
 

 

GENERALIZED MODEL AND APPLICATIONS FOR VOLATILE 

MEMRISTIVE DEVICES 

 

 

 

 

 

 

 

 

 

 

A Thesis 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Joshua C. Shank 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master's of Science in the 

School of Electrical and Computer Engineering 

 

 

 

 

 

Georgia Institute of Technology 

August 2015 

 

 

 

Copyright 2015 by Joshua Shank 

 



GENERALIZED MODEL AND APPLICATIONS FOR VOLATILE 

MEMRISTIVE DEVICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by: 

 

Dr. William Alan Doolittle, Advisor 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. Paul Douglas Yoder 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. Faisal Alamgir 

School of Materials Science and Engineering 

Georgia Institute of Technology 

 

 

 

Date Approved:  7/23/2015 

 



 iii 

ACKNOWLEDGEMENTS 

 

I wish to thank my parents for teaching and supporting me throughout these many years.  

I would also like to thank my teachers and particularly my advisor Dr. Alan Doolittle for 

many helpful conversations and brainstorming sessions that led to this work. This work 

would not have been possible without the other members of the Advanced Semiconductor 

Research Facility, specifically Jordan Greenlee, Brooks Tellekamp, Brendan Gunning, 

and Chloe Fabien. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

SUMMARY viii 

CHAPTER 1: INTRODUCTION 1 

 1.1 Motivation 1 

 1.2 Background 2 

 1.3 Organization of Thesis 3 

CHAPTER 2: MEMRISTORS 5 

 2.1 History and Background 5 

 2.2 Memristors in Neuromorphic Computing 6 

 2.3 Major Categories of Memristors 8 

  2.3.1 Filamentary Memristors 9 

  2.3.2 Mobile Ion Wavefront Memristors 10 

  2.3.3 Oxidation/Reduction Memrsitors 10 

  2.3.4 Spintronic Memristors 11 

  2.3.5 Ferroelectric Switches 12 

  2.3.6 Mott Metal-Insulator Switches 12 

 2.4 Memristor Models 12 

CHAPTER 3: MEMRISTOR MODEL DERIVATION 14 

 3.1 Activated Mobile Ion Hopping Conduction 14 



 v 

 3.2 Linearized Model 15 

 3.3 1-Dimentional Mobile Ion Distribution 18 

 3.4 Characteristic Equation Model 21 

CHAPTER 4: MEMRISTOR MODEL EXAMPLES 26 

 4.1 Nanoscale Non-Volatile Filamentary Memristor 26 

 4.2 Macroscale Volatile Memristor 31 

CHAPTER 5: APPLICATIONS OF VOLATILE MEMRISTORS 

       IN NEUROMORPHIC COMPUTING 41 

 5.1 Schmitt Trigger – Spike Frequency Adaptation 41 

CHAPTER 6: CONCLUTIONS AND FUTURE WORK 51 

 6.1 Summary and Contributions 51 

 6.2 Future Work 52 

REFERENCES 54 



 vi 

LIST OF TABLES 

Page 

Table 1: Ion Motion Activation Energies for Various Memristive Materials 21 

Table 2: Simulation Parameters for a Nanoscale Non-Volatile Filamentary Memristor 29 

 



 vii 

LIST OF FIGURES 

Page 

Figure 1: CMOS Performance History 2 

Figure 2: Biological Neuron Computation Process 7 

Figure 3: Field Dependent Ionic Mobility and Linearization 16 

Figure 4: Effective Ion Concentration 18 

Figure 5: Ion Concentration Profiles 20 

Figure 6: Simulated I-V Curves for a Non-Volatile Filamentary Memristor 30 

Figure 7: Simulated Temperature of a Non-Volatile Filamentary Memristor 30 

Figure 8: Experimental I-V Curve of a Volatile LiNbO2 Memristor 33 

Figure 9: Experimental Conductance – Flux-linkage Curve for a LiNbO2 Memristor 34 

Figure 10: Comparison of Experimental and Simulated Volatile LiNbO2 Memristor 37 

Figure 11: Simulated Temperature of a Volatile LiNbO2 Memristor 38 

Figure 12: Simulated Low Frequency I-V Curve for a Volatile LiNbO2 Memristor 39 

Figure 13: Experimental Low Frequency I-V Curve for a Volatile LiNbO2 Memristor 40 

Figure 14: Simulated Memristive Schmitt Trigger Circuit 42 

Figure 15: Memristive Schmitt Trigger Transfer Function 44 

Figure 16: Simulated Neuron with Memristive Schmitt Trigger 45 

Figure 17: Spike Frequency Adaptation in Simulated Neuron 46 

Figure 18: Operational Regimes for Spike Frequency Adaptation 48  



 viii 

SUMMARY 

As the performance of digital computing saturates due to material and size 

limitations, new computing paradigms are being investigated. Chapter 1 will introduce 

neuromorphic computing as one of these computing paradigms. Within the field of 

neuromorphic computing, the role of memristive devices has become increasingly 

important since the first reported physical memristor in 2008. Chapter 2 discusses a brief 

history of memristors, their role in modern neuromorphic computing, and how these 

devices have been modelled for use in large scale circuit simulations. 

Among the many types of memristors discussed in Chapter 2, mixed ion-electron 

memristors have shown particular promise for neuromorphic computing. Chapter 3 

explores the physical mechanism of activated ion hopping conductivity within these 

devices and concludes with a simple generalized set of equations to describe these 

devices. 

Chapter 4 provides two examples for the model derived in Chapter 3. The first 

example is the well-studied nanoscale non-volatile memristor based in the TiO2 system, 

while the second example is a macroscopic volatile memristor based in the LiNbO2 

material system. Both examples are compared to experimental results and several 

previously unexplained phenomenon are discussed using results from the physics based 

model. 

The application of volatile memristive devices is explored in Chapter 5 by 

examining the effect of these devices on an example neuromorphic sub-circuit. It is 

shown that the addition of a volatile memristor to the voltage divider in a Schmitt Trigger 

circuit can implement spike-frequency adaption without increasing the circuit 



 ix 

complexity. Such volatile dynamics have been shown to control signal propagation, 

improve signal-to-noise ratio, and control debilitating instabilities such as seizures in 

biological neurons. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Modern computing based on silicon CMOS technology is approaching 

performance limits driven by fundamental physical limits, material limits, and device 

limits. The 2013 ITRS roadmap shows saturating feature sizes and the end of Moore’s 

Law within 10 – 20 years [1]. While engineering challenges, such as diffraction limits, 

that were predicted to end Moore’s Law have been overcome by novel engineering 

solutions, such as computational lithography [2], the new limits are driven by 

fundamental physical phenomenon. With the release of the 22 nm node in 2012, parasitic 

resistances begin to dominate the transistor performance [3]. The 14 nm node released in 

2014 with gate lengths near 5 nm has begun to reach limitations where direct drain to 

source tunneling limits performance [4, 5]. These limitations can be seen in the saturation 

of clock speed, power, and single thread performance shown in Figure 1 [6]. 

While general purpose CMOS computers are beginning to encounter scaling and 

performance limits, application specific technologies have already been implemented to 

improve tasks such as biomolecular simulations and video decoding [2]. Diversifying the 

computing paradigm may add new functionality to specific applications through 

emerging technologies such as quantum computing, spintronics, optical computing, or 

neuromorphic computing. 
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Figure 1: Comparison of general purpose CMOS chip performance since the 1970’s and the 

saturation in power, frequency, and performance despite increasing transistor counts. 

 

1.2 Background 

Neuromorphic computing is computation performed on analog or mixed 

analog/digital circuits designed to mimic the computation performed in biological 

nervous systems [7]. Characteristics of computation in biological systems are extremely 

low power consumption and massively parallel computation. While biological systems 

perform poorly at tasks such as basic arithmetic, they excel at pattern recognition, 

control, and processing of noisy or incomplete information. By replicating the 

architecture of biological systems, neuromorphic computing is expected to also excel in 

these applications. 

Early neuromorphic circuits replicated the differential equation models of a 

neuron using analog circuits based on established microfabrication technologies [8, 9]. 

Since the introduction of nanoscale non-volatile filamentary memristors in 2008 and their 
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behavioral similarities to biological processes [10], neuromorphic circuits have 

increasingly incorporated memristor technologies [11-15]. Despite the inclusion of 

memristors in neuromorphic circuitry, little attention has been given to the volatile 

dynamics of the mammalian brain and the corresponding importance of volatile 

memristors. These volatile dynamics have been shown to control signal propagation [16], 

improve signal-to-noise ratio [17], and inhibit debilitating instabilities such as seizures 

[18]. 

