
HIGH PERFORMANCE COMPUTING FOR IRREGULAR
ALGORITHMS AND APPLICATIONS WITH AN

EMPHASIS ON BIG DATA ANALYTICS

A Thesis
Presented to

The Academic Faculty

by

Oded Green

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology
May 2014

Copyright c© 2014 by Oded Green

HIGH PERFORMANCE COMPUTING FOR IRREGULAR
ALGORITHMS AND APPLICATIONS WITH AN

EMPHASIS ON BIG DATA ANALYTICS

Approved by:

Professor David A. Bader,
Committee Chair
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Polo Chau
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor David A. Bader, Advisor
School of Computational Science and
Engineering & School of Electrical and
Computer Engineering
Georgia Institute of Technology

Professor Bo Hong
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Richard Vuduc
School of Computational Science and
Engineering
Georgia Institute of Technology

Yitzhak Birk
Electrical Engineering Department
Technion

Professor Srinivas Aluru
School of Computational Science and
Engineering
Georgia Institute of Technology

Date Approved: 13 March 2014

To my parents, Itzhak and Esther, and my twin brother, Yoav,

you have always made me shoot to the stars.

To my wife, Ania,

you are my Northern Star and guide me through the worst of storms.

iii

ACKNOWLEDGEMENTS

I am thankful for the support of my family throughout my graduate studies. Your

support means the world to me and greatly simplified my life.

I want to thank my friends and fellow graduate students. You helped me walk

this long and windy road. I am especially thankful to Rob McColl and David Ediger

who helped me transition from Windows to Linux and had the patience to show me

the basics - it is not easy to teach an old dog new tricks and you were successful.

To my friends, Lluis Miquel Munguia, Aakash Goel, Rajath Prasad, AdamMcLaugh-

lin, Xing Liu, Piyush Sao, Marat Dukhan, Aparna Chandramowlishwaran, Aftab Pa-

tel, and Zhaoming Yin, thanks for the many discussions (over lunch, coffer, or even

a glass water). I learned a lot from you all.

To my advisor, Prof. David A. Bader, thanks for giving me the opportunity to

study a new field. I am especially grateful to David for giving me as much leeway as

I needed to start any new research problem.

I want to thank my committee: Professor Rich Vuduc, Professor Srinivas Aluru,

Professor Polo Chau, and Professor Bo Hong. I had many interesting discussions with

you all - some of the computer related and some not. I enjoyed them all.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xiii

I INTRODUCTION . 1

1.1 Thesis Content . 2

1.2 Big Data Graph Analytics . 4

1.3 Social Network Properties, Challenges, Insights, Opportunities . . . 6

1.4 Dynamic Graph Challenges . 10

1.5 STINGER - A Dynamic Graph Data Structure 10

1.6 My Publications . 12

II PARALLEL APPROXIMATE BETWEENNESS CENTRALITY
FOR DYNAMIC GRAPHS . 14

2.1 Introduction . 15

2.2 Related Work . 17

2.2.1 Brandes’s Algorithm . 17

2.2.2 Parallel Algorithms and Implementations 20

2.2.3 Approximate Algorithms . 21

2.2.4 Dynamic Graph Algorithms for Betweenness Centrality . . . 22

2.2.5 Additional Results . 24

2.2.6 Real World Graph Properties 25

2.3 Dynamic Graph Betweenness Centrality 25

2.3.1 BFS Tree Data Structure and Other Structures 26

2.3.2 Insertion and Deletion Scenarios 27

2.3.3 Same Level . 29

v

2.3.4 Adjacent Level Insertion and Adjacent Level Deletion with
Extra Parent . 30

2.3.5 Non Adjacent Level Insertion and Adjacent Level Deletion
without Extra Parent . 31

2.3.6 Connecting Components Insertion and Disconnecting Compo-
nents Deletion . 34

2.3.7 Insertion and Deletion in Different Connect Component . . . 34

2.3.8 Additional Algorithmic Considerations and Optimizations . . 35

2.3.9 Complexity Analysis . 36

2.4 Results . 36

2.4.1 Speedup Analysis of Dynamic Over Static 38

2.4.2 Strong Scaling . 40

2.4.3 Load Balancing . 41

2.4.4 Large Network Analysis . 46

2.5 Conclusions . 48

2.6 Formal Proofs for Insertions . 49

2.6.1 Same Level Insertion . 49

2.6.2 Adjacent Level Insertion . 50

2.6.3 Non-Adjacent Level Insertion 53

III FASTER BETWEENNESS CENTRALITY 56

3.1 Data Structure Experimentation . 57

3.1.1 Relevant Terminology . 57

3.1.2 Ancestor-List implementation 57

3.1.3 Neighbor-Traversal . 58

3.2 Results . 60

3.2.1 Random Graphs . 61

3.2.2 Coarse Grain Parallelism . 62

3.2.3 Fine Grain Parallelism . 66

3.2.4 Additional Uses . 69

vi

3.3 Conclusions . 70

IV VERTEX COVER CLUSTERING COEFFICIENTS 72

4.1 Introduction . 72

4.2 Related Work . 74

4.2.1 Vertex Covers . 75

4.3 Vertex Cover Clustering Coefficients 76

4.3.1 Clustering Coefficients for Static Graphs 76

4.3.2 Complexity Analysis . 78

4.3.3 Circuits of length 4 and higher 80

4.3.4 Clustering Coefficients in Dynamic Graphs 84

4.4 Empirical Results . 85

4.4.1 Static Clustering Coefficients 87

4.4.2 Static 4-Circuits . 93

4.5 Conclusions . 93

V LOAD BALANCED CLUSTERING COEFFICIENTS 99

5.1 Introduction . 99

5.1.1 Parallel Clustering Coefficient Challenges & and Solutions . . 101

5.2 Related work . 103

5.3 Load Balanced Scalable Clustering Coefficients 106

5.3.1 Edge-Based Approach . 107

5.3.2 Vertex-based approach . 109

5.3.3 Complexity analysis . 110

5.3.4 Vertex Cover Optimization 111

5.3.5 Summary . 111

5.4 Results . 112

5.4.1 Scaling . 114

5.4.2 Speedup Analysis . 115

5.4.3 Summary . 117

vii

5.5 Conclusions . 118

VI DYNAMIC PARALLEL CONNECTED COMPONENTS 124

6.1 Introduction . 125

6.1.1 Related Work . 126

6.2 Tracking Connected Components in a Dynamic Graph 128

6.2.1 The Parents-Neighbors Sub-graph 130

6.2.2 Data Structure and Algorithm Details 131

6.2.3 Data Structure Initialization 132

6.2.4 Insertions and the Subgraph 133

6.2.5 Deletions and the Subgraph 135

6.3 Experimental Methodology . 139

6.3.1 Synthetic Graphs and Experiments 139

6.3.2 First Attempts . 140

6.4 Results . 142

6.4.1 Quantitative . 142

6.4.2 Performance . 143

6.5 Conclusions . 147

VII MERGE PATH . 148

7.1 Introduction . 149

7.2 Merge Path . 152

7.2.1 Construction and basic properties 152

7.2.2 The Merge Path and cross diagonals 154

7.2.3 The Merge Matrix – content & properties 154

7.2.4 The Merge Path and the Merge Matrix 155

7.3 Parallel Merge and Sort . 157

7.4 Cache Efficient Merge Path . 158

7.4.1 Overview . 158

7.4.2 Memory-hierarchy highlights 159

viii

7.4.3 Cache-Efficient Parallel Merge 162

7.4.4 Cache-Efficient Parallel Sort 166

7.5 Related work . 167

7.6 Results . 172

7.6.1 x86 System . 173

7.6.2 HyperCore Architecture . 176

7.7 Conclusions . 179

VIIIGPU MERGE PATH . 181

8.1 Introduction . 182

8.1.1 Introduction on GPU . 183

8.1.2 Parallel Sorting . 184

8.1.3 GPU Challanges . 185

8.2 GPU MergePath . 188

8.2.1 Parallel Merge . 188

8.2.2 GPU Partitioning . 190

8.2.3 GPU Merge . 192

8.2.4 Complexity analysis of the GPU merge 194

8.2.5 GPU Optimizations and Issues 195

8.3 Empirical Results . 195

8.3.1 Floating Point Merging . 200

8.3.2 Integer Merging . 201

8.4 Conclusion . 202

IX A COMPUTATIONALLY EFFICIENT ALGORITHM FOR THE
2D COVARIANCE METHOD . 203

9.1 Introduction . 203

9.1.1 Background . 203

9.1.2 The Covariance Method . 205

9.1.3 Related Work . 208

9.1.4 Deficiencies of the Straightforward Algorithm 209

ix

9.1.5 Parallelization Challenges . 210

9.2 Fine-Grain Multiplication - Efficient Parallelization 212

9.2.1 Product Based Partitioning 212

9.3 The New Algorithm . 216

9.3.1 Combination (∆r,∆c) = (0, 0) 218

9.3.2 Remaining Combinations . 222

9.3.3 Complexity Analysis . 223

9.3.4 Additional Implementation Details 226

9.4 Experimental Results . 227

9.4.1 Experimental Setup . 228

9.4.2 Moderate-Size Problems . 228

9.4.3 Scaling Up . 231

9.5 Conclusions . 232

X CONCLUSIONS . 235

10.1 Impact of Thesis . 235

10.2 Summary of Results . 235

10.3 The “Melting-Pot” . 238

10.4 On the Road to Exascale and Beyond - Future Research Directions . 240

VITA . 258

x

LIST OF TABLES

1 Memory bounds for different betweenness centrality algorithms. P de-
notes the number of cores used by each algorithm. K denotes the
number of roots used in the the approximation. The dynamic algo-
rithms do not depend on the number of cores as these data structures
are maintained as part of the computation. 22

2 Notations used in the chapter. 27

3 Graphs from the 10th DIMACS Implementation Challenge used in our
scaling experiments. The execution times are for a single thread. . . . 37

4 Larger graphs from the 10th DIMACS Implementation Challenge. The
execution times are for a single thread. 47

5 The scenarios for the medium size graphs where the different approach-
es have better performance. The array based approach is denoted
with ◦ and the neighbor-traversal is denoted as �. The first column
denotes the graph size and average edge adjacency. The remaining
columns represent the thread count. The neighbor-traversal approach
dominates the table. 65

6 Memory bounds for different betweenness centrality algorithms. . . . 70

7 Notations in this chapter . 74

8 Graphs from the 10th DIMACS Implementation Challenge that are
used in our experiments, grouped by type and sorted within each group
by vertex count. 86

9 Notations in this chapter . 103

10 Time complexities of both approaches 110

11 Graphs from the 10th DIMACS Implementation Challenge used in our
experiments with the clustering coefficient computation runtimes for
the different algorithms. Labels: SF - Straightforward (40 threads),
V-B - Vertex-Based (40 threads), and E-B - Edge-Based (40 threads). 113

12 The data structures maintained while tracking dynamic connected co-
mponents. 131

13 Graph sizes used in our experiments for testing the algorithm. Multiple
graphs of each size were used. 139

14 Cache misses for parallel merging algorithms assuming a 3-way asso-
ciativity. 169

xi

15 Intel X86 systems used . 172

16 GPU test-bench. 195

17 CPU test-bench. 195

18 Taxonomy of the Covariance Method 206

19 The number of operations needed for each combination based on the
four types of product-window shift. 223

20 Performance analysis of larger instances. Several cases timed out for
the straightforward algorithm timed out. 230

21 New memory bounds for multiple betweenness centrality algorithms. . 236

xii

LIST OF FIGURES

1 The insertion of edge e = (u, v) connects two vertices that are on the
same level in the BFS-like tree of root s. This insertion does not create
any new shortest paths. In the case of edge deletion, no shortest paths
are removed. 29

2 (a) The insertion of edge e = (uhigh, ulow) connects vertices that are
in adjacent levels before the insertion. (b) A BFS traversal is started
at ulow as the shortest paths above this vertex are not affected by the
insertion. (c) Shows the vertices that are affected by the dependency
accumulation - this includes vertices that were not found in the BFS
traversal beginning at ulow. The difference between the insertion and
the deletion, is that the vertices found in the BFS traversal (green
triangle) will have fewer paths to the root instead of additional paths
to the root. 30

3 (a) The BFS-like tree prior to the insertion of edge e = (uhigh, ulow).
(b) The BFS-like tree after the insertion. Note that ulow has a single
parent in the level above it. For deletions, swap between (a) and (b).
(c) The BFS traversal starts at ulow and can possibly “pull-up” vertices
that are closer to the root following the insertion. (d) The dependency
accumulation can find vertices that were not in the BFS traversal. . 32

4 (a) Prior to the insertion, the vertices in different connected compo-
nents. (b) After the insertions, the vertices are in the same connected
component. All the paths between vertices that were previously in dif-
ferent connected components go through the inserted edge. For dele-
tions, (b) is before the deletion and (a) is after the deletion. (c) and
(d) are for insertions. (c) The BFS traversal starts at the vertex that
just got connected to the first connected component. Only vertices in
the second component will be found in the BFS traversal. (d) The
dependency accumulation will go through all the vertices of the sec-
ond connected component and work its way back through the newly
connect edge and all the way up to the root. 33

5 Edge insertion or deletion occurs in a different connected component
than that of the root. 35

6 Six different speedup bar for each graph (from the left to the right) for
single thread execution: 1) average, 2) minimal, 3) the 25th percentile,
4) median, 5) the 75th percentile, and 6) maximal. 39

7 Strong scaling of the coarse-grain parallel implementations: (a) static
graph algorithm and (b) dynamic graph algorithm. The approximation
uses K = 256 roots. Each of the curves is for different network. . . . 40

xiii

8 Scaling of the dynamic graph algorithm. The multiple curves represent
the speedup for different a number of roots as part of the approximation
process. The increase in the number of roots increases the amount of
work each thread and allows for better load-balancing which allows for
better scaling and speedups. 42

9 The subfigures show the relationship between the execution of the al-
gorithms and the number of traversed edges for each of the insertions.
The abscissa is the ratio in the execution time of the dynamic graph
algorithm and the static graph algorithm (with an equal number of
threads). The ordinate is the ratio of traversed edges of the dynamic
graph algorithm and the static graph algorithm (with an equal num-
ber of threads). We show the results for 1, 10, 20, 30, and 40 threads.
These scatter plots show that there is a relationship between execution
time and traversed edges. This caption is relevant for Fig. 10 - Fig 14.
Results in this figure are for as-22july06 network. 43

10 astro-Ph network. 44

11 cond-mat-2005 network. 44

12 cond-mat-2005 network. 45

13 preferentialAttachment network. 45

14 small-world network. 46

15 Six different speedup bar for each graph (from the left to the right):
1) average, 2) minimal, 3) the 25th percentile, 4) median, 5) the 75th
percentile, and 6) maximal. 47

16 Weak scale testing for thread counts of 1 to 10. Lower is better. . . . 63

17 Weak scale testing for thread counts of 5 to 40 in multiples of 5. Lower
is better. 63

18 Execution time for approximate betweenness centrality on the Cray
XMT2 for a considerably sparse graph. An RMAT-24 graph is used
with an average edge degree of 8. 256 roots were used as defined in the
HPCS SSCA [4] specifications. 67

19 Execution time for approximate betweenness centrality on the Cray
XMT2 for a slightly denser sparse graph. An RMAT-24 graph is used
with an average edge degree of 64. 256 roots were used as defined in
the HPCS SSCA [4] specifications. 68

20 Execution time of the fine grain parallelism using the SNAP package. 69

21 All the legal vertex covers of the triangle made up of u, v, w. The
vertices in the vertex cover are marked with an additional circle. . . . 79

xiv

22 All legal vertex covers of the square made up of u, v, w, and x. Ad-
ditional edges that are non-relevant have been removed. There are
additional vertex covers for square. However, these follow one of the
presented patterns. The vertices in the vertex cover are marked with
an additional circle. 81

23 The cross-vertices (u, x) and their common neighboring vertices found
in adjacency intersection. These neighbors are divided into groups:
those in the vertex cover and those not in the vertex cover. The vertices
in the vertex cover are marked with an additional circle. 83

24 This chart shows the global clustering coefficient value for graphs from
Table 8. 87

25 The ordinate presents the ratio of time spent finding the vertex cover
as a function of the total time spent computing the vertex cover and
the clustering coefficients. The ordinate is a logscale. An additional
blue curve has been placed at 2.5%. The bars of about 2/3 of the
graphs are below this curve. 88

26 The ordinate is the size ratio of the vertex cover, V̂ , and the vertex set
V . Note that |V̂ | ≤ |V |. An additional blue curve has been added at
70%. The bars of about 3/5 of the graphs are below this curve. . . . 89

27 The ordinate is the time ratio of the new vertex cover-based clustering
coefficients algorithm and the original clustering coefficient algorithm.
The time of the new algorithm includes both the time needed to find
the vertex cover and the time for computing the clustering coefficients.
All bars below the blue curve occur when the new algorithm is faster,
as such lower is better. 90

28 The ordinate is the ratio of the number of intersection that are neces-
sary by the new algorithm in comparison with the original algorithm. 91

29 The ordinate presents the ratio of time spent finding the vertex cover
as a function of the total time spent finding all the 4-circuits. Note
that the ordinate is a log scale. The abscissa are the Clustering graphs
from Table 8. 94

30 The ordinate is the time ratio of the new vertex cover based clustering
coefficients algorithm and the original clustering coefficient algorithm.
The time of the new algorithm includes both the time needed to find the
vertex cover and the time for computing the clustering coefficients. The
blue curve denotes equal run-times for the new and original algorithm.
All bars below the blue curve state the new algorithm is faster, as such
lower is better. 97

xv

31 The ordinate is the ratio of the number of intersection that are neces-
sary by the new algorithm in comparison with the original algorithm. 98

32 (a) Load distribution among parallel processors. (b) Shows the maxi-
mum attainable speedup. 102

33 The ordinate is the ratio between the thread with the least amount
of work with the thread with the most amount of work based on the
number comparisons required by the thread in the adjacency list inter-
section. The abscissa are the graphs used. Note that for all the graphs
the edge-based approach achieves almost perfect partitioning. 115

34 The abscissa is the number of threads used. The ordinate is the number
of comparisons required for a specific thread count. Two curves are
shown for each of the algorithms - for threads that receive the most
and least number of comparisons. The straightforward partitioning is
the lower and upper for all the figures. 119

35 Speedup obtained with 40 cores for the different algorithms 120

36 The ordinate for all the subfigures is the speedup as a function of the
number of threads (the abscissa). 121

37 Speedup obtained for 40 cores using straightforward division algorithm
in comparison with the estimated speedup. 122

38 Percentage of time spent in both the load balancing phase vs. the list
intersection phase for both approaches. 123

39 Average number of inserts and deletes in PN array for batches of 100K
updates for RMAT-22 graphs. The subfigures are for different values
of threshPN . Note that the ordinate is dependent on the specific bar
chart. The charts for RMAT-21 graphs had very similar structure and
have been removed for the sake of brevity. 141

40 Average number of unsafe deletes in PN data structure for batches
of 100K updates as a function of the average degree (x-axis) and
threshPN (bars). 141

41 Strong scaling results on RMAT-22 graphs with different average de-
gree as a function of the number of threads. Results include three
graphs at each average degree. 144

42 Speed up of the new algorithm over performing parallel static recompu-
tation after each batch on three different RMAT-22 graphs with each
average degree as a function of the number of threads. 145

43 Fraction of the update time spent updating connected components over
time spent updating the graph structure and connected components. 146

xvi

44 Speed up over performing static recomputation after each batch on
scale 24 graphs for three graphs at each edge factor using 64 threads. 147

45 Merge Matrix and Merge Path. (a) The Merge Matrix is shown with
all the values explicitly computed. The Merge Path is on the boundary
between the zeros and the ones. (b) The cross diagonals in a Merge
Matrix are used to find the points of change between the ones and the
zeros, i.e., the intersections with the Merge Path. 151

46 Merge Matrix for the cache efficient algorithm. The yellow circles de-
pict the initial and final points of the path for a specific block in the
cache algorithm. 163

47 Cache-efficient parallel sort first stage. Each cache sized block is sorted
followed by parallel merging . 166

48 Merge Path speedup on a 12-core system. These results can be found
in [115]. The different color bars are for different sized input arrays.
1M elements refers to 220 elements. For each array size, the arrays are
equisized. 171

49 Merge Path and Segmented Merge Path speedup on a 40-core system.
1M elements refers to 220 elements. For each array size, the arrays are
equisized. For the segmented algorithm, the Merge Matrix is divided
into 10, 5, and 2 segments. 173

50 Schematic view of the Hypercore for an 8-core system. The memory
banks refer to the shared memory. The Hypercore also has DRAM
memory which is not shown in this schematic. 176

51 Speedup of our algorithm on Plurality’s Hypercore [3] system. 177

52 Speedup comparison of the regular and segmented algorithms on the
Hypercore. A blue curve, Equal, has been added to this chart to de-
note when the speedups of the algorithm are equal. All curves above
Equal mean that the regular algorithm outperforms that segmented
algorithm. All curves below Equal mean that the segmented algorithm
is more efficient. 177

53 Illustration of the MergePath concept for a non-increasing merge. The
first column (in blue) is the sorted array A and the first row (in red)
is the sorted array B. The orange path (a.k.a. Merge Path) represents
comparison decisions that are made to form the merged output array.
The black cross diagonal intersects with the path at the midpoint of
the path which corresponds to the median of the output array. 186

xvii

54 Diagonal searches for a single window of one SM. (a) The window is in
its initial position. Each SP does a search for the path. (b) The window
moves to the farthest position of the path and the new diagonals are
searched. 188

55 Merging one million single-precision floating point numbers in Merge
Path on Fermi while varying the number of thread blocks used from
14 to 224 in multiples of 14. 196

56 The timing of the global diagonal search to divide work among the
SMs compared with the timing of the independent parallel merges per-
formed by the SMs. 196

57 The speedup of the OpenMP implementation of Merge Path on two
hyper-threaded quad-core Intel Nehalem Xeon E5530s over a serial
merge on the same system. 197

58 The speedup of the GPU implementations of Merge Path on the NVID-
IA Tesla and Fermi architectures over the x86 serial merge. 197

59 Speedup comparison of merging single-precision floating point numbers
using Parallel Merge Path on 16 threads, Merge Path on Fermi (112
blocks of 128 threads), and thrust::merge on Fermi. Size refers to the
length of a single input array in elements. 198

60 Speedup comparison of merging 32-bit integers using Parallel Merge
Path on 16 threads, GPU Merge Path on Fermi (112 blocks of 128
threads), and thrust::merge on Fermi. Size refers to the length of a
single input array in elements. 198

61 Two windows, silver (lighter) and blue (darker), and their overlapping
sections. The black boxes around A3,3 and A4,4 refer to a product that
needs to be computed for both windows. 207

62 Given a 128×128 input window, this chart shows the expected number
of operations and amount of memory required as a function of a square
window. The x-axis denotes the window length=width. The dashed
curve denotes the number of elements in the estimated covariance ma-
trix. The solid curve denotes the number of floating operations need
to compute the estimated covariance method for a given problem size
using the straightforward formulation. 211

xviii

63 The following 9 × 9 output matrix is for a 3 × 3 sliding window. The
output matrix is partitioned into the different indices of the combi-
nations. Different combinations affect non overlapping sections of a
specific diagonal. Each combination is depicted using a different color.
The tuples in the matrix refer to the the combination. All the combi-
nations in POS have a solid colored background and the combinations
of NEG have white dots in the background. 214

64 Product centric approach for combination (∆r,∆c) = (0, 0). These
windows slightly vary (different height and width) for different com-
binations. (a)-(d) refer to the exact location in the output matrix.
(e)-(h) refer to the set of products that are needed in order to compute
the indices in (a)-(d). 215

65 Zoom-in on the overlapping windows. a, b, c, and d denote unique el-
ements that need to be added/subtracted individually with the new
approach. 222

66 Given a 64 × 64 input matrix: (a) Reduction (factor) in additions
and multiplication relative to the straightforward algorithm. (b) Ac-
tual speedups based on the execution of three different parallel algo-
rithms (with different thread counts): straightforward, multiplication-
reducing only algorithm [47, 76], and the new algorithm. No more
than 4 threads are displayed for the new algorithm for figure-scaling
purposes. Its speedup scales almost linearly to 40 threads. 222

67 Strong scaling speedup of the new algorithm for multiple window sizes. 225

68 Given a 64 × 64 input matrix with a 26 × 26 window: (a) theoretical
number of multiplications for each combination of the new algorithm,
(b) run times for each combination of the new algorithm, and (c) run
times for each combination using the previous combination-based algo-
rithm [47]. There are 676 combinations that are presented in all these
sub-figures. Note the different units and scales of the ordinate for the
different sub-figures. 227

69 Speedup of the our new algorithm for a 64 × 64 input matrix with
square windows relative to the straightforward sequential algorithm
for with the same window size. x-axis is the window size. The speedup
curves are in multiple of 4 threads. 229

70 Analytic interaction diagram. 239

xix

CHAPTER I

INTRODUCTION

As a PhD student my research has focused on designing algorithms for Social Net-

works Analytics (SNA), primarily graph based analytics, and finding new approaches

to applying these to massively-threaded systems. Throughout this endeavor, we have

constantly been on the lookout on the impact of the algorithm and application on the

architecture and vice-versa. Though our focus was not algorithm and architecture

co-design, understanding the architecture has been useful in achieving better utiliza-

tion and in fitting the algorithm to the architecture. This is fundamental for high

performance computing.

While my work has focused on SNA, I had a chance to work on several different

problems. It was interesting to see how different problems are in fact connected; and

via several “paths” . For example, Merge Path [115], a parallel merge algorithm that

I had started to develop prior to my arrival at Georgia Institute of Technology, was in

fact a building block for clustering coefficients which requires sorted list intersection.

Sorted list intersection is a similar operation to merging. As such, Merge Path [115]

and its GPU counterpart, GPU Merge Path, [73] can be used to increase performance

and load balance the computation of clustering coefficients. This insight, made me

realize that is crucial for me to always be on the watch for the connections between

different algorithms and data structures. On more than occasion I found that an

optimization for algorithm A may also be applicable to algorithm B.

1

1.1 Thesis Content

This chapter is mostly a motivation for my work. I start off with a brief introduc-

tion to Big Data. This will be followed by a discussion of graph/network proper-

ties that played a pivotal role in understanding the dynamics of real world data.

This will be followed by a discussion on the challenges of dealing with dynamic (aka

streaming) data sets. I will then briefly introduce a new dynamic graph data struc-

ture/representation for dynamic graphs.

Chapters 2 and 3 discuss our contribution for the computation of Betweenness

Centrality. Betweenness Centrality (BC) [67] is a widely used analytic used for find-

ing key players in a social network. In Chapter 2, we present a new algorithm for

computing BC for dynamic graphs that is an extension of Brandes’s [30] static graph

algorithm. Our dynamic algorithm is several hundred times faster that the static

algorithm for edge insertion and deletion. This chapter discusses both exact and

approximate computations of betweenness centrality with an additional emphasis on

parallelization. At this time, our algorithm is the only dynamic betweenness cen-

trality algorithm to support both approximation and parallelization. The work in

Chapter 2, was in fact preceded by two of our publications [77] and [74]. In [77],

we did not deal with either parallelization or approximation. This was partially due

to the increased storage complexity of the dynamic approach. This required us to

reevaluate the data structures used by Brandes’s algorithm. Which led to the de-

velopment of a new approach for computing betweenness centrality [74] - Chapter

3. This approach can be applied to multiple flavors of betweenness centrality and

it increases scalability, reduces memory footprint, improves cache usage, increases

problem size that can be handles, and can potentially offer better loading balancing

(implementation dependent). Our algorithm also proved to be twice as fast (per core)

then previously published algorithm for x86 systems. We implemented several BC

algorithms on two shared-memory systems including a 40-core Intel x86 system and

2

the Cray XMT2 [93]. Our new approach can be applied to additional betweenness

centrality algorithms: parallel[15, 104], distributed [58], and approximate [17].

Chapters 4 and 5 present several novel optimizations for the efficient computation

of Clustering Coefficients. Clustering coefficients is another widely analytic thats

state how tightly bound vertices are based on the number of closed triangles that they

belong [139]. In Chapter 4 we present a new approach to compute clustering coefficient

using vertex covers. This approach avoids counting the same triangle multiple times

and can be added to the well known lexicographical approach that reduces the times

a triangle is counted by a factor of two. We showed that our algorithm can be

extended to count larger circuits as well. From this optimization, we were able to

better understand the load imbalance caused by straightforward parallelization of

clustering coefficient that is due to power-law distribution of the edges. In Chapter

5 we present two unique load balancing techniques for clustering coefficients - these

approaches trade off accuracy of the load-balance with storage requirements. Our

new algorithms are several times faster than previous implementations. Further, our

two optimizations can be combined, thus achieving even higher speedups.

Chapter 6 shows a new data structure and algorithm for tracking connected com-

ponents in dynamic graphs. This algorithm takes into consideration the small-world

property and shrinking diameter properties and shows that it is possible (and most

likely beneficial) to track the connected components using O(1) memory for each

vertex. Our algorithm can easily keep up with the fastest update rates that current

social networks produce on a shared-memory system.

Chapters 7 and 8 present a novel approach for parallel merging of sorted data.

We dubbed this approach Merge Path. Chapter 7 discusses a visual and intuitive

approach for parallel merging two sorted arrays. While the resulting partition and

the computational complexity are similar to those of certain previous algorithms. The

3

insights gained from the new approach have allowed the design of a synchronization-

free, cache-efficient merging (and sorting) algorithm. The first of its kind. In Chapter

8 we extend the Merge Path concept to the GPU and create the first of a kind GPU

merging algorithm. A brief summary of our merging results: 32X−35X speedup on a

40 core system, first of its kind cache-aware merge, and a 50X speedup on NVIDIA’s

Fermi GPU over an Intel core. In fact, merging and adjacency list intersection (which

is a key building of clustering coefficients) are similar operations. Thus, Merge Path

can be extended to adjacency list intersection if needed.

Chapter 9 presents anew algorithm for computing the 2D estimated covariance

matrix which avoids many redundant multiplications and additions without increasing

memory requirements or communication costs. The sequential algorithm that is over

40X faster than the straightforward implementation. Our new algorithm is highly

scalable due to low storage requirements and no communication costs.

1.2 Big Data Graph Analytics

Graph analytics and data structures have received a lot of attention for the last 50

years. Nonetheless, there are still many research opportunities in optimizing them.

These optimizations include improving performance (per core), increasing parallel

scalability, and dealing with dynamic and larger data sets. All these are important

in this era of Big Data.

Big Data has been used to represent a wide range of topics (and such has become

some what ubiquitous). Recently it was defined in [52] as the 3 V’s: “"Big data is

high V olume, high V elocity, and/or high V ariety information assets that require new

forms of processing to enable enhanced decision making, insight discovery and process

optimization.” This definition is useful as it presents the key challenges associated

with Big Data. A fourth V has also been added, V eracity.

• Volume - the size of the data is so massive that in most cases only single iteration

4

over the data is possible or a single iteration over the incoming edges is possible.

Further, the size of the data limits the amount of memory that an algorithm

can use as the data utilizes a significant part of the memory. For larger data

• Velocity - the rapid updates to the data means that the recomputing an analytic

is simply not feasible as by the time a recomputation has complete, it is in fact

no longer relevant.

• Variety - each data set will have its unique properties such as the distribution

of edges, rate of updates, size of the data set. Algorithms need to be designed

taking these into consideration.

• Veracity - one considering a data set, it is necessary to ask is there an actual

truth hidden within the data and if it can be extracted by an algorithm.

The above presented the generic challenges that Big Data analysts deal with daily

when designing new metrics and analytics. This thesis focuses on the topic of social

networks analysis for massive graphs with millions of vertices and billions of vertices,

such as Facebook and Twitter. The size of these massive graphs present numerous

algorithmic challenges, especially given that the networks are constantly updated by

events such as new friendships and the joining of new members. In many cases , these

events do not impact the entire network, but rather they impact a small local area of

the network.

Static graphs algorithms such as connected-Components [129], clustering coeffi-

cients [139], single-pair-shortest-path [45, 66, 137], modularity [111], and betweenness

centrality [67, 30] are used for graph analysis. Some of these algorithms require sig-

nificant computational resources.

This has led to the development of algorithms for dynamic graphs, a.k.a. stream-

ing graphs. My work has focused on the creation of these types of algorithms. I will

present in this thesis several algorithms that I have developed for dynamic graphs.

5

The first is betweenness centrality and the second is connected components for stream-

ing graphs. I will also briefly discuss an optimization made for computing dynamic

clustering coefficients.

In addition to the dynamic algorithms, my work has also focused on improving per-

formance of several analytics - both sequential and parallel implementations. These

optimizations include modifying data structures, reducing computational overhead,

and improving load-balancing.

1.3 Social Network Properties, Challenges, Insights, Opportu-
nities

Before moving to the chapters in the thesis that present my algorithmic optimizations,

I will present several real-world graph properties that were instrumental in design-

ing the new algorithms. These properties present challenges; however, understanding

these properties offered us insights and opportunities to overcome the hardship. Sev-

eral of our optimizations in fact can be applied to more general type networks ,

such as communication and transportation networks, that only have a subset of the

properties.

• Small World property - the first work to discuss the small-world property is due

to Milgram [109]. Milgram suggests that people within the United States are

not likely to be separated by more than six steps. This was later reconfirmed

in [138] for additional networks.

– Challenge - algorithms requiring three to four hops from a given a vertex

will may require to access millions to billions of vertices. This is not

computationally scalable. We do note that vertices one or two hops away

is currently feasible.

– Insight - if we consider a BFS-like traversal, it is likely that there will

be many edges between vertices that are at an equal distance from the

6

root (edges between vertices in the same level). These edges do not have

shortest paths going through them.

– Opportunity - the insight greatly motivated our work on dynamic between-

ness centrality as we questioned the change to the underlying graph due to

an edge insertion or deletion . Our hope was that there would be a large

number of edge updates in the same level of a BFS-like tree, which in turn

requires little to zero updating of the data structures.

• Shrinking graph diameter - in [100] it is shown that as graphs evolve over time,

their diameter decreases and the graphs become denser.

– Challenge - as the diameter decreases, algorithms requiring vertices at

three to four away become even more computationally demanding.

– Insight - if we consider a BFS-like tree with a given, many of the new edges

will connect vertices that are an equal distance to the root. As such, these

edges will not have any shortest paths going through them.

– Opportunity - for betweenness centrality, if a new edge does not create any

new shortest paths. For dynamic connected components we developed a

new data structure that benefits from the graph becoming denser.

• Power law distribution - in [22, 31, 63] it is shown that many networks follow a

power law distribution for the number of adjacencies a vertex. This means that

few vertices have many adjacencies and many vertices have a small number of

adjacencies.

– Challenge - parallel algorithm that partition the workload based on vertex

list can potentially suffer from workload imbalance as a single vertex (or

a set of vertices) with a a large adjacency set can cause a single thread to

be the execution bottleneck.

7

– Insight - by using a parallel prefix summation we can estimate the workload

for a specific phase in the algorithm and offer better load-balancing. For

massively parallel systems like the Cray XMT, the workload imbalance is

not initially felt because of the large number of supported threads. As the

thread count is increased for a specific data set, the workload imbalance is

increased.

– Opportunity - we recognized this workload imbalance for both BFS and

Clustering Coefficients [138]. We were able to show that the parallel prefix

summation and the additional partitioning is not computationally demand-

ing. Further, we show that the additional overhead introduced is preferable

over the naive partitioning that the causes the workload imbalance.

• One massive connected component- In Broder et al. [32] the authors show that

World Wide Web (WWW) has one connected component that contains 90% of

the vertices in the graph.

– Challenge - a single update to the graph may require updating the entire

connected component which is almost equivalent to doing a full static graph

recomputation.

– Insight - for most networks, it is unlikely that we will have deal with

connecting or disconnecting two different connected components of size

O(V). Typically, a component of size O(1) will be connected with a large

component.

– Opportunity - the reality is that many analytics only require doing “local”

updates that are within a small proximity of the modification. For example,

when connecting two components when one of them is the large component

and the other is a small component, only the small component needs to be

traversed.

8

• High velocity updates - social networks are constantly changing, whether it be

new relationships between or new members joining the network, these updates

can potentially arrive at such high frequencies that it is not possible to compute

the analytic from scratch.

– Challenge - updates come in at a faster pace than a full recompute can be

handled.

– Insight - maintaining state in between updates can help reduce touched

unaffected parts of the graph.

– Opportunity - create algorithms and data structures that can be updated

at a fast pace. Further, do only the bare essential computations that offer

new insights on the analytic. Avoid redundant computations.

• Sparsity - many real networks are considerably sparse with an average degree

that is a constant O(1) or logarithmic O(log(V)). The average degree (relation-

ships) for Facebook [7] is 189 [136], which is very small compared to the number

of people in the network.

– Challenge - algorithms that skim over all possible vertex pairs are wasteful

as the |E| << |V |2). Algorithms that are matrix-multiplication based are

also costly.

– Insight - do not add layers of abstraction to the graph. Use the edge list

as best as possible for a specific analytic and its implementation.

– Opportunity - clustering coefficients can be computed in several fashions.

The time complexity of one approach is dependent on the vertex with the

highest adjacency in the power of two. By adding a pre-algorithm com-

putation phase, we were able to remove redundant computations between

15%− 40%.

9

1.4 Dynamic Graph Challenges

The type of events that occur for dynamic graphs include edge insertion, vertex

insertion, edge deletion, and vertex deletion. Algorithm that support both edge

insertion (incremental) and edge deletion (decremental) are considered fully dynamic

algorithms. If the algorithm supports one of these operations, it is partially dynamic.

Streaming graph algorithms present several challenges which include, 1) Correct-

ness - the algorithm should output an exact state of the desired analytic. We note

that for some analytics, approximate values are also acceptable. 2) Parallelism - as

system resources are increased it is also desirable that the analytic utilize the new

resources so that updates can be dealt with at the rate they come in. Synchronization

and communications need to be minimized. 3) Time complexity - obviously if the

time complexity of the dynamic graph algorithm is greater than the time complexity

of the static graph algorithm, it is better to reuse the static graph algorithm. As

such it is the complexity of the dynamic algorithm should not exceed of the static

algorithm. 4) Batching - given the high rate in which events occur, these events are

grouped into units known as batches. On the one hand, batches offers an opportunity

to increase parallelism by dealing with them concurrently; on the other hand this

requires finding the appropriate synchronization methods.

1.5 STINGER - A Dynamic Graph Data Structure

Effective implementation of a dynamic graph requires an efficient data structure for

representing the graph. STINGER is such a data structure [18, 54]. STINGER is a

compromise between massive storage and fast updates of an adjacency matrix and the

minimal storage and static nature of CSR (Compressed Sparse Row) representation.

Further, STINGER is designed for parallelism such that multiple threads can read

and update the graph concurrently [55].

For dynamic graph implementations, updating the graph representation must be

10

included as part of the execution time. For a CSR representation, this might require

recomputing the prefix summation array and can thus become a dominant factor in

the update time. In our implementation, the update is included in the execution.

STINGER can support over 1M graph updates per second [55].

STINGER is free and open source software co-developed by our group. STINGER

has been used to implement a variety of dynamic graph algorithms including cluster-

ing coefficients, community detection, connected components [107], and betweenness

centrality [77].

11

1.6 My Publications

Refereed Journal Papers:

1. O. Green, and Y. Birk, “Scheduling Directives: Accelerating Shared-Memory

Many-Core Processor Execution”, to appear Parallel Computing

Refereed Conference Papers:

1. O. Green, L.M. Munguia, D. Bader, “Load Balanced Clustering Coefficients”,

ACM Workshop on Parallel Programming for Analytics Applications (PPAA),

PPoPP, Orlando, Florida, 2014

2. R. McColl, O. Green, D. Bader, “A New Parallel Algorithm for Connected

Components in Dynamic Graphs”, IEEE International Conference on High Per-

formance Computing, Hyderabad, India, 2013

3. O. Green, Y. Birk, “A Computationally Efficient Algorithm for the 2D Co-

variance Method”, ACM/IEEE International Conference on High Performance

Computing, Networking, Storage and Analysis, Denver, Colorado, 2013

4. O. Green, D. Bader, “Faster Clustering Coefficient Using Vertex Covers”, 5th

ASE/IEEE International Conference on Social Computing, Washington DC,

2013

5. O. Green, D. Bader, “Faster Betweenness Centrality Based on Data Structure

Experimentation”, 13th International Conference on Computational Science,

2013

6. O. Green, and Y. Birk, “Scheduling Directives for Shared-Memory Many-Core

Processor Systems”, International Workshop on Programming Models and Ap-

plications for Multicores and Manycores, PPoPP, Shenzhen, China, 2013

12

7. O. Green, R. McColl, D. Bader, “A Fast Algorithm for Incremental Between-

ness Centrality”, ASE/IEEE 4th International Conference on Social Computing,

Amsterdam, Holland, 2012

8. O. Green, R. McColl, D. Bader, “GPU Merge Path - A GPU Merging Algo-

rithm”, ACM 26th International Conference on Supercomputing, Venice, Italy,

2012

9. S. Odeh, O. Green, Z. Mwassi, O. Shmueli, Y. Birk, “ Merge Path - Parallel

Merging Made Simple”, Multithreaded Architectures and Applications (MTAAP)

Workshop, IEEE 26th International Parallel & Distributed Processing Sympo-

sium (IPDPS), 2012

Non-refereed papers

1. “Detecting Insider Threats in a Real Corporate Database of Computer Usage

Activity” , 19th ACM SIGKDD international conference on Knowledge Discov-

ery and Data Mining, 2013

2. O. Green, L. David, A. Galperin, Y. Birk, “Efficient parallel computation of the

estimated covariance matrix”, arXiv, 2013

3. L. David, A. Galperin, O. Green, Y. Birk, “Efficient parallel computation of the

estimated covariance matrix”, IEEE 26th Convention of Electrical and Electron-

ics Engineers in Israel (IEEEI), 2010

13

CHAPTER II

PARALLEL APPROXIMATE BETWEENNESS

CENTRALITY FOR DYNAMIC GRAPHS

This chapter is an extension of the paper: O. Green, R. McColl, D. Bader, “A Fast

Algorithm for Streaming Betweenness Centrality”, ASE/IEEE 4th International Con-

ference on Social Computing, Amsterdam, Holland, 2012.

The appearance of large networks (including social, communication, and trans-

portation) has created a need for fast business intelligence analytics that can deal

with the frequent updates that occur to the network without hindering real-time

monitoring. Static graph algorithms permit capturing information for different snap-

shots of the network, though in practice this approach is undesirable as by the time

the computation has completed the information is no longer relevant. In contrast,

dynamic graph algorithms can provide significantly faster update times as they can

benefit from “local” changes that require fewer modifications - allowing for faster

update times. The above is especially true for the computationally demanding be-

tweenness centrality analytic which is used to find key players in a network based on

the number of shortest paths that these are on. In this work we present a novel al-

gorithm for computing betweenness centrality for dynamic graphs. As our algorithm

extends a widely used a static graph algorithm it can benefit from existing optimiza-

tions. We show how to apply approximation and parallelization to our algorithm

that allows for further reduction of the execution time. Using multiple real-world

networks, taken from the DIMACS 10 challenge, we show that our dynamic graph

algorithm is several orders of magnitude faster than the static graph algorithm (up

to 7990X faster). The output of the dynamic algorithm is equal to the output of the

14

static graph algorithm.

2.1 Introduction

Betweenness centrality has been widely used for social network analysis since its

introduction by Freeman [67]. Betweenness centrality finds key players in the network

based on the All-Pairs Shortes-Paths (APSP). Several applications that have used

betweenness centrality include: community detection [71], brain network analysis

[119], and finding bottlenecks in communication networks [36].

With the introduction of massive social networks such as Facebook and Twitter

that have over 100 million users and thousands of updates per second, betweenness

centrality has required numerous algorithmic optimizations which include paralleliza-

tion (shared-memory and distributed systems at different parallel granularities), ap-

proximation, reduction in storage complexity, and the creation of dynamic graph

algorithms . All these are important as betweenness centrality is computationally

demanding.

In this work we show how to compute betweenness centrality for dynamic graphs

using parallel and approximation optimizations in an approach that extends Brandes’s

algorithm [30]. The similarity of the static graph and dynamic graph algorithms allows

applying existing optimizations.

Our contributions are as follows:

• Design and implementation of a dynamic graph algorithm. Our dynamic graph

algorithm maintains state in between iterations.

– The dynamic graph algorithm is correct for both exact and approximate

betweenness centrality.

– We improve the storage complexity for the exact algorithm to O(V 2) from

its previous complexity, O(V · (V + E)) [77]. The improved storage com-

plexity is due to a performance optimization by [74].

15

– Our algorithm supports both edge insertions and deletions - both will be

discussed. Proofs in this chapter will be for the insertion; however, these

proofs require little modifications to support deletions.

• We are the first to show a parallel approximate betweenness centrality dynamic

graph algorithm. Extending the dynamic graph algorithm to support paral-

lelization and approximation:

– Our algorithm supports the different parallel granularities of previous im-

plementations.

– The storage complexity of of the approximate dynamic algorithm is O(K ·

V), where K are the number of roots that will be used in the approxi-

mation. For real world graphs K << V - which allows analyzing large

graphs.

• We show performance results for our coarse-grain parallel implementation of

the static graph and dynamic graph algorithms:

– We show that the coarse-grain parallel approach can be implemented on

a shared memory many-core system - until recently this was not possible

because of storage requirements. Our implementation achieves better scal-

ability than previous fine-grain approaches is it does not require atomic

instructions and has low communication costs.

– We show that the dynamic graph algorithm is faster than using the static

graph algorithm. The dynamic graph algorithm can be up to 7990X faster

than the doing a recomputation using the static algorithm.

– We show that the speedup of the dynamic graph algorithm is dependent

on the number of traversed edges. This is a key issue for load balancing of

this algorithm.

16

The remainder of the chapter is organized as follows. Section 2 presents the related

works. Section 3 introduces our new algorithm and the data structures we maintain.

We discuss both edge insertions and deletions. The formal proofs for the algorithms

in this section can be found in Appendix A. In Section 4 we show performance results

of our new algorithm. This includes a comparison of the dynamic graph algorithm

with the static graph algorithm and parallel scaling results. Section 5 summarizes

our contributions and presents additional avenues of research for future work.

2.2 Related Work

Using notations from [67], the number of shortest paths between two vertices s and t

is denoted as σs,t and the number of shortest paths between two vertices s and t that

go through v is denoted as σs,t(v). The betweenness centrality value of a vertex v is:

CB(v) =
∑
s 6=t6=v

σst(v)

σst
. (1)

2.2.1 Brandes’s Algorithm

Brandes [30] presents a fast algorithm for computing betweenness centrality based on a

dependency accumulation technique which accesses the vertices in the reverse order of

the BFS (Breadth First Search) traversal. The dependency accumulation essentially

reduces the number of additions in the pair-wise summation as it avoids doing any

additions between vertices that are not on the shortest paths. At this time, Brandes’s

algorithm has the best known time complexity for computing betweenness centrality

of O(V · (V + E)). The storage complexity of Brandes’s algorithm is O(V + E). In

recent work it was improved to O(V) [74].

Brandes’s algorithm for computing betweenness consists of four stages. The first

two stages, Stage 0 and Stage 1, are data structure initialization stages, where Stage

0 is a global initialization where the betweenness centrality value of each vertex is

initialized to zero and is executed exactly once. The remaining stages will be executed

17

once for each vertex. Stage 1 initializes the data structures that will be used in Stages

2 and 3.

Stage 2 is a BFS traversal from a given root. The BFS traversal in this algorithm

includes several modification that are not found in a regular BFS [45] that simply

finds the depth of the vertices: 1) each vertex maintains a list of the parents in the

level above it 1 and 2) once all the neighbors of a vertex have been traversed, it is

placed in a stack that is used in Stage 3. The stack maintains the reverse ordering of

the queue.

Stage 3 computes the betweenness centrality values by using the dependency ac-

cumulation technique. Brandes defines the pair-dependency for a pair of vertices s, t

is defined as follows:

δst(v) =
σst(v)

σst
. (2)

In [30], Brandes proves the following recursive relationship (where Ps(w) is the

parent list for vertex w in the tree with s as its root):

δs(v) =
∑

{w|v∈Ps(w)}

σsv
σsw

(1 + δs(w)). (3)

The immediate outcome of this is that it is no longer necessary to sum all the pair-

dependencies as they follow a recursive relation. In addition to this, it is possible to

compute each of the δs(w), by computing the shortest path from the root, s, to the

rest of the graph using a single source shortest path algorithm.

2.2.1.1 Complexity Analysis

The time complexity of the BFS is O(V +E). The time complexity of the dependency

accumulation is O(V +E) - as it is bound by number of traversed parents O(E) and

vertices O(V). For the exact algorithm, the BFS and dependency accumulation is

1In [104], the parent list is swapped for a list of children. This is useful for parallel implementa-
tions. Further, the children list approach is preferable for directed graphs

18

Algorithm 1: Brandes’s algorithm for computing betweenness centrality [30].
The algorithm consists of four stages.

