
Backstroke Project Report 2010/2011
George Vulov and Richard Fujimoto

School of Computational Science & Engineering
Georgia Institute of Technology

BIBTEX:

© copyright by the author(s)

document created on: September 14, 2011
created from file: "Backstroke Report".tex
cover page automatically created with CoverPage.sty
(available at your favourite CTAN mirror)

Backstroke Project Report 2010/2011
George Vulov∗ Richard Fujimoto∗

∗ School of Computational Science & Engineering, Georgia Institute of Technology

I. OVERVIEW OF BACKSTROKE WORK FOR THE 2010/2011
CONTRACT YEAR

During the 2010/2011 school year, we explored a number of
directions for the Backstroke project, including both improving
the power of its inversion methods and experimenting with
applying Backstroke to real simulation systems. The different
areas of work a briefly tabulated below, with more detail in
subsequent sections.

1) Implementation of regenerative inversion (section III):
Regenerative inversion algorithms (described in section
II-B7) are powerful methods for reducing state saving
requirements by dynamically recomputing lost values
rather than saving them. We implemented the state-of-the-
art inversion algorithm described by Akgul & Mooney
[1], [2], [3] as part of the Backstroke framework.

2) Extending the ROSE compiler framework with new
analysis (section IV): During Backstroke development,
it became apparent that the analysis tools present in
the ROSE compiler framework were not sufficient for
Backstroke’s needs. For this reason, we implemented a
novel static single assignment analysis within the ROSE
compiler framework; this analysis has since been adopted
for use by other ROSE-based projects.

3) Implementation of automatic checkpointing (section V):
Checkpointing is an important tool for reverse computa-
tion. When the state of a function is small but its com-
putation time is long, checkpointing is always the most
efficient inversion method. Furthermore, checkpointing
can be used as a comparison baseline for comparing with
other inversion methods and can serve as a debugging
tool that checks the accuracy of other inversion methods.
We implemented automatic checkpointing for functions
based on interprocedural analysis.

4) Experimental study in automatic parallelization of self-
federated simulations (section VI): One approach to
building parallel models involves instantiating multiple
instances of a sequential model and integrating (fed-
erating) them together. For example, a large computer
network can be simulated by partitioning the network
into subnetworks, instantiating a sequential simulator for
each subnetwork, and federating the resulting sequential
simulation models. This parallelization methodology that
involves self-federating an existing sequential simulation
code has been successfully applied to create large-scale
telecommunication network simulators [4], among other
applications. We proposed and tested a methodology for
making existing sequential models suitable for optimistic

execution by employing a reverse compiler (namely
Backstroke).

5) Experimental study in applying Backstroke to the
GTNetS (section VII): The Georgia Tech Network Sim-
ulator (GTNetS) [5] is a large full-featured discrete
event simulator of computer networks. The simulator
consists of over 200,000 lines of real-world C++ code
and simulates all layers of the network stack. We chose
to apply Backstroke to GTNetS as a real-world stress test
that would reveal shortcomings in the inversion methods
currently implemented and motivate further Backstroke
development.

The work areas outlined above are discussed in more detail in
the following sections; first we begin with an overview of the
literature related to reverse computation.

II. LITERATURE ABOUT REVERSIBLE COMPUTING

A. Applications of reverse execution and program inversion

1) Optimistic Discrete Event Simulation: Distributed dis-
crete event simulations consist of individual discrete event
simulators sending timestamped messages to each other over
a network interface. Optimistic distributed simulation algo-
rithms, such as Time Warp [6] allow nodes (logical processes)
to simulate forward without guarantees that they will not
receive any events in their past. If a logical process receives
a message timestamped prior to its current simulation time, it
must restore its state to the previous time (roll back), before
processing the message in question. Traditionally, rollbacks
have been implemented using variations of state saving; how-
ever, reverse execution techniques have been shown to offer
significant speed and memory advantages for large distributed
simulations [7], [8], [9]. One approach is generating rollback
code automatically from the simulation model source code
[7]. It is also possible to use domain knowledge about the
simulated model to construct reverse event codes [8], [9].
Furthermore, if the underlying model is perfectly reversible,
Time Warp’s storage requirements for rollback can be relaxed
[10], [11]; Baker was the first to note the connection between
Time Warp and reversible processes [12].

2) Debugging: Debuggers are very good at pausing a
program, examining its state, and stepping forward; however,
a flaw is always executed before it is manifested. Developers
have to resort to the time-consuming and potentially difficult
process restarting the program to reproduce a flaw. If debug-
gers offered the ability to easily run programs backwards,
the debugging process would be greatly enhanced. Work on
reversible debuggers started in the late 1960s with [13], [14],

and new methods to reverse programs efficiently have been
developed continuously since then [15], [16], [17], [18], [19],
[20], [3], [21], [22]. The popular open source debugger GDB
has also has some support for reverse debugging.

Debugging applications have different granularity require-
ments for reverse execution than optimistic discrete event
simulation. In optimistic discrete event simulation, the unit
of inversion is the execution of a single event (which may
involve a lot of computation). On the other hand, debuggers
generally must be able to step backwards in small steps, often
a single instruction.

3) Undo in applications: Undo functionality in interactive
applications [23] is an indispensable tool for usability and
is now present in almost all interactive environments. Undo
functionality is naturally related to reverse computation and
can be implemented with state saving or using more advanced
reverse execution techniques [23]. Briggs [24] implemented
the undo functionality of a commercial cricket scoring system
by automated inversion of each event.

4) Fault Tolerance: The detection of data corruption is
an important problem in the study of fault-tolerant systems.
Bishop [25] proposes using reverse execution to check for
corruption errors — executing a function in reverse must
produce the original inputs of the function and match the
intermediate values of the forward execution.

5) Automatic parallelization of list operations: List homo-
morphisms [26] are a generalization of the list functions that
can be efficiently implemented with the functional operators
map and reduce. List homomorphisms are naturally paralleliz-
able and can implement many common list operations, such
as finding the sum, length, or maximum of a list. Morita et
al. [27] describe a method for deriving a list homomorphism
given two sequential codes implementing the operation: by
accumulating left-to-right and by accumulating right-to-left.
It is a theoretical result that a list homomorphism exists if
it can be implemented by accumulating left-to-right and vice-
versa; however, for many problems, writing the sequential code
is much easier than deriving the list homomorphism. Morita
et al. reduce the problem of finding the list homomorphism
to that of finding a type of inverse to the input sequential
programs; if the inversion succeeds, their approach offers
automatic parallelization.

6) Education and Visualization: When visualizing the ex-
ecution of a computer program, the ability to run it in either
the forward or reverse directions is highly desirable. In student
testing of the DYNAMOD program animator [28], the ability
to animate the program in reverse was a highly requested
feature. Subsequently, reverse program execution was included
in the DYNALAB program visualization environment [29].
Another software visualization project to take advantage of
reverse execution is the LEONARDO software visualization
environment [30]. Whereas DYNALAB was focused on help-
ing computer science students, LEONARDO allowed visual-
izing arbitrarily complex C programs. When visualizing larger
programs, the efficiency of the reverse execution becomes very
important.

7) Synchronizing structured data: An interesting applica-
tion of program inversion is in the synchronization between
two different representations of the same information [31],
[32], [33]. A common example is a document-view imple-
mentation in a text editor — changes to the document should
be reflected in the view and vice-versa. The approach taken
by Mu, Hu, and Takechi [31] is to define the transform from
the document to the view in a special language that can
only express injective functions. Any program written in such
language is invertible, and the inverse can be used to transfer
changes from the view back to the original document.

8) Backtracking: Backtracking [34] is an approach for
finding solutions to combinatorial problems. The solution
to the problem is built incrementally by finding ways to
extend a partial candidate solution. If it is discovered that the
candidate solution cannot lead to a lead to a correct solution,
the algorithm “backtracks”, and continues the search from a
previous partial candidate. Floyd [35] demonstrated how a
backtracking algorithm can be written without any reference
to the search strategy, only specifying the choice points. The
actual search is performed by generating dual forward and
reverse codes from the generic source. The forward code
performs search and stores necessary information, while the
reverse code implements backtracking by reversing the effects
of the forward code. Floyd recognized that certain operations,
such as incrementing an integer, are reversible and hence do
not require state saving.

9) Automatic Differentiation: Reverse computation has ap-
plications to the reverse accumulation algorithm for automatic
differentiation. Automatic differentiation is an approach of
computing derivatives of a function directly from the source
code that implements that function [36]. The building blocks
of any function implemented in code are arithmetic operations
and common math functions such as sine and cosine; these
primitives have well-known derivatives. The derivative for the
overall function can be calculated by tracing the calculation
of the function from these known primitives and applying
the chain rule at each step. Reverse accumulation starts with
the final function value and applies the chain rule backwards
through the code; it requires accessing all intermediate values
of the computation in reverse order. The simplest implemen-
tation of reverse accumulations is recording a full execution
trace of the function evaluation [37]. A strategy for reducing
the memory requirements of this approach is checkpointing
and processing a single section of the computation at a time
[38], [39], [40].

B. Program inversion

A program P can be viewed as a function P (x) = y where
x is the input to the program and y is its output. If P is
injective, there is exactly one input value for every output of
P . For injective programs, program inversion is the problem
of finding a program P−1 that computes P ’s input given P ’s
output; namely P−1(P (x)) = x for all x. If P is not injective,
there are two flavors of program inversion: one approach is
to find all inputs to P that produce a given output value y;

another approach is to augment P ’s output so as to make it
injective. Note that for any program P , the program P ′(x) =
(P (x), x) is injective and has a trivial inverse; storing the input
to the program is always enough to guarantee invertibility.

McCarthy showed that the inverse of a Turing machine is
computable when it exists, but noted that the existence of
an inverse itself is undecidable [41]. Consequently inversion
algorithms that do not augment the output of the original
program either only work for a subset of all possible programs
or do not always terminate.

