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SUMMARY 

The purpose of this invest igat ion is to study numer ica l ly the 

dynamic response of a c l a s s of e las t ic bodies at finite s t ra in . More 

specifically, new numer ica l schemes a r e developed for the analysis 

of shock and acce lera t ion waves and f ini te-ampli tude osci l lat ions of 

thin highly e las t ic m e m b r a n e s of a r b i t r a r y shape. F in i t e -e lement 

m o d e l s of t h in i n c o m p r e s s i b l e h y p e r p l a s t i c m e m b r a n e s a r e d e v e l o p e d , 

which involve l a rge sys tems of second-order nonlinear differential 

equations in nodal d isplacements or pr incipal s t r e t c h e s . One-

dimensional vers ions of these equations a r e f i rs t solved numer ica l ly 

using a var ie ty of time integrat ion s chemes . Qualitative arguments 

and studies of var ious ca se s confirm that shock waves can develop, 

even in cases in which smooth initial data a r e p r e s c r i b e d . In the 

p r e sence of shocks , all of the s tandard integrat ion schemes break 

down, and it is n e c e s s a r y to develop an explicit scheme for shock 

propagation s tudies . A new scheme is proposed which combines 

features of the Lax-Wendrbff method and f in i te-e lements and which 

is used successful ly to study the formation, ref lect ion, and p ropa­

gation of shock and acce le ra t ion waves in hyperplas t ic r o d s . A 

number of r ep resen ta t ive ca s e s a r e studied numer ica l ly . Motivated 

by the absence of any convergence c r i t e r i a or numer ica l s tabil i ty 
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c r i t e r i a for f ini te-element approximations of nonlinear hyperbolic 

equations, a study of these quest ions for the subject c lass of p rob lems 

is then init iated. A r igorous analysis of numer ica l stabil i ty and 

convergence of f ini te-element approximations of nonlinear equations 

is given. P r e c i s e stabil i ty c r i t e r i a and e r r o r e s t imates a r e der ived. 

It is shown that while lumped and consis tent m a s s f ini te-element 

models have the same convergence ra te in the natural energy n o r m s , 

the lumped m a s s model is numer ica l ly m o r e s table . The invest i ­

gation then m o v e s to two- and th ree -d imens iona l p r o b l e m s . A 

number of cases a re considered apparent ly represen t ing the f i rs t 

solutions of any type to p rob lems of this kind. 



CHAPTER I 

INTRODUCTION 

The foundations of the genera l theory of e las t ic i ty were laid 

down in the nineteenth century in the works of Cauchy, Green , and 

St. Venant and, thereafter* the bulk of the work on the subject dealt 

with the important but r e s t r i c t ed theory involving l inear consti tutive 

equations for s t r e s s and infinitesimal s t r a ins . Renewed in te res t in 

the genera l theory began in the ear ly post -World War II: y e a r s with 

the works of Rivlin, et al. [ 1, 2] and Truesde l l [ 3 ] , and o the r s . 

The fo rmer work was motivated by p ress ing problems of that per iod 

in the pneumatic t i r e industry and involved solutions to s tat ic p rob ­

l ems of s imple shear and extension of cubes and p r i s m s of i so t ropic , 

incompress ib le rubbe r s . 

Over two decades have passed since the modern work on finite 

e las t ic i ty began, and in no other per iod in h is tory has there been a 

g r ea t e r awareness of the need for the genera l theory in applicat ions 

affecting our everyday life. Bes ides the "old" p rob lems re la ted to 

finite deformations of t i r e s and inner tubes , there has been cons ide r ­

able in te res t in recen t yea r s in the use of both inflatable m e m b r a n e 

s t ruc tu re s and highly flexible pneumatic s t r uc tu r e s in ae rospace arid 
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and civil applicat ions. Some of these s t ruc tu res may undergo finite 

deformations both before and after acquir ing their p r i m a r y load-

carry ing capacity. Fo r example, as a fai l-safe component, a 

membrane is f i r s t inflated and then expected to sustain large impact 

l o a d s - - s o m e t i m e s to the point of fa i lure . 

I ronical ly , while the bulk of the phenomena mentioned is dynamic 

in na tu re , t he re a r e no general solutions to t rans ient dynamic p rob ­

lems in finite elast ic i ty . (In 1971, Shahinpoor and Nowinski [4 ] did, 

h o w e v e r , ob t a in e x p l i c i t e x a c t so lu t i ons for the r e s t r i c t e d p r o b l e m 

of determining the one-dimensional (radial) d isplacement field in a 

thin-walled tube of incompress ib le Mooney-Rivlm m a t e r i a l , subjected 

to forced finite rad ia l osci l la t ions generated by a r b i t r a r y t i rne-

dependeht p r e s s u r e s . ) This unusual s tate of affairs is duei of cou r se , 

to the overwhelming complexity of the highly nonlinear equations 

governing dynamic finite elast ic i ty . F o r example , when a thin 

e las t ic m e m b r a n e is subjected to a t ime-dependent l a t e ra l p r e s s u r e , 

s t ra ins ve ry much g r e a t e r than unity a r e usually incur red , and the 

assoc ia ted f ini te-ampli tude response waves may develop d iscont i ­

nui t ies , or shocks. Moreove r , since the loading surfaces change in 

a r e a and orientat ion during deformation, the d i rec t ions and magn i ­

tudes of the applied loads also change, and c la s s i ca l superposi t ion 

concepts a r e not valid. 



Since the solution of genera l problems of this type falls well 

outside the r ea lm of c l a s s i ca l methods of mathemat ica l ana lys i s , it 

is c lea r that the g rea tes t hope for obtaining quantitative solutions to 

p rob lems in dynamic finite e las t ic i ty r e s t s in the efficient use of 

modern numer i ca l methods. 

1. 1 Fini te Element Concept and His tory 

Regard les s 6f the concepts employed in formulating the non­

l inear e las t ic i ty p rob lem, if numer i ca l methods a r e used to get 

quantative r e s u l t s , the continuum has , in effect, been approximated 

by a d i sc re te rnodel in the solution p r o c e s s . A logical a l te rna t ive to 

this c l a s s i c approach is to r e p r e s e n t the continuum by a consis tent 

d i s c r e t e model at the onset. This approach is r e f e r r ed to as the 

finite e lement method. Based on concepts of piecewise approximat ions , 

and specifically designed for computer appl icat ions, this method f rees 

the analyst f rom complicat ions caused by i r r egu l a r geomet r i es and 

boundary conditions. Also , the method appeals to our physical 

intuition: we isolate a smal l physical e lement of the continuum, 

approximate the d isplacement , t e m p e r a t u r e , or s t r e s s fields over 

the e lement uniquely iri t e r m s of some general ized coordinates 

(usually taken as nodal quantit ies per taining to the field), and then, 

using all of the pr inc ip les of mechanics and thermodynamics at our 

d isposal , desc r ibe the behavior of this typical e lement of the sys tem. 



This done, these e lements a r e appropr ia te ly fitted together to con­

sti tute the d i sc re t e model of the continuum. 

Although Gourant ' s 1943 analys is [5 ] was c lea r ly in the spi r i t 

of finite e lements , the formal application of the finite e lement method, 

together with the d i rec t -s t i f fness approach for assembl ing e lements , 

was presen ted in 1956 in the now Well-known paper of T u r n e r , Clough, 

Mar t in , and Topp [ 6 ] , Since then, a preponderance of l i t e r a tu re 

re la ted to the subject has appeared. Extensive r e fe rences to p r e ­

vious -works on applications to l inear p rob lems can be found in the 

books of Zienkiewicz [7 , 8], P r zemien ieck i [ 9 ] , Mar t in [ 1 0 ] , 

P rzemien ieck i , et al. [ 1 1 ] , and Be rke , et al. [ 1 2 ] , and in the s u r ­

vey a r t i c l e s of Argy r i s [ 13 , 14] > Sirighal [ 1 5 ] , and Fel ippa and 

Clough [ 1 6 ] , As would be expected, applications of the finite element 

method to nonlinear p rob lems have not enjoyed the same frequency of 

- • i . 

appearance . A detailed l is t of r e fe rences on finite e lement appl ica­

t ions in nonlinear p rob lems can be found in the book by Oden [17] 

and his survey a r t i c l e [ 1 8 ] . Additional r e fe rences m a y b e found in 

the books edited by Gal lagher , et al. [19] and Oden, et al. [ 2 0 ] . 

1. 2 Dynamic Fini te E las t i c i ty - -Vibra t ions 

That only recent ly has the re been any in te res t in the dynamic 

theory of finite e las t ic i ty is evidenced by the f i r s t study of s teady-

state motion in this c lass of p rob lems appearing in 1960. In this 



paper , Knowles [21] considered the problem of a r b i t r a r y ampli tude 

f ree osci l lat ions of a tube of incompress ib le ma te r i a l . Knowles 

extended this investigation to include forced osci l la t ions [ 2 2 ] , and 

then, with Jakub [ 23 ] , examined finite deformations of an infinite 

e las t ic medium with a spher ica l cavity. (Truesdel l [ 24] mentions 

that Tadjbakhsh and Toupiri have pointed but that in [21] the formula­

tion was faulty due to a m i s u s e of conyected coordinates ; however, 

the bas ic differential equation of motion used there in is co r r ec t . ) 

Knowles 's -work served as the bas i s for severa l subsequent invest iga­

tions of both thick- and thin-walled bodies of symmet ry [ 2 5 - 2 8 ] . In 

fact, the previously mentioned work of Shahinpoor and Nowinski [4 ] 

involved a simplified ve r s ion of Knowles 's governing equation. 

Apparent ly , the only btfeer'type-/of;iini-fe.e:sai-inplttude vibrat ion problem 

to rece ive attention is thsit of finite s imple shear (e. g. , [29-32] ) . 

Using the theory of smal l e las t ic deformations super imposed on 

finite e las t ic deformations (e. g. , [ 3 3 , 34].), other investigations into 

dynamic p rob lems of e las t ic i ty with constant finite s t ra ins have been 

made (e. g. , [35-38] ) . Douglas [ 39] studied the effect of initial 

finite deformation on the subsequent na tura l smal l v ibra t ions of some 

simple e las t ic s t ruc tu res of incompress ib le ma te r i a l . An interes t ing 

application of this theory was employed by Faulkner [40] where in the 

smal l d isplacement ref lects the smal l amount of compress ib i l i ty 

introduced into the s tandard incompress ib le mathemat ica l model . 
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1. 3 Dynamic Fini te E las t ic i ty - -Nonl inear Wave Motion 

In conjunction with tHe-recent developments In the theory of 

finite ampli tude v ibra t ions , t h e r e h a s also been a growing in te res t 

in the propagation of finite ampli tude waves in e las t ic m a t e r i a l s . 

Bas ica l ly , the study of nonlinear wave motion is concerned with 

sys tems of hyperbolic pa r t i a l differential equations, the mathemat ica l 

foundation of which Is well es tabl ished, e. g. , see the books of Courant 

and Hl lber t [41] and Jeffrey and Taniuti [ 4 2 ] . Also , an e lementa ry 

account of the bas ic developments in the theory of finite e las t ic -waves 

is contained in the book by Bland [ 4 3 ] , 

The ear ly work of Bland [44] and Chu [45 ] sparked much of the 

cu r ren t in te res t in the propagation of shock and acce le ra t ion waves in 

e las t ic m a t e r i a l s . Solutions of s imple boundary and initial value 

p rob lems for an e las t ic ha l f -space subjected to a gradually applied 

surface d is turbance were obtained in both [ 44] and [ 4 5 ) ; they a lso 

studied the conditions for shock formation and propagation. S imi la r 

e las t ic solid p rob lems were considered by Collins [46] and Achenbach, 

et al. [ 4 7 , 4 8 ] , with a p roblem of a heterogeneous elas t ic solid 

recent ly Investigated by Nalr and N e m a t - N a s s e r [ 4 9 ] . 

Nowlnskl [50] apparent ly was the f i r s t to quali tatively study the 

propagation of finite waves in thin perfect ly e las t ic rods of rubbe r ­

like m a t e r i a l s . The propagation of s imple waves which develop Into 
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shocks was init ially studied by Reddy and Achenbach [ 51 ] for the case 

of a thin semi-infinite. 'pre s t r e s s e d e las t ic rod* In recen t months , 

survey a r t i c l e s on shocks have been contributed by Lax [ 52] and Chen 

[53] : additional r e fe rences can be found in these a r t i c l e s . 

F r o m the foregoing, it i s c lear that, while m a n y noteworthy con­

tr ibut ions have been made to the genera l dynamical theory of finite 

e las t ic i ty , actual calculat ions have invar iably involved r a the r ideal 

geome t r i e s , boundary and initial condit ions, and /or ma te r i a l p r o p ­

e r t i e s . The highly nonlinear cha rac t e r of the momentum equations for 

the mos t s imple hyper e las t ic ma te r i a l does not account for all of the 

computational p r o b l e m s - - b y definition, the hypere las t ic solid p o s s e s s e s 

no diss ipat ive mechan i sm to provide smoothing or damping of higher 

f requencies . Consequently, the computationally convenient features 

of damping encountered in nonlinear v iscoelas t ic i ty and the rmov i sco -

elas t ic i ty calculat ions [ 17, 54, 55] a r e not p r e sen t . To complicate 

m a t t e r s , it is now general ly recognized that shock waves can be eas i ly 

produced in such m a t e r i a l s , even when smooth initial conditions a r e 

p r e s c r i b e d , f The recen t exper imenta l work of Kolsky [56] gives 

evidence to the poss ibi l i ty of even tens i le shock waves developing in 

ce r t a in s t re tched natura l r u b b e r s , a phenomenon a l ready anticipated 

in the theore t ica l work of Bland [44] and Chu [45] . In such c a s e s , 

p rac t i ca l ly all the popular numer ica l in tegrat ion schemes now used in 

s t ruc tu ra l dynamics a re ineffective. 
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1.4 Fini te Element Approximations 

For tunate ly , developments In nonlinear theor ies of m a t e r i a l 

r e sponse have been accompanied by significant developments In l a r g e -

scale digital computers and genera l methods of numer ica l ana lys i s . 

Using these too ls , the numer i ca l solution of ce r t a in static p rob lems 

in finite e las t ic i ty has been possible during the las t five y e a r s . 

The finite e lement method was successfully applied to the p rob ­

lem of finite deformation of thin e las t ic m e m b r a n e s by Oden, et al. 

[ 5 7 - 6 0 ] . T h e s e s t u d i e s w e r e p r i m a r i l y c o n c e r n e d wi th M o o n e y - t y p e 

m a t e r i a l s (corresponding to a n a t u r a l r u b b e r - l i k e ma te r i a l ) for 

computational pu rposes , but also give specific forms of the nonl inear 

stiffness re la t ions for genera l hyperleasjtic m e m b r a n e s . Since, for 

incompress ib le m a t e r i a l s (e. g. , the Mooney ma te r i a l ) , the deforma­

tion de te rmines the s t r e s s only to within an a r b i t r a r y hydrosta t ic 

p r e s s u r e , the p r e s s u r e must be t r ea t ed as an additional unknown in 

the genera l finite element p roblem formulation. F o r the m e m b r a n e 

formulat ion, however, this p rob lem Is avoided by assuming a s ta te 

of plane s t r e s s in the deformed e lement so that the hydrosta t ic 

p r e s s u r e for each element is immediate ly de termined f rom the con­

dition that the t r a n s v e r s e no rma l s t r e s s is ze ro . 

In ve ry recent t i m e s , t h e r e have begun to appear some appl ica­

t ions of the finite element method to p rob lems In nonlinear s t ruc tu ra l 

dynamics . F o r example, Str lckl ln , et al . [61 ] considered la rge 



rotat ions but Infinitesimal s t ra ins of dynamically loaded shel ls of 

revolution, while the dynamic response of geometr ica l ly and m a t e r i ­

ally nonlinear shells was t r ea ted by M a r c a l [ 6 2 ] , Har t zman [63] 

and Oden, Chung, and Key [ 6 4 ] , among o thers . None of these 

investigations confronts the nonlinear dynamic problem of finite 

deformations in which exceedingly la rge changes in geomet ry may 

occur ; nor do they account for the possibi l i ty of finite s t r a ins . 

Moreover , the few at tempts at using finite element models in non­

l inear s t ruc tu ra l dynamics problems seem to ei ther avoid the 

obvious but difficult questions of convergence of the finite e lement 

approximat ion and stability,of the t empora l integration s c h e m e s , or 

to make r a the r vague convergence and stabili ty a rguments on the 

bas i s of nothing m o r e than numer i ca l experimentat ion. 

1. 5 Synopsis 

So as to provide a ba s i s for d iscuss ion and to es tabl ish notation, 

Chapter II contains a brief review of bas ic notions of finite e las t ic i ty 

re levant to the study of e las t ic m e m b r a n e s . Also , specific fo rms of 

the s t r a in energy function a r e given for severa l highly e las t ic 

m a t e r i a l s . Attention is then t e m p o r a r i l y d i rec ted to one-dimensional 

p rob lems . In Chapter III, we review ce r ta in fea tures of the physics 

of the propagation of shock and acce le ra t ion waves in nonlinear hyper -

e las t ic m a t e r i a l s . Then, in Chapter TV, one-dimensional f in i te-e lement 
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models a r e developed and solved numer ica l ly using a va r i e ty of t i m e -

integration schemes . Since vi r tual ly al l of the commonly used explicit 

t ime- in tegra t ion schemes b reak down in the p r e sence of shocks, a new 

explicit integrat ion scheme is developed and used successfully in 

studying the format ion, propagation, and reflection of shock waves 

in hypere las t ic thin rods . Motivated by the absence of any convergence 

and stabili ty c r i t e r i a for finite e lement approximat ions of nonlinear 

hyperbolic equations, these questions a r e studied in Chapter V for the 

subject c l a s s of p rob lems . A r igorous analys is of numer i ca l stabili ty 

and convergence of finite e lement approximat ions of nonlinear hyperbolic 

equations is made where in p r e c i s e stabil i ty c r i t e r i a and e r r o r e s t ima tes 

a r e der ived. It is shown that while lumped and consis tent m a s s finite-

e lement models have the same convergence ra te in the na tura l energy 

n o r m s , the lumped m a s s model is numer ica l ly m o r e stable. The 

investigation r e tu rns to two- and th ree -d imens iona l p rob lems in 

Chapter VI where , after a d iscuss ion of the genera l concept of finite 

e lements of m e m b r a n e s , finite e lement models of thin incompress ib le 

hypere las t ic m e m b r a n e s a r e developed. A number of c a s e s a r e con­

s idered , apparent ly represent ing the f i r s t solutions of any type of 

problems of this kind. Chapter VII s u m m a r i z e s the work done in this 

investigation and the cqnclusions drawn there f rom. Recommendat ions 

for future study and investigation a r e a lso presen ted . 
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CHAPTER II 

MECHANICAL PRELIMINARIES 

In this chapter , we brief ly review cer ta in fundamental pr inc ip les 

of k inemat ics , mechan ic s , and thermodynamics n e c e s s a r y to obtain 

genera l consti tutive re la t ions and equations of motion per t inent to the 

theory of e las t ic m e m b r a n e s . More complete detai ls can be found in 

the books of Green and Zerna [ 6 5 ] , Green and Adkins [ 3 4 ] , and 

Oden [ 1 7 ] . 

2. 1 Kinematics of Elas t ic Membranes 

Consider a continuous e las t ic body which is in some re fe rence 

configuration C . To descr ibe the motion of this body re la t ive to CQ , 

a rec tangular c a r t e s i a n coordinate sys tem XL with origin O is 

es tabl ished. At t ime T = t (0 < T < t ) , the motion of the body has 

c a r r i e d it to a new configuration C, and a represen ta t ive m a t e r i a l 

point P Q has moved to P . The point P in C is now re f e r r ed to a new 

fixed rec tangular coordinate sys tem X^(T) with origin o, which is taken 

coincident with O at T = 0, Thus , the c a r t e s i a n coordinates of a 

m a t e r i a l point at any t ime T a r e X - (T ) , and at T = 0 the coordinates 

XJ_(T') and XL coincide, i . e . , x-L(0) = XL. It will be convenient to re fer 
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to the body as undeformed when it occupies the reference configuration 

C and as deformed in other configurations. 

Each t r ip le of r ea l numbers XL may be considered as the in t r ins ic 

par t ic le label (or the name) ass igned to the corresponding m a t e r i a l 

point in the body. Thus the s a m e numer ica l values of the XL which 

define a m a t e r i a l point in C define the same point in any subsequent C. 

(It is a ssumed that the requi red functional dependency of the x^ on the 

X and t ime ex i s t s , and v i c e - v e r s a . ) These labels may be considered 

to be coordinates etched onto the body so that they move continuously 

with the body as it pa s se s from -C . to any subsequent C. Hence, while 

coordinates XL a r e ca r t e s i an in CQ , they a r e genera l ly curv i l inear in C. 

Moreover , s t ra ight l ines of m a t e r i a l points in CQ become curved lines 

in C, and coordinate planes in G become curved surfaces in C. Such 

coordinates a r e called convected or in t r ins ic coordinates . 

Now consider in pa r t i cu la r a thin sh^et of homogeneous e las t ic 

• - .-••': • " • • ' ' - ' : . • / .. ' ' 3 ••'. ' '" i "\ 

m a t e r i a l , bounded by the surfaces X = ± d Q / 2 , where the initial 

1 2 
thickness dQ i s , in genera l , a function of X and X . In the undeformed 

sheet , considered initially flat, an a r b i t r a r y m a t e r i a l point P 0 is 

located by the position vector 

r = r ^ X 1 , X 2 ) + X 3 ^ Q (2.1) 
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1 2 1 ? 
where £Q(X , X ) is the posit ion vec tor of a point QQ in the X , X^ plane 

and n is a unit vector no rma l to the undeformed middle surface (see o 

Fig . 1). 

The sheet is now assumed to undergo a genera l d isplacement 

which c a r r i e s it f rom its re ference configuration CQ to another con­

figuration C. (This displacement c a r r i e s P Q to P and QQ to Q. ) The 

location of P re la t ive to a fixed re fe rence f rame in CQ is given by the 

posit ion vector 

R = R 0 ( X ^ , . ^ ^ / t y ^ ^ c x 1 , ^ 2 . x 3 , ty V (2. 2) 

where R_ is the posit ion "vector of Q on the deformed middle surface 

and M is the vec tor f rom Q to P . The d isplacement vec tor w of P is 

W = R - r•"•= u + M - X3nQ (2 .3) 

where u denotes the displacement of a point on the middle surface 

u = ufX1, X 2 , t) = R0(X*, X 2 , t) - r 0 (X X , X 2 ) (2. 4) 

With (2. 2) We can now calculate the ba se vec to r s G. tangent to 

the deformed coordinate l ines X 1 . 
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Deformed 
Middle Surface 

Undeformed 
Middle Surface 

F igure 1. Geomet ry of Deformation of a Thin Sheet 
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Sa=K>a=Ko>a + M>a=&a + W>a a = 1.2" 

9 3
s ^ 3 

(2 .5) 

where the A are the vectors tangent to the deformed middle surface 

1 2 
coordinates X and X . Here the comma denotes partial differentiation 

with respect to the X (e. g. , M, j, = 9M/8X1). Both Greek and Latin 

indices are used hereinafter with the understanding that Greek indices 

range from 1 to 2 and Latin indices range from 1 to 3. 