Stage 0 - global initialization
CB [r] ← 0, r ∈ V ;
for r ∈ V do

Stage 1 - local initialization
S ← empty stack; Q← empty queue;
P [w]← empty list, w ∈ V ;
σ[t]← 0, t ∈ V ; σ[r]← 1;
d[t]←∞, t ∈ V ; d[r]← 0;
enqueue r → Q;
Stage 2 - BFS traversal
while Q not empty do

dequeue v ← Q;
push v → S;
for all neighbor w of v do

// w found for the first time
if d[w] =∞ then

enqueuew → Q;
d[w]← d[v] + 1;

if d[w] = d[v] + 1 then
σ[w]← σ[w] + σ[v];
append v → P [w];

Stage 3 - dependency accumulation
δ[v] ← 0, v ∈ V ;
while S not empty do

pop w ← S;
for all v ∈ P [w] do

δ[v]← δ[v] +
σ[v]
σ[w]

(1 + δ[w]);

if w 6= r then
CB [w]← CB [w] + δ[w];

computed for each vertex. As such, the total time complexity is O(V 2 + V · E).

The storage requirements for computing betweenness centrality is the sum of the

storage requirements of the stack, queue, arrays, and the parent lists. All the data

structures except for the parent lists require O(V) memory. The parent list requires

O(E) memory as the maximum number of parents a vertex is bound by the number

of edges it has. As such Brandes’s algorithm has a storage complexity of O(V + E).

In [74], the authors show an additional optimization that shows how to avoid

maintaining the parent list, reducing the memory complexity to O(V). This new

approach is called the neighbor-traversal approach.

19

2.2.2 Parallel Algorithms and Implementations

The performance and storage requirements of parallel algorithms are highly implemen-

tation dependent. In [135] a taxonomy of parallel betweenness centrality is presented.

This taxonomy divides betweenness centrality implementations based on their paral-

lel granularity: 1) coarse-grained, 2) medium-grained, and 3) fine-grained. In fact the

storage complexity of the algorithm is dependent on the parallel granularity. Table 1

presents the storage complexity for multiple betweenness centrality algorithms.

Until recently, the storage requirements of the coarse-grain approach, P · (V +E)

where P is the number cores used, limited its scalability which made the fine-grain and

medium-grain approaches preferable. With the reduction, in storage requirements

of the coarse-grain approach is also feasible for large thread counts. Deciding on

the actual parallel implementation is system dependent yet there is a clear trade-off

between storage vs. synchronization (atomic instructions and locks) requirements.

Bader & Madduri [15] showed the first parallel implementation for computing

betweenness centrality. In Madduri et al. [104] the parent list is swapped for a

children list which removes the need for locks in the dependency accumulation stage,

though atomic instructions are still used in their newer algorithm. Both of these are

fine-grain parallel algorithms and are implemented on massively parallel systems. A

medium-grain parallel algorithm can be found in [135].

Parallel betweenness centrality is also part of the following software packages:

SNAP [2, 16], GraphCT [1, 57], LIGRA [130], and GALOIS [116]. In [134] optimiza-

tions computing betweenness centrality are shown for the IBM Cyclops64. GraphCT

is a software package for the Cray XMT system.

20

2.2.2.1 Neighbor-Traversal

In [74], a new approach for computing betweenness centrality is presented. This ap-

proach suggests removing the parent list data structure and traversing all the neigh-

bors of a vertex while looking for neighbors in the level above (i.e. parents)2. The

observations made in that paper is that the parent list is the only data structure used

in the betweenness centrality that requires O(E) storage and can limit the parallel

scalability of the algorithm. From a performance perspective, the authors show that

despite doing the additional traversals, the execution time on a single core is reduced.

This phenomena is explained by the parents lists dominating the cache and kicking

out the remaining data structure from the cache. The reader is referred to [74] for

more details.

This new approach makes the coarse-grain approach practical. This chapter also

presents performance results for the coarse-grain approach and shows its scalability

on several shared-memory many-core systems. Further, this approach be applied to

additional parallel algorithms, including the fine-grain and medium-grain approaches.

Table 1 presents the storage requirements of multiple flavors of betweenness cen-

trality algorithm with the parent lists and using the neighbor-traversal approach. The

storage requirements are dependent on the type of parallelism, approximation, and

the selection of static or dynamic computation.

2.2.3 Approximate Algorithms

The high computational requirements of betweenness centrality make analyzing large

networks with millions to billions of vertices near impossible on actual systems. Ap-

proximation techniques have been created that reduce the computational require-

ments (making the analysis feasible) at the cost of accuracy. In[17] it is suggested that

2In [74] a discussion on directed/undirected can be found. There is also a discussion on the
difference between the parent list and the children list for this approach.

21

Table 1: Memory bounds for different betweenness centrality algorithms. P denotes
the number of cores used by each algorithm. K denotes the number of roots used
in the the approximation. The dynamic algorithms do not depend on the number of
cores as these data structures are maintained as part of the computation.

Algorithm Graph Previous Neighbor-traversal [74]
Exact [30] Static O(V + E) O(V)
Approximate [17] Static O(V + E) O(V)
Parallel fine-grain [15, 104] Static O(V + E) O(V)
Parallel coarse-grain [74] Static O(P · (V + E)) O(P · V)
Exact [77] Dynamic O(V · (V + E)) O(V 2)
Approximate Dynamic O(K · (V + E)) O(K · V)
Parallel fine-grain approximate Dynamic O(K · (V + E)) O(K · V)
Parallel coarse-grain approximate Dynamic O(K · (V + E)) O(K · V)

a subset of roots, K, be selected. These K vertices will be the roots in Brandes’s[30]

algorithm. The time complexity for the approximation is O(K · (V + E)). The ap-

proximation can be combined with the parallel algorithms [15, 104, 135, 74]. The

HPCS SSCA [4] specifications recommends using K = 256 roots.

In [70], multiple approximation methods are discussed that reduce the bias towards

the vertices closer to the roots. These methods use different weighting function to

reduce the bias. This approach is different than [17] in the way it chooses its roots.

The algorithm in [70] is iterative with one root betweenness centrality computed every

iteration. In each iteration a root is randomly selected.

2.2.4 Dynamic Graph Algorithms for Betweenness Centrality

In recent time, three different dynamic graph algorithms were designed and imple-

mented for betweenness centrality: Green et al. [77], Lee et al. [97], and Kas et al.

[89]. These algorithms take very different approaches for updating the analytic, yet

all three are focused on computing the exact values of betweenness centrality. None

of these techniques discuss parallelization or approximation which is an increasing

concern in an era where networks can potentially have millions (or billions) of ver-

tices. Green et al. [77] is extended in this paper to support both approximation

and parallelization; as such we do not extend the discussion on this algorithm in this

subsection.

22

The algorithm in [97] reduces the amount of work required to update the graph

by figuring out which vertices are not affected by the update. It then only update

the vertices that will have a change in the centrality values. This is done by de-

composing the graph into bi-connected components and finding which bi-connected

components are affected by the update. It seems that this approach is mostly suc-

cessful (performance-wise) with very sparse networks as in denser networks a single

update is likely to affect the betweenness centrality value of multiple vertices. For

real-world graphs with an increased density , the update is likely to touch a significant

part of the graph, thus lower speedups are attained.

The algorithm of [89] maintains the all-pairs shortest-path as the updates occur.

They too maintain state in between iterations to reduce the computational overhead

- their storage complexity is O(V 2). They use a different all-pairs shortest-paths

algorithm than the one suggested by Brandes yet they use parent list in their imple-

mentation to traverse the necessary vertices. Their implementation is JAVA based

using open-source software package GraphStream3 and they compare their algorithm

to Brandes’s algorithm. At publication time, the GraphStream implementation of

Brandes’s algorithm uses the parent list approach with linked lists - meaning every

time a new parent found is found it does a dynamic memory allocation which is a time

consuming operation. The optimization from [74] would improve the performance of

the static graph and dynamic implementation as it would remove the overhead of dy-

namic memory allocation. An extended discussion of the cost of memory allocation

in betweenness centrality can be found in [74] which compared several different im-

plementations of betweenness centrality with and without memory allocation - these

were done in C and not in JAVA.

While some algorithms consider edge updates there are algorithms that consider

vertex updates. A vertex update (in which multiple edges are inserted/deleted) can in

3http://graphstream-project.org/

23

fact be treated as a serialization of insertions/deletions. The key benefit of supporting

these updates is that they can potentially increase the speedup as certain traversals

might be avoided multiple times. From a social network perspective, such as in the

case of Facebook, when a vertex joins the network it joins without friends and friends

are added one at a time. Vertex deletions might be more relevant in the real world

as person might die.

2.2.5 Additional Results

BFS is an important building block for many algorithms, which is another reason

that it is a core kernel for the Graph 500 benchmark [110]. Beamer et al. [26] showed

a novel and efficient approach for doing a BFS traversal that potentially reduces

the number of traversed edges by changing the “direction” of the traversal such that

unfound children check if they have any potential parents. The unfound children are

found by doing a linear search through the distance array, size O(V), for a specific

level/depth in the tree. The benefit of this approach is that once a parent is found, it is

no longer necessary to traverse its remaining edges, hence a reduction in the number

of traversed edges. While the number of operations is potentially increased, using

this approach potentially offers a 10X speedup over the standard BFS because of a

reduced number of edge traversals. This algorithm is useful for finding connecting

components. Unfortunately, this optimization can not be applied to betweenness

centrality. The reason being, betweenness centrality requires finding all the paths to

the root and not “a” path to the root.

Several distributed algorithms for betweenness centrality have been created. In

[34] a distributed software package is introduced that allows one to implement graph

algorithms using algebraic operators. In [59] a space efficient distributed algorithm is

given.

In [120] a GPU implementation of static graph betweenness centrality is presented

24

that duplicates vertices, which they refer to as virtual vertices, in order to load bal-

ance the work better amongst the GPU’s many threads. The virtual vertices slightly

increase the storage requirements, but, this is not a significant increase. This algo-

rithm would also benefit from the neighbor-traversal optimization of [74]. In [121] an

algorithm is presented for updating closeness centrality in dynamic graphs.

In [117] several heuristics are shown that allows contracting vertices together if

they are “structurally equivalent”, meaning that they play the same role in the network

and are on similar shortest paths.

2.2.6 Real World Graph Properties

In recent studies, it has been shown that many real world networks share certain

properties. These include small world diameter [138, 13] which is originally due to

Milgram [109], power law distribution of the vertex degrees [63], and a single massive

connected component[31] in the graph.

These properties present both a challenge and opportunity in the algorithm de-

sign. The power law distribution can in fact cause workload imbalance and reduce

performance for the fine-grain and medium-grain parallel algorithm (the is not an is-

sue for the coarse-grain). The small world might imply that newly inserted edges will

not create many new shortest paths and thus will not require updating the analytic.

2.3 Dynamic Graph Betweenness Centrality

In this section we discuss our algorithm for computing betweenness centrality for

dynamic graphs. We then extend our algorithm to support approximation and paral-

lelization. We start off by explaining the dynamic exact betweenness centralit algo-

rithm from Green et. al [77]. This will include a spatial and time complexity analysis.

We then show that approximation can be applied to this approach allowing for our

dynamic graph approximate algorithm to give the same results as the static graph

approximate algorithm. Given the vast literature on parallel algorithm and the fact

25

that our algorithm is based off of Brandes’s algorithm, we will only briefly discuss the

parallelization. We note ahead of time that our algorithm can in fact be parallelized

in multiple fashions: coarse-grain, medium-grain, and fine grain.

Both insertions and deletions of edges are discussed in this chapter. We focus on

insertions; however, the similarity between the insertion and deletions is not signifi-

cant and does not require significant updating of the pseudo code or proofs. We will

make note of the difference throughout the chapter. Prior to the algorithm discus-

sion, we present the data structures that are needed by the algorithm. A more formal

discussion with proofs can be found in the Appendix.

2.3.1 BFS Tree Data Structure and Other Structures

The key difference between the static graph algorithm and our dynamic graph al-

gorithm is that our algorithm maintains a “state” between the updates. This state

allows us to modify only the relevant vertices that are affected by the update. For

most cases, the update only affects a small percentage of the vertices in the graph

which means that a full static graph recomputation is wasteful as many values will re-

main the same . The difference between the static and dynamic approaches requires

a different initialization stage. For simplicity, our proofs will focus on undirected

unweighted graphs; however, they can be augmented for remaining graph types.

For each root a BFS-like tree is maintained (for the exact case there will be V BFS-

like trees for the approximate there will be K BFS-like trees). The fields used by the

BFS-like tree can be found in the upper half of Table 2. This BFS-like tree maintains

the distance of the vertices that the root is connected to, the number of shortest paths

the root has to these vertices, and the dependency accumulation value. Each of these

values is maintained in array of size O(V). Thus, the storage requirement of each

BFS-like tree is O(V). As K such roots are maintained as part of the approximation

26

Table 2: Notations used in the chapter.

Field Name Description
σ[v] Number of shortest paths from vertex v to the root.
d[v] Specifies the distance of vertex v to the root. Initially the distances of all vertices from the root

are set to ∞.
δ[v] Dependency accumulation value of vertex v.
P [v] Parent list of vertex v. The optimization of [74] removes the need to store this list. It is still used

conceptually.
σ̂[v] New shortest paths vertex v has following update. Only vertices that have had a change in the

number of shortest paths will use this field.
δ̂[v] Dependency accumulation value of vertex v that are part of the update. Even vertices that do not

have shorter paths to the root can have this value updated because of its recursive nature.
dP [v] The changes in the number of shortest paths to the root for vertex v following the update. This

value is propagated downwards as part of the BFS traversal starting at the lower vertex.
t[v] Denotes if vertex v has been found as part of the update process. Can have one of the following

values (which specify at what point the vertex was found): Not− Touched, Down, and Up.
Ts BFS-like tree with s as its root.

process, the storage requirement of our new method is O(K ·V)4. For exact dynamic

betweenness centrality, where K = V , the storage requirement is O(V 2) which might

be too costly on some systems. However, when K << V as in the HPCS SSCA2 [4]

standard, the storage requirements of our approximate algorithm are affordable.

2.3.2 Insertion and Deletion Scenarios

There are five insertion scenarios and five deletion scenarios. Assume that the edge

e = (u, v) is the new or deleted edge.

2.3.2.1 The Insertion Scenarios

1. Same level insertion - the new edge connects vertices in the same level BFS-like

tree, as depicted in Fig. 1.

2. Adjacent level - the new edge connects vertices in two adjacent levels in the

BFS-like tree, as depicted in Fig. 2.

3. Non Adjacent levels aka “Pull-up” - the new edge connects vertices that prior

to the insertion are separated by at least two levels, as depicted in Fig. 3. As

the vertices are in the same connected component, a path exists between the

vertices prior to the insertion. After the insertion, the vertices are in adjacent

4If the parent lists are maintained then the storage complexity goes up to O(K · (V +E)). This
has been shown to be costly and ineffective in scaling in [74].

27

levels.

4. Connecting two disconnected components - prior to the insertion the vertices

do not have a path connecting them as they belong to different connected com-

ponents, as depicted in Fig. 4. After the insertion, the connected components

are joined into a single connected component.

5. Edge insertion in a different connect component - the new edges connects two

vertices that are in a different connected component than the root, as depicted

in Fig. 5.

2.3.2.2 The Deletion Scenarios

1. Same level deletion - the deleted edge connects vertices in the same level BFS,

as depicted in Fig. 1.

2. Adjacent level with extra parent/s - the deleted edge connects vertices in two

adjacent levels in the BFS-like tree, as depicted in Fig. 2. The lower vertex has

at least one additional parent in the level above it after the deletion.

3. Adjacent level without extra parent - prior to the deletion the vertices are

connected by a path of length one and the lower vertex does not have any

additional parents in the level above it, as depicted in Fig. 3. The edges have

an additional path connecting them, as such, they are still in the same connected

component. However, the lower vertex moves down in the BFS-like tree and is

further away from the root.

4. Disconnecting a single connected component - similar to the previous deletion

scenario, the lower vertex has a single parent in the level above, as depicted in

Fig. 4. Unlike the previous scenario, there are no additional paths connecting

these two vertices. Therefore, the vertices now belong to two different connected

components.

28

� = 1

� = 2

� = �

�

��	
�	

� = � + 1

Figure 1: The insertion of edge e = (u, v) connects two vertices that are on the same
level in the BFS-like tree of root s. This insertion does not create any new shortest
paths. In the case of edge deletion, no shortest paths are removed.

5. Edege deletion in a different connected component - the deleted edge is between

vertices in a different connected component, as depicted in Fig. 5.

It is not surprising that the insertion and deletions complement each other. Note

that a similar update taxonomy can be found in Shiloach and Even [127].

2.3.3 Same Level

For both the insertion and the deletion, other than updating the graph representation

no additional computations are required. There are no new shortest paths from the

root to any vertex that goes through that edge, Fig. 1. Intuitively, consider some

path that does go through the new edge (in the insertion case) on its way to the root.

A simple modification to that path allows creating an alternative shorter path that

does not go through this edge (both vertices in the same level have different paths to

the root). As such, inserting and removing these edges does not require updating any

betweenness centrality values. Since these updates have computational complexity of

O(1), they are highly desirable.

29

� = 1

� = 2

� = �

�

��	

����

� = � + 1

�

�

(a)

� = 1

� = 2

� = �

�

��	

����

� = � + 1

�

�

(b)

� = 1

� = 2

� = �

�

��	

� = � + 1

�

�����

(c)

Figure 2: (a) The insertion of edge e = (uhigh, ulow) connects vertices that are in
adjacent levels before the insertion. (b) A BFS traversal is started at ulow as the
shortest paths above this vertex are not affected by the insertion. (c) Shows the
vertices that are affected by the dependency accumulation - this includes vertices
that were not found in the BFS traversal beginning at ulow. The difference between
the insertion and the deletion, is that the vertices found in the BFS traversal (green
triangle) will have fewer paths to the root instead of additional paths to the root.

2.3.4 Adjacent Level Insertion and Adjacent Level Deletion with Extra
Parent

In this scenario, prior to the update the vertices are one level apart. This is also the

distance after the update. One vertex will be considered the higher vertex and one

will be the lower vertex. The higher vertex is closer to the root than the lower vertex.

For both the insertion and the deletion, the “structure” of the BFS-like tree does not

change following the update as none of the vertices move in the tree (all distances to

the root are the same as they were before the update), Fig. 2.

The number of shortest paths to the lower vertex has from the root changes

(increases for insertions and decreases for deletions). Note, that none of the vertices

above the lower vertex have any new shortest paths to the roots. This means that

σ[v] is not updated for any of the vertices above the lower vertex.

The immediate result of this observation is that it is not necessary to start the

BFS traversal at the root as no new paths will be found until the lower vertex is

30

reached. As such, it is possible to start the BFS traversal at the lower vertex, Fig.

2 (b). As the traversal starts at the lower vertex, only vertices that have a path to

the root that goes through the lower vertex will be found in this BFS traversal. This

means that only a fraction of the vertices and edges of the graph are traversed, which

reduces the actual computational requirements. While a BFS traversal from the root

is possible, it will discover the same number of shortest paths and distances that the

BFS-like tree maintains. As such, there is no benefit in doing the full traversal.

In the dependency accumulation, once again only a fraction of the vertices are

traversed. While the BFS traversal stage only required traversing vertices starting

at the lower vertex, the dependency accumulation requires updating any vertex that

has had one of its children update. Therefore, any vertex that has had a change in

the number of paths to the root, will require updating all the vertices in the levels

that are its way to the root, Fig. 2 (c).

The key difference between in the pseudo code for the insertion and the deletion is

the change in the number of paths to the roots for the vertices found in the traversal

starting at the lower vertex. For the insertion, there is an increase in the number of

shortest paths. For the deletion, there is a decrease in the number of shortest paths.

2.3.5 Non Adjacent Level Insertion and Adjacent Level Deletion without
Extra Parent

In this scenario, prior to the insertion the vertices are at least two levels apart. The

insertion will pull-up the lower vertex to one level below the higher vertex and may

cause additional vertices to be pulled up (a transition from Fig. 3 (a) to Fig. 3 (b)).

In case of a deletion, the vertices are one level apart and the lower vertex does not

have additional vertices in the level above. This will cause the lower vertex to drop

down in the tree, which in return can cause additional vertices to move down in the

tree (a transition from Fig. 3 (b) to Fig. 3 (a)).

Following the insertion, all of the paths that the lower vertex has to the root must

31

� = 1

� = 2

� = �

�

��	
�

� = � + 1

���

(a)

� = 1

� = 2

� = �

�

��	
�

� = � + 1
���

�

(b)

� = 1

� = 2

� = �

�

��	
�

� = � + 1
���

�

(c)

� = 1

� = 2

� = �

�

��	
�

� = � + 1
���

�

(d)

Figure 3: (a) The BFS-like tree prior to the insertion of edge e = (uhigh, ulow). (b) The
BFS-like tree after the insertion. Note that ulow has a single parent in the level above
it. For deletions, swap between (a) and (b). (c) The BFS traversal starts at ulow and
can possibly “pull-up” vertices that are closer to the root following the insertion. (d)
The dependency accumulation can find vertices that were not in the BFS traversal.

go through the higher vertex as it is the only parent it has. Once again, all the vertices

above the lower vertex do not have new paths to the root, which permits starting the

BFS traversal at the lower vertex, Fig. 3 (c). Unlike the previous scenario where all

the vertices stayed the same distance from the root, in this scenario multiple vertices

can move closer to the root. For any vertex that moves, its paths to the root will

be through its new parents in the level above it. Some vertices may stay the same

distance from the root, yet, they may lose children from the level below, gain new

parents, or get new neighbors. These may require updating the number of paths to

32

� = 1

� = 2

� = �

�

�

�

� = � + 1

Connected Component 1 Connected Component 2

(a)

� = 1

� = 2

� = �

�

�

�

	

� = � + 1

(b)

� = 1

� = 2

� = �

�

�

�

	

� = � + 1

(c)

� = 1

� = 2

� = �

�

�

�

	

� = � + 1

(d)

Figure 4: (a) Prior to the insertion, the vertices in different connected components.
(b) After the insertions, the vertices are in the same connected component. All the
paths between vertices that were previously in different connected components go
through the inserted edge. For deletions, (b) is before the deletion and (a) is after
the deletion. (c) and (d) are for insertions. (c) The BFS traversal starts at the vertex
that just got connected to the first connected component. Only vertices in the second
component will be found in the BFS traversal. (d) The dependency accumulation
will go through all the vertices of the second connected component and work its way
back through the newly connect edge and all the way up to the root.

the root and the dependency accumulation value. Thus, even if a vertex stays in its

place, its dependency accumulation value requires updating, which entails updating

all the vertices up to the root in a recursive fashion, Fig. 3 (d).

Again only a fraction of the vertices and edges will be traversed in both the BFS

traversal and dependency accumulation in comparison with the static recomputation.

33

2.3.6 Connecting Components Insertion and Disconnecting Components
Deletion

Fig. 4 depicts the scenario that the inserted edge connects two different connected

components. Fig. 4 (a) depicts the BFS-like tree before the insertion and Fig. 4 (b)

depicts the BFS-like tree after the insertion. Note that all the path between vertices

that were previously in different connected components must go through the newly

inserted edge. In the case of a deletion, swap the roles of Fig. 4 (a) and Fig. 4 (b)

and note that all the shortest paths between the vertices in the new components went

through the deleted edge.

As it turns out, this scenario is a sub-case of the Non-Adjacent level insertion,

where the sub-tree that is “pulled-up” simply does not overlap with the remaining

tree. The previous distance of the vertices from the second connected component was

∞ and now that distance is finite. For an unweighted graph, the maximal distance

between two vertices is V − 1, which allows using an number greater than this to

signify infinite distance. We do not extend the discussion as this is not a crucial

issue.

2.3.7 Insertion and Deletion in Different Connect Component

The last insertion/deletion case is similar to the first, Same-level. The new edge is

inserted into a different connected component - in fact, within that component one

of the four previous cases can be applied. However, the current root does not have

a path to any of the vertices as they are in different components, which means that

are no paths have been updated and no computations are needed. An additional

reason that this scenario is similar to the Same-level scenario is that the distance of

both vertices from the root is the same: ∞. Using connected component algorithms

[127, 128, 107] can also help detect this scenario.

34

� = 1

� = 2

� = �

�

� = � + 1

Connected Component 1 Connected Component 2

�

	

Figure 5: Edge insertion or deletion occurs in a different connected component than
that of the root.

2.3.8 Additional Algorithmic Considerations and Optimizations

In the previous subsections we showed that an edge insertion and deletion falls into

a small subset of scenarios for any given root. This in fact allows us to show that the

output of dynamic graph algorithm and static graph algorithm are equivalent. This

in turn means that we can use the static graph approximation approach of [17], which

selects a subset of roots out of K ⊆ V , for the dynamic graph approach. If our new

algorithm gives the correct output for all roots in the exact computation it will give

the correct output for a subset of roots as well.

As our algorithm is an extension of Brandes’s [30], it can benefit from the existing

parallel approaches and optimizations. These approaches have different implemen-

tation concerns, pros, and cons. We refer the reader back to Section 2.2.2 for this

discussion. In our presentation of both Brandes’s algorithm and our own algorithm,

we did not change the parent update approach to the children update approach [104]

of the dependency accumulation which is important for parallel algorithm as it re-

duces the need for locks in the dependency accumulation stage. Further, for directed

graphs this change is important and necessary for using the neighbor-traversal ap-

proach - parents know who the children are but the children don’t necessarily know

who their parents are because of the directed edges. Additional discussion on the

benefits of the children approach can also be found in [74].

35

In the above, we considered unweighted graphs for our dynamic graph algorithm.

Our algorithm can in fact be extended to support weighted graphs as well with a slight

modification to the insertion/deletion scenarios. One example might be, instead of an

adjacent level insertion, an edge insertion creates an additional path of equal weight

to the root. For simplicity we have focused on unweighted graphs and do not extend

the discussion on weighted graphs.

2.3.9 Complexity Analysis

For two of the scenarios, Same-level and different connected components, no work is

required to update the data structure. The only thing that is required is to check the

level of the vertices in a specific tree. This is an O(1) operation.

All the insertion and deletion scenarios that require updating the data structure

consist of the same two phases of Brandses algorithm: BFS traversal and dependency

accumulation. These have a time complexity of O(V + E), which is the same time

complexity for a given root in the static graph algorithm.

For the exact computation, where there are V roots, the computational complexity

is bounded by O(V 2 +V E) similar to the one given by Brandes. For the approximate

case, with K roots, the computational complexity is bounded by O(K · (V +E)). In

practice, the number of operations is smaller as there will be same-level insertions

and fewer edges and vertices will be traversed for the cases requiring updates.

2.4 Results

For testing purposes we use the graphs from the 10th DIMACS Implementation Chal-

lenge [6]. The DIMACS 10 data set includes different types of networks: clustering,

collaboration networks, road networks, random networks, and more. The subset of

graphs that we used can be found in Table 3 and Table 4. The graphs in Table 4 are

larger networks and will be discussed in a subsection 2.4.4. All the graphs are static.

For the graphs from Table 3, after the graph is read from the disk, 1000 edges are

36

Table 3: Graphs from the 10th DIMACS Implementation Challenge used in our
scaling experiments. The execution times are for a single thread.

Name Graph Type |V | |E| Static (sec.) Dynamic (sec.)
audikw1 Matrix 943,695 38,354,076 710 10.3
ecology1 Matrix 1,000,000 1,998,000 194 4.10
as-22july06 Clustering 22,963 48,436 1.22 0.0194
astro-ph Clustering 16,706 121,251 1.52 0.0103
cond-mat-2005 Clustering 40,421 175,691 3.872 0.0163
hep-th Clustering 8361 15751 0.292 0.00342
preferentialAttachment Clustering 100,000 499,985 24.05 0.0298
smallworld Clustering 100,000 499,998 24.81 0.0531
citationCiteseer Collaboration Networks 268,495 1,156,647 75.531727 0.117694
coAuthorsDBLP Collaboration Networks 299,067 977,676 68.006336 0.0558
coPapersDBLP Collaboration Networks 540,486 15,245,729 367.486846 0.236555

randomly selected and removed from the graph. These 1000 edges are then inserted

one at a time into the graph, updating the betweenness centrality values using our

new parallel dynamic approximate approach. Unless mentioned otherwise, we use the

HPCS SSCA2 [4] standard of K = 256 roots. The roots are randomly selected using

a uniform distribution.

Our tests were conducted on a system consisting of 4 Intel E7− 8870 processors.

Each processors consists of 10 cores clocking at 2.4GHz. Each core has 32KB L1

cache and 256KB L2 cache. All cores on the same processor share a 30MB L3

cache. The system has a total of 256GB of DRAM. While these processors support

Hyperthread-ing, we did not use this feature and tested our algorithm on a maximal

of 40 cores. We use cores and threads interchangeably.

Our implementation of both the dynamic graph and static graph algorithm uses

the coarse grain approach which divides the roots of the approximation equally

amongst the cores. Our implementation is OpenMP based and uses the OpenMP

dynamic scheduler. Both implementations use the STINGER[18] dynamic graph

representation. Changing the CSR implementation to support STINGER, simply re-

quired replacing the “for-loops” with several STINGER built in macros for adjacency

list traversal.

37

For the static graph algorithm there was little difference between the static sched-

uler in which the roots are near-equally divided to the cores and the dynamic scheduler

in which each core receives a different root when it has completed processing the pre-

vious root. As many graphs have a single large connected component, it is likely

that most cores will receive an equal number of roots ensuring a near equal number

of traversed edges which is key component in the load-balancing of the coarse-grain

implementation.

For the dynamic graph algorithm, there was a difference in the performance.

As we will show in this section, the dynamic graph algorithm is more sensitive to

workload imbalance as each root will have a different number of edges to traverse. As

a heuristic, before doing the parallel − for loop on the roots, we place all the roots

that have non-adjacent level insertion as the starting roots and these are followed by

the adjacent level insertions. While an adjacent level insertion can have more work

than a non-adjacent level insertion, in most cases this is not true - the non-adjacent

level insertion typically has more work. By putting, the heavier tasks first, it is also

less likely that there will be an execution tail where on a small number of cores are

being utilized. The reality is that some of insertions are so time consuming that

some cores will process a single root while others will process a larger number of less

demanding roots. This will in fact motivate doing fine-grain parallel betweenness

centrality for dynamic graphs.

2.4.1 Speedup Analysis of Dynamic Over Static

Fig. 6 shows the speedup of the dynamic graph algorithm over the static graph

algorithm using a single core for the graphs in Table 3. Each insertion is timed. We

present six different speedup bars for each network (from the left to the right): 1)

the average speedup, 2) the minimal speedup, 3) the 25th percentile speedup, 4) the

median speedup, 5) the 75th percentile speedup, and 6) the maximal speedup. Note

38

Figure 6: Six different speedup bar for each graph (from the left to the right) for
single thread execution: 1) average, 2) minimal, 3) the 25th percentile, 4) median, 5)
the 75th percentile, and 6) maximal.

the ordinate is log-scale.

The speedup of the dynamic graph algorithm over static graph algorithm is com-

puted using the following formula, where P denotes the number of cores:

SpeedupP =
StaticT imeP

DynamicT imeP
(4)

The results in Fig. 6 use P = 1 cores.

Note the following observations from Fig. 6:

• Both the minimal and maximal speedups are well distanced from the average

speedups. For some of the cases there is an order of magnitude between the

average and either of the extremes:

– For the audikw1 network, there is a 10X difference between the minimal

speedup and average speedup.

– For the audikw1 network, there is a 163X difference between the minimal

speedup and maximal speedup.

• The difference between the 25th percentile and 75th percentile is around 2X −

3X.

39

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
as-22july06

astro-ph

as-audikw1

coAuthorsDBLP

citationCiteseer

cond-mat-2005

coPapersDBLP

ecology1

hep-th

preferentialAttachment

smallworld

(a) Static graph algorithm.

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
as-22july06

astro-ph

as-audikw1

coAuthorsDBLP

citationCiteseer

cond-mat-2005

coPapersDBLP

ecology1

hep-th

preferentialAttachment

smallworld

(b) Dynamic graph algorithm.

Figure 7: Strong scaling of the coarse-grain parallel implementations: (a) static graph
algorithm and (b) dynamic graph algorithm. The approximation uses K = 256 roots.
Each of the curves is for different network.

• The average speedup for most of networks (regardless of their type) is above

50X.

• For six out of the eleven graphs the maximal speedup is over 1000 and for five

out of the six graphs the speedup is over 3000X.

For all the graphs and all the insertions our dynamic algorithm is faster than

the static algorithm. This might be expected since the theoretical complexity bound

of the static graph algorithm is an upperbound for our algorithm; however, from a

practical perspective, our algorithm can potentially require twice as many floating-

point operations as it computes the difference between the iterations. Nonetheless, our

dynamic graph algorithm outperforms the static graph algorithm for all the insertions

that we tested.

2.4.2 Strong Scaling

Fig. 7 depicts the scaling of the static graph algorithm and dynamic graph algorithm.

40

Specifically, the speedup is computed as follows:

Scaling =
Time1

TimeP
(5)

Note that the TimeP is the maximal execution time of any of the P threads used.

The static graph algorithm achieves significant speedups, Fig. 7 (a), in the range

of 25X − 37X. These speedups are higher than previous results on x86 systems

that used the fine-grain approach and are due to the reduced communication cost.

While the cores might not receive an equal number of roots and these roots might be

in different connected components, based on these speedups - the load balancing is

satisfactory.

Fig. 7 (b), depicts the scaling of our dynamic graph algorithm using coarse-grain

parallelism. Our algorithm has good speedup up to 5 cores, after which the speedup

declines. There are several causes for this result. The amount of work per thread

is considerably smaller for the dynamic graph algorithm, especially for the smaller

networks. However, the preeminent cause for the decay in the speedup is workload

imbalance where a single root can become the execution bottleneck. These will be

addressed in the following subsections.

2.4.3 Load Balancing

Fig. 8 shows the scaling of the dynamic algorithm for different root counts. As more

roots are used for computing betweenness centrality, the scalability of the dynamic

algorithm increases. Recall from (4), the speedup is dependent on the time it takes

the thread with the most amount of work to complete. Increasing the total amount of

work allows for better partitioning using the coarse-grain approach. This reduces the

likelihood of one thread becoming the execution bottleneck. For astro−ph increasing

the number of roots from 256 to 8192 increased the speedup from 7X to 25X.

To further validate these results, we compare the ratios of the execution time

and the ratios of the number of traversed edges for the thread with the most time

41

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
128

256

512

1024

2048

4096

8192

(a) as-22july06

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
128

256

512

1024

2048

4096

8192

(b) astro-ph

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
128

256

512

1024

2048

4096

8192

(c) cond-mat-2005

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
128

256

512

1024

2048

4096

8192

(d) hep-th

0

5

10

15

20

25

30

35

40
S

p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
128

256

512

1024

2048

4096

8192

(e) preferential attachment

0

5

10

15

20

25

30

35

40

S
p
ee

d
u

p

0 5 10 15 20 25 30 35 40

Threads
128

256

512

1024

2048

4096

8192

(f) small world

Figure 8: Scaling of the dynamic graph algorithm. The multiple curves represent the
speedup for different a number of roots as part of the approximation process. The
increase in the number of roots increases the amount of work each thread and allows
for better load-balancing which allows for better scaling and speedups.

and largest number of traversed edges. For each graph, we compare these ratios for

multiple thread counts: 1, 10, 20, 30, and 40. These can be found in Fig. 9. The

ordinate is the ratio of traversed edges and the abscissa is the ratio of the execution

time. Both ratios are for the dynamic graph algorithm in comparison to the static

graph algorithm.

From these sub-figures a clear correlation between the execution time and the

traversed edges can be seen. Further, analysis of the execution times and number

of roots executed by each thread shows that for many of these cases the execution

bottleneck is a single root that traverses more edges than multiple roots combined.

42

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(a) 1 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(b) 10 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(c) 20 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(d) 30 threads
d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(e) 40 threads

Figure 9: The subfigures show the relationship between the execution of the algo-
rithms and the number of traversed edges for each of the insertions. The abscissa is
the ratio in the execution time of the dynamic graph algorithm and the static graph
algorithm (with an equal number of threads). The ordinate is the ratio of traversed
edges of the dynamic graph algorithm and the static graph algorithm (with an equal
number of threads). We show the results for 1, 10, 20, 30, and 40 threads. These
scatter plots show that there is a relationship between execution time and traversed
edges. This caption is relevant for Fig. 10 - Fig 14. Results in this figure are for
as-22july06 network.

Observe the values of the ordinates for the fourth and fifth columns (30 threads

and for 40 threads, respectively). Notice that the maximal values of the ordinate

increases with the introduction of new threads. This means that using more threads

will not resolve the load-balancing issue.

The workload imbalance might be solvable using a fine-grain approach or estimat-

ing the amount of work per root and load balancing the work based off this estimation.

This load-balancing issue is not within the scope of this work.

43

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(a) 1 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(b) 10 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(c) 20 threads
d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(d) 30 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(e) 40 threads

Figure 10: astro-Ph network.

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(a) 1 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(b) 10 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(c) 20 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(d) 30 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(e) 40 threads

Figure 11: cond-mat-2005 network.

44

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(a) 1 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(b) 10 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(c) 20 threads
d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(d) 30 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(e) 40 threads

Figure 12: cond-mat-2005 network.

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(a) 1 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(b) 10 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(c) 20 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(d) 30 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(e) 40 threads

Figure 13: preferentialAttachment network.

45

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(a) 1 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(b) 10 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(c) 20 threads

d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(d) 30 threads
d
y
n
a
m
ic

st
a
ti
c

dynamic
static

(e) 40 threads

Figure 14: small-world network.

2.4.4 Large Network Analysis

We now present performance analysis of our new algorithm for larger graphs from

the DIMACS 10 challenge. These graphs, found in Table 4, are considerably larger

than the graphs used earlier, taken from Table 3. The size of these graphs limits

some of scaling testing that can be done. We present performance results for both

the static graph and dynamic graph algorithm using 1 core and all 40 cores in the

system. Instead of doing 1000 insertions, only 50 insertions are done because of

the high computational requirements. Note that the largest of these graphs has 16

million vertices and 50 million edges. Even with the O(K · V) storage requirement,

our dynamic algorithm had enough memory. Note that many of these graphs have a

large diameter and are highly sparse.

Fig. 15 shows the speedup of our dynamic graph algorithm over the static graph

algorithm for 1 thread and 40 threads. Once again we present six different speedup

bars for each network (from the left to the right): 1) the average speedup, 2) the

46

Table 4: Larger graphs from the 10th DIMACS Implementation Challenge. The
execution times are for a single thread.

Name Graph Type |V | |E| Static (sec.) Dynamic (sec.)
asia.osm Street 11,950,757 12,711,603 2212 177
belgium.osm Street 1,441,295 1,549,970 258 18.3
italy.osm Street 6,686,493 7,013,978 1243 102
auto Walshaw 448,695 3,314,611 178 9.56
adaptive Numerical 6,815,744 13,624,320 1370 192
channel-500x100x100-b050 Numerical 4,802,000 42,681,372 1919 275
NLR Numerical 4,163,763 12,487,976 1097 92.9
venturiLevel3 Numerical 4,026,819 8,054,237 814 99.8
delaunay-n23 delaunay 8,388,608 25,165,784 1845 149
delaunay-n24 delaunay 16,777,216 50,331,601 3747 256

(a) 1 thread

(b) 40 threads

Figure 15: Six different speedup bar for each graph (from the left to the right): 1)
average, 2) minimal, 3) the 25th percentile, 4) median, 5) the 75th percentile, and 6)
maximal.

minimal speedup, 3) the 25th percentile speedup, 4) the median speedup, 5) the 75th

percentile speedup, and 6) the maximal speedup.

47

The sequential speedup analysis of the dynamic graph algorithm over the static

graph algorithm is depicted in Fig. 15 (a). For these networks, the dynamic graph

algorithm is always faster than doing a full static recompute. For many of these

graphs, for the 40 core execution (Fig. 15 (b)) the dynamic graph algorithm performs

worse than the static graph algorithm. This is in fact due to the workload imbalance

that discussed earlier. The static graph algorithm as we showed has considerably good

load balancing, whereas the dynamic graph algorithm needs better load balancing.

Better load balancing of the dynamic graph algorithm would ensure performance

greater or equal to the static graph algorithm. For the average speedup and everything

above the 25th percentile, the dynamic graph algorithm outperforms the static graph

algorithm.

2.5 Conclusions

In this chapter we showed a novel algorithm for computing betweenness centrality

for dynamic graphs. Given that our algorithm extends Brandes’s algorithm, we show

that the algorithm supports both parallelization and approximation. While we placed

more emphasis on edge insertions in the chapter, we also discussed edge deletions and

showed the similarities between the two.

We then proceeded to show that our algorithm can analyze graphs with millions

of vertices and edges (which is something that was previously not done by other

dynamic graph betweenness centrality algorithms). This is followed by a speedup

analysis of the dynamic graph algorithm over the static graph algorithm and we

show that the speedup can be as high as 7790X. Further, an analysis of the workload

partitioning is given for a coarse-grain implementation and we believe that a fine-grain

implementation of dynamic graph approximate betweenness centrality will resolve this

workload imbalance. There are most likely additional load balancing opportunities

which allow creating a better parallel implementation of this algorithm.

48

An additional open-ended challenge is creating an algorithm that can do batches

of updates. Vertex insertion/deletion can be considered a specific case of batching.

Yet, the real benefit maybe from avoiding the same traversal multiple times.

2.6 Formal Proofs for Insertions

In the above, we discussed the four insertion cases and presented the intuition behind

their correctness. Here we prove the correctness for the insertions - the proofs for

the deletions can be derived from this. For simplicity, assume that that new edge

e = (u, v) is inserted into the graph G = (V,E ∪ {e}) and that all the BFS-like trees

have been computed and are correct from the previous insertion. Note, that when the

insertion scenarios are computed, the edge has been already inserted into the graph.

The number of trees that we maintain between the insertions is dependent on the

accuracy of our computation: exact or approximate.

While the graph has been updated and includes the edge, the BFS trees (denoted

as Ts) have not been updated. We show that our four insertion cases cover the update

process correctly. For simplicity and without the loss of generality we assume that u

is closer to the root than v.

2.6.1 Same Level Insertion

Same level insertions do not require any additional computation for Ts, Fig 1. This

is simply due to the fact that no new shortest paths are created. Recall that |ds(u)

− ds(v)| = 0.

Lemma 1 Given an edge e = (u, v) such that ds(u) = ds(v), no shortest paths go

through e.

Proof 1 Assume by contradiction that for some vertex w there is a shortest path be-

tween s and w that goes through e. This path is denoted by vertices ps, p2, ..., pu, pv, ...,

49

pw. Obviously, v has a path to s as well, this path is denoted by p̂s, p̂2, ..., pv. By creat-

ing an alternate path p̂s, p̂2, ..., pv, ..., pw we have created a shorter path in contradiction

with the assumption. �

Lemma 2 The BFS-like tree structure is maintained and the betweenness centrality

values are updated correctly for same level insertion.

Proof 2 Following Lemma 1, no new shortest paths are created, which means that

there are no changes in the dependency accumulation values. This means that no

computations are required and the betweenness centrality values do not change. �

2.6.2 Adjacent Level Insertion

Prior to the insertion d(ulow) = d(uhigh)+1, Fig. 2 which is also the case following the

insertion. Pseudo-code for updating the betweenness centrality values can be found

in Algorithm 2. None of the vertices above ulow will have new shortest path to the

root. ulow will have additional paths to the root through uhigh.

Lemma 3 Only vertices found in a BFS traversal starting at ulow (and are below

ulow) will have new paths to the root.

Proof 3 Assume by contradiction that some vertex w has a new shortest path to the

root, s, through ulow and that w is not found in a BFS traversal starting at ulow. w

can not be above ulow as it would have a shorter path to the root. If w does not have a

path to the root through ulow, then no paths are created. As such the w has a path to

the root through ulow. Because w has a shortest path to the root via ulow it has some

ancestral path to ulow. As such, this path will be found during the BFS traversal in

contradiction to the assumption. �

Corollary 1 If the number of shortest paths to the root has changed for a vertex w

then for all the parents of w,v ∈ P [w], δ[v] needs to be updated. This change is denoted

using δ̂[v].

50

Algorithm 2: Insertion of a new edge in a specific BFS tree where the vertices
are in adjacent levels prior to the insertion.
Stage 1 - local initilization
QBFS ← empty queue;
for level← 1 to V do

Q[level]← empty queue;

dP [v]← 0, v ∈ ∀V ;
t[v]← Not-Touched , v ∈ ∀V ;
σ̂[v]← σ[v], v ∈ ∀V ;
enqueue ulow → Q[d[ulow]];
enqueue ulow → QBFS ;
t[ulow]← Down;
dP [ulow]← σ[uhigh];
σ̂[ulow]← σ̂[ulow] + dP [ulow];
Stage 2 - BFS traversal starting at ulow
while Q not empty do

dequeue v ← Q;
for all neighbor w of v do

if d[w] = (d[v] + 1) then
if t[w] = Not-Touched then

enqueue w → QBFS ;
enqueue w → Q[d[w]];
t[w]← Down;
d[w]← d[v] + 1;
dP [w]← dP [v];

else
dP [w]← dP [w] + dP [v];

σ̂[w]← σ̂[w] + dP [v];

Observations from Algorithm 2:

• Only vertices below ulow will update σ̂.

• The number of new paths will be maintained in the array dP , where dP [v] is

the number of new shortest paths to v.

• As vertices can be found in the dependency accumulation, an additional queue

is required for the vertices found in the level above. In the pseudo-code we

maintain a single queue per level. An actual implementation requires only two

additional queues and a slight modification of the code that ensures that the

level is not changed until all vertices in the current level (including those found in

51

Algorithm 2: Cont.
Stage 3 - modified dependency accumulation
ˆδ[v]← 0, v ∈ ∀V ; level← V ;
while level > 0 do

while Q[level] not empty do
dequeue w ← Q[level];
for all v ∈ P [w] do

if t[v] =Not-Touched then
enqueue v → Q[level − 1];
t[v]← Up;
δ̂[v]← δ[v];

δ̂[v]← δ̂[v] + σ̂[v]
σ̂[w] (1 + δ̂[w]);

if t[v] = Up ∧(v 6= uhigh ∨ w 6= ulow) then
δ̂[v]← δ̂[v]− σ[v]

σ[w] (1 + δ[w]);

if w 6= r then
CB [w]← CB [w] + δ̂[w]− δ[w];

level← level − 1;

σ[v]← σ̂[v], v ∈ ∀V ;
for v ∈ V do

if t[v] 6= Not-Touched then
δ[v]← δ̂[v], v ∈ ∀V

the dependency accumulation) are traversed. Vertices found in the dependency

accumulation stage will be marked as touched on the way UP .

• The dependency accumulation stage will traverse a greater or equal number of

vertices and edges than the BFS traversal.

To compute the dependency accumulation value, we differentiate between vertices

found in the BFS traversal and vertices found in the recursive movement. Note that

δ̂[v] is computed in a similar fashion to δ[v] with the following modification - use σ̂

instead of σ. For vertices, that were found in the BFS traversal, their dependency

accumulation values are computed from scratch as discussed above using δ̂[v] and

σ̂[v].

δ̂[v]← δ̂[v] +
ˆσ[v]

ˆσ[w]
(1 + ˆδ[w]). (6)

52

For the vertices, found in the dependency accumulation only a partial recompu-

tation is needed. Consider a vertex w that has just been found on the way up. w

can potentially have additional children below it that have not been found - for these

children the dependency accumulation value going through these edges are unchanged

and do not require recomputing. For the edges do have a change, the previous value

needs to be reduced:

δ̂[v]← δ̂[v]− σ[v]

σ[w]
(1 + δ[w]). (7)

The previous value, δ[v], is no longer needed, thus, it should be decremented from

the centrality value (this is correct for all vertices except for the root as discussed in

[30]):

CB[v]← CB[v] + δ̂[v]− δ[v]. (8)

Lemma 4 The BFS-like tree structure is maintained and betweenness centrality is

updated correctly for an adjacent level insertion.

Proof 4 In Lemmas 3 we show that the shortest path count is maintained. As there

are no vertices that move in the BFS-like tree following the insertion, the distances

are the same and correct. Based on Eq. (8) and Lemma 1 the betweenness centrality

metric is update correctly. �

2.6.3 Non-Adjacent Level Insertion

This subsection presents the modifications needed for updating the BFS-like tree for

an edge insertion that causes vertices to move up the tree as |ds(u)− ds(v)| ≥ 2.

From Fig. 3, it is obvious that at least one vertex, ulow, changes it position and

moves closer to the root. The insertion can in fact pull-up additional vertices - we

sketch the necessary steps.

Following the edge insertion, e = (uhigh, ulow), we know for a fact that the vertex

ulow will move up the tree and will be one level below uhigh. As a consequence of

53

this pull-up, additional vertices might be pulled-up as well. For all neighbors of ulow

we will check if a new shortest path has been creating due to the pulling up of ulow.

These neighbors have two options, either they will be pulled-up the BFS-like tree or

they will stay as they are. These neighbors will be traversed from a BFS traversal

starting at ulow and distances from the root will be updated if needed.

Lemma 5 The BFS-like tree structure is maintained and betweenness centrality is

updated correctly for an edge insertion that causes movement.

Proof 5 In the process of the BFS traversal starting at ulow, each vertex that is

encountered will fall into one of the following categories:

• If a vertex has moved - its paths to the root are through its parent that causes its

movement and its previous paths to the root are no longer relevant as these are

no longer above the vertex. In addition to moving the vertex to its new level, it

is also necessary to update the previous parents of this vertex as they now have

fewer children going through as this is part of the dependency accumulation.

This will require require the dependency accumulation value of the entire path

up to the root. These vertices will use the formulation of Eq. (6) for computing

the dependency accumulation.

• If a vertex has not moved, one of the following occurs to the vertex:

– New paths to the root through new parents (its old parent are still relevant),

Eq. (6) is used to compute their dependency accumulation value.

– Fewer children below as these might have been pulled up, Eq. (6) is used

to compute their dependency accumulation value.