1) Manual Inversion: Dijkstra was the first to demonstrate
a program inversion of injective programs by hand, using post-
conditions to guide the program transformation [42]. Gries de-
scribed rules for inverting a imperative programs that included
branching and looping [43]. Gries supplied a postcondition
for each branching statement, which could be used as the
branching condition in the reverse direction. The “do” loop is
inverted by deriving two conditions — a precondition which
is false in the first iteration of the loop, and an exit condition
which is false only for the last iteration of the loop. These
constructs are identical to the ones later implemented in the
reversible programming language Janus [44], [45], although
Gries’s work is not mentioned by the Janus authors. Chen and
Udding formalized Gries’s inversion rules with the intent of
formally proving the correctness of inverse programs [46].

2) Korf-Eppstein Program Inverter: The Korf-Eppstein
method for inverting functional programs uses a state-space
search approach to program inversion. It starts with the for-
ward program and transforms it until the inverse is reached.
The working algorithm was first presented by Eppstein [47]
and Korf [48]; it was later revisited (an named) by Glück
and Kawabe [49]. The approach only works for programs that
are injective. The inverter always terminates, hence it is not
guaranteed to find a program inverse even if one exists. The
actual class of invertible programs depends on the state space
search strategy implemented and on heuristic portions of the
algorithm.

The inversion process proceeds by operating on a set of
facts. Each fact contains preconditions and an equation that
is true whenever the preconditions are true. The initial state
asserts that the function to be inverted is equal to its body, with
no precondition. A terminal state also has no preconditions
has all the input variables equal to functions of the output
variables. Figure 1 demonstrates the inversion process for a
function f, which adds 1 to its input if its input is odd, and
subtracts 1 from its input if its input is even.

There are four operators that modify the set of facts:
conditional expansion, precondition replacement, expression
inversion, and conditional contraction. The example in Fig-
ure 1 demonstrates each one, albeit in a very simple case.
Conditional expansion takes a fact containing a conditional
statement, such as if, and breaks it into multiple facts, one
for each branch that could be taken. Each of the new facts
has an extra precondition that is taken from the conditional
statement. The next operator, precondition replacement, re-
places the preconditions of a fact with equivalent ones that

Initial fact:
{} =⇒ f = (if (= 0 (mod n 2)) (- n 1) (+
n 1))

Conditional expansion:
{(= 0 (mod n 2))} =⇒ f = (- n 1)
{not (= 0 (mod n 2))} =⇒ f = (+ n 1)

Precondition replacement:
{not (= 0 (mod f 2))} =⇒ f = (- n 1)
{(= 0 (mod f 2))} =⇒ f = (+ n 1)

Expression inversion:
{not (= 0 (mod f 2))} =⇒ (+ f 1) = n
{(= 0 (mod f 2))} =⇒ (- f 1) = n

Conditional Contraction:
{} =⇒ (if (= 0 (mod f 2)) (+ f 1) (- f
1)) = n

Fig. 1: Example of Korf-Eppstein Program inversion. The
initial state is an expression for the function f while the final
state is an expression for the input value n given the output
of f.

are functions of only the output variables. In effect, the
precondition replacement operator finds postconditions of an
if statement that can distinguish which branch was taken
based on the output of the statement. The dual operator of
conditional expansion is conditional contraction, which takes
two facts with opposite preconditions and combines them
into an if statement. Conditional contraction only accepts
preconditions that involve only the output variables. The com-
bination of conditional expansion, precondition replacement,
and conditional contraction converts an if statement in the
forward direction to one that executes in reverse. Finally, the
expression inversion operator is the one that inverts individual
statements; it has rules for handling each language construct.

The most challenging aspect of program inversion is invert-
ing the conditional statements. For each branch of a condi-
tional statement, a postcondition must be found that uniquely
determines wether that branch was taken or not. The Korf-
Eppstein method derives these postconditions by organizing
all values in a class hierarchy and then deducing the class type
of each branch of a conditional statement. If the two branches
of a conditional statements produce values in different classes,
then testing the output value’s class membership is the desired
postcondition. The system functions much like a normal data
typing system, but with much more specific data types. For
example, the inversion in Figure 1 would not succeed unless
odd integers and even integers were in different classes. The
postcondition inference is a heuristic and is not guaranteed to
find a suitable postcondition even if one exists. The power of
the postcondition inference, along with the state-space search

strategy, define the class of programs invertible by a particular
implementation of Korf-Eppstein.

3) LRinv: program inversion based on parsing theory:
LRinv is another program inverter for injective functional
programs [50], [51]. LRinv converts the original input program
to an intermediate language that has a grammar-like structure.
The corresponding grammar is easily inverted to produce a
grammar that matches the output of the program given its
input; unfortunately this grammar is usually nondeterministic.
Eliminating nondeterminism from the inverse program is anal-
ogous to finding suitable disjoint postconditions for branch-
ing statements, so that during reverse execution the correct
reverse branch can be taken. Kawabe and Glück eliminate
nondeterminism from the inverse grammar by generating a
deterministic LR parser for the grammar; if a deterministic
version of the inverse grammar is found, the deterministic
grammar can be translated back to functional form to produce
the inverse of the original program.

4) The Universal Resolving Algorithm: The Universal Re-
solving Algorithm (URA) performs inverse computation on
arbitrary (non-injective) programs written a the first-order
functional language [52], [53]. Given a program P and its
output y, URA returns all values x such that P (x) = y. Tech-
nically, URA is an inverse interpreter, rather than a program
inverter, since no program P−1 is generated. Nevertheless,
given an inverse interpreter and a forward program, partial
evaluation of the interpreter with respect to the program source
yields the desired inverse program; this is an application of the
first Futamura projection [54]. Since URA works for arbitrary
programs and inversion in general is undecidable, URA is not
guaranteed to terminate - even when the set P−1(y) is finite
and all its entries have been calculated by URA.

The applicability of the Universal Resolving Algorithm is
not limited to functional languages. Let Int be an interpreter
for an arbitrary programming languages, written in a first-
order functional language. Then, URA can be applied to Int
to perform inverse computation in the new language. Partial
evaluation of URA with respect to Int yields an inverse
interpreter in the language. approach was explored in [55]
to create and test inverse interpreters for several languages,
including a subset of the Java bytecode.

The inversion process for a specific TSG program P begins
with the specification of the output of the program, YP , and
the search space of possible input values, XP . All values
in TSG are S-expressions and atoms (akin to Lisp). Hence,
URA represents a general set of values as an S-expression
with variables coupled with inequalities on the variables. For
example, 〈[a1, a2], {a1 6= a2, a2 6= ‘A}〉 represents all pairs
of atoms in which the first atom is not equal to the second
and the second atom is not equal to A. The input to URA is
the program code P , its output class YP , and the input class
XP . Classic function inversion can be achieved by making the
output class YP a single concrete value, while letting the input
class consist of general variables with no restrictions.

Inversion proceeds in three stages: generation of a process
tree for the input program, tabulation of input classes and

the corresponding output classes, and traversal of the table
to extract valid input classes for the given output class. The
process tree is generated by executing the program with its
partially specified input. When a conditional statement is
encountered, two branches are added to the process tree,
signifying the two possible paths of the computation. The input
class is also partitioned into two disjoint sets based on the
conditional test, and each input class is associated with the
appropriate branch of the conditional. Continuing this process
until a terminal branch yields an output expression yi along
with a corresponding input class xi that would produce the
output. Tabulation is the process of traversing the process tree
and producing a table of the (xi, yi) input-output pairs. Since
the the process tree can be infinite, tabulation must traverse
the tree in breath-first order. Finally, each input-output pair
(xi, yi) is unified with the (XP , YP), the input search space
and the output class; if the unification succeeds the result is
printed. Unless the inverse is a single value, the results of
the inversion will generally contain free variables restricted
by inequalities.

5) Inverting Imperative Programs Through Logic Program-
ming: Inversion can be naturally formulated in a logic pro-
gramming language, such as Prolog, since the semantics of
a program are declarative. Ross demonstrates a method of
converting an imperative program into a logic program from
which the inverse of the original can be inferred [56]. The abil-
ity of logic programming languages to return multiple results
from a single query allows this approach to invert non-injective
programs. The power of the approach depends on the inference
strategy used by the underlying logic programming language.
Since complete inference is undecidable, logic programming
languages implement limited inference strategies.

A logic program consists of a set of a set of implications
(Horn clauses) of the form H ⇐ B1 ∧ · · · ∧Bn. The head H
can be empty, in which case the clause is known as a fact.
A query has the form B1 ∧ · · · ∧ Bn; the inference engine
searches for values of the variables that make the query true
and returns them. An imperative program P can be converted
into a predicate P (X,Y) that specifies the relation between
the input and output values of the program. Figure 2 has an
example of an imperative while loop and its equivalent logic
representation. A query that gives the initial state and asks for
the final state results in an execution very similar to that of
the imperative program, with iteration being replaced by tail
recursion.

Unfortunately, the straightforward conversion from an im-
perative program to a logic program illustrated in figure 2
cannot be used for inverse queries. Common inference strate-
gies, such as Prolog’s left-to-right goal selection, are tuned
for inference in one direction. Ross’s contribution in [56] is
introducing inverted logic semantics for imperative programs.
Once an imperative program is transformed into a logic
program according to these inverted semantics, commonly
used inference strategies can be used for inverse computation.

6) Restorative incremental inversion of imperative pro-
grams: This class of approaches apply to inversion of im-

Imperative while loop:

while (n > 0)
{

n = n - 1;
y = y + m;

}

Logic Program (forward semantics):

while([Y, M, N], [Y, M, N]) :-
not N > 0.

while([Y, M, N], Result) :-
N > 0,
N2 = N - 1,
Y2 = Y + M,
while([Y2, M, N2], Result).

Fig. 2: An imperative while loop and the equivalent Prolog
code that executes it in the forward direction. Querying
while([0, 2, 2], Result). yields Result = [4, 2,
0].

perative programs that are not necessarily injective. The im-
perative program is essentially executed in reverse, with each
modifying operation in the original execution being undone
individually; the overall side-effects of the program are thus
reversed incrementally. If an operation is not locally reversible,
the modified state is explicitly saved during the forward
execution and restored during reverse execution; hence the
name restorative inversion. Floyd [35] describes taking a
forward program and creating a pair of programs from it -
an instrumented forward program that saves lost state and
the corresponding reverse program to undo the actions of the
forward program. Floyd recognized that some statements, such
as variable incrementation, do not require additional storage
to be reversed. Briggs [24] applied a similar technique to
implement undo functionality in a commercial cricket scor-
ing system. While Floyd performed the program conversions
manually, Briggs used a generator to create the forward and
reverse programs from the same uninstrumented forward code.
Biswas and Mall [19] applied the same approach to C to
create a debugger that could step in both the forward and
reverse directions. Carothers, Perumalla, and Fujimoto [7] also
generated inverses for C programs, but their approach, unlike
that of Biswas and Mall, used compilation of the reverse code
to achieve better performance.

