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SUMMARY

This thesis addresses four topics in the area of applied harmonic analysis.
First, we show that the affine densities of separable wavelet frames affect the frame
properties. In particular, we describe a new relationship between the affine densities,
frame bounds and weighted admissibility constants of the mother wavelets of pairs
of separable wavelet frames. This result is also extended to wavelet frame sequences.
Second, we consider affine pseudodifferential operators, generalizations of pseudodif-
ferential operators that model wideband wireless communication channels. We find
two classes of Banach spaces, characterized by wavelet and ridgelet transforms, so
that inclusion of the kernel and symbol in appropriate spaces ensures the operator
is Schatten p-class. Third, we examine the Schatten class properties of pseudodif-
ferential operators. Using Gabor frame techniques, we show that if the kernel of a
pseudodifferential operator lies in a particular mixed modulation space, then the op-
erator is Schatten p-class. This result improves existing theorems and is sharp in the
sense that larger mixed modulation spaces yield operators that are not Schatten class.
The implications of this result for the Kohn-Nirenberg symbol of a pseudodifferen-
tial operator are also described. Lastly, Fourier integral operators are analyzed with
Gabor frame techniques. We show that, given a certain smoothness in the phase func-
tion of a Fourier integral operator, the inclusion of the symbol in appropriate mixed

modulation spaces is sufficient to guarantee that the operator is Schatten p-class.

vil



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Decomposition and reconstruction are ideas fundamental to harmonic analysis and
signal processing. The Fourier transform, arguably the bedrock of these fields, would

not be so interesting if we could not decompose a distribution f into frequencies f(w)

and reconstruct f again by

@) = [ Fuwem=aw.

Other transforms also possess the powerful properties of decomposition and recon-
struction. In particular, by the wavelet transform and the Gabor transform functions
are decomposed into time-scale and time-frequency data, respectively, and are so
characterized by this data that they can be reconstructed from it. There are discrete
transforms controlled by sequences {f,},.y which admit dual systems {f;} SO

zeX
that decompositions

F=> U flfe =D A fo)fos (1)

zeX zeX
hold for all f in appropriate function spaces. In general, the combined action of

decomposition and reconstruction is called a resolution of the identity.
This thesis contains new insight into the applications of resolutions of the identity.
It explores how these resolutions of the identity can capture information about integral

operators, that is, operators of the form

Aﬂw:/%wwﬂw@.

A resolution of the identity for either the elements of the domain or codomain of A

gives a resolution of the identity of the operator, and through this decomposition and



reconstruction, properties of the operator are more apparent. Specifically, suppose
that {¢,},.y is some collection of functions generating a resolution of the identity

for L?(R?) , that is

(f.g)=C /X () (e g) du(x)  for all f.g € L3(RY).

Then the mixed norm of the slices of k, i.e. ky(t) = k(t,y), decomposed with the
resolution of the identity determines whether the integral operator with kernel k is

Schatten p-class. Specifically, we show that if

(/x (/Rd [y, ) dy)g du(fv)>; < o0

and p € [1, 2], then the integral operator with kernel k is Schatten p-class. This result
is stated precisely as Theorem 3.3.2.

Theorem 3.3.2 is powerful because of its generality. It is a result applicable to all
integral operators and resolutions of the identity. However, while integral operators
are a broad class of operators, many interesting integral operators are not naturally
expressed in the form Af(t) = [ k(t,y)f(y)dy. Pseudodifferential operators, for in-
stance, are integral operators that are superpositions of time-frequency shifts and
these operators are often specified not by their kernels but by their symbols, func-
tions controlling the “amount” of each time-frequency shift present in the operator.
Similarly, affine pseudodifferential operators are superpositions of time-scale shifts.
These operators are determined by their symbols, which describe the amount of each
time-scale shift in the operator. Fourier integral operators are integral operators
determined by both a symbol function and a phase function.

Since pseudodifferential operators, affine pseudodifferential operators, and Fourier
integral operators are naturally formulated in terms of symbol functions, it is desirable
to characterize the properties of these operators by characterizing the properties of
their symbols. It is clear that by relating the symbol of one of these operators to

the kernel of the integral operator, Theorem 3.3.2 can be used to describe some



property of the symbol that ensures the operator is Schatten p-class. However, the
meaning of this property depends on the resolution of the identity. This thesis shows
that for pseudodifferential operators, affine pseudodifferential operators, and Fourier
integral operators, analyzing the symbol with the “correct” resolution of the identity
yields natural and meaningful conditions on the symbol that ensure the corresponding
operator is Schatten class.

Because of the multipath and Doppler effects, a wideband wireless communica-
tion channel can be modeled as a superposition of time-scale shifts, i.e. as an affine
pseudodifferential operator. Affine pseudodifferential operators have been relatively
unstudied until recently, with [5], [29] and [68] the only mathematical publications on
the topic. However, their application to wireless communications ensures that they
are of interest to mathematicians and engineers alike. As affine pseudodifferential
operators are superpositions of time-scale shifts, it is natural to analyze these opera-
tors with a time-scale resolution of the identity. In Chapter 3, Theorem 3.3.2 is used
with the wavelet resolution of the identity to find new conditions on the kernel and
symbol of an affine pseudodifferential operator that ensure the operator is Schatten
p-class. These conditions on the symbol are equivalent to inclusion in a Banach space
characterized by a mixed norm on the ridgelet transform, a transform which captures
directional time-scale data about the symbol. This chapter also describes smoothness
and decay conditions on the Radon transform of the symbol that imply the given
operator is Schatten class or Calderon-Zygmund.

Pseudodifferential operators are superpositions of time-frequency shifts. Because
the Doppler effect for narrowband wireless communications is best modeled not as a
change in scale but as a shift in frequency, pseudodifferential operators model nar-
rowband wireless communications. In Chapter 4, Theorem 3.3.2 is used with a Gabor
resolution of the identity, a natural choice for analyzing pseudodifferential operators.

The resulting mixed norm is a time-frequency decay condition on the kernel itself.



We show that this condition holds for kernels belonging to certain Banach spaces
that we call mixed modulation spaces. These spaces are natural generalizations of
the traditional modulation spaces, and in Chapter 4, we show that many of the in-
teresting properties of traditional modulation spaces also hold for mixed modulation
spaces. Furthermore, by exploiting the relationship between the Gabor transforms of
the kernel and Kohn-Nirenberg symbol, we show that inclusion of this symbol in an
appropriate mixed modulation space guarantees the corresponding pseudodifferential
operator is Schatten class.

Fourier integral operators arise naturally in the study of hyperbolic differential
equations because they give approximate solutions to certain partial differential equa-
tions. Although Fourier integral operators are more complex than pseudodifferential
operators and affine pseudodifferential operators because they are controlled by a
symbol and a phase function, we can focus on the influencing properties of the sym-
bol when the phase function is smooth. This is the approach taken in Chapter 5. Like
pseudodifferential operators, Fourier integral operators act on the time-frequency con-
tent of functions. In Chapter 5 we prove that the mixed modulation spaces are the
natural symbol spaces for describing Fourier integral operators. In particular, we
show that if a Fourier integral operator has a sufficiently smooth phase function and
a symbol belonging to an appropriate mixed modulation space, then the operator is
Schatten class.

Although our analysis of pseudodifferential, affine pseudodifferential and Fourier
integral operators begins with the idea in Theorem 3.3.2, our results are not merely
direct applications of this theorem. Rather we use the idea of Theorem 3.3.2 with the
unique properties of each of these types of operators to develop our Schatten class
analysis. As a consequence, each of the Schatten class results in Chapters 3, 4 and 5

has a flavor different from that of Theorem 3.3.2 and different from one another.



Furthermore, the Schatten class results in Chapters 3, 4 and 5 augment the knowl-
edge of pseudodifferential, affine pseudodifferential and Fourier integral operators
found in the literature. In particular, our result for affine pseudodifferential operators
in Chapter 3 is the first Schatten class result for affine pseudodifferential operators.
Although time-frequency analysis is an oft-used tool to study pseudodifferential op-
erators, the approach in Chapter 4 is new and yields new symbol spaces of Schatten
class pseudodifferential operators undiscovered by previous results. Furthermore, the
kernel results for pseudodifferential operators in Chapter 4 improve upon existing
kernel theorems and are sharp. The results for Schatten class Fourier integral opera-
tors in Chapter 5 are not directly comparable to previously known results. However,
through natural isomorphisms, the largest symbol classes in the literature embed into
the symbol classes described in Chapter 5. In addition, several of the results in this
chapter are sharp. The relationships between the results in this thesis and related
results in the literature are described in greater detail in each chapter.

At their heart, Chapters 3, 4 and 5 depend on the idea of resolution of the identity.
In Chapter 2, we explore the behavior of a specific discrete resolution of the identity
of the form (1). Specifically, we compare pairs of wavelet frames of the form
{o(u,v) f}ievwey and {o(s,1)g},c5,cr (see Chapter 3 for a precise definition). Our
main result is a Homogeneous Approximation Property for separable wavelet frames
that allows us to delineate relationships between the densities of U, V, .S and T', the ad-
missibility constants of f, g and the frame bounds of the sequences {o(u,v) [}, cp ey
and {0(s,1)g},cger- This result is interesting because it parallels known results for
other common types of resolutions of the identities, namely LCA frames, and be-
cause it gives insight into the density properties of wavelet frames. In particular,
unlike LCA frames, wavelet frames are known not to exhibit a Nyquist density. Our
main result shows that wavelet frames fail to have a Nyquist density because density

depends on both frame bounds and admissibility.



1.2 Background

In this section we give precise definitions and properties of the topics fundamental to
the main ideas of the thesis.

Given sets S, X such that S C X, we define Xg : X — R by

1 ifzxes,
Xs(x) =
0 ifzéegds.
We let . (R?) denote the Schwartz space of functions of d real variables.

Definition 1.2.1. Suppose f,g: X — [0,00). Then f and g are equivalent, written

f =g, if there exists C' € (0,00) such that

@ < f(zx) < Cg(z) Vze X.

1.2.1 Weights and Mixed Norm Spaces
1.2.1.1 Weight functions

Definition 1.2.2. A locally integrable function v : R? — (0,00) is called a weight

function. A weight function v : R¢ — (0, 00) is submultiplicative if
v(z1 + 22) < v(z1)v(22) for all 2y, 2 € R%.

A weight function v has polynomial growth if there are C,;s > 0 such that v(z) <

C (1+ |z])® for all z € R™.

For each s > 0, the function vs(z) = (1 + |z|)” is a submultiplicative weight func-
tion with polynomial growth. Notice that v, is equivalent to the weight (1 + |Z|2)%
We will use (1+ |2%)? and (1 + |2|)® interchangeably as weights on mixed norm

spaces.

Definition 1.2.3. Suppose w : R? — (0, 00) is a weight function and v : R — (0, 00)

1s submultiplicative. If there is a constant C such that

w(z1 4 22) < Co(z1)w(29) for all 2y, 2, € RY,



then we call w a v-moderate weight.

We will assume throughout this thesis that v : R — (0,00) is a submulti-
plicative weight function of polynomial growth symmetric in each coordinate, i.e.
V(X1 ey, =Ty xg) = 0(T1, .., Ty ..., xq) for each i = 1,2, -+ d. We also assume

throughout that w is a v-moderate weight.
1.2.1.2 Mized norm spaces

Definition 1.2.4. Given measure spaces (X;, p;) and indices p; € [1,00] for i =

1,2,...,d and given weight function w : X; X X X -+ X X3 — (0,00), we let

Lﬁ}l,pz,...,pd (Xb Xo, ooy Xy, p1, fo, . . ,,ud)

consist of all measurable functions F : X1 X Xo X ---x Xy — C for which the following
norm is finite:

|||y ra

P2 1

_ (/X (/X F (2., za) wlzn, ... 2)" dul(xl))pl~-~ dud(:cd))“,

with the usual modifications for those indices p; which equal oo.
If the measures p; for alli=1,2,...,d are clear from context we simply write

Lpvp2pa (X Xy oo, Xy). If w =1 we write
[P1P25Pd (Xl,XQ, e ,Xd,/il,lfa’ s 7:U’d) :

If X; = R and p; is Lebesgue measure on R for all i = 1,2,...,d, then we simply
write LPVP2Pd - [f eqch X; is countable and p; is counting measure on X; we simply

write (Prr2Pa (X1 Xy, .. Xy).

Unless otherwise noted, we assume that the measure associated to any subset of
R is Lebesgue measure and the measure associated to any countable set is counting

measure.



The mixed norm spaces LEVP>Pd (X1 Xo ..., Xy, i1, fo, . . ., fl2q) are generaliza-
tions of the classical spaces LP, and the proof that L? is a Banach space can be
extended to the mixed norm spaces (see [7]).

A Wiener amalgam norm is a type of mixed norm that measures local boundedness

with global decay.

Definition 1.2.5. Suppose p1,...,pq € [1,00]. Define a norm by

Hf”ﬂqL?mQ """ Pdy = H{HmeJW+HHw}n€Zd

PR
The Wiener space W (LP1P2-Pd) s the set of functions for which this norm is finite.

In the case that p; = py = -+ = pg = 1 we write W(LL(R?)) instead of
W (LP1p2Pd) e,

1 oy @y = D 1 X4l o w(n)-

nezd

For any multi-index a = (a, ..., aq) € R with ay, ..., aq € (0,00), we can define

an equivalent norm on W (LE1P2Pd) by

11 = €l PXaomptranll e

(P1P2Pd ’
The following lemma, a generalization of Theorem 11.1.5 in [33], is a convolution

relation for the Wiener amalgam spaces.

Lemma 1.2.6. There is some C € (0,00) so that for all F € W(LEP2Pi) G €
W (LL(RY)) we have

|F % Gl s < C [ Fllyzznr o) Gl zageen

1.2.2 Transforms

1.2.2.1  Continuous Wavelet Transform

Definition 1.2.7. The continuous wavelet transform of h € L*(R) with respect to

e LA(R) is

Wyh(a,b) = /

h(t) |a| 24 G - b) dt = (h, D, Ty), (a,b) € RT x R,
R



where D, denotes the dilation D,f(t) = |a|_%f(§) and T, denotes the translation

Tof(t) = f(t —0b). A function ¢ € L*(R) is admissible if

c= |
R

If ¢ is admissible then Cy, is called the admissibility constant of ¥. If 1 is admaissible

and furthermore

“ 2 dw N 2 dw
dw)* = [ Jaw) o
/(o,oo) | |w| (—00,0) | |w|
then inversion formula
1 da
h(t) = Cy Wyh(a,b) D,/ Tpp(t) — db (2)
R+ xR a

holds weakly for all h € L*(R).

The value of W, f(a,b) is a measure of the time-scale localization of f at position

b and the scale a. See [25] for more information regarding wavelets.
1.2.2.2  Gabor Transform

Suppose f : R? — C is measurable. For z,¢ € R? define the translation operator 7,

and modulation operator M, by
Tf(t)=f(t—=)  and  Mf(t) =" f(1),
and define the time-frequency shift 7, ¢) by 7y = MeT,.
Definition 1.2.8. Fiz ¢ € Z(R?). Given f € '(R%), the Gabor transform of f
with respect to ¢ is
Val(@.&) = | 09t —2)e ™" di = {f, McTog), £ € R
The function ¢ is called the window function of the Gabor transform.

The value of V,,f(z,€) gives information about the time-frequency content of f
around x in time and ¢ in frequency. See [33] for background and information about

the Gabor transform.



Both the wavelet and Gabor transforms arise from unitary representations of lo-
cally compact groups, namely the affine group and the Heisenberg group, respectively.
The general properties of transforms determined by unitary representations are de-
scribed in [39].

Fix ¢ € Z(R%) and p,q € [1,00]. For f € .7'(R?), define

1 | sz may = VoIl prywanmaa
Wherep:pl =py=---=pg andq:pd_H = Pgi2 = -+ = Doy Let
MEIRY) = { f € #'RY | fll o < o0}

Each MP9(R?) is a modulation space. For w = 1 we write MP4(R?) = MP4(R?).

The modulation space MP4 (Rd) consists of functions with a particular time-
frequency decay controlled by the parameters p,q and weight w. See [33] for an
overview of modulation spaces and time-frequency analysis.

In particular we have the following inclusion relationship between the modulation

space M1(R?) and the Wiener space W (L!(R?)) (see Proposition 12.1.4 in [33]).
Lemma 1.2.9. If ¢ € MM(RY), then ¢ € W(L*(R?)).
1.2.2.3 The Radon Transform

We let S* denote the unit sphere in R?. Tt will be useful to equate S* with [0, 27).

Hence, for each 6 € S', let ¢() denote the unique number in [0,27) such that

6 = (cosp(0),sinp(0)).

Definition 1.2.10. Let £(0,s) = {z € R* : x- 0 = s} and let dzyq,s denote the one-
dimensional Lebesque measure on the set £(0,s). The Radon transform of £ € L'(R?)

15 given by

RyL(s) = RL(O,s) = / L(x) dzeo,s), for all (0,s) € S' x R.

{zeR2:2-0=s}

10



1.2.2.4 The Ridgelet Transform

There are a number or ways to generalize the wavelet transform on L?(R) to analyze
functions in L*(R?) (see [25]). However these wavelet transforms are best used in
analyzing pointwise characteristics of functions and are not suitable for detecting
higher-dimensional singularities. In contrast, the ridgelet transform was developed in

[11] and [13] to analyze the behavior of functions on R? over lines.

Definition 1.2.11. Suppose ¥ € #(R) is admissible. Then the ridgelet transform
of L € L'(R?) is

R(L)(a,b,0) = (ReL, TyD,0) VO € S',acR\{0},beR.
1.2.3 Frames

Definition 1.2.12. A frame for a Hilbert space H is a sequence of elements {¢z}, x
in H such that there are A, B > 0 with

ANIFIF < Y 1K o)l < BIFIP

zeX
for all f € H. In this case A, B are frame bounds. If we can take A = B then

{02},ex is a tight frame. A tight frame is Parseval if we can choose A = B = 1.

Frames give nonorthogonal expansions of elements of H in terms of the frame
elements, and these expansions are stable but usually redundant. If {¢,} .y is a
frame for H, there is a dual sequence {qgm}ze x C H such that

zeX rzeX

for all f € H, and the sequence {anc}xeX can be chosen to be a frame for H. In

particular, if {¢,},.y is a tight frame for H with frame bound B, we have

f=B"'> (f.é)o. VfEH

zeX

11



The frame operator of {¢,}, .y is the self-adjoint bounded invertible operator

Sf=> (fiée)d. Vfe€H.

zeX

See [14] for general background on frames.

Definition 1.2.13. A Bessel sequence for a Hilbert space H is a sequence of elements
{02},ex in H such that there is B > 0 with

D0 < BISIP

zeX

for all f € H. In this case B is the Bessel bound.

Definition 1.2.14. A sequence {¢,}, . satisfying

Vh € span{d,}eex,  AlRI® <Y [(hé0)]” < BA|”

zeX

is called a frame sequence. Equivalently, {¢,},cy is a frame for its closed span.

The best-known frames, frame sequences and Bessel sequences for function spaces
are coherent state frames of the form {o(z)f}, .y where o is a unitary representation
of a locally compact group G on H and X is some collection of points in G. In
particular, wavelet frames and Gabor frames for L*(R) have this form, as do Fourier

frames for L?(I) where I is a compact interval.

1.2.4 Operators

1.2.4.1 Schatten class operators

Definition 1.2.15. Fix 1 < p < co. Suppose H is a Hilbert space and A : H — H

is a linear operator. We say A is Schatten p-class and write A € Z,(H) if

1
p
41, =sup( S lAf ) <
neN
where the supremum is taken over all pairs of orthonormal sequences { fu},en: 19n bnen

in H.

12



Equivalently, an operator is Schatten p-class if its singular values constitute an
(P sequence. Consequently, trace-class operators are exactly the Schatten 1-class
operators and Hilbert-Schmidt operators are the Schatten 2-class operators. For

p = 0o, we define Schatten p-class operators to be bounded operators.
1.2.4.2 Integral operators

Definition 1.2.16. An operator A of the form

A = [ Kef)dy  or allt e R

1s an integral operator, defined for all f for which these integrals converge. The

function k is the kernel of A. Throughout the paper we write k(t,y) = ky(t).
1.2.4.3 Pseudodifferential Operators

Definition 1.2.17. A pseudodifferential operator with Kohn-Nirenberg symbol 7 is

an operator having the form
Ko = [ 760 T f0) o
A pseudodifferential operator with Weyl symbol o is an operator having the form
Lof() = [[ o 6) ™S T Mef (0 o

A pseudodifferential operator acting on a function f is a superposition of time-
frequency shifts of f. Every suitable pseudodifferential operator K, can be also
realized as an operator L, and in this case we have 7(&,x) = ™45 (&, ). Similarly,

suitable K, and L, can be realized as integral operators.
1.2.4.4  Fourier Integral Operators
Definition 1.2.18. A Fourier integral operator is one of the form
Af) = [ [ ale. 1w ay e

In this case, a is called the symbol of the operator A and ¢ is called the phase function.

13



Throughout this thesis, we assume the phase functions of Fourier integral opera-
tors are real-valued.

Like a pseudodifferential operator, a Fourier integral operator changes the time-
frequency content of a function. In particular a pseudodifferential operator with
Kohn-Nirenberg symbol 7 is a Fourier integral operator with symbol a(x,y,&) =
7(z,€) and phase ¢(z,y,£) = 2nz - £ — 27y - £. Suitable Fourier integral operators

can be realized as integral operators.
1.2.4.5 Affine Pseudodifferential Operators

Definition 1.2.19. An affine pseudodifferential operator with symbol L is an oper-

Af(t):/R/RL‘,(a,b)%f (t;b) da db.

Note that the operators that we call affine pseudodifferential operators have also

ator having the form

been called “wideband channels” in the literature because these operators model the
Doppler and multipath effects of wireless communications. Also the definitions of
affine pseudodifferential operators and wideband channels vary in the literature (see
[4], [75], [68] and [29]). In particular, Definition 1.2.19 is different from these sources

in that dilations are L' normalized, not L? normalized.
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CHAPTER 11

DENSITY COMPARISON FOR SEPARABLE WAVELET
FRAMES

2.1 Introduction

The best-known frames for function spaces are coherent state frames of the form
{o(x)f},cx where o is a unitary representation of a locally compact group G and X
is some collection of points in G. The density of X in G, which is in some sense the
“average” number of points of X in a subset of G with unit measure, influences the
properties of the frame. In the case that G is a locally compact abelian (LCA) group,
much is known about the relationship between the frame properties of {o(z)f}, cy
and the density of X. In particular, X must have density larger than some fixed “crit-
ical density” or Nyquist density in order for {o(x)f}, . to be a frame. This critical
Beurling density phenomenon underlies the classic Nyquist-Shannon Sampling The-
orem and the work of Landau, both of which characterize frames of exponentials
for L*(I) (see [55], [62], [53]). The Heisenberg group is “almost abelian” in some
sense, and the Nyquist density properties of arbitrary Gabor frames were derived by
Ramanathan and Steger in [58] (see [42] for an exposition of the history of density
theorems for Gabor frames as well as extensive references). These critical density
results were extended to arbitrary LCA groups in [2]. The Homogeneous Approxi-
mation Property (HAP), originally developed in [58], is a powerful tool for analyzing
frames. As demonstrated in [2] and [37], it is the HAP for LCA frames that gives
rise to the critical density that these frames obey. The HAP for LCA frames also

gives rise to a “comparison theorem”: if {o(x)f}, ¢ is a frame with bounds A, B and

15



{o(y)g},cyis a frame with bounds F, F' then

Algl® _ D(X.p.c) _ Bllgll”

3
PP S DO S B @)

(see Theorem 7 in [2]).

If o is a unitary representation of a locally compact non-abelian group, then a
frame {o(z)f},cy need not demonstrate a critical density phenomenon. In particular,
wavelet frames are well-known for not having a critical density. For any a > 1, b # 0
there is some ¢ so that {a” 21 (2% — bn) }mnez is a frame for L?(R), which implies
that for any positive number d, there is a wavelet frame for L*(R) with density d
(see [24]). This fact still holds when we consider ¢ having some fixed admissibility
coefficient (see [24]), and in the case that {a™2¢ (& — bn)}ynez is a Riesz basis,
{a= 29 (£ — Bn) }mnez is still a Riesz basis for all 3 near b (see [1]). In light of these
facts, it is surprising that wavelet frames do satisfy a homogeneous approximation
property. In [44], the authors prove a HAP for wavelet frames, and for suitable wavelet
frames {o(z)f},cx and {o(y)g},cy, the HAP gives one-sided density estimates: for

each € > 0, there is some R(g,¢) so that

1—¢ < D(X,p,c)
57 = D(Y,p.o)

(4)

However the HAP cannot imply a critical density or a two-sided estimate like (3).
These results are generalized to arbitrary locally compact groups in [34], although
the results are qualitative in nature, in contrast to the very precise results known for
LCA frames.

In this chapter we will compare separable wavelet frames of the form

{U(uvv)f}ueU,veV and {U(S’t)g}ses,teT'

Since the best-known wavelet frames have this form, these results are applicable to
a broad class of familiar wavelets as well as certain more general irregular wavelet

systems. The main result in this section is a HAP for separable wavelet frames
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that is both more powerful that the usual HAP in some sense but less powerful
in another. This HAP allows us to delineate relationships between the densities
of U,V,S and T, the admissibility constants of f,g and the frame bounds of the
sequences {o(u,v)f},cp ey and {0(s,t)g},cqep- As a consequence, we obtain a
comparison theorem for separable wavelet frames analogous to (3). Our comparison
theorem is interesting because it shows a new similarity between wavelet frames and
LCA frames. Both LCA frames and certain wavelet frames have a HAP and have a
two-sided comparison theorem. Yet LCA frames have a critical density, while wavelet
frames do not.

