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SUMMARY

With the emergence of new technologies for small Unmanned Aircraft Systems (sUAS),

such as lightweight sensors and high-efficiency batteries, the operation of small Unmanned

Aerial Vehicles (sUAVs) has expanded from military use to commercial use. A promising

commercial application of sUAS is package delivery because of its potential to reduce

acquisition and operating costs of the last-mile delivery system while enabling new services

such as same-day delivery. Furthermore, in urban areas, sUAVs can deliver packages to

customers without negatively affecting street traffic.

This thesis addresses an extended sizing and synthesis process that considers the per-

formance of a sUAS in its total cost optimized routing to size the vehicles for sUAS-based

delivery systems. This problem is called the concurrent aircraft design and routing prob-

lem. Based on decomposition approaches, this problem can be divided into three parts: the

sizing, the route planning, and the integration of the two. However, the existing methods

have mainly focused either UAV design or optimization of operations of UAVs. Although

a concurrent UAV design and routing problem is addressed, only simple routing problems

are studied without considering the obstructed environment like an urban area.

To fully address the concurrent aircraft design and routing problem for sUAS-based

delivery systems, this thesis presents a novel modular framework including all three parts

of this problem: the UAV design module, the UAV routing module, and the integration

method. First, for the UAV routing module, this thesis presents an endurance-constrained

Multi-Trip Vehicle Routing Problem with time windows (MTVRPTW) optimization model

that is an extension of the MTVRPTW optimization model. The MTVRPTW model builds

a vehicle’s schedule including a reuse plan for an on-demand delivery system. However, the

MTVRPTW model does not consider the property of sUAV’s limited endurance. To allevi-

ate the limitation of the MTVRPTW model, the endurance-constrained MTVRPTW model

employs maximum endurance constraints that trace flight time of each vehicle and restrict
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flight time to vehicle’s maximum endurance. Moreover, to address the urban environment

with the optimization model, this thesis presents a framework for creating a two-layered

urban flight network as an input graph of a Vehicle Routing Problem (VRP) optimization

model. The urban flight network is built by feeding airborne Light Detection And Ranging

(LiDAR) sensor data into an algorithm that uses a Voronoi diagram to create collision-free

paths. By integrating the endurance-constrained MTVRPTW model with the two-layered

urban flight network, vehicle’s schedule for sUAS-based urban delivery is created.

Second, for the UAV design module, a component-based sizing and synthesis process

for small fixed-wing VTOL UAVs is implemented. The sizing and synthesis process is

an extension of traditional fixed-wing aircraft sizing and synthesis tool. The implemented

process can consider vertical flight capacity and provide a take-off weight optimized com-

bination of components of the propulsion system. The main intent of implementing the

sizing and synthesis process is to make the framework for the concurrent UAV design and

routing problem. Thus, the framework can be extended by integrating other sizing and

synthesis tools if the interface is matched.

Lastly, to integrate the UAV design module with the UAV routing module, existing

methods have used a sequential approach; after conducting the sizing module, the vehicle

routing problem is solved. However, the input and output of the two modules are coupled

each other. Thus, the methods cannot address a converged solution for both modules. To

alleviate the limitation, this thesis presents a novel modular framework for the concurrent

aircraft design and routing problem for sUAS-based delivery systems, which is based on

a Fixed Point Iteration (FPI) method to find a converged solution of the coupled problem.

The presented framework can provide an optimal vehicle design and routing for the sUAS-

based delivery system concurrently.

This thesis uses the developed framework for concurrent UAV design and routing to

study a possible package delivery using sUAS in San Diego, CA. The result shows that the

developed framework can take into account both planning vehicle operation on the flight
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network in which it will be operating and designing the flight network capable of addressing

the obstructed environment as part of the vehicle design process.
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CHAPTER 1

INTRODUCTION

1.1 Unmanned Aircraft Systems (UAS)

With the emergence of new technologies for small Unmanned Aircraft Systems (sUAS),

such as lightweight sensors and high-efficiency batteries, the operation of sUAVs has ex-

panded from military use to commercial use. The UAS market is expected to grow contin-

uously as shown in Figure 1.1. Although the market has been dominated by the demand

from public sector (DoD included), commercial demand also has steadily increased. The

majority of commercial UAS will fall into the micro and small UAS which will be low-cost

and dedicated to specific new and emerging tactical market applications [1]. The potential

of utilizing sUAVs has been shown in a wide variety of areas such as military, industry,

and even hobbyist fields [2]. In the civilian realm, various applications have been asso-

ciated with UAS such as environmental research, search and rescue, facility/infrastructure

inspection, agriculture, construction survey, payload delivery, and communication relay.

Unmanned Aircraft Systems (UAS) are systems consisting of vehicles, ground stations,

and connections among vehicles and ground stations. An Unmanned Aerial Vehicle (UAV)

or an Unmanned Aircraft (UA) indicates a vehicle as a component of UAS [3]. More formal

definitions can be found in the Department of Defense (DoD) dictionary [4]. According to

the DoD dictionary, an unmanned aircraft system is defined as “a system whose compo-

nents include the necessary equipment, network, and personnel to control an unmanned

aircraft” while an unmanned aircraft is defined as “an aircraft that does not carry a human

operator and is capable of flight with or without human remote control.” According to [5], a

UAV is specifically defined as “A powered vehicle that does not carry a human operator, can

be operated autonomously or remotely, can be expendable or recoverable, and can carry a
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Figure 1.1: Total UAS forecast 2015 - 2035 [1]

lethal or nonlethal payload. Ballistic or semi-ballistic vehicle, cruise missiles, artillery pro-

jectiles, torpedoes, mines, satellites, and unattended sensors (with no form of propulsion)

are not considered unmanned vehicles. Unmanned vehicles are the primary component of

unmanned systems.”

Unmanned Aircraft Systems (UAS) platforms can be categorized by flight altitude and

flight endurance such as Low-Altitude Short-Endurance (LASE) or High-Altitude Long-

Endurance (HALE) [6]. Figure 1.2 shows typical UAS platforms with flight endurance

and flight altitude. Another common classification of UAS platforms is based on vehicle’s

weight like nano UAS or small UAS. Table 1.1 describes each category with typical prop-

erties of the platform. Weight is a critical factor to UAS-based package delivery systems

because of the way the Federal Aviation Administration (FAA) regulations are written. In

general, small UAS conduct LASE missions while UAS with larger aircraft such as Global

Hawk execute HALE missions. Furthermore, UAVs are grouped by the method on how to

generate lift; fixed-wing UAVs, rotary UAVs, or hybrid UAVs which have fixed wings with

the Vertical Take-Off and Landing (VTOL) capability.
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Figure 1.2: Operating altitudes, endurance, and weight of common UAS [7]

Table 1.1: Notional UAS vehicle classification and categorization [1]

UAS
Description

Weight
(Pounds)

Overall
Size
(Feet)

Mission
Altitude
(Feet Above
the Surface)

Mission
Speed
(Miles
per Hour)

Mission
Radius
(Miles)

Mission
Endurance
(Hours)

Nano < 1 < 1 < 400 < 25 < 1 < 1
Micro 1 to 4.5 < 3 < 3,000 10 to 25 1 to 5 1
Small UAS 4.5 to 55 < 10 < 10,000 50 to 75 5 to 25 1 to 4
Ultralight
Aircraft*

55 to 255 < 30 < 15,000 75 to 150 25 to 75 4 to 6

Light Sport
Aircraft*

255 to
1320

< 45 < 18,000 75 to 150 50 to
100

6 to 12

Small
Aircraft*

1,320 to
12,500

< 60 < 25,000 100 to
200

100 to
200

24 to 36

Medium
Aircraft*

12,500 to
41,000

TBD < 100,000 TBD TBD TBD

* FAA-defined manned aircraft weight categories
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Figure 1.3: Notional delivery system

1.2 Delivery Systems based on a sUAS

In recent years, the last-mile package delivery problem has emerged as one of the main

industry applications for sUAS [8, 9, 10, 11]. A notional delivery system is illustrated

in Figure 1.3. If a customer orders items on an online shopping site, a delivery company

picks up the items and moves them to a hub to sort them. After sorting items, the company

moves them to a delivery station. Lastly, the items are moved to the customer, and this step

is called the last-mile package delivery. In the conventional delivery system, the last-mile

package delivery is conducted by vans and trucks. Recently, sUAS has considered as an al-

ternative for the last-mile package delivery. First, a sUAV has the considerable potential for

reducing the acquisition and operating costs for package deliveries in comparison to vans

or trucks [11]. Second, a sUAV is capable of delivering packages faster: its travel distance

is significantly shorter than surface streets due to almost direct flight route. Moreover, the

UAS-based operation is more predictable because of not relying on the complex traffic sys-
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Figure 1.4: The developing sVTOLs for a package delivery mission [12, 13, 14, 15, 16, 17]

tem. Because of these benefits, sUAS has the potential of satisfying the emerging demand

for building better last-mile delivery systems from package delivery companies such as

Amazon, UPS, DHL, and FedEx. For the package delivery missions, sVTOL UAVs have

been considered by various companies as shown in Figure 1.4.

1.3 Aircraft Sizing and Synthesis Process

To address perspectives on aircraft design for delivery missions, this section introduces

both a traditional aircraft sizing and synthesis process for a single-vehicle mission and

an aircraft sizing and synthesis process for a fleet-level mission. A traditional aircraft

sizing and synthesis process mainly deals with a relatively simple Concept of Operations

(ConOps) while an aircraft sizing and synthesis process for a fleet-level mission considers

the complex concept of operations which cannot be determined intuitively [18].
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1.3.1 Traditional Aircraft Sizing and Synthesis Process

The traditional aircraft sizing and synthesis process has focused on how to obtain the design

parameters of an aircraft which is able to complete the given missions. Raymer [19] and

Mattingly [20] provide the traditional sizing and synthesis process for a fixed-wing aircraft.

For instance, let us consider an aircraft sizing problem for a delivery mission including four

mission points as illustrated in Figure 1.5 and assume that we need to find the route which

has the shortest total distance moved by a vehicle to visit each mission point once. The

ConOps of the given mission can be determined intuitively because the mission is rela-

tive simple, and a mission profile can be built based on the ConOps. Then, the traditional

aircraft sizing and synthesis process is executed with aerodynamic, propulsion, and struc-

ture models. The traditional process consists of two primary analyses: constraint analysis

and weight analysis/estimation. Constraint analysis finds feasible design space using air-

craft performance constraints which are described by thrust loading T/W , or power loading

P/W , and wing loadingW/S. Weight analysis estimates an optimal take-off weight which

allows to complete a given mission based on a mission profile. These two processes are

linked by a iteration method called a fixed-point iteration [21].

The traditional aircraft sizing and synthesis process is designed for fueled fixed-wing

aircraft. However, according to [22], as weight and cost of electrical batteries have de-

creased, the development of electric-powered small UAVs has substantially increased. In

this sense, the traditional sizing process has expanded to include various concepts of the

propulsion system. To address a sizing and synthesis process for revolutionary concept

aircraft, Nam [23], as seen in Figure 1.6, extends Raymer and Mattingly’s process [19, 20]

that address fueled fixed-wing aircraft only. By modeling the propulsion system and fuel

as an integration of power paths and the source of energy respectively, the process is capa-

ble of sizing an aircraft having solar cells or electric batteries as well as traditional fueled

aircrafts. Gundlach [24] also presents a sizing process as shown in Figure 1.7, which is an

extension of Raymer and Mattingly’s process with electric aircraft performance equations
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Figure 1.5: The Concept of Operations (ConOps) and mission profile of a delivery mission

for electric-powered aircraft which describe the relation between battery mass fraction and

endurance/range. However, the limitation of these extended sizing and synthesis processes

of Nam [23] and Gundlach [24] is that they work with fixed-wing aircraft only while UAS-

based delivery systems mainly utilize sVTOL UAVs. Thus, to address the UAS-based

delivery systems, this thesis presents a sizing and synthesis process for sVTOL UAVs.

These processes [19, 20, 23, 24] have addressed the relation between subsystems (or

components) and a system (or aircraft) to obtain the optimal design parameters to complete

a given mission such as thrust loading T/W , power loading P/W , wing loading W/S, and

take-off weight. They have mainly focused on a single vehicle mission that can determine

the ConOps intuitively. However, a fleet-level mission is hard to intuitively determine the

ConOps due to its complexity. The next subsection discuss more details about the sizing

and synthesis process for a fleet-level mission.

1.3.2 Aircraft Sizing and Synthesis Process for a fleet-level mission

To address a fleet-level mission, let us consider the delivery mission in previous section

again. However, in this time, there exist more mission points to be visited, enough so that

the optimal paths are not able to be selected simply, and multiple homogeneous vehicles for

the mission as shown in Figure 1.8. In order to conduct the sizing and synthesis process,
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Figure 1.6: Nam’s sizing method [23]

Figure 1.7: Gundlach’s sizing method [24]
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Figure 1.8: Example of a delivery mission requiring multiple UAVs

the set of routes, which has the shortest total distance moved by vehicles and visits each

mission point once, needs to be found. Then, mission profiles are created which describe

the ConOps for each vehicle to complete a mission. For a single UAV mission, an optimal

ConOps could be simply determined. However, for a multi-UAV mission, a set of the

optimal ConOps for each UAV is hard to be determined due to its complexity; there are at

least two questions should be answered: how many UAVs are required, and which mission

points are visited by a UAV? Figure 1.9 and 1.10 illustrate two possible ConOps for the

multi-UAV delivery mission including seven mission points. If position values of each point

are known, the better ConOps can be found in terms of total distance moved by vehicles.

However, the number of possible scenarios increases exponentially as the number of either

mission points or UAVs increases.

Determining an optimal ConOps for a fleet-level mission can be executed by solving

an optimization problem called the vehicle routing problem (VRP) which has been actively

studied in Operations Research (OR) field [25]. The VRP is a generalized variant of the

traveling salesman problem (TSP). A TSP can determine the optimal order of cities visited

by a salesman. For a given fleet-level mission, a VRP can determine the number of required

vehicles and a set of routes for each vehicle based on its objective function such as the
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Figure 1.9: The first possible optimal ConOps for a fleet-level delivery mission including
seven mission points

Figure 1.10: The second possible optimal ConOps for a fleet-level delivery mission includ-
ing seven mission points

minimum of total distance or flight time tripped by vehicles and constraints such as the

maximum of endurance and range of vehicles. After creating vehicle routes describing

each ConOps, mission profiles can be created based on each route. Thus, the VRP can

be utilized to obtain a set of the optimal ConOps systematically. Based on each ConOps,

a mission profile can be created as illustrated in Figure 1.11. Then, the mission profiles

can be utilized for a traditional sizing and synthesis process to obtain the optimal design
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Figure 1.11: Notional sizing and synthesis process with a fleet-level mission (UAV sizing
and synthesis block is adopted from [23])

parameters of a vehicle.

Therefore, a fleet-level sizing and synthesis process for a delivery mission can be de-

scribed by a combination of two optimization problems: a vehicle routing problem and a

sizing and synthesis process. A vehicle routing problem optimizes the operations of a UAS

such as the number of required vehicles and routes for each vehicle while a sizing process

explores vehicle design space to find optimal design parameters of a UAV such as wing

loading, thrust/power loading, and take-off weight. That is, these two optimization prob-

lems are utilized to minimize operating cost and acquisition cost of a UAS as illustrated in

Figure 1.12. In this thesis, the total cost is defined as

Total cost =
acquisition cost

# of days in operational life
+ costs for one day of operations (1.1)

This definition can be used for a VRP as an objective function directly.

From the fleet-level delivery mission example, a sizing and synthesis process of a UAV

for a UAS-based delivery system can be described by a combination of a UAV sizing and

synthesis process and a VRP. Therefore, this thesis focuses on how to concurrently solve a
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Figure 1.12: Two approaches to optimizing a plan for a fleet-level mission

sizing and synthesis process and a VRP to obtain total cost.

1.4 Challenges for the operation of sUAS-based delivery systems

A key challenge for the operation of a sUAS-based package delivery system in an urban

area is creating viable operating plans. It should satisfy constraints from vehicle’s proper-

ties and logistics characteristics as well as provide feasible schedules for vehicles in mission

areas. In general, the planning for delivery systems can be modeled as a vehicle routing

problem (VRP). The result of the VRP leads total cost optimized schedules for vehicles

based on an objective/cost function and constraints. The VRP and its derivatives allow the

specific modeling of vehicle properties, logistics concepts, and flight path planning in order

to capture appropriate physical concepts, business rules, and regulatory requirements un-

der Part 107 [26] which is the Federal Aviation Administration (FAA) regulations for small

UAS operations.

Small UAVs have intrinsic operational limitations which must be appropriately mod-

eled in the VRP [27]. While flight times of sUAVs are much shorter than the driving time

of traditional transport vehicles, they generally carry very few packages. These character-

istics drive a sUAS-based delivery system to repeatedly operate sUAVs during operating
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hours. Additionally, sUAS-based delivery systems will be asked to provide delivery ser-

vices to customers in an on-demand fashion during specific scheduled time windows [9];

this is a new type of service that can be enabled by sUAVs because of the better temporal

predictability of an air delivery network compared to existing urban ground delivery sys-

tems. Finally, the most common power resource of sUAVs is rechargeable batteries [28];

This will require a strategy for recharging or replacing batteries in order to maximize the

rate of operation of sUAVs during a delivery operation.

1.5 Research Motivation

The aforementioned fleet-level delivery problem is called a concurrent vehicle design and

routing problem including two optimization processes: a vehicle routing problem and a

sizing and synthesis process [29, 30, 31, 32, 33]. According to Mane et al. [29], a con-

current vehicle design and routing problem is a Mixed-Integer Non-Linear Programming

(MINLP) problem; a concurrent problem consists of a vehicle routing problem, which is

a Mixed-Integer Linear Programming (MILP) problem having integer and real/continuous

design values, and a UAV design/sizing problem, which is a nonlinear process including

nonlinear equations.

In order to solve an MINLP problem, decomposition methods have been successfully

utilized [29, 30, 31, 32, 33]. Taylor and Weck [30] present an Multi-Disciplinary Opti-

mization (MDO) model to address a concurrent vehicle design and routing problem for a

fleet-level mission consisting of both the transportation network flow and the vehicle design

problems. The MDO model consists of the system-level optimizer, the vehicle design mod-

ule, the network flow and operations modules as shown in Figure 1.13. The system-level

optimizer is implemented to use a simulated annealing method which is a metaheuristic

method as illustrated in Figure 1.14. In order to reduce the problem size, they assume that

aircraft can fly only round trips between two cities while packages can travel through other

cities toward the destination. The vehicle design module is implemented by numerical
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Figure 1.13: Diagram of the integrated transportation system model [30]

Figure 1.14: Integrated transportation system design optimization with simulated annealing
[30]
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computations.

Mane et al. [29] present a bi-level MDO model consisting of the system-level opti-

mizer and two subsystem-level optimizers for the aircraft sizing and the airline allocation

subproblems as shown in Figure 1.15. After the cost coefficients for the new vehicle are

obtained by solving an aircraft sizing subproblem, the values are utilized to solve an airline

allocation subproblem. Then, the system-level optimizer calculates the minimum oper-

ating cost based on the results from subsystems. Later, the MDO model is extended by

[31], which can solve a trip assignment problem with an uncertainty model of trip demands

instead of an airline allocation problem as shown in Figure 1.16. To address the uncer-

tainty, the Monte Carlo simulation is utilized. Govindaraju and Crossley [32] present an

MDO model which extends the MDO model of [31]. In the MDO model, both uncertainty

models in operations and aircraft design parameters are integrated as described in Figure

1.17. The Monte Carlo simulation is used to deal with the uncertainty of the aircraft sizing

subproblem while the descriptive sampling is utilized to address the uncertainty of the trip

assignment subproblem. The descriptive sampling deterministically selects samples using

input sample values and their random permutations to reduce the variance of simulation

estimates based on the known input distribution [34, 35].

Bociaga and Crossley [33] present a MDO model consisting of three modules: fleet al-

location, aircraft sizing, simulation modules for a Coverage Path Planning (CPP) problem,

which finds an optimal path covering all points in an Area Of Interest (AOI) as illustrated in

Figure 1.18. The fleet allocation is conducted by the saturated D-optimal Design of Exper-

iments (DoE). After executing aircraft sizing, a flight simulation by the designed aircraft is

run to calculate mission time and cost.
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Figure 1.15: Sequential decomposition schematic [29]

Figure 1.16: Problem formulation and decomposition with uncertainty [29, 31]

16



Figure 1.17: Decomposition framework [32]

Figure 1.18: Simultaneous Aircraft Sizing and Allocation Decomposition [33]
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Figure 1.19: Simplified structure of the MDO models [29, 30, 31, 32, 33]

The aforementioned MDO models [30, 31, 32, 33] are summarized in Table 1.2. The

first observation is that the structures of the MDO models can be simplified as illustrated in

Figure 1.19. The procedure can be described as follows

• Step 1: Range/speed is fixed by system optimizer

• Step 2: Aircraft sizing is conducted with a given range/speed

• Step 3: Based on specifications of the designed aircraft, cost coefficients of a VRP

are updated

• Step 4: By solving the VRP, operating cost/objective function is calculated

• Step 5: System optimizer checks optimality of the design variables

The observation from this structure is that this decomposition approach consists of an

aircraft design module and a VRP module, and the modules are linked sequentially. The

limitation of this structure is that the VRP module cannot have direct effects on the aircraft

design module because there is no direct feedback loop.

To address the limitation, the input and output of each module described in Table 1.3

need to be observed. The UAV design module requires a mission profile and assumption

models for the sizing and synthesis process. After the aircraft design parameters are feasi-

ble and converged, the UAV design module provides a set of optimal design values which

determine the vehicle specification.
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Table 1.3: Input and output of the UAV design module and vehicle routing module

Module Input Output

UAV design

•Mission profile

• Vehicle specification
• Assumption models

� Aerodynamics
� Propulsion
� Weight

Vehicle routing

• Vehicle specification
• Set of customers and a depot • Set of routes
• Set of demands • The required number of vehicles
• Flight network

Figure 1.20: Interaction between the UAV design and vehicle routing modules

On the other hand, the vehicle routing module requires sets of customers, depots, and

demands in order to create feasible routes in a logistical point of view. A flight network is

also an important input of the vehicle routing module because all the candidates of flight

paths created only based on the flight network; this is shown in Chapter 3 and 4. Using this

input data, the vehicle routing module creates a set of total cost optimized routes with the

number of required vehicles to conduct the operations plan.

There, however, is an important characteristic between the inputs and outputs of the

UAV design and vehicle routing modules. A route from the vehicle routing module shows

a flight schedule of a vehicle, which is able to be converted into a mission profile. That

is, after a set of total cost optimized routes are built by the vehicle routing module, a

mission profile can be created by one of the routes. The vehicle parameters required for the

vehicle routing module also can be determined by the UAV design module. Thus, the two

individual modules are able to be transformed into a coupled process as shown in Figure

1.20. Thus, the feedback loop from the vehicle routing module to the UAV design module
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should be considered to solve a concurrent vehicle design and routing problem.

The second observation from the MDO models [30, 31, 32, 33] is that their aircraft

design modules mainly consider fixed-wing aircraft sizing and synthesis. However, vari-

ous companies have developed UAS-based delivery systems utilizing sVTOL UAVs such

as Amazon, DHL, UPS, and Google. For urban delivery, vertical take-off capacity not re-

quiring a runway is essential. To alleviate this limitation of the MDO models, the aircraft

design modules should be extended to address design parameters of a sVTOL UAV such as

power loading, wing/disk loading, and take-off weight.

The third observation is that the vehicle routing modules of the models address simple

VRP formulations not including both a time notion and reuse of vehicles. However, these

notions are substantial factors when formulating operations of UAVs. Thus, the vehicle

routing modules should involve time and reuse notions to deal with a UAS-based delivery

mission.

The last observation is that the MDO models consider point-to-point/airport-to-airport

flight networks based on the Euclidean distance. However, the flight networks cannot de-

scribe the obstructed environment such as an urban area because the flight networks do

not include any intermediate information of each path. For a UAS-based urban delivery, a

novel flight network which can address collision-free paths in an urban area needs to be.

These observations directly motivate this thesis to research and develop a framework

for concurrent UAV design and routing for urban delivery systems illustrated in Figure

1.21. To alleviate the limitations of aforementioned MDO models [30, 31, 32, 33], this

framework extends their decomposition approaches in terms of

• Allowing to design a small VTOL UAV in a UAV design module

• Formulating a VRP for UAS-based delivery systems

• Including an urban model to address collision-free paths

• Finding a solution of a coupled problem of the small VTOL UAV design module and

the VRP module for urban delivery
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Figure 1.21: Hi-level framework for concurrent UAV design and routing for urban delivery
systems

Each extension is associated with a research question of this thesis that will be presented in

the end of this chapter.

In addition, because the decomposition approach deals with each module as a black box,

if the interface among modules is matched, each module in Figure 1.21 can be implemented

by any method or algorithm. This is an advantage of a framework based on a decomposition

approach.

1.6 Research Scope

To address a more practical problem, this section narrows down research scope of the exten-

sions of the framework for concurrent UAV design and routing for urban delivery systems

presented in the previous section.

First of all, the vehicle type considered in this thesis is a small fixed-wing vertical take-

off and landing (VTOL) UAV having relatively long range and vertical flight capacity not
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requiring a runway. The vertical flight capacity is necessary to delivery a package safely.

Specifically, a tiltrotor of DHL using the wing-copter platform is used a baseline design for

a vehicle design process. However, to address an aircraft sizing process based on off-the-

shelf components, a tiltrotor which uses 8 rotors for vertical flight and 4 rotors for forward

flight is considered.

Second, this thesis deals with a VRP for UAS-based delivery systems that finds a total

cost optimized solution in terms of the minimum of total cost (Equation 1.1) with con-

straints such as

• Temporal constraints (i.e. available time periods for delivery)

• Limitations for vehicles’ performance in terms of payload capacity and range/endurance

• Reuse of sVTOL UAVs

Third, this thesis considers an urban environment when creating a flight path/network

to operate UAVs in an urban area. An urban environment adds new matters which are not

considered in conventional air transport network problems into the optimization problem

such as

• How to meet regulatory requirements

• How to create feasible/collision-free flight paths

• How to select delivery locations

• How to maintain a link among the vehicles and the ground station

The UAS also should satisfy the regulatory requirements under Part 107 [26] of the Federal

Aviation Regulations (FARs) as seen in Table B.1 in Appendix B. For a mission in urban

areas, there are the highest two barriers under the regulation such that

• Visual Line-Of-Sight (VLOS) operation is allowed only

• Small unmanned aircraft may not operate over any person not directly participating

in the operation, under a covered structure, and inside a covered stationary vehicle
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The VLOS operation requires that each UAV should remain within VLOS of a pilot or

a visual observer. This requirement increases the operating cost drastically. Thus, this

work assumes that Beyond Visual Line-Of-Sight (BVLOS) operation which autonomously

operates UAVs without observers is allowed, and that UAVs are allowed to operate over any

person in a mission area except for preassigned restricted areas such as airports, large public

parks, and military areas. Thus, to address operations of UAVs in an urban environment,

collision-free path-planning is required to avoid urban obstacles and restricted airspace. In

the real applications, Temporary Flight Restrictions (TFRs) should be considered, but this

thesis does not address TFRs because they can be dealt with as restricted areas if needed.

Conventional air network problems have utilized straight paths representing the Eu-

clidean distance from airport A to airport B to estimate the operating cost. Since the Eu-

clidean path cannot address collision-free paths in urban areas, this thesis presents a novel

framework to create an urban flight network.

Selecting delivery locations also is a substantial factor to operate a UAS in an urban

environment since UAV’s access capability should be considered. In this work, delivery

companies’ offices where can provide a landing spot are used as delivery locations because

in an urban area, there are many tall buildings or apartments which cannot directly visited

to customers by a sVTOL UAV. Thus, the scenario that customers should visit a deliv-

ery companies’ office to pick up their packages is considered. This allows to reduce the

problem size of a VRP by decreasing the number of mission points.

For an urban mission, maintaining a communication link among the vehicles and the

ground station is required. To do that, this thesis assumes that each delivery location has a

link with the ground station to share vehicles’ information. This assumption allows UAVs

to be linked with the ground station in most of mission time because in an urban delivery

mission, there are many mission points linked with the ground station in a relatively narrow

mission area. Thus, the BVLOS operation also can be allowed by the assumption.

Finally, this thesis considers a Fixed Point Iterations (FPI) method to solve a coupled
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problem of the small VTOL UAV design module and the VRP module for urban delivery.

To find a solution of a system of nonlinear equations with a multidisciplinary perspective,

the fixed point iteration has been widely used [36, 37, 38]. Especially, in the aircraft design

field, the fluid-structure analysis has utilized a FPI method to obtain converged values from

both fluid analysis and structural analysis [39, 40], and the weight analysis in the aircraft

sizing and synthesis process has used a FPI method to find a converged take-off weight

[41]. This thesis takes advantage of a FPI method to acquire converged values from both

the small VTOL UAV design module and the VRP module.

1.7 Research Question and Objective

The research observations and the research scopes, as stated previously, inspire research

questions of this thesis as follows

Research Question 1 (RQ 1) : How can a set of main components of small fixed-wing

VTOL UAVs as a result of a sizing and synthesis process be obtained?

Research Question 2 (RQ 2) : What type of a VRP optimization model best represents

the operations of sUAS-based delivery systems?

Research Question 3 (RQ 3) : What type of an input graph of a VRP model best repre-

sents collision-free paths in the urban environment for sUAS-based delivery systems?

Research Question 4 (RQ 4) : How can the small VTOL UAV design module and the

VRP module be integrated with a FPI method to obtain a converged solution?