1.3 Organization of Thesis 

In Chapter 2, the history of memristors and their application to neuromorphic 

computing is introduced. Because memristors fundamentally require the modulation of a 

storable property that affects resistance, there are many different types of memristors. 

Chapter 2 includes an overview of a few select memristor classes divided based on the 

property being changed. Of the many memristor classes, mixed ion-electron memristors 

have been particularly successful in neuromorphic computing perhaps because of the 

physical similarities to ion conduction in biological systems. Chapter 2 concludes with a 

review of previous modelling work in mixed ion-electron memristors enabling large scale 

circuit simulations and the limitations of those models. 

The basis of this work is a mixed ion-electron memristor model derived in 

Chapter 3. This model is based on activated hopping conduction of mobile ions within a 

memristive material. While this physical basis could be applied to complex device 

models such as finite element models, such models are too computationally intensive for 

large scale circuit simulations. Therefore, a characteristic equation model for mixed ion-



 4 

electron memrsitors is derived from the activated hopping conductivity framework and 

the frequency dependent behavior of this model is explored in Chapter 3. 

Chapter 4 provides two specific device examples of the characteristic equation 

model to demonstrate the extremes encountered in mixed ion-electron memristors. The 

first example device is a nanoscale memristor based in the TiO2 material system. These 

devices were the first reported memristors, developed by HP labs in 2008 [10]. As such, 

they have received considerable attention, are well documented, and provide a valuable 

verification standard for new models. The second example is a macroscopic memristor 

based in the LiNbO2 material system with a low activation energy for ion motion. This 

results in volatile behavior.  

Having developed the history of memristors in Chapter 2, the physical framework 

for modeling memristors in Chapter 3, and device models in Chapter 4, an example 

circuit application for volatile memristors is developed in Chapter 5. The goal of such 

circuits is to implement biologically realistic volatile behavior in a circuit relevant to 

neuromorphic computing without significantly increasing the circuit complexity. The 

circuit examined is a Schmitt Trigger circuit, which is useful for threshold detection and 

neural spike generation. It is shown that inclusion of a volatile memristor in this circuit 

creates an implementation for spike frequency adaptation, which is important for neural 

stability in biological systems [18]. 

The thesis concludes with Chapter 6 and a discussion of future work, particularly 

theoretical and modelling options. 



 5 

CHAPTER 2 

MEMRISTORS 

2.1 History and Background 

 The memristor was first proposed as the fourth fundamental two-terminal passive 

circuit element by Leon Chua in 1971 [19]. The primary argument for the inclusion of the 

memristor was a matter of symmetry. There are four fundamental quantities when 

considering the passive circuit elements: charge (q), current (I), voltage (V), and flux-

linkage (ϕ). These four quantities can be related to each other in six ways, shown in 

Equations 2.1a-f. The relations between charge to current and voltage to flux-linkage are 

fundamental definitions. Three of the remaining four relations describe the well-known 

passive devices: a resistor (voltage to current), a capacitor (charge to voltage), and an 

inductor (flux-linkage to current). Chua’s 1971 paper theorized a fourth device that 

would relate flux-linkage and charge. A theoretical development of this relationship 

revealed that the device would act like a variable resistor with memory of its input. Thus 

the name memristor was given [19]. 

Fundamental Definition         Equation 2.1a 

Fundamental Definition          Equation 2.1b 

Resistor         Equation 2.1c 

Capacitor         Equation 2.1d 

Inductor         Equation 2.1e 

Memristor         Equation 2.1f 

 In 1976, Chua expanded the memristor definition to include a class of devices 

termed memristive systems [20]. These devices are described by a set of dynamic 

relations, shown in Equations 2.2a-b, that include the original memristor definition but 
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allow for more complex behavior such as multiple inputs,  ⃗ , multiple outputs,   , and 

multiple internal mechanisms described by the state variables,   , allowing for threshold 

voltages and volatile behavior.  

  ⃑   ( ⃑  ⃑⃗  )   ⃑⃗ Equation 2.2a 

 
  ⃑

  
  ( ⃑  ⃑⃗  ) Equation 2.2b 

 These additional behaviors are important for physical devices because no physical 

implementation of a memristor has been shown to follow the more restrictive 1971 

definition. The major classes of memristive devices are reviewed in Section 2.3. 

2.2 Memristors in Neuromorphic Computing 

 Neuromorphic computing began in the late 1980’s with the impending realization 

of power and speed limitations in traditional CMOS technology [7]. The goal of 

neuromorphic computing is to replicate the brain’s 10
16

 complex operations per second 

while only using a few watts of power. This was originally attempted by reproducing the 

mathematical models of a neuron using analog VLSI technology [21, 22]. 

 Fundamentally, the neural computation architecture is a massively parallel system 

of neurons operating at low frequency with integrated computation and memory. The 

human brain has approximately 100 billion neurons each of which is communicating with 

1000 – 10,000 synaptic connections [23]. Instead of switching between digital values, the 

brain performs computation by the generation, scaling, and integration of voltage spikes 

called action potentials. Each of these functions exists as an analog variable with changes 

in the spike rate, spike amplitude, and spike shape. There are a variety of theories for how 

the brain encodes information in these spikes and evidence that multiple methods may be 

applied in the brain [24]. Memory in biological systems is also an active area research, 
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although at least one form of memory is stored in the dynamic scaling of synaptic inputs 

[25]. 

 Although the mechanisms of computation in biological systems are still active 

areas of research, a general model exists for replicating the neural architecture in a 

neuromorphic chip. The input to each neuron is a collection of 1000 to 10,000 synapses. 

Each synapse receives a voltage spike from the presynaptic neuron and generates a scaled 

current into the post synaptic neuron. The input currents are summed through the 

dendritic tree and integrated on the neuron’s cell body. The cell body typically sits at a 

non-zero resting potential dictated by the distribution of ions inside and outside the cell. 

The input current charges the cell body to a potential above the resting potential. Once 

the cell voltage exceeds a threshold, voltage gated channels allow potassium and sodium 

ions to flow through the cell wall. These ion currents create a voltage spike that is then 

propagated to the next set of neurons [25]. The steps of this process are shown in Figure 

2. 

 

Figure 2: The general steps of a biological neuron replicated in analog circuitry are: synaptic input, 

integration, thresholding, spike generation, and spike propagation. 
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 While memristors were first theorized in 1971 [19], it was the 1976 paper on 

memristive systems that first introduced the connection between memristive systems and 

neural processes [20]. It was shown that the potassium and sodium ion channels in a 

neuron, modelled by the Hodgkin-Huxley model [26], could be represented by 

memristive systems. The connection between memristive systems and neurobiology was 

again examined with the first reported physical memristor in 2008 by HP labs [10]. Since 

then memristors have been incorporated into neuromorphic circuits to implement 

synaptic functionality [11, 13-15], spike generation [11, 12], and spike propagation [27]. 

 Memristors are valuable for implementing synaptic functionality because they are 

a resistive element capable of scaling an input voltage into a current and they contain 

memory of previous inputs. One memory mechanism implemented in memristors [15] 

and experimentally observed in biological neurons [28] is spike timing dependent 

plasticity. The use of memristors for spike generation has been demonstrated, but is 

generally less useful because they require well-conditioned inputs to take advantage of 

the memristor’s frequency dependent behavior [12] and spike generation can be 

accomplished simply with CMOS technology [11].  

2.3 Major Categories of Memristors 

 While memristors were first theorized in 1971 and first experimentally reported in 

2008, a review of historical devices reveals memristive behavior in a wide range of 

devices including tungsten filament lamps, vapor discharge tubes, and thermistors [29]. 

The following sub-sections summarize a few of the major classes of memristors that have 

received attention since the 2008 publication reintroduced memristors to the research 
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community. Other memristor summaries have been tabulated elsewhere including 

comparisons of switching speed, retention time, and endurance [30]. 

2.3.1 Filamentary Memristors 

 The filamentary memristor was first published by HP labs in 2008 [10], although 

filamentary resistive switching devices were published and well characterized before this 

[31]. Fundamentally these devices operate by the creation and destruction of a conducting 

filament through an otherwise insulating material. When the filament connects the 

electrodes together a low resistance state exists and when the filament is broken a high 

resistance state exists. The formation of the filament requires the motion of mobile ions 

such as oxygen anions in TiO2 [10], NiO [32], WOx [33], TaOx [34], or NbOx [35], or 

metal cations in Ag2S or GeSe [31]. While these devices are typically binary, careful 

control of timing and compliance currents can program analog resistance states by 

controlling the distance between the filament edge and one electrode [36]. 