Separable wavelet frames allow us to independently analyze the translation and
dilation parameters comprising the frame. Our main result concerns the dilation

indices. For suitable U, S C RT and suitable f,g € L*(R) we show that

o=jm (XS [awP o £

s€SNayrfe=M eM]uelU

- Y% [l ifart)

ueUNap[e=M eM] s€S

for all sequences {an},,cy C R*. For separable wavelet frames whose translations
form a Fourier frame, this result is a type of HAP on RT because it ensures that
functions are well-approximated by finitely many dilations and infinitely many trans-
lations. However, it is in fact more powerful that the usual HAP because it ensures
simultaneous approximation by {o(u,v)f},cp e and {o(s,1)g} s e

As a consequence of our HAP, we obtain a comparison theorem for the densities
of two wavelet frames. In particular, if {o(u,v)f}, )coxv: {0(8,0)9} s pesxr are

frames for L?(R) with frame bounds A, B and E, F, respectively then

AC, < D(U x V,e,p) < BC,
FCy = D(SxT,e,p) — EC;
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for all suitable f,g € L*(R), U, S C Rt and V,T C R, where Cy, C, are the admissi-
bility constants of f, g.

The remainder of this chapter is organized into five sections. The first contains
definitions and preliminary lemmas necessary to prove key theorems. Section 2.3
contains the main result and its proof. The applications of the main result to wavelet
frames are explored in 2.4. These results are extended to certain wavelet frame

sequences in 2.5.

2.2 Definitions and preliminary lemmas

2.2.1 Affine Group

Definition 2.2.1. Assume G s a locally compact group. Let U (L2 (Rd)) denote the
set of unitary operators on L? (]Rd). A unitary representation of G' is a homomor-

phism © : G — U (L2 (Rd)) that is continuous with respect to the strong operator
topology on L? (Rd).

Definition 2.2.2. Let G be a locally compact group. The left Haar measure on G
is the unique nonzero Radon measure pv on G which satisfies p (zFE) = u(E) for all

z € G and all Borel E C (.

The book [31] explains the theory the unitary representations of locally compact

groups.

Definition 2.2.3. The affine group A is the set RT™ x R with multiplication

(a,b)(z,y) = <ax, Y+ g—i) .

For (a,b) € Rt x R, we let o(a,b) denote the operator D,T,, where D, denotes the

dilation D, f(t) = ]a\’%f(g) and T, denotes the translation Tyf(t) = f(t — b).

It is known that o is a unitary representation of the affine group on L?(R). We let

1 denote the left Haar measure of the affine group on L*(R); that is, du(a, b) = 92 db.
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It is worth noting that the affine group is sometimes defined with the larger set

R\ {0} x R or with multiplication
(4, ) (2, ) = (wz, v+ ug).

When the affine group is defined with this alternate multiplication the left Haar
measure is 9% dv and o’(u,v) = T,D, is a unitary representation. See [51] for a

comparison of these different definitions of the affine group.

2.2.2 General Density

The density of X in G is in some sense the “average” number of points of X in a

subset of G with unit measure.

Definition 2.2.4. Let G be a locally compact group with left Haar measure p, and let
{Qum} ey C G be a sequence of compact sets satisfying Qn C Qg for all M € N
and UQy = G. Let X be any collection of points in G. For any free ultrafilter p and
each sequence ¢ = {cp} ey C G, we define the density of X with respect to p and c

to be
X NenQul

Dg(X, p,c) = p-lim Q)

The upper density of X is

XN
D}(X) = limsup sup —‘ 9Qum|

M—oc0 geG M(QM)

while the lower density of X is

D (X) = liminf inf 2 09@]
M—o0 9eG p(Qur)

where cpQ v, 9Qnr denote left multiplication by cyy, g, respectively.

The properties of free ultrafilters are described in the appendix of [3]. Tt is a fact
that every free ultrafilter limit of a sequence is an accumulation point of the sequence.

So for each free ultrafilter p and each sequence ¢ = {car},,en € G, We have

Dg(X) < Dg(X,p,¢) < DE(X).

19



Furthermore, there are p, ¢ so that D/ (X) = D(X,p,c). Similarly there exist p, ¢ so
that D (X) = D(X,p,c).
In general, if there are p, ¢ so that Dg(X, p, c) = oo then no {o(z)f},.y will be a

frame. To avoid such sets we make the following definition.

Definition 2.2.5. Suppose G is a locally compact group and X 1is a collection of

points in G. If for any compact U C G, there is some finite K so that

S
zeX

=
then X is relatively separated.

2.2.3 Affine Density

We will consider affine density with respect to the choice of sets {Qns}aren given by
Qu = [e™,eM] x [-M, M]. Henceforth Dy (X, p,c), D (X) and D, (X) are defined
as in Definition 2.2.4 with respect to this particular choice of (Qy;. The set Q) is a
rectangle in A centered at (1,0), and u(Qar) = 4M?2.

The following lemma ensures that relatively separated sets in the affine group have

finite density (see Lemma 3.1 in [69] for proof).

Lemma 2.2.6. If X is a relatively separated set in A, then there is some finite K so
that

Dy(X,p,c) < K
for all free ultrafilters p and all sequences ¢ = {cyrtaen C A. In particular, D} (X) <

0.
2.2.3.1 Density in RT, R

In addition to density of sets in A, it will be useful to measure the densities of subsets
of RT and R. We fix Iy = [e™™, eM]. Following Definition 2.2.4, for S C R and
a={ay} C R" we set

. SNla efM,a eM ) SNawl
DR+(Sap7a’):p_hm| [ M2M = ” :p-hm#,
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SﬂTIM’
DF.(S) =i —‘
e (5) = lmsup sup =57

Y

and

_ e STy
Dy (5) = liminf inf =7

For T C R and b = {by;} C R we set

2M 7
7N —M, M
D (T) = lji\f[n sup Slelg | (@ j;][\/! . M) l,

and
TG =M, M)
Dy (T) = liminf inf oM '

Relatively separated sets in both R™ and R have finite density. In the next two
lemmas, we prove density-like results for relatively separated sets in R™ and R. These

results are needed for the proof of the main theorem.

Lemma 2.2.7. Suppose S C R is relatively separated. Then there is C' € [0, 00)

such that
(a) |SNriy| <2CM VM eN,;reR" and
(0) 1S 07 (Inpsw \ Inr)| 20N ¥M,N € N,r € R*,

Proof. First we prove (a). Consider the compact set I} = [e™!, e]. By definition, there

is some C € [0, 00) such that

=
ses

Thus for each j € Z we have > _¢ X, (re?) < Cy. Notice that

< (.
00

ZXSIl(rej) = }{s €S:set<rel < se}}

seS

= }{s eS:reéd < s§rej+1}|.
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Thus if M =1 we have

SO rIy| =Y X, (r) < Ch.

seS
For M > 1 we have

M1
SNrly C U {sES:rej’1 §S§T€j+1},
j=— M1

which means

M—1
1SNyl < Z Hs eS:redt<s< rejHH
j=— M1

= Z_ Z Xor, (1€7)

j=—M+1 seS
M—1
< Z Cy
j=—M+1
<Cy(2M —1).
Choosing C' = (' gives (a).
We will show that (b) is also satisfied for C' = C;. Notice that
SﬂT(]M+N \ ]M)

= {sES:re_M_N < s<reMorreM < s §r6M+N}

—M-1 M+N-1
- U {seS:re ™t <s<redt'}u U {seS:re™ <s<redt}.
j=—M-N+1 j=M+1

Thus

SO (Inren \ 1))

_M-—1 M+N-1
< D 2 Xl + Yy Xn(re)
j=—M—N+1 s€S j=M+1 seS
—M-1 M+N-1
< Y arda
n=—M-N+1 n=M+1
<20,(N 1)
< 2CN.
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Lemma 2.2.8. Suppose T C R is relatively separated. Then there is C' € [0,00) such

that
(a) TN (z+[-M,M]))| <2CM VM €N,z €R and
(b) TN (x4 [-M — N,M+ N]\ [-M,M])| <2CN VM,N € N,z € R.

Proof. Since T is relatively separated, there is some C] < oo such that

Z Xtt[-1,1]

teT

< (.

[e.o]

Choose C' = (. Notice that

> Xewpryl@tn)=|{teT tcx+n—1n+1]}.

teT
Thus
M-1
TNz+[-MM|< Y |{teT:teax+n-1n+1]}
n=—M+1
M-1
= 2 D Xep(e+n)
n=—M+1 teT
M—-1
<y G
n=—M+1
<Ci(2M —1)
< 201 M.
Also,

TNz +[-M— N,M+ N]\ [-M, M]|

~M-1
< Y {teT:teax+[n-1n+1]}
n=—M-—-N+1
M+N-1
+ Z HteT:tex+[n—1,n+1]}
n=M+1
—M-1 M+N-1
= 2 D Xepw(edn) ) Xupan(@ )
n=—M-N+1 teT n=M+1 teT
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—M-1 M+N-1

< Z C, + Z 4

n=—M—N+1 n=M+1
< 2C1(N —1)
< 2CN. ]

The following lemma relates density in A to density in RT and R.

Lemma 2.2.9. Suppose S C Rt and T C R. For any sequence {cp} = {(anr,ba)} C

A and any free ultrafilter p we have

Dy (T) Dgp+(S,a,p) < Dp(S xT,c,p) < Dﬁg(T) Dg+(S,a,p)

Proof. Notice that (s,t) € cyQy if and only if s = apz for some = € [e™™ ]

and t = y + 2 for some y € [—M,M]. That is (s,t) € cyQar if and only if

s € UNayly and t € 0% 4 [N/ M]. Thus

1S x T NenQul < [SNanle™, eM)| - sup |T Na + [-M, M]|.
z€eR

Using the product preservation property of free ultrafilters, we see

p-lim S X T NenQul
H(QM)
. ‘SHGM[Q_M,EMH . ‘Tﬂx_i_[_M’M]l

< -1 . 8

> (p 1m 217 p 1m31€1£ i

r —M, M
:DR+(S>aap)' p—hmsup| ﬂx+[ ) ]| ‘
z€R 2M

| TNz+[—M,M]|

ST is an accumulation point of the sequence

Since p-lim sup,cp

su
i oM

{ |Tm:c+[—M,M]|} |

we must have

TN+ [-M,M]| T Nz +[-M, M]|

-lim su < limsupsu
= Dg/(T).
The other inequality is proven similarly. [
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2.2.4 Fourier Frames

Definition 2.2.10. We say that £(T) = {€*™*}, 1 is a Fourier frame if there is

some 1 so that E(T) is a frame for L*[—r,r].

It is well known that {r’%e%i%‘”} is a frame (and in fact an orthonormal basis)
neZ
for L?[—%, £]. The following theorem, from [78], shows that Fourier frames are stable

under ¢*° perturbations.

Theorem 2.2.11. Suppose I is a compact interval and E(T) = {*™*}, 1 is a
Fourter frame for L*(I). Then there is some € > 0 so that if {s},.p satisfies

SUpyer [t — 8i| < € then {e*™**}, . is also a Fourier frame for L*(I).
The density of a Fourier frame is determined by the frame bounds.

Lemma 2.2.12. Suppose V C R and E(V) = {*™"} . is a frame for L*[—r,r]

with bounds A, B. Then

A<Dz (V)< DF(V)<B.

Proof. This holds by Theorem 7 in [2]. The exact details are given in the appendix.
O

2.2.5 Wavelet Frames

A wavelet frame for L*(R) with frame bounds A, B is a sequence {o(z)f}, .y, where
f e L*R) and X C A, satisfying

Vhe L*(R), A[A|* <> [Wih(z)* < B]|h|*.

zeX

A separable wavelet frame is one of the form {o(s,t)g} , csxr- Separable wavelet
frames of the form {o(a™,bn)g},, , o have been studied extensively and used widely in
applications. If £(T') is a Fourier frame then the frame and Bessel sequence properties
of a sequence of the form {o(s,t)g} ycg.p are largely determined by the behavior

of the function }__ 4 |§(sx)|>. For this reason, we make the following definition.
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Definition 2.2.13. Let S C Rt. We say that g is Chui-Shi bounded with respect
to S if there is some finite K such that
> llsz) < K ae.
ses
It was proved in [15] that for regular wavelet frames {o(a™,bn)g}, the function
S |g(a™x)|* is bounded almost everywhere. This was generalized in [77] to the

following theorem.

Theorem 2.2.14. Suppose {o(u,v) [}, ,\cuxv i a frame for L*(R) with frame bounds
A, B and E(V) = {e*™"} _\ is a frame for L*[—ry,ry] with bounds Ay, By. Then

a.e.

<_
— Ay

uelU
Definition 2.2.15. Given a free ultrafilter p, sequence ¢ = {ca} ey = (@, 0a0) } pren
C A and admissible [, g generating wavelet Bessel sequences G = {0(s,t)9}(, nesxr
and F = {o(u,v) [}, yeuxy: we define the relative admissibility measure of F with

respect to G to be

1 dx
, Iim —— ST) (uz)|?
() = plim e 303 [ ) )5

ueUNap Iy sES
If g is Chui-Shi bounded with respect to S, then urg(p,c) is a type of average
admissibility constant for f.

In this section we develop results that allow us to estimate sums of the form

ZueUﬂaMIC ZSGSI |g ST ‘ ‘f(ux> 2%'

Definition 2.2.16. Suppose f,g € L*(R). We say that f,g are a localized pair if

dx dy
[ s [t ifeor s
[0,00) \ c€[ye~1,ye] ‘ | Yy

Notice that

dz d . dzd
/ sup / P \fef 2= [ s [lgtenPIfp Y
[0,00) cE€[ye~ ’SC‘ Yy [0,00) cE[ye~1,ye] ‘l" Yy
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so that localization is a symmetric relation.

The following lemma gives a class of functions that form a localized pair with any
admissible wavelet. A generalization of this proof technique shows that any function
in L?(R)N L>=(R) whose Fourier transform is supported in [—Qy, —Q0]U[Q0, Q4] forms

a localized pair with any admissible wavelet.

Lemma 2.2.17. Fiz a > 1. FEvery admissible function f forms a localized pair with

the function g whose Fourier transform is g = X[_1,_q-1)U[a~1,1]-

Proof. Fix an admissible function f. We have g = X|_; _4-1)uja-1,1)- Then

A dz dz
mwmﬂm?—z/ P
A),oo) |£If| [ca=1,cal |$|

For e™ <y < €™ and ¢ € [ye™!,ye] we have [ca™!,ca] C [a~te™ !, ae™?]. Choose

k > 0 so that a®> < e*. Then [a~te™ ! ae™?] C [a~te™ L a~Le™T#2]. We have

A dz dy
~ 2
[ [l
0,00) c€lye el J [0,00) x|y

A dz dy
- [
[em em+1) celye=1,ye] J [ca—1,ca] ‘I’| Yy

mEZ

A dz dy
< r)|? = ==
Z/em 6m+1)/[(l—1em—17aem+2] |f( )| |$| Yy

meZ

—Zﬁl P o

meZ em— 1 aem+2]
A dx
< 22
Z/ —lem—1 g—1em-+k+2] ’f(.iﬁ)‘ ‘:L"
meZ
< (k+3)Cy.
Similar estimates hold for

[ @R s 0
(~o0.0) \SC a

The following result is a special case of Lemma 1 in [34].
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Lemma 2.2.18. Suppose that R C RY is relatively separated. If f,qg are a localized

pair then there is some finite K independent of f,g and R so that

dz d
O e I N e
Jye

T
reRNIS, Iy r€lye™ =1y

for all M > 1.

2.3 Main result

We begin by showing that for suitable f, g, certain average admissibility constants of

f, g are proportional. We need not have wavelet frames to derive this result.

Theorem 2.3.1. Suppose that U and S are relatively separated in Rt and f,g €
L*(R) are admissible, form a localized pair, and are Chui-Shi bounded with respect to

U, S, respectively. Then for any sequence {ay} C RY, we have
O—hm— Z Z/|gsw\|fuw)\2dw
W 20 m
SESﬁa]\/[I]\/[ uelU
dw
- Y X [utw iRt

ueUNap Iy s€S

Proof. Fix ¢ > 0. Since f, g are a localized pair, we can choose M. € N so that

/ sup / (@) 21 (ro)P
I, relye Llye] ||

de

dx dy
[ s [lataifar s T
7o oy

]\

and

By Lemma 2.2.18, we can choose K; < oo so that for all M > 1 we have

> [t ||fua:||| / sup /|g 2 | F ) 2 B0

weUnI§, Elyety | y

and

dx dy
> [l i |2—§K1/ sup [ latra) 1)
‘ | _, m€[ye~ 1 ye] |§C| Yy
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Since f, g are Chui-Shi bounded with respect to U, .S, we can choose K3 < oo so that

> lglsw)’ < K ace.

ses

and

. 2
fluw)| < Ky a.e.

D

uelU

By Lemma 2.2.7, since U and S are relatively separated in R*, we can choose K3 < 0o

so that for all M € N and » € R™ we have
|SﬂrlM|§2K3M, |SﬂT(]M+M€\IM)| §2K3M6,

UNrLy| <2KsM and  |[UNr (T, \ In)| < 2K3M..

Write

2 Z/\Q(Sx)yﬂf(ux)‘?%— > Z/‘ﬁ(sx)mf(ua?)f%

seSNay Iy uelU ueUNan Ipg sES

-y v / ra<sw>|2\f<ux>|2%

seSNan I ueUNap IS

Y / |g<sx>|2|f<ux>|2i—ﬁ

ueUNay In seSNapI§;

- Y Y [ueriiwrs

seSNanr Iy ueUmaMI]%}Jng

LD ST DI A

T
Sesma]\/fll\/f UGUQU‘A[(IA[+]WE\IM) | |

-y ¥ / |@<sx>|2|f<ux>|2%

ueUNap I sGSﬂaMIf{JrMe

. A dz
S > [ ltoP P
u€UNan Inr s€SNans (Instar \Inr)

=T +T5-T5—1T,

We can estimate T by noting that for s € S Nay Iy and u € U N aMIJ\C;HME, we
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have 2 € ]1\045- Using this fact along with Lemma 2.2.18 we have

LIEED SRR I A N

seSNan In ueUnay IS,

MM,
de
< |SNaplpy| sup Z 19( 55’3‘ |f ur)| ’ |
shaarlas weUNam Iy, 5
< |SNayly| sup /’g Iy ’f )’2 w
sNap g GUQGMII\/[JFM
. R dw
< |SNaplp| sup Z G(w)* |f (rw) | —
sNanIpg rEs*lUﬂaMfc ’U)|
dx d
<isnautul sw & [ s [la@PIfeap Y
sNan I I _ rE[ye 173/@] | ‘
dx d
—isnalul K [ s [la@ fooP Y
I§). 4 r€lye=tye] |a:| Yy

S 2MK1K3€.

We estimate Ty by

T= Y 3 / 19(s2) 2| Fua)? i,—|

s€SNan Iny ueUNan (Inrsnie \I s

)
R , da

ueUﬂaM(IM-i,-ME\I]\/[)

= > K>Cy

weUNan (Ins4n:\ 1)

IN

< 2K, K3Cp M.

Similarly, we can show

’T3| S 2MK1K3€

and

ITy| < 2K,K5C, M.
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Thus

> Y [l P = 33 [latsu) IR 5

w
seSNay Iy uelU ueUNap Ipng SES | |

< DI+ 1T + |Ts] + [T
- 2M

M.
<AK Kse + 2K, K5(C, + Cf)ﬁ

L
2M

— 4K 1K3e as M — oo.
Since ¢ is arbitrary, the result follows. O

For separable wavelet frames and frame sequences in L?(R), Theorem 2.3.1 can
be restated as a useful relationship between the relative admissibility measure of a

frame and the density of its dilation parameters.

Corollary 2.3.2. Suppose U, S are relatively separated in R™ and f,g € L*(R) are
admissible, form a localized pair, and are Chui-Shi bounded with respect to U, S, re-
spectively. Let G = {0(s, )9}, pesxr and F = {o(u,v)f}, yevxy- Then for any

sequence a = {ap } C RT,
/’Lf,g(pa C) : DR+<U7p7 CL) = ,ug,]:(pa C) : DR+<S7p7 a’)7
where ¢ = {(an, bar)} C A for any sequence {by} C R.

Proof. Notice that

,U]:g(p, C) : DR*(U7p> Cl) - Mg,f(p, C) ' DR+<Sapa (1)

. HUNanIn}
—= —l -_—
<p im S

) 1 . 24 o dw
X (p-hmm Z Z/|9(3w)| | f(uw)] m)

UEUO(IIMIIM SES
— | pljp X2 —M MY
(p im Wi

. 1 A 2,7 2d_w

SESHG]\{IA{ uelU
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o . |{Uﬁ(lMIM}‘ 1 ~ 27 de
= <p—hm Wi {0 A an )] Z Z/’g(sw)’ | f(uw)] m)

ueUNap I seS

. S Naylu 1 R 2 7 o dw
_ <p-hm‘{ s % [latew ) m)

seSﬂaMIM uelU

1 R 9 2 5 dw
:p—hmm( > % [l P £

UGUOCLJ\/IIM sES

-y ¥ |g<sw>r2\f<uw>|2%).

SGSﬂaJMI]u uelU

By the previous theorem,

o:ﬂgnmﬁ< >3 [ latwp fw) 5

u€UNan Ipg sES

-y |g<sw>|2|f<uw>|2iu—w‘>.

SESO&]\{I}M uEU

Since every free ultrafilter limit is an accumulation point, we have

o:mmﬁ( > ¥y |g<sw>|2|f<uw>|2%

ueUNapr I s€S

. 27 o dw
- Y X [latwl i) m).

SESO(L}\/II]\/I uelU

Hence

,Uf,g(pa C) : DR+(U7p7 (l) - Mg,f(p7 C) ' DR+(Sup7 a) =0 L

2.4 Comparison Theorem for wavelet frames

In this section, we apply Theorem 2.3.1 and Corollary 2.3.2 to wavelet frames for

L*(R) to derive a comparison theorem.
Theorem 2.4.1. Suppose the following conditions hold.

(a) f,g € L*(R) are admissible and form a localized pair.

(b) U and S are relatively separated in R*.
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(c) VCRand E(V) = {e*™"} .\ is a frame for L*[—ry,ry] with bounds Ay, By .

(d) T C R and E(T) = {€*™"},.r is a frame for L*[—ry,rr] with frame bounds

Er, Fr.
(e) F={0(w,v)f}mevxy @ a frame for L*(R) with frame bounds A, B.

(f) G ={0(s,)9} (s pyesxr s a frame for L*(R) with frame bounds E, F.

Then for any free ultrafilter p and any sequence a = {ap} C RT

AETCQ < DR+(U,CL,])) < BFTCg
FBch - DR+(S,CL,p> - EA\/Cf

Proof. By Theorem 2.2.14, we have

A A B
< 2< 2 ae. )
e S M) < 4 ae weR

uelU

Hence

3G =Y [l fanP i < o,

uelU

which implies

A B
By Cy < pgr(p,c) < T Cy (5)

for all p and ¢ = {(an,br)} C A. Similarly,

for all p and ¢ = {(ap, bar)} C A. Finally, by Corollary 2.3.2 we have

DR+(U,a,p) _ ,ug,}‘(p; C) (7>
DR+ (S; a,p) ,U,]:,g(p; C)

Combining estimates (5), (6) and (7) proves the theorem. O
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Corollary 2.4.2. If F = {o(u,v) [}, ,yevxv is a frame for L*(R) with frame bounds
A, B and E(V) = {e*™"} _\, a frame for L*[—ry,ry] with bounds Ay, By, then for

any free ultrafilter p and any sequence a = {ay } C RT we have

2A 2B

< Dp+(U. < .
BVCf = R+( 7aap) — AVCf

Proof. Letting g =Xy _1y1 4y and G = {o(2™,n)g},, nez We obtain an orthonormal
basis for L*(R) with C; = 2In2. Notice {e*™*} . is an orthonormal basis for
L?[—1,1]. We have

m 1
Dg+({2"} ez, a,0) = )

for all p, a. Since Lemma 2.2.17 ensures that f,g are a localized pair, the result

follows from Theorem 2.4.1. O

We can use Theorem 2.4.1 to draw conclusions about the affine density of wavelet

frames.

Theorem 2.4.3. Suppose that the hypotheses of Theorem 2.4.1 hold. Then for any

sequence ¢ = {cyr} C A and free ultrafilter p we have

AAvETCg < DA<U X ‘/,C,p) < BBvFTCg
FBvFTCf B DA(SXT,C,p) - EAvETCf

Proof. Write {cp} = {(anr, bar)}- By Theorem 2.4.1, we have

AETCg < DR+(U,CL,p) < BFTCg
FBch - DR+(S,a,p) - EA\/Cf7

where a = {ap/} . By Lemma 2.2.12; we obtain

Ay < Dy (V) < D (V) < By

and

Er < Dg(T) < Dg(T) < Fr.

Combining these estimates with Lemma 2.2.9 proves the result. O
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We recover the main theorem in [50] as a corollary to Theorem 2.4.3.