Thus, to address these research questions, this thesis will fulfill the following task

Research Objective (RO) : To develop a novel sizing and synthesis approach for small

VTOL UAV that takes into account both planning vehicle operation on the flight

network in which it will be operating and designing the flight network capable of

addressing the obstructed environment as part of the vehicle design process.
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Figure 1.22: Structure of chapters of this thesis

In order to further examine specific ideas, Chapter 2 will address common knowledge

of both the FPI theory and the VRP. Chapter 3 will address Research Question 2 (RQ 2)

and present a mathematical optimization model of the UAS-based delivery system. Chapter

4 will discuss Research Question 3 (RQ 3) and extend the optimization model by feeding

an urban flight network created by an actual urban model to address a collision-free path-

planning method for UAVs in the urban environment. Chapter 5 will address Research

Question 1 (RQ 1) and show a component-based sVTOL UAV sizing method. Finally,

Chapter 6 will discuss Research Question 4 (RQ 4) and present a framework to solve a

concurrent unmanned vehicle design and routing problem based on a FPI method as illus-

trated in Figure 1.22.
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CHAPTER 2

BACKGROUND

This chapter contains background information on both the Fixed Point Iteration (FPI)

method and the Vehicle Routing Problem (VRP) that are required to address the research

questions described in the previous chapter. Section 2.1 presents mathematical background

knowledge of a FPI method to deal with a Multi-Disciplinary Optimization (MDO) prob-

lem to address the research question such that

Research Question 4 (RQ 4) : How can the small VTOL UAV design module and the

VRP module be integrated with a FPI method to obtain a converged solution?

Section 2.2 discusses background knowledge of the VRP and existing VRP models relevant

to this thesis to address the research question such that

Research Question 2 (RQ 2) : What type of a VRP optimization model best represents

the operations of sUAS-based delivery systems?

The intent of this chapter is to provide enough background on the FPI method and the

VRP to unfamiliar readers to enable a comparison between theory and implementation or

existing models and new models that will be presented in the following chapters.

2.1 Fixed Point Iteration (FPI) Method

This section presents basic FPI theory, and then extends its concept to a system of nonlinear

equations to address an MDO problem. Lastly, this section presents a FPI method for a

coupled problem as an MDO problem.
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2.1.1 Fixed Point Iteration Theory

This Section presents a mathematical aspect to fixed point iteration theory based on [36,

42]. A nonlinear function of the form f(x) = 0 can be formulated as

x = f(x) (2.1)

A solution x∗ of Equation 2.1 is called a fixed point of the nonlinear equation. Furthermore,

its existence can be proven. At first, let g be a continuous function on [a, b]. Then,

Theorem 1 (Brouwer’s Fixed Point Theorem [42]). If g(x) ∈ [a, b] for each x ∈ [a, b], then

g has a fixed point in [a, b].

Proof. If g(a) = a or g(b) = b, then g has a fixed point at a or b. If g(a) 6= a and g(b) 6= b,

then g(a) > a and g(b) < b. Let us define a function, f(x) = x−g(x), which is continuous

on [a, b]. Then, f(a) = a − g(a) < 0, and f(b) = b − g(b) > 0. That is, f(a) and f(b)

have opposite signs. There exists c ∈ [a, b] such that f(c) = 0 due to the intermediate value

theorem. Then, because f(c) = c − g(c) = 0, c = g(c). Thus, c is a fixed point of g(x),

which completes the proof.

This theorem represents existence of the fixed point for a given range. To address

uniqueness of the fixed point, additional condition [42] is required such that

Theorem 2. If g′(x) ∈ (a, b), ∀x ∈ [a, b], and there exists a constant 0 < k < 1 such that

|g′(x)| ≤ k, ∀x ∈ (a, b)

then g has a unique fixed point x∗ in [a, b].

Proof. Let us assume that g(x) has two distinct fixed points, c, d ∈ [a, b]. Because g′(x) ∈

(a, b), g′(x) is differentiable in (a, b). Then, by the mean value theorem, there exists z ∈
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(c, d) such that

g′(z) =
g(c)− g(d)

c− d
=
c− d
c− d

= 1

This implies |g′(z)| = |1| = 1. This contradicts the fact that |g′(x)| ≤ k ≤ 1, which

completes the proof.

Thus, if a function satisfies Theorem 1 and 2, then existence and uniqueness of a fixed

point is guaranteed. To address an iterative method, this mathematical concept of the fixed

point of a function is required to be transfered to that of a sequence. A fixed point iteration

of a sequence, which is also called the nonlinear Richardson iteration, is formulated by

xn+1 = f(xn), x = 1, 2, . . . (2.2)

where n is an iteration index. The fixed point of the fixed point iteration is defined by the

theorem [42] such that

Theorem 3. if g is a continuous function and {xn} is a sequence generated by a fixed point

iteration such that lim
n→∞

xn = x∗, then x∗ is a fixed point of g.

Proof. Since lim
n→∞

xn = x∗, lim
n→∞

xn−1 = x∗. Then, we have

x∗ = lim
n→∞

xn

= lim
n→∞

g(xn−1)

= g( lim
n→∞

xn−1) ∵ g is continuous

= g(x∗)

Thus, x∗ is a fixed point of g, which completes the proof.

However, not every sequence of the fixed point iteration converges, its convergence

depends on derivative of the function. There are four types of convergence. First, if 0 <

g′(x) < 1, the sequence has monotone convergence. Second, if −1 < g′(x) < 0, the
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sequence has oscillating convergence. Next, if g′(x) > 1, the sequence has monotone

divergence. Last, if g′(x) < −1, the sequence has divergent oscillations.

To address the convergence of the fixed point iteration, Theorem 4 provides necessary

conditions for a sequence to converge, which is written as

Theorem 4 (Contraction Mapping Theorem [42]). Let g be a continuous function on the

interval [a,b]. If g(x) ∈ [a, b] for all each x ∈ [a, b], and if there exists a constant 0 < L <

1 such that

|g(x)− g(y)| ≤ L|x− y|, x, y ∈ [a, b]

then g has a unique fixed point x∗ ∈ [a, b], and the sequence of iterates {xk}∞k=0 converges

to x∗, for any initial guess x0 ∈ [a, b].

Proof. Since x0 ∈ [a, b], {xk} ⊆ [a, b]. If we take difference of successive iterations,

|xk+1 − xk| = |g(xk)− g(xk−1)|

≤ L|xk − xk−1| ≤ · · · ≤ Lk|x1 − x0|

|xk − x0| = |
k−1∑
j=0

(xj+1 − xj)|

≤
k−1∑
j=0

|xj+1 − xj|

≤
k−1∑
j=0

Lj|x1 − x0|

≤ 1

1− L
|x1 − x0|
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This implies {xk} is bounded.

|xk+j − xk| = |g(xk+j−1)− g(xk−1)|

≤ L|xk+j−1 − xk−1|

≤ L2|xk+j−2 − xk−2|

≤ · · · ≤ Lk|xj − x0|

≤ Lk

1− L
|x1 − x0| −−−→

k→∞
0

This implies that {xk} is Cauchy. That is, it has a limit. Let the limit be x∗, then x∗ = g(x∗).

In order to prove its uniqueness, let x∗, y∗ be such that g(x∗) = x∗, and g(y∗) = y∗, then

|x∗ − y∗| = |g(x∗)− g(y∗)| ≤ L|x∗ − y∗|

This implies that x∗ = y∗. Furthermore,

|xk+1 − x∗| = |g(xk)− g(x∗)|

≤ L|xk − x∗|

Since 0 < L < 1, {xk} converges to x∗, which completes the proof.

The results of Theorem 4 based on the mapping theory lead to another theorem based

on the derivative of a function such that

Theorem 5 (Fixed Point Theorem [42]). Let g be a continuous function on the interval

[a, b], and let g be differentiable on (a, b). If g(x) ∈ (a, b) for each x ∈ [a, b], and if there

exists a constant 0 < L < 1 such that

|g′(x)| ≤ L, x ∈ (a, b)
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then the sequence of iterates {xk}∞k=0 converges to the unique fixed point x∗ of g in [a, b],

for any initial guess x0 ∈ [a, b].

Proof. Since x0 ∈ [a, b], {xk} ⊆ [a, b]. By the mean value theorem, there exists c ∈ (a, c)

such that

g′(c) =
g(xk)− g(x∗)

xk − x∗

|xk − x∗| = |g′(c)||g(xk)− g(x∗)|

≤ L|g(xk)− g(x∗)| ∵ |g′(x)| ≤ L

≤ L|xk−1 − x∗|

≤ L2|xk−2 − x∗|

≤ · · · ≤ Lk|x0 − x∗| (2.3)

Since lim
k→∞

Lk = 0 for 0 < L < 1,

lim
k→∞
|xk − x∗| = 0

This implies that xk converges to x∗, which completes the proof.

This subsection presented the mathematical background of the fixed point of a function

and a sequence to address existence and uniqueness of the fixed point.

2.1.2 Fixed Point Iteration for a System of Nonlinear Equations

Based on Theorems in Section 2.1.1, the fixed point iteration method can be generalized

for a problem to solve a system of nonlinear equations [42]. In order to solve Ax = b, the

fixed point iteration can be written such that

xk+1 = Txk + M−1b (2.4)

32



where A = M−N, T = M−1N which is an iteration matrix. Then, let us consider a system

of nonlinear equations such that

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

As a matrix form, the problem can be written by F(x) = 0. Then, this system can be

transformed to

x = G(x) (2.5)

Furthermore, with an initial guess x(0), the fixed point iteration can be defined by

x(k+1) = G(x(k)), k = 0, 1, 2, . . . (2.6)

The existence of uniqueness of the fixed point iteration of either Equation (2.5) or (2.6)

can be proved in an analogous manner from the single-variable case in Chapter 2.1.1. Let

us consider a domain D ⊆ Rn and a function G which maps D into D. If G is continuous

on D, then there exists a fixed point of G. Furthermore, if the partial derivatives of G are

continuous on D and there exists a constant ρ < 1 such that

‖JG(x)‖ ≤ ρ, x ∈ D (2.7)

where JG(x) is the Jacobian matrix of G, then G has a unique fixed point x∗ in D for any

initial guess x(0).

With these generalized concepts of the fixed point iteration, the FPI method has suc-

cessfully solved MDO problems. This paper implements a fixed point iteration method
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Figure 2.1: FPI for a system consisting of two nonlinear equations

for the concurrent UAV design and vehicle routing problems. In next Section, engineering

aspects of the FPI method for a practical application will be addressed.

2.1.3 Fixed Point Iteration Method

Now, let us consider a system consisting of two subsystems which are coupled each other

as illustrated in Figure 2.1. In order to obtain a converged solution of the FPI, an initial

guess y02 is required. Based on y02 , the FPI process starts, and iterates until convergence

criteria are satisfied. Detailed steps of the FPI are described in Algorithm 1 [42].

Algorithm 1 Pseudo algorithm for FPI [42]

Step 0: Choose initial value y02 , set i = 0, and set maxiter and ε
Step 1: i = i+ 1
Step 2: yi1 = f1(y

i−1
2 )

Step 3: yi2 = f2(y
i
1)

Step 4: if |yi1 − yi2| < ε then stop, otherwise continue
Step 5: if i >= maxiter then stop, otherwise go to step 1

The FPI tries to find a converged solution of a system of equations, but it has no func-

tions to find a better solution when there are multiple converged solutions. Thus, when the

FPI is used to solve a Multi-Disciplinary Optimization (MDO) problem, different initial

guesses may be used to find a better solution. That is, the FPI can find a local optimum of

an MDO problem.

This section discussed mathematical background of the fixed point theory and the fixed

point method because this thesis uses a fixed point iteration method to find a converged

solution of integrated module with both a sUAV design module and a VRP module for
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urban delivery as stated previously. Chapter 6 presents more details of implementation of

the FPI method.

2.2 Vehicle Routing Problem (VRP)

This section addresses the Vehicle Routing Problem (VRP). At first, Subsection 2.2.1 ∼

2.2.4 present fundamental concepts for the vehicle routing problem such as the definition of

a graph and an integer programming problem. Then, Subsection 2.2.5 discusses a traveling

salesman problem, which is a special case of a vehicle routing problem having a single

vehicle. Finally, Subsection 2.2.6 addresses the vehicle routing problem with existing VRP

models. The readers interested in vehicle routing problems may refer Appendix A which

presents practical vehicle routing problems for unmanned aircraft systems with approaches

to solving the given problems.

2.2.1 Graph Theory

The vehicle routing problem requires an input describing a mission area. For a VRP of de-

livery systems, the input should include a set of locations of depots and delivery points with

connectivity information for each pair of two locations. In graph theory which is a study

field in discrete mathematics, a graph can naturally represent the connectivity information

of a set of locations. A mathematical definition of graph is “A graph G = (V , E) consists

of a finite, nonempty set V = {1, 2, ...,m} and a set E = {e1, e2, ..., en} whose elements

are subsets of V of size 2, that is, ek = (i, j), where i, j ∈ V . The elements of V are called

nodes, and the elements of E are called edges. Thus graphs are a mechanism for specifying

certain pairs of a set [43].” In vehicle routing problems, the entire mission area is translated

to a graph.

For instance, a symmetric flight network of homogeneous UAVs for a delivery mission

is able to be modeled as a graph similar to Figure 2.2. Mission points and flight paths are

translated to nodes and edges in a graph respectively. Edges are possible options of flight
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Figure 2.2: Modeling a flight network by a graph

paths, and they can have attributes such as flight distance and flight time.

If the values of attributes are the same regardless of the direction of edges, then the

network is called a symmetric network/graph. Otherwise, the network is called an asym-

metric network/graph. The VRP optimization model is normally formulated based on an

asymmetric network/graph.

Based on the network, a given mission and its concept of operations can be formulated

as a combinatorial optimization problem, which will be discussed in the following sub-

section, with constraints such that all mission points should be visited exactly once for a

delivery mission, or each route of vehicles should start from and end at the depot. Note

that the constraints in the problem depends on its input graph because the graph includes

all possible options. For instance, all routes as a solution of the delivery mission example is

a subset of input graph of the problem. That is, a graph provides a domain of design space

of a VRP. That is why this section start to discuss a graph to present the vehicle routing

problem.

2.2.2 Combinatorial Optimization Problem

Given a finite set N = {1, . . . , n}, weights cj for each j ∈ N , and a set F consisting of

feasible subsets of N , a combinatorial optimization problem is defined as

min
S⊆N
{
∑
j∈S

cj : S ∈ F} (2.8)
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Furthermore, given a finite set N = {1, . . . , n}, vectorial weights w : N −→ Qd, convex

functional c : Qd −→ Q, and a set F of feasible subsets of N , a Convex Combinatorial

Optimization (CCO) problem is defined as [44]

min c(w(F)), F ∈ F (2.9)

Since a linear function is a convex function, a Linear Combinatorial Optimization (LCO)

problem is a CCO problem. Typical applications of the combinatorial optimizations are

the shortest path problem, the Traveling Salesman Problem (TSP), and the Vehicle Routing

Problem(VRP). In the delivery example as stated previously, a solution of the problem is

a feasible combination of edges. Thus, the delivery problem can be formulated by a CCO

problem.

2.2.3 Integer Programming (IP)

In order to solve a combinatorial optimization problem, the problem can be formulated as

an integer programming problem [45]. This allows to use a variety of techniques and meth-

ods which have been researched and developed for linear/integer programming problems

such as a simplex method and a relaxation technique [46].

At first, given A is an m × n matrix, c is a 1 × n vector and b is an m × 1 vector, a

Linear Programming (LP) problem is formulated as

max cx

s.t. Ax ≤ b

x ≥ 0

x ∈ Rn (2.10)

An integer programming problem is a special case of a linear programming problem.
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Given A is an m × n matrix, c is a 1 × n vector and b is an m × 1 vector, an integer

programming problem is defined as

max cx

s.t. Ax ≤ b

x ≥ 0

x ∈ Zn (2.11)

In order to use techniques solving a linear programming problem to solve an integer pro-

gramming problem, a linear relaxation method can used [46]. A linear programming prob-

lem is used as a subproblem when solving an integer programming problem. Thus, an in-

teger programming problem is significantly more computationally expensive to solve than

a linear programming problem.

If all design variables are restricted to binary values, the integer programming problem

can be translated to a 0-1 or binary integer programming problem defined as

max cx

s.t. Ax ≤ b

x ∈ {0, 1}n (2.12)

Since a constraint involving binary variables represents disjunct conditions itself, the big-

M relaxation can be used [46]. In general, the big-M relaxation translates a logic or non-

convex constraints into other constraints with auxiliary binary variables describing the same

feasible space. For constraints including binary variables only, the big-M relaxation can

express on/off condition for each binary variable. The readers interested in the big-M

relaxation may refer [46].

Finally, a mixed integer programming problem including n design variables and m
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constraints can be defined as

max cTx

s.t. Ax ≤ b

x ≥ 0

x ∈ Zp × Rn−p (2.13)

where cT is a cost coefficient vector, cT ∈ Rn, and A/b are a constraint matrix/vector,

A ∈ Rn×m and b ∈ Rm, and x is a design variable vector consisting of p integer numbers

and n− p real numbers.

Mixed integer programming has been used to solve a wide variety of practical prob-

lems such as train scheduling, airline crew scheduling, production planning, electricity

generation planning, telecommunications, buses for the handicapped, ground holding of

aircraft and cutting problems [47]. This thesis formulates a vehicle routing problem as a

mixed integer programming problem because each sUAV’s flight distance/time is captured

by real/continuous variables while each route of sUAVs is combination of selected edges

described by binary variables.

2.2.4 Complexity

A combinatorial optimization problem can be translated to a decision problem which is a

yes-or-no question. At first, the polynomial time (P) class of decision problems can be

solved in polynomial time by a deterministic Turing machine defined by the 7-tuple such

that [48]

DTM = (Q,Σ,Γ, δ, q0, B, F ) (2.14)

whereQ is the finite set of states of the finite control, and Σ is the finite set of input symbols,

and Γ is the complete set of tape symbols such that Σ ⊂ Γ, and q0 is the start state such

that q0 ∈ Q, B is the blank symbol such that B ∈ Γ and B 6∈ Σ, and F is the set of final
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or accepting states such that F ⊂ Q, and δ is the transition function which determines the

next behavior, state, and move direction such that

δ(q,X) =⇒ (p, Y,D) (2.15)

where q is the current state, and X is the tape symbol, and p is the next state such that

p ∈ Q, and Y is the symbol which will be written in the cell of the tape such that Y ∈ Γ,

and D is the next move direction such as left or right.

Second, the Nondeterministic Polynomial time (NP) class of decision problems can

be solved in polynomial time by a nondeterministic Turing machine that can pursue an

unbounded number of independent computational sequences in parallel [49]. A nondeter-

ministic Turing machine also is defined by the 7-tuple, like a deterministic Turing machine,

such that

NTM = (Q,Σ,Γ, δ, q0, B, F ) (2.16)

The difference is that the transition function δ of a nondeterministic Turing machine has

multiple options such that

δ(q,X) =⇒ {(p1, Y1, D1), (p2, Y2, D2), . . . , (pk, Yk, Dk)} (2.17)

where k is any finite integer [48]. Alternatively, a decision problem is in the NP class if

the problem has an efficient certifier which can verify a solution in polynomial time [50].

Hence, the definition of the P class focuses on the solvability of a problem whereas that of

theNP class concentrates on the provability of a solution of a problem. By the alternative

definition, a relation between the P class and the NP class is observed [48] such that

P ⊆ NP (2.18)

Next, a decision problem in the NP class is in the NP-complete class if the problem
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can be reduced to another problem in the NP class in polynomial time, where reducing is

a mapping from a problem to another problem [49]. Cook [51] proves that a satisfiability

problem which represents a circuit consisting of Boolean operators is an NP-complete

problem. Then, Karp [52] proves that the 21 decision problems of combinatorial optimiza-

tion problems can be reduced to the satisfiability problem. A directed/undirected Hamilton

circuit problem which is a simple version of a traveling salesman problem is included the

21 problems.

Finally, a decision problem is in the NP-hard class if a NP-complete problem can

be reduced to the decision problem [53]. A NP-hard problem needs not to be in the

NP class. Alternatively, there is an informal definition such that a decision problem is in

the NP-hard class if the problem is at least as hard as the NP-complete class. Note that

when mentioning the complexity of an optimization problem, theNP-hard class is referred

instead of the NP-complete class because technically the NP-complete class applies to

decision problems only [50]. Thus, a vehicle routing problem addressed in this thesis,

which is a generalized traveling salesman problem, is an NP-hard problem. Since the

more precise definitions of the complexity are based on a language instead of a problem,

the readers interested in the complexity can refer [49, 51, 52].

2.2.5 Existing Traveling Salesman Problem (TSP)

A Traveling Salesman Problem (TSP) is to find the minimum trip cost to visit a list of cities

with two conditions; one is that a salesman can visit a city exactly once, and the other is

that the salesman should return to the home city [54, 55, 56]. Based on graph theory, a

simple version of a traveling salesman problem is able to be transformed to a Hamiltonian

cycle problem which determines a closed loop visiting every vertex in a graph exactly once

[57]. Since a directed/undirected Hamilton circuit problem is in the NP-complete class, a

traveling salesman problem is an NP-hard problem.

For instance, a traveling salesman problem can be applied to a single-UAV patrol mis-
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Figure 2.3: Example of a traveling salesman problem

sion planning. Then, the home city in a traveling salesman problem can be translated to

a depot in a flight network of the mission area. By solving a traveling salesman prob-

lem, the optimal route visiting all mission points exactly once and returning to the depot is

determined as illustrated in Figure 2.3.

Hoffman et al. [56] introduced a common mathematical form of a traveling salesman

problem. To formulate a traveling salesman problem, binary design variables are defined

as

xij =

 1 if the edge from i to j is selected

0 otherwise
(2.19)

Given a list of cities, V = {1, . . . ,m}, and any nonempty proper subset, K, of the list of

cities, the traveling salesman problem is formulated by the binary design variables such

that

min
m∑
j=1

m∑
i=1

cijxij (2.20)

s.t.
m∑
j=1

xij = 1 (∀i ∈ V) (2.21)

m∑
i=1

xij = 1 (∀j ∈ V) (2.22)∑
i∈K

∑
j∈K

xij ≤ |K| − 1 (K ⊂ V) (2.23)

xij ∈ {0, 1} (∀i, j ∈ V) (2.24)

where cij is cost of the edge (i, j). Equation (2.21) and (2.22) are inbound and outbound
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constraints for each city. Equation (2.23) removes subtours which create disjoint loops.

This is a common mathematical model for the Asymmetric Traveling Salesman Problem

(ATSP).

For an undirected graph, a traveling salesman problem can be reformulated with new

binary design variables defined as

xj =

 1 if the edge j is selected

0 otherwise
(2.25)

Let E be all edges and ck be cost of edge k. With the new design variables, the Symmetric

Traveling Salesman Problem (STSP) can be formulated as

min 1
2

m∑
j=1

∑
k∈J (j)

ckxk (2.26)

s.t.
∑

k∈J (j)

xk = 2 (∀j ∈ V) (2.27)∑
j∈E(K)

xj ≤ |K| − 1 (K ⊂ V) (2.28)

xj ∈ {0, 1} (∀j ∈ E) (2.29)

where J (j) is the set of all undirected edges connected to node j and E(K) is the sub-

set of all undirected edges connecting the cities in any nonempty proper subset, K, of all

cities. Note that although the Symmetric Traveling Salesman Problem (STSP) is a special

case of the Asymmetric Traveling Salesman Problem (ATSP), an algorithm for a ATSP has

performed badly on a STSP. Thus, algorithms for solving a STSP had researched indepen-

dently [56]. However, the VRP normally addresses asymmetric network.

The TSP can be generalized by considering several salesmen instead of a single sales-

man. The extension is the VRP which intrinsically consider multiple vehicles. Thus, this

thesis models the operations of sUAS-based delivery systems as a VRP rather than a TSP.
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2.2.6 Existing Vehicle Routing Problem (VRP) Models

According to Toth and Vogo [58], a Vehicle Routing Problem (VRP) is defined as a prob-

lem which finds a plan determining a set of vehicle routes to perform all given logistics re-

quests with the given fleet of vehicles at minimum cost. A vehicle routing problem was first

proposed by Dantzig and Ramser [59] as a truck dispatching problem. Clark and Wright

[60] present a greedy heuristic method called savings algorithm to address a vehicle rout-

ing problem. Furthermore, during the past five decades, a variety of variants of vehicle

routing problem as shown in Figure 2.4 have been studied with more and more practical

constraints and hundreds of papers have been devoted to the Capacitated Vehicle Routing

Problem (CVRP), which is the basic model of the VRP using multiple vehicles having

limited payload capacity, or the Vehicle Routing Problem with Time Windows(VRPTW)

which addresses the on-demand delivery concept based on the CVRP [61].

In this sense, this section addresses mathematical models for a Capacitated Vehicle

Routing Problem (CVRP) and a Vehicle Routing Problem with Time Windows (VRPTW).

As mentioned previously, the operations of sUAS-based delivery systems should consider

reuse of sUAVs due to short endurance and small payload capacity. To address these

properties, the concept of a Multi-Trip Vehicle Routing Problem with Time Windows

(MTVRPTW) is introduced as a relevant variant of this thesis with a notional example.

A multi-trip vehicle routing problem with time windows is fully addressed in Section 3.2.

Some practical applications for multiple UAVs are presented in Appendix A.

Capacitated Vehicle Routing Problem (CVRP)

A Capacitated Vehicle Routing Problem (CVRP) is a fundamental variant of vehicle routing

problems. Specifically, the problem is to find a plan that a fleet of vehicles transports all

packages to customers at minimum cost with the constraints as follows

• Each customer should be visited exactly once by a vehicle
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Figure 2.4: Taxonomy of the VRP literature [25]

• Each route starts/ends at a depot

• Each vehicle can carry packages up to its maximum package capacity

A notional example of a CVRP is illustrated in Figure 2.5. For mathematical formu-

lations, let N and A be all nodes and arcs respectively. Furthermore, S is a subset of V

such that S ⊆ N , and r(S) is the minimum number of vehicles to transport all packages to

customers. Before solving a capacitated vehicle routing problem, the minimum number of

vehicles r(S) should be determined. In order to find r(S), a bin packing problem having n
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Figure 2.5: Notional example of a Vehicle Routing Problem (VRP)

packages and n knapsacks/bins/vehicles can be used, which is defined as [62]

min
n∑
i=1

yi (2.30)

s.t.
n∑
j=1

wjxij ≤ cyi for i ∈ N = {1, . . . , n} (2.31)

n∑
i=1

xij = 1 for ∀j ∈ N (2.32)

wj ≤ c for j ∈ N (2.33)

c ∈ Z+ (2.34)

yi ∈ {0, 1} for i ∈ N (2.35)

xij ∈ {0, 1} for i, j ∈ N (2.36)

where c is the maximum package capacity, wj is the package weight of customer j, and the
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design variables are defined as

yi =

 1 if the vehicle i is used

0 otherwise
(2.37)

xij =

 1 if the package i is assigned to the vehicle j

0 otherwise
(2.38)

Then, each vehicle can carry packages up to its package capacity by Equation (2.31), and

each package should be assigned to a vehicle by Equation (2.32).

After finding r(S), a capacitated vehicle routing problem can be addressed with the

design variables defined as

xij =

 1 if the edge (i,j) is selected

0 otherwise
(2.39)

Then, a capacitated vehicle routing problem can be formulated such that [58]

min
∑

(i,j)∈A
cijxij (2.40)

s.t.
∑

j∈δ+(i)

xij = 1 for ∀i ∈ N (2.41)∑
i∈δ−(j)

xij = 1 for ∀j ∈ N (2.42)∑
j∈δ+(0)

x0j ≤ |K| (2.43)∑
(i,j)∈δ+(S)

xij ≥ r(S) for ∀S ⊂ N ,S 6= 0 (2.44)

xij ∈ {0, 1} for ∀(i, j) ∈ A (2.45)

whereK is the number of vehicles, δ−(S) is the in-arcs such that δ−(S) = {(i, j) ∈ A : i 6∈

S, j ∈ S}, and δ+(S) is the out-arcs such that δ+(S) = {(i, j) ∈ A : i ∈ S, j 6∈ S}. Then,

flow balance at each node is guaranteed by Equation (2.41) and (2.42). The maximum

number of required vehicles is restricted by Equation (2.43). Finally, Equation (2.44) serves
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Figure 2.6: Notional example of a Vehicle Routing Problem with Time Windows (VRPTW)

as both capacity constraints and subtour elimination constraints. The other variants of

vehicle routing problems add additional constraints to address a more detailed concept of

operations for a delivery system.

Vehicle Routing Problem with Time Windows (VRPTW)

A Vehicle Routing Problem with Time Windows (VRPTW) can address an on-demand

delivery system by adding time windows representing available time for delivery. The

fundamental assumption of time window constraints is that a customer allows to be vis-

ited within available time period only. Specifically, a vehicle routing problem with time

windows addresses the constraints such that

• Each customer should be visited exactly once by a vehicle

• Each route starts/ends at a depot

• Each vehicle can carry packages up to its maximum package capacity
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• Vehicles can delivery packages to customers within each time window only

• If a vehicle arrives at a customer earlier than customer’s time window, it should wait

until open time of the time window (on-demand delivery)

A notional example of a vehicle routing problem with time windows is illustrated in

Figure 2.6. In this example, each customer has a time window presenting avail time to

be visited. To address mathematical formulations of a vehicle routing problem with time

windows, let N = {0, 1, . . . , n, (n + 1)}, C = {1, . . . , n}, and V = {1, . . . ,m} be all

nodes, all customers such that C ∪ {0, (n + 1)} = N , and a fleet of vehicles, respectively.