We now assume that a material line normal to the undeformed 

middle surface remains straight and normal to the deformed middle 

surface. However, these material lines may undergo finite extensional 

3 
strain during the motion. Thus, if X is the extension ratio of X 

(i. e. , \ = d/dQ, the ratio of deformed length to undeformed length), 

we choose to write the vector M of (2. 2) in the form 

M = MCX1, X2, X3, t) = XX Ŝ (2. 6) 

where n is a unit vector normal to the deformed middle surface. Both 

X and n are functions of X , X , and t. Now, using (2. 6), (2. 5) becomes 
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Ga = ̂  + XS(xfi)'^ 

G3 = Xn 

(2. 7) 

/ \ Noting that n • A = 0, the cornponents -Gj_s of G r e e n ' s deformation 

t enso r a r e 

Gap = & -• Sp = A ap " 2 ^ a P + ( x f y ^ B p *"pC?)2X. p V. f f 

G * 3 = S a ' S 3 =X3XX. f f (2.8) 

G0 0 = G-j • G0 .'= X 

Here A a and B Q a r e the cbvar iant components of the f i r s t and second 

fundamental t e n s o r s , respec t ive ly , of the deformed middle surface and 

B^ a r e the mixed components of the second fundamental t enso r 

A - = A • A s ; B ft = ^A . n, fi ; BJ* = A ^ B o (2. 9) 
ap «*a ~P ap ~cr p ' a pa x ' 

or 3 In this las t equation, A a r e the cont ravar ian t components of the f i r s t 

a ix cy 
fundamental t enso r of the deformed middle surface (i. e. , A A a = 6g 

or A"? = A01 . A P , where Aa . A» = b% ). 
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We a r e in teres ted in a reduced ve r s ion of (2. 8) which co r responds 

to a theory of thin m e m b r a n e s . There fo re , we r e s t r i c t our at tention 

to deformations of bodies sufficiently thin that G^- is essent ia l ly uniform 

throughout the th ickness . The re fo re , Instead of (2. 8), we have the 

approximations 

G a P = A * P ; Ga3 = ° > G 3 3 i X 2 (2.10) 

Substituting (2. 10) into the genera l form of the Lagrangian s t r a in tensor , 

1 
y-- = ~rr (G^ — 6--), where 6.. is t h e K r o n e c k e r delta (e. g. , Green and 

Adkins [35 ] ) , yields the s t r a in components for a thin m e m b r a n e 

ya? =\ tAftp- W •- \3 = ° ? V33 = I (^ - 1) (2- ID 

In the analys is of deformable m e m b r a n e s , it is convenient to form 

the pr inc ipa l invar iants of G r e e n ' s deformation t enso r , G-- = 2-y- + 6^ 

These invariants a r e : 

L. = \ + A-, •• + A 0 0 = X2 + A 1 11 22 aa 

I 2 = A + X 2 ( A n + A 2 2 ) = X2Aaa + i ( A ^ A p p - A ^ A ^ ) (2. 12) 

Io = \ 2 A = \ \ 2 ( A A„a - A o A * ) •* 2 aa pp ap per 
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where 

A = det(Aa p) = A n A 2 2 - - A ^ - j = f (A^App - A ^ A ^ ) (2. 13) 

Differentiating (2.4) and substituting the re su l t in (2. 11) gives 

the m e m b r a n e s t ra in -d i sp lacement re la t ions 

Y a = - ^ - ( u ' a + U o •'.+ U-. U-r R ) 
"fop 2 orvp p>a k , # k, p ' 

^ 3 = ° <2-14> 

1 2 
Y33 = ^(X - 1) 

1 2 where or* (3 = 1, 2, k = 1, 2 , 3 , and. the'functions u. = u-(X , X , t) a r e the 

components of d isplacement . 

2. 2 S t r e s s 

L/et t denote the s t r e s s "vector in the deformed body m e a s u r e d pe r 

unit a r e a A of undeformed m a t e r i a l surface a r e a . Then, if n_ = n .1 

= n0.i^' is a unit vec tor no rma l to AQ in the undeformed body, 

t^K&j <2-15> 
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where t . a r e the contravar iant compdnents of the s t r e s s t ensor 

m e a s u r e d per unit a r ea A^ r e f e r r ed to the tangent base vec to r s G-
O O v. ^ j 

Ln the deformed body, and from the balance of angular momentum, 

t i j = t j L . 

2. 3 Equations of Motion 

The pr inc ip les of conservat ion of m a s s and l inear momentum 

requ i re that at each m a t e r i a l point 

p0 = p/G (2.16) 

ft^ji + rj^fe^'^oj^po^i (2-17) 

where pQ and p a r e the m a s s densi t ies of the undeformed and deformed 

bodies , respec t ive ly , G = det(G..) = 1^, F . a r e components of body 

force per unit m a s s of undeformed body, and superposed dots mean 

the t ime rates-of-c'han;g€i"/,'.."^.B^wi'li'be seen subsequently, to these 

equations must be added jump conditions when wave phenomena a r e 

considered. 

2 .4 T he r mo dyn ami c s 

The f irst law of the rmodynamics can be wri t ten in the form 

K + U = £2+ Q (2. 18) 
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H e r e K is the kinetic energy; U is the in te rna l energy, £2 Is the m e c h ­

anical power developed by the externa l forces acting on the body, and 

Q is the heat input. Equation (2. 18) is also r e f e r r ed to as the global 

form of the f i r s t law because it dea ls with finite volume of m a t e r i a l . 

When no jumps a re p re sen t , 

K = ' f ^ p 0 ^ L d v 0 (2.19) 

U = J p 0 edv 0 (2.20) 
v o 

^S^^Syo^S^X^o:. '(2.21) 
v o r \ ' A b 

Q = J p o ^ o + ^ i ^ o i ^ o (2.22) 
v o A o 

In these equations, pQ is the m a s s densi ty, vQ is the volume, AQ is the 

surface a r e a , w- a r e velocity components , e is the internal energy pe r 

unit m a s s , F • a r e components of body force pe r unit m a s s , S . a r e 

components of surface force r e f e r r e d to the X and m e a s u r e d pe r 

unit a r e a AQ in CQ»-' r is the r a t e of heat supply pe r unit m a s s , q. a r e 

the components of heat flux with r e spec t to the X in G , n• • a r e 

components of a unit vec tor n o r m a l to A » and any quantity subscr ip ted 

" o " is r e f e r r e d to the undeformed body. 
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Assuming sufficient conditions of smoothness , the divergence 

t heo rem is used to obtain the local form of the f i r s t law that r e p r e s e n t s 

the energy balance at a point in a continuum 

. P ^ = t I J < 6 m J + w m . j : > * m . L + P o r + lL . l ; <2' 23> 

Corresponding to the theory of thin m e m b r a n e s , (2. 23) can be wr i t ten 

in the form 

P o ^ ^ ^ i p + w ^ J w ^ + p^ + q . ^ (2.24) 

Differentiating the s t ra in t ensor [ "y.. = -r-(G 5--)] it is eas i ly shown 

that 

t ^ 6 „ 1 J + ^ m . j ^ m . i = t i ^ « <2 '25> 

Using (2. 25) in (2. 23), an a l te rna te local form of the f i r s t law is 

_ + l J P o e = t J
V i . + p o r + q i>L (2.26) 

Integrating (2. 26) and substituting the resu l t into (2. 18), the global fo rm 

of the f i r s t law of thermodynamics becomes 
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K + ^ t i J y i j d v 0 =-Q (2.27) 

V , 

If the m a t e r i a l is hypere las t i c , the re exis ts a potential function W(-y-.) 
J 

m e a s u r e d per unit volume of the undeformed body, called the s t r a in -

energy function, f rom which the components of the symmet r i c 

Kirchhoff s t r e s s tensor can be der ived by the relat ion* 

t i j=C ' 
Hence, using (2. 28) in (2. 27), we can express the global fo rm of the 

f i rs t law of thermodynamics for hypere las t ic m a t e r i a l s as 

^+fSvvo=fi ^^ 
v o J 

2. 5 Constitutive Equations 

Assuming the sheet to be composed of a hypere las t ic m a t e r i a l 

with a s t r a in - ene rgy function W ( y . ) pe r unit undeformed volume, then 
J 

*To avoid e r r o r , it should be understood that in differentiating W with 

r e spec t to -y.., a l l other components a r e held constant , including y . . . 

Thus (2. 28) should actually be wr i t ten tLJ = - r [ ( 9 W / 9 y . ) + (8W/8y.-.)] . 

We avoid this cumbersome notation with the understanding that , in al l 

equations here inaf te r , by 9/9A:,- we mean — [(9/9A. . ) + (9/9A-.)] for 
J Z ij J l 

any symmet r i c tensor Ajj . 
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AW • ;i • 
l V 8Y-Lj V

 YiJ 

= t f f Pv «.+ t* 3 Y 

( 2 . 3 0 ) 

a ( 3 T U '33 

and the components of the symmetric Kirchhoff stress tensor t ^ are 

determined by 

^ - ^ - • > 3 = 0 , t 3 3 = ^ L ( 2 . 3 1 ) 
dya>P 8V33 

Assuming further that the sheet is a homogeneous isotropic hyper-

elastic material, the strain-energy function W can be expressed as 

a function of the principal invariants of "Y.., or more conveniently, 

the principal invariants of G--: W = W(Ij, I , I?), where I-, I , and 

I., are defined in (2. 12) for the membrane. Therefore, we can express 

the constitutive relations of the membrane in the general form 

ta3 = 0 (2. 32) 

^33 '8W • 8W A ...8W / A A A A x 

* = * BLl + 2 8 ^ Aaa + 5lJ ( A « « A ^ " A « P A M 
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where 

AA a P =. -€ a - X €^A x ' (2.33) 
V 

and 6-tt , € ^ = two-dimensional permutat ion symbols ( e 1 ^ = +1, 

,21 = - 1 . « " = , 2 2 = 0). . 

- - 3 3 '• 
In genera l , the no rma l s t r e s s component t can be de termined 

from the boundary conditions on the deformed midd le surface. F o r 

very thin m e m b r a n e s , however* since the magnitudes of the m e m b r a n e 

s t r e s s e s a r e usually much g r e a t e r than t ^ , it is s tandard p rac t i ce 

to take t = 0 and to reduce the p rob lem to one of determining only a 

two-dimensional s ta te of s t r e s s . T h i s approximat ion will be incorpor­

ated here inaf ter , 

In the case of incompress ib le m a t e r i a l s , I~ = 1, and W is a function 

of only I - and I?. Thus , instead of (2. 12), we will have 

I 3 = 1 = \ 2 A . 

(2.34) 

I-, = \ 2 + A ; I 9 = \ 2 A + — 
1 aa * 2 aa % \ 2 

and, as was mentioned previously , since the deformation of incompress 

ible m a t e r i a l s only de te rmines the components of the s t r e s s t enso r to 
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within a hydrosta t ic p r e s s u r e , the consti tutive equations for incom­

p r e s s i b l e m e m b r a n e s a r e : 

t«P = 2(|w + kz Ay?:.+ 2/h + 1_ |iyp 
Vaij ai2/ v yi ai2/ 

1 ^ 3 = 0 (2.35) 

• t 3 3 = 2 j j W + 2 ^ 
9 I 1 X 2 a I 2 ^ X2 

A A 

where W = "W^L., I2) and h is the hydrosta t ic p r e s s u r e . The hydros ta t ic 

33 p r e s s u r e h, de termined by the condition that t =, 0, becomes 

2 aw aw . a$ 
h " " x aiT " a i . 6 «p A ( 2 - 3 6 ) 

Substituting this into (2. 35) gives 

f* = z(*<* - x ^ t 2 [ ^ + ^ < | - V ^ ) ] ^ . (2'37) 

and t = t = 0 . 

2 .6 Stra in Energy Functions 

In t rying to de te rmine genera l forms of the s t ra in energy function 

for compress ib l e mate r ia l s* it is common to a s s u m e that W is an 
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analytic function of the s t ra ins or s t r a in Invariants . Fo r example , 

with the s t ra ins 

W(Vl.) = E% 4 ^ ™ % W ^ ^ ^ W r s + • • • (2- 38) 

Here E , E J ». . . , a r e a r r a y s of "e l a s t i c i t i e s " of o rde r ze ro , f i r s t , 

second, . . . . If the body is uns t r e s sed in its re fe rence s ta te , E lJ = 0. 

Hooke's law is obtained by retaining only quadrat ic t e r m s . 

A s tandard form for W as a function of the s t ra in invariants is 

00 00 00 . 

W= E B B G ^ d i - 3) r(I. - 3)S(I3 -'3)* (2.39) 
r=0 s=0 t=0 r s t 

with C = 0. 
ooo 

Most m a t e r i a l s that behave e las t ica l ly ,a t finite s t r a in a r e 

incompress ib le . F o r any motion of such m a t e r i a l s , 1-5 = 1, and W 

de te rmines the s t r e s s only to within an a r b i t r a r y sca la r valued function 

h cal led the hydros ta t ic p r e s s u r e . Then, in place of (2. 28), we have 

t « W + h G 0 (2.40) 

where G1^ = ( G - 0 - 1 • 
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A s t ra in energy function for ce r ta in i so t ropic , compres s ib l e , 

e las t ic solids valid for re la t ively la rge s t ra ins was proposed by Blatz 

and Ko [ 6 6 ] : 

W = iT [ jl -~'3 + l U f " 1)] + M 1 2^ [ J 2 - 3 +f ( J1 " 1)] (2-41) 

where |a and f a r e m a t e r i a l cons tan ts , v is Po i s son ' s ra t io , a - 2v / ( l -2v) 

and J 1 , J , and J~ a r e the invariants 

J 1 = I 1 ; J 2 = I 2 / I 3 J J 3 = / l 7 (2.42) 

" • . J - • • ' 

' . • • • ' / v 

In the case of incompress ib le m a t e r i a l s , W = W'(I-» I~) can 

somet imes be r ep resen ted as a power s e r i e s in; I.« and I~ 

oo oo 
W = E S C . J L - 3) r(I - 3)S , C = 0 (2.43) 

r=0 s=0 r s ^ l " J ' ^2 " ' ' °° 

Among m a t e r i a l s of this type, the most widely used Is the Mooney 

m a t e r i a l [ 67] , which follows from (2. 43) by retaining only l inear 

t e r m s in I- and l? 

/ s 
W = 0 ^ 1 ^ - 3) + G 2 ( I 2 - 3) (2. 44) 
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where C- = C*~, C - C ~ | a r e m a t e r i a l c o n s t a n t s . When G = 0, 

(2. 44) reduces to the s t ra in energy function of neo-Hookean m a t e r i a l 

suggested by T r e l o a r [68] 

>\ 
W = C(I 1 - 3) (2.45) 

Extensive exper iments with different kinds of rubber led Rivlin 

and Saunders [69] to suggest a m o r e genera l form of s t r a in energy 

function 

W S C J X I J - 3) + F(I2••-. 3) (2.46) 

where the form of F(l~ - 3) may va ry f rom one type of m a t e r i a l to 

another . 
• • ' i • • 

Not all proposed forms of W for rubber - l ike m a t e r i a l s have 

regarded the function F(I - 3) in (2. 46) as a polynomial in (I - 3). 

Using a non-Gauss ian molecu la r theory as a guide, Gent and Thomas [70] 

a s sumed that [8F(I_ - 3)/8I~] = C/I -* where G is a m a t e r i a l constant . 

Har t -Smi th [71] e laborated on this theory and proposed the exponential-

hyperbolic law 

W ^ C ^ e x p f k ^ - 3)2]dI1 + k2 ln[~J) (1-47) ; 
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Simi lar ly , Alexander [ 72] proposed the forms 

y \ 

W = CyG- - 3) + C :>(I9 - 3) + Coin l v x l 2Vi2 •N1*] (2.48) 

I 2 , 3 + ki 
W = C1 Jexp [k(Ix - 3)2] dlx + C2(I2 - 3) + C3ln j 2 " ^ (2.49) 

where C j , C2» C^» k, and k* are material constants to be determined 

experimentally for a given sample of the material. Several other 

f o r m s fo r W h a v e b e e n p r o p o s e d , so t ha t (2. 43) to (2. 49) a r e g iven 

only to be representative. 

( • 
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CHAPTER III 

SHOCK AND ACCELERATrON WAVES IN 

NONLINEAR ELASTIC MATERIALS 

3.-1 Just if icat ion 

In o rde r to gain some insight into genera l nonlinear behaviora l 

c h a r a c t e r i s t i c s of e las t ic bodies , while st i l l managing not to obscure 

the per t inent conceptual and physical de ta i l s , we t empora r i l y confine 

out attention to one-dimensional p rob lems . In pa r t i cu la r , we consider 

only longitudinal motions of finite homogeneous thin rods of i so t ropic , 

incompress ib le , hypere las t ic m a t e r i a l s . We r e tu rn to the m e m b r a n e 

prob lem in Chapter VI. 

3. 2 Phys ics of Waves in Nonlinear Elas t ic Mate r i a l s 

We now review ce r t a in fea tures of the dynamical and t h e r m o -

dynamical theory of finite e last ic i ty that a r e essen t ia l to our study. 
3 • 

More complete detai ls can be found in the books of Green and Zerna [ 6 5 ] , 

Green and Adkins [ 3 4 ] , and Bland [ 4 3 ] ; ce r ta in special fea tures a r e 

d i scussed in the pape r s of Nowinski [5 0 ] , Ames [ 7 3 ] , and Reddy and 

Achenbach [ 5 1 ] . Extensive r e fe rences can be found in the lengthy 

survey a r t i c l e of Chen L 53] . 
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Motion of a Thin Rod 

We begin by considering longitudinal motions of a thin rod of 

i sot ropic , incompress ib le m a t e r i a l . While at r e s t in a na tura l 

re ference configuration C , the rod has a uniform symmet r i c c r o s s 

section of a r e a A V a length LQ» and a m a s s density pQ. To desc r ibe 

the motion of the rod re la t ive to its re fe rence configuration* we 

es tabl ish a fixed spatial f rame of re fe rence x, with origin o at one 

end of the b a r , which is a s sumed to be r e s t r a ined from motion. We 

denote by X the labels of m a t e r i a l pa r t i c l e s (mate r ia l coordinates) of 

the b a r , and we select these* IBb^liS so aŝ  to numer ica l ly coincide with 

the spatial coordinates x when the ba r occupies its re fe rence con-? 

figuration. The function x = x(X, t) then gives the spa t ia l posit ion of 

the par t i c le X at t ime t and defines the longitudinal motion of the b a r , 

while u(X, t) = x(X, t ) - X defines the displacement of pa r t i c l e X at 

t ime t. 

The m a t e r i a l gradient 9x/9X se rves as a convenient m e a s u r e of 

the deformation; physical ly, it r e p r e s e n t s the longitudinal extension 

ra t io \ (also called the s t re tch) which is express ib le in t e r m s of the 

d isplacement gradient u.v according to 
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where for the one-dimensional p rob lems we use the subscr ip t notation 

UX = 9u/9X to denote pa r t i a l differentiation with respec t to X. The 

2 
extensional s t ra in y is then simply (X. - l ) / 2 . 

Typically* as Nowinski [50] and Ames [ ? 3 ] , we make the following 

assumpt ions : 

(i) The or iginal uniform c r o s s - s e c t i o n a l a r e a is sufficiently 

smal l so that the rad ia l iner t ia assoc ia ted with the l a t e r a l contract ion 

may be neglected. 

(ii) In compress ion and tension zones the rod does not exper ience 

m a t e r i a l instabili ty. 

(iii) The m a t e r i a l is perfect ly e las t ic and incompress ib le . 

(iv) The rod is subjected to s imple unidirect ional s t r a in in the 

sense that the only identically nonvanishing s t r e s s component is the 

longitudinal no rma l s t r e s s component which is uniformly dis t r ibuted 

over the c r o s s section which r emains plane. 

(v) The effect of s t r a in r a t e on the consti tutive equations is 

neglected and the stat ic s t r e s s - s t r a i n re la t ions a r e extended to the 

dynamic case . 

(vi) The s t r e s s is a continuous monotonically increas ing function 

of the s t re tch \> so that dcr/d\ > 0 . 

Now any d is turbance supplied to the rod will t r a v e l with finite 

speed f rom one par t i c le to another in the form of a surface (curve) of 
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discontinuity S (a wave) in the X, t plane. If we denote by Y(t) the 

par t ic le X reached by a wave front at t ime t, then the set of points 

( Y ( T ) , T ) , T being a r e a l p a r a m e t e r , defines a curve in the X, t plane 

a c r o s s which jump discontinuit ies in var ious pa r t i a l der iva t ives of 

u(X, t) can occur . Indeed, acce le ra t ion waves involve jumps in the 

acce le ra t ion u (and the s t r e s s gradient 8cr/3X), and shock waves 

(shocks) involve the propagation of surfaces a c r o s s which jump d i s ­

continuities in the f i r s t der ivat ives of the d isplacement (u and u^.) a r e 

e x p e r i e n c e d . T h e i n t r i n s i c w a v e s p e e d r e l a t i v e to t h e m a t e r i a l , 

denoted c, is then simply dY(t ) /d t . However, the spatial posit ion 

y(t) of the wave is c l ea r ly • 

y(t) = x(Y(t), t) '*"* (3.2) 

and the absolute wave speed, as seen by a s ta t ionary o b s e r v e r , is 

T dyjt) dx(Y(t),t) , 
v = dt •" dt { ' ' 

The Balance Laws 

We a s s u m e , of c o u r s e , that the response of the b a r sat isf ies the 

bas ic conservat ion laws of phys ics . F o r the p rob lems at hand, these 

a s s u m e the following global fo rms : 
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Linear Momentum 

Ao J (o"x ~ PoU^X " Aof °" +
 P Q ^ I Y 

Lo-Y(t) 

= 0 

Energy 

( 3 . 4 ) 

AQ \ (pQuu + e - o-̂ u - <rux - qx)dX 

L0-Y(H 

+ A
0 lf- |po c i 2 + c e + **• + ql Y = ° 

( 3 . 5 ) 

Clausius-Duhem Inequality 

L o - Y ^ ) 

> 0 (3.6) 

Here (r(X,t) is the first Piola-Kirchhoff stress, e is the internal energy 

per unit initial volume, q is the heat flux, £ is the entropy per unit 

initial volume, and 0 is the absolute temperature. Quantities in brackets 

denote jumps suffered at the surface of discontinuity (Y(t),t); e.g. , 

f'o-Iy = o-(Y(t-),t) - o-(Y(t+),t) (3. 7) 

Mass is conserved in the rod arid we have ignored body forces and 

internal heat sources for simplicity. 
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At par t i c l es X that do not fall on a surface of discontinuity, (3 .4 ) -

(3. 6) lead to the local forms of the balance laws 

PoU - ^X = ° 

• • e - o-\ - q^ = 0 (3. 8) 

qex 

whereas at the surface of discontinuity, w e o b t a i n the jump conditions 

P 0 c I u ] l Y + I o - J y = 0 

P 0 c E u 2 ] Y + c[[e]lY + Eo-u]|Y + [ q ] l Y = 0 (3.9) 

.cMy|f] v>o 

Equation (3. 9) ? is the energy jump condition. We now a s s u m e that the 

momentum jump (3. 9)V is identically satisfied. The wave speed can 

be expressed as 

c = i d o. 10) 
Potil 
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With th is , the f i rs t t e r m in (3. 9) ? takes the form 

- | p o c I u 2 ] = - l a j n (3.11) 

where we have defined the average m a t e r i a l velocity u at the shock by 

G = | ( u + + u") 

and -we h a v e deno ted u = u(Y(t ), t ) and u~ = u(Y(t ), t ) . Subs t i t u t i ng 

(3. 11) into (3. 9)2 » express ing the jumps using (3. 7) then multiplying 

and regrouping t e r m s , gives 

cffe] + t r i a l + I q J = 0 (3. 12) 

where a is the average s t r e s s at the shock defined by 

?.S | ( ( T + + ( T - ) 

Equation (3. 12) will be called the local energy jump condition. 

