AN ADAPTIVE MICROSCHEDULER FOR A

MULTIPROGRAMMED COMPUTER SYSTEM

A THESIS
Presented to
The Faculty of the Division of Graduate
Studies and Research
by

E\u M. Pass

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

In the School of Information and Computer Science

Georgia Institute of Technology

March, 1973

AN ADAPTIVE MICROSCHEDULER FOR A

MULTIPROGRAMMED COMPUTER SYSTEM

Approved:

Chairman: John MU Gwym"l, Jr.

Member: Michael D, Kelly S
i 2

Member: S, Paine Lenoir
Y) Y |

—

¥ - [Ty

- L
Special External Reader‘f Stephen R. Kimbleton

Date approved by Chairman: MMaseh 2 Y/ /923

ii

ACKNOWLEDGMENTS

This dissertation could not have appeared in its current state
without the assistance of the thesis advisor, Dr. John M. Gwynn, Jr.,
and the members of the reading committee, Dr, Michael D. Kelly,
and Mr., S. Paine Lenoir, Jr. Recognition also should be given to the
outside reader, Dr. Stephen R. Kimbleton, for his assistance.

Dr. Norman R. Nielsen deserves commendation for his efforts in the
field of computer systems simulation, upon which some of the current
research is based. Dr. James W. Walker provided valuable informa -
tion concerning statistical considerations relating to the experimental
portions of this research. Appreciation is extended to Mrs. Linda Wix
and Mrs. Shirley Isbell for assistance in the preparation of research
drafts and final report, and thanks go to my wife, Kay, for clerical
help in the preparation of research drafts and bibliography. This re-
search was partially supported by the National Science Foundation

through Grant GN-655,

TABLE OF CONTENTS

ACKNOWLEDGMENTS .

LIST OF TABLES «

LIST OF FIGURES.

SUMMARY . & « w « o

Chapter

I.

II.

I1I.

FOUNDATIONS ,

Objectives of Research
Scope of Research

Need for Research

Purpose of Microschedulers

MICROSCHEDULER ANALYSIS, .
General

Performance Evaluation

Structural Performance Analyses
System Effectiveness Measures

THE ADAPTIVE MICROSCHEDULER .

Operation of Microscheduler

Level of Detail

Representation of Tasks

System Effectiveness Measures

Trends in System Performance
Prediction and Correction Techniques
Summary of Operation of Microscheduler
Comparison with Other Research

iii

Page

ii

vi

vii

52

iv

Table of Contents (continued)

Page
IV. DESCRIPTION OF SIMULATION MODEL 75

Validation Techniques

Environmental and Workload Measurement and Modeling
B5700 TSSMCP Characteristics

The Simulator

Verification of Microscheduler

V. CONCLUDING REMARKS . , . B ¥ @ 3 @ F W o 112

Summary
Methods of Implementation

BIBLIOGRAPHY

VEEAL a0« ac & @ o5 = 20 o o = o » & % s 8 0v % wm @ ow wo e 155

Table

LIST OF TABLES

System Effectiveness Measures
B5700 Workload Analysis . . .
B5700 Workload Analysis

(Different Random Numbers)
Batch-Production-Oriented Workload Analysis

B5700 Workload Distribution
(Number of Tasks)

Batch-Production-Oriented Workload Distribution .

(Number of Tasks)

Page
51
107

108

109

110

Figure

Ls

LIST OF FIGURES

Flow Chart of Microscheduler . , .

Page

69, 70

SUMMARY

The objective of this research is the scientific development and
verification of a new, adaptive model of internal scheduling of re-
sources, with the goal of the optimization of computer system perfor-
mance. A general system effectiveness measure is defined which para-
metrically encompasses the prototypical system effectiveness measures
to be considered. The adaptive internal scheduler then selects such
tasks for resource allocation request fulfillment that a local system
effectiveness measure, derived from the general measure, is optimized,
leading to semi-optimization of the general measure. The adaptive
scheduler functions as a second-order exponential estimator with
trend detection, A predictor-corrector algorithm functions as the
adaptive controller by varying the estimator's parameters and the time
of application of the estimator in response to the nature of the sequence
of deviations between the predicted and actual values of resource utili-
zation. In order to validate the new scheduling model, a workload des-
cription in the form of task profile distributions was gathered by a soft-
ware monitor on the Georgia Tech B5700 running a live job stream. A
simulator was developed to allow the comparison of the new scheduler
with other nonadaptive schedulers shown to be good by various re-

searchers, under various general system effectiveness measure proto-

viil

types. The simulator was validated by running it with the B5700
TSSMCP scheduler against the B5700 workload job profiles, Values
resulting from the simulation checked against those of the measured
B5700 system quite well, The results of other simulation runs show
that the new adaptive scheduler is clearly statistically superior to other
schedulers under most measures considered and is inferior to no other
scheduler under any measure considered,
The other schedulers compared were the following:

B5700 TSSMCP

Round-Robin

First-in-First-out

Instantaneous Exponential Estimation

Complete History.

The prototypical system effectiveness measures considered
were the following:

Throughput (tasks/unit time)

CPU Utilization (CPU)

Revenue (CPU plus 1/31/0)

Resource Usage (CPU plus I/O plus CORE)

1/0O Utilization (I/0)

System Utilization (busy time/total time)

System Cost Nullification (3.14 CPU plus I/O plus 8 CORE)
Latency (measure of response time),

CHAPTER I

FOUNDATIONS

Objectives of Research

This research has as its primary objective the design of a micro-
scheduler (an internal resource allocator) which will perform semi-
optimally with respect to several measures of system effectiveness,
Associated with this objective is the goal of the development of a means
of comparing the proposed microscheduler and other prototypical micro-
schedulers with respect to several system effectiveness measures. In
order to accomplish this goal, simulation was used for the comparison
process, Included in the research is an examination of existing proto-

typical microschedulers and measurement techniques.

Scope of Research

The framework of this research is based upon the Burroughs
B5700 Time Sharing System, with which the author worked for several
years at the Georgia Institute of Technology. In order to limit the re-
search area, the external scheduling in terms of ordering of input tasks
is not controllable by the proposed microscheduler. Previous research
has shown that external scheduling is quite amenable to semi-optimal

processing by pre-scheduling techniques (Grochow, 72A, Grochow, 72B,

Hoffman, 71). Thus the task stream is considered fixed and typical of
the Georgia Tech B5700 workload. In order to facilitate the measure-
ment of the environment and the simulation of the microschedulers and
system effectiveness measures, only a one-CPU system configuration
is considered, though the equipment at Georgia Tech includes two CPU's.
Under the preceding conditions, simulation is used to compare micro-

schedulers with respect to various measures of system effectiveness.

Need for Research

In a dynamic resource allocation environment, as is found in
most modern digital computer systems, the microscheduler is the sin-
gle most important software module in the portion of the operating sys-
tem which controls the operations of the system., The scheduling of
tasks in a multiprogrammed computer operating system environment is
a major determining factor of the actual performance of a computer sys-
tem. Proper selection tends to optimize the usage of the resources of
the system and reduces the total average elapsed time each task re-
quires to complete its assignment. Improper scheduling can so degrade
the system that a multiprogramming environment behaves in a slower
and less efficient manner than does a good, similar non-multiprogrammed
computer system (Bowlden, 67, Hoffman, 71, Wulf, 69).

This degradation may occur in several areas. One, the most

familiar to many users, concerns the overcommitment of resources to

tasks, causing page thrashing in the case of the main storage resource,
for instance. Another concerns the vast overhead imposed by certain
hardware/software configurations even on the simplest tasks, such as
experienced by early implementations of TSS/360/67 which had reported
95 per cent overhead (Nielsen, 67). Still another area concerns perfor-
mance deficiencies in which the scheduler wastes resources by not as-
signing them well or in a timely manner. Effort spent in improving the
scheduler may thus produce disproportionally large improvements in
the performance of a complete computer system. The intent of this re-
search is to investigate a specific method by which the operations of in-
ternal schedulers may be improved.

The physicist James Clerk Maxwell used a device called a
""demon'' to illustrate certain thermodynamic concepts. One of the tasks
considered as given to a demon was that of separating hot particles
from cool ones by opening a door to allow hot particles to pass into
another chamber, but closing it to keep cool particles out of the other
chamber. Later physicists were able to prove through advanced thermo-
dynamic arguments that more energy would be required in the decision
process which distinguishes the hot particles from the cool ones than
could be derived from the separation of the particles on that basis.

An analogous argument applies in the case of the proposed micro-
scheduler. If the microscheduler is to succeed in its mission, its aver-

age operational cost absolutely must be less than the average gain in

productivity, with respect to some measure. Otherwise, it is as use-
less as a Maxwellian demon, perfectly capable of separating good tasks
from bad ones, but with such overhead as to render its actions futile
on a practical basis.

Translated into specifications for the microscheduler, the pre-
ceding comments entail the requirement that the scheduler must use
less total weighted resources than it saves if it is to succeed. Thus
there is an almost continuous set of tradeoffs between sophistication,
speed, cost, and resource requirements of the microscheduler. The
nature of this set of tradeoffs is so complex and time-and-case variant
that the best which can be done, in general, is to perform the best sub-
optimization possible in specific cases and to hope that severe patho-
logical cases will not occur or will be mollified by the improved micro-
scheduler (Denning, 70, Graham, 72). This is the philosophy followed

in the current research.

Purpose of Microschedulers

In a multiprogrammed environment the system's resources must
be shared in a carefully controlled manner. The microscheduler pro-
vides the logical basis by which the sharing of resources is controlled.
A good microscheduler attempts to keep the most costly resources of
the system busy. Typically, microschedulers utilize little information

available concerning the tasks in concurrent execution to perform this

control function when required. Many use FIFO, round-robin, priority,
deadline time, and main storage requirements to help base their deci-
sions. This can lead to quite nonoptimal patterns of resource allocation
and may result in an elapsed time required to process a given set of
tasks together longer than that required to process them serially. Sev-
eral researchers have emphasized this point concerning B5700 opera-
tions (Block, 71, Bowlden, 67, Wulf, 69). The microscheduler of this
research is designed in such a way that it will, based upon historical
and current resource utilizations, attempt to provide a net gain in sys-
tem effectiveness, This gain is made entirely through the improve-
ment in the decision-making capability of the microscheduler, enabling
it to construct better patterns of resource allocation, This assists in
reducing the nonoptimal sequences of resource allocation and in avoid-

ing pathological cases,

CHAPTER II

MICROSCHEDULER ANALYSIS

General
After growing wildly for years, the field of computing now
appears to be approaching its infancy. Recent revolutionary
technological advances will eventually take us far beyond our
newest, biggest, and best computers. Yet computers and
computing have already fantastically increased our power to
know as well as to do (Hornig, 67).

That statement, made several years ago, could analogously be
made today concerning the field of computer performance analysis.
The field in the past and into the present has been composed of a jumble
of techniques ranging from highly practical and empirical to highly
theoretical and esoteric, with little general structure to guide the
worker with a real problem (Bagley, 60).

Within the last few years, some real effort has been made to
categorize the methods and techniques of the field (Bell, 72). Also in
the last few years, emphasis has shifted from a hardware-only perfor-
mance analysis to a system-oriented performance analysis. The suc-

ceeding sections describe the various relevant aspects of performance

analysis.

Performance Evaluation

Performance evaluation may be subdivided into two areas, per-
formance projection and performance monitoring. Performance pro-
jection refers to the estimation of the performance of a system which
does not yet exist or is not available for actual monitoring of perfor-
mance. The technique may also be used to consider cases which may
not be constructed at will, such as overloads on a time-sharing or real-
time system, or envisioned but as yet unrealized workloads., Perfor-
mance monitoring refers to the gathering of data on an existing system.
It may take one of several forms, but is normally implemented through
hardware or software monitors in the system or through extremely de-
tailed simulation. Ewven in the case of simulation, hardware or software
monitoring is usually needed to derive the necessary statistics with
which to accurately base the simulation.

Performance Monitors

Instrumentation in the form of hardware and software monitors
provides the means by which a running system may be analyzed to a de-
sired level of detail (Rodriguez-Rosell, 72). They are quite often used
to detect performance inadequacies in hardware and/or software con-
figurations and thus provide the human with the knowledge required to
reduce such inadequacies (Schwartz, 68, Walter, 67). Hardware moni-
tors have the advantage that they may be attached to the system to be

measured without affecting the internal operation of the system at all

(Amiot, 72, Apple, 65, Arndt, 72, Bonnor, 69, Schulman, 67, Shemer,
72, Stang, 69). Most commercial monitors have free-standing tape
drives on which to record the data stolen from the system, and they
have some number of independent input channels which may be logically
OR'ed, AND'ed, NOR'ed, NAND'ed, etc., together to construct signals
which may be led to sum units, the contents of which are periodically
placed onto the attached tape. Also most commercial monitors are ac-
companied by a FORTRAN analysis program which can translate the
masses of data into human-readable and interpretable form. Hardware
monitors have the disadvantage that most of them are incapable of moni-
toring information the location of which dynamically varies, as in the
case of the B5700; this is a major advantage of software monitors
(Bemer, 68). Other advantages of software monitors include the gener-
ally low cost to install and the tremendous flexibility of investigation
(Keefe, 68). The major disadvantage of a software monitor is a direct
consequence of the uncertainty principle: the closer a system attempts
to measure its own actions, the more disruptive the measurement pro-
cess is to the system. However, by clever design the degradation of a
software monitor may be kept very low and measurable so that its ef-
fects may be almost cancelled in the analysis phase (Arden, 69, Book-
man, 72, Stanley, 69). A software monitor was developed for and used
in this research and is described in a later chapter of this report. The

major problems with hardware and software monitors are the storage

analysis of large volumes of data and the reduction of that data into the
information required by the researcher. The problems are difficult,
but the rewards may be substantial (Baer, 72, Bonnor, 69, Campbell,
68, Cantrell, 68, Feeley, 72, Yeh, 72).

Simulation

Simulation is the most general and powerful of the methods thus
devised for the analysis of computer systems. It is probably the most
difficult to develop and use properly, but it is potentially far superior
to any of the other means, and the possible rewards for its application
may be the overriding influence in the decision to use it (Fine, 66,
Huesmann, 67). In the case of a system which does not yet exist, simu-
lation may very well be the only manner in which to analyze it accurately.
These are the reasons by which simulation was chosen for this current
research,

Huesmann asserts, probably correctly, that the state of the art
will not currently support a comprehensive simulator capable of simu-
lating any proposed computer system configuration by means of para-
metric or algorithmic description (Huesmann, 67). This is not to say,
however, that entire series or classes of computer systems cannot
currently be handled adequately; for instance, Seaman and Soucy devel-
oped a simulator for IBM S/360/370 in a language specifically designed
for the purpose, CSS (Seaman, 69). The special commercial packages

which purport to analyze any existing hardware/software combination,

10

such as CASE, SAM, SCERT, etc., are in actuality not system simula-
tors but manipulate data taken from tables which empirically describe
the behavior of certain configurations of the systems in order to at-
tempt to describe the specific situation (Huesmann, 67).

The CASE and SCERT system simulators are the most widely
used commercial packages for the evaluation of standard, existing com-
puter systems (Bairstow, 68, Canning, 68, Comress, 67, Herman, 67,
Ihrer, 67, Pomerantz, 70, SPC, 68, Thompson, 68). They are very
controversial as to the accuracy of their predictions, the generality of
their application, and the cost/performance of the method. Many cli-
ents have purchased the use of the systems for some substantial total
amount of time, however, and the methods cannot be ignored.

In coordination with other techniques, simulation may be used to
model computer systems quite accurately and flexibly (Canning, 68).
For existing systems, simulation models may be advanced considerably
through the use of information gained by the use of hardware and soft-
ware monitors, The monitor output may be used almost without further
analysis, as in the case of trace-driven modeling (Cheng, 69). It may
also be used after much analysis, as in the form of stereotypical job
descriptions (Nielsen, 67). If analytic modeling techniques are not feas-
ible, mathematical models may be used to derive information about sys-
tem performance by following the changes of state resulting from the

succession of events affecting the system. This is accomplished by us-

11

ing numerical techniques to follow the corresponding changes in the
mathematical model (Blake, 64).

The simulation of this research is not of the all-encompassing
type, such as that discussed under general systems research topics.
An extreme example of this is the preparation of a three-eon simulation
of the universe reportedly given as an examination question at several
technical institutes. In this class of simulation, the entire relevant
universe is considered in the model. It is reticulated into interacting
submodels, and each of them is similarly decomposed, as necessary,
until each terminal model may be analyzed through simulation. Al-
though each simulation has an external environment, the supersimula-
tion has no external environment and no exogenous functions not under
control of the simulation. Thus, for the purposes of the current re-
search, all of the system except for the scheduler internal resource
allocation is externally described parametrically or algorithmically to
the model,

The basis of the class of simulations discussed here is the con-
cept of time. There are two extremes in the methods of maintaining
time in simulation models. It is impossible in a digital computer to
truly represent a continuous variable such as time since a continuous
variable would require infinite precision. Thus a discrete representa-
tion of time must be used. In this case, the state of the model is ex-

amined at each time interval endpoint., This has advantages for model-

12

ing continuous variables but is quite inefficient for slowly changing
models and is quite inaccurate in many cases.

The other alternative in time-keeping is event-oriented simula-
tion. In this case, discrete time interval representation is used, but
the simulated time is advanced to the next event in the model at each
stage. This will, in general, produce nonuniform time steps, as op-
posed to uniform time steps of pure discrete time interval representa-
tion. In practice, this is not a severe problem since simple weighting
factors can be easily applied to represent the nonuniform time steps in
event-oriented simulation,

The simulation model must be capable of logically handling truly
parallel events since the model itself executes serially, while the sys-
tem being simulated in this case does not. Also, the model will not run
properly without comprehensive descriptions of exactly what system is
being simulated. It must also be capable of presenting its actions in a
meaningful format for interfacing its information with the researchers
performing the interpretation of the simulation,

Of course, the computer system model cannot be considered de-
terministic. Realistically, it must be considered stochastic. Many ap-
parent operations of the computer system being modeled are probabilis-
tic in nature to some extent. It is the responsibility of the modeler to
specify the natures of the parameters.

To handle probabilistic variables, almost all simulations use

13

streams of pseudo-random numbers, A variable with almost any proba-
bilistic distribution may be generated by this method. The random num-
ber stream is used as domain values and the desired probabilistic values
may be derived from the range of a properly chosen function, Pseudo-
random numbers are normally generated by additive-multiplicative-
modulo operations. An excellent discussion may be found in Knuth
(Knuth, 69)., Pseudo-random number generation is fast, simple, con-
servative of storage, reproducible, and generators may be constructed
to fit given tests of statistical randomness.

Thus far the simulation itself has been discussed. The represen-
tation of tasks in the simulation must be considered carefully. This
representation must specify to some desired level of detail the reaction
of the system to every class of stimuli in the simulation. The nature of
representation may range from constant parameters to algorithmic spe-
cification, but in the simulation of this research, it takes the form of
sets of probability distributions. This has the disadvantage that it must
be dynamic--as the load increases and time progresses, various dis-
tributions will change drastically, for instance. This problem is over-
come by providing for a series of different distributions allowing for a
limited number of different conditions. The number and size of these
tables would possibly become prohibitive as the simulation is brought
very close to the real-world system.