Furthermore, di is the demand of customer i, q is the capacity for each vehicle, cij is moving

cost from customer i to customer j, tij is moving time from customer i to customer j, and

[ai, bi] is the time window of customer i. Note that node 0 and (n + 1) represent a single

depot, they are used to address the starting/ending point of a route. Then, a vehicle routing

problem with time windows can be defined as [63]

min
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk (2.46)

s.t.
∑
k∈V

∑
j∈N

xijk = 1 ∀i ∈ C (2.47)∑
i∈C

di
∑
j∈N

xijk ≤ q ∀k ∈ V (2.48)∑
j∈N

x0jk = 1 ∀k ∈ V (2.49)∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C, ∀k ∈ V (2.50)∑
i∈N

xi,(n+1),k = 1 ∀k ∈ V (2.51)

xijk(sik + tij − sjk) ≤ 0 ∀i, j ∈ N , ∀k ∈ V (2.52)

ai ≤ sik ≤ bi ∀i ∈ N , ∀k ∈ V (2.53)

xijk ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ V (2.54)

where xijk and sik are design variables. For each arc (i, j), where i 6= j, i 6= (n+1), j 6= 0,
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xijk is defined as

xijk =

 1 if vehicle k drives directly form vertex i to vertex j

0 otherwise
(2.55)

Furthermore, sik is defined as the time when vehicle k starts to service customer i. Since

xijk is a binary variable and sik is a continuous variable, a vehicle routing problem with

time windows is a Mixed Integer Programming (MIP) problem.

In a solution of a vehicle routing problem with time windows, each customer is visited

exactly once by Equation (2.47). Each vehicle can be loaded up to its capacity by Equation

(2.48). Equation (2.49), (2.50) and (2.51) guarantee that each vehicle must leave and arrive

at the depot. The relationship between the vehicle departure time from a customer and its

immediate successor such that sik < sjk if i < j and tij > 0 is maintained by Equation

(2.52). Finally, Equation (2.53) represents time window constraints.

Multi-trip Vehicle Routing Problem with Time Windows (MTVRPTW)

A Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) can additionally

address reuse of vehicles based on a VRPTW. The fundamental assumption for reuse of

vehicles of this model is that processes for reuse of vehicles, such as reloading packages

and refueling vehicles, is executed at the depot only. Specifically, a multi-trip vehicle

routing problem with time windows is to build a plan that a fleet of vehicles transports all

packages to customers at minimum cost with the constraints as follows

• Each customer should be visited exactly once by a vehicle

• Each route starts/ends at a depot

• Each vehicle can carry packages up to its maximum package capacity

• Vehicles can delivery packages to customers within each time window only

• If a vehicle arrives at a customer earlier than customer’s time window, it should wait

until open time of the time window (on-demand delivery)
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Figure 2.7: Notional example of a Multi-Trip Vehicle Routing Problem with Time Windows
(MTVRPTW)

• Reloading packages is conducted at depot only

A notional example of a multi-trip vehicle routing problem with time windows is illus-

trated in Figure 2.7. This example allows to reuse UAVs if there is time enough to reload

packages and recharge/exchange batteries between two routes. This leads to a plan requir-

ing the less number of required UAVs than a plan created by a vehicle routing problem with

time windows in Figure 2.6. This is an essential concept of operations for sUAS-based de-

livery systems due to UAV’s short endurance and small payload capacity as discussed in

the previous section.

However, a MTVRPTW optimization model does not account for limited endurance.

That is, vehicles considered in a MTVRPTW optimization model has mathematically infi-

nite endurance. Except for this limitation, a MTVRPTW optimization model well describes

the operations of sUAS-based delivery systems. Thus, this thesis extends a MTVRPTW op-

timization model by adding the concept of vehicle having limited endurance to address the
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operations of sUAS-based delivery systems. The extended optimization model is presented

in the following chapter.

2.3 Summary

This chapter discussed fundamental concepts of both the Fixed Point Iteration (FPI) method

and the Vehicle Routing Problem (VRP) to provide background enough to address the

research questions respectively such that

Research Question 4 (RQ 4) : How can the small VTOL UAV design module and the

VRP module be integrated with a FPI method to obtain a converged solution?

Research Question 2 (RQ 2) : What type of a VRP optimization model best represents

the operations of sUAS-based delivery systems?

This thesis uses a FPI method to obtain a converged solution of the concurrent UAV design

and routing for urban delivery systems previously illustrated in figure 1.21. This chapter

showed why the FPI can be utilized to find a converged solution of an MDO problem using

mathematical theories.

This thesis also utilizes a VRP optimization to build routes of vehicles for delivery

systems which minimize the total cost defined in Equation 1.1. This chapter discussed how

a VRP is modeled based on graph theory step by step, and then presented existing VRP

optimization models relevant to this thesis. The background knowledge discussed in this

chapter would be helpful to capture the novel ideas presented in this thesis in the following

chapters.
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CHAPTER 3

MATHEMATICAL MODELING OF A SMALL UAS-BASED DELIVERY

SYSTEM

This chapter discusses a VRP model capable of addressing operations of sUAS-based de-

livery systems. The research question associated with this chapter is that

Research Question 2 (RQ 2) : What type of a VRP optimization model best represents

the operations of sUAS-based delivery systems?

In general, a VRPTW model is used to model operations of delivery systems for on-demand

service. However, to address a VRP optimization model for sUAS-based delivery systems,

the VRP model should additionally involve the properties that vehicles can be reused, and

they have limited endurance, as stated previously.

Section 3.1 develops a hypothesis for this research question. Section 3.2 presents a

new VRP model to address operations of a UAS-based delivery system. Then, Section 3.3

conducts experiments to demonstrate the hypothesis for Research Question 2.

3.1 Development of Hypothesis

While the CVRP and VRPTW formulations, described in Subsection 2.2.6, have success-

fully modeled operations planning problems for vehicles such as trucks [59, 60, 64], pas-

senger aircraft [65, 66], and cargo aircraft [67, 68], the formulations do not account for the

physical and operational properties of sUAS-based delivery systems because these models

assume that each vehicle can take a single route during operating hours implying that each

vehicle can be used just once during its operating period. However, a sUAS operator may

want to reuse individual aircraft throughout the day to make multiple deliveries because

sUAVs have limited range and payload capacity. The need to constantly reuse and recharge
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sUAVs drives an extension to the CVRP and VRPTW where the recharging policy is explic-

itly considered in the optimization model. For instance, while refueling a truck takes only

a few minutes and be done mid-route, recharging a UAS may take an extended time and

can only be done at depot locations (at present). There are two main approaches to describe

recharging electric vehicles: the Green Vehicle Routing Problem (GVRP) and MTVRP.

The GVRP was introduced by Erdoğan and Miller-Hooks [69] for alternative fuel-

powered vehicle fleets. In the GVRP, each vehicle can travel up to maximum driving range

without refueling, and the vehicle can extend its driving range by stopping en route at any

refueling stations. In the GVRP model, nodes consists of depots, customers, and refueling

stations; this extends more traditional VRPs whose nodes consist of depots and customers.

In GVRP models, each recharging station node allows to be visited no more than once.

Thus, the GVRP models add a set of dummy nodes for each station to allow each station

to be visited multiple times. This model is mathematically similar to the VRP model with

satellite facilities [70]. In the VRP model with satellite facilities, a vehicle can replen-

ish fuel and preselected packages in satellite facilities. Schneider et al. [71] introduced

the Electric Vehicle Routing Problem with Time Windows (EVRPTW) model, which adds

time window constraints into the GVRP model. The EVRPTW model allows the recharg-

ing of batteries based on the remaining battery capacity. A continuation of this work [72]

extended the EVRPTW with intermediate stops including refueling stations, loading facil-

ities, and combined facilities for both refueling and loading. Goeke and Schneider [73]

introduced an EVRPTW model for a mixed fleet of electric and conventional vehicles. Hi-

ermann et al. [74] extended the EVRPTW model by allowing heterogeneous electrical

vehicles. However, these GVRP models mainly address larger systems then a last-mile

delivery system which is considered in this thesis.

The MTVRP was proposed by Fleischmann [75], which allows a vehicle to stop at

the depot to loading additional packages between customer deliveries. This feature can

substantially reduce costs by reusing vehicles during operating hours. Because of this
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benefit, the MTVRP has recently found significant applications due to the development of

electrical vehicles such as green cars and sUAVs [76]. The MTVRP model allows a sUAV

to have a journey, defined as multiple round trip flights from a depot, not just a single route

or trip, defined as a single round trip flight from a depot. The MTVRP has been modeled

by 2-index, 3-index, and 4-index vehicle flow formulations. 2-index models [77] have only

arc indices, 3-index models include a vehicle index [78] or trip index [79], and 4-index

models [58, 80] contain both the vehicle, trip, and arc indices. Dorling et al. [11] proposed

a optimization model for the sUAS delivery problem based on the MTVRP model that

optimizes the weight of payloads and batteries concurrently with vehicle routings. The

MTVRP has also been extended to account for customer time windows as traditionally

modeled by a VRPTW; the MTVRPTW model [81], described in Subsection 2.2.6, has the

capability to accommodate the properties MTVRP and VRPTW simultaneously.

The MTVRPTW model approximates a delivery system in that a single depot is used

for a fleet of vehicles making deliveries to customers with specific time windows. The

MTVRPTW model, also, consider reuse of vehicles by reloading packages at the depot. In

this sense, the MTVRPTW model can describes most of characteristics for operations of

a sUAS for last-mile delivery system as stated previously. However, the MTVRPTW model

considers infinite endurance/range vehicles while sUAVs have short endurance/range. Thus,

to address a sUAS-based delivery system, the MTVRPTW model should be extended by

adding constraints describing limited endurance or range. For sUAS-based delivery sys-

tems using sVTOL UAVs, endurance constraints are preferred because endurance can in-

clude effects of take-off and landing for delivery while range cannot address them. These

observations inspire a hypothesis for Research Question 2 (RQ 2) such that

Hypothesis for RQ 2 : To address operations of sUAS-based delivery systems, an endurance-

constrained MTVRPTW model should be utilized.

The following section will discuss background of the VRP including fundamental con-

cepts to create formulations and existing VRP models relevant to this thesis. Then, Sec-
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tion 3.2 will present an endurance-constrained MTVRPTW model as an extension of the

MTVRPTW model, as stated in Subsection 2.2.6, by adding maximum endurance con-

straints for each sUAV.

3.2 Optimization Model for an Endurance-Constrained MTVRPTW 1

This section presents a mathematical optimization model for sUAS-based delivery as an

endurance-constrained MTVRPTW model. The model is a 3-index formulation including

arc and vehicle indices which can trace a single route. The optimization model is described

by a graph, G = (N ,A), and a fleet of vehicles, V = {1, · · · ,m}. A graph, G, contains a

set of nodes, N = {0, 1, 2, · · · , n, n + 1}, and a set of arcs, A = {(i, j) : ∀i, j ∈ N, i 6=

j, i 6= n+ 1, j 6= 0}.

First, a set of nodes, N , consists of customers, C = {1, 2, · · · , n}, and two depots,

D = {0, n + 1}. In the context of sUAS-based delivery, each customer is regarded as a

delivery location. Note that the two depots indicates a single depot, which meansD0 is only

used for departures from the depot while Dn+1 represents an arrival at the depot. Let NO

be the union of the origin depot and customer nodes likeNO = {0, 1, 2, · · · , n} andND be

the union of the destination depot and customer node such as ND = {1, 2, · · · , n, n + 1}.

A customer, Ci, has a demand for packages, di, service time, τi, and available time to be

visited, [ai, bi]. In addition, the time for swapping batteries and reloading packages at the

depot is notated as τdepot, and the operating hour of the depot is [a0, b0]. Second, each arc,

(i, j), represents a movement form node i to node j; it has its own values such as flight

distance, distij , flight time, tij , and operating cost coefficient, cijk. Finally, a vehicle has

properties such as payload capacity, q, velocity, v, endurance, E, and fixed cost coefficient,

cfixed = acquisition cost of a vehicle/# of days in operational life.

In this model, three types of decision variables are defined. The first set of decision

variables, xijk for ∀(i, j) ∈ A and ∀k ∈ V , are allocated to each arc (i, j) with each vehicle

1This section is submitted for publication [82]
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k. Each xijk is a binary variable and is defined as

xijk =

 1 if vehicle k drives directly form node i to node j

0 otherwise
(3.1)

The second set of decision variables, sik for ∀i ∈ C and ∀k ∈ V , indicates the time that a

vehicle k starts a service at node i. These variables deal with time as continuous variables.

The last set of decision variables, σij for ∀i, j ∈ C, enables reusability for multiple trips for

a vehicle. Each σij is a binary variable and is defined as

σij =

 1 if a vehicle can stop by the depot when the vehicle moves from node i to node j

0 otherwise
(3.2)

In most of VRPs, operating time or cost is minimized. Because the proposed model

is an endurance-constrained MTVRPTW model, the operating time is significantly con-

strained by time windows for each customer. Therefore, the objective function of the pro-

posed model focuses on minimizing total cost stated in Equation 1.1 such that

Min. cfixed

(∑
k∈V

∑
j∈C

x0jk −
∑
i∈C

∑
j∈C

σij

)
+
∑
k∈V

∑
i∈NO

∑
j∈ND

cijkxijk (3.3)

The specific operation requirements are included in the optimization model as a set of

constraints of Equation (3.4) ∼ (3.17), where K is a large number for the linearization of

the constraint, and M is the maximum allowable number of vehicles. First of all, each cus-

tomer should be visited exactly once by a vehicle, Eq. (3.4). Each vehicle can carry fewer

packages than its payload capacity, Eq. (3.5). Moreover, each vehicle should departure

from the depot and return to the depot, Eq. (3.6) and (3.8). Eq. (3.9) requires that when

a vehicle visits two consecutive nodes i and j, the time at node j should be later than the

time at node i. In order for a vehicle to count as reused, the reuse indicator variable, σij ,

must be equal to unity on both the arrival and departure leg to the depot, Eq. (3.10) and Eq.
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(3.11) respectively. The number of vehicles which operate concurrently should be less than

the maximum allowable number of vehicles, M , Eq. (3.12). When a vehicle can be reused,

the time for swapping batteries and reloading packages at the depot should be guaranteed,

Eq. (3.13), as illustrated in Fig. 3.1. On the other hand, each vehicle should operate within

its endurance for a route or trip, Eq. (3.14), as shown in Fig. 3.2. Finally, Eq. (3.15) are

bounding constraints for sik, and Eq. (3.16) and (3.17) are integrity constraints for xijk and

σij .
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3.3 Experiments

This section designs and executes two experiments to demonstrate the effects of both

reusability and maximum endurance constraints on a solution schedule such that

Experiment 1 : To find what type of VRP model best represents a UAS package delivery

network, this experiment compares three models: VRPTW, endurance-constrained

VRPTW, and endurance-constrained MTVRPTW models.

Experiment 2 : To address a tendency of solutions by reusability and maximum endurance

conditions, this experiment executes sensitivity analysis of the constraints with two

models: VRPTW and endurance-constrained MTVRPTW models.

Specifically, Experiment 1 executes simulations with three VRP optimization mod-

els: a VRPTW model, as described in Section 2.2.6, is the baseline. An endurance-

constrained VRPTW model has all constraints of the baseline and maximum endurance

constraints additionally. An endurance-constrained MTVRPTW model has all constraints

of the MTVRPTW model and reusability constraints. Experiment 2 demonstrates a ten-

dency of solution by sensitivity analysis. When the tendency is reasonable, the endurance-

constrained MTVRPTW model can address its necessity to describe operations of a sUAS-

based delivery system.

For two experiments, a benchmarking data set2 for VRPTW models, called R101.25, is

used as an input graph; because its total cost optimized solution is already known in terms

of the minimum total distance, the effects of additional constraints on a solution can be

shown clearly. The graph includes 25 customers having up to 29 package demand with

specific time windows. Every service time for delivery is 10 unit time. For this data set,

a common assumption is that homogeneous vehicles having 200 payload capacity deliver

packages at unit speed.

2http://w.cba.neu.edu/˜msolomon/problems.htm (accessed 27 January 2019)
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Figure 3.3: Total cost optimized solution of a VRPTW model (baseline)

3.3.1 Experiment 1: Comparison of Optimization Models

Using the input graph, three simulations for VRPTW, endurance-constrained VRPTW, and

endurance-constrained MTVRPTW models are conducted. First, the solution schedule of

the baseline, VRPTW model, requires the total unit distance of 617.1 and 8 vehicles that

are well known solution. The schedule is shown in Figure 3.3. Each route of vehicles

is illustrated in Figure 3.3a. The maximum trip time is 193.5 unit time required by the

vehicle 1 in Figure 3.3b. The total cost optimized schedule is described in a time-space
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plot like Figure 3.3c; each route starts at node 0 and ends at node 26, and gray-colored

boxes represent time windows at each node. This is the baseline result.

Second, to address short endurance vehicles, the maximum endurance constraints in

Equation (3.14) are added to the baseline model, which is an endurance-constrained VRPTW.

Note that the endurance-constrained VRPTW model has maximum endurance constraints,

but it does not have reusability constraints. In this simulation, the maximum endurance is

assumed as 100 unit time which is about a half of the maximum trip time of the baseline

result. Then, the simulation is executed with the same input graph. The solution schedule

of this model is shown in Figure 3.4. This solution requires the total unit distance of 793.6

and 13 vehicles. Figure 3.4b shows that maximum endurance of each vehicle is restricted

up to 100 unit time. This is the purpose of the maximum endurance constraints. The result

demonstrates that the endurance-constrained VRPTW model can address short-endurance

vehicles by maximum endurance constraints.

Lastly, to deal with reuse of vehicles, the reusability constraints in Equation (3.10) ∼

(3.13) are added to the endurance-constrained VRPTW model. This leads to the mathemati-

cal optimization model of the endurance-constrained MTVRPTW presented in Section 3.2,

and its simulation result is visualized in Figure 3.5. The solution schedule requires 10 vehi-

cles with the total distance of 808.2, while the longest trip time is constrained up to 100 unit

time due to the maximum endurance constraints. The main difference between this model

and others is that a vehicle can have multiple routes; some vehicles such as vehicle 3 and 9

take multiple trips in Figure 3.5a and these vehicles return to node 0 for reloading packages

as shown in Figure 3.5b. This result shows that the endurance-constrained MTVRPTW

model allows vehicles to be reused. This is the purpose of the reusability constraints.

To address operations of a sUAS-based delivery system, a new VRP optimization model,

as an extension of the VRPTW model, should additionally consider reuse of vehicles

and limited endurance as mentioned previously. The result shows only the endurance-

constrained MTVRPTW model can create a solution involving the effects of reuse of ve-
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Figure 3.4: Total cost optimized solution of an endurance-constrained VRPTW model

hicles and limited endurance. Therefore, the endurance-constrained MTVRPTW model

should be used to describe operations of a sUAS-based delivery system.

3.3.2 Experiment 2: Sensitivity Analysis

Experiment 2 executes sensitivity analysis of maximum endurance and reusability con-

straints. To do that, 16 scenarios are created by various maximum endurance and reusabil-

ity options. Note that in this experiment, fixed cost coefficient, cfixed, is assumed as 100

unit cost to disincentivize the use of excessive vehicles when calculating the objective func-
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Figure 3.5: Total cost optimized solution of an endurance-constrained MTVRPTW model
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(a) Effects of endurance on objective function values of both the
VRPTW and the endurance-constrained MTVRPTW models

(b) Effects of endurance on the number of required vehicles of both
the VRPTW and the endurance-constrained MTVRPTW models

(c) Effects of endurance on total distance of both the VRPTW and
the endurance-constrained MTVRPTW models

Figure 3.6: Summary of simulation results
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Table 3.1: Summary of total cost optimized schedules of the 16 scenarios

No. Reusability Endurance Obj. func. # of UAVs Total dist. Max. trip time

1

No

Infinite 1417.1 8 617.1 193.5

2 150 1470.7 8 670.7 148.6

3 140 1559.2 9 659.2 138.1

4 130 1686.5 10 686.5 130

5 120 1831.3 11 731.3 120

6 110 2013.8 12 813.8 110

7 100 2093.6 13 793.6 100

8 90 2701.6 17 1001.6 90

9

Yes

Infinite 1417.1 8 617.1 193.5

10 150 1467.9 8 667.9 150

11 140 1478.8 8 678.8 140

12 130 1540.3 8 740.3 130

13 120 1650.9 9 750.9 120

14 110 1734 9 834 110

15 100 1808.2 10 808.2 100

16 90 2201.6 12 1001.6 90

tion in Equation 3.3. However, in a framework for concurrent UAV design and routing for

urban delivery systems presented in this thesis, the fixed cost coefficient is fed by an aircraft

sizing and synthesis module.

The results are visualized in Figure 3.6 in terms of objection function, the number of

vehicles, and the total distance respectively and summarized in Table 3.1. The first case is

the result of the baseline. Next, the results of cases from 2 to 8 describe total cost optimized

schedules of the endurance-constrained VRPTW model. The other cases show results of

the endurance-constrained MTVRPTW model. First, as maximum endurance of vehicles is

decreased, the objective function increases. However, the objective function of the VRPTW

model increases more sharply than the MTVRPTW. This is expected because by reusing

vehicles, the MTVRPTW model reduces the fixed cost of the delivery system as shown in

Figure 3.6b. Second, as maximum endurance is decreased, the total distance increases as
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illustrated in Figure 3.6c. In this result, the value of the VRPTW model is the lower bound

of the value of the MTVRPTW model. However, since the effects of the total distance on

the objective function is less than the number of vehicles, the objective function increase

as the maximum endurance decreases. These results also show that why an endurance-

constrained MTVRPTW model needs to be for sUAS-based delivery systems.

3.4 Conclusions

This chapter started from the research question such that

Research Question 2 (RQ 2) : What type of a VRP optimization model best represents

the operations of sUAS-based delivery systems?

To address this research question, a literature review was conducted, and observed that the

VRPTW optimization model describes a on-demand delivery system and the MTVRPTW

optimization model represents operations of a delivery system including the vehicle reuse

concept. However, the MTVRPTW optimization model cannot address the property of

vehicles of limited endurance. This observation inspired the hypothesis such that

Hypothesis for RQ 2 : To address operations of sUAS-based delivery systems, an endurance-

constrained MTVRPTW model should be utilized.

To prove the hypothesis, experiments were executed. Experiment 1 demonstrated that only

the endurance-constrained MTVRPTW model can address the characteristics of both reuse

of vehicles and limited-endurance vehicles. Furthermore, Experiment 2 also confirmed

that the endurance-constrained MTVRPTW model should be utilized for a delivery system

using short endurance vehicles to obtain a total cost optimized schedule which minimizes

total cost. This result leads to a conclusion that Hypothesis for RQ 2 is substantiated.
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CHAPTER 4

CONSTRUCTION OF A TWO-LAYERED URBAN FLIGHT NETWORK 1

The previous chapter presented an endurance-constrained MTVRPTW optimization model.

This chapter discusses a way how to create an input graph of a VRP model to address the

research question such that

Research Question 3 (RQ 3) : What type of an input graph of a VRP model best repre-

sents collision-free paths in the urban environment for sUAS-based delivery systems?

To deal with the urban environment as an input graph of a VRP, the graph should provide

collision-free paths in terms of urban obstacles such as tall buildings and restricted airspace,

as described previously. This chapter presents a framework to create an input graph for the

urban area of San Diego, CA. San Diego is selected as a mission area of this thesis due to

the fact that

• Point cloud data scanned by airborne Light Detection and Ranging (LiDAR) sensors,

which have a good resolution, is fully obtainable.

• In a relatively small area, there are a number of urban obstacles and restricted airspace.

This allows to conduct computationally efficient simulations for various environment

conditions using relatively small-size point cloud data.

Note that the San Diego model is just used to make the framework for creating an urban

flight network. The developed framework in this chapter requires both point cloud data

of an urban area and a set of polyhedrons describing restricted airspace for the urban area

as its input. Because the framework creates collision-free paths based only on the input,

if both point cloud data of an urban area and a set of polyhedrons describing restricted

1This chapter is submitted for publication [82]
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airspace for the urban area are available, the developed framework can be utilized to build

collision-free paths for the urban area.

Section 4.1 develops a hypothesis for Research Question 3. Section 4.2 presents a

framework to create a two-layered urban flight network with the San Diego example. Then,

Section 4.3 conducts experiments to demonstrate the hypothesis with the framework for

creating a flight network in the urban environment.

4.1 Development of Hypothesis

Because point-to-point paths cannot be used in an urban environment, as stated previously,

collision-free paths need to be used. Path planning methods to create collision-free paths

can be categorized into five groups [83]: stochastic methods, road map methods, poten-

tial field approaches, geometric methods, and control-theory-based methods with grids.

Stochastic methods, such as a Rapidly-exploring Random Tree (RRT) method [84], gradu-

ally expand paths by using randomly-selected points from an initial point to a target point.

Road map methods model empty space as a network consisting of piecewise linear paths,

and then they create paths based on the network [85]. Potential field methods construct

a force map; waypoints create attractive forces to pull vehicles while obstacles generate

repulsive forces to push vehicles [85]. Geometric methods describe vehicles and obstacles

as objects in a space and then check whether there is any collision or not using geometric

boundaries of vehicles [86]. Control-theory-based methods also have successfully solved

collision-free path-planning problems. For instance, collision cone approaches [87, 88]

guarantee that a vehicle moves to a waypoint and avoids moving obstacles. Approaches

based on Mixed-Integer Linear Programming (MILP) [89, 90] use binary constraints to

determine whether collisions happen or not based on obstacles modeled in design space.

The collision-free path-planning methods in the five groups have utilized for various

missions. However, to address collision-free paths for sUAS-based delivery systems, road

map methods are considered in this thesis due to the fact that
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• Stochastic methods are created randomly. This leads an input graph of a VRP model

to have different attribute values for edges whenever the graph is created. This char-

acteristic as an input graph of a VRP model is not preferred because the VRP is a

deterministic problem. Moreover, if there is no possible path, the methods fail to

stop.

• Potential field methods create a path at once. However, to build an input graph of a

VRP model, a myriad of paths are required to describes all possible options. Further-

more, the number of options is increased exponentially as the number of nodes of a

graph increases. Thus, for a large-scale input graph, potential field methods could re-

quire too long time to create the graph. Moreover, for the complicated environment,

vehicles could be trapped in a local minimum point of the force map [85].

• Geometric methods and control-theory-based methods requires dynamic inputs be-

cause they are on-line methods. However, to create dynamic inputs, a VRP model

should be solved. Thus, in the step of building an input graph of a VRP, the on-line

methods cannot be used.

Road map methods are independent from the size of an input graph of a VRP model, and

they are dependent on the obstacles existing in a mission area. For multi-vehicle mis-

sions, if a road map is created once, then it can be reused to create paths for all vehicles

[91]. Therefore, this thesis considers a road map method to create an input graph of the

endurance-constrained MTVRPTW optimization model presented previously. Table 4.1

shows the comparison of the five groups of path-planning methods.

Road map methods can be further broken down into two categories [85]: cell decom-

position method, navigation mesh method, and graph-based method. First, the cell decom-

position method divides the non-obstructed area of the area of interest (AOI) into regular

or irregular grids. This method requires substantial computational resources for adequate

accuracy due to the need for highly refined grids. Next, the navigation mesh method, also

called the meadow map [92], decomposes empty space into convex polygonal grids, which
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Table 4.1: Comparison of the five groups of path-planning methods

Group Characteristics Advantage Disadvantage

Stochastic
methods

Extends a path
randomly

One of the fastest
algorithms for path
planning

Varies whenever a
graph is created and
fails to stop when there
is no possible path

Potential field
methods

Constructs a
force map

A simple and fast
algorithm for real-time
applications

Could be trapped in a
local minimum

Geometric
methods

Describes
vehicles and
obstacles as
objects

A simple and fast
algorithm for real-time
applications

An on-line method
requiring dynamic
inputs

Control-
theory-based
methods

Includes vehicle
dynamics

Creates precise paths
An on-line method
requiring dynamic
inputs

Road map
methods

Models empty
space as a
network

Provides the safest
paths

Could not address the
shortest paths

creates fewer grid cells than cell decomposition methods. Last, the graph-based method

creates a graph based on a set of piecewise linear collision-free paths directly, not based on

empty space decomposition; this method also avoids the computational expense required

for cell decomposition methods to create paths. Graph-based methods can be further de-

composed into visibility graphs and Voronoi diagrams.

The visibility graph solves Euclidean shortest path (ESP) problems; this graph is cre-

ated by modeling each corner point of obstacles as a node and then connecting all mutually

visible nodes [93, 94]. Because each arc of the visibility graph guarantees a collision-free

path, paths created from the visibility graph avoid obstacles. For more practical problems,

the visibility graph can be generalized with growing obstacles modeled by an obstacle it-

self and vehicle’s shape and size [93]. This approach guarantees a collision-free path for a

vehicle that is described by a polygon or a circle rather than a point. However, the required

computational power to create a visibility graph increases rapidly when dealing with nu-
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merous obstacles. To address this limitation, the visibility-graph-based ESP methods have

been improved to reduce required computational resources [95, 96, 97].

A Voronoi diagram is a geometric structure which divides a plane with given set of

points, called sites, in keeping with the nearest-neighbor rule: every point in the plane is

associated with a site closest to it [98]. The points associated with each site form a subplane

called a Voronoi cell, and its boundaries are called Voronoi edges. In the context of path

planning, a Voronoi diagram forces each point on a Voronoi edge to maximize the distance

to the closest sites [99]. Thus, if a scenario of obstacles is modeled by sites or polygonal

sets, a Voronoi diagram builds Voronoi edges that represent collision-free paths.

The Voronoi diagram has been successfully utilized for path-planning problems for

robots [100, 101], ships [102], and UAVs [103, 104]. To address UAV path planning prob-

lems, a mountainous terrain environment [105], an urban environment [91], and restricted

airspace [106, 107] have been be modeled as a Voronoi diagram.

From this literature review, there are two observations: the first observation is that a

Voronoi diagram can be more efficiently created with a large number of urban obstacles

than a visibility graph. The second observation is that a path based on the visibility graph

tends to stay as close as possible to obstacles, but sUAV’s routes would be better to keep

away from obstacles as much as a safety distance. A Voronoi diagram is created based

on the bisection of adjacent obstacles, which means it provides the safest route that passes

among obstacles. Thus, the Voronoi diagram has the capability of creating a collision-free

path with an adequate distance from obstacles. These observations inspire the hypothesis

such that

Hypothesis for RQ 3 : To address collision-free paths as an input graph of a VRP for the

urban environment, a Voronoi-diagram-based method should be utilized.