It is often convenient to introduce the Helmholtz f ree energy 

cp(X, t) and the internal diss ipat ion 6(X,t) defined for X =£ Y(t) by 

cp = e - £0 and S = 9£ - q x (3- I 3 ) 
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Then the las t m e m b e r of (3. 8) can be rewr i t t en in the a l t e rna te form 

6 + l j j £ = <r\ - • £ + 6 9 + ^ >-0 (3.14) 
9 0 

Also, we can impose Maxwell 's theorem* w h i c h a s s e r t s that for 

any function f(X,t) jointly continuous in X and t, but whose f i r s t pa r t i a l 

der iva t ives f-̂- and f suffer jump discontinuit ies at S, the jump a c r o s s S 

in the ( two-dimensional) gradient of f mus t be pa ra l l e l to a vec tor ( - 1 , c) 

no rma l to S. Applying this idea to the motion x(X, t ) yields H a d a m a r d ' s 

compatibi l i ty condition 

I u ] Y + c I x ] | Y = 0 (3.15) 

Waves in Hype re last ic Mate r i a l s 

We now a im our analys is toward waves in hypere las t ic m a t e r i a l s ; 

that i s , we wish to cons ider m a t e r i a l s for which the re exis ts a 

potential W which is a function of the cu r r en t value of X, and for which 

W = o-\ and cr= | £ ' (3.16) 
ax 

The question a r i s e s , however, as to whether or not a theory of hyper -

e las t ic i ty is reconci lable within the thermodynamic f ramework es tabl ished 
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thus far. This is a c lass ic question, and standard a rguments can be 

found in a number of p laces (e. g. , [17 , 74]) to the effect that hyper -

elas t ic i ty is indeed poss ib le in a number of physical ly meaningful 

s i tuat ions. The fact that these s tandard a rguments a r e not valid at 

surfaces of discontinuity is fundamental to the physics of shock waves . 

We mention two c a s e s . F i r s t , cons ider a c l a s s of perfect 

m a t e r i a l s (cf. , [ 7 4 ] , p . 296), the consti tution of which is defined by 

equations for e, <r, G, and q depicted a s functions of the cu r r en t values 

of X and £, with q a lso dependent on 6v(X»t). F o r r e v e r s i b l e p r o c e s s e s 

per formed on such m a t e r i a l s , the diss ipat ion 6 = 6£ - q x = 0, and 

(3. 8) gives 

(*-ff)M9-ff)l + i h e x £ 0 <3-17> 

so long as X € (LQ - Y(t)). Secondly, we consider a c lass of s imple 

m a t e r i a l s (cf. , [ 1 7 ] , p. 202) whose consti tution is defined by equations 

for cp, <r> £» and q in t e r m s of c u r r e n t values of \ and 8, with q a lso 

dependent upon 9y-(X,t). F o r r e v e r s i b l e p roces s (6 = 0), using (3.13) 

in (3.8) gives us the inequality 

('•^-(^fa^i^^ <3-i8> 
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for all X e (LQ - Y(t)). If these two inequal i t ies , (3.17) and (3.18)» 

a r e to be maintained for a r b i t r a r y r a t e s , it n e c e s s a r i l y follows (cf. , 

[ 1 7 ] , p. 214) that in the absence of a shock, a theory of hyper leas t ic i ty 

is appropr ia te for r eve r s ib l e isentropic p r o c e s s e s (8 = 0, £ = 0) 

per formed on the above c lass of perfect m a t e r i a l s and for r e v e r s i b l e 

i so thermal p r o c e s s e s (6 = 0, 9 = 0) per formed on the above c lass of 

s imple m a t e r i a l s . In the f o r m e r c a s e , the s t r a in energy is assoc ia ted 

with the internal energy, in the la t te r case it is assoc ia ted with the 

f r e e e n e r g y . H o w e v e r , s i n c e a s h o c k Ls c h a r a c t e r i z e d b y d i s c o n t i n u i t i e s 

in the displacement gradient , the n e c e s s a r y der iva t ives of e in (3. 17)» 

or of cp in (3.18) , do not exist for X = Y(t). The re fo re , we mus t have 

energy diss ipat ion at X = Y(t), i. e. , 6 = 96 - q v >• G, and we lose the 

notion of revers ib i l i ty . 

Due to the considerable difficulties involved in solving the nonlinear 

t he rmo-mechan ica l equations governing i r r e v e r s i b l e thermodynamic 

p r o c e s s e s , the only exact solutions ava ilable (cf. , [44 , 46]) a r e for 

shocks with uniform conditions on both sides of the discontinuity. Hence, 

for additional solut ions, we need to simplify the governing equations so 

that they become t r ac tab le . One possibi l i ty , suggested by the exact 

discontinuous solutions t h e m s e l v e s , is the well known fact that "weak 

shocks" a r e nea r ly isentropic (e .g . , [ 4 3 ] , [ 7 5 ] , or [76] for detailed 

d iscuss ions) . This i s , taking the propor t ional change in magnitude 
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a c r o s s the shock of some state p a r a m e t e r , say u ^ , as a m e a s u r e of 

shock " s t reng th" , the change in entropy a c r o s s the shock Ls only of 

th i rd o rde r in the shock s t rength for smal l changes of u^ . There fo re , 

for weak shocks, we can neglect the entropy change and cons ider § as 

constant for al l X and t , i. e. , the deformation takes place isentropical ly . 

It is of specia l in te res t to consider this " i sent ropic approximat ion" when 

the init ial , or r e fe rence configuration is the na t rua l s t r e s s - f r e e state 

where \ (X, 0) = 1, 6(X, 0)•= T Q = constant . Then the isentropic approxi ­

mat ion becomes | = 0 everywhere for all t ime . Moreover , for this 

c a se , the isentropic approximations r ende r the mechanica l equations 

independent of the t h e r m a l equations, and the mechanica l jump conditions 

(the f i r s t of (3. 9) and (3. 15)) alone a r e sufficient to de te rmine the shock 

p r o c e s s . (Naturally the energy jump condition r ema ins valid, but he re 

it would only be used to check the energy balance after solving the 

problem. ) Also, we can readi ly define the s t ra in energy function W of 
• • - • ! 

(3. 16) in t e r m s of the internal energy W(\) = e(X., £) L » s o that we 

have the consti tutive re la t ion for the s t r e s s <r = 3 e / 3 \ , in ag reement 

with (3.16). 

We r e m a r k that the local ba lance laws (3. 8) suggest another 

simplification: the adiabatic approximation, where in we a s s u m e the 

heat conduction smal l enough to take q = 0. Outside the shock region, 

the adiabatic p r o c e s s is r e v e r s i b l e (8 = 0); and then f rom (3. 13) we get 
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the r eve r s ib l e adiabatic p r o c e s s to be an Lsentropic. p r o c e s s . Hence, 

Ln regions of the rod where X 4- Y(t), a theory of hyper e las t ic i ty , in 

the sense of (3. 17), is poss ible . At -the shock, the adiabatic p r o c e s s 

is not r e v e r s i b l e : entropy is produced. Then, by integrating the 

inequality of (3. 8) with q = 0, we get £ = £(X). Therefore the entropy 

at each m a t e r i a l point has a constant value unless a shock p a s s e s over 

the point, at which t ime the value of the entropy is changed to a new 

constant . Consequently, until the t ime at which a shock f o r m s , the 

adiabatic p r o c e s s is Lsentropic for every X e (0, LQ); after this t i m e , 

the adiabatic p r o c e s s i s , in general* piecewise i sent ropic , i. e. , it is 

l sen t rop ic for every X € {(0,Y(t~)] , [ Y ( t + ) , L 0 ) } . 

Both of these assumpt ions can, of c o u r s e , be s imultaneously 

incorporated if we consider the propagation of weak adiabatic shocks. 

In this c a se , again following (3.17), the m a t e r i a l will be everywhere 

hypere las t i c at a l l t imes . 

3. 3 Evolution and Propagat ion of Discontinuit ies 

We now look at the physical conditions which a r e genera l ly requ i red 

for the formation and propagation of d iscont inui t ies- -both shock waves 

and acce le ra t ion (simple) waves in r u b b e r ^ l i k e n i a t e r i a l s . . We also 

br ief ly cons ider methods for determining the t ime requ i red for d i s ­

continuities to evolve during the solution p r o c e s s . 
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Propagat ion of Shock and Acce le ra t ion Waves 

In the absence of shocks, we previously obtained the f i r s t m e m b e r 

of (3. 8) as the local form of the law of conservat ion of l inear momentum. 

In view of the consti tutive re la t ion (3. 16) for hypere las t ic m a t e r i a l s , 

we have tr = (r(\), so that the local m o m e n t u m equation for such m a t e r i a l s 

can be wr i t ten in the form 

u - e 2 ( u x ) u x x = 0 (3.19) 

where the squared intr insic wave speed, c^ (u x ) , is given by 

c 2 ( u X ) ; = ^ f : " ^ " (3.20) 

We also note that , s ince £ = dx» we can r eca s t the local momentum 

equation (3. 19) in t e r m s of X according to 

r = [ c 2 ( X ) x x ] x (3.21) 

whe re , c l ea r ly , the forms of c^(X) and c ( u x ) will be different. 

As noted e a r l i e r , for hypere las t ic solids the s t r e s s is der ivable 

f rom a potential function W which r e p r e s e n t s the s t ra in energy pe r unit 

undeformed ( reference) volume vQ. F o r isotropic incompress ib le 
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bodies , W is general ly defined in t e r m s of the f i rs t two pr inc ipa l 

invar iants , I* and I 2 , of G r e e n ' s deformation t ensor , the thi rd 

- 1 2 pr inc ipa l invariant being unity. In the p re sen t ca se , I« = 2X + X » 

I 2 = 2X + X" , and el imination of the hydrosta t ic p r e s s u r e with the 

condition that t r a n s v e r s e no rma l s t r e s s e s a r e ze ro , leads to the 

genera l consti tutive law 

0- = 2(WXX + W 2 ) ( l - X"3) (3. 22) 

where W^ = dW/dl , a = 1, 2. Substituting (3. 22) into (3. 20), we 

observe that the square of the wave speed in m a t e r i a l s defined by 

(3. 22) is of the form 

c 2 = — [ ( 1 + 2X" 3 )Wi + 3X" 4 W ? (3.23) 
Po 

+ 2(1 - X"3)2(W1 1X2 + 2W12X + W 2 2 ) ] 

If we e l iminate , on physical grounds , the possibi l i ty of complex 

wave speeds , we, in tu rn , impose conditions on the form of •¥• and its 

der iva t ives W , W^o. In this r e g a r d , we a s sume that the s t r e s s cr is 

a continuous monotonically increas ing function of the s t re tch X, so that 

2 for al l X € (0,co), we have 0 < pQc (X) = dcr/dX < 00. This important 



44 

property allows us to interpret qualitatively a number of interesting 

nonlinear wave phenomena. For example, suppose that a t ime-

dependent surface traction is applied at the free end of the rod. During 

each infinitesimal increment in t ime, the corresponding increment in 

load produces a "wavelet," so that, using Nowinski's terminology [50] , 

the net effect of the loading is to produce an "infinite manifold" of wave­

lets propagating along the rod. Obviously, each successive wavelet 

propagates at a speed determined by the instantaneous slope of the 

cr versus \ curve for the material . Thus if consecutive wavelets are 

propagated with decreasing speeds, the slope of the wave front Will 

gradually decrease (contrasting markedly with the usual sharp dis­

continuity at the wave front in materials with linear cr - \ curves), 

and the response will be propagated as a simple wave. However, if 

the distance between successive wavelets decreases during propagation 

(they are generated with increasing speeds), the wave profile steepens 

until the discontinuity is transformed into a shock wave. 

To be more specific, consider, for example, the following special 

forms of the strain energy function: 

The Neo-Hookean Form 

W = CG* - 3) (3. 24) 



45 

The Mooney Form 

W = C j d j - 3) + C 2 ( I 2 - 3) (3. 25) 

The Biderman Form 

W s-Bid i - 3) + B2[Ii.-$)*+.''B31Xi - 3)3 + B4(I2 - 3) (3.26) 

Here C, C j , C2>. . . > B^ are material constants. Examples of a variety 

of other forms of W proposed for real materials were summarized 

earlier in Section 2. 6. Note that for Mooney materials 

c 2 = —[CA1 + 2X~3) + 3 C 9 \ " 4 ] (3.27) 
Po • *-

whereas in the case of Biderman materials 

c2 = — { [ B i + 2B9(2X~1 •+ \ 2 - 3) (3.28) 
Po 

+ 3B3(2X"1 + X2 - 3 ) 2 ] (1 + 2X~3) + 3B4X"4 

+ [ 4 B 2 + 12B3(2X"1 + X2 - 3)](X - X"2)2} 
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z The function c for neo-Hookean m a t e r i a l s follows from (3.27) by 

setting C 2 = 0. Equations (3. 24 H 3 . 26) with (3. 22) and (3. 27) and 

(3. 28 ) desc r ibe cr - \ and c - X curves of the type shown in F igs . 2 

and 3. Clear ly , the type of wave genera ted by ah initial d is turbance 

depends Upon both the initial state (i. e. , the initial value of X.) and 

whether \ is subsequently increased or dec reased . A discontinuity 

is propagated as a s imple wave if, and only if, the intr insic wave speed 

of the m a t e r i a l in front of the discontinuity is g r e a t e r than that of the 

m a t e r i a l behind the discontinuity (cf. , [ 7 5 ] , p. 243). Hence, Fig. 3 

suggests that for both the Mooney and neo-Hookean m a t e r i a l s , only 

compres s ion Shockwaves can be developed. However, for ce r t a in 

Biderman- type m a t e r i a l s (curve 2 in Fig . 3), it is possible to produce 

a tens i le shock wave if the m a t e r i a l i s p r e s t r e t c he d sufficiently. The 

development of such tens i le shocks h a s , in fact, been observed 

exper imenta l ly by Kolsky [ 56], "IP is a lso interest ing to cons ider the 

case in which an applied tens ion load is suddenly removed. F r o m 

Fig. 3 we can see that this discontinuity cannot be propagated by a 

s imple wave since the wave speed is sma l l e r before the load is r e l ea sed 

than after . Thus , it follows that the instant the s t r e s s at the end of the 

rod begins to d e c r e a s e (after having increased) is a l so the t ime at which 

the f i r s t wavelet emanates f rom the end with a p r o p a g a t i o n s p e e d fas te r 

than the preceding wavele ts . There fo re , at some t ime subsequent to 
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1 = Mooney / N e o - Hooke an 
2 = B i d e r m a n 

F i g u r e 2. S t r e s s v e r s u s S t r e t c h for S o m e R u b b e r - l i k e M a t e r i a l s 

_1_ d£ 

Po d X = c 

1 = M o o n e y / N e o - H o o k e a n 
Z = B i d e r m a n 

F i g u r e 3 . W a v e Speed v e r s u s S t r e t c h for S o m e R u b b e r - l i k e M a t e r i a l s 
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the moment when the unloading s tar ts , the propagated influence of this 

release, or unloading, is expected to develop into a shock wave. 

Evolution of Discontinuities 

The formation of discontinuities in solutions of nonlinear hyper­

bolic equations has been a topic of interest for many years. The 

research on this topic falls into two principal categories: discontinuities 

which evolve from Lipschitz continuous initial data and those which 

evolve from smooth initial data. In the former case, there is a clearly 

defined wave front and a characteristic along which the initial discon­

tinuity (even when starting with analytic initial data* a Lips chit z dis­

continuity can subsequently develop) propagates until it tends to a jump 

discontinuity at some critical t ime, say t^-jj. This jump discontinuity 

then propagates in a completely different manner from the Lipschitz 

discontinuity. As this is discussed in detail in [ 4 3 ] , [ 75], and [41] , we 

will mention only the essential features. 

In general, the characterist ics of the nonlinear wave equation are 

curved lines in the X> t plane. However, if a constant, initial state is 

prescribed for the rod, the characterist ics of positive slope are a 

family of straight lines and the corresponding wave is a simple (acceler­

ation) wave. If the excitation at the end of the rod is such that successive 

wavelets are generated with decreasing wave speeds, these straight 

characterist ics diverge in the X, t plane. But, if the wave speed at 
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the end of the rod inc reases (e. g. , due to compress ion or , some t imes , 

tens ion with an "S-shaped" o- - \ curve) , the c h a r a c t e r i s t i c s of posit ive 

slope will no longer diverge. Instead, they converge and form an 

"envelope" as shown in Fig . 4. It is on this envelope that the values 

of velocity and s t r e s s , c a r r i e d by the c h a r a c t e r i s t i c s , conflict so that 

the curve C2 is an approximation of a shock wave propagating with 

var iab le speed and car ry ing a var iab le s t r e s s . The ea r l i e s t t ime that 

such an envelope a p p e a r s , 1, e. , when the f i r s t two c h a r a c t e r i s t i c s 

c o n v e r g e , a c u s p i s f o r m e d a t s o m e po in t X ^ p , A t t h i s po in t ( X ^ R , 

*ClO a unique solution of the wave m o t i o n , cha rac t e r i zed as a s imple 

wave, is mathemat ica l ly impossible . It is the jump conditions which 

enable us to continue pas t (Xp-n, %-R ) with a unique solution for the 

shock. 

The second category; the evolution of discontinui t ies f rom smooth 

initial data, is the topic which seems to be of cu r r en t in te res t (e. g. , 

[ 7 3 ] , [ 7 7 ] , [ 7 8 ] , [79] ) . When appl icable , the method presen ted by 

Ames [73, 77] is the s impl ies t and mos t accura te . This method resu l t s 

f rom observing that c l a s se s of quas i - l i nea r equations can be obtained 

by differentiation of f i r s t - o r d e r nonlinear equations. The f i r s t o rde r 

equations a r e then used to calculate the t ime t ~ p . 

F o r the one-dimensional rod considered here in , we find f rom [73] 

that the c r i t i ca l t ime is given by 



50 

CCR 

XCR 

Figure 4. C h a r a c t e r i s t i c Field for Simple Wave with a Shock Format ion 
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*CJk ° m* rftf' ( 3 " 2 9 > 

where p r i m e s mean differentiation of the quantity with r e spec t to the 

a rgument , and the forms of h and <}> depend upon which form of the 

wave equation we a r e consider ing, (3. 19) o r (3. 21). F o r the d i sp lace ­

ment fo rm of the equation of mot ion , (3. 19), we have 

u x = h [ X + (j>(u£)t] (3.30) 

+ = c (u x ) ' . (3.31) 

with c(uv) being the m a t e r i a l shift r a te defined in (3. 20). If We consider 

(3. 21) on the other hand, we have 

Xi = h [ X + -<j>(\jfe] (3. 32) 

V=c(\)-

where the form of c ( \ ) Is given in (3. 23); r s 

3.4 Mathemat ica l ^Theory 

To complement the preceding physical d i scuss ion of shock and 

acce le ra t ion wave propagat ion, we br ief ly look at the ma thema t i ca l side 
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of the theory. The mathemat ica l theory of hyperbolic sys t ems of 

conservat ion laws and the theory of shock waves was recent ly published 

by Lax [ 5 2 ] . A brief outline of a port ion of this cogent work follows. 

It is well known that solutions to initial value problems for some 

quas i - l inea r pa r t i a l differential equation cannot be continued for all 

t ime as regu la r (differentiable) solutions, because they develop d i s ­

continuities after a finite t i m e - - n o m a t t e r how smooth the initial data. 

Since a conservat ion law is an integral re la t ion, the solutions may be 

continued, however, by functions which a r e not differentiable or 

continuous, but m e r e l y measu rab le and bounded. We refer to these 

solutions as weak, or general ized solutions. The breakdown of a 

regu la r solution may m e r e l y mean that although a genera l ized solution 

exis ts for all t i m e , the regu la r solution ceases to be differentiable after 

a finite t ime . All available evidence indicates that this is so. It is 

possible that m o r e than one genera l ized solution m a y satisfy the same 

initial condit ions, and hence these solutions do not pos s e s s the important 

p roper ty of uniqueness posses sed by regu la r solutions. However, if our 

ma themat ica l model desc r ibes some aspec t of the physical world, then 

there is indeed a unique genera l i zed solution for the given initial condit ions, 

namely, the one that occurs in na ture . Lax p resen t s a c l a s s of c r i t e r i a 

which ensures uniqueness of the genera l ized solutions. 
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Quas i - l inea r Hyperbolic Equations 

A f i r s t o r d e r sys tem of quas i - l inea r equations in two independent 

va r i ab les is of the fo rm 

u + A u x = 0 (3.34) 

where u. is a vector function of X and t» A being a m a t r i x function of u 

as well as of X and t. Such a sys t em is called s t r ic t ly hyperbolic if 

for e a c h X, t, and u t h e m a t r i x A = A(X»y, u) h a s r e a l and d i s t i n c t 

eigenvalues T . = T-(X,t> u) » j = 1, 2 , . . . »n. 
j J 

The initial value p rob lem for (3.34) is to find a solution u(X>t) 

with p r e s c r i b e d values at t = 0. 

u(X, 0 ) = u o ( X ) (3.35) 

Conservat ion Laws 

A conservat ion law a s s e r t s that the ra te of change of the tota l 

amount of substance contained in a fixed domain G is equal to the flux 

of that substance a c r o s s the boundary of G. Denoting the density of that 

substance by u and the flux by ,f» the global form of the conserva t ion law 

is 
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\ u dv = .-. I f . n dS (3.36) _d_ 
dt 

G 8G 

where n denotes the outward no rma l to G and dS is the surface element 

of 9G, the boundary of G. Applying the divergence theo rem and takLng 

d/dt under the integral sign we obtain, in the l imit as G shr inks to a 

m a t e r i a l point where al l pa r t i a l der ivat ives of u and f a r e continuous, 

the differential (local) fo rm of the conservat ion law 

u + div f = 0 (3.37) 

If we have a sys tem of conservat ion laws, we wr i te 

v? + div fJ" = 0 . ' . . , j = l , 2 , . . . , n (3.38) 

where each £•* is somei hdnlihear function. of u / . .!. > u J In vec tor 

notation, using subscr ip t s to denote pa r t i a l differentiation, we can 

wr i te (3. 38) as 

u.+ fv = 0 - (3.39) 

Differentiating, we have J-^ = Auy> plus possibly a vec tor valued 

function B of (X , t , u ) ; he re A-.. = 8f1 /9u . Hence we can wr i te (3. 39) as 
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u + A u v + B = 0 (3. 40) 

u is called a general ized solution of the sys tem of conservat ion 

laws (3. 39) if it sat isf ies the integral form of these laws, i. e. , if 

f* ^2 p^2 p 
\ u dv + \ \ f i n d S d t t O (3. 41) 
G H t x 8G 

holds for every smoothly bounded domain and for every t ime interval 

(t-»t~). This is equivalent to requir ing that (3. 39) holds in the sense 

of dis t r ibut ion theory. 