The basic approach to incremental inversion is to invert
each statement or machine instruction individually, and then
put the inverted statements together with inverted code flow.
A lossless (logically reversible) assignment statement, such as
incrementing a variable, can be reversed simply by performing
the opposite operation, decrementing the variable. In the C
programming language, lossless assignment statements include

+=, -=, and ^= (exclusive-or), given that the left-hand variable
does not appear on the right-hand side. Figure 3 lists the rules
for inverting a sequence of statements that do not include
control flow statements.

Inverting control flow requires finding inversions for con-
ditional statements, such as if and switch, and loop state-
ments, such as for and while. If the value of the predicate of
an if statement is unaffected by the code inside the statement,
the same predicate can be used during the reversal to test
which branch should be reversed. On the other hand, if an
if statement potentially modifies the value of its predicate or
the predicate has side effects, the branch taken must be stored
explicitly. Storing the branch taken by an n-way if/else
statement requires dlog ne bits. Similarly, loops can be inverted
by storing the number of times the loop body was executed.
To undo a loop computation, the reverse loop body is executed
as many times as the forward loop. If the number of iterations
of the loop can be statically determined, no extra storage is
needed to achieve the reverse control flow.

7) Regenerative incremental inversion of imperative pro-
grams: Regenerative incremental inversion is similar to
restorative incremental inversion; it also applies to non-
injective imperative programs and proceeds by reversing one
operation at a time. However, reversing the side effects of a
lossy operation does not necessarily require saving state dur-
ing the forward execution; regenerative inversion algorithms
attempt to recompute the missing values from other program
values that are available. Such a method was first described
by Akgul and Mooney [1], [2], [3]. Their work is specifically
tailored towards assembly-level reverse code generation, but it
extends naturally to imperative programs.

The heart of the Akgul and Mooney algorithm are the
techniques used to reverse a single instruction within a basic
block. A variable v is said to be defined by an instruction
if that instruction overwrites v. If variable v is defined by
the current instruction, the reverse code for the instruction
should restore the previous value of v. The algorithm begins
by finding all previous definitions of v within the program
partition and enumerating all possible control flow paths from
a previous definition of v to the current instruction. Reverse
code is generated for each control path individually, and the
reversals for the different paths are combined together with
branching instructions that invoke the correct reversal for the
actual path taken at runtime. There are two techniques for
generating reverse code to recover v given its control path to
a previous definition — the redefine technique and the extract-
from-use technique. If the two techniques fail, the algorithm
falls back to state saving.

a) The redefine technique: The idea behind the redefine
technique is to execute the previous definition of v, thus
restoring the value v had before it was overwritten. For
example, if the previous modification of v was the statement
{v = a mod 15}, and a has not been modified since then,
executing that statement again restores the value of v. On the
other hand, if a has been modified, the algorithm can first
generate reverse code that restores the value of a, and then

Statement type Original code Instrumented code Reverse code
Constructive assignment x = x op a x = x op a x = x op_inv
Destructive assignment x = a t = a; x = a x = t
Function call foo(x,y) foo(x,y) foo_inv(x,y)
Statement sequence s1; s2; s1; s2; inv(s2); inv(s1)

Fig. 3: Inversion rules of imperative program statements that do not include control flow constructs (from [7]).

apply the redefine technique. This process can be repeated
recursively, restoring multiple variables in order to apply the
redefine technique.

b) The extract-from-use technique: The extract-from-use
technique takes advantage of the fact that the value of v is
guaranteed to be unchanged for all instructions on the path
between the current instruction and the previous definition of
v. If some of those instructions have performed calculations
using the value of v, the v might be recoverable from the val-
ues of other variables around it. For example if the statement
{a = b - v} was executed before the previous definition of
v, executing {v = b - a} would recover the value of v. If a
or b have been modified, the algorithm could be recursively
applied to recover their values before recovering the value of
v.

The Akgul & Mooney inversion algorithm fails when
multiple threads are present due to the statically unknown
thread inter leavings. Lee proposes a regenerative incremental
algorithm that works even in the presence of threading [57],
[58]. Lee’s algorithm records the thread interleaving points
during the forward execution, and applies the extract-from-
use and redefine techniques based on the actual interleaving
taken during the execution. Because the reverse code depends
on thread interleavings that cannot be determined statically,
Lee’s approach generates the reverse code dynamically during
program execution.

8) Path-based inductive synthesis: Srivistava, Gulwani,
Chaundhuri, and Foster have recently proposed a semi-
automated approach for inverting injective imperative pro-
grams, named path-based inductive synthesis (PINS) [59].
PINS is considered a semi-automated approach for two rea-
sons: first, it must be primed with a template for the reverse
code; second, the inverse programs generated by PINS are not
guaranteed to be correct — their correctness must manually
be verified.

A PINS template consists of a program in which some of
the expressions and predicates are unknown. The template also
contains sets of concrete expressions and concrete predicates
from which the values of the unknown ones may be filled.
Inversion begins by appending the template inverse program
to the original program; the combined program should produce
the identity if the correct values for the missing template
elements have been chosen. PINS maintains a constraint pred-
icate that valid templates must satisfy; this constraint initially
only restricts choices to programs that terminate. PINS applies
an SMT solver to obtain template instantiations that satisfy
the constraint; these template instantiations are symbolically

executed. If the chosen template is correct, the output of the
symbolic execution should equal the symbolic inputs; this
assertion is added to the overall constraint and the refined con-
straint is used in the next iteration. Full algorithm details are
presented in [59]. When PINS terminates, it produces a (small)
number of template instantions that satisfy the constraint and
thus are consistent as inverses with all the symbolic execution
paths taken. The user of PINS must further verify that the
template instantiations presented are indeed correct inverse
programs. PINS fails to generate an inverse program if the
template provided to it is not sufficiently general to describe
the inverse program; in such cases the developer must refine
the template and run PINS again.

9) Reverse execution with constraint solving: Recently
Sauciuc and Necula have proposed a reverse execution ap-
proach for imperative languages based on constraint solving
[22]. Sauciuc and Necula make the observation that assign-
ment statements such as x = x % 2 or x = a + b can
be viewed as constraints on the variables in question. The
dynamic execution path through the program induces a set
of constraints relating initial values, intermediate values, and
final values. Sauciuc and Necula then apply a constraint solver
(also known as an SMT solver) to solve for the initial inputs
of a program given its outputs.

The constraint solving approach does not guarantee that the
computed intermediate and input values will be the same as
the original input values; however the values computed are
guaranteed to produce exactly the same output and follow the
same execution path through the program. The intermediate
values computed by the constraint solver can be brought closer
to the actual values observed during the forward execution by
recording extra intermediate values during the forward execu-
tion. Any value that is logged during the forward execution
induces a new constraint that must be satisfied. Sauciuc and
Necula propose using the constraint solver’s internal logic to
decide which bits to choose for state saving. If the constraint
solver internally backtracks based on a bit of input, then saving
that bit may reduce the search space of the constraint solver
and produce a solution closer to the original input.

C. Reversible programming panguages
1) Janus: The programming language Janus was the first

documented reversible programming language, created for a
class project in Caltech [44], [45]. Janus is an imperative
programming language that supports only integer arithmetic
and allows no irreversible operations. The only assignment
operators in the language are +=, -=, and ^= (xor assign), none
of which discard any information. The Janus if statement

requires the programmer to supply an exiting condition whose
truth value is equal to the branching condition of the if
statement; in the reverse direction, the exit condition is used as
the branching condition. The loop structure in Janus similarly
requires two conditions: an entry condition that must be true
only on the first iteration of the loop, and an exit condition that
is true only for the last iteration of the loop. Janus has been
formalized and proven reversible by Yokoyama and Glük ; they
also developed a self-interpreter for Janus and made some ob-
servations about the practice of reversible programming [45].
Yokohama, Axelsen, and Glük also extended Janus with local
variables, dynamic data structures, and parametrized procedure
calls [60]. Mogensen has developed a partial evaluator for
Janus that preserves Janus’s reversibility properties [61].

2) The R language: R is another imperative reversible
programming language, designed for use with the Pendulum
reversible architecture [62]. It is very similar to Janus, although
it is more restrictive in its controls flow primitives. All the
updates are reversible, such as +=, -=, and ^=. Branching
statements only have only one conditional expression, whose
value must be the same before and after the branch is executed;
in the reverse direction the same conditional expression is used
for the branch. The only loop construct in the language is a
for-loop; the expressions determining the bounds of the for-
loop much evaluate to the same values before and after the
loop.

3) Inv: Inv is a functional programming language that can
only be used to define injective functions, i.e. functions that
map distinct inputs onto distinct outputs [63]. Inv is a point-
free language (arguments to functions do not appear explicitly)
with relational semantics. Each Inv construct is invertible;
notably the inverse of duplicating a value is an equality check.
While only injective functions may be defined in Inv, it is
not always clear how to derive an inverse given the forward
function. In fact, the authors of Inv rely on backtracking in
their implementation of the Inv interpreter, even though in
theory the language is deterministic in both directions.

D. Theoretical results about reversible computing

1) Thermodynamic properties of reversible computation:
Computation is ultimately performed on physical systems,
which consume energy and dissipate heat during the compu-
tation. A computation can be viewed as a series of discrete
steps, each of which modifies the existing state. Whenever
the previous state of cannot be reconstructed from the current
state, some information is lost (usually it is intentionally
discarded). Landauer discovered that irreversible computation
has to dissipate some heat — at least kT ln 2 for each bit
of information lost, where T is the ambient temperature and
k is the Botlzmann constant [64]. Heat dissipation is often
the limiting factor in processor clock speeds, so reversible
computing holds the promise of creating hardware faster than
currently possible [65]. Furthermore, due to conservation of
energy, the heat dissipated by a computing apparatus is equal
to the energy consumed by it; hence reversible hardware

could potentially reduce power requirements for many battery-
operated devices.

