may have significant health 

implications (Tuet et al., 2017a; Tuet et al., 2017b). While results from this study are not 

sufficient to conclude causation, these observations along with findings from previous 

studies on the importance of humic-like substances (HULIS) (Dou et al., 2015; Lin and 
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Yu, 2011; Verma et al., 2015b) should inspire future studies to focus on assessing the health 

implications of aromatic SOA and determine whether the presence of aromaticity directly 

induces adverse outcomes.   

 

Figure 5-3. Intrinsic OP and ROS/RNS levels for naphthalene photooxidation SOA 

collected over the course of a single experiment (Expt. 5). Time series for AMS m/z 77 and 

91, which are likely phenyl and benzyl ions, are also shown. SOA was generated in a humid 

chamber in the presence of ammonium sulfate, OH• radical precursor (H2O2), and NO. 

Error bars represent a 15% coefficient of variation for OP (Fang et al., 2015c). ROS/RNS 

levels are expressed as the area under the dose-response curve (AUC) with error bars 

calculated following the methodology described in Tuet et al. (2016).   

The ROS/RNS levels induced by naphthalene SOA generated under different 

formation conditions (e.g., RH, peroxyl radical fate, OH• source) have been measured in 

our previous study (Tuet et al., 2017a) and are also shown in Figure 5-1 for comparison. In 

both the previous and this study, the same cellular assay and analysis method was utilized. 

However, comparing ROS/RNS levels directly between these two studies may not be 
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applicable as there are several differences between SOA formation condition (e.g., 

different initial naphthalene concentrations, different relative humidities, and different OH 

radical precursors) (Tuet et al., 2017a). It is interesting to note that the exponential 

relationship between ROS/RNS and OS̅̅̅̅
c holds for all naphthalene SOA generated under 

different formation conditions (Figure 5-2).  

5.3.3 Effect of iron seed on OP 

Intrinsic OP values (per µg) for naphthalene SOA (OPseed + SOA) and pure iron sulfate 

seed (OPFS) are shown in Figure 5-4, colored by seed type. For each FS seeded SOA 

experiment, the contribution of seed alone to the overall OPFS + SOA level is relatively low 

(< 20 %), which parallels that observed for the ROS/RNS response. It should be noted that 

DTT does not respond significantly to iron, and the low OPFS is consistent with previous 

studies, where a low DTT reactivity by iron was observed (Charrier and Anastasio, 2012). 

Previous studies have shown that AS alone is not redox active, that is OPAS is equivalent 

to the response of a blank filter within experimental error (Tuet et al., 2017b). It is therefore 

also interesting to note that OPFS + SOA is not always higher than OPAS + SOA, suggesting that 

the presence of iron seed does not always induce an additive effect. Further studies should 

explore various effect models for OP to investigate additivity.  



 112 

 

Figure 5-4. Intrinsic OP for SOA generated from the photooxidation of naphthalene under 

various conditions and pure iron sulfate seed. SOA from this study was generated in a 

humid chamber in the presence of different seed particles (ammonium sulfate or iron 

sulfate), OH• radical precursor (H2O2), and NO. Data from previous studies, where SOA 

were generated in the presence of ammonium sulfate seed, were included for comparison. 

Initial hydrocarbon concentrations for other experiments are as follows: dry, RO2 + HO2 

(178 ppb); humid, RO2 + HO2 (431 ppb); and dry, RO2 + NO (146 ppb) (Tuet et al., 2017b). 

Overall, there are no apparent trends for the OP values obtained for SOA generated 

using different initial naphthalene concentrations (hence different organic aerosol mass 

loadings and OS̅̅̅̅
c) or in the presence of different seed types. Furthermore, there was no 

observable relationship between OP and OS̅̅̅̅
c (Figure D-9). While these results are in 

contrast to trends observed for ROS/RNS levels, they are consistent with previous studies 

on the DTT activities of different SOA systems and various ambient PM subtypes (Verma 

et al., 2015a; Xu et al., 2015a; Xu et al., 2015b; Tuet et al., 2017b). Tuet et al. (2017b) 

previously measured the intrinsic OP of different SOA systems (including naphthalene 
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SOA) and found that while different SOA precursors and formation conditions produced 

SOA of differing OS̅̅̅̅
c, there was no apparent relation between OP and OS̅̅̅̅

c. The study also 

showed that for both laboratory-generated SOA and different organic aerosol subtypes 

(Verma et al., 2015a; Xu et al., 2015a; Xu et al., 2015b) resolved from ambient data, a 

higher OS̅̅̅̅
c did not correspond to a higher OP. It should be noted that these results may be 

complicated by mixture effects and/or dependent on the PM subtype, as previous studies 

have found that oxidation of quinones, diesel exhaust, or freshly emitted trash-burning 

aerosol enhances their redox activity (Li et al., 2009; Verma et al., 2015b; Vreeland et al., 