Corollary 2.4.4. If F = {o(u,v) [}, ,ycvxy 5 @ frame for L*(R) with frame bounds
A, B and E(V) = {e*™™"} _y is a frame for L*|—ry,ry] with bounds Ay, By, then
for any free ultrafilter p and any sequence ¢ = {cp} C A we have

924 Ay
By C;

2B By
Ay Cy

< DU x V,e,p) <

Proof. Let g =Xy _1yjy;1q and G = {o(2™,n)g},, nez S0 G is an orthonormal basis
for L*(R) with C;, = 2In2. We have

m 1
DA({(Q 7”)}m,n€Z’C7p> = n2

for all p, ¢. Since Lemma 2.2.17 ensures that f, g are a localized pair, the result

follows from Theorem 2.4.3. O

2.5 Comparison Theorem for wavelet frame sequences

It may appear that the crux of the proofs of Theorems 2.4.1 and 2.4.3 is the estimates

B
Z}fuw <—ae weR (8)
uelU V
and
F
Z <—ae w € R, 9)
e Er

which are guaranteed by [77] when F, G are frames for L?(R). However, this is not
true. We can adapt our above approach to obtain similar comparison results for
certain separable wavelet frame sequences for which the inequalities (8) and (9) need

not hold.

Define an operator A by

~

—~

w)

(Ah)Nw) =

A function h is admissible if and only if b € L*(R) a

=3

nd Ah € L*(R). The admissibility

~—

constant of h is Cj, = ||Ah|[5.
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Theorem 2.5.1. Suppose the following conditions hold.

(a) U and S are relatively separated in RT.

(b) f,g € LAR) are admissible, form a localized pair, are Chui-Shi bounded with

respect to U, S, respectively, and f,g have compact support.
(c) VCR and E(V) = {e*™"}, oy is a frame for L*(supp f) with bounds Ay, By .
(d) T CR and E(T) = {e*™"}, .1 is a frame for L*(supp §) with bounds Er, Fr.

(¢) S is the frame operator for sequence F = {o(u,v)f}, yevxv-

(f) Sg is the frame operator for sequence G = {a(s,t)g}(syt)eSXr_p.

Then there exist constants o, € [By', Ay'] and A\, € [Fr', EZ'] so that

seSNay I

0= lim 1( Z sy (o(s,t)Ag, Sro(s,t)Ag)

_ Z Auw (0(u, v)Af, Sgo(u, U)Af>)

ueUﬁaMIM

for any sequence a = {ay} C RT.
Proof. Note that

< (s,t)Ag, Sro(s Ag>

= S o(s,0)Ag, o(u,v)f)

(u,0)eUXV
> |G tw, el

(u,0)eUXV

2
1

27ritsxu’ f(x)e—Zﬂ'ivx dr

w\H
Q>

(u v)€U><V
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2 dw

fw)| . (10)

SW |2
< A( )‘
VZ/ g U |w
uelU

where estimate (10) comes from the fact (V) is a frame for L2(supp f) with bounds

Ay, By. Similarly,

_/sw |2
i (%))
U

(o(s,t)Ag, Sro(s,t)Ag) > AVZ/

uelU

Choose a,; € [B;y*, A,'] so that

Ost <O'(S,t)Ag, S]:O'(S7t)Ag> = Z/‘g(sw)‘2|f(uw) 2 %
ucU
and choose A, € [F-', Ex'] so that
' d
Auw (0(u, 0)Af, Sgo(u,v)Af) = Z/ |3 (sw)|” f(uw)|2 Ww|

seS

Then

Z Qs t <0(s,t)Ag, Sfa(s,t)Ag> - Z Auw <0(u,v)Af, Sga(u,v)Af>

SESOGMI]W UGUOG,]\/II]\/[

= Y 3 [Pl - Y S [l

seSNap Iy uelU ueUNap Iny sES

f (ww)|
The technique used to prove Theorem 2.3.1 can be used to complete the proof. [

We can think of

p-lim . Z Auw (o (u,0)Af, Sgo(u,v)Af)

|U m aMIM| 'MGUOCLA{I]W

as a value similar to pzg(p, ¢). With this understanding, Theorem 2.5.1 is analogous

to Theorem 2.3.1.
Theorem 2.5.2. Suppose the following conditions hold.

(a) U and S are relatively separated in RT.

(b) f,g € L*(R) are admissible, form a localized pair, are Chui-Shi bounded with

respect to U, S, respectively, and f , § have compact support.
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(¢c) VCR and E(V) = {e*™"}, oy is a frame for L*(supp f) with bounds Ay, By .
(d) T CR and E(T) = {e*™"}, .1 is a frame for L*(supp §) with bounds Er, Fr.

(e) F ={0(w,v)f}umevrxy and G = {0(s,t)g} yecsxr are frames for some com-

mon subspace of L*(R) with frame bounds A, B and E, F, respectively.

Then for any free ultrafilter p and any sequence a = {ay} C RY, we have

AETCg < DRJr(U,CL,p) < BFTCg
FBch - DR+(S,a,p) - EA\/Cf‘

Proof. Let {ovsi}(, pneswr C (B!, AV, { Ao} wyerxv C [F', EZ'] be defined as in
the proof of Theorem 2.5.1 and let Sz, Sg be the frame operators for F, G respectively.

Since A < Sy < B and ay, € [By', Ay'], we see

AC, Bog}

Qs t <U(Svt)Aga S}-O-(Sat)Ag> = Qs By ) Ay

siag < |

Therefore

1 AC, BC,
-lim — A A g 2. D .
p-im Wi (SGS%: , Qs t <U<57 t) 9, S}—O—(Sv t) g>) € |: By ) A :| R+<Sa a7p)

Similarly,

L o2 [EC, FC
SZAf e[—f —f},

Fr ' Er

/\u,v <O’<’LL, U)f’ SgO'(u, U)f> - /\UJU

which implies
.1 EC; FCy
p-lim —( Z Auw (o (u, v)Af, Sgo(u, U)Af>) € [F_T’ E_T:| - Dg+(U, a, p).

2M
ueUNapns Iy

Hence from Theorem 2.5.1, we obtain

AETOg < DR+(U,CL,])) < BFTOg
FBch - DR+<S,6L,]9) - EAch.
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Corollary 2.5.3. Suppose the hypotheses of Theorem 2.5.2 hold. Then for any free

ultrafilter p and any sequence ¢ = {cpr} C A we have

AAvETCg < D(U X ‘/,C,p) < BBvFTCg
FBvFTCf B D(SXT,C,p) - EAvETCf.

Proof. Corollary 2.5.3 follows from Theorem 2.5.2 for the same reasons that Theorem

2.4.3 follows from Theorem 2.4.1. OJ
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CHAPTER II1

AFFINE PSEUDODIFFERENTIAL OPERATORS

3.1 Introduction

In this chapter, we investigate the Schatten class properties of affine pseudodifferential
operators. An affine pseudodifferential operator is a superposition of translation and
dilation operators. More precisely, an affine pseudodifferential operator is one of the

form
t—0b

a

Af(t):/RQE(a,b)éf( ) dadb,

Affine pseudodifferential operators arise naturally in the study of wideband mobile
communications, as noted in [4], [29], [38], [68] and [75]. Due to the multipath effect,
a signal is received via a wireless communications channel as a superposition of delays
of the transmitted signal. If the transmitter or receiver are moving, then the Doppler
effect implies that the signal received is a superposition of rescalings of the signal
transmitted. Hence, the received signal consists of superpositions of time-scale shifts
of the transmitted signal f of the form f (%) The quantity L(a,b) represents
the “amount” of the transmitted signal, distorted by scale-shift amount a and delay

amount b, comprising the received signal.
3.1.1 Relationship to Pseudodifferential Operators

Affine pseudodifferential operators are so-named because they are analogous to the
more widely-studied pseudodifferential operators. Just as an affine pseudodifferential
operator is a superposition of time-scale shifts, a pseudodifferential operator is a
superposition of time-frequency shifts. Pseudodifferential operators have appeared

widely in the literature of physics, signal processing and differential equations. In
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particular, since the Doppler effect for narrowband wireless communications is closely
modeled not as a change in scale but a shift in frequency, pseudodifferential operators
are models for narrowband wireless communications (see [38] and [68]).

Because of the role of pseudodifferential operators in partial differential equations,
the smoothness of the Weyl and Kohn-Nirenberg symbols of a pseudodifferential op-
erator has traditionally been used to characterize properties of the operator, with
the Hormander symbol classes playing key roles. More recently, the continuity and
Schatten class properties of pseudodifferential operators have been well-described by
time-frequency analysis. In particular the modulation spaces MP:(R%), which are Ba-
nach spaces characterized by time-frequency shifts, have been useful symbol spaces
for studying continuity and Schatten class properties of pseudodifferential operators.
Using the Gabor transform, elements in these spaces can be decomposed into a su-
perposition of time-frequency shifts, and this Gabor decomposition of the symbol of
a pseudodifferential operator can be used to characterize the properties of the opera-
tor. Results of this type appear in [21], [35], [41], [52], [71] and [73], while modulation
spaces appear implicitly in [23], [45], [47], [59] and [64]. See [33] for an overview of

modulation spaces and time-frequency analysis of pseudodifferential operators.

3.1.2 Summary of Results

3.1.2.1 Schatten class integral operators

Both affine pseudodifferential operators and pseudodifferential operators are types of
integral operators. In this paper we develop a technique for analyzing the kernel of
an integral operator to determine its Schatten-class properties. To obtain our main
result, we analyze the “slices” of the kernel of an integral operator using a resolution
of the identity. If these decomposed slices have a certain decay, then the operator is

Schatten p-class. As a special case, we obtain the following theorem.

Theorem 3.1.1. Suppose X is a locally compact group and o is an irreducible unitary
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representation of X onU (LQ(Rd)) with left Haar measure jn . Assume A is an integral

operator with kernel k and let k(t,y) = k,(t). Then there exists v € L*(R?) such that

if
(/X ( / [(ky, o (@)0)]? dy)

for p € [1,2], then A is Schatten p-class on L*(R?).

Y
2

du(az))p < 00, (11)

Notice that the integral in (11) is a mixed norm. The idea of using mixed norm
spaces to classify the Schatten class properties of an integral operator is not new.
In [60] and [56], it is shown that if the kernel of an integral operator belongs to
an appropriate mixed norm space, then the operator is Schatten class. However,
Theorem 3.1.1 is distinct from these older results. In particular, the mixed norm
in (11) is not a mixed norm on the kernel k. Instead, it is a mixed norm on a
transformation of k given by (Zk) (z,y) = (ky,o(x)y), arising from analyzing the
slices of the kernel with the resolution of the identity determined by {o ()}, .-

Theorem 3.1.1 is a general result that is applicable to all integral operators in-
cluding pseudodifferential operators, affine pseudodifferential operators and Fourier
integral operators. The implications of this theorem for pseudodifferential operators

and Fourier integral operators will be examined in Chapters 4 and 5.
3.1.2.2  Kernel and Symbol classes

The success of time-frequency analysis in characterizing pseudodifferential operators
suggests that time-scale analysis may be useful in analyzing affine pseudodifferential
operators. A direct application of Theorem 3.1.1 to affine pseudodifferential operators
yields a slice-wavelet condition on the kernel which ensures the operator is Schatten
class. Furthermore, because of the relationship between the kernel and symbol of
an affine pseudodifferential operator, Theorem 3.1.1 gives rise to conditions on the
ridgelet transform of the symbol which ensure certain spectral properties of the op-

erator. The importance of the ridgelet transform of the symbol of a Schatten class
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affine pseudodifferential operator is surprising to us because it is not analogous to
the symbol results for pseudodifferential operators and Fourier integral operators in
Chapters 4 and 5.

The wavelet and ridgelet conditions on the kernel and symbol, respectively, of an
affine pseudodifferential operator give rise to families of spaces, S, and R;  (defined
precisely in Section 3.4), useful for characterizing the Schatten class properties of

affine pseudodifferential operators. In particular, we obtain the following theorem.

Theorem 3.1.2. Suppose A is an affine pseudodifferential operator with kernel k and

symbol L.
(a) If k € Sy, for some p € [1,2], then A € T, (L*(R)).
(b) If L € T}, for some p € [1,2], then A € T, (L*(R)).

We will show that the spaces S, and T217p are Banach spaces and Banach algebras
under operations corresponding to composition of affine pseudodifferential operators.
Furthermore, we find smoothness and decay conditions on the kernel and Radon
transform of the symbol of an affine pseudodifferential operator that ensure the kernel

and symbol lie in Sy, and Ty

5> Tespectively. Interestingly, these types of conditions

also imply that the corresponding affine pseudodifferential operator is a Calderon-
Zygmund operator.

The chapter is organized as follows. Definitions and basic lemmas are given in
Section 3.2. In Section 3.3, we develop a Schatten class result for the kernel of an
arbitrary integral operator. In Section 3.4, we describe new function classes that
will be useful for characterizing Schatten class affine pseudodifferential operators. In
Section 3.5, we state the main result and prove that these new function classes are
nonempty. In Section 3.6, we find conditions on the Radon transform of the symbol

which ensure the operator is Calderon-Zygmund.
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3.2 Definitions and preliminary lemmas

3.2.1 Integral operator composition

This chapter concerns integral operators and affine pseudodifferential operators in
particular. We introduce two operations to describe the effects of operator composi-

tion on these operators.

Definition 3.2.1. Suppose ky, ky : R?? — C. Define k = kitks by

k(ta y) = /d kl(t7 .T)k'g(l’, y) d.T,
R
for all (t,y) € R?® for which this integral converges.

Definition 3.2.2. For L, L, : R? define the affine convolution of £, Ly by

L1 ® Lo(a,b) :// Li(u,v)Ly (g’b—v) d—udv
R JR—{0} uou

02
for all (a,b) € R\ {0} x R for which this integral converges.

We note that this definition of affine convolution agrees with the more general
definition of convolution on locally compact groups (see [30] for background) for the
affine group multiplication given by (u,v)(z,y) = (ux,v + uy). However, this fact is
not relevant to the analysis in this chapter.

The composition of two integral operators is an integral operator and the compo-
sition of two affine pseudodifferential operators is again an affine pseudodifferential
operator. The following lemma, which is proved by direct computation, describes

how new kernels and symbols are obtained through operator composition.

Lemma 3.2.3. Suppose A1, Ay are affine pseudodifferential operators with symbols,
L1, Lo, respectively and kernels ki, ko, respectively. Then Ay o As is an affine pseu-

dodifferential operator with symbol L1 ® Ly and kernel kifks.
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3.2.2 Singular integral operators

An integral operator whose kernel is singular along its diagonal is a called singular
integral operator. The following theorem concerning singular integral operators comes

from [26].

Theorem 3.2.4. Suppose T is an integral operator with kernel k such that T :
L*(R) — L?*(R) is bounded. If there is some finite C' such that

Sup/ k(t,y) — k(t',y)|dy < C
jt—t|<L]t—y]

tt/

and

sup / k(t,y) — k(t, )] dt < C,
ly—y'|<3t—yl

5y’
then T : LP(R) — LP(R) is bounded for all p € (1,00). In this case, T is called a

(generalized) Calderon-Zygmund operator
See [26], [32] and [67] for background on Calderon-Zygmund operators.
3.2.3 The relationship between kernel and symbol

Recall that the Radon transform of £ € L'(R?) is given by

RyL(s) = RL(O,s) = / L(x) dzep,s), for all (0,5) € ST x R,

{zeR2:z-0=s}
where dxgs) denotes the one-dimensional Lebesgue measure on the set ((0,s) =
{z € R?: -0 = s}. The next lemma describes a well-known property of the Radon

transform. See [57] for the proof.
Lemma 3.2.5. For each 0 € S' we have ||[RoL]| ;1 gy < [I1£]] 11 (gey-
We also recall that for admissible 1) € .(R), the ridgelet transform of £ € L'(R?)
1s
R(L)(a,b,0) = (RoL,TyDotb) = (RoL * D_gp) (b) Vo€ S aeR\{0},beR.
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Comparing Definitions 1.2.19 and 1.2.16, we see that each affine pseudodifferential
operator is also an integral operator, and the kernel of the affine pseudodifferential

operator with symbol £ is

k(t,y) = /Rﬁ(a,t — ay) da.

This shows that the kernel and symbol of an affine pseudodifferential operator are re-
lated via the Radon transform. It is this relationship, stated precisely in the following
lemma, that will allow us to use kernel conditions of Schatten class integral operators
to draw conclusions about the symbols of affine pseudodifferential operators. Direct

computation gives the following result.

Lemma 3.2.6. Suppose A is an affine pseudodifferential operator with symbol L
and kernel k. Then k = RL o O where O : R? — S* x R is given by O(t,y) =

((Wyrz“’ \/y12+1) ’ \/yt”l)

Since the kernel of an affine pseudodifferential operator is closely related to the

Radon transform of the symbol, the wavelet transform of the kernel corresponds to
the ridgelet transform of the symbol. The exact relationship is given in the next

lemma, which is proved directly using Lemma 3.2.6

Lemma 3.2.7. Suppose A is an affine pseudodifferential operator with kernel k and
symbol L. Then

)t “_ [
(ky, T D) = (y° + 1) R(ﬁ)(\/y2+1’¢y2+1’<\/y2+1’\/y2+1>>'

3.3 A Schatten Class Result for Integral Operators

In this section, we develop a general Schatten class result for integral operators.
Although the result (Theorem 3.3.2) is elementary, it does not seem to be in the

literature. The crux of the proof lies in the following lemma.
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Lemma 3.3.1. Assume {f;},.y,{9;};cy are orthonormal sequences in L*(RY). Sup-
pose {},x is some collection of functions in L*(R*) with B = sup, x ||¢$||L2(Rd)

oo and suppose that (X, ) is a measure space satisfying

(f.9) =K' /X o) (o) du(z),  for all fg € L3(RY).

For G € L**(R4, X)) define
16) = { [ (.Gl dnto) |

11 _1
Then for all p € [1,2], T : L**(R%, X) — (7 (N) is bounded with ||T| < Bﬁ_iKi "

Proof. By Tonelli’s Theorem and the Cauchy-Schwarz inequality, we have

TGl =)

/X (32 G 0)) (s 95} dpa(a)

j/eNZ (fi, G )| (Y, g5)] dpa(z)
JEN 1 |
/ (Z' fan Gl 2)2(%|<wx,gj>|2)2dﬂ<x>

< [ 160 gm0y o)
1

< B [ G (o)

= B Gl ey

and

[NIES

||T HE fJ’ R )><1/)xagj> d:u<x)

(jeN 2)
5 (/‘fh ot o)) [ 1)t ) )
<JGN (/ (5, GG 2Dl dae )) Kw”%\lm(w))?

(/Zm, o) du >)5

jeN

I IN

I
@Nmp-‘
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i 3
< K} ( R du<x>)
1
= KzZ ||GHL2»2(R‘1,X) :

Hence the theorem holds for p = 1 and p = 2. The Riesz-Thorin Interpolation

Theorem (see [8]) gives the result for p € (1,2). O

The next theorem gives sufficient conditions on the kernel of an integral operator
so that the operator is Schatten p-class when p € [1,2]. Notice that part (b) of the

theorem shows that the analogous conditions are not sufficient for p € (2, o0o].

Theorem 3.3.2. Suppose {{,}, .y is some collection of functions in L*(R?) with

B =sup,cx ||z/1x||ig(Rd) < oo and suppose that (X, ) is a measure space satisfying

(f.0) =K' /X o) (e g) du(x)  for all f,g € L(RY).

Assume A is an integral operator with kernel k.

(a) If p € [1,2] then

1
11 -1 2
1Az, (z2meyy < B 2K, H (/Rd [y, ) dy)

Lp(X,p)

(b) If p € [2,00] then

H ([ Wt )

Proof. Suppose p € [1,2] and { [}, {9;},en are orthonormal sequences in L*(RY).

_1
P

11 1
<B?**K,
Lr (X, )

||A||IP(L2(Rd)) :

Let G(y,x) = (¢, k). Notice that

(Afy, i) = / / £ )kt 98200 dy dt = (£, G, 2).

1
p)p

Using the previous lemma, we have

(z <Afj,gj>|p); _ ;! (z

jeN jeN

/X (Afy, )i, g) ()
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RS

=K, (Z

jEN

/X (5 G, 2)) (e, 95) dpa()

p)
1pi-1 1—%
< K B Gl o,

- By ( ([ tvar dy)g du(cc))

Taking the supremum over all orthonormal sequences gives (a).

S =

Now we prove (b). In the case p = 2 we have

H( [ W) a0) - (] [ o )

. 2 :
_ K} ( [ B dy)
]Rd

1
= K k]| L2 20

1
2

L¥(

1
= Ki ||A||12(L2(Rd))

Consider the case p = co. We see that (k,,¢,) = A*¢,(y). Hence

H ([ 1wt )

~ sup ( (k) dy)
R

LP(X ) zeX
= sup || A"V [ r2(ga)
zeX
< sup [[A]| [[¢z ] > @y
zeX
1
< B? | Al (r2(ay) -
The case p € (2,00) now follows by interpolation. O

The conditions assumed in Lemma 3.3.1 and Theorem 3.3.2 are valid for two
common types of resolution of the identity, namely frames and irreducible unitary

representations.

Example 3.3.3. Suppose X is a locally compact group and o is an irreducible unitary

representation of X on U (LQ(]Rd)) with left Haar measure v . Then for some ¢ €

49



LX(RY) with ||| j2gay = 1, there is Ky € (0, 00) with

(F9) = K3 [ (F){umg) dute)  for all £.g € L2(RY),
X
Thus the conditions of Theorem 3.3.2 are satisfied with B = 1.

Example 3.3.4. Suppose {}, 5 is a tight frame for L*(R?) with frame bound B.

Then
F=B"Y (fn)n Ve LRY).

neA
Hence

(f.9) =B (f ) (¥ng)  Vf g€ L*(R?),

neA

which in turn implies ||1b,|*> < B for all n € A. Thus we see the conditions of

Theorem 3.3.2 are satisfied with K, = B and p equal to counting measure on A.

As a consequence of these examples, we obtain following corollaries as special

cases of Theorem 3.3.2.

Corollary 3.3.5. Suppose X is a locally compact group and o is an irreducible unitary
representation of X on U (L2(]Rd)) with left Haar measure p . Assume A is an
integral operator with kernel k. Then for some ¢ € L*(R?) with H@bHLQ(Rd) =1, there
is Ky € (0,00) depending only on the group X, the representation o and the function

U with

=

P

Al g2geay < K7 ( [ ([ 1ot ar) du<x>> vp e [1.2).

Corollary 3.3.6. Suppose {t,}, ., is a tight frame for L*(R?) with frame bound B.

Assume A is an integral operator with kernel k . Then

||A||IP(L2(R‘1)) < B (Z </Rd |(k‘y,@/zn)|2 dy> 2) vp € [1,2].

nen

RS
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Corollary 3.3.7. Suppose p € [1,2] and {tn},,cp is a Parseval frame for L*(R?).

If A is an integral operator with kernel k and

neA

then A € T,(L*(RY)).

> (3

meA

IS
3=

s Un ® Yrm) |)

Proof. Since {¢n},,c, 18 a Parseval frame for L?(R?), Lemma 3.2 in [45] implies

{¥n @ Y}y nen is a Parseval frame for L2(R?4).

By Corollary 3.3.6, we have

1Al ogee _< ( (ks ) ) dy>

(ky, ), we see that

Letting F,(y) =

hSAl

D=

[Allz, (r2ray < <Z ”Fnﬂiz(Rd))
neA
2\
- (% () 12
ne€A \meA
N
- (Z (e )
neA \meA
< 00
where (12) comes from the fact {1,,},,c, is a Parseval frame for L?(R?). O

3.4 New Kernel and Symbol Classes

Corollary 3.3.5 points to new kernel classes useful in identifying Schatten class integral

operators. These kernel spaces also give rise to symbol classes for Schatten class affine

pseudodifferential operators. In this section, we define these spaces and examine their

properties.
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3.4.1 Kernel Spaces

Definition 3.4.1. Let ¢ € (R) be an admissible function with Cy = ||| 2y = 1.

For k € '(R?) define

Ikllg, = (//R{O}</|k T,D,) |qdy) d—“dv> ,

with the usual modifications when p or q is co. Let

S

Sap = {k € S ®2) 1 llg,, < o0}
Theorem 3.4.2. (a) For each p € [1,2], Sy, is a normed linear space.
(b) For each p € [1,2], we have ||k|| 22y < [|K]s, -
(¢) For each 1 < p < q <2, we have [[k[[g, <[k, -
(d) If p € [1,2], then Sa, is a Banach space under the norm ||-[|g, .

Proof. First we prove (b). Note that equation (2) implies that [|kl| ey =

For p € [1,2), let % = L. Then ¢ € (1,2] and the dual index of ¢ is ¢’ = =

We have

du
HkHL2 R2)—//R {0}/| k TD dyﬁd’l}
du
<[ L] Wl e, DD 55 dody
R—{0}

< ([l a )
— bl ( [([] _{0}|<ky,TvDuw>|pj—Zdv)‘°dy>
<||k||L2(R2//R{O} (/|k T, Do) d> &

< 1 72 ey 1S,

-~

)
2
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(/R (/R /R{O} o LD d”) dy>;



where (13) results from Minkowski’s integral inequality. Hence [|k||7. ®2) < < |Ix]% 2,0
from which (b) follows.
Now we prove (a). Routine calculations show that [|-[|g, ~is a seminorm. If
[k[|s,, = O then (b) implies [|k|| j2g2) = 0. Hence k =0 and [-||g, is in fact a norm.
To prove (c), we let G, ,(y) = (T, Dy, k,) and suppose 1 < p < ¢ < 2. Since

1Guwll 2y < Kl 22y for all (u,v) € RT x R, we have

du
1415, = [ NGl S50
du
< [ Wl 16l 5 o

= 1kl Z2(g2) 1%, ,
= 11Kl By 1E 1 By K11,
< lklisZ, Il IRIE,

Hence K% < |5 T But g— %52 = §+8 = p+ 552, so that [klls, < [4lls, -
Now we prove (d). Suppose {kp},,ey is a Cauchy sequence in the [|-||g, ~norm.
Since [|km — knll 22y < |km — knllg, ,, it follows that {kpn,},,cy is a Cauchy sequence
in L*(R?). So there is some k € L*(R?) such that k,, — k in L?*(R?). In particular,
we have (k,), — k, in L*(R) for a.e. y € R.
Define a linear isometry H : Sy, — L*»P(R,R\ {0} ,R) b

H(f)(,u,0) = [ul " (. D).
It follows that {H(ky)},,cy is @ Cauchy sequence in L*PP(R,R \ {0} ,R). Since
L*PP(R,R\ {0} ,R) is a Banach space, there is some g € L*??(R, R\ {0} ,R) so that
lg — H(kw)| L20p — 0 as m — oco. Hence {H (k)},,cn converges to g in measure so
that there is a subsequence {H(k;mj)}jeN of {H (km)}, ey With lim; H(kp,,)(y, u,v) =
g(y,u,v) for a.e. (y,u,v) € RxR\{0} xR. But for almost all (y, u,v) € RxR\{0} xR

we have

lim H (k) (y, us0) = lim [ul "% {(kn),  ToDut))

m—00

93



_2

jul "7 (ky, ToDut))

= H(k)(y, u,v).