This is avoided by the use of stereotypical task-mix configura-

14

tions, since a set of job descriptions describing subclasses of task
types could be shared by the tasks in simulated execution. Utilization
of the stereotypical approach should allow for simpler simulator con-
struction and faster execution. The purpose of simulation is usually
the modeling of a real-world system, not the programming of a compli-
cated simulator.

There exist cases when considerable sophistication must be in-
serted into the design of the model in order to depict subcomponents of
the real-world system more accurately. This is in conflict with the
tendency to make the model as simple as possible. A tradeoff must be
made between closeness to real-world system and simplicity in the
model. The extremes of this tradeoff are triviality and emulation,
Somewhere between the extremes lies the proper mixture, as was de-
cided in this study in the simulator.

This research is not concerned with specific hardware/software
configurations as such., This fact simplifies the simulator in the areas
not concerned directly with the microscheduler subcomponent under
consideration. It allows the parametric specification of the other al-
gorithms of the operating system. Otherwise, the model might be un-
necessarily complicated in the wrong areas.

The other serious concern involves the procurement of accurate
data with which to drive the simulation, especially for the verification

phase, A fairly recent development in this area concerns the use of

15

trace-driven modeling (Cheng, 69). This involves obtaining actual data
through the use of instrumentation, summarizing it, and using it in a
model of some components of the computer system. This method is
powerful but suffers from the same problems as benchmarking--with
careful selection of jobs to run, practically any desired distribution of
parameters may be obtained. However, with scientific selection, rep-
resentative distributions may be obtained.

As might be expected, simulation has played a major role in
some of the most important analyses of computer operating system per-
formance evaluation. One of the major early time-sharing simulators
was developed by Nielsen of Stanford to model the IBM S/360-67 Time-
Sharing System (Nielsen, 67). This simulation model is an aid in the
IBM S/360/67 hardware/software configuration problem. Thus it is de-
signed to facilitate system configuration changes. This requires his
simulator to be flexible enough to handle multiple CPU's, variable sizes
and speeds of core memory, variable numbers and speeds of peripheral
devices, and even other computers coupled to the one under study. The
model is also meant to test changes in proposed software algorithms.
Like the configuration parameters, the algorithms are relatively de-
tached from the main body of the simulator for ease of change. The
model is not system-inclusive, as it does not consider operators nor
users, except parametrically. It is not truly general, for it only han-

dles hardware/software configurations with fixed time quanta devoted

16

to individual time-slices and fixed page segments devoted to programs
and the operating system. The only documented application of that
simulator was begun on the IBM S/360/67 time-sharing system one
year before the hardware was delivered and two years before workable
software (TSS/360) was ready, and it was shown to be quite accurate in
comparison with the delivered system. This simulator was used briefly
in the current research to investigate core allocation strategies in a
paged environment. It was not used as a major simulator because of
the difficulty in changing it to do the general resource allocation sche-
mata analysis, especially in a nonpaged case.

Another simulator was developed by Nielsen for the analysis of
the effectiveness of certain techniques such as program relocation,
disk rotational delay optimization, and swap volume minimization on a
proposed time-sharing system for the Burroughs B6700 (Nielsen, 69,
Nielsen, 70, Nielsen, 71). Since the B6700 system is based on variable-
sized pages and a dynamic-overlay-based core allocation scheme, he
is able to present data which provides an indication of the effectiveness
of that type of organization as used in a time-sharing environment. He
also describes the operational capabilities of the simulation model.
Because of the similarities between his model's capabilities and those
required in the current research, the structure of his B6700 Time-
Sharing Simulator was used as a basis for the major simulator used

here in the validation phase. The simulator used in this research is

17

thus similar to that used by Nielsen in his work for Burroughs in terms
of input and output to and from the simulator and in terms of some in-
ternal operations; nevertheless, that simulator used in this research
differs significantly from Nielsen in terms of capabilities and structure,

Despite these advantages of simulation for modeling computer
operating systems, the number of simulation failures has become le-
gion., The problems are concerned with the information loss in the
transferral of the structure and data of the system to that of the model.
Most of the simulators constructed have been based upon probability
distributions of various parameters of interest and extreme care is re-
quired to prevent gross loss of structural information in the construc-
tion of the model. Nielsen's simulators use sets of statistically-defined
task profiles, a method which has proven as good as any other means
and better than most others. Another problem concerns the difficulty
of modeling complex algorithms embodied in modern computer operating
systems.

Because of these problems, the Government Accounting Office
recently banned the use of simulation as a sole means of comparing
hardware and software systems for procurement analysis (GSA, 72,
Highland, 72, Ihrer, 72, Lundell, 72). Despite these problems of simu-
lation programs which have not been properly designed, executed, or
analyzed, simulation as a method is still very much a good technique

for the analysis of computer operating systems when properly handled.

18

Structural Performance Analyses

Studies

The preceding section of this research discussed the methods
by which performance evaluation may be performed. This section dis-
cusses the actual work which has been performed in the field with re-
spect to the current research (Bookman, 72, Bradley, 68). A consider-
able number of researchers in the field have indicated in the literature
that significant increases in computer performance may be realized
through dynamic calculation of resource allocation priorities. Many of
the techniques attempt to give dynamically higher resource priorities to
those tasks which use less of the resource. Thus an I/O-bound task
receives a higher CPU priority than a CPU-bound task, etc. The tech-
nigues generally assume that recent past performance of a task is a
good indicator of recent future performance. Few of the studies reported
a systematic effort to analyze or to simulate specific components of the
resource allocation process, with Nielsen the major exception, Almost
all practical researches involved alterations in the system under study
independently of the improvement in the internal resource allocation
scheduler (microscheduler), thus clouding the issue of actual improve-
ment due to the microscheduler. No researchers reported a sustained
scientific effort to gather workload data, statistically process it, model
the computer system and computer operating system under which the

workload was processed, and actually compare the operations of the

1.9

simulated system under proposed changes with respect to several dif-
ferent system objective measures.

Scherr developed a simplified system-inclusive analytical model
of the MIT Project MAC's CTSS (Compatible Time-Sharing System)
(Scherr, 67). Although his approach was coarse, it reflected the behav-
ior of the actual system very well, primarily because CTSS is a simply-
designed operating system with certain salient attributes which, almost
by accident, happen to be very convenient to model (Corbato, 62). Fore-
most among these is a basic round-robin CPU allocation scheme, a
simple core-swapping technique, and a method of polling terminal input
which produces an (artificial) negative exponential distribution of inter-
arrival times. He demonstrated quite well that an analytical model
actually can be general and accurate also.

Stevens used the running average of

(total CPU time divided by total I/O channel time)

as the internal priority for CPU microscheduling (Stevens, 68A). He
suggested this as an alternative to artificially assigning high CPU prior-
ity to I/O-bound tasks to avoid unnecessary delays in such cases, This
is sometimes known as the complete history method, He noted an in-
crease of 18 per cent in CPU utilization and of 100 per cent in through-
put. The number of other modifications reportedly made simultaneously
to the operating system under study makes it difficult to attribute this

increase in performance to improved CPU allocation strategy only,

20

Rehmann and Gangwere report on the simulation study of re-
source management in a time-sharing system using a two-queue-level
foreground-background CPU scheduling model (Rehmann, 68). They
used response time as the performance measure, since they consider
it to be a natural user-oriented manner of measuring the performance
of the system. The system studied is nonpaged, multiprogramming
and uses a core-swapping technique, They note that Cantrell was the
first to propose using a time slice to separate long tasks and short ones
(Cantrell, 67). His idea was to set the length of a time slice so that 90
per cent of all tasks in the expected workload would complete in the
first time slice awarded them. If a task did not complete in the first
slice, it was moved to a lower priority level so that longer-running
tasks would receive CPU attention during the /O activity of short tasks,
or when no new tasks are available,

Their simulator for this situation was written in GPSS/360 and
hand-verified. The model was heavily parametricized, and they were
able to treat a large number of cases quite easily. They assume their
workload distribution for CPU usage is qualitatively the same as that
used by Cantrell and Scherr up to 90 per cent CPU saturation (Cantrell,
67, Scherr, 65). The last 10 per cent of the workload distributions
were chosen to be theoretically representative of light, medium, and
heavy CPU workloads. This choice was crucial to the study because

the model is extremely sensitive to the nature of CPU workload in the

&l

highest 10 per cent of the CPU saturation distribution, If their assump-
tions were not excessive and their input was accurate, their results for
their CPU scheduling model should be very close to reality, assuming
the model were actually implemented as stated.

Scherr reported on the construction and application of a simula-
tion program designed to study the main storage fragmentation, run
time dilation, throughput, turnaround time, job delay, and relocation
effects of the task dispatching strategies embodied in an early version
of OS/MVT running on an IBM S/360/65 (Scherr, 66B). His model simu-
lates a variable number of job streams, each emitting tasks to the task
dispatcher at statistically defined intervals. The job stream attributes
change as the corresponding tasks are processed, as per each proto-
typical job step type of description, Each job step is described by the
three following distributions: core storage space required, CPU time
required, and minimum wait factor allowed. The wait factor is the
percentage of the elapsed time that the job step would be in the wait
state if run serially. The job step priorities increase as the core occu-
pancy time increases. Running times for all except the job step with
the highest priority are multiplied by the appropriate expansion factors
Scherr derived from Markov analysis of the N-queue-level system he
constructed. He constructed an input task stream taken to be represen-
tative of a workload consisting of FORTRAN, COBOL, and sorts. The

mix stemming from the task classes contained 21 jobs containing 97

22

job steps. Average job step execution time was taken to be 62.8 sec-
onds, and the wait factor was set at 65 per cent, These figures and the
actual task mix chosen were derived from random selection of actual
running tasks on the IBM S/360/65 operating under OS/MVT. Scherr
concluded with the following points, among others:

system throughput was unaffected by storage fragmentation,
though task completion order was heavily affected by it;

no tasks with very large core requirements were delayed
indefinitely, even though his core scheduler favored the
smaller tasks;
dynamic relocation did not appreciably increase throughput;
other job streams were run for verification, and most re-
sults were quite constant--for instance, maximum main
storage utilization rarely left the 80-90 per cent range.
Lehman and Rosenfeld, and in another study Lassettre and
Scherr, extended Scherr's earlier study into several areas including
that of OS/TSO (Lassettre, 72, Lehman, 68). They fixed execution time
of all tasks for several runs in order to permit analysis in more detail
of core scheduling, This immediately produced an increase in through-
put of 19 per cent because of the synchronous nature of the arrivals and
departures of tasks, but no other major apparent effects., They at-
tempted increasing the wait factor to 90 per cent for some cases with
no major effects on the results except to allow the experimentation of

more tasks receiving CPU attention in the same time interval. Scherr

assumed that initial transients were unimportant to final results; they

23

discarded the statistical figure resulting from the execution of the first
5000 job steps and used the data resulting from the next 10000 job steps,
a method suggested by Nielsen (Nielsen, 67). Their results indicate
that the system never reached steady-state but did exhibit cyclical behav-
ior, which they were able to explain. They explored the relationships
between throughput and main storage capacity. As expected, as more
main storage is available, throughput increases; however, the rate of
increase decreases as more main storage is added by the law of dimin-
ishing returns, with a maximum throughput dependent upon CPU speed,
which agreed with empirical data quite well, Turnaround time exhibited
similar characteristics with respect to main storage size except, of
course, that turnaround time decreased to a limit close to the empirical
result as more main storage was available. They repeated Scherr's ex-
periments concerning dynamic relocation with comparatively extremely
large core requirements in each of the job steps. Dynamic relocation
in this case produced substantially better maximum total job step delay
times; though, as more main storage was added, the difference de-
creased quickly and eventually disappeared.

Marshall proposed two improvements in CPU allocation sched-
uling over that present in S/360/370/0S/MVT which improved through-
put (Marshall, 69), First was a reward-penalty system which rewarded
a task with a larger quantum of CPU time if it generated an I/O request

during the last time quantum but with a smaller one if it did not, Second

24

was the use of the cumulative ratio of

(total elapsed time minus total CPU time)

divided by (total elapsed time)

as a component of a dynamic CPU task priority computation scheme.
He found the first improvement ineffective, probably because the tasks
were unable to use the additional CPU time, but the second highly ef-
fective, in his environment. He also simultaneously restricted maxi-
mum total consecutive quantum time to five seconds per task, which
probably had as much effect (or more) as his dynamic priority calcula-
tion on computer system performance, as suggested by Baskett
(Baskett, 70),

Wulf studied dynamic CPU and core scheduling on the B5700
and proposed an exponentially smoothed average of recent CPU instan-
taneous times as a CPU usage predictor. He noted that the use of this
predictor as part of a dynamic CPU priority adjustment, along with the
suspension of tasks which are apparently causing page thrashing, in-
creased CPU utilization by 20-25 per cent and eliminated page thrash-
ing as a problem. It is not clear what portion of the improvement was
due to each modification made, nor that the actual changes made were
exactly those specified, as no validation processes were performed as
such. Wulf does indicate that resource allocation algorithms should be
based on system performance measures, such as those used in the cur-

rent research, and not solely upon attributes of individual tasks or the

25

system as a whole in order to attempt to optimize system operations as
a whole, with respect to some preselected measure function (Wulf, 69).

Several authors have studied the use of round-robin scheduling
techniques for certain restricted environments by comparing certain
system measure values corresponding to varying quantum sizes. Sev-
eral of these, including Baskett, have used queueing theory to predict
that round-robin scheduling will produce the best throughput for the sys-
tem when the CPU usage distribution is highly skewed toward less usage
and the types of tasks being processed are unlike (Baskett, 70). Such
information is interesting here as a comparative data source.

Several studies by Sherman, et al., have as their goal the com-
parison of various microschedulers proposed in the literature under an
environment of information drawn from a CDC 6600 through a software
probe with the use of trace-driven modeling, as suggested by Cheng
(Cheng, 69, Schwetman, 70, Schwetman, 72, Sherman, 71, Sherman,
72). Using a preemptive scheduling policy and selecting the task ex-
pected to compute the longest before voluntarily giving up the CPU, they
were able to derive what they considered was the worst case. Then,
by defining a throughput measure as

((time for worst method) minus (time for subject method))

divided by (worst method's time),
they were able to compare the methods with respect to throughput in-

crease. A summary of their results appears as follows:

26

Method Improvement

Best (preemptive) 12.89 per cent
Exponential smoothing (512 ms bound) 10,93-11.53 per cent
depending on alpha

Round-robin (8 ms quantum) 10,08 per cent
Complete history (512 ms bound) 9.63 per cent
Random guess (512 ms bound) 5.92 per cent
Best (non-preemptive) 3.06 per cent
FIFO 0,78 per cent
Worst (non-preemptive) 0.20 per cent
Worst (preemptive) 0.00 per cent

Cheng suggests that the trace-driven approach could assist in
the synthesis of accurate predictive models through successive calibra-
tion steps (Cheng, 69). At each stage, the actions of the model could
be compared with the measured results. Furthermore, if the real sys-
tem were available for modifications, improvements could be made in
it, and the cycle could be repeated. However, few such experiments
have been reported in the literature, including Sherman's work.,

Batson studied certain aspects of main and mass storage alloca-
tion and usage on the Burroughs B5700 (Batson, 70, Batson, 71), 1In
one study, he used a software monitor to determine the distribution of
main storage segment size under a normal workload. The most salient
feature of his results is the large number of small segments (60 per
cent of the segments in use contain less than 40 words). Another im-
portant result of his results is a refutation of the assumptions made by
other researchers concerning the negative exponential distribution of

segment sizes under a variable segment size system (Luderer, 72,

27

Randell, 69). In another study, he used a similar software monitor to
study the changes in throughput associated with the support of a virtual
memory system. He developed a set of standard benchmark programs
and ran various combinations of them to derive various timing for
(virtual memory load) versus (time to complete the set of jobs), using
serial job processing times as a basis for the computation, He refers
to Randell's study in which he notes that, under assumptions of negative
exponential distribution, main storage fragmentation due to rounding of
requests up to the next fixed-page size boundary is usually worse than
that due to checkerboarding encountered in variable-paged systems
(Randell, 69). If so, the fragmentation due to rounding may be very
bad in some cases, for Batson and the current researcher found very
bad checkerboarding in the B5700 main storage during their investiga-
tions. This class of study may become even more important, with the
advent of large numbers of virtual memory computers, such as the
IBM S/370 (IBM, 72).

Ryder proposed a method using the information gathered in the
previous time quantum as a predictor on which he based the reordering
of a queue of tasks waiting for the use of the CPU (Ryder, 70). This
formed an exponentially-smoothed, priority-based CPU allocation
scheme. As in other studies, tasks with a recent history of being I/0O-
bound are given preference in the use of the CPU, in order to maximize

throughput. His algorithm was effectively heuristic and based upon six

28

task characteristics, including Marshall's scheme (Marshall, 69),
This microscheduler adjusted its actions to some extent in an attempt
to make better judgments and predictions of task and system behavior,
It is not possible to segregate the improvements embodied in his algo-
rithm into their individual effects on the system. He made some effort
to increase CPU-I/O-overlap time, a subject of much interest in many
of the other works discussed here, including Baskett and Schwetman
(Baskett, 70, Schwetman, 70). He did measure the times associated
with the system's use of the microscheduler in a set of benchmarks,
and recorded results under the headings of run time, idle time, CPU
time, and CPU-I/O-overlap time,

He noted that, for various benchmark environments composed
of predominantly scientific, predominantly commercial, and mixed
tasks, the microscheduler performed quite differently in each case.

In fact, for his commercial benchmark on the S/360/65, the total run
time increased by 1 per cent with his algorithm compared to run time
without it. In almost all cases, idle time was decreased significantly,
while run time was decreased little or none, indicating that his micro-
scheduler was requiring much CPU attention compared to the older

one. In most cases, CPU-I/O-overlap time was increased significantly,
due in part to the increased CPU requirements partially induced by the
microscheduler's overhead, as shown in his results.

Bernstein and Sharp report on a CPU microscheduler driven by

29

a policy function (Bernstein, 71). They note that the resource services
received by a task may be characterized by the weighted sum of units

of service of each resource in the system. Each class of tasks is char-
acterized by a different vector of weights. They suggest that task prior-
ity should depend upon the difference between the resource service rep-
resented by the specific vector of weights for the task class and the serv-
ice the task is actually receiving. They propose a microscheduling tech-
nique which attempts to maintain the weighted sum of resources for a
task above that specified for its class at that type of execution.