 Filamentary memristors can be further divided into unipolar and bipolar devices. 

Unipolar devices are capable of switching when a voltage of either polarity is applied. 

Filament formation occurs at a fairly low voltage while filament destruction occurs at a 

higher voltage. These devices are often compared to a nano-scale fuse [31]. In contrast, 

bipolar filamentary memristors require voltages of opposite polarities to switch between 

the high and low resistance states by electrically drifting the mobile ions in each 

direction.  

 Filamentary memristors are typically not manufactured with the filaments 

preformed and filaments must by initialized by an electroforming process. This process 

requires higher voltage and current than normal operation and has been shown to cause 
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electrode damage in switchable oxides as mobile oxygen bursts through the electrode [37, 

38]. In addition to the filament formation, filamentary memristor operation creates 

extreme thermal and electrical conditions. It is estimated that a switching memristor 

produces power densities on the order of 10
12

 W/cm
3
 [31] reaching temperatures of 800 

K [39] and electric fields above 10
6
 V/cm [40]. 

2.3.2 Mobile Ion Wavefront Memristors 

 While filamentary memristors can be considered one geometry of mixed ion-

electron conducting (MIEC) memristors, another geometry is the mobile ion wave front 

memristor. This geometry is similar to the bipolar switching filamentary memristor, but 

no filament is formed. Instead, mobile dopants move throughout a host lattice creating 

regions of highly doped and semi-insulating material. 

 One example of this geometry is the cosputtered Ag/Si memristor in which the 

conduction front is created by introducing the dopant silver part of the way into a silicon 

deposition. This eliminates the need for electroforming as the device is fully formed 

during fabrication [41]. Mobile ion wave front devices have demonstrated nearly analog 

switching, but have not been demonstrated with as wide a dynamic range (RON / ROFF) as 

filamentary memristors. 

 Another example of mobile ion wave front memristors is the volatile memristor 

LiNbO2. This material grown by molecular beam epitaxy [42] or liquid phase electro-

epitaxy [43] is deposited with uniform composition. Electrical modulation of the lithium 

ion dopants produces a memristive response that relaxes back to an equilibrium state 

when the input is removed.  

2.3.3 Oxidation/Reduction Memristors 
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 While memristors were originally defined as two terminal devices [19], the 

memristive system definition allows for multiport systems [20]. Such memristive systems 

have been demonstrated in mobile ion systems in which the mobile ions are allowed to 

leave the memristive material through a gated electrolyte. This three terminal transistor 

structure results in the oxidation or reduction of the active material changing the 

conductance between the source and drain terminals. Experimental examples of this 

structure include the oxidation/reduction of organic materials [44] and the lithiation of 

inorganic battery cathodes [45]. These three terminal devices are important for 

neuromorphic applications because many biological models include batteries with 

variable resistance [26] and the biological synapse is fundamentally a three terminal 

device – involving the presynaptic neuron, the post-synaptic neuron, and the intracellular 

fluid – although it is often replaced by two terminal memristors in neuromorphic circuits. 

2.3.4 Spintronic Memristors 

 While mobile ion-electron conducting memristors modify the electron 

conductivity either with doping or phase transitions, memristive effects have also been 

observed in materials where resistance modulation and memory are provided by a degree 

of freedom other than mobile ions. One such system is the broad class of spintronic 

devices where electron transport is sensitive to the electron-spin polarization, which can 

be changed by an externally applied voltage [46]. By controlling the ferromagnetic 

polarization of a free polarization layer compared to a reference polarization layer across 

a tunneling junction, the current flow through the tunnel junction can be controlled [47]. 

Many of these devices can also be switched by an external magnetic field [48] making 

them multi-input devices best described by the memristive system formalism. 
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2.3.5 Ferroelectric Switches 

 Similar to the spintronic memristors are ferroelectric memristors where device 

resistance is controlled by the ferroelectric polarization near a tunnel barrier. For 

nanoscale devices with small domains, a nearly continuous range of resistances can be 

achieved [49]. 

2.3.6 Mott Metal-Insulator Switches 

 In addition to ion motion, magnetic polarization, and electric polarization, thermal 

energy can provide a degree of freedom capable of producing memristive behavior. In 

materials with a Mott metal-insulator transition, joule heating has been demonstrated to 

produce memristive effects. When sufficient voltage is applied to heat the device above 

the metal-insulator transition temperature, the device switches to a conducting state. The 

conducting state (higher current) dissipates more power, requiring a lower voltage to 

switch back to the insulating state [27]. 

2.4 Memristor Models 

 In an effort to understand memristive switching and its effects in potential 

applications, many models have been produced. These models can generally be divided 

into two categories: physical models and characteristic equation models. Physical models 

attempt to explain the fundamental mechanisms involved in memristive switching. These 

models vary in complexity from sets of dynamic equations describing physical 

phenomenon [50, 51] to full finite element models [39, 52]. Most of the physical models 

published have focused on the mobile ion memristors and explored a variety of physical 

phenomenon including: ion drift [10], electrochemical potential [50], ionic boundary 
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conditions [53], multiple parallel filaments [54], joule heating [39], thermal gradients 

[51], and structural geometry [39, 52]. 

 In contrast, characteristic equation models attempt to produce computationally 

inexpensive descriptions of memristor operation for applications in circuit modelling 

software. These models tend to be based in the memristor formalisms developed by Chua 

[19, 20] and are informed to varying degrees by the physics of the modelled device [27, 

53, 55]. The model developed herein is a generalized characteristic equation model 

informed by the physics of activated ionic hopping conductivity. It will be shown that 

this model is applicable to a wide range of mobile ion memristors and reproduces effects 

that have been experimentally observed and modelled by more complex simulations. 



 14 

CHAPTER 3 

MEMRISTOR MODEL DERIVATION 

3.1 Activated Mobile Ion Hopping Conduction 

Ion conduction between discretely bound sites can be described by hopping 

conductivity where the hopping frequency (Γ) is given by Equation 3.1 [56, 57]. 

  [  (   )  (
  

 
)]   (

  
  

)
 Equation 3.1 

Where ωo is the hopping attempt frequency (related to the phonon frequency), c is the 

probability of finding an occupied site at the hopping destination and is dependent on the 

vacancies present, d is the hopping distance, EA is the energy barrier between hopping 

sites, k is the Boltzmann constant, T is temperature in Kelvin, and α is a localization 

parameter related to the extent of the ion’s wavefunction. While we retain the full 

equation as described by Mott [56, 57], this general form of Equation 3.1 is often 

simplified by replacing the bracketed term with one value by combining the distance 

dependence into the attempt frequency and ignoring the probability of finding an 

unoccupied site, which is acceptable for dilute concentrations. 

When exposed to an electric field E, the energy barrier EA is lowered by qEd in the 

direction of the electric field and raised by the same amount opposing the electric field, as 

shown in Equation 3.2, where q is the charge of an electron. 

    (   )  (
  

 
)  (

      

  
)
 Equation 3.2 

The resulting current density, Jij,  from site i to neighboring site j with corresponding ion 

concentration Ni and Nj can be described by Equation 3.3. 
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                      Equation 3.3 

where Z is the charge of the ion.  Substituting the hopping frequency into the above 

equation and separating common terms yields Equation 3.4. 
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 Equation 3.4 

where the concentrations Ni and Nj are separated into the stoichiometric concentration No 

and the probability of finding an ion at that site ci such that Ni = Noci and likewise for site 

j. Equation 3.4 can be reduced to Equation 3.5 by separating the common activation 

energy term. 
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 Equation 3.5 

3.2 Linearized Model 

Initially, we will linearize Equation 3.5 for small electric fields to define an ion 

mobility.  Later we will modify the mobility to account for the high field non-linear 

kinetics.  The generalized form of hopping conductivity current density, Equation 3.5, 

can be linearized for small electric fields where the concentration gradient is small and 

the exponential terms are nearly linear. The bracketed term in Equation 3.5 is shown in 

Figure 3 as a function of the electric field. 
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Figure 3: The bracketed terms in the full exponential form of hopping conductivity, Equation 3.5, 

and the linearized form, Equation 3.8. The linear approximation matches the exponential form at low 

electric fields but diverges at high electric fields. This data was calculated using d = 3x10
-10

 m and T = 

800K. 