Let S(t) be a smooth surface (a curve for one space dimension) 

moving with t> and u a continuously,differentiable solution of (3. 39) on 

e i ther side of S which is discontinuous a c r o s s S. The condition which 

mus t be satisfied at each point of S if u is a general ized, or weak, 

solution a c r o s s S is 

afful + lLl ' n = 0 (3.42) 

where [ u j and I f J denote the difference between the values of u and f, 
^ # *** - • m i ^ • 

respec t ive ly in ei ther side of S> n is the vec tor no rma l to S» and a is 

the speed with which S propagates in the di rect ion of n. Equation (3. 42) 

is called the Rankine-Hugoniot jump condition. 
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Single Conservat ion Laws 

A single conservat ion law is an equation of the form 

u + fx = 0 (3. 43) 

where f is some nonlinear function of u. If we denote df/du = a(u), we 

can rewr i t e (3.43) as 

u + a (u )u x = 0 (3. 44) 

which a s s e r t s that u is constant along t ra jec to r ies X = X(t) which 

propagate with speed a 

dX/dt = a (3.45) 

Hence a is called the signal speed; the t r a j ec to r i e s , satisfying (3.45), 

a r e called c h a r a c t e r i s t i c s . Note that if f is a nonlinear function of u, 

both the signal speed and the c h a r a c t e r i s t i c s depend on the solution u. 

Following th is , it is shown, by both analytic and geomet r ic a rgu ­

men t s , that if a(u (X)) is not an increasing function of X, then no 

function u(X, t) exis ts for all t > 0 with initial value u which solves 

(3. 44) in the ord inary sense . Attention is then d i rec ted to the study 



57 

of dis t r ibut ion solutions, s tar t ing with the s impl ies t k ind- - those 

satisfying (3.43) in the ord inary sense on each side of a smooth curve 

X = Y(t) a c r o s s which u is discontinuous. Integrating the solution 

a c r o s s the discontinuity and envoking the a s se r t i on of the conservat ion 

law> the jump condition 

s lu l = [fj (3.46) 

is then deduced, -where [[uj = u - u-i > the difference of the value of u 

on the r ight and left, respect ive ly , of s, and s imi la r ly , [[fj = f - ft > 

and s = dY/dt denotes the speed with which the discontinuity propagates . 

Using the example when a(u) = u in (3. 44), the following c r i t e r ion 

is stated: 

The c h a r a c t e r i s t i c s s tar t ing on ei ther side of the discontinuity 

curve when continued in the d i rec t ion of increas ing t in te rsec t the line 

of discontinuity. This will be the case if 

a ( u 1 ) > s > a(U r) (3.47) 

If all discontinuit ies of a genera l ized solution satisfy this con­

dition, no cha rac t e r i s t i c drawn in the di rect ion of decreas ing t in te r sec t s 

a line of discontinuity. This shows that for such solutions every point 
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can be connected by a backward drawn cha rac t e r i s t i c to a point on the 

initial l ine; there in lies the significance of this condition. When applied 

to the equations of compress ib l e flow, this general iza t ion amounts to 

requir ing that m a t e r i a l which c r o s s e s the discontinuity should suffer 

an inc rease of entropy. Fo r this r eason^cond i t ion (3. 47) is called the 

entropy condition. 

A discontinuity satisfying the jump relat ion (3. 46) and the entropy 

condition (3. 47) is called a shock. 

L a x t h e n g o e s on to show t h a t e v e r y in i t i a l v a l u e p r o b l e m for 

(3. 43) has exactly one general ized (weak) solution, for all t '!> 0, which 

has only shocks as discont inui t ies . Specifically, it is shown that for a 

function to qualify as a unique solution, four r equ i remen t s mus t be met : 

(1) the function is a solution in a genera l ized sense , (2) it satifies the 

initial condit ions, (3) it sat isf ies the jump condition, and (4) it sat isf ies 

the entropy condition. 

In Chapter IV, r a the r than at tempt to model all four of the requi red 

equations mentioned above, we choose an integration scheme which 

automatical ly sat isf ies two of the four r equ i r emen t s . This scheme 

contains a bui l t - in diss ipat ive mechan i sm that can increase the entropy 

a c r o s s a shock and we obtain solutions of conservat ion laws as l imi ts of 

solutions of parabol ic equations (they have steep g rad ien t s , but no 

shocks) as the coefficient of the diss ipat ive t e r m goes to ze ro . 
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CHAPTER IV 

ONE-DIMENSIONAL APPROXIMATIONS 

4 . 1 Fini te Element Approximations 

We a r e ready to develop d i sc re t e models of the equations govern­

ing nonlinear waves by using the f in i te-e lement concept. Toward th is 

end, we begin by part i t ioning the rod into a finite number E of segments 

connected together at nodal points at the i r ends. The E + 1 nodes a r e 

labeled 0 = X 1 < X 2 < . . . < X E + 1 = L n , and the mesh length h M = X ^ + 1 

- X (N = If 2 , . . . , E) is a s sumed to be uniform, i. e. , h ^ = h. The lN " 

exact solution of the var ia t ional p rob lem belongs, for each t ime t, in 

a space we shall t e r m the energy space JT, which is suggested na tura l ly 

by the var ia t ional formulation of the problem. (In the l inear ized theory , 

Jf(0, LQ) is the Sobolev space <# (0, LQ). ) In the f ini te-e lement method, 

we seek approximate solutions for e i ther the displacement field u, the 

solution to (3. 19), or the extension ra t io (s t re tch) \ , the solution to 

(3. 21), in a finite dimensional subspace of £(0> L ) containing the exact 

var ia t iona l solution to the problem. We could introduce an approximat ion 

for u of the form 

u t X . t J i u ^ t ^ i X ) (4.1) 
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where u-*r(t) a r e the nodal values of the d isplacement , ru,(X) a r e bas i s 

functions, and the repeated index N is summed from 1 to E + 1. 

Simi lar ly , we could introduce an approximation for X of the form 

MX.t j = \N(t)(?N(X) (4.2) 

where Xiyrft) a r e the nodal values of the extension ra t io and '^L-(X) a r e 

bas i s functions. 

In the f in i te-e lement method, it is convenient to f i r s t desc r ibe 

the behavior of each element independently in t e r m s of the nodal va lues ; 

the ent i re set of e lements is then connected together by establishing the 

nodal connectivity. Hence we now take advantage of this fundamental 

p roper ty of f in i te-e lement models and t empora r i l y focus our attention 

on a typical e lement f rom the assemblage represent ing the continuous 

rod. 

To cons t ruc t the finite model of an e lementa l field quantity, say 

f(X,t) , we introduce the approximating functions for each e lement which 

a r e locally of the form 

f(x,t) = yt)yx) (4.3) 
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For simplicity, we consider only f irst-order representations, so that 

the repeated index a is a nodal index which ranges from 1 to 2 for the 

one-dimensional rod element. Here, fa(t) is the value of f(X,t) at node 

a of the element at time t, and ^ ( X ) are the usual local (elemental) 

interpolation functions which have the following properties 

2 

In general) these local interpolation functions contain complete poly­

nomials of degree p, where p + 1 is the order of the highest material 

derivative that appears in the energy equation for the element. In this 

case, we have p = 1 (cf. , [17]). Therefore, the particular elemental 

field quantity f(X,t) is simply a linear function of the local coordinates 

of the elements; i. e. , 

i. 

f(X, t) = *a{X)£a(t) = (a a + bffX)fa(t) (4. 4) 

where, for any element 

a a . ~ - [ a r a 2 ] = [0 ,1] , • b a ~ [ b ^ ] = - £ [ - 1 , 1] (4.5) 

Then, from (4.4), we have the well-known linear interpolation expression 
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f(X,t) = (ax + b jX j f^ t ) + (a2 + b2X)f2(t) 

(4.6) 

= fj(t) + (X/h)(f2(t) - fjCt)) 

4. 2 Galerkin Models for Nonlinear Wave Propagat ion 

Using the local approximation (4. 3), we can cons t ruc t finite 

e lement models for (3. 19) and (3. 21) using what is somet imes r e f e r r ed 

to as the concept of var ia t ional solutions. This natura l ly r e su l t s 

in Galerkin- type models . Initially, consider (3. 19). We seek solu­

tions which a r e weaker than the exact solution of (3. 19) by only 

requir ing that 

h , 

\ (u - c2ux x)(3(X)dX = 0 (4. 7) 
o 

for any a r b i t r a r y function (3(X) which has a continuous f i r s t der ivat ive 

and vanishes outside the element. In a s imi la r manner , we can seek 

weaker solutions of (3. 21) by requir ing that 

h 

J (\ - (c2\x)x)0(X)dX = 0 (4.8) 
o 

where 0(X) is an a r b i t r a r y function which has a continuous f i r s t d e r i ­

vative and which vanishes outside the element . 



There is an in teres t ing-re la t ionship between (4. 7) and (4. 8). If 

we integrate (4. 8) by pa r t s and let (3 =J-$kr.» we have ( recal l that 

X = 1 + Uy- so that X = u x ) 

h h 

J (X - (c 2 X x ) x )0dX = J ^ ( u - c 2 u x x ) 0 d X 
o o 

h - ' • • . ' 

= - A (u - e 2 u x x ) 0 x d X (4. 9) 
o 

h 

= A (ii - c 2 u x x ) P d X 

o 

This r e su l t essent ia l ly implies that if X sat isf ies (4. 8), and if (3 = -0V> 

then u sat isf ies (4. 7). Clear ly the converse a lso holds. 

In Section 4. 3, we want to examine p roper t i e s of.the finite 

e lement models developed from (4. 7) and (4. 8) using ce r t a in funda­

menta l ideas of finite e lements concerned with energy. Clear ly , 

under ce r t a in condit ions, finite element models developed f rom (4. 8) N 

a r e equivalent to those f rom (4. 7). 

Local F o r m of the Equations pf Motion 

We now develop finite e lement models f rom (4. 8) by the following 

p rocedure : integrating (4. 8) by p a r t s gives 
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n n 

Jx0dX+ ^Ir^dX^l^ (4. 10) 

where, from (3. 20), 3o73X = (9o-/3X)X .̂ = p" c Xx# If 0^. is constant) 

(4. 10) becomes 

I *'P***&<IJW% (4. 11) 

Taking a piecewise linear approximation (4. 3) for X, we have 

X(X,t) = ^a(X)\a(t) = (aa + b̂ XJX-a (4.12) 

where a and h(x are defined in (4. 5); hence, with (4. 5) in (4. 12), we 

have 

XX = ^or,XXa = haXa> = h"*X2 " X l * 

^ , X = t b J *£[-!• 1] 

(4. 13) 

Taking 0(X) = ^a(X) in (4. 11) and incorporating (4. 12), we obtain 

the equation of motion for a typical rod element 
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+ b<A>[°-]o = p* ( 4 - 1 4 ) 

where mg^ is the consis tent m a s s m a t r i x defined by 

n 
m|3tf = map " foAo J % V X (4* 1 5 ) 

o 

p is the general ized force at node a 

P« = P o A o f V ^ x ] o (4-16) 

Equation (4. 15) can be integrated to get the usual consis tent m a s s 

m a t r i x in the form 

P p * = Zm{1 + 6 P ^ • ( 4 - 1 7 ) 

where m = pQA0h is the m a s s of a typical element and 6~ is the 

Kronecker delta. However* if the m a s s . i s considered to be lumped at 

the nodes , m will be of the diagonal form, m &Qa/2-. We pre fe r the 

lumped m a s s model in th is study, not only for s implici ty and increased 

computational speed, but for concre te theore t ica l r easons to be 

mentioned la te r . 
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We now turn to the displacement form of the equation of motion 

(3. 19). We develop finite element models from (4. 7) using the same 

procedure used for (4. 8); that is, we approximate the local displace­

ment field by 

u(X,t) = i|ia(X)ua(t) = (aa + baX)ua (4.18) 

with aa and b^ defined in (4. 5) and here \xa = u(Xa, t). Accordingly, 

taking p(X) = 4*a('X.) in (4. 7), we obtain as the equation of motion for 

a typical rod element, 

^paFp + hcAohcr = Pa (4.19) 

In this case, since u -̂ = ba\iai bothXand cr = cr(X) are constant for each 

element. The mass matrix is as previously defined, but the generalized 

nodal force pa is now 

Pff = A0a[+a]J (4.20) 

Global Form of the Equations of Motion 

To facilitate bookkeeping, we use superscripts as the element 

index and subscripts as the nodal index. If we define P^as the net 
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genera l ized force applied at node N, so that J^. = p " + p , then the 

global equation of motion for ndde N is obtained f rom (4. 15) as 

. A 
P N = m X N " ! T ( ( r N - l - 2 % + °-N+l) <4' 2 1 > 

where , f rom (4. 5), b-^ = + h and bj j = - h >, and we have used the 

lumped m a s s model . At thV ends-o!f the rod* of cou r se , the form of 

(4. 21) changes according to the type of boundary conditions. Equations 

(4. 21) r e p r e s e n t the global sys tem of nodal equations of motion for the 

f in i te-e lement model of the rod. Since the solution of these equations 

will be in t e r m s of the d isplacement gradients (\"•-• 1 = 8u/9X), the 

nodal d i sp lacements , if des i r ed , a r e obtained by spatial integration, 

The d isp lacements can be obtained d i rec t ly if the global equations 

of motion a r e formed as above, but using (4. 19) r a the r than (4. 14): 

P N = m i i N + A o ( o - N - 1 - crN) (4.22) 

4. 3 Just if icat ion of the F in i t e -E lemen t Method for the 

Analysis of Wave Propagat ion P r o b l e m s 

In o rde r to justify the f ini te-element models introduced in 

Section 4. 1, we show that in the neighborhood of surfaces of discon­

tinuity, such as shock waves in hypere las t ic bodies , the jump 

conditions a r e satisfied in an average sense . 
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The global energy balance for a typical element is of the form 

A o J <Pou{i " o x * ) * * + i p o A o c l [ u 2 ] l Y (4. 23) 

h - Y 

+ A 0 | [ o -u ] Y - AQof u ] Y = 0 

where we have used (3- 5), a s sumed the local energy re la t ions (3. 8 ) ? 

and (3. 12) a r e identically satisfied, and eliminated the in ternal energy 

t e r m s . Now, the second t e r m of the integral in (4. 23) can be integrated 

by p a r t s 

AQ •£ crxudX = -AQ § cruxdX + AQ[o-u]^ + A 0 I o - u ] Y (4.24) 

h-Y h-Y 

so that , with (4. 24), (4. 23) can be rewr i t t en as 

AQ J (P ouu + crux)dX - A 0 [cru]^ + | " P 0 A 0 c | [ u 2 ] Y (4. 25) 

h-Y 

- A0cf[[u]]Y = 0 

Introducing the local f in i te-e lement approximation (4. 3) for the d i s ­

placement u and its der iva t ives in (4. 25), we have 
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{AoJ(Po^Vp + ^ X ) d X - A o f ^ J o <4-26) 
h-Y 

+ f PoV^ V ^ I Y ^ P ••- ^ o 5 ^ dY}d« = ° 

where, at this point, we need not specify the precise form of the 4%;' 

except that here, in general* we intend that the ^ be chosen from a 

very general class of functions. This class is made up of the union of 

the class of functions C(0,h) which are'.continuous everywhere in the 

element and the class of functions J<0;h) which have a finite jump at 

the surface of discontinuity S but are continuous everywhere else in 

the element. Of course, if the interpolation functions are continuous 

everywhere, the jumps in the *\>a in (4. 26) vanish and other means must 

be used for handling the shocks. But if the *\ia are discontinuous, a 

finite-element shock fitting scheme would be obtained. (For reasons 

discussed in the next section, we choose the former. ) Equation (4. 26) 

can be written more compactly as 

(rn^up + AQ | cr^> xdX - Pfl, + R ^ - S„)u„ = 0 (4. 27) 

h-Y 

where we have defined 

<*(3 = P o A o j ^ p d X ' P^ = A o [ ^ ] 0 m 
up i u v 

h-Y 
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R*(3 = ^ P o A o c t ^ p l Y ' S a - f o ^ f e l y 

Since (4. 27) mus t be valid for a r b i t r a r y motions of the e lement , it mus t 

a lso hold for a r b i t r a r y values of the nodal veloci t ies u In pa r t i cu la r , 

if (4. 27) is to hold for a r b i t r a r y UQ,, the t e r m in the pa ren theses mus t 

vanish for al l values of a. Thus , 

m « p a p + Ao J **a, x d X " p<* + R<*P% ~ S<* = ° (4- 2 8 ) 
h-Y 

This equation r ep re sen t s the genera l f in i te-e lement equation of motion 

with shock t e r m s . Thus , as .might be expected, a consis tent f inite-

element momentum equation for nonlinear wave propagation p rob lems 

contains the proper jump conditions at the shock. 

Based on the above development, we now examine the finite-

element models (4. 14) and (4. 19) which were developed from (4. 8) and 

(4. 7), respect ively . We will show that (4. 14) and (4. 19) can be 

developed from global balance laws, that using global energy ba lances 

and the above modeling p rocedure insures that the jump conditions 

(3. 9) a r e satisfied in an average sense , and that this implies that (4. 14) 

and (4. 19) satisfy the jump conditions in an average sense . 

If the functions 4* (X) in (4. 28) a r e a ssumed to be continuous, then 

RQ,O = Sa = 0 (<x, (3 = 1, 2). We examine two cases . F i r s t , if the ^Pff(X) 

a r e l inear over the element , the f in i te-e lement scheme (4. 19) is 
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obtained. Thus the f ini te-e lement model (4. 19) can be derived from 

the global energy balance (3. 5). Secondly, suppose the 4^(X) a r e 

constant over the element and the #(X) introduced in (4. 8) a r e now 

related .to the 4 y X ) by taking <f){X) = | a ( X ) and \{X) = 8 | a ( X ) / 9 X . 

Then the £a(X) a r e l inear functions. This implies that m o d e l s of the 

form (4. 14) can be derived f rom energy pr inc ip les . To see th is , s i m ­

ply set <f> = ia[X) and (3 = -%(X) in (4. 9). Thus both models of the form 

(4. 14) and (4. 19) can be der ived f rom energy ba lances of the form (3. 5). 

Satisfaction of Jump Conditions 

Now an important question that a r i s e s is whether of not the jump 

conditions (3. 9) a r e satisfied in an average sense in the element when 

the global energy balances descr ibed a r e used to der ive f ini te-element 

mode ls . By "an average s ense" , of cou r se , we mean in a sense at 

leas t as weak as L i (0 , L0K This is cer ta in ly t rue of (3. 9) since it 

was obtained from a global energy balance (3. 5). Also, in our de r iva ­

tion we as sumed that (3. 12) was identically satisfied at the shock. Now 

if (3. 12) is satisfied exactly while (3. 9) is satisfied in an average 

sense , then (3. 9) is satisfied in an average sense (see the derivat ion 

of (3. 12)). Moreover , the Claus ius-Duhem inequality (3. 9) is s a t i s ­

fied because of the consti tutive assumpt ions introduced in the las t 

port ion of Section 3. 2. Thus, the use of the global energy balance 
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(3. 5) and the p rocedures introduced above insures that the local 

jump conditions (3. 9) a re satisfied in an average sense a c r o s s the 

e lement . To complete the argument , we conclude that because (4. 14) 

and (4. 19) can be der ived from global energy balances , tney satisfy 

the local jump conditions in an average sense in the element . 

4. 4 Tempora l Approximations 

Upon assembl ing e lements and applying boundary conditions, 

e i ther (4. 21) or (4. 22) leads to a la rge sys tem of highly nonlinear 

second-orde r o rd inary differential equations in the unkown nodal 

d isplacements u ^ o r displacement gradients XJSJ. Our only hope for 

extract ing data from such sys tems is to at tempt to solve them n u m e r ­

ically. Toward this end, we may choose between the two c l a s s e s of 

d i rec t numer ica l t ime- in tegra t ion methods for sys tems of nonlinear 

equations: the conditionally stable explicit s chemes , and implici t 

s chemes , which a r e often unconditionally stable for l inear ized p rob lems . 

Obviously, the bas is for our select ion is the optimization of both 

economy and accuracy . 

Here , the pr inc ipa l advantage of implici t schemes (unconditionally 

stable for la rge t ime s teps) is overshadowed by the necess i ty of solving 

a set of s imultaneous nonlinear equations at each t ime s tep . Moreover , 

since we a re a l so in te res ted in nonlinear wave phenomena, the high-

frequency response is ve ry impor tant - -especLal ly in the region of the 
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propagated discont inui t ies . Hence, even if an implici t scheme is used 

for this type problem, exper ience with l inear problems suggests that 

the assoc ia ted t ime s tep requi red to re ta in higher frequencies of the 

model is usually just as smal l as that requ i red for numer i ca l s tabil i ty 

of explicit s c h e m e s . 

All t ime integrat ion schemes 'may involve the invers ion of the 

m a s s ma t r ix . If the consis tent m a s s m a t r i x is used, the inverse is a 

full ma t r i x which is computationally t ime consuming. However, if a 

diagonal m a s s m a t r i x is used, obtaining the inverse is t r iv ia l , and 

the explicit solution p r o c e s s is ex t remely fast and simple., , (Implicit 

schemes involve invert ing a weighted-sum" of the m a s s and stiffness 

m a t r i c e s (cf. , [80]) so that a diagonal m a s s m a t r i x affords l i t t le advan­

tage in the nonlinear case if implici t schemes a re used. ) Krieg 

and Key [81J have shown that for a number of represen ta t ive l inear 

e lastodynamic problems the diagonal m a s s m a t r i x and the explicit 

cen t ra l difference t ime- in tegra t ion scheme provide the most p rac t i ca l 

means of computing a t r ans ien t r e sponse . 

An examination of the order of the derivat ive of the dependent 

var iable which suffers a discontinuity during shock formation shows 

that any of s eve ra l well-known explicit schemes might be used effec­

tively if only the evolution of the displacement field in t ime is des i red . 

Moreover , ce r ta in of these explicit schemes could be used as devices 
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for determining the points at which the shocks develop in order that 

the appropriate jump conditions can be applied. Schemes such as 

these are referred to as shock fitting schemes. In the present study, 

we shall not consider such schemes for shock analysis since they are 

extremely tedious and time consuming in that they require monitoring 

the solution process at each time step and applying the jump conditions 

at the current location of the shock. Rather, we investigate a number 

of simple explicit schemes for predicting the evolution of the displace­

ment field in time, and we develop a new explicit scheme to study the 

formation and propagation of shock waves. As will be seen, this new 

scheme combines features of the well-known Lax-Wendroff difference 

scheme with the finite-element concept. 