The following section presents a framework for creating a two-dimensional input graph

for a VRP model based on a Voronoi diagram to guarantee collision-free paths.
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4.2 Creating a Framework for a Two-Layered Urban Flight Network

The size of a Voronoi diagram depends on the number and shape of obstacles in the given

environment. If a Voronoi diagram is directly transfered as an input graph of a VRP model,

the size of the graph increases because the Voronoi diagram includes intermediate points

to describe collision-free paths. However, a VRP model needs information related to a

depot and delivery locations only. Because a VRP is an NP-hard problem, the required

computation power to solve the problem is exponentially increased as the problem size of

a VRP increases.

In order to obtain a smaller and more computationally efficient VRP, this thesis presents

a framework to create a two-layered urban flight network described in Figure 4.1. The mis-

sion area in this thesis is shown in Figure 4.2, which is San Diego, CA, as stated previously.

First, from point cloud data, an urban model is created. Second, urban obstacles such as

tall buildings and restricted airspace are identified as a set of polygons in the mission area.

Third, to address collision-free paths, a Voronoi diagram is created as a low-level flight

network– a graph representing physical collision-free paths. Lastly, information which

is only directly relevant to a VRP is extracted from the Voronoi diagram; this high-level

network is an abstraction of the Voronoi diagram and contains arcs which travel between

customers and depots such that arcs represent the collision-free path information in the

Voronoi diagram.

Through this two-layered network approach, an input graph of a VRP is reduced to

produce a smaller problem size. Moreover, the low-level urban flight network has no effect

on the problem size of a VRP, and more detailed Voronoi diagrams can be utilized with

similar performance of solving a traditional VRP. The following subsections describe each

step of this framework in more detail with intermediate results for each step in Figure 4.1.
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Figure 4.1: The framework for building a two-layered urban flight network

Figure 4.2: Mission area: San Diego, CA (Google Image)

4.2.1 Step 1: Creating an Urban Model

As the first step of the framework to create a two-layered urban flight network in Figure

4.1, an urban topographic model that includes the mission area needs to be obtained. This

model should include the configuration and location of each urban obstacle sUAVs have to

avoid. In this paper, point cloud data of San Diego, CA collected by an airborne LiDAR

sensor is utilized to create the urban model. To extract urban obstacles from the point cloud,

this thesis uses the rapid, data-driven, and grid-based urban modeling method proposed by

Choi [108]. This method provides a set of three-dimensional corner points describing a

urban obstacle in the given area such as a tall building.
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4.2.2 Step 2: Capturing Urban Obstacles and Restricted Airspace

The second step of the framework to create a two-layered urban flight network in Figure 4.1

is capturing urban obstacles and restricted airspace because to build a feasible trajectory,

urban obstacles and regulatory requirements must be accounted for. Two notional require-

ments are considered in this step: a maximum operating altitude of 400 feet above ground

level and predefined airspace restrictions for sUAVs such as airports, military facilities,

national parks, and schools.

The first step in modeling airspace restrictions is to utilize the point-cloud data used for

urban modeling to create specific obstacles for sUAV paths. The desired Above Ground

Level (AGL) operating altitude can be modeled as a surface above an urban area’s topogra-

phy. The intersection between the surface and the urban model becomes a set of obstacles

which are described as a set of polygons. The effect of operating altitude on identifying

urban obstacles of San Diego, CA is illustrated in Figure 4.3. The case with 250 feet oper-

ating altitude, which is shown in Figure 4.3b, captures 55 urban obstacles, and 300 feet and

350 feet cases, which are illustrated in Figure 4.3c and Figure 4.3d, seize 34 and 25 urban

obstacles respectively. This implies that operating altitude is a key factor which determines

the complexity of an air map. Note that this thesis only considers paths which go around

obstacles, not over them because in most cases, a path going around is a shorter path, and

this assumption makes a path-planning problem considered in this thesis a two-dimensional

problem.

While urban obstacles can be extracted from a point cloud of urban topography, re-

stricted airspace is defined by regulations and usage of land. To account for restricted

airspace, each segment of restricted airspace can be modeled as an urban obstacle. Once

the two types of urban obstacles are identified, the operating space can be modeled as a

surface with a set of obstacles described by polygons as shown in Figure 4.4. Figure 4.4b

is the operating space with urban obstacles in Figure 4.3b and restricted airspace in Figure

4.4a.
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(d) Operating space with 350 feet operating alti-
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Figure 4.3: The effect of operating altitude on capturing urban obstacles
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Figure 4.4: Restricted airspace and operating space with polygonal obstacles
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4.2.3 Step 3: Constructing a Low-level Urban Flight Network

In third step of the framework to create a two-layered urban flight network in Figure 4.1, a

low-level urban flight network is established as a road map by using a Voronoi diagram to

address collision-free paths. The procedure of creating a Voronoi diagram is illustrated in

Figure 4.5. The first step is obtaining sample points, commonly referred to as sites, which

describe outlines of urban obstacles, which is illustrated in Figure 4.5a. Because a Voronoi

diagram is created based on sites, more sites can capture more detailed collision-free paths.

The second step is creating a Voronoi diagram which consists of Voronoi vertices and

edges, which is visualized in Figure 4.5b. There are two types of Voronoi edges: bounded

and unbounded. A bounded edge is defined by two Voronoi vertices while an unbounded

edge is made from a single Voronoi vertex. The last step shown in Figure 4.5c is filtering

out extraneous Voronoi vertices and edges; for instance, vertices within an obstacle, un-

bounded edges, and edges that intersect with a part of an obstacle can be removed. Another

critical filter that must be applied to the Voronoi diagram is the removal of edges which

cannot physically accommodate a sUAV’s path– for instance an edge could exist between

two obstacles but the physical clearance between the obstacles would not allow for safe

sUAV flight. The clearance could be adjusted based on the dimemsions of the sUAV being

considered. Thus, Voronoi vertices and edges which provide less than 20 feet of clear-

ance, which is assumed as a purpose of developing this framework, are removed. After the

filtering process, there are still redundant edges. However, because the redundant edges

could be used to connect a Voronoi diagram with nodes of a graph of a VRP optimization

model, they are kept. Although they still exist, a path-planning method does not select the

redundant edges because if the edges are selected, the path is trapped.

In addition, when a Voronoi diagram is used in a path planning field, an artificial bound-

ary needs to be added to the diagram as a set of sites; without the boundary, a Voronoi

diagram does not account for detours around the outside obstacles as shown in Figure 4.6.

Thus, this thesis add an artificial boundary for a given mission area to address the detours.
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(a) Step 1: Sampling points from obstacles
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(b) Step 2: Creating Voronoi vertices and edges
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(c) Step 3: Filtering Voronoi vertices and edges

Figure 4.5: Procedure of creating a low-level urban flight network
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(a) Road map created without an artificial boundary
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(b) Road map created with an artificial boundary

Figure 4.6: Effect of an artificial boundary on a road map
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4.2.4 Step 4: Building a High-level Urban Flight Network

The last step of the framework to create a two-layered urban flight network in Figure 4.1

is building a high-level urban flight network. A high-level urban flight network is built by

extracting information directly relevant to a VRP from the low-level urban flight network

as shown in Figure 4.5c. The relevant information is created from Voronoi paths between

customers and depots. There are two steps to create Voronoi paths. First step is representing

each node of the VRP in the low-level urban flight network. Each node is either a depot or

a delivery location as shown in Figure 4.7a. For simplicity, each node can be connected to

the closest Voronoi vertex using an additional arc. The second step is finding the shortest

paths between customers and depots; any path finding algorithms from graph theory can be

utilized. In this paper, Dijkstra’s shortest path algorithm is adopted to find a Voronoi path

and to obtain its network distance from the road map created by a Voronoi diagram. Figure

4.7b and 4.7c show comparisons between Euclidean paths and Voronoi paths. In the first

example, a Voronoi path is established using a detour created by an artificial boundary. In

the second example, when vehicle passes through downtown San Diego, the Voronoi path

is built by a combination of safe edges which avoid from objects by at least 20 feet. The

network distance of Voronoi paths are 10.52 and 9.78 mi while that of Euclidean paths are

7.36 and 7.97 mi respectively.

Note that Voronoi paths in this thesis are created based on just a Voronoi diagram built

in the previous step. Thus, in area with sparse obstacles, the Voronoi path could not address

the shortest paths between nodes because Voronoi edges are created by passing the points

which bisect the straight lines between two sampling points of obstacles. This is a well

known weak point of Voronoi-diagram-based methods. There are various ways to improve

the Voronoi path in terms of its total length by integrating other path-planning methods.

The improvement of the Voronoi paths could lead to the lower total cost of solution routes.

However, it has no impact on the VRP optimization model. Thus, this thesis leaves the

improvement of the Voronoi paths for future work.
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(a) Nodes of an abstract graph from a VRP
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(b) Voronoi path with urban obstacles: example 1
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(c) Voronoi path with urban obstacles: example 2
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(d) High-level urban flight network

Figure 4.7: Voronoi paths with polygonal obstacles

After calculating all the network distances between nodes, a high-level urban flight

network is created as illustrated in Figure 4.7d. Each arc has a distance calculated from a

Voronoi path as its property rather than the point-to-point straight distance. A VRP uses

this abstract graph as its input network topology.

This section presented a framework to create a two-layered urban flight network in Fig-

ure 4.1 with San Diego example. The following section conducts experiments to demon-

strate the two-layered urban flight network created by the presented framework can address

collision-free paths for a VRP optimization model.
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4.3 Experiments

This section designs and conducts experiments to demonstrate the hypothesis such that

Hypothesis for RQ 3 : To address collision-free paths as an input graph of a VRP for the

urban environment, a Voronoi-diagram-based method should be utilized.

To address Hypothesis for RQ 3, this section conducts two experiments which demonstrate

the effects of flight networks, or input graphs, of a VRP optimization model on solution

routes such that

Experiment 3 : To find which type of flight networks better represents collision-free paths

in the urban environment, this experiment compares the solution routes of a point-to-

point flight network with that of a two-layered urban flight network.

Experiment 4 : To address the best vehicle specification for a given scenario, this exper-

iment conducts sensitivity analysis of maximum endurance and maximum payload

capacity constraints with the integrated module with both an endurance-constrained

MTVRPTW model and a two-layered urban flight network.

Specifically, Experiment 3 compares a point-to-point flight network, which is a conven-

tional input graph of a VRP optimization model, with a two-layered urban flight network

presented in this thesis. This experiment, also, conducts with an endurance-constrained

MTVRPTW optimization model presented. Experiment 4 demonstrates a tendency of solu-

tion by sensitivity analysis in terms of vehicle’s endurance and payload capacity to address

the best options of them for given scenarios.

When addressing an optimization problem with the San Diego model, the optimization

model needs three sets of inputs: depot/customer information, assumptions about sUAV

operations, and vehicle performance characteristics. First, the logistics network consists

of a depot and 20 delivery locations; because no company has facilities enough to cover

the whole mission area, this thesis utilizes facilities of several companies in the mission
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area such that the depot is a FedEx ship center, and delivery locations are the locations of

FedEx, UPS, USPS, and Whole Foods in San Diego. Each delivery location has its own

demand on specific time designed by time windows. The demand and time windows are

stochastically created using a discrete uniform distribution which is a typical distribution

in stochastic VRPs [109].

Second, this model assumes an operating altitude of 250 feet AGL, and that the time

required for a sUAV to make a delivery is 10 minutes including landing and takeoff time.

After a trip, each sUAV needs to swap its batteries and reload packages, which is assumed

as 20-minute reloading time, including landing time. Additionally, total operating period is

8 hours– a typical daytime work shift such that the daytime operation requirement of FAR

part 107 is observed.

Lastly, the vehicle performance properties are operating velocity, payload capacity, and

endurance which are assumed as 50 mph, which is the target speed of Amazon Prime Air

[110, 111], 10 lb, and 45 minutes respectively. Under Part 107 of FARs, sUAVs are required

to operate at speeds less than 100 mph, and its maximum takeoff weight should be less than

55 lb. The objective function, Eq. 3.3, has two cost coefficients: cfixed and cijk. First, cfixed

represents the fixed cost such that

cfixed = acquisition cost of a vehicle/# of days in operational life

Second, cijk is operating cost defined as the cost per unit distance/time when the vehicle

k moves the node i to the node j in an input graph; cijk is assumed as unit cost for all

simulations. These two cost terms incentivize the optimizer to select the set of routes with

the minimum flight time with the minimum number of vehicles. With these conditions,

all simulations are executed with Intel R© CoreTM i7-7700HQ processor and 32 Gb memory.

Gurobi 8.0 is used as the MILP solver.
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Table 4.2: Results of the effects of flight networks

Case Flight network Obj func. # of Solution CPU time

sUAVs routes (sec.)

1 Two-layered urban flight network 3857.13 3 Fig. 4.8a 2.68

2 Euclidean flight network 3772.91 3 Fig. 4.8b 2.34
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(a) Solution routes with the two-layered urban flight
network
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(b) Solution routes with the Euclidean flight network

Figure 4.8: Effects of flight networks on a solution

4.3.1 Experiment 3: Validation of a Two-Layered Urban Flight Network

To address effects of a flight network on a solution of the endurance-constrained MTVRPTW

model, this experiment conducts simulations of the model with two different flight net-

works: the two-layered urban flight network and the Euclidean flight network. The simu-

lation results are described in Table 4.2.

Both of cases require three sUAVs, but the latter case has lower objective function value

because the Euclidean distance is the shortest path between two points in two-dimensional

space. However, its routes violate the restricted airspace or penetrate urban obstacles as

illustrated in Fig. 4.8b. The result also reveals that the optimization model with Euclidean

flight network underestimates endurance and range of sUAVs for a given scenario, and

sUAVs selected by the estimated values from the model with Euclidean flight network could

not operate in urban environment because of their underestimated endurance or range.
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Table 4.3: Cost coefficients by different vehicle specifications

Payload capacity (lb)

10 15 20

Endurance (min.)
30 1000 1200 1400

45 1200 1400 1600

60 1400 1600 1800

On the other hand, although the two-layered urban flight network has higher objective

function, its routes are collision-free paths for the given environment which are created

based on a Voronoi diagram as shown in Figure 4.8a. Therefore, this result demonstrates

the fact that to address collision-free paths in an obstructed urban area, the two-layered

urban flight network should be utilized with a VRP optimization model.

4.3.2 Experiment 4: Sensitivity Analysis

This experiment conducts sensitivity analysis of constraints of maximum endurance and

maximum payload capacity of sUAVs by using the integrated module with the endurance-

constrained MTVRPTW optimization model and a two-layered urban flight network. This

experiment runs simulations with nine combinations of endurance and payload capacity

which are varied at values of 30, 45, and 60 minutes and 10, 15, and 20 lbs. To address

the best combination of the endurance and payload capacity for a given scenario through

sensitivity analysis, a different fixed cost coefficient, cfixed, is assigned to each combination

of endurance and payload as shown in Table 4.3.

Note that the value of cfixed is fed by the aircraft sizing and synthesis module in the

entire framework presented in this thesis. However, this chapter focuses on only the vehicle

routing module. Thus, to depict the combinations of endurance and payload capacity as

different sizing results, this experiment assumes that the sUAV having 30-minute endurance

and 10 lb payload capacity has a cfixed of 1000, and that cfixed increases by 200 whenever

the endurance or payload capacity is improved as shown in Table 4.3.
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(a) Package demand of the first scenario
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(b) Package demand of the second scenario

Figure 4.9: Two demand scenarios

Figure 4.10: Demand distributions of two demand scenarios

In addition to vehicle performance data, the optimization model requires demand sce-

narios. The experiment executes simulations with two demand scenarios as shown in Figure

4.9. Each demand of nodes is created based on a normal distribution. The distribution of

demands is illustrated in Figure 4.10. The distribution shows that the first demand scenario

has the relatively higher possibility to carry multiple packages on a trip because its both

average and median are lower then the second scenario.

Note that in this experiment, maximum CPU time for each simulation scenario is set

3600 seconds. Hence, if a model needs more than the maximum time to find a total cost

optimized solution, the solver returns the best solution it finds during the limited time. Al-

though the solution is not a total cost optimized solution, it satisfies all constraints described
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Table 4.4: Results of the effects of vehicle properties and time windows with first demand
set

Scenario De- Endu- Capacity Objective # of Flight Opt. CPU time

mand rance (lb) function sUAVs time gap (sec.)

set (min.) (min.) (%)

S13010 1 30 10 3301.13 3 301.13 0 0.90

S13015 1 30 15 3907.13 3 301.13 0 11.61

S13020 1 30 20 4501.13 3 301.13 0 10.38

S14510 1 45 10 3857.13 3 257.13 0 2.68

S14515 1 45 15 4421.00 3 221.00 0 10.57

S14520 1 45 20 5009.80 3 209.80 0.17 3600

S16010 1 60 10 4434.50 3 234.50 0 2.60

S16015 1 60 15 4981.40 3 181.40 0.45 3600

S16020 1 60 20 3767.82 2 167.82 0.97 3600

S23010 2 30 10 4301.13 4 301.13 0 0.99

S23015 2 30 15 5101.13 4 301.13 0 1.11

S23020 2 30 20 5901.13 4 301.13 0 5.27

S24510 2 45 10 5061.77 4 261.77 0 4.27

S24515 2 45 15 5842.08 4 242.08 0 24.31

S24520 2 45 20 5002.20 3 202.20 0 37.58

S26010 2 60 10 5841.14 4 241.14 0 1.17

S26015 2 60 15 6623.94 4 223.94 0 6.40

S26020 2 60 20 3795.92 2 195.92 0 19.70

in Section 3. When the returned solution is not an optimum, the solver returns a non-zero

optimality gap2 which is defined by

Optimality gap =
|bound value - objective function value|

|objective function value|
(4.1)

With these assumptions, sensitivity analysis of the integrated module is executed. To

address different combinations of vehicles properties and demand sets, 18 simulation sce-

narios are generated. Each simulation scenario is named by concatenating demand set,

2http://www.gurobi.com/documentation/8.1/refman.pdf (accessed 22 January 2019)
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endurance, and payload capacity. For instance, S13010 is conducted with first demand set

and vehicles that have 30-minute endurance and 10 lb payload capacity.

The results are summarized in Table 4.4. Note that flight time shows the total time of

all sUAVs to calculate operating cost. First of all, by comparing objective function values

of scenarios with a same demand set, the most cost-efficient vehicle for the demand set can

be selected. Hence, in the first demand scenario, vehicles with 30-minute endurance and

10 lb payload capacity are the best option, whereas in the second scenario, vehicles with

60-minute endurance and 20 lb payload capacity are the most preferred choice. This is the

fundamental result of sensitivity analysis in this experiment.

Second, to address an effect of endurance, three scenarios such as S13010, S14510,

and S16010 or S23015, S24515, and S26015, which have the same both demand set and

payload capacity condition, need to be compared together. For instance, when comparing

S23015, S24515, and S26015, flight time decreases as endurance increases. This result

is expected because as endurance increases, the probability that a sUAV can visit next

customer without returning to a depot increases. This effect can also be observed in other

five cases. In addition, this tendency also is observed in Experiment 2 in the previous

chapter.

Third, the effect of payload capacity is shown by analyzing three scenarios such as

S14510, S14515, and S14520 or S26010, S26015, and S26020, which have the same both

demand set and endurance condition. Note that when a vehicle has 30-minute endurance,

even if payload capacity increases, flight time is still the same. This implies that it is

physically impossible to obtain a better solution by visiting more delivery locations on a

route due to endurance constraints. When comparing S14510, S14515, and S14520, flight

time decreases as payload capacity increases. This is expected because an opportunity that

a sUAV can visit more delivery locations on one route grows. Three other cases about

analyzing payload capacity effect have a similar result.

Note that endurance and payload capacity have an effect on a route, not a journey.
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Longer endurance and larger payload capacity create a delivery plan with fewer sUAVs.

However, this tendency occurs due to a decrease of the number of routes, not a increase of

the reuse of sUAVs. Mathematically, the reusability design variables, σij , have no direct

relation with endurance or payload capacity (See Equation (3.10)-(3.13)).

These results demonstrate that the endurance-constrained MTVRPTW model works

well with the two-layered urban flight network of San Diego for the given scenarios; more-

over these results show how trade studies can be conducted to determine vehicle parameters

by utilizing delivery scenarios. Note that the two-layered urban flight network is created by

the framework presented in this chapter. Because the framework deals with each step as a

block box function, other urban models can be created by feeding point cloud data into the

first step of the framework. Additionally, if the depot/customer information of the urban

models are available, the endurance-constrained MTVRPTW model also can be utilized

with the two-layered urban flight networks for other urban models.

4.4 Conclusions

This chapter initiated from the research question such that

Research Question 3 (RQ 3) : What type of an input graph of a VRP model best repre-

sents collision-free paths in the urban environment for sUAS-based delivery systems?

To address this research question, a literature review of path-planning methods was con-

ducted. There were two main observations from the review: the first observation was that

road map methods can efficiently represent the urban environment to address collision-free

paths for an input graph of a VRP optimization model. The second observation was that the

Voronoi diagram, which is a road map method, can be efficiently created for a large-scale

obstructed area. These observations inspired the hypothesis such that

Hypothesis for RQ 3 : To address collision-free paths as an input graph of a VRP for the

urban environment, a Voronoi-diagram-based method should be utilized.
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To prove Hypothesis for RQ 3, a framework to create a two-layered urban flight network

based on a Voronoi diagram was presented. Then, experiments were conducted. Experi-

ment 3 demonstrated that to address collision-free paths in an obstructed urban area, the

two-layered urban flight network created by the framework should be utilized with a VRP

optimization model. Furthermore, Experiment 4 which is sensitivity analysis also con-

firmed that the endurance-constrained MTVRPTW model works well with the two-layered

urban flight network for the given scenarios. These results lead to a conclusion that Hy-

pothesis for RQ 3 is substantiated.
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CHAPTER 5

IMPLEMENTATION OF A SIZING AND SYNTHESIS PROCESS FOR SMALL

FIXED-WING VTOL UAVS

To address an aircraft design process, this chapter presents a notional sizing and synthesis

method for sVTOL UAVs. This thesis previously assumed that tiltrotors which uses 8

rotors for vertical flight and 4 rotors for forward flight are used for a given delivery mission.

Thus, the configuration of the tiltrotor is used to implement a sizing and synthesis process

to address the research question such that

Research Question 1 (RQ 1) : How can a set of main components of small fixed-wing

VTOL UAVs as a result of a sizing and synthesis process be obtained?

Note that the intent of this chapter is to implement a notional sizing and synthesis method

for sVTOL UAVs of an early design step rather than a preliminary design tool providing

detailed UAV design parameters with aircraft configurations. The main purpose of the

sizing and synthesis method presented in this chapter is to be used as a simple black box

for a UAV design module in the framework for concurrent UAV design and routing for

urban delivery systems in Figure 1.21. If more detailed sizing results of small fixed-wing

VTOL UAVs are needed, other sizing and synthesis processes having the same interface

can be used for the framework for concurrent UAV design and routing.

Section 5.1 develops a hypothesis for Research Question 1. Section 5.2 presents a

component-based notional sizing and synthesis process for sVTOL UAVs. Then, Section

5.3 executes experiments to substantiate the hypothesis for Research Question 1.
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5.1 Development of Hypothesis

The traditional sizing and synthesis method mentioned in Chapter 1 focuses on small fixed-

wing aircraft. However, to address a sizing and synthesis method for sVTOL UAVs, ver-

tical flight capacity should be considered in the method. In order to design a small fixed-

wing VTOL UAV, Kamal and Ramirez-Serrano [112] proposed a design methodology using

mathematical formulations to find an optimal design point in a design chart of constraint

analysis. Then, they conducted a preliminary design for a box wing tiltrotor UAV, but their

process did not address available real components to obtain the designed vehicle. Tyan et

al.[113] presented a sizing and synthesis method for a small fixed-wing VTOL UAV con-

sisting three steps: initial sizing base on mathematical formulations, selecting actual com-

ponents, and resizing to update aircraft design parameters based on selected components.

However, they did not specifically mentioned how the components are finally selected.

There are other sizing method focusing on designing the propulsion system of small

UAVs because the propulsion system of small UAVs accounts for up to about 60 % of their

weight [114, 28]. To address the propulsion system sizing problems, parametric design

methods can be utilized, which use models regressed by actual market component data

to describe the relation between performance factors and weight for each part [114, 115,

116]. Gur and Rosen [114] presented a parametric design method including electric motor

and battery models while Ampatis and Papadopoulos [115] and Bershadsky et al.[116]

proposed a parametric method with electric motor, electronic speed controller, battery and

propeller models. However, these parametric design methods work with only electrical

rotors or multirotors, and they do not address specific components as a sizing result.

Additionally, to address battery’s electrical properties, Stepaniak et al.[117] presented

a mathematical model for an electric system of a sUAV. They addressed battery’s internal

resistance occurring the loss dissipated for high-power applications. Then, Ampatis and

Papadopoulos [115] extended the battery model by adding battery configuration such as
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the number of cells/packs.

From this literature review, there are two observations: the first observation is that for

small fixed-wing VTOL UAVs, non-parametric approaches [112, 113] should be utilized

because the parametric approaches [114, 115, 116] works with only single/multi-rotor air-

craft. The second observation is that a sizing and synthesis process for a small VTOL UAV

should address its propulsion system specifically. These observations inspire the hypothesis

such that

Hypothesis for RQ 1 : To obtain a set of components of a propulsion system for small

fixed-wing VTOL UAVs, a component-based sizing and synthesis process can be

utilized.

Both non-parametric methods [112, 113] focus on designing a small fixed-wing VTOL

UAV system with a specific configuration of the UAV. However, to address selecting com-

ponents, a sizing and synthesis module implemented by this thesis are based on the sizing

and synthesis method presented by Tyan et al. [113]. Additionally, to address detailed

battery configurations such as the number of cells/packs, the battery model of [115] is

integrated. The following section presents the implemented sizing and synthesis module.

5.2 Aircraft Sizing and Synthesis Process for a VTOL UAV

The implemented sizing and synthesis process for a small fixed-wing sVTOL UAV deals

with a notional design concept without a detailed vehicle configuration. However, to ad-

dress the propulsion system design, a notional configuration of a tilting-rotor VTOL which

uses eight motors for vertical flight and four motors for forward flight is used to make the

process. The sizing and synthesis process includes both constraint analysis and weight

analysis. The overall process is shown in Figure 5.1. First, an optimal design point is

selected by constraint analysis considering the fixed-wing aircraft performance such as

cruise, climb, and stall. Next, hovering capacity and forward fight capacity are addressed
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Figure 5.1: Process of the developed fixed-wing VTOL UAV sizing module

to find feasible electrical motors and propellers. Note that in the implemented sizing and

synthesis process, after finding technically feasible components for hovering capacity, the

process finds technically feasible components for forward flight capacity. This sequence is

computationally efficient because the process to find technically feasible components for

forward flight capacity requires more computation power. Then, the required energy capac-

ity is calculated by mission analysis. Based on the energy capacity, battery’s configuration

is determined. Lastly, take-off weight is calculated.

5.2.1 Mission Profile

A mission profile describes what the goal of the aircraft is and how the vehicle operates. A

mission profile consists of sequential mission segments to complete an objective [24]. Mis-

sion segments, or legs, describe a specific part of the mission such as warm-up and takeoff,

climb, cruise, loiter, descent, and landing. MIL-STD 3013 [118] provides typical mission

profiles for a variety of types of missions with descriptions of mission segments. Each

mission segment includes specific conditions in terms of speed, altitude, etc. The mission

profiles should include all important characteristics or conditions of the mission because

constraints analysis and weight analysis are conducted based on each mission segment.
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5.2.2 Constraint Analysis

Constraint analysis is utilized to find feasible design space in terms of performance con-

straints. In order to describe each constraint, Mattingly [20] presented the master equation

describing flight performance constraints as both thrust/power loading and wing loading.

In this section, a simplified variant of the master equation presented by Gudmundsson [119]

is used for constraint analysis.

To address constraint analysis for propeller-driven aircraft, each flight performance con-

straint should be described by power loading and wing loading. Power loading can be

derived from thrust loading such as

(
P

W

)
=

(T/W )V

ηp
(5.1)

where (P/W ) is power loading, (T/W ) is thrust loading, ηp is the propeller efficiency,

and V is the airspeed. The power of electric motors is independent from altitude, thus

normalizing power to sea level is not required [113].

In order to deal with flight performance of fixed-wing mode, three types of performance

constraints, cruise, climb, and stall, are considered. First, cruise constraint can be written

by (
T

W

)
cruise

=
q · CD0

(W/S)
+
k · (W/S)

q
(5.2)

where q is the dynamic pressure, CD0 is the drag coefficient at zero lift, and k is the aero-

dynamic coefficient. Second, climb performance constraint can be described by

(
T

W

)
climb

=
Vv
Vroc

+
q · CD0

(W/S)
+
k · (W/S)

q
(5.3)
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Figure 5.2: Constraint analysis graph consisting of cruise, climb, and stall

where Vv is the vertical speed, and Vroc is the best rate-of-climb airspeed defined by

vroc =

√√√√2

ρ

(
W

S

)√
k

3CD0

(5.4)

Last, stall constraint can be written by

(
W

S

)
stall

= qstall · CL,max (5.5)

where qstall is the dynamic pressure at the aircraft stall speed, and CL,max is the maximum

lift coefficient. Although VTOL aircraft reaches the stall speed, it does not stall. However,

it is a substantial design speed for the transition phase [113]. An example of constraint

analysis graph is shown in Figure 5.2. The optimal design point can be determined as a

point requiring minimum power loading in feasible design space satisfying all constraints.

5.2.3 Weight Analysis

The implemented weight analysis consists of five steps as previously illustrated in Figure

5.1: vertical propulsion system design, forward propulsion system design, mission analysis,
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battery design, and take-off weight calculation. The following subsections describe each

step.