The technique was implemented in an undesignated computer op-
erating system and was compared with round-robin philosophy of CPU
scheduling. For this case, the ratio of (average elapsed time) to (aver-
age CPU time) for batch tasks was improved from a range of (15 to 20)
to a range of (10 to 15), Response time for interactive tasks was im-
proved as per the following table:

(response time in seconds)

microscheduler scheme min. avg. max.
round-robin 4,5 10.8 102. 4
policy-driven 0.5 177 3.8

The CPU utilization
(total CPU time) divided by (total elapsed time)
was improved by about 20 per cent under similar workload.
Several other changes were made in the system at the same

time, seriously tainting the results. The time quantum was shortened

30

to 64 milliseconds, a process shown by other researchers to be highly
effective (Marshall, 69, Baskett, 70)., The round-robin microscheduler
with a large time quantum was shown by others to be a rather poor
microscheduler, so the great improvement is not surprising (Sherman,
71).

The concept of the policy function is remotely similar to that of
the local systems effectiveness measures used in the current research,
as described in the next chapter. Lacking in Bernstein's study is the
concept of prediction of resource usage for the next time interval. The
current research goes much beyond his study in that area. Their
method could be considered a special, nonadaptive case of the method
proposed in the current research, considering one class of scheduling
philosophy and one measure,

Wilkes presents a technique for workload adjustment in time-
sharing systems in terms of attempting to predict the maximum num-
ber of tasks allowable to maintain control of the system in the next
small time interval (Wilkes, 71). He also suggests varying the num-
ber of users of the system (as represented by the number of concurrent
tasks) to attempt to limit the number of tasks to that predicted earlier.
A severe problem with this approach is system stability in terms of os-
cillation of the number of active tasks with respect to time. His paper
illustrates a method by which a system may control its own actions

through the scheduling of tasks. Although the method of control seems

31

unnatural, it is important as an example of a microscheduler some-
what related to that proposed in the current research. In an earlier
work, he presented a model of main storage allocation in a time-
sharing system which attempts to prevent main storage overloads in
a manner similar to that presented to prevent system overloads
(Wilkes, 69).

Blatny, et al., discussed a limited approach to the optimization
of a time-sharing system using simulation (Blatny, 72). They consid-
ered only the measures of mean cost of delay and mean system cost
per task, as suggested by others (Greenberger, 66, Rasch, 70), They
used a simulation approach because the nonlinear cost curves arising
from the measures and the existence of a finite main storage have been
shown to pose quite awkward problems for analytical models. The only
resources considered for optimization were a single CPU, a paged, fi-
nite main storage, and an infinite mass storage. Unfortunately for the
generality of their results, they initially assumed that the main storage
required is a truncated normal distribution with mean and standard de-
viation taken as multiples of negative exponential functions of CPU
time. A multiple-priority-level round-robin feedback queueing disci-
pline is assumed used by the CPU scheduler. The simulations were
concerned with considering various cost curves, minimum time slice
times, round-robin cycle times, maximum number of tasks allowed in

concurrent execution, intra-process operating system overhead, size

32

of main storage, and the speed of the CPU. Their results agree quite
well with Greenberger's and Kleinrock's analytical results for similar
situations. They also noted that improvements in systems performance
with respect to the measures being considered can be obtained by the
use of variable time-slice techniques and by the selection of optimal
round-robin cycle times.

Denning and Eisenstein surveyed and discussed statistical methods
useful in computer system performance evaluation (Denning, 71B, Den-
ning, 72). Their paper and his book review the principles and defini-
tions which underlie estimation theory and develop the theory for appli-
cation to the problems of the performance evaluation of resource sched-
uling, in terms of the estimation processes used in predictive micro-
schedulers. The purpose of estimation theory as used in predictive
microschedulers is to use historical information to predict resource
utilization and use such predictions so as to assign the resources ac-
cording to some scheme, such as least predicted utilization. If the in-
formation thus derived is not used to schedule resource request fulfill-
ment, the algorithm is not a predictive microscheduler, but is only an
estimator. Thus an estimator could be considered as being capable of
driving a microscheduler. The authors of that paper analyze several
sequential estimators in the form of stochastic approximators and com-
pare them in terms of each algorithm's ability to determine the value

of slowly changing signals in the presence of noisy measurements.

33

They note that present theory is far from complete, has serious short-
comings, but that actual present applications, such as in Denning's
working set concepts, are advancing the theory and practice of the area
(Alderson, 71, Anacker, 67, Belady, 69A, Belady, 69B, Brawn, 68,
De Meis, 69, Denning, 68A, Denning, 68B, Denning, 68C, Denning,
68D, Denning, 69A, Denning, 69B, Denning, 70, Denning, 71B, Hatfield,
72, Margolin, 72, Morris, 72).

The simplest estimator, from a conceptual standpoint, is proba-
bly the mean. In this case all that is required is the size of the subset
and the values of each of the elements of the subset, However, it is
computationally inefficient and requires a large amount of storage in
the case of post facto analysis. It is a poor estimator in terms of slow-
ness to change in online analysis as new measurements are made and
incorporated into the computation. This introduces the concept of re-
sponsive estimators, which are those which discount the effect of early
observations on present estimations. One of the simplest responsive
estimators is the exponential estimator. It has been used in many
cases for such tasks as inventory control. It is parameter-driven and
weighs less-recent measurements exponentially less than more-recent
ones. If carefully controlled, this parameter can be used to make the
method quite powerful, since it can be dynamically varied to make the
method more or less responsive according to an indication of how well it

is estimating future observations., If this parameter must remainfixed,

34

the method can give quite bad estimations, since, if it is responsive, it
is quite sensitive to noise in the measurements, and if it is to be made
less sensitive to noise, its responsiveness suffers.

Another estimator, suggested originally by Eisenstein, is called
the learning or stochastic estimator (Eisenstein, 70). In this method,
each new estimator is the sum of the previous estimate and the weighted
difference between the previous estimate and the previous observed
value. The weights are exponentially-smoothed differences of previous
estimates and corresponding observed values, functioning as reward-
penalty pairs. This estimator is designed to attempt to damp the oscil-
lations in the differences between the estimated and the observed values,
It has the same problems as the normal exponential estimation method,
though, in certain cases, is reported to perform quite well. Partially
upon his work, the decision was made to use second-order, rather than
first-order, exponential estimation.

Denning suggests still another type of estimator, the moving
window estimator, which he used in his working set model (Denning,
68A). In this method, all observations except the last T are discarded,
and the estimate is taken to be the mean of the last T observations. T
can be parametrically set, just as can the parameter of the exponential
estimator, to make the estimator more (or less) responsive and less
(or more) stable with respect to noise. Denning also discussed the

problems of the construction of optimal estimators for given situations,

35

decision-making based upon estimators, and the cost-performance
analysis of improving estimators.

It is upon the basis of the concept of estimation that the adaptive
microscheduler of this research is founded. Based upon recently mea-
sured values of task and system parameters, the method estimates
near-future values of these parameters. The next sections survey ex-
isting practical and prototypical microschedulers, some of which em-
ploy estimation techniques,

Special Cases

Special cases of internal resource allocation schedulers may be
found by consulting the documentation describing actual implementation
of existing microschedulers in current computer operating systems.
These are of interest as describing the state of the art at the time they
were constructed and as offering suggestions for the forms of the micro-
schedulers and system effectiveness measures in this research.

The Burroughs B5700 Data Communications MCP (non-time-
sharing) System microscheduler is best described as having a priority-
based, nonadaptive, and partially round-robin CPU microscheduler
(Burroughs, 71, Canning, 66). The CPU is always given to the task
with the highest priority which is capable of continuing. If the CPU is
taken from a task because of an external interrupt, its position in the
task queue is left unchanged. If the CPU is voluntarily surrendered,

its new position in the task queue is behind all others with the same

36

priority, Normally, all user tasks enter the mix with priority five,
though the programmer can specify a different priority through control
cards and the operator can modify task priority dynamically. All oper-
ating system tasks have priority zero, which is best. See also the dis-
cussion of Wulf's work concerning B5700 CPU allocation algorithms
earlier in this chapter (Wulf, 69).

Main storage allocation is performed dynamically on demand.

If sufficient main storage is not available for a task to continue, an at-
tempt is made to overlay any overlayable storage which is of sufficient
size for the request. If enough main storage is still not found, the
task remains suspended until such time as enough main storage can be
found for its request, In certain pathological cases, this may cause
quite severe system degradation. Normal main storage allocation is
FIFO; however, main storage allocation in a no-memory situation is
priority-based. See the discussion of Batson's work concerning B5700
main storage allocation algorithms elsewhere in this current research
(Batson, 69),.

1/O channel allocation is FIFO in all cases. If enough channels
are not available, the request is immediately fulfilled. If enough chan-
nels are not available, requests are queued for each device type on a
FIFO basis. This method of I/O channel allocation is used by virtually
all operating systems described in this section.

The internal resource scheduling techniques used in the B5700

37

MCP are so basic that many different approaches have been shown
quite successful in drastically improving systems operations. As
noted elsewhere in this research, Wulf and many others have reported
fairly simple changes made to the MCP in the area of resource alloca-
tion and amplified results for the effort (Bowlden, 67, Wulf, 69).

The Burroughs B5700 Time Sharing System MCP uses a dynamic
scheduling algorithm used in the validation and verification phases of

this research (Burroughs, 72). It uses the following equations:

T = 8 times (C plus (4 times N) minus P) plus 208
E =T times J

where

CPU time slice limit in sixtieths of seconds

core quantum time limit in sixtieths of seconds

number of consecutive times task has used time slice (<7)
number of 1024 word main storage chunks used by task
declared external priority of task (0 = best, 9 = worst)
number of tasks currently swapped in.

I

i

“go=zH4d
I

Thus it dynamically computes the CPU time slice and core quan-
tum limits to be used on the next time slice based upon (recent) history
of execution of the task, similar to that described by Marshall as being
ineffective, at least in the cases he investigated (Marshall, 69). The
core quantum refers to the time of each occupancy in main storage.

This system has many of the same attributes as the B5700 Data
Communications MCP described earlier. It differs primarily in its
handling of main storage allocation. Tasks are initially assigned an

amount of main storage equal to the next greater multiple of 1024 words

38

than the main storage estimate assigned by the compiler or user. Then
the tasks execute out of this space until the space is needed for another
task or the assigned space is exceeded in a no-memory situation. The
task is then swapped out to disk, freeing that main storage for use by
other tasks. At a later time, the task will be swapped back in, possibly
with another 1024 words of main storage if it was in a no-memory con-
dition, though with no relocation, and will be allowed to continue pro-
cessing. If a task reaches the maximum amount of main storage avail-
able on the machine and is in the no-memory state, it is discontinued,
The Burroughs B6700 MCP uses a dynamic calculation of inter-
nal CPU priority with several interesting features (Burroughs, 69). It
uses the following equation:
priority = (Al times D) plus
(A2 times TR) plus
(A3 times TE) plus
(A4 times (TE-TP)/(TP plus 1)) plus
(A5 times C) plus
(A6/(TT-CT))
where
A1l through A6 are weight factors set by the operator or by default
D = declared priority
TR = time since last I/O
TE = elapsed time of task execution
TP = processor time of task
C = number of words of core used by task

TT = deadline (target time)
CT = current time (CT{TT).

I

This is a heavily-time-oriented and static method., It does not directly

39

modify its actions as the system becomes more or less loaded and
hence does not have the adaptivity of the microscheduler in this study.
It does implement a dynamic internal priority computation and applica-
tion generally similar to that discussed by Marshall as being effective
(Marshall, 69).

The main storage allocation scheduler of the standard B6700
MCP somewhat resembles that of the B5700 MCP. Dynamic memory
allocation is made on demand., When necessary, least-recently-used
segments of core are overlaid to enable the allocation of core when avail-
able, unused core is insufficient for task demands, Personnel at the
University of California at San Diego have developed a variation of the
standard B6700 MCP core allocation scheduler which includes an at-
tempt to determine the current working set of pages of a task and keep
such pages in main storage in preference to pages not in the current
working set (Denning, 68A, Denning, 68C, Denning, 68D, Denning, 70,
Denning, 72). Not enough data has been gathered on the effectiveness
of this technique to decide in which circumstances it is superior to the
standard main storage scheduler. Because of hardware and software
design, relatively much more code and data are overlayable on the
B6700 than on the B5700 for similar classes of tasks.

The Univac 1100 series Exec 8 operating system uses a dynamic
microscheduler (Univac, 71). It is based upon a multiple level organi-

zation of tasks to be executed, known as the switch list, which is or-

40

dered by priority. Tasks at level L. have priority over those at level

L plus 1. Tasks at a given level are treated on a round-robin basis as
far as CPU and core allocation are concerned. Quantum time Q is com-
puted by the following formula:

Q = A times (1 plus P/F) times T

where
A = time allocation factor assigned at system generation time
P = adjusted task priority
F = priority factor
T = 2 to the power L
L = switch list level.

If a task does not voluntarily release control of the CPU prior
to Q units of time, it is moved to the next higher-numbered switch
level, thus decreasing adjusted priority P but increasing switch level
L. Tasks are returned to an initial switch level after completion of
the condition for which they were voluntarily suspended.

The microscheduler allocates the CPU among the programs
resident in core according to the structure of the switch list., The CPU
is given to the highest priority task ready to run, Since the factors
which determine the switch level of a task may change, a task may be
allocated varying quanta for its execution during its lifetime, Once a
task on a given switch level has lost control of the CPU, whether volun-
tarily or not, it will not be given control again until all other tasks on
that level have been considered for further execution,

The microscheduler allocates main storage on a core quantum

41

basis. The core quantum is a function of task size, run priority, and
computer usage. A main storage priority is kept somewhat analogously
to the switch level of CPU usage. A batch task's main storage priority
is never changed. When a remote task exceeds its core quantum, its
main storage priority is dropped one level and its core quantum is
doubled. Whenever any task exceeds its core quantum, it is marked as
available for swapping to drum. Tasks are assigned to main storage in
the order of their core priority. The initial main storage quantum is a
function of the core priority level and run priority. The same task at
level L plus 1 has twice the main storage quantum as the same task at
level I.. On the same level, a task with priority A (best) has twice the
main storage quantum as one with priority Z (worst),

The microscheduler computes computer usage for main storage
and CPU every six seconds, It then attempts to adjust CPU and main
storage priorities so that a desired remote/batch usage ratio is more
nearly reached. To do this, it uses an exponentially averaged history
of usage for the past few minutes of operation and compares most re-
cent usage values with historical usage. This is claimed to avoid in-
stabilities in the microscheduler due to sudden, heavy demand or batch
usage. This approach is similar to that suggested by Marshall as be-
ing effective in his research (Marshall, 69).

This class of microscheduler is similar to several of those found

in the literature. Its handling of switch levels as related to voluntary

42

release of the CPU is almost identical to that of Ryder, who found it
quite effective (Ryder, 70). Its handling of quantum time as related to
voluntary release of the CPU is similar to that of Marshall, who found
it not particularly significant (Marshall, 69). Baskett and Schwetman
suggest that round-robin CPU allocation is most effective when CPU
service time distribution is highly skewed toward zero and the tasks
are unrelated, assuming zero task swap time (Baskett, 70, Schwetman,
70, Schwetman, 72). Because of the speed of the 1100 series CPU's,
the CPU service time may very well be highly skewed in many cases of
tasks not extremely CPU-bound, and thus round-robin CPU allocation
may be quite effective in this case.

Prototypical Microschedulers

The following prototypical microscheduling techniques are con-

sidered in this research:

B5700 TSSMCP,

round-robin,

FIFO,
instantaneous exponential estimation,
complete history,
adaptive microscheduler.
They were considered since they are representative of many of
the techniques used in existing operating systems and studied in the
literature.

Following Schwetman and Sherman, all of the microschedulers

investigated here which did not have a maximum CPU resource usage

43

burst time intrinsic to the methods were modified to include one such
as that used by the B5700 TSSMCP microscheduler (Schwetman, 70,
Sherman, 71). This improves some of the competing methods signifi-
cantly, as noted by them and as discussed later in this section.

The first microscheduler philosophy considered was that of the
B5700 TSSMCP, the same that was used in the validation process de-
scribed earlier. It is based upon the following equations:

T = 8 times (C plus (4 times N) minus P) plus 208
T times J

=
I

T = CPU time slice limit in sixtieths of seconds

E = elapsed time slice limit in sixtieths of seconds

N = number of consecutive times the task has used up its time slice (£7)

C = number of main storage chunks used by task

P = declared external priority of task (0 = high, 9 = low)

J = number of tasks currently swapped in.

Another microscheduler philosophy considered was round-robin

CPU allocation with no priority. In this case, the system resources
are visualized as being controlled by facilities with associated queues.
Tasks' resource allocation requests are placed at the tail of the queue
and are fulfilled from the head of the queue. If the resource allocation
requirement is completely fulfilled at the end of some period of time,
the task leaves that facility and joins the queue of another facility; other-
wise its request is placed at the tail of the queue of the current facility.

Variations on the basic round-robin scheduling technique were not con-

sidered because of time and resource restrictions on the research.

44

Another philosophy, similar to that of round-robin CPU micro-
scheduling, is FIFO, In this situation, the facility-resource-queue
arrangement is as in the round-robin case; however, when an item is to
be placed into the queue of requests waiting for the use of a resource,
rather than being placed at the tail of the queue, it is placed ahead of
those of all other tasks which arrived in the system later than that task.
Philosophies with results by other researchers are similar to that of
FIFO and LIFO and random guess. The primary difference between
those philosophies lies in the variance of the response time, with all
having about the same mean response time; however, FIFO gives
smaller variances than the others and hence is the one selected here,

Instantaneous exponential estimation was discussed in detail
earlier in this research report as a philosophy of CPU microscheduling,
The basic technique is to predict the length of the next resource service
time for a task based on the task's immediate past behavior and assign
the resource to the task which will probably use it the least amount of
time before releasing it for use by other requesting tasks. Though
Denning noted that instantaneous exponential estimation is quite prone
to errors in measurement, Sherman showed that, in the case of his re-
search, instantaneous exponential estimation was fairly effective as a
microscheduling method, at least under a throughput measure of sys-
tems effectiveness, and the CDC 6600 environment (Denning, 71B,

Sherman, 72). The parameter, ALPHA, of the estimator is fixed for

45

this case at 0.5, the value Sherman found best in his research, giving
equal weight to new and historical data,

Still another microscheduling philosophy which has been pro-
posed is the complete history technique as described earlier, It was
shown by Sherman to be almost as effective as the round-robin technique
in his research, In this case, the weight given to the historical portion
of the estimator increases and that given to the instantaneous portion de-
creases comparatively. The last microscheduler philosophy considered
was the adaptive microscheduler of the current research. It is de-

scribed in detail later.

System Effectiveness Measures

In order to evaluate the performance of a computer system, sys-
tem measures are required. Many studies in this area claim generality
of results without specifying the system measure with respect to which
the results were obtained. Usually, throughput of the system in terms
of the average number of tasks completed over a unit of time is the im-
plicit measure used (Sherman, 71). Others have designed measures
which fitted the situation, ignoring other possible situations. It was de-
cided to attempt to avoid these problems in this research by consider-
ing a set of prototypical system measures,

Since the adaptive microscheduler must be responsive to the na-

ture of the system measure chosen, additional considerations are im-

46

posed in that case. The overall system measure, or global system ef-
fectiveness measure (GSEM), is too general to use in all cases as a
guideline by which the adaptive microscheduler may function. Thus
for each major GSEM type, a local system effectiveness measure
(LSEM) must be defined. In certain cases, such as CPU utilization,
the LSEM will be of a similar nature to the GSEM. In other cases, such
as THROUGHPUT, it will be of a radically different nature. Though
only prototypical system measure classes are considered, there is no
logical reason that other combinations of measures than those con-
sidered here could not be used. For instance, a combination of
THROUGHPUT and CPU utilization could be envisioned for a specific
case. The only logical problems arise in the combination of quantities
of unlike units, and with nonlinear response to changing resource us-
ages. These problems may be resolved in specific cases, as noted by
Hoffman (Hoffman, 71).