Hence H (k)(y,u,v) = g(y,u,v) a.e. and

W{LH;O Ik — k?mHszp = nllfclxj lg — H(km)HL?,p,p(RxR\{o}xR) =0. 0

The next two results show that the kernel operation corresponding to affine pseu-

dodifferential operator composition is well-behaved in S5 ,,.
Proposition 3.4.3.  (a) Foreachp € [1,2] we have [|k1tks||g, < [|k1l|s,  [[F2ll 72 ge)-

(0) [[kxtkall ooy < Rall Loy 1Rzl L2 gy -

(¢) For each p € [1,2] we have ”klﬁkQHSQm < ||k;1||527p ||k2||52’p.
Proof. Let k = kifks and assume p € [1,2]. Then

(. 2.00) = [ bt TDGW
R
- /2k1<t,x>k2<x,y>mdxdt
R

- / ((k)os To D) kol y)

By Cauchy-Schwarz we have

g 200 < ([ a0 ) ([ Pt ar).

Therefore

[ . D ay < ( e TD dx) ol

Thus

|=

Ikllg, = ( /] ( [ 14k, 0,00 oly)g i—d>
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S

< ( I ([ 1. m.0.08 dx)g - d—d)

= [lkuls, , 1*2ll L2 g2) -

Using the fact that |[f[|;2ge) = || fls,,. We see that (b) follows from (a). Statement

(c) follows from (a) and Theorem 3.4.2(b). O

Corollary 3.4.4. For p € [1,2], Sa, is a Banach algebra and a left ideal in L*(R?)

under .
3.4.2 Symbol Spaces

In the remainder of this section we seek to define spaces useful for categorizing symbols

of affine pseudodifferential operators and to identify their important properties.

Definition 3.4.5. Define Q : R x R\{0} x R — R\ {0} x R x ST by

Qy,u,v) = u ) ~ ) 4 ) . :
VI2+1T VR + 1T \WVE+1 V2 +1

1ty = Wl + ( [ ([ meeuanram) j‘%d) B

with the usual modifications when p or q is co. Let

Define

=

1£]

T;, = {£ e L'(®) ||y, < oo}

Because the ridgelet transform is
R(L)(a,b,0) = (RoL,TyDo)) = (ReL + D_o0) (b) VO € S' aeR\{0},beR,

the norm in Definition 3.4.5 depends implicitly on the choice of ). Also notice that

it k=RLoO €S,,, then Lemma 3.2.7 implies that

Ikl = ( /] " ( IR @) o) dy)g j—“d) N
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Lemma 3.4.6. For each p,q € [1,00] and each s € R, T, , 1s a normed linear space.

Proof. Since the ridgelet transform is linear, it follows that |||, is a seminorm. If
q9,p

|L||7s =0 then ||[£||;. = 0 so that £ =0. u
In order to show that T;,1s a Banach space, we need the following lemma.

Lemma 3.4.7. Suppose lim, .o |£ = Ly [1gey = 0. Then for a.e. (y,u,v) € R x
R\ {0} x R we have R(L)(Q(y,u,v)) = lim, 0 R(Ln)(Q(y, u,v)).

Proof. By definition we have

R(L = L,)(Qy,u,v)) = (R(\/L,\/li> (*C_En)*D\/y;‘iE) (#)

Using Lemma 3.2.5, we have for all y € R, v € R\ {0}

R CN(L=L)*xD_u @

Vy2+1 Loo(R)
<\/yg+l7\/y12+1> Ll(R) v LOO(R)
< E - E’VL D —Uu
<12~ Lullogoy [P v
.
= |—— L—-L, ~
‘ \/ﬁ “ ||L1(R2) ||77Z)||L (R)
— 0 as n — o0.

Hence for almost every (y,u,v) € R x R\ {0} x R we have

— v
R L—Ly)*D_—u_ w) 5 ]|=0
( ( yg+1’ y12+1>< ) Vil ( y2 + 1) ‘

The result follows. O

lim

n—oo

Theorem 3.4.8. For each p,q € [1,00] and each s € R, T3 is a Banach space.

o6



Proof. Suppose {£,} is Cauchy in T} ,. Then {£,} is Cauchy in L'(R?). Hence there
is some £ € L'(R?) with ||£ — £,]|;: — 0 as n — oo. By the previous lemma, we see
that R(L)(Q(y, u,v)) = limy, oo R(L,)(Q(y,u,v)) for a.e. (y,u,v) € RxR\ {0} xR.

Let w(u) = Z5. Since {£,} is Cauchy in T3, we see that {R(L,) o Q} is Cauchy

in the space L% o (R,R\{0},R), which is a Banach space. Therefore there is

Vs QW
some H € Ly, e, (R, R\ {0}, R) so that [H — R(Ly) o Qs 2 @R\(0LR) 088

n — oo. Hence R(L,) o Q) converges to H in measure, implying that there is some
subsequence {R(L,,) o Q}j of {R(L,)oQ}, so that lim; . R(Ly,)(Q(y, u,v)) =
H(y,u,v) for almost every (y,u,v) € R x R\{0} x R. Thus R(L)(Q(y,u,v)) =
H(y,u,v) for a.e. (y,u,v) € R x R\ {0} x R and

lim
n—oo

Vs, W,V

:JLHC}OHE_EHHLMR?)+nh_>ngoHR() Q—R(Ln) o QHL“’P (R,R\{0},R)

:TLILIEOHAC_E'HHLI(RQ llm ||H R( ) Q”L‘”’P (R,R\{0},R)

Vs, W,v()

= 0. [l

Now we show that certain T 6 spaces are well-behaved with respect to affine

convolution. We need the following lemma.

Lemma 3.4.9. If L1, Ly € LY(R?), then £, ® Ly € L'(R?) with
1£1 ® Lol 11 g2y < €1l o1 @2y [1£oll 11 ey -

Proof.

a b—v) du
||‘C1®‘C2||L1]R2)_// // (u,v) 2( ) — dv
R—{0} R—{0} u o u
b—v du
< 1L (u, ) Lo —, da db —dv
R JR—{0} R JR—-{0} wou
:// \.cl(u,v)y(// \Eg(c,d)|u2dcdd) gy
R JR—{0} R JR—{0} u

= 1Ll ee) [1£2l 1 2y - U

dadb
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If p is the left Haar measure of the affine group with multiplication (u,v)(z,y) =
(uz,v+uy) then we have [|£1 @ Lol g2 ) < (L1l pire ) 1£2ll 11 (g2 .0 Y the theory
of convolution on locally compact groups (see [30]). Lemma 3.4.9 is different from

this result because Lebesgue measure is used rather than the Haar measure.
Proposition 3.4.10. For each p € [1,2] we have

() 1£2® Loflyy < |[Lillgy [£allgy, and

(b) 1L ® £2||T217p < 1Ll ||£2||T211p'

Proof. Let K(L) = RLo O for all £ € L'(R?). Then the mapping K is linear with
H£]|T21p = L]l + [[K(L)]|s,,- Furthermore, K (L1 ® Lo) = K(L1)8K (L) as the

following computation shows.

K (L1® L) (t,y) = R(L1® Ls) (O(t,y))

= / (L1 ® Lo) (21, — z1y) dz

:///cl(u,v)@ (ﬁ,—t_zly_“) W oz,
u u u

= ///ﬁl(uw)ﬁg <Z2, tzv_ ZQy) d—udvsz
u u

= /// Li(u,t —ux)Ls (29,7 — 29y) dudx dzy

_ / RL1 (O(t,2)) RLy (O(x, 1)) da

= K(L1)§K(Ls)(t,y).
Using Proposition 3.4.3(a) and Lemma 3.4.9 we have

1£1® Lollyy = [1£1® Lol + [K(Ly + Lo)lg,
< N Lallpn (L2l + 1K (L0)BK(L2)]] s,
< Ll L2l + 1K (L)]lg,, I15(L2) s, ,

< (Il + 1K L), ) (122l + 1K (L2)]ls,,)

o8



= [1£allzy N£ollzy, -
Statement (b) is proved similarly. O

Corollary 3.4.11. For each p € [1,2], Ty

5, 18 a Banach algebra and a left ideal in

Ty, under affine convolution.

3.5 Schatten Class Affine Pseudodifferential Operators

In this section, we draw connections between the spaces developed in the previous
section and the Schatten class results of Section 3.3. In particular, we obtain the

following theorem.

Theorem 3.5.1. Suppose A is an affine pseudodifferential operator with kernel k and
symbol L, and suppose p € [1,2]. Then there is a C' € (0,00) such that the following

statements hold.
(a) If k € Sy, then A € T,(L*(R)) and || Allz (ro@y) < C llllg,, -
(8) If £ €T, then A€ T,(L*(R)) and || Al e < C L]y

Proof. Statement (a) follows immediately from Theorem 3.3.2(a) and Proposition

2.4.1 in [25], which states that for any admissible ¢ € L?*(R) we have

() =C" [[ GLDa) D) o Vg € LR

By Lemma 3.2.7, we have [|k||lg, < [£[/z; . Thus statement (a) implies statement
’ P

(b). O

In light of the previous theorem, it is desirable to know which functions belong
to Sz, and T3 . In the remainder of this section, we describe smoothness and decay
conditions which guarantee inclusion in these spaces. The following lemma, adapted

from the techniques in [46], will be useful.
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Lemma 3.5.2. Suppose f,g: R — C satisfy
(1)) < Cp(1+1)72 and lg(t)| < C,(1+1*)72 for a.e. t € R,

for some v > 1. Then there is a constant C.,, independent of f, g, so that
CyCyCylul % (14+2) 7

it ]

CiCyCylul™2 (14022 if0<|u| < 1.

|f * Dug(v)| < if lul > 1,

ol
2

Proof. Let w_,(t) = (14 ¢*)"2. By Lemma 11.0.1 in [46], since v > 1 there is some

C, so that (w_, x w_,)(t) < Cyw_,(t) for all t € R.

Notice that for |u| > 1, we have

2
(1 + %) = |ul™? (v +¢%) > u| > (1+¢%).

Thus for |u| > 1 we have

R

ol
2

2\ o\ —
(1+E) < Jul" (1 +¢%)

If 0 < Ju| < 1, then & > 2, which implies

(1+§2> > (1+17).

Thus for 0 < |u| < 1, we have

X
2

<1+i—2)_ < (14*)"

X
2

Therefore
1 2\ 72
Do) = i+ (14 15)
2 (1+¢ 3 if |u >
w2 (14 ¢2 if 1
| P+ dfo<ful <1
Hence

|(f * Dug)(v)| < CrCy (w—y x Dyw—y) (v)
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(

_ ) GG u|'72 (w_y % w_y) (v)  if Ju| > 1

| G E (wey xwos) (v) 0 < fu < 1
' it 4

< CrCyCalul ™2 (14012 if [u] > 1

| G (14T i 0< ful< 1. O
\

Recall that the definitions of S,, and T}, depend on the choice of admissible
function ¢ € Z(R). If ¢ possesses additional “nice” wavelet characteristics, made

precise in the following definition, we can better analyze Sy, and Tzlvp.
Definition 3.5.3. Let
By ={¢ € L(R) : ¢ is admissible and 1) = V' for some ¥ € S (R)}.
The Mexican hat wavelet ¥(¢) = (1 — zfz)e%2 is in B.
Theorem 3.5.4. Suppose ) € By, a > 3 and 3 > }1. If
k(t,y)| < C(1+ y2)_ﬁ (1+ t2)_% for a.e. t,y € R,
and there exists a C € (0,00) such that almost every k, has a derivative satisfying
O <O+ (1+6)7% foralteR,
then k € Sy, for all p € [1,2]. In particular ./ (R?) C Sy, for p € [1,2].

Proof. Since ¢ € By, we have ¢ = ¥ for some ¥ € .(R). Without loss of generality,
we assume

@

() < C(1+¢7) > and W(t)| < C(1+¢%)

o
2

for all t € R.

For p € [1,2) write

d
12, / / (/|k T, D) dy) = dv
” lv|<1 J|ul>1
d
/ / (/|k:TD d) = dv
lv|<1 J]ul<1 u
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|

+/ / (/!(lfy,TvDuW2 dy) = dv
lo[>1 Ju[>1 \JR u
2 g du

+ [(ky, T, Dy0)|” dy —2dv
lv)>1 J|ul<1 \JR U

=L+ L+ 13+ 14
To estimate I; we note that

|(ky, Ty Dutp)| = |y * D_ih(v)|

< HkyH]ﬁ(R) HDuwHLQ(R)

1l oo ( Js dt)2
CQ
< ’WHL?(R) (/ (1 _,_yz)?ﬁ 11" dt)

_ 1 3
<Yl p2m € (1+97) ’ (/Rmdt) .

N|=

Hence

> du
I < o7, ( / dt) / / / Sdy | Sydv,
1 ||¢||L (R) (1 _|_ t2 |’L)|<1 |u|>1 1 + y ) y u2

and this quantity is finite since 3 > }l and o > 1.

To estimate I, we use Theorem A.1 in [43]. By the proof of the this theorem,

there is some Cy satisfying

(ky, TD )| < Colul? ||K)]| . ¥y € RueR\{0},veR. (14)

Hence

pear([ [ wraa) ([l a)
lv]<1 J|ul<1 o
< CPCh (/ / u 2dudv) (/ —dy)
o] <1 |u\<1’ ¥ (1+y2)%

< 00,

[SIS]
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asﬁ>%and%—2>—1.

As in the proof of Lemma 3.5.2, let w_(t) = (1 + tQ)_% forally € R, t € R. Notice

that for any v < a we have w_,(t) < w_,(t) for all t € R. Hence for all 1 <y < «

we have |k, (t)] < C (1442 w_,(t) and |(t)] < Cw_,(t). If 1 <~ < « then by

Lemma 3.5.2 there is some C., satisfying the following inequality for all |u| > 1:

it 4
2

[(kys T D) = [ky * Dub(v)] < C,C% (14 47) ™ a5 (14 0?)

Choose v, € (1, % + 3). By (15), we have

1 1 1
e ([ ) (e ([
=1 (14 0v2)72 u>1 R (14 2?)

< 00,

sinceﬁ>}1and1<%<%+%.

To estimate I, we use integration by parts to obtain

|(ky, TuDuth)| = [ul [ (K}, T,D.P)] .

(15)

p

dy)

By Lemma 3.5.2, there is some C|, satisfying the following inequality for all 0 < |u| <

1:
[(kys TuDu)| = ul | (K, T,D,W)| < CoC?lul? (1442) 7 (1407 %

Using (14) and (16) we obtain the following estimates for 0 < |u| < 1:

wlno

1
[(ky, Tu Db} = [(ky, T, Duth)|® [(ky, T, Duth)|®
%

1 C 1
< O3 Ju|———=5 [{ky, T, D)) |3
(14+y?)5
2 1 4
1 Cs C3Cs 1
< CF |u|—— —Juls .

(L+9)5 Q+y2)5 (L)

Hence

p p 1 7 1
L < C?CECS / v (/ P32 du) /—26
w1 (14 0v2)6 Ju|<1 R (14 4?)
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and this quantity is finite since a > 3 and [ > i.

Since Sy 5 = L*(R?) direct computation gives the result when p = 2. O

Recall that for § € S, ¢(f) denotes the unique number in [0, 27) such that 6 =
(cos¢(0),sin¢(0)). In particular, cos ¢(f) = 0, and sin ¢(0) = O when 6 = (6,,05) €
St

Theorem 3.5.5. Suppose ¢ € By and L € L'(R?) satisfies

_ Clsing(o)**

= or a.e. (A,s) € S' xR, 17
ST Joree 09 a7)

|RLo(s)| = |RL(O, 5)]

and
C Jsin g(6)**+
(1+s2)2

for some 3 > }l, a>3. Then L € T217p forp € [1,2]. In particular, T217p is nontrivial

|RLy(s)| < for a.e. (0,5) € S* xR (18)

forp e [1,2].

Proof. Let k= RL o O. Then by (17) we have

Y 1 t
ol RE((%%“’J%“)’W)‘
< C
- 28+« N1
) )
. C 1
(14955 (1 4+ 2 +12)2

__¢C 1
A+ (1+12):

and by (18) we have

1 t
K (t)| = ——— |RL’ —
| y( ){ m <\/y?é+1’ y12+1> ( 1+y2>‘
C 1
S a— o
/1+y2 <\/y2ﬁ>26+ 1(14_1;_2?/2)2
C 1

(L+y2)P (142 +12)2
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< C 1
T+ (1 +)E
By Theorem 3.5.4, k € S;,. Hence L € Ty .

To complete the proof of the theorem, it suffices to show that there is some
L € L'(R?*)\ {0} satisfying (17) and (18). Fix m,n € N with n > 3 and m > «a.
Choose f € #(R) with f even and [, f(s)ds = 0. Set F(6, s) = sin®"*™(2¢(0)) f(s).
Then F € .#(S' x R), F is even and F satisfies
_ Clsing(o) "
T (14822
_ Clsing(o) "
B (1+5s2)2
for some C' > 0. Furthermore [, F(0,s)ds = 0 for all # € S'. By Theorem 7.7 in [65]

[Fo(s)| = |F(0, 5)]

|Fp(s)]

there is £ € C*°(R?) N L'(R?) such that RL = F. O

Notice that the integral of a function £ satisfying (17) over almost any horizontal

line must be zero.

3.6 Affine Pseudodifferential Operators as Calderon-Zygmund
Operators

The conditions on the Radon transform of £ in Theorem 3.5.5 are almost enough to
imply that the affine pseudodifferential operator with symbol £ is Calderon-Zygmund.
In this section we find sufficient conditions for an affine pseudodifferential operator
to be a Calderon-Zygmund operator.

Throughout the paper we have defined ¢(6) € [0,27) by 6 = (cos ¢(0),sin ¢(0)).
Similarly, we can define 8 : R — S' by 6(¢) = (cos ¢, sin ¢).

Theorem 3.6.1. Suppose A is an affine pseudodifferential operator with kernel k and

symbol L.

(a) If A: L*(R) — L?*(R) is bounded and k satisfies

C

k(t,y)| < 5>
it —y|
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1
if It =1 < 51—,

|t |5+1
and
Cly—vy| . 1
k(t,y) — k(t,y)| < W if ly—vy'| < 3 |t —yl

for some 6 > 0, then A is a Calderon-Zygmund operator.

(b) If L satisfies
C |sin ¢(6)|”
(1+1s])
C |sin ¢(6)|”
(14 s])’

Gane) o] <

for some 3 > %, then A is a Calderon-Zygmund operator.

[RL(O, s)| <

b

[RoL(s)] <

I

and

Furthermore, if either (a) or (b) holds, then A : LP(R) — LP(R) is bounded for all

1 <p<oo.

Proof. Statement (a) is a direct consequence of Theorem 5.10 in [26].

Suppose (b) holds. Then

t
R( yg+1’\/y12ﬁ)£ ( y*+ 1)‘

B
y?+1 [¢]
(1 + \/ 241

(2 +1)7 \/y + 1+ |t

C
(2 +1)7= 1+ |t|)
which implies k¥ € L*(R?). Hence A : L*(R) — L?(R) is bounded.

<

Also

[kt y)| = |R

t
(mm) y +1
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C 1

)

N
B C
VY214t
C
< .
ly — 1|

Fix t,y € R and assume |t — | < § |t — y|. By the Intermediate Value Theorem,

we have
/ . 0 /
itt) ~ K¢l = | 555 Goun e

for some t; between t and t’. But

'(;ﬁz::) (to,y)' = (s +1)* R(ﬁ fﬁ)c/ (#)’
C

< :
(VP + T+ Ito])

Because t is between ¢ and ¢’ and [t — ¢/| < 3 [t — y|, we must have [t — y| > 1|t — y|.

Hence

, 0
itta) = Kt = |55 Goun| e
Clt—t]
— 2
(x/y2 +1+ |to|)
_Clir]

|y—t0|
4C]t—t’|

ly —tf°

where (19) holds because |y — to| < |y| + |to] < \/y% + 1+ |to].

(19)

Now assume |y —y'| < 3|t — y| and consider |k(t,y) — k(t,y’)|. By the Interme-
diate Value Theorem, there is some 3 between y and ¢’ so that |k(t,y) — k(t,y')| =
’(a%@ (t, yo)’ |y —y/|. By Lemma 3.2.6,

k(t,y) = RL(0(9),s),
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where

cos ¢ i sin ¢ ! and !
= s 1n = s 11 S = .
/y2 + 1 /y2 + 1 y2 + 1

By the chain rule we have

(35 (= () 0.0 52 + (50e) 0100 9)-

~ (gpre) w0).0) 1 s (2Re) 0(0)9) -

_ (2}35) Yo 1 t Y 1
I VRATUVRE+1) Vi +1) vl yg+1

+ | R, L ( f ) —
(=) wrl/ )

[V

< + .

— 5,2 2 3 1 3
N (o +1? wo+1)7 (1, _w

Vit No=

_ ¢ n Clt o lwl 1

- 2 2
(x/y§+1+|t|> Vg F1HIE Vg +1 (x/y8+1+|t|)

2C
2

(\/yg +1+ |t|>

Because |y — ¢/| < % |t —y| and yo between is y and ', we have |y — t| > % ly — t].

Hence

(e = k)] = | (5o8) o

ly — |
2C ly — 9|
= 2
(\/yg +1+ |t|>
_ /
L 8Cly f’
ly — t|

Thus k satisfies (a) for 6 = 1.
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CHAPTER IV

MIXED MODULATION SPACES AND
PSEUDODIFFERENTIAL OPERATORS

4.1 Introduction

Integral operators arise naturally in many areas of mathematics and science. Pseudod-
ifferential operators, which are a particular type of integral operator, have appeared
widely in the literature of physics, signal processing and differential equations. An
overview of pseudodifferential operators is given in Chapter 14 of [33], while more
detailed expositions are found in [30], [48], and [67]. Because of the role of pseudod-
ifferential operators in partial differential equations, the smoothness of the Weyl and
Kohn-Nirenberg symbols of a pseudodifferential operator has traditionally been used
to characterize properties of the operator, with the Hérmander symbol classes playing
key roles.

More recently, pseudodifferential operators have been studied from a time-fre-
quency perspective. Every pseudodifferential operator is a superposition of time-
frequency shifts, and the properties of pseudodifferential operators have been well-
described by time-frequency analysis. Results with this flavor appear in [22], [72]
and [76]. In particular the classical modulation spaces MP4(R?), which are Banach
spaces characterized by time-frequency shifts and mixed norms, have been useful
symbol spaces for studying continuity and Schatten class properties of pseudodiffer-
ential operators. (See [66] for applications of mixed norms in other areas of harmonic
analysis.) Using Gabor frames, elements in these spaces can be decomposed into a
superposition of time-frequency shifts, and this Gabor frame decomposition of the

symbol of a pseudodifferential operator can be used to characterize the properties of
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the operator. In particular, the following two theorems, from [41] and [33], respec-

tively, can be proven with Gabor decomposition techniques.

Theorem 4.1.1. Suppose A is a pseudodifferential operator with Kohn-Nirenberg
symbol T, Weyl symbol o and kernel k. If one of 1,0,k lies in Mgf(RQd) with s >
@ and s > 0, then A € T, (L*(RY)).

Theorem 4.1.2. Suppose A is a pseudodifferential operator with Kohn-Nirenberg

symbol T and Weyl symbol o. If one of o, 7 belongs to M1 (R??), then
A MP9(RY) — MP4(RY)
is bounded for all p,q € [1,0].

Both of these theorems generalize results in [35]. Other modulation space results
for pseudodifferential operators appear in [21], [52], [71] and [73], while modulation
spaces appear implicitly in [45], [64], [23], [47] and [59].

In this chapter we develop a technique for analyzing the kernel of an integral
operator which generalizes existing time-frequency analysis techniques of pseudod-
ifferential operators and yields new classes of non-smooth Kohn-Nirenberg symbols
which ensure that a given pseudodifferential operator is Schatten p-class. To obtain
the main result of this chapter, we use Corollary 3.3.7 to analyze the kernel of an in-
tegral operator with a frame. In particular, analyzing the kernel as in Corollary 3.3.7
with a Gabor frame gives a time-frequency condition on the kernel which ensures the
operator is Schatten p-class. We show that this condition holds for kernels belong-
ing to certain Banach spaces M (c)P1P2+P2d that we call mixed modulation spaces,
which are natural generalizations of the traditional modulation spaces MP4(R?). In
this chapter we show that many of the interesting properties of traditional modu-
lation spaces also hold for mixed modulation spaces. Furthermore, inclusion of the
Kohn-Nirenberg symbol in an appropriate mixed modulation space ensures the cor-

responding operator is Schatten p-class. The relationship between mixed modulation
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spaces and the kernels and Kohn-Nirenberg symbols of Schatten p-class operators is

summarized in the following theorem.