– The vertex keeps the same number of children and same number of parents.

For this, as there is no change, it is not necessary to place it into the queue.

Such vertices might be found during the dependency accumulation stage.

54

Using the explanations and proofs from the Adjacent level insertions, we can update

the dependency accumulation of the vertices found on the reverse traversal using Eq.

(7).

As such, all the values of the BFS-like tree are maintained and the update correct.

�

55

CHAPTER III

FASTER BETWEENNESS CENTRALITY

This chapter is an extension of the paper: O. Green, D. Bader, “Faster Betweenness

Centrality Based on Data Structure Experimentation”, 13th International Conference

on Computational Science, 2013.

Betweenness centrality is a graph analytic that states the importance of a vertex

based on the number of shortest paths that it is on. As such, betweenness centrality is

a building block for graph analysis tools and is used by many applications, including

finding bottlenecks in communication networks and community detection. Comput-

ing betweenness centrality is computationally demanding, O(V 2 +V ·E) (for the best

known algorithm), which motivates the use of parallelism. Parallelism is especially

needed for large graphs with millions of vertices and billions of edges. While the the

memory requirements for computing betweenness are not as demanding, O(V + E)

(for the best known sequential algorithm), these bound increase for different parallel

algorithms. We show that is possible to reduce the memory requirements for comput-

ing betweenness centrality from O(V +E) to O(V) at the expense of doing additional

traversals. We show that not only does this not hurt performance it actually im-

proves performance for coarse grain parallelism. Further, we show that using the new

approach allows parallel scaling that previously was not possible. One example is

that the new approach is able to scale to 40 x86 cores for a graph with 32M vertices

and 2B edges, whereas the previous approach is only able to scale upto 6 cores be-

cause of memory requirements. We also do analysis of fine-grain parallel betweenness

centrality on both the x86 and the Cray XMT.

To avoid repetition, the reader is referred to the introduction and related work

56

sections of Chapter 2.

3.1 Data Structure Experimentation

3.1.1 Relevant Terminology

In Brandes’s algorithm [30] (Algorithm 1, Chapter 2), each vertex maintains a list of

all its neighbors that are in the level above it. We will refer to these list as either

the parent list or the predecessor list, interchangeably, when referring to Brandes’s

algorithm. In Madduri et al. [104], vertices maintain a list of all the the neighbors

that are in the level below it. We will refer to these list as either the children list

or the successor list, interchangeably, when referring to this algorithm. Obviously,

these lists are a subset of the adjacency for a given vertex. The final implementation

of the algorithm is dependent on the selection of either the predecessor or successor

approach. We refer the reader to both [30] and [104] for further reading. We note that

for a sequential implementation, there is no preference to either of these approaches.

As these algorithms share many implementation properties, they do not require

separate explanations on many common issues. As such we will refer to these lists

as ancestry lists whenever the explanation is relevant for both the approaches. In

Section 3.2 we will specify the exact approaches that we used for each test.

3.1.2 Ancestor-List implementation

It is well known that the implementation of a data structure can significantly influence

the performance of an algorithm. In some cases, including the case of betweenness

centrality, additional parameters about the data structure are known such as the

maximal size it will grow and access pattern to the data structure. For Brandes’s

algorithm we know both of these. The length of each ancestor list is bounded by

the vertex’s incoming edges. The access pattern is also known - in the BFS stage,

elements are pushed to the end of the list and in the dependency accumulation stage

traverse the list from the beginning to the end.

57

Given this additional information, the ancestor lists can be implemented with an

array. This is done by pre-allocating an array of |E| element where each vertex, v, is

allocated space in the array based on its adjacency. In the Results section we show

that despite the increase in the memory requirements, the performance of the array

based list is significantly better than the linked-list, as can be expected. Both these

implementations have a memory bound of O(V + E).

Obviously the lists can also be implemented using dynamic memory allocations

such as a linked-list implementation. The linked-list approaches suffers from several

performance pit falls. The first, insertion of an element into the list requires adding

a new link to the end of the list. If the node is dynamically allocated, this requires a

system call which is usually costly. If the link is added to the list by getting a ’new’

link from a pool of preallocated link, then the pool needs to be the size of O(E). As

such, it is preferable to use the array based approach because of spacial locality and

the reduced number of memory allocations.

3.1.3 Neighbor-Traversal

In this section we present an alternative to maintaining the ancestry lists. This

approach reduces the memory requirements from O(V +E) to O(V), increases parallel

scalability, reduces synchronization requirement and improves performance for sparse

graph. We will see that this new approach, which we refer to as neighbor-traversal, is

more computationally demanding the the ancestral based approaches, yet it does not

increase the time complexity of the betweenness centrality algorithm of O(V 2 +V ·E).

In the neighbor-traversal approach we eliminate the ancestry list altogether. As such,

lists for the vertices are not created during the BFS traversal. Consequently, in the

dependency accumulation stage all the neighbors of a given vertex are traversed rather

than just the ancestors.

According to Brandes [30], each vertex that is found in the BFS traversal for the

58

first time is placed in a stack and is popped out in the dependency accumulation in

the reverse order that it was found. Each vertex is popped out exactly once. Further,

each time an additional path is found between a parent and child it is added to its

respective list. In the BFS traversal, all the neighbors of a vertex are traversed which

has an upper-bound of O(V +E) is given. Given that we only reduce the number of

operations required for the BFS traversal, we do not increase the time complexity.

In the dependency accumulation stage, now that the parent lists are not main-

tained, it is necessary to traverse all the neighbors of a vertex and search for a parent

or child. As vertices are accessed in the reverse order in which they were found, each

vertex is accessed once and its neighbors are traversed once. This means that the

dependency accumulation also has an upper bound time complexity of O(V + E).

Storage Complexity Analysis

The only data structure that requires O(E) memory in the computation of be-

tweenness centrality is the ancestor list. As it is no longer required to maintain the

ancestry lists/array, the memory bound of betweenness centrality goes down from

O(V + E) to O(V). The remaining data structures only require O(V) memory. As

these memory requirements do not change, the memory requirements of betweenness

centrality is reduced to O(V).

The coarse-grain parallel algorithm requires that each core maintain a copy of the

data structure required by Brandes’ algorithm. Each core is responsible for computing

the betweenness centrality values for an independent set of vertices. Thus, the storage

complexity of the coarse grain granularity using the ancestry list is O(P · (V + E))

given that each core needs O(V + E) memory. Consequently, Tan et al. state that

the coarse-grain parallelism is not scalable due to these memory requirements. Fol-

lowing the removal of the ancestry list, the memory requirement of the coarse-grain

approach is reduced from O(P · (V + E)) to O(P · V). As such, the coarse grain

approach becomes practical and is more scalable than the ancestor approaches. This

59

will become apparent in the Results section.

We now discuss the implications of our new approach on existing algorithms. The

medium-grain [135] and fine-grain algorithms [15, 104] require atomic instructions

to maintain the ancestry lists. In the first parallel implementation of betweenness

centrality [15] the parents list is used. To update the betweenness centrality of a

parent, in the dependency accumulation stage, it is necessary to acquire a lock on

the parent. In [104] a lock-free algorithm for betweenness centrality is shown where

the predecessor list is replaced with a successor list. This approach swaps the roles

between the parents and children. For both these algorithms, it is possible to replace

the ancestry lists with the neighbor-traversal approach. The benefit of using the

neighbor-traversal over ancestry lists for these parallel granularities is atomic instruc-

tions are no longer needed for serializing the insertions of elements into the ancestry

lists. We note that the neighbor-traversal approach can be implemented either using

the predecessor approach or successor approach in which in the dependency accumu-

lation stage the algorithm looks for parents in the level above or children in the level

below, respectively. For undirected graphs, both methods will work fine, however, for

directed graphs the parent approach can not be used in the dependency accumulation

stage of the neighbor-traversal as a vertex will not have access to its incoming edge as

is customary for many graph representations such as in the CSR (Compressed Sparse

Row) representation. As such, we recommend using the successor approach when

using the neighbor-traversal approach.

3.2 Results

We present experimental results of the traversal-based algorithm in this section on

both the x86 architecture and the Cray XMT2. The x86 system used for testing is

a multi-processor multi-core Intel server. The Intel system has four processors each

containing a 10-core Intel Xeon E7-8870 with at 2.4 GHz clock rate. This gives a total

60

of 40 physicals cores. As the E7-8870 supports Hyper-Threads, the system has a total

of 80 logical cores; however, for our testing the Hyper-Threads was disabled. Each

processor has 30MB of L3 cache shared by all the cores on that processor. This system

has a total of 256 GB of DDR3 RAM clocked at 1066 MHz. The Cray XMT2 is the

second generation of the Cray XMT [93] system. The XMT architecture is a shared

memory system with a massive thread count. The XMT2 we used is the system at

the Swiss National Supercomputing Centre that has 64 processors and 2 TB of main

memory. Each of the processors contains 128 hardware streams. A different stream

can be executed at every clock cycle. The massive thread count enables applications

with irregular memory accesses to overcome the latency. In addition to this, the

XMT offers low-overhead synchronization through atomic fetch-and-add instructions

and full-empty bit memory semantics. As such the XMT is highly suited for graph

problems.

3.2.1 Random Graphs

Recursive Matrix (R-MAT) [39] is a graph generator used to create synthetic scale-

free graphs that follow properties found in real-world networks. For simplicity, we

introduce R-MAT using an adjacency matrix (though this is conceptual). Initially,

the adjacency matrix is empty, and edges are added one at a time. For each newly

inserted edge, the adjacency matrix is divided into equal-size quadrants where each

has a different probability of being selected. One quadrant is selected using a random

number generator. This quadrant is recursively subdivided into smaller equal-size

quadrants from which the next random selection is made. This process is repeated

until each quadrant contains only a single element in the adjacency matrix. The

last round randomly selects a single element and creates the corresponding edge. The

probabilities assigned to the quadrants are designated a, b, c, and d where a+b+c+d =

1 and 0 ≤ a, b, c, d ≤ 1. The R-MAT generator can create Erdős-Rènyi (ER) [61][62]

61

random graphs when a = b = c = d = 0.25. ER graphs are random graphs with

a uniform edge distribution. We use RMAT-I to denote an RMAT graph with 2I

vertices. For example an RMAT-24 graph has 224 = 16M vertices.

3.2.2 Coarse Grain Parallelism

In this section we will take a look at experimental results of the coarse grain parallel

neighbor-traversal implementation. The coarse grain approach is appropriate for the

x86 architecture as it does not require synchronization (locks and atomic instruc-

tions) which is usually costly. Furthermore, this architecture does not benefit from

increasing the number of threads beyond the number of physicals cores, as such, we

limited the thread count by the maximal number of cores available.

On this system we compared the different algorithmic approaches for computing

betweenness centrality: neighbor-traversals, parent list with an array implementation,

and parent list using a linked list implementation. As both scalability and perfor-

mance were the metrics of interest, we ran a variety of tests on the system. We ran

the algorithms on multiple scales (vertex count), average edge degree, and thread

count. All tests were conducted on undirected graphs.

The results in this subsection are for weak scaling, where each core is supplied with

a constant amount of work, regardless of the number of the cores. This means that

each of the cores was responsible for computing betweenness for the same number of

roots.

For each graph size and average edge adjacency, we checked the scalability for

a single processor (upto 10 cores) and for the entire system (all 40 cores). Tests

on the single processor allow a speedup analysis that does not require dealing with

memory subsystem issues such as cache coherency and cross processor communication.

The memory contention becomes apparent for the higher thread counts. Note, that

62

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

se
cs

)

Thread count

Neighbor traversal Array Linked-List

(a) |V | = 218, |E| = 64 · |V |.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

se
cs

)

Thread count

Neighbor traversal Array Linked-List

(b) |V | = 222, |E| = 64 · |V |.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

se
cs

)

Thread count

Neighbor traversal Array

(c) |V | = 225, |E| = 64 · |V |.

Figure 16: Weak scale testing for thread counts of 1 to 10. Lower is better.

0

1

2

3

4

5

6

7

8

9

5 10 15 20 25 30 35 40

T
im

e
 (

se
cs

)

Thread count

Neighbor traversal Array Linked-List

(a) |V | = 218, |E| = 64 · |V |.

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30 35 40

T
im

e
 (

se
cs

)

Thread count

Neighbor traversal Array Linked-List

(b) |V | = 222, |E| = 64 · |V |.

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

T
im

e
 (

se
cs

)

Thread count

Neighbor traversal

(c) |V | = 225, |E| = 64 · |V |.

Figure 17: Weak scale testing for thread counts of 5 to 40 in multiples of 5. Lower is
better.

Hyper-Threads option was not used for testing performance, however, the neighbor-

traversal approach could scale to 80 threads for many of the test cases because of the

considerably lower memory requirements.

We tested the algorithms on multiple graph sizes from RMAT-18 to RMAT-27.

For all the graphs between RMAT-18 and RMAT-25, four different average edge

degrees of 8, 16, 32, and 64 were tested. For RMAT-26, average edge degrees of 8, 16,

and 32 were tested. For RMAT-27, average edge degrees of 8 and 16 were tested. All

these, were tested for the above mentioned thread counts. We note that for both the

array based approach and the linked list approach, there were instances in which the

algorithm was not able to complete due to the memory requirements of these methods.

Further, there were instances in which the algorithms timed-out. We elaborate on

these cases.

We divide the test cases into 4 sets: small graphs (RMAT-18 - RMAT-19), medium

63

sized graphs (RMAT-20 - RMAT-22), large graphs (RMAT-23 - RMAT-25), and extra

large graphs (RMAT-26 - RMAT-27). We analyze each of these independently and

in the following order: small graphs, large graphs, extra large graphs, and medium

graphs. The order of the explanations moves from the simplest case to the more

complicated case.

For the small graphs, all the different algorithms completed for all the different

graph sizes, edge counts and thread counts. In Fig. 16 (a) and Fig. 17 (a) the

execution times for the three different implementations are depicted. The small graph

is a RMAT-18 graph with an average edge degree of 64. Note that for all thread counts

the neighbor-traversal approach is faster than the other implementations.

For the larger graphs, there were many cases that the array approach algorithm

was not able to scale to the to 30-40 threads due to memory constraints, as such the

neighbor-traversal out preformed the array approach for these thread counts. Note

that the amount of memory required for array approach was so large, that there was

increased number of cache misses. The linked-list approach simply timed out even

for the smaller thread counts. The neighbor-traversal scaled to all 40 cores for all

the graph scales and average edge degreess. In Fig. 16 (c) and Fig. 17 (c) the

execution times for the three different implementations are depicted. The large graph

is a RMAT-25 graph with an average edge degree of 64. The array based approach

was not able to scale beyond 6 cores, whereas, the neighbor-traversal approach scaled

up to 40 cores. For the extra large graphs it is clear that the neighbor-traversal out

preformed the other algorithms, simply as it was able to scale to all the thread counts.

For the sake of brevity we, do not present an additional figures, yet, we note that

such a figure would be similar with fewer points on the graph for the array approach.

For the medium size graphs a more qualitative explanation is presented given that

for some of the test cases the neighbor-traversal approach was outperformed by the

array approach. In Table 5 it is possible to see the cases that the array based approach

64

Table 5: The scenarios for the medium size graphs where the different approach-
es have better performance. The array based approach is denoted with ◦ and the
neighbor-traversal is denoted as �. The first column denotes the graph size and
average edge adjacency. The remaining columns represent the thread count. The
neighbor-traversal approach dominates the table.

(Size, Avg|E|) 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40
(18,8) � � � � � � � � � � � � � � � �
(18,16) � � � � � � � � � � � � � � � �
(18,32) � � � � � � � � � � � � � � � �
(18,64) � � � � � � � � � � � � � � � �
(19,8) � � � � � � � � � � � � � � � �
(19,16) � � � � � � � � � � � � � � � �
(19,32) � � � � � � � � � � � � � � � �
(19,64) � � � � � � � � � � � � � � � �
(20,8) � � � � � � � � � � � � � � � �
(20,16) � � � � � � � � � � � � � � � ◦
(20,32) � � � � � � � � � � � � � � ◦ ◦
(20,64) � � � � � � � � � � � � � � ◦ ◦
(21,8) � � � � � � � � � � � � � � � ◦
(21,16) � � � � � � � � � � � � � ◦ ◦ ◦
(21,32) � � � � � � � � � � � � � ◦ ◦ ◦
(21,64) � � � � � � � � � � � � � ◦ ◦ ◦
(22,8) � � � � � � � � � � � � � � ◦ ◦
(22,16) � � � � � � � � � � � � ◦ ◦ ◦ ◦
(22,32) � � � � � � � � � � � � ◦ ◦ � �
(22,64) � � � � � � � � � � � � ◦ ◦ � �
(23,8) � � � � � � � � � � � � � � � �
(23,16) � � � � � � � � � � � � � � � �
(23,32) � � � � � � � � � � � � � � � �
(23,64) � � � � � � � � � � � � � � � �
(24,8) � � � � � � � � � � � � � � � �
(24,16) � � � � � � � � � � � � � � � �
(24,32) � � � � � � � � � � � � � � � �
(24,64) � � � � � � � � � � � � � � � �
(25,8) � � � � � � � � � � � � � � � �
(25,16) � � � � � � � � � � � � � � � �
(25,32) � � � � � � � � � � � � � � � �
(25,64) � � � � � � � � � � � � � � � �
(26,8) � � � � � � � � � � � � � � � �
(26,16) � � � � � � � � � � � � � � � �
(26,32) � � � � � � � � � � � � � � � �
(27,8) � � � � � � � � � � � � � � � �
(27,16) � � � � � � � � � � � � � � � �

65

out performed the neighbor-traversal approach. These cases are marked with a red

circle. For all remaining graph sizes, average edge degrees and thread counts the

neighbor-traversal approach outperformed the array based approach.

In Fig. 16 (b) and Fig. 17 (b) the execution times for the three different imple-

mentations are depicted. The medium graph is a RMAT-22 graph with an average

edge degree of 64. It is well worth noting that the array approach has the better

performance only for the case that two or more processors (20 cores) are used. This

can be explained by the fact the neighbor-traversal approach has a greater number of

memory access and requires more data to be transmitted between different sockets.

The increase in the number of processor present several communication limitations

which include limited bandwidth, cache coherency, and non-uniform memory access

(NUMA).

As such, an increase in communication (memory requests) can reduce the overall

performance of the system as it happens for many of the medium sized graph scenarios

when moving from 2 sockets (maximum of 20 threads) and upwards. However, as the

graph becomes denser and the vertices have more parents in the adjacent level, the

number of memory requests to the parent array increases. So does the number of cache

misses due to contention. Cache misses can be just as expensive as over saturating

the memory bandwidth and thus the performance of the array approach goes done

and the neighbor-traversal approach starts outperforming the array approach again.

3.2.3 Fine Grain Parallelism

In this subsection we present performance results of the fine grain parallel betweenness

centrality using both the ancestral approach and the neighbor approach on both the

Cray XMT and the x86. For both these architectures we used and modified existing

software packages: GraphCT [1] for the Cray XMT and Georgia Tech’s SNAP [2, 16]

for the x86.

66

0

200

400

600

800

1000

1200

1400

1600

4 8 16 32 64

T
im

e
 (

se
c)

Cores

Successor Predeccesor Neighbor-Traversal

(a) Execution for both BFS and
dependency accumulation stages.

0

200

400

600

800

1000

1200

1400

4 8 16 32 64

T
im

e
 (

se
c)

Cores

Successor Predeccesor Neighbor-Traversal

(b) Execution for BFS stage.

0

50

100

150

200

250

300

350

4 8 16 32 64

T
im

e
 (

se
c)

Cores

Successor Predeccesor Neighbor-Traversal

(c) Execution for dependency ac-
cumulation stage.

Figure 18: Execution time for approximate betweenness centrality on the Cray XMT2
for a considerably sparse graph. An RMAT-24 graph is used with an average edge
degree of 8. 256 roots were used as defined in the HPCS SSCA [4] specifications.

3.2.3.1 GraphCT on the Cray XMT

We compare the execution times of three variations of computing approximate be-

tweenness centrality on the Cray XMT using fine grain parallelism: parent array

approach [15], successor array approach [104], and successor neighbor-traversal ap-

proach. The first two are part of the GraphCT [1] software package.

For the XMT testing we used a RMAT-24 graphs with two different average edge

degrees: 8 and 64. We refer to the first graph as the sparse graph and the second graph

as the dense graph. For each graph 256 vertices were selected as roots as is specified in

the HPCS SSCA [4] specifications. We timed the the two main stages of betweenness

centrality, the breadth first search stage and the dependency accumulation stage. Fig.

18 and Fig. 19 present the timing the running times of the algorithms for the sparse

and dense graph, respectively. The Successor approach in these figures refers to the

[104] algorithm and the Predecessor approach refers to the [15] algorithm.

As can be seen, the new traversal algorithm out preforms the predecessor array

and successor array based approaches in the BFS stage. The time spent in the parallel

BFS dominates the execution time for both the sparse and dense graphs for all the

implementations. On the other hand, the dependency accumulation stage in the

predecessor array approach outperforms the dependency accumulation stage in the

67

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 8 16 32 64

Successor Predeccesor Neighbor-Traversal

(a) Execution for both BFS and
dependency accumulation stages.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 8 16 32 64

Successor Predeccesor Neighbor-Traversal

(b) Execution for BFS stage.

0

500

1000

1500

2000

2500

3000

4 8 16 32 64

Successor Predeccesor Neighbor-Traversal

(c) Execution for dependency ac-
cumulation stage.

Figure 19: Execution time for approximate betweenness centrality on the Cray XMT2
for a slightly denser sparse graph. An RMAT-24 graph is used with an average edge
degree of 64. 256 roots were used as defined in the HPCS SSCA [4] specifications.

neighbor-traversal approach. The initial intuition behind the reduced performance

can be can be explained by the fact the neighbor-traversal approach requires more

memory operations. However, that is only a partial explanation.

The main reason for the reduced performance is due to load balancing issues that

occur because of the different number of adjacencies that the vertices have. A single

vertex with an extremely high number of adjacencies can cause the imbalance. This

was also a problem for the successor based approach [104].

By generating an ER random graph we are able to confirm the workload imbalance.

As ER graphs have a uniform distribution of edges over the vertices, the workload is

considerably balanced for both the BFS traversal and the dependency accumulation.

As expected both stages achieved better scalability (near linear scalability). For the

sake of brevity, we do not present these graphs. It is also worth noting that detecting

these workload imbalances for a small number of cores is difficult.

3.2.3.2 SNAP on the x86

We compare the execution times of the coarse parent array based approach and the

neighbor-traversal approach on the x86. For these tests we used the implementations

taken from the Georgia Tech’s SNAP [2, 16] graph package. For the neighbor-traversal

approach, we simply removed the none relevant code. For these tests we used a

68

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

se
c)

Cores

Array Neighbor-Traversal

Figure 20: Execution time of the fine grain parallelism using the SNAP package.

RMAT-21 21 graph with an average edge degree of 8. Once again a total of 256

roots were selected, as specified in the HPCS SSCA [4] specifications. Fig. 20 depicts

the run-time of the fine grain algorithms. For these implementations, the neighbor-

traversal code outperforms the array based approach.

3.2.4 Additional Uses

In this subsection we discuss the benefit of using neighbor-traversal in additional be-

tweenness centrality algorithms. Table 6 contains a list of different betweenness cen-

trality algorithms and their storage complexity using both the ancestor array approach

and the new neighbor-traversal approach. We differentiate between computation of

betweenness centrality for static graphs and streaming graphs. Streaming graphs

are graphs that dynamically change over time with updates such as edge insertion

or deletion. Further, we differentiate between exact and approximate betweenness

centrality.

Note that the storage complexity for all the algorithms in Table 6 has been reduced

using the neighbor-traversal approach. Also note, that the storage complexity of these

algorithms is no longer dependent on the O(E). This is especially crucial for the exact

streaming algorithm [77] which previously had a storage complexity of O(V · (V +E))

and is now O(V 2). This improvement is also be helpful for computing approximate

streaming betweenness centrality, where K refers to the number of roots that will be

69

Table 6: Memory bounds for different betweenness centrality algorithms.

Algorithm Ancestor-array based approach Neighbor-traversal approach
Exact static [30] O(V + E) O(V)
Approximate static [17] O(V + E) O(V)
Exact streaming [77] O(V · (V + E)) O(V 2)
Approximate streaming O(K · (V + E)) O(K · V)
Parallel fine grain [15, 104] O(V + E) O(V)
Parallel coarse grain O(P · (V + E)) O(P · V)

used in the computation, giving the approximate algorithm a storage complexity of

O(K · V).

3.3 Conclusions

In this chapter we presented an additional approach for computing betweenness cen-

trality. While the new approach does more operations it does not increase the theo-

retical complexity. Furthermore, the new approach increases the scalability due to a

reduced storage complexity and allows for analyzing larger graphs. The performance

of the new algorithm outperforms the previous ones. We showed the increased per-

formance on two different architectures, Intel x86 and Cray XMT, using two different

parallel granularities: coarse grain and fine grain. For the x86 architecture we showed

both weak scaling and strong scaling results.

An additional conclusion of our work, is that computing edge betweenness cen-

trality, as suggested Newman and Girvan [111], using the coarse grain approach does

not scale due to the storage requirements as each thread requires an O(E) memory

and thus a total of O(P · (V + E)). Vertex betweenness centrality has a reduced

storage complexity compared to edge betweenness centrality.

In conclusion we leave several open ended issues that we believed should be ad-

dressed in the hope of better understanding computation of betweenness centrality:

1. Is there a certain graph density from which it becomes beneficial to use the

ancestral approach over the neighbor-traversal approach?

70

2. Is there a way to model the computation of betweenness centrality based on

graph properties (without actually computing betweenness centrality) such that

the number of memory accesses for a given algorithm can be approximated?

This would allow for auto-tuning for betweenness centrality and perhaps for

additional graph algorithms.

3. As we saw for the fine-grain parallelism scenario (on the Cray XMT) , the

dependency accumulation in the successor approach suffers from an unequal

workload balance. Is there a way to address this problem that would not require

locks? Or if locks are used, can they be used such that the performance will

not be affected too much?

71

CHAPTER IV

VERTEX COVER CLUSTERING COEFFICIENTS

This chapter is an extension of the paper: O. Green, D. Bader, “Faster Clustering

Coefficient Using Vertex Covers”, 5th ASE/IEEE International Conference on Social

Computing, Washington DC, 2013.

Clustering coefficients, also called triangle counting, is a widely-used graph an-

alytic for measuring the closeness in which vertices cluster together. Intuitively,

clustering coefficients can be thought of as the ratio of common friends versus all

possible connections a person might have in a social network. The best known time

complexity for computing clustering coefficients for sparse graphs uses adjacency list

intersection and is O(V · d2
max), where dmax is the size of the largest adjacency list of

all the vertices in the graph. In this work, we show a novel approach for computing

the clustering coefficients in an undirected and unweighted graphs by exploiting the

use of a vertex cover, V̂ ⊆ V . This new approach reduces the number of times that

a triangle is counted by as many as 3 times per triangle. The complexity of the new

algorithm is O(V̂ · d̂2
max + tV C) where d̂max is the size of the largest adjacency list in

the vertex cover and tV C is the time needed for finding the vertex cover. Even for a

simple vertex cover algorithm this can reduce the execution time 10% − 30% while

counting the exact number of triangles (3-circuits). We extend the use of the vertex

cover to support counting squares (4-circuits) and clustering coefficients for dynamic

graphs.

4.1 Introduction

Clustering coefficients is a graph analytic that states how tightly bound vertices are

in a graph [138]. The tightness is measured by computing the number of closed

72

triangles in the graph, which can then imply the small-world property. Computing the

clustering coefficients has been applied to many types of networks: communication

[125], collaboration [133], social [133], citation [99], and biological [23]. In social

networks, one can think of the local clustering coefficients as the ratio of actual

mutual acquaintances versus all possible mutual acquaintances. Applications using

clustering coefficients include DIMES [125], which is a distributed platform used for

providing an accurate, and comprehensive map of the Internet and automatic Web-

Spam detection [27].

There are two types of clustering coefficients: global and local. The global clus-

tering coefficient is a single value computed for the entire graph, whereas the local

clustering coefficient is computed per vertex. Both are computed in a similar fashion.

Without the loss of generality, we consider the global clustering coefficient in this

work; nonetheless our approach is applicable for computing local clustering coeffi-

cients. Table 7 presents the notations used in this chapter.

Definition 1 Formally, the global clustering coefficient is:

CCglobal =
∑
v∈V

CCv =
∑
v∈V

tri(v)

deg(v) · (deg(v)− 1)

There are several approaches for computing clustering coefficients:

1. Enumerating over all node-triples. This has an O(V 3) upper bound complexity.

2. Using matrix multiplication. This has an O(V w) complexity where w ≤ 2.376

[44].

3. Intersecting adjacency lists. This has an O(V · d2
max) upper bound [123] where

dmax is the vertex with largest adjacency.

In this chapter we show a novel and intuitive way to improve the adjacency list

intersection approach that removes redundant list intersections, therefore reducing

73

Table 7: Notations in this chapter

Name Description
CCglobal Global clustering coefficient
CCv Clustering coefficient for vertex v
deg(v) Degree of vertex v.
tri(v) Number of triangle that vertex v is in.
V̂ A vertex cover of the graph, V̂ ⊆ V .
dmax Vertex with maximal degree in the graph.
d̂max Vertex with maximal degree from the vetex cover.
u, v, w, x Vertices in the graph.

the run-time of the algorithm. We accomplish this by only intersecting the adjacency

lists of vertices that are marked in an arbitrary vertex cover.

We then extend our method for computing a circuit of any length and illustrate

this with circuits of length 4. We show that our new approach can also be applied to

dynamic graphs.

The remainder of the chapter will be structured as follows. Section II discusses

the related work and discusses real world graph properties and introduces vertex cov-

ers. In Section III, we present our new algorithm for counting 3-circuits (clustering

coefficients), 4-circuits, and extend the vertex cover approach for computing clus-

tering coefficients for dynamic graphs. In Section IV, we discuss our experimental

methodology and present quantitative results. Finally, in Section V, we present our

conclusions and discuss future work.

4.2 Related Work

In this section we review the literature that addresses the challenge of computing

clustering coefficients for large dynamic graphs. These approaches take into account

optimizations such as parallelization, approximation, and dynamic algorithms that

make only local modifications to the graphs. These optimizations are crucial in order

to analyze social networks such as Facebook [7] and Twitter [9] which can potentially

have million of members and thousands of updates per second. The combination of

74

these approaches allows scaling of the data set.

Clustering coefficients is an analytic that is relatively simple to parallelize because

of the relatively large number of independent operations that can be executed. The

exact parallel granularity that is used and whether it is local or global will define the

synchronization methods required, which is important as the number of threads in a

system increases and when full system utilization is desired. An additional benefit of

computing clustering coefficients for dynamic graphs is that a given update requires

modifying only local values.

We now discuss algorithms that have tackled the challenges mentioned above. We

add that our new algorithm is an orthogonal optimization to the ones mentioned,

meaning that our approach would also benefit from parallelization and the creation

of a dynamic algorithm.

In [53], a massively multithreaded architecture, the Cray XMT2, is used for com-

puting dynamic clustering coefficients for a graph with half a billion edges. The Cray

XMT2 is a massively parallel system that supports several thousand light-weight

concurrent threads with a Uniform Memory Architecture (UMA) that allows for fine-

grain parallelism. To achieve high system utilization on the XMT2 for the dynamic

case, the incoming updates are batched together and dealt with concurrently by the

various threads. In [98] a GPU implementation of clustering coefficients is presented.

Approximation and dynamic data flows are the focus of [27, 35]. These show

different techniques for approximating clustering coefficients. In [53] an additional

approximate algorithm is given that is based on Bloom filters. The Bloom filters are

created only for a subset of the vertices in the batch.

4.2.1 Vertex Covers

A Vertex Cover is a set V̂ ⊆ V such that for all (a, b) ∈ E, either a ∈ V̂ or b ∈ V̂ (or

possibly both). A minimal vertex cover is the smallest V̂ ⊆ V meeting the requirement

75

above. Finding a vertex cover is a well studied problem [45, 86, 95, 20, 84]. Finding

the minimal vertex cover is known to be NP-Complete (NPC) [69, 91]. We do not

extend the discussion on this as it not relevant for this chapter.

While finding the minimal vertex cover is intractable, there are numerous algo-

rithms that can find some vertex cover in polynomial time, including linear time

[45, 86, 95, 20]. In [95] a parallel algorithm for computing the vertex cover based on

the A* formulation is given.

A theoretic PRAM algorithm is given in [86] where the vertex cover is found in

iterative fashion using an Euler circuit. A total of O(V + E) processors are required

and the time complexity is O(log3(E)).

4.3 Vertex Cover Clustering Coefficients

In this section we show a new algorithm for finding the clustering coefficients using

vertex covers that avoid wasteful neighbor intersections.

4.3.1 Clustering Coefficients for Static Graphs

In the following subsections we discuss both theoretical and practical implications of

the the vertex cover. For simplicity, assume that a vertex cover of V̂ of G = (V,E) is

given.

Consider a triangle made up of three vertices u, v, w. These vertices may poten-

tially have additional adjacencies; for our discussion these edges are not relevant. Now

consider a vertex cover over this triangle. Fig. 21 depicts all legal vertex covers of a

triangle. Note that a closed triangle, made up of u, v, w ∈ V , can be represented as

six different tuples: (u, v, w), (u,w, v), (v, u, w), (v, w, u), (w, u, v), (w, v, u). All these

tuples need to be counted. Note, that by using a lexicographical sorting, only three

of these tuples need to be counted. This however, does not change the relevance of

our approach as our algorithm benefits from the lexicographical sorting as well.

76

Lemma 6 At least two out of the three vertices that make up a triangle are within

the vertex cover, V̂ . By contradiction, consider the case that only one vertex is in the

vertex cover, V̂ , without the loss of generality, assume v ∈ V̂ and u,w /∈ V̂ . As such

there is an edge (u,w) ∈ E that is not covered, meaning that V̂ is not a vertex cover.

�

Lemma 7 Given two vertices u, v /∈ V̂ , there are no triangles in the graph in which

both u and v are in the same triangle. This is immediate from Lemma 6. �

As a results of these two Lemmas, we only need to intersect the adjacency lists of

two adjacent vertices when both vertices are marked in the vertex cover. That is, for

u, v ∈ V ∧ (u, v) ∈ E such that either:

1. v ∈ V̂ ∧ u /∈ V̂

2. v /∈ V̂ ∧ u ∈ V̂

the intersection between these vertices is not required.

In the original algorithm, this intersection is indeed computed. We now show that

it is only necessary to intersect adjacency lists of adjacent vertices that are both in

the vertex cover.

We denote C as the set of the intersections between the two vertices. If C is

empty, these vertices do not have common neighbors. If C is not empty then for each

w ∈ C the following two scenarios can happen: 1) w ∈ V̂ or 2) w /∈ V̂ . Both these

scenarios are depicted in Fig. 21.

Using the above observations we show that it is possible to compute the clustering

coefficient by intersecting the adjacency lists of two vertices u, v such that u, v ∈

V̂ ∧ (u, v) ∈ E. We are required to show that all six tuples are accounted for. We

start with the case that w ∈ C ∧ w ∈ V̂ , as such u, v, w ∈ V̂ . When intersecting u

with v, w is found. When intersecting v with u, w is found again. The intersection

77

Algorithm 3: Pseudo-code for computing clustering coefficients given a vertex
cover V̂ .
triangles← 0;
for v ∈ V̂ do

for u ∈ adj(v) do
if u = v then

next u;

if u ∈ V̂ then
C ← intersect(v, adj(c), u, adj(v));
for c ∈ C do

if c ∈ V̂ then
triangles⇐ triangles+ 1;

else
triangles⇐ triangles+ 3;

will be repeated for intersecting u with v, v with w and their respective reverse orders.

For each of the triangles found, the global triangle counter is increased. All six tuples

have been accounted for.

For the second scenario when w ∈ C ∧ w /∈ V̂ , the only intersection computed

is between vertices u and v and vertices u and v. w is not intersected with other

vertices as it is not in the vertex cover. As such, some intersections are omitted.

Yet, the omitted intersections can be accounted for by a simple counting correction

where each intersection is counted as 3 different triangles. Given the two computed

intersections, u with v and v with u, all the six triangles are properly accounted for.

Given the above, it is possible to create an algorithm for computing the clustering

coefficients given a vertex cover that reduces the number of neighbor intersections.

The pseudo-code for this is given in Algorithm 3. Note the algorithm assumes that

a vertex cover has been computed. We extend the discussion on the time complexity

of vertex covers in a following subsection.

4.3.2 Complexity Analysis

In this section we do a complexity analysis of our new algorithm and discuss the cost

of computing the vertex cover in terms of time complexity. The time complexity of the

78

� �

�

� �

�

� �

�

� �

�

Figure 21: All the legal vertex covers of the triangle made up of u, v, w. The vertices
in the vertex cover are marked with an additional circle.

original algorithm is O(V ·d2
max) where dmax is the size of the largest adjacency list in

the graph. The key difference between our new algorithm and the original algorithm

is that only a subset of vertices requires adjacency list intersection: V̂ . Further, only

the adjacency lists of vertices that are within the vertex cover are intersected. As such

the O(d2
max) is replaced with O(d̂2

max), where d̂max is the size of the largest adjacency

list in the vertex cover.

Intuitively, the computational bottleneck of the original algorithm is the vertex

with the largest adjacency list. This is because this vertex is intersected with all its

neighbors dmax times and each intersection requires dmax operations. Conceptually

this is still the same for the new algorithm, however, the bottleneck is no longer the

highest degree vertex in the graph, but, rather the highest degree vertex in the vertex

cover. This gives the new algorithm a time complexity of O(TimeV C + V̂ · d̂2
max),

where O(TimeV C) refers to the time complexity of finding a vertex cover.

For the new algorithm to be considered optimal and not to add additional overhead

79

to the existing complexity, the following requirements needs to be met: O(TimeV C) ≤

O(V · d2
max). For practical purposes, an even tighter bound is needed: O(TimeV C) ≤

O(V · d2
max− V̂ · d̂2

max). These requirements imply that the time spent computing the

vertex cover should not be greater than the reduced run-time.

While a trivial vertex cover of V̂ ≡ V can be found in O(1), this is essentially

the original algorithm. Linear time approximations yield reasonable smaller vertex

covers than V in practice. For most linear-time vertex cover algorithms the condition

is met almost trivially as O(V + E) is smaller than O(V̂ · d̂2
max). This is not true

for considerably sparse graphs, where E ∼= 2 · V , as very little work is required for

computing the list intersections. We extend this discussion in Section 4.4.

4.3.3 Circuits of length 4 and higher

A circuit is defined as a simple path of vertices where each vertex and edge is traversed

once with the first and last vertices in the path being the same. For example, a triangle

is a 3-circuit. Abdo et al. [10] suggest using larger circuits than 3-circuits for the

purpose of graph analysis. Specifically, they discuss the impact of “long-distance”

relationships on the underlying graph structure.

A circuit of length four can be considered a square and a circuit of length five can

be considered a pentagon. From a social network analysis standpoint, finding a square

in the network given a specific player, v, is equivalent to finding common friends of

any two of v’s friends. This can be extended to find circuits of all sizes.

Fig. 22 depicts a subset of different vertex covers for a square. In all these vertex

covers, u and x are part of the cover. All non-relevant edges have been removed.

Note, in all the examples of Fig. 22 at least one set of vertices that are across from

each other (i.e two-hops away) are in the vertex cover. This is mandatory for the

vertex cover to be maintained. In our examples, these vertices are u and x. We refer

to these vertex-pair as cross-vertices.

80

� �

� �

� �

� �

� �

� �

�

� �

�

Figure 22: All legal vertex covers of the square made up of u, v, w, and x. Additional
edges that are non-relevant have been removed. There are additional vertex covers
for square. However, these follow one of the presented patterns. The vertices in the
vertex cover are marked with an additional circle.

Finding circuits of length four entails taking all vertex pairs and intersecting their

adjacencies. Given the adjacency set of two cross-vertices C, if |C| > 2 (meaning that

the vertices share two or more neighbors) then a square exists. To be exact there are

|C| · (|C| − 1) different 4-circuits. We will elaborate on this.

The pseudo-code for finding the number of 4-circuits using the vertex cover ap-

proach can be found in Alg. 4. The pseudo-code makes the proper counting cor-

rection. Using the cross-vertices observation, we reduce the computed intersection

from “all vertex pairs” to “all vertex-cover pairs” without missing a 4-circuit. To get

the original algorithm for 4-circuits, the pseudo code requires a simple modification:

replace V̂ with V in the first two loops and get rid of the counting correction code.

Given u, x are cross-vertices (not necessarily in the vertex cover), now consider

the following scenarios when w, v ∈ V and w, v are cross-vertices (both pairs must be

81

Algorithm 4: Pseudo-code for counting 4-circuits given a vertex cover V̂ .
squares← 0;
for u ∈ V̂ do

for x ∈ V̂ do
if u = x then

next x;
C ← intersect(u, adj(u), x, adj(x));
InV̂ ← {};
notInV̂ ← {};
for c ∈ C do

if c ∈ V̂ then
InV̂ ← InV̂ ∪ {c};

else
notInV̂ ← notInV̂ ∪ {c};

squares← squares+ |C| · (|C| − 1)
|notInV̂ | · (|notInV̂ | − 1) +2 · |notInV̂ | · (|InV̂ | − 1)

cross vertices for a square to exist). The following scenarios occur:

1. w, v /∈ V̂ . If they are part of the 4-circuit, then they can be found when

intersecting the adjacency list of u, x and therefore this intersection can be

avoided as it is redundant. If they are not part of a 4-circuit, but simply vertices

that are two hops away, then there is no point intersecting their adjacencies

allowing a reduced number of intersections.

2. Either w ∈ V̂ ∧v /∈ V̂ or v ∈ V̂ ∧w /∈ V̂ . Without the loss of generality, assume

the second case. Once again, for w, v to be part of a 4-circuit, u, x ∈ V̂ cross

vertices need to be adjacent to them. For the same reasons as in 1), redundant

intersections can be avoided.

3. w, v ∈ V̂ . It is possible that they are part of a 4-circuit. If u, x ∈ V̂ are cross

vertices, then they are part of a 4-circuit. Therefore, their adjacencies need to

be intersected. As such, the 4-circuit will be found for the intersection of w

with v, v with w, u with x, and x with u.

If u, x ∈ V̂ , it is possible to swap roles between w, v and u, x and go back to 1)

82

�

�

Figure 23: The cross-vertices (u, x) and their common neighboring vertices found in
adjacency intersection. These neighbors are divided into groups: those in the vertex
cover and those not in the vertex cover. The vertices in the vertex cover are marked
with an additional circle.

which states that the only intersections that need to be computed are between

the vertices in the cover.

The above essentially states the counting corrections that need to be made.

Assume that u, x ∈ V̂ , meaning that they are potentially cross-vertices and need

to have their lists intersected. In the process of intersecting their adjacencies lists,

the set C consists of two subsets, the first set consists of vertices in the vertex cover

and is denoted inV̂ , and the second set consists of vertices that are not in the vertex

cover, denoted as notInV̂ . Fig. 23 depicts the intersections of two vertices u and x.

The vertices belonging to inV̂ have been marked with a double circle.

The number of ordered pairs in the intersection is |C| · (|C|− 1), each one of them

specifies a different 4-circuit. Remember, that u will be intersected with x and x will

be intersected with u and these give different 4-circuits 1.

Because not all vertex pairs have their lists intersected, a counting correction needs

1This can be avoided if lexicographical sorting is used.

83

to be taken into account. Consider v, w common neighbors of the ordered pair (u, x).

If v, w ∈ V̂ , then the ordered pair (v, w) will have its neighbors intersected and then

u, x will be found. Therefore, no correction needs to be done.

If v, w /∈ V̂ , then the ordered pair (v, w) will not have its adjacencies intersected,

therefore, requiring a counting correction as if the adjacencies of the ordered pair

(v, w) were intersected and found u, x as its common neighbors. This adds two addi-

tional 4-circuits because of the ordering of the neighbors. The ordered pair (w, v) also

will not have its neighbors intersected; however, this counting correction is taken into

account by the ordered pair (x, u). Therefore, for the 4-circuit consisting of vertices

u, v, w, x all eight 4-circles are accounted for. The counting correction needed because

of vertices that are not in the vertex cover is |notInV̂ | · (|notInV̂ | − 1).

For the case in which only one of w, v is in the vertex cover, the explanation from

above repeats itself. Therefore, the number of cycles that need to be accounted for is

essentially the number of ways to order w, v: 2 · |inV̂ | · (|notInV̂ | − 1).

In this subsection we showed how to find 4-circuits using the vertex cover and

applying additional counting correcting techniques. These techniques can be further

extended to include the general K-circuit case for K ≥ 3. However, the general

K-circuit case is outside the scope of this paper.

4.3.4 Clustering Coefficients in Dynamic Graphs

In this subsection we show that our new vertex cover clustering coefficients approach

can also be applied to dynamic graphs. The two types of operations that we consider

for dynamic graphs are edge insertions and edge deletions. Vertex insertion and

deletion are simple. A vertex insertion places a new vertex in the graph without any

edges. A vertex deletion can be serialized as a set of edge deletions.

For an inserted edge, e = (u, v), into the graph the following three scenarios can

arise:

84

1. u, v /∈ V̂

2. (u ∈ V̂ ∧ v /∈ V̂) or (v ∈ V̂ ∧ u /∈ V̂)

3. u, v ∈ V̂

The global and local clustering coefficients are handled slightly differently. Again,

we focus on the global case.

For the first case, where both vertices are not in the vertex cover, one of the

vertices has to be added to the vertex cover to ensure that all edges are covered.

For simplicity assume that v is added to the vertex cover. The inserted edge can

potentially close several triangles. The second case is similar to the first but does not

require modifying the vertex cover. Obviously, for the third case when both vertices

in the vertex cover, the vertex cover does not require any modification.

Edge deletions can be dealt with in a similar fashion. However, when deleting

e = (u, v), the first scenario in which u, v /∈ V̂ is not possible as this violates the

vertex cover’s properties.

4.4 Empirical Results

In this section we present empirical performance results of the new clustering coeffi-

cients algorithm for both triangle counting and square counting. In our tests we used

an Intel i7-2600K system with 16GB of memory. The clock frequency is 3.4GHz.

We used graphs taken from the 10th DIMACS Implementation Challenge on Graph

Partitioning and Graph Clustering [19]. The graphs we used can be found in Table

8. The global clustering coefficient value for these graphs are presented in Fig. 24.

For benchmarking purposes, we used the clustering coefficient algorithm from [53].

This is a highly optimized CSR implementation of clustering coefficients. As such we

have used this CSR clustering coefficient implementation as our baseline and have

implemented our new algorithms based using the list intersection taken from the

85

Table 8: Graphs from the 10th DIMACS Implementation Challenge that are used in
our experiments, grouped by type and sorted within each group by vertex count.

Name |V | |E|
Collaboration Networks

coAuthorsCiteseer 227,320 814,134
citationCiteseer 268,495 1,156,647
coAuthorsDBLP 299,067 977,676
coPapersCiteseer 434,102 16,036,720
coPapersDBLP 540,486 15,245,729

Random Networks
RMAT-16 65,536 2,456,071
RMAT-18 262,144 10,582,686
RMAT-20 1,048,576 44,619,402

matrix
audikw1 943,695 38,354,076
ldoor 952,203 22,785,136
cage15 5,154,859 47,022,346

Road Networks
luxembourg.osm 114,599 119,666
belgium.osm 1,441,295 1,549,970
road_central 14,081,816 16,933,413
road_usa 23,947,347 28,854,312

clustering
celegans_metabolic 453 2025
email 1,133 5,451
polblogs 1,490 16,715
netscience 1,589 2,742
power 4,941 6,594
hep-th 8,361 15,751
PGPgiantcompo 10,680 24,316
astro-ph 16,706 121,251
cond-mat 16,726 47,594
as-22july06 22,963 48,436
cond-mat-2003 31,163 120,029
cond-mat-2005 40,421 175,691
smallworld 100,000 499,998
preferentialAttachment 100,000 499,985
caidaRouterLevel 192,244 609,066

implementation.

We use is a simple linear time greedy algorithm, O(V +E) for finding the vertex

cover. For each vertex v in the graph, we check if v has any neighbors that are not

within in the vertex cover. If this is the case, v is added to the vertex cover. This

algorithm by no means ensures a small or minimal vertex cover. Nonetheless, for our

86

0.0

0.2

0.4

0.6

0.8

1.0

C
lu

st
e
ri

n
g

C
o

e
ffi

c
ie

n
t

coAuthorsC
ite

se
er

RM
AT-2

0

audikw1

luxembourg

as-2
2july06

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

Figure 24: This chart shows the global clustering coefficient value for graphs from
Table 8.

needs it is sufficient as it gave small enough vertex covers for us to see improvements.

4.4.1 Static Clustering Coefficients

The overhead to compute a reasonable vertex cover is negligible for many graphs. Fig.

25 depicts the portion of time needed to compute the vertex cover out of the total

needed for computing the clustering coefficients. Note that the ordinate of Fig. 25 is

a log-scale which shows the time spent computing the vertex cover out of the total

87

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

coAuthorsC
ite

se
er

RM
AT-2

0

audikw1

luxembourg

as-2
2july06

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

t v
c

t v
c+

t c
c,
n
ew

Figure 25: The ordinate presents the ratio of time spent finding the vertex cover
as a function of the total time spent computing the vertex cover and the clustering
coefficients. The ordinate is a logscale. An additional blue curve has been placed at
2.5%. The bars of about 2/3 of the graphs are below this curve.

time of the new algorithm (time for the vertex cover and the clustering coefficient

algorithm that uses the vertex cover), and lower is better. In Fig. 25 an additional

(constant) curve has been added at 2.5%. For many of the graphs, the vertex cover

takes less than 2.5% of the total time to compute.