Several measures of system performance were used in the adap-
tive microscheduler evaluation process in order to base the compari-
sons. Representative samples of different classes of system measures
were considered. They are defined and described in the following para-
graphs,

THROUGHPUT is a measure many researchers have applied to
computer systems and to computer operating system schedulers and

microschedulers (Sherman, 72). It is defined to represent the number

47

of tasks which the system can complete in an interval of time. A good
throughput measure is usually received by a system which is biased to-
ward an environment consisting of smaller, shorter-running tasks.
Thus the LSEM term for this case was

({(projected I/O usage for next time interval for task i) divided by

(projected main storage usage for next time interval for task i)).
This was determined to be the best through experimentation, at least
for the current environment. This LSEM favors the smaller tasks
which require less CPU attention because of performing a relatively
large amount of I1/0 activity, as used by Sherman,

CPU utilization is another measure which has been applied many
times, both in theory and in practice, to computer systems (Kimbleton,
71A), It is not equitable to all types of tasks, as is the use of no single
measure as an estimator, since a scheduler based solely upon it re-
wards CPU-bound tasks with more CPU attention than it awards others.
A good CPU utilization is generally received by such a system which
has a relatively heavily CPU-bound mix of tasks. Thus the LSEM term
for the CPU case was

(projected CPU time for next time interval for task i).

REVENUE is another measure similar to CPU utilization which
is sensitive to some combination of resource utilizations, Practically
every computer installation uses a different measure of revenue. Pro-

perly interpreted, most of the measures considered in this study could

48

be used for revenue calculation purposes. The specific revenue mea-
sure structure chosen was that used on the B5700 at Georgia Tech,
which is a multiple of
((3 times CPU time) plus I/O time).
Thus the form of the LSEM term for this case was
(3 times (CPU time projected for the next time interval for task i)
plus (I/O time projected for next time interval for task i)).
RESOURCE utilization is a measure that is sometimes used to
measure how well a computer systerm is using its resources on an over-
all basis (Lucas, 71). It is a somewhat fairer measure than some of
the others when used for estimation purposes, as it evenly favors tasks
which use the various resources. The GSEM for this case is
(CPU time plus I/O time plus norm main storage usage).
Thus the form for the corresponding LSEM term was
((CPU time for next period for task i) plus
(I/O time for next period for task i) plus
(normalized main storage usage for next period for task i)).
I1/0 utilization is seldom used as a measure of computer system
performance, but it is included in this research for completeness
(Losapio, 72). Analogous comments apply to it as apply to CPU utiliza-
tion. The LSEM term used for this case was
(projected I/O time for next time interval for task i).

LATENCY is a measure which has often been used in the form of

49

response time measures (Lassettre, 72). A microscheduler based upon
this measure favors the extremely short-running tasks such as those
normally encountered in time-sharing operations over the longer run-
ning tasks such as those normally encountered in batch operations.
The GSEM for this case can be stated in several manners, but that used
for this research is

(1 minus (effective overhead time due to queue handling)

divided by (swap in time)).
Its LSEM term can take one of several forms, depending upon the orien-
tation of the policies of the management of the system, but the LSEM
term used in this research was
((projected CPU time for the next interval for task i) divided by

(projected elapsed time for the next interval for task i)).

SYSTEM UTILIZATION is a measure used quite often when con-
sidering the use of hardware monitoring devices (Estrin, 67B), It mea-
sures the activity of the system in terms of the complement of the time
when the system is idle. It is a fair and useful practical measure be-
cause if a computer system is being run a limiting elapsed amount of
time, system utilization considerations can often increase the perfor-
mance of the system significantly by reducing idle time. Several re-
searchers have shown that this may be done in general by assigning a
resource to that task which will use it the shortest amount of time be-

fore releasing it (Sherman, 72). Thus the LSEM term used in this

50

case was
(zero minus ((projected CPU time for next time interval for task i) plus

(projected I/O time for next time interval for task i) plus

(projected mass storage usage for next time interval for task i))).

SYSTEM COST NULLIFICATION is a measure suggested by re-
searchers to directly attack the return-on-investment problem (Wald,
67). It is similar to simple resource usage except that the value of the
measure is proportional to the sum of the values of each of the resources
of the computer system used by the tasks. The coefficients were de-
rived from 1972 B5700 price lists in consultation with Burroughs per-
sonnel. They represent the book price of B5700 computer system com-
ponents, ignoring site preparation, air conditioning, shipping charges,
maintenance, and operator salaries, which are not effected except triv-
ially by the microscheduler. Main storage usage is normalized to take
into account its dichotomous nature under the B5700 TSSMCP, Thus
the form of LSEM term used in this case was

(3.14 times (projected CPU usage for next time interval for task i))
plus ((number of I1/O paths)
times (projected I/O usage for next time interval for task i))
plus (8 times (normalized projected main storage usage for
next time interval for task 1i))).
In summary, the definitions of the various system effectiveness

measures considered in this research are given in the following table.

51

Table 1. System Effectiveness Measures
GSEM LSEM Term
Name (Overall) (Instantaneous)
THROUGHPUT (tasks / unit time) (I/O usage) / (core usage)
CPU (CPU usage) (CPU usage)
REVENUE (3% (CPU usage) (3% (CPU usage)
+ (I/O usage)) + (I/O usage))
RESOURCE ((CPU usage) ((CPU usage)
+ (I/O usage) + (I/O usage)
+ (core usage)) + (core usage))
I/0 (I/O usage) (I/0 usage)
LATENCY (1- ((queue handling (CPU usage) /
time) / (swap in time)
(swap in time)))
UTILIZATION (1 - idle time) (- ({CPU usage)
+ (I/O usage)
+ (core usage)))
COST ((3.14% (CPU usage)) ((3.14% (CPU usage))

+ (4% (I/O usage))
+ (8% (core usage)))

+ (4% (I/O usage))
+ (8% (core usage)))

52

CHAPTER III

THE ADAPTIVE MICROSCHEDULER

Operation of Microscheduler

The heart of this model lies in the use of an heuristic, dynamic,
adaptive task scheduling technique which attempts to schedule the allo-
cation of resources among the tasks at hand in a manner more condu-
cive to semi-optimal system operation than embodied in other micro-
schedulers in use today.

The general goal of the adaptive microscheduler of this re-
search is to attempt to maximize the general systems effectiveness
measure (GSEM) through maximizing the local systems effectiveness
measure (LSEM) at each decision point. It does this through evaluating
the predicted values of LSEM obtained by tentatively assigning the re-
questing tasks to the requested resources, then actually making the as-
signments which maximize the LSEM. The prediction of new LSEM
values is based partially upon exponential estimation based upon previ-
ous values of system variables and partially upon the differences be-
tween the most recent predictions and actual values (the correction).
At certain intervals the prediction process may be parametrically ad-

justed in order to adapt to changing conditions in the environment in

53

which the microscheduler is currently operating.

This microscheduler is intended to satisfy the design require-
ments of a heuristic, dynamic, adaptive, task-oriented internal re-
source allocation scheduler, which attempts to schedule resource allo-
cation so as to maximize the productivity of the system. Succeeding
chapters verify that it actually performs as expected, through the use
of computer simulation, using data collected from a B5700 computer
system running a selection of tasks drawn from the Georgia Tech envi-

ronment.

Level of Detail

When preparing to model any system, the analyst must choose
the model's world viewpoint carefully. If it is chosen too small, im-
portant characteristics of the model will be obscured by detail. If it is
chosen too large, the characteristics will be obscured because of sum-
mary action, The viewpoint of a model's subcomponents must also be
chosen carefully for essentially the same reasons.

The microscheduler of this research is assumed to function at
the general level of detail and point of view represented by the follow-
ing quantities;

-task state vector
-main storage segment
-1/0O transaction

-CPU interrupt processing interval.

The following quantities are considered to be on a higher level and are

assumed to be included in the model parametrically or algorithmically:

-operating system architecture (except microscheduler)

-macroscheduling characteristics

-workload characteristics

-mass storage requirements

-management policies and goals

-system profit/cost functions (GSEM)

-hardware configuration,
The following quantities are considered to be on a lower level and are
assumed to be included parametrically or implicitly, or they are to be
ignored:

-multitasking interference in hardware

-set of CPU and I/O instructions available

-dynamic and static address relocation delays

-exact structure of tasks and job steps.
The preceding representation allows for the concentration of attention
on the microscheduler itself and attempts to avoid the consideration of
subcomponents of computer systems not important here. The remainder

of this section presents the model and associated concepts, following

the level of detail and point of view just prescribed.

Representation of Tasks

Logically, tasks are represented as passive entities acted upon
by the microscheduler, Each task has associated with it various quan-
tities which may be interrogated by and/or changed by the micro-
scheduler as real time proceeds. Some of the quantities are direct
functions of time, such as deadline information, Most others are func-

tions of assigned resource time, such as CPU and I/0 time usage.

55

Actual task internal representation is transparent to the micro-
scheduler just as is actual resource allocation internal representation.
Thus the microscheduler is quite austere, manipulating the tasks and
system under its control with respect to certain constraints and driving
functions, without direct regard for their internal structure.

This approach is taken since, from the point of view of the micro-
scheduler, the only important aspects concerning a task are its exist-
ence and its external attributes, not its internal structure. This is
also a highly realistic viewpoint for an actual implementation of such a

microscheduler as envisioned here.

System Effectiveness Measures

One measure of the productivity of a computer system is
((billable charge) per (real time unit)).

This is consistent and reasonable since increasing the productivity of

the computer system increases the charge realized for a given time in-
terval, since the system is capable of executing more jobs. Assuming
that some constant, consistent accounting system is in effect and that it
is of the nature that an increase in the use of a resource causes a cor-
responding increase in the charge, that measure will be used as one of
the system objective functions, also called global system effectiveness
measures (GSEM) as investigated in this research with respect to vari-

ous philosophies of microscheduling.

56

This measure is too general to use directly as a decision tool
for a microscheduler. Thus a local system effectiveness measure
(LSEM) is required to be defined. It would ideally be of the nature that
optimizing it at each point in time would be equivalent to optimizing the
GSEM for that entire time period. This is, however, infeasible for a
dynamic, unpredictable, nonanticipatory system because it is not possi-
ble at a given point in time to make the decision which is known to be
correct at some later point in time (hindsight is always better than
foresight). All that can be done is to make the apparently best decision
at each point in time at which a decision must be made, hoping that
worst-case situations will not occur, will be mollified by the revised
decision process, or will not be severe enough to cause other than tem-
porary degradation of the system so that the microscheduler can have
time to take evasive measures.

The LSEM's used in this study are all defined to be the weighted
sum of certain system and task parameters evaluated at each instant in
time at which a decision must be made. By proper choice of the para-
meters and weights, optimizing an LSEM on an instantaneous basis may
be made equivalent to a suboptimization of a given GSEM over a longer
time interval. The better the decision function of the microscheduler
is, the better the value of the GSEM which is realized, ignoring the
possible additional resource load of the microscheduler.

The specific global (and local) system effectiveness measures

57

considered in this research were discussed earlier and were repre-
sented by the following list of measure classes:

-throughput

-CPU utilization

-revenue

-resource usage

-I/0O utilization

-system utilization

-system cost nullification,
Note that the LSEM's are all dependent upon resource utilizations only.
Thus they are all effectively computable from recent and historical in-
formation, and no future information such as task completion time is
required. Other system effectiveness measures could be considered
by defining the corresponding LLSEM's. For instance, a new GSEM
composed of equal weights of throughput and CPU utilization could be
defined. Of course, nonlinear measure values and incommensurable
units may complicate that process.

The values of the corresponding weight factors are determined
from the corresponding terms in the GSEM from historical information,
from policy decisions, and by heuristic means. Those terms known to
have constant values and constant weight factors in a given environment
should be dropped from consideration of terms of the LSEM. This
class of GSEM does not consider line-connect charges nor unit charges,
which are almost independent of computer performance, and corre-

sponding terms will not appear in the LSEM.

The construction of the LSEM for a given environment is quite

58

important since it links the desired operation of the microscheduler to
management's goals for the system. Certain goals may very well be
conflicting. For instance, faster turnaround is in conflict with in-
creased CPU utilization; the former is proportional to the decrease of
instantaneous CPU usage whereas the latter is directly proportional to
total CPU usage. Thus the relative coefficients of these terms must be
adjusted to conform to management goals to resolve the conflict,

Other terms and their coefficients in the LSEM which corre-
spond to terms in the GSEM must be chosen relative to resource utili-
zation so that the GSEM is accurately represented in that portion of the
LSEM. Terms and their coefficients in the LSEM which correspond to
other system levels may also be chosen to correspond to management's
goals, even though they do not have direct realizations as terms and co-
efficients in the GSEM. In given situations, it is up to a clever indivi-
dual to construct the LSEM for a specific GSEM.

The decision, then, can be made in the manner described ear-
lier in this section using the task LSEM predicted values for the next
time interval to determine which requesting task is to receive use of
each resource next,

The LSEM need be evaluated only in the cases in which a deci-
sion is required. This implies that the allocation of resources which
are not scarce is simpler than the allocation of scarce resources.

Thus in the case of multiplexed I/O paths, if fewer I/O operations of a

59

given class are in progress than there exist paths and another I/0O allo-
cation request is made by a task, there is no valid reason the request
should not be immediately filled. If, however, all paths are in use,
the LSEM would be evaluated to determine in which order requests by
different tasks should be filled when paths do become available. Simi-
lar comments apply, of course, to CPU, main storage, mass storage,

and other such possibly scarce resources,

Trends in System Performance

The microscheduler must be able to detect trends in system per-
formance in terms of values of LSEM, its terms, and the attributes of
the tasks in execution., It is necessary to minimize the resource re-
quirements of the microscheduler in order not to negate the gains made
by the improved microscheduler. Thus extremely sophisticated tech-
niques, or very crude ones using much storage, may not be used,

This also implies that large tables describing in detail many system
and task variables may not be maintained. Thus prediction techniques
must rely on small numbers of relevant variables to predict new values.

There is a long-term class of data, statistically describing the
environment and current set of tasks. There is the short-term class,
reflecting averaged values over some much shorter period of operation.
Then there is the instantaneous class detailing the most current values

of the system and task variables, These three classes of values enter

60

into trend detection and prediction in the microscheduler of this re-
search.

Because, at a given instant in time, averaged values of system
and task variables gathered more recently are better predictors of
near-future values than are less recent values, short-term averages
must be weighted so that recent values carry more weight than less
recent values (Denning, 71B). The concept of weighted moving aver-
age (or window) is the basis for certain techniques which have been de-
veloped to track changing patterns of demands in inventory control and
operating systems (Burroughs, 72, Denning, 71B, Wulf, 69). These
techniques are suggested in this research as methods used to track
changing patterns in resource requests and allocations. In particular,
exponential weighted moving averages, trend detection, deviation, and
mean absolute deviation (MAD) are used here (Denning, 71B). Experi-
mentation indicated that exponential estimation was more effective in
the investigated environment than other adaptive or nonadaptive methods,

Exponential estimation is a convenient class of weighted moving
average for computation in that it does not require the keeping of large
tables of historical data for each resource of interest in order to facili-
tate prediction. It has the capability to adjust to change, but its rate
of response can be adjusted dynamically and parametrically. This para-
meter is normally referred to as ALPHA, but for the purposes of this

research, it will be known as A. In this method,

61

new average = A times (new value) plus (1-A) times (old average)
where A is a scalar between zero and unity exclusively. As A approaches
unity (zero), the average is more (less) weighted to the new values,
Parameter A may thus be varied to cause the microscheduler to be more
or less responsive to changing conditions. Bounds on A sharper than
zero and unity may be parametrically specified to avoid the extreme
cases.

It is known that the use of the basic exponential estimation tech-
nique will produce an estimate which lags behind data containing sys-
tematic trends. The amount of this lag may be determined from the
mathematics of the exponential smoothing formula, and a trend correc-
tion may be applied to make the estimate more accurate. By the defini-
tion of trend,

current trend = (new average) minus (old average).

Because fluctuations in resource requests will cause fluctuations in the
new estimate for resource requests, there is needed a method to esti-
mate the trend present in the data to cause the dampening of this fluctua-
tion. Thus

new trend = B times (current trend) plus (1-B) times (old trend)
is used to form a second-order exponential smoothing method on the
estimates to detect trends, with parameter B as a scalar between zero
and unity exclusively. A new parameter B was used here rather than A

because the noise contents of the averages and trends are assumed to be

62

of different nature,

Since the objective is to produce a resource request prediction
for the next time period, the new trend must be added to the new aver-
age and the trend lag correction. Thus predicted value is defined by
the following equation:

predicted value = (new average) plus ((new trend) divided by (1-A)).

The deviation provides a simple means of computing the errors

made by the prediction process. It is defined by the following equation:
deviation = (predicted value) minus (actual value).

It is useful in determining how and when to change the values of A and

B and time interval between corrections T. If the value of the devia-

tion is changing signs rapidly, outside of some small threshold, the

system needs damping and A and/or B and/or T should be decreased.

If it is increasing or decreasing consistently, A and/or B should be in-

creased and T should be decreased. When the deviations are changing

signs but are smaller than the threshold, the system is performing as

expected and T may be increased, if it is not already at its upper bound,

The exact means by which A, B, and T are changed are given in
Chapter IV. In particular, changing T had little effect as long as the
formulae were applied at certain distinguished points, also as described
there.

The mean absolute deviation is useful for determining the accu-

racy of the prediction process and is defined as follows:

63

MAD = (the sum of the absolute deviations of each measurement)
divided by (number of measurements)

MAD is not used directly in this research but is used indirectly as a
means of comparing certain variants of adaptive microschedulers.

One additional complication must be considered here. Since it
is possible that the time between predictions is not constant, a correc-
tion must be made to the predicted value. Though many types of cor-
rections were possible, linear interpolation was used successfully in
this experimentation.

The formulae used in the predictor portion of the adaptive
microscheduler may be summarized as follows:
. AV(T2) = (A times V(T2)) plus ((1-A) times AV(T1))
CT(T2) = AV(T2) minus AV(T1)

NT(T2) = (B times CT(T2)) plus ((1-B) times CT(T1))
PV(T2) = AV(T2) plus (NT(T2))

N
- =

where

T1 = previous time
T2 = current time
AV = average value
V = current value
CT = current trend
NT = new trend

PV = predicted value

and time between applications (T2-T1) is assumed constant.