Theorem 4.1.3. Let A be a pseudodifferential operator with kernel k and Kohn-
Nirenberg symbol 7. Assume p € [1,2] and set 2 = p; = -+ = pog, P = Paay1 =
= Pug, 2 =q = - =qqand p = Qg1 = -+ = Quq. For suitable c¢,c, if

k € M(c)prpzrid or 7 € M(c)%2%d then A is Schatten p-class on L*(R?).

The strongest known Schatten class result for pseudodifferential operators ob-
tained by time-frequency analysis is Theorem 4.1.1. Although the crux of both The-
orem 4.1.3 and Theorem 4.1.1 is time-frequency analysis with Gabor frames, our
Theorem 4.1.3 is obtained by analyzing the slices of the kernel with a Gabor frame,
thus permitting a finer control on the properties of the kernel. As a result, we can
show that Theorem 4.1.3 is stronger than Theorem 4.1.1 for kernels, in the sense
that the mixed modulation space described by Theorem 4.1.3 strictly contains the
space MSS’Q(RM). In fact, we show that Theorem 4.1.3 is sharp for kernels in the
sense that larger mixed modulation spaces contain kernels of pseudodifferential op-
erators that are not Schatten p-class. We also show that Theorem 4.1.3 gives a new
class of Kohn-Nirenberg symbols of Schatten class operators distinct from the Kohn-
Nirenberg symbol class described by Theorem 4.1.1.

The remainder of the chapter is organized as follows. Section 4.2 contains defi-
nitions and basic lemmas. In Section 4.3, the definition of mixed modulation spaces
M (c)brP2-P2d g given and the properties of these spaces are developed. In Section
4.4, we show how the mixed modulation spaces can be used to generalize boundedness
results for pseudodifferential operators. In Section 4.5, we apply the results of Section
4.3 and Corollary 3.3.6 to pseudodifferential operators and compare our results with

Theorem 4.1.1.
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4.2 Definitions and preliminary lemmas

In order to characterize the time-frequency properties of kernels and symbols of pseu-
dodifferential operators, we need more information about frames and bases of time-

frequency shifts, as well as the relationships between the kernels and symbols.
4.2.1 Gabor Frames and Wilson Bases

Definition 4.2.1. A Gabor frame for L*(R?) is a sequence {MT20} , )en that is a
frame for L*(R%).

There are tight Gabor frame for L?*(R?) whose generator ¢ is a nice function, e.g.,
¢ € C>®(R?). However, the different statements of the Balian-Low Theorem show
that the elements of a Gabor frame which offers unique expansions (i.e. a Gabor
Riesz basis) necessarily have poor time-frequency localization. See [33] for examples
and properties of Gabor frames.

Wilson bases are orthonormal bases similar to Gabor Riesz bases in that they allow
for unique, discrete expansions of the elements of L2(IR%) in terms of time-frequency
“molecules.” However, in contrast with Gabor Riesz bases, the elements of a Wilson
basis may be well-localized in time and frequency.

For cach k € Z% n € (Z+)" let

\Ijk,n(t) = wkhfn (t1)¢k2,n2 (t2) to wkd,nd (td)a

where

¢ki7ni (tl) =

LT, (Mm. F(—1)kit M_m) Gt ifng > 0.

For suitable 1) € L*(R), the sequence {W}, za ne(z+)? constitutes an orthonor-

mal basis for L*(R?). In this case we call {Us,}, 4 ne(z+)yt the Wilson basis generated

by ¢ (see [33] for details).
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4.2.2 The relationship between kernel and symbols

Recall that the pseudodifferential operator with Kohn-Nirenberg symbol 7 is

_ / /R 7 (& o) McT f (t) da d€

and the pseudodifferential operator with Weyl symbol o is

t) = / /R (&) e~™ETT_ M f(t) daz d€.

Every suitable pseudodifferential operator K. can be also realized as an operator L,
and in this case we have 7(£,z) = ™45 (¢, z). Similarly, suitable K, and L, can be
realized as integral operators. In particular, if we let F, denote the partial Fourier

transform on the last d variables of a function of 2d variables, i.e.
(FF) (z,w) = / F(z,y)e*™™ dy for all z,w € RY,
R4

then K is an integral operator with kernel k = F, '7o N, where N(z,y) = (z,z — y)
for x,5y € R? and L, is an integral operator with kernel ¥ = F,'c o M, where

M(z,y) = (22, z —y) for z,y € R™.

Lemma 4.2.2. Suppose [ € S (RY) and ® € 7 (R?).
(a) (f o N\, McayT(apy®) = (f, M(crd—a)T(a,a-5)(P 0 N))
(b) (f o N, Mca)Tlary®) = (f, Micra-0T(aa—4) (P o N7H)
(c) (fo M~ MieayTian®) = (f, Miz1as-) (st -ty (P 0 M))
(d) (f oM, M(c,d)T(a,b)<D> = (f, M(C+d,%d)T(a7+b,a_b)(q) © M71)>
(¢) |[(Fof McayTamy®)| = [{f, Micy Ta—a) (F2 ' @)

(f) ‘<“7:2_1f7 M(c,d)T(a,b)q>>‘ = ‘<f7 M(C,—b)T(a,d)(JTQCD»‘
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Proof. Tt is easy to show that N=! = N. Hence (a) and (b) are equivalent. To prove

them we have

(f o N, McayT(ap)®)
= // f(s,s —t)e 2miese=2midiq (s — g t —b)dsdt
= // f(S, u)6727ric-36727rid-(sfu)q)(s —a, s —u— b) ds du
= // f(s’u)e—Qm‘c-se—Qwid.(s—u)(I)(S —a, (S . a) _ (u — (—b+ a))) ds du

= // f(S, U)6_2”i(c+d)’562’Tid’“T(a,a,b)(<I> o N)(S, U,) ds du

= (fs M(c+d-)T{a,a—t)(P o N))
Notice that M~ (z,y) = (x + %,z — %). Hence we can prove (c) by

<f o ]\4_17 M(c,d)T(a,b)(I)>

= //f (s + %, s — %) e 2miesem2midig (s — gt — b)dsdt
//f ,x—t)e ~2mic(v—g) o ~2midig, (w— ——a t—b) dx dt

/ f T y —2mic-(x—T5Y) —27rzd (z—y) ) (.T Y — b) dxdy

//fxy —2mi( +d)x —2mi(5 yq)( ;_y y-b)dl’dy
//f —27m —i—d)x —2mi(5—

x@(m—mﬂ);y—(a—%)?x_(Hg)_(y_(a_g)))dxdy

= (f, M +d£—d)T(a+ a— (‘I)OM»

Also, we have

(fo M, McayT(apn®)
t A .
= //f (S;_ .5 — t) e—27rzc~se—27rzd~tq)(s —a,t— b) ds dt
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=2 // f(x, 20 — 2t)e 2ric@rt)=2midtgy (20—t —q,t — b) dz dt

//f T y 7271'10 (22— (:1377)) —27id- (xff)q) <23§'— <Q? N %) — a7 — % —b) dfl?d’y

- / / fla,yye 2D + & — 00— L~ b)drdy
— // f(x’y)€72ﬂix-(c+d)€727riy-(%,%)

Xq)(x_@—irb y—(a=b) —a+b y—(a—b)

d
= ([ Mierqs—2)T(app oy (P 0 M),
proving (d). To prove (e), we note
(Fof, MicayT(apy®) = (f, F5 " (M(cyd)T(a7b)CI>)>
=™, M) Ta—a)(Fy ' ®))

and (f) is proved similarly. O

Corollary 4.2.3. Let A be a pseudodifferential operator with kernel k, Weyl symbol

o and Kohn-Nirenberg symbol T.
(a) ‘ kM(cd ab |_|TMc+db a) a d)fQ((I)ON )|
(b) ‘<k5>M(c,d)T(a,b)(I)>| = ‘(0, M(C+d7b,a)T(a?+b’%)f2(q) o Mﬂ))‘

(c) |(o, My Tiapy®)| = ’<T, Mca)T \Fo Fy'®o Mo N™ )>‘

d c
a=5b—3)

Proof. Using the previous lemma we have

|<k M(cd)Tab | = ‘ f TON M(cd)T(ab)(I)M
= [(F2 ' Micrd—a)Taa—n) (2 o N71))|

= (7, Mcrdp-a) T(a,—ay F2(® o N71))|
and

|(k, Me.ayTian) @) | = |(Fs "o 0 M, Me.ayT(a,p)®)|
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= (0. Mgy 50 Tpogp iy (@ 0 M)

= |0 Micsap-oTiags o Fol® o M)
and

(0, Mie.ayTay®)| = [(Fo (ko M), MieayT(ap)®) |
= ‘(_7:2 (]:2_17' oNo M_l) 7M(c,d)T(a,b)cI)>|
= [(Fy'roNoM™ MeyTia-aF; ' ®)

= <f‘2*17- o ]\77 M(§+b,§—b)T(

d d
a=g.a+3)

Fildo M)‘

= [(F5 ', M(c,b_g)T(a_%,_d)]:glq) oMoN)

= (" MieaT(qap-eF5 ' (F3'®o Mo N71)>’ O

—3
Notice that Corollary 4.2.3 is different than the relationship between the kernel
and Kohn-Nirenberg symbol of an operator given on page 263 of [9]. Corollary 4.2.3

is in fact the correct relationship between the kernel and Kohn-Nirenberg symbol of

an operator.

4.3 Mixed Modulation Spaces

In this section we introduce a generalization of the modulation spaces ME:4(R?).
Recall that the Gabor transform of f € '(RY) is V, f(x,&) = (f, M¢T,¢) Yz, & €

R?, where ¢ € . (R?) is fixed. Also recall that v,(2) = (1 +]z])°. We will assume

throughout this chapter that v : R?¢ — (0, 00) is a submultiplicative weight function

of polynomial growth symmetric in each coordinate, i.e.
V(X1 ey =Ty oo Xog) = 0(Xy, .0 Xy, Tag)

for each ¢ = 1,2,--- /2d. We also assume that w is a v-moderate weight and c is
a permutation of {1,2,...,2d}. To simplify some notation, we identify ¢ with the

bijection ¢ : R?** — R given by ¢(21, ... ¥24) = (Te(1), - - -+ Te(2a))-
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1

w "

Lemma 4.3.1. Suppose w is a v-moderate weight. Then so is

Proof. Since w is a v-moderate, there exists C' such that for all 21, 2z, € R?*? we have

w(z1 + 22) < Cv(z1)w(2z). Then for any z;, 2, € R?? we have
w(zg) = w(—2z1 + 21 + 22) < Cv(—21)w(z1 + 22) = Cv(z1)w(z + 22),

which implies

1 < Cv(z)

w(z1 + 29) = w(ze)

]

Definition 4.3.2. Suppose ¢ € .Z(R?) and c is a permutation of {1,2,...,2d} cor-
responding to the map c. Let M(c)P1P2-P2d pe the mixed modulation space consisting

of all f € '(R?) for which
HfHM(c)pwl’p2 ----- pog = HV¢f o CHLﬁ}’pQ ----- pog < OQ.
When w = 1 we write M (c)P1P2--P2d = N (¢)PrP2--P2d,

The most interesting properties of modulation spaces carry over to the mixed
modulation spaces. What follows is an adaptation of the properties of modulation

spaces that are presented in [33].

Lemma 4.3.3. (a) If c is the identity permutation and p = p; = ps = -+ = pg and
4= Pass = -+ = paa then M(cJprr--vss = MBI(RY).
(b)) If p=p1 =p2 =+ = pg = Pay1 = -+ = Pag then M(c)b1r>--P2a = MPP(RY)

for any permutation c.

Proof. Both statements follow directly from the definition of mixed modulation spaces.

]

Lemma 4.3.3(a) shows that the mixed modulation spaces are indeed generaliza-
tions of the modulation spaces. It is shown in [41] that MPP(R?) is invariant under
the Fourier transform. Lemma 4.3.3(b) can be viewed as a generalization of this fact

to the mixed modulation spaces.
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4.3.1 The Inversion Formula for Mixed Modulation Space

It will be useful to consider the formal adjoint of f — V,f o ¢, given by I'y in the

following definition.

Definition 4.3.4. Suppose c is a permutation of {1,2,...,2d}. For each v € R*? let

zq)- For measurable 1 R? — C define an operator T'y by

-----

PP = [ @) (o) de
R2d
where the integral is interpreted in the weak sense.

Lemma 4.3.5. Suppose c is a permutation of {1,2,...,2d} associated to ¢ and sup-

pose F € S (R*?). Then Foc¢ e 7 (R?).

Lemma 4.3.6. Suppose ¢ € . (R?) is given. Then Ty, : LE2P2P2a — N[ (c)P1:p2:P2d

15 a bounded linear map satisfying

HFl/)FHM(c)ﬁ,l’m’m’de < HFHLﬁ}’m’m’de quﬂb ° cHL})(]RM) :

Proof. We adapt the proof of Proposition 11.3.2(a) in [33]. Clearly I'y is linear.
Choose F' € LP1P2 P24 First we must show I'y /' is a tempered distribution. Choose

v € .7 (R%). We have
(LF, )] = \ [ P o

= [{F,Vyy oo

<N Fll v mma [Vier ol

/ /
[P1P2 P

_

gl=

< E N gpoawaa (Vo (e(@)) (L4 [e(@)) " oo [+ 1e@)D || .0 05,
1

w

= | Fllggwaremaa [Viy(@) (L4 )"l |1+ D)7 o

Pl Phy

—, o~

gl

This value is finite for n sufficiently large. Using Corollary 11.2.6 in [33], [',F' is in

fact a tempered distribution.
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Consequently, V,I'y, F' is a well-defined, continuous function and
[VoTyF ()] = (T F, Te)9) |
_ ‘ / F(y) (o) ths o)) dy
< / [FO{, Tetw) ey @)| dy
~ [1PWI (0 i) dy
= (|F| * |Vgyp oc|) ().
Thus

HFwFHM(c)ﬂl’”"”’de = ||V¢F¢F @) C||L§)U1,p2w-,p2d

< IV ol

LP1P2P2d

< NPl gy s [V © €l g gy

Since ¢, € . (R?), Theorem 11.2.5 in [33] implies V1) € #(R??). Therefore

|Voth o ¢ L1 (R24) is finite, and we obtain the desired boundedness of I'y. a

Theorem 4.3.7. Suppose ¢ € .7 (R%). For any f € M(c)PrP2 P2 e have

Ly (Vof oc) = (4, 9) f.

Proof. We adapt the proof of Proposition 11.3.2(b) in [33]. By Corollary 11.2.7 in [33]
we have for all f € .%/(R?) that f = m [ Vs f(z)m,1p dz. Hence for all f € .7 (R?),

we have

1 1
[ = W/V¢f(t($))ﬂc(x)¢dx = Wrw (Vafoc).

This equality is valid in M (c)P1P*>" P24 because Lemma 4.3.6 ensures that I'y, (V,,f o ¢) €

M(C)ﬁ},mw“,pzd_ O]

Corollary 4.3.8. Suppose 1,y € S (RY) and f € M(c)P+P> P2 gre given. Then

there exists some constant C' independent of f,v and 7y satisfying
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(a) (Vo f ol ppiwaswa < Cl[Vey o el paoay | fllagieymrrewaa
(b) HVWf o c”w(prl’pZ"“’p2d) S C HVM e} CHW(L}](R%)) Hf”M(c)ilaPQv‘“aPQd s and
(c) Voo CHW(L%(RM)) < C[Vgpo CHL}J(RM) [V o CHL%(RM)

Proof. Notice that for any ~,¢ € #(R?), Theorem 11.2.5 in [33] and Lemma 4.3.5
imply V,2@oc € S (R*), so |Vy o CHW(L}J(R%)) is finite.
Fix f € M(c)brP2 P2 By the previous theorem we have f = @F(ﬁ (Vsfoc).

Thus

Vo f (@) = [{f, T )]

1
= | | F¢ V¢fo C) x)’7>|

9)| ‘/ Vo f (c())(Te®: Te()y) dy
¢>|/‘V¢f DI Tew—y) | dy
5M@¢M/WWf@w»HW¢aw—y»Mdy

/\

1
= .y (Ve ocl# Vi oc)) (@) (20)

Since for all z € R?*? we have v(—x) = v(z) and
V,0(2)| = [(6. o) | = [ Ty 0)| = [Ver(=2)]
it follows that [[V3¢ o ¢|[ 11 gea) = [[Vey © ¢l 11 (gea) - By Young’s inequality we have

V5 f o el prwaemaa < {0, &~ Vo o cll oz maa [V 0 CHL}J(RW)

— (6, ) Vi o cll e maa Vv o cllyqusny - (21)

By Lemma 1.2.6 and (20), there exists some constant C; independent of f,~, ¢

such that
IV f © ellyymmemaay < 1, ) IV f o ¢f % |Vag o |y pmmarmaa
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< Cl |<¢> ¢>|71 ||V¢f © CHLf‘}‘p?’”"de ||V7¢ © CHW(L})(R%))

-1
= C1l{@, )| Vs f o cll prrwecmaa [[Voy o cllyy 2 oayy »  (22)

where the last equality follows from the fact v(—z) = v(x) Vo € R??,

Note that by (22) we have
-1
Vo CHW(L}J(RM)) < Ci[{¢, 9)] ”IpHM(c)},"”’l Ve o CHW(L%(RM)) :
Applying (22) again to ||V o CHW(L},(R%)) gives

[Vyo CHW(L%(RM))

-1
< Cy [(¢, 9)| ||wl|M(c)11)"”’1 [Vey o cHI/I/(L%(RM))
—2
< O U, O 18l argeyp o 1Viy © ell 1y maay 1V © €l mzay

-2
< C g, )| " |Vstb o CHL}](R%) [Voy o CHL%(RM) [V o CHW(L%(RM)) - (23)

Examining the inequalities (21), (22) and (23), we see that the theorem is satisfied

for

C> max{|<¢, AL Crl (e, )L (b, ) (Vi o cHW(LMRQd»} . O
4.3.2 Mixed Modulation Spaces as Banach Spaces

In this section we show that the mixed modulation spaces are Banach spaces and we

compute their duals.
Corollary 4.3.9. For any p1,pa, ..., p2a € [1,00], M(c)E1P2--P2 s q Banach space.

Proof. Routine calculations show that M (c)P1P> P2 ig a normed linear space. Sup-

pose { fn},.en is Cauchy in M (c)hiP2 P24 Then {V, f, o ¢}, _y is Cauchy in LP1P2: P2,

neN

Since LP1P27:P2d jg g Banach space, there is some F' € LP1P2P2d with
lim HV¢fn oC¢C— FHLm,pg,---,pgd = 0.
n— 00 w

Let f = ||¢|| >T4F. Then f € LP1P> 2 and

nhjgo ”fn - f”M(c)le’P?"“va = nlgrolo ||¢||72 ||F¢ (V¢fn © C) - F¢F||M(c)ﬁ;1’p2"”’p2d
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< T (|82 Tl Va0 € = Fllpgyos- ma
= 0.

Therefore {f,},cy is convergent in M (c)b1P2: P2, []

/

Theorem 4.3.10. If p1,p2,...,p2q € [1,00) then M(c)il’pé""’péd is the dual space of

g

M (c)brp2nP2a ywhere each p) € [1,00] satisfies pii + pi; =1.

Proof. Note that f — V,f o ¢ is the adjoint of I'y,. Suppose g € M(c )p17p27 TP YWe

w

have

4£,901 = 161 KoV © )9
-| [ vestcon Tt as

/
"Pog

< Vo f ocllprmewaa [Vog ol vy
1

w
S e Ry
so that ¢ induces a bounded linear functional on M (c)P1+2P2d,

Now suppose o € (M (c)Prp2P2a)* Because M (c)PrP2 P2 is a Banach space,

the space
V ={F e LEP> P [ =V,focfor some f € M(c)bHP2 P}

is closed and isometrically isomorphic to M (c)biP2™ P2t via I';. Hence o induces
a functional on V. By the Hahn-Banach Theorem, o extends to a functional on

. P1Phy e oD .
Lpvp2p2d Hence there is G € L'} 7 with

w

a(f) = <F:;,f, G> Vf e M(C)ful,m,"-,pzd'

Let g = I'yG. Then g € M(c)}" 2 P by Lemma 4.3.6 and

S\*—‘._.\

a(f) = (31, G) = (,T6G) = ([, 9)-

Hence (M (c)prp2p2a)* = M(C>pll17p/27'":p/2d' -

w
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4.3.3 A larger window class

Many of the mixed modulation spaces results for windows in .%(R¢) to also hold

1

for windows in M(c) ', We focus on these type results in this section. First a

technical lemma is needed.
Lemma 4.3.11. .Z(RY) is dense in M(c)PrP> P2 for all py,p, -+ ,pag € [1,00).

Proof. First, suppose f € .#(R%). Since v has polynomial growth, so does w and
there is some s > 0 with [[w]| 1 #e:ma < 00. Since f € #(R?), Theorem 11.2.5 in

[33] and Lemma 4.3.5 imply Vi f o ¢ € 7 (R*), so [[Vif o ¢|| o goa) < 00. Hence

HfHM(c)Zl’;DQ’W’:DQd = HV¢f (o] CHLﬂl’IQ"“’de
S ||V¢f © cHng(de) Hw||L51!527”"p2d
< OQ.
Thus f € M(c)Prp2P2 g0 F(RT) C M(c)PrP: P,
Now suppose f € M(c)hrP> P2, Let F,, = Vi f - X(_,, ,p¢. By Proposition 11.2.4
in [33],
fu= 0112 [ Fuo)meods = 9133 [ Fuleto))maeyddo = ol La(Froe) € 7 (R).

Notice that by Lemma 4.3.6(b), we have V,f o ¢ € W(LP»+P24) which implies

=0.

n—oo

i (521 3

LPLP2 P2d

Also by Lemma 4.3.6,

1f = Fallsrgeyproawaa = 19l 22 ITo(Visf 0 €) = T (F © )] pyigyra w2

-2
< ol Vot o cll 1 gaa)

(Vcbf © C) X 2d\¢
([—n,n] ) qul’pQ""’de

— 0.

Hence . (RY) is dense in M (c)P1P2:P2d, 0
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Lemma 4.3.12. Suppose 1),y € M(c)L 11,

(a) Forallpy,...,peq € [1,00], f — V, foc is a bounded operator from M (c)br»2 P2

to LPvP2P2d gnd there is some constant C' independent of f and v such that
Voo cllppimamaa < C UV arerr o 1 ageyre waa -

(b) For all py,...,p2 € [1,00], F' — 'y F is a bounded operator from LP1P> P

to M (c)brp2P2d gith
T Fllygzrrsr o < IF | pparncsas 10l arpn

Proof. First we prove (a). Fix pi,...,p2a € [1,00] and let f € M(c)brp2P2d, By
Theorem 4.3.7 we have f = F¢ (Vs f o¢). Thus

Vo f (@) = [(f, 7))

1
= |< ] (g (Vi f 0 €) , Tew))|

| ‘/V¢f (y)¢77rc(m)7> dy
o / Vi ()] | (6, Ty dy

|/\V¢f DIVo (e(e — )] dy

| A

(IVof ocl+Vyp o) (2).

<<b7 )

Thus by Young’s inequality we have

IVaf o cllgumamsa < [, 6) 7 VoS o cllppamnemaa 1V 0 €ll 1y e
= (¢, €f>>|_1 Vs f o CHLﬁl’p?"”vT’Qd [V o C||L5(R24)

-1
— 146, ) Iyt Il g o o oaa

Now we prove (b). Fix py,...,peq € [1,00]. By Lemma 4.3.1, % is v-moderate.

Thus by (a), f — Vi f oc¢is a bounded operator from M (c )p1 PP g Li/l’plz’m’p/?d.

w w
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Since I'y is the adjoint of this operator, we see F' — I',F" is a bounded operator
from LP1:P2:5P2d t M(C);Z)l,m,"wpm'
Fix F' € LpvP2P2d By Lemma 4.3.6 we see that 7 — I'.F is a linear operator

from .7 (R?) to M (c)brP2 P2 satisfying
”FTFHM(C)Q’}’P?““’FM < ”FHLPLPQ"”’PQd HV¢T © C”L%(Rw)'

Since Lemma 4.3.11 shows . (R?) is dense in M ()11 this operator extends to a

bounded linear operator from M (c)bl:t to M (c)PrP2 P2 with

1Ty Ell p ez vza < V| pora.o aa 1900 a1 -

Lemma 4.3.13. Suppose ¢,y € (R?). For any f € M(c)P+P»" P2 we have

Ly (Vofoce) = () f.

Proof. By Corollary 11.2.7 in [33] we have for all f € .7/(R%) that
f =5y [ Vaf(@)ms1p dz. Hence for all f € #(R?), we have

1

1
[ = W/va(c(x))wc(x)wdx = W

This is an equality of distributions, but it is also valid in M (c)P1P2 P24 hecause

Ly (Vafoc).

Lemmas 4.3.11 and 4.3.12 ensure that I'y, (V. f o ¢) € M(c)hip2 P2, O
Theorem 4.3.14. Suppose 1,y € M(c)L! are given.

(a) For any f € M(c)PrP2--P2 e have I'y, (Vo f oc) = (¥, 7)f.

() WIfIl = Vi f o cll pprmarraa is an equivalent norm on M (c)h}P2-P2d.