2016). Nevertheless, results from this study may further highlight the differences between 

chemical and cellular assays. More specifically, it was suggested in a previous study by 

Tuet et al. that chemical assays, such as DTT, may only be sensitive to larger differences 

(i.e., different SOA precursors rather than different SOA formation conditions), while 

cellular assays are sensitive to differences arising from different SOA formation conditions 

as well as SOA precursor (Tuet et al., 2017a). The lack of correlation between OP and OS̅̅̅̅
c 

in this study may therefore be a result of that all SOA in this study were generated from 

the same precursor (i.e., naphthalene) under the same formation condition (same RH and 

OH source). The specific oxidants (exogenous vs. endogenous) measured by each assay 

may be another potential explanation for the differences observed. DTT is primarily a 

measure of endogenous oxidant production as it is sensitive to redox-active species capable 

of interacting with anti-oxidants and less sensitive to the oxidants themselves (exogenous 

oxidants, e.g., H2O2). The cellular ROS/RNS assay also predominantly measures post-

exposure endogenous oxidant production since extracellular ROS/RNS probe is removed 

after the probe incubation time (Tuet et al., 2016). However, while the cellular assay may 
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not directly measure exogenous oxidants, these species can interact with cells and induce 

pathways that may produce ROS/RNS. Therefore, the cellular assay may contain 

contributions from both endogenous and exogenous oxidants, while the DTT assay is 

largely a measure of only endogenous oxidants. 

5.3.4 Relationship between photochemical aging of aerosol and toxicity 

As the laboratory experiment progressed, OH exposure of aerosol and OS̅̅̅̅
c 

increased as a result of increased photochemial aging. To investigate whether the effects 

of photochemical aging are comparable to those observed for SOA of different OS̅̅̅̅
c (a 

proxy for aging), multiple filter samples were collected over the course of a single 

experiment (Table 5-1, repeat of Expt. 5). It should be noted that this aging experiment is 

an exact repeat of the previous experiment (Expt. 5), with the exception of a longer 

experimental time and multiple filter sample collections to explore changes in OS̅̅̅̅
c 

associated with photochemical aging. The ROS/RNS levels and OP for these samples are 

shown in Figure 5-3. The OP for these three samples are the same within uncertainty, 

consistent with the hypothesis that the DTT assay may only be sensitive to larger 

differences (such as hydrocarbon precursor identity). On the other hand, the ROS/RNS 

response followed the same trend as that of OS̅̅̅̅
c. The ROS/RNS response induced by these 

samples and the OS̅̅̅̅
c calculated for each collection period are also shown in Figure 5-2 

(opened markers) for comparison. These values fall within the exponential trend observed 

between ROS/RNS and OS̅̅̅̅
c for SOA generated from different initial hydrocarbon 

concentrations. This suggests that the proxy for aging (OS̅̅̅̅
c) investigated in this study may 
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be used to understand the potential health implications of aged particles for SOA from a 

single pure compound.  

These observations have significant implications for future health studies as 

atmospheric aging leads to increases in aerosol oxidation (Jimenez et al., 2009; Ng et al., 

2011), which may affect cellular responses. This is important as aerosol have an 

atmospheric lifetime of about a week, over which these aging processes can occur. If the 

observed relationship between cellular ROS/RNS response and OS̅̅̅̅
c holds for other SOA 

systems, as well as ambient mixtures, these results may lead to ROS/RNS predictions based 

on more accessible bulk aerosol properties that are readily measured by the AMS. These 

approximations would not require the additional processing (e.g., filter collection and 

extraction) that actual ROS/RNS measurements entail. As an example, the OS̅̅̅̅
c ranges for 

various organic aerosol subtypes resolved from ambient data world-wide, specifically less-

oxidized oxygenated organic aerosol (LO-OOA) and more-oxidized OOA (MO-OOA), 

have been measured previously and are shaded in Figure 5-2 to provide context (Kroll et 

al., 2011; Xu et al., 2015a; Xu et al., 2015b). ROS/RNS levels measured in this study span 

the shaded regions, and the observed exponential trend suggests that exposure to MO-OOA 

would likely induce more ROS/RNS production compared to LO-OOA. This may have 

important implications as studies have shown that ambient organic aerosol from different 

sources converge towards MO-OOA as they age (Ng et al., 2010; Jimenez et al., 2009), 

and MO-OOA has widespread contributions to organic aerosol in both rural and urban 

locations across different seasons (Xu et al., 2015a; Xu et al., 2015b; Jimenez et al., 2009; 

Ng et al., 2010). Additional studies are required to establish whether the ROS/RNS and 

OS̅̅̅̅
c relationship holds for different aerosol systems as previous studies have shown that 
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SOA generated from different precursors induce different cellular inflammatory responses 

(Tuet et al., 2017a).  