Fig. 26 depicts the size of the vertex cover in comparison with the entire vertex

88

0.0

0.2

0.4

0.6

0.8

1.0

coAuthorsC
ite

se
er

RM
AT-2

0

audikw1

luxembourg

as-2
2july06

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

|V̂
|

|V
|

Figure 26: The ordinate is the size ratio of the vertex cover, V̂ , and the vertex set V .
Note that |V̂ | ≤ |V |. An additional blue curve has been added at 70%. The bars of
about 3/5 of the graphs are below this curve.

set V . An additional constant curve has been added at 70%. For slightly more than

half the graphs, the size of the vertex cover is less than 70% the size of the entire

vertex set.

Fig. 27 depicts the ratio of the time it takes to compute the global clustering

coefficients using our new method over the original algorithm. For this figure, lower

is better as this means that the new algorithm takes a fraction of the original run-time.

89

0.0

0.2

0.4

0.6

0.8

1.0

coAuthorsC
ite

se
er

RM
AT-2

0

audikw1

luxembourg

as-2
2july06

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

t c
c,
n
ew

t c
c,
or
ig
in
a
l

Figure 27: The ordinate is the time ratio of the new vertex cover-based clustering
coefficients algorithm and the original clustering coefficient algorithm. The time of
the new algorithm includes both the time needed to find the vertex cover and the
time for computing the clustering coefficients. All bars below the blue curve occur
when the new algorithm is faster, as such lower is better.

An additional blue curve has been added to the figure to state when the performance

of the two algorithms is the same. There are several graphs that do not benefit from

our new approach. These are graphs for which the vertex cover is roughly the size of

|V |. A different vertex cover (by a different algorithm) might possibly reduce the size

of the vertex cover and allow for shorter run times. However, this was not the focus

90

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e

%

coAuthorsC
ite

se
er

RM
AT-2

0

audikw1

luxembourg

as-2
2july06

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

Intersection-Ratio: Element-Ratio:new
original

new
original

Figure 28: The ordinate is the ratio of the number of intersection that are necessary
by the new algorithm in comparison with the original algorithm.

of our work.

For six graphs that we tested, the time for finding the vertex cover took over 10% of

the total time. Out of these six graphs, four are road networks. The reason the vertex

cover takes such a high percentage of the total time is due to the considerable sparsity

of these graphs, where|E| ≤ 2 · |V |. These graphs have low clustering coefficients and

the amount of intersections needed is considerably small. It is not surprising that for

these graphs the total time of our new algorithm is greater than the time using the

91

original approach as our vertex cover added overhead. Fortunately, this overhead is

negligible.

In Fig. 28 two different bar charts are shown, both are ratio values from 0 to 1,

such that the ratios are between our new algorithm and the original one. The green

patterned bars are the ratio between the number of adjacency lists intersected using

the new method and the respective number using the original method. The blue

solid bars are the ratio between the actual number of elements intersected for both

methods. These two ratios are slightly different. The first ratio states how many

intersections need to be computed. The second ratio states how many comparisons

need to be done as part of the list intersection. The second ratio takes into account

that the lists are not equal length. This is expected in graphs following power-law

distribution [22, 31, 63]. For graphs with a uniform distribution of edges, such as the

Erdös-Rényi ([61, 62]) random graph model, it is very likely that these ratios would

be similar. Further this non-uniformity plays a critical part of the time complexity

of the algorithm, specifically dmax.

As expected, the graphs that had larger vertex covers (when |V̂ | ∼= |V |) did not

have a reduction in the number of intersections or the number of elements intersected.

The graphs with the smaller vertex covers had fewer intersections, fewer comparisons,

and reduced runtime.

As the number of intersections of our algorithm is bounded by the number of

intersections of the original algorithm (which computes all the intersections) these

ratios are smaller than one.

In the context of performance, the smaller these ratios are the better the perfor-

mance will be as these ratios are correlated to the number of list intersections that

need to be done. As such, the lower the ratios, the better.

92

4.4.2 Static 4-Circuits

In this subsection we present performance results for finding 4-circuits using the

algorithm presented in Section 4.3.3. A key challenge of the 4-circuit counting is the

increased time complexity of the algorithm. As such, for the 4-circuits counting we

present results for the smaller graphs that belong to the clustering subset of graphs

taken from Table 8. We note that finding the 4-circuits for larger graphs can be

parallelized to further reduce the running time.

Fig. 29 depicts the time spent computing the vertex cover vs. the time to compute

the vertex cover and find the 4-circuits. For almost all the graphs, the time to compute

the vertex cover is less that 0.1%. For several graphs the vertex covers takes less than

0.001% of the total time. We use the same vertex cover algorithm as before and the

running times are the same as before. As the circuits get longer the time spent on

finding the vertex cover becomes a smaller fraction of the total running time.

Fig. 30 depicts the time ratio between the new algorithm (including time spent

on finding the vertex cover) and the original algorithm for computing 4-circuits. The

blue curve at y = 1 denotes when the execution time of both algorithms is the same.

Once again, any bar below the blue curve means that the new algorithm is faster than

the original algorithm. For half the graphs the new algorithm is 30% faster than the

previous algorithm which is due to fewer intersections. Fig. 31 depicts the ratio of

the number of comparisons made during the list intersections for the new and original

algorithms.

4.5 Conclusions

In summary, in this chapter we design and implement a new method for computing

exact clustering coefficients using vertex covers. This method reduces the number of

list intersections and avoids unnecessary element comparisons. The two key differ-

ences between our new algorithm and the original approach are as follows: 1) our

93

10
-6

2

5

10
-5

2

5

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

celeg
ans-m

etabolic
email

polblogs

netsc
ience

power

hep-th

PGPgiantcompo

astr
o-p

h

cond-m
at

as-2
2july06

cond-m
at-2

003

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

t v
c

t v
c+

t c
c,
n
ew

Figure 29: The ordinate presents the ratio of time spent finding the vertex cover as
a function of the total time spent finding all the 4-circuits. Note that the ordinate is
a log scale. The abscissa are the Clustering graphs from Table 8.

94

algorithm computes a vertex cover of the graph and 2) our algorithm applies a count-

ing correcting technique that makes up for triangles that are not counted multiple

times.

We show that the new algorithm is both exact (gives the same results as the

original algorithm) and correct (by proofs). We then show that our new approach

can also be used on circuits of length four and can be extended to longer circuits. All

these are followed by performance analysis in which we showed that the new algorithm

is indeed faster, 15% − 20% for the 3-circuit and 30% − 40% for the 4-circuit, than

the previous algorithms.

While the focus of work was to show the viability of the vertex cover for clustering

coefficients, we believe that the vertex cover approach might be applicable to addi-

tional social network analytics, perhaps community detection and modularity-based

algorithms. Several open problems related to this work are:

1. Finding additional analytics that can benefit from the vertex cover.

2. Testing the sensitivity of the algorithm by changing the vertex cover algorithm.

This includes using additional vertex cover algorithms or using the same vertex

cover algorithm as we did that accesses the vertices in a different order (this

should give a different cover).

3. Similar to the previous issue, is it possible to select a vertex cover algorithm

based on properties of the input graph.

4. For the dynamic graph case, how does the vertex cover change over time? Does

the vertex cover gradually increase in size over time until its the size of the

vertex set or is the vertex cover near constant over the insertion?

5. Creating an efficient algorithm for finding a K-circuit for some given K using

the vertex cover approach.

95

6. Is there an effective way to parallelize the new algorithm?

96

0.0

0.2

0.4

0.6

0.8

1.0

celeg
ans-m

etabolic
email

polblogs

netsc
ience

power

hep-th

PGPgiantcompo

astr
o-p

h

cond-m
at

as-2
2july06

cond-m
at-2

003

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

t s
qu

a
re
,n
ew

t s
qu

a
re
,o
ri
g
in
a
l

Figure 30: The ordinate is the time ratio of the new vertex cover based clustering
coefficients algorithm and the original clustering coefficient algorithm. The time of
the new algorithm includes both the time needed to find the vertex cover and the time
for computing the clustering coefficients. The blue curve denotes equal run-times for
the new and original algorithm. All bars below the blue curve state the new algorithm
is faster, as such lower is better.

97

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n

ta
g

e
%

celeg
ans-m

etabolic
email

polblogs

netsc
ience

power

hep-th

PGPgiantcompo

astr
o-p

h

cond-m
at

as-2
2july06

cond-m
at-2

003

cond-m
at-2

005

sm
allw

orld

pref-a
tta

chment

caidaRouterL
ev

el

Figure 31: The ordinate is the ratio of the number of intersection that are necessary
by the new algorithm in comparison with the original algorithm.

98

CHAPTER V

LOAD BALANCED CLUSTERING COEFFICIENTS

This chapter is an extension of the paper: O. Green, L.M. Munguia, D. Bader,

“Load Balanced Clustering Coefficients”, ACM Workshop on Parallel Programming

for Analytics Applications (PPAA), PPoPP, Orlando, Florida, 2014.

Clustering coefficients is a building block in network sciences that offers insights

on how tightly bound vertices are in a network. Effective and scalable parallelization

of clustering coefficients requires load balancing amongst the cores. This property

is not easy to achieve since many real world networks are scale free, which leads to

some vertices requiring more attention than others. In this work we show two scalable

approaches that load balance clustering coefficients. The first method achieves opti-

mal load balancing with an O(|E|) storage requirement. The second method has a

lower storage requirement of O(|V |) at the cost of some imbalance. While both meth-

ods have similar a time complexity, they represent a tradeoff between load-balance

accuracy and memory complexity. Using a 40-core system we show that our load

balancing techniques outperform the widely used and simple parallel approach by a

factor of 3X − 7.5X for real graphs and 1.5X − 4X for random graphs. Further, we

achieve 25X − 35X speedup over the sequential algorithm for most of the graphs.

5.1 Introduction

Clustering coefficients is a graph analytic that states how tightly bound vertices are

in a graph [138]. The tightness is measured by computing the number of closed

triangles in the graph, which can then imply the small-world property. Computing

the clustering coefficients has been applied to many types of networks: communication

[125], collaboration [133], social [133], and biological [23]. Clustering coefficients is

99

used in a wide range of social network analysis applications. In such context, one can

think of the local clustering coefficients as the ratio of actual mutual acquaintances

versus all possible mutual acquaintances.

Clustering coefficients can be computed in two different variants: global and lo-

cal. The global clustering coefficient is a single value computed for the entire graph,

whereas the local clustering coefficient is computed per vertex. Both are computed

in a similar fashion. Without the loss of generality, we consider the global cluster-

ing coefficient in this work, specifically when presenting pseudo code. Nonetheless,

our approach is applicable to computing local clustering coefficients as well. Table 9

presents the notations used in this chapter.

We can formally define clustering coefficients as the sum of the ratios of the number

of triangles over all possible triangles:

Clustering coefficients can be computed in multiple approaches [123]: enumerat-

ing over all node-triples, matrix multiplication, and intersecting adjacency lists. As

many real world networks are considerably sparse, we focus on the last of these three

approaches which has a time complexity of O(|V | · d2
max) where dmax is the vertex

with largest adjacency. The pseudo code for this approach can be found in Algorithm

5. Many real world networks have a skewed vertex degree distribution which present

parallel load balancing challenges.

In this work, we show that it is possible to estimate the total amount of work

required by the clustering coefficient algorithm in O(|E|) steps.

We show two different and simple load balancing techniques: the edge-based ap-

proach and the vertex-based approach. These differ in the fact that the edge-based

approach offers a better workload balance than the vertex-based approach. While this

advantage is desirable, it comes at an increased spatial and computational cost. The

edge-based approach requires an O(|E|) memory and O(|E|) operations that evenly

split the work to the p processors. On the other hand, the vertex-based approach

100

Algorithm 5: Serial algorithm for computing the number of triangles.
cc_count← 0;
for v ∈ V do

for u ∈ adj(v) do
if u = v then

next u;

C ← intersect(v, adj(c), u, adj(v));

cc_count← cc_count+
|C|

deg(v)·(deg(v)−1)
;

requires an O(|V |) memory and O(|E|) operations, which also are split among the

processors. Both approaches can be executed in parallel.

While the load balancing may seem costly, for sparse graphs where O(|E|) <

O(|V | · d2
max). We show in Section 4.4 that this computation is negligible in time on

an actual system for many real world sparse graphs.

The remainder of the chapter will be structured as follows. This section discusses

the challenges with computing clustering coefficients in parallel and briefly introduces

our solutions. Section II discusses the related work and discusses real world graph

properties and introduces vertex covers. In Section III, we present our two approaches

for effective load balancing. In Section IV, we discuss our experimental methodology

and present quantitative results. Finally, in Section V, we present our conclusions.

5.1.1 Parallel Clustering Coefficient Challenges & and Solutions

In [22, 31, 63], it was shown that several real world networks follow a power law

distribution on the number of adjacent edges a vertex has. As the time complexity

of the algorithm is dependent square of the vertex with the highest degree, dmax, a

simple division of the vertices amongst the cores such that each core receives an equal

number of vertices is not likely to offer a good load balancing. This is due to the fact

that a single core might receive multiple high degree vertices. This can cause a single

core to become the execution bottleneck. The focus of our work is to overcome this

challenge.

101

0

2e+009

4e+009

6e+009

8e+009

1e+010

1.2e+010

1.4e+010

1.6e+010

N
u
m

b
er

o
f

co
m

p
ar

is
o
n
s

5 10 15 20 25 30 35 40

Threads

Minimum number of comparisons Maximum number of comparisons

(a)

0

5

10

15

20

25

30

35

40

S
p
ee

d
U

p

5 10 15 20 25 30 35 40

Threads
Optimal Speedup

(b)

Figure 32: (a) Load distribution among parallel processors. (b) Shows the maximum
attainable speedup.

Fig. 32 depicts an example of the load balancing issues caused by straightfor-

ward division schemes when computing clustering coefficients for a graph with a non-

uniform adjacency distribution. Fig. 32 (a) plots the minimum and the maximum

number of comparisons performed by the different parallel processors. Assuming that

the total amount of work required by the algorithm is known and is defined as Work,

the maximal parallel speedup that can be attained for each algorithm is limited by

the thread with maximum number of comparisons, maxt:

maxspeedup = Work/maxt. (9)

By this definition, uneven work distributions can affect scalability severely. The

main ordinate of Fig. 32(b) depicts the ratio between the minimum and the maximum

number of comparisons shown in Fig. 32(a). The secondary ordinate of Fig. 32(b)

shows the maximal attainable speedup of the work distribution of the algorithm used

to plot Fig. 32(a). In fact, it is the observation from above, that motivated the

development of load balancing techniques that take into account the unique workload

properties of clustering coefficients.

102

Table 9: Notations in this chapter

Name Description
CCglobal Global clustering coefficient
CCv Clustering coefficient for vertex v
deg(v) Degree of vertex v.
tri(v) Number of triangle that vertex v is in.
dmax Vertex with maximal degree in the graph.
P and p Number of parallel processors.
V Set of vertices in a graph.
E Set of edges in a graph.
u, v Vertices in the graph.
t Thread number.
V ertex_adj Array of size |V | containing the starting positions of the vertex adjacencies
eWork Array of size |E| used to accumulate the work estimation of every connected vertex pair.
vWork Array of size |V | used to accumulate the work estimation of every vertex.
Pivots Array of size P + 1 that holds the starting and ending points of the work done by each

processor.
t Thread id.
cct Local thread clustering coefficients value.
ccglobal Global clustering coefficients value.

5.2 Related work

Clustering coefficients was first introduced by Watts and Strogatz [138]. Since, it

has become a common means to quantify structural network properties. In essence,

clustering coefficients measures the tightness of neighborhoods in graphs. They can

be computed for both dense and sparse graphs, yet, they offer more insights for sparse

graphs, many of which have the small-world property. The Small-World property was

first presented by Milgram [109] and suggested that people in the United States can

be related in less than six steps of separation.

An additional graph property of significance is the power-law distribution of edges

in a network. Graphs featuring this characteristic have a large number of vertices with

low degrees and a small number of vertices with high degrees, see by Faloutsos et. al.

[63] and Barabási and Albert [22].

Clustering coefficients for a given graph is often reduced to enumerating the tri-

angles formed between every triplet of vertices. Schank and Wagner [123] present an

extensive review on other various serial algorithms along with performance compar-

isons over both "real world" networks and synthetic graphs. Still in the context of

103

serial algorithms, Green and Bader [75] propose a novel clustering coefficients algo-

rithm that employs vertex covers in order to reduce the number of list intersections

and the number of actual comparisons needed to compute the triangle enumeration.

We show that our load-balancing techniques can be extended to this algorithm as

well.

The increase in the network size from thousands of vertices to millions and possi-

ble billions in the foreseeable future and the relevance of dynamic graphs has brought

about a need for effective computations of clustering coefficients. The advances for

faster clustering coefficients algorithms focus in parallelization techniques as well as

approximation schemes. Both improvements are orthogonal concepts: while par-

allelization reduces the computation time, approximation can offer insights on the

closeness of vertices when the cost of computing the clustering coefficients is pro-

hibitive. Special techniques can also be developed for dynamic graphs. Dynamic

graph algorithms allow updating the analytic without doing a full recomputation ev-

ery time the underlying network is modified. In practice, these optimizations are

applied concurrently.

Several examples of algorithms using these optimizations can be found in the

works of Becchetti et. al. [27], Bar-Yossef et. al. [21], and Buriol et. al. [35] where

triangle counting approximation techniques are employed on streaming graphs as a

measure to cope with large data sets.

Ediger et. al. [53] present both a parallel exact and parallel approximate algorithm

for computing clustering coefficients for dynamic graphs. Their approach employs

Bloom filters and they show results on the Cray XMT (a massively multithreaded

architecture) for graphs with over a half a billion edges. Leist et. al. [98] provide

multiple parallel implementations using several GPUs and IBM Cell-BE processors

for smaller graphs.

104

While these algorithms tackled many of the different aspects of computing cluster-

ing coefficients, they do not deal with the inherent load imbalance that is typical for

many graph algorithms using static scheduling techniques. In such scenario, the work

is partitioned by the runtime and it is unaware of the properties of the application.

As such, the application designer is responsible for dividing the work equally to the

cores.

Both [24] and [108] consider the problem of workload imbalance for other graph

algorithms. They use similar techniques to the ones that we use in this chapter,

which are based on prefix summation. Prefix summation is a basic primitive that can

also be efficiently parallelized. Blelloch [28] showed a PRAM parallel work-efficient

algorithm. In [78] a GPU implementation of the prefix summation is introduced.

In [24], a Breadth First Search algorithm is presented. The vertices in each level

are partitioned to the multiple cores based on the sum of the adjacent vertices. A

prefix summation is employed followed by a binary search in order to elaborate the

partitioning. The overhead of these two partitioning stages is negligible compared to

the remainder of the BFS. In [108], scalable GPU graph traversals are presented that

partition the traversal edges equally among the multiple gpu streaming processors.

Other load balancing mechanisms can be used on specialized architectures. Edi-

ger et. al. [57] made use of the online scheduler of the massively multithreaded

architecture of the Cray XMT for computing clustering coefficients. The scheduler

is responsible for dispatching tasks when processors become available, thus achiev-

ing an effective parallelism. They show nearly perfect load balancing upto 64 XMT

processors for several different graph types. Beyond the 64 processors, the speedup

continues to grow but does not always scale perfectly - this is most likely due to

workload imbalance.

105

5.3 Load Balanced Scalable Clustering Coefficients

We present two different techniques, which are conceptually similar and consist of

two highly parallel phases. The first phase approximates the the expected amount

of work. With the work estimation at hand, we proceed to partition the work to the

cores. We proceed to show that each of these steps is itself balanced. In the second

step, the adjacency lists are intersected by the multiple cores using a modified version

of Algorithm 5.

The workload estimation process is based off of Algorithm 5 and consists of fore-

seeing the amount of work needed to intersect vertices and edge endpoints. For that

purpose, we employ two basic work estimations, which are discussed in depth. Both

estimations can be defined in terms of the amount work needed for intersecting the

adjacency lists of two vertices u, v ∈ V .

For simplicity, we assume that the adjacency lists are sorted. Given the sorted lists,

the upper bound for the adjacency list intersection is deg(u) + deg(v) comparisons.

This number represents the worst-case scenario for a adjacency list intersection. An

actual list intersection might be cut short if all the elements of one of the lists are

traversed. However, this cannot be detected without doing the intersection or further

testing. Nonetheless, we find deg(u) + deg(v) to be a fair estimation of the adjacency

list intersection.

We can defineWork(v, u) as the number of comparisons needed for the intersection

of the adjacencies of v and u:

Work(v, u) = deg(v) + deg(u). (10)

We proceed to gather this estimation for the vertex endpoints of every edge in the

graph. This is formalized in terms of the previous definition as:

Work(G(V,E)) =
∑

(u,v)∈E

Work(u, v) =
∑

(u,v)∈E

(deg(v) + deg(u)) (11)

106

Such definition can also be expressed in terms of vertices and their adjacencies:

Work =
∑

(u,v)∈E

Work(u, v) =
∑
v∈V

∑
u∈adj(v)

deg(v) + deg(u). (12)

Specifically, the number of comparisons required for a specific vertex is:

Work(v) =
∑

u∈adj(v)

(deg(v) + deg(u)) =

deg(v)2 +
∑

u∈adj(v)

deg(u). (13)

It is from (13) that the time complexity of clustering coefficients is in fact derived.

Computing either Σ(v,u)∈EWork(v, u) or Σv∈VWork(v) allows us to to partition

the work into near equal units to the multiple cores available. The first technique,

which we refer to as the the edge-based approach, requires O(|E|) memory and the-

oretically offers optimal partitioning assuming that all comparisons are executed1.

The vertex-based approach reduces the memory requirement to O(|V |) at the ex-

pense of non equal partitioning. In Section 4.4 we quantitatively compare these two

approaches for real networks. While we have yet to discuss the algorithms in detail,

we note that both algorithms have a similar upper bound time complexity, yet the

accuracy of the partitioning will slightly change based on the storage complexity.

5.3.1 Edge-Based Approach

We present the first of our two approaches that partitions the work equally among the

multiple cores. We refer to this method as the edge-based approach and its pseudo

code can be found in Algorithm 6. In Table 9, a reference is given for the variables

used by our methods. Overall, we distinguish two distinct computation phases: 1)

work estimation and load balancing and 2) clustering coefficient computation.

Using an array of size O(|E|) the expected number of comparisons for each edge

is calculated based on expression (10). The first step in Stage 1 divides the edges

1As we discussed earlier, the list intersection might complete early based on the actual adjacencies.

107

Algorithm 6: Edge-Based algorithm
input : Graph G(V,E), number of processors p
output: Clustering coefficients value ccglobal
For t← 1 to p do in parallel

// Stage 1: Workload estimation
Pivotst ← BinarySearch(V ertex_adj, t · |E|/p);
SynchronizationBarrier();
for v ← Pivotst to Pivotst+1 do

for ∀u ∈ adj(v) do
eWork(v,u) ← deg(v) + deg(u);

SynchronizationBarrier();
ParallelPrefixScan(eWork);
Pivotst ← BinarySearch(eWork, t · |E|/p);
SynchronizationBarrier();
// Stage 2: CC calculation
ccl← 0;
Et ← all edges between Pivotst and Pivotst+1

for e = (v, u) ∈ Et do
VertexIntersection(v, deg(v), u, deg(u));
cct ← cct +

|C|
deg(v)·(deg(v)−1)

;

ccglobal ← ParallelReduction(cc_t);

equally among the p cores such that each core receives |E|/p edges. Assuming that

the graph is given in a CSR representation, a binary search is conducted by each core

into the vertex offset array. Such a vertex offset array is essentially a prefix sum array

of the edge degrees in the graph. Hence, the binary search in the vertex offset array

for the value t · |E|/p allows finding the vertex to which that that edge belongs to,

for a given thread t ∈ {1, 2, ..., p}.

Due to the fine grained load balancing, several cores may intersect adjacency lists

for the same vertex2. For simplicity, we assume that the sets of adjacencies assigned

to the different processors do not overlap - this is a fair assumption given adjacency

distributions of many real world graphs. However, if there is a vertex with a large

enough degree that it dominates the execution time, it is possible to modify the

algorithm such that the adjacencies of a vertex is shared by multiple cores.

Each core will compute Work(v, u) for the set of edges it has been assigned. The

results will be stored in the Work array of size O(|E|). Once this is completed, a

parallel prefix sum is computed on this array in order to obtain the total amount

2This can occur when the ratio between the average vertex degree and number of cores is con-
siderably small.

108

Algorithm 7: Vertex-based algorithm.
input : Graph G(V,E), number of processors p
output: Clustering coefficients value ccglobal
For t← 1 to p do in parallel

// Stage 1: Workload estimation
Pivotst ← BinarySearch(V ertex_adj, t · |E|/p);
SynchronizationBarrier();
for v ← Pivotst to Pivotst+1 do

vWorkv ← 0;
for ∀u ∈ adj(v) do

vWorki ← deg(v) + deg(u);

SynchronizationBarrier();
ParallelPrefixScan(vWork);
Pivotst ← BinarySearch(vWork, t · |E|/p);
// Stage 2: CC calculation
ccl← 0;
for v ← Pivotst to Pivotst+1 do

triangles = 0;
for ∀u ∈ adj(v) do

VertexIntersection(v, deg(v), u, deg(u));
triangles← triangles+ |C|;

cct ← cct + triangles
deg(v)·(deg(v)−1)

;

ccglobal ← ParallelReduction(cc_t);

of work computed from the first vertex up to the current vertex. The last entry in

the prefix array maintains the expected number of comparisons for the entire graph.

Upon completion of the prefix summation, an additional binary search is executed per

core into the prefix summation array. The binary search finds the partitioning points

of the algorithm. The binary search might actually divide a specific list intersection.

As discussed before, the algorithm does not create partitions that divide a single

list intersection for simplicity. In reality, this is not a concern and we discuss this

in Section 4.4. When the binary search is completed, the partitioning points for

clustering coefficients are available and we can proceed to compute the clustering

coefficients as part of Stage 2.

5.3.2 Vertex-based approach

We refer to our second load balancing technique as the vertex-based method. Its

pseudo-code can be found in Algorithm 7. This approach reduces the storage require-

ment from O(|E|) to O(|V |) by performing the load balance at a vertex granularity.

As a result, some imbalance might be introduced and a single vertex can become a

109

Table 10: Time complexities of both approaches

Stage Edge-based approach Vertex-based approach
Binary search in the offset array. O(log(|V |)) O(log(|V |))
Workload computation per edge. O(|E|/p) O(|V |/p)
Workload prefix sum. O(|E|/p+ log(p)) O(|V |/p+ log(p))
Binary search in the workload prefix sum array. O(log(|E|)) O(log(|V |))

bottleneck of the algorithm. We will see in Section 4.4, that this imbalance does not

reduce the total performance of the vertex-based approach. In comparison with the

edge-based approach, this imbalance is minute.

Similarly to the previous technique, the load-balanced clustering coefficients cal-

culation is comprised of two main stages: 1) the workload estimation and 2) the

clustering coefficient calculation.

The amount of work is calculated using expression (13). In a first stage, each

thread performs a binary search of the term t · |E|/p over the offset array of the

graph CSR. As a result of this work division, each thread is then responsible for a

non-overlapping set of vertices and computes the number of comparisons required

for each vertex. The results are then stored in an array of size O(|V |). Note that

computing the expected number of comparisons needed by the algorithm requires the

same number of the steps for both the edge-based and vertex-based approaches, with

the key difference in the size of the array used. This is followed by a prefix summation

over the Work array. In the final step, a binary search is employed by each core to

compute the partition points of the workload. As before, the vertices will be divided

among the threads in such a way that their adjacency intersections will not be split.

5.3.3 Complexity analysis

As the amount of work per edge is maintained in array of O(|E|), the spatial com-

plexity of this approach is O(|E|). The time complexity of the load balancing stage

in the edge-based approach for each thread is decomposed as described in Table 10.

The work complexity is the time complexity multiplied by a factor of p cores.

110

Overall, the complexity is of O(p · log(|V |)+ |E|+p · log(|E|)+ |E|) for the edge-based

approach.

In the case of the vertex-based method the complexity is O(p · log(|V |) + p ·

log(|E|) + |V |+ |E|).

5.3.4 Vertex Cover Optimization

In this subsection we briefly discuss how our load balancing technique can be adapted

to the vertex cover optimization presented in [75]. This optimization involves comput-

ing a vertex cover for the graph and doing the adjacency list intersection only when

both vertices of the edge are in the vertex cover. They show that finding the vertex

cover takes a small fraction of the total execution and that the requirement that both

vertices of an edge be in the vertex cover can reduce the number of list intersections

and number of comparisons. This optimization avoids counting the same triangle

multiple times. Their optimization can be applied in addition to the lexicographical

sorting which reduces the number of times triangles are counted by a factor of two.

To adapt the vertex cover to our algorithm, two modifications are required:

1. Parallel computation of the vertex cover V̂

2. Apply the load balancing techniques discussed in this chapter to the vertex

cover, V̂ , instead of the entire vertex set V .

Making these modifications allows creating a load balanced algorithm which avoids

duplicate triangle counting.

5.3.5 Summary

We have shown two methods that load balance clustering coefficients. These ap-

proaches tradeoff accuracy for spatial complexity. For these methods to be consid-

ered as asymptotically optimal as a straightforward parallelization, the load balancing

111

phase has to have lower time complexity than the actual clustering coefficient com-

putation from (12). For many real graphs, including sparse graphs, this will be the

case as:

O(p · log(|V |) + |E|+ p · log(|E|) + |E|) < O(|V | · d2
max) (14)

for the edge-based case and

O(p · log(|V |) + p · log(|E|) + |V |+ |E|) < O(|V | · d2
max) (15)

for the vertex-based case.

As a result. Both approaches will offer better performance and core-scaling. We

discuss the overhead of this approach in Section 4.4 with respect to real graphs. Note

that while the work complexity of clustering coefficient has not changed, the actual

time complexity per core changes from O(Work/p) to Θ(Work/p).

5.4 Results

In this section, we present the experimental performance results for both our new

parallel load balanced algorithms. In our tests, we use a 4-socket 40 physical core

multicore system made up of the Intel Xeon E7-8870 processor. Each core runs at a

2.40 GHz frequency and has 30 MB of L3 cache per processor. The system has 256

GB of DDR3 DRAM. We test our algorithms over a subset of graphs from the 10th

DIMACS Implementation Challenge on Graph Partitioning and Graph Clustering

[19]. The graph set used in the tests can be found in Table 11.

We compare the performance of our algorithm with a straightforward parallel algo-

rithm. For the straightforward algorithm, the vertices in the outer loop of Algorithm

5 are evenly split among the cores.

The performance of the algorithms is dependent on the properties of the input

graph. We distinguish two key characteristics that may affect substantially the scal-

ability of the different methods such that the straightforward algorithm is likely to

112

Table 11: Graphs from the 10th DIMACS Implementation Challenge used in our ex-
periments with the clustering coefficient computation runtimes for the different algo-
rithms. Labels: SF - Straightforward (40 threads), V-B - Vertex-Based (40 threads),
and E-B - Edge-Based (40 threads).

Name Graph Type |V | |E| Serial SF V-B E-B
audikw1 Matrix 943k 38.35M 30.89 2.52 0.96 1.05
cage15 Matrix 5.15M 47.02M 18.98 1.10 0.70 0.76
ldoor Matrix 952k 22.78M 7.94 0.26 0.25 0.28
astro-ph Clustering 16k 121k 0.09 0.006 0.003 0.003
caidaRouterLevel Clustering 192k 609k 0.39 0.07 0.01 0.01
cond-mat-2005 Clustering 40k 175k 0.10 0.009 0.003 0.004
in-2004 Clustering 1.38M 13.59M 32.67 5.58 1.19 1.21
coAuthorsCiteseer Collaboration 227k 814k 0.26 0.02 0.01 0.01
coPapersCiteseer Collaboration 434k 16M 21.37 3.64 0.86 0.88
coPapersDBLP Collaboration 540k 15.24M 15.26 1.44 0.68 0.72
luxembourg Road 114k 119k 0.01 0.0002 0.0005 0.0008
belgium Road 1.44M 1.55M 0.14 0.005 0.007 0.008
road_central Road 14.82M 16.93M 3.84 0.19 0.26 0.27
road_usa Road 23.95M 28.85M 3.47 0.13 0.20 0.22
preferAttachment Clustering 100k 499k 0.26 0.08 0.009 0.01
smallworld Clustering 100k 499k 0.14 0.004 0.004 0.004
RMAT-18 Random 262k 10.58M 63.78 2.70 2.01 2.08
RMAT-20 Random 1.05M 44.62M 236.28 8.14 7.1 7.38

outperform our algorithms:

1) Sparsity - while most of the graphs are considered to be sparse, the road

networks are especially sparse where E ≈ V . The fact that such networks consist

of a single connect component implies that the vertices have few adjacencies, which

in turns means that the intersection stage will be considerably short. As such our

algorithms may potentially introduce overhead for such networks.

2) Uniform degree distribution - for graphs in which the degree distribution is uni-

form and most vertices have the same number of neighbors the workload is inherently

balanced as each vertex will require an equal number of comparisons. .

113

5.4.1 Scaling

To express the workload imbalance for all these algorithms, we define the ratio of

computed comparisons as the fraction of the minimum number of comparisons per-

formed by a thread over the maximum number of comparisons. Fig. 33 depicts the

workload imbalance, measured by the ratio of the thread with the least work and the

thread with the most work, for the three algorithms given a 40 core partition. In Fig.

34 we show this ratio for a subset of graphs as a function of the number of threads.

Our results show that the straightforward algorithm offers a balanced partitioning for

the networks with uniform degree distribution and very significant sparsity. Notice

that for all the graphs, the straightforward approach has both the upper and lower

bounds for work distribution. This is true for all the graphs we tested. For some

graphs, including caidaRouterLevel, the ratio between the minimal and maximal

workload can be as high as 100 times.

In contrast to the straightforward partitioning, our edge-based approach delivers

a near equal number of comparisons to each core for all the graphs. This fact can

be observed in Fig. 33 (the ratio chart), where the bar for the edge-based method

is approximately 1 for all the graphs, which is the ideal scenario. Our observation

can be reinforced by the data displayed in Fig. 34, as it is almost impossible to

differentiate the two curves for minimal and maximal number of comparisons for the

edge-based method. The vertex-based approach delivers mixed results. In some cases

the partitioning overlaps with that of the edge-based approach. In some cases it

differs by 10% − 20%, as some vertices are computationally more demanding and

these vertices are not split among several cores.

Results show that the partitioning of the vertex-based approach is not as accurate

as that of the edge-based method. Despite this the vertex-based approach offers better

performance, as its load balancing stage is slightly less computationally demanding.

The number of comparisons each processor receives can be also relevant to estimate

114

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
:

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Straightforward approach Vertex-based approach Edge-based approach

M
in

M
a
x

Figure 33: The ordinate is the ratio between the thread with the least amount of work
with the thread with the most amount of work based on the number comparisons
required by the thread in the adjacency list intersection. The abscissa are the graphs
used. Note that for all the graphs the edge-based approach achieves almost perfect
partitioning.

an upper bound on the speedup a given parallel clustering coefficients calculation

can attain. Given a work distribution, the maximum speedup obtained by parallel

computation can be expressed as in expression (9). In the next subsection, we show

how such theoretical speedup displays a correlation with the actual speedup attained

for the different graphs in the set.

5.4.2 Speedup Analysis

Fig. 35 depicts the speedup obtained for the three algorithms when using 40 cores.

Further details of the strong scaling speedups are shown Fig. 36, as a function of the

115

number of threads.

If we consider the "‘Small world"’ graphs, both of our methods show better scal-

ability for 40 cores, which represents an improvement over the straightforward al-

gorithm of 1.5X − 7.5X. For road network graphs, the straightforward algorithm

outperforms both our methods. This is due to the fact that road networks are very

sparse, E ≈ V . As a result, the computation of the intersection represents a smaller

fraction of the overall runtime, which includes the load-balancing. In addition, road

networks feature a substantially uniform degree distribution. Hence, a straightfor-

ward division of the work yields a load-balanced computation. The same behavior

can be observed in other graphs that feature uniform degree distributions, such as

the smallworld network. A clear relationship can be observed between the thread

with the most work and the actual speedup. This is not surprising, given the fact

that this thread is the execution bottleneck.

We can go a step further and estimate the maximum speedup that can be ob-

tained by a given work distribution. Fig. 37 shows a comparison between the actual

speedups obtained for the different graphs when using the straightforward approach

and the estimated maximum speedup obtained using Expression (9). Overall, our

work estimations provide a fairly precise indicator on the behavior of the algorithm

for most of the graphs.

Further insights on the overhead of the work estimation phase are depicted in Fig.

38, which shows the ratio of the time spent computing the clustering coefficients out

of the total time spent (including the load balancing) for both our methods on the

40 cores for all the graphs we used. The overhead of our load balancing techniques

represents between 1% - 20% of the overall runtime, except for the road network

graphs. For the road networks, our overhead is indeed significant. This is mostly

due to the fact that very little work is done in the adjacency list intersection stage

meaning that the overhead introduced by our techniques plays a more significant role

116

in the overall time.

If the load-balancing stage is not taken into account in the execution time of our

new algorithms, the new algorithms would outperform the straightforward algorithm

for all thread counts due to load balancing.

Despite the fact that the edge-based version provides a more balanced work distri-

bution than the vertex-based method, these differences do not translate into a better

performance. This is due to the higher computational complexity of the work es-

timation phase of our edge-based method and synchronization. Notice that for all

the graphs, the edge-based approach introduces more overhead than the vertex-based

approach. This is caused by the increased memory and computational requirements

of this approach. Recall that the edge-based approach uses an O(E) array to store

the expected amount of work. This array is then used for the prefix summation pro-

cess for a total of O(E) operations (whereas the vertex based requires only O(V)

operations). Further, this prefix array will be reloaded into the cache for each of the

accesses.

5.4.3 Summary

This section presented timing results, scaling results, and workload partitioning for

the straightforward parallel implementation, our edge and vertex-based approach us-

ing real world graphs from the DIMACS Challenge [19]. We showed that both our

load balancing techniques scaled up to 40 cores and can continue to scale to a signifi-

cantly larger number of cores, whereas the scalability of straightforward algorithm is

limited for many types of graphs. In some cases, our approaches show an improve-

ment of a factor of as high as 5.5X − 7.5X over the straightforward algorithm. The

overhead introduced by our algorithm is discussed.

117

5.5 Conclusions

Due to highly skewed vertex degree distributions, computing clustering coefficients on

social networks presents big load balancing challenges. In this chapter we presented

two parallel methods for computing exact clustering coefficients. By using work-

load estimation, we achieve effective load-balanced computation for multiple graph

topologies. For both of our methods, we present a discussion on the tradeoffs between

achieving perfect work distribution and the complexity it requires. In practice, em-

ploying an approximate load balancing scheme with a moderate computational cost

allows achieving an overall speedup of 25X − 35X over the sequential algorithm for

most of the graphs. This represents an improvement of 3X − 7.5X for real graphs

and 1.5X − 4X for random graphs over using straightforward parallel approaches.

Overall, load balancing is a key element to take into account when leveraging the

parallel computing power in graph applications.

118

5

10
9

2

5

10
10

N
u

m
b

er
o

f
C

o
m

p
ar

is
o

n
s

5 10 15 20 25 30 35 40

Threads

Vertex-based min

Vertex-based max

Edge-based min

Edge-based max

Straightforward min

Straightforward max

(a) audikw1

10
5

2

5

10
6

2

5

10
7

2

5

N
u

m
b

er
o

f
C

o
m

p
ar

is
o

n
s

5 10 15 20 25 30 35 40

Threads

Vertex-based min

Vertex-based max

Edge-based min

Edge-based max

Straightforward min

Straightforward max

(b) caidaRouterLevel

5

10
6

2

5

10
7

2

5

N
u

m
b

er
o

f
C

o
m

p
ar

is
o

n
s

5 10 15 20 25 30 35 40

Threads

Vertex-based min

Vertex-based max

Edge-based min

Edge-based max

Straightforward min

Straightforward max

(c) coAuthorsCiteseer

5

10
6

2

5

10
7

2

5

N
u

m
b

er
o

f
C

o
m

p
ar

is
o

n
s

5 10 15 20 25 30 35 40

Threads

Vertex-based min

Vertex-based max

Edge-based min

Edge-based max

Straightforward min

Straightforward max

(d) prefAttachment

10
9

2

5

10
10

2

5

N
u

m
b

er
o

f
C

o
m

p
ar

is
o

n
s

5 10 15 20 25 30 35 40

Threads

Vertex-based min

Vertex-based max

Edge-based min

Edge-based max

Straightforward min

Straightforward max

(e) RMAT − 18

10
7

2

5

10
8

2

N
u

m
b

er
o

f
C

o
m

p
ar

is
o

n
s

5 10 15 20 25 30 35 40

Threads

Vertex-based min

Vertex-based max

Edge-based min

Edge-based max

Straightforward min

Straightforward max

(f) road_usa

Figure 34: The abscissa is the number of threads used. The ordinate is the number
of comparisons required for a specific thread count. Two curves are shown for each of
the algorithms - for threads that receive the most and least number of comparisons.
The straightforward partitioning is the lower and upper for all the figures.

119

0

10

20

30

40

S
p

e
e
d

u
p

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Straightforward Partitioning Edge-Based Approach Vertex-Based Approach

Figure 35: Speedup obtained with 40 cores for the different algorithms

120

(a) audikw1 (b) caidaRouterLevel

(c) coAuthorsCiteseer (d) prefAttachment

(e) RMAT − 18 (f) road_usa

Figure 36: The ordinate for all the subfigures is the speedup as a function of the
number of threads (the abscissa).

121

0

10

20

30

40

S
p

e
e
d

u
p

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Actual performance Predicted Performance

Figure 37: Speedup obtained for 40 cores using straightforward division algorithm in
comparison with the estimated speedup.

122

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Vertex-based approach computation

Vertex-based approach load estimation

Edge-based approach computation

Edge-based approach load estimation

Figure 38: Percentage of time spent in both the load balancing phase vs. the list
intersection phase for both approaches.

123

CHAPTER VI

DYNAMIC PARALLEL CONNECTED COMPONENTS

This chapter is an extension of the paper: R. McColl, O. Green, D. Bader, “A New

Parallel Algorithm for Connected Components in Dynamic Graphs”, IEEE Interna-

tional Conference on High Performance Computing, Hyderabad, India, 2013.

Social networks, communication networks, business intelligence databases, and

large scientific data sources now contain hundreds of millions elements with billions

of relationships. The relationships in these massive datasets are changing at ever-

faster rates. Through representing these datasets as dynamic and semantic graphs

of vertices and edges, it is possible to characterize the structure of the relationships

and to quickly respond to queries about how the elements in the set are connected.

Statically computing analytics on snapshots of these dynamic graphs is frequently not

fast enough to provide current and accurate information as the graph changes. This

has led to the development of dynamic graph algorithms that can maintain analytic

information without resorting to full static recomputation.

In this work we present a novel parallel algorithm for tracking the connected

components of a dynamic graph. Our approach has a low memory requirement of

O(V) and is appropriate for all graph densities. On a graph with 512 million edges,

we show that our new dynamic algorithm is up to 128X faster than well-known static

algorithms and that our algorithm achieves a 14X parallel speedup on a x86 64-core

shared-memory system. To the best of the authors’ knowledge, this is the first parallel

implementation of dynamic connected components that does not eventually require

static recomputation.

124

6.1 Introduction

In graph theory, given an undirected graph G = (V,E), a connected component

C ⊆ V ensures that for each s, t ∈ C there is a path between s and t. Finding the

connected components of a graph is a well-studied problem. The component labeling

of a graph can be used as building block within other calculations: betweenness cen-

trality, community detection, image processing, and others [51]. Hopcroft and Tarjan

[85] presented one of the first approaches for partitioning a graph into connected

components using a series of Depth First Searches (DFS), one for each component.

Breadth First Search (BFS) can also be used in place of DFS. Approaches relying only

on DFS and BFS are aimed at static graphs which can be thought of as snapshots of

a dynamic graph at an exact time.

In examining social networks such as Facebook, where vertices and edges may rep-

resent people and friendships or messages, the high rate of change makes computing

many analytics on snapshots of these massive graphs impractical as the time between

updates is much less than the time needed to compute these analytics. This has led

to the development of algorithms for dynamic graphs in which edges can be inserted

or deleted. With respect to connected components, edge insertions may join two

different components, and edge deletions may split one component into two. Given

the graph G and the components labels C, determining if an insertion has joined

two components can be done in O(1) time; however, determining if a deletion has

broken a component is more expensive. Both of these scenarios must be detected and

handled by any dynamic graph algorithm.

In order to keep up with rapid changes, the algorithm and its implementation

must attain performance through full system utilization and workload balancing. A

strategy used in this and other works is to aggregate updates into a batch over time

or until a certain number are collected. This batch can then be applied in parallel.

Batches increase the available amount of parallel work and provide opportunities to

125

reduce redundant calculations between updates; however, they also present synchro-

nization challenges and the potential for workload imbalance.

In this work, we show how to maintain an exact labeling of the connected com-

ponents of a dynamic graph with millions of edges while applying batches of edge

insertions and deletions in parallel. To accomplish this task, we employ a “parent-

neighbor” sub-graph structure of up to a fixed size O(V). In this sub-graph, parent

and neighbor relationships represent paths to the root of a breadth-first traversal of

each component. As long as each vertex has a path to the root, the component is

unbroken. In practice, we show that the average case for maintaining this approach is

much faster than performing the O(V +E) work required to recompute from scratch.

The storage complexity is O(V).

The remainder of the chapter will be structured as follows: this section presents

related work on serial and parallel connected components algorithms for both static

and dynamic graphs. In Section II, we present our new algorithm and the required

data structures. In Section III, we will discuss experimental methodology. Section

IV gives quantitative and performance results. Finally, in Section V, we will give

conclusions and future work.

6.1.1 Related Work

Many authors have published a variety of parallel algorithms that compute solutions

to the connected components problem on shared-memory computers. Hirschburg et

al. [82] presented the CONNECT algorithm, a classic parallel algorithm to find the

connected components in an undirected graph. Two variations are presented, the first

requires |V |2 processors and the second requires V dV logV e processors. Both have a

time complexity of O(log2V).

126

Shiloach and Vishkin [129] gave an O(logV) algorithm that used |V | + 2|E| pro-

cessors. Because of its simplicity, parallelism, and load balancing it has been imple-

mented on several multi-core and many-core systems. In the average case, it completes

in ∼d/2 iterations, where d is the diameter of the graph.

Shiloach and Even present an algorithm that tracks connected components in

dynamic graphs as edges are removed [127]. They accomplish this by maintaining a

structure representing the vertices in the levels of breadth first search tree for each

component. For each deleted edge, if the vertices of the edge are on the same level,

the data structure does not require updating. However, if they are on different levels

and the lower vertex has no other neighbors above it, the lower vertex (and possibly

a subtree) could potentially drop a level or fall out of the tree altogether. Both of

which require updating the data structure. In more recent theoretical work [118], a

sequence of graphs are maintained, one per each edge inserted, and reachability trees.

The amortized update time is O(E + V logV) and a worst-case query time of O(V).

In [60] a technique is shown that allows treating dense graphs as sparse graphs

- this is known as sparsification. Sparsification is achieved by dividing the original

graph into smaller subgraphs with V vertices and O(V) edges. Certificates (aka

graph properties) are computed for each subgraph. This is followed by merging of

these certificates. Ferragina [65] uses the sparsification technique with the algorithm

of [94] to give an additional algorithm for computing static and parallel connected

components for a PRAM-like system.

Henzinger et al. [80] use a series of graphs in which the vertices are colored based

on their degrees to detect new components in the face of deletions. Deleted edges

are removed from all of the graphs that are represented and the colors are updated,

then any O(V +E) connected components algorithm is run on all graphs to discover

components containing only vertices of a certain color which indicates the creation of

a new component.

127

Henzinger and King [81] created another algorithm that maintains several span-

ning trees in each component for different levels of sparsity and performs updates on

the trees only when deletions occur in both the graph and the tree.

The problem with many of these streaming algorithms is that they are too ex-

pensive to compute in practice, require too much storage - even up to the size of

the graph O(V +E), ignore real world graph properties, or do not consider practical

multi-core and many-core systems.

6.2 Tracking Connected Components in a Dynamic Graph

In the following section we present our new algorithm for maintaining connected

components for dynamic graphs. We briefly discuss the concept of tracking connected

components in a dynamic graph. We follow this with an introduction to our new

algorithm and data structure. Finally, the insertion and deletion approaches are

discussed. For simplicity, the pseudo code in this section does not explicitly indicate

atomic instructions.

Dynamic graph algorithms present several challenges which include: 1) Correct-

ness: for exact algorithms, the results should be correct and consistent at fixed points

in time for the graph at that same point. 2) Parallelism: to achieve the performance

necessary to keep up with high-speed data streams, an algorithm must be able to

use all of the resources available in the system. Additionally, synchronization and

communications need to be minimized. 3) Time complexity: the complexity of the

dynamic algorithm should be better than that of the static; however, as long as the

real-world performance of the dynamic algorithm is better on average on the data of

interest, it may be tolerable for the complexities to be equivalent. 4) Storage com-

plexity: this too should generally be comparable to or better than the static case.