Step 1: Vertical Propulsion System

The developed weight analysis process is a components-driven method, which finds fea-

sible pairs of components for given constraints and then evaluates the convergence of the

aircraft takeoff weight. The first step is to find motor and propeller pair satisfying hovering

capacity. Based on the momentum theory, the power required to hover is defined by [120]

Ph = T

√
T

2ρA
=

T 3/2

√
2ρA

=
W 3/2

√
2ρA

(5.6)

where T is the thrust required to hover, W is the aircraft weight, ρ is the air density, and

A is the disk area. Furthermore, for multicopters consisting of n rotors, the ideal power

required to hover for each rotor can be defined by

Ph,(1/n) =
(W/n)3/2√
2ρ(A/n)

(5.7)

For an actual multirotor design, thrust-to-weight ratios of 1.5 ∼ 2.0 is used [121]. Man-

ufacturers of motors for sUAVs provide test results of thrust/power by throttle settings.

Thus, with desired thrust-to-weight ratios, proper motors can be selected by using the re-

sults. Furthermore, the Figure of Merit (FM) is commonly used to estimate practical power,

which is defined by [120]

FM =
Pideal
Pactual

< 1 (5.8)

Using these values, available vertical propulsion components are can be selected from the

component database made up of data sheets for motor-propeller performance provided by

manufacturers.
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Step 2: Forward Propulsion System

To address forward flight performance, the required thrust needs to be calculated, which is

defined by the drag of a given flight condition such that [122]

TR = D =
1

2
ρV 2SCD0 +

2kS

ρV 2

(
W

S

)2

(5.9)

Then, the required power can be written by [122]

PR = TRV (5.10)

In order to evaluate the feasibility of propellers for the forward flight, thrust at target

velocity should be obtainable by the propulsion system. Thrust of a propeller relies on

propeller’s revolutions per minute (rpm) and velocity. Also, the propulsion system should

support power transmitted by a shaft, Pshaft, at the conditions. In order to obtain these

values, experiments such as a wind tunnel test [123] or a Computational Fluid Dynamics

(CFD) analysis [124] can be utilized. Various propeller performance test results are obtain-

able in [125] and [126]. This thesis uses the test results to create the component database to

determine actual propulsion system parts such as propellers, electric motors, and batteries.

After calculating the required thrust/power, each propeller in the component database

is evaluated to determine whether or not it can produce the thrust/power at cruise speed of

50 mph previously assumed in Section 4.3. Figure 5.3 shows an example to find available

thrust of a propeller by using regression models for each propeller performance in terms of

thrust, velocity, and rpm. In this plot, feasible rpm values of the propeller can be identified

by the required thrust and the target velocity. For instance, if the required thrust is 10 lbf,

then the propeller requires at least 10000 rpm to get the thrust at speed of 50 mph.

Pshaft, also, can be determined by regression models of Figure 5.4 in the same manner.

For example, if a given rpm is 10000 rpm, Pshaft is about 2 lbf ∗ ft/s at speed of 50
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Figure 5.3: Regression models of propeller performance: thrust, velocity, and rpm

Figure 5.4: Regression models of propeller performance: Pshaft, velocity, and rpm

mph. The selected Pshaft value should be supported by electric motors of the propulsion

system. In this step, all the available propellers are selected because the performance could

be changed by the combination of a motor and a propeller.

Manufacturers of propulsion system parts for sUAVs may provide the performance data.

If it is available, the input electric power transfered into a motor, Pin, can be directly con-

sidered instead of Pshaft. Pin is the electric power which should be supported by electric

batteries. For sUAVs, using BrushLess DC (BLDC) motors, which remove the needs for

brushes used by older DC motors, is preferred because of its converting efficiency from

electrical energy to mechanical energy [116]. BLDC motors are controlled by Electronic

Speed Controller (ESC). The ESC receives throttle setting values through Pulse Width

Modulation (PWM) signals, and then it controls the rpm of motors by the percentage duty
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Figure 5.5: Regression models of motor and propeller performance: throttle setting and Pin

Figure 5.6: Regression models of motor and propeller performance: Pin and rpm

Figure 5.7: Regression models of motor and propeller performance: Pin and thrust

cycle [127].

In the motor and propeller performance data provided by manufacturers, available

thrust/power is measured for various throttle values. Based on a target throttle value, 65 %

is selected from [128, 129], Pin can be determined as illustrated in Figure 5.5. The blue
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curve in Figure 5.5 is regression model based on motor-propeller performance data. Then,

the rpm of motor is estimated by Pin as seen in Figure 5.6 in the same manner. Lastly, the

available thrust also can be calculated by Pin using the regression model as illustrated in

Figure 5.7. Thus, feasible combinations of a motor and a propeller which produce more

thrust than required thrust can be selected.

Step 3: Mission Analysis

The purpose of mission analysis in weight analysis in this thesis is to calculate the required

battery capacity. For each mission segment, the required Pin should be calculated because

it is changed by the flight state. Package delivery missions can be simply modeled by

combinations of take-off, cruise, and landing. Thus, this thesis uses the hovering power for

take-off and landing mission segments and the cruise power for cruise mission segments.

Then, the required battery capacity for each mission segment is determined by multiply

the required Pin by time for a mission segment. Lastly, the required battery capacity for a

given mission is calculated by summing all the required battery capacity for each mission

segment.

Step 4: Battery Design

The designed electrical battery should have more capacity than the required battery capac-

ity for a given mission. An electrical battery consists of multiple cells. To address the

configurations of cells, the battery model of Ampatis and Papadopoulos [115] is used. The

configurations of cells rely on the design of UAV’s power system; the input voltage of a

motor can be supported by the batteries, or a DC-DC converter can be used to support the

high input voltage of a motor. This thesis assumes that the motor input power is directly

supported by the batteries. Then, based on the motor input voltage, the battery pack size

is determined, which consists of cells grouped in a serial arrangement. By stacking the

battery packs, the battery capacity is adjusted.
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Step 5: Take-off Weight Calculation

After mission analysis, the weight of electric motors, propellers, and battery’s configuration

are determined for each feasible combinations of a motor and a propeller. If there exist

multiple feasible options, the option having the minimum weight is chosen. In order to

address the convergence condition of sizing iterations, a sizing equation is utilized, which

can be written by

Wto =
Wpropulsion +Wbattery +Wpayload

(1−WFstructure −WFavionics −WFsubsystem)
(5.11)

where W is the actual weight and WF is the weight fraction. Since in previous steps,

the components of motors, propellers, and batteries are selected, the actual weight of them

can be addressed in the sizing equation. For the weight fractions, WFstructure = 0.33,

WFavionics = 0.05, and WFsubsystem = 0.1 are used [121].

This section presented how a component-based sizing and synthesis process of this

thesis is implemented to obtain a set of components of a propulsion system for small fixed-

wing VTOL UAVs. The following section executes experiments to validate the imple-

mented sizing and synthesis process.

5.3 Experiments

This section designs and conducts experiments to demonstrate the hypothesis such that

Hypothesis for RQ 1 : To obtain a set of components of a propulsion system for small

fixed-wing VTOL UAVs, a component-based sizing and synthesis process can be

utilized.

To address the hypothesis, a component-based sizing and synthesis process is implemented,

which can provides a set of components based on component database. To validate the

implemented process, two experiments are executed such that
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Table 5.1: Assumptions for sizing and synthesis process

Group Parameter Value Reference
Aerodynamics T/W for vertical flight 2.0 [121]

L/D 5.6 [121]
e 0.65 [24]
AR 4.406 1

CD0 0.04 [113]
Propulsion Battery-specific energy (Wh/kg) 253 [121]

Battery efficiency (%) 75 [121]
# of hover motors 8
# of cruise motors 4

T/W hover 2 [121]
Throttle value for cruise (%) 65 [128, 129]

Mass WFstructure 0.33 [121]
WFavionics 0.05 [121]
WFsubsystem 0.1 [121]

Experiment 5 : This experiment conducts a sizing and synthesis process for a single-stop

delivery mission to validate the implemented sizing and synthesis process.

Experiment 6 : This experiment executes a sizing and synthesis process for a two-stop

delivery mission to validate the implemented sizing and synthesis process.

The main purpose of the two experiments is to confirm whether the implemented sizing

and synthesis process provides a reasonable and feasible design values for the given mis-

sions. Specifically, Experiment 5 conducts a sizing task to find UAVs design parameters

such as P/W ,W/S, and take-off weight for a single-stop delivery mission which describes

that a small fixed-wing VTOL UAV delivers a package to a customer. Experiment 6 exe-

cutes another sizing task to find design parameters for a two-stop delivery mission which a

small fixed-wing VTOL UAV delivers two packages to two different locations on a trip.

To address a sizing and synthesis process, assumptions in terms of aerodynamics,

propulsion and mass are required. Table 5.1 shows common assumptions for two experi-

1This value is calculated by an image of the Wingcopter https://wingcopter.com/ (accessed 18
February 2019)
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Figure 5.8: Mission profile of a single-stop delivery

Table 5.2: Mission segments of a single-stop delivery

Segment No. Mode Description
1 Take-off Take off and climb up to 250 ft during 60 sec
2 Cruise Cruise 10 mi at speed of 50 mph
3 Landing Land on the ground during 60 sec
4 Delivery Add 60-sec hovering flight as a margin
5 Take-off Take off and climb up to 250 ft during 60 sec
6 Cruise Cruise 10 mi at speed of 50 mph
7 Landing Land on the ground during 60 sec

ments. Because the implemented process uses specification and performance data of each

component of propulsion systems from component database to select final components, the

factors such as propulsion efficiency depending on the selected component are determined

during the process of sizing and synthesis.

5.3.1 Experiment 5: Single-Stop Delivery Mission

In a single-stop delivery mission, a 5-lb package is delivered to a location which is ten

miles away from a depot. This is a typical urban delivery mission of sUAVs; in most U.S.

urban areas, 10- to 15-mile delivery radius is enough to cover the areas [121]. The mission

profile of this delivery mission is illustrated in Figure 5.8, and each mission segment is

described in Table 5.2.

In the initial constraint analysis, power loading P/W , and wing loading, W/S, of the

design point are 18.82 lbf · ft/s/lb and 1.42 lb/ft2 as shown in Figure 5.9. During the

sizing process, take-off weight is updated until it is converged. The iteration result is de-
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Figure 5.9: Initial design point of a single-stop mission

Table 5.3: Mission profile of a single-stop delivery

Iter. Wto,in Wpropulsion Wbattery Wto,calculated ∆Wto

(lb) (lb) (lb) (lb) (%)
1 40 5.59 5.16 30.29 24.29
2 30.29 5.89 3.97 28.57 5.65
3 28.57 5.59 3.97 28.00 2.02
4 28.57 5.59 3.97 28.00 0
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Figure 5.10: Final design point of a single-stop mission

scribed in Table 5.3. This result is in between the two design results of the baseline aircraft

and the advanced aircraft for a single-package delivery mission presented in [121]. Af-

ter iterations, the updated value of power loading and wing loading is 37.69 lbf · ft/s/lb

and 0.99 lb/ft2, which is in feasible design space as illustrated in Figure 5.10. Accord-
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Figure 5.11: Mission profile of a two-stop delivery

Table 5.4: Mission segments of a two-stop delivery

Segment No. Mode Description
1 Take-off Take off and climb up to 250 ft during 60 sec
2 Cruise Cruise 10 mi at speed of 50 mph
3 Landing Land on the ground during 60 sec
4 Delivery Add 60-sec hovering flight as a margin
5 Take-off Take off and climb up to 250 ft during 60 sec
6 Cruise Cruise 5 mi at speed of 50 mph
7 Landing Land on the ground during 60 sec
8 Delivery Add 60-sec hovering flight as a margin
9 Take-off Take off and climb up to 250 ft during 60 sec

10 Cruise Cruise 10 mi at speed of 50 mph
11 Landing Land on the ground during 60 sec

ing to [113], appropriate values of P/W for propeller-driven aircraft exists within 2-30

W/N . Since 37.69 lbf · ft/s/lb = 11.49 W/N , the result is within the acceptable range.

Thus, these results demonstrate the fact that the implemented sizing and synthesis process

for small fixed-wing VTOL UAVs provides feasible and reasonable design parameters of

P/W , W/S, and take-off weight.

5.3.2 Experiment 6: Two-Stop Delivery Mission

The second scenario is designed to address a multi-package delivery by a sUAV. The sce-

nario is to deliver two packages to different places. The first delivery location is 10 miles

away from the depot, and the second location is 5 miles away from the first location, which

is also 10 miles away from the depot. At each location, a 5-lb package is delivered by a

sUAV. During each service time, 60-second hovering flight is added as a margin. For a
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Figure 5.12: Initial design point of a two-stop mission

Table 5.5: Mission profile of a two-stop delivery

Iter. Wto,in Wpropulsion Wbattery Wto,calculated ∆Wto

(lb) (lb) (lb) (lb) (%)
1 40 6.81 6.75 42.95 7.38
2 42.95 7.11 6.74 45.87 6.79
3 45.87 7.11 7.14 46.63 1.66
4 45.87 7.11 7.14 46.63 0

sizing process, a mission profile in Figure 5.11 is created by the scenario, and each mission

segment is specified in Table 5.4.

In the initial constraint analysis, a design point with power loading of 18.82 lbf ·ft/s/lb

and wing loading 1.42 lb/ft2 is obtained, which is in feasible design space as illustrated

in Figure 5.12. During the sizing iterations, the take-off weight of the sUAV is converged

to 48.16 lb which is less than the maximum take-off weight, 55 lb, under Part 107 as

shown in Table 5.5. The final design point has power loading of 30.09 lbf · ft/s/lb (9.18

W/N ) which is in acceptable range of [113] and wing loading of 1.65 lb/ft2. The design

point also is in feasible space as illustrated in Figure 5.13. These results also substantiate

the fact stated in privious experiment that the implemented sizing and synthesis process

for small fixed-wing VTOL UAVs provides feasible and reasonable design parameters of

P/W , W/S, and take-off weight.
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Figure 5.13: Final design point of a two-stop mission

5.4 Conclusions

This chapter started from the research question such that

Research Question 1 (RQ 1) : How can a set of main components of small fixed-wing

VTOL UAVs as a result of a sizing and synthesis process be obtained?

To address this research question, a literature review of sizing and synthesis methods for sV-

TOL UAVs was executed. From the literature review, there were two observations: the first

observation was that non-parametric approaches should be used to address small fixed-wing

VTOL UAVs. The second observation was that the propulsion systems should be mainly

addressed in the sizing and synthesis process for a small VTOL UAV. These observations

inspired the hypothesis such that

Hypothesis for RQ 1 : To obtain a set of components of a propulsion system for small

fixed-wing VTOL UAVs, a component-based sizing and synthesis process can be

utilized.

To deal with Hypothesis for RQ 1, a component-based sizing and synthesis process for

small fixed-wing VTOL UAVs was implemented. The sizing and synthesis process has

five steps: first, feasible design space is bounded by constraint analysis, and the initial

design point is selected from the feasible design space. Second, in weight analysis, the
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required power for vertical/forward flight is calculated, and the candidates of the vertical

propulsion system are selected. Then, using regression models created by the component

database, the candidates of the forward propulsion system are chosen. Third, mission anal-

ysis is conducted to calculate the required battery capacity for a given mission. Fourth,

the configuration of batteries is determined by the required battery capacity. Lastly, the

convergence of iterations is checked by the sizing equation to find take-off weight.

To prove Hypothesis for RQ 1, Experiment 5 and 6 were executed with two delivery

scenarios: a single-/two-stop delivery mission respectively. The former scenario represents

a single-package delivery UAV while the latter scenario describes a multi-package delivery

UAV. To address the validation of the implemented sizing and synthesis process, the result

was compared with that of the existing researches [113, 121]. The results demonstrated the

fact that the implemented sizing and synthesis process for small fixed-wing VTOL UAVs

provides feasible and reasonable design parameters of P/W , W/S, and take-off weight.

Therefore, the results show that Hypothesis for RQ 1 is substantiated.
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CHAPTER 6

A FRAMEWORK FOR CONCURRENT UAV DESIGN AND VEHICLE

ROUTING PROBLEMS FOR URBAN DELIVERY

To address a framework for concurrent UAV design and routing for urban delivery systems,

Chapter 3 presented an endurance-constrained MTVRPTW optimization model which rep-

resents operations of sUAS-based delivery systems. Chapter 4 developed a framework to

create a two-layered urban flight network which is an input graph of the optimization model

presented in Chapter 3 to address collision-free paths in the urban environment. Chapter 4

implemented a component-based sizing and synthesis process for small fixed-wing VTOL

UAVs.

To deal with a converged solution of UAV design module and vehicle routing module,

this thesis previously determined to utilize a FPI method. The coupled factors in a FPI were

vehicle specification and mission profiles. Based on the observation, this chapter addresses

the research question such that

Research Question 4 : How can the small VTOL UAV design module and the VRP mod-

ule be integrated with a FPI method to obtain a converged solution?

Using a FPI method to solve an MDO problem is a common approach. Thus, this

chapter does not address a novel approach based on the FPI. Note that the intent of this

chapter is to address the extension of a sizing and synthesis process by adding a mission-

planning notion for sUAS-based urban delivery missions based on a FPI method. This

chapter focuses on how to integrate both the UAV design module and the VRP module

with a FPI method presented in Section 2.1.

Section 6.1 develops a hypothesis for Research Question 4. Section 6.2 presents a

framework for concurrent UAV design and routing for urban delivery. Then, Section 6.3
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conducts experiments to substantiate the hypothesis with the presented framework for con-

current UAV design and routing for urban delivery.

6.1 Development of Hypothesis

This thesis uses a FPI method described in Section 2.1 to find a converged solution of an

MDO problem for a concurrent UAV design and vehicle routing problem. To address a FPI

method, three parts should be specified such that

• What are subsystems which should be addressed for a converged solution?

• What are coupled variables between subsystems?

• How can convergence of a solution be evaluated?

For the first part, the sizing and synthesis process presented in Chapter 5 and the VRP

optimization formulations presented in Chapter 3 can be modeled as subsystems of a FPI

as stated previously.

For the second part, the vehicle specification and mission profiles can be designed as

coupled parameters as shown in Section 2.1. The vehicle specification is determined by the

UAV design module as numerical values in each iteration. Thus, the vehicle design param-

eters can be used directly as coupled variables. In this thesis, a main issue of a designed

vehicle is its flight capacity. There are three types of constraints to describe vehicle’s flight

capacity: maximum range [130, 131], maximum endurance [82], and maximum energy

capacity [11, 132]. Because endurance/range of a sUAV is changed by flight conditions,

tracking energy of electric batteries can provide more precise information for creating so-

lution routes. To utilize maximum energy capacity constraints to describe flight capacity,

maximum battery capacity, the required power for forward flight, and the required power

for vertical flight are required [11, 132]. Note that to address the vehicle design parameters

for the vehicle routing module, the optimization model for mission planning should include

energy concepts.
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Figure 6.1: A notional example of a solution of the vehicle routing module

Figure 6.2: A dynamic mission profile

On the other hand, a solution from the vehicle routing module is a set of routes that are

described in a time-space network. Figure 6.1 shows a notional time-space network; x-axis

shows locations of nodes such as depots and customers while y-axis presents time. Each

trip or journey of vehicles can be displayed in the time-space plot as shown in Chapter 3.

To address a mission profile as a coupled variable in the FPI, this thesis uses the worst

trip in terms of required flight time because if a vehicle can move along the worst route for

a delivery mission, the vehicle also can move along any route in the solution. During the

FPI process, the worst route may be changed in each iteration. Hence, this thesis calls it a

dynamic mission profile.

The dynamic mission profile for the package delivery can consist of takeoff, climb,

cruise, descent and landing segments as illustrated in Figure 6.2. However, to simplify

the sizing and synthesis process, this thesis builds the dynamic mission profile with only
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Figure 6.3: Convergence criteria of the FPI method for concurrent UAV design and vehicle
routing problems

Figure 6.4: Structure of a FPI method for a concurrent UAV design and vehicle routing
problem

takeoff/landing and cruise mission segments.

For the third part, three types of stop conditions can be considered as described in

Figure 6.3. First, the mission profile from the vehicle routing module should be converged.

This implies that the update of the UAV design module has no effect on the solution routes.

Second, the vehicle design parameters should satisfy all performance constraints. This

guarantees that the vehicle designed with the parameters can conduct the delivery mission

planned by the vehicle routing module. Finally, the take-off weight of the UAV design

module should be converged.
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With these considerations about a FPI method, Figure 6.4 shows a structure of a FPI

method to find a converged solution of a concurrent UAV design and vehicle routing prob-

lem. The outer loop of the integrated module is designed as a FPI. The UAV design module

and the vehicle routing module work as subsystems in the integrated module.

The considerations about the structure of a FPI method inspires a hypothesis such that

Hypothesis for RQ 4 : By using the dynamic mission profile and the vehicle specification

as coupled variables, a FPI method for concurrent UAV design and vehicle routing

problems can be designed with convergence criteria in terms of mission planning,

constraint analysis, and weight analysis.

The following section presents a framework for concurrent UAV design and routing

problems which is designed by using the FPI structure presented in Hypothesis for RQ 4.

6.2 Creating a Framework for Concurrent UAV Design and Routing Problems for

urban delivery

To address a concurrent UAV design and routing problem for urban delivery, the sizing

and synthesis process presented in Chapter 5 are extended by adding the VRP optimization

model formulated in Chapter 3 with an input graph described in Chapter 4. The devel-

oped framework for a concurrent UAV design and routing problem for urban delivery is

illustrated in Figure 6.5.

The developed framework consists of five modules: urban flight network, endurance-

constrained vehicle routing, UAV design, energy-constrained vehicle routing, and checking

convergence modules. Note that this framework deals with each model as a black box

function. Thus, if the interface between functions are matched, then any method, model, or

framework can be integrated as a module into the presented framework.

First, the urban flight network module introduced in Chapter 4 creates collision-free

paths among the depot and the delivery locations based on an urban model, then builds a

flight network based on the paths as an input graph for optimization models.
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Figure 6.5: Flow chart of the integrated framework

Second, the endurance-constrained vehicle routing module presented in Chapter 3 builds

solution routes for each vehicle based on both the input graph and initially assumed vehicle

parameters. In the routes, the worst route is converted into a mission profile to represent

the solution of the optimization model.

Third, the UAV design module described in Chapter 5 determines optimal vehicle de-

sign parameters such as P/W and W/S, then finds optimal physical parts to minimize

take-off weight. To address more precise flight capacity of the designed vehicle, this thesis

utilizes energy parameters [11, 132] such as

• Maximum battery capacity (Energymax)

• The required power for forward flight (Pf )

• The required power for vertical flight (Pv)

Fourth, based on these energy parameters in the VRP module, an energy-constrained

vehicle routing optimization model is presented, which can trace consumed energy by each

vehicle. The optimization model is specifically described in the following subsection.

Lastly, the convergence of the FPI is evaluated in terms of mission planning, constraint

analysis, and weight analysis as stated previously.
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In this framework, by addressing a converged solution based on the FPI, the solution

of the UAV design module has effects on the solution routes as well as the mission profile

from the energy-constrained optimization model affects vehicle parameters. This is the

key idea of the integrated framework for the concurrent UAV design and vehicle routing

problems. In addition, this framework deals with each module as a black box function,

thus, the various methods having the same interface can be independently integrated with

this framework as mentioned previously.

The following subsection presents an Energy-constrained MTVRPTW optimization

model to deal with energy concepts rather than endurance concepts to describe flight ca-

pacity of vehicles.

6.2.1 Optimization Model for an Energy-Constrained MTVRPTW

The presented optimization model for an energy-constrained MTVRPTW is an extension

of that for an endurance-constrained MTVRPTW introduced in Chapter 3. To address

energy concepts on UAV’s operations, properties of UAV’s propulsion system should be

reflected into mathematical formulations to build total cost optimized routes. The energy

constraints in formulations below are based on the formulations of Choi et al. [132] which

is an extension of distance constraints of the previous works [130, 131, 133]. The energy

constraints trace the energy used by each vehicle after departure from the depot. The energy

constraints model a mission profile having take-off, cruise, and landing segments.

The objective function of the optimization model for an energy-constrained MTVRPTW

can be written by

Min. cfixed

(∑
k∈V

∑
j∈C

x0jk −
∑
i∈C

∑
j∈C

σij

)
+
∑
k∈V

∑
i∈NO

∑
j∈ND

cijkxijk (6.1)

The objective function, Equation (6.1), minimizes the number of vehicles and total flight

distance/hours. The constraints describes the ConOps of a UAS; each customer is visited
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by a UAV exactly once, Equation (6.2).

∑
k∈V

∑
j∈ND

xijk = 1, (∀i ∈ C) (6.2)

Each UAV can carry packages up to maximum payload weight, Equation (6.3).

∑
i∈C

di
∑
j∈ND

xijk ≤ q, (∀k ∈ V) (6.3)

Each vehicle should depart/arrive at a depot, Equation (6.4) and (6.5), and it should leave

the location after delivering a package, Equation (6.6).

∑
j∈ND

x0jk = 1, (∀k ∈ V) (6.4)∑
i∈NO

xi,n+1,k = 1, (∀k ∈ V) (6.5)∑
i∈NO

xihk −
∑
j∈ND

xhjk = 0, (∀h ∈ C, ∀k ∈ V) (6.6)

When a vehicle visits more than two customers, the order of delivery time should corre-

spond with the order of visits, Equation (6.7). This set of constraints provides subtour

elimination.

sik + tij + τi − sjk ≤ K(1− xijk), (∀i ∈ NO, ∀j ∈ ND, ∀k ∈ V) (6.7)

The constraints for reusability of UAVs can be written by

∑
j∈C

σij −
∑
k∈V

xi(n+1)k ≤ 0, (∀i ∈ C) (6.8)∑
i∈C

σij −
∑
k∈V

x0jk ≤ 0, (∀j ∈ C) (6.9)∑
k∈V

∑
j∈C

x0jk −
∑
i∈C

∑
j∈C

σij ≤M (6.10)

sik + τi + ti(n+1) + τdepot + t0j − sjk ≤ K(1− σij), (∀i, j ∈ C, ∀k ∈ V) (6.11)
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When there are more than two trips, the reuse of UAVs is considered, Equation (6.8) and

(6.9). The total required number of vehicles is bounded by Equation (6.10). In order to

reuse a UAV, the time enough to reload packages and swap batteries should be guaranteed,

Equation (6.11).

To address energy consumption, a new set of design variables, eijk, is used, which trace

the amount of used energy by each UAV to move from the depot to current location j. Each

eijk is a real design variable. Then, the constraints of energy consumption can be written

by

∑
j∈ND

ehjk −
∑
i∈NO

eihk =
∑
j∈ND

(Ptotto + Pf thjk + Pltl)xhjk, (∀h ∈ C, ∀k ∈ V) (6.12)

e0jk = (Ptotto + Pf t0jk + Pltl)x0jk, (∀j ∈ VD, ∀k ∈ V) (6.13)

ehjk ≥ (2Pto + Pf (t0hk + thjk) + 2Pltl)xihk, (∀h ∈ C, ∀j ∈ VD, ∀k ∈ V) (6.14)

eihk ≤ (Energymax,k−Ptotto−Pf th(n+1)k−Pltl)xihk, (∀i ∈ VO, ∀h ∈ C, ∀k ∈ V) (6.15)

ei(n+1)k ≤ Energymax,kxi(n+1)k, (∀i ∈ VO, ∀k ∈ V) (6.16)

where Pto, Pf , and Pl are the required power for take-off, cruise, and landing respectively,

tto and tl are take-off and landing time, thjk is the cruise time by a vehicle k from a node i to

another node j, and Energymax,k is the maximum energy capacity of a vehicle k. Equation

(6.12) traces energy consumption when a vehicle k moves from a node h to another node

j. Equation (6.13) determines the initial energy consumption of each trip. Equation (6.14)

and (6.15) provide lower and upper bounds of energy consumption at an intermediate node

of each trip. Equation (6.16) guarantees that energy consumption of a vehicle k should be

bounded by its maximum energy capacity. Other design variables are bounded by Equation
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(6.17)-(6.19).

ai ≤ sik ≤ bi, (∀i ∈ C, ∀k ∈ V) (6.17)

xijk ∈ {0, 1}, (∀i ∈ NO, ∀j ∈ ND, ∀k ∈ V) (6.18)

σij ∈ {0, 1}, (∀i, j ∈ C) (6.19)

These energy-constrained formulations can be used to create trips for each UAVs after the

power values are obtained from the vehicle sizing process introduced in Chapter 5.

This section presented a framework for concurrent UAV design and vehicle routing

problems which utilizes a FPI method. To address Hypothesis for RQ 4, dynamic mission

profiles and the vehicle specification are used as coupled variable between the UAV design

module and the VRP module. Furthermore, the energy concept are integrated with the

framework to more precisely describe flight capacity of vehicles. The following section

executes experiments to demonstrate that the presented framework can address concurrent

UAV design and vehicle routing problems by providing a converged solution of the UAV

design module and the VRP module.

6.3 Experiments

This section designs and conducts experiments to demonstrate the hypothesis such that

Hypothesis for RQ 4 : By using the dynamic mission profile and the vehicle specification

as coupled variables, a FPI method for concurrent UAV design and vehicle routing

problems can be designed with convergence criteria in terms of mission planning,

constraint analysis, and weight analysis.

To address the hypothesis, a framework for concurrent UAV design and vehicle routing

problems for urban delivery is presented in the previous section. To substantiate the hy-

pothesis with the presented framework, this section conducts two experiments such that
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Experiment 7 : To evaluate the convergence property of the FPI method addressing the

concurrent UAV design and vehicle routing problems, this experiment executes con-

vergence analysis.

Experiment 8 : To address the best vehicle’s operating speed and maximum payload ca-

pacity for given scenarios, this experiment executes sensitivity analysis with various

conditions of vehicle’s operating speed and maximum payload capacity.

The fundamental intent of these experiments is to conduct integration tests of the frame-

work including the entire modules presented in this thesis. The framework is mainly based

on a FPI method including the UAV design module and the VRP module. Thus, the two

experiments focus on analyzing the FPI method with convergence analysis and sensitivity

analysis.