To correct for variable time of application of prediction, equa-
tions 1 and 3 above must be corrected as follows:

F(T3) = MIN (1.00, MAX (0,00,

((F(T2) minus F(T1) times (T3 minus T1)
divided by (T2 minus T1)) plus F(T1))))

64

where F is AV or NT,

current time
such time that "interval of application' would have
been constant

T3
T2

I

T1 = previous time.
Given that TO = time before previous time, then T1-TO = T2-T1. If
T3 is between T1 and T2, the above equation for F forms a linear inter-
polation formula, and if T3 is greater than T2, it forms a linear extra-
polation formula. Initially, times zero and the first time of application
are taken as TO and T1,respectively. In case the extrapolation leads
to a resource utilization not between 0, 00 and 1, 00, it is corrected to
the nearer extremity.

These equations form a second-order, exponentially smoothed
system which remains open to new information. The correction for
variable time of application is not found in the literature, but signifi-
cantly improves the predictive powers of the method. Assuming that
values at some initial point in time may be specified, the equations can
then be iteratively applied to provide new predicted values (AV(T)) and
new trend values (NT(T)) at each later point in time at which a predic-
tion is required.

In summary, this scheduler attempts to detect short-term
trends in its monitored variables by comparing smoothed and trended
values with most recently measured averaged values, By this means,

a task which begins to request more or less of a resource may be lo-

65

cated and processed properly, Longer-term trends may be detected
by comparing the statistical historical information with the smoothed
and trended values, if necessary, It attempts to quiet much of the
noise and inaccuracy of instantaneous estimation through the use of
averages gained over somewhat longer periods of time, along with
careful parameter variation. This avoids many of the problems men-

tioned by Denning with respect to exponential estimation (Denning, 71B).

Prediction and Correction Techniques

Static exponential estimation and trend detection in the micro-
scheduler would be useful to some extent in a passive sense. However,
to make the microscheduler a more active controller, a predictor is
required. The predictor used here uses the same mechanism as in the
trend detector. The actual technique used is that of extrapolation based
on exponential estimation (Denning, 71A). The selection of each task
in turn is simulated for each requested resource, The predicted LSEM
is evaluated for each combination of tasks and requested resources,
Then, taking into account the parallelism of each facility, the micro-
scheduler can more properly select the tasks to which to allocate the
resource requests for the next time interval than can other nonadaptive
microschedulers,

This construction provides an almost built-in correction mecha-

nism. If the predictor is consistently under- or over-estimating the

66

value of a variable (sum of deviations is not going to zero), a corrector
may be applied to modify the parameters A and B of the exponential
estimator to make the microscheduler a little more responsive or to
decrease the time application interval to make it a little more accurate.
In case the predictor is performing badly, over- and under-estimating
values, the parameters A and B should be modified to make the micro-
scheduler more stable. Thus the predictor-corrector portion of the
microscheduler acts as a homeostatic stabilizer to the microscheduler,
allowing the adaptivity to handle changing conditions, but also stabiliz-
ing the process.

The process as used in this research is quite simple, as it
must be. Separate A's and B's are maintained for every task in the
mix and for every facility of the system capable of being assigned to or
used by the tasks. When a task enters the mix, its A's and B's are set
to predetermined initial values, and the task's historical information is
set to values to reflect the predicted initial normalized usage of the
CPU and 1/0 facilities and the actual normalized initial usage of the
main storage facility. In other cases, facilities such as those described
earlier may be used. From a large number of experiments with vari-
ous values for those initial parameters, it was determined in the envi-
ronment considered in this research that good initial values for the A's
were in the range of 0.4, for the B's were in the range of 0.3, and for

the predicted initial facility usages were 0.5 for CPU and I/0O. Thence-

67

forth, whenever the predictor-corrector process is activated to pre-
dict a new value for a task/resource usage combination, the historical
information and more recent information are available to allow the
effective prediction of a new LSEM value for a task, Of course, the
historical information is updated each time the predictor-corrector
portion of the scheduler is used. By noting the types of errors between
the previous predicted task/resource usages and the current ones, the
process determines in an algorithmic manner the corrections required,
if any, to change A, B, and the time interval of application to make the
next predictions of task/resource usages, and hence LSEM values,
more accurate,

The exact nature of this corrector algorithm is environment-
dependent; however, a large number of experiments were performed to
determine the best manner in which to perform the correction in the
environment of this research. It was determined that the best manner
in which to perform the correction in this environment is represented
by the following:

-compute difference between predicted value for task/resource
usage and actual value.

-if difference is greater than threshold, check signs of current
difference and previous difference.

-if they have different signs, the process is oscillating and
must be made more stable by relying more heavily on histor-
ical information; if A is not already at its lower limit, it is
decreased by DA (defined externally); otherwise, if B is not
already at its lower limit, it is decreased by DB.

68

-if they have the same sign, the process is not responsive
enough to new data and must be made more responsive by
relying more heavily on more recent data; A and B are
increased in an analogous manner to that described pre-
viously.

-using the most recently computed values for A and B, and
regardless of other tests, predicted task/resource usage
value is generated and used to compute a predicted LSEM
value; since the times between applications are variable,
linear interpolation is used to take this into account in
the prediction process.

In further experimentation, it was determined that, in the envi-
ronment considered here, the threshold for correction could be set
system-wide at 0,1 with almost no loss in the overall precision of the
prediction-correction process, Slightly better results may be realized
in this environment by making DA a function of the error between pre-
dicted and actual values. It was also determined for this environment
that the most effective times at which to apply the predictor-corrector
were those at which a known major change in task or system status,
such as a swap in or out or main storage expansion, occurred; this al-
lowed the minimization of the overhead of the process while maintain-
ing its accuracy. The concept of computed time of application is be-
lieved to be very important in systems not as main-storage-limited as
in the B5700, and thus the explanation of the algorithm retains that con-
cept. A flow-chart depicting the actions of the predictor-corrector

portion of the adaptive microscheduler appears in Figure 1.

In summary of the operations of the predictor and corrector, an

X: =First
Element of
Memoryqueue

Wait until
Next Activation —‘5{ Start)

Time
I: = Task Numbe
Represented
by X ’
Has Reset History

Task I Yes| information
Just Been -

Started for Task I

to Initial Values

Note; In
Code Below,

J=0: CoreUsage
l: Core Time

2: CPU Usage
3:1/0 Usage
S ——

Figure 1. Flow Chart of Microscheduler.
(continued on next page)

69

@ext Res ourcg

—

X: = Next
Element of
Memoryqueue

J:=J-1
-
Compute New
Yes| predicted Value
for LSEM
for Task I
No

Deviation: =

(Predicted-

Actual Values)

y
(Next)

———

Save Old Values
Deviation . fo
Predictor
Threshold jr_>—’ T
and Task I
Yes v
Appl
Attempt to Pply
acent
1a.]t1(\1\—rg Reduce A, B Second-Order
am% 1gn by DA, DB Exponential
- Estimator
lYes T
Attempt to 633::1; Resource)
Increase A, B o
by DA, DB

(Predictor)

Figure 1,

(concluded)

Flow Chart of Microscheduler.

1

attempt is made to make the microscheduler homeostatic in the sense
that the corrector subcomponent is capable of making the operations
more or less responsive to changes in the environment in response to

various stimuli.

Summary of Operation of Microscheduler

The microscheduler described here functions as the controller
and comparator in an information feedback control loop. The scheduler
operates on vectors of task attributes, attempting to optimally satisfy
task resource requirements under the conditions imposed by a vector
of available resources, It does this through the evaluation of the pro-
jected LSEM, assuming various combinations of task-resource alloca-
tions, and selects the tasks which will optimize the projected LSEM,
whenever a decision must be made. The projection process involves
using a second-order exponential estimation process, corrected by re-
cent rates of change and recent trends. Certain parameters of the
LSEM and of the exponential smoothing function are varied within limits
to adjust to changing environmental conditions, It is experimentally
verified in this research that such a microscheduler, in actual opera-
tion, improves the performance of a computer system in an environ-
ment obeying the general requirements discussed earlier, and such as
that actually measured in actual operation through the use of software

monitors, as described in the next chapter.

72

Comparison with Other Research

The design of the adaptive microscheduler of this research was
motivated by the work of many other researchers. The primary refer-
ences were discussed in the last chapter. This included the careful de-
sign and analyses of Denning, Ryder, Wulf, Bernstein, Wilkes, Sher-
man, et al,, and the pragmatic design of various internal schedulers in
use in actual operating systems, This study continues the task of the
previous researchers in the search for better modes of internal schedul-
ing. Because of its central-control position in an operating system,
relatively small changes in the microscheduler may cause relatively
large improvements in the performance of the operating system as a
whole. Thus many researchers and manufacturers have expended much
energy and time in the improvement of microschedulers.

In Chapter II of this report, the efforts of many researchers
were discussed. Each of them reported studies of resource utilization
in digital computers, In most cases, specific resource scheduling
methods were considered, such as the following:

-complete-history (Stevens, 68, Sherman, 72)

-round-robin (Baskett, 70, Schwetman, 70, Sherman, 72)

-foreground-background (Rehmann, 68)

-reward-penalty (Marshall, 69, Eisenstein, 70)

-moving-average (Denning, 70)

-random-guess (Sherman, 72)

-FIFO (Sherman, 72)

-pre-emptive (Sherman, 72)

-policy-driven (Bernstein, 71)

-load-adjustment (Wilkes, 71)
-exponential-smoothing (Wulf, 69, Ryder, 70, Sherman, 72)

73

-stochastic-estimation (Eisenstein, 70)
-heuristic (Ryder, 70).

In a few cases, the researcher attempted to develop methods which
would predict near-future resource utilization and, accordingly,
schedule the tasks' resource allocation (Denning, 70, Eisenstein, 70,
Sherman, 72, Wilkes, 71). All of those predictors were fixed-
formula, nonadaptive, fixed-parameter methods, normally attempting
to optimize the use of only one resource.

In contrast, the microscheduler of this research is adaptive in
terms of changing its parameters in response to the error committed
in the last prediction. Furthermore, this method is second-order in
its exponential estimator, a technique chosen to make more accurate
predictions and to be less susceptible to noise. Since the time of pre-
dictions will, in general, not be evenly-spaced, a linear correction is
applied to attempt to predict more accurately. To this researcher's
knowledge, this correction for uneven time steps is not considered in
the literature but proves quite effective in this research. The im-
proved prediction formulae contribute to the success of the adaptive
microscheduler. Moreover, the three most critical resources, CPU,
I/O, and core of the system and environment at hand are treated,
rather than only one,

The literature lacks any general methodology for effecting

microscheduler improvement for a variety of systems effectiveness

74

measures, This research provides a general method of using resource
utilization predictions to attempt optimization with respect to various
measures of systems effectiveness, even though a different formula

using the predictions may be required for different measures,

75

CHAPTER IV

DESCRIPTION OF SIMULATION MODEL

Validation Techniques

Predicting and measuring operating system performance in-
volves abstracting interesting features, obtaining values for system
parameters, and analyzing their effects on numerical measures of
performance. Models must be validated by comparison with mea -
sured performance, and measurements need models to give them
meaning and generality (Johnson, 70). This has resulted in a spectrum
of approaches, from purely mathematical models of interactive sys-
tems to practical measuring devices. At intermediate points are analy-
ses of actual computer operating systems and synthetic task loads suit-
able for controlled experimentation (Baskett, 70, Sherman, 71,
Sherman, 72).

Experimental validation to an absolute certainty is impossible.
However, logical validation of a model or technique in an environment
is possible to a desired degree of certainty. In the case of the current
research, this means careful measurement and specification of the en-
vironment, followed by simulation of a controlled test case.

First, measurement must be considered carefully as a concept

76

in itself., Careful measurement of an environment is important, not
only for the simulation which follows here, but for any real implementa-
tions of the proposed technique,

Second, the simulation must be formulated properly, If it is
not, the validation and verification processes based upon it are question-
able. If it is, its configuration may be used as an aid in actual imple-
mentation.

The sections following discuss the processes used to calibrate
and validate the simulation model itself and to verify that the actions of
the new microscheduler are as expected, in the simulated environment

and workload.

Environmental and Workload Measurement and Modeling

Ferrari considered the problem of the accurate characterization
and selection of an existing system's workload for the purpose of mea-
surement, evaluation, and subsequent optimization of performance
(Ferrari, 72). He noted that there are three following basic types of
techniques for obtaining the characteristics of a workload: natural--
using the real workload directly; artificial--constructing a workload
supposedly statistically equivalent to the real workload; and hybrid--
assembling a workload from parts of the real workload.

Measurements to obtain natural workloads must be long enough

and representative enough that the workload is accurately portrayed.

77

Scherr collected data on CTSS for his dissertation during the prime
shift, for about one month, on 47 different occasions, for a total of
112 hours (Scherr, 67). Bryan reported statistics taken from JOSS
during 20,000 hours of operation (Bryan, 67). In the current research,
several years of log data were available for general statistical charac-
terization of the workload, though specific stereotypical task type analy-
sis required less time than was required by Scherr. Another proponent
of natural workload usage is Cheng, who proposed trace-driven model-
ing (Cheng, 69). In this case, software or hardware probes are used
to trace the time and sequence of epochal events in the processing of
various task types as found in a workload. The traces may then be used
in simulation models directly or after further processing (T etzlaff, 72),
Most of the system evaluation techniques developed and used are
based on artificial workloads, Almost no efforts have been made to ac-
tually construct artificial workloads statistically equivalent to some
real workload. Joslin has worked in this area with the goal of basing
computer selection on benchmark results; however, the number of vari-
ables present in an actual selection process renders such a process
questionable (Joslin, 66). Several manufacturers of programmable
front-end data communications processors provide a special program
which runs in the data communications processor and simulates user
activity. These form true artificial workloads which are useful for de-

bugging hardware and software components of the system, but are not

78

particularly useful for system performance optimization except in spe-
cific cases. Similar in concept to that is the use of scripts of time-
sharing user-simulated input for driving time-sharing system simula-
tors (Saltzer, 70).

Hybrid workloads were first introduced by Joslin under the name
of application benchmarks (Joslin, 65). He suggested a task characteri-
zation into a number of specific slots. Then tasks falling into the same
set of slots are related, and similarity class partitions of the workload
may be performed. When constructing a hybrid workload, representa-
tives of each of these classes can be used to characterize the real work-
load, Karush suggested a method similar to this except that the classes
are not assumed known beforehand; the system's input and responses to
it are recorded and played back during simulation studies (Karush, 69A,
Karush, 69B, Karush, 70A, Karush, 70B). This method is not conceptu-
ally different from trace-driven modeling, but it does incorporate sys-
tem input as an entity, and this is advantageous for time-shared systems
(Lassettre, 72). It is quite closely related to the concept of a stereo-
type simulation model, as used in this research, and in the research
by D'Angelo and Windeknecht (D'Angelo, 72). In the latter study, a simu-
lation model was defined based upon the conjecture that a society of in-
teracting stereotypes may retain properties of behaviors of real systems
or components of systems. This approach is suggested rather than the

more commonly used approach of specifying the mean and variance of

T3

the parameters of the system, as it should be more accurate,.

In order to validate the simulation and in order to allow the in-
vestigation of a variety of microscheduling techniques and system mea-
sures, careful measurement and statistical analysis of an environment
is required. The environment chosen for this work was the Burroughs
B5700, now a part of the laboratory of the School of Information and
Computer Science at the Georgia Institute of Technology. This choice
was made for several reasons, including the familiarity of this re-
searcher with the hardware and software of that machine and the avail-
ability of it to him for testing.

Actual measurement work began with the construction of an in-
terpreter and other programs specifically designed to allow the manipu-
lation and summarization of data taken from the log accounting tapes,
Information on these tapes described the workload of the B5700 starting
in January, 1967, on a job step basis. Eachjob step entry contains
the following information:

-job step name

-job step type (compile, execute, etc.)

-accounting information

-stop date

-start time

-stop time

-CPU time used

-I/0 time used

-job step finish type (normal or error finish, syntax errors)

-main storage used

-mass storage used
-tape usage

80

Approximately 40, 000 to 50,000 job step entries were recorded for
each school quarter of operation. Twenty-two quarters of work were
available for analysis, so about one million job step entries were re-
corded on tape and were candidates for use in this study. Such attri-
butes as totals, averages, extremes, deviations, etc., were thus
available on a job step basis to describe the environmental workload as
a whole in terms of information derivable from the above data.

Other analyses of the data determined the relative percentages
in the workload of each class of job step type and job step finish daily
for each year of investigation. As could be expected, the structure of
the daily workloads changed due to large numbers of factors, However,
there are noticeable weekly, quarterly, and yearly cyclic factors due
to the nature of the university environment of the computer system.
Other major noncyclic changes were due to computer center policy
changes, such as the change as of July, 1971, of offering preference to
small jobs (those that require no more than two minutes each of CPU
time and I/O channel time). These daily variations were too unreliable
to use in the simulation to represent the overall workload, as expected,
so yearly average data were used instead.

The preceding paragraphs have discussed how the workload was
characterized as a whole, in terms of job step classes and the relative
weights which should be applied to each case. As useful and necessary

as this is, alone it is not sufficient. Descriptions of other quantities,

81

such as task characteristics, must also be derived and cannot be deter-
mined from job step summary information only. Thus a software
monitoring system was developed specifically for this research by this
author (Pass, 71). In its major form, it allows a B5700 user to dynamic-
ally monitor and analyze another job step under various conditions. It
was used in the current research to assist in the derivation of most of
the job step profile distributions required by the simulator from which
the latter constructed the task descriptions. It has also been used on

a practical basis by personnel at Oakland Army Base to analyze the per-
formance of their B5700's through the characterization of problems in
and improvements to their longest running and largest production pro-
grams, As of this writing, their work continues; however, in perfor-
mance gains due to other similar systems such as LEAP and PROGLOOK
for the IBM S/360/370 under OS/360, 10 to 20 per cent improvements
are conservative estimates of improvement likely.

The portion of the software monitor which dynamically monitors
other tasks is called SNOOPY. It is partially contained in the operating
system itself. The driver provides the basic timing of the measure-
ments, the identification of the job step being measured, the main stor-
age address of an 1/O buffer area in which the operating system can
store results, and the logic to perform the I/O operations when required.
The additional operating system module actually performs the analysis

of the job step and returns the following items of interest into the buffer

82

area of the driver;

-name of identified job step (-1 if none)

-compiler flag, on if job step is compilation
-processor B flag, on if job step is running on processor B
-current segment number

-current address in segment

-time of day

-CPU time used

-1/0O time used

-MCP overlayable main storage used

-MCP non-overlayable main storage used

-job step code main storage used

-job step data overlayable main storage used

-job step data non-overlayable main storage used
-other job steps' overlayable main storage used
-other job steps' non-overlayable main storage used
-time since last system failure,

The job step portion of the program treats this information
placed into its buffer as blocked logical records and writes physical
tape records when the buffer is full. Since the job step uses double-
buffering and a proper choice of blocking ratio, tape I/O never inter-
feres with the recording of data concerning the other job step. In
actual operation, one tape I/O was done every 15 to 20 seconds.
SNOOPY is always run at a higher priority than the job step being
monitored. By the manner in which the normal B5700 CPU scheduling
algorithm assigns the CPU to tasks, whenever SNOOPY is requesting
a reading, it will be performed immediately before the other job step
is reinitiated after an interrupt (Burroughs, 72).