Computing the connected components of a static graph requires O(V + E) memory

including the component labels O(V) and the graph itself O(V + E). A dynamic

128

graph algorithm should not increase this bound. Given that the size of the graph

can be on the same scale as the total memory in the machine, it is preferred that a

dynamic graph algorithm limit the amount of extras storage required to O(V).

Updating the connected components following an edge insertion only requires a

comparison of the component labels of the vertices belonging to the edge. If the

vertices have the same component label, then the insertion operation is complete. If

the vertices have different component labels, then the two independent components

need to be relabeled as the same component.

When maintaining a component labeling, edge deletion is considerably more chal-

lenging to handle than edge insertion. Deletions require determining if the deleted

edge was the single path connecting two otherwise independent components. This is

easy when the deleted edge is the only edge incident to one (or both) of the vertices;

however, if both vertices have additional adjacencies, alternative path(s) between the

vertices may exist. Obviously it is possible to use a SPSP (Single Pair Shortest Path)

algorithm such as BFS to verify that an alternative path exists. Unfortunately, the

worst case complexity for this is O(V +E) which is the same as the complexity bound

for computing connected components. For the cases that the edge deletion did split

the connected component into two parts, it is necessary to search and relabel the new

components.

It becomes apparent that it is desirable to find a mechanism that can state if the

deletion is “safe”, meaning that it is possible to state in O(1) time whether or not

the deletion could have broken a component. We require that this mechanism have

a 100% true positive rate – all deletions marked as safe are truly safe, but allow for

some false negatives as the search and relabel process will appropriately handle these

cases.

The key challenge is minimizing the false negatives - the cases where the mech-

anism suggests that the deletion is unsafe when it actually is safe. This goes back

129

to reducing the need to search for an additional path between the vertices to avoid

doing the same work as static recomputation.

6.2.1 The Parents-Neighbors Sub-graph

In this subsection we present our algorithm and its respective data structure that

has a low memory requirement of O(V). Some approaches have higher memory

requirements of O(V +E). This limits the size of graph that can be analyzed. Further,

a smaller memory footprint can allow for better usage of the cache and reduced

dependence on memory bandwidth.

We call our data structure the parent-neighbor sub-graph. This sub-graph is

extracted using breadth-first traversals of the original graph (one for each connected

component). The result is a directed sub-graph of the original undirected graph.

Each vertex will maintain a list of vertices that are in the level above (“parents”)

and/or in the same level (“neighbor”) of the traversal where a level is a single frontier

in the search and parents / neighbors of a vertex must be adjacent to that vertex in

the original graph. Note that if all the parents and neighbors were maintained then

the memory requirement of this would be O(V + E). Instead we place a threshold

(threshPN) on the total number of parent-neighbors for each vertex. Given that each

vertex can have at most threshPN parent-neighbors, the storage requirement of the

parent-neighbor subgraph is O(V · threshPN). Since threshPN is a constant O(1), the

storage requirement can be reduced to O(V). In Section 2.4 we discuss the impact of

selecting threshPN .

This sub-graph is similar to the parent lists maintained in Brandes’s betweenness

centrality algorithm [30]. In that algorithm, every vertex has a list of the vertices in

the level above that are adjacent to it. Since each vertex stores a list of up to the full

size of its adjacency list, the memory required for Brandes’s algorithm is O(V + E).

The key differences between our parent-neighbor sub-graph and the parent lists of

130

Table 12: The data structures maintained while tracking dynamic connected co-
mponents.

Name Description Type Size (Elements)
C Component labels array O(V)
Size Component sizes array O(V)
Level Approximate distance from the root array O(V)
PN Parents and neighbors of each vertex array of arrays O(V · threshPN) = O(V)
Count Counts of parents and neighbors array O(V)
threshPN Maximum count of parents and neigh-

bors for a given vertex
value O(1)

ẼI Batch of edges to be inserted into graph array O(batch size)

ẼR Batch of edges to be deleted from graph array O(batch size)

[30] are that we have placed a bound on the maximum number of adjacencies in the

list and that our list also stores adjacent vertices that are on the same level.

6.2.2 Data Structure and Algorithm Details

Table 12 denotes the variables used by the algorithm and data structure. We give a

brief justification for the memory requirements. As each vertex knows the component

it belongs to and the size of its component, a total of O(V) memory is required.

To store the partial list of parents and neighbors of a vertex we have created an

array called PN . To distinguish between the parents and neighbors, the parents use

positive numbers and the neighbors use negative numbers. The benefit of such an

implementation is that there is a single array and single counter for each vertex. Addi-

tional benefits include spatial locality, reduced memory footprint vs. separate arrays,

and ease of programming. For this reason, vertices will be indexed 1, 2, 3, .., |V |.

In the next subsection we further elaborate on the Level array, yet, we want to

note ahead of time that this array does not maintain the actual distance from the root

but only an approximate distance as will become apparent. In addition to this, we use

“negative” distances to mark vertices that potentially have lost all their parents yet

still have neighbors. These vertices should still have a path to the root through their

neighbors. The negative simply indicates to other vertices that this vertex should not

be depended on when searching for a connection to the root.

As PN is an undirected sub-graph of a directed graph, each inserted or deleted

131

Algorithm 8: A parallel breadth-first traversal that
extracts the parent-neighbor subgraph.
for v ∈ V do

Level[v]←∞, Count[v]← 0

for v ∈ V do
if Level[v] =∞ then

Q[0]← v
Qstart ← 0
Qend ← 1 Level[v]← 0
Cid[v]← v
while Qstart 6= Qend do

Qstop ← Qend
for i← Qstart to Qstop in parallel do

for each neighbor d of Q[i] do
if Level[d] =∞ then

Q[Qend]← d
Qend ← Qend + 1
Level[d]← Level[Q[i]] + 1
Cid[d]← Cid[Q[i]]

if Count[d] < threshPN then
if Level[Q[i]] < Level[d] then

PNd[Count[d]]← Q[i]
Count[d]← Count[d] + 1

else if Level[Q[i]] = Level[d] then
PNd[Count[d]]← −Q[i]
Count[d]← Count[d] + 1

Qstart ← Qstop

Size[v]← Qend

edge, (u, v), is taken care of twice – once from v’s perspective and once u’s perspective.

6.2.3 Data Structure Initialization

Each vertex is initially unlabeled, its Level is set to ∞, and its Counter is set to

zero. Component sizes are set to zero. In addition to the structures listed in Table

12, a temporary workspace of two |V | queues is used during the initialization.

We use a series of parallel BFS traversals, one for each connected component, to

find and label the members of each component and initialize the component sizes,

parents, and neighbors. Our BFS can be found in Algorithm 8. The first unlabeled

vertex is selected and enqueued. While the queue is not empty, the edges of the

vertices in the current frontier are explored concurrently. Newly discovered vertices

132

are marked, enqueued to the next frontier, and a new parent is inserted. For previously

discovered vertices, two scenarios of interest can arise: a new parent has been found

or a new neighbor has been found. These will be added to the PN array.

Insertion of the current vertex as a parent or neighbor only occurs if the total

number of parents and neighbors for the adjacent vertex is less than threshPN . Since

the BFS is level-synchronous, all parents of a vertex will be found before even a single

neighbor is found. Neighbors will only be added to the parent-neighbor list if the

vertex did not have at least threshPN parents. Synchronization is handled through

atomic compare-and-swap operations on the Level array and atomic fetch-and-

add to enqueue newly found vertices and to update the PN array and counter. For

simplicity these have not been marked in the pseudo code.

As a slight optimization, all edges connecting singleton connected components are

skipped in the first pass. Once the larger components have been labeled, a parallel

pass over all vertices is used to initialize the singleton components.

6.2.4 Insertions and the Subgraph

For an edge insertion, the vertices on each edge are first checked to see if they belong to

the same component. The pseudo-code for edge insertion can be found in Algorithm 9.

We differentiate two key scenarios for the insertion of edge 〈s, d〉: 1) the edge is within

a connected component (intra-connecting) and 2) the edge joins two components

(inter-connecting).

For the first, the levels of s and d are checked to see if a new parent or neighbor

relationship can be created. Assume that Levels ≤ Leveld. If Counterd < threshPN

then s is added to PNd as a parent if (Levels < Leveld) or as a neighbor otherwise,

and Counterd is incremented. If Counterd = threshPN and Levels < Leveld (i.e. s

can be a parent), d’s parents and neighbors are searched for neighbors that could be

replaced by the parent s.

133

Algorithm 9: The algorithm for updating the
parent-neighbor subgraph for inserted edges.
for all〈s, d〉 ∈ ẼI in parallel do

E ← E ∪ 〈s, d〉 insert(E, 〈s, d〉) if Cid[s] = Cid[d] then
if Level[s] > 0 then

if Level[d] < 0 then
// d is not “safe”
if Level[s] < −Level[d] then

if Count[d] < threshPN then
PNd[Count[d]]← s
Count[d]← Count[d] + 1

else
PNd[0]← s

Level[d]← −Level[d]

else
if Count[d] < threshPN then

if Level[s] < Level[d] then
PNd[Count[d]]← s
Count[d]← Count[d] + 1

else if Level[s] = Level[d] then
PNd[Count[d]]← −s
Count[d]← Count[d] + 1

else if Level[s] < Level[d] then
for i← 0 to threshPN do

if PNd[i] < 0 then
PNVd[i]← s,
Break for-loop

ẼI ← ẼI\〈s, d〉
for all〈s, d〉 ∈ ẼI do

if Cid[s] 6= Cid[d] then
if Size[s] = 1 then

Size[s]← 0
Size[d]← Size[d] + 1
Cid[s]← Cid[d]
PNs[0]← d
Level[s]← abs(Level[d]) + 1, Count[s]← 1

else
connectComponent(Input, s, d)

The intra-connecting edges are handled in parallel. The inter-connecting edges

are handed consecutively upon completion of the intra-connecting edges.

When components are connected, a parallel BFS starts at the joining vertex for

the smaller of the two components to relabel the smaller component’s members and

134

Algorithm 10: The algorithm for updating the
parent-neighbor subgraph for deleted edges.
for all〈s, d〉 ∈ ẼR in parallel do

E ← E\〈s, d〉
hasParents← false for p← 0 to Count[d] do

if PNd[p] = s or PNd[p] = −s then
Count[d]← Count[d]− 1
PNd[p]← PNd[Count[d]]

if PNd[p] > 0 then
hasParents← true

if (not hasParents) and Level[d] > 0 then
Level[d]← −Level[d]

for all 〈s, d〉 ∈ ẼR in parallel do
for all p ∈ PNd do

if p ≥ 0 or Level[abs(p)] > 0 then
ẼR ← ẼR\〈s, d〉

PREV ← Cid
for all 〈s, d〉 ∈ ẼR do

unsafe← (Cid[s] = Cid[d] = PREVs)
for all p ∈ PNd do

if p ≥ 0 or Level[abs(p)] > 0 then
unsafe← false

if unsafe then
if {〈u, v〉 ∈ G(E, V) : u = s} = ∅ then

Level[s]← 0, Cid[s]← s
Size[s]← 1, Count[s]← 0

else
Algorithm 4
repairComponent(Input, s, d)

add them to the larger component’s tree in PN . For performance purposes, singleton

components are set aside during this step. In the following step, all singletons handled

in parallel. Also, since two or more components could be connected through multiple

edge insertions within a single batch, inter-connecting insertions are checked to see if

the components have already been rebuilt and relabeled by another insertion before

the parallel BFS rebuild is performed.

6.2.5 Deletions and the Subgraph

Once the data structure has been initialized, edge deletions within the graph can be

checked against the parents and neighbors of the involved vertices to determine if the

135

Algorithm 11: The algorithm for repairing the parent-neighbor subgraph when
an unsafe deletion is reported.
Q[0]← d
Qstart ← 0
Qend ← 1
SLQ← ∅
SLQstart ← 0
SLQend ← 0
Level[d]← 0, Cid[d]← d
disconnected← true
while Qstart 6= Qend do

Qstop ← Qend for i← Qstart to Qstop in parallel do
u← Q[i] for each neighbor v of u do

if Cid[v] = Cid[s] then
if Level[v] ≤ abs(Level[d]) then

Cid[v]← Cid[d]
disconnected← false
SLQ[SLQend]← v
SLQend ← SLQend + 1

else
Cid[v]← Cid[d]
Count[v]← 0
Level[v]← Level[u] + 1
Q[Qend]← v
Qend ← Qend + 1

if Count[v] < threshPN then
if Level[u] < Level[v] then

PNv[Count[v]]← u
Count[v]← Count[v] + 1

else if Level[v] = Level[v] then
PNv[Count[v]]← −u
Count[v]← Count[v] + 1

Qstart ← Qstop

deletion is safe. The pseudo-code for edge deletion can be found in Algorithm 10.

Here we will focus on the deleted edge 〈s, d〉 from d’s perspective again assuming

Levels ≤ Leveld. Since the graph is undirected, the same process is repeated for

s. This is crucial, as a deletion marked safe in one direction may still be considered

unsafe from the other.

To determine if the deletion was safe, if s is in PNd it is removed, and PNd is

searched for a remaining parent. If a parent remains whose level is non-negative, a

connection to the root of the component must exist, the deletion is safe, and nothing

136

Algorithm 11: Cont.
if disconnected then

Size[d]← Qend

else
for i← SLQstart to SLQend in parallel do

Cid[i]← Cid[s]

while SLQstart 6= SLQend do
SLQstop ← SLQend for i← SLQstart to SLQstop in parallel do

u← SLQ[i] for each neighbor v of u do
if Cid[v] = Cid[d] then

Cid[v]← Cid[u]
Count[v]← 0
Level[v]← Level[u] + 1
SLQ[SLQend]← v
SLQend ← SLQend + 1

if Count[v] < threshPN then
if Level[u] < Level[v] then

PNv[Count[v]]← u
Count[v]← Count[v] + 1

else if Level[v] = Level[v] then
PNv[Count[v]]← −u
Count[v]← Count[v] + 1

Qstart ← Qstop

else needs to be done.

If d no longer has parents, a marker in the form of Leveld ← −Leveld ,is placed

to indicate this fact to the neighbors of d. This marker will be removed only when

an inserted edge creates a new parent for d or PNd is recreated during a component

merger or split. If d still has neighbors, they will be checked to see that they are still

valid (i.e. Level > 0), meaning that they have a path to the root. If such a path

exists, then d has a path to the root. If so, from the perspective of d, the deletion

was safe.

The first parallel for loop updates the parents and neighbors of the vertices in-

volved in the edge deletion. Note, that the safety of the deleted edges is not confirmed

by the end of this loop. Due to parallel race conditions that may cause two neighbor-

ing deleted edges to assume that they have paths to the root through each other, the

data structure must be updated in the first parallel loop and safety must be checked

137

in a secondary parallel loop by verifying that each vertex has it least one parent or

valid neighbor.

For each unsafe deletion, the parent-neighbor graph needs to be corrected. This is

done using a partial parallel breadth first traversal for which the pseudo-code can be

found in Algorithm 11. In an early version of the algorithm, the approach was instead

to perform a full search and simply rebuild the component, but the performance of

this approach was found to be inferior to the presented approach.

The goal of this search is to find connections from the starting vertex d back to

the root of the component by searching for other vertices in the same level that still

have parents or vertices in the level closer to the root.

Initially, d is marked as the root of a new component and a BFS is begun to update

PN data structure and component labels. If a connection to the original component

is not found, the component is split into two and a new component rooted at d is

created by this search process. If the search finds a connection back to the original

component, the first search ends and a second traversal is started to relabel and

rebuild part of the original component. The second traversal begins from the set of

vertices found in that last frontier of the first and proceeds backward toward d. The

resulting sizes of the breadth first searches are used to reconcile the component sizes.

No vertices closer to the root than the level of d will ever be added to the search

or relabeled. This limits the work of the search in the average case. Since unsafe

deletions are processed consecutively, the parents and component labels are quickly

checked before processing an unsafe delete to determine if the unsafe condition has

already been repaired. As a result, in the worst case, the combined number of edges

traversed by all searches in this step is limited to the number of edges in the graph;

thus, the worst-case performance is equal to that of a static re-computation. As a

slight optimization, vertices are checked to see if they are of degree zero and are

directly initialized to being their own components.

138

Table 13: Graph sizes used in our experiments for testing the algorithm. Multiple
graphs of each size were used.

Totals edge per average degree
Vertices 8 16 32 64

2M 16M 32M 64M 128M
4M 32M 64M 128M 256M
16M 128M 256M 512M —

6.3 Experimental Methodology

6.3.1 Synthetic Graphs and Experiments

Due to proprietary constraints, researchers do not always have access to real social

networks for investigation and many of the datasets that are available are static. Fur-

thermore, use of a single data set can limit the applicability of experiments. Instead,

synthetic networks are used. Generating synthetic networks gives experimenters con-

trol over the size and properties of the network. Many works have been written

using the Erdös-Rènyi (ER) [61, 62] model which uses a uniform random distribution

for generating edges; however, this tends to create one well-connected component in

which it is unlikely that an insertion or deletion would ever connect or disconnect any

components. As such, we do not use this type of random graph.

In this work, we use an implementation of the Recursive Matrix (R-MAT) [39]

synthetic random graph generator. This generator recursively divides the adjacency

matrix into quadrants, randomly selects one of these quadrants with probabilities

a, b, c, and d, and continues this process recursively until the selected quadrant is of

size one. For our experimentation , we have used a = 0.55, b = c = 0.1, and d = 0.25.

R-MAT graphs mimic the structure of real social networks in that they have a skewed

degree distribution that follows a power law and tend toward one large component

and many smaller components and singletons.

In this chapter, we vary the size of the graph in terms of its scale S and edge

139

factor E, where the number of vertices is 2S and the number of edges is E · 2S. E

thus corresponds to the average degree. We used scales 21, 22, and 24 with edge

factors 8, 16, and 32 (qualitative results also include edge factor 64). We refer to

these graphs as R-MAT-21, R-MAT-22, and R-MAT-24 with the average adjacencies.

The sizes of these graphs are listed in Table 13. We generated three graphs and

an update stream for each scale and edge factor combination using different random

seeds. For example for an R-MAT-21 graph with E = 8, three graphs and three

streams were generated.

An update stream consists of a series of edges to be inserted or deleted. A fixed

probability pdelete is used to determine whether or not an update will be a deletion.

Deletions are selected from previous insertions.

In [55, 56] batches of 100K updates are used with pdelete = 6.25%. For consistency,

we use these parameters as well. For each graph, 10 batches of 100K are used. RMAT

can potentially duplicate existing edges. We ignore these as they already are in the

graph. A single deletion removes an edge regardless of the number of times that it

has been inserted.

The system used for our tests is a quad-socket system with four 16-core AMD

Opteron 6282 SE processors for a total of 64 cores running at 2.6GHz. Each core

has a private 1MB L2 cache, and each processor has a shared 16MB L3 cache. The

system has 256GB of DDR3 RAM running at 1600MHz.

6.3.2 First Attempts

During the creation of our new algorithm, we attempted several other approaches

that were rejected due to being too computationally demanding, requiring a full

static recomputation for each batch of 100K, or having limited parallel scalability.

These are presented here with a focus on how deletions are handled:

1) Adjacency list intersection in the hope of finding two-hop connecting paths. A

140

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(a) threshPN = 4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(b) threshPN = 6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(c) threshPN = 8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(d) threshPN = 12

Deleted neighbors Deleted parents Inserted neighbors Inserted parents Insert replacement

Figure 39: Average number of inserts and deletes in PN array for batches of 100K
updates for RMAT-22 graphs. The subfigures are for different values of threshPN .
Note that the ordinate is dependent on the specific bar chart. The charts for RMAT-
21 graphs had very similar structure and have been removed for the sake of brevity.

0

500

1000

1500

2000

2500

8 16 32 64

threshPN=1

threshPN=2

threshPN=4

threshPN=6

threshPN=8

threshPN=12

Figure 40: Average number of unsafe deletes in PN data structure for batches of
100K updates as a function of the average degree (x-axis) and threshPN (bars).

similar approach with reasonable performance was shown in [56]; however, at batches

of 100k it produces 750 unsafe deletes on average, thus requiring a full static recom-

pute.

2) Maintain a spanning tree for each component. If a deleted edge is not in a

tree, then it is considered safe. If the edge is in the tree, then the tree and affected

components must be recomputed. In our experiments this approach is able to mark

90% of all deletions as safe.

3) Maintain two independent spanning trees for each connect component. Simply,

find a spanning tree T , remove T from G to create G′, and find a second spanning

141

tree T ′ in G′. Deletions are safe until a vertex has no parent in either tree. When this

occurs, the trees are recomputed from scratch. This approach is able to mark 99.7%

of the deletes as safe, but this is not enough. This approach is also computationally

demanding relative to others.

4) Attempting a BFS from one or both vertices to find a path between them.

Given the low diameter, power law distribution, and large single component tendency,

this can quickly encompass the entire component and most of the graph.

6.4 Results

We present both quantitative and performance results. In the quantitative results,

we count how many deletions removed relationships from the PN sub-graph, how

many insertions resulted in new relationships being added to the PN sub-graph, and

how many insertions resulted in a new parent replacing an existing neighbor. We

also track the number of deletions reported as unsafe. In the performance results,

we show speedups over static re-computation, strong scaling, and overhead given as

a fraction of the total update time spent maintaining the metric.

6.4.1 Quantitative

Fig. 39 depicts quantitative results for threshPN of 4, 6, 8, and 12 at different graph

sizes. For a specific threshPN , different edge factors were tested from E = 8 to

64; these are the abscissa. Due to the similarity of the results for R-MAT-21 and

R-MAT-22, we present charts only for the R-MAT-22 graphs.

We observe a trend that a decreasing number of deletions and insertions affect-

ing the PN sub-graph as the graph becomes denser. This is due to the fact that the

fixed-size sub-graph covers a smaller fraction of the total edges. The number of neigh-

bor replacements that occurs steadily becomes greater than the number of inserted

neighbors and inserted parents. Based on Leskovec et al. [100], graph densification

142

causes a shrinkage in the graph diameter. As such, in the initial data structure cre-

ation, the number of parents that a vertex has goes up (on average) leading to fewer

replacements as edges are added. It can be further inferred that as the graphs become

denser E > 64, there will be even fewer updates made to PN .

Looking across all of the subfigures, we see that the number of insertions of parents

(purple bars), neighbors (green bars), and parents replacing neighbors (light blue)

increases with threshPN for a fixed average degree.

As the graphs become denser, it is more likely that a deleted edge is in the PN

sub-graph. This can reduce performance due to the extra work in checking for discon-

nections. Moreover, as the threshPN increases, we see more insertions and deletions

into the PN sub-graph as expected. However, the number of unsafe deletes is signif-

icantly small, meaning that the data structure does not require significant repairs.

Fig. 40 shows the number of unsafe deletions marked as a function of the average

degree for different threshPN for the R-MAT-22 graph. The figure for the R-MAT-21

graph is similar to R-MAT-22 and has been omitted. For any given density, there

are fewer unsafe deletes as the value of threshPN increases. It is clear that using

threshPN = 1 or threshPN = 2 is simply ineffective. For threshPN = 1, each deletion

from the data structure becomes an unsafe delete. Increasing threshPN beyond 4 gives

significantly diminished returns in terms of he number of deletes marked unsafe. For

this reason, we chose threshPN = 4 for our performance results.

6.4.2 Performance

In this section we present performance analysis of the parent-neighbor sub-graph

approach. We demonstrate the scalability of our approach, compare performance

versus a parallel static recomputation after each batch, and examine the effect of

including updates to the parent-neighbor sub-graph in the update cycle.

143

1

2

4

8

16

1 2 4 8 16 32 64
Sp

e
e
d
u
p

Threads

8 16 32

Figure 41: Strong scaling results on RMAT-22 graphs with different average degree
as a function of the number of threads. Results include three graphs at each average
degree.

We compare our new algorithm to a parallel implementation based on the Shiloach-

Vishkin [129] algorithm that has been experimentally determined to perform better

than traditional BFS on R-MAT graphs stored the STINGER data structure. Al-

though this implementation is not the most work-efficient, it is scalable and highly

parallel with good workload balance, has low synchronization costs, and performs

well for graphs with low diameter. As a reminder from the previous subsection, our

results use threshPN = 4.

Fig. 41 gives strong scaling results (holding the amount of work constant while

increasing the number of threads/cores) for our algorithm on nine different R-MAT-

22 graphs, three different graphs for each edge factor (8, 16, and 32). The threads

are increased in multiples of 2 from 1 to 64. The plot shows nearly linear but not

optimal scaling up to 32 threads in comparison with a single thread. The speedup is

10.5x at 32 threads and 12.8x at 64 threads.

Looking across the average adjacencies, the trend is similar. At higher thread

counts, increasing density results in slight improvements in the average speedup. This

is due to a combination of increases in the amount of work that can be performed in

144

1

2

4

8

16

32

64

1 2 4 8 16 32 64
Sp

e
e
d
u
p

Threads

8 16 32

Figure 42: Speed up of the new algorithm over performing parallel static recompu-
tation after each batch on three different RMAT-22 graphs with each average degree
as a function of the number of threads.

parallel and fewer joined and broken components at higher densities.

Fig. 42 shows the performance improvement of using the parent-neighbor sub-

graph approach over recalculating the connected components using the parallel static

Shiloach-Vishkin implementation after each batch. This is shown for multiple graphs

with different average degrees and is also shown at each thread count. We show that

the speedup ranges from an average of 1.8x for an average degree of 8 up to 30.8x

for an average degree of 32 with a maximum of 48.3x. A key insight in this graph

is that the implementation of our algorithm on STINGER and our implementation

of static connected components on STINGER have the same scalability. This can be

inferred from that fact that the ratio between the time of the PN update and the

static recomputation remains constant as the thread count is increased.

In Fig. 43, a similarly equal scalability is shown. This graph shows the percentage

of the time taken to perform the PN updates in each update cycle (where the full

time for the cycle also includes updating the STINGER graph structure itself). The

fraction of the time taken by the PN updates at a given edge factor remains constant

as the thread count is increased. As the density increases, the updates cost less

145

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 4 8 16 32 64
%

 o
f

Ti
m

e
 in

 S
C

C

Threads

8 16 32

Figure 43: Fraction of the update time spent updating connected components over
time spent updating the graph structure and connected components.

time due to components splitting and merging less frequently. This is evident in the

increased speedup in Fig. 42. The static cost remains constant regardless of how

often components merge or split, but our approach becomes faster. At the same

time, updating the data structure has increasing cost with increasing density due to

the greater number of edges per vertex that must be traversed to insert or remove

and edge. More information on the implementation, performance and scalability of

updates in STINGER can be found in [55].

Fig. 44 shows speedup over performing static recomputation after each batch for

scale 24 graphs at edge factors up to 32 using 64 threads. We see a similar speedup

trend to scale 22. The variance across the graphs of the same size shows that our

algorithm is more sensitive to the structure of the graph and which edges are inserted

and deleted while the static algorithm is extremely consistent and load balanced. The

graph also shows that denser graphs give much better results, with the third scale

24 edge factor 16 graph performing 1.26 million updates per second while tracking

connected components - 137x faster than static recomputation.

146

1

2

4

8

16

32

64

128

256

8 16 32

Sp
ee

d
u

p

Edge Factor

Figure 44: Speed up over performing static recomputation after each batch on scale
24 graphs for three graphs at each edge factor using 64 threads.

6.5 Conclusions

In this work we presented a novel parallel low-memory algorithm and data structure

for maintaining a labeling of the connected components in a dynamic graph. We have

shown that the algorithm performs well on sparse graphs and that by tracking only a

few edges per vertex (threshPN) the number of unsafe deletes is reduced resulting in

high performance. We have shown that the new dynamic graph algorithm outperforms

a well-known static algorithm and that it has the same parallel scalability. Further,

we have shown good strong scaling results despite our algorithm containing some

sections with only fine-grain parallelism.

Beamer et al. [26] have shown a BFS algorithm that searches from the undiscov-

ered vertices once half of all vertices have been found. This outperforms traditional

BFS due to a large number of edge traversals in the traditional BFS that do not find

new vertices. Given that our algorithm uses a BFS in both the initial stage and the

streaming stage, an efficient implementation of the Beamer algorithm for STINGER

data structure should be investigated.

147

CHAPTER VII

MERGE PATH

This chapter is an extension of the paper: S. Odeh, O. Green, Z. Mwassi, O. Shmueli,

Y. Birk, “ Merge Path - Parallel Merging Made Simple”, Multithreaded Architec-

tures and Applications (MTAAP) Workshop, IEEE 26th International Parallel &

Distributed Processing Symposium (IPDPS), 2012.

Merging two sorted arrays is a prominent building block for sorting and other

functions. Its efficient parallelization requires balancing the load among compute

cores, minimizing the extra work brought about by parallelization, and minimizing

inter-thread synchronization requirements. Efficient use of memory is also important.

We present a novel, visually intuitive approach to partitioning two input sorted

arrays into pairs of contiguous sequences of elements, one from each array, such that

1) each pair comprises any desired total number of elements, and 2) the elements of

each pair form a contiguous sequence in the output merged sorted array. While the

resulting partition and the computational complexity are similar to those of certain

previous algorithms, our approach is different, extremely intuitive, and offers interest-

ing insights. Based on this, we present a synchronization-free, cache-efficient merging

(and sorting) algorithm.

While we use a shared memory architecture as the basis, our algorithm is easily

adaptable to additional architectures. In fact, our approach is even relevant to cache-

efficient sequential sorting. The algorithms are presented, along with important cache-

related insights.

148

7.1 Introduction

Merging two sorted arrays, A and B, to form a sorted output array S is an important

utility, and is the core the of merge-sort algorithm [45] . Additional uses include

joining the results of database queries and merging adjacency lists of vertices in graph

contractions.

The merging (e.g., in ascending order) is carried out by repeatedly comparing the

smallest (lowest-index) as-yet unused elements of the two arrays, and appending the

smaller of those to the result array.

Given an (unsorted) N -element array, merge-sort comprises a sequence of log2N

merge rounds: in the first round, N/2 disjoint pairs of adjacent elements are sorted,

forming N/2 sorted arrays of size two. In the next round, each of the N/4 disjoint

pairs of two-element arrays is merged to form a sorted 4-element array. In each

subsequent round, array pairs are similarly merged, eventually yielding a single sorted

array.

Consider the parallelization of merge-sort using p compute cores (or processors

or threads, terms that will be used synonymously). Whenever N � p, the early

rounds are trivially parallelizable, with each core assigned a subset of the array pairs.

This, however, is no longer the case in later rounds, as only few such pairs remain.

Consequently and since the total amount of computation is the same in all rounds,

effective parallelization requires the ability to parallelize the merging of two sorted

arrays

An efficient Parallel Merge algorithm must have several salient features, some

of which are required due to the very low compute to memory-access ratio: 1)

equal amounts of work for all cores; 2) minimal inter-core communication (platform-

dependent ramifications); 3) minimum excess work (for parallelizing, as well as repli-

cation of effort); and 4) efficient access to memory (high cache hit rate and minimal

cache-coherence overhead). Coherence issues may arise due to concurrent access to

149

the same address, but also due to concurrent access to different addresses in the same

cache line (false sharing). Memory issues have platform-dependent manifestations.

A naïve approach to parallel merge would entail partitioning each of the two arrays

into equal-length contiguous sub-arrays and assigning a pair of same-size sub arrays

to each core. Each core would then merge its pair to form a single sorted array, and

those would be concatenated to yield the final result. Unfortunately, this is incorrect.

(To see this, consider the case wherein all the elements of A are greater than all those

of B.) So, correct partitioning is the key to success.

In this chapter, we present a parallel merge algorithm for Parallel Random Ac-

cess Machines (PRAM), namely shared-memory architectures that permit concur-

rent (parallel) access to memory. PRAM systems are further categorized as CRCW,

CREW, ERCW or EREW, where C, E, R and W denote concurrent, exclusive, read

and write, respectively. Our algorithm assumes CREW, but can be adapted to other

variants. Also, complexity calculations assume equal access time of any core to any

address, but this is not a requirement.

Our algorithm is load-balanced, lock-free, requires a negligible amount of excess

work, and is extended to a memory-efficient version. Being lock-free, the algorithm

does not rely on a set of atomic instructions of any particular platform and therefore

can be easily applied. The efficiency of memory access is also not confined to one

kind of architecture; in fact, the memory access is efficient for both private- and

shared-cache architectures.

We show a correspondence between the merge operation and the traversal of a

path on a grid, from the upper left corner to the bottom right corner and going only

rightward or downward. This greatly facilitates the comprehension of parallel merge

algorithms. By using this path, dubbed Merge Path, one can divide the work equally

among the cores. Most important, we parallelize the partitioning of the merge path.

Our actual basic algorithm is similar to that of [50] , but is more intuitive and

150

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

3 5 12 22 45 64 69 82

A[1] 17 1 1 1 0 0 0 0 0

A[2] 29 1 1 1 1 0 0 0 0

A[3] 35 1 1 1 1 0 0 0 0

A[4] 73 1 1 1 1 1 1 1 0

A[5] 86 1 1 1 1 1 1 1 1

A[6] 90 1 1 1 1 1 1 1 1

A[7] 95 1 1 1 1 1 1 1 1

A[8] 99 1 1 1 1 1 1 1 1

(a)

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

3 5 12 22 45 64 69 82

A[1] 17 0 0

A[2] 29 1 0

A[3] 35 1 0

A[4] 73 1 1

A[5] 86 1 1

A[6] 90 1 1

A[7] 95 1 1

A[8] 99 1 1

(b)

Figure 45: Merge Matrix and Merge Path. (a) The Merge Matrix is shown with all
the values explicitly computed. The Merge Path is on the boundary between the
zeros and the ones. (b) The cross diagonals in a Merge Matrix are used to find the
points of change between the ones and the zeros, i.e., the intersections with the Merge
Path.

conceptually simpler. Furthermore, using insights from the aforementioned geometric

correspondence, we develop a new cache-efficient merge algorithm, and use it for a

memory-efficient parallel sort algorithm.

The remainder of the chapter is organized as follows. In Section II, we present the

Merge Path, the Merge Matrix and the relationship between them. These are used in

Section III to develop parallel merge and sort algorithms. Section IV introduces cache-

related issues and presents a cache-efficient merge algorithm. Section V discusses

related work and Section VI presents experimental results of our two new parallel

algorithms on two systems.Section VII offers concluding remarks.

151

7.2 Merge Path

7.2.1 Construction and basic properties

Consider two sorted arrays, A and B, with |A| and |B| elements, respectively. (The

lengths of the arrays may differ: |A| 6= |B|) Without loss of generality, assume that

they are sorted in ascending order. As depicted in Fig. 1 (a) (ignore the contents

of the matrix), create a column comprising A’s elements and a Row comprising B ’s

elements, and an |A|x|B| matrix M, each of whose rows (columns) corresponds to an

element of A (B). We refer to this matrix as the Merge Matrix. A formal definition

and additional details pertaining to M will be provided later.

Next, let us merge the two arrays: in each step, pick the smallest (regardless of

array) yet-unused array element. Alongside this process, we construct theMerge Path.

Referring again to Fig. 1 (a), start in the upper left corner of the grid, i.e., at the

upper left corner of M[1,1]. If A[1]>B[1], move one position to the right; else move

one position downward. Continue similarly as follows: consider matrix position (i,j)

whose upper left corner is the current end of the merge path: if A[i]>B[j], move one

position to the right and increase j; else move one position downward and increase

i; having reached the right or bottom edge of the grid, proceed in the only possible

direction. Repeat until reaching the bottom right corner.

The following four lemmas follow directly from the construction of the Merge

Path:

Lemma 1: Traversing a Merge Path from beginning to end, picking in each

rightward step the smallest yet-unused element of B, and in each downward step the

smallest yet-unused element of A, yields the desired merger.

�

Lemma 2: Any contiguous segment of a Merge Path is composed of a contiguous

sequence of elements of A and of a contiguous sequence of elements of B. �

Lemma 3: Non-overlapping segments of a merge path are composed of disjoint

152

sets of elements, and vice versa. �

Lemma 4: Given two non-overlapping segments of a merge path, all array ele-

ments composing the later segment are greater than or equal to all those in the earlier

segment. �

Theorem 5: Consider a set of element-wise disjoint sub-array pairs (one, possibly

empty sub-array of A and one, possibly empty sub-array of B), such that each such

pair comprises all elements that, once sorted, jointly form a contiguous segment of

a merge path. It is claimed that these array pairs may be merged in parallel and

the resulting merged sub-arrays may be concatenated according to their order in the

merge path to form a single sorted array.

Proof: By Lemma 1, the merger of each sub-array pair forms a sorted sub-array

comprising all the elements in the pair. From Lemma 2 it follows that each such sub-

array is composed of elements that form a contiguous sub-array of their respective

original arrays, and by Lemma 3 the given array pairs correspond to non-overlapping

segments of a merge path. Finally, by Lemma 4 and the construction order, all

elements of a higher-indexed array pair are greater than or equal to any element of a

lower-indexed one, so concatenating the merger results yields a sorted array. �

Corollary 6: Any partitioning of a given Merge Path of input arrays A and B

into non-overlapping segments that jointly comprise the entire path, followed by the

independent merger of each corresponding sub-array pair and the concatenation of

the results in the order of the corresponding Merge-Path segment produces a single

sorted array comprising all the elements of A and B. �

Corollary 7: Partitioning a Merge Path into equisized segments and merging the

corresponding array pairs in parallel balances the load among the merging processors.

Proof: each step of a Merge Path requires the same operations (read, compare

and write), regardless of the outcome. �

Equipped with the above insights, we next set out to find an efficient method for

153

partitioning the Merge Path into equal segments. The challenge, of course, is to do

so without actually constructing the Merge Path, as its construction is equivalent

to carrying out the entire merger. Once again using the geometric insights provided

by Fig. 1 (b), we begin by exposing an interesting relationship between positions

on any Merge Path and cross diagonals (ones slanted upward and to the right) of

the Merge Matrix M. Next, we define the contents of a Merge Matrix and expose

an interesting property involving those. With these two building blocks at hand,

we construct a simple method for parallel partitioning of any given Merge Path into

equisized segments. This, in turn, enables parallel merger.

7.2.2 The Merge Path and cross diagonals

Lemma 8: Regardless of the route followed by a Merge Path, and thus regardless

of the contents of A and B, the i’ th point along a Merge Path lies on the i ’th cross

diagonal of the grid and thus of the Merge Matrix M.

Proof: each step along the Merge Path is either to the right or downward. In

either case, this results in moving to the next cross diagonal. �

Theorem 9: Partitioning a given merge path into p equisized contiguous seg-

ments is equivalent to finding its intersection points with p-1 equispaced cross diag-

onals of M,

Proof: follows directly from Lemma 8. �

7.2.3 The Merge Matrix – content & properties

Definition 1: A binary merge matrixM of A,B is a Boolean two dimensional matrix

of size |A| × |B| such that:

M [i, j] =

 1 A [i] > B [j]

0 otherwise

.

Proposition 10: Let M be a binary merge matrix. Then, M [i, j] = 1⇒∀k,m :

i ≤ k ≤ |A| ∧ 1 ≤ m ≤ j, M [k,m] = 1

154

Proof: If M [i, j] = 1 then according to definition 1, A [i] > B[j]. k ≥ i⇒ A [k] ≥

A [i] (A is sorted). j ≥ m⇒ B [j] ≥ B [m] (B is sorted). A [k] ≥ A [i] > B [j] ≥ B [m]

and according to definition 1, M [k,m] = 1. �

Proposition 11: Let M be a binary merge matrix. If M [i, j] = 0, then

∀k,m s.t. (1 ≤ k < i) ∧ (j ≤ m ≤ |B|), M [k,m] = 0.

Proof: Similar to the proof of proposition 10. �

Corollary 12. The entries along any cross diagonal of M form a monotonically

non-increasing sequence. �

7.2.4 The Merge Path and the Merge Matrix

Having established interesting properties of both the Merge Path and the Merge

Matrix, we now relate the two, and use P(M) to denote the Merge Path corresponding

to Merge Matrix M.

Proposition 13: Let (i, j) be the highest point on a given cross diagonalM such

that M [i, j − 1] = 1 if exists, otherwise let (i, j) be the lowest point on that cross

diagonal. Then, P (M) passes through (i, j). This is depicted in Fig 2.

Proof: by induction on the points on the path.

Base: The path starts at (1, 1). The cross diagonal that passes through (1, 1)

consists only of this point; therefore, it is also the lowest point on the cross diagonal.

Induction step: assume the correctness of the claim for all the points on the path

up to point (i, j). Consider the next point on P (M). Since the only permissible moves

are Right and Down, the next point can be either (i, j + 1) or (i+ 1, j) , respectively.

Case 1: Right move. The next point is (i, j + 1). According to Definition 1,

M [i, j] = 1. According to the induction assumption, either i = 1 or M [i− 1, j] =

0. If i = 1 then the new point is the highest point on the new cross diagonal

such that M [i, j] = 1. Otherwise, M [i− 1, j] = 0. According to Proposition 11,

M [i− 1, j + 1] = 0. Therefore, (i, j + 1) is the highest point on its cross diagonal at

155

Algorithm 12: ParallelMerge(A,B, S, p)

for i = 1 to p parallel do
DiagonalNum← (i− 1) · (|A|+ |B|)/p+ 1
length← (|A|+ |B|)/p
ai,start, bi,start ← Diagonal Intersection (A,B,i,p) // Algorithm 13
si,start ← (i− 1) · (|A|+ |B|)/p+ 1
Merge(A, ai,start, B, bi,start, S, si,start, length)

Barrier

Algorithm 13:DiagonalIntersection(A,B, threadid, p) - Algorithm for finding
intersection of the Merge Path and the cross diagonals.
diag ⇐ i · (|A|+ |B|) / p
atop ⇐ diag > |A| ? |A| : diag
btop ⇐ diag > |A| ? diag − |A| : 0
abottom ⇐ btop
while true do

offset⇐ (atop − abottom)/2 ai ⇐ atop − offset bi ⇐ btop + offset if
A[ai] > B[bi − 1] then

if A[ai − 1] ≤ B[bi] then
astart ⇐ ai
bstart ⇐ bi
break

else
atop ⇐ ai − 1
btop ⇐ bi + 1

else
abottom ⇐ ai + 1

return {astart, bstart}

which M [i, j] = 1.

Case 2: the move was Down, so the next point is (i+ 1, j). According to Def-

inition 1, M [i, j] = 0. According to the induction assumption, either j = 1 or

M [i, j − 1] =1. If j = 1 then the new point is the lowest point in the new cross diag-

onal. SinceM [i, j] = 0 and according to Proposition 11, the entire cross diagonal is 0.

Otherwise,M [i, j − 1] = 1. According to Proposition 10,M [i+ 1, j − 1] = 1. There-

fore, (i, j + 1) is the highest point on its cross diagonal at which M [i+ 1, j − 1] = 1.

�

156

Theorem 14: Given sorted input arrays A and B, they can be partitioned into

p pairs of sub-arrays corresponding to p equisized segments of the corresponding

merge path. The p-1 required partition points can be computed independently of

one another (optionally in parallel), in at most log2(min(|A|,|B|)) steps per partition

point, with neither the matrix nor the path having to actually be constructed.

Proof: According to Theorem 9, the required partition points are the intersection

points of the Merge Path with p-1 equispaced (and thus content-independent) cross

diagonals of M. According to Corollary 12 and Proposition 13, each such intersection

point is the (only) transition point between ‘1’s and ‘0’s along the corresponding cross

diagonal. (If the cross diagonal has only ‘0’s or only ‘1’s, this is the uppermost and

the lowermost point on it, respectively.) Finding this partition point, which is the

intersection of the path and the cross diagonal, can be done by way of a binary search

on the cross diagonal, whereby in each step a single element of A is compared with

a single element of B. Since the length of a cross diagonal is at most min(|A|,|B|),

at most log2(min(|A|,|B|)) steps are required. Finally, it is obvious from the above

description that neither the Merge Path nor the Merge Matrix needs to be constructed

and that the p-1 intersection points can be computed independently and thus in

parallel. �

7.3 Parallel Merge and Sort

Given two input arrays A and B parallel merger is carried out by p processors ac-

cording to Algorithm 1. For the sake of brevity we do not present the pseudo code

for a sequential merge.

Remark. Note that no communication is required among the cores: they write

to disjoint sets of addresses and, with the exception of reading in the process of

finding the intersections between the Merge Path and the diagonals, read from dis-

joint addresses. Whenever |A|+|B|>>p, which is the common case, this means that

157

concurrent reads from the same address are rare.

Summarizing the above, the time complexity of the algorithm for |A| + |B| = N

and p processors is O (N/p+ log (N)) , and the work complexity is O(N +p · logN).

For p < N/log(N), this algorithm is considered to be optimal. In the next section,

we address the issue of efficient memory (cache) utilization.

Finally, merge-sort can be employ Parallel Merge to carry out each of log2N

rounds. The rounds are carried out one after the other.

The time complexity of this Parallel Merge-Sort is: O(N/p · log(N/p) + N/p ·

log(p) + log(p) · log(N) = O(N//p · log(N) + log(p) · log(n)

In the first expression, the first component corresponds to the sequential sort

carried out concurrently by each core on N/p input elements, and the two remaining

ones correspond to the subsequent rounds of parallel merges.

7.4 Cache Efficient Merge Path

In the remainder of this section, we examine the cache efficiency issue in conjunction

with our algorithm, offering important insights, exploring trade-offs and presenting

our approaches. Before continuing along this path, however, let us digress briefly to

discuss relevant salient properties of hierarchical memory in general, and particularly

in shared-memory environments. We have kept this discussion short and only present

relevant properties of the cache. For additional information on caches we refer the

reader to Stenstrom [132] for a brief survey on cache coherence, Conway et al. [43] for

cache design considerations for modern caches, and Lam et al. [96] for performance

of blocked algorithms that take the cache into consideration.

7.4.1 Overview

The rate at which merging and sorting can be performed even in memory (as opposed

to disk), is often dictated by the performance of the memory system rather than by

processing power. This is due to the fact that these operations require a very small

158

amount of computing per unit of data, and the fact that only a small amount of

memory, the cache, is reasonably fast. (The next level in the memory hierarchy typi-

cally features a ten-fold higher access latency as well as coarser memory-management

granularity.) Parallel implementation on a shared memory system further aggravates

the situation for several reasons: 1) the increased compute power is seldom matched

by a commensurate increase in memory bandwidth, at least beyond the 1st-level or

2nd-level cache, 2) the cores potentially share a 2nd or 3rd level cache, and 3) cache

coherence mechanisms can present an extremely high overhead. In this section, we

address the memory issues.

Assuming large arrays (relative to cache size) and merge-sort, it is clear that data

will have to be brought in multiple times (log2N times, one for each level of the

merge tree), so we again focus on merging a pair of sorted arrays.

7.4.2 Memory-hierarchy highlights

Cache Organization and management

Unlike software-managed buffers, caches do not offer the programmer direct con-

trol over their content and, specifically, over the choice of item for eviction. Further-

more, in order to simplify their operation and management, caches often restrict the

locations in which an item may reside based on certain bits of its original address (the

index bits). The number of cache locations at which an item with a given address

may reside is referred to as the level of associativity: in a fully associative cache there

are no restrictions; at the other extreme, a direct-mapped cache permits any given

address to be mapped only to a single specific location in the cache. The collection

of cache locations to which a given address may be mapped is called a set, and the

size of the set equals the degree of associativity.

Whenever an item must be evicted from the cache in order to make room for a

159

new one, the cache management system must select an item from among the members

of the relevant set. One prominent replacement policy is least recently used (LRU),

whereby the evicted item is the set member that was last accessed in the most distant

pass. Another is first in – first out (FIFO), whereby the evicted item is the one that

was last brought into the cache in the most distant past. Additional considerations

may include eviction of pages that have not been modified while in the cache, because

they often don’t have to be copied to the lower level in the hierarchy, as it maintains

a copy (an inclusive cache hierarchy).

Cache content is managed in units of cache line. We will initially assume that the

size of an array item is exactly one cache line, but will later relax this assumption.

Cache performance

The main cache-performance measure is the hit rate, namely the fraction of ac-

cesses that find the desired data in the cache. (Similarly, miss rate = 1- hit rate.)

There are three types of cache misses: Compulsory, Capacity, and Contention [79].

1) Compulsory – a miss that occurs upon the first request for a given data item.

(Whenever multiple items fit in a cache line, as well as when automatic prefetching

is used, the compulsory miss rate may be lower than expected. Specifically, access to

contiguous data would result in one miss per cache line or none at all, respectively.)

2) Capacity – this refers to cache misses that would have been prevented with a

larger cache.

3) Conflicts – these misses occur despite sufficient cache capacity, due to limited

flexibility in data placement (limited associativity and non-uniform use of different

sets).

Remark: even if cache misses can be reduced by appropriate policies, one must

also consider the total communication bandwidth between the cache and the lower

level. Specifically, data prefetching can mask latency but does not reduce the mean

160

bandwidth requirement, and speculative prefetching may actually increase it.

Cache coherence

In multi-core shared memory systems with private caches, yet another complica-

tion arises from the fact that the same data may reside in multiple private caches (for

reading purposes), yet coherence must be ensured when writing. There are hardware

cache-coherence mechanisms that obviate the programmer’s need to be concerned

with correctness; however, the frequent invocation of these mechanisms can easily be-

come the performance bottleneck. The most expensive coherence-related operations

occur when multiple processors attempt to write to the same place. The fact that

management and coherence mechanisms operate at cache-line granularity complicates

matters, as coherence-related operations may take place even when cores access dif-

ferent addresses, simply because they are in the same cache line. This is known as

false sharing.