5.4 Implications 

The intracellular ROS/RNS production and water-soluble OP were measured for 

naphthalene photooxidation SOA formed under humid conditions in the presence of metal-

containing and inorganic seed. Experiments were conducted using different initial 

hydrocarbon concentrations to generate aerosol of differing mass loadings and degrees of 

oxidation. Multiple filters were also collected from a single experiment to obtain aerosol 

of different photochemical age. Cellular assay results show that exposure to FS seeded 

aerosol resulted in higher levels of ROS/RNS production compared to AS seeded aerosol. 

Furthermore, the ROS/RNS response may be largely attributed to the organic components 

rather than the metals portion. This has important implications for future studies as organic 

aerosol constitute a large fraction of ambient fine PM (Kanakidou et al., 2005; Jimenez et 

al., 2009). However, it should be noted that possible synergistic and/or antagonistic metal-

organic interactions were not explored and only one metal species and VOC were 

investigated in this study. Further studies are necessary to determine how metals and 

organics interact with each other and in the context of biologically-relevant species (e.g. 

proteins, sugars, and lipids present in the alveolar fluid). These interactions between co-

exposed species may increase or decrease the overall cellular response (Barbosa Jr., 2017; 

Wildemann et al., 2015; Zhou et al., 2016), and a thorough understanding of these 

dynamics are necessary to evaluate the health implications of ambient aerosol. Results from 

this study also highlight the differences between chemical and cellular assays. There were 

no obvious trends between OP values and aerosol bulk composition measured by the AMS, 
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suggesting that the DTT assay may only be sensitive to large differences, such as that 

arising from different SOA precursors. The lack of correlation between OP and OS̅̅̅̅
c is 

consistent with previous DTT studies, where a higher OS̅̅̅̅
c did not correspond to a higher 

OP (Verma et al., 2015a; Xu et al., 2015a; Xu et al., 2015b). 

An exponential trend was also observed between ROS/RNS levels and OS̅̅̅̅
c for all 

naphthalene photooxidation SOA, including those formed in the presence of different seed 

particles (AS and FS), those formed under different formation conditions (dry vs. humid, 

RO2 + HO2 vs. RO2 + NO), and those collected at different times over the course of a single 

experiment (different degrees of photochemical aging). There are several important 

implications arising from this trend. For one, the trend implies that there is negligible seed 

effect with respect to ROS/RNS produced as a result of SOA exposure. The aerosol formed 

in all experiments fall on the same ROS/RNS vs. OS̅̅̅̅
c curve regardless of whether AS or 

FS seed was used. Hence, the observed difference between AS and FS seeded SOA (where 

all FS seeded SOA induced more ROS/RNS production) is likely an effect of differences 

in the degree of aerosol oxidation resulting from increased free radical production via 

Fenton-like reactions. The aerosol collected at multiple time points over the course of a 

single experiment (prolonged aging experiment) yield results that fall along this curve as 

well, which suggests that results obtained using OS̅̅̅̅
c (a proxy for aging) may be generalized 

for photochemical atmospheric aging for this parent VOC and specific metal. Further 

studies are still required to establish whether the observed relationship between ROS/RNS 

and OS̅̅̅̅
c holds for other aerosol systems, as only naphthalene photooxidation SOA was 

investigated in this study. Ambient aerosol are complex mixtures formed from multiple 

precursors and containing a variety of metallic species. These mixtures have not been 
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considered in this study, and results may be different due to synergistic and antagonistic 

mixture effects that have yet to be explored. However, if measures of bulk aerosol 

oxidation state (i.e., OS̅̅̅̅
c) are validated with more aerosol systems to be used as a proxy for 

cellular ROS/RNS produced upon aerosol exposure, then the ability to perform more bulk 

aerosol measurements may lead to ROS/RNS predictions in the absence of cellular 

measurements.  



 119 

CHAPTER 6: SUMMARY AND FUTURE WORK 

6.1 Summary of major findings 

Results from this dissertation addressed several important gaps in aerosol toxicity 

literature. A cell-based ROS/RNS assay was developed to investigate whether results from 

chemical assays commonly used to assess aerosol oxidative potential were representative 

of cellular responses induced by aerosol exposure. Cellular measurements demonstrated 

that ROS/RNS production was highly dose-dependent and non-linear with respect to PM 

dose. While no simple correlation was observed between ROS/RNS levels and chemical 

oxidative potential, chemical assays may serve as useful screening tools to narrow down 

sample sizes for cell-based analyses. Correlations between cellular ROS/RNS levels and 

concentrations of PM constituents were also evaluated to elucidate potential indicators of 

aerosol toxicity. While correlation may not necessarily equate to causation, these 

correlations provide possible directions for further studies. In this case, significant 

correlations were observed between organic species and ROS/RNS production for summer 

samples, highlighting a need to better understand the contribution of organic aerosol, 

particularly photochemically-driven SOA, to aerosol-induced health effects.  