2) Reversible Turing machines: When Landauer discovered
that irreversible computation causes heat dissipation, he postu-
lated that irreversibility is fundamental to useful computation
[64]. Later, Bennett showed this conjecture to be false by
proposing a reversible Turing machines, a model for reverse
computation that could reversibly simulate the computation
of any standard Turing machine without producing waste
output [66], [67]. A Turing machine performs computation
by reading a tape symbol, writing a new value to the tape,
and shifting the tape. The Turing machine is reversible if
each read-write-shift tape operation has a shift-read-write
which restores the previous state of the machine. A simple
example of a non-reversible Turing machine is one that goes
through and erases its input. On the other hand, a two-tape
Turing machine that erases the input from its first tape while
copying it to the second tape is reversible since every transition
has an inverse. Any Turing machine can trivially be made
reversible by adding a second tape that records a history of
its computation. If were are only interested in the final result
of the computation, however, such a machine would produce
a tape full of unwanted (garbage) data and erasing a tape is a
non-reversible operation.

Bennett showed that a reversible Turing machine can per-
form the computation of an arbitrary Turing machine while
producing no garbage. First, an arbitrary Turing machine T can
be made reversible by adding a second tape that records the
history of the computation, as discussed previously. After the
computation has halted the second tape can be erased simply
by running T ’s reverse, TR. Unfortunately the computation
T TR leaves only the input and a blank tape - the output of
T is itself lost. We can remedy this by adding a third tape
and introducing a stage C to copy T ’s output to the third tape
before running TR. Note that C is a reversible operation since
it only copies information to a blank tape, without destroying
information at any step. Thus, the overall computation T C TR

is both reversible and produces exactly the original input and
T ’s output on its tapes.

The construction of reversible Turing machines can be
analyzed in terms of the reversibility of the embedded compu-
tation. An arbitrary function f : X → Y can be embedded in
an invertible function fR : X → Y ×X by state saving, i.e.
fR(x) = (f(x), x). Since Turing machines can compute non-
invertible functions, any Turing-equivalent reversible model of
computation must include some type of state saving. Bennett’s
contribution is showing that the saved bits required to make a
computation reversible on the macro level are enough to make
it reversible on the micro level (implement it with individually
reversible operations).

3) Conservative logic: Conservative logic, introduced by
Fredkin and Toffoli [68], [69], is a reversible computing
model based on boolean circuits. Conservative logic circuits
are composed of just two primitives - the unit wire and the
Fredkin gate. A unit wire has a direction and transfers a signal
from one of its ends to another in a single unit of time; it

does not support fan-out. The Fredkin gate has three inputs:
a control signal c and two data lines. There are two output
lines. If the control line c is 1, the output lines correspond
exactly to the two data lines; if the control line is 0, the
data lines are swapped. Note that the boolean function of the
Fredkin gate is invertible and is its own inverse. Therefore a
combinatorial circuit composed of Fredkin gates and unit wires
can be reversed just by changing the direction of each unit
wire. Moreover, the Fredkin gate always produces as many 1’s
in the output as were present in the input. Since the unit wire
does not allow fan-out, conservative circuits always output as
many 1’s as were input (whence their name). Fredkin and
Toffoli showed that conservative logic circuits can embed the
computation of arbitrary boolean circuits, using an approach
similar to Bennett’s simulation of standard Turing machines
by reversible Turing machines [68], [69].

Fredkin and Toffoli also described a physical manifesta-
tion of their conservative logic circuits, demonstrating that
zero-dissipation reversible computation can theoretically be
implemented with purely reversible physical forces. Billiard
ball computers [68] (also known as “ballistic computers”
[67]) model signals traveling through a conservative circuit as
billiard balls. Collisions between balls and other objects are
perceived to be perfectly elastic, changing a ball’s direction by
exactly 90◦. The result of two balls colliding is also a perfect
90◦ rotation of the trajectory of each ball. A billiard ball
“circuit” has input slots on one side, through which billiard
balls are shot simultaneously with equal speed. The presence
of a ball is equivalent to an input of 1 while the absence is
a 0. The Fredkin gate can be implemented as a billiard ball
circuit [68], which shows the equivalence between the billiard
ball model and conservative circuits.

4) Space-time tradeoffs in computing reversibly: An irre-
versible computing process can always be simulated by a
reversible process, but there are overheads. Bennett showed
how to simulate an irreversible computation reversibly in
polynomial time and at most quadratic space [70]. Lange,
McKenzie, and Tapp later showed that it is possible to simulate
an irreversible computation without using asymptotically more
space; however, the run time of the simulation becomes expo-
nential [71]. Further investigation has shown that these results
are the two ends of a spectrum of time-space tradeoffs when
simulating irreversible computation reversibly; an overview is
available in [72].

E. Hardware for reverse computation

There has been some work in hardware support for enabling
rollback of non-reversible programs; examples include Fuji-
moto, Tsai and Gopalakrishnan’s rollback chip for optimistic
simulation [73] and Doudalis and Prvuloic’s hardware assisted
reverse execution for debugging [21]. There have also been
(very few) efforts to build a general-purpose computer that
is fully reversible. Early efforts include Ressler’s reversible
computer based on conservative logic [74] and Hall’s de-
scription of a reversible instruction set architecture [75]. The
most complete effort to date is the Pendulum project, which

included the design and fabrication of a fully reversible RISC-
based processor and the associated memory [76], [77], [78],
[79].

1) The Pendulum Instruction Set Architecture: The Pendu-
lum instruction set is an instruction set for a Von Neumann
computer that runs fully reversibly [77], [79]. Full reversibility
requires both reversible data updates and reversible control
flow constructs. Axelsen, Gück, and Yokoyama have formal-
ized and generalized the Pendulum instruction set architecture
and have proven its reversibility [80].

All data updates in the Pendulum instruction set are re-
versible. Pendulum has two types of register operations:
non-expanding operations and expanding operations. Non-
expanding register operations have the form R1 ← f(R1, R2);
the old value of R1 must be recoverable from the new value
and R2. Examples off non-expanding operations include add
and subtract. Expanding operations, on the other hand,
store their result in a third register because they are not
reversible. For example, after the update R1 ← R1 AND R2,
the previous value of R1 is no longer recoverable. Expanding
operations have the form R3 ← R3 XOR f(R1, R2); by
using bitwise exclusive-or, they also preserve the value of the
target register. All access to external memory occurs through
exchange operations, rather than through reads and writes.
An exchange swaps a word from memory with a value in a
local register.

The branching instructions in Pendulum have a special
structure to ensure reversibility. Each branching instruction
has two parameters: a register to test against and a register
containing the target address. The target address must point
to an identical branching instruction. There is a global bit in
the processor, named the branch bit, that is true immediately
after a jump and false for sequential execution. If the branch
bit is false and a branch instruction is reached, the branch
condition is evaluated. If the branch condition is true, the
program counter is swapped with the target address register,
essentially performing a jump. When a branch instruction is
entered with the branch bit set to true, it has been the target of
a jump; it sets the branch bit to false and sequential execution
continues.

III. IMPLEMENTING INCREMENTAL REGENERATIVE
INVERSION

Both the extract-from-use techniques and redefine tech-
niques [2] for regenerating previous values were implemented
in Backstroke. Regeneration of previous values was imple-
mented as a part of Backstroke’s pluggable architecture; the
extract-from-use technique and the redefine techniques were
implemented as separate plugins that could be turned on and
off independently. For example, for floating point values only
the redefine technique is valid, while the extract-from-use
technique is not.

After incremental regenerative inversion was implemented
for loop-free code, we considered loops. Unfortunately, we re-
alized that the definition-use analysis available at our disposal
was not powerful enough to ensure correctness for code with

loops. In the presence of a loop, two uses of a variable may
have the same set of reaching definitions, but the at runtime
the variable may have different values at the two use sites.
We realized that we needed an analysis that would partition
variables values in such a way that we could guarantee that
variables uses in the same partition refer to the same value.
For this purpose we chose static single assignment.

IV. SOURCE-LEVEL STATIC SINGLE ASSIGNMENT
ANALYSIS

A. The static single assignment analysis

Static single assignment (SSA) [81] is a classic intermediate
form representation that simplifies a number of analyses and
optimizations. In SSA form, each variable is replaced by a set
of variables such that each variable is defined exactly once
and each use has exactly one reaching definition.

In its standard formulation, SSA is an intermediate represen-
tation, used before code generation. Unfortunately, the inter-
mediate representation formulation of SSA is not well-suited
to source-to-source compilers. Modern developer toolchains
often modify and analyze the source code for purposes other
than compiling, such as refactoring. For example, the Clang
1 frontend for C and C++ is specifically designed to enable
source-to-source compilers 2. Out contribution is implement-
ing SSA as an analysis rather than as an intermediate rep-
resentation; the SSA information is attached to the original
abstract syntax tree (AST).

SSA is defined in terms of scalar variables; when a structure
is present it is treated as a set of the scalar variables that
it contains. Modern object-oriented paradigms often involve
deeply-nested structures and expanding such structures to their
constituent scalar values could be computationally expensive.
Moreover, treating structures as sets of scalar values funda-
mentally obscures the hierarchical relationships between these
values. For example, take a structure Line that contains two
Point objects, where each Point object holds three scalar
values. A user of the SSA analysis might be interested at all
the locations at which a Line object is modified, but is instead
forced to query for definitions of its constituent scalar values.
We implement a novel hierarchical versioning extension to
standard SSA version numbers, so that any level of a structure
can be queried independently.

In order to maintain the invariant that each use has exactly
one reaching definition, SSA inserts φ functions at locations
where two or more different definitions reach. Conceptually,
a φ function has each reaching definition as a parameter
and returns the correct definition based on the path taken
dynamically. As a useful extension, we propose annotating
each reaching definition to a φ function with a predicate that
specifies the necessary and sufficient runtime conditions for
selecting that definition in the φ function. This is useful in
implementing the extract-from-use and redefine techniques for
value restoration, as described in [2].