The following explicit integration schemes were investigated 

during the course of this study: 

• Runge-Kutta (fourth order) [ 82] 

• Numerov's method [ 83 J 

• Standard central differences [82-84! 

• Velocity formulated central differences [80] 

• Predictor-corrector (fifth order) [84] 

• Lax-Wendroff [85-87] 

The finite element equations of motion, either (4.21) or (4.22), are of 

the form u = F(u,t) where, for time discretization, we denote t = n^t, 
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and typically, u(t) = u(nAt) = u . These in tegrat ion schemes a r e 

briefly explained below for application to the above form of the equation 

of motion, unless o therwise noted. 

Runge-Kutta (fourth o rde r ) . Fi rs t* denoting nAt = t , we have 

and 

k, = At F(u n , tn) 

k 2 = M T + T U + T k i ' t + ~ J 

k 3 = At F ( u n
+ A t u

n
 + M k 2 > t n

 + A i ) 

A u n = A t [ u n + | ( k i + 2k2)l 

A u n = - | ( k 1 + 4k 2 + k 3 ) 

Then, for the new displacements and veloci t ies , we have 

n+1 n n 
u = u + Au 

.n+1 .n , . ,n 
u = u + Au 
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Numerov.'s method. This method avoids ar t i f ic ial ly introducing the 

veloci t ies , u, into the displacement computation by using the form 

"2 "'• 
n+1 • „ n n - 1 . A t /T^n+1 , • :rtV_n , _ n - l . 

u = 2u - u + — ( F + 1 0 F + F ) 
i. d 

This is a specia l form of a p r e d i c t o r - c o r r e c t o r scheme, shown below, 

wherein the pred ic tor and c o r r e c t o r have been combined. It has the 

e r r o r es t imate 

2rWj 

S t a n d a r d c e n t r a l d i f f e r e n c e s . The s e c o n d t i m e - d e r i v a t i v e s a r e app rox i ­

m a t e d by 

.. J\ 1 , n+1 n n - 1 . 
u — (u - 2u + u ) 

A t * 

V e l o c i t y f o r m u l a t e d c e n t r a l d i f f e r e n c e s . We ob ta in two f i r s t o r d e r 

e q u a t i o n s f r o m u = F ( u , t ) by i n t r o d u c i n g the v e l o c i t y , v = u: 

t v = F (u , t ) 
u = F(u , t ) =4>' 

u = v 
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These equations are now approximated by the difference equations 

v n + i = vn'i + AtF(u n , t n ) 

un+l = u n + A t ^ + i 

These two equations are mathematically equivalent to the standard 

central differences as can be seen by direct substitution. However, 

this formulation is , in practice, more accurate due to the finite word 

lengths of computers (i. e. , a significant degree in found-off error 

associated with central differences can be realized using this approach). 

Predictor-Cor rector (fifth order) 

For the predictor we used 

u n + 1 = Zu11-1 - u n " 3 + | A t 2 ( F n + F1*'1 + F n " 2 ) 

and for the corrector 

u n + 1 = 2un - u11"1 + ^ ( F n + 1 + 10Fn + F11"1) 



Lax-Wendroff 

F o r the equation form 

U + F Y ( U ) r 0 

the Lax-Wendroff equations s t a r t f rom a T a y lo r ' s s e r i e s in t: 

U n + 1 = U n + AtUn + ~ - U n + . . . 
~ "" . *" 2 ~ 

The t -de r iva t ives indicated a r e replaced by X-der iva t ives by means 

of the or iginal equation, i . e . , 

•• ' l ! f i - •-'£ $£-•'• JL-»E.- J _ ^ i 2 v _ ^ 4 £ £ V 
at2 ~ "at ax " ax at ~ axv at/ ~ ax\ ax> 

The X-.derivatives a r e then approximated by difference quot ients , to 

give the Lax-Wendroff sys tem, 

-Aj4fe-r"-i)l. 

where Aj^ i denotes A l ^ U ^ x ! + "jUj1) arid the subscr ip t denotes the 

spatial d i sc re t iza t ion , U(X) = U(jAX) = U,'. 
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In o rde r to have a ba s i s for comparing the above integration 

schemes , we choose an example where in the induced extensional s t r a in 

is smal l enough so that the exact solution of the l inear theory can be 

used for a compar ison . In pa r t i cu l a r , we apply a smal l force of 

constant magnitude at the free end of the rod>fo>ia shor t time, and then 

removed it. Fo r the l inear theory to be applicable, we want X = 1. 05, 

2 which co r re sponds to the extensional s t ra in -y = (X - l ) / 2 = 0. 05125 in./in. 

We choose a thin rod of Mooney m a t e r i a l (C^ = 24. 0 ps i and C~2 = 1. 5 psi) 

with the following undeformed c h a r a c t e r i s t i c s : length = 3. 0 in. , c r o s s -

sect ional a r e a = 0. 0314 in , and m a s s density = 0. 0001 l b - s e c ^ / i n . 

F o r the finite element model , we take 60 uniform e lements , so that 

h = 0. 05 in. and E '= 60. Since the applied load, Q(t), can be expressed 

as Q = o-A, we have, using (3. 25) in (3. 22) with X = 1. 05, Q(t) = 0. 228 lb, 

and we choose the durat ion of the loading to be 0. 002 seconds. The 

typical s t r e s s wave response to this loading is shown in Fig. 5 with the 

exact l inear solution superposed for compar ison . The response shown 

in Fig. 5 is r ep resen ta t ive of al l the integration schemes mentioned 

e a r l i e r , except the Lax-Wendroff scheme, since the re was no d iscernable 

difference between the r e sponses obtained by each scheme. 

A compar i son between the veloci ty-formulated cen t ra l difference 

scheme and the Lax-Wendroff scheme can be seen in Fig. 6 where the 

s t r e s s wave re sponse to a 2. 0 lb applied end load (about 86 pe rcen t 
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s t ra in) is shown. Also depicted in Fig. 6 a r e the differences between 

the re sponses of the lumped and consis tent m a s s models . He re it can 

be seen that the lumped m a s s model e l iminates the spurious osci l la t ions 

(or "r inging") in front of the s t r e s s wave of the consis tent m a s s model . 

Also , the computational efficiency of the lumped m a s s model was 

demons t ra ted in that only 26 sec w e r e requi red by the UNIVAC 1108 to 

compute 3000 integration steps for this model , while 35 sec were 

requi red to compute only 2300 integration steps for the consis tent m a s s 

model . 

4. 5 Fini te Element /Dif ference Equations 

The remaining step in d iscre t iz ing the nonlinear equations of motion 

is choosing a t ime integration scheme to; approximate the i r t empora l 

behavior . Solving the nonlinear equations of motion by stepwise n u m e r i ­

cal methods can be severe ly complicated by the p resence of shocks. 

The re fo re , we choose an explicit finite difference scheme which can 

accommodate shock waves , if they occur , without the tedious application 

of the jump conditions at each t ime step of the solution p r o c e s s . This 

method is the well-known Lax-Wendroff difference scheme [ 8 5 - 8 7 ] , 

which is genera l ly classif ied as an ar t i f ic ia l diss ipat ive method (cf. , ['88J 

where the bas ic fundamentals of this c l a ss of integrat ion schemes was 

f i r s t p resen ted) by v i r tue of the pa r t i cu la r way the equations a r e 

differenced. The success of this pa r t i cu la r method comes f rom applying 
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finite difference approximations to the governing equations expressed 

as conservation laws. The novel aspect of the following temporal 

discretization is that, by rewriting (3, 19) as (3. 21)> we obtain the 

governing equation in the form of a conservation law which, with only 

a linear finite-element approximation, enables us to develop the desired 

Lax-Wendroff type integration scheme. 

Lax-Wendroff-Finite-Element Scheme 

The temporal discretization is accomplished in the spirit of the 

Lax-Wendroff equations (cf , , [ 87] , p. 3 02): We first denote q-fsr = \-j^ 

and expand q*r(t + AT) into a Taylor series up to second order terms 

qN(t + At) = qN(t) + AtqN + | ( A t ) 2 5 N + Q(At3) (4. 29) 

T h e t - d e r i v a t i v e s in . (4 . 29) a r e now r e p l a c e d by X - d e r i v a t i v e s ( e x c e p t 

f o r t h e n o d a l f o r c e P-L) by m e a n s of (4. 21) w h e r e 

A Q x 

^N = ^ h ( ( r N - l - 2 o N + ^N+l) + m PN ( 4 ' 30> 

^ = ^ ^ = ̂ ^ 1 " 2*N+*N+i>+ £ * N , . ' . , (4.31) 

2 Since o- = <r(\), <T = p C q, so that (4. 31) becomes 
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5N = £2 ( cN-l^N-l " 2cN^N + CN+1^N+1> + m^N ( 4 ' 32> 

Note that since the quantities P— are prescribed, so also are the P N 

(e. g. , if P N = sin t, then P N = cos t). Substituting (4. 30) and (4. 32) 

into (4. 29)» we obtain the finite-element/difference equation for the 

interior nodes of the discrete model: 

«N+1 = (f f l i fe i f «t.» -[(I)2'- W l % <4-33> 
, i / n \ 2 n l . ^ o / n , n x n \ 

+ IlcN-lj %-1 f +
 m h (°N-1 " 2oN + «N+^ 

+ ̂  [2AtP£ + ' ^ N ! 

where t = nAt, and q(t) = q(hAt) = q , etc. Similarly, the finite-element/ 

difference equations for the end nodes are 

*rM¥)W«H(rJ^5)V}' (4-34) 

AtA 
+ 2^r k-4) + i l 2 A t p i + ( A t)2Pi 

and 
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2 r / ,2 

<&\=ffl ut& • m - &i) taj ••<*•« > 

AtA 
+ '*-5T (4 " 4+ l ) + S ^ l + )̂2pn + 1 | 

To compute the extension r a t i o s , we simply repea t the foregoing 

ri+1 p rocedure . We f i rs t expand X^ : 

Xn+1 -X» + Atq£ + (ffifc + 0(At3) (4. 36) 

and so. using (4. 30). we get 

.n+1 n , A . . n , 1 /At \ 2 / n ? / n , n \ , (At)2
 n 

2Po N 

. n+1 \ n , A . n , 1 /At\ / n nV , (At) n , , „„. 
\ t = Xx + Atqx + — ( x j (cr2 - o"!) + - — P x (4. 37) 

° 

. n + l . n . . . n 1 /A t \ 2 / n n \ . (At)2
 n 

XE+I = X E+I
 + A t " E + i + r\T) VE - "W+ s r PE+I 

Po 

where (rjland (cj^) a r e determiihed f rom (3. 22) and (3. 20), 

respect ively . 

Equations (4.33 )-(4. 35) and (4. 37) a r e the 2(E + 1) finite e lement / 

difference equations used here in for the study of shock waves. 
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Velocity Formula ted Cent ra l Difference Scheme 

To i l lus t ra te the effectiveness of the Lax-Wendroff method we 

will compare the r e su l t s with the f in i te-e lement /d i f ference equations 

which a r e obtained using the d isp lacement equations (4. 22). The 

t empora l d iscre t iza t ion is accomplished for these equations by using 

the velocity formulated cen t ra l difference scheme [ 8 0 ] , in which the 

genera l nodal equation, iL-(t). = F(t) , is approximated by introducing 

the nodal velocity v N = I L , and thereby generat ing two equivalent f i r s t 

o r d e r equations, which a r e then differenced to obtain 

v^+i = v n - i + AtF^ 

u * + 1 = u N + A t v n + * 

(4. 36) 

4. 6 Nurne r ieal Re suit s 

In this section* we cite numer ica l r e su l t s obtained from appl i ­

cation of the preceding theory to r ep resen ta t ive p rob lems . F o r our 

numer ica l examples , we cons ider a thin rod of Mooney m a t e r i a l 

(Cj = 24. 0 ps i , C~ = 1. 5 ps i ) with the following undeformed c h a r a c ­

t e r i s t i c s : length = 3. 0 in. , c r o s s - s e c t i o n a l a r e a = 0. 0314 in 2 , m a s s 

• A O A 

dens i ty = 10" l b - s e c / in . Fo r the finite e lement model , we take 

60 evenly spaced e lements , so that h = 0. 05 in. and E = 60. 
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Tens i le Loading (square wave) 

We cons ider a force of constant magnitude applied at the free end 

of the rod as a step function at t = 0. then s imi la r ly removed at a la ter 

t ime t = t"\ i. e.'» a square wave. Fo r this example, t* = 0. 002 seconds. 

F igure 6 shows the s t r e s s wave response to a 2-lb step loading (this 

co r re sponds to 86 percen t s t r a in s tat ical ly) for both m a s s dis t r ibut ions 

and both t ime integration schemes previously d iscussed. Severa l 

important i tems mentioned e a r l i e r can be observed in Fig; 6. 

• The lumped m a s s model does not produce the ringing in front 

of the wave that the consis tent m a s s model does. 

• The acce le ra t ion wave front does tend ' to flatten with tirne. 

• The wave is propagated into the undisturbed port ion o£ the rod 

as a s imple wave. Recal l that for a s imple wave, Y(t) is constant , so 

that by multiplying Y(0. 001) by 2. 0-- the ra t io of the elapsed t ime 

i n c r e m e n t s - - w e obtain Y(0. 002), except, of cou r se , for that por t ion 

of the wave affected by the fixed boundary. 

• The Lax-Wendroff scheme is c lea r ly super io r to the cen t ra l 

difference scheme, pa r t i cu la r ly in the p r e sence of shocks. Not only 

does it produce no ringing in front of the wave, but the unloading shock 

wave is depicted without the la rge osci l la t ions behind the shock. 

(These osci l la t ions have been in terpre ted by some as numer i ca l 

instabili ty of the integrat ion scheme. This is not so: the ampli tude 
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of these osci l la t ions does not grow with increasing t ime nor with 

decreas ing At. As pointed out in [ 8 7 ] , these a r e lumped m a s s 

osci l la t ions resul t ing from d iscre t iza t ion e r r o r , and they r ep re sen t 

the internal energy which mus t appear in the "shocked" region acco rd ­

ing to the jump conditions. It is conjectured that the Lax-Wendroff 

scheme conver ts this osc i l la tory energy into t rue internal energy, 

perhaps with the provis ion that , a s may be seen in the investigation 

by Hicks and Pe lz l [89] > the s t rength of the shock is not too strong. ) 

F igure 7 shows in some detai l the response of the rod to this 

2-lb step load. The r e su l t s confirm the fact that weak shocks propagate 

in a manner s imi l a r to s imple w a v e s - - t h e s t r e s s i nc reases at the wall 

a lmost by a factor of two and the s t r e s s wave is reflected f rom the wall 

without apprec iable change in shape or magnitude. 

Sinusoidal Forc ing Function 

This example d ramat ica l ly i l lus t ra tes that the cen t ra l difference 

scheme, without modification, cannot handle shocks. H e r e , a con­

cent ra ted t ime-dependent load which v a r i e s sinusoidally with an ampl i -

tude of 1. 7 lb is applied at the f ree end; a complete loading cycle 

occurs in 0. 002 seconds. Unlike the response for the tensi le step load 

where the unloading wave is produced by s imply removing the load, the 

sinusoidal load actually "pushes" the end of the rod. The instant the 

load s t a r t s to d e c r e a s e is the moment when the f i r s t wavelet is 
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generated which propagates fas ter thanithe preceding one, Thus , at 

some t ime subsequent to when the compress ion cycle s t a r t s , a com­

p re s s ion shock forms in the rod. 

A compar i son between the two integrat ion schemes is shown in 

Fig. 8 for the sinusoidal loading. In this case it is c lea r that the 

"shocked internal energy" behind the compress ion shock r e n d e r s the 

cent ra l difference scheme unacceptable. It is in terest ing to note, 

however, that the tension cycle evidently " a b s o r b s " the la rge osc i l l a ­

t ions preceding it and again produces a smooth wave front. The 

detailed response to this loading is shown in Fig. 9. F r o m the response 

shown, we notice seve ra l in terest ing features of nonlinear wave motion: 

• The compress ive Shockwave is reflected f rom the wall as a 

compres s ive shock wave by a lmost doubling the compres s ive s t r e s s ; 

but the tension pa r t of the s t r e s s wave is reflected with only a smal l 

i nc rease in s t r e s s . 

• At t = 4. 6 m s e c , two compress ion shocks a r e about to collide. 

The numer ica l r e su l t s shown h e r e indicate that when two shocks collide 

in a solid m a t e r i a l , they penet ra te one another with little or no 

deter iora t ion . This is apparent ly con t r a ry to the coll ision of shocks 

in gases [75 ] , 

• By comparing the response at t = 3 m s e c with that at t = 5 m s e c , 

we note that the response tends to repeat itself (with some var ia t ion 
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due to the reflection) with essent ia l ly the same period as that of the 

forcing function. 

• As in the development of shocks from Lipschitz continuous 

data (cf. , Section 3. 3), the shock forms subsequent to initiation of the 

compres s ive cycle. Thus we a r e led to examine the posit ive slope 

c h a r a c t e r i s t i c s in the X-t plane to see if they pred ic t U n for this type 

of loading. F i g u r e s 10 and 11 show that if we a s s u m e s t ra ight com­

p r e s s i o n c h a r a c t e r i s t i c s of posit ive slope, the cusp of the co r re spond­

ing envelope in the X-t plane does , in fact, give a good es t imate of the 

*CR observed in the s t r e s s - t i m e plots . 
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•••.- CHAPTER V 

STABILITY AND CONVERGENCE 

5. 1. Genera l Discuss ion 

This chapter , the major i ty of which is taken vir tual ly intact f rom 

the recent paper by Oden and Fos t [ 9 0 ] , is concerned with the es t imat ion 

of both the ra te -of -convergence of finite e lement approximat ions and 

the stabil i ty of t ime integration schemes for t r ans i en t solutions of a 

r a the r la rge c l a s s of nonlinear hyperbolic pa r t i a l differential equations. 

The equations of motion of mos t homogeneous hyper e las t ic bodies , 

including both physical ly nonlinear m a t e r i a l s and finite ampli tude motions 

fall within the genera l c l a ss of equations considered; but, for s implici ty, 

we st i l l l imit our attention to one-dimensional bodies . We a s s u m e that 

the initial data and the solution a r e smooth enough functions of both X 

and t so that we may rule out the possibi l i ty of shock discont inui t ies . 

Thus , in the absence of shocks, the r e su l t s obtained a r e valid for mos t 

t r ans ien t nonlinear vibrat ion p rob lems . 

Apparent ly , t he r e a r e no genera l methods for the study of stabil i ty 

and convergence for finite element approximations of nonlinear hyper ­

bolic equations. Only within the pas t yea r have answer s to these 

quest ions been obtained for even the l inear ca se . F ix and Nassif [91 ] 
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investigated finite element approximations of l inear f i r s t - o r d e r hyper ­

bolic equations, and Kikuchi and Ando [ 92] studied p rope r t i e s of finite 

e lement approximations of a c l a s s of l inear and nonlinear initial value 

p r o b l e m s . Fujii [ 93] examined both the convergence of finite e lement 

approximations and the numer ica l stabil i ty of smooth solutions of l inear 

second-order hyperbolic equations with the Newmark j3-method used as 

the t empora l opera tor . Like Fujii , we also examine the stabili ty in 

cer ta in natura l energy norms and obtain the stabil i ty c r i t e r ion for non­

l inear difference s chemes . The nonlinear stabil i ty c r i t e r ion reduces to 

that obtained by Fujii for l inear difference approximat ions . (A p e r t u r ­

bation stabili ty analysis of an explicit- scheme is presentecl; in the Appen­

dix for compar i son . ) Also, nonlinear e r r o r e s t ima tes a r e obtained 

which essent ia l ly agree with those Fujii obtained for the l inear c a s e , but 

a r e a r r i ved at by an approach which is neces sa r i l y quite different. 

5. 2 Energy Formula t ion of the P r o b l e m 

We pre fe r to desc r ibe the p rob lem in physical t e r m s . Recall the 

thin homogeneous rod of hypere las t ic ma te r i a l descr ibed in Chapter III. 

We wish to study the longitudinal motion of the rod re la t ive to the 

r e fe rence configuration in which the rod is at r e s t p r io r to t = 0. 

Response of the rod is init iated by some p re sc r i bed initial velocity 

v0(X) or initial d isplacement u0(X); for the moment , no body forces 

or end t rac t ions a r e p r e s c r i b e d . 
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The total energy E(t) of the rod at time t is given by 

E = K + H (5. 1) 

where K Ls the kinetic energy and H is the internal energy: 

PoAo 

L o L o 

K = ^ - r X u2dX ; H = A d V WdX (5.2) 

0 0 

Recall u = 9u/9t is the particle velocity field and W is the strain energy 

per unit undeformed volume. The strain energy function W depends 

upon 9u(X,t)/9X = Uv and is assumed to have the following properties: 

(i) W(u-^) has continuous bounded positive second derivatives 

2 2 
with respect to the displacement gradients u^.. Indeed* d W/du^ is 

proportional to the square of the natural wave speed of the material* 

a positive function always < +oo. 

(ii) d W ( u x ) = T(uY) = first Piola-Kirchhoff s tress (5. 3) 
d u x

 X 

Property (i) is directly akin to material stability and is a constitutive 

assumption; property (ii) is merely a definition. 

Since the system is conservative and the mechanical power of the 

external forces is zero, the principle of conservation of energy asser ts 

that for every t 
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E( t ) = 0 ( 5 . 4 ) 

Denot ing t h e i n n e r - p r o d u c t of a n y two d i s p l a c e m e n t f i e ld s Uj(X»t) , 

u 2 ( X , t ) b y 

( u ^ , t ) , u2(» »t")> = y u ^ d X ( 5 . 5 ) 

we f ind, upon i n t r o d u c i n g (5. 2) and (5 . 3) into ( 5 . 4 ) , t h a t 

p 0 A 0 <u^u> + A Q < : T ( U X ) , u x ) •=* 0 (5. 6) 

T h i s r e s u l t is t h e g o v e r n i n g equa t i on fo r g e n e r a l i z e d m o t i o n s of t he 

r o d ; it i s p r e c i s e l y the v a r i a t i o n a l f o r m of the n o n l i n e a r h y p e r b o l i c 

m o m e n t u m e q u a t i o n 

•A £ • 4 
1 ,2 

d T ( u x)\ 9 2 u 
d u 

= 0 
X /BX' 

2 . 