To provide perspective on the relative toxicities of different SOA systems, chemical 

oxidative potentials and cellular inflammatory responses were measured for SOA formed 

from various biogenic and anthropogenic precursors under different formation conditions. 

These results represent the first study to explore the toxicity of a wide variety of SOA 

systems using both cellular and acellular assays. Precursor identity influenced chemical 

oxidative potentials significantly, with isoprene and naphthalene SOA having the lowest 
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and highest oxidative potentials, respectively. Both precursor identity and formation 

condition influenced inflammatory responses induced by SOA exposure, and several 

response patterns were identified for SOA precursors whose photooxidation products share 

similar carbon chain length and functionalities. These results can raise awareness on the 

relative toxicity of aerosol constituents, provide guidance to aid policy making in air 

pollution management, and offer recommendations for emission control strategies (e.g., 

tighter controls for the emission of products of incomplete combustion may be proposed 

due to the toxicity of naphthalene SOA). Finally, the presence of iron sulfate seed was 

found to increase the aerosol average carbon oxidation state and result in higher ROS/RNS 

production. These findings suggest that aerosol may become more toxic over time as a 

result of atmospheric aging. Overall, findings from this dissertation have improved 

understanding on aerosol (particularly SOA) toxicity and the perspectives gained from 

these findings provide a foundation on which future studies can build upon.  

6.2 Suggestions for future work 

While this work addressed some important gaps and significantly improved our 

understanding of aerosol toxicity, there are a number of limitations that warrant further 

studies. For instance, only one cell type was investigated in our exposure experiments, 

whereas an organism consists of multiple tissues and the lungs alone consist of multiple 

cell types. Interactions between tissue systems and different cell types may produce very 

different results and would be important to consider to extrapolate results from this 

dissertation to in vivo exposures. The doses investigated in this dissertation may also not 

entirely represent real-world exposures due to different exposure routes and potential 

recovery effects due to clearance. Additionally, resuspension extracts (used in this study) 
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differ from real-world exposures. A recent study explored the health effects of isoprene 

SOA and found similar cellular responses for both filter resuspension extracts and direct 

air-liquid deposition, which more closely represent real-world aerosol exposures (Arashiro 

et al., 2016). These results may be a positive indication for the extrapolation of in vitro 

results, although further investigations using different aerosol systems and cell types are 

warranted to confirm these conclusions.  

On another point regarding the relevance of exposure doses, all measurements in 

this dissertation were performed using water-soluble extracts (either in water or cell culture 

medium). Inclusion of water-insoluble material may induce different cellular response, as 

previous studies have shown that insoluble particles have substantial oxidative potential 

which may translate into cellular responses (Fang et al., 2017b; McWhinney et al., 2013a; 

Yang et al., 2014; Verma et al., 2012). A comparison study on the cellular effects of 

different fractions (e.g., water-soluble, water-insoluble, total) may provide interesting 

insights on the constituents responsible for adverse health outcomes and guide future 

studies. 

Another important question arising from this dissertation is the use of ROS/RNS 

measurements as a general indicator of oxidative stress. Cellular inflammatory responses 

induced as a result of exposure to laboratory-generated aerosol in our studies demonstrate 

that a low ROS/RNS response may not necessary indicate a lack of cellular response. While 

ROS/RNS levels were generally associated with inflammatory cytokine production, there 

were aerosol systems where a low ROS/RNS response was accompanied by levels of 

cytokine production that were higher than expected given the ROS/RNS level detected. 

These findings suggest that a single cellular measurement may not be adequate in terms of 
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understanding aerosol toxicity and that additional measures, such as inflammatory cytokine 

production, may be required to fully interpret cellular ROS/RNS responses. Furthermore, 

the endpoints measured in this dissertation only represent a small portion of the many 

possible cellular endpoints that may be affected by aerosol exposure. Ultimately, there is a 

need to develop a high-throughput device or method to measure multiple cellular endpoints 

for multiple aerosol samples. With a large enough dataset, subtle connections may become 

apparent and cellular mechanisms may be elucidated.   

Finally, results from this study demonstrate that aerosol species cannot be treated 

as individual components in a mixture. That is, complex interactions may occur between 

aerosol species such that the overall response cannot be approximated by a simple linear 

combination of individual effects. While mixture effects were not explored in this 

dissertation, their importance is apparent given the results obtained from both ambient and 

laboratory-generated aerosol cellular exposures. For instance, while few metal species 

were correlated with ROS/RNS response for ambient samples, exposure to individual 

metals induced measureable ROS/RNS production. Recent studies have also begun to 

explore the different synergistic and antagonistic interactions that occur between aerosol 

components (Xiong et al., 2017; Yu et al., 2018; Wang et al., 2017) and the results support 

the occurrence of these complex interactions.  