1http://clang.llvm.org/
2http://clang.llvm.org/comparison.html

SgVarRefExp
x

SgIntVal
1

SgGreaterThanOp

lhs_operand_i rhs_operand_i

SgExprStatement

expression

SgVarRefExp
x

SgPlusPlusOp

operand_i

SgExprStatement

expression

SgIfStmt

conditional true_body false_body

Fig. 4: A sample ROSE AST fragment for the source code
if (x > 3) { x++; }

B. Algorithm Overview

The algorithm annotates the abstract syntax tree tree
produced by the ROSE source-to-source compiler 3. After
dataflow is complete, each AST node is associated with a
(variable name → definition) mapping representing the reach-
ing definitions (defs) at that node. Since dataflow information
is propagated along the control flow graph (CFG), rather than
the AST, a one-to-one mapping between the control flow graph
and the AST is imperative. In the full ROSE control flow
graph, each AST node appears multiple times - once before
the construct begins executing, once after the construct has
finished executing, and once every time the node is visited
during execution (e.g. loop). Figure 4 illustrates the AST for
the code fragment if (x > 3) { x++; } and figure 5
shows the corresponding full CFG. In order to create a one-
to-one mapping between AST nodes and CFG nodes, the
CFG is filtered until each AST node appears exactly once.
This filtering must be done carefully to ensure that reaching
definitions are correctly propagated to each AST node. For
example, in figure 5, we only include the last occurrence of
SgGreaterThanOp because at runtime it executes after its
arguments; meanwhile, we only kept the first occurrence of
SgIfStmt. The implementation of correct data-flow for short-
circuit evaluations (&& and ||) remains a challenge, because
the same AST node is in the CFG decision point an in one
of the branch targets. The current implementation treats all
logical operators as if both of their operands are evaluated.

The algorithm proceeds in five (mostly independent) main
stages:

1) Discovery of variable names
2) Generation of local definition and use information
3) Inserting φ functions
4) Dataflow propagation of reaching definitions
5) Associating uses with reaching definitions
Stage 1 discovers all variables used in the program (includ-

ing compound variables such as x.a.b) and generates unique

3http://www.rosecompiler.org

http://clang.llvm.org/
http://clang.llvm.org/comparison.html
http://www.rosecompiler.org

<SgIfStmt>

<SgExprStatement>

<SgGreaterThanOp>

<SgVarRefExp>

<SgGreaterThanOp>

<SgIntVal>

<SgGreaterThanOp>

<SgExprStatement>

<SgIfStmt>

<SgExprStatement>

key(true)

<SgIfStmt>

key(false)

<SgPlusPlusOp>

<SgVarRefExp>

<SgPlusPlusOp>

<SgExprStatement>

Fig. 5: The unfiltered ROSE control flow graph for the
code fragment if (x > 3) { x++; } . The nodes that are
filtered from the dataflow computation are shown with dotted
borders.

names for them. All subsequent stages generate definition (def)
and use information based on the variable names discovered
in stage 1. Stage 2 collects the local defs and uses present at
each AST node. Stage 2 also handles hierarchical versioning
of the variables. Stage 3 inserts and numbers φ function
according to the algorithm described in [81]. Finally, stage
4 propagates reaching definitions along the CFG in standard
dataflow fashion. Stage 5 builds a table matching uses to
reaching defs, to facilitate later queries. Stages 4 - 5 use
standard dataflow techniques.

V. IMPLEMENTING AUTOMATIC CHECKPOINTING OF C++
FUNCTIONS

Backstroke’s checkpointing plugin statically determines
what variables are potentially modified by the event method
and saves those variables. The reverse method restores the
values of the saved variables, without executing the original
method in reverse. There are times when reverse execution is
more efficient, while other times state saving is more efficient.
The Backstroke architecture allows a different reverse code
generation plugin to be used for each nested scope, thus it an
optimal inversion can apply the checkpointing plugin while
using reverse execution where it would be appropriate and
more efficient.

A. Interprocedural checkpointing algorithm

The Backstroke checkpointing plugin uses interprocedural
dataflow analysis [82] to determine which variables are po-
tentially modified by the event method. First, a call graph is
constructed and all functions reachable from the event method
are analyzed for local definitions and uses. Then, definitions
are propagated up in the call graph; if a callee modifies a
variable, so does the caller. If function arguments are passed
by reference or pointer, the formal argument in the callee is
aliased with the actual argument in the caller. For member
functions, the implicit this argument is always aliased with
the object instance in the caller. Recursion is handled by
iterating over the call graph until no new definitions are
propagated to any function.

The Backstroke checkpointing plugin uses a very generic
software analysis to determine which variables are potentially
modified; as a consequence it could sometimes save variables
that are not part of the simulation state. For instance, data
structures associated with the simulation engine (such as the
pending event set) should not be explicitly modified by the
reverse methods. It might also be preferable to ignore the state
of performance counters, debugging logs, etc. To address this,
Backstroke allows for an optional variable filter to be provided.
The variable filter is a function that takes in a variable as a
parameter and returns true is the variable should be restored
during rollback, and false otherwise. In future versions we
plan to include support for #pragma declarations that the
practitioner can use to mark variables that are not part of the
simulation state.

Once the Backstroke checkpointing plugin prepares a list
of the variables modified by an event method, it generates the

code to save and restore these variables. In the very beginning
of the forward method, all modified variables are pushed onto
a deque (double-ended queue) data structure. The rest of the
forward method is identical to the original event method. The
reverse method pops the saved values from the back of the
deque and restores the modified variables to their old values.
In contrast, the commit method removes the saved values from
the front of the deque and discards them. The deque is suitable
storage because reverse methods are always guaranteed to be
called in reverse order of the forward methods, starting with
the last forward method called. Meanwhile, commit methods
are guaranteed to be called in the same order as the forward
methods, starting with the first forward method called.

B. Limitations

Due to the complexity of the C++ language, not all language
constructs can be safely handled by the state saving plugin.
The language checking phase of Backstroke scans the bodies
of all functions reachable from the body of an event method
and issues errors when unsafe constructs are encountered.
Pointer arithmetic is not supported, since it makes it impossible
to statically determine the variables that are being modified.
Although the use of pointers is supported, Backstroke currently
does not have aliasing analysis; as a result if the same
variable has multiple aliases it may be stored multiple times.
State-saving of dynamically allocated arrays is not supported,
since their size cannot be statically determined. However,
when arrays are encapsulated inside a data structure such
as std::vector, they can be saved and restored success-
fully. Static variables declared in function scope are another
problematic C/C++ construct. Such variables form part of
the persistent program state, but are solely accessible from
a single function. Perhaps in the future such static variables
can be handled by generating a globally unique name and
automatically hoisting their declaration to global scope.

Saving and restoring the values of C++ classes is also
potentially dangerous since doing so necessarily invokes the
object’s copy constructor. If the copy constructor has side
effects on the global simulation state, the act of saving the
simulation state may itself modify it. Luckily, this is not a
major restriction because having copy constructors with global
side effects is a particularly bad programming practice! A
similar warning applies to overloaded assignment operators,
since such operators are used by the reverse method to restore
the value of class objects. A more subtle issue with saving
class objects are classes whose copy constructors do not
create deep copies. For example, copying a smart pointer
type such as std::auto_ptr creates a new object, but the
object references the same underlying data. It is not possible
to statically verify that a class’s copy constructor correctly
creates a deep copy of the class; consequently Backstroke
issues a warning when relying on the constructor semantics
of classes that contain non-const pointers. Backstroke also
includes explicit support for standard smart pointer types, such

as std::auto_ptr and boost::shared_ptr4.

VI. EXPERIMENTAL STUDY: APPLYING BACKSTROKE TO
AUTOMATICALLY PRODUCE OPTIMISTIC HLA

FEDERATIONS

We postulated that using Backstroke, it would be possible
to take a sequential simulation and self-federate it using HLA
[83] automatically obtain an optimistic distributed simulation.
To validate the approach, we applied the proposed methodol-
ogy to a small queueing network simulation. The simulation
in question was a gasoline station simulation motivated by
that described in [84]. Although not a large model, it is
representative of the queueing models typically modeled by
discrete event simulation. We intentionally took a model
written by a person unacquainted with Backstroke, so that it
could represent a realistic usage of C++ language constructs.
The gasoline station event handlers were member functions
and used templates, namespaces, C++ standard library data
structures, and Boost smart pointers 4. Furthermore, the event
handling methods used utility functions to poll and advance the
queues, hence testing Backstroke’s interprocedural analysis.

The gasoline station instances were federated in an arbitrary
topology using the HLA data management services. Each
consumer leaving a gas station was randomly routed to one of
the subsequent stations according to predefined probabilities.
Certain gas station instances were designated as sources, while
others acted as sinks for a randomly selected portion of con-
sumers. The travel times between the gas stations were drawn
from an exponential distribution. Although an exponential
distribution is physically unrealistic for vehicles, we chose
it because it is an example of a model with little inherent
lookahead. Synchronizing such a federation conservatively
would require advanced lookahead extraction techniques, such
modifying the implementation to presample service times [85].

The Time Warp local control mechanism was inserted by
extending the sequential simulation engine with HLA primi-
tives. There was no naming convention for the event handling
methods, so the event detection was performed by supplying
a list of the names of all the event handling methods in the
simulation. To prevent Backstroke from saving and restoring
the discrete event kernel object, we filtered all objects with
type DESEngine from the simulation state (as described in
section V-A). As a final step, the simulation was built using
the Backstroke tool instead of g++, producing the forward,
reverse, and commit methods.

The federated gasoline station instances ran together opti-
mistically with no significant issues. The execution exercised
rollback, message retraction, and fossil collection and the
results were repeatable. Although the example used in this
experiment is a modest sized simulation, this experiment did
serve our goal of exercising our approach to automating the
generation of optimistic federated simulation code.

4http://www.boost.org/doc/libs/release/libs/smart_ptr/smart_ptr.htm

http://www.boost.org/doc/libs/release/libs/smart_ptr/smart_ptr.htm

VII. APPLYING BACKSTROKE TO THE GEORGIA TECH
NETWORK SIMULATOR

GTNetS consists of over 200,000 lines of real-world C++
code and simulates all layers of the network stack [5]. It is
an example of discrete event simulator that is not designed
for distributed execution or automatic inversion, and thus
includes usage of the full range of C++ features. Some of
the problematic C++ aspects of GTNetS include:

• Extensive aliasing.
• Function pointers.
• Pointer arithmetic.
• Deep inheritance hierarchies with many virtual methods.
• Large objects without valid copy constructors or destruc-

tors.
• Use of untyped data, such as void* pointers and
reinterpret_cast.