As shown in Figure 3, the linear approximation is not valid for fields as high as 

10
10

 V/m, as are experienced during the breakdown of filamentary memristors, but is 

approximately true for fields as high as 10
8
 V/m, which covers most of the practical 

breakdown fields in real materials. Therefore, for large devices, such as previously 

published LiNbO2 memristors [58], with length scales on the order of 100 µm and low 

electric fields, the ion current can be linearized. However, for filamentary memristors 

with length scales less than 100 nm, electric fields may locally exceed 10
8
 V/m due to the 

distribution of dopants and the full exponential form of the ion current should be used. 

The linearized form of the electric field modified activation energy is given by Equation 

3.6.  

  (
      

  
)    (

  
  

) (  
   

  
) Equation 3.6 
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Substituting this linearization into the hopping current density, Equation 3.4, 

yields the linearized ion current density, Equation 3.7, which can be further simplified 

into Equation 3.8. 
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)] Equation 3.7 

            
 (

  

 
)  (

  
  

) [(           ) (
   

  
)  (     )] Equation 3.8 

By factoring the bracketed term, the linearized ion hopping current equation 

appears as a classical drift – diffusion equation, shown in Equation 3.9, where the 

mobility and diffusion coefficient become concentration dependent, as shown in 

Equations 3.10 – 3.12.  
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) Equation 3.9 

Where, 
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)  Equation 3.10 

    
     

 
 Equation 3.11 
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(           )
 )         Equation 3.12 

 It is important to note that the linearized current density equation is only valid for 

modestly high electric fields. However, in order to model ionic systems with extremely 

large local electric fields, such as a filamentary memristor, an additional factor must be 

included to account for the nonlinearity.  
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3.3 1-Dimentional Mobile Ion Distribution 

Examining the effective local carrier motion probability (ci + cj - 2cicj) from Equation 

3.9, shown in Figure 4, for a smooth distribution of ions (ci ≈ cj), shown as a blue line, the 

effective local carrier concentration reaches a maximum of 0.5 at a carrier density of half 

the stoichiometric value and goes to zero as the number of carriers approaches 0% or 

100% of the stoichiometric value. As the carrier motion probability goes to zero, the 

diffusion coefficient goes to infinity. The ability to tune the diffusion coefficient will be 

important to the stability of adaptive circuits using volatile memristors in Chapter 5. 

 

Figure 4: The effective local carrier concentration as a function of the real carrier concentrations at 

site i and site j. 
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Examining the ion current density, Equation 3.9, it is possible to solve for the 

steady state distribution of ions for a given electric field by recognizing that when J = 0 

an iterative solution can be given for the mobile ion distribution, shown in Equation 3.13. 

   
(  

  

  
 )  

  (     )
  

  
 
 Equation 3.13 

In general, the electric field is not a constant across the length of the device 

because the mobile ions are also dopants. Accounting for the changing electric field can 

be accomplished by recognizing that the local electric field is related to the local 

concentration of dopants via the resistivity as shown in Equation 3.14. 

   
 

  

 

(    )   

∑
 

(    )   
 
 

 Equation 3.14 

Where c’ is the normalized concentration of immobile dopants. Examining the 

limiting case where all the dopants are mobile (c’ = 0), the distribution of ions is shown 

in Figure 5 for devices of different lengths. The computed distributions are for an average 

normalized concentration of mobile dopants equal to 0.7, an applied voltage of 1V, and 

device lengths varying from 10
-7 

m to 10
-2 

m. 
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Figure 5: Normalized ion concentration profiles for devices of varying length with the same applied 

voltage 

 

 These ion distribution profiles reproduce theoretical and experimental results at 

the two extremes in device length. First, nanoscale memristors with 100 nm length scales 

have been theoretically predicted [10] and experimentally shown [37] to have a discrete 

boundary between a conductive region and an insulating region rather than a continuous 

distribution of ions. This feature is demonstrated in Figure 5. In contrast, macroscale 

memristors were theoretically predicted to have a continuous distribution of ions that is 

linear in steady state conditions [52]. In situ X-ray absorption measurements of 

macroscale memristors have experimentally demonstrated a continuous distribution of 

states [59]. 

 Before we can apply these ion motion relationships to memristors, we must first 

define the internal state variables of the memristor, the electrical and thermal 
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characteristics which result in activated ion motion, such that we can subsequently link 

the state variables to the ion motion. 

3.4 Characteristic Equation Model 

Chua’s 1976 memristive system is described by the set of equations 3.15 – 16, 

where  ⃗ ,   , and    are respectively the system input, the system output, and an internal 

state variable and functions f and g are arbitrary [20]. These three variables are generally 

vector quantities allowing for multiple inputs, multiple outputs, and multiple internal 

mechanisms. This formalism provides a framework to describe multi-functional 

memristive devices that can be controlled electrically, thermally, chemically, optically, or 

magnetically. 

   

  
  (    ⃗   ) Equation 3.15 

    (    ⃗   )   ⃗  Equation 3.16 

 While the mathematical, state variable description for a memristor provides no 

insight into the physical mechanisms behind a real device, mixed ion-electron conductors 

(MIEC) have demonstrated a rich set of behaviors including energy storage, rectification, 

negative differential resistance, and memristive hysteresis [60, 61]. In general, the 

kinetics of atomic motion are governed by ionic hopping conductivity [61] thermally 

activated according to an Arrhenius relation, as shown in Equation 3.5. Shown in Table 1 

are a variety of MIEC memristors and their associated activation energies for ion motion. 

Table 1: Activation Energies for Several Memristive Materials 

Material Activation 

Energy 

Volatile Reference 

Pr0.7Ca0.3MnO3 0.4 eV Yes [62] 

LiNbO2 0.3 eV Yes [63, 64] 

TiO2 >2 eV No [65] 

Ta2O5 >2 eV No [66] 
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To develop a mathematical model for mixed ion-electron memristors, we begin 

with the general system of equations for a memristive device, Equations 3.15 – 3.16, 

informed by the ion hopping kinetics previously developed, Equations 3.9 – 3.12. We 

define the input to the system as the applied voltage V and the output of the system as the 

current through the device I. The specific physical state variable parameters replacing the 

generalized state variables in Chua’s formalism,   , are the scalars φ, representing the 

distribution of ions, and the temperature T.  Rewriting Equations 3.15 – 3.16 with the 

above variables yields Equations 3.17 – 3.19. 

   (      )     (       )    Equation 3.17 

   

  
  (      )   (       ) Equation 3.18 

   [
  

  
]  [

 
 
] Equation 3.19 

where G is function describing the device conductance and t is time.  Looking first at the 

state variable dynamics, Equation 3.18, the temperature of the device can be easily 

approximated by the differential Equation 3.20 that balances Joule heating and 

conductive heat transfer.  

   

  
 

  

  
 

 

   
 [     

    (    )

  
] Equation 3.20 

Equation 3.20 is the result of thermal energy input to the device by Joule heating and 

conductive heat transfer removing heat from the device along a thermal length. The 

device’s temperature change is governed by the total heat capacity. The variables 

involved are: m is the mass of the device, C is the material’s specific heat capacity, V is 

the applied voltage, k is the thermal conductivity, A is the surface area of the device, TE 

is the temperature of the environment, and ΔL is the length for thermal transfer. The first 
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term in the brace describes Joule heating while the second term is the conductive heat 

loss. No explicit device geometry is defined for this generalization, but various 

geometries can be approximated by changing the mass, surface area, and thermal transfer 

length. 

While the temperature dynamics can be derived from basic physical relationships, 

the specific dynamics of the ion distribution state variable φ will depend generally on the 

internal physics of the modelled device. For example, in devices with small dimensions 

where the ion distribution displays a clear transition between two regions, as shown in 

Figure 5, the ion distribution state variable may be selected to represent the position of 

the transition. However, it will be shown that the rich behavior of memristive devices can 

be described by the ion distribution state variable dynamics shown in Equation 3.21. 

   

  
 

  

  
          Equation 3.21 

A is a parameter dependent on device geometry (i.e. scaling of voltage to electric field), 

but in more complex implementation can encompass many other physical effects that 

relate the external applied voltage to the change in ion distribution.  A is thus a 

generalized parameter describing the strength of the applied voltage V on the ion 

distribution state variable.  Likewise, D describes the strength of ion distribution recovery 

accounting for physical effects such as diffusion. The ion distribution state variable 

dynamics, Equation 3.21, build on earlier models that include the first voltage driven 

term but neglect any recovery mechanisms [10]. It should be noted that the ion 

distribution state variable, φ, cannot be explicitly defined outside the context of a specific 

device geometry and as such the units of φ, A, and D are not yet definable.  
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In general, the coefficients A and D can be functions of many variables. However, 

because they describe the ease of ion motion, both coefficients must follow an Arrhenius 

relationship and thus, from Equations 3.9 – 3.10, account for the ion motion activation 

energy shown in Equation 3.22. 