Cache replacement policy

A problem may arise at replenishment time. Consider, for example, LRU and a

situation wherein a given merge segment only comprises elements of A. As replenish-

ment elements are brought in to replace the used elements of A, the least recently

used elements are actually those of B, as both the A element positions and the result

element positions were accessed in the previous iteration whereas only one element

of B was accessed (it repeatedly “lost” in the comparison). A similar problem occurs

with a FIFO policy.

A possible solution for LRU is, prior to fetching replenishment elements, touching

all cache lines containing unused input elements. If each cache line only contains

a single item, this would represent approximately a 50% overhead in cache access

(the usual comparison is between the loser of the previous comparison, which is in a

161

register, and the next element of the winning array, which must be read from cache;

also, the result must be written. So the number of cache accesses per step grows from

2 to 3.) If there are multiple elements per cache line, the overhead quickly becomes

negligible.

Limited associativity

Proposition 15. With 3-way associativity or higher, conflict misses can be

avoided.

Proof : Consider a cache of size C. With k-way associativity, any C/k consecutive

addresses are mapped to C/k different sets. We partition the merge path into seg-

ments of size C/3, thus constructing the merged array in segments of C/3 elements.

The corresponding result array comprises at most C/3 elements of A and at most C/3

elements of B. (The actual numbers are data dependent.) The C/3 items of each

of A,B and the merged array will take up exactly one position in each of the three

sets, regardless of the start address of each of these element sequences. Similarly,

each will take up to two positions in a 6-way set associative cache, three in a 9-way,

etc. For associativity levels that are greater than 3 but not integer multiples thereof,

one can reduce the segment length such that each array’s elements occupy at most a

safe number of positions in each set. (A safe number is one such that even if all three

arrays occupy the maximum number of positions in a given set, this will not exceed

the set size, i.e., the degree of associativity.) �

7.4.3 Cache-Efficient Parallel Merge

In this sub-section we present an extension to our algorithm for parallel merging that

is also cache-efficient and considers a shared-memory hierarchy (including a shared

cache).

162

Figure 46: Merge Matrix for the cache efficient algorithm. The yellow circles depict
the initial and final points of the path for a specific block in the cache algorithm.

Collisions in the cache between any two items are avoided when they are guaran-

teed to be able to reside in different cache locations, as well as when they are guar-

anteed to be in the cache at different times. In a Merge operation, a cache-resident

item is usually required for a very short time, and is used only once. However, many

items are brought into the cache. Also, the relative addresses of “active” items are

data dependent. This is true among elements of different arrays (A, B, S) and, sur-

prisingly, also among same-array elements accessed by different cores. This is because

the segment-partition points in any given array are data dependent, as is the rate at

which an array’s elements are consumed.

163

Given our efficient parallelization, we are able to efficiently carry out parallel

merger of even cache-size arrays. In view of this, we explore approaches that ensure

that all elements that may be active at any given time can co-reside in cache.

Let C denote cache size (in elements). Our general approach is to break the

overall merge path into cache-size (actually a fraction of that) segments, merging

those segments one after the other, with the merging within each segment being

parallelized. We refer to this as Segmented Parallel Merge (SPM). See Fig. 2. The

pseudo code for SPM is given in Algorithm 14.

Lemma 16. A merge-path segment of length L comprises at most L consecutive

elements of A and at most L consecutive elements of B. �

Theorem 17. Given L consecutive elements of A and L consecutive elements of

B, starting with the first element of each of them in the segment being constructed,

one can compute in parallel the p segment starting points so as to enable p consecutive

segments of length L/p to be constructed in parallel.

Proof: Consider the p − 1 cross diagonals of the merge matrix comprising the

aforementioned elements of the two arrays, such that the first one is L/p away from

the upper left corner and the others are spaced with the same stride. The farthest

cross diagonal will require the L′th provided element from each of the two arrays, and

no other point along any of the diagonals will require “later” elements. Also, since the

farthest diagonal is at distance L from the upper left corner (Manhattan distance),

the constructed segment will be of length L. �

Remark. Unlike the case of a full merger of two sorted arrays of size L, not all

elements will be used. While L elements will be consumed in the construction of the

segment, the mix of elements from A and from B is data dependent.

In order to avoid the extra complexity of using the same space for input elements

and for merged data, let L = C/3, where C is the cache size.

164

Algorithm 14: SegmentedParallelMerge(A,B, S, p, C)

L← C/3
length← L/p
MAXiterations ← 3 · (|A|+ |B|)/C
startingPoint← top left corner
for k = 1 to MAXiterations do

for i = 1 to p parallel do
DiagonalNum← (i− 1) · (L)/p+ 1 length← (L)/p ai,start, bi,start ←
Compute intersection of the Merge path with DiagonalNum using a
binary search si,start ← startingPoint+ (i− 1) · (L)/p+ 1
Merge(A, ai,start, B, bi,start, S, si,start, length)

if k = p then
update startingPoint

Barrier

Remark. Sufficient total cache size does not guarantee collision freedom (con-

flict misses can occur). However, we have shown that 3-way associativity suffices to

guarantee collision freedom.

Computational complexity Assuming a total merged-array segment size of

L = C/3 per sequential iteration of the algorithm, there are 3N/C such iterations. In

each of those, at most 2L = 2C/3 elements of the input arrays (L of each) need to be

considered in order to determine the end of the segment and, accordingly, the numbers

of elements that should be copied into the cache. Because the sub-segments of this

segment are to be created in parallel, each of the p cores must compute its starting

points (in A and in B) independently. (We must consider 2L elements because the

end point of the segment, determined by the numbers of elements contributed to it

by A and B, is unknown.)

The computational complexity of the cache-efficient merge of N elements given a

cache of size C and p cores is:O (N/C · p · logC + N) .

Normally, p << C << N , in which case this becomes O(N). In other words, the

parallelization overhead is negligible.

The time complexity is O (N/C · (logC + C/p)) .

165

Figure 47: Cache-efficient parallel sort first stage. Each cache sized block is sorted
followed by parallel merging

Neglecting logC (the parallelization overhead) relative to C/p (the merge itself),

this becomes O(N/p), which is optimal. Finally, looking at typical numbers and at

the actual algorithms, it is evident that the various constant coefficients are very

small, so this is truly an extremely efficient parallel algorithm and the overhead of

partitioning into smaller segments is insignificant.

7.4.4 Cache-Efficient Parallel Sort

Initially, partition the unsorted input array into equisized sub-arrays whose size is

some fraction of the cache size C.

Next, sort them one by one using the parallel sort algorithm on all p processors

as explained in an earlier section. (Of course, one may sort them in parallel, but this

would increase the cache footprint.)

Finally, proceed with merge rounds; in each of those, the cache-efficient parallel

merge algorithm is applied to every pair of sorted sub-arrays. This is repeated until

a single array is produced.

We now derive the time complexity of the cache efficient parallel sort algorithm.

We divide the complexity into two stages: 1) the complexity of the parallel sorting

of the sub-arrays of at most Celements, and 2) the complexity of the cache-efficient

merge stages.

In the first stage, depicted in Fig. 3, the parallel sort algorithm is invoked on the

cache sized sub-arrays. The number of those sub-arrays is O (N/C). Hence, the time

complexity of this stage is O(N/C · (C/p · log(C) + log(p) · log(C))).

The second stage may be viewed as a binary tree of merge operations. The

166

tree leaves are the sorted cache sized sub-arrays. Each two merged sub-arrays are

connected to the merged sub-array, and so on. The complexity of each level in the

tree is O(log(N/C) · (N/p+N/C · log(p)).

The total complexity of the cache-efficient parallel sort algorithm is the sum of

the complexities of the two stages: O(N/p · log(N) +N/C · log(p) · log(C)).

One may observe again that the new algorithm has a slightly higher complex-

ity, N/C · log (C)· log(p) >log N · log (p) , due to the numerous partitioning stages.

However, this is beneficial for systems where a cache miss is relatively expensive.

7.5 Related work

In this section, we review previous works on the subjects of parallel sorting and

parallel merging, and relate our work to them.

Prior works fall into two categories: 1) algorithms that use a problem-size depen-

dent number of processors, and 2) algorithms that use a fixed number of processors.

Several algorithms have been suggested for parallel sorting. While parallel merge

can be a building block for parallel sorting, some parallel sorting algorithms do not re-

quire merging. An example is Bitonic Sort [25] in which O
(
N · (log N)2) comparators

are used (N/2 comparators are used in each stage) to sort N elements in O
(
(log N)2)

cycles. Bitonic sort falls into the aforementioned first category. Our work is in the

latter.

We consider two complexity measures: 1) time complexity (the time required to

complete the task), and 2) overall work complexity, i.e, the total number of basic

operations carried out. In a load balanced algorithm like ours, the work complexity

is the product of time complexity and the number of cores. Even with perfect load

balancing, however, one must be careful not to increase the total amount of work

(overhead, redundancy, etc.), as this would increase the latency. Similarly, one must

be careful not to introduce stalls (e.g., for inter-processor synchronization), as these

167

would also increase the elapsed time even if the “net” work complexity is not increased.

Merging two sorted arrays requires Ω(N) operations. Some of the parallel merging

algorithms, including ours, have a work complexity of O(N + p · log(N)), the latter

component is negligible and the complexity is O(N), as observed in [12]. Also, there

are no synchronization stalls in our algorithm.

In Shiloach and Vishkin [126], as in our work, a CREW PRAM memory model is

used. There, a mechanism for partitioning the workload is presented. This mechanism

is less efficient than ours and does not feature perfect load balancing; although each

processor is responsible for merging O (N/p) elements on average, a processor may be

assigned as many as 2N/p elements. This can introduce a stall to some of the cores

since all the cores have to wait for the heaviest job. For truly efficient algorithms,

namely ones in which the constants are also tight, as is the case with our algorithm,

such a load imbalance can cause a 2X increase in latency! The time complexity of

this algorithm is O (1+log p +log N +N/p). For N� p, which is the case of interest,

it is O (N/p+log N) .

In [12], Akl and Santoro present a merging algorithm that is memory-conflict free

using the EREW model. It begins by finding one element in each of the given sorted

arrays such that one of those two elements is the median (mid-point) in the output

array. The elements found (A [i] ,B [j]) are such that if A [i] is the aforementioned

median then B [j] is the largest element of B that is smaller than A [i] or the smallest

element of B that is greater than A [i]. Once this median point has been found, it

is possible to repeat this on both sets of the sub-arrays. Their way of finding the

median is similar to the process that we use yet the way the explain their approach

is different. The complexity of finding the median is O(log (N)). As these arrays

are non-overlapping, there will not be any more conflict on accessed data. This stage

is repeated until there are p partitions. This requires O(log (p)) iterations. Once

all the partitions have been found, it is possible to merge each pair of sub-arrays

168

Table 14: Cache misses for parallel merging algorithms assuming a 3-way associativity.

Cache misses
Algorithm Partitioning stage Merge Total

stage
[126] O(p · log(N) + p · log(p)) Ω(N) O(N+p·log(N)+p·log(p))

[12] O(p · log(N)) Ω(N) O(N + p · log(N))

[50] & Merge Path O(p · log(N)) Ω(N) O(N + p · log(N))

Segmented Merge Path O(p ·N/C · log(C)) Θ(N) Θ(N)

sequentially, concurrently for all pairs, and to simply concatenate the results to form

the merged array. The overall complexity of this algorithm is O (N/p+log N log p).

The somewhat higher complexity is the price for the total elimination of memory

conflicts.

In [50], Deo and Sarkar present an algorithm that is conceptually similar to that

of [12] is presented. They initially present an algorithm that finds one element in

each of two given sorted arrays such that one of these elements is k− th smallest

element in the output (merged) array. In [12] they start off by finding k = N/2. In

[50], the elements sought after are those that are equispaced (N/p positions apart) in

the output array. Finding each of these elements has the complexity of O (log (N)).

This algorithm is aimed for CREW systems. The complexity of this algorithm is

O (N/p+log (N)).

Our algorithm is very similar to the one presented in [50]. However, our approach

is different in that we show a correspondence between finding the desired elements

and finding special points on a grid. Finally, using this correspondence along with

additional insights and ideas, we also provide cache efficient algorithms for parallel

merging and sorting that did not appear in any of the related works.

The work done in [49] is an extension of [50], in which the algorithm is adapted to

an EREW machine with a slightly larger complexity of O(N/P + log(N) + log(P))

due to the additional constraints of the EREW.

169

In Table 14, a summary of the number of cache misses for the aforementioned par-

allel merge algorithms is given (assuming 3-way associativity as discussed in Proposi-

tion 15). Note that the Segmented Merge Path algorithm has a different asymptotic

boundary than the remaining algorithms. This is attributed to the possible sharing

of cache lines by different cores that the segmented algorithm does not have, thus

Segmented Merge Path has the lowest bound on the number of cache misses in the

merging stage. Also note that for Segmented Merge Path there is an overlap of cache

misses between the partitioning stage and the merge stage: elements fetched in the

partitioning stage will not be fetched again in the merging stage. We remind the

reader that C denotes the cache size and the assumption that p << C << N .

Merging and sorting using GPUs is a topic of great interest as well, and raises

additional challenges that need to be addressed. NVIDIA’s CUDA (Compute Uni-

fied Device Architecture) [113] has made the GPU a popular platform for parallel

application development.

In Green et al. [73], the first GPU parallel merge algorithm is presented based on

the Merge Path properties. The GPU algorithm uses the Merge Path properties at two

different level of granularity. The reader is referred to [112] for an extended discussion

on the GPU; for the purpose of this discussion we simplify the GPU’s programming

model to two levels, the stream multiprocessors(SM) and stream processors (SP).

The SMs resemble the multiprocessors of the x86. The SPs are light-weight thread

computing units grouped together with a single instruction decoder.

Green et al. use the cross diagonal search for partitioning the work to the GPU’s

multi processors similar to the process that is done by our algorithm. In the second

phase, the SP’s of each SM repeat the cross diagonal intersection with a smaller subset

of the path using an algorithm that is similar to the cache-efficient algorithm that is

presented in this paper such that in each iteration a subset of A and B are fetched

by the SPs in a way that the best utilizes the GPU’s memory control unit. Once

170

0

2

4

6

8

10

12

1 2 4 6 8 10 12

S
p
e
e
d
u
p

Threads

1M 4M 16M 64M

Figure 48: Merge Path speedup on a 12-core system. These results can be found in
[115]. The different color bars are for different sized input arrays. 1M elements refers
to 220 elements. For each array size, the arrays are equisized.

the segments have been fetched into the memory the cross diagonal intersection is

repeated for all the SPs on the SM. At time of publication, this is the fastest known

algorithm for merging on the GPU.

In [122] a radix sort for the GPU is presented. In addition to the radix sort, the

authors suggest a merge-sort algorithm for the GPU, in which the a pair-wise merge

tree is required in the final stages. In [131], a hybrid sorting algorithm is presented

for the GPU. Initially the data is sorted using bucket sort and this is followed by

a merge sort. The bucket approach suffers from workload imbalance and requires

atomic instructions (i.e., synchronization).

Another focus of sorting algorithms is finding a way to implement them in a

cache oblivious [11] way. As the algorithm in this paper focused on the merging

stage and not the entire sort and presented a cache aware merging algorithm, we

will not elaborate on cache oblivious algorithms. The interested reader is referred to

[41, 42, 68].

171

Table 15: Intel X86 systems used

Proc. #Proc # Cores Per Proc. Total Cores L1 L2 L3 Memory
X5670 Intel 2 6 12 32KB 256KB 12MB 12GB
E7-8870 Intel 4 10 40 32KB 256KB 30MB 256GB

7.6 Results

According to Amdahl’s Law [14], a fraction of an algorithm that is not parallelized

limits the possible speedup, It is quite evident from the previous sections that we

have succeeded in truly parallelizing the entire merging and sorting process, with

negligible overhead for any numbers of interest. Nonetheless, we wanted to obtain

actual performance results on real systems, mostly in order to find out whether there

are additional issues that limit performance. Also, so doing increases the confidence

in the theoretical claims.

We implemented our basic Merge Path algorithm and the cache-efficient version.

In the latter, the two arrays are segmented as described such that each segment-pair

fits into a 3-way associative cache with no collisions, and the merging of one such seg-

ment pair begins only the merging of the previous pair has been completed. However,

the actual fetching of array elements into the cache is done only once demanded by

the processor, though any prefetch mechanisms of the system may kick in.

The algorithms were implemented on two very different platforms: the x86 plat-

form and the HyperCore, a novel shared-cache many-core architecture by Plurality.

We begin with a brief overview of the two systems systems, including system spec-

ifications, and then present some of the practical challenges of implementing the

algorithms on each of the platforms. Following this, we present the speedup of both

the new algorithms, regular Merge Path and the cache efficient version, on each of

the systems. The runtime of Merge-Path with a single thread is used as the baseline.

172

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

S
p
e
e
d
u
p

Threads

Optimal Merge-Path 10-Segment 5-Segment 2-Segment(a) |A| = |B| = 10M with full writes to
the output array using NUMA Control.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

S
p
e
e
d
u
p

Threads

Optimal Merge-Path 10-Segment 5-Segment 2-Segment(b) |A| = |B| = 50M with full writes to
the output array using NUMA Control.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

S
p
e
e
d
u
p

Threads

Optimal Merge-Path 10-Segment 5-Segment 2-Segment(c) |A| = |B| = 10M with writes to local
register.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
S
p
e
e
d
u
p

Threads

Optimal Merge-Path 10-Segment 5-Segment 2-Segment(d) |A| = |B| = 50M with writes to local
register.

Optimal Merge-Path 10-Segment 5-Segment 2-Segment

Figure 49: Merge Path and Segmented Merge Path speedup on a 40-core system. 1M
elements refers to 220 elements. For each array size, the arrays are equisized. For the
segmented algorithm, the Merge Matrix is divided into 10, 5, and 2 segments.

7.6.1 x86 System

We used two different Intel X86 with Hyperthreading support: a 12 core system and

a 40 core system. For both systems, each core has a L1 and L2 private cache. The

cores on each processor share a L3 cache. The specifics of these systems can be found

in Table 15. Because the cores have private caches, a cache coherency mechanism

is required to ensure correctness. Furthermore, as we had multiple processors, each

with its own L3 cache, the cache coherence mechanism had to communicate across

processors; this is even more expensive from a latency point of view. We do not use

the Hyperthreading. For each array size and each thread count, multiple executions

173

were completed and the average was taken.

Our implementation of Merge Path is OpenMP [46] based. On the 12-core system

we tested the regular algorithm. On the 40-core system we tested both algorithms

(regular and segmented). For both systems we use multiple sizes of arrays and thread

count.

Fig. 48 depicts the speedup of the algorithm as a function of threads for the

12-core system. Each of the different colored bars is for a different input size. This

figure can also be found in our previous paper, [115]. In all cases |A| = |B|. The

output array S is twice this size, meaning that the total memory required for the 3

arrays is 4 · |A| · |type|, where |type| denotes the number of bytes need to stored the

data type (for 32 bit integers this will be 4). One mega element refers to 220 elements.

As can be seen, the speedups are near linear, with a slight reduction in performance

for the bigger input arrays: approximately 11.7X for 12 threads.

Fig. 49 depicts the speedup on a larger 40-core system for both the regular and

segmented algorithm. For the segmented algorithm we used multiple segment sizes:

two, five, and ten segments. As such each segment size is |S|/#segments. Effective

parallelization on the 40 core system is more challenging than it is for the 12 core

system as the 40 core system consists of 4 processors (each with 10 cores). The 4

processor design can potentially add overhead related to synchronization and cache

coherency. Additional considerations include memory bandwidth saturation due to

the algorithm being communication bound. We discuss these.

For each input size tested, we present two sets of results - execution time with the

write backs and execution time without write backs. Both use the NUMA Contral

package [92]. The speedups for the writeback of the results to the main memory are

depicted in Fig. 49(a) and Fig. 49(b), for array sizes 10M and 50M respectively. The

speedups for the algorithms when the results are written to a register are depicted in

Fig. 49(c) and Fig. 49(d), for array sizes 10M and 50M respectively.

174

Note that for both array sizes, the speedup attained at 10 threads is not doubled

at 20 threads and the speedup at 20 threads is not doubled for 40 threads. There are

two causes for this: writing back of the elements and synchronization.

As expected, writing the results back to the main memory adds latency and thus

reduces the speedup from about 32X to 28X for the 40-thread execution for the 50M

array size. This side effect is not felt as much for the smaller array sizes, 10M , a

significant part of the array fits in the caches. Note that each processor has a 30MB

L3 cache, with a total of 120MB for all 4 processors. The amount of memory required

by the A,B, and S is 160MB. As such, at the end of the merge, part of the array is

still in the cache and is not written back to the main memory as occurs for the larger

arrays. This behavior is not a side affect of our algorithm, rather it is a side affect of

the architecture.

To verify the impact of the synchronization, we timed only the path intersec-

tion and its immediate synchronization (meaning that merging process itself was not

timed). As the path intersection takes at most O(log2(min(|A|,

|B|))) steps, if the main cross diagonal is used for intersection in the case of equisized

inputs, this intersection should take the longest amount of time. For example, when

2 threads are used, the 2nd thread uses the main cross diagonal. Meaning it should

be the bottleneck in the computation. As we increased the number of threads, the

amount of time to find the intersections grew - regardless of the amount of compu-

tation needed. For the segmented algorithm the synchronization time also grew and

became more substantial. Once again, this is not a side affect of our algorithm.

We now compare the regular algorithm with the segmented algorithm. For the

smaller array, the segmented algorithm is slightly outperformed by the regular algo-

rithm. This is due to the synchronization overhead where the synchronization costs

plays a more substantial part of the total execution time. Also, likelihood of cache

contention is smaller for these arrays. As such the regular algorithm outperforms

175

Synchronizer/Sch

eduler

Core

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Memory Bank

Core

Core

Core

Core

Core

Core

Core

Memory interconnectDistribution

network

Figure 50: Schematic view of the Hypercore for an 8-core system. The memory banks
refer to the shared memory. The Hypercore also has DRAM memory which is not
shown in this schematic.

the segment algorithm. As the sizes of the array increases so does the likelihood of

contention (for both the partitioning and merging stages). It is not surprising that

the new cache efficient algorithm outperforms the regular algorithm.

In summary, our x86 OpenMP implementations perform rather well and achieves

75%− 90% of the full system utilization (problem size dependent).

7.6.2 HyperCore Architecture

Plurality’s HyperCore architecture [5, 3] features tens to hundreds of compute cores,

interconnected to an even larger number of memory banks that jointly comprise the

shared cache. The connection is via a high speed, low latency combinational intercon-

nect. As there are no private caches for the cores, memory coherence is not an issue

176

1

2

4

8

16

32

1 2 4 8 16 32

S
p

e
e

d
u

p

Thread Count

(a) Regular Algorithm

1

2

4

8

16

32

1 2 4 8 16 32

S
p

e
e

d
u

p

Thread Count

(b) Segmented Algorithm

Optimal 32K 64K 128K 256K 512K 1M 2M 4M

Figure 51: Speedup of our algorithm on Plurality’s Hypercore [3] system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32

S
p

e
e

d
u

p
 R

a
ti

o
 o

f
R

e
g

u
la

r
V

s.
C

a
ch

e

E
ff

ic
ie

n
t

Thread Count

Equal 32K 64K 128K 256K

512K 1M 2M 4M

Figure 52: Speedup comparison of the regular and segmented algorithms on the
Hypercore. A blue curve, Equal, has been added to this chart to denote when the
speedups of the algorithm are equal. All curves above Equal mean that the regular
algorithm outperforms that segmented algorithm. All curves below Equal mean that
the segmented algorithm is more efficient.

177

for CREW like algorithms. Same-address writes are serialized by the communication

interconnect; however, for our algorithm this was not needed. The memory banks

are equidistant from all the cores, so this is a UMA system. The shared cache has a

number of memory banks that is larger than the number of cores in the system, re-

ducing the number of conflicts on a single bank. Moreover, addresses are interleaved,

so there are no persistent hot spots due to regular access patterns. Fig. 50 depicts

an 8-core Hypercore system.

The benefit of such an architecture is that there is no processor-cache communi-

cation bottleneck. Finally, the absence of private caches (and a large amount of state

in them) and the UMA architecture permit any core to execute any compute task

with equal efficiency. The memory hierarchy also includes off-chip (shared) memory.

Finally, the programming model is a set of sequential "tasks" along with a set of

precedence relations among them, and these are enforced by a very high throughput,

low latency synchronizer/scheduler that dispatches work to the cores.

At the time of submission, Plurality has not manufactured the actual chip. We had

access to an advanced experimental version of the HyperCore on an FPGA card. The

FPGA version we used has a 1MB direct mapped cache and 32 cores. Furthermore,

the FPGA has a latency issue on memory write back. Therefore, results are shown

for an algorithm that does not write to memory. Instead, we saved the value in a

private register.

We ran both the non-segmented and segmented versions of Parallel Merge Path

with varying numbers of threads (cores). The input arrays (of type integer) tested

on Plurality are substantially smaller than those that we tested on the x86-system

due to the FPGA limitations. One might expect that merging smaller arrays would

not offer significant speedups due to the overhead required in dispatching threads and

to the fact that the search for partition points (binary search on a cross diagonal)

become a more significant part of the computation. However, due to HyperCore’s

178

ability to dispatch a thread within a handful of cycles, the overhead is not a problem

and makes the HyperCore an idle target platform. The sizes of the input arrays are

denoted by the number of elements in each of the arrays A and B. Again, the arrays

A and B are equisized.

Fig. 51(a) presents the speedup of our basic Parallel Merge algorithm as a function

of the number of cores. Multiple input sizes were tested. It is evident that they

speedup is quite close to linear up to 16 cores, regardless of the array sizes. For

the larger input arrays, the speedup does decrease for the 32 core count. This is

most likely due to shared-memory contention and does not occur for the segmented

algorithm.

Fig. 51(b) similarly depicts the speedup for the segmented algorithm. Note,

however that the cache is direct mapped, so collision freedom cannot be guaranteed.

Nonetheless, the partition into sequential iteration, each carrying out parallel merge

on a segment, does improve performance. The percentage speedup of the segmented

version relative to same-parameter execution without segmentation is depicted in Fig.

52.

7.7 Conclusions

In this chapter, we explored the issue of parallel sorting through the cornerstone of

many sorting algorithms – the merging of two sorted arrays.

One important contribution of this chapter is a very intuitive, simple and efficient

approach to correctly partitioning each of two input sorted arrays into segments that,

once pairs of segments, one from each, are merged, the concatenation of the merged

pairs yields a single sorted array. This partitioning is also done in parallel.

Another important contribution is an insightful consideration of cache related

issues. These are extremely important because, especially when parallelized, sorting

and merging are carried out at a speed that is very often determined by the memory

179

subsystem rather than by the compute power. This culminated in a cache-efficient

parallel merge algorithm. To this end, the efficient segmented version of our algorithm

is very promising, as it can operate efficiently with simple caches.

180

CHAPTER VIII

GPU MERGE PATH

This chapter is an extension of the paper: O. Green, R. McColl, D. Bader, “GPU

Merge Path - A GPU Merging Algorithm”, ACM 26th International Conference on

Supercomputing, Venice, Italy, 2012.

Graphics Processing Units (GPUs) have become ideal candidates for the develop-

ment of fine-grain parallel algorithms as the number of processing elements per GPU

increases. In addition to the increase in cores per system, new memory hierarchies

and increased bandwidth have been developed that allow for significant performance

improvement when computation is performed using certain types of memory access

patterns.

Merging two sorted arrays is a useful primitive and is a basic building block for

numerous applications such as joining database queries, merging adjacency lists in

graphs, and set intersection. An efficient parallel merging algorithm partitions the

sorted input arrays into sets of non-overlapping sub-arrays that can be independently

merged on multiple cores. For optimal performance, the partitioning should be done

in parallel and should divide the input arrays such that each core receives an equal

size of data to merge.

In this chapter, we present an algorithm that partitions the workload equally

amongst the GPU Streaming Multi-processors (SM). Following this, we show how

each SM performs a parallel merge and how to divide the work so that all the GPU’s

Streaming Processors (SP) are utilized. All stages in this algorithm are parallel. The

new algorithm demonstrates good utilization of the GPU memory hierarchy. This

approach demonstrates an average of 20X and 50X speedup over a sequential merge

181

on the x86 platform for integer and floating point, respectively. Our implementation

is 10X faster than the fast parallel merge supplied in the CUDA Thrust library.

8.1 Introduction

The merging of two sorted arrays into a single sorted array is straightforward in

sequential computing, but presents challenges when performed in parallel. Since

merging is a common primitive in larger applications, improving performance through

parallel computing approaches can provide benefit to existing codes used in a variety

of disciplines. Given two sorted arrays A,B of length |A|,|B| respectively, the output

of the merge is a third array C such that C contains the union of elements of A and

B, is sorted, and |C| = |A| + |B|. The computational time of this algorithm on a

single core is O(|C|) [45]. As of now, it will be assume that |C| = n.

The increase in the number of cores in modern computing systems presents an op-

portunity to improve performance through clever parallel algorithm design; however,

there are numerous challenges that need to be addressed for a parallel algorithm to

achieve optimal performance. These challenges include evenly partitioning the work-

load for effective load balancing, reducing the need for synchronization mechanisms,

and minimizing the number of redundant operations caused by the parallelization.

We present an algorithm that meets all these challenges and more for GPU systems.

The remainder of the chapter is organized as follows: In this section we present a

brief introduction to GPU systems, merging, and sorting. In particular, we present

Merge Path [115, 114]. Section 2 introduces our new GPU merging algorithm, GPU

Merge Path, and explains the different granularities of parallelism present in the

algorithm. In section 3, we show empirical results of the new algorithm on two

different GPU architectures and improved performance over existing algorithms on

GPU and x86. Section 4 offers concluding remarks.

182

8.1.1 Introduction on GPU

Graphics Processing Units (GPUs) have become a popular platform for parallel com-

putation in recent years following the introduction of programmable graphics architec-

tures like NVIDIA’s Compute Unified Device Architecture (CUDA) [113] that allow

for easy utilization of the cards for purposes other than graphics rendering. For the

sake brevity, we present only a short introduction to the CUDA architecture.

To the authors’ knowledge, the parallel merge in the Thrust library [83] is the

only other parallel merge algorithm implemented on a CUDA device.

The original purpose of the GPU is to accelerate graphics applications which

are highly parallel and computationally intensive. Thus, having a large number of

simple cores can allow the GPU to achieve high throughput. These simple cores are

also known as stream processors (SP), and they are arranged into groups of 8/16/32

(depending on the CUDA compute capability) cores known as stream multiprocessors

(SM). The exact number of SMs on the card is dependent on the particular model.

Each SM has a single control unit responsible for fetching and decoding instructions.

All the SPs for a single SM execute the same instruction at a given time but on

different data or perform no operation in that cycle. Thus, the true concurrency is

limited by the number of physical SPs. The SMs are responsible for scheduling the

threads to the SPs. The threads are executed in groups called warps. The current size

of a warp is 32 threads. Each SM has a local shared memory / private cache. Older

generation GPU systems have 8KB local shared memory, whereas the new generation

has 64KB of local shared memory which can be used in two separate modes.

In CUDA, users must group threads into blocks and construct a grid of some

number of thread blocks. The user specifies the number of threads in a block and

the number of blocks in a grid that will all run the same kernel code. Kernels are

functions defined by the user to be run on the device. These kernels may refer to a

thread’s index within a block and the current block’s index within the grid. A block

183

will be executed on a single SM. For full utilization of the SM it is good practice to

set the block size to be a multiple of the warp. As each thread block is executed by

a single SM, the threads in a block can share data using the local shared memory of

the SM. A thread block is considered complete when the execution of all threads in

that specific block have completed. Only when all the threads blocks have completed

execution is the kernel considered complete.

8.1.2 Parallel Sorting

The focus of this chapter is on parallel merging; however, there has not been significant

study solely on parallel merging on the GPU. Therefore we give a brief description

of prior work in the area of sorting: sequential, multicore parallel sorting, and GPU

parallel sorting [122, 131]. In further sections there is a more thorough background

on parallel merging algorithms.

Sorting is a key building block of many algorithms. It has received a large amount

of attention in both sequential algorithms (bubble, quick, merge, radix) [45] and

their respective parallel versions. Prior to GPU algorithms, several merging and

sorting algorithms for PRAM were presented in [49, 115, 126] . Following the GPGPU

trend, several algorithms have been suggested that implement sorting using a GPU

for increased performance. For additional reading on parallel sorting algorithms and

intricacies of the GPU architecture (specifcally NVIDIA’s CUDA), we refer the reader

to [122, 72, 40] on GPU sorting.

Some of the new algorithms are based on a single sorting method such as the radix

sort in [122]. In [122], Satish et al. suggest using a parallel merge sort algorithm that

is based on a division of the input array into sub arrays of equal size followed by

a sequential merge sort of each sub array. Finally, there is a merge stage where all

the arrays are merged together in a pair-wise merge tree of depth log(p). A good

parallelization of the merge stage is crucial for good performance. Other algorithms

184

use hybrid approaches such as the one presented by Sintorn and Assarsson [131], which

uses bucket sort followed by a merge sort. One consideration for this is that each of

the sorts for a particular stage in the algorithm is highly parallel, which allows for high

system utilization. Additionally, using the bucket sort allows for good load balancing

in the merge sort stage; however, the bucket sort does not guarantee an equal work

load for each of the available processors and – in their specific implementation –

requires atomic instructions.

8.1.3 GPU Challanges

To achieve maximal speedup on the GPU platform, it is necessary to implement a

platform-specific (and in some cases, card-specific) algorithm. These implementa-

tions are architecture-dependent and in many cases require a deep understanding

of the memory system and the execution system. Ignoring the architecture limits

the achievable performance. For example, a well known performance hinderer is bad

memory access (read/write) patterns to the global memory. Further, GPU-based

applications greatly benefit from implementation of algorithms that are cache aware.

For good performance, all the SPs on a single SM should read/write sequentially.

If the data is not sequential (meaning that it strides across memory lines in the global

DRAM), this could lead to multiple global memory requests which cause all SPs to

wait for all memory requests to complete. One way to achieve efficient global memory

use when non-sequential access is required is to do a sequential data read into the local

shared memory incurring one memory request to the global memory and followed by

‘random’ (non-sequential) memory accesses to the local shared memory.

An additional challenge is to find a way to divide the workload evenly among

the SMs and further partition the workload evenly among the SPs. Improper load-

balancing can result in only one of the SPs out of the eight or more doing useful

work while others are idle due to bad global memory access patterns or divergent

185

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

16 15 14 12 9 8 7 5

A[1] 13 1 1 1 0 0 0 0 0

A[2] 11 1 1 1 1 0 0 0 0

A[3] 10 1 1 1 1 0 0 0 0

A[4] 6 1 1 1 1 1 1 1 06 1 1 1 1 1 1 1 0

A[5] 4 1 1 1 1 1 1 1 1

A[6] 3 1 1 1 1 1 1 1 1

A[7] 2 1 1 1 1 1 1 1 1

A[8] 1 1 1 1 1 1 1 1 1

Figure 53: Illustration of the MergePath concept for a non-increasing merge. The
first column (in blue) is the sorted array A and the first row (in red) is the sorted
array B. The orange path (a.k.a. Merge Path) represents comparison decisions that
are made to form the merged output array. The black cross diagonal intersects with
the path at the midpoint of the path which corresponds to the median of the output
array.

execution paths (if-statements) that are partially taken by the different SPs. For the

cases mentioned, where the code is parallel, the actual execution is sequential.

It is very difficult to find a merging algorithm that can achieve a high level of

parallelism and maximize utilization on the GPU due to the multi-level parallelism

requirements of the architecture. In a sense, parallelizing merging algorithms is even

186

Algorithm 15: Pseudo code for parallel Merge Path algorithm with an emphasis
on the partitioning stage.
Adiag[threads]⇐ Alength
Bdiag[threads]⇐ Blength

for each i in threads in parallel do
index⇐ i ∗ (Alength +Blength) / threads
atop ⇐ index > Alength ? Alength : index
btop ⇐ index > Alength ? index− Alength : 0
abottom ⇐ btop
// binary search for diagonal intersections
while true do

offset⇐ (atop − abottom)/2
ai ⇐ atop − offset
bi ⇐ btop + offset
if A[ai] > B[bi − 1] then

if A[ai − 1] ≤ B[bi] then
Adiag[i]⇐ ai
Bdiag[i]⇐ bi
break

else
atop ⇐ ai − 1
btop ⇐ bi + 1

else
abottom ⇐ ai + 1

for each i in threads in parallel do
merge(A,Adiag[i], B,Bdiag[i], C, i ∗ length/threads)

more difficult due to the small amount of work done per each element in the input and

output. The algorithm that is presented in this chapter uses the many cores of the

GPU while reducing the number of requests to the global memory by using the local

shared memory in an efficient manner. We further show that the algorithm is portable

for different CUDA compute capabilities by showing the results on both TESLA and

FERMI architectures. These results are compared with the parallel merge from the

Thrust library on the same architectures and an OpenMP (OMP) implementation on

an x86 system.

187

(a) Initial position of the window which. (b) New position of window(after completion of
previous block).

Figure 54: Diagonal searches for a single window of one SM. (a) The window is in its
initial position. Each SP does a search for the path. (b) The window moves to the
farthest position of the path and the new diagonals are searched.

8.2 GPU MergePath

In this section we present our new algorithm for the merging of two sorted arrays

into a single sorted array on a GPU. In the previous section we explained Merge Path

[115] and its key properties. In this section, we give an introduction to parallel Merge

Path for parallel systems. We also explain why the original Merge Path algorithm

cannot be directly implemented on a GPU and our contribution development of the

GPU Merge Path algorithm.

8.2.1 Parallel Merge

In [115] the authors suggest a new approach for the parallel merging of two sorted

arrays on parallel shared-memory systems. Assuming that the system has p cores,

each core is responsible for merging an equal n/p part of the final output array. As

each core receives an equal amount of work, this ensures that all the p cores finish

188

at the same time. Creating the balanced workload is one of the aspects that makes

Merge Path a suitable candidate for the GPU. While the results in [115] intersect with

those in [49], the approach that is presented is different and easier to understand. We

use this approach to develop a Merge Path algorithm for GPU. Merge Path, like other

parallel merging algorithms, is divided into 2 stages:

1. Partitioning stage - Each core is responsible for dividing the input arrays into

partitions. Each core finds a single non-overlapping partition in each of the

input arrays. While the sub-arrays of each partition are not equal length, the

sum of the lengths of the two sub-arrays of a specific partition is equal (up to a

constant of 1) among all the cores. In Algorithm 15 and in the next section, we

present the pseudo code for the partitioning and give a brief explanation. For

more information we suggest reading [49, 114, 115].

2. Merging stage - Each core merges the two sub arrays that it has been given

using the same algorithm as a simple sequential merge. The cores operate on

non-overlapping segments of the output array, thus the merging can be done

concurrently and lock-free. Using the simple sequential mere algorithm for this

stage is not well-suited to the GPU.

Both of these stages are parallel.

As previously stated, Merge Path suggests treating the sequential merge as if it

was a path that moves from the top-left corner of a rectangle to the bottom-right

corner of the rectangle (|B|, |A|). The path can move only to the right and down.

We denote n = |A + |B|. When the entire path is known, so is the order in which

the merge takes place. Thus, when an entire path is given, it is possible to complete

the merge concurrently; however, at the beginning of the merge the path is unknown

and computation of the entire path through a diagonal binary search for all the cross

diagonals is considerably expensive O(n · log(n)) compared with the complexity of

189

sequential merge which is O(n). Therefore, we compute only p points on this path.

These points are the partitioning points.

To find the partitioning points, use cross diagonals that start at the top and right

borders of the output matrix. The cross diagonals are bound to meet the path at

some point as the path moves from the top-left to the bottom-right and the cross

diagonals move from the top-right to the bottom-left. It is possible to find the points

of intersection using binary searches on the cross diagonals by comparing elements

from A and B (Observation 1), making the complexity of finding the intersection

O(log(n)).

By finding exactly p points on the path such that these points are equally dis-

tanced, we ensure that the merge stage is perfectly load balanced. By using equidis-

tant cross diagonals, the work load is divided equally among the cores, see [115]. The

merging of the sub-arrays in each partition is the same as the standard sequential

merge that was discussed earlier in this chapter. The time complexity of this algo-

rithm is O(n/p+ log(n)). This is also the work load of each of the processors in the

system. The work complexity of this algorithm is O(n+ p · log(n)).

8.2.2 GPU Partitioning

The above parallel selection algorithm can be easily implemented on a parallel ma-

chine as each core is responsible for a single diagonal. This approach can be imple-

mented on the GPU; however, it does not fully utilize the GPU as SPs on each SM

will frequently be idle. We present 3 approaches to implementing the cross diagonal

binary search followed by a detailed description. We denote w as the size of the warp.

The 3 approaches are:

1. w-wide binary search.

2. Regular binary search.

3. w-partition search.

190

Detailed description of the approaches is as follows:

1. w-wide binary search - In this approach we fetch w consecutive elements from

each of the arrays A and B. By using CUDA block of size w, each SP /

thread is responsible for fetching a single element from each of the global arrays,

which are in the global memory, into the local shared memory. This efficiently

uses the memory system on the GPU as the addresses are consecutive, thus

incurring a minimal number of global memory requests. As the intersection

is a single point, only one SP finds the intersection and stores the point of

intersection in global memory, which removes the need for synchronization. It

is rather obvious that the work complexity of this search is greater than the one

presented in Merge Path[115] which does a regular sequential search for each

of the diagonals; however, doing w searches or doing 1 search takes the same

amount of time in practice as the additional execution units would otherwise

be idle if we were executing only a single search. In addition to this, the GPU

architecture has a wide memory bus that can bring more than a single data

element per cycle making it cost-effective to use the fetched data. In essence for

each of the stages in the binary search, a total of w operations are completed.

This approach reduces the number of searches required by a factor of w. The

complexity of this approach for each diagonal is: Time = O(log(n) − log(w))

for each core and a total of Work = O(w · log(n)− log(w)).

2. Regular binary search - This is simply a single-threaded binary search on each

diagonal. The complexity of this: Time = O(log(n))) and Work = O(log(n)).

Note that the SM utilization is low for this case, meaning that all cores but one

will idle and the potential extra computing power is wasted.

3. w-partition search - In this approach, the cross diagonal is divided into 32 equal-

size and independent partitions. Each thread in the warp is responsible for a

191

single comparison. Each thread checks to see if the point of intersection is in its

partition. Similar to w-wide binary search, there can only be one partition that

the intersection point goes through. Therefore, no synchronization is needed.

An additional advantage of this approach is that in each iteration the search

space is reduced by a factor of w rather than 2 as in binary search. This

reduces the O(log(n)) comparisons needed to O(logw(n)) comparisons. The

complexity of this approach for each diagonal is: Time = O(logw(n)− log(w))

andWork = O(w · logw(n)− log(w)). The biggest shortcoming of this approach

is that for each iteration of that partition-search, a total of w global memory

requests are needed(one for each of the partitions limits). As a result, the

implementation suffers a performance penalty from waiting on global memory

requests to complete.

In conclusion, we tested all of these approaches, and the first two approaches

offer a significant performance improvement over the last due to a reduced number

of requests to the global memory for each iteration of the search. This is especially

important as the computation time for each iteration of the searches is considerably

smaller than the global memory latency. The time difference between the first two

approaches is negligible with a slight advantage to one or the other depending on

the input data. For the results that are presented in this chapter we use the w-wide

binary search.

8.2.3 GPU Merge

The merge phase of the original Merge Path algorithm is not well-suited for the GPU

as the merging stage is purely sequential for each core. Therefore, it is necessary to

extend the algorithm to parallelize the merge stage in a way that still uses all the SPs

on each SM once the partitioning stage is completed.

For full utilization of the SMs in the system, the merge must be broken up into

192

finer granularity to enable additional parallelism while still avoiding synchronization

when possible. We present our approach on dividing the work among the multiple

SPs for a specific workload.

For the sake of simplicity, assume that the sizes of the partitions that are created

by the partitioning stage are significantly greater than the warp size, w. Also we

denote the CUDA thread block size using the letter Z and assume that Z ≥ w. For

practical purposes Z = 32 or 64; however, anything that is presented in this subsection

can also be used with larger Z. Take a window consisting of the Z largest elements of

each of the partitions and place them in local shared memory (in a sequential manner

for performance benefit). Z is smaller than the local shared memory, and therefore

the data will fit. Using a Z thread block, it is possible to find the exact Merge Path

of the Z elements using the cross diagonal binary search.

Given the full path for the Z elements it is possible to know how to merge all the

Z elements concurrently as each of the elements are written to a specific index. The

complexity for finding the entire Z-length path requires O(log(Z)) time in general

iterations. This is followed by placing the elements in their respective place in the

output array. Upon completion of the Z-element merge, it is possible to move on to

unmerged elements by starting a new merge window whose top-left corner starts at

the bottom-right-most position of the merge path in the previous window. This can

be seen in Fig. 54 where the window starts off at the initial point of merge for a given

SM. All the threads do a diagonal search looking for the path. Moving the window is

a simple operation as it requires only moving the pointers of the sub-arrays according

to the (x, y) lengths of the path. This operation is repeated until the SM finishes

merging the two sub-arrays that it was given. The only performance requirement of

the algorithm is that the sub-arrays fit into the local shared memory of the SM. If the

sub-arrays fit in the local shared memory, the SPs can perform random memory access

without incurring significant performance penalty. To further offset the overhead of

193

the path searching, we let each of the SPs merge several elements.

8.2.4 Complexity analysis of the GPU merge

Given p blocks of Z threads and n elements to merge where n is the total size of

the output array, the size of the partition that each of the blocks of threads receives

is n/p. Following the explanation in the previous sub-section on the movement of

the sliding window, the window moves a total of (n/p)/Z times for that partition.

For each window, each thread in the block performs a binary diagonal search that is

dependent on the block size Z. When the search is complete, the threads copy their

resulting elements into independent locations in the output array directly. Thus, the

time complexity of merging a single window is O(log(Z)). The total amount of work

that is completed for a single block is O(Z · log(Z)). The total time complexity

for the merging done by a single thread block is O(n/(p · Z) · log(Z)) and the work

complexity is O(n/p · log(Z)). For the entire merge the time complexity stays the

same, O(n/(p · Z) · log(Z)) , as all the cores are expected to complete at the same

time. The work complexity of the entire merge is O(n · log(Z)).

The complexity bound given for the GPU algorithm is different than the one given

in [115, 114] for the cache efficient Merge Path. The time complexity given by Odeh

et el. is O(n/p+ n/Ẑ · Ẑ), where Ẑ refers to the size of the shared memory and not

the block size. It is worth noting that the GPU algorithm is also limited by the size

of the shared memory that each of the SMs has, meaning that Z is bounded by the

size of the shared memory.

While the GPU algorithm has a higher complexity bound, we will show in the

results section that the GPU algorithm offers significant speedups over the parallel

multicore algorithm.

194

Table 16: GPU test-bench.

Card Type CUDA HW CUDA Cores Frequency Shared Memory Global Memory Memory Bandwidth
Tesla C1060 1.3 240 cores / 30 SMs 1.3 GHz 16KB 2GB 102 GB/s
Fermi M2070 2.0 448 cores / 14 SMs 1.15 GHz 64KB 6GB 150.3 GB/s

Table 17: CPU test-bench.

Processor Cores Clock Frequency L2 Cache L3 Cache DRAM Memory Bandwidth
2 x Intel Xeon E5530 4 2.4GHz 4 x 256 KB 8MB 12GB 25.6 GB/s

8.2.5 GPU Optimizations and Issues

1. Memory transfer between global and local shared memory is done in sequential

reads and writes. A key requirement for the older versions of CUDA, versions 1.3

and down, is that when the global memory is accessed by the SPs, the elements

requested be co-located and not permuted. If the accesses are not sequential,

the number of global memory requests increases and the entire warp (or partial-

warp) is frozen until the completion of all the memory requests. Acknowledging

this requirement and making the required changes to the algorithm has allowed

for a reduction in the number of requests to the global memory. In the local

shared memory it is possible to access the data in a non-sequential fashion

without as significant of a performance degradation.

2. The sizes of threads and thread blocks, and thus the total number of threads,

are selected to fit the hardware. This approach suggests that more diagonals are

computed than the number of SMs in the system. This increases performance

for both of the stages in the algorithm. This is due to the internal scheduling

of the GPU which requires a large number of threads and blocks to achieve the

maximal performance through latency hiding.

8.3 Empirical Results

In this section we present comparisons of the running times of the GPU Merge Path

algorithm on the NVIDIA Tesla and Fermi GPU architectures with those of the Thrust

parallel merge [83] on the same architectures and Merge Path on a x86 Intel Nehalem

195

0.0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

T
im

e
(s

ec
on

ds
)

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224

Number of Blocks

Scaling Number of Blocks

Figure 55: Merging one million single-precision floating point numbers in Merge Path
on Fermi while varying the number of thread blocks used from 14 to 224 in multiples
of 14.

0.0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

T
im

e
(s

ec
on

ds
)

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

Input Array Size

Global Diagonal Search vs. Separate MP Merge

Merge
Diagonals

Figure 56: The timing of the global diagonal search to divide work among the SMs
compared with the timing of the independent parallel merges performed by the SMs.

core system. The specifications of the GPUs used can be seen in Table 1, and the

Intel multi-core configuration can be seen in Table 2. For the x86 system we show

results for both a sequential merge and for OpenMP implementation of Merge Path.

Other than the Thrust library implementation, the authors could not find any other

parallel merge implementations for the CUDA architecture, and therefore, there are

no comparisons to other CUDA algorithms to be made. Thrust is a parallel primitives

library that is included in the default installation of the CUDA SDK Toolkit as of

version 4.0.