Specifically, Experiment 7 conducts convergence analysis with diverse initial values of

the FPI with given scenarios. The initial value of the FPI is the worst-case route of the

endurance-constrained MTVRPTW presented in Chapter 3 that depends on the maximum

endurance of vehicles. Thus, Experiment 7 executes convergence analysis of the developed

framework with various maximum endurance values. Experiment 8 conducts sensitivity

analysis in terms of vehicle’s operating speed and maximum payload capacity to find the

best option for given scenarios. Note that as an effort to address a better solution, Experi-

ment 8 executes each simulation with various initial values of the FPI.

For Experiment 7 and 8, there are common assumptions. The assumptions for the UAV

design module described in 5.3 are also used for the two experiments. In the VRP module,

a simple vehicle cost model is assumed to represent changing vehicle cost by the result of

the UAV design module, which is defined by

cfixed = (1000 +Wpayload ∗ 100) ∗ Wto

55
(6.20)

In this cost model, vehicle cost is represented by UAV’s payload capacity and take-off
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(c) Second scenario: distribution of package
demand
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Figure 6.6: The two demand scenario

weight. Since take-off weight is changed for every UAV sizing iteration, the energy-

constrained MTVRPTW optimization model presented in Section 6.2.1 uses the updated

vehicle cost when finding solution routes for each iteration of the FPI.

Service time for each delivery is assumed as 3 minutes to address times for landing,

margin, and take-off. The maximum payload weight of UAVs is assumed as 5 lb. Two

package demand scenarios are stochastically created based on a uniform distribution as il-

lustrated in Figure 6.6. The distribution of package demand of two scenarios as illustrated

in Figure 6.6a and 6.6c are similar each other while the second scenario has tighter time

windows visualized in Figure 6.6d than that of the first scenario as shown in Figure 6.6b.

The demand scenario with looser time windows has more freedom to plan a vehicle sched-

ule. For the other conditions, the assumptions of experiments in Section 4.3 are used with
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the San Diego urban model presented in Chapter 4.

6.3.1 Experiment 7: Convergence Analysis

The convergence of the FPI methods depends on initial values. The converged value is

changed by initial value. To address a solution closed to a global minimum in an MDO

problem, a set of initial values can be used rather than a single initial value. Thus, this ex-

periment executes convergence analysis of the developed framework for concurrent UAV

design and routing problems with various initial values. The initial value of the framework

is the mission profile of the worst-case route of the endurance-constrained MTVRPTW

optimization model presented in Chapter 3. The worst-case route depends on the maxi-

mum endurance of UAVs. Thus, the initial value of the developed framework also is the

maximum endurance of UAVs. In the San Diego urban model presented in Chapter 4, the

farthest delivery location from the depot requires at least 30-minute endurance without ser-

vice time. Thus, this experiment explores the solution space with the initial values of 35-

∼ 60-minute endurance.

The result of experiments for evaluating effects of initial conditions are summarized

in Table 6.1 ∼ 6.3, where VRP column indicates the results of the endurance-constrained

MTVRPTW optimization model, and MDO column shows the results of the framework for

concurrent UAV design and routing, and difference is calculated as

Diff(%) =
(MDO − V RP )

V RP
× 100 (6.21)

Note that the values in VRP columns of vehicle cost, objective function, and Wto

are modified by a post-processing. Specifically, after solving the endurance-constrained

MTVRPTW model, a UAV sizing process is conducted once with a mission profile created

by the worst route of the optimization model. Using this post-processing, the weight of

UAVs of the model can be calculated. Then, the vehicle cost can be calculated by Equation

121



Table 6.1: Summary of initial value analysis of the objective function

Demand Obj. function
Scen. VRP MDO Diff (%)

First
Min. 1839.54 1790.07 -2.69
Avg. 1894.98 1806.01 -4.70

Stdev. 74.90 7.65 -89.78

Second
Min. 1806.51 1817.87 0.63
Avg. 1962.44 1921.55 -2.08

Stdev. 100.69 80.14 -20.41

Table 6.2: Summary of initial value analysis of the flight time

Demand Flight time (min)
Scen. VRP MDO Diff (%)

First
Min. 234.58 210.11 -10.43
Avg. 237.50 214.90 -9.51

Stdev. 4.98 6.12 22.94

Second
Min. 223.02 223.33 0.14
Avg. 228.69 227.66 -0.45

Stdev. 5.61 5.07 -9.57

Table 6.3: Summary of initial value analysis of the vehicle cost

Demand Vehicle cost
Scen. VRP MDO Diff (%)

First
Min. 796.62 784.36 -1.54
Avg. 828.74 795.55 -4.00

Stdev. 37.96 3.53 -90.70

Second
Min. 784.36 796.62 1.56
Avg. 866.87 846.94 -2.30

Stdev. 51.30 38.36 -25.22

6.20, and objective function also can be calculated. These values are calculated to compare

both approaches: the sequential approach and the concurrent approach to solve UAV design

and routing problems.

All experiment results of convergence analysis are specified in Table 6.4 and 6.5 that
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(a) First scenario: convergence of objective function (b) Second scenario: convergence of objective func-
tion

(c) First scenario: convergence of flight time (d) Second scenario: convergence of flight time

(e) First scenario: convergence of vehicle cost (f) Second scenario: convergence of vehicle cost

Figure 6.7: Results of convergence analysis of two demand scenarios

are attached at the end of this subsection. Figure 6.7 visualizes the experiment results; the

plots shows objective function, flight time, and vehicle cost in terms of initial value which is

maximum endurance of vehicles for endurance-constrained MTVRPTW model. In the first

demand scenario, the objective function value in Figure 6.7a and Table 6.1 decreases when

using the concurrent framework. The decrease happens in both flight time in Figure 6.7c

and Table 6.2 and vehicle cost in Figure 6.7e and Table 6.3. The result show that the energy-
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constrained MTVRPTW optimization model has a tendency to find solutions having less

total flight time than the endurance-constrained MTVRPTW optimization model as shown

in 6.7c. This tendency is expected because it can happen that a UAV has energy enough

to deliver a package to another location after its maximum endurance time. Moreover,

Figure 6.7e describes that the sizing process designs a vehicle having the minimum take-

off weight for a given mission profile during MDO iterations. Note that the variation of

MDO iterations happens because of the sizing process is a component-based method; the

design values are discretely varied by selecting physical components. For instance, in the

sizing process, when a battery is designed, its capacity is larger than or equal to the required

amount of energy of a given mission profile. If the exceeded battery capacity is enough to

change the solution of the energy-based MTVRPTW optimization model, it makes the

next MDO iteration. For some initial endurance values, the energy-constraint MTVRPTW

model returns no feasible solution. This result happens because the lower bound of the

energy-constrained MTVRPTW model is higher than that of the endurance-constrained

MTVRPTW model. This leads to a better solution in a safety point of view.

In the second scenario, the minimum and average of the objective function value is

relatively similar to each other as illustrated in Figure 6.7. This small difference happens

because of the component-based sizing process; flight time of two approaches are simi-

lar each other as described in Figure 6.7d while vehicle cost of the VRP line is slightly

higher as shown in Figure 6.7f. However, the results of the second scenario in Table 6.1

∼ 6.3 show that the concurrent framework is more robust to initial value’s variation; The

standard deviation of solutions from the concurrent framework is less than that from the

endurance-constrained MTVRPTW optimization model. This is another benefit of the de-

veloped concurrent framework.

The results of convergence analysis with two scenarios show that the FPI in the devel-

oped framework provides converged solutions with various initial values. The results also

describe that the developed framework provides better solutions in terms of the total cost
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or the robustness to changing initial values than the endurance-constrained MTVRPTW

optimization model for given scenarios. Thus, these results substantiate that the developed

framework provides a converged solution which can provide the lower total cost or the

robustness to initial values.
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6.3.2 Experiment 8: Sensitivity Analysis

This experiment conducts a sensitivity analysis of the developed framework for concurrent

UAV design and routing in terms of vehicle payload capacity and vehicle speed; these two

parameters are commonly used as system-level inputs in [30, 31, 32]. The variations on

objective function, total flight time, vehicle cost, and the number of UAVs are observed.

In this experiment, the same demand scenarios are used. Furthermore, the vehicle speed

range from 45 to 50 mph and the payload capacity range from 5 to 7 lb are explored.

The results of the first demand scenario are shown in Table 6.6. Note that each row

represents the best result of the concurrent framework with 35-min ∼ 60-min endurances

as initial values like the previous experiment. The results are visualized in Figure 6.8. At

first, flight time decreases as either vehicle speed or payload capacity increases as shown

in Figure 6.8b. This result makes sense because although all routes are the same, if vehicle

speed increases, then flight time decreases. Furthermore, the vehicle having larger payload

capacity has more opportunity to deliver more packages on a trip. This leads to the shorter

total flight time. Second, as shown in Figure 6.8c, vehicle cost depends on payload capacity

and take-off weight like Equation 6.20, and take-off weight is determined by the component

selected by the sizing module. In this sense, the vehicle cost of the vehicle having 7-lb

payload capacity and operating at 48 mph increases sharply. This is because the vehicle

requires the heavier propulsion system. This happens because of the component-based

sizing method which provide non-linear results inherently. Next, Figure 6.8a shows the

same curve since it is determined by vehicle cost, flight time, and the number of vehicles.

Finally, there is no change on the number of UAVs required to deliver all packages as shown

in Figure 6.8.
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Table 6.6: Summary of sensitivity analysis of the first demand scenario

Vehicle Payload Obj. Flight Vehicle # of
speed (mph) capa. (lb) func. time (min) cost UAVs

45
5 1844.26 251.02 796.62 2
6 1997.56 223.22 887.17 2
7 2392.4 191.71 1100.35 2

46
5 1838.56 245.32 796.62 2
6 2006.06 231.01 887.17 2
7 2349.21 187.84 1080.69 2

47
5 1833.58 240.34 796.62 2
6 1974.3 236.95 868.67 2
7 2244.85 201.41 1021.72 2

48
5 1823.23 229.99 796.62 2
6 2037.4 207.82 914.79 2
7 2638.88 198.66 1220.11 2

49
5 1794.59 225.88 784.36 2
6 1980.41 206.06 887.17 2
7 2475.31 176.62 1149.35 2

50
5 1790.07 221.36 784.36 2
6 2004.22 192.87 905.67 2
7 2187.8 183.67 1002.06 2
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(a) Objective function

(b) Flight time

(c) Vehicle cost

(d) The number of UAVs

Figure 6.8: Results of sensitivity analysis of the first demand scenario
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The results of the second demand scenario are shown in Table 6.7. The results are

visualized in Figure 6.9. At first, the overall effects of vehicle speed and payload capacity

on flight time has the same tendency with the first scenario as illustrated in Figure 6.9b;

flight time is decreased as either vehicle speed or payload capacity increases. However,

a vehicle having 5-lb payload capacity and operating at 50 mph seems to have a different

tendency. This result happens because of both the change of the number of required UAVs

at the condition as shown in Figure 6.8d and time window constraints. Specifically, as the

number of UAVs decreases, the opportunity to visit another delivery location within its

time window also decreases. Since this behavior leads to the more number of reloading,

the total flight time could increase. However, by increasing the number of reloading, UAVs

need not to have large capacity batteries. This decreases the vehicle cost as shown in Figure

6.9c. Furthermore, since the number of required UAVs is decreased, the objective function

also decreases as illustrated in Figure 6.9a. Thus, this sensitivity analysis result also is

reasonable.

These sensitivity analyses show that payload capacity has larger effects on the results

than vehicle speed for the scenarios. However, the vehicle speed also can have significant

effects on the result like the case fo the vehicle having 5-lb payload capacity and operating

at 50 mph with the second demand scenario. Furthermore, the result can be used to find

the best values of the parameters for given scenarios. In this case, the condition of both

5-lb payload capacity and 50-mph vehicle speed is the best option for both scenarios, but

the second best option for each scenario is different; the condition of 5-lb payload capacity

and 49-mph vehicle speed is the second best for the first scenario whereas the condition of

6-lb payload capacity and 50-mph vehicle speed is the second best for the second scenario.

These results demonstrate that the developed framework for concurrent UAV design and

routing problems for urban delivery works well for the given scenarios; additionally, these

results show how trade studies can be executed to determine vehicle’s operating speed and

payload capacity by utilizing delivery scenarios.
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Table 6.7: Summary of sensitivity analysis of the second demand scenario

Vehicle Payload Obj. Flight Vehicle # of
speed (mph) capa. (lb) func. time (min) cost UAVs

45
5 2663.45 221.56 813.97 3
6 2019.89 234.71 892.59 2
7 2705.12 217.73 1021.72 2

46
5 2674.69 216.74 825.98 3
6 2059.34 247.99 905.67 2
7 2416.87 216.17 1100.35 2

47
5 2654.02 212.13 813.97 3
6 2009.86 224.68 892.59 2
7 2410.87 210.18 1100.35 2

48
5 2685.65 207.71 825.98 3
6 2006.27 221.09 892.59 2
7 2400.35 199.66 1100.35 2

49
5 2801.46 203.47 866 3
6 2012.83 227.65 892.59 2
7 2400.35 199.66 1000.35 2

50
5 1817.87 224.63 796.62 2
6 1990.29 215.94 887.17 2
7 2389.99 189.3 1100.35 2
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(a) Objective function

(b) Flight time

(c) Vehicle cost

(d) The number of UAVs

Figure 6.9: Results of sensitivity analysis of the first second scenario
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6.4 Conclusions

This chapter initiated from the research question such that

Research Question 4 : How can the small VTOL UAV design module and the VRP mod-

ule be integrated with a FPI method to obtain a converged solution?

To address this research question, the structure and interface of the UAV design module

and the VRP module were analyzed. From the analysis, there was an observation that the

dynamic mission profile and the vehicle specification can be worked as coupled variables

between the UAV design module and the VRP module. The convergence criteria also are

required for the FPI method, which consists of three types: mission planning, constraint

analysis, and weight analysis. These results inspired a hypothesis such that

Hypothesis for RQ 4 : By using the dynamic mission profile and the vehicle specification

as coupled variables, a FPI method for concurrent UAV design and vehicle routing

problems can be designed with convergence criteria in terms of mission planning,

constraint analysis, and weight analysis.

To address Hypothesis for RQ 4, a framework for concurrent UAV design and routing prob-

lems for urban delivery is developed based on a FPI method to find a converged solution

of both the UAV design module and the VRP module. The developed framework consists

of five modules: urban flight network, endurance-constrained vehicle routing, UAV de-

sign, energy-constrained vehicle routing, and checking convergence modules. The urban

flight network module provides urban flight network to address collision-free paths. the

endurance-constrained vehicle routing module provides an initial value of the FPI method.

The UAV design, the energy-constrained vehicle routing, and the checking convergence

modules compose a FPI to find a converged solution.

To prove Hypothesis for RQ 4, Experiment 7 and 8 were executed as convergence

analysis and sensitivity analysis respectively. Experiment 7 revealed that the developed
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framework has a potential of decreasing the objective function value by reducing either total

flight time or vehicle cost for the given scenarios. Furthermore, the developed framework

produced a solution with less deviations in terms of initial values. Experiment 8 showed

that sensitivity analysis using the developed framework can lead to a better decision on

design parameters for a UAS-based delivery system and determine which parameter has a

larger effect on a solution. These results show that the developed framework is effective

to both build solutions and analyze them for a UAS-based delivery system. Therefore, the

results lead to a conclusion that Hypothesis for RQ 4 is demonstrated.

135



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis initiated by examining an aircraft sizing and synthesis process to address sUAS-

based urban delivery systems. This examination showed that for delivery missions, an

aircraft sizing and synthesis process for a fleet-level mission should be used to address

total cost optimized mission planning and vehicle design in terms of the total cost of the

delivery system.

In order to further examine the observation, a literature review on concurrent aircraft

vehicle design and routing problems was conducted. The literature review revealed that

existing methods do not find a converged solution of aircraft vehicle design module and

vehicle routing module while the concurrent problem is a coupled problem of the two

modules. This observation motivated this thesis to research and develop a framework for

concurrent UAV design and routing for urban delivery systems which extends the existing

methods in terms of

• Allowing to design a small VTOL UAV in a UAV design module

• Formulating a VRP for UAS-based delivery systems

• Including an urban model to address collision-free paths

• Finding a solution of a coupled problem of the small VTOL UAV design module and

the VRP module for urban delivery

These extensions are directly associated with research questions in this thesis such that

Research Question 1 (RQ 1) : How can a set of main components of small fixed-wing

VTOL UAVs as a result of a sizing and synthesis process be obtained?
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Research Question 2 (RQ 2) : What type of a VRP optimization model best represents

the operations of sUAS-based delivery systems?

Research Question 3 (RQ 3) : What type of an input graph of a VRP model best repre-

sents collision-free paths in the urban environment for sUAS-based delivery systems?

Research Question 4 (RQ 4) : How can the small VTOL UAV design module and the

VRP module be integrated with a FPI method to obtain a converged solution?

Furthermore, these research questions inspired this thesis’s research objective such that

Research Objective (RO) : To develop a novel sizing and synthesis approach for small

VTOL UAV that takes into account both planning vehicle operation on the flight

network in which it will be operating and designing the flight network capable of

addressing the obstructed environment as part of the vehicle design process.

At first, to address Research Question 2 (RQ 2), a literature review on the Vehicle Rout-

ing Problem (VRP) relevant to sUAS-based delivery systems was conducted and observed

that the Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) optimiza-

tion model can address on-demand delivery systems with the concept of reusing vehicles.

However, the optimization model cannot address the property of vehicles having limited

endurance. The observation inspired the hypothesis such that

Hypothesis for RQ 2 : To address operations of sUAS-based delivery systems, an endurance-

constrained MTVRPTW model should be utilized.

To prove this hypothesis, an endurance-constrained MTVRPTW model was presented in

Chapter 3, and two experiments were conducted such that

Experiment 1 : To find what type of VRP model best represents a UAS package delivery

network, this experiment compares three models: VRPTW, endurance-constrained

VRPTW, and endurance-constrained MTVRPTW models.
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Experiment 2 : To address a tendency of solutions by reusability and maximum endurance

conditions, this experiment executes sensitivity analysis of the constraints with two

models: VRPTW and endurance-constrained MTVRPTW models.

Experiment 1 showed that the presented model can address the properties of both reuse of

vehicles and limited-endurance vehicles for on-demand delivery systems. Experiment 2 ex-

ecuted a sensitivity analysis of maximum endurance of vehicles and demonstrated that the

endurance-constrained MTVRPTW model should be utilized for a delivery system using

short endurance vehicles to obtain a total cost optimized schedule which minimizes total

cost. These results lead to a conclusion that Hypothesis for RQ 2 is confirmed.

Second, to deal with Research Question 3 (RQ 3), a literature review on path-planning

method to address collision-free paths was executed. The observation from the literature

review was that road map methods can efficiently represent the obstructed environment as

an input graph of a VRP optimization model. Furthermore, the Voronoi diagram which is

a road map method can efficiently address a large-scale obstructed area such as the urban

environment while it provides the safest paths. This observation inspired that hypothesis

such that

Hypothesis for RQ 3 : To address collision-free paths as an input graph of a VRP for the

urban environment, a Voronoi-diagram-based method should be utilized.

For this hypothesis, a framework for a two-layered urban flight network was presented. The

framework consists of four steps: creating an urban model, capturing urban obstacles and

restricted airspace, creating a low-level urban flight network based on a Voronoi diagram,

and creating a high-level urban flight network to transfer a Voronoi diagram into an input

graph of a VRP optimization model. To prove Hypothesis for RQ 3, two experiments were

executed such that

Experiment 3 : To find which type of flight networks better represents collision-free paths

in the urban environment, this experiment compares the solution routes of a point-to-
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point flight network with that of a two-layered urban flight network.

Experiment 4 : To address the best vehicle specification for a given scenario, this exper-

iment conducts sensitivity analysis of maximum endurance and maximum payload

capacity constraints with the integrated module with both an endurance-constrained

MTVRPTW model and a two-layered urban flight network.

Experiment 3 demonstrated that to address collision-free paths in an obstructed urban area,

the two-layered urban flight network built by the framework presented in Chapter 4 should

be utilized with a VRP optimization model. Experiment 4 which is sensitivity analysis also

demonstrated that the endurance-constrained MTVRPTW model works well with the two-

layered urban flight network for the given scenarios. These results lead to a conclusion that

Hypothesis for RQ 3 is substantiated.

Third, to address Research Question 1 (RQ 1), a literature review on sizing and synthe-

sis process for sVTOL UAVs was conducted. The observation from the literature review

was that for small fixed-wing VTOL UAVs, non-parametric sizing and synthesis processes

mainly addressing the propulsion system should be utilized. This observation inspired the

hypothesis such that

Hypothesis for RQ 1 : To obtain a set of components of a propulsion system for small

fixed-wing VTOL UAVs, a component-based sizing and synthesis process can be

utilized.

To prove Hypothesis for RQ 1, a component-based sizing and synthesis process for small

fixed-wing VTOL UAVs was implemented, which can provide a set of components based

on component database. To validate the implemented process, two experiments were exe-

cuted such that

Experiment 5 : This experiment conducts a sizing and synthesis process for a single-stop

delivery mission to validate the implemented sizing and synthesis process.
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Experiment 6 : This experiment executes a sizing and synthesis process for a two-stop

delivery mission to validate the implemented sizing and synthesis process.

Experiment 5 and 6 were conducted with two delivery scenarios: a single-/two-stop deliv-

ery mission respectively. The former scenario represents a single-package delivery UAV

while the latter scenario describes a multi-package delivery UAV. The results of two exper-

iments demonstrated the fact that the implemented sizing and synthesis process for small

fixed-wing VTOL UAVs provides feasible and reasonable design parameters of P/W ,

W/S, and take-off weight. The results lead to a conclusion that Hypothesis for RQ 1 is

substantiated.

Finally, to deal with Research Question 4 (RQ 4), the structure and interface of the UAV

design module and the VRP module were analyzed. The analysis led to an observation that

to address a FPI method, the dynamic mission profile and the vehicle specification can be

utilized as coupled variables between the UAV design module and the VRP module with

convergence criteria in terms of mission planning, constraint analysis, and weight analysis.

These results inspire a hypothesis such that

Hypothesis for RQ 4 : By using the dynamic mission profile and the vehicle specification

as coupled variables, a FPI method for concurrent UAV design and vehicle routing

problems can be designed with convergence criteria in terms of mission planning,

constraint analysis, and weight analysis.

For the hypothesis, a framework for concurrent UAV design and vehicle routing prob-

lems for urban delivery was developed. The developed framework consists of five mod-

ules: urban flight network, endurance-constrained vehicle routing, UAV design, energy-

constrained vehicle routing, and checking convergence modules. The UAV design, the

energy-constrained vehicle routing, and the checking convergence modules compose a FPI

to find a converged solution. To address Hypothesis for RQ 4, two experiments were con-

ducted such that
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Experiment 7 : To evaluate the convergence property of the FPI method addressing the

concurrent UAV design and vehicle routing problems, this experiment executes con-

vergence analysis.

Experiment 8 : To address the best vehicle’s operating speed and maximum payload ca-

pacity for given scenarios, this experiment executes sensitivity analysis with various

conditions of vehicle’s operating speed and maximum payload capacity.

Experiment 7 revealed that the developed framework has a potential of decreasing the ob-

jective function value by reducing either total flight time or vehicle cost for the given sce-

narios. Moreover, the developed framework produced a solution with less deviations in

terms of initial values. Experiment 8 showed that sensitivity analysis using the developed

framework can lead to a better decision on design parameters for a UAS-based delivery sys-

tem and determine which parameter has a larger effect on a solution. These results showed

that the developed framework is effective to both build solutions and analyze them for a

UAS-based delivery system. The results lead to a conclusion that Hypothesis for RQ 4 is

demonstrated. These demonstrations showed that Research Objective (RO) has been satis-

fied, and the developed framework for concurrent unmanned vehicle design and routing for

urban delivery systems is suitable to either analyze or design a sUAS-based urban delivery

system.

7.2 Future Work

This thesis developed four main modules: vehicle routing optimization model, flight urban

network, UAV sizing, and concurrent framework. The first area of future work is extending

the vehicle routing model. Specifically, for operations in a larger area, multiple depots can

be addressed. The concept of operations of a multi-depot mission is introduced in Appendix

A.3. This extension will allow to address a generalized UAS-based delivery system. Other

missions rather than a delivery mission, also, can be addressed such as monitoring a target
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area as shown in Appendix A.2 and A.3. This is allowed because the developed framework

is designed to be flexible in merging the modules.

The second area of future work is merging vehicle dynamics into the developed method

to build the two-layered urban flight network to create smooth collision-free paths. The

developed method to build an urban flight network creates piece-wise linear collision-free

paths. In order to address more precise curves, the developed method can be extended with

a path-planning method including vehicle dynamics. For instance, an algorithm to create a

Dubins path introduced in Appendix A.3 can be merged.

The next area of future work is integrating a more precise UAV sizing module including

vehicle configuration design. This extension will allow to estimate vehicle parameters more

precisely. Furthermore, developing a vehicle cost model linked to the sizing module for

fixed/operating costs also will be useful.

The final area of future work is extending the developed multi-disciplinary optimization

method. The developed method used a fixed-point iteration method. This method can

be a baseline for other multi-disciplinary optimization approaches such as Collaborative

Optimization (CO) and Analytical Target Cascading (ATC). This extension would either

be computationally efficient or address a better solution in a global optimization point of

view.

total cost optimized

7.3 Contributions

This thesis provided several contributions to the area of modeling a UAS-based delivery

system. The first contribution is presenting both maximum endurance and energy con-

straints in mathematical formulations for a UAS-based delivery system. In order to address

a UAS-based delivery system, one of them should be applied to an optimization model. In

this thesis, the constraints are provided as mathematical formulation, which allows to use a

commercial solver directly. This enables a rapid development of a mathematical model.
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The second contribution is integrating a point cloud based urban model with opti-

mization models. This enables a more precise analysis of a UAS-based delivery sys-

tem with a realistic problem and allows to apply collision-free paths to an optimization

model. This also provides broad expandability of a use of optimization models with acces-

sible/controllable information of a vehicle network in the urban environment.

The final contribution is extending a sizing and synthesis process for sVTOL UAVs by

including UAV routing process based on a vehicle routing problem optimization model for

sUAS-based delivery systems. The developed framework deals with the UAV design pro-

cess and UAV routing process as a black box module respectively. Thus, other processes,

algorithms, frameworks can be integrated with the developed framework as a module if

their interface is matched.

The developed framework for concurrent UAV design and routing for UAS-based ur-

ban delivery systems was demonstrated with realistic problems in order to show how it can

be utilized for determining the key parameters of a UAS-based delivery system. The de-

veloped framework for concurrent UAV design and routing for UAS-based urban delivery

systems can address effects of both vehicle design parameters and the concept of operations

of UAVs on the delivery systems concurrently.
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APPENDIX A

THE VEHICLE ROUTING PROBLEMS: APPLICATIONS AND APPROACHES

A.1 UAS-based Package Delivery: an Extended Savings Algorithm1

This section presents an extended savings algorithm for UAS-based delivery systems that

can reflect the UAV’s natures described in Section 1.2. The proposed algorithm deals with

the multi-trip vehicle routing problem with time windows (MTVRPTW), which is a ex-

tended variant of the VRPTW allowing each UAV to have multiple trips or a journey. Based

on the graph theory, a MTVRPTW can be described by a graph G(N ,A) and a set of ve-

hicles V , where N is a set of all nodes in G, and A is a set of all arcs in G. A set of nodes,

N = {0, 1, . . . , n, n + 1}, consists of a set of two depots, depot = {0, n + 1}, and a set

of n customers, C = {1, 2, . . . , n}. Note that the two depots indicate the same depot, but

depot0 is used when a vehicle leaves the depot, while depotn+1 is utilized when a vehicle

arrives at the depot. Each customer Ci has preferred time to be visited that is called time

window T W i = [ai, bi], which ai is ready time, and bi is due time. Also, each customer has

service time si, which is the total time of landing, delivering, and takeoff. Each arcAij has

a distance between Ni and Nj , Dij which is symmetric. Finally, each vehicle Vi can take a

journey Ji which is a combination of trips in T . With these notions, this section discusses

key rules of the proposed method and present the details of the algorithm structure.

A.1.1 Key Rules of the Extended Saving Algorithm

To convert the key characteristics of delivery system using UAVs mentioned in Section 1.2

into a savings algorithm, the rules that can be applied to the algorithm need to be created.

First, the properties of small payload capacity, short endurance and recharging of UAVs can

be modeled mathematical expressions. Second, the straight path of UAVs can be reflected
1This section is published in [27].
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by the straight flight distance among nodes. Last, by the assumption of BVLOS operations

and fully advanced technologies of UAVs, this problem can be handled from the point of

view of high-level operations of UAVs-based delivery system. Additionally, in the proposed

method, one more characteristic is infused, which comes from a limitation of the VRPTW

model not a property of UAS-based delivery system. In the VRPTW models, if a vehicle

arrives at a delivery location before the designated time called ready time, then the vehicle

should wait until ready time at the place. If this concept applies to UAVs, they could be wait

a long time on the ground or even in the air by hovering. Because the long time hovering

may occur some safety issue, a rule to prevent a long-time hovering is combined.

The proposed method, thus, is based on five key rules: saving rule, time window rule,

maximum hovering rule, maximum endurance rule, and multi-trip rule. Saving rule is the

fundamental idea of all savings algorithms, which provides a priority order of a pair of

nodes to be combined. Time window rule describes how to select a customer to be visited

earlier using preferred time to be visited for each customer. Maximum hovering rule pro-

hibits long waiting at a delivery location. Endurance rules are directly related with UAV’s

properties, which guarantees that each UAV returns at the depot within UAV’s maximum

endurance. Lastly, multi-trip rule needs to be to build a journey that is a combination of

trips assigned to a UAV.

Saving Rule

The saving implies how much distance can be saved when two trips merge into one trip.