      
  
    Equation 3.22 

Examining Equation 3.21, it is clear that in the steady state when there is no net 

ion movement (i.e. 
  

  
  ), the voltage driven term and distribution recovery term must 

balance. This limits the extent of the ion distribution state variable placing a maximum 

value on φ, shown in Equation 3.23, for a given maximum voltage Vmax. 

     
     

 
  Equation 3.23 

It should be noted that A and D are not in general time-independent as they 

depend upon thermal activation. However, for small thermal fluctuations, assuming time-

independent values for A and D, the dynamics the ion distribution state variable, φ, can 

be obtained by integrating Equation 3.21 to yield Equation 3.24, which is a Volterra 

equation of the second kind with a solution given by Equation 3.25. 

 ( )   ∫  ( )  
 

  
  ∫  ( )  

 

  
 Equation 3.24 

 ( )    ( )   ∫    (   ) ( )  
 

  
 Equation 3.25 

Where ϕ is the time integral of voltage (flux-linkage) given in Equation 2.1b.  

Further, the second term of Equation 3.25 can be recognized as the convolution 

between the flux-linkage and a decaying exponential. Therefore, the frequency 

dependence of the ion dynamics Equation 3.21 can be described by the Fourier transform 
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given in Equation 3.26, which is a first order filter with critical frequency ω = D. At this 

critical frequency a maximum in the reactance occurs. 

 { ( )}   { ( )} [  
 

    
] Equation 3.26 

Where F is the Fourier transform operator and j is the square root of -1.  

Finally, while the ion motion is controlled by the activation energy and available 

thermal energy, the conductivity of the device is controlled by the available electrons (or 

holes) and their distribution. The exact form of the device conductivity as a function of 

ion distribution G(φ) will depend on the specific memristor.  Equations 3.17, 3.20, and 

3.21 combined forms a set of equations that fully describe memristor behavior, 

specifically, the conductance, thermal response, and the associated thermally activated 

hopping motion of ions.  The task for modelling memristors of differing underlying 

physics is then to define A, D, and a functional relationship between G and φ.  Chapter 4 

provides two diverse examples spanning experimentally demonstrated extremes in 

memristor behavior.  First demonstrated is a nanoscale non-volatile filamentary 

memristor based on TiO2 and second, a macroscale volatile memristor based on LiNbO2.   
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CHAPTER 4 

MEMRISTOR MODEL EXAMPLES 

4.1 Nanoscale Non-volatile Filamentary Memristor 

Non-volatile filamentary memristors have been well characterized since their 

discovery in 2008 [10] and have been modelled numerous ways to account for ion drift 

[10], electrochemical potential [50], ion boundary conditions [53], and multiple filaments 

[54] among many other effects.  

While the internal state variable for filamentary memristor models is typically 

chosen as the normalized filament length [10], confining this variable to a limited set of 

values , i.e. a domain from 0 – 1, leads to difficulties near the device boundaries requiring 

window functions or other numerical methods in order to bring the filament speed to zero 

and keep the modeled filament within the device [53]. Alternatively, the state variable 

can be projected onto an infinite domain such that the window function becomes 

incorporated into the projection.  While the physics governing the filament speed as it 

approaches a contact is yet unknown, the filament is assumed to asymptotically 

decelerate as it approaches a contact.  Whatever function is chosen to model this effect 

should reflect the asymptotic slowing of the filament as it approaches the contact.  Such a 

function is given in Equation 4.1 as a hyperbolic tangent. 

 ( )  
      (   )

 
  Equation 4.1 

Where w is the original domain limited state variable (normalized filament 

length) asymptotically constrained to the accepted values (0 – 1), φ is the state variable 

projected onto an infinite domain, and c is a scaling parameter equal to 2 so as to match 
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w to φ (dw/dφ = 1) away from the device edges. With this transform, the traditional 

filamentary memristance equation [10], shown in Equation 4.2, can then be used directly 

with the original state variable. 

  
 

         (   )
  Equation 4.2 

Where RON is the resistance of a fully formed filament and ROFF is the resistance 

with no filament formation.  

For this example, with the state variable defined as a projection of the filament 

length, the ion dynamics Equation 3.21 becomes a scaled filament edge speed far from 

the boundary edges that is asymptotically reduced to zero as the edges are approached, 

and can be found from the time derivative of Equation 4.1 as shown in Equation 4.3. 

  

  
 

 

 
       (  )  

  

  
 Equation 4.3 

This filament speed can be considered as the motion of ions making up the 

filament. Thus, the filament speed can be considered analogous to the ion current making 

the first term of Equation 3.21 equivalent to a drift term and the second term equivalent 

to diffusion. This allows the ion dynamics to be defined by Equations 4.4 – 4.5, where the 

drift and recovery coefficients are related by the Einstein relationship. The Einstein 

relationship is only appropriate away from the contacts where the ion distribution state 

variable, φ, is nearly linear with the filament length. Near the contacts, the non-linear 

projection dominates the recovery term and approximates the unknown effects that 

confine the filament to the device. 

          
 

  
    Equation 4.4 

  
 

    

   

 
  Equation 4.5 
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Where µv is the mobility of the filament ions, the constant S is a geometric factor 

with units of inverse length, and T is the temperature calculated in Equation 3.20. The 

geometric factor serves to convert the terminal voltage into an appropriate internal 

electric field. The effective number of free sites for hopping conductivity, ceff, modifies 

both the drift and diffusion terms as shown in Equations 3.10 – 3.12. As previously 

stated, the local electric field in a filamentary memristor during switching is likely high 

enough to forbid the use of the linear ion hopping equation. To account for the high field 

mobility encountered during switching, an effective mobility, orders of magnitude higher 

than would be otherwise expected, is used instead. For example, by comparing the 

effective field-dependent mobility from Equation 3.5 with the low field mobility from 

Equation 3.10, a discrepancy of order 10
15

 –  10
31 

occurs at fields between 1x10
9
 – 2x10

9
 

V/m. As shown in Table 2, the expected low field mobility, on the order 10
-4

 cm
2
/V-s, is 

multiplied by a constant factor to account for the high field effective mobility. This 

method was chosen over a true non-linear mobility in order to maintain the model 

simplicity for large scale circuit simulations. 

Two simulations of a TiO2 filamentary memristor were performed using the 

parameters listed in Table 2 and a sinusoidal driving force reproducing several 

experimental observations. While the physical, thermal, and electrical parameters are 

identical, the two simulations differ in the activation energy necessary for oxygen ion 

motion and changes in ion mobility necessary to observe switching in diversely different 

activation energy devices.  Case 1 closely resembles the non-volatile TiO2 memristor 

with essentially no ion relaxation over roughly 30 years, while case 2 is a fictional case 

for comparison purposes with relaxation (volatility) on the order of milliseconds.  
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Table 2: Simulation Parameters for a TiO2 Memristor. 

  Case 1 Case 2 

Physical 

Parameters 

Device radius (r): 

Device length (L):  

Density: 

10 nm 

50 nm 

4.23 g/cm
3
 

10 nm 

50 nm 

4.23 g/cm
3 

Thermal 

Parameters 

Specific Heat (C): 

Thermal conductivity (k):  

Thermal length (ΔL):  

0.693 J/g-K 

0.117 W/cm-K 

r/2 

0.693 J/g-K 

0.117 W/cm-K 

r/2 

Electrical 

Parameters 

RON:  

ROFF:  

200 Ω
 

2000 Ω 

200 Ω
 

2000 Ω 

Ion 

Parameters 

uV: 

S: 

ceff:  

EA: 

10
-4

*10
21

 cm
2
/V-s 

1/L 

0.1 

2 eV 

3x10
-4

*10
12

 cm
2
/V-s 

1/L 

0.1 

0.5 eV 

Driving Force             (    ) 

        

Data found in references [10, 37, 40] 

As shown in Figure 6a-b, both cases reproduce the experimentally observed bow-

tie I-V curve with dynamic negative differential resistance upon switching [10]. In 

general, the abrupt turn on of a high activation energy material, Figure 6a, is softened 

when the activation energy is lower, as in Figure 6b.  In principle, if the thermal 

characteristics were known, the activation energy of the material could be extracted from 

fitting the I-V curve.  Figure 6b shows an initial transient resulting from the initial 

condition of the filament length.  This initial transient is not a strong effect in the high 

activation energy case because ion motion does not occur until substantially higher 

temperatures compared to that of the lower activation energy case. This is seen in the 

average temperature of the devices which differ by over 200 
o
C.  