By this process, much information may be gathered dynamically

concerning a given job step, under various conditions. The interfer-

83

ence due to SNOOPY is so small it may be safely ignored. This was
verified in several controlled experiments in which SNOOPY was in-
structed to continually monitor some large, long-running job steps,
and no other job steps were allowed on the system. Job step times for
the run-alone situation were in all cases practically identical with those
for the SNOOPY situation., Core requirements for SNOOPY were con-
stant at about 1300 words, once program code and I/O buffers had been
brought into core initially. So little interference was noted in terms of
CPU, 1/0, and main storage that the results in the form of job traces
should be accurate, with accuracy approaching that of hardware moni-
toring. Hardware monitoring was not possible in this case not only be-
cause of its expense and unavailability but also because the dynamic na-
ture of main storage allocation on the B5700 would severely limit the
types of data which could be gathered. In particular, segment and ad-
dress information would probably have been impossible to gather with
a hardware monitor, as would have been total main storage usage.
Once the trace has been produced for a given job step or set of
job steps, the further processing required to actually use this informa-
tion in meaningful forms becomes the next problem. Cheng suggests
using the information almost in its raw form to facilitate trace-driven
modeling (Cheng, 69). This approach is intended to solve the inherent
dichotomous dilemma of simulation models of many assumptions on one

hand or extreme detail on the other. In trace-driven modeling, the

84

workload and the responses of the system to the workload are supplied
as input to the model. Trace-driven simulation eliminates or simpli-
fies the tasks of specifying some system parameters and coding the de-
tails of system operation. He suggests the construction of a job pro-
file library, containing the traces of many job steps of many different
types. Then, the simulator can be instructed to select certain classes
of profiles from the library for the simulation of an operating system
running under that workload. This approach is enticing, for the model-
er's work is reduced significantly, and the chances of having accurate
simulation results are greatly enhanced, Unfortunately, Cheng's
method has several operational flaws. One, of course, is that a trace-
described workload is valid only on a given computer system configu-
ration running under a given operating system, and thus the use of
trace-driven simulation as a predictive, not descriptive, model is
limited., To this researcher, there is a more serious flaw, however,
in the loss of knowledge and insight into the actual internal operations
of some of the algorithms represented by the simulated operating sys-
tem. Rather than requiring the modeler to explicitly define many of
the algorithms, the data itself is used to implicitly define their opera-
tions. Denning also notes that too often, an algorithm is considered a
black box with input and output having mystical relationships, defined
quantitatively, when a modeler really should first open the box and

study its internal workings, even roughly, before settling for non-

85

qualitative methods (Denning, 71). Thus, unfortunately, Cheng's
method was put aside but not forgotten,

Nielsen has also investigated the problem of accurate descrip-
tion of workload for the purpose of simulation modeling (Nielsen, 67A,
Nielsen, 67B, Nielsen, 71). In an early simulator, he proposed the
use of parametric instruction sequences to describe the workload.
Each parametric instruction sequence was intended to capture the es-
sence of the structure of a class of tasks and users. A special descrip-
tion language, designed as a set of instructions, was developed for the
purpose of the expression of the description of the sequences of states
and activities of the class of tasks and users. Eight instruction types
were used to specify the desired behavior of a task during its simu-
lated execution. These specified the following classes of task-oriented
behavioral activities:

-inter-activity delay times

-page accessing

-terminal I/O interactions

-other 1/O interactions

-accessing series of pages,

Six additional instruction types appeared in the descriptions of the
classes of users. These controlled the formation and selection of the
instructions comprising the pseudo-task description. This class of in-
structions was able to perform the following types of simulated activi-
ties:

-1/0 device allocation and deallocation from pool of units

86

-specification of shared task pages
-construction of task descriptions according to given structures,

By the manipulation of a few parameters to the model describing the
classes of users to be considered, the workload may be readily changed
to reflect different proportions of types of use. This method looked
quite good to this researcher, and Nielsen's simulator was actually run
(with data supplied by Nielsen). However, the amount of work required
to produce an accurate set of descriptions of a different environment
was prohibitive and the simulator organization seemed inappropriate
for general time-sharing system studies of non-fixed-page computer
systems, such as the B5700. Hence, another possible solution method
was put aside.

Nielsen, having apparently realized the same problems were
hampering the use of his earlier simulator, redesigned and rewrote the
original simulator under contract with Burroughs to study the proposed
design of a time-sharing system for the B6700 computer system (Niel-
sen, 69, Nielsen, 70, Nielsen, 71). In this simulator he used a much
more simple approach to task description. Distributions are collected
reflecting the following:

-attributes of tasks

-execution time between I/O operations

-execution time between terminal I/O operations

-size of I/O operations

-think time of users at terminals

-total task execution time

-main storage size requirements

-nature of overlay requirements
-size of overlay segments.

87

Each job step is then characterized by a series of task descrip-
tions, which are specified as successive attribute distributions of the
foregoing classes. There can be as many distributions as desired.

By numbering each distribution, they can be easily referred to for task
description purposes and they can be shared for similar descriptions.
When a task belonging to a particular job class type is to be originated,
its specific nature is constructed by referring to the various distribu-
tions and parameters of the system and job step class. Thus even
tasks from the same class will not be identical. This process pro-
duces roughly the same type of task description as does Nielsen's ear-
lier simulator. This approach looked promising for the current re-
search. A very early and basic copy of his SIMULA model was run on
the B5700 with data describing B6700 conditions and appeared satisfac-
tory as a very basic starting point, though a very substantial amount of
work was required to convert it to a form acceptable to this research.
In fact, the final simulator does not work like Nielsen's simulator, and
the source listing only vaguely resembles it. Hence, this researcher
feels that it is truly a new simulator.

Another program was then written to accept the trace output of
SNOOPY and to convert it to a form from which the necessary distribu-
tions could be derived for each job step class. (The program was
named LUCY, since LUCY often is the psychiatrist (analyst) of SNOOPY

and the other characters of the PEANUTS comic strip.) LUCY is cap-

88

able of producing analyses of the SNOOPY traces in terms of job step
profiles by any of the classes of data present in the trace records. By
running SNOOPY on a sufficient number of representative job steps of
interest and analyzing the results with LUCY, performance information
was gathered. File I/O information not produceable by SNOOPY and
LLUCY was derived from observing the source listings and correlating
them with LUCY output. Other distributions were derived by diverse
means, such as the use of the STATISTICS options of the B5700 MCP
and TSSMCP and the analysis of mass storage and tape usage entries
present in the accounting log with respect to number of records and
open time (Burroughs, 71). By these means the necessary distribu-
tions were gathered together for use in the simulator.

Much of the other environmental and task data for the simulator
could be entered parametrically; however, description of the specific,
necessary details of hardware and software structures on the B5700 re-
quired significant changes in the original simulator itself. For in-
stance, modeled B6700 I/O multiplexor structure allows for several
multiplexors with I/O peripheral controllers attached to as many multi-
plexors as desired and as many I/O devices as desired attached to an
I1/0O peripheral controller. This modeled structure is not convenient
for the modeling of the B5700, which has up to four I/O multiplexors,
any of which can service any I/O device on a floating basis. Thus I/O

structure in the simulator was changed to reflect that of the B5700,

89

CPU scheduling in the simulator was also changed to reflect that of the
B5700 TSSMCP described earlier in this research (Burroughs, 72).
Several other changes were made to transform the B6700 Time Sharing
System simulator into a B5700 Time Sharing System simulator. Unfor-
tunately, after these changes and many other major revisions were
made, the speed of the simulator was distressingly slow and responded
little to any attempts to speed it up., Whereas Nielsen reported times
of five to ten minutes to simulate one minute of time, now sixty to
ninety minutes were required (Nielsen, 71). Thus an entire rewrite
was initiated, employing several major sets of revisions to the algo-
rithms to speed them up and gather more information than was origin-
ally recorded and reported, and using U1108 SIMULA rather than
B5700 SIMULA., When this effort was completed, the times (on the
U1108) were quite significantly better, Whereas the B5700 simulator
required twenty minutes to compile and sixty to simulate one minute of
time, the Ull08-based simulator required one minute to compile and
collect (link-edit) and two-to-three minutes to simulate one minute of
time. The simulator itself consisted of about 3350 source card images
and occupied about 57, 000 words of Ul108 main storage out of 65, 384
words possible maximum size, Data occupied over 375 card images,
and each separate run required from one to fifty card image changes,
This improvement was immediately followed by the effort to

verify that the new simulator did really model the B5700. This verifi-

90

cation was made using the job step profiles already gathered and such
parameters that the simulation was organized as similarly as possible
to the organization of the actual B5700 computer system when statistics
and job step traces were gathered. The method by which the detailed
simulated traces are reconstructed is discussed later in this chapter,
Those attributes of the system which were measured by observation of
the actual system and were displayed on the output of the simulator
matched quite closely. The most important correlations appear in the

list below.

Parameter System Simulation
-CPU utilization 12% 15%
-I1/0 utilization 449, 499,
-1/01 T6% 80%
-I1/02 22% 18%
-1/03 1.5% 2%
-1/0 4 0.5% 0%
-(disk 1/0)/{all 1/0) 78% 82%
-CPU /elapsed time 9% 11%
-system utilization 75% 80%
-average swapping rate 0.30/second 0.36/second
-main storage utilization 30% 35%

Other parameters displayed by the simulator but not easily measurable
on the actual system were checked for reasonability, By these means,
the operations of the simulator simulating the B5700 system were ex-

perimentally verified.

B5700 TSSMCP Characteristics

The B5700 Time Sharing System as modeled and analyzed in this

9l

research is based on the B5700 hardware and Time Sharing System
Master Control Program (TSSMCP), plus associated support programs.
The B5700 hardware is quite different from most other hardware sys-
tems in several manners. Its main storage is limited to 32,768 words,
each of which has 48 bits, divided into eight 6-bit characters, However,
facilities in the hardware and software implement a variable-size-page-
on-demand strategy, increasing the virtual main storage size to almost
one million words per program. The I/O paths are composed of up to
four multiplexors, any of which may be attached to any of the up to 32
different I/O devices on a fully floating basis. A memory exchange al-
lows up to six simultaneous accesses to main storage, though only one
simultaneous access per 4,096 word memory module is allowed. One
or two central processing units (CPU's) are allowed, though one CPU
only is assumed in this research. Preliminary investigations, including
extra measurement and simulations, showed that the system could not
effectively use a second CPU when running under the TSSMCP,

Main storage is partitioned into two primary areas, normally
assumed equal in size. The lower area contains the resident and tran-
sient portions of the TSSMCP, the command-and-edit interface with re-
mote users (CANDE), and peripheral handlers, such as printer backup
and load control routines which spool printer/punch output and card in-
put from and to disk or tape. The upper area contains the user tasks

which may be swapped out of and into main storage to and from disk

92

storage. The division between these areas is termed the fence. The
operator may change it, with some difficulty, though the fence is nor-
mally never moved from 16,384 words. After running a certain amount
of time, a task is interrupted. If it has exhausted its CPU or core quan-
tum limit for the particular time slice, or it attempts to perform a ter-
minal interaction but cannot, or it cannot find enough space to bring in
a required segment, it is eligible to be swapped to disk. At some later
point in time, it may be swapped back from disk to main storage, per-
haps with more main storage assigned to it. Main storage above the
fence is allocated in 1, 024 word sets, called chunks. The main storage
space for a task is composed of a set of one or more contiguous chunks.,
When swapping is performed, information existing before the swap out
is swapped back into the same addresses, though expansion in the num-
ber of chunks may occur in either increasing or decreasing memory ad-
dresses, unless the task is already occupying all of main storage above
the fence,

The formulae for computing the CPU and core quantum limits
for each time slice are the following:

T
E

(((N times 4) plus C minus P) times 8) plus 208
T times J

where T, E, N, C, P, and J are as follows:

= CPU quantum limit in sixtieths of seconds

= core quantum limit in sixtieths of seconds

= number of consecutive times the task has been swapped
for using up a quantum limit (£7)

ZmEHA

93

= number of core chunks used by task
= priority of the task (0 = high, 9 = low)
= number of tasks currently swapped in,

“S g0

As a consequence of the nature of the hardware and software of
the B5700 operating under the TSSMCP, several items arise which may
not be apparent from the preceding discussion. One major result is
that normally only two or three tasks are present in main storage above
the fence, thus limiting multiprogramming and making second processor
usage ineffective in general. Another result is that the single I/O path to
the disk causes the disk to be a limiting resource in many cases, com-
parable to the slowness of the CPU's and core and the small size of the
main storage, Because of this, optimizing the I/O channel usage semi-

optimizes the disk usage by the system.

The Simulator

General

Corresponding to that of the microscheduler which is the object
of this research, the simulation's level of detail and point of view are
represented by the following quantities:

-task state vector

-main storage segment and time-sharing chunk length

-1/O transaction

-CPU interrupt processing interval

-mass storage segment length.

The following quantities are at a higher level than the microscheduler

and are represented in the simulation parametrically or algorithmically:

94

-operating system architecture (except microscheduler)

-macroscheduler

-workload characteristics (job step profiles)

-main storage requirements

-management policies and goals

-system profit/cost functions (GSEM)

-hardware configuration.
The following quantities are represented in the simulation parametrically
or implicitly since they are on a lower level than that of the micro-

scheduler:

-dynamic and static address relocation delays
-exact structure of tasks and job steps,

The following quantities are explicitly ignored in the simulation as hav-
ing an implicit effect on the microscheduler in this case:

-multitasking interference in hardware
-exact set of CPU and I/0O instructions available.

Main storage segment size is assumed variable and is computed from
one of the task profile distributions when required. The time-sharing
chunk size is set at 1024 words to correspond to that used by the B5700
TSSMCP main storage allocation algorithm. The basic CPU interrupt
processing interval is assumed to be one millisecond, although that
value is never used as such in the simulator; the millisecond is used
only as a unit to simplify input and output of parameters.

The CPU, 1/0, and main storage facilities were the ones moni-
tored most carefully in this research for inclusion in the LSEM. In
other cases, other facilities may be required to be carefully monitored

for similar use.

95

Reconstruction of Task Characteristics

The simulator uses the information concerning each task stereo-
type to perform the macroscheduling and microscheduling of the work-
load in such a manner that certain statistical properties of a simulated
environment may be carried over into the simulation. The workload
was analyzed from log accounting data and decomposed into the follow-
ing set of major classes:

~-compilers and interpreters
-peripheral handlers
-student executions

-file maintenance

-system programming
-production.

Those major classes were then further subdivided into subclasses,
producing a number of task stereotypes. Each of these was analyzed
by the means described earlier to produce the following information for
each task stereotype:

-distribution of time between file I/O's

-distribution of time between originator 1/O's

-distribution of file sizes in records

-distribution of delay times for originator input operations

-distribution of task execution times

-distribution of task sizes in chunks

-distribution of segment sizes in words

-distribution of time between segment requests as function of
ratio of task's current main storage size to current
allocated size

-number of times to repeat operation queue before regeneration
-number of entries to place on operation queue on each
regeneration

-for each I/O device pool, the number of I/O devices required
and the percentage of task's file I/O requests which will
refer to those devices

96

-priority associated with task stereotype.

The term ''originator,' as used in this research report, refers
to a logical or physical device which presents tasks to the system to be
executed and accepts documentary information pertaining to the tasks
which have been executed. A send-receive remote terminal would sat-
isfy the definition of originator.

The relative number of occurrences of the tasks from each sub-
class in the workload was entered to the simulator in the form of dis-
tributions for each case considered. Detailed distributions may be
found later in this research, When a task is to be selected, this distribu-
tion is consulted to determine which of the task stereotypes is to be in-
cluded in the simulated mix., Then the information described above is
used to generate an initial operation queue for that task stereotype. By
the method of generation, the operation queues of tasks from the same
stereotype will be similar, but not identical, This operation queue is
a reconstructed representation of the traces of the operations of tasks
belonging to that stereotype, describing in detail the file I/O operations,
originator I/O operations, computation periods, delay times, overlay
operations, and main storage expansions to be performed by that task
in the next few seconds of simulated time. The use of the queue is con-
trolled by parameters of the task stereotype described above. This
forms a variant of the trace-driven modeling as used by many other in-

vestigators in operating systems investigations (Cheng, 69, Noe, 70,

97

Noe, 71, Noe, 72, Sherman, 71). The correctness of this technique
was proven in the phase of the investigation involved with the validation
of the simulation model,

The following is intended to explain the means by which the
traces represented by given task stereotype classes are regenerated,
by means of an example., Once a task stereotype has been selected
through external scheduling, the relevant parameters and distributions
are consulted to generate an operation queue. Distributions are stated
in terms of constant, increment, and weighting histogram. Assume
the following sample data pertaining to the task selected:

-40 items to place on operation queue
-30 times to repeat operation queue before it is regenerated
-priority of task is 2
-half the explicit I/O operations of the task reference the card
reader and the other half reference the printer
-card reader speed is 1400 cpm
-printer speed is 1100 1lpm
-1/O speed is 1 word per 8.33 microseconds (maximum)
-distribution of time between file I/O's (in milliseconds):
constant = 10; increment = 5;
histogram = .2, .3, .6, .8, 1.0
~distribution of time between originator I/O's:
constant = 125; increment = 75;
histogram = .15, .30, .60, .80, .90, .95, 1.0
~-distribution of file sizes (in records):
constant = 0; increment = 150;
histogram = .5, 1.0
-distribution of delay times for originator input operations:
constant = 1000; increment = 500;
histopram = «ly «2; « 35, «65; «80; 99, 1.0
-distribution of task execution times:
constant = 3500; increment = 1000;
histogram = .2, .5, .8, 1.0

98

-distribution of task sizes (in chunks):

constant = 5; increment = 1;

histogyars = 15, 35, -85 +»88, 1,0
-distribution of segment sizes (in words):

constant = 50; increment = 50;

histegrara = ;2; «b; «15; +85; 390, «95; 150
-distribution of time between segment requests as function of
ratio of task's current main storage size to current allocated
size:

constant = 70; increment = 30;

histogram = .05, .30, .70, 1.0.

Using the first five distributions directly and the last three indirectly,
the operation queue is constructed and might appear as follows:

-compute for 15 milliseconds

-read from card reader

-compute for 75 milliseconds

-read from terminal, delay 2.5 seconds

-compute for 30 milliseconds

-write on terminal

-compute for 45 milliseconds
-write on printer

-(repeat 30 times up to 40th item)
-(regenerate queue).