Beyond the field of aerosol toxicology, results from this dissertation may inspire 

future directions for epidemiological studies and policy making. The perspective gained on 

the relative toxicity of different aerosol constituents can offer potential directions for air 

pollution control policy, which may involve new model inputs and simulations based on 

findings from this dissertation. Furthermore, the cellular assay developed to measure 
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ROS/RNS as a result of PM exposure can be extended to assess other environmental toxins. 

For instance, it may be possible to apply the cell-based assay to wastewater treatment 

evaluations. The assay may also be effectively adapted to investigate pharmaceuticals, 

especially those related to inflammation. These additional applications of the optimized 

cellular assay are worth further exploration.   
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APPENDIX A: SUPPLEMENT FOR CHAPTER 2 

 

Figure A-1. Ambient sampling sites for the Southeastern Center for Air Pollution and 

Epidemiology (SCAPE) study. Sites include: JST (located on Jefferson Street, 

representative of urban Atlanta), RS (located near Interstate Highways I-75/I-85, 

representative of traffic emissions), GT (located on the roof of the Ford Environmental 

Science and Technology building at Georgia Tech, representative of near-road 

emissions), and YRK (located in Yorkville, representative of rural background). 

GT: Georgia Tech, 

ES&T building roof, 

near-road emissions 

RS: Roadside, 

near I-75/I-85, 

traffic emissions 

YRK: Yorkville, 

70km west of Atlanta, 

rural emissions 

JST: Jefferson St., 

8km from city center, 

urban emissions 
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Figure A-2. ROS/RNS production as a result of treatment with positive controls over 

various sample incubation times. Data shown are means ± SE of experiments performed in 

triplicate. ROS/RNS production is expressed as fold increase over probe-treated cells 

incubated with stimulant-free media (control cells). At 24 hrs, the normalized positive 

response is highest for both cell types.  
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Figure A-3. Dose-response behaviors observed in this study: (1) maximum response not 

attained, (2) decreased response at higher doses, and (3) no response above baseline at all 

doses. Data shown are means ± SE of experiments performed in triplicate. ROS/RNS 

production is expressed as fold increase over probe-treated cells incubated with stimulant-

free media (control cells). 
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Figure A-4. Dose-response parameters for ambient filters spanning a wide range of 

extrinsic DTT activity. Each data point represents a single dose-response obtained from 10 

dilutions (1x to 0.00125x) performed in triplicate. Solid markers represent MH-S data; open 

markers represent NRVM data. Linear regressions and corresponding Pearson’s 

coefficients are given for each parameter. n = 104 ambient filters; * indicates significance, 

p < 0.05. 
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Figure A-5. AUC per mass of PM for ambient samples containing various fractions of (a) 

titanium (Ti) and (b) chromium (Cr). Each data point represents a single ambient filter for 

which a dose-response was obtained (10 dilutions performed in triplicate) and fitted to the 

Hill equation. Data points are colored by season with cut-off dates determined by solstice 

and equinox dates. Linear regressions and Pearson’s correlation coefficients are shown for 

summer and winter filter samples. n = 104 ambient filters (10 spring, 47 summer, 15 

autumn, and 32 winter); * indicates significance, p < 0.05. 
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Figure A-6. AUCs for spring and autumn filter samples spanning a range of (a) extrinsic 

and (b) intrinsic DTT activity. Each data point represents a single ambient filter for which 

a dose-response was obtained (10 dilutions performed in triplicate) and fitted to the Hill 

equation. Linear regressions with corresponding confidence (dashed) and prediction 

(shaded) intervals are shown for summer and winter filter samples. n = 104 ambient filters 

(10 spring, 47 summer, 15 autumn, and 32 winter). 
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Figure A-7. Maximum ROS/RNS production and corresponding EC50 for ambient filters 

investigated. Each data point represents a single dose-response obtained from 10 dilutions 

(1x to 0.00125x) performed in triplicate. Solid markers represent MH-S data; open markers 

represent NRVM data. A simple linear regression and corresponding Pearson’s coefficient 

are given. n = 104 ambient filters; * indicates significance, p < 0.05. 
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Figure A-8. ROS/RNS production as a result of exposure to 6 pure metal salt solutions and 

corresponding dose-response curves. Concentrations span the water soluble metal 

concentrations observed in ambient samples. ROS/RNS production is expressed as fold 

increase over control, probe-treated cells not exposed to stimulant. Data shown are means 

± SE of triplicate experiments. 
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Table A-1. Pearson’s correlation coefficients for overall linear regressions between dose-

response parameters and PM components. Dose-response parameters were obtained from 

Hill Equation fits and include max response, EC50, Hill slope, threshold, and AUC per 

volume of air sampled. PM components include water-soluble metals, water-soluble 

organic carbon (WSOC), and brown carbon (BrC). Metals were also grouped by metal 

sources: Brake/Tire Wear (BTW: Ti, Cu, Zn, Ba), Biomass Burning (BB: K, As, Br, Pb), 

Secondary Formation (SF: S, Fe, Se), and Mineral Dust (MD: Ca, Mn, Sr). n = 104 ambient 

filters; * indicates significance, p < 0.05. 