Examining the temperature of the device, shown on the color scales of Figure 6 

and plotted versus time in Figure 7a-b, the simulation reproduces the asymmetric time 

spent in the high versus the low resistance state as previously observed [10]. Specifically, 

as shown by the shaded areas in Figure 7, the device spends less time in the low 
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conductance state, shaded in blue, and more time in the high conductance state, shaded in 

red.  In addition, by including the thermal activation of ion motion, the 2 eV activation 

energy case accurately predicts the onset of switching when the device is between 600 K 

and 900 K agreeing with more complex finite element models [39]. Finally, the switching 

time between the two conductance states is simulated at 70 ns, again closely matching 

experimental observations [67]. 

 

Figure 6: Simulated current – voltage characteristics of a non-volatile filamentary memristor with (a) 

a 2 eV activation energy barrier to ion motion and (b) a 0.5 eV activation energy barrier to ion 

motion. 

 

 

Figure 7: Temperature simulations of a non-volatile filamentary memristor with (a) a 2 eV activation 

energy barrier to ion motion and (b) a 0.5 eV activation energy barrier to ion motion. Switching 
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occurs at elevated temperatures with the time spent in the high conductance state highlighted in red 

and the time spent in the low conductance state highlighted in blue. 

 

Thus, by defining the TiO2 non-volatile memristor state variable to be the 

filament length and projecting this state variable onto an infinite domain explicitly 

including the activation energy necessary for ion motion reproduces several important 

experimentally observed switching behaviors in a compact device model.  This simple 

model avoids boundary value problems encountered in other finite domain models and 

explicitly includes the temperature dependence of memristive switching. Additionally, 

the predicted temperature for switching is in the same range as previous complex finite 

element models [39] and could be used in complex circuit simulations to predict heat 

dissipation and thermal crosstalk between nanoscale devices.  As will again be seen 

below, the value of the ion motion activation energy is the controlling factor as to 

whether a device is volatile or non-volatile. Thus, by including a lower activation energy 

for ion motion, the proposed simple model can also be applied to volatile memristors. 

4.2 Macroscale Volatile Memristor 

In contrast to the well characterized non-volatile filamentary memristors, volatile 

memristors are less well known but can be useful for mimicking the natural volatility of a 

neural system. In addition, due to the lower activation energy for ion motion and the lack 

of filamentary behavior, volatile memristors have been observed on discrete devices with 

millimeter length scales [43]. As memristive effects increase with decreasing length 

scales, shown in Equation 4.6  [10], these devices have enormous potential for low power 

nanoscale memristors. 

 ( )  
 

  
 Equation 4.6 
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Due to memristive effects scaling with the inverse square of the length, a three 

order of magnitude decrease in the length scale (100 um to 100 nm) theoretically permits 

the same memristive behavior with a six order of magnitude decrease in the driving input 

(1V to 1uV). Therefore, while the analog device modelled herein is a large device (100 

µm length matching experimental reports [58]) representing an extreme upper bound for 

the model to consider, the scaled down version of this device should be capable of 

operation at lower power and with larger memristive hysteresis. 

Unlike the non-volatile device which has normalized filament length as a state 

variable, the physics of the LiNbO2 volatile memristors are not dependent on the 

formation, destruction and movement of filaments.  Instead, for the LiNbO2 volatile 

memristor the internal state variable is based on the continuous ion distribution.  Finite 

element models of the LiNbO2 memristor [52] show transient complex ion distributions 

and the resulting conductance.  However, in all cases, at slow excitation or in steady 

state, the complex ion distributions collapse into a steady state linear ion distribution and 

an associated conductance.  In these materials operated in electric fields from 10
1
 to 10

5
 

V/m, the linearized mobility model is certainly valid.  Given this linear ion distribution 

and its associated conductance state, one can easily connect the ion distribution (a slope 

in steady state) to the conductance, G, and again connect that conductance to the flux-

linkage, φ, through the use of the current-voltage curve.    

Examining experimental data, shown in Figure 8, from a large scale volatile 

LiNbO2 memristor, the characteristic pinched hysteresis of a memristor is observed. This 

data was measured at 42 mHz on a lateral ring-dot structure with asymmetric contact 

areas and a device length of 55 µm. 
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Figure 8: The experimental current – voltage relation for a volatile LiNbO2 memristor measured at 

42 mHz. 

 

Since the conductance of the device is known from the slope of the current-

voltage curve for each time point and the flux-linkage can be determined as the time 

integral of the voltage, one can plot the experimental data in Figure 8 as a conductance 

versus flux-linkage as shown in Figure 9.  The flux linkage represents the combined 

effects of an applied voltage and the time the voltage has been applied making small 

voltages applied for long times as effective as large voltages for short times.  In Figure 9, 

two conductance values at zero φ and asymmetric shape around zero φ are apparent. This 

asymmetry in the experimental data is likely due to asymmetric contacts on the ring-dot 

structure and is not accounted for in the following model. Such effects have been 

accounted for in previous finite element models [52]. 
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Figure 9: The experimental Conductance – Phi relation from a LiNbO2 memristor and the fit used to 

model the device. The two values at Phi = 0 are due to the asymmetric contact geometry of the 

experimental device. By modelling only one contact geometry a symmetric device is modelled. 

 

Fitting the experimental data for one of the contact polarities, which forces a 

symmetric response, the following conductance, shown in Equation 4.7, was empirically 

fit to the experimental volatile memristor conductance. 

 ( )     
     

  (  ) 
 Equation 4.7 

Where GH = 0.01 Ω
-1

 is the high conductance state, GL = 0.005 Ω
-1

 is the low 

conductance state, and c = 0.2 is a width parameter used to fit the experimental data. 

For steady state simulations, it has been shown that the ion concentration profile, N(x), in 

these volatile memristors is linear [52]. However, a linear ion distribution is incompatible 

with the current continuity equation when simplifications are made that are necessary for 

a simple model compatible with large scale circuit applications. Such simplifications 
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include a uniform electric field and a negligible space charge due to ion-electron 

separation (i.e. quasi-neutrality). The linear ion distribution incompatibility arises 

because the derivative of the current density (dJ/dx) does not include a diffusion term 

necessary to balance the drift term and bring the ion motion (dNLi/dt) to zero as shown in 

Equation 4.8. 

  

  
  

 

 

  

  
  

 

 
    

  

  
     Equation 4.8 

This non-physical result is likely due to the two assumptions above. At long time scales 

the electrons and ions separate violating quasi-neutrality and setting up an electric field 

opposing the applied field. However, for shorter time scales, a transient ion distribution 

occurs [52] that is modelled herein as a cubic ion distribution profile as shown in 

Equation 4.9. 
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 Equation 4.9 

 The cubic distribution does not violate the current continuity equation and can 

thus be modelled simply as shown in Equation 4.10. 

  

  
  

 

 

  

  
    

  

  
      

   

    Equation 4.10 

Taking the first and second derivatives of Equation 4.9 and inserting them into Equation 

4.10 yields Equation 4.11. 
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)) Equation 4.11 

 Because γ(t) and λ(t) are of the same order of magnitude for the modelled devices 

and the length scale is one the order of 10
-2

 cm, the second drift term is much smaller 

than the first drift term and may be dropped. This simplification yields Equation 4.12. 

  

  
     ( )       (  

 

 
)  ( ) Equation 4.12 
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 At long time scales the ion distribution becomes linear and the cubic term in the 

ion distribution, λ(t), presumably goes to zero. However, for faster time scales the linear 

term γ(t) is nearly constant and the cubic term becomes the dominant time dependent 

term. An estimate for the frequency at which this transition occurs can be determined 

from previous finite element models that examine the step response of LiNbO2 

memristors. Previous models have shown that for a device with order 1 um length, a 

cubic profile is present 0.1 sec after the voltage step, but a linear profile is present after 1 

sec [52]. Scaling these times for the 100 um device modelled herein, it is expected that 

the cubic approximation can be made for time scales shorter than 10 seconds or faster 

than 0.1 Hz. This is consistent with experimental results testing the step response of 

LiNbO2 memristors [42]. Thus for the time scales of interest to neuromorphic computing 

(0.1 – 100 Hz) the linear term can be treated as effectively constant, γ(t) ≈ γ, and the 

cubic term is the dominant time dependent term in the ion motion. Taking the time 

derivative of the ion concentration under this assumption yields Equation 4.13. 
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 Equation 4.13 

 Evaluating the change in ion concentration at the contact (x = L) and setting 

Equation 4.12 and Equation 4.13 equal, we then obtain the dynamics Equation 4.14. 
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  Equation 4.14 

 This dynamical equation follows the same form as Equation 3.21 allowing the 

assignment of the ion distribution state variable, φ, to be the cubic ion distribution term, 

λ. Thus the ion dynamics can be written as Equations 4.15 – 17. 