• An almost fully-connected memory graph; the whole
simulation state was accessible through any simulation
object

• Hidden state; part of the simulation state was not directly
reachable from the event methods. Examples of hidden
state include static variables declared in function scope.

• Constructors and destructors that modify the simulation’s
state; creating a copy of an object with such a constructor
could cause the simulation state to be modified.

We chose a wireless network simulation built on top of
GTNetS and tested two of Backstroke’s inversion methods
on it: regenerative inversion and checkpointing. Due to the
complexity of the C++ constructs used in GTNetS, neither
method performed well. Regenerative inversion successfully
reproduced the original simulation trace, even after each event
was rolled back once and rexecuted. However, the state saving
overhead was very large due to the connectivity of the GTNetS
memory graph and its large objects. Backstroke’s implementa-
tion of checkpointing was thwarted by GTNetS’s hidden state
and its extensive use of virtual methods and inheritance, which
made interprocedural analysis difficult. Checkpointing was not
able to reproduce the correct simulation results after a rollback.

Although our initial effort failed to produce correct reverse
methods for GTNetS, the study exposed important weaknesses
of the inversion methods implemented in Backstroke at the
time. We reevaluated our approach to inverting complex C++
constructs and found efficient ways to invert all the problem-
atic constructs listed earlier; our findings are set to appear in
the 2011 Winter Simulation Conference [86]

REFERENCES

[1] T. Akgul and V. J. Mooney III, “Instruction-level reverse execution
for debugging,” in Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering -
PASTE ’02, vol. 28, no. 1. ACM, Jan. 2002, pp. 18–25. [Online].
Available: http://dx.doi.org/10.1145/634636.586101

[2] ——, “Assembly instruction level reverse execution for debugging,”
ACM Transactions on Software Engineering and Methodology,
vol. 13, no. 2, pp. 149–198, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1145/1018210.1018211

[3] T. Akgul, “Assembly instruction level reverse execution for debugging,”
Ph.D. dissertation, Georgia Institute of Technology, Apr. 2004. [Online].
Available: http://dx.doi.org/1853/5249

[4] G. F. Riley, M. Ammar, R. M. Fujimoto, A. Park, K. S. Perumalla,
and D. Xu, “A federated approach to distributed network simulation,”
ACM Transactions on Modeling and Computer Simulation (TOMACS),
vol. 14, no. 2, pp. 116–148, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1145/985793.985795

[5] G. F. Riley, “The Georgia Tech Network Simulator,” in Proceedings
of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research, no. August. ACM, 2003, pp. 5–12.
[Online]. Available: http://dx.doi.org/10.1145/944773.944775

[6] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 7, no. 3, p. 425, 1985.
[Online]. Available: http://dx.doi.org/10.1145/3916.3988

[7] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto, “Efficient
optimistic parallel simulations using reverse computation,” ACM
Transactions on Modeling and Computer Simulation (TOMACS),
vol. 9, no. 3, pp. 224–253, 1999. [Online]. Available: http:
//dx.doi.org/10.1145/347823.347828

[8] Y. Tang, K. S. Perumalla, and R. M. Fujimoto, “Optimistic simulations
of physical systems using reverse computation,” Simulation, 2006.
[Online]. Available: http://dx.doi.org/10.1177/0037549706065481

[9] R. M. Fujimoto and A. Naborskyy, “Using Reversible Computation
Techniques in a Parallel Optimistic Simulation of a Multi-Processor
Computing System,” 21st International Workshop on Principles of
Advanced and Distributed Simulation (PADS’07), pp. 179–188, Jun.
2007. [Online]. Available: http://dx.doi.org/10.1109/PADS.2007.31

[10] C. Carothers and M. Peters, “An algorithm for fully-reversible optimistic
parallel simulation,” in Simulation Conference, 2003. Proceedings of
the 2003, 2003. [Online]. Available: http://dx.doi.org/10.1109/WSC.
2003.1261505

[11] D. W. Bauer and E. H. Page, “An Approach for Incorporating Rollback
through Perfectly Reversible Computation in a Stream Simulator,” in
21st International Workshop on Principles of Advanced and Distributed
Simulation (PADS’07). IEEE Computer Society, Jun. 2007, pp.
171–178. [Online]. Available: http://dx.doi.org/10.1109/PADS.2007.13

[12] H. Baker, “NREVERSAL of fortune-the thermodynamics of garbage
collection,” in Proceedings of the International Workshop on Memory
Management, vol. 91436, no. 818. Springer, 1992, pp. 507–524.
[Online]. Available: http://dx.doi.org/10.1007/BFb0017210

[13] R. Balzer, “EXDAMS - EXtendable Debugging and Monitoring
System,” in AFIPS ’69 (Spring): Proceedings of the May 14-16, 1969,
spring joint computer conference. Boston, Massachusetts: ACM, 1969,
pp. 567–580. [Online]. Available: http://dx.doi.org/10.1145/1476793.
1476881

[14] M. V. Zelkowitz, “Reversible execution,” Communications of the
ACM, vol. 16, no. 9, p. 566, Sep. 1973. [Online]. Available:
http://dx.doi.org/10.1145/362342.362360

[15] S. Feldman and C. Brown, “Igor: A system for program debugging via
reversible execution,” in Proceedings of the 1988 ACM SIGPLAN and
SIGOPS workshop on Parallel and distributed debugging. ACM, 1988,
p. 123. [Online]. Available: http://dx.doi.org/10.1145/69215.69226

[16] H. Agrawal, R. DeMillo, and E. Spafford, “An execution backtracking
approach to program debugging,” IEEE Software, vol. 8, no. 3, pp.
21–26, 1991. [Online]. Available: http://dx.doi.org/10.1109/52.88940

[17] R. Netzer and M. Weaver, “Optimal tracing and incremental reexecution
for debugging long-running programs,” in Proceedings of the ACM
SIGPLAN 1994 conference on Programming language design and
implementation. ACM New York, NY, USA, 1994, pp. 313–325.
[Online]. Available: http://dx.doi.org/10.1145/178243.178477

[18] S. Booth and S. Jones, “Walk backwards to happiness: debugging by
time travel,” AADEBUG’97, no. July, p. 171, 1997. [Online]. Available:
http://www.ep.liu.se/ea/cis/1997/009/14/

[19] B. Biswas and R. Mall, “Reverse execution of programs,” ACM
SIGPLAN Notices, vol. 34, no. 4, pp. 61–69, Apr. 1999. [Online].
Available: http://dx.doi.org/10.1145/312009.312079

[20] S. Chen, W. Fuchs, and J. Chung, “Reversible debugging using program
instrumentation,” IEEE transactions on software, vol. 27, no. 8, pp.
715–728, 2001. [Online]. Available: http://dx.doi.org/10.1109/32.940726

[21] I. Doudalis and M. Prvulovic, “HARE: Hardware assisted reverse
execution,” in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on. IEEE, Jan. 2010, pp. 1–12.
[Online]. Available: http://dx.doi.org/10.1109/HPCA.2010.5416651

http://dx.doi.org/10.1145/634636.586101
http://dx.doi.org/10.1145/1018210.1018211
http://dx.doi.org/1853/5249
http://dx.doi.org/10.1145/985793.985795
http://dx.doi.org/10.1145/944773.944775
http://dx.doi.org/10.1145/3916.3988
http://dx.doi.org/10.1145/347823.347828
http://dx.doi.org/10.1145/347823.347828
http://dx.doi.org/10.1177/0037549706065481
http://dx.doi.org/10.1109/PADS.2007.31
http://dx.doi.org/10.1109/WSC.2003.1261505
http://dx.doi.org/10.1109/WSC.2003.1261505
http://dx.doi.org/10.1109/PADS.2007.13
http://dx.doi.org/10.1007/BFb0017210
http://dx.doi.org/10.1145/1476793.1476881
http://dx.doi.org/10.1145/1476793.1476881
http://dx.doi.org/10.1145/362342.362360
http://dx.doi.org/10.1145/69215.69226
http://dx.doi.org/10.1109/52.88940
http://dx.doi.org/10.1145/178243.178477
http://www.ep.liu.se/ea/cis/1997/009/14/
http://dx.doi.org/10.1145/312009.312079
http://dx.doi.org/10.1109/32.940726
http://dx.doi.org/10.1109/HPCA.2010.5416651

[22] R. Sauciuc and G. Necula, “Reverse Execution With Constraint
Solving,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2011-67, May 2011. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-67.html

[23] J. Archer, J.E., R. Conway, and F. Schneider, “User recovery and
reversal in interactive systems,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 6, no. 1, pp. 1–19, Jan. 1984.
[Online]. Available: http://dx.doi.org/10.1145/357233.357234

[24] J. S. Briggs, “Generating reversible programs,” Software: Practice and
Experience, vol. 17, no. 7, pp. 439–453, Jul. 1987. [Online]. Available:
http://dx.doi.org/10.1002/spe.4380170703

[25] P. Bishop, “Using reversible computing to achieve fail-safety,”
in Proceedings The Eighth International Symposium on Software
Reliability Engineering. IEEE Computer Society, 1997, pp. 182–191.
[Online]. Available: http://dx.doi.org/10.1109/ISSRE.1997.630863

[26] R. S. Bird, “An introduction to the theory of lists,” in Proceedings of the
NATO Advanced Study Institute on Logic of programming and calculi
of discrete design. New York, NY, USA: Springer-Verlag New York,
Inc., 1987, pp. 5–42.