( 5 . 7 ) 

O b v i o u s l y , — d T / d u v = — d W/duu , is t h e s q u a r e of t h e n a t u r a l w a v e 
Po X Po ^ 

s p e e d of t h e r o d m a t e r i a l . We m u s t , of c o u r s e , add to (5. 6) a p p r o p r i a t e 

b o u n d a r y and in i t i a l c o n d i t i o n s of t he t ype (u(» , 0) - uQ» v(» , 0)) = 0, 

<u(* , 0) - v Q , v ( . , 0)) = 0, T ( u x ) u = 0, e t c . 
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5. 3 Fini te Element /Difference Approximations 

To approximate (5. 6), we par t i t ion the rod as in Chapter IV, but 

without requi r ing h-̂ r to be uniform, into a finite number E of connected 

segments . We as sume the exact solution of (5. 6) during a time, in terval 

0 < t ^ T i s an element of the space ^ ( 0 , LQ) X C [ 0, T ] , where «£(<)•, LQ) 

i s an appropr ia te energy space assoc ia ted with the p rob lem and C [ 0 , T j 

is the space of functions whose f i rs t th ree der ivat ives a r e continuous on 

[ 0, T] . In the finite ^element method, we seek an approximate solution 

in a finite dimensional subspace , J1*, of Jz{OtLsQ) containing the exact 

variat ional solution to the p rob lem. The e lements of Ĵ  a r e of the form 

U(X,t) = U N ( t % ( X ) (5/8) 

where the repeated nodal index N isi sbmmed from 0 to E + 1. He re 

UN( t) is the value of U(X,t) at node N at t ime t arid ij^jfx) a r e ba s i s 

functions designed so as to have the usual f in i te-e lement p r o p e r t i e s ; 

i. e. , 

4ft(XM) = 6 ^ ; M, N = 1 , 2 , . . . , E + 1 

4 (̂x) = o if x ( (x1^-1, xNlfl) 

(5.9) 
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In genera l , the functions fctX) a r e generated from local (element) 

b a s i s functions which contain complete polynomials of degree p , where 

p + 1 is the o rde r of the highest spat ial der ivat ive that appea r s in the 

functional (5. 6) ( c f . , { 17]). In our c a s e , p = 1. 

In the p r e sen t study, we shall a l so follow the cus tomary procedure 

and approximate the behavior of U(X,t) in t ime by finite differences. 

We divide the t ime interval [ O , T ] into R equal t ime intervals At, and 

desc r ibe the var ia t ion ofUirl i ) in t in t e r m s of its values at t imes IAt, 

i = 0, 1 , . . . ,R . Thus (5. 8) is wr i t t en 

U l = U(X, iAt) = ublVj(X) (5.10) 

where u i r = Uj^(iAt). To r e p r e s e n t t i m e - r a t e s , we employ the difference 

quotients 

VtU
L = (UL + 1 - U l ) /At ; AfcU1 = (UL - U U l ) / A t 

6 tU
l = | - (VtU

L + AtU
L) = (UL + 1 - U U l ) / 2 A t (5. 11) 

6?UL = V tA tU
L = (UL + 1 - 2U l + U L " 1 ) /At 2 
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By d i rec t substitution of (5. 10) and. (5. 11) for u and its var ious 

t ime r a t e s in (5. 6), we a r r i v e at the f in i te-e lement /d i f ference scheme 

governing our d i sc re t e model: 

p0A0<6 t
2UL , 8tU

l> + A 0 < T ( * 4 ) , 6 tU^> = 0 (5. 12) 

Here U ^ = 8UL/9X = U ^ d ^ ( X ) / d X and 6 ^ = ^ U ^ d ^ C X J / d X . 

Phys ica l In te rpre ta t ion of Equation (5. 12) 

It is enlightening to in te rpre t the t e r m s of (5. 12) physically. Fo r 

instance, cons ider the f i r s t t e r m in (5. 12), and denote by K and K the 

kinetic energy of the d i sc re t e model computed using forward;and backward 

difference approximations of the ve loc i t ies , respect ive ly . Then 

K = 2 m NM¥N V t U M 

(5.13) 

K - = \ m N M A t U N A t U M V 

where N, M = 1 , 2 , . . . , E + 1; i = 1, 2 , . . . , R - 1 and m ^ , is the con­

s is tent m a s s m a t r i x , 

mNM = PoAo J V W d X ( 5-1 4» 
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It can now be shown that the f i r s t t e r m in (5. 12) i s , as should be 

expected, p rec i se ly a difference analogue of the t ime ra te -of -change 

of the kinetic energy of the f in i te-e lement model . In fact, 

PoAG <6t
2Ul, 6tU

l > = P0A0 < ^ , V 6t U N 6 t U L 

= m m N M { V t U ^ V t U ^ - A t U ^ A t U ^ } (5.15) 

= (K* - K ' ) / A t 

Note a lso that if || u|| denotes the n o r m associa ted with the inner product 

(5. 5) (i. e. , || u|| = (u, u ) ) , then (5. 13) can also be wri t ten 

< = ^ l | V t t J l | | 2 ; K S ^ I l A t U ' l l 2 (5.16) 

The second t e r m in (5. 12) is c l ea r ly analogous to the t ime r a t e -

of-change of the total internal energy of the model: 

H = A 0 < W , 1 > = A 0 < ^ , u x > « A 0 < T ( U ^ ) , 6 t U ^ ) (5.17) 

This t e r m contains the stiffness re la t ions for the f in i te-e lement model. 

In fact, in the l inear theory T(U^) = EU^- = UNE4Vr v» E being the 
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e l a s t i c m o d u l u s , so tha t H « A E U ^ 6 t U j ^ (4*]\j, x> %A x ^ ; *^'e a r r a y 

ÎSTM = ^ " o ^ ^N X ' %A 'x) l s *He g loba l s t i f fness m a t r i x for t h e m o d e l . 

In the p r e s e n t s tudy , of c o u r s e , t he s t i f fness r e l a t i o n s m a y Be h igh ly 

n o n l i n e a r . 

R e l a t i o n s (5. 15) and (5. 17) i n d i c a t e the m a n n e r in w h i c h (5. 12) 

a p p r o x i m a t e s (5. 6). E q u a t i o n (5. 12) d e s c r i b e s a d i s c r e t e m o d e l of 

t h e c o n s e r v a t i o n p r i n c i p l e ( 5 . 4 ) . S ince t he q u a n t i t i e s 6 f U N 

(i = 1, 2, . . . , R - 1; N = 1, 2 , . . . , E + 1) a r e l i n e a r l y i ndependen t , it 

is c l e a r t h a t (5. 12) a l s o i m p l i e s t h e d i s c r e t e m o m e n t u m equa t ion , 

mmA5t^u + Ao<T^L%A,x^^,xy^° < 5 - 1 8 > 

H o w e v e r , w e p r e f e r to r e t a i n the e n e r g y f o r m (5. 12) for r e a s o n s w h i c h 

wi l l b e c o m e a p p a r e n t s u b s e q u e n t l y . 

5. 4 N u m e r i c a l S t a b i l i t y 

We now i n v e s t i g a t e the s t a b i l i t y , in an e n e r g y s e t t i n g , of t he n o n ­

l i n e a r f i n i t e - e l e m e n t / d i f f e r e n c e s c h e m e (5. 12). To i n t e r p r e t e n e r g y 

c r i t e r i a in p h y s i c a l t e r m s , w e o b s e r v e t h a t fo r t h e c o n t i n u o u s s y s t e m , 

(5. 4) i m p l i e s t h a t 

T 

\ E d t = E ( T ) - E(D) = 0 (5. 19) 

0 
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While we cannot expect the d i sc re t e model to a lso behave in this ideal 

fashion owing to round-off e r r o r s inherent in our'-method* we can expect 

that e r r o r s in the energy do not become unbounded during the t ime 

interval [0, T ] , In other words , if E. (t) is our finite element approxi ­

mation of the total energy at t ime t, we shall consider our numer ica l 

scheme to be stable in energy, if there exis ts a constant C > 0 such that 

.Eh(iAt) < CE h (0) , for i = 1, 2, . . . , R 

Equivalently, stabili ty in energy i s a s s u r e d if 

Eh(iAt) < C l E h ( ( i - l)At) (5. 20) 

for al l i = 0, 1, 2, . . . , R. 

Out stabili ty analys is is based on the following assumpt ions : 

• W(u x ) has p roper ty (I) of (5. 3). 

• The f ini te-element interpolation functions <Kr(X) satisfy the 

usual convergence and comple teness c r i t e r i a for l inear ell iptic p rob lems ; 

i. e. , the family of functions U-NT̂ kvrCX) contains complete polynomials 

of degree p = 1* and the finite element approximation U ^ (X) is 

continuous a c r o s s in tere lement boundar ies . In pa r t i cu la r , ip (X) may 
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be taken to be the common piecewi.se l inear pyramid functions 

+M(X) = [ h ^ + . ( X - X w ) ] / h N< 

(xN+1 - x)/h 

N 

N + l 

x< [ x N - 1 . x N + 1 ] 

X c [ X ^ 1 , X N ] 

x« [xN, xN + 1] 

(5.21) 

We next cite the following l emmas : 

Lemma 1. Let (5. 21) hold, and denote by h the min imum element 

length 

h = min h 
N=1,E 

(5. 22) 

Then, for every finite element approximation U = U^^-iyr' 

8U 

ax 

v l . , 

— I U 

h 

(5.23) 

S w— 

where ||U|| = <U, U) and v^ is the constant zJJ . 

Inequality (5. 23) is a fair ly well known resu l t and can be found 

e lsewhere (e. g. [ 9 3 , 94]). It can be proved d i rec t ly by m e r e l y sub­

stituting (5. 21) into (5. 23) and car ry ing out the integration. We omit 

the detai ls here . 

piecewi.se


I l l 

Lemma 2. Let the s t ra in energy function W(u x ) satisfy proper ty 

(5. 3). Then 

A 0 < T ( 4 ) . 6 t U ^ > = H l + 1
2 A t

H L " 1 - ^ ( T ' ^ M U * 1 - U^)2> (5. 24) 

where 

+ &<T ,^x) '<ux-uU 1)2> 

u x = u x + e ( u x ^ " u x J ' o < e < l 
( 5 . 2 5 ) 

^ x ^ x - ^ x - ^ x 1 ) • o<8<i 

Proof: If (5. 3) holds, we may expand the s t ra in energy function 

in a finite Taylor s e r i e s about W l = W(U ) (this is an implicit expansion 
X 

in t ime): 

WL+1 = WL + Tt tJ^XU^ 1 - U^) +• I T / C U ^ M U ^ " 1 - U^) 2 (5. 26) 

W 1 ' 1 =W l -T(U^)(U^ " Ux" 1 ) + 1 T ' ( ^ X ) ( U X • U X 1 ) 2 ( 5 < 2 7 ) 
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where T(ux) = dW/dux and T'(ux) = d2W/dux = dT/dux.. Subtracting 

(5. 27) from (5. 26 )> multiplying the result by A /2At, and integrating 

over the length of the bar gives the desired relation. 

Our numerical stability criterion is given in 

Theorem 1. Let Lemmas 1 and 2 hold. Then a sufficient con­

dition for the finite-element/difference scheme defined by (5. 12) to be 

stable in energy in the sense of (5. 20) is that 

£>7f C max < 5 - 2 8 > 

where v* = 2^3 and C is the maximum wave speed experienced in 
1 ' max r r 

the rod for all X at time t = iAt: 

Cl =max[T»(UY)/p ] 2 (5.29) 
max L * X 7 ' ^ o J * ' 

X 

Proof: According to (5. 15) and (5. 24), we have 

AtE^ = K^ - K'_ + ~Hl
+. - H\ - -f <T'(U^), ( u £ 1 - U^.)2) (5. 30) 

+ T<T, (^ )'<-'1£1 ,2> 
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w h e r e H | - H* = | [ ( H V + 1 + R 1 ) - (H l + H 1 ' 1 ) ] = | < H l + 1 - H 1 " 1 ) . 

"J. 1 * O 

O b s e r v i n g t h a t T ' ( u ) is a l w a y s p o s i t i v e , t ha t | |U V - U_>.|| 
X II A . X"' . 

< At v« ||Vi.U l | | / h , and us ing (5. 16). we find, a f t e r r e a r r a n g i n g 

t e r m s , tha t 

. 7 A t 2
V l

2 .2 x . . . 

K l1 - -^T- Cmax ) + H i S K- + H- <5' 3 1 > 

Now K_ + H_ = K + + H + . M o r e o v e r , if t h e r e e x i s t s a p o s i t i v e 

c o n s t a n t a such that 0 < a ^ 1 and such t h a t 

'"' A t 2
v l

2 .2 \ 
1 - - ^ - C ' v ) > ^ > 0 ( 5 . 3 2 ) 

2nZ m a x / 

t h e n o b v i o u s l y <*(id + H ' ) < K \ (1 ^ A t 2 v 1
2 C l / 2 h 2 ) + H ! < * £ " + H ! 

. + . • + ' . . + . 1 m a x . ' . + • + + 

O u r s t a b i l i t y c r i t e r i o n c o m e s f r o m the f ac t t h a t (5 . 32) is s a t i s f i e d if 

At"v 2„ 2 
1 ^ i C < 1 -a < 1 ( 5 . 3 3 ) 

2 h 2 m a x 

which l e a d s d i r e c t l y to t h e d e s i r e d r e s u l t , (5. 28). 

T h i s s t a b i l i t y e s t i m a t e , a s shou ld b e e x p e c t e d , is c o n s i s t e n t 

wi th t h e w e l l - k n o w n von N e u m a n n l i n e a r s t a b i l i t y c r i t e r i a [ 9 5 ] w h i c h 

r e q u i r e s t h e d i s c r e t e s y s t e m t o p r o p a g a t e i n f o r m a t i o n a t a r a t e g r e a t e r 

t h a n o r equa l to the s p e e d of p r o p a g a t i o n of t he a c t u a l s y s t e m . T h e 
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stabil i ty c r i t e r ion (5, 28) for the nonl inear sys tem (5. 12) simply r equ i r e s 

the approximate wave speed to exceed the actual wave speed t imes a 

constant , (y/^2) > 1, for al l X € (.Of L). The constant v/ J2 depends 

upon p rope r t i e s of the d i s c r e t e model : by L e m m a 1, (v-i/ yZ) - ^6 

a consis tent m a s s app rox ima t ion andf as d i scussed in the following 

r e m a r k s (v/^2) = ^2 for the lumped m a s s approximation. 

R e m a r k 1: If a l umped-mass f in i te-e lement formulation is used 

r a t h e r than a cons i s t en t -mass formulation (i. 'e. , if nx^.,, LS diagonal), 

then the constant vj in (5. 23) m u s t be replaced by v^ = 2. All other 

steps in the analys is a r e the same . Consequently, instead of (5. 28), 

we obtain stability for the lumped m a s s model if 

77 > 1 C i , ^ = VZ G^ a x (5.34) 
At fZ 

R e m a r k 2: Our stabili ty c r i t e r ion (5. 28) is not a l t e red if we 

consider f instead of (5. 6)> the nonhomogeneous wave equation, 

p0A0<ii,v> + A 0 ( T ( u x ) , v x > =AQ<f, v ) , provided - || £{*, t ) | | < co for al l t. 

The inclusion of such a nonhomogeneous t e r m m e r e l y adds to (5. 19) 

I J T 

a t e r m on the right side of the form c ri i f ( . , t ) i i 2 dt . 
Jo 

R e m a r k 3: The stabil i ty c r i t e r ion is eas i ly adapted to va r i ab le 

step t ime integration schemes , since it holds " s t e p - w i s e " ; i. e. , it is 
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developed for a typical t ime step At. Thus , a possibly m o r e useful 

c r i t e r ion is obtained by replacing At in (5. 28) by (At)1 . 

5. 5 E r r o r Es t ima te s arid Convergence 

Our e r r o r es t imate and consequently our convergence proof 

depend strongly on the smoothness p roper t i e s that u(X, t) and W(u x ) 

a r e a s sumed to have. The s t ra in energy function W(u x ) is a s sumed to 

have the bounded posit ive cha rac t e r reflected in (5. 3). Indeed, we 

2 2 
noted e a r l i e r that d W / d u x = T ' (u„ ) is a constant t imes the squared 

speed of propagation of s imple waves for the m a t e r i a l . It is cus tomary 

to a s s u m e , for r e a l wave speeds , that this function is always positive 

and, b a r r i n g such exceptional c a s e s as perfect ly const ra ined incom­

p re s s ib l e m a t e r i a l s , is also finite. If Ttu^-) = d W / d u x is continuous 

in u^., then, for any two displacement gradients u x and Wy, T ( u x ) 

= T(WX) ± T'(WX +e^(ux - w-^.))^ - wx), e^ = e1 ,e2 , o < e 1 , e 2 < 1. 

Hence 

c o ^ u X ' " w x , v x > ^ <T(ux) - T ( w x ) , v x > < c 1 < u x - w x , v x > (5.35) 

cQ = inf | T ' ( u x ) | ; c x = s u p | T ' ( u x ) | (5.36) 

Moreover , at points (X,t) which do not lie on the surfaces of discon­

tinuity corresponding to acce le ra t ion waves , the exact solution u(X,t) 



116 

can be assumed to have third derivatives with respect to time. 

Therefore, 

2 
6?u(X,iAt) = 8 u ( X ; L A t ) +-<j*(X,-t)At (5.37) 

t Qt6 

where coL(X,t) = [u(X, i(l + 6)At) - u(X, i( l - e)At)]/3» / w i t h 0 < 9, 

8 ^ 1 and || w || < oo. These observations and assumptions set the 

stage for our convergence study. 

We c o n s i d e r now the nonhor r iogeneous f o r m of (5. 12); i. e. $ if 

u(X, t) is the exact (generalized) solution and UL = U(X, iAt) is the 

finite-element solution approximating u(X,t), then 

pQ <6^uL,V> + <T(u^-),Vx> = (f,V> + po<a>lAt,V> (5. 38) 

and 

P o<6 t
2U l ,V) + <T(U X ) ,V X > = <f,V> (5.39) 

Here ||f || < co and V = "V^ikj is an arbitrary element of the finite-element 

A : A A ; 

subspace F. Moreover, if U = U(X, iAt) = IL^M^X) is another arbitrary 

function in F > a little algebra leads to the relation 
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PQ (6t (U l - U ^ ), V) + <T(U^-) - T(U^ ), V x ) (5. 4.0) 

•2 /A i = P 0 < 6 f ( U l - u l ) ,V) + <T(Ul
x) - T ^ ) , V X ) + p0<a>lAt,V> 

Now, as Is cus tomary in convergence studies of l inear elliptic 

A [ 
prob lems , we shall identify U in (5. 40) as the f in i te-e lement in te r -

polant U of the exact solution u . That i s , if u(X,t) is given, U(X,t) 

is that e lement of the f in i te-e lement sub space 3? that coincides with 

u(X, t) at each nodal point X N for every iAt, i = 0, . . . , R. It is well 

known (e. g. , [ 17J, pp. 111-116) that if U is a l inear combination of 

the functions 4v(X) of (5. 21), then 

E L | | < n 0 h 2 and . l l E ^ l ^ ^ h (5.41) 

H e r e JJ, and JJL-J a r e posit ive constants* E = U l - u , and E-v- = r^p(U - u 

The quantity E l is the interpolation e r r o r \ a t t = iAt, whereas the actual 

e r r o r inherent in the f in i te-e lement solution is 

1 = U l - u1 = E l -£l (5.42) 
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where 

•£l = U l - UL (5.43) 

The stage is now set for the following lemma. 

Lemma 3. Let (5. 35) - (5. 40) hold. Then 

p 0 ( 6 ^ L , / ) + a 0 | | i y 2 ^ p0(6*E\«* l> + a 1 h 2 + a 2 ( A t ) 2 (5.44) 

and 

P0(5 t
2e i . /)£p0 | |Ey|2 + p1 | |4l |2 + P2<

At>2 (5-45> 

whereof » P > r = 0, 1, Z, a r e posit ive constants . 

Proof: While somewhat lengthy, the proof is s t ra ightforward. 

We shall only outline the essen t ia l s teps . Out proof makes use of the 

inequality 

<u,v> < i | | u j | 2 + € | | v | | 2 , € > 0 (5.46) 

which follows from the Schwarz inequality and the e lementa ry inequality 
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| ab | < (l /4c )a . + cb ,- and the fact that t he r e exis ts a constant k > 0 

such that 

llull < k | | u v | | (5.47) 

Inequality (5. 47) is the well-known F r i e d r i c h s inequality and its 

validity is proved in a number of texts (e. g.;, [ 9 6 ] , p. 290). To 

obtain (5. 44), set V = £l in (5. 40), rep lace the second t e r m on the left 

side by C . . | | J£ . -J | using (5. 35), and apply (5. 46) and (5. 35) s imul tane­

ously to the second and th i rd t e r m s on the right side. Then making 

use of (5. 41) and (5. 47) and collecting t e r m s gives the des i r ed resu l t . 

Equation (5.45) is obtained by subtract ing (5. 38) f rom (5, 39), using 

(5. 35), applying inequalities (5. 46) and (5.47) , and then using the 

identity (5.42). This completes the proof. We now have 

Theo rem 2. Let (5. 35) through (5. 40) hold. Then, as h and 

At -+• 0, e l in the f in i te-e lement approximation sat isf ies 

|| e^J < MQh + M'jAt (5. 48) 

where M and M< a r e constants independent of h and At . 
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Proof: We know from the t r iangle inequality that 

iiexii = I I 4 - 4 I I - H E x i i + ii4ii <5-49> 

The t e r m || E x | | is O(h) in accordance with (5. 4.1). To es t imate | | ^ v | | » 

we observe that (5. 44) implies that 

^ o l l ^ x l l 2 - P o < 6 t C E l '-41)"*'1) +o>1h
2+a2(At)2 

Since E - £ = e , we may introduce (5. 45) to obtain 

\JS. 
i II2 _ ii „ i n2 
X[ ^ y0W

Ex\\ + ^ih + yz{Aty 

where -y , -y-, and v ? a r e constants . Substituting this r esu l t along 

with (5. 41) into (5. 49) gives (5. 48). 

Equation (5. 48) proves that the f ini te-element approximation 

U x converges in the mean to the gradient of the exact solution uL for 

each i. We a s s u m e , of cou r se , that in taking the l imit h, At -» 0, the 

stability c r i t e r ion (5. 28) is satisfied. Since || eL|| < C || e^.|| , conver ­

gence of U l to u l is a lso a s su red , but we dp not at tempt to a s s e s s its 

r a te of convergence he re . Since the Sobolev inequality s u p | e L | 

< c ( | | e L | | + | | e y ' | ) holds , we observe as did Fujii [ 9 3 ] , that UL 
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converges uniformly to u l , We also r e m a r k that the use of lumped or 

consis tent m a s s e s has no bear ing on the final e r r o r e s t ima te , other 

than possibly a l ter ing the constants MQ and M* in (5.48): the lumped 

m a s s and consis tent m a s s approximat ions have the same rate-of-

convergence. 
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CHAPTER VI 

DYNAMICS OF ELASTIC MEMBRANES 

We now re tu rn to the p rob lem of elast ic m e m b r a n e s . Having 

reviewed the fundamental pr inciples n e c e s s a r y to obtain genera l con­

stitutive re la t ions and equations of motion per t inent to the theory of 

e las t ic m e m b r a n e s in Chapter II, we a r e ready for the spat io temporal 

d i sc re t iza t ion of the continuous sys tem. 

6. 1 Fini te Elements of E las t ic Membraines 

Kinemat ics of a Fini te Element 

Consider again the membrane which, in the re ference configuration 

C , occupies a region R in th ree -d imens iona l euclidean space. To 

desc r ibe the motion of the m e m b r a n e , we establ ished intr insic global 

coordinates X1 which, for s implici ty, a r e taken to be rec tangular 

ca r t e s i an in C . The rec tangular c a r t e s i an coordinates of a pa r t i c le P 

in a subsequent configuration C at some t ime t > 0, which was initially 

at P Q located at the point X = X(X l) in CQ a r e denoted x-L» and the 

functions 

x. = x . ( X , t ) (6. 1) 
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a r e said to define the motion of the body. 