For instance, there are two trips that each trip visits a customer respectively as shown in

Fig. A.1a. Then, total distance vehicles should move is calculated by

Total Distance[T1,T2] = D0i + Di(n+1) + D0j + Dj(n+1) = 2D0i + 2D0j (A.1)
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Depot

Customer i

Customer jTrip 1

Trip 2

(a) Before merging

Depot

Customer i

Customer j

Trip 1’

(b) After merging

Figure A.1: An example of merging two trips

If the two trips merge to form a new trip like Fig. A.1b, the total distance is updated by

Total Distance[T1′ ] = D0i + Dij + Dj(n+1) = D0i + Dij + D0j (A.2)

Then, the distance that can reduce by merging the two trips, which is called saving, is

computed by

SV ij = Total Distance[T1,T2] − Total Distance[T1′ ]

= (2D0i + 2D0j) − (D0i + Dij + D0j)

= D0i + D0j − Dij. (A.3)

In the savings algorithm, a pair of trips with high saving value has a priority to merge. Note

that when merging trips, at least one of them should be trivial trip which is a trip to visit

only one customer.
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Time Window Rule

In MTVRPTWs, each customer has preferred time to be visited, which is captured by a

time window. The time windows determine the order to visit customers. For example,

assume that there are a customer i and customer j who should be visited. Because each

customer has own time window, three scenarios could occur: in the first scenario, the time

window of the customer i start earlier, and even if a UAV moves from the customer i to

the customer j after serving the customer i, it can arrive at the customer j within its time

window as shown in Fig. A.2a. In this case, the UAV can serve the two customers on a

trip by visiting the customer i earlier. The second scenario is the inverse situation of the

first scenario as illustrated in Fig. A.2b. In the same manner, a UAV can serve the two

customers with the reverse order to visit the customers. In the last scenario, if the customer

j has a time window which it is impossible to be visited after visiting the customer i, and

the customer i has a time window which it is also impracticable to be visited after visiting

the customer j, then it is unrealizable to allocate two visits for a UAV. Thus, in that case,

two trip should remain as shown in Fig. A.2c.

Customer i

Customer j

Time line

Time window i

Time window j

Trip

(a) A case that customer i should be visited earlier than customer j

Figure A.2: The effect of time window on the order of visiting customers
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Customer i

Customer j

Time line

Time window i

Time window j

Trip

(b) A case that customer j should be visited earlier than customer i

Customer i

Customer j

Time line

Time window i

Time window j

Trip 2Trip 1

(c) A case that is impossible to merge

Figure A.2: The effect of time window on the order of visiting customers (cont.)
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Customer i

Customer j

Time line

Time window i

Time window j

Trip

Hovering 
time

Maximum 
hovering time

(a) A case of short hovering

Customer i

Customer j

Time line

Time window i

Time window j

Trip

Hovering 
time

Maximum 
hovering time

(b) A case of long hovering

Figure A.3: Maximum hovering rule

Maximum Hovering Rule

Although a UAV can visit two customers on a trip based on their time windows, it is possi-

ble that the UAV should stay in the air until ready time of the second customer. In this case,

as hovering time increases, a safety issue could be emerged with anxieties of neighbors be-

cause of noise and privacy issues. In addition, by restricting UAVs to have long hovering,

they are forced to return to the depot more frequently to complete the entire mission, but

this could increase the opportunity of merging trips to build a journey. Thus, we assume

that if a UAV has longer hovering time to visit a customer than the prefixed maximum

hovering time, it cannot visit the customer as illustrated in Fig. A.3.
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Customer i

Customer j

Depot 0

Depot n+1

Time window i

Time window j

Endurance

Maximum
endurance

Time line Trip

(a) A feasible case to visit two customers on a trip

Customer i

Customer j

Depot 0

Depot n+1

Time window i

Time window j

Maximum
endurance

Time line Trip

Endurance

(b) An infeasible case to visit two customers on a trip

Figure A.4: Maximum endurance rule

Maximum Endurance Rule

In conventional savings algorithms, only payload capacity has used to check whether or not

a vehicle can visit a next customer. However, because a UAV has much shorter endurance,

it should often visit a location where its battery can be swapped. If the flight time of a trip

becomes longer than maximum endurance of the UAV by visiting more customers, the trip

should not be extended as an infeasible case as shown in Fig. A.4.
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Customer i

Customer j

Depot 0

Depot n+1

Time window i

Time window j

Endurance

Maximum
endurance

Time line Trip 1 Trip 2

(a) Two trips which can merge to form a journey

Customer i

Customer j

Depot 0

Depot n+1

Time window i Time window j

Endurance

Maximum
endurance

Time line Journey

Recharging and 
reloading time

(b) A journey which is created by merging two trips

Figure A.5: Multi-trip rule

Multi-Trip Rule

Allowing UAVs to have multiple trips is a key point to significantly reduce the acquisition

cost of UAS-based delivery systems. By reusing UAVs, the minimum required number of

UAVs decreases, which yields the maximum available number of UAVs concurrently. In

order to merge two trips to create a journey, at least there is time enough to reload packages

and to swap UAV’s batteries as illustrated in Fig. A.5.
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A.1.2 The Algorithm Structure of the Extended Savings Algorithm

The extended savings algorithm consists of three steps; computing savings, creating trips,

and building journeys. Each step sequentially works from computing savings to building

journeys. The first step finds a set of feasible arcs to be capable of merging with their own

savings. For feasibility checks, time window rule and maximum hovering rule are applied.

If an arc is infeasible, the two customers on the arc cannot be visited sequentially on a trip.

For feasible arcs, saving is computed by saving rule, Eq. (A.3). We note that before looking

over each arc, if there is the sorted list of customers based on time windows, computational

power can be saved.

In the second step, trivial trips need to be made first, which visit just one customer. The

set of trivial trips is a solution of the single-package delivery operation. Thus, if the single-

package delivery operation is considered, this step can be skipped. After creating trivial

trips, the list of arcs based on saving values is sorted, which implies the priority to merge.

Then, during looking over each arc sorted by saving values, time window rule, endurance

rule, payload capability check are utilized to find a pair of trip that can merge. Note that

when merging two trips, at least one of them should be a trivial trip. In the conventional

savings algorithms, the algorithm ends by returning trips.

In the last step, journeys which are allocated to each UAV are built from the trips created

in the second step. Each journey has at least one trip, because it is a combination of trips.

In this step, sorted trip list is utilized as a priority to merge. Finally, during looking over

each trip, journeys are built by journey rule. Note that each journey is assigned to each

UAV. The procedure of the proposed algorithm is described as pseudo codes in Algorithm

2.

A.1.3 Merge Strategies: Sequential vs. Parallel

When merging two routes into one route, two approaches can be used; sequential and

parallel merge strategies. First, the sequential merge strategy works with a single base
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Algorithm 2 Pseudo code of the proposed extended savings algorithm

Input: G(N ,A) and V
Output: J

[STEP 1: computing savings using saving, time window, and maximum hovering rules]

Initialization
Sort nodes based on the order of time windows
for i in C do

for j in C do
if the order to be visited and max hovering time constraint are feasible then
SV ij = D0i + D0j - Dij

end if
end for

end for

[STEP 2: creating trips using time window and maximum endurance rules]

Create T with trivial trips for each customer
Sort A by descending order based on SV
for (i, j) in A do

Find trips that visit Ci and Cj respectively
if at least either Ci or Cj is in a trivial trip then

Estimate time schedule and payload capacity to be used after merging two trips
if time schedule, payload capacity, endurance constraints are feasible then

Merge two trips
end if

end if
end for

[STEP 3: building journeys using time window and multi-trip rules]

J = empty set
Sort T based on the order of departure time
for Ti in T do

for Ji in J do
if Ti can be merged into Ji then

Update Ji as Ji with Ti
end if

end for
if there is no journey which Ti can be merged into then

Add a journey as Ti into J
end if

end for
return J
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route which has the largest saving value. The approach extends the base route as much as

possible, then it considers a next base route. Second, the parallel merge strategy unites two

routes along the order of a sorted list of saving values without considering a base route.

The literature written by Laporte et al. reports that the parallel merge strategy generally

creates better routes than the corresponding sequential merge strategy [134].

For instance, let us consider four trivial routes such that [0, 1, 5], [0, 2, 5], [0, 3, 5],

and [0, 4, 5], where 0 and 5 indicate a depot, and the others are delivery locations. It is

also assumed that a sorted list of saving values is given such that (1, 2): 10, (3, 4): 8, (2,

4): 7, which means when two nodes in parenthesis are merged, the saving value after colon

can be obtained. In the sequential merge approach, [0, 1, 5] and [0, 2, 5] routes can be

combined into [0, 1, 2, 5] called a base route. Then, the pair of node 3 and 4 in the list

is skipped because it cannot be used to extend the base route. Next, the route [0, 4, 5] is

merged into the base route. As the result, the algorithm returns [0, 1, 2, 4, 5] and [0, 3, 5]

routes as a solution with the total saving value, 17.

On the other hand, in the parallel merge approach, after combing [0, 1, 5] and [0, 2, 5]

routes into [0, 1, 2, 5] route, [0, 3, 4, 5] route is created by merging [0, 3, 5] and [0, 4, 5]

routes rather than [0, 1, 2, 4, 5] route in the sequential merge approach. This behavior is

expected because the saving value from merging [0, 3, 5] and [0, 4, 5] routes is larger than

that from combining [0, 1, 2, 5] and [0, 4, 5] routes. That is, the parallel approach tries

to maximize total saving value by combining with multiple routes at once along the sorted

list of saving values. Next, the algorithm considers to unite two route visiting node 2 and

4 respectively. However, node 2 and 4 cannot be connected because both are not trivial

routes. Thus, the parallel approach returns [0, 1, 2, 5] and [0, 3, 4, 5] routes as a solution

with total saving value, 18. This example is illustrated in Figure A.6.
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A.2 Coverage Path Planning: a Column Generation Method 2

A.2.1 Problem Modeling

Coverage path planning problem

The main purpose of solving a multi-UAV-based CPP problem is to build an optimal cov-

erage route/path for each UAV that depends on a shape of an AOI and a size of sensor

footprint as illustrated in Fig. A.7. The footprint is determined by an operating altitude and

the field of view of a sensor. In the context of the CPP problem, the optimal coverage route

is based on back-and-forth routes or spiral routes as shown in Fig. A.8, which requires the

minimum number of turns since they can minimize total energy consumption [135, 136].

Area of interest 
(AOI)

Coverage path

UAV

Origin

Sensor
footprint

Figure A.7: An illustration of a coverage path planing problem

Returning
path

Origin

(a) A back-and-forth route

Returning
path

Origin

(b) A spiral route

Figure A.8: Preferred routes for the coverage path planning problems

2Previous work of this section is published in [130], and this section is published in [132].
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Takeoff/landing

Cruise

Mission operation

Turning

Time

Altitude Waypoint 1 Waypoint 2 Waypoint 3

Figure A.9: A mission profile of a UAV for an imagery mission

Estimation of energy consumption

In order to execute a UAS imagery mission, a typical mission profile consists of a takeoff,

cruise, and hovering to obtain imagery data at each waypoint, turning, and landing. For

instance, a mission profile with 3 waypoints is described in Fig. A.9. The CPP flying

trajectory may include several turning phases right after acquiring imagery data to reach

the next waypoint or terminal depot position. For the simplified energy estimation, those

five mission segments are categorized into two flight conditions: hovering and forward

flight. The hovering phase entails takeoff/landing/turning/image acquisition segments, and

the forward flight phase has cruise segment.

For multicopters, hovering power is larger than takeoff/landing power at a low climb/descent

speed in the normal working state or the windmill brake state [120]. A hovering, also, is

required to acquire imagery data as well as to turn its body to head for a next waypoint or

a depot. Thus, we use hovering power for mission segments except for cruise one. Based

on the momentum theory [120], the power required to hover is described as

Ph = T

√
T

2ρA
=

T 3/2

√
2ρA

=
W 3/2

√
2ρA

(A.4)

where T is the thrust required to hover, W is the weight of UAV, ρ is the density of the air,

and A is the disk area. For multicopters having n rotors, the ideal power required to hover
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for each rotor can be calculated by

Ph,(1/n) =
(W/n)3/2√
2ρ(A/n)

(A.5)

To estimate more practical power, the Figure of Merit (FM) is commonly used, if the infor-

mation is available:

FM =
Pideal
Pactual

< 1 (A.6)

In a cruise mission segment, the thrust required in forward flight for each rotor can be

calculated as

T(1/n) = 2ρA(1/n)vi
√

(V∞ cosα)2 + (V∞ sinα + vi)2 (A.7)

where V∞ is a free stream velocity, α is an angle of attack, and vi is an induced velocity.

Then, from Eq. (A.7), the induced velocity in forward flight becomes

vi =
v2h√

(V∞ cosα)2 + (V∞ sinα + vi)2
(A.8)

where v2h = T(1/n)/2ρA(1/n) is the induced velocity in the hovering phase. Using the

advance ratio µ = V∞ cosα/ΩR, where Ω is the rotational speed of a rotor, and R is the

rotor radius, the inflow ratio is given by

λ =
V∞ sinα + vi

ΩR
=
V∞ sinα

ΩR
+

vi
ΩR

= µ tanα + λi (A.9)

where, λi is the induced velocity ratio in forward flight. Then, Eq. (A.8) can be written as

λi =
λ2h√

µ2 + λ2
=

CT

2
√
µ2 + λ2

(A.10)

where λh =
√
CT/2 from the hovering phase, and CT is the rotor thrust coefficient, CT =
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T/ρA(ΩR)2. By substituting Eq. (A.10) for λi in Eq. (A.9), the inflow ratio is given by

λ = µ tanα +
CT

2
√
µ2 + λ2

(A.11)

Once a solution of Eq. (A.11) is obtained, the power required in forward flight is calculated

as

Pf = Ph
λ

λh
(A.12)

In order to solve Eq. (A.11) to obtain λ, a Newton-Raphson iteration can be used [120].

To use the iterative method, Eq. (A.11) can be written as an iteration equation with iteration

number n such as

λn+1 = µ tanα +
CT

2
√
µ2 + λ2n

(A.13)

Then, the iteration scheme is given by

λn+1 = λn − f(λn)/f ′(λn) (A.14)

where f(λn) and f ′(λn) are defined as

f(λn) = λn − µ tanα− CT

2
√
µ2 + λ2n

= 0 (A.15)

and

f ′(λn) = 1 +
CTλn

2
(µ2 + λ2n)−3/2 (A.16)

respectively. This iteration stops when

ε =

∥∥∥∥λn+1 − λn
λn+1

∥∥∥∥ < 0.0005 = 0.05% (A.17)
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A.2.2 Optimization Model

A VRP is a kind of Mixed Integer Linear Programming (MILP) problems including both

real variables and integer variables with a linear objective function and linear constraints.

The VRP determines optimal routes for each vehicle which are modeled by integer vari-

ables. Each route is constrained by vehicle characteristics such as its payload capacity and

maximum range. The VRP models utilize arcs or routes as design variables to model routes,

which are called an arc-based optimization model and a route-based optimization model,

respectively. To address CPP problems, we propose an arc-based and energy-constrained

optimization model (ABECOM) which is an extension of arc-based and distance-constraint

model [130, 137], and then the model is converted to a route-based and energy-constrained

optimization model (RBECOM) to impose an effect of turning motions on the energy-based

cost function.

Arc-based optimization model for energy-constrained CPP problems

An ABECOM is described by an input graph describing a vehicle network, G = (N ,A),

and a fleet of vehicles, V = {1, · · · , l}. A graph, G, contains a set of nodes, N , and a set

of arcs,A: a set of nodes,N = {0, 1, 2, · · · , n, n+ 1}, consists of the starting depot, 0, the

returning depot, n + 1, and waypoints,W = {1, 2, · · · , n}. Let NO be the starting depot

and waypoints, NO = {0, 1, 2, · · · , n}, and ND be waypoints and the returning depot,

ND = {1, 2, · · · , n, n + 1}, then a set of arcs is defined as A = {(i, j) : ∀i ∈ NO,∀j ∈

ND, i 6= j}. In a UAS imagery mission, the locations of waypoints, W , are selected by

image sensor’s footprint that depends on both a sensor specifications and a mission altitude.

A cost coefficient ckij of each arc corresponds with energy required for all operations such

as a forward flight from node i to node j by vehicle k, (i, j) ∈ A and k ∈ V , mission

operations at node j, j ∈ W , a takeoff, i = 0 and j ∈ W , and a landing, i ∈ W and

j = n + 1. Each vehicle has maximum energy, Ek, available to use during a flight, k ∈ V .

For an arc-based model, a design variable, xkij , is defined such that if vehicle k, k ∈ V ,
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travels along an arc (i, j), (i, j) ∈ A, then xkij is defined as 1, otherwise 0. With these

definitions, an ABECOM can be written by

Minimize
∑
k∈V

∑
(i,j)∈A

ckijx
k
ij (A.18)

Subject to

∑
k∈V

∑
j∈ND

xkij = 1 (∀i ∈ W) (A.19)∑
j∈ND

xk0j = 1 (∀k ∈ V) (A.20)∑
i∈NO

xkih −
∑
j∈ND

xkhj = 0 (∀h ∈ W , ∀k ∈ V) (A.21)∑
i∈NO

xki(n+1) = 1 (∀k ∈ V) (A.22)

∑
j∈ND

skhj −
∑
i∈NO

skih −
∑
j∈ND

(ekFd
k
hj + ekM t

k
j )x

k
hj = 0

(∀h ∈ W , ∀k ∈ V) (A.23)

sk0j = (ekFd
k
0j + ekM t

k
j + ekT t

k
T )xk0j (∀j ∈ ND,

∀k ∈ V) (A.24)

skih ≤ (Ek − ekFdkh(n+1) − ekLtkL)xkih (∀i ∈ NO, ∀h ∈ W ,

∀k ∈ V) (A.25)

ski(n+1) ≤ Ekxki(n+1) (∀i ∈ NO, ∀k ∈ V) (A.26)

skhj ≥ (ekF (dk0h + dkhj) + ekM(tkh + tkj ) + ekT t
k
T )xkhj

(∀h ∈ W , ∀j ∈ ND,∀k ∈ V) (A.27)

xkij ∈ {0, 1} (∀(i, j) ∈ A, ∀k ∈ V) (A.28)
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where skij is a flow variable that traces energy consumed by vehicle k from the starting

depot to node j, (i, j) ∈ A, k ∈ V , and dkij is a flight distance from node i to node j by

vehicle k, (i, j) ∈ A and k ∈ V , and ekF is energy per unit distance required by vehicle k,

k ∈ V , for a forward flight, and ekM is energy per unit time required by vehicle k, k ∈ V ,

for mission operations, and tkj /t
k
h is time required by vehicle k for mission operations at

node j/h, j ∈ ND, h ∈ W , k ∈ V . The variable ekT /ekL is energy per unit time required by

vehicle k for a takeoff/landing, and tkT /tkL is time required by vehicle k for a takeoff/landing

respectively.

The objective function of the ABECOM, Eq. (A.18), is the total energy required for

a given mission which is proportional to a total flight distance of the UAVs. Operational

strategies for an aerial imaging mission are treated as constraints. Every waypoint should

be visited exactly once by a UAV, Eq. (A.19). Each route should start and end at the

depot, Eq. (A.20) and (A.22). If a UAV visits a waypoint, then it should leave for another

place, Eq. (A.21). The Sub-tour elimination condition is modeled as Eq. (A.23). The

initial required energy for each UAV is defined by Eq. (A.24). The upper bounds of energy

consumed at intermediate and final parts of each route are constrained by Eq. (A.25) and

(A.26) respectively whereas the lower bound of energy consumed up to node j is restricted

by Eq. (A.27). The integrity constraint of xkij is shown in Eq. (A.28).

Route-based optimization model for energy-constrained CPP problems

The ABECOM searches an optimal solution with minimum energy consumption to cover

an entire AOI. However, imposing turning impacts based on the ABECOM is very chal-

lenging because of the limitation of arc-based formulation [130]. Before directly dealing

with the limitation, we present the RBECOM comprised of a master problem and subprob-

lems in this subsection, which is an equivalent reformulation of the ABECOM.

A standard MILP problem including n design variables andm constraints can be written
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as a matrix expression such that

Minimize cTx (A.29)

Subject to Ax ≥ b (A.30)

x ≥ 0 (A.31)

x ∈ Zp × Rn−p (A.32)

where cT is a cost coefficient vector, cT ∈ Rn, and A/b are a constraint matrix/vector,

A ∈ Rn×m and b ∈ Rm, and x is a design variable vector consisting of p integer numbers

and n−p real numbers. A constraint matrix of a VRP has a block angular structure such that

some constraints are applied to whole design variables whereas the others have an effect

on a subset of the design variables. The block angular structure system can be decomposed

by the Dantzig-Wolfe decomposition (DWD) [138] into two problems: coupled and non-

coupled problems. Note that in the ABECOM, only the constraint that every customer is

visited by a UAV, Eq. (A.19), is coupled with vehicles, V . Thus, the ABECOM can be

decomposed into a vehicle-coupled problem called a master problem and l vehicle-non-

coupled problems called subproblems as shown in Fig. A.10. Given | · | is the number of

elements of a set, l = |V|.
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Figure A.10: Block angular structure of a constraint matrix

The master problem The master problem of the ABECOM consists of Eq. (A.18),

(A.19), and (A.28), which is a convex combinatorial optimization problem. The master

problem can be reformulated by the Minkowski-Weyl theorem; a matrix A and a vector

b such that S = {x ∈ Rn : Ax ≤ b} exist. That is, S is a polyhedron, if and only if

there is B ∈ Rn×p and C ∈ Rn×q such that S = conv(B) + cone(C) [139]. In network

flow problems, an extreme point of the polytope in its design space corresponds to a route

in the network [140]. Thus, the arc-based design variables of the master problem in the

ABECOM can be stated as the convex combination of route-based design variables. Let

Pk be a set of feasible routes for vehicle k, k ∈ V , and xkijp be 1 if vehicle k, k ∈ V , travels

along arc (i, j), (i, j) ∈ A, on route p, p ∈ Pk, otherwise 0. Let ykp be the number of times

vehicle k, k ∈ V , travels on route p, p ∈ Pk. The arc-based design variable xkij can be

described as

xkij =
∑
p∈Pk

xkijpy
k
p (∀(i, j) ∈ A, ∀k ∈ V),∑

p∈Pk

ykp = 1 (∀k ∈ V),

ykp ≥ 0 (∀p ∈ Pk, ∀k ∈ V) (A.33)
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Using route-based design variables, an integer master problem (IMP) can be expressed

as

fIMP := Minimize
∑
k∈V

∑
p∈Pk

∑
(i,j)∈A

ckijx
k
ijpy

k
p (A.34)

Subject to

∑
k∈V

∑
p∈Pk

∑
j∈ND

xkijpy
k
p = 1 (∀i ∈ W) (A.35)

∑
p∈Pk

ykp = 1 (∀k ∈ V) (A.36)

ykp ≥ 0 (∀p ∈ Pk, ∀k ∈ V) (A.37)∑
p∈Pk

xkijpy
k
p = xkij (∀(i, j) ∈ A, ∀k ∈ V) (A.38)

xkij ∈ {0, 1} (∀(i, j) ∈ A, ∀k ∈ V) (A.39)

From the relation between the arc-based design variables and the route-based design vari-

ables, Eq. (A.33), two convexity constraints are added: an affine constraint, Eq. (A.36) and

a conic constraint, Eq. (A.37). Linking constraints between the arc-based and route-based

variables are stated in Eq. (A.38). To noticeably address the properties of routes, a cost

coefficient for each route, ckp, and the number of times vehicle k visits customer i, akip, can

be defined as

ckp :=
∑

(i,j)∈A
ckijx

k
ijp (∀p ∈ Pk, ∀k ∈ V), (A.40)

akip :=
∑
j∈ND

xkijp (∀i ∈ NO, ∀p ∈ Pk, ∀k ∈ V) (A.41)
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With route-based terms, the IMP of a RBECOM can be rewritten as

fIMP := Minimize
∑
k∈V

∑
p∈Pk

ckpy
k
p (A.42)

Subject to

∑
k∈V

∑
p∈Pk

akipy
k
p = 1 (∀i ∈ W) (A.43)

∑
p∈Pk

ykp = 1 (∀k ∈ V) (A.44)

ykp ≥ 0 (∀p ∈ Pk, ∀k ∈ V) (A.45)∑
p∈Pk

xkijpy
k
p = xkij (∀(i, j) ∈ A, ∀k ∈ V) (A.46)

xkij ∈ {0, 1} (∀(i, j) ∈ A, ∀k ∈ V) (A.47)

The IP problem can be solved like LP problems with a branch-and-bound approach that

is a framework to systematically solve IP problems using a tree data structure. In a branch-

and-bound approach, an IP optimization model is commonly transformed to an LP model

using a linear relaxation. We note that the LP solution is not guaranteed to be feasible for

the IP model. To address this issue, a branch-and-bound approach provides a means for an

optimality check of the solution for its IP model. A LP-relaxed master problem (LMP) is

stated as

fLMP := Minimize
∑
k∈V

∑
p∈Pk

ckpy
k
p (A.48)

Subject to
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∑
k∈V

∑
p∈Pk

akipy
k
p = 1 (∀i ∈ W) (A.49)

∑
p∈Pk

ykp = 1 (∀k ∈ V) (A.50)

ykp ≥ 0 (∀p ∈ Pk, ∀k ∈ V). (A.51)

By relaxing Eq. (A.47), there is no longer a need of linking constraints, Eq. (A.46)

The subproblem After implementing the DWD, the RBECOM has l identical subprob-

lems which are independent on vehicles, l = |V|. Each subproblem solves a shortest path

problem with resource constraints (SPPRC), which is written as

ck := Minimize
∑

(i,j)∈A

(ckij − πi)xkij − πk0 (A.52)

Subject to

∑
j∈ND

xk0j = 1 (A.53)∑
i∈NO

xkih −
∑
j∈ND

xkhj = 0 (∀h ∈ W) (A.54)∑
i∈NO

xki(n+1) = 1 (A.55)

∑
j∈ND

skhj −
∑
i∈NO

skih −
∑
j∈ND

(ekFd
k
hj + ekM t

k
j )x

k
hj = 0

(∀h ∈ W) (A.56)

sk0j = (ekFd
k
0j + ekM t

k
j + ekT t

k
T )xk0j (∀j ∈ ND) (A.57)

skih ≤ (Ek − ekFdkh(n+1) − ekLtkL)xkih (∀i ∈ NO,

∀h ∈ W) (A.58)
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ski(n+1) ≤ Ekxki(n+1) (∀i ∈ NO) (A.59)

skhj ≥ (ekF (dk0h + dkhj) + ekM(tkh + tkj ) + ekT t
k
T )xkhj

(∀h ∈ W , ∀j ∈ ND) (A.60)

xkij ∈ {0, 1} (∀(i, j) ∈ A) (A.61)

where πi and πk0 are dual variables from Eq. (A.49) and (A.50) respectively. Constraints

Eq. (A.53) - (A.55) describe vehicle flow from/to the depot. Subtour elimination constraint

can be expressed by Eq. (A.56). Energy consumed by each vehicle is constrained by Eq.

(A.57) - (A.60). The integrity constraints of xkij are stated in Eq. (A.61).

A.2.3 Column Generation of the RBECOM for CPP Problems

The VRP is typically modeled by a MILP optimization model. Column generation is an

approach to systematically obtain a solution of an LP problem. Its fundamental ideas are

presented with the DWD [138] which decomposes an optimization model with a block-

angular-structural constraint matrix into a master problem and subproblems as described

in Section A.2.2. When solving practical problems using column generation, a physical

meaning of each extreme point needs to be clear. For instance, the first practical problem

solved by column generation is a cutting stock problem [141, 142]. Each extreme point of

the cutting stock problem indicates a cutting pattern that is how to cut a stock into pieces

of specified size. In network flow problems, each extreme point means a flow pattern, a

path/route. With this physical meaning, the column generation has been utilized to solve

network flow problems such as urban transit crew scheduling problems [143] and vehicle

routing problems with time windows [144]. Recently, the column generation becomes

a main approach to handle huge IP problems in logistics and operational research areas
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Figure A.11: A simple network topology consisting of 6 nodes and 10 edges

[145]. For UAS-based surveillance missions, the VRPs have been solved by using the

column generation method [146, 147].

The extreme point of the CPP problem represents a route that is used as a design vari-

able, ykp , in the master problem. The number of ykp depends on both the number of vehicles,

|V|, and routes, |P|. The RBECOM could need more computing power than the ABECOM

even if solving the same problem. For instance, let’s assume a simple network topology

illustrated in Fig. A.11. The objective of this problem is to find an optimal route from the

origin to the destination. To handle this problem, the ABECOM calls for 10 design vari-

ables while an RBECOM requires 20 ones. This is because the network topology consists

of 10 arcs whereas the number of feasible combinations in the given topology is 20.

To address this computational drawback, one approach is to solve a route-based opti-

mization problem including a subset of routes instead of the whole possible routes such

that P ′ ⊂ P which is called a restricted problem. Let P ′0 be the initial subset of routes, and

P ′i be a subset of routes for i-th iteration as illustrated in Fig. A.12. The column generation

expands the design space of design variables on every iteration by solving a restricted LP-

relaxed master problem and its l subproblems. It stops based on the existence of profitable

routes. The column generation framework is shown in Fig. A.13. Each step is described

below.
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Figure A.12: Change in the domain of routes during the column generation process
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Figure A.13: Column generation framework

171



Initialization

The initial step of the column generation creates initial solution routes for a CPP problem

which are a subset of feasible extreme points. Finding initial feasible routes is commonly

solved by two methods: the trivial solution method and the savings algorithm [60]. The

trivial solution method creates routes such that each route visits just one waypoint (depot-

waypoint-depot routes). The savings algorithm is a greedy method as a simple heuristic

approach. Note that the number of initial feasible routes can be used to fix the number of

vehicles, |V|. In the RBECOM, the number of vehicles determines the number of subprob-

lems.