[27] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi,
“Automatic inversion generates divide-and-conquer parallel programs,”
in ACM SIGPLAN conference on Programming language design and
implementation - PLDI ’07. New York, New York, USA: ACM Press,
2007, p. 146. [Online]. Available: http://dx.doi.org/10.1145/1250734.
1250752

[28] R. J. Ross, “Experience with the DYNAMOD Program Animator,”
in SIGCSE ’91: Proceedings of the twenty-second SIGCSE technical
symposium on Computer science education, vol. 23, no. 1. ACM, 1991,
pp. 35–42. [Online]. Available: http://dx.doi.org/10.1145/107005.107013

[29] M. R. Birch, C. M. Boroni, F. W. Goosey, S. D. Patton, D. K. Poole,
C. M. Pratt, and R. J. Ross, “DYNALAB: a dynamic computer science
laboratory infrastructure featuring program animation,” in Proceedings
of the twenty-sixth SIGCSE technical symposium on Computer science
education - SIGCSE ’95, vol. 27, no. 1. ACM, 1995, pp. 29–33.
[Online]. Available: http://dx.doi.org/10.1145/199688.199706

[30] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi, “Reversible
Execution and Visualization of Programs with LEONARDO,” Journal
of Visual Languages & Computing, vol. 11, no. 2, pp. 125–150, Apr.
2000. [Online]. Available: http://dx.doi.org/10.1006/jvlc.1999.0143

[31] Z. Hu, S. Mu, and M. Takeichi, “An algebraic approach to
bi-directional updating,” Programming Languages and Systems, vol.
3302, pp. 2–20, 2004. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-30477-7_2

[32] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt, “Combinators for bi-directional tree transformations,”
in Proceedings of the 32nd ACM SIGPLAN-SIGACT sysposium on
Principles of programming languages - POPL ’05. New York, New
York, USA: ACM Press, 2005, pp. 233–246. [Online]. Available:
http://dx.doi.org/10.1145/1040305.1040325

[33] J. N. Foster, “Bidirectional programming languages,” Ph.D. dissertation,
University of Pennsylvania, 2010. [Online]. Available: http://repository.
upenn.edu/cis_reports/921/

[34] S. W. Golomb and L. D. Baumert, “Backtrack Programming,” Journal
of the ACM, vol. 12, no. 4, pp. 516–524, Oct. 1965. [Online]. Available:
http://dx.doi.org/10.1145/321296.321300

[35] R. W. Floyd, “Nondeterministic Algorithms,” Journal of the ACM,
vol. 14, no. 4, pp. 636–644, Oct. 1967. [Online]. Available:
http://dx.doi.org/10.1145/321420.321422

[36] A. Griewank and A. Walther, Evaluating derivatives: principles and
techniques of algorithmic differentiation. Society for Industrial and
Applied Mathematics (SIAM), 2008.

[37] A. Griewank, D. Juedes, and J. Utke, “Algorithm 755; ADOL-
C: a package for the automatic differentiation of algorithms
written in C/C++,” ACM Transactions on Mathematical Software,
vol. 22, no. 2, pp. 131–167, Jun. 1996. [Online]. Available:
http://dx.doi.org/10.1145/229473.229474

[38] J. Grimm, L. Pottier, and N. Rostaing-Schmidt, “Optimal time and
minimum space-time product for reversing a certain class of programs,”
Institut National de Recherche en Informatique et en Automatique,
Tech. Rep., 1996. [Online]. Available: http://dx.doi.org/10068/40845

[39] A. Walther, “Program reversal schedules for single-
and multi-processor machines,” Ph.D. dissertation, Tech-
nical University Dresden, 1999. [Online]. Avail-

able: http://deposit.ddb.de/cgi-bin/dokserv?idn=96395007x&dok_
var=d1&dok_ext=pdf&filename=96395007x.pdf

[40] U. Naumann, “On optimal DAG reversal,” RWTH Aachen, Tech. Rep.
March, 2009. [Online]. Available: http://ftp.informatik.rwth-aachen.de/
ftp/pub/publications/rwth/informatik/2007/2007-05.pdf

[41] J. McCarthy, “The Inversion of Functions Defined by Turing Machines,”
in Automata Studies, C. Shannon and J. McCarthy, Eds. Princeton
University Press, 1956, pp. 177–181.

[42] E. W. Dijkstra, “Program Inversion,” in Program Construction, Interna-
tional Summer School. London, UK: Springer-Verlag, 1979, pp. 54–57.

[43] D. Gries, “Inverting Programs,” in The science of programming. New
York, New York, USA: Springer-Verlag, 1981, ch. 21, pp. 265–274.

[44] C. Lutz and H. Derby, “JANUS : A TIME-REVERSIBLE
LANGUAGE,” 1982. [Online]. Available: http://web.archive.org/web/
20070212152136/http://www.cise.ufl.edu/~mpf/rc/janus.html

[45] T. Yokoyama and R. Glück, “A reversible programming language and
its invertible self-interpreter,” in ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation - PEPM ’07.
New York, New York, USA: ACM Press, 2007, p. 144. [Online].
Available: http://dx.doi.org/10.1145/1244381.1244404

[46] W. Chen and J. Udding, “Program inversion: More than fun!” Science
of Computer Programming, vol. 15, no. 1, pp. 1–13, Nov. 1990.
[Online]. Available: http://dx.doi.org/10.1016/0167-6423(90)90042-C

[47] D. Eppstein, “A heuristic approach to program inversion,” in Int.
Joint Conference on Artificial Intelligence (IJCAI-85). Citeseer, 1985,
pp. 219–221. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1625175

[48] R. Korf, “Inversion of applicative programs,” in Proceedings of
the Seventh Intern. Joint Conference on Artificial Intelligence
(IJCAI-81), no. 3597, 1981, pp. 1007–1009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1623345

[49] R. Glück and M. Kawabe, “Revisiting an automatic program inverter
for Lisp,” ACM SIGPLAN Notices, vol. 40, no. 5, pp. 8–17, May 2005.
[Online]. Available: http://dx.doi.org/10.1145/1071221.1071222

[50] M. Kawabe and R. Glück, “The program inverter LRinv and its struc-
ture,” Practical Aspects of Declarative Languages, pp. 219–234, 2005.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-30557-6_17

[51] R. Glück and M. Kawabe, “Derivation of deterministic inverse
programs based on LR parsing,” Functional and Logic Programming,
vol. 2988, pp. 187–191, 2004. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-24754-8_21

[52] R. Glück and S. Abramov, “Principles of inverse computation and
the universal resolving algorithm,” The Essence of Computation, vol.
2566, pp. 269–295, 2002. [Online]. Available: http://dx.doi.org/10.
1007/3-540-36377-7_13

[53] S. Abramov and R. Glück, “The Universal Resolving Algorithm:
Inverse Computation in a Functional Language,” Science of Computer
Programming, vol. 43, no. 2-3, pp. 193–229, 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0167-6423(02)00023-0

[54] Y. Futamura, “Partial Evaluation of Computation ProcessâĂŤ An
Approach to a Compiler-Compiler,” Systems, Computers, Controls,
vol. 2, no. 5, pp. 45–50, 1971. [Online]. Available: http://dx.doi.org/10.
1023/A:1010095604496

[55] R. Glück, Y. Kawada, and T. Hashimoto, “Transforming interpreters into
inverse interpreters by partial evaluation,” in Proceedings of the 2003
ACM SIGPLAN workshop on Partial evaluation and semantics-based
program manipulation. ACM, 2003, pp. 10–19. [Online]. Available:
http://dx.doi.org/10.1145/777388.777391

[56] B. J. Ross, “Running programs backwards: The logical inversion of
imperative computation,” Formal Aspects of Computing, vol. 9, no. 3,
pp. 331–348, May 1997. [Online]. Available: http://dx.doi.org/10.1007/
BF01211087

[57] J. Lee, “A Case for Dynamic Reverse-code Generation to Debug Non-
deterministic Programs,” BRICS Research Series, Tech. Rep., 2008.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.103.6400http://formal.korea.ac.kr/~jlee/papers/rcg-case.pdfhttp:
//people.cis.ksu.edu/~jlee/papers/rcg-case.pdf

[58] ——, “Dynamic Reverse Code Generation for Backward Execution,”
Electronic Notes in Theoretical Computer Science, vol. 174, no. 4,
pp. 37–54, May 2007. [Online]. Available: http://dx.doi.org/10.1016/j.
entcs.2006.12.028

[59] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster, “Path-based
inductive synthesis for program inversion,” in Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-67.html
http://dx.doi.org/10.1145/357233.357234
http://dx.doi.org/10.1002/spe.4380170703
http://dx.doi.org/10.1109/ISSRE.1997.630863
http://dx.doi.org/10.1145/1250734.1250752
http://dx.doi.org/10.1145/1250734.1250752
http://dx.doi.org/10.1145/107005.107013
http://dx.doi.org/10.1145/199688.199706
http://dx.doi.org/10.1006/jvlc.1999.0143
http://dx.doi.org/10.1007/978-3-540-30477-7_2
http://dx.doi.org/10.1007/978-3-540-30477-7_2
http://dx.doi.org/10.1145/1040305.1040325
http://repository.upenn.edu/cis_reports/921/
http://repository.upenn.edu/cis_reports/921/
http://dx.doi.org/10.1145/321296.321300
http://dx.doi.org/10.1145/321420.321422
http://dx.doi.org/10.1145/229473.229474
http://dx.doi.org/10068/40845
http://deposit.ddb.de/cgi-bin/dokserv?idn=96395007x&dok_var=d1&dok_ext=pdf&filename=96395007x.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=96395007x&dok_var=d1&dok_ext=pdf&filename=96395007x.pdf
http://ftp.informatik.rwth-aachen.de/ftp/pub/publications/rwth/informatik/2007/2007-05.pdf
http://ftp.informatik.rwth-aachen.de/ftp/pub/publications/rwth/informatik/2007/2007-05.pdf
http://web.archive.org/web/20070212152136/http://www.cise.ufl.edu/~mpf/rc/janus.html
http://web.archive.org/web/20070212152136/http://www.cise.ufl.edu/~mpf/rc/janus.html
http://dx.doi.org/10.1145/1244381.1244404
http://dx.doi.org/10.1016/0167-6423(90)90042-C
http://portal.acm.org/citation.cfm?id=1625175
http://portal.acm.org/citation.cfm?id=1625175
http://portal.acm.org/citation.cfm?id=1623345
http://dx.doi.org/10.1145/1071221.1071222
http://dx.doi.org/10.1007/978-3-540-30557-6_17
http://dx.doi.org/10.1007/978-3-540-24754-8_21
http://dx.doi.org/10.1007/978-3-540-24754-8_21
http://dx.doi.org/10.1007/3-540-36377-7_13
http://dx.doi.org/10.1007/3-540-36377-7_13
http://dx.doi.org/10.1016/S0167-6423(02)00023-0
http://dx.doi.org/10.1023/A:1010095604496
http://dx.doi.org/10.1023/A:1010095604496
http://dx.doi.org/10.1145/777388.777391
http://dx.doi.org/10.1007/BF01211087
http://dx.doi.org/10.1007/BF01211087
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6400 http://formal.korea.ac.kr/~jlee/papers/rcg-case.pdf http://people.cis.ksu.edu/~jlee/papers/rcg-case.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6400 http://formal.korea.ac.kr/~jlee/papers/rcg-case.pdf http://people.cis.ksu.edu/~jlee/papers/rcg-case.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6400 http://formal.korea.ac.kr/~jlee/papers/rcg-case.pdf http://people.cis.ksu.edu/~jlee/papers/rcg-case.pdf
http://dx.doi.org/10.1016/j.entcs.2006.12.028
http://dx.doi.org/10.1016/j.entcs.2006.12.028

implementation - PLDI ’11. New York, New York, USA: ACM Press,
2011, p. 492. [Online]. Available: http://dx.doi.org/10.1145/1993498.
1993557