In o rde r to reduce the continuous sys tem to a d i sc re t e one. the 

membrane is approximated by a d i sc re t e model which cons is t s of a 

finite number E of flat finite e lements connected appropr ia te ly at their 

nodes. Within each finite element e of the m e m b r a n e , intr insic local 

coordinates X} . a r e establ ished which, for s implici ty, a r e taken to be (e) r 

rec tangular c a r t e s i an in the re ference configuration C / \ of element e. 

The rec tangular ca r t e s i an coordinates of a par t ic le P in an a r b i t r a r y 

configuration C / e \ of e lement e at some time t > 0, which was initially 

at the point X/ v = X/ v(X/^\)in C /^v, a r e denoted x : / *, and the functions r ""(e) ~(e)x \e)' o(e) i\e) 

x i ( e ) = X L ( e ) ( ^ ( e r t ) <6 '2> 

a r e said to define the motion 6f the e lement e. 

In the finite element method, it is convenient to f i r s t desc r ibe the 

behavior of each element independently in t e r m s of the d isp lacements 

of its nodes; the ent i re set of e lements is then connected together by 

establishing the nodal connectivity. F o r fur ther s implici ty, it is a s sumed 

1 2 that the middle surface of each element l ies in the X, yX( . plane of 

its local coordinate sys tem. Also, it is a ssumed that the re fe rence 

configuration C is such that the local coordinates X. . for each element 5 o (e) 
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can be taken para l le l to the corresponding global coordinates X1. (If 

C will not allow this coordinate al ignment, it is a simple m a t t e r to 

de te rmine the di rect ion cosines which will pe r fo rm the des i red or thog­

onal t ransformat ion of coordinates . ) 

We now take advantage of the fundamentar p roper ty of finite 

e lement models : the e lements can be considered disjoint and discon­

nected for the purpose of descr ib ing local approximat ions over each 

element. Hence attention can be placed on a typical e lement e of the 

assemblage represen t ing the continuous membrane . In considering e 

to be isolated from the sys tem, the element label (e) can be neglected 

for s implici ty and convenience-rexcept in cases where its omiss ion 

may lead to confusion. F o r s implici ty, only f i r s t - o r d e r approximations 

a r e considered and thus the local d isplacement field of the middle 

surface of the membrane is r ep resen ted in t e r m s of the nodal d i sp lace­

ments by 

ui<X't> = % ( X 1 , X 2 ) u f ( t ) (6. 3) 

Here iKj a r e the local interpolation functions for the element and, as 

before , have the following p rope r t i e s : 
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• *< * N e 

N=l 

1 2 the u. a r e the components of d isplacement of a m a t e r i a l point (X , X ) 

on the middle surface, u. a r e components of d isplacement at node N, 

N = 1 , 2 , . . . , N , N e r e p r e s e n t s the number of nodes , and i = 1 ,2 ,3 . 

Then according to (2. 14) the s t ra in components a r e 

2Vp = ̂ « u p + '*B,f$ + %,«+M,pukukI 

2Vff3 = 0 (6. 4) 

2Y33 = X2 - 1 

2 
F o r compress ib le m a t e r i a l s , X can be approximated over the 

element by 

X ^ i y x ^ X 2 ) ^ (6.5) 

N 2 N 2 
where u = (X ) is the value of X at node N. F o r incompress ib le 

o 

m a t e r i a l s , by introducing (2. H ) j into (2. 3 4 ) p X is obtained in t e r m s 

of the m e m b r a n e s t r a ins 
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^"[l + Z^+^i^Yp^-1 

= [ i + zyaa + zitv^pp - ^pvpa)] 

(6.6) 

-1 

2 With (6. 4) in (6. 6), \ is expressed in t e r m s of the nodal d isplacement 

by 

X2 = [ l + ^ r u^ (2S T ,+ ^ : i # K V (6.7) 

'4^ V^ W# + % ^ + 4 . *̂ > P^M+R. x^ 

+ ^R, jx u \ + ^ R , X ^ P , H t U f U f ) r l 

Here i, j , k = 1, 2, 3; a, |3, \ , p. = 1, 2; N , M , P , R = 1 , 2 , . . . , N . . 

Equations of Motion of a Membrane Element 

According to (6.3) , the d isplacement , velocity, and acce le ra t ion 

fields for the middle surface of this typical element a r e of the form 

Ui = ^(SJuf (t) 

k = VStf?(t) ( 6>8> 

N, ^ , ^(Xjufit) 
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Then al l of the kinematic re la t ions for the element can be computed in 

t e r m s of the nodal d isplacement components and the i r t ime der iva t ives . 

Note that al l of the previously mentioned thermodynamic concepts for 

any represen ta t ive m a t e r i a l point P with displacement w» will , in 

pa r t i cu la r , hold for m a t e r i a l points on the middle surface of the m e m ­

brane Q with d isplacement u. 

Introducing (6. 4) and (6. 8) into (2.27) and simplifying, we obtain 

the genera l energy balance for a typical m e m b r a n e finite e lement in 

the form 

[ n V n v > r u ¥ + ( V P I J V (6.ft + i|c:, ftu^)dv - p ^ - l u ^ r r O (6.9) 
L NM L J N»<* iP TM.p- i ' o HMiJ i \ • / 

v o 

where mio-** is the symmet r i c N X N consis tent m a s s m a t r i x , defined 

h e r e by 

m N M = J P 0 < 2 : > V 2 : ) * M ( 2 F ^ V O (6-10) 

v o(e) 

and p-KTi a r e the components of the total general ized force at node N 

PNi= J P o F o i ^ d v o + J s o l V ^ o < 6 - U > 
v o(e ) A o(e ) 
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It is important to note that the actual surface forces SQ(X) a r e 

available to us only in the deformed element . Thus , the forces S_(X) 

a r e , in genera l , dependent on the deformation and, consequently, a r e 

functions of the nodal d isp lacements u ; that is to say , the nodal forces 

p ^ . a r e genera l ly nonconservat ive . 

Since (6. 9) 'must be valid for a r b i t r a r y mot ions of the e lement , 

it mus t a lso hold for a r b i t r a r y values of the nodal ve loc i t ies , u. . This 

being the c a s e , the express ion inside the b racke t s of (6. 9) mus t vanish 

for al l values of N and i. Thus we have 

PNi = " W 1 ^ + J *°*%(.al6in + %&. P U f ) d v o (6' l 2 > 
v o(e) 

Equation (6. 12) r e p r e s e n t s the genera l equations of motion of a finite 

e lement of a m e m b r a n e . Note that no re s t r i c t ions have been placed 

on the o r d e r of magnitude of the s t ra ins o r d i sp lacements . To apply 

these r e su l t s to specific m a t e r i a l s , consti tutive equations mus t be 

introduced so that the s t r e s s t ensor can be el iminated from the equations 

of motion of the d i s c r e t e mode l . 

Assuming that the initial th ickness d is constant over the unde-

formed element and denoting the undeformed middle surface a r e a by 

A , (6. 12) becomes o 
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PNi = " W f + doHf%, «(5PI + +M. P^< (6.13) 
A , A o(e ) 

where now 

m N M = do •J Pb+N^MdAS (6.14) 
A o(e ) 

Specific fo rms of the equations of motion for m e m b r a n e e lements 

of isotropic compress ib le m a t e r i a l s a r e obtained by introducing (2. 32) 

and (6. 5) into (6, 13) 

P Ni = m N M ̂ - o t K l ^ ^ ^ f ) ^ .(6.15) 
A&(e) . 

•(!? + ^ R S W . ^ i * W ^ K 8I3 

where* using (6. 4-)» 

£ a P - s . A A a P = « a X « ^ A V l = 6 a P . (6.16) 

^ f f X ^%, ,<^ ,^^^x^„«) 

R 2 R 33 
The N values |JL = (\ ) a r e de termined f rom requir ing t to vanish 
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in an average sense over the element. So, from (2. 32), at each node N 

we have 

0 = J (all + W2 W " + ail A ) ^ d A o <6-17> 
Ao(e) 

The 3N equations (6. 15) with the Ne equations (6. 17) constitute 4N 

equations in the 4N unknowns u^ and ^ . 

In the case of isotropic incompressible materials, by using (2. 37) 

in (6. 13), the equations of motion for membrane elements are of the 

form 

P^'i^^'i^-Vi^A^- (6.18) 
Ao(e) 

+ £«P(1 - 2X4 - 2 x S ( l l l ) ] | | ) ^ ( f f ( 6 p i + %^tp^m 

where f̂ P is defined in (6. 16) and X is given by (6. 7). 

The Simplex Finite Element 
i 

When dealing with finite deformations of membranes with general 

material properties, numerical integration of the equations of motion 

can involve inordinate complications. Seeking to facilitate this process, 

it is natural to consider the incorporation of the simplest finite element 

approximation available. The simplest of all finite elements are the 
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so-ca l led s implex e l emen t s - -ones in which the local fields can be 

descr ibed l inear ly in t e r m s of the nodal values of the local field and 

nodal coordinates . Fo r the case of a thin membrane* the s implex 

model is a t r i angular shaped element with nodes at the th ree v e r t i c e s . 

It has been shown for the stat ic nonlinear analys is of m e m b r a n e s 

(e. g. , [57-60 ]) that this model is adequate in obtaining quite accura te 

r e su l t s . That th is should be so is easi ly seen from the physical 

problem: if concentrated forces (or point loads) a r e applied to a thin 

m e m b r a n e i t h e m a t e r i a l s u r f a c e s b e t w e e n t h e s e l oads p h y s i c a l l y t e n d 

to take on the appearance, of the finite element descr ipt ion. Moreover , 

the s implex model affords us the convenience of constant s t r a in fields 

over the element , thereby eliminating the lengthy and tedious integrations 

incurred for varying s t r a in fields. Also , if des i red , var ious composi te 

e lements can be obtained from the appropr ia te grouping of the t r i angula r 

e lements . 

In addition to the above, for the simplex e lement , the comple teness 

and continuity r equ i remen t s for convergence a r e satisfied. A l inear 

function is uniquely determined by any two of its va lues . Since the local 

functions u(X) a r e l inear along each boundary of the e lement , fitting two 

of these e lements together amounts to p resc r ib ing the same nodal values 

of adjacent local approximations at the two nodes on the i r inter e lement 
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boundary. Thus the local fields coincide at a l l inter e lement boundary-

points in the connected model , and the finite e lement model is eve ry ­

where continuous. 

Tr iangula r (Simplex) Membrane Element 

A genera l motion of the membra ne which /ca r r i e s the sys tem from 

its initial> or r e fe rence , conf iguration CQ to a deformed configuration C 

is again considered. In genera l , s t ra ight l ines in C will become 

curved lines in C. However, if node points in CQ a r e chosen sufficiently 

c l o s e , node l i n e s in C m a y b e a d e q u a t e l y a p p r o x i m a t e d by s t r a i g h t l ine 

segments , and plane e lements before deformation will r ema in plane 

after deformation. This is equivalent to assuming the e lementa l d i s ­

placement fields to be l inear functions of the local coordinates of the 

e lements 

u i = d i + a i * x " (6." 19) 

where u. a r e displacement components , d^ a r e components of r igid-body 

t rans la t ions of the e lement , a- a r e undetermined cons tan ts , i = 1 , 2 , 3 , 

a = 1, 2, and again the element label (e) has been d iscarded for 

convenience. Also, the dependence of u, d, and a.- on t ime is 

understood. 



1 3 3 

Evaluating (6. 19) at each node point, noting that each component 

of r igid-body displacement is the same for a l l nodes (i. e. , d-j^ = d-)f 

gives 

uN = d. + a L a X £ (6.20) 

Here u- (N. = 1,2,3) a r e displacement components of node N, and X^r 

a r e local coordinates of node N. Again, it is understood that indices 

N = 1, 2, 3 a r e to be a s s o c i a t e d wi th t h e t h r e e n o d e s of e l e m e n t e. Now, 

(6.20) r ep re sen t s nine s imultaneous l inear equations for the th ree 

components d-L and the six p a r a m e t e r s a- . If (6. 20) is expanded by 

f i rs t letting the index i take on values 1, 2, 3 and then expanding on N, 

the resul t ing form of the coefficient m a t r i x is pa r t i cu la r ly easy to invert. 

The solutions a r e found to be 

d . ^ l ^ u f (6.21) 

a n d 

aia=cNauf < 6 - 2 2 > 
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where 

k j = (X*xf - X ^ x | ) / 2 A 0 

k ' = (X?X* - xJx'*)/2A (6.23) 

a n d 

k 3 = ( x } x 2 - - X ^ ) / 2 A 0 

-QfN ~ 2A. 
<X2 - X3> 

(X31 - x\y 

(x'-xf) 

(xj - xj) 

<x*-x|)" 

( X 2 " X l> 

(6. 24) 

H e r e A is the a r e a of the undefarmed trLarigle. The quanti t ies c ^ a r e 

called the displacement coefficLents. Note that they a r e independent of 

the deformation of the membrane and a r e computed d i rec t ly from the 

T geomet ry of the undeformed element . Also , c „ = (c j . ) . 

With (6. 21) and (6. 22), (6. 19) becomes 

uL = k N u f + c N a u f X« = (kN + cN;tfX« )uf (6. 25) 

Thus , with (6. 25), the der ivat ives of the displacement components a r e 
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uL,tf = % « » ? • • ( 6 , 2 6 ) 

Comparing (6. 25) and (6. 3) we see that, for the s implex t r i angula r 

element , the local interpolation functions he re a r e 

^ ( X 1 . X i ) : = k N * c ^ X a (6.27) 

And so, 

^ , < * = CN<* •-.•: (6.28) 

With (6. 28), the s t ra in components of (6. 4) will become 

N N • '.. . N M 
2f*ap = CN<*U|3 + 'cN:p'ufc- + c N o r c M p u k u k 

2ya3 = 0 (6. 29) 

2v 3 3 = \ 2 - 1 

Also, (6. 16) and (6. 7) a r e now expressed in the form 

f P = 6 P + c € M ^(c N x u^ +• C N M U X + c N X c M ^ u k u k ) (6. 3 0) 
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+ cN a
cM|3 l lk uk* ) ( e R X u * + C R ^ X + cRXcPM.uf u f ) ] " 

wherein L, j , k = 1 ,2 ,3 ; a, |3, X, |JL = 1, 2; N, M, P i R = 1, 2, 3 . 

It should be noted that» sahce (6; 29) ghres the s t r a ins in t e r m s of 

a specified displacement field, the compatibil i ty equations a r e auto­

mat ica l ly satisfied within each finite element. 

To o b t a i n the a p p r o p r i a t e f o r m of t h e c o n s i s t e n t m a s s m a t r i x , 

(6.27) is introduced into (6. 14) where , if pG is a s sumed to be constant 

in the undeformed e lement , it can be shown (e. g. »• [7]» p. 173) that 

m N M = 12 m o ^ '+ 6NM> (6« 32> 

where m = p djiA* is the total m a s s of e lement e. o r o o o 

F o r compress ib le m a t e r i a l s 

X2 = ( 1 ^ + C j ^ x V * (6.33) 

Introducing (6. 32), (6. 33), and (6. 27) into (6. 15) and simplifying, the 

equations of motion for a s implex m e m b r a n e element of isotropic 

compress ib le m a t e r i a l a r e 
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PNi = 1 2 m o ( 1 + W>af + 2 v o 
3W 
a i i 

( 6 . 3 4 ) 

K+^*£]**W'(**. 
cR^)^irKp M, 

CNar ( 6pt+?CMpU i } 

where 

*° = t Vx"< 
A? o(e) 

( 6 . 3 5 ) 

= the cent ro idal coordinates of A' with 
o 

respec t to the local X. . a x e s . 
(e) 

and fa" is given by (6. 30), and v = dQA'0 . 

Final ly , introducing (6. 28), (6. 29), and (6. 32) into (6. 18) yields 

the nonlinear equations of motion for the simplex membrane element 

of isotropic incompress ib le m a t e r i a l 

A 

PNi = l 2 m o ( 1 + 5 N M K
 + 2 v o(( 6 " X f JaiJ + X 5 + f I1 < 6 ' 3 6 ) 

-2X 4 -2xV(Vk+ |CPfxUk)-kI 
A 

aw\ 
a i J c N* (V+cMP^) 
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and f p and X. a r e given in t e r m s of the nodal d isplacements in (6. 30) 

and (6.31); or by using (6.4) , in the condensed form 

(6.37) 

XZ = I1 + 2cN*<6«p + cM««pV£ + Z ^ ^ X Y J " 1 

Also, for simplicity* and for the sound theore t ica l reasons mentioned 

e a r l i e r , we w a n t to u s e t h e l u m p e d m a s s a p p r o x i m a t i o n . H e n c e , in 

(6. 10), we take ^N (X) = 6(XN - X), 6(X) being the Dirac delta function, 

and obtain the lumped m a s s m a t r i x 

m M N = "3 Povo(e)6MN (6.38) 

With (6. 38), the f i r s t t e r m on the r igh t -hand-s ide of (6. 3 6) becomes 

..M 1 c «M / , on» 
m M N u i = 3" Povo(e)5MNU i ( 6- 3 9> 

6. 2 Tempora l Approximations 

Upon assembl ing e lements and applying the boundary condit ions, 

(6. 37) leads to a la rge sys tem of highly nonlinear second-orde r ord inary 

differential equations in the unknown nodal d isp lacements u- . The 
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arguments presented in Section 4. 4 a r e st i l l applicable: he re ; Therefore ; 

as for the one-dimensional c a s e , the velocity formulated cen t ra l 

difference scheme is used ( remember ing , of cou r se , its inadequacy in 

the p resence of shocks), together with a lumped m a s s represen ta t ion 

for the numer ica l examples presented at the end of this chapter . H e r e , 

the genera l second-order nodal equations of motion being of the form 

fif (t) = F ? ( u f (t)) (6. 40) 

resu l t in difference equations of the form 

rN(n+|) = vN(n-l) + A t F f (u¥<n>) 

uN(n+l) = uN(n) + A t v N ( n + | ) 

(6.41) 

where we have denoted the t ime d iscre t iza t ion by u (t) = u (nAt) = u^ . 

6. 3 Stability and Convergence 

Although at the p resen t t ime we do not have any stabili ty c r i t e r i a 

for the two-dimensional nonlinear wave equation, we conjecture that 

our work in Chapter V on one-dimensional nonlinear p rob lems furnishes 

some insight into at l eas t the o r d e r of magnitude expected of the 
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two-dimensional e s t ima tes . The plausibil i ty of this conjecture can be 

argued by noting that , for the l inear c a s e , the t ime step assoc ia ted 

with stability e s t ima tes of Richtmyer and Morton [87] (pp. 304, 361) 

d e c r e a s e s by only th i r ty percent in going f rom one to two dimensions . 

Also , the two-dimensional stabili ty e s t ima tes of Fujii [93] seem to 

requ i re a t ime step twice as smal l as that needed for one-dimensional 

stabili ty. 

The one-dimensional e r r o r e s t imates and convergence r a t e s 

d e r i v e d in C h a p t e r V h a v e r e c e n t l y b e e n g e n e r a l i z e d by Oden [ 9 7 ] to 

include th ree -d imens iona l dynamic finite e las t ic i ty p rob lems . There in , 

he proves the genera l convergence theorem: 

F o r each i = 1, 2 , . . . , n, the f ini te-e lement approximation e r r o r 

e ^ , m = 1 ,2 ,3 , is such that 

l l ^ l l w ^ B ) ^ V0At r + V l ] |E< i> ] | w l ( B ) (6.42) 

where v 0 and v^ a r e posit ive constants , E*1 ' is the interpolation 

e r r o r , r ^ 1, and W-(B) denotes the Sobolev space of functions 

u(X,t) which, along with the i r f i r s t der ivat ives with r e spec t to 

XL» a r e square integrable. 
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6. 4 Numer ica l Resul t s 

In this section, we p re sen t numer ica l r e su l t s obtained by applying 

the procedures descr ibed e a r l i e r to the problem of a beam with a 

cent ra l load, a square sheet with a t r a n s v e r s e load applied suddenly at 

the center and then removed, and the dynamic inflation of a thin rubber 

me mbr ane. ~ 

Highly Elas t ic (Rubber-like) Beam with Cent ra l Load 

As the f irst example , a beam with fixed ends is subjected to a 

cent ra l impulse load and allowed to deform as a function of t ime. The 

undeformed beam is 18 in. long, 0.4 in. deep and 0.05 in. thick, and 

is const ructed of an i so t ropic , incompress ib le m a t e r i a l of the Mooney 

type (i. e. , W = CjU^ • - 3) + C 2 ( I 2 - 3)) with ma te r i a l constants of 

Ci = 24 ps i , C2 = 1.5 ps i . The m a s s densi ty of the ma te r i a l is 

0.0001 l b - s e c 2 / i n 4 . 

Since the loading is symmetric. , a finite e lement model jvyas gener­

ated for only one-half of the beam. The model consis ted of 20 bays along 

the length and 4 bays through the depth of the beam, as shown in Fig. 12a. 

This resu l ted in a model with 105 nodes and 160 t r iangular e lements . 

Upon applying boundary conditions ;anrd res t r i c t ing 1 5 degrees of f reedom, 

the number of unknown displacements reduced to 195. Impulse loads of 

1.0, 0. 9, and 0. 2 5 lbs were applied for 0. 001 sec to the node represen t ing 

the cen ter , the node 0. 25 in. from the center and 0. 6 in. f rom the cen te r , 



(a) The Beam 

20 in.' 

y///////Af/////frti <b> The Membrane 

Loaded Nodes 

Figure 12. F in i t e -e lement Models of a Highly Elas t ic Beam and a 
Square Membrane 
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respect ive ly , to avoid s t r e s s s ingular i t ies at the center . F igure 13 shows 

the deformed shape of half the beam computed at var ious t imes . 

It is emphasized that the deformation is plotted to sca le . Hence, 

ve ry la rge-ampl i tude motions a r e c lea r ly developed. F igu re 13a shows 

the undeformed beam, F igure 13b shows the beam jus t p r io r to t e r m i n a ­

tion of the impulse load, and F ig s . 13c and 13d show the propagation of 

the wave toward the fixed edge. At this point in t ime the re a r e two 

significant mot ions , one is a genera l ve r t i ca l (flexural) motion of the 

whole beam and the other is a longitudinal wave t ravel ing along the 

deformed axis of the beam. In Fig . I3e , the wave t ravel ing along the 

beam is reflected off the boundary and s t a r t s moving toward the center . 

In Fig . 13f, the ve r t i ca l motion is r e s i s t ed by bending at the fixed edge, 

arid the wave t ravel ing along the b e a m is reflected from the center . The 

remaining f rames of the figure show the interact ion of the slow bending 

wave and the fas ter moving wave along the beam at var ious t i m e s . The 

12 f rames presented he re were selected from a 16mm movie film con­

taining approximately 1200 f r ames . It was evident from the movie that 

longitudinal waves (i. e. , waves along the deformed X —axis) resul ted 

in ve ry fast osci l la t ions ahead of the much slower f lexural type mot ions . 