Proof. First we prove (a). Choose {1}, {7} C Z(R?) with []1) — Unllprraa — 0

and || = |l o111 — 0. Fix f € M(c)fp P2 P2. Using Lemma 4.3.13 we have

1f = @) T (Vo f 0 )|y mae 20

= | (W ¥ T (Vi f 0€) = (0, 1) 7 Ty (Vof © ) ey
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< (W )™ = @) T ITy (Vaf 0 )l ma 2
1 )| I (Vs f 0 )l o
1 1) 7 P (Vi f © O)lagqgarn v
Using Lemma 4.3.12, we see that each term in this sum can be made arbitrarily small,

proving (a).
To prove (b), fix f € M(c)PvP2»P24 Then by part (a) and Lemma 4.3.12, we

have

£l ygqeyzaemoa = 1y 0]~ [T (Vio © )l ygqegpa vm s

= (&)™ 1l I
= [, ) N0l gyt 1V © ell oo o
< \<¢7¢>|_1 ||¢”M(c),£ ~~~~~ 1 ¢ WHA/[(C)};L‘W1 ||f||M(c)£';1”’2""”’2d H
Theorem 4.3.14(b) states that the definition of the mixed modulation spaces is in-
dependent of the choice of ¢ € .7(R%), with different ¢ giving equivalent norms. Fur-
thermore, this fact also holds for ¢ in the larger space M(c)L~!. Theorem 4.3.14(a)

states that for Gabor window functions in M (c)l!, there is an inversion formula

valid on each M (c)PlP2P2d,
4.3.4 Banach Frames

Lemma 4.3.15. If ¢,y € M(c)bt1, then Voihoc € W(LL(R?*)) and there exists C

independent of ¥,y with

Proof. If 1, € .7(R%) then Corollary 4.3.8(c) implies

for some C' independent of v,y. By the density of .#(R%) in M (c)b11, this result

extends to 1,y € M(c)l L. O
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Proposition 4.3.16. Suppose 1 € M(c)>'=1. Then the analysis operator Cy :
M (¢)Pr-P2d — (P1P2d defined by

wa = {<f7 7-‘-C(oz-n)¢> }n€Z2d

is bounded for all py,...,paq € [1,00] and all & = (aq,...,a0q) with aq,..., 94 €

(0, 00).

Proof. First notice that we can define an equivalent norm on W (LE1P2»P2d) by

T [ I

(P1P25eP2d :
w

Hence, there exists finite K such that

H { ||FXO"[071]2d+O"n Hoo}nGZQd

for all F' € W (LB P2P2a),

(PLP2oeP2d <K ”FHW(LZLPQ """ P2d)

If ¢ € .7(R%), then by Corollary 4.3.8(b) and (c) there is some C' independent of
¥, f such that for all f € M(c)P1P2d we have

é;zjl AAAAA P2

< [V 09 Xaopocanll e

Zﬁ,l’pQ ----- Pd

M{(e)bte-t, O

Proposition 4.3.17. Suppose 1 € M(c)L1. Then the Gabor synthesis operator
Dy, : (B1P2d — N (c)PreoP2d defined by

Dyd = Z Ay T e(am) ¥

nez2d
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is bounded for all py,...,p2q € [1,00] and all & = (o, ..., a0q) with aq,..., ey €

(0, 00).

Proof. Choose K such that

HFHW(Lﬁ}’pQ ~~~~~ P2d) <K H{HFXa-[O,1}2d+a-nHOO}nezzd

P1,P25--1P2d
Loy

for all F' € W (LP1p2-P2a),
Since ¥ € M(c)Lb 1 we have Vg o ¢ € W(LL(R?*?)). Consequently, there is a

sequence a € (1(Z*?) with a,, = H(wa oc)- Xa~[071}2d+oc-mHoo and

Vo o el = D laml v(a-m).

meZ2d

Thus

|V¢@/J(C(CL’))| < Z |am| Ta-me[O,lPd(x) a.e.

meZ2d

It follows that

Va(Dyd)(e(2))| = | D du(metam ¥, Tew)9)

nEZM

< D ldal Vit (e(@ — a-n))l

n€Z2d

> D ldal lam| TomXaoy2a(z — - n)

n€Z2d mez2d

- Z Z |dn’|am|Ta-(m+n)Xa-[0,1]2d(x)

n€Z2d me7z2d

=3 Yl el ToomXago.ps (@)

n€Z2d mez2d

= > (dl *lal),, TamXa,pa(x).

mez2d

IN

Thus

<

Z (|d| * |a|)m Ta-mxa~[0,1}2d(95)

mezZ2d
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<C| S (1 # fal),, TomXewipapa(a)

mez2d

W(Lﬁ,l vvvv p2d)

where C' is some constant depending only on the Lebesgue measure of a - [0,1]?¢. O

Corollary 4.3.18. Fiz a = («ay,...,qs) with ay,..., a0 € (0,00). Suppose ¢ €
M(e)Lbl 0 If d € PP then the sum

v

Dyd =Y dyTe(am?

nez2d
converges unconditionally in M (c)Pr=P2d for all py,...,peq € [1,00) and converges
weak”™ unconditionally in M(c)7 >
Proof. First we assume py,...,paq € [1,00). Fix d € ¢£2-P2d and ¢ > 0. Choose a

have

HDwd_ Zdnﬂ-c(wn)¢ = I|D¢ (d_dXS)H

nes

< ||Dylle.

Hence ZneZM dyTe(a-n)y converges unconditionally to Dyd.

More generally, assume py, -+ ,paq € [1,00]. Fix f € M(c)l! and let £ > 0.

|Cyf = (Cyf) XSo”g};"‘vl(ZM) <€

Thus for each Sy C S C Z*¢

(Dyd =Y duTreianyths )| = [(Dy (d — dXs) f))

nes
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=[{d(1—Xs),Cypf)]

= [{d,Cyf (1 —Xs))|

< ||d|]€o%o [Cyf = (Cuf) Xs o
< ||d||£c%o 1Cyf = (Cyf) Xso [
< ||d||€o%os

It follows that )" ;20 dpTe(an)¥ converges weak™ unconditionally to Dyd in M(c)%.
[l

The next theorem states that if the window function is nice then a Gabor frame

for L?(R?) gives bounded decompositions for all mixed modulation spaces.

Theorem 4.3.19. Fiz 8 > 0. Suppose p1,pa,...,pea € [1,00] and ¢ € M(c)L1.
Further suppose that {mg,)}, _yoa is a frame for L*(R?) with dual frame {mg,7}, cpoa-
Then

(a) {Tpnt}, cp2a 15 a Banach frame for M(c)biP2-P2 and there evist 0 < A < B <

oo independent of p1,pa, . .., Paq Such that

S B ||f||M(c)i1’p2 ,,,,, P2d

AN Fllgqepprraa < | Vil © €|y

P1,P25--1P2d
Loy

for all f € M(c)P1P2P2d,
(b) If p1,pa; -, p2a € [1,00) then

f = Z <fa 71—,(3771¢> Tam"~ = Z <f7 ﬂ-ﬂm'7> Wﬂme

meZ2d meZ2d

for all f € M(c)Prp2-P2d qith unconditional convergence in M (c)Pib2r-P2d,

(¢) If p1,pa, .- paa € [1,00] then

f = Z <fa 71-,Bmw> Tam~ = Z <f7 7T,@m7> Wﬂm¢

meZ2d meZ2d

for all f € M(c)bvr2-P2d with weak™ convergence in M(c)7T ™.

v
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Proof. Set = (,83,...,8) € R*,

Since {mgnt}, p0q is a frame for L?(R?) with dual frame {ms,7} we have

nez2d
f=> {f mm) wpmy = D,Cyf Vf €S R
mez2d
By Proposition 4.3.17, Corollary 4.3.18, and Lemma 4.3.11, this equality extends to
each mixed modulation space M (¢)P1»+P24 with unconditional convergence if

00,...,

D1, D2, - -+, P24 € [1,00) and weak* convergence in M (c)T ">, Arguing similarly with

for Dy and C, completes the proof of (b) and (c).

To prove (a), we note that

and

HVWCO ¢| 5720

Letting B = ||Cy|| and A = || D,||”" gives (a). O
4.3.5 Mixed Modulation Embeddings

Theorem 4.3.19 can be used to prove embeddings among the mixed modulation spaces.

Lemma 4.3.20. If s >t and p;,r; € [1,00] with p; < r; for alli=1,2,...,2d then

M (e € M(c)

T1,725.-5724d
Ut °

Proof. Since vy(z) < vg(x), we see M ()12 C M(c)yb" "¢ from the definition
of mixed modulation spaces. Hence it suffices to prove M (c)btP2¢ C M(c)jLm2 24,

By Theorem 12.2.2 in [33], £B1-P2d C (71727724 with

Iy 2 < 1
S

evs »P2d
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1 asqoprneraa = |[Viof 0 €| g

715 T2d
Ly

S Hv’l//'f ° c‘ﬁz&i

P15-P2d
0y

4.3.6 Wilson Bases

LetX1:X2:~~:Xd:ZandXd+1:Xd+2:~~:X2d:Z+.

Let
Cof = {{F Wy maan) |

ny EXC_1<1),TL2€XC—1(2),"' ’ﬂ2d€XC—1(2d>

be the Wilson basis analysis operator. The formal adjoint of 6’¢ is

Dll))‘ = E )\nlv"':n2d\Dnc(l)r"'7nc(2d)'

nlEXC_l(l)’""n2d6Xc_l(2d)
For submultiplicative weights v : R* — (0, 00) define a weight v’ as follows. For

each t € R let v'(t) = max {v(¢,0,---,0),v(0,£0,---,0),--- ,v(0,---,0,¢)}.
Proposition 4.3.21. Assume p,...,paq € [1,00). If 1) € Mj,’év,(R) then
6¢ s M(c)PrrP2d — fPLy-Pad (Xcﬂ(l), c ,chl(Qd))

v

and

(2

are bounded linear operators.

Proof. Since 51% 15¢ are adjoints, it suffices to prove that

ﬁw 2 PP (chl(l), . ,chl(gd)) — M (c)br-P2d

v

is bounded. Let W(t) = Woo(t) = ¢ (t1)9(ta) - - (ta). Since ¢ € Mj,’év,(R) we see
U e Mj,’(lm,@”@v,@v, (R%). Because v(t) < v/(t1) - - v (taq) we have Mj,’évl®,,,®v,®v, (RY) =

M(c)yos g C M(c)bb . Hence ¥ € M(c)bb1.
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Let {A1,As, -+, Ay} be the set of d x d diagonal matrices with diagonal entries
in {0,1} and let I denote the d x d identity matrix. Let M; be the 2d x 2d block

diagonal matrix with first entry I — %Ai and second entry I. Let
Si = {(nc(1), e Ne(2q)) € 78 x (ZT) (A — D) (Ne(arny, s Ne2ay) = 0} '

Then {Sy,---,Ssa} partitions Z¢ x (ZT)¢ according to the presence and position of

zeros of the last d coordinates. If (ng), -+, ne@q)) € S;, then we have

g[”7/5(1)7711:(2)7"' Tle(2d) = : : Civeﬂ-Mi(nc(l)v'" Me(d) €1 Me(d+1)s"" aednc(2d))\:[]7
€:(617'" 7€d)e{_171}d
trace(A;)
2

where ¢; . is a scalar satisfying |¢; .| = 27"

Fix \ € (bro--p2a (Xc—l(l), - ,Xc—l(gd)). Then
Dy

2d
= E : E , )‘m,'" 7”2(1\1/7%(1):"' Me(2d)
=1

(nc(l) > Me(2d) ) €S;

2d
= E : E : E : )\nh'“7n2dci757TMi(nc(l)v"'7nc(d)’flnc(d+1)v"'7€dnc(2d))\p
=1

(Me()rr= mMe(za) ) €8i e=(e1,+ ea) €{~1,1}

For cach 1 <i<2%and € = (e1, -+ ,€q) € {—1,1}%, define a sequence XM by

()‘i,é)nh'“ MNP M1, ,Bdn2d
)\nl,---,ngdci,e if (nc(1)7 T 7nc(2d)) S Sz and (617 e 7ﬁd> == (617 e 7€d)7

0 otherwise,

where (ny, -+ ,nq) € Z% x (ZH)® and (By,-- -, B4) € {—1,1}*. Then

trace(A;)
2

< 97

11X o1 (20))

for all 7, ¢ and we have
Dy
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N
IS

= Z Z <)\7, 6)7),1, N Nd 415 7n2d7TM (n Te(1)s 5Me(d) sMe(d+1) " ’nc(Qd))\Il
=1 e=(er, ea) €{— 1,1} M n2a €L
2d
- ()\i,e)nﬂ—Mic(n)\Ij'
=1 e=(e1, ea) €{—1,1}" n€Z
But
7TMZ-c(n)\I’ = 71-c(a(i).n)\ll
for a(i) = (a(i)1, a(i)a, ..., (i)2q) Where a(i)gp1 = -+ - a(i)og = land a(i)y, -+, a(i)g €

{1,2).

By Corollary 4.3.18, we have

od
Dw)\ = Z Z D(i,e),w)\i,e

=1 e=(ey,....e0)E{—1,1}"

and each D; ) : (01 P24 — M(c)PP24 is a bounded linear operator. Thus
[

< Z Z HD(Z',E),in,e

e=(e1,...,eq)e{—1,1}¢

SHD>

M(eyt P

race(A )
2~ d+——=—*

24
d trace(A )
Z Z ”D “W” A A g (X1 gy X o1 2)) =

=1 e=(ey,....eq)e{—1,1}¢

Corollary 4.3.22. Assume p,...,pag € [1,00). If b € M) év

(R) then

Dl/)d = E dm,-.-,nzd \Ijncu) e e(2d)

n1EX —1(1)rN2d€EX~1(2g)

converges unconditionally in M (c)Pr--P2d,
Proof. The proof is similar to that of Corollary 4.3.18. ]

The following theorem states that Wilson bases are bases for the mixed modulation

spaces.
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Theorem 4.3.23. Let v : R?*? — (0,00) be a weight and w a v-moderate weight.
For each t € R define v'(t) = max{v(t,0,...,0),v(0,¢,0,...,0),...,0(0,...,0,¢)}.
Assume ) € Mi/’év/ (R) generates an orthonormal Wilson basis {Vkn},c g+ yega Jor

L*(RY). Then {Vy,.}

; it ; P1,p2,,P2d
ne(@+)! kezd 15 AN unconditional basis for M (c)¥: for each

P1;D2,---;D2d € [1700)

Proof. Since {Vyn}ycza eyt 18 an orthonormal basis for L*(RY), we have f =

Hence, given f € M(c)P»P24 and € > 0, we can choose a finite set Sy so that

oot~ @)

< €. Then
Xe=1(1yXe=1(2q)

551 7777 P2d (

F= Y (0@ < HmH e

(n,k)ESo

S C 74 x ()" we have

Z ,Uk,n)\k,n\pk,n = Dw HM)\X5H451 ----- P2g

(k,n)eS M(C)z,l AAAAA P2gd
< |[Dyl| 1l goe [AXs][go1-02a
< ||Dy HMHeooHCwH HDw()\XS)HM(C)Z1 ..... .
— 1B Ml |G| || D= M

(kn)es M(c)ﬁ,l ,,,,, P2d

The result follows. O

Corollary 4.3.24. Assume v € M;’év/ (R) generates an orthonormal Wilson basis.
Let X1 = X2 = e = Xd = 7 and Xd+1 = Xd+2 = e = ng = Z+. Then

M (c)PrP2-P2d 4s jsomorphic to (P1P2P2 (ch(l), . ,chl(gd)) via the map éw.
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4.4 Bounded Pseudodifferential Operators

The proof technique used for Theorem 4.1.2 can be extended to results involving

mixed modulation spaces defined by the following types of permutations.
Definition 4.4.1. A switch permutation c is one that satisfies

(a) ¢ maps{2d +1,2d+2,...,3d,3d+ 1,3d + 2,...,4d} to{1,2,...,2d} bijectively

and
(b) ¢ maps {1,2,...,d,d+1,d+2,...,2d} to {2d+1,...,4d} bijectively.
A first slice permutation c is one that satisfies
(a) ¢ maps {1,2,...,d,2d+1,2d+2,...,3d} to {1,2,...,2d} bijectively and

(b) ¢ maps {d+1,d+2,...,2d,3d+1,3d+2,...,4d} to {2d+1,...,4d} bijec-

tively.
A second slice permutation c is one that satisfies

(a) ¢ maps {d+1,d+2,...,2d,3d+ 1,3d + 2,...,4d} to {1,2,...,2d} bijectively

and
(b) ¢ maps {1,2,...,d,2d+1,2d +2,...,3d} to {2d+ 1,...,4d} bijectively.

Theorem 4.4.2. Suppose A is a pseudodifferential operator with Weyl symbol o.
Suppose cs is a switch permutation, s1 is a first-slice permutation and sy is a second-

slice permutation. Let q; = -+ = qag = 00 and qaa1 = -+ = qug = 1. If
(a) o € M>>H(R*),
(b) & € M(c,)maau,
(c) o€ M(sy)i092%d  or

(d) o€ M(Sz)‘h,qz ..... da
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then A : M(c)PrP2a — M(c)PrP2d js bounded for all py,...,peq € (1,00) and all

permutations c.

Proof. By Proposition 14.3.3 in [33] we can write (L,f,g9) = (o, W (g, f)) for all

f,g € Z(R%), where W denotes the Wigner distribution. Also, by Lemma 14.5.1 in

(o) rnlo-§9)

for all zq,29,(1,( € R% Hence for ¢ € L*(RY) with ||¢|;» = 1 we have for all

[33] we have

Vivosy W (g, 1)) (21, 22,C1, G2)| =

fr9 € L (RY) that

(Lo f, 9)]

/// Pirsan(a 2.6,

V¢f (Zl—i-%, %)‘

To prove the sufficiency of (a), notice that (25) satisfies

Vg ( ézz+<1)’dzldz2d(1d@ (25)

(Lo f, )]

// sup | Viv(o.)0 (21, 22, €1, G2) | A1 dGo

z1,22ER4
TS
V¢f (21 + 9 , & 9

X sup /
C1,(2€R4

L [ [ I [y // Sup Vv o (21, 22, G, )| dG dGo
¢1,62€R? 21,22€R4

V¢g< é 22+C21)‘dz1dz2

< om0yt // Sup [Vip(oe (o1, 22,1, )| 4G Gy
legeR

Since . (R?) is dense in M (c)P*»+#2¢ and M (c)Pi=P2a, (a) implies that
A M(c)PrP2d — M (c)Pr--P2d ig bounded.
Suppose (b) holds. Then (25) implies that

(Lot 9)]
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S/ sup |VW(¢,¢)U(Z1,Z2,§1,§2)‘dZ1d22

¢1,62€R?
< sw [ s (st G- G )| oo (- o2t § ) a1
z1,22€R?

< 22d sup ||f||M(c ..... Pod ||g||M(C)p/1 ,,,,, Phy / sup ‘Vw(¢7¢)0(21722,<1,<'2)| le dZQ
z1,22€R? ¢1,62€RY

= 2200 eyt 1 g 191yt

Again the density of . (R?) in the mixed modulation spaces implies A : M (c)P1-P2d —
M (c)Pr--P24 ig bounded.

Suppose (c¢) holds. By (25) we have

(Lo f, 9)|
// sup ‘VW ¢¢)0(217227C17§2 ‘ dZQ d§2

21,C1 €Rd

o ff|er (5 m-5))

< 2% sup HfHM(C ,,,,, pod HgHM(C)p/1 ,,,,, péd// sup | Viv(s,e)0 (21, 22, (1, (o) | dz2 dGa

z2 <2€R2 21 C1€Rd

V¢ ( g 22+C21)‘d21d<1

= 2d ”UHM(sl)OOvl ||f||M(c)p1 """" P2d ||g||M(C)P’1 77777 Phy

Again the density of . (R?) in the mixed modulation spaces implies A : M (c)Pt-P2d —
M (c)Pr--P2d is bounded.
Assume (d) holds. Then from (25), we have

(Lo f,9)

// sup ’VW 660 (21, 22, C1, C2) ‘ dzy dGy

z2,(2€R?

<[l (e 9)

<27 sup [ fllysgeyrrraa HgHM(C)p/1 ..... Py // iude}VW¢¢ o(21,22,C1, )| dz1 dG
z2,02€

z1,(1€R?d

V¢g (21 —% 22+ g)‘ dZQdCQ

= 29 g 1 scopnona 191 -

Again the density of . (R?) in the mixed modulation spaces implies A : M (c)P1-P2d —
M (c)Pr--P2d ig hounded. O
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4.5 Pseudodifferential Operators and Schatten classes
4.5.1 New Kernel and Symbol classes

In this section we will use Theorem 3.3.2 and its corollaries to find conditions on the
kernel and Kohn-Nirenberg symbol of a pseudodifferential operator that guarantee

the operator is Schatten p-class.

Theorem 4.5.1. Let ¢ be a slice permutation and 2 = p; = py = --- = pPog and
D= Paas1 = -+ = paa- If p € [1,2], k € M(c)P»Psd and A is an integral operator
with kernel k, then A € T,(L*(RY)).

Proof. We first prove the theorem in the case ¢ is a second slice permutation. Let
{Tam®}nezza = {®m}megea be a Parseval Gabor frame for L?(R?) with ¢ € M (R?)
and let ®(t,y) = ¢(t)p(y). Then & € MLI(R).

By the proof of Corollary 3.3.7, we have

3=

Y
2

||A||Ip(L2(]Rd)) S Z ( Z | ¢n®¢m | )

n€Z2d \mez2d

For my, ma,ny,ng € Z¢, with m = (my, ms) and n = (ny,ny), we have
(k, pn @ Om) = Vak(any, amy, ang, ams).

Since c¢ is a second slice permutation, we see that

(X (X mensonr) )
neZ2d “mez2d
Z ( Z |V¢k(an1,04m1,an2,am2)\2>

n1,m2€Z4 “mq,mo€Z4

[MS]
-

371 PP

where B is the constant ensured by Theorem 4.3.19(a). Hence if k € M(c)PrrPad,

then A € Z,(L*(R?)).
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by
A1) =c(d+1),d(2) =c(d+2),...,d(d) = c(2d),
dd+1)=c(1),d(d+2) =c(2),...,d(2d) = c(d),
d2d+1)=c(3d+1),d(2d+2) = ¢(3d + 2),...,¢(3d) = c(4d),
and
d(Bd+1)=c(2d+1),d(3d+2) = ¢(2d + 2),...,(4d) = ¢(3d).
Hence, A* € Z,(L*(R?)). But HA||IP = |]A*||Ip. ]
By Lemma 4.3.20, increasing any one of the exponent parameters py,...,psq Or

decreasing the weight parameter s yields a mixed modulation space larger than
M(c)prP2-Paa - The next theorem shows Theorem 4.5.1 is sharp in the following
sense: increasing the exponent parameters or decreasing the weight parameter of the
mixed modulation space in Theorem 4.5.1 gives a larger mixed modulation space, but

integral operators with kernels in this larger space need not be Schatten class.

Theorem 4.5.2. Assume s <0, qi,...,q2q € [2,0], ¢2d+1,---,q4a € [p, 0] and c is

a slice permutation. Assume at least one of the following is true:
(a) s <O0.
(b) At least one of qu, ..., qoq 1s larger than 2.
(c) At least one of qagi1, - - -, qaa 1S larger than p.

If 1 < p < 2 then there are integral operators with kernels in M (c)#-%2%d that are

not in Z,(L*(R%)).
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Proof. To avoid complicated notation, we prove the theorem only for the permutation
c(l)=d+1,¢2) =d+2,...,¢(d) = 2d,

c(d+1)=3d+1,...,¢(2d) = 4d,
c2d+1)=1,...,¢(3d) =d

and

c(Bd+1)=2d+1,...,c¢(4d) = 3d.

The result is proven similarly for other slice permutations.

In the case that (a) or (b) holds, we can adapt some of the arguments in [36] to
complete the proof. In particular, if k(t,y) = ki(t)k2(y) is the kernel of an integral
operator A, then Af = (f, ko)k,. Hence if k; ¢ L?*(R?), then A does not map into
L*(RY), and if ky ¢ L*(R?), then A : L*(R?) — L?*(R?) is not bounded. Let ¢’ be the

permutation of {1,2,...,2d} with
d1)=d+1,...,d(d)=2d
and
dd+1)=1,...,d(2d) = d.

If (a) holds, choose ky € M2*(R?)\ L*(RY) and ky € MPP(RY). If (b) holds,
choose k; € M(¢)®%24\ [2(R?) and ky € M(c)%2d+1-914, In either case k(t,y) =
ki(t)ke(y) € M(c)iv®-%d but the integral operator with kernel £ is not a bounded
operator on L?(R?).

Hence we assume (c) is true. Choose

Assume {11} ;cza,cz0ya 18 @ Wilson basis for L*(R?) generated by ¢ € M"!(R).
Then

{q](ﬁvﬁ)v(llh)}jl,jgezd,zl,be(zﬂd = Win © Vo }jl,jzeZd,zl,lze(Zﬂd
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is a Wilson basis for L?(R?*?) generated by ¢ € M1(R). Set

Z Z /\z,g%, %z()

jezZd le(zt)d

Then

¥

Me(1)5Me(2)5+5Mc(2d) )7(nc(2d+1) 7"'7nc(4d))

Mg 150 M2d,N3d415++-314d ) (N1 5 dN2d 415+ 13d)

= w(nd+17~~~7n2d)v(n1a~~-,”d) ® w(n3d+1a~--’n4d)7(n2d+1a~~-”3d)‘

By Corollary 4.3.24

[T

1

a\ @ 444
= Z e Z ‘<k7 \D(nc(l)7"'7nc(2d))7(”6(2d+1)7"'7nc(4d))> te

7L4d€XC—1(4d) anXC—l(l)
92d+2 d44 1
(Zl(5 =)
e (n2d+17---7n3d)v(n3d+17---7n4d) e
n4q€Z nogy1€LT

= [|All oz 93d:93d-+1>-94d ((2+)d, Z4)

so k € M(c)m @t C M(c)d-92--94 The pseudodifferential operator A with kernel
k has singular values equal to the elements of the sequence A\. Hence A ¢ T,(L?(R?)).