  

  
 [

     

  
]   [

     

  
]         Equation 4.15 
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  Equation 4.16 

   
     

  
 Equation 4.17 

The simulated result, shown in Figure 10, matches the experimental results except 

at negative voltages where the change from an asymmetric to a symmetric device 

becomes apparent. 

 

Figure 10: Simulated and experimental current – voltage relation of a volatile memristor based on 

LiNbO2. Deviation between the modelled and experimental results at negative voltages is due to the 

asymmetric geometry of the experimental device, which was not considered for the model. 

 

In addition, the activation of ion motion by thermal energy is not necessary for 

low activation energy volatile memristors, and the temperature of the simulated device 

varies by less than 1
o
C as shown in Figure 11.  



 38 

 

Figure 11: The temperature of a simulated volatile memristor showing effectively room temperature 

operation. 

 

It was theorized that for memristive mobile ion-electron conductors (MIECs), a 

decrease in frequency would lead to a current-voltage relation with peaks as the mobile 

dopants redistribute [60]. This effect is reproduced, as shown in Figure 12, using the 

same simulation parameters as in the volatile memristor example, by decreasing the 

frequency one order of magnitude. It should be noted that this current-voltage relation is 

distinctly different than that for the filamentary memristor, which also exhibits a peak 

with dynamic negative differential resistance. The difference arises near the origin where 

a filamentary memristor’s current-voltage relation crosses at the origin, but a volatile 

memristor’s current-voltage relation is pinched at the origin.  The peaks in the volatile 

memristor current-voltage curve result from diffusion assisted ion recovery returning the 

ion gradient to zero before the voltage reaches the maximum value. When the ion 

gradient (φ) is zero, the conductance is maximized as shown in Figure 9. 



 39 

 

Figure 12: Simulated current – voltage relation for a volatile memristor at low frequency exhibiting 

dynamic negative differential resistance as ionic diffusion returns the ion gradient to zero before the 

voltage reaches a maximum. 

 

This dynamic negative differential resistance has been experimentally observed in 

LiNbO2 volatile memristors. As shown in Figure 13 for a single current-voltage sweep, a 

peak in current occurs before the voltage reaches its maximum value. In addition to the 

dynamic negative differential resistance, both the simulation, Figure 12, and the 

experimental data, Figure 13, show an initial increase in resistance as the voltage sweep 

begins at -1 volt. This initial transient effect is caused by the maximum (in magnitude) 

voltage (-1 V) occurring at the same time as the maximum conductance state resulting 

from V·t=0 in Figure 9. This condition does not occur again after the initial condition 

because the diffusion assisted ion recovery creates a phase offset between the maximum 

voltage and flat ion distribution as theoretically derived in Equation 3.26. 
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Figure 13: Experimental data showing dynamic negative differential resistance and an initial high 

conductance transient. 
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CHAPTER 5 

APPLICATIONS OF VOLATILE MEMRISTORS IN 

NEUROMORPHIC COMPUTING 

5.1 Schmitt Trigger – Spike Frequency Adaptation 

 The device models discussed in Chapter 4 are computationally simple while still 

incorporating physical parameters such as geometry and dopant levels that can be used to 

modify parameters such as the device speed and the magnitude of the memristance 

change. However, these devices do not necessarily implement important neuromorphic 

functions on their own. An example is given below in which biologically realistic spike-

frequency adaptation is implemented in a simple Schmitt Trigger circuit by replacing one 

of the resistors in the Schmitt Trigger’s voltage divider with a volatile memristor. The 

ionic integration built into the dynamics of the memristor creates an adaptive level 

shifter, adding new dynamics to the circuit as a whole without increasing the circuit 

complexity. 

 Previously a non-volatile memristor with external programming circuitry was 

included in an op-amp Schmitt Trigger to create a variable threshold Schmitt Trigger 

[68]. The circuit presented in Figure 14 differs from this previous work in two ways that 

are important for neuromorphic circuit applications. First, the memristor implementation 

is a volatile analog memristor rather than a non-volatile filamentary memristor. Second, 

the circuit presented is self-programming and requires no external programming 

controller. This leads to a higher computational density. These distinctions make it useful 

for neuromorphic spike-frequency adaptation. 
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Figure 14: A collector-base coupled BJT Schmitt Trigger circuit diagram with a volatile memristor 

substituted for resistor RB1. 

 

 The circuit shown in Figure 14 is a classical collector-base coupled BJT Schmitt 

Trigger. Advantages of this design for a neuromorphic threshold detector are a near zero 

low-output voltage and a high-output voltage set by the voltage divider RC2, RB1. These 

two attributes provide a near ground output and an adaptable high state output for the 

analog spike generation circuit this Schmitt Trigger controls. 

 The BJT Schmitt Trigger circuit works as follows: while Vin is below the rising 

threshold, transistor Q1 is off and Q2 is on. The output voltage is tied to ground through 

transistor Q2. The base-emitter voltage of Q1 is set by the voltage divider Rin, RB1 and 

the rising threshold occurs when this voltage divider forward biases the base-emitter 

junction of Q1. 
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After transitioning to the high-output state, transistor Q1 is on and Q2 is off. The output 

voltage is set by the voltage divider RC2, RB1. As Vin decreases, the falling threshold 

occurs when the base of Q1 is deprived of current. This requires the current through RB1 

to equal the current through Rin. Assuming ideal BJTs, these thresholds and outputs are 

given by Equations 5.1 – 5.4. 

    
(       )   

   
 Equation 5.1 

        
   (       )

       
 Equation 5.2 

           Equation 5.3 

          
   (       )

       
 Equation 5.4 

 Where VT↑ is the rising threshold voltage, VT↓ is the falling threshold voltage, VCC 

is the power supply voltage, VBE is the BJT base-emitter forward bias voltage and the low 

and high subscript on VOut indicates the output voltage in the low and high state 

respectively. 

 From Equations 5.1 – 5.4 it is clear that resistor RB1 is crucial in setting the rising 

threshold, the falling threshold, and the high output voltages. Figure 15 shows the 

Schmitt Trigger circuit transfer function for two values of RB1 easily achievable with the 

lithium niobite memristors described in Section 4.2. 
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Figure 15: Changes in the Schmitt Trigger transfer function for different values of the memristor 

resistance including changes in the rising threshold voltage, falling threshold voltage, and high 

output voltage. 

 

 Changing the value of RB1 by only 150% changes the rising threshold by -10%, 

the falling threshold by 1000%, and the high output voltage by 10%. The low output 

voltage remains unchanged in the millivolt range. As the resistance of RB1 changes in 

Figure 15 from 10kΩ to 4kΩ, three distinct changes occur that are important for neural 

processing: 

First, the rising threshold voltage increases. The rising threshold indicates how much 

input signal must be accumulated before the neuron outputs a spike. By increasing the 

rising threshold voltage, spikes become harder to initiate. 

 Second, the high output voltage decreases. A decrease in the high output voltage 

could be used by the spike generation circuit to implement spike-amplitude adaptation. It 
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is known that some biological neurons exhibit decreasing spike amplitude during bursting 

behavior while others show no change or more complex behaviors [69]. 

 Third, the falling threshold decreases. This is important because the pulse width is 

related to the difference between the rising threshold and the falling threshold. After the 

Schmitt Trigger goes to the high state and initiates an output pulse, feedback must reset 

the input integrator. Since the Schmitt trigger can only be reset by the integrator being 

discharged below the falling threshold, the time that the Schmitt Trigger remains in the 

high state increases as the falling threshold is reduced. This increased spike time is 

consistent with biological spike-frequency adaptation and may also be useful for spike-

shape adaptation in the spike generation circuit. For example, the 

“afterhyperpolarization” phase of a biological neuron spike becomes more pronounced 

after a high level input [69]. The increased pulse width produced by the Schmitt Trigger 

for high level inputs could be used in the spike generation circuit to accomplish this 

spike-shape adaptation. 

 

Figure 16: Diagram of a simplified neuron used to demonstrate the effects of the volatile memristor 

Schmitt Trigger on the overall neuron performance. The output of the Schmitt Trigger is fed back to 

the integrator to reset the integrator after the neuron outputs a spike. 
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 The volatile memristor Schmitt Trigger was simulated in the simplified 

neuromorphic circuit shown in Figure 16. The negative feedback from the Schmitt 

Trigger to the integrator was used as the integrator reset mechanism. 