PM 

component 

Max 

response 
EC50 Hill slope Threshold AUCair 

WSOC 0.18 0.09 -0.11 -0.05 0.39 

BrC 0.09 0.26 -0.05 0.12 -0.03 

Ti -0.02 -0.12 0.05 -0.11 0.38 

Cu -0.04 -0.11 0.19 -0.10 0.21 

Zn 0.05 0.02 0.02 -0.01 0.23 

Ba -0.07 -0.09 0.14 -0.13 0.17 

BTW 0.01 -0.05 0.14 -0.06 0.26 

K 0.13 0.20 -0.05 0.12 0.15 

As 0.02 0.12 0.11 0.12 -0.02 

Br 0.09 0.12 -0.09 0.04 0.25 

Pb 0.09 0.13 -0.08 0.13 0.15 

BB 0.14 0.22 -0.03 0.13 0.13 

S 0.24 0.12 -0.01 -0.01 0.28 

Fe 0.11 -0.02 0.04 -0.13 0.43 

Se 0.20 0.20 0.02 0.14 0.22 

SF 0.23 0.10 -0.03 -0.04 0.35 

Ca 0.20 -0.01 -0.10 -0.15 0.15 

Mn 0.23 0.09 -0.12 -0.16 0.38 

Sr 0.10 -0.03 0.28 -0.11 0.16 

MD 0.20 -0.02 -0.10 -0.13 0.22 

Cr -0.04 -0.05 -0.11 -0.11 -0.09 

V 0.12 0.06 -0.23 -0.09 0.18 

Total metals 0.24 0.09 -0.04 -0.05 0.36 

PM2.5 0.29 0.20 -0.05 0.01 0.30 



 133 

Table A-2. Pearson’s correlation coefficients for overall linear regressions between dose-

response parameters and PM component fractions. Dose-response parameters include max 

response, EC50, Hill slope, threshold, and AUC per mass of PM. PM components include 

water-soluble metals, water-soluble organic carbon (WSOC), and metals grouped by 

source: Brake/Tire Wear (BTW: Ti, Cu, Zn, Ba), Biomass Burning (BB: K, As, Br, Pb), 

Secondary Formation (SF: S, Fe, Se), and Mineral Dust (MD: Ca, Mn, Sr). n = 104 ambient 

filters; * indicates significance, p < 0.05. 

PM 

component 

(fraction) 

Max 

response 
EC50 Hill slope Threshold AUCmass 

WSOC -0.01 -0.05 -0.07 -0.07 0.15 

Ti -0.13 -0.21 0.17 -0.12 0.42 

Cu -0.08 -0.17 0.29 -0.10 0.11 

Zn -0.10 -0.17 0.07 -0.05 0.37 

Ba -0.13 -0.17 0.20 -0.16 0.31 

BTW -0.01 -0.04 0.19 -0.004 -0.0003 

K -0.05 0.04 0.06 0.12 0.21 

As -0.06 0.01 0.19 0.09 0.03 

Br -0.10 -0.07 -0.08 0.02 0.11 

Pb -0.08 -0.03 -0.05 0.15 -0.04 

BB 0.03 0.18 0.11 0.20 -0.19 

S -0.03 -0.12 -0.03 -0.10 0.16 

Fe -0.03 -0.15 0.08 -0.18 0.19 

Se 0.03 0.08 0.08 0.25 -0.32 

SF -0.04 0.04 -0.03 0.03 -0.16 

Ca -0.04 -0.19 -0.08 -0.15 0.45 

Mn -0.02 -0.05 -0.10 -0.20 0.55* 

Sr -0.03 -0.10 0.35 -0.11 0.16 

MD 0.03 -0.14 -0.06 -0.14 0.29 

Cr -0.12 -0.12 -0.14 -0.11 0.10 

V -0.08 -0.07 -0.17 -0.11 0.28 
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Table A-3. Comparison between assays parameters used in previous studies and this study. 

Parameters include: ROS/RNS probe, cell density, ROS/RNS probe concentration, sample 

incubation time, signal normalization scheme, and analysis approach. All parameters were 

optimized for measuring ROS/RNS production as a result of PM exposure in this study.   