[]

Notice that the proof of the previous theorem shows that Theorem 4.5.1 does not
hold for p > 2. That is, if p > 2 and k € M (c)**+*PP_ the corresponding integral
operator may not even be bounded on L?(R%).

We can extend Theorem 4.5.1 to conditions on the symbol of a pseudodifferential

operator.

Theorem 4.5.3. Assume 1 < p < 2 and c1, ¢y are permutations on R satisfying

the following conditions.

102



(a) c1 maps {2d +1,2d +2,...,3d} to {1,2,...,d} and maps
{1,2,...,2d,3d + 1,3d+2,...,4d} to {d+ 1,d+2,...,4d}.

(b) co maps {3d+1,3d +2,...,4d} to {1,2,...,d} and maps {1,2,...,3d} to
{d+1,d+2,...,4d}.

Suppose A is a pseudodifferential operator with Kohn-Nirenberg symbol 7. Let 2 =
pr = - = pag and p = pagy1 = - = paa. If T € M(cy)PrP2Pid or 7€
M (cq)PrP2--Pid then A € T,(L*(RY)).

Proof. Let k be the kernel of A, andlet 2=¢; =--- =qgand p = @411 = - - - = Qua-
Let s; be a first slice permutation and s, be a second slice permutation. By Lemma
4.3.20 and its proof we have for any permutation ¢, M(c)Pr~Pid C M(c)?-%d and
17| sy 910 < C Tl asgeyerpaa for some finite C' . Hence, using Corollary 4.2.3, we

,,,,,

have

-

T =(// (/[ waktas.c.ar dadc)gdbdd>p

(//(/ Vol —doc+ d b —a) dadc)’z’dbdd)
c( [ ([ Wramrta e ao-af dc)gdadbdd)
_¢ ( JI[ ([ Woawrtaa.enf dc)g dadbdd)

A

S =

B =

and

5 »
||k||M(52)q1 """ dad — (// (/ |V¢k(a7b> &) d)|2 dbdd> d(ldC)
(// (/ Ve, o7 (a, —d, ¢ + d,b — a)|” dbdd>
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<C (/// (/ ’V]—'z(CDON)T(CL, —d,c+d,b— a)‘2 db) i dadcdd)
=C (/// (/ Vrs@onT(a, d, c, b)|2 db) ) dadcdd)

The result now follows from Theorem 4.5.1. ]
4.5.2 Relationship between old and new kernel and symbol classes

In this section, we explain the relationship between Theorems 4.5.1 and 4.5.3 and the
previously known results for Schatten class pseudodifferential operators. The most
powerful previously known result for Schatten class pseudodifferential operators is
Theorem 4.1.1. We will show that Theorem 4.5.1 is stronger than Theorem 4.1.1
as a kernel result. We will also show that Theorem 4.5.3 is neither stronger nor
weaker than Theorem 4.1.1 as a Kohn-Nirenberg symbol result. Rather, it represents
a distinct condition on the Kohn-Nirenberg symbol that ensures the corresponding

operator is Schatten class.
Lemma 4.5.4. Ifs > @ and s > 0, then (22 (224, 7*%) C (*? (2**,Z*") and there
exists finite C' such that

el < Cllell 22 Ve € (22 (2, 7%7) .

Proof. In the case that p > 2 we have (2* C (*>? C (*? trivially.
Suppose p € [1,2). Let ¢ = 123 so that ¢ € (1,2]. Let ¢’ = 2%17 be the dual index of
q. Then

[N4S]
3 =

2
leleo = | D | D lesl

kez2d \ jez2d

[S14S)
RS

_ AR
Tl 2\ el T

kez2d \ jez2d
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pg L
2 rq 1

S 1 W
<D0 D lesl | (kD™ (Z —qu>
k€Z2d jEZQd kGZZd (1 + ’kl)

1 2-p
2 2s 1 v
= D2 Dl + 1R D ———y
kez2d jez2d kez2d (1 + |k7D 2-p
L 2-p
2 . 2s 1 v
< D2 Dl +1G R ) ——
kez je72? rezea (1+ [K[)2=
2-p
1 2”
= llcll 22 (Z —zp>
pezza (1 + [k[)>r
< 00,

as s > @ implies 22%2 > 2d.
All that remains to be shown is that (22 (Z*?,Z*%) # (*r (Z*?,Z*%). Since s >
@, we can choose ¢ € (%l, d+ 5] Choose f € .Z(R??) and set

/()

TR Vi, k e 7%

Cik =

Then

S

FG)IP (L + G, k)
lellgz = | D > %
]€Z2d k:EZ2d ]‘ + |k|)
1

2 2 1+|1<;| (1+ k]2

JEZ24 ke72d

v

= 00,

as ¢ < d+ s implies 2(q¢ — s) < 2d. But

N|=

1

el = (Z W) > 1G)P

j€Z2d

< 00
as Q?d < q implies 2d < gp. O
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Proposition 4.5.5. Let ¢ be a slice permutation and let 2 = py = --- = pog, p =

Poai1 = -+ = pag. If 5> 9= p with s > 0, then M2?(R*¥) C M (c)Pr2--Pad,

P’I"OOf. Let X1 = XQ == ng = Z and X2d+1 = X2d+2 == X4d = Z+. Since

MZ*(R*) = M(c)2*2, Corollary 4.3.24 implies that we can find a map S so that

St MPAHRM) — 0222 (X -1y, - Xe1(4q))

Vs

and

S - M(C>p17p2,-~7p4d —s (P1:P25Pad (Xc_1(1)7 o 7)(6_1(46[))

are both isomorphisms. In particular we can choose S = 5¢ for appropriate .
Furthermore, since c is a slice permutation, we see that there is a map 7" by which

EU’S’ “ (X “1(1)s - - - Xc—l(4d)) is isomorphic to &2};2 (ZQd,Zm) and

(prp2epid (X o1y, ..., Xo-1(4g)) is isomorphic to (27 (Z*¢, Z**). Hence, using the pre-

vious lemma, we obtain the following diagram.

MSSQ (R2d) pl »P25---,P4d

| Si

CFt (X Xeag) - 0P (X, Xemiag)

i |

&2},2 (ZQd, ZQd)( EZ,p (ZQd, ZQd) )

Since S, T are isomorphisms, the result follows. n
The next five results are intended to give context to Theorem 4.5.3.

Lemma 4.5.6. If s > %@ or s =0 then
62’2’2’2 (Zd, Zd7 Zd, Zd) C f?,p,p,p (Zd, Zd7 Zd7 Zd)
and there exists finite C' such that

lellzpre < Cllcllzp22 Ve e (2222 (74, 72,74 7).
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Proof. In the case that p > 2 or s = 0 we have 63’2’2’2 C (3222 C (2PPP trivially.

Otherwise, let ¢ = 2. Then ¢ > 1 and its dual index is ¢’ = . We have

2\ »
el = [ (z |cj,k,l,m|2>
J

k,l,m

— Cs 2 (1 + |(k7 lvm)l)sp
0> (Z‘ st ) L+ (kL m) )

klm \ j

IN

2 %q s " 1 ﬁ
Cj,k,l,m 1 k, l, m Pa 7
> (Z| |> (1+ |(k,L.m))) (Z (1+|(k,l,m)|)8”q>

klm X\ j

2—p

= Z |C]klm| (1+|(k7l7m ) (Z 2sp>
(]klm l,m 1+|(k7lam)|)

1 2p
<l gzee | 32

k,l,m (1 + ‘(kvhm)‘)ﬂ

and this sum converges since s > 2 (2p p) implies 5~ 257’ > 3d.

Furthermore since s > 2 d(2p p) , We can choose ¢ € (3—‘1 3d s] Choose f € 7 (R?)

and set
fG) , d
klm = Vi, k1, Z°.
R (R
Then c € (2r2? (74,74, 7%, 2%) \ (2222 (27,2, 7%, 7.%). O

Proposition 4.5.7. Let ¢ be a permutation on R satisfying one of the following

conditions.

(a) ¢ maps {2d + 1,2d +2,...,3d} to {1,2,...,d} and maps
{1,2,...,2d,3d +1,3d +2,...,4d} to {d+1,d+2,...,4d}.

(b) ¢ maps {3d+1,3d +2,...,4d} to {1,2,...,d} and maps {1,2,...,3d} to
{d+1,d+2,..., 4d}.

Let 2 = py = -+ = pg, P = Pay1 = -+ = Pag- If s > %@ or s = 0, then
M3’2(R2d) C M(C)m,pz ~~~~~ P4d
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Proof. Using Lemma 4.5.6, this proposition can be proven like Proposition 4.5.5. [
Lemma 4.5.8. If s > 0 then

(2P:p (Zd,Zd,Zd, Zd) \52,2,2,2 (Zd7zd7Zd, Zd)
15 nonempty.

Proof. Choose ¢ € (g, d 4 S) and choose f € .7(R39). Set

2
1 ) d
Ciklm = Wf(kJam) \V/jvkal7m€ 7"
Then
1
3
(L+ 1] + |k, 1, m)])*
lell peze = | > dhel (&, 1,m)|?
j,k,l,mEZd (1 + |j|)
L\ 3
N S L]
okl mezd (L+151)
=0

as 2(q — s) € (d—s,d). Also

2\
|f( k‘,l,m
HC“e?vp,p,p = Z Z
k,l,mecZd \ jezd 1 + |j|
1 1
1 2
k,l,meZ jezd ( + |j|)
< 00,
as ¢ > 4 and f € S (R¥). O

Lemma 4.5.9. If %@ > 5> 0, then
62’2’2’2 (Zd, Zd, Zd, Zd> \ g?,p,p,p (Zd7 Zd, Zd, Zd)
18 nonempty.
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Proof. Since %p_p) > s > 0, we can choose g € (%d + s, ‘%d]. Choose f € .7 (RY).

Set
1
(1 +|(k,1,m)[)*

Cikim = f(J) Vi, k,1,m e Z%

Then

N|=

(Ll Ik Lm)D™
> ol L MO

”C’lﬁ,z,z,z =
Jik,l,meZ*

[SIES

IA

1+ D% (1 + |(k, 1, m)])*
3 (L4 7D™ A+ [( ))

Lm0

3.kl mezd

2 2

S+ | % !

jezd k,l,meZd

IN

< 0

as ¢ > 2 + s and f € .(R?). On the other hand

S
[NIES

1 2
HCHzlp,pm = Z (1 T |(k,7l’m)|)pq Z |f<])|

k,l,meZd

= O

asqg%d. O

Proposition 4.5.10. Let ¢ be a permutation on {1,2,... 4d} satisfying one of the

following conditions.

(a) ¢ maps {2d + 1,2d +2,...,3d} to {1,2,...,d} and maps

{1,2,...,2d,3d +1,3d + 2,...,4d} to {d+1,d+2,...,4d}.

(b) ¢ maps {3d+1,3d + 2,...,4d} to {1,2,...,d} and maps {1,2,...,3d} to
{d+1,d+2,...,4d}.

Let2=p,=---=pg and p = pgs1 = - = Pad- If%@>s>0 then neither one

of Mff(RQd), M (c)PrP2-Pad contains the other.
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Proof. Using the previous two lemmas, this proposition can be proven like Proposition

4.5.5. [l
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CHAPTER V

SCHATTEN CLASS FOURIER INTEGRAL OPERATORS

5.1 Introduction

Fourier integral operators, which arise in the study of hyperbolic differential equations

(see [74]), are operators of the form

Af(z) = / / alz,y, €) F ()0 dy de. (26)

For the Fourier integral operator in (26), a is the symbol and ¢ is the real-valued
function called the phase function of A. The properties of Fourier integral operators
with smooth symbols and phase functions have been studied extensively. In partic-
ular the boundedness properties of such operators are well-known (see [61] and the
references therein). More recently, in [12] and [40], it was shown that the curvelet
and shearlet representations of a Fourier integral operator with smooth symbol and
phase function are sparse. Much less is known about Fourier integral operators with
non-smooth symbols.

Both pseudodifferential operators and Fourier integral operators with smooth
phase functions act on the time-frequency content of functions, although the time-
frequency action of a Fourier integral operator is much more general and less explicit
than the action of a pseudodifferential operator. However, this action still suggests
that time-frequency analysis may play an important role in understanding Fourier
integral operators with non-smooth symbols. Indeed, recent results confirm this intu-
ition. In [10] it was shown that inclusion of the symbol of a Fourier integral operator
with smooth phase in Sjostrand’s class implies boundedness of the operator on L(RY).
In [19] and [20], the authors use time-frequency analysis to obtain boundedness on

certain modulation spaces for a particular type of Fourier integral operator. More
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generally, in [16] and [17], the authors prove Schatten p-class membership for Fourier
integral operators with sufficiently smooth phase functions whose symbols belong to
MPY(R3?). Note that while Fourier integral operators generalize pseudodifferential
operators, pseudodifferential operator analysis techniques do not appear to generalize
to Fourier integral operators. The results in [10], [16], [17], [19] and [20] are proved
with new Gabor frame techniques.

In this chapter, we use time-frequency techniques to prove that if the symbol of
a Fourier integral operator belongs to the mixed modulation space M (¢)%:2Ps-p1,o0
or M (c)%%-2P--P1 for appropriate permutations ¢ and if the phase function is suf-
ficiently smooth, then the operator is Schatten p-class for p € [1,2]. Although these
results are not directly comparable to previously known Schatten class results for
Fourier integral operators, such as those in [16] and [17], they seem stronger in the
sense that M (c)%-2PmPloo - N (¢)o022PeP 1 are jsomorphic to (2-2Pr-P1oo and
(o022Pp b regpectively, while MP! is isomorphic to (PPl and gpepilesl C
(2P 100 and PPl l Cge02 2Pl Purthermore, our main results are sharp
in the sense that larger mixed modulation spaces contain symbols of Fourier integral
operators that are not Schatten p-class.

The remainder of this chapter is organized as follows. In Section 5.2, we prove a
time-frequency condition on the product of the symbol and phase of a Fourier integral
operator that ensures the operator is Schatten class. In Section 5.3, we prove mixed
modulation space embeddings for products. Finally, in Section 5.4, we use the results
of the previous two sections to give mixed modulation space conditions on the symbol
of a Fourier integral operator that ensure the operator is Schatten class and prove

the sharpness of these results.
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5.2 A Schatten class result for Fourier Integral Operators

The mixed modulation spaces defined in Chapter IV depend on a permutation of the
variables of the Gabor transform. For Fourier integral operators (FIOs), we will be

interested in permutations ¢ of {1,2,...,6d} satisfying the following definition.

Definition 5.2.1. A first FIO slice permutation ¢ is a permutation of {1,2,...,6d}

such that
(a) ¢ maps {1,2,...,d,3d+1,3d+2,...,4d} to {1,2,...,2d},
(b) ¢ maps {d+1,d+2,...,2d,4d + 1,4d + 2,...,5d} to {2d +1,2d + 2,...,4d},
(c) ¢ maps {2d + 1,2d +2,...,3d} to {4d+ 1,4d + 2,...,5d}, and
(d) ¢ maps {5d + 1,5d +2,...,6d} to {bd + 1,56d +2,...,6d}.
A second FIO slice permutation ¢ is a permutation of {1,2,...,6d} such that
(a) ¢ maps {d+1,d+2,...,2d,4d + 1,4d + 2,...,5d} to {1,2,...,2d},
(b) ¢ maps {1,2,...,d,3d+1,3d +2,...,4d} to {2d+ 1,2d + 2, ..., 4d},
(c) ¢ maps {2d+1,2d +2,...,3d} to {4d+ 1,4d + 2,...,5d}, and
(d) ¢ maps {bd + 1,5d +2,...,6d} to {dbd+ 1,5d +2,...,6d}.

These FIO slice permutations relate to the slice analysis in Theorem 3.3.2 and

can be used to analyze Fourier integral operators.

Theorem 5.2.2. Suppose p € [1,2] and ¢ is a FIO slice permutation. Let py = py =

cor = Dog = 2, P2ad+1 = P2d+2 = " = Dad = D, Dad+1 = Pad4+2 = "+ = Psg = 1 and

Dsdi1l = Psdie = -+ = Pea = 0. If A is a Fourier integral operator with symbol a and

phase function ¢ and ae’ € M (c)PrP2-red then A € T,(L*(RY)).
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Proof. We prove the result in the case c is a second FIO slice permutation. The case
that c is a first FIO slice permutation can be proven similarly.

Let {fn},en> {9n}nen be arbitrary orthonormal sequences in L*(R?) and let
{ Mok, Tok, @} i, gyeze De a Parseval Gabor frame for L?(R?) with ¢ € M"'(R?). Choose

K S

C such that

¢Xa[0,1]d+an

LY (R%))

S5 C -
0 (z4) w(

We have
(Afn, gn) = (a€'?, g0 @ [ ®1).

Since 1 € M°>1(R%), we have

1= Z (1, Mgy Tty @) Mgy, T, @ weakly.

k1,ko€Z4

Thus

<Afn7 gn> = Z <1> MakgTakl ¢> <aei¢7 gn ® ﬁ X Makngalﬂ ¢>

k1,ko€Z

= Z <17MakQTak1¢><Ak1,k2fmgn>a

k1,ko€Z

where Ay, , is the integral operator with kernel

kkl,kg (ZE, y) = / CL(I, Y, é—)eiap(r,y,g) Maszak1 d)(g) df

In the case p = 1 we have

Z ’<Afn>gn>‘ = Z Z <1a MakQTak1¢> <Ak1,k2fn7gn>

neN neN |k kacZd

Z Z ‘<1’ Ma/@Taklgb) <Ak17k2fna gn>

kl,k‘QEZd neN

= Y Y bt

k1,k2 €72 neN

= Y [btak)| 3 KAk kS 900

k1,k2 czd neN

IN

’<Ak1,k2fna gn>‘
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Z ‘¢ 04]62 sup Z Z‘ Akl k2fn7gn |

ko€Zd

ko€ k€24 neN
<C (A
W(Ll(Rd)) k eZd kzd % ( bk S gn)|
By the proof of Theorem 4.5.1, we have
3
HAkl,kz ”1'1 S Z Z ‘V¢®¢kk17k2 (Oénh amsi, ang, Oém2> ’2
n1,n2€Z4 \'my,my€Z?
3
’ 2
- Z Z IV@((IGZ%)(OKHI, ams, akl; ang, &My, Oékﬁ)l )
n1,n2€Z% \'mi,mo€Z
where ® = ¢ ® ¢ @ ¢. Thus if
1
2
: 2
sup Z Z Z ’V(p(aew)(cml, amq, aky, ans, ams, ak2)| < 00,

ka€Z¢ k1€Z% nq nQEZd ml,mQEZd

then A € Z;(L*(R%). Notice that this quantity is finite if and only if ae? €
M(C)Pl»l’2 ~~~~~ P6d
For the case p = 2 we have

N

VI

(ZKAfmgn)F) = Z Z <17Maszak1¢><Ak1,k2fmgn>

neN neEN |k ,kocZd

Z (Z ‘é(aké)r |<Ak1,k2fnvgn>|2> (27)

<
k1,ko€Zd \n€eN
1
2
< Z ‘Cb(Oék‘Q)‘ sup Z <Z| Ay ko frir )| )
koczZd ko ezdk <74 \neN
< O‘ HW(Ll(Rd) p Z HAkl k2||12

where (27) holds by Minkowski’s integral inequality. Again, by the proof of Theorem
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4.5.1, we have

[ I

||Ak1,k2 ||Z2 < Z Z |V¢®¢kk1,k‘2 (anl’ Qamy, ang, CWTLQ) |2

n1,n2€Z% mi,mo€Z4

[SIE

- Z Z Vo (ae™)(any, amy, aky, ang, am, ak2)|2

n1,n2€Z% my,mo€Z%

Thus if

sup Z Z Z ‘ch(aew)(oml,aml,akl,ang,amQ,ak2)|2 < 00,

k2€2% 1 c7d \ i na€Zd my,maezd
then A € Zo(L?(R%)). This quantity is finite if and only if ae’¥ € M (c)PrP2-Ped,
Taking the supremum of Y [(Afy, .| and (3,cn |<Afn,gn>|2)% over all or-
thonormal sequences gives the result for p =1 and p = 2. For 1 < p < 2, the result

follows by interpolation. O

5.3 Pointwise Multiplication in the Mixed Modulation Spaces

In this section, we find conditions on the symbol and phase function of a Fourier
integral operator so that their product lies in given mixed modulation spaces. We
begin by stating a special case of Proposition 1.2 in [17], which describes multiplication

properties of modulation spaces.

Lemma 5.3.1. Suppose p,q,p1,p2, 1, G2 € [1, 00| satisfy pil + p% = = and qil + = =

1+ %. Then there exists a finite C' such that

HngMp,q(Rd) <C Hf”Mmm(Rd) HgHvafJg(Rd) Ve Mo (Rd)ag € MpQ’QQ(Rd>-

In particular, there is a finite C' such that

1fgllamaay < CUFlamaeay 19l armnmay — VF € MPIRT), g € M (R).

Corollary 5.3.2. There is a finite C' such that

1™ [ aoen ey < C™ HanMOCJ(Rd) Ve MY (RY).
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Now we will generalize Lemma 5.3.1 to mixed modulation spaces.

Theorem 5.3.3. Let p € [1,00]|. Suppose c is a FIO slice permutation and p; =

P2 =+ = DPad = 2, Paay1 = Pad42 = ' = Pad = P; Pad1 = Pady2 = 0 = Psa = 1
and Psqr1 = Psare = -+ = Pea = 00. Then for some finite C' we have for all

a; € M(c)Prp2eped g, € MY R3?) that

||a1a2||M(C)P17P2 »»»»» Peqd <C ”alHM (c)P1:P2>--5P6d “aQHMOO L(R3d) -

Proof. We prove the result in the case ¢ is a first FIO slice permutation and p € [1, 00).
The proof is similar if ¢ is a second FIO slice permutation or p = oc.

Choose ¢1,¢p, € MVL(R3?). Then by Proposition 1.2 of [18] we have ¢1¢o €
MUYHR3Y) and

Vi16,0102(T1, T2, T3, Y1, Y2, Y3)
=F ((Gl : TIE) : (Gz : Tx@)) (Y1, Y2, ¥3)
$¢1) * F (a2 m@)) (yh Y2, y3>

///f Todr) (Y1 — t1,y2 — to, ys — t3) F (az - Tos) (t, ta, ts) Aty dto dts

= // Vi a1 (21, T2, X3, 51 — t1, Yo — t2, ys — t3) Vi, aa(x1, 22, 3, t1, t2, t3) dty dto dts.

Since c is a first FIO slice permutation we have

||a1a2 ||M(c)mm2 77777 P6d

ESUP/ (// (/ W¢1¢2a1a2($1,332,$3>y1792,3/3)’2 dz, dyl) diUQdyQ) dxs.
Y3

Thus letting

D=

Fl,w1,w2,a:3,y2,y3 (yl) = V(blal(ml’ T2,T3, Y1, y27y3)
and

F27117I2713,y2,y3 (yl) = V¢2a2(x1, T2, T3,Y1,Y2, y3)
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we have

1
2
(/ |V¢1¢2a1a2(x1,xg,xg,yl,yg,y3)|2 dyl)

2
= (/ ‘// <F1’11,$2,$3,y2*t2,y3*t3 * F2,$1,962,963,t2,t3) (y1> dt2 dt3 dyl)

2
< // (/ |(Fl,x1,x2,$3,y2—t2yy3—t3 * F2,1‘1,362,I3,t2,t3) (y1)|2 dyl) dt? dt3 (28)
= // ||F17$17J»’2,1’37y2_t2=y3_t3 * FQ,x1,m2,m3,tz7t3”L2 dt, dtS

< // HF17$1:$2:333:y2*t2:y3*t3HL2 |’F2,961,962,363,t2,t3 HLl dt? dt37 (29>

N

-

where (28) holds by Minkowski’s integral inequality and (29) holds by Young’s con-
volution inequality.

Hence
/’V¢>1¢zala2($1,9€27$3,y1,3/273/3)|2 dy

2
< (/ HF17$17$279037y2*t27y3*t3 HL2 HF2,951,932,933¢2¢3”L1 dt2 dt3) )

which implies

VS|

</ ’V¢1¢2a1a2(x1a$271’373/17y27y3)|2 dxl dyl)

p

2 2
< / </ ||Fl,wl,w2,$3,y2—t2,y3—t3HL2 |’F2,371,272,963,t2,t3 HLl dt? dt3) dl‘1>

1 D

2 2 2

S // (/ HFl,x1,x2,2337y2*t2,y3*t3HL2 HFQ,ml,zg,zg,tQ,t3HL1 dl‘l) dt2 dt3> (30)
3 P

2

S // (/ ||Fl,x1,x2,x3,y2—t2,y3—t3||L2 dxl) (sup ||F2,x1,x2,x3,t2,t3||L1) dtg dt3)
1
p
- (// le'Z?’zS’yS*tS (y2 - t2) GQ,mz,zg,tS (tg) dtQ dtS)
P
- (/ (G sts * G nsts) (2) dts> ,
where

2
Gl,r272737y3(y2) - (/ ||F1,$1,$2,953,y27y3||[/2 dxl)
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and

G2,$2,$3,y3 (yQ) - (sup ||F2,:v1,:v27$37y2,y3||L1) .

1

Note that (30) holds by Minkowski’s integral inequality.