 It has been shown experimentally that for small constant inputs biological neurons 

produce repetitive spikes with frequencies that scale with the input value. Additionally, 

larger value inputs produce temporally-expanded spike widths that are sometimes 

accompanied by decreased spike amplitude [69]. As will be shown, this circuit mimics 

these biological behaviors that are thought to be crucial for biological and neuromorphic 

computation. 

 

Figure 17: The output voltage and memristor resistance for six different DC input voltages to the 

circuit in Figure 16. The six input voltages are: a) 0.3 V, b) 0.67 V, c) 1 V, d) 1.5 V, e) 2 V, and f) 3V. 

 

 The output voltage for the volatile memristor Schmitt Trigger neuromorphic 

circuit is shown in red in Figure 17 for six different DC inputs. For Figure 17a-c 
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corresponding to smaller inputs 0.3 – 1 volts, the circuit produces repetitive pulses that 

increase in frequency with increasing input. In Figure 17d-f corresponding to larger 

inputs 1.5 – 3 volts, the output shows signs of adaptation including pulse broadening and 

a smooth decrease in pulse amplitude. Compared to biological pulse broadening, this 

simulation produced magnified results. Biological neurons broaden spikes by 20% - 

100% [69] while this simulation demonstrates pulse broadening of 540%. This increased 

pulse broadening compared to biological spike broadening could be limited by choosing a 

smaller memristance change. 

 Examining the resistance of the volatile memristor for each of these six cases, 

shown in black in Figure 17, reveals why this adaptation occurs. For the small input 

voltages of Figure 17a-c, the memristor programming is balanced by the pulses and inter-

pulse intervals so that the resistance remains near 10kΩ corresponding to the φ = 0 value 

in Figure 9. This allows each successive pulse to start from the same value on the W(φ) 

curve. Thus, the circuit has no memory of previous pulses. For the larger inputs in Figure 

17d-f, there is insufficient inter-pulse time for the memristor to fully recover back to 

10kΩ and the memristor self-programs. This memory functionality of the memristor 

causes temporary changes in the Schmitt Trigger transfer function and thus the pulse 

widths and magnitudes.  These changes mimic biological spike frequency adaptation. 



 48 

 

Figure 18: Three operational regimes for the Adaptive Schmitt Trigger.  Input voltages below the 

low voltage programming threshold or above the high voltage programming threshold program the 

memristor producing spike frequency adaptation. Input voltages between these limits produce 

repetitive pulses that do not change with time. 

 

 The range of input voltages that result in adaptive and non-adaptive behavior is 

shown in Figure 18 where the feedback coefficient D determines the range of input 

values for which the memristor causes adaptation. By noting that the polarity of the 

voltage across the memristor switches sign for pulses versus inter-pulse time periods we 

see that adaptation occurs when the voltage across the memristor during each pulse is not 

sufficiently balanced by the restoring voltage across the memristor during the inter-pulse 

time. Input voltages larger than the high voltage programming threshold (green line in 

Figure 18) program the memristor during each output pulse because there is insufficient 

inter-pulse time for recovery. This condition results in spike-frequency adaptation. 

Likewise, inputs below the low voltage programming threshold (blue line in Figure 18) 
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program the memristor during the inter-pulse time. This low input programming 

condition is easily avoidable by choosing a sufficiently large value for D, described in 

Equation 4.14, making relaxation faster. The balanced voltage curve (red line in Figure 

18) indicates the input voltage required to maintain a mean value of φ=0. This occurs 

when the pulse frequency balances programming from the pulse and the inter-pulse 

interval. Also shown by a dashed line in Figure 18 is the circuit activation threshold. 

Because the Schmitt Trigger output is subtracted from the integrator input as a reset 

mechanism, shown in Figure 16, inputs below the Schmitt Trigger’s low state output 

cannot initiate a pulse. This low input “leak” effectively implements a leaky integrate and 

fire neuron model. 

 The six simulation conditions shown in Figure 17 are indicated on Figure 18 as 

dots. Figure 17a, Vin = 0.3V, is slightly below the low voltage programming threshold 

and Figure 17c, Vin = 1V, is slightly above the high voltage programming threshold. 

Since neither of these cases show significant adaptation, this reveals that the 

programming thresholds are soft thresholds defining the limits of memristor 

programming. This soft threshold is more consistent with biology than a hard threshold 

device in that biological spike-frequency adaptation is governed by ionic concentrations 

changing populations of conductances [69]. 

 In order to mimic spike-frequency adaptation, there are two reasons this circuit 

must use a volatile memristor. First, after the circuit has been stimulated by an input 

above the high voltage programming threshold such that the memristor becomes 

programmed, it is necessary for the circuit to recover back to the un-programmed state. 

While it may be possible to accomplish this with a non-volatile memristor and some extra 
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circuitry, a volatile memristor can be implemented in a single device without additional 

wiring and will improve the overall circuit density. Second, the ability of the circuit to 

produce repeatable pulses for a range of small value inputs and then adapt for larger 

inputs cannot be achieved with a non-volatile memristor. 

 As shown in Figure 18, as D approaches zero and the memristor becomes non-

volatile the range of stable input voltages where the memristor does not program 

collapses to a single value. This collapse occurs because without the restoring feedback, 

non-volatile memristors cannot balance the programming voltages from the pulses and 

inter-pulse intervals. 
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CHAPTER 6 

CONCLUTIONS AND FUTURE WORK 

6.1 Summary and Contributions 

With the ITRS’s prediction of an impending end to Moore’s Law in CMOS 

digital computing and the already observed saturation in chip performance, neuromorphic 

computing is one of a few novel computing architectures that may advance application 

specific performance for the future. By replicating the architecture of the biological brain, 

low power adaptive systems should be possible that excel at pattern recognition, control, 

and processing noisy data. Mixed ion-electron conducting memristors have become an 

increasingly important component within neuromorphic circuitry. 

This work first derived a physics based model for mixed ion-electron conducting 

memristors based on the activated hopping conductivity of ions within the device. It was 

shown that the full exponential form of hopping conductivity is necessary at high electric 

fields, but can be simplified to a linear drift-diffusion model at low electric fields. Using 

this physical model it was shown that experimentally observed ion profiles are modelled 

as the device size and electric field is changed resulting in an abrupt transition in small 

devices with high electric fields or a smooth gradient in large devices with low electric 

fields. 

 While the derived physical model may be useful for complex finite element 

models, it is too computationally intensive for large scale circuit simulations. Therefore, a 

simplified model based on the original memristor definition, but retaining the activated 

ion hopping conductivity from the physical model, was developed for use in simple 
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circuit model elements. This generalized mixed ion-electron conducting memristor model 

was verified in two extreme examples. The first example was a well-studied nanoscale 

non-volatile filamentary memristor exhibiting binary switching at elevated temperatures 

and memory retention over many years. The second example was a less well-studied 

macroscale volatile memristor that exhibits a continuous range of resistance states and 

ionic diffusion at room temperature. 

 Lastly, the volatile memristor model was added to a Schmitt Trigger circuit in 

order to add volatile functionality relevant to neuromorphic computing by implementing 

the thresholding and spike generation components of a neuromorphic circuit. It was 

shown that by including a volatile memristor the circuit exhibits spike-frequency 

adaptation, a biological mechanism important in the prevention of seizures. 

 

6.2 Future Work 

Two aspects of this work could be expanded. First, the two example devices 

modeled in this work relied on assumptions to keep the model computationally simple. 

For the nanoscale non-volatile filamentary memristor, a mobility scaling factor was used 

to compensate for the nonlinear high field mobility and a uniform effective ion 

concentration was assumed. While these assumptions reproduced experimentally 

observed features, a more precise model may be achievable at the cost of computational 

simplicity. For the macroscale volatile memristor, a low frequency cubic ion gradient was 

assumed. This assumption is valid for the low frequencies encountered in biological 

systems, but more complex behavior, such a double layer capacitance, is encountered at 

high frequencies. These features may be useful as dynamic filters. 
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Likewise, it was shown that the linear steady state ion distribution shown in 

previous work is incompatible with the current continuity equations for the simplifying 

assumptions made in this model, particularly the assumption of quasi-electroneutrality. 

Future work may explore relaxing these assumptions and adding features such as a 

dynamic space charge. 

The second opportunity to expand this work is in the number of circuits relevant 

to neuromorphic computing that were not modelled. Such circuits include amplifiers, 

filters, and neuristor circuits that may exhibit biologically relevant behavior when a 

volatile memristor is included. 
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