Approximately 12, 000 integration steps were requi red to solve 

this problem. This was achieved on the UNIVAC 1108 in 35 minutes . 

It is interest ing to note that an additional 40 min of computer t ime 
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( g ) t = 0.02573 (h) t = 0. 03266 ; (i) t = 0 . 0 4 0 5 8 

(j) t = 0.04553 (k) t = 0.05048 (1) t = 0.11857 

Figure 13. Deformed Shapes of Central ly Loaded Beam (Sheet 2 of 2) 
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was requi red to genera te the 16mm film containing 1200 f rames which 

can be shown in 40 seconds. 

Square Sheet with Normal Load 

As a second example* the square sheet with clamped edges shown 

in Fig. 12b is subjected to a cen t ra l impulse load, no rma l to the plane 

of sheet , and allowed to deform as a function of t ime. The m e m b r a n e 

is a 20 in. square with a th ickness of 0. 05 in. , and the m a t e r i a l 

p roper t i e s a r e the same as the f i r s t example. Here it was n e c e s s a r y 

to model only one-eighth of the me mbra ne since symmet ry was assumed. 

The finite element model of the m e m b r a n e contains 400 e lements and 

231 nodes. The supported model resul ted in 590 unknown d isp lacements . 

A uniformly dis t r ibuted impulse load of 3 pounds per e lement was applied 

to the four e lements c loses t to the node represent ing the center of the 

sheet. The durat ion of the impulse load was 0. 001 seconds. 

F igure 14a shows the initial finite e lement model of the sheet; 

F ig . 14b shows the sheet jus t after the removal of the load. The energy 

impar ted to the membrane continues the ve r t i ca l movement of the center 

in Fig. 14c. In Fig. 14d the internal forces overcome the iner t ia effects, 

and the center of the sheet col lapses and forms a standing wave which 

propagates toward the fixed edge in F igs . 14e through 14i. The wave 

which t r ave l s with a c i r cu la r front s t r ikes the n e a r e s t edge and s t a r t s 

to rebound, while the wave is s t i l l t ravel ing toward the ex t reme edge 



( 0 H * 0 . 0 ( b i t * 0.001 <C'C)t« 0.002 

(d) tsO.003 ( t ) • «0.009 ( f ) t«O.OI6 

<Q> t * 0.019 (h) f * 0.022 (! ) f s 0.027 

(J) t « 0.030 ( k ) t » 0 . 0 3 3 ( I ) t «0.040 

Figure 14. Deformed Shapes of Centra l ly Loaded Sheet 
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in Fig. 14i. The rebound wave continues to propagate in Figs . l4j 

through 141. Again, a closer examination of the response indicated 

that "membrane" waves propagating along the deformed sheet are 

developed which traveled much faster than the "ripple" obvious in the 

figures. 

Thirty minutes on the UNIVAC 1108 were required to complete 

4200 integration steps. A 16mm film containing 1300 frames were 

made and the 12 frames presented here were selected from the film. 

D y n a m i c In f la t ion of a M e m b r a n e 

In this final example* we present some results of the finite-

element analysis of an interesting class of problems: the dynamic 

inflation of thin rubber membranes. We consider a thin, initially flat 

circular membrane of Mooney material (C« = 24. 0 psi , C~ = 1. 5 psi) 

with an undeformed radius of 4. 0 in. and an initial thickness of 

0.05 inches. Here, as in the previous example, it was only necessary 

to model an octant of the c irculaf membrane due to the symmetry of the 

problem. The finite element model of the membrane, shown in Fig. 15* 

has 400 elements and 231 nodes. Applying the boundary conditions and 

restricting the symmetric degrees of freedom reduces the number of 

unknown displacements to 590. The membrane was subjected to a uniform 

transverse pressure p(t) applied as indicated below. 
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4 .0 in. 

F igure 15. F in i t e -e lement Model of a C i r cu l a r Membrane 
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'.8-2'5't p s i 0 ̂  t ̂  0. 002 sec 

Case 1: p(t) = { 1. 65 psi 0. 002 ̂  t ̂  0. 006 sec 

0 t £ 0. 006 sec 

825t psi 0 ̂  t g 0. 002 sec 
Case 2: p(t) = 

1. 65 psi t ̂  0. 002 sec 

825t ps i 0 S 1 ^ 0. 002 sec 

1. 65 psi 0. 002 ^ t ^ 0. 004 sec 

1..65. + Q-smcjt t ^ 0. 004 sec 

Case 3: p(t) = 

where Q = 1. 0 psi and w = IOOOTT r a d / s e c . 

Rather than t r y to cope with the nonconservat ive nature of the 

general ized nodal forces , p j ^ , as defined in (6 .11) , we turn to the 

simplified method, which is fully explained in [ l 7 j , p. 245, for approxi­

mating these forces . The essence of this method is calculating the 

instantaneous configuration of each e lement , applying the cu r r en t 

p r e s s u r e to the deformed a r e a , so that the associa ted general ized nodal 

forces a re obtained by simply distr ibuting the resul t ing applied force 

equally at each node. 

Case 1. Prof i l es of the m e m b r a n e , calculated at various t i m e s , 

a re shown in F ig . 16. Here we notice that the cen t ra l port ion of the 

membrane initially tends to r e m a i n flat due to the cen t ra l e lements 

responding p r i m a r i l y in r igid body ver t ica l t r ans la t ion (with some in-

plane stretching) until the effect of the fixed boundary r eaches them. 
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X ~ in. 

F igure 16. Deformed P r o f i l e s of C i r cu la r Membrane . Case 1 
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Then, even though the p r e s s u r e is removed at t = 0. 006 sec , the m e m ­

brane continues to expand until t = 7. 66 msec* and then rebounds until 

it wrinkles as shown in F ig . 16. F igure 17 shows perspec t ive views 

of the deformed f ini te-element mesh calculated at about every 

mil l isecond. 

Since the stat ic ver t ica l displacement of the center of the membrane 

was found in [ 57] to be 6. 8 in. due to a uniform t r a n s v e r s e p r e s s u r e of 

1. 65 ps i , we can define a dynamic magnification factor of so r t s for this 

p roblem. 

u^ (dynamic) u- (dynamic) 
H = — ^ = — ——• (6.43) 

u* (static) 6- 8 

where u is the ver t ica l d isplacement of node 1, the center node. For 

this case then, we have fx = 1. 21 . 

Case 2. The membrane profile at var ious t imes is shown in 

F i g s . 18 and 19. As before, the membrane initially expands with a 

flat cent ra l pa r t , but in this c a s e , the centra l portion " snaps" past the 

peaked configuration shown at t = 7. 66 msec into a round balloon-like 

shape shown at t = 8. 17 mil l isecond. This "snap- through" motion is 

also indicated in Fig . 20 where the ver t ica l deflection t ime h is tory of 



BIW*1"1*1 • 

Figure 17. Pe r spec t i ve Views of Deformed Fin i te -e lement Mesh. Case 1 Ul 
00 



154 

6. 13 m s e c 
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F igure 18. Deformed Prof i l e s of C i r cu l a r Membrane . Case 2 
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30 - t = 15. 82 msec 
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F igure 19. Deformed Prof i l es of C i rcu la r Membrane . Case 2 



10 15 20 

Time ~ m s e c 

F igure 20. T ime His tory of Ver t ica l -Displacement of Node 1. Case 2 
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the cent ra l node is shown. F r o m Fig. 19 we can see that the membrane 

continues to inflate, bal loon-l ike, until t = 1 5 . 82 msec and then rebounds 

pas t the initial posit ion as shown at t = 29. 08 mi l l i s econds . At 

t = 15. 82 msec the ve r t i ca l displacement of the cent ra l node is seen 

to be 29. 6 in. ; thus for case 2, the dynamic magnificat ion factor (6.43) 

is [i = 4. 35, 

Case 3. The loading differs from case 2 in that a sinusoidally 

varying p r e s s u r e is applied at t = 0.004 seconds. The effect of this 

superposed p r e s s u r e var iat ion can be seen in the ver t ica l deflection 

t ime h is tory of the cent ra l node, shown in Fig . 2 1 . Here it can be seen 

that, although the pressure^ begins to vary at t = 4 m s e c , the " snap -

through" into a round balloon st i l l happens at about t = 8 msec as it 

did for case 2. Also, the maximum deflection occurs at a lmost the 

same t ime as it did in case 2, but it is over 4 in. ' less- - ' the dynamic 

magnification factor for this case is .|x . = ' 3'. 73. Membrane profi les at 

var ious t imes a r e shown in Fig . 22 for this ca se . F igure 23 shows 

perspec t ive views of the deformed f ini te-element mesh calculated at 

various t imes for the case 3 loading. Successive views shown in 

Fig . 23 were calculated every mil l isecond for 22 mi l l i seconds . 

Thi r ty minutes on the UNIVAC 1108 were requi red to complete 

2200 t ime integrat ion s teps . A 16mm film was made and the f rames 

presen ted in Fig . 23 a re from that film. 
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30 r 

Time ~ msec 

F igure 21 . T ime His tory of Ver t ica l Displacement of Node 1. Case 3 
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t = 15 msec 

X ~ in. 

F igure 22. Deformed Prof i les of C i r cu l a r Membrane . Case 3 
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Figure 23. Pe r spec t ive Views of Deformed F in i t e -e lement Mesh. 
Case 3 (Sheet 1 of 2) 
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Figure 23. Pe r spec t ive Views of Deformed F in i t e -e lement Mesh. 
Case 3 (Sheet 2 of 2) 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7. 1 Summary 

The objective of this r e s e a r c h was to develop approximate methods 

for the quantitative analysis of the dynamic response of a r b i t r a r y 

elas t ic bodies at finite s t ra in . Fini te element models of thin incom­

press ib le hypere las t lc m e m b r a n e s a r e developed* which involve large 

sys tems of second-order nonlinear differential equations in nodal 

d i sp lacements . 

One dimensional ve rs ions of these equations a r e f i r s t solved 

using a var ie ty of t ime integration schemes in conjunction with the 

successful extension of the f in i te -e lement method to one-dimensional 

elastodynamic prob lems with finite s t ra in . Qualitative a rguments and 

studies of var ious ca se s confirm that shock waves can develop, even 

in ca se s in which smooth initial data a r e p re sc r ibed . Using the one-

dimensional finite element equations, it was possible to verify n u m e r ­

ically the theore t ica l es t imate (X^-™, V : R ^ ^ o r e v ° l u ^ o n °^ a shock wave 

from Lipschitz continuous initial data. In the p resence of shocks , the 

s tandard integration schemes a r e ineffective, and it is n e c e s s a r y to 

seek an integration scheme adequate for shock propagation s tudies . 
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A new explicit integration scheme, which combines fea tures of the 

Lax-Wendroff method and finite e l emen t s , is developed and used 

successfully to study the formation, reflection, and propagation of 

shock and acce le ra t ion waves in-hyperelast ic rods . A number of 

c a se s a r e studied numer ica l ly . 

Motivated by the absence of any convergence c r i t e r i a or n u m e r i ­

cal stabili ty c r i t e r i a for f in i te-e lement approximat ions of nonlinear 

hyperbolic equations, a study of these equations for the subject c l a ss 

of p r o b l e m s is i n i t i a t ed . T h e r e i n , a r i g o r o u s a n a l y s i s of n u m e r i c a l 

stabili ty and convergence of finite element approximations of nonlinear 

hyperbolic equations is given. P r e c i s e stabili ty c r i t e r i a and e r r o r 

es t imates a r e derived. It is shown that while lumped and consis tent 

m a s s finite - e lement models have the same convergence ra te in na tura l 

energy n o r m s , the lumped m a s s model is numer ica l ly m o r e s table. 

The investigation then r e tu rns to two- and th ree-d imens iona l 

m e m b r a n e p rob lems . A number of cases a r e considered while appa r ­

ently r e p r e s e n t the f i r s t solution of any type to p rob lems of this kind. 

7. 2 Conclusions 

F r o m the work done in this r e s e a r c h and examining the r e su l t s 

of the numer i ca l examples , the following conclusions w e r e reached: 

1. The f in i te-e lement method can be successfully used to solve 

elastodynamic p rob lems with finite s t ra in . 
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2. The f ini te-element inethbd can be successfully used for the 

study of the formation and propagat ion of shock and acce lera t ion waves. 

3. The explicit integration scheme developed in Chapter IV can 

be used to study the formation and propagation of weak shock and 

acce le ra t ion waves. The success of this scheme, as p resen ted he re in . 

s t ems f rom the na ture of the Lax-Wendroff equations (cf. , [ 86] , p . 302) 

being such that they contain a bui l t - in dis'sipative mechan i sm and hence 

can somet imes be used in unmodified form for shocks. However, the 

o rder of the effective dissipat ion is the same as the o rde r of the t run ­

cation e r r o r , so we obtain solutions of sys tems of conservat ion laws 

as l imits of solutions of parabol ic equations as the coefficient of the 

diss ipat ive t e r m goes to ze ro . Since the solution converges everywhere 

outside the shock, it is our expectation that it will converge at the 

shock. 

4. An essent ia l feature of our integration scheme is that the 

spatial der ivat ive in the conservat ion law is replaced by a difference 

quotient involving nodal va lues . By rewri t ing (3. 16) as (3. 18) and 

using only a l inear f in i te-e lement approximation, we a r e able to r e p ­

resen t al l the requi red quanti t ies with nodal va lues . If we use (3. 16) 

with a l inear f in i te-e lement approximation, the quanti tes requ i red by 

the Lax-Wendroff equations (the s t r e s s and wave speed) a r e double-

valued at the nodes , so that nothing is gained with this pa r t i cu la r model . 
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5. The stabil i ty of the finite-elernent/fihite-dLfference scheme 

is a s s u r e d of (h/At) > v-,C__ „(u )/ J2, where h is the min imum mesh 

length for the f in i te-e lement model , va {<* = 1» 2) a r e cons tants , v-i 

corresponding to a consis tent m a s s formulat ion and vo to a lumped 

m a s s formulation, and C m a x ( u x ) is the max imum speed of propagation 

of acce le ra t ion waves re la t ive to the m a t e r i a l for a l l X at t ime t = iAt. 

Obviously, this resu l t reduces to s imi l a r c r i t e r ion obtained for l inear 

difference approximat ions when C ^ a x = constant. 

6. To mainta in stabili ty for a given f in i te-e lement /d i f ference 

scheme with fixed h, it is n e c e s s a r y to use a sma l l e r t ime step for the 

consis tent m a s s formulat ion than for the lumped m a s s formulat ion 

since v* > V£ • 

7. Under the assumpt ions stated in Chapter V, the square of the 

Lo no rm, || e„ | | , of the gradient of e r r o r of the f in i te-e lement approxi -

2 2 
mat ion at each t ime step i is 0(h + (At) ). (Similar accu rac i e s a r e 

obtained after R t ime steps in the l inear case . ) Uniform convergence 

of the e r r o r e is a lso obtained. 

8. The same ra tes -o f -convergence for the consis tent m a s s formu­

lation a r e obtained for the lumped m a s s formulation. 

9. The above stepwise stabil i ty es t imate was incorporated in the 

velocity formulated difference scheme d iscussed in Chapter IV. It was 

found that in this case , the re was no inc rease in accuracy , stabil i ty, or 
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computational efficiency. It does seem, however, that a variable t ime-

step integration scheme would be advantageous in solving problems with 

more than one spatial dimension. 

7. 3 Recommendations 

The following topics are suggested areas of interest which would 

extend this investigation. 

1. Use higher order finite--element models. Approximating the 

displacement gradients with linear finite-element models is roughly 

equivalent to using a quadratic finite-element approximation for the 

displacement. It would be expected that higher order finite-element 

approximations would result iii both increased accuracy and stability 

of the solution. ^ 

2. Consider compressiblermajterials T 

3. Extend the analysis to three-dimensional bodies. 

4. Obtain general numerical stability estimates for finite-

element approximations of nonlinear hyperbolic equations. 

5. Investigate the merits of different forms of integration schemes, 

where a purely artificial dissipative mechanism is introduced into the 

difference equations( as originally suggested by von Neumann and 

Richtmyer [88] and later developed for conservation laws by Lax and 

Wendroff [86] ) , used in conjunction with finite-element approximations. 
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6. Check the prac t ica l i ty of using a var iab le t ime step integration 

scheme, pa r t i cu la r ly for other than one-dimensional p rob l ems , to take 

advantage of the stepwise stabil i ty es t imate , 

7. Invest igate the possibi l i ty of using ei ther the two-dimensional 

Lax-Weridroff integration scheme descr ibed in [98] or the two-

dimensional two-s tep Lax-Wend r off method descr ibed in [87] for the 

study of shock waves in e las t ic bodies . As repor ted in [ 9 8 ] , the two-

dimensional Lax-Wendroff scheme has been used by S. Burns te in in a 

s e r i e s of highly successful calculat ions of shocked flows in a narrowing 

channel, a port ion of which a r e descr ibed in [ 9 9 ] , 
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APPENDIX 
i 

PERTURBATION STABILITY ANALYSIS 

As an Interest ing side light, we study the stabil i ty of the nonlinear 

wave equation (3. 19) using s tandard cen t ra l differences to approximate 

all der iva t ives . To this end, we turn to the often used heur i s t i c 

p rocedure where in the actual solution to (3. 19)» u(X, t ) , is pe r tu rbed 

a smal l amount c.(Xtt). Incorporat ing the per turbed solution, ii = u + € , 

subtracting (3. 19). then l inear iz ing the resu l t with r e spec t to the 

per turba t ion c » we seek conditions for the stabili ty of the l inear ized 

equation. Hence, setting u = u + c * we get the per tu rbed extension 

ra t io 

\ = 1 + u x + e x = X + € X (A. 1) 

and f rom (3.22) 

^X = 2f C l < 1 + 2 ^ " 3 ) + 3 C 2 ^ " 4 ^ X X (A* 2 ) 

Now, for c smal l enough, i. e. » for € « 1, we can say 
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X"3 = (X + € x r 3 = X - 3 - 3X" 4€X (A. 3) 

X"4 = (X+ € x r 4 = X " 4 - 4X~5€X (A.4) 

Then, using (A. 1), (A. 3), and (A. 4), J(A. 2^ can now be wr i t ten , c o r r e c t 

2 to 0 ( € X ) , as 

a X = °"x "*" ^ U X X € X ^ " ^ 1 ^ " " IZC?^ ' (A. 5) 

+ 2 € 3 t x [ C 1 ( l + 2X"3) + 3C 2X" 4 ] 

Final ly , after some a lgebra , we obtain the l inear ized per turba t ion 

equation in the form 

€ - A ( u x , u x x ) € X - c 2 ( u x ) € x x = 0 (A. 6) 

where 

-12 lr% , - 4 L ^ >~5 
Po 

A ( u x , u x x ) = "±= (CjX"4 + 2 C 2 X " D ) u x x (A. 7) 

and c^ (u x ) is defined in-(3. 27). Assuming a smooth solution to (3. 19)» 

we can consider the product c v u X X t o ^ e o f s e c o n < * o r d e r so that 
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(A. 6) becomes 

r - c ^ e x x = 0 (A. 8) 

If the two der iva t ives in (A. 8) a r e both approximated by divided 

second cen t ra l d i f ferences , centered at the point (X , t .)•» for the 

purpose of a s t ep -by- s t ep numer ica l solution, the resu l tan t s imulat ion 

can be wr i t ten in the form 

E m , n + 1 " 2 E m , n + E m , n - 1 = d ^ E m - H , & # E i r i , n > E m - l , n > <A- 9> 

where 

d 2 - 2 ( H ) 2 <A-lo> 

To investigate the stabili ty of (A. 9), we seek solutions of the form 

E m . n = P n e i a m < A - U > 

where or and (3 a r e cons tants , with <x r ea l . Substituting (A. 11) into (A. 9) 

yields the equation 
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(32 - 2 (l - 2d 2 s in 2 | ) (3 + 1 = 0 (A. 12) 

The question of stabil i ty l ies in determining under what conditions 

the magnitude of (3 does not exceed unity for all r e a l values of a. Thus , 

to prevent solutions of the type (A. 11) f rom growing exponentially in 

magnitude as n i n c r e a s e s . We requ i re that the d i sc r iminan t of (A. 12) be 

l e s s than or equal to ze ro 

( l - 2d 2 s ln 2 | ) 2 - 1 < 0 (A. 13) 

and hence we mus t have 

d 2 < — ^ (A. 14) 
2 a 

s in — 
2 

for al l r e a l values of a. F r o m this it follows that the condition for 

stabil i ty is 

^ ^ I k - 1 <A-15) 

F r o m (A. 15) we see that , a s was expected f rom choosing an 

explicit t empora l integrat ion scheme to get (A. 9), we have conditional 

numer ica l stabil i ty. However, it is of in te res t to note that for the 
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nonlinear one-dimensional p roblem, the c r i t i ca l t ime step is dependent 

upon the longitudinal extension ra t io , \ . In other words , for a fixed 

AX, the c r i t i ca l t ime step requi red fo r ' numer i ca l stabil i ty is dependent 

on the c u r r e n t s tate of s t ra in . This r e s u l t J-8 c l ea r ly shown in Fig. 24 

for a Mooney-Rivlin m a t e r i a l , where we f i r s t substi tuted (3. 27) into 

(A. 15) to get 

"%£• > / — C i ( l + 2 \ " 3 ) + — C 2 \ " " 4 (A. 16) 
A t V Po Po 

and then calculated the ar t i f ic ia l wave speed, AX/At, for va r ious 

values of \ with C^ = 24 psi and C 2 = 1. 5 ps i . F igure 24 shows that 

for the m o r e rea l i s t i c values of the ar t i f ic ia l wave speed (say 

AX/At > 1200 in / sec ) the re a r e s ta tes of s t r a in at which the numer i ca l 

solution is not s table. Converse ly , for a given s t r a in state (i. e. , for 

any \ ) one can find a stable signal speed for the difference scheme. 

(For compara t ive pu rposes , the stabil i ty curve for the m o r e r igorous 

stabili ty es t imate (5. 28) is a lso shown in Fig. 24. ) 

The plausibi l i ty of this resu l t can be argued on the following 

physical b a s i s : for the l inear p rob lem, the c r i t i ca l t ime step is re la ted 

to the shor tes t t r ans i t t ime between any two nodal points in the finite 

e lement mesh and it is a fixed c r i t i ca l value. But one thing that makes 

a l inear p roblem l inear is being r e s t r i c t e d to infinitesimal s t r a ins . In 
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other words , in the l inear p rob lem, the re la t ive d isp lacement between 

any two nodal points is very smal l . Now, in going to the nonlinear 

p rob lem, one might sti l l expect the c r i t i ca l t ime step to be re la ted to 

the finite e lement m e s h s ize ; but he r e t he re may be an apprec iable 

deformation in the meshV-hence a varying value of the c r i t i ca l t ime step. 

This can be seen in Fig. 24, where for increasing values of \ 

( increasing dis tance between nodes), the re is a corresponding inc rease 

in the c r i t i ca l t ime step requi red for the numer ica l stabil i ty of the 

integration scheme. 
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