Consequently, we have

z v
(// (/ |V¢1¢2a1a2($1,$27$3,y17927y3)|2 dzy dy1) dzo dy2>

P »

S <// </ (Gl,xz,ms,?ﬁ—ts * Gz,wg,xg,tg) (y2) dtg) dx2 dy2>
1 P >
S (/ (/ (/ |(G17$2,$3,y3—t3 * G2,:v27:v37t3) (y2)|p dy2> dt3> dlL‘2> (31)
Y

— </ </ |’G1,m2,2¢3,y3—t3 * G2,x2,m3,t3||Lp dt3> dx2)

p
S </ (/ “Gl,{l‘Q,fl‘Sny*tSHLP HG2,x2,x3,t3”L1 dt3> de)

1
P
</ ( 16 scsinal [Gann dﬂ?z) dts (32)

1
P
< / ( / T dxz) (sup||G2,m,m3,t3HL1) dts
T2

— [ Higpos o) oy ) )

-

3=

B =

where H1’y3($3) = (f ||G17$2,$3,y3||:2p dx?) and H2,y3(x3) = (Supxg ||G27$27$37y3||L1)'

Note that (31) and (32) both follow from Minkowski’s integral inequality.

From (33) we see

1
Sllp/ (// (//|V¢1¢2a1a2(131,372,$3;yla’yz;ys)’Q dz, dyl) dxo dy2> dws
Y3

< SUP/ Hy oy (3) Hoy, (v3) Atz das
Y3

<sup [ st 1oyt
ys

= sup (K7 * K3) (y3)
Y3

= [[K1 * K|
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< ||K1||L°° ||K2||L17

where Ki(ys) = || H1y,ll, and Ko(ys) = || Hay,l| ;-

Notice that

1K [ oo = sup || Hiy, | 11
Y3

= sup/|HLy3(m3)| das
Y3

1
=0 [ ([ 161l a2 e
Y3
1
= sup/ </ ’Gl,wz,ws,% <y2)’p dyQ de) dws
Y3

2 v
:SUP/ <// </ |F1,a:1,a:2,x3,y27y3(y1)|2 dy d$1) dya de) dws
Y3
» 1
= sup/ <// (//\V¢1G1($1,$27$3aylay27y3)‘2 dy dﬂﬁ) dys dl‘z) dws
Y3

and

1ol = / | Bl dys

= [ (sotntea) a

:/(Sip (szp”Glmvms»ysHﬂ)) dys

- / <833p (s;lzp / siplng,ml,m,xS,yg,y3|y . dy2>> dys

— / (SBSP (szp/sflp (/ \Vipaz (w1, 2, 23, Y1, Yo, y3)| dyl) dy2>> dys

< ///supSUpSUp|V¢2a2(x1,:vz,x3,y1,yz,y3)| dyy dys dys

r3 T3 T1

ST — m

The following lemma comes from Proposition 3.2 in [10].
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Lemma 5.3.4. There exists a C such that
7 () [ pgoet say < C N7l ppoorraay V7 € MEHRYM), ¢ € [0, 1].

Theorem 5.3.5. Suppose p € [1,00]. Suppose ¢ is a FIO slice permutation and

PL=D2= " =D =2, Paay1 = P2d+2 = ' = Dad = D, Pad41 = Pad+2 = ---Dsq = 1
and Psgt1 = Dsdr2 = ---Pea = 00. If a € M(c)PvP2Psd has compact support and
¢ € C*(R) is real valued and satisfies D*p € M (R3?) for all multi-indices o

with |a| = 2, then ae? € M (c)PrP2-Pod,

Proof. By our suppositions on ¢ we have the following Taylor expansion.

p(w) = ©(0,0,0) + Y (D) (0,0,0)w” + > % (/O (1—1¢)(D%p) (tw) dt> w®.

Ja|=1 |oe|=2
Let
Y1(w) = (0,0,0) + > (D) (0,0, 0)w"
lal=1
and

ho(w) = Y % (/01 (1= 1) (D) (tw) dt) w®.

|a|=2

Choose X such that X(w) =1 for all w in the support of a and
X(w)w™ € MY R Va, |af = 2.

Then

iy einpz

— [ae

< e

where (34) holds by Proposition 5.3.3.

Choose finite C such that
||fg||Moo,1(R3d) <C ||f||Mw71(R3d) ||9||Moo,1(R3d) Vfe MOOJ(RBd)ag € Moo’l(RSd)-
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Since

6iX(w)L/)g(”Lu) _ Z (ZX(’[U)V,DQ(U}))H

n!

)
n>0

we have

2X¢2

ZX%

Mool

)
SZ -

n>0

< 3 Ol

n>0

= QCHXwQ”IMOOJ

By Lemma 5.3.4, we can choose C’ so that

I E) | ger oty < C T llager @ony V7 € MOHRYM), t € [0,1].

Hence
Xl
_ ;2x<w>w“§ ([ a-owe )
2 (1 1) (D) (hu)ds
> e ([ ).

< Z o ||X(w)wa”M°°»1

=2

= > 2wty [ sup

rcR3d
|a|=2

< 3 2 @y [ s /1<1—t>]/<D%><tw>mdw\ datd

3d
| =2 zeR 0

[ a-n@ e

Moo

[ [ 0= ot o

1
< — ||X Yw|[yjeer | (L—1) | sup (D%p) (tw) M T, p(w) dw‘ d¢dt
3 Sl [ 00 [ ] :
2C !
=20 ||X(w)wa||M°°vl/ (L =) [[(D%) (tw)]| ygoe.r dt
lajJ=2 0
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< 30 H N s [ A= 0CND) (W)l

|af=2

20C"
< > T I ) gy [(D%0) ()]

|af=2

< Q.

Notice that

aeizpl _ Mb (eicp(D,0,0)a) ’

where the components of b € R3? are (D%) (0,0,0) for multi-indices o with |a| = 1.
Thus since a € M (c)PrP2-Psd we have H@@MHM(C)H AAAAA vea = Nl prieprmea < 00 as

well. Hence ||ae’? HM (eprpsa < OO O

Note that Theorem 5.3.5 is similar in spirit to Lemma 2.2 in [17].

In the remainder of this section, we develop alternate conditions on the symbol
and phase function of a Fourier integral operator so that their product lies in mixed
modulation spaces relevant to Schatten class integral operators. To this end, the

following definition will be useful.

Definition 5.3.6. A first FIO symbol permutation ¢ is a permutation of {1,2, ..., 6d}

such that
(a) ¢ maps {bd + 1,5d +2,...,6d} to {1,2,..., d},
(b) ¢ maps {1,2,...,d,3d+1,3d+2,...,4d} to {d+1,d+2,...,3d},
(¢c) c maps {d+1,...,2d,4d + 1,4d + 2,...,5d} to {3d+1,3d +2,...,5d}, and
(d) ¢ maps {2d 4+ 1,2d +2,...,3d} to {bd+ 1,5d +2,...,6d}.

A second FIO symbol permutation ¢ is a permutation of {1,2,...,6d} such that
(a) ¢ maps {bd + 1,5d +2,...,6d} to {1,2,...,d},
(b) ¢ maps {d+1,d+2,...,2d,4d + 1,4d+2,...,5d} to {d+1,d+2,...,3d},
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(¢c) ¢ maps {1,2,...,d,3d+1,3d+2,...,4d} to {3d+1,3d+2,...,5d}, and
(d) ¢ maps {2d 4+ 1,2d+2,...,3d} to {bd+ 1,5d+2,...,6d}.

Under certain smoothness assumptions on ¢, we can show that the mixed modu-
lation space norm of ae’¥ appearing in Theorem 5.2.2, which is determined by a FIO
slice permutation, is dominated by a mixed modulation space norm on a determined

by a FIO symbol permutation. First, a technical lemma is needed.

Lemma 5.3.7. Suppose ® € M'? (Rgd) and M is a 3d-by-3d self-adjoint matriz.

Define a operator Sy; by

SMf(w) — Gﬂiw.wa(w), \v/f c M@ (RSd) )

Then
|V<I>5Mf(x7£>’: |V57M‘I>f($7£_Mx> ) \V/l’,fede.
Proof.
Vs_yof (2,6 — Mz)
— /f ) 7TZ(U)*£L‘)-M(UJ*{E)e*27T’L’(£*Mx)-’LU dw

_ 7rzx ‘Mz / emw wa< ) me—wim~Mw6—7riw~Mxe—27ri(§—M$)-w dw
_ eﬁix.foeﬂiw-wa(w) mefwrig-w dw
= "M Vg Sy f (,€) 0

Theorem 5.3.8. Let p € [1,00]. Suppose ¢ is a first FIO slice permutation and

DL =DP2 ="+ =DPag = 2, Padt1 = P2d+2 = *** = Pad = P, Pad+1 = Pad+2 = ---Dsqa = 1

and psgi1 = Psdr2 = - - - Peq = 00. Suppose the following conditions hold.

(a) ¢ is a first FIO symbol permutation.

(b)) 1 =" =qi =00, Qa41 = Qa+2 = """ = @34 = 2, 3d+1 = @3d+2 = *** = Q54 = P

and qsqt1 = Gsdr2 = - - - Gea = 1.
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(c) a € M(c)aadod,

(d) All the second order partial derivatives of @ are constant and @, = 0 for all

i,7€{1,2,...,d}.
Then ae™ € M (c)Prp2:-od

Proof. Again, we have ¢ = 1)1 4+ 19, where
a(w) = (0,0,0) + (D) (0,0,0)u"
la|=1

and

=3 2 ([ a-nwa )

|a|=2

Notice that e#2(W) = gimw-Mw where M is the block matrix

My, My Ms;
M=\ My M, M |,

Mz Mg Mg
with
(Mmdzﬁﬁéyuﬁ Vi, je{1,2,....d},
(M2>i,j=wzo Vi,je{1,2,...,d},
(M%J=g@%?32 Vi,je{1,2,...,d},
(Mmj=f%4?23 Vi,je{1,2,...,d},
(M%szﬁéyuﬁ Vi,je{1,2,...,d},
and
(M%szﬁé?ﬂﬁ Vi, je{1,2,...,d}.
Thus

Vo (ae’?) (z1, 2, 3, &1, &2, &3) |
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= Vi (0 (2,€)]
= [Va (ae™™) (1, )|
= |VaSur (ae™) (z,9)]
= |Vs_ o (ae™) (2,6 — Mz)| (35)
= |Vo_yo (a€™) (z1,22,23,& — Mz — Mawy — Maas,
€0 — Mixy — Myxy — Msy, &5 — Mixy — Mzy — Mgxs)]
= |Vo_yo (a€™) (z1, 22,23, & — Myzy — My,

52 — Myzy — Msxs, 53 - M;% - ngz - M6I3)|

where (35) follows from Lemma 5.3.7.

Since c is a first FIO slice permutation we have

“l
Hae M(c

,,,,,

—Sup/<// (//’1@ ae'? 33’1,1'2,.’133,51,52,63)‘ dfldx1> dfgdx2> dws
—Sup/(// (/ Vs_ o (ae™) (w1, 32, 23,& — Myay — Maas,

— Myzy — Msw3,8§3 — Myxy — Mzxy _M6x3)|2 d& d371)§ déz d$2>p drs

/ <// (//Sup ’VS Mq) aew ) (21, 29, x3,& — Myxy — M3z,

€y — Myzo — Ms3, & — Mijay — Mixy — Mexs))? d& dz1)? d& d952> " das

/ (// <//sup Ve (ae™ $1,$2,$3,€17527£3)‘2 dé dx1>§ ds, dx2>p dus

11

|=

= Jlac
As in the proof of Theorem 5.3.5, we have
ae™t = M, (ew(o,o,o)a) 7
where the components of b € R3¢ are (D%p) (0,0, 0) for multi-indices a with |a| = 1.
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Therefore

which implies ae’? € M (c)Pr-P2-Pod, =

Theorem 5.3.9. Let p € [1,00]. Suppose ¢ is a second FIO slice permutation and

D1 =Py = =Dag = 2, Pady1 = D2d4+2 = *** = Dad = P, Pad+1 = Pad+2 = -..DPsd = 1

and psgr1 = Dsdra = - . - Peqg = 00. Suppose the following conditions hold.
(a) ¢ is a second FIO symbol permutation.

(b) g1 ="""=q4a =00, qi+1 = qd+2 = """ = q3d = 2, @3d41 = Q3d42 = *** = (54 = D

and @sq+1 = Qsd42 = - - Qed = 1.

(C) a € M(d)‘h,@,.‘.,%d

(d) All the second order partial derivatives of ¢ are constant and @, = 0 for all

i,je{1,2,...,d}.
Then ae™ € M (c)PrP2rPod,
Proof. The proof is similar to that of Theorem 5.3.8. =

5.4 Sharp Time-Frequency Conditions on the Symbol of a
Fourier Integral Operator

In this section, we combine results from the previous two sections to give smoothness

and time-frequency conditions on the phase function and symbol, respectively, of a

Fourier integral operator that ensure the operator is Schatten class and prove the

sharpness of these conditions.

Theorem 5.4.1. Let ¢ be a FIO slice permutation and py = ps = +++ = pog = 2,
P2dt1 = Pady2 = - = pag = p for some p € [1,2], pagy1 = paar2a = .. .Psa = 1
and pPsgi1 = Psdre = -.-Pea = 00. Suppose A is a Fourier integral operator with
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symbol a and phase function ¢ satisfying p € C*(R3*?) and D*p € M°>1(R34) for all
multi-indices o with || = 2. If a € M(c)PvP>Psd has compact support then A €
Z,(L*(R%)). Furthermore, this result is sharp in the sense that if one of the following
conditions holds, then there are Fourier integral operators that are not in Z,(L*(R?))
with symbols in M (c)?-92r95dPsa+1Psd2:-Pod qnd phase functions ¢ satisfying ¢ €

C*(R34) and D®p € M°>1(R3?) for all multi-indices o with |a| = 2.
(a) At least one of q1,qs, - .., qaq s larger than 2.
(b) At least one of qogi1, Qadro, - - - > qua 1S larger than p.

(c) At least one of quas1, Qadr2, - - -, qsa 1S larger than 1.

Proof. The sufficiency of a € M(c)P*Psd follows from Theorems 5.2.2 and 5.3.5.
Hence all that remains to be shown is that this result is sharp.

Notice that if we fix ¢ = 0 and a(z,y,&) = a1(x, y)az(§) and let A be the Fourier
integral operator with phase function ¢ and symbol a, then A is the integral operator
with kernel equal to Ca;(x,y), where C' = ([ a2(£) d§).

Let ¢; be the permutation of {1,2,...,4d} such that

c1(1) =c(1),c1(2) = ¢(2),...,c1(d) = c(d)
c(d+1)=c(d+1),c(d+2)=c(d+2),...,c1(2d) = ¢(2d)

c1(2d+1)=c(B8d+1),c1(2d +2) = ¢(3d + 2),...,c1(3d) = c(4d)

and

c1(3d+1)=c(4d+1),c1(3d +2) = c(4d + 2), ..., c1(4d) = ¢(5d)
and let ¢y be the permutation of {1,2,...,2d} such that
(1) =c(2d+ 1) —4d,c2(2) = c(2d +2) — 4d, . .., co(d) = ¢(3d) — 4d
and

co(d+1)=c(bd+ 1) —4d,co(d+2) = c(bd + 2) — 4d, ..., c2(2d) = c(6d) — 4d.
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Then ¢ is a slice permutation and

Ha||M(C)‘117‘127-~7q5dﬁp5d+17P5d+2~-~1°6d = ||CL1 X 0/2||M(C)q1,qg,~-~,Q5d,P5d+17p5d+2a~-~P6d

= ||a1||M (c1)91+92+++94d ||a'2||M(62)‘14d+1 194d+2095d P5d+1P5d+20 - P6d

Suppose (a) or (b) holds. By Theorem 4.5.2, we can choose a; € M (cy)?9244d
so that the integral operator with kernel a; is not in Z,(L*(R?)). Hence the Fourier
integral operator with symbol a(x,y,&) = ai(x,y)az(§) and phase function ¢ = 0 is
not in Z,(L*(R%)) either (for any choice of ay).

Now suppose (c) holds. Choose \ € (#d+1:ads2-a5a (7,4) \ (11 (Z4) and set

= >IN YR,

jkezd
where {1} ez = {MarTaj0}; pega 15 a Parseval frame for L? (R?) with ¢ €
MU' (R?). Then by Theorem 4.3.19, ay € M (cy)dad+1:04d+2-dsd:Psa+1-Pod - But,

[as(©de = 21 = 3= IS0 1) = 3 N[5 (b = o0
J,kezd J,kezd
so that A is not a well defined operator, and hence, not in Z,(L?(R?)). O

Theorem 5.4.2. Let p € [1,2] and A be a Fourier integral operator with symbol a

and phase function ¢. Suppose the following conditions hold.

(a) c is a FIO symbol permutation.

(b) py =+ =pag =00, Pat1 = Pda+2 = -+ = P3d = 2, P3d+1 = P3d42 = -+ = Psd = P

and Psq+1 = Psdt2 = - - -Ded = 1.

(C) ac M(c)Plam,...,de.

(d) All the second order partial derivatives of @ are constant and @, = 0 for all
i,7€{1,2,...,d}.
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Then A € T,(L*(RY)). Furthermore, this result is sharp in the sense that if one of
the following conditions hold, then there exist Fourier integral operators with phase
functions satisfying (d) and symbols in M (c)PrP2rPdldt1iddt206d that are not in

I,(L*(R7)).
(e) At least one of qai1,qas2, - - -, Gqsq s larger than 2.
(f) At least one of qsai1,q3d+2, - - -, qsa is larger than p.
(9) At least one of qsqi1, Q5ds2; - - - Gea 1S larger than 1.

Proof. Sufficiency of conditions (a), (b), (¢) and (d) follows from Theorems 5.2.2,

5.3.8 and 5.3.9.
If we fix ¢ = 0 and a(z,y,&) = as(x,y)as(§) and let A be the Fourier integral

operator with phase function ¢ and symbol a, then A is the integral operator with

kernel equal to Cas(z,y), where C' = ([ as(€) d€).

Let ¢3 be the permutation of {1,2,...,4d} such that
e3(1) =c(1) —d,c3(2) =¢(2) —d,...,c3(d) = e(d) — d
cs(d+1)=c(d+1)—d,es(d+2)=c(d+2)—d,...,c5(2d) = ¢(2d) — d
c3(2d+1)=c¢(3d+1) —d,c3(2d+2) =c(3d+2) —d,...,c3(3d) = c(4d) — d
and
c3(3d+1)=c(4d+1) —d,c3(3d+2) =c(4d+2) —d, ... ,c3(4d) = ¢(5d) — d
and let ¢4 be the permutation of {1,2,...,2d} such that

ca(l) =c(2d+ 1) —4d,c4(2) = c(2d +2) — 4d, . .., c4(d) = ¢(3d) — 4d

and

ca(d+ 1) =c(bd+1),ca(d+2) = c(bd +2),...,cs(2d) = c(6d).
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Then c3 is a slice permutation and

If (e) or (f) hold, then by Theorem 4.5.2 we can choose a3 € M (cg)dd+1:9d+2::95d
so that the integral operator with kernel az is not in Z,(L*(R%)). Hence the Fourier
integral operator with symbol a(x,y,&) = as(x,y)as(§) and phase function ¢ = 0 is
not in Z,(L*(R?)) either.

Suppose (g) holds. Choose A € (Ba+1-dsir2toa (7:4) \ (L1 (Z9) and set

ar= Y NI Y0,
j,kezd
where {1} cz0 = {MarTaji}; epa 18 a Parseval frame for L? (RY) with ¢ €
MM (RY). Then aq € M(cg)Pt--atsarieoa by

/ @€ = {an 1) = 37 LG Wi 1) = D Il (ak)| = ox,
j,kezd j,kezd
so that A is not a well defined operator. O

The previous theorem has implications for a common type of Fourier integral

operator, namely the type with phase function ¢(z,y,§) = 2wz - £ — 27y - €.

Corollary 5.4.3. Suppose p € [1,2] and py = -+ = pg = 00, Pay1 = Payo = *+* =

P3d = 2, Psd+1 = P3d+2 = **+ = Psa = P and Psar1 = Psat2 = -..Pea = 1. Let ¢ be
a FIO symbol permutation. If A is a Fourier integral operator with phase function

o(z,y,€) = 2nw - £ — 2wy - € and symbol a € M (c)PrP2-Psa then A € T,(L*(RY)).
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APPENDIX A

FOURIER FRAME LEMMA

In this section, we give a detailed proof of Lemma 2.2.12. Our proof relies on the

following theorem, a special case of Theorem 7 in [2].

Theorem A.0.4. Suppose F = {fi},c;, € ={e;};c;, are frames for Hilbert space H
with frame bounds A, B and E, F respectively. Also suppose there is a map a : I — Z

so that the following properties hold.

(a) Ve > 0,dN. € N

> [(fie)|" <e VjeL.
{ierlati)—j|> 5 }

(b) Ve > 0,dN. € N
Z [(fi,e))]> <e Viel

{iez:|a(i)—j|> 2=

Then
o : 2
Ahmmf||ej||2 < D-(I.a) < D*(I.a) < Bh.msup||ej||27
Flimsup [ £ Elimnf | £
where
el: —jl< &
D*(I,a):limsupsup‘{l a(@) — J] —Kz}‘
K—oo jEL |{n€Z In — j|§5}’
and

_ K
D~(I,a) = liminf ing L E L 1MO < 53]
K—oo jeEZ HnEZ n_]‘gi}‘

Proof of Lemma 2.2.12. Suppose V C R and F = {e*™"} ., = {fo},cv Is a frame
for L?[—r,r] with bounds A, B. By Lemma 2 in [49], V is relatively separated in R.

Notice that £ = {(27’) o w} = {en},,cz is an orthonormal basis for L*[—r, r]
nez
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Define a : V' — Z so that [2rv—a(v)| < & for all v € V. We will show that conditions
(a) and (b) in Theorem A.0.4 are satisfied.

First, we observe that

2 1

(el = |2r)” [ et WweVjeL

= 2
—rr] 2rm? v — &
=

Fix e > 0. Since V is relatively separated, so is 4rV. Hence by Lemma 2.2.8, we can

choose C' € (0, 00) so that
47V Az + [-M — N,M + N]\ [-M,M]| <2CN VYM,N € N,z € R.

Choose N, € N so that

p)
2 = (n—1)
and
167 1 -
— €
2
2 =Y (n—1)

Then for any j € Z, we have

> (e =D > (o el

{vevila(w)—j|>%} n2Ne foev: 2 >[a(v)—j|>5 }

But if =2 > |a(v) — j| > 2 then 22 > |v — £ | > 2=, Thus

> [(for )]

{vevila(o)—il>" }

=) > [(foren) ]

n2Ne foev: 2 >[a(v)—j|>% }

szzﬁ

) 2} _
nZNE{vEV:"TH2|a(v)—j|>%} rme v 2r

1672
_ e
n>Ne {vEV:%ZW(U)*JD%}

:8_rz {ve V2L >la(v) — j| > 2}
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oy foeveszpgl> )

n>Ne (n_l)z

_8_7“2 HoveV:in+2>drv—2j| >n— 1}

2 = (n—1)°
8 Z 4rV N 25+ [-n—2,n+2]\ [-n+1,n—1]|

anNe (n—1)2

48rC 1
S 2 Z (n—1)2

n>Ne

< €.

Hence (a) is satisfied.

To prove that (b) is satisfied, we note that for any v € V and any n € N, there

can be at most two j € Z satisfying ®+ > |a(v) — j| > %. Thus for any v € V we

have

> [ fores)|”

{iez:la(w)—-jI>5 }

-3 ) (foves)?

n2Ne {jer: 25 >|a(v)—j|>% }

1
<> 2. —
n>Ne [ ey ntl ony 2rm? |U - L{
=iYe {J€Z~TZ|G(U)*J|>§} 2r

< Z Z 1602

2 . 2
RN { ez S a() >3} 2rn?(n —1)
8 3 [{j €z " > a(v) — j| > 3}
= P
m? n>N, (n - 1)

16r 1
< - -
= r2 Z (n _ 1)2

n>Ne

< €.

Thus (b) is also satisfied.

Since liminf, ¢y vaHig[fTﬂ = lim sup, ¢y vaHiQ[fr’T] = 2r, Theorem A.0.4 implies

A B
— <D (I,a) < D%(I,a) < —.
2r 2r
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Fix N € N. Choose Kn € N such that Kszl <2rN+1< K—QN Notice that if

|lv — x| < N then |a(v) — a(x)| = |a(v) — 2rv + 2rv — 2rz + 2rx — a(x)| < 2rN + 1.

Thus
V- Nz +[—N,N]|
sk 2N
H{v eV :l|a(v) —a(z)] <2rN + 1}
=0 2N
Hv eV :]a(v) —j| < 2rN + 1}
<
= et 2N
|{v€V:\a(v)—j|§K—QN}}
<2r-
=7 Ky —3
:2T.Sup|{n€Z:|n—j|§KTN}}HvEV:|a(v)—'j| SK%}’
jez Ky —3 {neZ:|n—j|<Er}
<27’KN+1- |{U€V:|a(v)—j\§%}|

=T Ky -3 5 [{nez:in—j| <]

which implies

Dy (V)
i $1D 8 [VNz+[—N,N]
Nﬁoopxeﬂg 2N
Ky+1 veV:lalv) —j| < Ex
< limsup [ 2rE L oo I atv) =gl < 53}

eV — il < Ex
gzr(hmsupKNH) (hmsupsupl{v la(v) - jl < 2}}>

=2rD"(I,a)

<B.

Similar arguments show A < 2rD~(I,a) < Dg (V). O
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