As noted previously, this closely resembles actual trace-driven output
from other researchers' work (Noe, 71, Sherman, 71, Sherman, 72).
During experimentation, in order to determine how sensitive the
results of the simulation were to small changes in the workload, the
starting random number in the process used to select new tasks was ef-
fectively changed, giving a statistically equivalent but different work-
load, The results proved quite stable, varying only slightly when this

was done, as is demonstrated in tabular form. When a different, batch-

79

oriented distribution was used, the results varied somewhat more, as

demonstrated in the section describing the results of the experiments,

Verification of Microscheduler

In order to verify that the new microscheduler does have the po-
tential of improving the performance with respect to at least one mea-
sure, of a computer operating system that employs it versus one that
does not, the simulator described in the previous sections was struc-
tured to run a number of experiments using the task and system profiles
and parameters derived as described earlier., With this microscheduler
embodied in the simulator, comparisons were made between it and other
prototypical microschedulers under several system effectiveness mea-
sures actually used in reality., The purpose of this section is to de-
scribe the experiments which empirically verified the effectiveness of
the microscheduler.

One of the important items considered during final experimenta-
tion was the operating system overhead due to each microscheduling
philosophy. Kernels were constructed for each scheduler in SIMULA
in order to rank and quantify them. Generally, they were ranked as
follows, with respect to increasing overhead, for each current task in
the system:

-round-robin

-FIFO

-B5700
-instantaneous exponential

100

-complete history
~adaptive microscheduler,

SIMULA was chosen for the kernels since it resembles the B5700
ALGOL dialect ESPOL in which the B5700 TSSMCP was written. For
other cases, similar kernels could be written and analyzed in assembly
language of particular computer systems.

A large number of experiments were performed with the simu-
lator as equipped with the various microscheduling philosophies and
system effectiveness measures to explore the characteristics of the
adaptivity of the new microscheduler under given workloads.

As noted earlier, some of these were involved with variation of
initial values and bounds for A, B, and the time of application, and for
initial historical information values, along with the determination of
the exact nature of the predictor-corrector portion of the method, such
as the method of changing A, B, and time of application, and of the opti-
mal setting of the corrector threshold. It was determined that bounds
on A should include the range (.35, .45) and B should include the range
(.25, .35) for best operation in the measured workload. For a batch-
oriented workload, the bounds on A should include (.40, .50) and on B
should include (.30, .40). In either case, a threshold of 0.1 and DA
of 0.1 and DB of 0.05 were found optimal for either workload in this en-
vironment, The fixing of A or B at a given value, or in a given range

outside of those mentioned above, thus removing some of the adaptivity

101

from the method, caused the MAD to increase significantly for a run
and the measure values to decrease correspondingly.

The threshold and DA, DB values were tuned by independent
variation and experimentation. Making DA and DB functions of the er-
ror committed in the last time interval of application seemed intuitively
promising, but showed no significant improvement over constant DA
and DB, even under several different thresholds. In particular, the
tables below demonstrate some of the results of a number of experi-
ments investigating variable DA dependent upon the error committed.
In both cases, the system measure used was THROUGHPUT. Also, in

both cases, the threshold was set to 0,1, and the changes made were

linear.
B5700 Workload Batch-Oriented Workload
DA THROUGHPUT DA THROUGHPUT
. 090 . 255 . 090 JOZ2Z2
. 095 « 257 . 095 .0223
. 100 . 259 . 098 L0223
. 105 . 240 . 100 0223
110 . 223 . 105 L0221
.110 L0218

In comparison with fixed DA = 0.1, variable DA, all else constant, pro-
vided a THROUGHPUT measure at best slightly worse than that provided
by a fixed DA, The best values provided by variable DA are marked in
the table above with asterisks.

An important result for this environment was that it is not profit-

able to perform a predictor-corrector except at those points at which

102

it is known that the characteristics of the task mix are changing, such
as on a storage swap in or out or main storage expansion. Separate
experiments were performed to check this in which the time interval
was varied from one millisecond to ten minutes; no significant differ-
ence was noted. This is fortunate, for it leads to lower overhead; such
may not be the case in other environments.

The original version of the predictor-corrector portion of the
adaptive microscheduler contained the assumption that the time between
applications would be so nearly constant that interpolation would be un-
necessary. When it was determined that such would not be the case, a
linear interpolation algorithm was inserted into the predictor-corrector
algorithm to make the predictions more accurate. Though it increased
the overhead slightly, it improved the accuracy of prediction about 10
per cent for the current environment, and thus was well worth the small
increase in overhead,

Other adaptive microscheduling philosophies were compared
with the adaptive one of this research on an experimental basis. One
of them was based upon Denning's nonadaptive moving-window approach
to working set determination (Denning, 68, Denning, 71B). It was
made adaptive by varying the size of the moving window depending upon
the size of the error between predicted and actual task/resource us-
ages. Another was based upon the nonadaptive stochastic estimator of

Eisenstein which includes a penalty function which is intended to control

103

the prediction process in the presence of data with trends (Denning,

71B, Eisenstein, 70). It was made adaptive by varying the coefficient
of the penalty function depending upon the size of the error produced be-
tween predicted and actual usages, After tuning experiments were per-
formed, each performed about as well as the nonadaptive exponential
estimator with ALPHA = 0,5, but far short of the performance of the
adaptive method of this research,

One of the important aspects of the final experimentation was
the question of adequate simulated run time versus cost of simulation
runs. Since the run time of the nonadaptive simulation cases was about
two-to-three minutes to simulate one minute of time and that of the adap-
tive cases was somewhat worse, the run time required for statistically
significant results was a critical question because of possible budgetary
limitations. Through consultation with a statistician and study of sto-
chastic processes, ten-minute simulation runs were set up in which the
measure function values were monitored every two seconds, with the
first half minute of simulated run time discarded. After three minutes
of monitored simulation time, the cumulative means of the measure
function values varied insignificantly up to ten minutes of simulated
time. Hence, three minutes of measured simulated time was used as
a standard for subsequent final runs. The statistical basis for being
able to perform one longer experiment (per system effectiveness mea-

sure-microscheduler combination), rather than many shorter ones, is

104

ergodicity.

The small problem of ensuring accuracy of the intermediate
measurements is overcome by allowing the accumulation of partial com-
pletions of tasks, For resource utilizations, this presents no difficul-
ties, since they may naturally be stated in percentages., For the
throughput measure, the simulation has already selected a CPU time
requirement for each task, and that is used as a basis for determining
the completion factor of each task, in terms of

({(CPU usage for task i) divided by (CPU limit for task i)).

Final experimentation consisted of simulation of each of the
microscheduling philosophies with respect to each of the system effec-
tiveness measures under two statistically different workloads, This
entailed a quite considerable number of executions of the simulator, in
terms of investigating and tuning runs. Each complete set of experi-
ments required one run per nonadaptive microscheduler, plus one run
for each system measure considered for the adaptive microscheduler.
Budgetary and other restrictions prohibited the consideration of large
numbers of other cases; however, the cases considered should be rep-
resentative of many other interesting cases, and the amount of current
experimentation is felt to be quite acceptable as far as accuracy of re-
sults is concerned.

The following tables present the results of these experiments.

The first set of experiments was performed using the workload as ac-

105

tually measured on the B5700 at Georgia Tech, while the second used
a batch-oriented workload. The first set of experiments was repeated
with different initial random numbers in order to test the sensitivity of
the results to the exact mix of task stereotypes; the percentage results
held constant in all cases to within 3 per cent; the adaptive micro-
scheduler was still superior in every case; and no major changes were
noted in terms of intra-nonadaptive microscheduler comparisons, The
batch-oriented task stereotype mix produced different results, notably
an improvement in round-robin performance, as expected for a more
CPU-bound system. By frequent monitoring, it was observed that the
cumulative means of the system measure values by the end of three
minutes of measured simulated time were very stable, as in the case
of the other workload.

As expected, and as shown from preliminary results, the adap~
tive microscheduler's actions caused the simulated operating system
containing it to receive somewhat better system objective measure
values than did those containing the nonadaptive microschedulers. The
results are scaled so that the values corresponding to the application of
the adaptive microscheduler are unity, for ease of comparison. The
actual values produced by the program are such that they are meaning-

ful only as ratios.

106

Explanation of Workload Analyses

The following tables present the primary results of this re-
search. The various microschedulers are represented by the columns
of the tables and the various global system effectiveness measures
(GSEM's) considered are represented by the rows. For each micro-
scheduler/GSEM combination, there are two numbers., The first is
(the value of the GSEM) divided by (the value of the GSEM for the AMS),
and the second is the value of the GSEM. In the comparison column,
the first column represents the improvement realized by the AMS over
the best competing microscheduler, and the second represents the im-
provement over the worst.

Explanation of Workload Distributions

The first column presents the relative weights of the given
classes of tasks, and the second column presents the cumulative
weights. Ordering of the tables is irrelevant. Data for the first table
was drawn from historical accounting data. Data for the second table
was artificially generated to represent a batch-production-oriented

workload.

107

Table 2. B5700 Workload Analysis

B5700 Round Inst Compl Comparisons
Name TSS Robin FIFO Exp Hist AMS Best Worst
Est MS MS
THROUGHPUT .79 .69 .69 4 T T3 1,00 21% 31%
.21 .18 il 20 .19 . 26
CPU .78 .76 .76 . 81 78 1.008 19% 249,
« 45 .24 .24 .26 idb .32
REVENUE .81 .78 . 80 .85 .81 1,00 15% 22%
. 21 .20 .20 .22 <21 ;26
RESOURCE . 86 .81 .81 .88 .85 1,00 12% 19%
.22 .21 .21 .23 .22 .26
I/0 .89 .77 . 88 90 .88 1,00 10% 23%
.079 .068 .079 .080 ,079 ,089
LATENCY .90 .94 .96 91 .87 1.00 4% 13%
.83 . 86 .88 .84 . 80 .92
UTILIZATION .64 .85 .82 . 64 <09 1.908 15% 36%
.52 . 69 .67 .52 56 .81
COST -8 .80 T .87 .81 .08 13% 23%

.29 .28 27 +30 29 35

108

Table 3, B5700 Workload Analysis
(Different Random Numbers)

B5700 Round Inst Compl Comparisons
Name TSS Robin FIFO Exp Hist AMS Best Worst
Est MS MS
THROUGHPUT .80 .70 .70 sl 13 1.00 20% 30%
s 21 .18 « 18 20 .19 . 26
CPU a 17 .76 .76 .80 .78 1,00 20% 24%
. 25 .24 .24 ol wlD i
REVENUE .80 o Y B0 <BE 8l 1.00 16% 21%
.20 .20 .20 S22 21 2D
RESOURCE . 87 . 81 .80 .87 .85 1,00 13% 20%
. 22 w2 « 20 #2322 .26
/0 .88 .78 BT 20 87 1.00 10% 22%
.078 ,069 .077 .081 ,078 . 089
LATENCY » 91 . 95 .95 .91 .87 1.00 5% 13%
.83 . 86 87 .84 .80 o
UTILIZATION .65 85 .83 .64 .68 1.00 15% 36%
. BZ &9 87 ~+BZ 56 .81
COST .80 . 80 .76 .87 .82 1.00 13% 24%

.29 .28 .27 I .29 .35

Table 4. Batch-Production-Oriented Workload Analysis

109

B5700 Round Inst Compl Comparisons

Name TSS Robin FIFO Exp Hist AMS Best Worst

Est MS MS

THROUGHPUT .65 .78 .65 .74 .80 1.00 20% 359%
.015 ,018 ,015 ,017 .018 .022

CPU .74 .89 Ty .82 .75 1.00 11% 26%
DR .20 17 .19 .17 .23

REVENUE o 15 . 86 . 15 .80 .76 1.00 14% 25%
vl B 17 «15 16 L 15 .20

RESOURCE .78 .89 82 .86 .79 1.00 11% 22%
17 .20 .18 L1917 .22

I/0 . 86 .92 .90 “9D « 88 1.00 8% 15%
.076 .080 .078 .074 .076 . 087

LATENCY .85 .91 .88 .85 .86 1.00 9% 15%
«Te T ¢ T8 .72 .73 &5

UTILIZATION .74 . 84 .67 .62 .65 1.00 16% 38%
.37 .42 .33 .31 .32 .50

COST .78 . 90 . 84 «90 ST 1.00 10% 23%
. 22 s 26 <25 3 T . 28

Table 5.

B5700 Workload Distribution
(Number of Tasks)

110

Small ALGOL/GTL +'15
Medium ALGOL /GTL .05
Large ALGOL/GTL .01
Small COBOL .03
Medium COBOL .02
L.arge COBOL .01
DYNAMO .01
Small FORTRAN LD
Medium FORTRAN .05
T.arge FORTRAN .01
Small Execute I/0O .10
Small Execute CPU .12
Large Execute 1/0 + 02
Large Execute CPU .01
Small File Maintenance .01
Large File Maintenance .02
Systems Programs D2
Tape/Disk-Printer .26

L.

= 5
20
21
. 24
.26
.27
.28
-38
.43
.44
. 54
. 66
. 68
69
.70
.72
T4

00

Table 6. Batch-Production-Oriented Workload Distribution

(Number of Tasks)

111

Large CPU Bound

Large I/O Bound

Large COBOL Compilations
Large FORTRAN Compilations
Large File Maintenance

Large ALGOL Compilations

« I8

«15

=45

515

v 20

.20

1.

« 15

.30

.45

.60

.80

00

112

CHAPTER V

CONCLUDING REMARKS

Summary

The objective of this research was the development and verifica-
tion of a new model of optimizing computer performance through the use
of adaptive internal resource allocation scheduling techniques, The
method of attack entailed the detailed design of such a technique, along
with its verification in a given environment through the use of simula-
tion., This technique is based upon the definition of a local system ef-
fectiveness function connecting the relevant variables of the system ac-
cording to a policy describing the system objective function, This local
measure is then used as a goal toward which the internal scheduler may
work, using a parametric moving-window estimator in the form of a
second-order exponential estimator, predictor-corrector trend correc-
tion, and variable-period correction application. The simulation was
validated with respect to data drawn from an actual system under a real
workload, and the new scheduling model was compared to several others
under various system objective functions.,

Although no general conclusions can be based on experimental

results, it is felt that the results have shown that, in the cases tested,

113

the microscheduler did perform as expected against a variety of repre-
sentative microscheduling philosophies and under a variety of system
effectiveness measures. The only conclusions which can be drawn are
concerning the validity of the model for those measures and in the spe-
cified environment, Further research and/or actual implementation
would be required to base final general conclusions concerning the ac-
tivities of this model, and these are the topics of the following sections.

Further Research

As with any detailed research in a field as rich and deep as this
one, this research has opened several new questions and research top-
ics. The question of the optimal tradeoffs between simplicity, sophisti-
cation and further optimization of microscheduling models is discussed
in the next section., The effect of priorities, additional CPU's and data
paths on the various measure values, especially that of system cost
nullification, is complicated but would be quite interesting under the
use of the microscheduler of this research. If a matrix of system cost
nullification values for (number of CPU's) versus (number of data paths)
versus (number of chunks of main storage) were investigated for reason-
ably small values of each, an optimum hardware configuration for those
resources could be determined in specific cases., This type of research
should be more practical, accurate, and general than that of a similar
nature done by Wald with analytic modeling (Wald, 67). Another possi-

ble area of research would be the investigation of modifications to the

114

approach of the microscheduling of facilities with such multiple re-
sources that the anomalies such as those mentioned by Graham could
not occur (Graham, 71). These are pathological situations with re-
spect to system performance in that adding more resources to be con-
trolled by a facility actually decreases system performance with re-
spect to throughput measures. Still another large area of research
would be the development of more automatic means by which the soft-
ware or hardware monitor trace output derived from a computer sys-
tem running an actual workload could be used to determine the job step
profiles for the type of simulator used here. One also wonders what
classes of simulators or other analytical tools would be superior to
that used in this research. In these respects a very significant amount
of tedious manual and programming work was required to perform the
tasks in this research of workload characterizations and job step pro-
file characterization and analysis. Is there not a better way?

Other possibly-fruitful areas of further research lie in the im-
provement in the predictive powers of the adaptive scheduler without
increasing its overhead or sophistication and in the increase in the gen-
erality of the environment in which the scheduler is assumed to operate.
These areas are highly interrelated since changes in the environment
will cause changes in the algorithms in the areas referenced previously,
such as variable time of application, optimum ranges for the para-

meters of the predictor-corrector process, configuration of the algo-

115

rithm itself, etc. The simulator in its current form is somewhat
firmly attached to the B5700 Time Sharing System philosophy, though
certain areas of interest could be investigated with some amount of
difficulty. This includes the use of adaptive CPU and main storage
quanta and other main storage allocation strategies, rather than that
used by the actual system, as is currently represented in the simula-
tor. Other core-swapping systems, such as that represented by
0S/360/MVT-TSO and U1108 EXEC 8, could be simulated with that
simulator only with considerable difficulty, and paging systems would
be even more difficult to simulate with that simulator, though other
simulators are available for the analysis of paging systems, such as
Nielsen's original one (Nielsen, 67). There is some intuitive evidence
that systems with very large main storage, thus allowing a large num-
ber of tasks concurrently in execution, may benefit to a large extent
from adaptive microscheduling techniques.

In a somewhat different area of extension, Denning's working
set techniques could be implemented with adaptive techniques similar
to those discussed here. Some work in that region has been done al-
ready by Denning and others (Denning, 72, Morris, 72). Early imple-
mentations of the working set concepts have shown its worth but have
not generally been successful except in specific situations (Burroughs,
69).

A s noted several times earlier, the system effectiveness mea-

116

sure function is assumed optimized to the extent that the proper choice
is made by the microscheduler at the largest possible number of deci-
sion points., A tempting extension to the model would be to improve
the microscheduler's decision function, perhaps in some radical fash-
ion, such as periodically running a linear programming analysis of
current tasks versus resources. Such extensions must be carefully
planned and analyzed, for the productivity gained by so much difficulty
may be more than lost through an improper microscheduler,

The law of diminishing returns applies to the improvement of
schedulers (Denning, 71B). With a reasonable amount of sophistication
and a small amount of resources devoted to it, a microscheduler can
be constructed which displays a considerable improvement over a basic
microscheduler. Each increment of improvement after the first re-
quires disproportionately larger investments in sophistication, time,
and resources, Thus any improvements in an already good decision
function may be singularly difficult to make., Ryder's paper is a rele-
vant warning to those who would use extremely sophisticated micro-
schedulers (Ryder, 71). As noted previously, his microscheduler algo-
rithms required much of the CPU resource; so much, in fact, that in
one environment, a commercial one, the system ran more slowly in
elapsed time with his scheduler than without, for the same mix, a re-
duction in throughput. Such problems cannot be foreseen before actual

implementation or careful simulation. Denning notes that the relation-

117

ship of sophistication to cost of microschedulers is almost unexplored

and may be quite treacherous (Denning, 71B).

Methods of Implementation

Those means used to actually produce a microscheduler which
controls an operating system must be carefully chosen. The design of
the implementation must be executed in coordination with expected or
measured environmental data, Normally, only the most critical re-
sources of a system should be optimized; this may usually be done by
optimizing the CPU main storage, and 1/O resource allocation tech-
niques, for these are almost always the scarcest and most expensive
resources of the system.