The GPUs used were a Tesla C1060 supporting CUDA hardware version 1.3 and

a Tesla C2070 (Fermi architecture) supporting CUDA hardware version 2.0. The

196

0

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

ov
er

Se
ri

al

2 4 8 16

Threads

OpenMP MergePath Speedup 32-bit Integer

1M
10M
100M

(a) 32-bit integer merging in OpenMP

0

2

4

6

8

10

12

Sp
ee

du
p

ov
er

Se
ri

al

2 4 8 16

Threads

OpenMP MergePath Speedup Floating Point

1M
10M
100M

(b) Single precision floating point merging in
OpenMP

Figure 57: The speedup of the OpenMP implementation of Merge Path on two hyper-
threaded quad-core Intel Nehalem Xeon E5530s over a serial merge on the same
system.

0

5

10

15

20

Sp
ee

du
p

ov
er

Se
ri

al
C

PU

Tesla Fermi

Architecture

GPU MergePath Speedup 32-bit Integer

1M
10M
100M

(a) 32-bit integer merging on GPU

0

10

20

30

40

50

Sp
ee

du
p

ov
er

Se
ri

al
C

PU

Tesla Fermi

Architecture

GPU MergePath Speedup Floating Point

1M
10M
100M

(b) Single precision floating point merging on GPU

Figure 58: The speedup of the GPU implementations of Merge Path on the NVIDIA
Tesla and Fermi architectures over the x86 serial merge.

primary differences between the older Tesla architecture and the newer Fermi archi-

tecture are (1) the increased size of the local shared memory per SM from 16KB to

64KB, (2) the option of using all or some portion of the L1 local shared memory

as a hardware-controlled cache, (3) increased total CUDA core count, (4) increased

memory bandwidth, and (5) increased SM size from 8 cores to 32 cores. In our exper-

iments, we use the full local shared memory configuration. Managing the workspace

of a thread block in software gave better results than allowing the cache replacement

197

0

10

20

30

40

50

60

Sp
ee

du
p

ov
er

Se
ri

al
C

PU

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

Size

Speedup vs. Input Size for Single Precision Float
OMP16
Thrust
GPU-MP

(a) 1M to 10M elements

0

10

20

30

40

50

60

Sp
ee

du
p

ov
er

Se
ri

al
C

PU

10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

Size

Speedup vs. Input Size for Single Precision Float
OMP16
Thrust
GPU-MP

(b) 10M to 100M elements

Figure 59: Speedup comparison of merging single-precision floating point numbers
using Parallel Merge Path on 16 threads, Merge Path on Fermi (112 blocks of 128
threads), and thrust::merge on Fermi. Size refers to the length of a single input array
in elements.

0

5

10

15

20

25

Sp
ee

du
p

ov
er

Se
ri

al
C

PU

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

Size

Speedup vs. Input Size for 32-bit Integer
OMP16
Thrust
GPU-MP

(a) 1M to 10M elements

0

5

10

15

20

25

Sp
ee

du
p

ov
er

Se
ri

al
C

PU

10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

Size

Speedup vs. Input Size for 32-bit Integer
OMP16
Thrust
GPU-MP

(b) 10M to 100M elements

Figure 60: Speedup comparison of merging 32-bit integers using Parallel Merge
Path on 16 threads, GPU Merge Path on Fermi (112 blocks of 128 threads), and
thrust::merge on Fermi. Size refers to the length of a single input array in elements.

policy to control which sections of each array were in the local shared memory.

An efficient sequential merge on x86 is used to provide a basis for comparison.

Tests were run for input array sizes of one million, ten million, and one hundred

million elements for a merged array size of two million, twenty million, and two

hundred million merged elements respectively. For each size of array, merging was

tested on both single-precision floating point numbers and 32-bit integers. Our results

198

demonstrate that the GPU architecture can achieve a 2x to 5x speedup over using

16 threads on two hyper-threaded quad-core processors. This is an effect of both the

greater parallelism and higher memory bandwidth of the GPU architecture.

Initially, we ran tests to obtain an optimal number of thread blocks to use on

the GPU for best performance with separate tests for Tesla and Fermi. Results for

this block scaling test on Fermi at one million single-precision floating point numbers

using blocks of 128 threads can be seen in Fig. 55. Clearly, the figure shows the best

performance is achieved at 112 blocks of 128 threads for this particular case. Similarly,

112 blocks of 128 threads also produces the best results in the case of merging one

million 32-bit integer elements on Fermi. For the sake of brevity, we do not present

the graph.

In Fig. 56, we show a comparison of the runtime of the two kernels: partitioning

and merging. It can be seen that the partitioning stage has a negligible runtime

compared with the actual parallel merge operations and increases in runtime only

very slightly with increased problem size, as expected. This chart also demonstrates

that our implementation scales linearly in runtime with problem size while utilizing

the same number of cores.

Larger local shared memories and increased core counts allow the size of a single

window on the Fermi architecture to be larger with each block of 128 threads merging

4 elements per window for a total of 512 merged-elements per window. The thread

block reads 512 elements cooperatively from each array into local shared memory,

performs the cross diagonal search on this smaller problem in local shared memory,

then cooperatively writes back 512 elements to the global memory. In the Tesla imple-

mentation, only 32 threads per block are used to merge 4 elements per window for a

total of 128 merged-elements due to local shared memory size limitations and memory

latencies. Speedup for the GPU implementation on both architectures is presented

in Fig. 58 for sorted arrays of 1 million,10 million, and 100 millions elements.

199

As the GPU implementations are benchmarked in comparison to the x86 sequen-

tial implementation and to the x86 parallel implementation, we first present these

results. This is followed by the results of the GPU implementation. The timings for

the sequential and OpenMP implementations are performed on a machine presented

in Table 16. For the OpenMP timings we run the Merge Path algorithm using 2, 4,

8, and 16 threads on an 8-core system that supports hyper-threading (dual socket

with quad core processors). Speedups are depicted in Fig. 57. As hyper-threading

requires two threads per core to share execution units and additional hardware, the

performance per thread is reduced versus two threads on independent cores. The

hyper-threading option is used only for the 16 thread configuration. For the 4 thread

configuration we use a single quad core socket, and for the 8 thread configuration we

use both quad core sockets.

For each configuration, we perform three merges of two arrays of sizes 1 million,

10 million, and 100 million elements as with the GPU. Speedups are presented in Fig.

57. Within a single socket, we see a linear speedup to four cores. Going out of socket,

the speedup for eight cores was 5.5X for integer merging and between 6X and 8X for

floating point. We show a 12x speedup for the hyper-threading configuration for ten

million floating point elements.

The main focus of our work is to introduce a new algorithm that extends the

Merge Path concept to GPUs. We now present the speedup results of GPU Merge

Path over the sequential merge in Fig. 58. We use the same size arrays for both

the GPU and OpenMP implementations. For our results we use equal size arrays for

merging; however, our method can merge arrays of different sizes.

8.3.1 Floating Point Merging

For the floating point tests, random floating point numbers are generated to fill the

input arrays then sorted on the host CPU. The input arrays are then copied into the

200

GPU global memory. These steps are not timed as they are not relevant to the merge.

The partitioning kernel is called first. When this kernel completes, a second kernel is

called to perform full merges between the global diagonal intersections using parallel

merge path windows per thread block on each SM. These kernels are timed.

For arrays of sizes 1 million, 10 million, 100 million we see significant speedups of

28X & 34X & 30X on the Tesla card and 43X & 53X & 46X on the Fermi card over the

sequential x86 merge. This is depicted in Fig. 58. In Fig. 59, we directly compare

the speedup of the fastest GPU (Fermi) implementation, the 16-thread OpenMP

implementation, and the Thrust GPU merge implementation. We checked a variety

of sizes. In Fig. 59 (a) there are speedups for merges of sizes 1 million elements to

10 million elements in increments of 1 millions elements. In Fig. 59 (b) there are

speedups for merges of sizes 10 million elements to 100 million elements in increments

of 10 millions elements. The results show that the GPU code ran nearly 5x faster

than 16-threaded OpenMP and nearly 10x faster than Thrust merge for floating point

operations. It is likely that the speedup of our algorithm over OpenMP is related to

the difference in memory bandwidth of the two platforms.

8.3.2 Integer Merging

The integer merging speedup on the GPU is depicted in Fig. 58 for arrays of size 1

million, 10 million, 100 million. We see significant speedups of 11X & 13X & 14X on

the Tesla card and 16 & 20X & 21X on the Fermi card over the sequenctial x86 merge.

In Fig. 60, we directly compare the speedup over serial of the fastest GPU (Fermi)

implementation, the 16-thread OpenMP implementation, and the Thrust GPU merge

implementation demonstrating that the GPU code ran nearly 2.5X faster than 16-

threaded OpenMP and nearly 10x faster on average than the Thrust merge. The

number of blocks used for Fig. 60 is 112 blocks, similar to the number of blocks used

in the floating point sub-section. We used the same sizes of sorted arrays for integer

201

as we did for floating point.

8.4 Conclusion

We show a novel algorithm for merging sorted arrays using the GPU. The results

show significant speedup for both integer and floating point elements. While the

speedups are different for the two types, it is worth noting that the execution time

for merging for both these types on the GPU are nearly the same. The explanation

for this phenomena is that the execution time for merging integers on the CPU is

2.5X faster than the execution time for floating point on the CPU. This explains

the reduction in the the speedup of integer merging on the GPU in comparison with

speedup of floating point merging.

The new GPU merging algorithm is atomic-free, parallel, scalable, and can be

adapted to the different compute capabilities and architectures that are provided

by NVIDIA. In our benchmarking, we show that the GPU algorithm outperforms a

sequential merge by a factor of 20X-50X and outperforms an OpenMP implementation

of Merge Path that uses 8 hyper-threaded cores by a factor of 2.5X-5X.

This new approach uses the GPU efficiently and takes advantage of the compu-

tational power of the GPU and memory system by using the global memory, local

shared-memory and the bus of the GPU effectively. This new algorithm would be

beneficial for many GPU sorting algorithms including for a GPU merge sort algo-

rithm.

202

CHAPTER IX

A COMPUTATIONALLY EFFICIENT ALGORITHM FOR

THE 2D COVARIANCE METHOD

This chapter is an extension of the paper: O. Green, Y. Birk, “A Computationally

Efficient Algorithm for the 2D Covariance Method”, ACM/IEEE International Con-

ference on High Performance Computing, Networking, Storage and Analysis, Denver,

Colorado, 2013.

The estimated covariance matrix is a building block for many algorithms, including

signal and image processing. The Covariance Method is an estimator for the covari-

ance matrix, favored both as an estimator and in view of the convenient properties of

the matrix that it produces. However, the considerable computational requirements

limit its use. We present a novel computation algorithm for the covariance method,

which dramatically reduces the computational complexity (both ALU operations and

memory access) relative to previous algorithms. It has a small memory footprint, is

highly parallelizable and requires no synchronization among compute threads. On a

40-core X86 system, we achieve 1200X speedup relative to a straightforward single-

core implementation; even on a single core, 35X speedup is achieved.

9.1 Introduction

9.1.1 Background

The use of estimated covariance matrices originated in speech processing [105]. The

Covariance Method is one method (estimator) for producing this matrix. Other appli-

cations requiring an estimated covariance matrix, not necessarily the one created by

the Covariance Method, include nuclear magnetic resonance spectroscopy (currently

203

better known as Magnetic Resonance Imaging, MRI) [33] and watermarking security

based on a cryptanalysis [38]. The Covariance Method’s main rationale is minimizing

the error in the estimate of a covariance matrix of a time series. Good estimates can

give insights pertaining to the data periodicity, and enable fast and accurate analysis

of the input data. The Covariance Method is a biased estimator, and its output is a

Hermitian, positive semi-definite matrix. Unlike other methods, it is guaranteed to

be non-singular. This often causes the Covariance Method to be preferred [106, 90].

The 2D Covariance Method, to be described later, is widely used for image pro-

cessing because of the 2D dimensionality. It has also been applied elsewhere: sig-

nal processing applications wherein the signal’s temporal correlation is needed [48],

synthetic aperture radar range-azimuth focusing [103], smoothing spatial clutter by

averaging over given transposed data [64], to perform 2D spectral analysis [87], and

more. In all the aforementioned cases, the generation of the estimated covariance

matrix using the Covariance Method is an important computational building block.

Efficient implementation of the 1D Covariance Method is trivial due to the triv-

ially exploitable overlap of computations that need not be repeated. The 2D Covari-

ance Method is significantly more challenging due to the non-trivial overlap, and its

straightforward implementation requires multiple dense vector-vector multiplications.

We employ similar parallelization techniques to those presented in [47, 76]; there, re-

dundant multiplications were eliminated without requiring synchronization among

parallel threads, but redundant additions limited the effectiveness of the paralleliza-

tion and limited a single thread execution speedup over the sequential to 2X-4X.

In this work, we almost entirely eliminate the redundant additions while retaining

the benefits of [47, 76], thereby achieving a dramatic performance improvement. The

result is a sequential algorithm that is 30X-40X faster than the straightforward imple-

mentation (problem-size dependent); in conjunction with the parallelization of [47],

we obtain an extremely efficient parallel algorithm: fine-grain parallelism, good load

204

balancing, minimal repetition of work and no need for synchronization or communica-

tion among the parallel threads. Implementation results demonstrate these properties

and a comparison of the actual load balancing and the theoretical load balancing is

also discussed. The output of our algorithm is the same as that of the straightforward

implementation of the Covariance Method.

Accelerators and HPC platforms such as the Cray XMT and NVIDIA’s CUDA

platform have been used for accelerating image processing algorithms. The Cray

XMT2 was used for image segmentation based on a maxflow mincut approach on 32k×

32k images [29]. CUDA is used for CT reconstruction [124]. Although we demonstrate

our scheme on a multi-core X86 platform, the nature of the parallelizability (total

independence) and the similarity of computation suggest that it can also be beneficial

on various acceleration platforms, including SIMD-oriented ones.

The remainder of the chapter is organized as follows. In the rest of this section

we introduce the Covariance Method, discuss related works, present some deficiencies

of the straightforward algorithm and state the parallelization challenges. In Section

2 review the scheme of [47] which partitions the work into non-trivial units. This

approach exposes unique characteristics of the Covariance Method, which we then

utilize for reducing the total number of operations. Section 3 introduces our new

algorithm, followed by a detailed complexity analysis. In Section 4, we compare the

measured performance of the different algorithms. These results are close to the

expected ones, despite the fact that the complexity analysis accounts for operations,

ignoring issues such as the memory system. We then discuss the relevance to high

performance computing. Finally, Section 5 offers some concluding remarks.

9.1.2 The Covariance Method

The input is an Nr×Nc matrix, A. It may represent pixel values of a 2D image, some

other 2D spatial representation thereof (e.g., [48, 140]), or a block (“aperture”) within

205

Field Description Storage
Nr # rows in input matrix 1
Nc # columns in input matrix 1
Sr # rows in sliding window 1
Sc # in sliding window 1
A Input matrix Nr ×Nc

W k,l Sliding window positioned at (k,l) Sr × Sc
V k,l Column stack of window W k,l Sr · Sc × 1
C Output - estimated covariance matrix Sr · Sc × Sr · Sc
Ck,l Partial sum array for W k,l Sr · Sc × Sr · Sc
FH Conjugated transpose of F
Index Element in the output matrix and its location

Table 18: Taxonomy of the Covariance Method

an image, with the estimated covariance matrix computed separately for each such

block. Table 18 presents the taxonomy of the Covariance Method.

Computation of the estimated covariance matrix using the Covariance Method

is based on the movement of a sliding window W of size Sr × Sc over the input

matrix, starting from the top left corner and moving to the bottom right corner.

Each of these windows can be considered as a sample from the sample space, the

input matrix, where the dimensionality of the data is the size of the window. The

considered window positions are all those that are fully encased within the boundaries

of the input matrix. In the context of SAR imaging, this window is sometimes referred

to as a sub-aperture. Fig. 61 depicts two 3× 3 sliding window positions. A window

in a given position is denoted W k,l where (k,l) is the position of the window’s top

left corner. There are (Nr − Sr + 1) × (Nc − Sc + 1) legal window positions. In the

remainder of the chapter, we refer to the estimated covariance matrix produced by

the Covariance Method as the output matrix, and use window also to refer to a

window position.

For each window, W k,l is converted into a column stack V k,l. A column stack of a

matrix is a single column vector that is compromised the first column, followed by the

second column, third column and all the way to the last column. This is followed by

206

A1,1 A1,2 A1,3 A1,4 A1,5 … A1,M

A2,1 A2,2 A2,3 A2,4 A2,5 … A2,M

A3,1 A3,2 A3,3 A3,4 A3,5 … A3,M

A4,1 A4,2 A4,3 A4,4 A4,5 … A4,M

A5,1 A5,2 A5,3 A5,4 A5,5 … A5,M

… … … … … … …

AN,1 AN,2 AN,3 AN,4 AN,5 …
AN,

M

Figure 61: Two windows, silver (lighter) and blue (darker), and their overlapping
sections. The black boxes around A3,3 and A4,4 refer to a product that needs to be
computed for both windows.

a dense vector-vector outer multiplication of V k,l by its conjugate transpose (V k,l)H .

The result is a partial sum of pairwise element products, used for the construction of

the output matrix, and is stored in Ck,l.

Definition 2 The estimated covariance matrix produced by the Covariance Method

is given by :

C =
Nr−Sr∑
k=1

Nc−Sc∑
l=1

Ck,l =
Nr−Sr∑
k=1

Nc−Sc∑
l=1

~V k,l · (~V k,l)H . (16)

This expression can also be regarded as a serial and straightforward algorithm for

computing C. Note that C is Hermitian, being the sum of Hermitian matrices, so

only the upper triangle or the lower triangle needs to be computed. Note also that

some algorithms normalize this equation by the number of windows while others do

not; this is an implementation detail that does change the scheme or performance of

the algorithm.

Remark. In an actual implementation, the values can be written directly to C

(the output matrix) rather than being stored in temporary matrices in order to reduce

the memory footprint. However, this comes at the expense of a sparse memory access

pattern and may reduce the effectiveness of caching. We use temporary matrices.

207

9.1.3 Related Work

In [48], the covariance matrix is used as part of the Minimum Variance Method

(MVM) for Synthetic Aperture Radar (SAR) image processing. Due to the high

complexity of computing the estimated covariance method for MVM, DeGraaf [48]

suggested an alternative and computationally cheaper estimated covariance matrix as

part of the Reduced-Rank MVM (RRMVM). However, this approach reduces the ef-

fectiveness of the algorithm by introducing more noise, making the Covariance Method

preferable. In [48], an image of size 1.6k × 1.6k is used as a representative example.

The image is divided into 10, 000 25 × 25 input matrices (there is overlap between

the input matrices). This requires computing 104 estimated covariance matrices per

image or per frame in an image sequence.

Yadin et al. [140] use images of size 8k×8k with the MVM algorithm, computing

25·104 estimated covariance matrices (25X more matrices than were required by [48]).

Both papers show that MVM gives a better output image than using FFT.

In [87] the Covariance Method is compared with the Toeplitz-Block-Toeplitz meth-

od as part of the classic Capon estimator [37] and with APES (Amplitude and Phase)

spectral estimator [101, 102]. The covariance method is experimentally shown to be

more computationally demanding than these methods by about an order of magni-

tude. In [88], the Capon and APES are extended for the creation of a new estimator

which again uses the Covariance Method. Reducing the matrix computation time

is important in view of the number of such computations. In fact, the amount of

required computation may determine whether on-board computation (e.g., satellite)

is practical, with interesting operational ramifications such as support of real-time

decisions and adaptations. In [47, 76], parallelization of the Covariance Method is

studied. An effective parallelization scheme is presented, and redundant multiplica-

tions are avoided. We will return to this later.

208

In this work, we reduce the required computations by avoiding both redundant ad-

ditions and multiplication while maintaining the same effective parallelization scheme

with improved load-balancing. By providing a more computationally efficient im-

plementation of the functionally-advantageous Covariance Method, we broaden its

applicability, be it in terms of image size or frame rate.

9.1.4 Deficiencies of the Straightforward Algorithm

The multiplication of V k,l ·(V k,l)H in (16) is actually a multiplication of every element

in each vector by every element in the other one. Therefore, when considering two

sliding window positions W k,l and W k′,l′ such that both contain the product of some

two elements x and y, both result matrices Ck,l and Ck′,l′ will contain the follow-

ing products: x · x̄, x · ȳ, y · x̄ and y · ȳ. These products will also be added to the

different partial sum matrices at different indices. Moreover, there is an overlap in

the summation process as a given partial sum of products may be part of multiple

indices.

In Fig. 61, for example, the product A3,3 · A4,4 is required for all windows con-

taining these two elements. Two of these windows are depicted in Fig. 61. Note

the different positions of these products relative to the upper left corner of the slid-

ing window in Ck,l and Ck′,l′ . This difference determines the indices to which the

product contributes. The straightforward algorithm computes each product multiple

times, once per target index. Now consider the products A3,3 · A3,3 and A4,4 · A4,4.

Each of these products can be found in up to 9 different windows. Also, the sum of

these products will be accumulated to multiple indices in the output matrix.. The

result is repetition of multiplications and additions. The challenge is to reduce the re-

quired number of operations without consuming much memory for temporary results

or requiring inter-task synchronization that could jeopardize effective parallelization.

Given that the different products impact different indices in the output matrix, the

209

latter poses an additional challenge, namely to find the contribution pattern for a

single product.

In Fig. 62, the dashed curve shows the number of elements in the estimated

covariance matrix, and the solid curve shows the required number of floating point

operations (multiplications as well as additions), both versus a square-window size.

For this figure assume that the input is a 128 × 128 matrix. Note that the number

of floating point operations is considerably high due to redundant operations (both

multiplications and additions), and the curve for the number of operations vs. window

size has a bell like shape. The bell shape stems from the fact that the number of

operations is the product of the operations per window positions and the number of

such positions. When the window is very small, the former is very small; when it

is very large, the latter is very small; the maximum is achieved with intermediate

windows sizes.

The number of multiplications required by the straightforward algorithm is:

(Nr − Sr + 1) · (Nc − Sc + 1) · S2
r · S2

c . (17)

This is also the number of additions required by the straightforward algorithm, be-

cause each multiplication is carried out in the course of computing a sum of products.

9.1.5 Parallelization Challenges

Effective parallelization of the serial algorithm presents several challenges: 1) obvi-

ating the need for synchronization and atomic instructions, 2) limiting the required

amount of memory for intermediate results, 3) utilizing all cores all the time (effi-

cient load balancing), and 4) avoiding redundant computations. These must all be

addressed concurrently.

Various intuitive parallelization approaches fail to meet all challenges. For ex-

ample, assigning a different row of the output matrix to each core would result in

redundant operations. An additional approach might be to give each of the P cores

210

0

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

4 14 24 34 44 54 64 74 84 94 104 114 124

F
LO

P
S

 (
B

il
li

o
n

s)

M
a

tr
ix

 s
iz

e
 (

B
il

li
o

n
s)

Square Window Dimension

Memory Operations

Figure 62: Given a 128 × 128 input window, this chart shows the expected number
of operations and amount of memory required as a function of a square window. The
x-axis denotes the window length=width. The dashed curve denotes the number of
elements in the estimated covariance matrix. The solid curve denotes the number
of floating operations need to compute the estimated covariance method for a given
problem size using the straightforward formulation.

a near-equal number of windows to compute. In this approach, each core maintains

a temporary output array for the accumulation process. When all the cores have

completed, the temporary output arrays are summed up. This approach increases

the memory requirements by a factor of P , which limits the problem size to which

the algorithm can be applied, be it directly because of memory size or due to very

poor memory access time in view of insufficient cache size and very slow execution

as a result. Furthermore, this approach does not avoid redundant computations. A

different approach would be to assign any given product to a single task that would

add the product to the multiple temporary output matrices. This approach requires

synchronization and possibly atomic operations, which also reduces the scalability of

the algorithm and can limit portability.

For algorithms such as MVM [48], where a large number of estimated covariance

matrices need to be computed, a coarse grain approach can be taken whereby each

core is responsible for computing the estimated covariance matrix for a different input.

This, however, increases the memory footprint, and does not address the problem of

redundant operations in the computation of any given matrix.

211

9.2 Fine-Grain Multiplication - Efficient Parallelization

The key contribution of [47, 76] was the discovery and formulation of interesting rela-

tionships between relative positions of input-matrix elements, dubbed combinations,

pairwise products, and positions (indices) in the output matrix. Based on these,

[76] went on to propose a partitioning of the output-matrix indices amongst cores

such that any given index is constructed by a single core, thereby obviating the need

for inter-core synchronization; yet, each core is assigned the union of the indices to

which any of the products that it computes contributes, obviating the need to repeat

any multiplication by multiple cores or to require cores to synchronize or communi-

cate with one another. Although this algorithm significantly reduces the number of

multiplications, however, it does not reduce the required number of additions. This

algorithm offers the speedup resulting from parallelism, enabling a reduction in the

latency of computing the output matrix. However, its contribution to computation

throughput (when multiple independent matrices need to be computed) is limited, de-

spite the savings in multiplications, because of the additions. The sequential speedup

(relative to the straightforward implementation) on an X86 platform is in on the order

of 2X − 4X, representing the savings in multiplications, an improved memory access

pattern and a reduced memory footprint.

In the remainder of this section, we briefly describe this algorithm, which also

serves as a starting point for our new algorithm. We include a summary of the key

lemmas without any formal proofs. This section introduces relevant definitions that

are also required by our new algorithm. The interested reader is referred to [76].

9.2.1 Product Based Partitioning

The challenge addressed in [47, 76] was partitioning the products among the cores

such that any given output-matrix index is constructed by a single core, each product

is computed only once and contributes to all the windows containing it, and cores

212

need not communicate with one another or share data. The products are partitioned

such that the relative position (row distance, column distance) of the elements of all

products in any given group is the same, regardless of the window.

Definition 3 Let Ar1,c1 and Ar2,c2 be two elements in the input matrix. Their inter-

element distance (vector) is defined as:

∆ , (∆r,∆c) = (r2 − r1, c2 − c1). (18)

Definition 4 A combination is the set of all products of two input-matrix elements

with the same inter-element distance; it is denoted by this distance, ∆, which must

satisfy the following two conditions:

− (Sr − 1) ≤ ∆r ≤ Sr − 1 ∧ −(Sc − 1) ≤ ∆c ≤ Sc − 1. (19)

(The restrictions on the distances reflect the fact that we are only interested in prod-

ucts of elements that can be within the same Sr × Sc window. For example, the

products of element pairs (A3,3, A4,4) and (A5,5, A6,6) both belong to combination

(∆r,∆c) = (1, 1). Reversing the order of a pair, e.g., (A4,4, A3,3), gives products that

belongs to the combination (∆r,∆c) = (−1,−1).)

Given that both products must be within the window, we define two disjoint

sets of combinations. The first set comprises all the combinations wherein the first

multiplicand is located at the top left corner of the window and the second element

may be anywhere in the window. There are Sr · Sc possible positions of the second

element. Each of these positions creates a different combination. The top left corner

of the window is used for the purpose of finding the different combinations, whereas

the position of the other multiplicand relative to the top left corner determines the

indices in the output matrix to which this product will be added (accumulated). This

first set of combinations, denoted POS, is formally defined as:

POS = {(∆r,∆c)|(0 ≤ ∆r ≤ Sr − 1) ∧ (0 ≤ ∆c ≤ Sc − 1)}. (20)

213

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

(0,0) (1,0) (−1,1) (0,1) (1,1) (−2,1) (0,2) (1,2)

(0,0) (−1,2) (−1,1) (0,1) (−2,2) (−2,1) (0,2)

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1)

(0,0) (1,0) (−1,1) (0,1) (1,1)

(0,0) (−1,2) (−1,1) (0,1)

(0,0) (1,0) (2,0)

(0,0) (1,0)

(0,0)

3 3 3 3⋅ × ⋅

3
r

S =

Figure 63: The following 9 × 9 output matrix is for a 3 × 3 sliding window. The
output matrix is partitioned into the different indices of the combinations. Different
combinations affect non overlapping sections of a specific diagonal. Each combina-
tion is depicted using a different color. The tuples in the matrix refer to the the
combination. All the combinations in POS have a solid colored background and the
combinations of NEG have white dots in the background.

The second set comprises all combinations wherein the first element is in the first

column and the second element is to the right and above the first element (rather

than in the same row or below as in POS). There are Sr − 1 possible ways to place

the first element. For each of these, the second element can be in Sc − 1 different

places. This allows for a total of (Sr−1) ·(Sc−1) different combinations. This second

set of combinations, denoted NEG, is formally defined as:

NEG = {(∆r,∆c)|(−(Sr − 1) ≤ ∆r ≤ −1) ∧ (1 ≤ ∆c ≤ Sc − 1)}. (21)

214

r c r c
S S S S⋅ × ⋅

c
S

r
S

(a) Top-left

r
S

c
S

r c r c
S S S S⋅ × ⋅

(b) First-row

r c r c
S S S S⋅ × ⋅

r
S

c
S

(c) First-per-block

r c r c
S S S S⋅ × ⋅

r
S

c
S

(d) Remaining-indices

r c
N N×

r
S

c
S

(e) Top-left

r c
N N×

r
S

(f) First-row

r c
N N×

r
S

(g) First-per-block

r c
N N×

r
S

(h) Remaining-indices

Figure 64: Product centric approach for combination (∆r,∆c) = (0, 0). These win-
dows slightly vary (different height and width) for different combinations. (a)-(d)
refer to the exact location in the output matrix. (e)-(h) refer to the set of products
that are needed in order to compute the indices in (a)-(d).

Let UC denote the set of unique combinations. Note that for all the combinations

in UC, ∆c ≥ 0, whereas ∆r can be negative, zero or positive. Based on the obser-

vation that the order of the element-pair affects the distance, an immediate question

arises as to why the combinations in which ∆c < 0 are not included in UC. The reason

is that the estimated covariance matrix is Hermitian, so it suffices to compute the

upper triangle or lower triangle sub-matrices. Any two inverse-distance combinations

(e.g. (∆r,∆c) = (a, b) and (∆r,∆c) = (−a,−b)) consist of the same element pairs.

As the multiplication is done by taking the conjugate of one of the elements, we can

utilize the trivial identity Ax′,y′ · Ax,y = Ax,y · Ax′,y′ to further reduce the number of

actual multiplications. As can be seen, ∆c is always positive, so the second element

of any product is to the right of the first element; consequently, all results are written

to the upper triangle. The products belonging to ∆c < 0 combinations, which “own”

the lower triangle, need not be computed.Accordingly, the set of unique combinations

215

is specified by the union of the two sets:

UC = POS ∪NEG. (22)

The total number of combinations is:

|UC| = |POS|+ |NEG| = Sr · Sc + (Sr − 1) · (Sc − 1). (23)

In [76], the following claims are proved::

1) The combinations jointly cover the upper triangle of the output matrix.

2) Collision Freedom - the sets of indices affected by two different combinations are

disjoint.

3) The indices affected by any given combination all lie along the same diagonal (Fig.

63).

The target indices of the combinations thus jointly cover the entire upper triangle

of the output matrix, and any given index is affected to by a single combination.

Additionally, no synchronization is required among the cores. By assigning any given

combination and the associated output indices to a single core, it follows that all

combinations can be computed in parallel with no need for synchronization among

the threads and with no redundant multiplications.

9.3 The New Algorithm

The approach of [47, 76] can be viewed as product centric. Each product is com-

puted exactly once, and is then added to all the output-matrix indices to which it

contributes (i.e., belonging to its combination). This was done by sliding a window

of the same dimensions as W around the product. Consequently, while the algorithm

is parallelizable (by combination) and number of multiplications was held to the bare

minimum, the number of additions was not reduced relative to the straightforward

approach.

216

Algorithm 16: Parallel algorithm for computing the combinations in POS.
The combinations in NEG are computed in a similar fashion.
Dr ← Nr − Sr + 1;
Dc ← Nc − Sc + 1;
for (∆r,∆C) ∈ POS in parallel do

indr ← +1;
indc ← Sr ·∆c+ ∆r + 1;
// Top-left
for r = 1 to (Nr − Sr + 1) do

for c = 1 to (Nc − Sc + 1) do
Cindr,indc ← Cindr,indc +Ai,j ·Ai+∆r,j+∆c;

// First-block
indr ← 2;
indc ← Sr ·∆c+ ∆r + 2;
sum← 0;
for r = 2 to E(∆r) do

for c = 1 to Dc do
sum← sum+ADr+r,c ·ADr+r+∆r,c+∆c −Ar−1,c ·Ar−1+∆r,c+∆c;

Cindr,indc ← Cindr−1,indc−1 + sum;
indr ← indr + 1;
indc ← indc + 1;
sum← 0;

// First-Per-Block
indr ← Sr + 1;
indc ← (Sr + 1) ·∆c+ ∆r + 1;
sum← 0;
for c = 2 to B(∆c) do

for r = 1 to Dr do
sum← sum+Ar,DC+c ·Ar+∆r,DC+c+∆c −Ar,c−1 ·Ar+∆r,c−1+∆c;

Cindr,indc ← Cindr−Sr,indc−Sr
+ sum;

indr ← indr + Sr;
indc ← indc + Sr;
sum← 0;

// Remaining-indices
indr ← Sr + 2;
indc ← Sr ·∆c+ Sr + ∆r + 2;
for r = 2 to E(∆r) do

for c = 2 to B(∆c) do
a← Ar−1,c−1 ·Ar−1+∆r,c−1+∆c;

b← Ar−1,Dc+c ·Ar−1+∆r,Dc+c∆c;

c← ADr+r,h−1 ·ADr+r+∆r,c−1+∆c;

d← ADr+r,Dc+c ·ADr+r+∆r,Dc+c∆c;

∆sumrow ← Cindr−Sr,indc−Sr −Cindr−Sr−1,indc−Sr−1;

Cindr,indc ← Cindr−1,indc−1 + ∆sumrow + a− b− c+ d;
indr ← indr + 1;
indc ← indc + 1;

indr ← r · Sr + 2;
indc ← (Sr) ·∆c+ r · Sr + ∆r + 2;

217

In this section we present our new algorithm. We use the combination-based

partitioning of [76], so parallelizability is retained. Our focus is on more efficient

computation of the output matrix elements whose indices belong to a common com-

bination. Specifically, our aim is to reduce the required number of additions. In the

sequel, we consider a single combination and the computation of the output-matrix

elements (indices) that belong to it.

Instead of considering each product and the indices to which it contributes, we

consider an index (position) in the output matrix and all the products that contribute

to its value. We show that there is a substantial overlap between the sets of products

contributing to different same-combination indices, and that this overlap has a repet-

itive pattern that is somewhat similar to the Inclusion-Exclusion principle. Based

on this, we devise a scheme for incrementally computing an index by starting from

the value of the previously computed (same-combination) one and then adding and

subtracting the non-overlapping products. In fact, we mostly do not need to add

and subtract each non-overlapping product separately; instead, partial sums can be

manipulated. We refer to this as a product window approach.

9.3.1 Combination (∆r,∆c) = (0, 0)

As an example, consider the combination (∆r,∆c) = (0, 0). This subsection gives

the intuition behind the computation; this will subsequently be formalized, with

Algorithm 16 stating the exact computation for (∆r,∆c) = (0, 0) and more. The

indices of (∆r,∆c) = (0, 0) are the indices that make up the main diagonal, Fig. 63.

Consider the index C1,1in the output matrix; it is denoted in light blue in Fig.

64(a). Note that this is the top left index of the output matrix. Remember that

this index is the sum of all the top left indices for all the temporary matrices Ck,l.

Specifically, this index equals the sum of the products of V k,l (1, 1) · V k,l (1, 1) of

all the windows. In Fig. 64(e), using light blue, we marked all the elements in the

218

input matrix that are needed for computing C1,1. Remember that each element is

multiplied by its conjugate. For a different combination than (0,0) , Fig. 64(e) would

be of a different dimension, as the number of window positions changes. Given that

the sliding window must stay within the bounds of the input array, the different

number of windows is (Nr − (Sc− 1) · (Nc− (Sc− 1))). Note that the matrices in the

(a) and (e) do not have the same dimensions.

Now consider the (vector) multiplication of V k,l (2, 1) ·V k,l (2, 1). These products,

for the different windows, also belong to combination (0,0). The sum of these products

is written to C2,2, as depicted in Fig. 64(b) marked in dark purple. As for the previous

index C1,1, all the needed products in the input array are marked in dark purple, Fig.

64(f). The products that are common to indices C2,2 and C1,1 are marked with blue

and purple diagonal stripes.

The difference between the sums constituting these two indices is the sum of the

first row from Fig. 64(e), which must be removed (subtracted), and the sum of the

newly added row from Fig. 64(f), which must be added. This is repeated for all

the product windows wherein the leftmost product is in the first column of the input

matrix. There are Sr−2 such windows, given that the first and top-left most window

requires computing all the products. For all 1 ≤ g ≤ (Sr − 2), the following can be

stated:

Cg+1,g+1 = Cg,g +
∑

rownew −
∑

rowold. (24)

Note that Cg+1,g+1 depends on Cg,g which depends on Cg−1,g−1. Therefore, it is

preferable to compute in the order C1,1, C2,2, C3,3, ..., CSr−1,Sr−1.

Similarly, moving the product window to the right allows computing additional

elements of the same combination. The first move of the product window computes

CSr+1,Sr+1 as depicted in Fig. 64(c). Each additional move of the product window to

the right will compute elements of the following format: CSr·h+1,Sr·h+1 for 1 ≤ h ≤

Sc − 2. These indices can be computed as follows:

219

CSr·h+1,Sr·h+1 = CSr·(h−1)+1,Sr·(h−1)+1 +
∑

columnnew −
∑

columnold. (25)

Again, it is preferable to compute in the order C1,1, CSr+1,Sr+1, C2·Sr+1,2·Sr+1, ...,

C(Sc−1)·Sr−1,(Sc−1)·Sr−1.

Up to now, we have shown how to compute Sr + Sc − 1 indices of a specific

combination. There still remain Sr ·Sc−(Sr+Sc−1) indices that need to be computed

for the combination. These indices could be computed using the same techniques as

discussed. However, there is a less computationally demanding approach to compute

these indices, using additional overlapping information. In Fig. 64(h) we see the

products common to the index in Fig. 64(d) and to C1,1. Note that the overlap

between the turquoise product-window in Fig. 64(g) and the brown product-window

in Fig. 64(h) includes everything except for the top row and bottom row. In Fig.

65, the overlap of the same product window from Fig. 64(h) is shown with overlap

of the additional product windows. The value of CSr+2,Sr+2 includes products that

are not part of the product window of CSr+1,Sr+1. Note that there is only a single

product that was not computed as part of the other product windows. We show that

using an inclusion-exclusion like principle we can compute this product window using

previously computed values. We show this principle in steps. Given the overlap with

the product window of CSr+1,Sr+1, we add this value to CSr+2,Sr+2. Obviously some

corrections need to be made to this sum, as the first row (light blue) need not be

considered and the last row (purple) needs to be considered. Note that the first row

has one turquoise product in addition to the light blue products and the new row

has one brown in addition to the purple products. We make the corrections in two

phases. Similar to the process that was shown earlier, the sum of the new purple row

minus the sum of the first light blue row is computed as follows:

∆sumrow = C2,2 − C1,1. (26)

220

We handle entire row and column sums, so “corner" elements are handled twice. These

must be handled individually. We next address this issue in detail. In the process of

computing ∆sumrow, it was assumed that the entire row overlaps with the turquoise

product-window, when in fact the top-left element denoted as a in Fig. 65 is not

part of the overlapping window. Given that it has been subtracted, it needs to be

added back to the sum. The first product of the bottom purple row was also added

to the sum. Therefore, it needs to be subtracted, this product is denoted c. a and c

have corrected the summation process of (26), but two additional corrections remain

to be considered. By using the product-window of CSr+1,Sr+1, an additional error

was introduced into the summation process; this is the top-right turquoise product

denoted as b in Fig. 65. This can be corrected by subtracting this product from the

final sum. Finally, the brown product window has a new value that does not overlap

with any previous windows; this is denoted as d in Fig. 65. This value has to be

added to the final summation. In summary, CSr+2,Sr+2 can be written as follows:

CSr+2,Sr+2 = CSr+1,Sr+1 + ∆sumrow + a− b− c+ d (27)

For CSr+2,Sr+2, a, b, c, and d are defined as follows:

a = A1,1 · A1,1, (28)

b = A1,Nc−Sc · A1,Nc−Sc , (29)

c = ANr−Sr,1 · ANr−Sr,1, (30)

and

d = ANr−Sr,Nc−Sc .ANr−Sr,Nc−Sc . (31)

This overlap procedure is the same for all remaining indices of the combination.

Algorithm 16 provides the exact “recipe”.

221

dc

a b

Figure 65: Zoom-in on the overlapping windows. a, b, c, and d denote unique elements
that need to be added/subtracted individually with the new approach.

0

10

20

30

40

50

60

70

80

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
a

ti
o

 o
f

re
d

u
ce

d
 F

LO
P

S

Square Window Dimension

Multiplications Additions

(a)

0

20

40

60

80

100

120

140

160

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

S
p

e
e

d
u

p

Square Window Dimension

Optimal Straightforward 40-straightforward 40-thread-mult-only

1-thread-new 4-thread-new

(b)

Figure 66: Given a 64 × 64 input matrix: (a) Reduction (factor) in additions and
multiplication relative to the straightforward algorithm. (b) Actual speedups based
on the execution of three different parallel algorithms (with different thread counts):
straightforward, multiplication-reducing only algorithm [47, 76], and the new algo-
rithm. No more than 4 threads are displayed for the new algorithm for figure-scaling
purposes. Its speedup scales almost linearly to 40 threads.

9.3.2 Remaining Combinations

In this subsection, we discuss how to compute the remaining combinations.

Definition 5 The number of blocks in combination

(∆r,∆c) is B(∆c) = Sc − |∆c|.

Definition 6 The number of rows in a block in combination (∆r,∆c) is E(∆r) =

Sr − |∆r|.

222

Element type Multiplications Additions # elements of type
Top-left (Nr − Sr + 1) · (Nc − Sc + 1) (Nr − Sr + 1) · (Nc − Sc + 1) 1
First-block 2 · (Nc − Sc + 1) 2 · (Nc − Sc + 1) E(r)− 1
First-per-block 2 · (Nr − Sr + 1) 2 · (Nr − Sr + 1) B(c)− 1
Remaining-indices 4 7 (E(r)− 1) · (B(c)− 1)

Table 19: The number of operations needed for each combination based on the four
types of product-window shift.

Example: for the (∆r,∆c) = (0, 0) example, B(0) = Sc and E(0) = Sr.

Each combination can be divided into four unique groups:

Definition 7 We denote the four different computation scenarios as Top-left, First-

block, First-per-block, Remaining-indices.

Pseudo-code for computing the combinations in POS can be found in Algorithm

16. Most of the explanations for computing these combinations are similar to the

explanation given for combination (∆r,∆c) = (0, 0). Table 19 presents the number

of operations for each combination based on the foregoing definitions.

For the sake of brevity, we only provide necessary observations for computing

the remaining combinations. The first group, Top-left, comprises a single index in

the output matrix. The index of the Top-left depends on the combination and the

window dimensions. Computation of this index appears in Line 3 of Algorithm 16.

This single index can be more computationally demanding than computing all the

remaining indices of a combination, because here we prepare the partial sums that are

later used to incrementally modify the value of one index in order to obtain that of the

next one. This will be discussed in depth in the next subsection. The Top-Left index

dictates which diagonal in the output matrix will be affected by the combination.

The Top-Left for combinations in NEG will be computed slightly differently, but it

too designates the target diagonal.

9.3.3 Complexity Analysis

In this section we analyze the work complexity of the new method. For simplicity,

we analyze the complexity for the combinations in the set POS. The number of

223

operations for a combination (a, b) is equal to the number of operations in combination

(a,−b). Also, |POS| > |NEG|, so that computing the combinations in POS is more

work than computing those in NEG. Therefore, deriving the complexity of POS

and doubling it yields a conservative approximation. We examine the four types of

window shifts, and derive the complexity for each. Finally, we add up the complexities

of the different window shifts and double it. For three out of the four types of shifts,

the numbers of additions and multiplications are the same.

For the first type of indices, Top-Left, the number of multiplications over all the

combinations is:

Sr−1∑
∆r=0

Sc−1∑
∆c=0

(Nr − Sr + 1) · (Nc − Sc + 1) . (32)

There are an equal number of additions. Note that the number of elements in the

sum is independent of the values of ∆r and ∆c. Therefore, the number of operations

is:

Sr · Sc · (Nr − Sr + 1) · (Nc − Sc + 1) . (33)

For the second type, First-block, the number of multiplications for each combina-

tion is 2 · (Nc − Sc + 1), and this is summed over the combinations:

Sr−1∑
∆r=0

Sc−1∑
∆c=0

2 · (Nc − Sc + 1) · (E(∆r)− 1). (34)

There are an equal number of additions. Once again using simple arithmetic,

which includes the sum of an arithmetic series, the number of multiplications and

additions is:

Sc · Sr · (Nc − Sc + 1) · (Sr − 1) . (35)

The number of multiplications and additions required by the third type, First-

per-block, is computed in a similar fashion and is:

224

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36

S
p

e
e

d
u

p
 (

S
tr

o
n

g
 s

ca
li

n
g

)

Cores

Optimal 10x10 20x20 30x30 40x40 50x50 60x60

Figure 67: Strong scaling speedup of the new algorithm for multiple window sizes.

Sr · Sc · (Nr − Sr + 1) · (Sc − 1) . (36)

For the fourth type, Remaining-indices, we show the number of operations required

by all the combinations. As the difference between the number of multiplications and

additions is a constant, we use α to denote the constant. Upon completion, α can be

substituted with 4 for multiplications (required for a, b, c, d) and 7 (a, b, c, d and the

three other operands) for additions.

Sr−1∑
∆r=0

Sc−1∑
∆c=0

α · (E(∆r)− 1) · (B(∆c)− 1). (37)

This is reduced to:

α

4
· Sr · Sc · (Sr − 1) · (Sc − 1). (38)

Finally we sum (33), (35), (36), (38) and multiply them by two:

225

Total = 2 · (Sr · Sc · (Nr − Sr + 1) · (Nc − Sc + 1) +

Sc · Sr · (Nc − Sc + 1) · (Sr − 1) +

Sr · Sc · (Nr − Sr + 1) · (Sc − 1) +

α

4
· Sr · Sc · (Sr − 1) · (Sc − 1)). (39)

Fig. 66(a) shows the ratio between the number of operations required by the

straightforward approach as given in (17) and those required by the new approach

for both multiplications and additions. This ratio is also indicative of the possible

sequential speedup. Note that these curves have the same bell like shape as the

straightforward algorithm, Fig. 62. In the Results section, we confirm that the

speedups achieved by the new algorithm for both single-core and multi-core follow

this curve.

9.3.4 Additional Implementation Details

In [76], several algorithmic optimizations were presented that are also somewhat rel-

evant to this algorithm. The first is that the results are not accumulated into the

final output matrix, but rather to a temporary array before being written to the final

output matrix. The motivation for this is that in the older algorithm the indices of a

given combination were accessed numerous times. Given that a combination accesses

indices on a given diagonal, the older algorithm had a non-sequential access pattern

to the output array, causing poor cache performance. By using a temporary sequen-

tial (one dimensional) array of size Sr · Sc for each thread, this bad access pattern

is avoided. Given that the largest combination writes to Sr · Sc indices, this is an

upper bound on the memory used by a given thread. This increases the memory

requirement by a total of p · Sr · Sc, but improves cache performance. This increase

is small relative to the size of the output matrix, Sr · Sc× Sr · Sc. The memory usage

226

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25

N
u

m
e

r
o

f
m

u
lt

ip
li

ca
ti

o
n

s

(p
e

r
co

m
b

in
a

ti
o

n
)

∆r

(a)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 5 10 15 20 25

T
im

e
r

p
e

r
co

m
b

in
a

ti
o

n

(s
e

c)

∆r

(b)

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20 25

T
im

e
r

p
e

r
co

m
b

in
a

ti
o

n

(s
e

c)

∆r

(c)

Figure 68: Given a 64 × 64 input matrix with a 26 × 26 window: (a) theoretical
number of multiplications for each combination of the new algorithm, (b) run times
for each combination of the new algorithm, and (c) run times for each combination
using the previous combination-based algorithm [47]. There are 676 combinations
that are presented in all these sub-figures. Note the different units and scales of the
ordinate for the different sub-figures.

can be reduced even further, such that each combination allocates the exact amount

of memory it needs. For our new algorithm, this non-sequential access pattern is not

an issue, as each index is written to exactly once. The pseudo code in Algorithm 16

assumes that the writing is done to the final output matrix. In reality the writing is

done to temporary arrays for better performance. For presentation purposes we do

not use the temporary arrays.

The algorithm in [76] computes an optimal number of multiplications. Our new

algorithm computes some products more than once - as such the new algorithm is

not optimal. Our new algorithm does about two to four times more multiplications

than optimal. The new algorithm can be optimized to compute the optimal number

of multiplications at the cost of adding algorithmic overhead, but this is beyond the

scope of this work.

9.4 Experimental Results

In this section we present performance measurements for the new algorithm, focusing

on its scalability to multiple compute cores.

227

9.4.1 Experimental Setup

We use a a 4-socket Intel multicore system, each containing an Intel Xeon E7-8870

10-core hyperthreaded 2.4GHz processor with a 30MB L3 cache. There are thus 40

physical cores and support up to 80 logical cores. In our tests, we did not use the Hy-

perThreading option. All the algorithms were implemented in C and used OpenMP.