[60] T. Yokoyama, H. B. Axelsen, and R. Glück, “Principles of a
reversible programming language,” in Proceedings of the 2008
conference on Computing frontiers - CF ’08. New York, New
York, USA: ACM Press, 2008, p. 43. [Online]. Available: http:
//dx.doi.org/10.1145/1366230.1366239

[61] T. Mogensen, “Partial evaluation of the reversible language janus,”
in Proceedings of the 20th ACM SIGPLAN workshop on Partial
evaluation and program manipulation. ACM, 2011, pp. 23–32.
[Online]. Available: http://dx.doi.org/10.1145/1929501.1929506

[62] M. Frank, “The R Programming Language and Com-
piler,” MIT AI Lab, Tech. Rep., 1997. [Online]. Avail-
able: http://web.archive.org/web/20041010220454/http://www.cise.ufl.
edu/~mpf/rc/memos/M08/M08_rdoc.html

[63] Z. Hu, S. Mu, and M. Takeichi, “An injective language for
reversible computation,” Mathematics of Program Construction, vol.
3125, pp. 289–313, 2004. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-27764-4_16

[64] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 44, no. 1,
pp. 261–269, 1961. [Online]. Available: http://dx.doi.org/10.1147/rd.53.
0183

[65] M. Frank, “Introduction to reversible computing: motivation, progress,
and challenges,” in Proceedings of the 2nd Conference on Computing
Frontiers. ACM New York, NY, USA, 2005, pp. 385–390. [Online].
Available: http://dx.doi.org/10.1145/1062261.1062324

[66] C. Bennett, “Logical Reversibility of Computation,” IBM journal of
Research and Development, vol. 17, no. 6, pp. 525–532, 1973. [Online].
Available: http://dx.doi.org/10.1147/rd.176.0525

[67] ——, “The thermodynamics of computation - a review,” International
Journal of Theoretical Physics, vol. 21, no. 12, pp. 905–940, 1982.
[Online]. Available: http://dx.doi.org/10.1007/BF02084158

[68] E. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3-4, pp. 219–253, Apr. 1982.
[Online]. Available: http://dx.doi.org/10.1007/BF01857727

[69] T. Toffoli, “Reversible Computing,” MIT Laboratory for Computer
Science, Tech. Rep., 1980. [Online]. Available: http://dx.doi.org/10.
1007/3-540-10003-2_104

[70] C. Bennett, “Time/space trade-offs for reversible computation,” SIAM
Journal on Computing, vol. 18, no. 4, p. 766, 1989. [Online]. Available:
http://dx.doi.org/10.1137/0218053

[71] K. Lange, P. McKenzie, and A. Tapp, “Reversible space equals
deterministic space,” in Computational Complexity, 1997. Proceedings.,
Twelfth Annual IEEE Conference on (Formerly: Structure in Complexity
Theory Conference). IEEE Comput. Soc, 1997, pp. 45–50. [Online].
Available: http://dx.doi.org/10.1109/CCC.1997.612299

[72] P. Vitányi, “Time, space, and energy in reversible computing,”
Proceedings of the 2nd conference on Computing, pp. 435–444, 2005.
[Online]. Available: http://dx.doi.org/10.1145/1062261.1062335

[73] R. M. Fujimoto, J.-J. Tsai, and G. Gopalakrishnan, “Design and
evaluation of the rollback chip: special purpose hardware for Time
Warp,” IEEE Transactions on Computers, vol. 41, no. 1, pp. 68–
82, 1992. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=123382

[74] A. Ressler, “The Design of a Conservative Logic Computer and a
Graphical Editor Simulator,” Masters Thesis, 1981. [Online]. Available:
http://dx.doi.org/1721.1/15895

[75] J. S. Hall, “A reversible instruction set architecture and algorithms,”
in Physics and Computation, 1994. PhysComp’94, Proceedings.,
Workshop on. IEEE, 1994, pp. 128–134. [Online]. Available:
http://dx.doi.org/10.1109/PHYCMP.1994.363690

[76] C. Vieri, “Reversible computer engineering and architecture,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1999. [Online].
Available: http://dl.acm.org/citation.cfm?id=930761

[77] ——, “Pendulum: A reversible computer architecture,” Masters thesis,
Massachusetts Institute of Technology, 1995. [Online]. Available:
http://dx.doi.org/1721.1/36039

[78] M. Frank, “Reversibility for efficient computing,” Ph.D. dissertation,
1999. [Online]. Available: http://dx.doi.org/1721.1/9464

[79] C. Vieri, M. Ammer, M. Frank, N. Margolus, and T. Knight, “A
Fully Reversible Asymptotically Zero Energy Microprocessor,” in
Power Driven Microarchitecture Workshop. Citeseer, 1998. [Online].
Available: http://dx.doi.org/10.1109/PHYCMP.1994.363690

[80] H. Axelsen, R. Glück, and T. Yokoyama, “Reversible Machine Code
and Its Abstract Processor Architecture,” Computer ScienceâĂŞTheory
and Applications, pp. 56–69, 2007. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-74510-5_9

[81] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages
and Systems, vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online].
Available: http://dx.doi.org/10.1145/115372.115320

[82] A. Aho, R. Sethi, and J. Ullman, “Compilers: principles, techniques,
and tools.” Reading, MA: Addison-Wesley Publishing Co., 1986, pp.
660–680.

[83] J. S. Dahmann, R. M. Fujimoto, and R. Weatherly, “The Department
of Defense High Level Arhchitecture,” in Proceedings of the 29th
conference on Winter simulation. IEEE Computer Society, 1997, pp.
142–149. [Online]. Available: http://dx.doi.org/10.1145/268437.268465

[84] L. Birta and G. Arbez, Modelling and Simulation, 1st ed. Springer,
2007.

[85] D. M. Nicol, “Parallel Discrete-Event Simulation of FCFS Stochastic
Queueing Networks,” in Proceedings of the ACM/SIGPLAN conference
on Parallel programming: experience with applications, languages
and systems. ACM, 1988, pp. 124–137. [Online]. Available:
http://dx.doi.org/10.1145/62115.62128

[86] G. Vulov, C. Hou, D. Quinlan, R. Vuduc, R. M. Fujimoto, and D. R.
Jefferson, “The Backstroke framework for source-level reverse compu-
tation applied to parallel discrete event simulation,” in Proceedings of
the 2011 Winter Simulation Conference (to appear), 2011.

http://dx.doi.org/10.1145/1993498.1993557
http://dx.doi.org/10.1145/1993498.1993557
http://dx.doi.org/10.1145/1366230.1366239
http://dx.doi.org/10.1145/1366230.1366239
http://dx.doi.org/10.1145/1929501.1929506
http://web.archive.org/web/20041010220454/http://www.cise.ufl.edu/~mpf/rc/memos/M08/M08_rdoc.html
http://web.archive.org/web/20041010220454/http://www.cise.ufl.edu/~mpf/rc/memos/M08/M08_rdoc.html
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1145/1062261.1062324
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1137/0218053
http://dx.doi.org/10.1109/CCC.1997.612299
http://dx.doi.org/10.1145/1062261.1062335
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=123382
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=123382
http://dx.doi.org/1721.1/15895
http://dx.doi.org/10.1109/PHYCMP.1994.363690
http://dl.acm.org/citation.cfm?id=930761
http://dx.doi.org/1721.1/36039
http://dx.doi.org/1721.1/9464
http://dx.doi.org/10.1109/PHYCMP.1994.363690
http://dx.doi.org/10.1007/978-3-540-74510-5_9
http://dx.doi.org/10.1007/978-3-540-74510-5_9
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/268437.268465
http://dx.doi.org/10.1145/62115.62128

	Overview of Backstroke work for the 2010/2011 contract year
	Literature about Reversible Computing
	Applications of reverse execution and program inversion
	Optimistic Discrete Event Simulation
	Debugging
	Undo in applications
	Fault Tolerance
	Automatic parallelization of list operations
	Education and Visualization
	Synchronizing structured data
	Backtracking
	Automatic Differentiation

	Program inversion
	Manual Inversion
	Korf-Eppstein Program Inverter
	LRinv: program inversion based on parsing theory
	The Universal Resolving Algorithm
	Inverting Imperative Programs Through Logic Programming
	Restorative incremental inversion of imperative programs
	Regenerative incremental inversion of imperative programs
	Path-based inductive synthesis
	Reverse execution with constraint solving

	Reversible programming panguages
	Janus
	The R language
	Inv

	Theoretical results about reversible computing
	Thermodynamic properties of reversible computation
	Reversible Turing machines
	Conservative logic
	Space-time tradeoffs in computing reversibly

	Hardware for reverse computation
	The Pendulum Instruction Set Architecture

	Implementing incremental regenerative inversion
	Source-level static single assignment analysis
	The static single assignment analysis
	Algorithm Overview

	Implementing automatic checkpointing of C++ functions
	Interprocedural checkpointing algorithm
	Limitations

	Experimental study: Applying Backstroke to automatically produce optimistic HLA federations
	Applying Backstroke to the Georgia Tech Network Simulator
	References