Parameter This study Previous studies 

ROS/RNS probe carboxy-H2DCFDA DCFH-DA 

Cell density 2x104 cells well-1 1x105 cells well-1 

Probe concentration 10µM 45µM 

Sample incubation time 24hrs 2.5hrs 

Signal normalization 

Control cells  

(probe-treated cells incubated 

with media) 

Positive control  

(zymosan) 

Analysis 
Dose-response curve and 

associated parameters 

Single measurement or linear 

slope using few dilutions 
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Table A-4. Root-mean-squared error (RMSE) between observed and fitted area under the 

curve (AUC) for summer and winter filter samples. Fits are based on a simple linear 

regression between AUC and the predictor of interest, which include: dithiothreitol (DTT) 

activity, water-soluble organic carbon (WSOC) concentration, brown carbon (BrC) 

concentration, and iron (Fe) concentration. n = 104 ambient filters (10 spring, 47 summer, 

15 autumn, and 32 winter). 

Predictor RMSEsummer RMSEwinter 

DTT 0.4506 0.2517 

WSOC 0.4352 0.2544 

BrC 0.4553 0.2513 

Fe 0.4408 0.2388 
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APPENDIX B: SUPPLEMENT FOR CHAPTER 3 

 

Figure B-1. Aerosol mass spectra of SOA formed from the photooxidation of various 

hydrocarbon precursors (ISO: isoprene, AP: α-pinene, BCAR: β-caryophyllene, PD: 

pentadecane, MX: m-xylene, and NAPH: naphthalene) under various conditions (red bars: 

dry, RO2 + HO2; blue squares: humid, RO2 + HO2; and black triangles: dry, RO2 + NO). 

Characteristic fragments for each system are labeled.  
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Figure B-2. Comparison between mass spectra of SOA formed from the photooxidation 

of various hydrocarbon precursors (ISO: isoprene, AP: α-pinene, BCAR: β-caryophyllene, 

PD: pentadecane, MX: m-xylene, and NAPH: naphthalene) under various conditions (blue: 

humid, RO2 + HO2; and black: dry, RO2 + NO). A 1:1 line is shown in red for reference.   
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Figure B-3. Intrinsic DTT activities (per µg) for various SOA systems spanning a wide 

range of N:C. Data points are colored by SOA system (red: isoprene, yellow: α-pinene, 

green: β-caryophyllene, light blue: pentadecane, blue: m-xylene, and purple: naphthalene). 
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Method for determining intrinsic OPWS-DTT for various OA subtypes: 

Verma et al. (2015a) used multiple regression analysis to estimate the OPWS-DTT of different 

OA subtypes (Verma et al., 2015a; Xu et al., 2015a; Xu et al., 2015b). PMF analysis on 

AMS data collected in the southeastern U.S. resolved multiple OA factors, which represent 

different OA subtypes. The coefficients associated with each OA subtype from the multiple 

linear regression represented an estimation of the intrinsic DTT activity of that type of OA. 

These results are also included in Fig. 4 for comparison and discussed more below. The 

different aerosol subtypes with at least some contributions to DTT activity as determined 

by the multiple regression include isoprene-derived OA (Isoprene-OA), biomass burning 

OA (BBOA), more-oxidized oxygenated OA (MO-OOA), and cooking OA (COA) (Xu et 

al., 2015b; Verma et al., 2015a).  
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Table B-1. Hydrocarbon precursor structure and reaction rate constants.   

Compound Structure kOH+HC (cm3/molec*s) 

Isoprene 

 

1.01 x 10-10
 

α-pinene 

 

5.37 x 10-11 

β-caryophyllene 

 

2.00 x 10-10 

Pentadecane 
 

2.07 x 10-11 

m-xylene 

 

2.31 x 10-11 

Naphthalene 

 

2.44 x 10-11 
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APPENDIX C: SUPPLEMENT FOR CHAPTER 4 

 

Figure C-1. ROS/RNS produced as a result of exposure to background filters (OH 

precursor and seed only). ROS/RNS is expressed as a fold increase over probe-treated 

control cells incubated with stimulant-free media. Data shown are means ± standard error 

of triplicate exposure experiments. 
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Figure C-2. Post filter exposure cellular metabolic activity as measured by the MTT assay 

(filter: naphthalene SOA formed under dry, RO2 + NO dominant conditions). Cellular 

metabolic activity is normalized to cells exposed to stimulant-free media. Data shown are 

means ± standard error of triplicate exposure experiments. All filter exposures produced 

similar results.  
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Figure C-3. van Krevelen plot for various SOA systems. Data points are colored by SOA 

system (red: isoprene, yellow: α-pinene, green: β-caryophyllene, light blue: pentadecane, 

blue: m-xylene, and purple: naphthalene), shaped according to formation conditions (circle: 

dry, RO2 + HO2; square: humid, RO2 + HO2; and triangle: dry, RO2 + NO), and sized by 

TNF-α and IL-6 levels. SOA precursors are shown as stars, colored by SOA system.   



 144 

 

Figure C-4. ROS/RNS, TNF-α, and IL-6 (represented as AUC per µg) for various SOA 

systems spanning a wide range of N:C ratios. Data points are colored by SOA system (red: 

isoprene, yellow: α-pinene, green: β-caryophyllene, light blue: pentadecane, blue: m-

xylene, and purple: naphthalene). 
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Table C-1. SOA precursor structures. 