The server is equipped with 256 GB of 1066 MHz DDR3 DRAM. Our algorithm

was implemented such that intermediate results are stored in dense temporary arrays

rather than in the output matrix, thereby increasing cache efficiency.

We show strong scaling results for the different algorithms relative to their sequen-

tial implementation. Strong scaling results are for a given input size and window size

where the number of cores is increased. We also show the performance of these algo-

rithms relative to the sequential implementation of the straightforward dense vector-

vector multiplication approach. We implemented the straightforward algorithm using

Intel’s MKL [8] and received a performance gain from these optimized functions. The

MKL library has many optimized kernels for matrix multiplication that use SIMD.

The speedup attained from MKL for a single core is approximately 2X for a single

thread of the straightforward implementation. For 40 threads there was a very small

performance gain of using MKL over a straightforward implementation. All the algo-

rithms, including our new algorithm, would benefit from SIMD multiplications and

additions. These low-level optimizations were outside the scope of this work. For this

reason, we compare our new algorithm to the straightforward implementation. We

do our best to report the best possible execution times for these algorithms, and note

that all the algorithms benefit from the same compiler optimizations.

9.4.2 Moderate-Size Problems

Initially, we show that the single core execution of the new algorithm behaves as ex-

pected. Fig.66(b) depicts the speedup of the parallel straightforward algorithm and of

228

0

200

400

600

800

1000

1200

1400

2 7 12 17 22 27 32 37 42 47 52 57 62

S
p

e
e

d
u

p

Square Window dimension

1-thread 4-threads 8-threads 12-threads 16-threads

20-threads 24-threads 28-threads 32-threads 36-threads

Figure 69: Speedup of the our new algorithm for a 64× 64 input matrix with square
windows relative to the straightforward sequential algorithm for with the same window
size. x-axis is the window size. The speedup curves are in multiple of 4 threads.

the new algorithm with several thread counts relative to the sequential straightforward

algorithm (dense vector-vector multiplication). The curves indeed reflect the reduc-

tion in the number of operations as depicted in Fig.66(a). The figure also depicts the

parallelization speedup of the straightforward algorithm. (It is trivially parallelizable

because the computations for each index are carried out “from scratch”, not using any

partial results.) The maximum possible speedup of this algorithm is 40X (limited by

the number of cores), but it is not attained, possibly due to poor cache performance.

In fact, the single-core (sequential) execution of the new algorithm outperforms the

40-core execution of the straightforward algorithm. The speedup of the algorithm

from [47, 76] is also presented.

Fig. 67 depicts the strong scaling of the new algorithm. Six different window

sizes were selected: 10 × 10, 20 × 20, 30 × 30, 40 × 40, 50 × 50, and 60 × 60. While

the strong scaling is not perfectly linear, 85%-90% of maximum system utilization is

achieved. The actual run times on the 40-core system are considerably short for the

new algorithm, from 0.7ms for the 10 × 10 window and up to 77ms for the 60 × 60.

With up to 35 cores, the execution times were reasonably consistent for the smaller

229

Input Window Straightforward New algorithm Speedup
Size Size 40 threads (sec.) 40 threads (sec.)

0.5k × 0.5k 50× 50 341 1.07 321X
0.5k × 0.5k 100× 100 2965 4 1121X
1k × 1k 50× 50 2525 3.225 463X
1k × 1k 100× 100 — 17 —

32k × 32k 50× 50 — 2584 —
32k × 32k 100× 100 — 10530 —

Table 20: Performance analysis of larger instances. Several cases timed out for the
straightforward algorithm timed out.

window sizes. With more cores, carefully timed runs were necessary given that even

a brief system call can significantly change the execution times. This was not a

problem for the other algorithms as they are considerably slower, so a system call

doesn’t significantly affect their timing .

The scalability of the new algorithm is due to its intrinsically balanced load,

improved over that of [47] and to the elimination of nearly all redundant additions..

In Fig. 68(a) we show the number of computations required by the POS combinations

of a 26×26 window for a 64×64 input matrix. The x-axis represents the ∆r for each of

the combinations. For each of ∆c, we plotted the number of operations required by the

combination. As such, there are 26 curves in the graph, each with 26 points. Note that

the ratio between the most computationally demanding combination and the least

computationally demanding one is less than 2. This imbalance will only be felt when

the number of cores is on the same order of magnitude as the number of combinations.

For verification purposes, we timed the computation of each combination; these are

depicted in Fig.68(b). Note the 6:1 ratio of actual execution times, larger than the

ratio of the number of operations but still moderate, becoming insignificant when

there are many more combinations than cores.

Fig. 68(c) depicts the execution times of the combinations for the older algorithm

[47]. Clearly, the additions are the bottleneck. Also, the ratio between the most com-

putationally demanding combination (taking 10.6 ms) and the least computationally

demanding combination (0.057 ms) is 186:1, which causes load balancing problems

230

for this algorithm [47]. This is due to the greater variability in the number of addi-

tions (when carried out from scratch) among combinations than the variability in the

number of products. This problem is discussed in depth in [47, 76]. The execution

times for the combinations using this algorithm are depicted in Fig.68(c).

Fig. 69 depicts the speedup of the new algorithm versus a square window size.

Curves are provided for thread counts in increments of four. Also, the curves are

nearly equally separated, which can be expected in view of the near linear scaling.

9.4.3 Scaling Up

We have thus far evaluated our algorithm relative to prior art for considerably small

(albeit relevant to some applications) input sizes for which the previous algorithm-

sâĂŹ completion times were still reasonable. We now consider larger problem sizes.

From a practical perspective, both the input-matrix size and the rate at which ma-

trices must be computed are relevant. Different matrices can be trivially processed

concurrently by different threads/cores. However, so doing on a multi-core machine

with a shared cache increases the memory footprint and can reduce cache perfor-

mance, so even this is not trivial. In any case, computational efficiency is important.

Consider, for example, the MVM algorithm [48]; here, 10k estimated covariance

matrices need to be computed for every image, and images arrive are streamed from

the sensors.

Let us next consider larger matrices. Computation time for those are provided

in Table 20. For both the straightforward algorithm and our new algorithm, all 40

threads of the system are used. For typical image sizes of 500× 500 pixels, our new

algorithm completes the computation in a matter of seconds whereas the straight-

forward algorithm takes minutes or even up to an hour. For larger inputs such as

32k × 32k, straightforward algorithm simply times out. Assuming a 300X speedup

of the new algorithm over the baseline, the straightforward algorithm would require

231

215 hours (nearly 9 days) and 877 hours (nearly 36 days) to compute the 50× 50 and

100×100 , respectively. This is most likely an under-estimation, as the likely speedup

is higher for the 500×500 input matrix and the speedup increases with the size of the

input due to reduction in operations. These considerably smaller computation times

allow analyzing larger inputs that previously were not possible.

Even with our CPU- and memory-efficient algorithm, the time needed to compute

the estimated covariance matrix for the large matrix is quite long, especially for

applications with streaming data that are moreover latency bound. One example is

satellite imaging, in which the satellites sensors are pointed based on the analysis of

the image. Such applications require systems that are larger than a single wide shared

memory system. Because our algorithm has virtually no synchronization between the

threads except for the barrier at the end of the parallel-for loop, it can be easily

distributed to larger system with a higher thread count even for a single matrix. The

only cost for distributing this computation is creating a copy of the input matrix at

each distributed node and the communication costs of transmitting it. The memory

required for holding a 32k×32k input is approximately 4GB, which most HPC systems

have per node. Sending this input array to all nodes is still a negligible effort relative

than the computation time. Further, as each thread only requires a subset of the

diagonal, the memory requirement per thread isn’t significant. Using a window size

of 13k × 13k, which is a 40% window size, allows creating over 100M independent

threads.

9.5 Conclusions

In this chapter we presented a new approach for computing the estimated covariance

matrix. It is dramatically more efficient than the dense vector-vector multiplication

as expressed in the formulation of the Covariance Method. The new approach reduces

the total number of floating point operations by almost completely avoiding redundant

232

operations. Also, it requires fewer memory accesses as each datum is used fewer times.

All this allows for a faster sequential algorithm - 35X faster than the straightforward

algorithm, and 17X faster than the algorithm in [47], which minimizes the required

number of multiplications but suffers from redundant additions.

The key improvement of the new algorithm over [47], is an incremental approach

to computing the partial sums of products of input-matrix element pairs required for

computing each output-matrix element. Doing so dramatically reduces the number

of additions and subtractions, as well as the number of memory accesses.

In addition to saving multiplications, the main contribution of [47] was an elegant

partitioning of the output-matrix elements among compute threads, such that no

inter-thread synchronization is required. This permits fine-grain parallelism. The

shortcoming of [47] is that it did not reduce the number of additions, which limited

its sequential performance and also, due to a highly variable amount of work for

different partitions, created a load-balancing problem for the parallel version.

The new algorithm adopted the partitioning of [47], so it is easily parallelizable.

Moreover, the savings in additions and subtractions also sharply reduced the work-

variability among partitions, so the parallelism translates more smoothly to high

performance. With 40 single-thread compute cores, its parallel version is 1200X faster

than the single-core implementation of the straightforward algorithm, and some 40X

faster than [47] (based on the values taken from Fig. 66 for the older algorithm and

Fig. 69 for the new algorithm).

The new algorithm thus apparently dominates the prior art. Moreover, the dra-

matic performance and efficiency improvements suggest that it may make the Covari-

ance Method more broadly applicable, and in many applications it may be possible

to execute it in real time, on mobile platforms, etc., with important impact on the

usage mode of those applications. In fact, the problems sizes, be it input-image size

or the rate at which images are provided, continuously increase. The fact that our

233

algorithm can be parallelized efficiently, with the level of parallelism increasing with

input size, makes it an excellent candidate for tackling these increasing challenges.

In this chapter, we focused on general-purpose multi-core architectures. However,

the algorithm appears to lend itself to other platforms, with the extremely high

count of independent threads that we were able to achieve while avoiding redundant

computation, are generic properties. We therefore expect the benefits to carry over

to additional platforms. Two interesting candidates are GPGPUs and FPGA; the

adaptation of our algorithm to those platforms is left for future research.

234

CHAPTER X

CONCLUSIONS

10.1 Impact of Thesis

This thesis focused on improving performance for irregular algorithms, specifically

(but not exclusive to) social network analytics by designing new algorithms that

increase the parallel scalability and have the ability to deal with streaming input for

larger data-sets than was previously possible. Many of our new algorithms focus on

avoiding wasteful computations, load-balancing, better memory usage, and utilizing

massively multi-threaded systems.

The outcome of this thesis has brought us several steps closer to online analysis

of social networks. The next section briefly summarizes the contributions of this

thesis. This is followed by a section that shows the relationships (connection) between

the multiple analytics and algorithms. This be followed with a discussion on what

still remains ahead of us and what we can still do to improve our computational

capabilities.

10.2 Summary of Results

This thesis showed multiple contributions for the efficient computation of betweenness

centrality. Initially we showed a novel approach for computing betweenness central-

ity in dynamic graphs. The new dynamic graph algorithm is less computationally

demanding than doing a full static graph computation. The amount of work required

by the new dynamic graph algorithm reduces the number of computations by several

orders of magnitude in comparison with a full static graph computation. In prac-

tice we showed that using the dynamic graph algorithm can be up to 8000X faster

235

Table 21: New memory bounds for multiple betweenness centrality algorithms.

Algorithm Graph Previous New [74]
Exact [30] Static O(V + E) O(V)
Approximate [17] Static O(V + E) O(V)
Parallel fine-grain [15, 104] Static O(V + E) O(V)
Parallel coarse-grain [74] Static O(P · (V + E)) O(P · V)
Exact [77] Dynamic O(V · (V + E)) O(V 2)
Approximate Dynamic O(K · (V + E)) O(K · V)
Parallel fine-grain approximate Dynamic O(K · (V + E)) O(K · V)
Parallel coarse-grain approximate Dynamic O(K · (V + E)) O(K · V)

than a full static graph computation. As the new dynamic algorithm requires ad-

ditional storage to maintain state between updates, we revisited the data structures

used for computing betweenness centrality. We showed a way to reduce the stor-

age complexity for multiple betweenness centrality algorithms, Table 21, by doing

additional edge traversals rather than maintaining the parent-list which requires an

O(E) storage. In practice, many of these new algorithms have better performance as

the parent-list dominated the cache which causes cache thrashing - kicked out useful

necessary information. An immediate outcome of this improvement, which we called

the neighbor-traversal approach, is parallel computation of betweenness centrality at

a coarse-grain using a large number of threads. Previously this was not possible.

We showed the first large-scale implementation of this for both static and dynamic

graphs. Lastly, we show the first parallel dynamic graph algorithm and implemen-

tation for computing betweenness centrality. Our algorithm can do both exact and

approximate computations.

We then proceeded to create a parallel algorithm for finding connected components

in dynamic graphs using insights we gain from the dynamic betweenness centrality al-

gorithm. Our algorithm continuously monitors the numerous connected components

in the graph and can deal with up to 1.2M updates per second. This new algo-

rithm takes advantage of graph properties such as the “small-world” property and

the shrinking diameter property. We showed that by maintaining a list of pointers

to neighbors that are closer to the root of the connected component, it is possible in

236

many cases to answer in O(1) time if the connected components have changed due to

an edge deletion. We show that edge insertions are considerably easier to deal with.

Merge Path is a visual approach for doing a parallel merge of two sorted arrays.

This algorithm is highly scalable as the work is evenly distributed to the many cores in

a system where the cost of partitioning is low. We also showed the first cache-aware

merging algorithm. We show that this algorithm has an optimal number of cache

misses and show that if certain conditions are met that cache thrashing is avoided.

This cache-aware algorithm, allowed us to develop a merge algorithm for the GPU

- the first of its kind. Our GPU algorithm was up-to 52X faster than a sequential

implementation. GPU Merge Path was adopted by NVIDIA for its CUDA Thrust

software library. The Merge Path concept can also be used for list intersection which

is building block for clustering coefficients.

For efficient computation of clustering coefficients we show two optimizations. Our

first optimization reduces the time complexity for computing clustering coefficients by

finding a vertex cover. This approach uses counting corrections to avoid redundant

counting of the same triangle. In practice this approach can give a 1.1X − 1.3X

speedup for triangle counting (the speedup includes the overhead introduced by the

vertex cover). We extend this approach for finding larger circuits. We showed that

for counting squares (circuits of length 4) the speedup is typically 1.5X − 2X. We

used a simple linear-time algorithm for finding a vertex cover and showed that the

overhead of finding the vertex cover is not great. Using the insight that linear-time

work is relatively inexpensive in comparison with the remaining work required by the

algorithm, we developed two parallel and scalable approaches for computing clustering

coefficients. These load-balancing approaches are also linear in time. To implement

the load-balancing, we developed a simple workload estimating model for clustering

coefficients. We show that our estimation does a good job in predicting the parallel

performance. We then show that our two approaches have better scalability than

237

previous approaches, thus we achieve significant speedups and high system utilization.

Lastly, we show a scalable algorithm for efficient computation of the estimated

covariance matrix based off the Covariance Method formulation. The covariance

method is a building for many signal and image processing algorithms. We show

that there is significant overlap between different computations of the algorithm. We

divide the algorithm into four different computational phases and show that by using

a specific ordering of these phases, we can reduce the total number of computations by

several orders of magnitude which in turn gives a speedup which is order of magnitude

faster than before. We then show that our new approach is highly scalable and gets

near linear speedups on a 40 core system where previous algorithms did not scale

because either their storage requirements or the communication requirements. Our

algorithm requires the same amount of memory as a sequential implementation and

has very little synchronization (a single barrier at the end).

10.3 The “Melting-Pot”

Fig. 70 depicts the relationship between the three different analytics: connected

components, betweenness centrality, and clustering coefficients. While these analytics

focus on answering different questions, they share common traits.

Having the set of connected components is useful for both betweenness centrality

and clustering coefficients as the size of the connected component can help normalize

the significancence of players. For example, being a key player with a high between-

ness centrality value in a connected component with four players is far easier than

being a key player in a connected component with millions of players.

All these analytics can potentially get better performance by utilizing prefix sum-

mation. We showed this clearly for clustering coefficients with two different load-

balancing approaches. We also showed that both phases of betweenness centrality

are inherently imbalanced. While previous work focused on balancing the first phase,

238

Betweenness
Centrality

Clustering
Coefficients

Merge

Path

(CPU &

GPU)

Vertex

Cover

Connected

Components

Prefix

Summat

ion

STINGER

Figure 70: Analytic interaction diagram.

the breadth first search, the dependency accumulation can be just as imbalanced.

Further, as our connected component algorithm is based on an breadth-first search

principle, it is likely to benefit from better load-balancing with parallel prefix sum-

mation.

STINGER was the right data structure for our streaming analytics and simpli-

fied implementation. While betweenness centrality is a computationally demanding

analytic, if we had to recreate the CSR representation for every update (insertion or

deletion), we would spend far too much time in the “graph update” phase instead

of the “analytic update” phase. For our dynamic connected component algorithm,

STINGER allowed us to do as many as 1.2M updates per second to the connected

component while also updating the graph representation.

We showed how vertex covers can reduced the time complexity for finding the

triangles need for clustering coefficients. We extended the vertex cover approach to

239

support counting larger circuits and showed how to use it for circuits of length four

(“squares”). In all likelihood, vertex covers can also be applied to additional analytics.

Merge Path and GPU Merge Path are fast algorithms for parallel merging of two

sorting arrays. GPU Merge Path was adopted by NVIDA as part of the CUDA

Thrust library. Given the similarity of merging and sort list intersection, the Merge

Path concepts can be extended to support fast adjacency list intersections that are

needed by for clustering coefficients especially for intersections of large lists.

10.4 On the Road to Exascale and Beyond - Future Research
Directions

In recent years exascale systems have become a goal for the high performance com-

puting community. The need for exascale is apparent for application specialists of

multiple domains, including those in the field of social network analysis. Just the

mere sizes of social networks such Twitter and Facebook, that have over one billion

users and with hundreds of billions of relationships, present numerous challenges for

designing algorithms and analytics. Further, these sizes require that the algorithm

designer consider the use of distributed systems that typically increase the compu-

tational power and storage available. The availability of such systems will require

designing streaming and parallel algorithms for these massively multithreaded sys-

tems.

In this work we showed that there are still techniques for increasing system uti-

lization for multiple analytics for shared-memory systems. The switch from shared-

memory systems to distributed systems will present numerous challenges that we

did not face on shared-memory systems. The switch will require developing new ap-

proaches for maximizing system utilization. Some of these optimizations will include

data partitioning that will help reduced communication cost. To avoid the cost of

communication or reduce its relative cost, it be necessary to compute multiple ana-

lytics concurrently on a specific compute node. Another possibility will be to move

240

the “work” to the data rather than the data to work. This means that we will try to

reduce moving massive amounts of data between different compute nodes and instead

we will move the application and part of the data structure to wherever the required

data is situated.

Social network analysis and other domains can benefit from existing software

packages that have been implemented for distributed systems. This may require

transforming the problem statement of interests, for example transforming a graph

representation to matrix representation and using linear algebra operators. While this

is not always desirable, the benefit is the increase in the available compute power.

Finally, I believe that the road(s) to exascale will include and require algorithm and

architecture co-design. We can no longer continue using hardware that was designed

initially in the 70’s or 80’s when the types of problems that were interesting included

several thousands of elements whereas today our problem sizes include millions to

billions of data elements. Further, the recent trend system design has focused on

designing high performance for matrix multiplication problems - this is not always

helpful for data scientists.

Our role as computational and applications specialists will be to help “direct”

computer architects to better design the types of system that we need for irregular

algorithms. Our insights on the type of functionality required by the application

are crucial in understanding which hardware units are necessary and which are not.

Further, as the cost of commodity hardware goes down and the number of unique

platforms (accelerators included) become available, we will need to do better matching

between application and computing platform.

241

REFERENCES

[1] GraphCT: A Graph Characterization Toolkit.

[2] SNAP: Small-world Network Analysis and Partitioning.

[3] “EE Times - Analysis: ŚHypercoreŠ Touts 256 CPUs Per Chip,” 2007.

[4] “Hpcs scalable synthetic compact applications 2 graph analysis,” Sep 2007.

[5] “Plurality - HyperCore Software DeveloperŠs Handbook,” 2009.

[6] “10th dimacs implementation challenge - graph partitioning and graph cluster-

ing,” 2013.

[7] “Facebook,” 2013.

[8] “Intel Math Kernel Library,” 2013.

[9] “Twitter,” 2013.

[10] Abdo, A. H. and de Moura, A. P. S., “Clustering as a Measure of the Local

Topology of Networks,” arXiv physics/0605235, 2006.

[11] Aggarwal, A. and Vitter, Jeffrey, S., “The Input/Output Complexity

of Sorting and Related Problems,” Commun. ACM, vol. 31, pp. 1116–1127,

September 1988.

[12] Akl, S. G. and Santoro, N., “Optimal Parallel Merging and Sorting Without

Memory Conflicts,” Computers, IEEE Transactions on, vol. C-36, pp. 1367 –

1369, nov. 1987.

242

[13] Albert, R., Jeong, H., and Barabási, A., “Internet: Diameter of the world-

wide web,” Nature, vol. 401, pp. 130–131, Sep 09 1999.

[14] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities,” in Proceedings of the April 18-20, 1967, spring

joint computer conference, pp. 483–485, ACM, 1967.

[15] Bader, D. and Madduri, K., “Parallel algorithms for evaluating centrality

indices in real-world networks,” in Parallel Processing, 2006. ICPP 2006. In-

ternational Conference on, pp. 539 –550, aug. 2006.

[16] Bader, D. and Madduri, K., “Snap, small-world network analysis and parti-

tioning: an open-source parallel graph framework for the exploration of large-

scale networks,” in Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on, pp. 1–12, IEEE, 2008.

[17] Bader, D., Kintali, S., Madduri, K., and Mihail, M., “Approximating be-

tweenness centrality,” in Algorithms and Models for the Web-Graph, vol. 4863 of

Lecture Notes in Computer Science, pp. 124–137, Springer Berlin / Heidelberg,

2007.

[18] Bader, D. A., Berry, J., Amos-Binks, A., Chavarría-Miranda, D.,

Hastings, C., Madduri, K., and Poulos, S. C., “STINGER: Spatio-

Temporal Interaction Networks and Graphs (STING) Extensible Representa-

tion,” tech. rep., Georgia Institute of Technology, 2009.

[19] Bader, D. A., Meyerhenke, H., Sanders, P., and Wagner, D., 10th DI-

MACS Implementation Challenge on Graph Partitioning and Graph Clustering,

vol. 588. American Mathematical Society, 2013.

243

[20] Bar-Yehuda, R. and Even, S., “A Linear-Time Approximation Algorithm

for the Weighted Vertex Cover Problem,” Journal of Algorithms, vol. 2, no. 2,

pp. 198–203, 1981.

[21] Bar-Yossef, Z., Kumar, R., and Sivakumar, D., “Reductions in stream-

ing algorithms, with an application to counting triangles in graphs,” in ACM-

SIAM Symposium on Discrete algorithms, SODA ’02, (Philadelphia, PA, USA),

pp. 623–632, Society for Industrial and Applied Mathematics, 2002.

[22] Barabási, A.-L. and Albert, R., “Emergence of Scaling in Random Net-

works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[23] Barabási, A.-L. and Oltvai, Z. N., “Network Biology: Understanding the

Cell’s Functional Organization,” Nature Reviews Genetics, vol. 5, no. 2, pp. 101–

113, 2004.

[24] Barrett, B. W., Berry, J. W., Murphy, R. C., and Wheeler,

K. B., “Implementing a portable multi-threaded graph library: The MTGL

on Qthreads,” in Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, pp. 1–8, IEEE, 2009.

[25] Batcher, K., “Sorting Networks and Their Applications,” in Proceedings of

the April 30–May 2, 1968, spring joint computer conference, pp. 307–314, ACM,

1968.

[26] Beamer, S., Asanovic, K., and Patterson, D., “Direction-optimizing

breadth-first search,” in High Performance Computing, Networking, Storage

and Analysis (SC), 2012 International Conference for, pp. 1–10, IEEE, 2012.

244

[27] Becchetti, L., Boldi, P., Castillo, C., and Gionis, A., “Efficient Semi-

streaming Algorithms for Local Triangle Counting in Massive Graphs,” in Pro-

ceedings of the 14th ACM SIGKDD Int’l Conf. on Knowledge Discovery and

Data Mining, pp. 16–24, ACM, 2008.

[28] Blelloch, G. E., “Prefix sums and their applications,” 1990.

[29] Bokhari, S. H., Catalyurek, U. V., and Gurcan, U. V., “Massively Mul-

tithreaded Maxflow for Image Segmentation on the Cray XMT2,” 2013.

[30] Brandes, U., “A faster algorithm for betweenness centrality,” Journal of Math-

ematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[31] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan,

S., Stata, R., Tomkins, A., and Wiener, J., “Graph Structure in the Web,”

Computer Networks, vol. 33, no. 1, pp. 309–320, 2000.

[32] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan,

S., Stata, R., Tomkins, A., and Wiener, J., “Graph structure in the web,”

Computer Networks, vol. 33, pp. 309 – 320, 2000.

[33] Brüschweiler, R. and Zhang, F., “Covariance Nuclear Magnetic Resonance

Spectroscopy,” The Journal of chemical physics, vol. 120, p. 5253, 2004.

[34] Buluç, A. and Gilbert, J. R., “The Combinatorial BLAS: design, implemen-

tation, and applications,” International Journal of High Performance Comput-

ing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[35] Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-Spaccamela,

A., and Sohler, C., “Counting Triangles in Data Streams,” in Proceedings of

the 25th ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database

Systems, pp. 253–262, ACM, 2006.

245

[36] Bye, R., Schmidt, S., Luther, K., and Albayrak, S., “Application-level

simulation for network security,” in Proceedings of the 1st International Confer-

ence on Simulation Tools and Techniques for Communications, Networks and

Systems & Workshops, (ICST, Brussels, Belgium, Belgium), pp. 33:1–33:10,

2008.

[37] Capon, J., “High-Resolution Frequency-Wavenumber Spectrum Analysis,”

Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[38] Cayre, F., Fontaine, C., and Furon, T., “Watermarking Security: The-

ory and Practice,” Signal Processing, IEEE Transactions on, vol. 53, no. 10,

pp. 3976–3987, 2005.

[39] Chakrabarti, D., Zhany, Y., and Faloutsos, C., “R-MAT: A recursive

model for graph mining,” in SIAM Proceedings Series, pp. 442–446, 2004.

[40] Chen, S., Qin, J., Xie, Y., Zhao, J., and Heng, P., “An efficient sorting

algorithm with cuda,” Journal of the Chinese Institute of Engineers, vol. 32,

no. 7, pp. 915–921, 2009.

[41] Chowdhury, R., Silvestri, F., Blakeley, B., and Ramachandran, V.,

“Oblivious Algorithms for Multicores and Network of Processors,” in Parallel

& Distributed Processing (IPDPS), 2010 IEEE International Symposium on,

pp. 1–12, IEEE, 2010.

[42] Cole, R. and Ramachandran, V., “Resource Oblivious Sorting on Multi-

cores,” Automata, Languages and Programming, pp. 226–237, 2010.

[43] Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., and

Hughes, B., “Cache Hierarchy and Memory Subsystem of the AMD Opteron

Processor,” Micro, IEEE, vol. 30, no. 2, pp. 16–29, 2010.

246

[44] Coppersmith, D. and Winograd, S., “Matrix Multiplication via Arithmetic

Progressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–280,

1990.

[45] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Intro-

duction to Algorithms. New York: The MIT Press, 2001.

[46] Dagum, L. and Menon, R., “OpenMP: an industry standard API for shared-

memory programming,” Computational Science & Engineering, IEEE, vol. 5,

no. 1, pp. 46–55, 1998.

[47] David, L., Galperin, A., Green, O., and Birk, Y., “Efficient Parallel

Computation of the Estimated Covariance Matrix,” in IEEE 26th Convention

of Electrical and Electronics Engineers in Israel, 2010.

[48] DeGraaf, S., “SAR Imaging Via Modern 2d Spectral Estimation Methods,”

Image Processing, IEEE Transactions on, vol. 7, no. 5, pp. 729–761, 1998.

[49] Deo, N., Jain, A., and Medidi, M., “An optimal parallel algorithm for merg-

ing using multiselection,” Information Processing Letters, 1994.

[50] Deo, N. and Sarkar, D., “Parallel Algorithms for Merging and Sorting,”

Information Sciences, vol. 56, pp. 151 – 161, 1991.

[51] Dillencourt, M. B., Samet, H., and Tamminen, M., “A general approach

to connected-component labeling for arbitrary image representations,” Journal

of the ACM (JACM), vol. 39, no. 2, pp. 253–280, 1992.

[52] Douglas, L., “The Importance of ŚBig DataŠ: A Definition,” Gartner (June

2012), 2012.

[53] Ediger, D., Jiang, K., Riedy, J., and Bader, D., “Massive streaming data

analytics: A case study with clustering coefficients,” in Parallel & Distributed

247

Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International

Symposium on, pp. 1–8, IEEE, 2010.

[54] Ediger, D., McColl, R., Riedy, J., and Bader, D., “Stinger: High per-

formance data structure for streaming graphs,” in High Performance Extreme

Computing (HPEC), 2012 IEEE Conference on, pp. 1–5, IEEE, 2012.

[55] Ediger, D., McColl, R., Riedy, J., and Bader, D., “Stinger: High perfor-

mance data structure for streaming graphs,” in Proc. High Performace Embed-

ded Computing Workshop (HPEC 2012), (Waltham, MA), Sept. 2012.

[56] Ediger, D., Riedy, J., Bader, D., and Meyerhenke, H., “Tracking struc-

ture of streaming social networks,” in Parallel and Distributed Processing Work-

shops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,

pp. 1691 –1699, may 2011.

[57] Ediger, D., Jiang, K., Riedy, J., and Bader, D., “Graphct: Multithreaded

algorithms for massive graph analysis,” 2012.

[58] Edmonds, N., Hoefler, T., and Lumsdaine, A., “A space-efficient parallel

algorithm for computing betweenness centrality in distributed memory,” in In-

ternational Conference on High Performance Computing (HiPC), 2010, pp. 1

–10, Dec. 2010.

[59] Edmonds, N., Hoefler, T., and Lumsdaine, A., “A Space-efficient Paral-

lel Algorithm for Computing Betweenness Centrality in Distributed Memory,”

in High Performance Computing (HiPC), 2010 International Conference on,

pp. 1–10, IEEE, 2010.

[60] Eppstein, D., Galil, Z., Italiano, G. F., and Nissenzweig, A.,

“Sparsification-a technique for speeding up dynamic graph algorithms,” Journal

of the ACM (JACM), vol. 44, no. 5, pp. 669–696, 1997.

248

[61] Erdös, P. and Rényi, A., “On random graphs I,” Publicationes Mathematicae,

pp. 290–297, June 1959.

[62] Erdös, P. and Rényi, A., “The evolution of random graphs,” Magyar Tud.

Akad. Mat., pp. 17–61, 1960.

[63] Faloutsos, M., Faloutsos, P., and Faloutsos, C., “On Power-Law Rela-

tionships of The Internet Topology,” in ACM SIGCOMM Computer Commu-

nication Review, pp. 251–262, ACM, 1999.

[64] Fante, R., Barile, E., and Guella, T., “Clutter Covariance Smoothing by

Subaperture Averaging,” Aerospace and Electronic Systems, IEEE Transactions

on, vol. 30, no. 3, pp. 941–945, 1994.

[65] Ferragina, P., “Static and dynamic parallel computation of connected com-

ponents,” Information processing letters, vol. 50, no. 2, pp. 63–68, 1994.

[66] Floyd, R. W., “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, pp. 345–

345, June 1962.

[67] Freeman, L. C., “A set of measures of centrality based on betweenness,”

Sociometry, vol. 40, no. 1, pp. pp. 35–41, 1977.

[68] Frigo, M., Leiserson, C., Prokop, H., and Ramachandran, S., “Cache-

Oblivious Algorithms,” in Foundations of Computer Science, 1999. 40th Annual

Symposium on, pp. 285 –297, 1999.

[69] Garey, M. R. and Johnson, D. S., Computers and Intractability, vol. 174.

freeman New York, 1979.

[70] Geisberger, R., Sanders, P., and Schultes, D., “Better Approximation

of Betweenness Centrality,” in ALENEX, pp. 90–100, 2008.

249

[71] Girvan, M. and Newman, M. E. J., “Community structure in social and

biological networks,” Proceedings of the National Academy of Sciences, vol. 99,

no. 12, pp. 7821–7826, 2002.

[72] Govindaraju, N. K., Raghuvanshi, N., Henson, M., Tuft, D., and

Manocha, D., “A cache-efficient sorting algorithm for database and data min-

ing computations using graphics processors,” tech. rep., 2005.

[73] Green, O., McColl, R., and Bader, D., “Gpu merge path: a gpu merg-

ing algorithm,” in Proceedings of the 26th ACM International Conference on

Supercomputing, pp. 331–340, ACM, 2012.

[74] Green, O. and Bader, D. A., “Faster Betweenness Centrality Based on Data

Structure Experimentation,” in International Conference on Computational Sci-

ence (ICCS), Elsevier, 2013.

[75] Green, O. and Bader, D. A., “Faster Clustering Coefficients Using Vertex

Covers,” in 5th ASE/IEEE International Conference on Social Computing, So-

cialCom, 2013.

[76] Green, O., David, L., Galperin, A., and Birk, Y., “Efficient Parallel Com-

putation of the Estimated Covariance Matrix,” arXiv preprint arXiv:1303.2285,

2013.

[77] Green, O., McColl, R., and Bader, D. A., “A Fast Algorithm For Stream-

ing Betweenness Centrality,” in Proceedings of the 4th ASE/IEEE International

Conference on Social Computing, SocialCom ’12, 2012.

[78] Harris, M., Sengupta, S., and Owens, J. D., “Parallel prefix sum (scan)

with CUDA,” GPU gems, vol. 3, no. 39, pp. 851–876, 2007.

250

[79] Hennessy, J. L. and Patterson, D. A., Computer Architecture : A Quan-

titative Approach. Boston: Morgan Kaufmann, 2007.

[80] Henzinger, M. R., King, V., and Warnow, T., “Constructing a tree from

homeomorphic subtrees, with applications to computational evolutionary biol-

ogy,” Algorithmica, vol. 24, pp. 1–13, 1999.

[81] Henzinger, M. R. and King, V., “Randomized fully dynamic graph algo-

rithms with polylogarithmic time per operation,” J. ACM, vol. 46, pp. 502–516,

July 1999.

[82] Hirschberg, D. S., Chandra, A. K., and Sarwate, D. V., “Comput-

ing connected components on parallel computers,” Commun. ACM, vol. 22,

pp. 461–464, Aug. 1979.

[83] Hoberock, J. and Bell, N., “Thrust: A parallel template library,” 2010.

Version 1.3.0.

[84] Hochbaum, D. S., “Approximation Algorithms for the Set Covering and Ver-

tex Cover Problems,” SIAM Journal on Computing, vol. 11, no. 3, pp. 555–556,

1982.

[85] Hopcroft, J. and Tarjan, R., “Algorithm 447: efficient algorithms for graph

manipulation,” Commun. ACM, vol. 16, pp. 372–378, June 1973.

[86] Israeli, A. and Shiloach, Y., “An Improved Parallel Algorithm for Maximal

Matching,” Information Processing Letters, vol. 22, no. 2, pp. 57–60, 1986.

[87] Jakobsson, A., Marple Jr, S., and Stoica, P., “Computationally Effi-

cient Two-Dimensional Capon Spectrum Aanalysis,” Signal Processing, IEEE

Transactions on, vol. 48, no. 9, pp. 2651–2661, 2000.

251

[88] Jakobsson, A., Alty, S. R., and Benesty, J., “Estimating and Time-

updating the 2d Coherence Spectrum,” Signal Processing, IEEE Transactions

on, vol. 55, no. 5, pp. 2350–2354, 2007.

[89] Kas, M., Wachs, M., Carley, K. M., and Carley, L. R., “Incremental al-

gorithm for updating betweenness centrality in dynamically growing networks,”

in IEEE/ACM International Conference on Advances in Social Networks Anal-

ysis and Mining (ASONAM), 2013.

[90] Kay, S., Modern Spectral Estimation. Pearson Education, 1988.

[91] Khuller, S., Vishkin, U., and Young, N., “A Primal-dual Parallel Approx-

imation Technique Applied to Weighted Set and Vertex Covers,” J. Algorithms,

vol. 17, no. 2, pp. 280–289, 1994.

[92] Kleen, A., “A NUMA API for Linux,” Novel Inc, 2005.

[93] Konecny, P., “Introducing the cray xmt,” (Seattle, WA, USA), may 2007.

[94] Kruskal, C. P., Rudolph, L., and Snir, M., “Efficient parallel algorithms

for graph problems,” Algorithmica, vol. 5, no. 1-4, pp. 43–64, 1990.

[95] Kumar, V., Ramesh, K., and Rao, V. N., “Parallel Best-First Search of

State-space Graphs: A Summary of Results,” in Proceedings of the 1988 Na-

tional Conference on Artificial Intelligence. Morgan Kaufmann, Citeseer, 1988.

[96] Lam, M., Rothberg, E., and Wolf, M., “The Cache Performance and Op-

timizations of Blocked Algorithms,” in ACM SIGARCH Computer Architecture

News, vol. 19, pp. 63–74, ACM, 1991.

[97] Lee, M.-J., Lee, J., Park, J. Y., Choi, R. H., and Chung, C.-W., “QUBE:

a Quick algorithm for Updating BEtweenness centrality,” in Proceedings of the

21st international conference on World Wide Web, pp. 351–360, ACM, 2012.

252

[98] Leist, A., Hawick, K., Playne, D., and Albany, N. S., “GPGPU and

Multi-Core Architectures for Computing Clustering Coefficients of Irregular

Graphs,” in Proc. Int’l Conf. on Scientific Computing (CSC’11), 2011.

[99] Leskovec, J., Kleinberg, J., and Faloutsos, C., “Graphs Over Time:

Densification Laws, Shrinking Diameters and Possible Explanations,” in Pro-

ceedings of the 11th ACM SIGKDD Int’l Conf. on Knowledge Discovery in Data

Mining, pp. 177–187, ACM, 2005.

[100] Leskovec, J., Kleinberg, J., and Faloutsos, C., “Graph evolution: Den-

sification and shrinking diameters,” ACM Trans. Knowl. Discov. Data, vol. 1,

no. 1, 2007.

[101] Li, J. and Stoica, P., “An Adaptive Filtering Approach To Spectral Esti-

mation and SAR Imaging,” Signal Processing, IEEE Transactions on, vol. 44,

no. 6, pp. 1469–1484, 1996.

[102] Liu, Z., Li, H., and Li, J., “Efficient Implementation of Capon and APES for

Spectral Estimation,” Aerospace and Electronic Systems, IEEE Transactions

on, vol. 34, no. 4, pp. 1314–1319, 1998.

[103] López-Dekker, P. and Mallorquí, J., “Capon-and APES-based SAR pro-

cessing: Performance and Practical Considerations,” Geoscience and Remote

Sensing, IEEE Transactions on, vol. 48, no. 5, pp. 2388–2402, 2010.

[104] Madduri, K., Ediger, D., Jiang, K., Bader, D., and Chavarria-

Miranda, D., “A Faster Parallel Algorithm and Efficient Multithreaded Im-

plementations for Evaluating Betweenness Centrality on Massive Datasets,”

in IEEE International Symposium on Parallel and Distributed Processing

(IPDPS), 2009.

253

[105] Makhoul, J., “Linear Prediction: A Tutorial Review,” Proceedings of the

IEEE, vol. 63, no. 4, pp. 561–580, 1975.

[106] Marple Jr, S. and Carey, W., “Digital Spectral Analysis with Applications,”

The Journal of the Acoustical Society of America, vol. 86, p. 2043, 1989.

[107] McColl, R., Green, O., and Bader, D., “Parallel streaming connected com-

ponents using “parent-neighbor” subgraphs,” in IEEE International Conference

on High Performance Computing, 2013.

[108] Merrill, D., Garland, M., and Grimshaw, A., “Scalable gpu graph traver-

sal,” in ACM SIGPLAN symposium on Principles and Practice of Parallel Pro-

gramming, PPoPP ’12, (New York, NY, USA), pp. 117–128, ACM, 2012.

[109] Milgram, S., “The Small World Problem,” Psychology Today, vol. 2, no. 1,

pp. 60–67, 1967.

[110] Murphy, R. C., Wheeler, K. B., Barrett, B. W., and Ang, J. A.,

“Introducing the Graph 500,” Cray UserŠs Group (CUG), 2010.

[111] Newman, M. and Girvan, M., “Finding and evaluating community structure

in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[112] Nvidia, C., “Programming Guide, 2010,” NVIDIA Corporation.

[113] NVIDIA Corporation, “Nvidia cuda programming guide,” 2011.

[114] Odeh, S., Green, O., Mwassi, Z., Shmueli, O., and Birk, Y., “Merge path

- cache-efficient parallel merge and sort,” tech. rep., CCIT Report No. 802, EE

Pub. No. 1759, Electrical Engr. Dept., Technion, Israel, Jan. 2012.

[115] Odeh, S., Green, O., Mwassi, Z., Shmueli, O., and Birk, Y., “Merge

path - parallel merging made simple,” in Parallel and Distributed Processing

Symposium, International, may 2012.

254

[116] Prountzos, D. and Pingali, K., “Betweenness centrality: Algorithms and

implementations,” in Proceedings of the 18th ACM SIGPLAN symposium on

Principles and practice of parallel programming, pp. 35–46, ACM, 2013.

[117] Puzis, R., Zilberman, P., Elovici, Y., Dolev, S., and Brandes, U.,

“Heuristics for speeding up betweenness centrality computation,” in Proceedings

of the 4th ASE/IEEE International Conference on Social Computing, pp. 302–

311, 2012.

[118] Roditty, L. and Zwick, U., “A fully dynamic reachability algorithm for

directed graphs with an almost linear update time,” in Proceedings of the thirty-

sixth annual ACM symposium on Theory of computing, STOC ’04, (New York,

NY, USA), pp. 184–191, ACM, 2004.

[119] Rubinov, M. and Sporns, O., “Complex network measures of brain connec-

tivity: Uses and interpretations,” NeuroImage, vol. 52, no. 3, pp. 1059 – 1069,

2010. Computational Models of the Brain.

[120] Sariyüce, A. E., Kaya, K., Saule, E., and Çatalyürek, Ü. V., “Between-

ness Centrality on GPUs and Heterogeneous Architectures,” in Proceedings of

the 6th Workshop on General Purpose Processor Using Graphics Processing

Units, pp. 76–85, ACM, 2013.

[121] Sariyuce, A. E., Kaya, K., Saule, E., and Catalyurek, U. V., “Incre-

mental Algorithms for Network Management and Analysis based on Closeness

Centrality,” arXiv preprint arXiv:1303.0422, 2013.

[122] Satish, N., Harris, M., and Garland, M., “Designing efficient sorting al-

gorithms for manycore gpus,” Parallel and Distributed Processing Symposium,

International, vol. 0, pp. 1–10, 2009.

255

[123] Schank, T. and Wagner, D., “Finding, Counting and Listing All Triangles

in Large Graphs, an Experimental Study,” in Experimental and Efficient Algo-

rithms, pp. 606–609, Springer, 2005.

[124] Scherl, H., Keck, B., Kowarschik, M., and Hornegger, J., “Fast

GPU-based CT Reconstruction Using the Common Unified Device Architecture

(CUDA),” in Nuclear Science Symposium Conference Record, 2007. NSS’07.

IEEE, IEEE, 2007.

[125] Shavitt, Y. and Shir, E., “DIMES: Let the Internet Measure Itself,” ACM

SIGCOMM Computer Communication Review, vol. 35, no. 5, pp. 71–74, 2005.

[126] Shiloach, Y. and Vishkin, U., “Finding the maximum, merging, and sorting

in a parallel computation model,” Journal of Algorithms, vol. 2, pp. 88 – 102,

1981.

[127] Shiloach, Y. and Even, S., “An on-line edge-deletion problem,” J. ACM,

vol. 28, pp. 1–4, January 1981.

[128] Shiloach, Y. and Vishkin, U., “An O(logn) Parallel Connectivity Algo-

rithm,” Journal of Algorithms, vol. 3, no. 1, pp. 57 – 67, 1982.

[129] Shiloach, Y. and Vishkin, U., “An o(logn) parallel connectivity algorithm,”

Journal of Algorithms, vol. 3, no. 1, pp. 57 – 67, 1982.

[130] Shun, J. and Blelloch, G. E., “Ligra: a lightweight graph processing frame-

work for shared memory,” in Proceedings of the 18th ACM SIGPLAN symposium

on Principles and practice of parallel programming, PPoPP ’13, (New York, NY,

USA), pp. 135–146, ACM, 2013.

[131] Sintorn, E. and Assarsson, U., “Fast parallel gpu-sorting using a hybrid

algorithm,” Journal of Parallel and Distributed Computing, vol. 68, no. 10,

256

pp. 1381 – 1388, 2008. General-Purpose Processing using Graphics Processing

Units.

[132] Stenstrom, P., “A Survey of Cache Coherence Schemes for Multiprocessors,”

Computer, vol. 23, no. 6, pp. 12–24, 1990.

[133] Strogatz, S. H., “Exploring Complex Networks,” Nature, vol. 410, no. 6825,

pp. 268–276, 2001.

[134] Tan, G., Sreedhar, V., and Gao, G., “Analysis and performance results of

computing betweenness centrality on IBM Cyclops64,” The Journal of Super-

computing, vol. 56, pp. 1–24, 2011.

[135] Tan, G., Tu, D., and Sun, N., “A parallel algorithm for computing between-

ness centrality,” in Parallel Processing, 2009. ICPP ’09. International Confer-

ence on, pp. 340 –347, sept. 2009.

[136] Ugander, J., Karrer, B., Backstrom, L., and Marlow, C., “The

Anatomy of the Facebook Social Graph,” arXiv preprint arXiv:1111.4503, 2011.

[137] Warshall, S., “A theorem on Boolean matrices,” J. ACM, vol. 9, pp. 11–12,

Jan. 1962.

[138] Watts, D. J. and Strogatz, S. H., “Collective Dynamics of “Small-World”

Networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[139] Watts, Duncan J.Strogatz, S. H., “Collective dynamics of ‘small-world’

networks.,” Nature, vol. 393, 1998.

[140] Yadin, E., Olmar, D., Oron, O., and Nathansohn, R., “SAR Imaging

Using a Modern 2d Spectral Estimation Method,” in Radar Conference, 2008.

RADAR’08. IEEE, pp. 1–6, IEEE, 2008.

257

VITA

Oded is a PhD student at Georgia Institute of Technology, advised by Prod. David A.

Bader. Oded started his PhD in January 2011. Oded received a M.Sc in Electirical

Engineering in 2010 and a B.Sc in Computer Engineering in 2008, both from the

Technion (Israel Institute of Technology). Oded’s MSc advisor was Prof. Yitzhak

Birk from the Technion.

Oded received the Sam Nunn Security Fellowship (2012). He received Best Talk

award at IBM Student Workshop for Frontiers of Cloud Computing (2013). As a

graduate student, Oded has advised both undergraduate research projects and junior

graduate students. Several of these projects have been awarded best project award

and have been followed by publications.

Oded’s services includes review papers for over ten different conferences and jour-

nals, partaking in student governments, founding a graduate student seminar (Hot

Topics in Computational Science and Engineering), and being on the Technion’s

Squash varsity team.

Oded has approximately 15 years in software development and has partaken in

several open-source projects.

Oded is a member of ACM, IEEE, and SIAM.

258

High Performance Computing for Irregular Algorithms and Applications with an
Emphasis on Big Data Analytics

Oded Green

259 Pages

Directed by Professor David A. Bader

High Performance Computing for Irregular Algorithms and Applications with an
Emphasis on Big Data Analytics

Oded Green

259 Pages

Directed by Professor David A. Bader

Irregular algorithms such as graph algorithms, sorting, and sparse matrix multipli-

cation, present numerous programming challenges, including scalability, load balanc-

ing, and efficient memory utilization. In this age of Big Data we face additional chal-

lenges since the data is often streaming at a high velocity and we wish to make near

real-time decisions for real-world events. For instance, we may wish to track Twit-

ter for the pandemic spread of a virus. Analyzing such data sets requires combing

algorithmic optimizations and utilization of massively multithreaded architectures,

accelerator such as GPUs, and distributed systems. My research focuses upon de-

signing new analytics and algorithms for the continuous monitoring of dynamic social

networks.

Achieving high performance computing for irregular algorithms such as Social

Network Analysis (SNA) is challenging as the instruction flow is highly data depen-

dent and requires domain expertise. The rapid changes in the underlying network

necessitates understanding real-world graph properties such as the small world prop-

erty, shrinking network diameter, power law distribution of edges, and the rate at

which updates occur. These properties, with respect to a given analytic, can help de-

sign load-balancing techniques, avoid wasteful (redundant) computations, and create

streaming algorithms.

In the course of my research I have considered several parallel programming

paradigms for a wide range systems of multithreaded platforms: x86, NVIDIA’s

CUDA, Cray XMT2, SSE-SIMD, and Plurality’s HyperCore. These unique program-

ming models require examination of the parallel programming at multiple levels:

algorithmic design, cache efficiency, fine-grain parallelism, memory bandwidths, data

management, load balancing, scheduling, control flow models and more. This thesis

deals with these issues and more.

259