Master Problem

The master problem can be modeled by either a set partitioning problems or a set covering

problem that is a relaxation of a set partitioning problem [145, 138]. The master problem

as a set partitioning problem only considers elementary routes such that each waypoint is

visited exactly once. In contrast, the master problem as a set covering problem for CPP

problems allows non-elementary routes where each waypoint is visited at least once. In

order to find an exact solution of a CPP problem, this authors employ the set partitioning

master problem.

The column generation works with a restricted master problem having a subset of

routes, P ′ ⊂ P . The solution routes from the initialization step are injected to a restricted

integer master problem (RIMP) as an initial subset or routes, P ′0 ⊂ P . The RIMP is

defined as

fRIMP := Minimize
∑
k∈V

∑
p∈P ′k

ckpy
k
p (A.62)

Subject to
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∑
k∈V

∑
p∈P ′k

akipy
k
p = 1 (∀i ∈ W) (A.63)

∑
p∈P ′k

ykp = 1 (∀k ∈ V) (A.64)

ykp ≥ 0 (∀p ∈ P ′k, ∀k ∈ V) (A.65)∑
p∈P ′k

xkijpy
k
p = xkij (∀(i, j) ∈ A, ∀k ∈ V) (A.66)

xkij ∈ {0, 1} (∀(i, j) ∈ A, ∀k ∈ V) (A.67)

In order to solve the IMP, Eq. (A.42) - (A.47), by using the RIMP, Eq. (A.62) - (A.67), there

is a need to find profitable routes for decreasing the objective function value. The process

to find the routes is similar with iterations of the simplex method using a non-basic variable

to price out and enter the basis. In order for a pricing process of the column generation, the

restricted LP-relaxed mater problem (RLMP) is exploited, which is defined as

fRLMP := Minimize
∑
k∈V

∑
p∈P ′k

ckpy
k
p (A.68)

Subject to

∑
k∈V

∑
p∈P ′k

akipy
k
p = 1 (∀i ∈ W) (A.69)

∑
p∈P ′k

ykp = 1 (∀k ∈ V) (A.70)

ykp ≥ 0 (∀p ∈ P ′k, ∀k ∈ V) (A.71)

The dual variables of the RLMP are used to calculate the reduced cost of routes in the

subproblem to be introduced below.
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Subproblem

The main purpose of the subproblem is to find profitable routes by calculating the reduced

cost for each route. Because the RLMP is a set partitioning problem, the subproblem

essentially works with only elementary paths, which is called an elementary shortest path

problem with resource constraints (ESPPRC) that is a special case of the SPPRC. After

applying the DWD, l subproblems are defined. The non-negative dual variables of the

RLMP, π and πk0 , k ∈ V , enable each subproblem to determine that

c̄k := Minimize{(ckT − πTAk)xk − πk0} (A.72)

which is the matrix expression of the objective function of the subproblem, Eq. (A.52).

The affine constraint, Eq. (A.70), can decompose into
∑

p∈P ′k
ykp ≥ 1 and

∑
p∈P ′k

ykp ≤ 1. Then,∑
p∈P ′k

ykp ≤ 1 enables to have both an upper bound and a lower bound on fLMP , Eq. (A.48),

such that

fRLMP +
∑
k∈V

c̄k ≤ fLMP ≤ fRLMP (A.73)

where fRLMP = πTb +
∑
k∈V

πk0 by the LP duality. In each iteration, fRLMP can decrease

up to the aggregate of the smallest reduced costs c̄k for each subproblem, k ∈ V [140].

Because of the condition, fLMP ≤ fIMP , fRLMP +
∑
k∈V

c̄k is a lower bound on fIMP . If

c̄k ≥ 0, there is no negative reduced cost column, which means there is no profitable route

for vehicle k. At an optimal point, c̄k = 0 for all k ∈ V , fLMP = fRLMP .

Stop criterion

If there is no profitable route for all vehicles, c̄k ≥ 0 for all k ∈ V , the iterative process

terminates. Otherwise, the routes having a negative reduced cost are added to the RLMP as

new columns of the constraints matrix. For instance, suppose the RLMP has p routes at the

i-th iteration. After updating the master problem in the (i+ 1)-th iteration, it has p′ routes,
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Figure A.14: Shapes of constraint matrix at the i-th and the (i+1)-th iterations of column
generation.

p′ > p, as described in Fig. A.14. After the iterative process terminates, all routes of the

RLMP are transferred to the the RIMP.
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Label correcting algorithm and turning effects

In order to aeccelerate the column generation process, the label correcting algorithm [148]

can be utilized to solve subproblems, which finds all routes with a negative reduced cost

in the subproblem. The algorithm is a dynamic programming method that divides a given

problem into simpler subproblems in a recursive manner. In general approaches, even if

column generation works with route-based variables, arc-based variables needs to be used

to reorganize routes because the list of waypoints visited can be obtained from akip and ykp ,

but the order of them cannot be traced without arc-based variables. When utilizing the

label correcting algorithm, the RLMP can be solved based on just route-based variables

by storing path information in each label. This algorithm can add turning penalties to cost

coefficients of the RLMP and subproblems while the linearity of the RLMP remains [130].

In the label correcting algorithm, a label of vehicle k, k ∈ V , at node z, z ∈ N , can be

defined as

Lk
z = (Rk

z ,Q
k
z , C

k
z ), (∀z ∈ N ,∀k ∈ V) (A.74)

where Qk
z is a ordered list of arcs the label moves, and Ck

z is a route cost along the label,

and Rk
z is resources used by vehicle k, k ∈ V , from a depot to node z, z ∈ N which is

given by

Rk
z = (Ek

z ,U
k = [Uk

0 , · · · , Uk
n+1],

∑
z∈N

Uk
z ) (A.75)

where Uk is a vector of unreachable nodes of vehicle k: if node i is already visited, ukz = 1.

Otherwise, ukz = 0. In addition, Ek
z is energy used by vehicle k, k ∈ V , from a depot to

node z, z ∈ N , which is given by

Ek
z =

∑
(0,j)∈Qk

z

ekT t
k
T +

∑
(i,j)∈Qk

z

ekFd
k
ij +∑

(i,h),(h,j)∈Qk
z

T kihj + ekM t
k
h +

∑
(i,n+1)∈Qk

z

ekLt
k
L (A.76)

where T kihj is energy required to turn a vehicle k into a direction of arc (h, j) from a direc-
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tion of arc (i, h). Using energy per unit time required by vehicle k, k ∈ V , to turn, ekR, T kihj

can be calculated by

T kihj = ekR
θkihj
rk

(A.77)

where θkihj is the angle between arc (i, h) and arc (h, j) for vehicle k, and rk is a turning

rate of vehicle k.

The label correcting algorithm is working with a partial order of resources to accelerate

run time. Only non-dominated labels are propagated to neighbor nodes. When Ck
z = Ek

z ,

the dominance rule can be described as shown in Algorithm 3. The main idea is that

when there are labels which visit same nodes, only non-dominated labels are transmitted to

next iterations. For the whole procedures of the label correcting algorithm and numerical

examples, refer [130, 148].

177



Algorithm 3 Pseudo code for evaluating dominance

Input: Lk1z1 , Lk2z2

Output: True if Lk1z1 is dominated by Lk2z2 , otherwise False

if (k1 6= k2) or (
∑
z∈N

Uk1
z1 6=

∑
z∈N

Uk2
z2 ) then

return False

else

for i in N do

if Uk1
i 6= Uk2

i then

return False

end if

end for

if Ek1
z1 ≤ Ek2

z2 then

return False

else

return True

end if

end if
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A.3 Multi-UAS Path-Planning for a Large-scale Disjoint Disaster Management: Math-

ematical Formulations 3

A.3.1 Introduction of Disaster Management Missions

Recently, unmanned aircraft systems (UAS) have become a promising technology to exe-

cute high-risk missions such as monitoring natural disasters and nuclear explosions because

of an advanced compact and energy-efficient system. Particularly, the use of UAS is suit-

able to monitor wildfire that requires fast-response for predicting the future direction of

motion of a wildfire and its impact. There are two typical missions for wildfire monitor-

ing: high-altitude disaster monitoring (HADM) and low-altitude fire perimeter monitoring

(LAFPM) [150, 151]. The high-altitude disaster monitoring collects comprehensive infor-

mation in an entire wildfire area to analyze its intensity and damages. The low-altitude fire

perimeter monitoring observes the rate of its spread in a real-time manner.

The mission management research for both wildfire monitoring missions recently has

actively been researched. In the LAFPM mission, Casbeer et al. [152] introduced the

decentralized multiple-UAV concept for tracking the propagation of large forest fires that

minimizes the information latency and the frequency of update. Phan and Liu [153] pro-

posed the concept of a cooperative forest fire observation with three-layered hierarchical

vehicle platforms with a blimp, UAVs, and rovers. For the coordination of the observation

task, the paper applies an integer linear programming. Pham et al. [154] suggested the

distributed wildfire monitoring management algorithm using a potential field technique for

the observation of a dynamic fire trend. Bailon-Ruiz et al. [155] presented the planning

algorithm based on a generic variable neighborhood search method to observe spreading

wildfires.

The HADM mission is associated with large-scale tasks such as the Western States Fire

Mission which provides 24-hour coverage of fires [150, 151]. The HADM mission plan-

3This section is accepted for publication [149].
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ning resembles a coverage path planing (CPP) to scan multiple disjoint areas, which builds

an optimal coverage route to scan all the disjoint areas [156]. A limitation of these ap-

proaches cannot handle large disjoint areas since the optimization framework, a travelling

salesman problem (TSP), only considers a single UAV operation. To resolve this limita-

tion, the optimization framework for a multi-UAVs path-planning should be considered to

completed the large disjoint areas.

This paper focuses on the HADM problem and introduces a novel multi-UAS path-

planning algorithm to monitor multiple and large-scale wildfires. To capture a practical

UAS operation, it considers multiple ground stations where UAS are potentially deployed.

For the optimal path-planning, we combine an exact CPP method and a multi-depot vehi-

cle routing problem (MDVRP) model that generates computationally efficient monitoring

solution through decomposing simpler problems.

A.3.2 A Framework for a UAS-based Wildfire Scanning Mission

Solving VRP is an NP-hard problem that exponentially increases computation time as its

problem size increases. In a large-scale wildfire scanning mission, if it has multiple disjoint

wildfires with large area, it is easily not solvable because of the complexity. To overcome

this computational issue, we proposes a new method that makes more computationally

favorable through dividing into two subproblems as shown in Fig. A.15: Coverage path-

planning and operational planning. The coverage path-planning simply generates actual

flight coverage path of each wildfire. The operational planning builds the optimal path that

defines the best sequence visiting all the wildfires. This approach can significantly reduce

the problem size of the optimization model compared to solving the entire problem at once.

Coverage path planning for Dubins vehicles

The coverage path planning (CPP) methods for aerial imaging missions have been pro-

posed diverse approaches [135, 157, 131, 130]. The notable CPP methods can be cat-
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Figure A.15: Notional decomposition of the large-scale scanning mission

egorized into three groups: a classical exact method, a wavefront-based method, and a

vehicle-routing-based method [130]. The classical exact method creates a Back and Forth

Pattern (BFP) path to cover a scanning area, the wavefront-based method applies a wave

propagation function that assigns a value of each grid cell and generates a route based on

those values. The vehicle-routing-based method formulates an optimization problem that

can handle multi-UAV operations to scan a scanning area.

For a HADM mission, high-altitude long-endurance (HALE) UAVs are preferred [151]

because typical HADM missions require a long endurance vehicle. This paper assumes that

a UAV has a long-endurance platform that can fully observe at least one target area. This

assumption allows to create a coverage path of a single UAV for each area by a classical

exact method which is faster than other methods because the BFP can be directly utilized

without requiring additional computation power to build a trajectory. Thus, this paper

utilizes a classical exact method to build a scanning path for each wildfire. The readers

interested in the CPP methods may refer the extensive surveys of Galceran and Carreras

[158] and Khan et al. [159].

In the CPP problems, minimizing the number of turns is critical to reducing the total

mission time or the total energy [136]. The classical exact methods of the CPP decrease
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the number of turns on their routes by creating the BFP path along the optimal line-sweep

direction of the area of interest (AOI). The line-sweep direction of a convex area is deter-

mined by a diameter function which is its height in a reference coordinate system calculated

by rolling the area. The line-sweep direction having a minimum of the diameter function

of a convex area guarantees the minimum number of turns on the BFP route along the

direction [136].

As a notional example, let us consider a convex hull modeled by an AOI. When estab-

lishing grid cells, a reference coordinate system of the whole AOI could be utilized for all

target areas. Then, every subarea has the same coordinate system. Figure A.16a shows a

coverage path built by grid cells defined in a reference coordinate system consisting of a

horizontal and a vertical lines. When employing an optimal line-sweep direction for each

subarea, a local coordinate system consisting of a line of the direction and a perpendicular

line should be created for each subarea. Then, a coverage path built by grid cells defined in

the local coordinate system has the number of turns less than or equal to a coverage path in

a reference coordinate system as illustrated in Fig. A.16b. Note that if a convex hull is not

symmetric in terms of its line-sweep direction, the total length of a coverage path depends

on its initial scan direction while the paths have the same number of turns. For these cases,

we select the shorter path to scan the convex hull created by an AOI.

The BFP path created by classic CPP methods may include sharp turns that occur at

a point. To address more realistic turn performance of fixed wing UAVs, the UAVs are

considered as Dubins vehicles having a kinematic model as follows:

ẋ = V cos θ (A.78)

ẏ = V sin θ (A.79)

θ̇ = u, (A.80)

where (x, y) is its position, V is the speed, θ is the heading angle, and u is the minimum
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Grid cell
Convex hull
Coverage path

(a) Coverage path without considering a line-sweep direction (26 turns)

Grid cell
Convex hull
Coverage path

(b) Coverage path along an optimal line-sweep direction (20 turns)

Figure A.16: The effect of a line-sweep direction on creating a coverage path
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Grid cell
Convex hull
Coverage path

(a) Turns of a Dubins vehicle having enough turning performance

Grid cell
Convex hull
Coverage path

(b) Turns of a Dubins vehicle having not enough turning performance

Figure A.17: The effect of turning performance on turns of a Dubins’ vehicle
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turning radius or the maximum curvature of the vehicle. Dubins [160] proves that the

optimal path between two points constrained by vehicle’s heading angle and minimum

turning radius has at most CLC or CCC patterns, where C is a turn with its minimum

turning radius, and L is a straight line. Johnson [161] and Boissonnat et al. [162] show the

same result with control theory.

To address the properties of Dubins vehicles, Dubins paths are built for each pair of two

turning points where the scanning direction is changed. The turn performance of UAVs has

an effects on a length of curve for turning as illustrated in Fig. A.17. If the turn performance

of UAVs is not enough to turn between two waypoints, the turn motion requires extra flight

time and energy. In this case, reducing the number of turns could be more significant to

minimize flight time and energy.

Formulations for operational planning

The operational planning is conducted with a simplified flight network that does not con-

sider all the complex low-level flight network. The new network for the operational plan-

ning includes two points, mission start/end locations resulting from the CPP result, for each

target area as shown in Fig. A.18a. The new flight network simply connects between a GS

and a mission start/end to generate initial potential paths as illustrated in Fig. A.18b. In

this way, the complexity of initial flight network can significantly reduce; the complexity

relies on the topology of the flight network.
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(a) Step 1: finding starting/ending point of each coverage path

(b) Step 2: creating a flight network as an input of the MDVRP model

Figure A.18: The modeling of mission areas by a graph
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(a) ConOps for the VRP

(b) ConOps for the MDVRP

Figure A.19: The effect of vehicle routing formulations on a ConOps
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The operational planning should consider the concept of operations and the vehicle

constraints from UAVs characteristics. To introduce the mathematical formulation of the

operational planning, we assume two conceptual examples of a 6-wildfire monitoring mis-

sion as shown in Fig. A.19: single-GS and multi-GS. In the single-GS scenario with a

single UAV, it can be typically modeled by the traveling salesman problem (TSP). In the

single-GS scenario with multiple UAVs, a vehicle routing problem (VRP) is typically ap-

plied, which is depicted in Fig. A.19a. The VRP is a generalized form of the TSP. In the

multi-GS scenario with multiple UAVs shown in Fig. A.19b, we can implement the multi-

depot vehicle routing problem (MDVRP) that optimizes the deployment locations of UAVs

and their routes. The MDVRP can have a benefit of having operating cost because UAVs

can be deployed the GS closed to the wildfire, and the total mission time and the usage of

the number of UAVs can significantly reduce. Because of these benefits, this paper applies

the MDVRP to address the wildfire management problem.

To address a generalized delivery system having multiple depots and vehicles, the MD-

VRP is formulated as a variant of the VRP [163, 164]. In UAS-based applications, the

formulations of the MDVRP are used to consider several GSs, which are potential UAV de-

pots, in a post-earthquake assessment mission [165]. The readers interested in the MDVRP

could refer the comprehensive survey conducted by Montoya-Torres et al. [166].

To address the MDVRP formulation, we extend the optimization model based on the

distance-constrained VRP (DVRP) proposed by Choi et al. [130], which has the general-

ized formulation of Kara’s VRP model [137] to obtain the minimum required number of

vehicles. However, this can deal with multiple UASs with a single GS only. The MDVRP as

a variant of the VRP considering multiple GSs can be described with graph theory. Mission

areas are depicted by a graph, G = (N ,A), and each depot and mission point is modeled by

a node. Sets,ND andNM , represent all depots and mission points respectively. In our MD-

VRP model, an artificial depot node is added for each depot node. A set NA indicates all

artificial depots. Note that a physical depot is described with two nodes; a depot node and
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an artificial depot node. The depot node and the artificial depot node are used to represent

a starting point and an ending point in a route. For mathematical simplification, we define

| · | as the number of elements of a set. For instance, a graph G includes |M | number of

mission points, M = {0, 1, · · · , |M |−1}, |D| number of depots, D = {0, 1, · · · , |D|−1},

and |A| number of artificial depots, A = {0, 1, · · · , |A| − 1} = {0, 1, · · · , |D| − 1}. The

set of nodes N and its subsets are defined such that

NM = {0, 1, · · · , |M | − 1}

ND = {|M |, |M |+ 1, · · · , |M |+ |D| − 1}

NA = {|M |+ |D|, |M |+ |D|+ 1, · · · , |M |+ 2|D| − 1}

N = NM ∪ND ∪NA

= {0, 1, · · · , |M |+ 2|D| − 1} = {0, 1, · · · , |N | − 1}

NND = N −ND = NM ∪NA

NNA = N −NA = NM ∪ND.

An arc presents an edge where a vehicle travels from point A to point B, and the set of arcs

A in the graph G can be expressed by A = {(i, j) : ∀i ∈ NNA, ∀j ∈ NND, and i 6= j}.

To connect the mission start/end locations in the simplified flight network, a set APM =

{(i, i + 1) : ∀i is an even number of NM} is defined, which corresponds the pair of two

locations, mission start/end positions. A set V =
⋃|D|−1
d=0 Vd indicates a fleet of vehicles and

Vd represents vehicles available at a depot d, ∀d ∈ D, such that Vd = {0, 1, · · · , |Vd| − 1},

and Vdk is each vehicle at a depot d, ∀d ∈ D, ∀k ∈ Vd. In the equations, a superscript is

related to a depot or a vehicle, and subscripts are associated with an arc. Each vehicle Vdk

has its maximum rangeRdk, where ∀d ∈ D, ∀k ∈ Vd. The distance from a node i to another

node j traveled by a vehicle Vdk is defined as Ddkij (∀(i, j) ∈ A, ∀d ∈ D, ∀k ∈ Vd). The

mathematical formulation has two types of design variables: vehicle movements, xdkij , and
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flight distances, ydkij , where ∀(i, j) ∈ A, ∀d ∈ D, ∀k ∈ Vd. This 4-index-based formulation

that has been used by Salhi et al. [167] includes starting/ending nodes, originated depots,

and a vehicle type. The vehicle movement design variables, xdkij , are integer variables. The

flight distance variables, ydkij , are real variables having the total flight distance of a vehicle

Vdk, which flies from a node i to another node j, from a depot d to the node j along its

route.

Based on these definitions, an optimization model for multi-depot vehicle routing prob-

lems for a UAS-based wildfire monitoring mission in disjoint areas can be written by Eq.

(A.81)-(A.93). The objective function, Eq. (A.81), is the total flight distance traveled by

all vehicles. The constraints, Eq. (A.82)-(A.93), describe the ConOps of a UAS; each

mission point is visited by a UAV exactly once, Eq. (A.82). Each vehicle departs from a

depot, Eq. (A.83), and arrive at a depot, Eq. (A.84). The number of available vehicles is

limited for each depot, Eq. (A.85). Each vehicle that departs from a depot should return to

the same depot, Eq. (A.86). If a vehicle visits a mission point, it should move to another

mission point or a depot, Eq. (A.87). Eq. (A.88) presents that the CPP mission should be

conducted. When a vehicle moves from a point to another point, its total flight distance

increases as much as it flies, Eq. (A.89), which provides a subtour elimination. The ini-

tial flight distance of each vehicle is set by Eq. (A.90). The lower and upper bounds of

flight distance given a vehicle at a specific mission point is written by Eq. (A.91) and Eq.

(A.92) respectively. The upper bound of flight distance of a vehicle returning to a depot is

described by Eq. (A.93). The overall process of the developed framework for multi-UAS

path-planning for a large-scale disjoint disaster management is summarized in Algorithm

4.
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Algorithm 4 Framework for multi-UAS path-planning for a large-scale disjoint disaster
management
Input: wildfire information, vehicle/GS parameters
Output: optimal routes for each vehicle

PART 1: coverage path planning - [Section A.3.2]
for each wildfire in wildfires do

Find the convex hull of an area of a wildfire
Find an optimal line-sweep direction
Create grid cells based on its local coordinate system
Build two coverage paths having different scan directions
Update Dubins paths for each turn
Select the shorter path
Extract starting/ending point of the path

end for

PART 2: operational planning - [Section A.3.2]
Select candidate GSs
Build a flight network based on Dubins paths as an input for the MDVRP model
Solve the MDVRP - [Eq. (A.81)-(A.93)]
Combine the solution of the MDVRP model with coverage paths
return Optimal routes for each UAV
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APPENDIX B

REGULATORY REQUIREMENTS FOR SUAS

According to The Code of Federal Regulations (14 CFR Part 11), public and civil aircrafts

are defined as follows:

public aircraft : An aircraft used only for the United States Government or owned by

the Government or owned and operated by the government of a State.

civil aircraft : It means aircraft other than public aircraft.

Note that if public aircraft is used for commercial purposes, its status is changed to that of

civil aircraft. That is, the status of aircraft depends on the type of operation it is conducting

at that time. The reason why categorizing aircraft into two groups is that the regulatory re-

quirements of them are different significantly due to the fact that public aircraft are legally

exempt from most types of FAA regulation such as civil airworthiness and airman certifi-

cation [168].

On the other hand, the FAA categorizes operators into four groups: remote pilots hold-

ing a Part certificate, public UAS operators, model aircraft operators, and those holding 333

exemptions [169]. The most of operators for commercial operations are fallen into Part 107

in Table B.1 remote pilots category, whereas hobbyists are included in model aircraft op-

erators [7]. As shown in Table B.2, these operators are affected by different regulatory

requirements.

1https://www.ecfr.gov/cgi-bin/text-idx?rgn=div5&node=14:1.0.1.1.1 (ac-
cessed September 16, 2017)
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Figure B.1: Airspace classification2

Figure B.2: Amazon’s plan to use airspace 3

2https://www.faasafety.gov/gslac/ALC/course_content.aspx?cID=42&sID=
505&preview=true (accessed 2/19/2019)

3https://utm.arc.nasa.gov/docs/Amazon_Revising%20the%20Airspace%
20Model%20for%20the%20Safe%20Integration%20of%20sUAS[6].pdf (accessed
2/19/2019)
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Part 107 also includes airspace regulation for sUAS. As seen in Figure B.1, airspace is

divided into six Classes: from Class A to Class G. The operation of sUAS is not permitted

in Class A. For operation in Class B, C, D, and E needs a permission from air traffic control

(ATC), whereas operation in Class G does not require a permission from ATC. According

to FAA4, the Classes are defined as follows:

Class A : airspace from 18,000 feet MSL up to and including FL 600

Class B : airspace from the surface to 10,000 feet MSL surrounding the nation’s busiest

airports in terms of IFR operations or passenger enplanements

Class C : airspace from the surface to 4,000 feet above the airport elevation (charted in

MSL) surrounding those airports that have an operational control tower

Class D : airspace from the surface to 2,500 above the airport elevation (charted in

MSL) surrounding those airports that have an operational control tower

Class E : if the airspace is not Class A, B, C, or D, and is controlled airspace it is Class

E airspace

4https://www.faasafety.gov/gslac/ALC/course_content.aspx?cID=42&sID=
505&preview=true (accessed 2/19/2019)
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Table B.1: Summary of small unmanned aircraft rule (Part 107) [170]

Operational Limitations • Unmanned aircraft must weigh less than 55 lbs. (25 kg).

• Visual line-of-sight (VLOS) only; the unmanned aircraft

must remain within VLOS of the remote pilot in com-

mand and the person manipulating the flight controls of the

small UAS. Alternatively, the unmanned aircraft must re-

main within VLOS of the visual observer.

• At all times the small unmanned aircraft must remain

close enough to the remote pilot in command and the per-

son manipulating the flight controls of the small UAS for

those people to be capable of seeing the aircraft with vision

unaided by any device other than corrective lenses.

• Small unmanned aircraft may not operate over any per-

sons not directly participating in the operation, not under a

covered structure, and not inside a covered stationary vehi-

cle.

•Daylight-only operations, or civil twilight (30 minutes be-

fore official sunrise to 30 minutes after official sunset, local

time) with appropriate anti-collision lighting.

•Must yield right of way to other aircraft.

•May use visual observer (VO) but not required.

• First-person view camera cannot satisfy “see-and-avoid”

requirement but can be used as long as requirement is satis-

fied in other ways.

•Maximum groundspeed of 100 mph (87 knots).
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• Maximum altitude of 400 feet above ground level (AGL)

or, if higher than 400 feet AGL, remain within 400 feet of a

structure.

• Minimum weather visibility of 3 miles from control sta-

tion.

• Operations in Class B, C, D and E airspace are allowed

with the required ATC permission.

• Operations in Class G airspace are allowed without ATC

permission.

• No person may act as a remote pilot in command or VO

for more than one unmanned aircraft operation at one time.

• No operations from a moving aircraft.

• No operations from a moving vehicle unless the operation

is over a sparsely populated area.

• No careless or reckless operations.

• No carriage of hazardous materials.

• Requires preflight inspection by the remote pilot in com-

mand.

• A person may not operate a small unmanned aircraft if he

or she knows or has reason to know of any physical or men-

tal condition that would interfere with the safe operation of

a small UAS.

• Foreign-registered small unmanned aircraft are allowed

to operate under part 107 if they satisfy the requirements of

part 375.
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• External load operations are allowed if the object being

carried by the unmanned aircraft is securely attached and

does not adversely affect the flight characteristics or con-

trollability of the aircraft.

• Transportation of property for compensation or hire al-

lowed provided that -

◦ The aircraft, including its attached systems, payload and

cargo weigh less than 55 pounds total;

◦ The flight is conducted within visual line of sight and

not from a moving vehicle or aircraft; and

◦ The flight occurs wholly within the bounds of a State

and does not involve transport between (1) Hawaii and an-

other place in Hawaii through airspace outside Hawaii; (2)

the District of Columbia and another place in the District

of Columbia; or (3) a territory or possession of the United

States and another place in the same territory or possession.

• Most of the restrictions discussed above are waivable if

the applicant demonstrates that his or her operation can

safely be conducted under the terms of a certificate of

waiver.

Remote Pilot in Com-

mand Certification and

Responsibilities

• Establishes a remote pilot in command position.

•A person operating a small UAS must either hold a remote

pilot airman certificate with a small UAS rating or be under

the direct supervision of a person who does hold a remote

pilot certificate (remote pilot in command).
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• To qualify for a remote pilot certificate, a person must:

◦ Demonstrate aeronautical knowledge by either:

I Passing an initial aeronautical knowledge test at an

FAA-approved knowledge testing center; or

I Hold a part 61 pilot certificate other than student pilot,

complete a flight review within the previous 24 months, and

complete a small UAS online training course provided by

the FAA.

◦Be vetted by the Transportation Security Administration.

◦ Be at least 16 years old.

• Part 61 pilot certificate holders may obtain a temporary re-

mote pilot certificate immediately upon submission of their

application for a permanent certificate. Other applicants

will obtain a temporary remote pilot certificate upon suc-

cessful completion of TSA security vetting. The FAA antic-

ipates that it will be able to issue a temporary remote pilot

certificate within 10 business days after receiving a com-

pleted remote pilot certificate application.

• Until international standards are developed, foreign-

certificated UAS pilots will be required to obtain an FAAis-

sued remote pilot certificate with a small UAS rating.

• A remote pilot in command must:

◦ Make available to the FAA, upon request, the small

UAS for inspection or testing, and any associated docu-

ments/records required to be kept under the rule.
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◦ Report to the FAA within 10 days of any operation that

results in at least serious injury, loss of consciousness, or

property damage of at least $500.

◦ Conduct a preflight inspection, to include specific air-

craft and control station systems checks, to ensure the small

UAS is in a condition for safe operation.

◦ Ensure that the small unmanned aircraft complies

with the existing registration requirements specified in §

91.203(a)(2).

• A remote pilot in command may deviate from the require-

ments of this rule in response to an in-flight emergency.

Aircraft Requirements • FAA airworthiness certification is not required. However,

the remote pilot in command must conduct a preflight check

of the small UAS to ensure that it is in a condition for safe

operation.

Model Aircraft • Part 107 does not apply to model aircraft that satisfy all of

the criteria specified in section 336 of Public Law 112-95.

• The rule codifies the FAA’s enforcement authority in part

101 by prohibiting model aircraft operators from endanger-

ing the safety of the NAS.
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