Compound Structure 

Isoprene 

 

α-pinene 

 

β-caryophyllene 

 

Pentadecane 
 

m-xylene 

 

Naphthalene 
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APPENDIX D: SUPPLEMENT FOR CHAPTER 5 

 

Figure D-1. Representative dose-response curve of ROS/RNS produced as a result of 

filter exposure (Expt. 7). ROS/RNS is expressed as a fold increase over control (probe-

treated cells incubated with stimulant-free media); dose is expressed as mass in the filter 

extract (µg). Data shown are means ± standard error of experiments performed in 

triplicate. The dose-response curve was fitted using the Hill equation and the area under 

the curve (AUC) is shown. 
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Figure D-2. Typical reaction profile for a chamber experiment under humid conditions in 

the presence of NO using A) ammonium sulfate seed particles (Expt. 3) and B) iron sulfate 

seed particles (Expt. 4). Naphthalene and NO concentrations were monitored using a GC-

FID and chemiluminescence NOx monitor, respectively. Aerosol mass concentrations were 

determined using SMPS volume concentration and assuming an aerosol density of 1 g cm-

3. It should be noted that aerosol mass concentrations have not been corrected for particle 

wall loss. 
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Figure D-3. Aerosol mass spectra of SOA formed from the photooxidation of naphthalene 

under humid conditions in the presence of NO using various seed (red bars: ammonium 

sulfate; blue markers: iron sulfate). Each row represents a different initial naphthalene 

concentration (30, 75, 150, and 300 ppb). Characteristics fragments are labeled. Ions 

greater than m/z 120 are shown in the inset of each mass spectrum. 
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Figure D-4. Comparison between mass spectra of SOA formed from the photooxidation 

of naphthalene under humid conditions in the presence of NO using various seeds. A 1:1 

line is shown for reference. 
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Figure D-5. Difference (FS seeded SOA – AS seeded SOA) between normalized mass 

spectra of SOA formed from the photooxidation of naphthalene under humid conditions in 

the presence of NO using various seeds. 
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Figure D-6. Average carbon oxidation state (𝐎𝐒̅̅ ̅̅
𝐜) for naphthalene SOA spanning a range 

of organic mass loading (ΔMo). SOA from this study was generated in a humid chamber in 

the presence of different seed particles (ammonium sulfate or iron sulfate), OH radical 

precursor (H2O2), and NO. 
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Figure D-7. ROS/RNS produced as a result of exposure to FeSO4 (red: aerosolized into the 

chamber at experimental concentration, collected onto a filter, and extracted into media; 

blue: aqueous seed solution diluted in media). ROS/RNS is expressed as a fold increase 

over probe-treated control cells incubated with stimulant-free media. Data shown are 

means ± standard error of triplicate exposure experiments. 
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Figure D-8. Method for estimating the mass of seed collected onto each filter (Expt. 6). A 

double exponential was used to characterize seed particle wall loss (using seed 

concentrations obtained from the SMPS as a function of time). The fitted seed 

concentration as a function of time was then integrated over the filter collection period 

(shown as the shaded region). To obtain the total mass of seed collected, the integral (40.78 

µg m-3) was multiplied by the volumetric flow rate (1.72 m3
 hr-1, for an estimated total seed 

mass of 70.14 µg on the filter for this experiment). 
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Figure D-9. Intrinsic OP for naphthalene SOA spanning a range of average carbon 

oxidation states (𝐎𝐒̅̅ ̅̅
𝐜). SOA from this study was generated in a humid chamber in the 

presence of different seed particles (ammonium sulfate or iron sulfate), OH radical 

precursor (H2O2), and NO. Error bars represent a 15% coefficient of variation (Fang et al., 

2015c). Data from previous studies were included for comparison (Tuet et al., 2017b). 
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Table D-1. Elemental ratios (O:C, H:C, N:C) as determined by AMS. 

Experiment Hydrocarbon Seed 
[HC]0 

O:C H:C N:C 𝐎𝐒̅̅ ̅̅
𝐜 

(ppb) 

1 naphthalene ASa
 32 0.78 0.99 0.015 0.58 

2 naphthalene FSb 32 1.59 0.77 0.012 2.4 

3 naphthalene ASa 92 0.56 0.98 0.012 0.13 

4 naphthalene FSb 84 0.78 0.98 0.014 0.58 

5 naphthalene ASa 186 0.48 0.98 0.010 -0.015 

6 naphthalene FSb 182 0.70 0.94 0.014 0.46 

7 naphthalene ASa 342 0.40 0.98 0.0091 -0.18 

8 naphthalene FSb 331 0.47 0.97 0.0093 -0.020 
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