The configuration of the LSEM must be carefully considered.
Some of its terms should have correspondences in the system objective
function. Others may be chosen to bias the system toward specific
user habits such as smaller tasks, The bounds, and increments of the
exponential estimator parameters A and B must also be considered.
For A or B too near 1, the microscheduler may be unstable, while for
A or B too near 0, it may be unresponsive to changing conditions in the
environment. For this research, certain initial values, bounds, and
increments for A and B and values for the threshold were used with
success. In other environments, other values may be required.

In summary, the implementor of this microscheduling technique

118

in a real situation must attempt to maintain simplicity, while also at-
tempting to accurately portray the attributes of the environment in
which it is expected to function. Many current microschedulers im-
plemented in operating systems are so poor in actual operation (even
though they may be very complex) that even a microscheduler embody-
ing only some of the concepts discussed in this research will probably
succeed admirably in improving computer system performance

(Sherman, 71, Sherman, 72, Wulf, 67).

119

BIBLIOGRAPHY

ADR. Systems Analysis Machine--Introductory Guide. Applied Data
Research, April 1970,

Abate, J., & Dubner, H. "Optimizing the Performance of a Drum-
like Storage,' IEEE Transactions on Computers (November

1969), ‘992=997.

Abell, V. A., Rosen, S., & Wagner, R. E. '"Scheduling in a General
Purpose Operating System, ' FJCC (1970), 89-96.

Adiri, I. "Computer Time-Sharing Queues with Priorities, " JACM
(October 1969), 631-645,

Adiri, 1., & Avi-Itzhak, B. '"A Time Sharing Queue with a Finite
Number of Customers,'' JACM (April 1969), 315-323.

Alderson, A., Lynch, W. C., & Randell, B. "Thrashing in a Multi-
programmed Paging System, ' International Seminar on Oper-
ating Systems Techniques, August 1971.

American Standards Association. American Standard Vocabulary for
Information Processing, 1966,

Amiot, L., Natarajan, N. K., & Aschenbrenner, R. A. "Evaluating
a Remote Batch Processing System,'" Computer (September-
October 1972), 24-30.

Anacker, W., & Wang, C. P. '"Performance Evaluation of Computer
Systems with Memory Hierarchies,' IEEE Transactions on
Computers (December 1967), 764-773,

Anderson, H. A,, Jr., & Sargent, R. G. '"A Statistical Evaluation of
the Scheduler of an Experimental Interactive Computing Sys-
tem, ' Statistical Computer Performance Evaluation, Academic

Press, 1972, 73-98.

Apple, C. T. "The Program Monitor--A Device for Program Per-
formance Measurement,' Proceedings of Twentieth National

ACM Conference (August 1965), 66-75.

120

Arbuckle, R. A. '"Computer Analysis and Thruput Evaluation, '
Computers and Automation (January 1966), 12-15, 19,

Arden, B., & Boettner, D. ''Measurement and Performance of a
Multiprogramming System,' Proceedings on the 2nd ACM
Symposium on Operating System Principles (1970), 130-146.

Armstrong, J., Ulfers, H., Miller, D, J., & Page, H. C. '"SOLPASS--
A Simulation Oriented Language Programming and Simulation
System,'" Proceedings Third Conference on Applications of
Simulation (1969), 24-37,

Arndt, F. R., & Oliver, G. M. '"Hardware Monitoring of Real-Time

Computer System Performance,' Computer (July-August 1972),
25-38.

Arndt, F. R., & Oliver, G. M. ""Hardware Monitoring of Real-Time
Computer System Performance,' Digest of 1971 IEEF Inter-
national Computer Society Conference (1971), 123-125,

Auverbach. Auerbach on Time Sharing. Auerbach, 1970,

Baer, J., & Caughey, R. ''Segmentation and Optimization of Programs
from Cyclic Structure Analysis,' SJCC (May 1972), 23-26.

Baer, J. L., & Sager, G. R, '"Measurement and Improvement of
Program Behavior under Paging Systems,' Statistical Compu-
ter Performance Evaluation, Academic Press, 1972, 241-264,

Bagley, P. R. '"Two Think Pieces: (Item 2: Establishing a Measure
of Capability of a Data Processing System),'" CACM (January
1960), 1,

Bairstow, J. N. "A Review of Systems Evaluation Packages,'" Com-
puter Decisions (June 1970), 20.

Baldwin, F. R., Gibson, W. B., & Poland, C. B. "A Multiprocessing
Approach to a Large Computer System, ' IBM Systems Journal
(September 1962), 64-76,

Bardy, Y. ''Performance Criteria and Measurement for a Time-
Sharing System, ' IBM Systems Journal (July 1971), 193-216,

Baskett, F'. ''Dependence of Computer System Queues upon Processing
Time Distribution and Central Processor Scheduling, ' SIGOPS
(June 1972), 109-113.

121

Baskett, ¥, Mathematical Models of Computer Systems. Ph.D, Dis-
sertation, University of Texas at Austin, 1970,

Batson, A., & Brundage, R. '"Performance Measurements on a Virtual
Memory Computer System in a Batch-Processing Environment, "
ACM Workshop on Systems Performance Evaluation (April 1971),
214-226.

Batson, A., Ju, S.-M., & Wood, D, C. ''Measurements of Segment
Size," CACM (March 1970), 155-159; and Proceedings of Second
ACM Symposium on Operating Systems (October 1969), 25-29,

Beilner, H., & Waldbaum, G. 'Statistical Methodology for Calibrating
a Trace-Driven Simulator of a Batch Computer System, ' Statis-
tical Computer Performance Evaluation, Academic Press, 1972,
423-460,

Beizer, B. '"'Analytical Techniques for the Statistical Evaluation of
Program Running Time," FJCC (1970), 519-524,

Belady, L. A,, & Kuehner, C. J. '"Dynamic Space-Sharing in Compu-
ter Systems,'" CACM (May 1969), 282-288.

Belady, L. A., Nelson, R. A., & Shedler, G. S. "An Anomaly in
Space-Time Characteristics of Certain Programs Running in a
Paged Machine, " CACM (June 1969), 349-353,

Bell, C. G., Gold, M. M., Steadry, A, C.,, Linde, R. R., & Chaney,
P. E. Time Sharing, AD666730, 1967; or American Data Pro-
cessing, 1967,

Bell, C. G., & Newell, A. Computer Structures--Readings and Ex-
amples, McGraw-Hill, 1971.

Bell, T. E. "Computer Measurement and Evaluation,' ACM SIMU-
LETTER (October 1972), 52-58,

Bell, T. E., Boehm, B, W., & Watson, R. A. Computer Performance
Analysis--Framework and Initial Phases for a Performance
Improvement Effort, RAND, R-549-PR, August 1971.

Bell,T. E. Computer System Measurement and Analysis, RAND Cor-
poration, R-584-NASA /PR, January 1971,

122

Bemer, R. W., & Ellison, A, L. '"Software Instrumentation Systems
for Optimum Performance,' IFIP (August 1968), C39-C42.

Bernstein, A., Detlefsen, G., & Kerr, R. '"Process Control and
Communication in a General Purpose Operating System, "
Second ACM Symposium on Operating Principles, Princeton,
N. J. (October 1969), 60-66,

Bernstein, A. J., & Sharp, J. C. "Policy-Driven Scheduler for a
Time-Sharing System,'" CACM (February 1971), 74-78.

Blake, K., & Gordon, G. '"Systems Simulation with Digital Computers, "
IBM Systems Journal (January 1964), 15-16,

Blatny, J., Clark, S. R., & Rourke, T. A. '""On the Optimization of
the Performance of Time=-Sharing Systems by Simulation, "
CACM (June 1972), 411-420,.

Blevins, P. R., & Ramamoorthy, C. V. A Classification and Survey
of Computer Performance Evaluation Techniques, University
of Texas, Austin, April 1970,

Block, W. R. Paper presented at CUBE (Cooperating Users of Bur-
roughs Equipment) meeting, Spring 1971.

Blunden, G. P., & Krasnow, H. S. "The Process Concept as a Basis
for Simulation Modelling,'" ORSA presentation, 1965,

Boehm, B, W, Computer Systems Analysis Methodology, RAND Cor-
poration, OR-520~-NASA, September 1970.

Boehm, B. W., & Mobley, R. L., A Computer Simulation of Adaptive
Routing Techniques for Distributed Communications Systems,
RAND Corporation, RM-4782-PR, February 1966,

Bonner, A. J. '"Using System Monitor Output to Improve Performance, "
IBM Systems Journal (November 1969), 290-298,

Bookman, P. G., Brotman, B. A., & Schmitt, K. L. '""Measurement
Engineering Tunes Systems, ' Computer Decisions (April 1972),
28-32.

Bowlden, H. J. '"Two-class Control Algorithm, ' Westinghouse R & D
Memo, 67-1C4-COMP -M84, 1967.

123

Boyd, D. L., & Epley, D. L. "A Simple Model for Multiple-Resource
Allocation in Operating Systems,' Computers and Automata
(1972), 293-304.

Braddock, D. M., & Dowling, C. B, Simulation Evaluation and Analy-
sis Language, IBM 360 D15, 1.005, 1968.

Bradley, J. ''Assessing Operating Systems, ' Data Automation Digest
(September 1968), 15-21,

Brawn, B. S., & Gustavson, F. G. ''"Program Behavior in a Paging
Environment, " FJCC (1968), 1019-1032.

Bross, S. D. J. '"Models,' Management Systems (1968), 327-336,

Bryan, G. E. '20,000 Hours at the Console; A Statistical Summary,"
FJCC (1967), 769-777.

Bryan, G. E., & Shemer, J. E. "The UTS Terminal System: Per-
formance Analysis and Instrumentation,'" ACM Second Sym-
posium on Operating Systems Principles (October 1969), 147-
158.

Buchholz, W. "A Synthetic Job for Measuring System Performance,
IBM Systems Journal (1969), 309-318,

Budd, A. E. A Method for the Evaluation of Software: Volume 2,
General Description Including Benchmark Considerations, and,
Volume 3, Executive, Operating, or Monitor Systems, TR-197,
MITRE Corporation, July 1967.

Burroughs. B5700 Master Control Program Reference Manual, 1971,

Burroughs. B5700 Time Sharing System Information Manual, 1972,

Burroughs. B6700 Information Processing Systems Reference Man-
uval, 1969.

Burroughs. B6700 Master Control Program Reference Manual, 1969,

Burroughs. Narrative Description of the Burroughs B5500 Disk File
Master Control Program, 1967,

Bussell, B., & Kaster, R. A. ''Instrumenting Computer Systems and
Their Programs,'' FJCC (1970), 525-534,

124

Buxton, J. N, '"Writing Simulations in CSL, "' Computer Journal
(August 1966), 137-143,

Buxton, J. N., & Laski, J. G. "Control and Simulation Language, "
Computer Journal (August 1966), 137-143,

Buzen, J. '"'Analysis of System Bottlenecks Using a Queueing Network
Model, '"" ACM SIGOPS Workshop on System Performance Evalu-
ation (April 1971), 82-103.

CACI. SIMSCRIPT II.5 Reference Handbook, CACI, 1971.

CDC. CDC 6000 Series SIMSCRIPT Reference Manual, CDC Publica-
tion No. 60178300, 1968.

Calingaert, P. ''System Performance Evaluation: Survey and Ap-
praisal,!" CACM (January 1967), 12-18,

Campbell, D. J., & Heffner, W. J. ""Measurement and Analysis of
Large Operating Systems during System Development,'' FJCC
Part I (1968), 903-914,

Canning, R. G. ''Data Processing Planning Via Simulation, ' EDP

Analyzer (April 1968).

Canning, R. G. 'Improve Operation with Multi-Programming? "
EDP Analyzer (March 1966).

Cantrell, H. N. ''Designing for Measurement,' Digest of 1971 IEEE
International Computer Society Conference (1971), 125-126.

Cantrell, H. N. Presentation at Workshop or Models for Time-
Shared Processing, IEEE Communications Technology Group
and IEEE Computer Group (January 1967).

Cantrell, H, N. Time-Sharing Data GETIS Report R65CDI12 (Decem-
ber 1965).

Cantrell, H. N.,, & Ellison, A. C. '"Multiprogramming System Per-
formance Measurement and Analysis, " SJICC (1968), 213-221,

Chang, W. "A Queuing Model for a Simple Case of Time Sharing, "
IBM Systems Journal (April 1966), 115-125,

Chang, W. '"Single-Server Queuing Processes in Computing Systems, "
IBM Systems Journal (1970), 36-71,

125

Chang, W., & Wong, D. ''Analysis of Real Time Multiprogramming, "
JACM (October 1965), 581-588.

Chang, W., Paternot, Y. J., & Ray, J. A. '""Throughput Analysis of
Computer Systems, ' ACM SIGOPS Workshop on Systems Per-
formance Evaluation (April 1971), 59-81,

Cheng, P. S. '"Trace-Driven Modeling,'" IBM Systems Journal
(December 1969), 280-289.

Chilcote, W. S. Paper presented at CUBE (Cooperating Users of
Burroughs Equipment) meeting, Fall 1970,

Clementson, A. T. ''Extended Control and Simulation Language, "
Computer Journal (November 1966), 215-220.

Codd, E. F. '"Multiprogram Scheduling,'" CACM (March 1960),
347-350 and 413-418,

Codd, E. F. '"Multiprogramming STRETCH: A Report on Trials,"
IFIP (1962), 574.

Coffman, E. G. "Analysis of a Drum Input/Output Queue under
Scheduled Operation in a Paged Computer System,' JACM
(January 1969), 73-90.

Coffman, E. G. '"Analysis of Two-Time Sharing Algorithms De-
signed for Limited Swapping,' Journal of the Association of
Computing Machinery (October 1968), 549-576.

Coffman, E. G. '"On the Trade Off Between Response and Pre-
emption Costs in a Foreground-Background Computer Service
Discipline, " IEEE Computer Transactions (October 1969),
942-947.

Coffman, E. G. Stochastic Models of Multiple and Time-Shared Com-
puter Operations, Number 66-38, UCLA, June 1966.

Coffman, E. G. ''Studying Multiprogramming Systems (with the
queueing theory),'" Datamation (June 1967), 47-54.

Coffman, E. G., & Denning, P. J. Operating Systems Theory,
Prentice-Hall, 1972,

126

Coffman, E. G., & Graham, R. L. "Optimal Scheduling for Two-
Processor Systems, " Acta Informatica 2, (1972).

Coffman, E. G., & Kleinrock, L. '"Computer Scheduling Methods and
their Countermeasures,' SJCC (1968), 11-21,

Coffman, E., G., & Kleinrock, L, "Feedback Queuing Models for
Time-Shared Systems,' JACM (October 1968), 549-576.

Coffman, E. G., & Muntz, R. R. '"Models of Pure Time-Sharing
Disciplines for Resource Allocation,' Proceedings of the 24th
National ACM Conference (1969), 217-228,

Coffman, E. G., & Ryan, T. A, '"A Study of Storage Partitioning Us-
ing a Mathematical Model of Locality,'" CACM (March 1972),
185-190.

Coffman, E. G., & Varian, L. C, '"Further Experimental Data on the
Behavior of Programs in a Paging Environment,'" CACM (July
1968), 471-474,

Coffman, E. G., & Weissman, C. '"General Purpose Time Sharing
System, " SJCC (1964), 397-411.

Coffman, E. G., & Wood, R. C. 'Interarrival Statistics for Time-
Sharing Systems,!" CACM (July 1966), 500-502,

Cohen, L. J. System and Software Simulator (S3), Vol. I-IV
AD679269-AD679272, 1968,

Cohen, L. J. Systems Analysis and Design, Spartan, 1970,

Cohen, L. J. Theory of the Operating System, UCC Seminar notes,
1967,

COMRESS. Introduction to SCERT, COMRESS, 1967.

COMRESS. The SCERT Reports, COMRESS, 1969.

Constantine, L. 'Integrated Hardware/Software Design,' Modern
Data (September 1968-April 1969).

Conway, R, W., Maxwell, W. L., & Miller, L., W. Theory of
Scheduling, Addison Wesley, 1967.

127

Corbato, F. J., Daggett, M. M., Daley, R. C. "An Experimental
Time-Sharing System, ' SJCC (1962), 335-344,

Critchlow, A. J. '"Generalized Multiprocessing and Multiprogrammed
Systems, ' FJCC (1963), 107-126.

Curry, G. L., et al. '"Scheduling in a Multiprogramming Environment, "
Software Age (January 1968), 32-37.

Dahl, O. J., Myhrhaug, B., & Nygaard, K. ''Some Features of the
SIMULA 67 Language,' Second Conference on Applications of
Simulation (1968), 29-31,

Dahl, O. J., & Nygaard, K. "SIMULA--An ALGOL-Based Simulation
Language,'' CACM (September 1966), 671-678.

Dahm, D. M., Gerbstadt, ¥. H., & Pocelli, M. M. "A System Organi-
zation for Resource Allocation,'" CACM (December 1967), 7T72-
779.

Daley, R. C., & Dennis, J. B. '"Virtual Memory, Processes, and
Sharing in MULTICS," CACM (May 1968), 306-312.

D'Angelo, H., & Windeknecht, T. G. "An Approach to Modeling an
Elementary School,'" Proceedings of the Third Annual Pittsburgh
Conference on Modeling and Simulation, April 24-25, 1972,

DeMeis, W. M., & Weizer, N. ''Measurement and Analysis of a De-
mand Paging Time-Sharing System, ' Proceedings of the 24th
National ACM Conference (1969), 201-216,

Deniston, W. R. "SIPE: A TSS/360 Software Measurement Technique, "
Proceedings of the 24th National ACM Conference (1969) 229-
245,

Denning, P. J. '"On Modeling Program Behavior,'" SJCC (1972), 937-
944,

Denning, P. J. '"Effects of Scheduling on File Memory Operation, "
SJCC (January 1969), 9-21.

Denning, P. J. "Equipment Configuration in Balanced Computer Sys-
tems, ' IEEE Transactions on Computers (November 1969),
1008-1012,

128

Denning, P. J. Resource Allocation in Multiprocess Computer
Systems. Ph.D. Dissertation, M. 1. T., 1968,

Denning, P. J. '"'A Statistical Model for Console Behavior in Multi-
user Computers,'' CACM (September 1968), 605-612,

Denning, P. J. '""Third Generation Computer Systems, ' Computing
Surveys (December 1971), 175-216.

Denning, P, J. "Thrashing: Its Causes and Prevention,' FJCC, Part
I(1968), 915-922,

Denning, P. J. '"Virtual Memory,' Computing Surveys (September
1970), 153-190,

Denning, P. J, '""The Working Set Model for Program Behavior, "
CACM (May 1968), 323-333.

Denning, P. J., & Eisenstein, B. A, '"Statistical Methods in Perfor-
mance Evaluation," ACM Workshop on Systems Performance
Evaluation (April 1971), 284-307,

Denning, P. J., & Schwartz, S. C. '"Properties of the Working-Set
Model, " CACM (March 1972), 191-198,

Dennis, J. B. Automatic Scheduling of Priority Process. Ph.D. Dis-
sertation, M, I, T., 1964,

Dennis, J. B. '"Segmentation and the Design of Multiprogrammed Com-
puter Systems,'' JACM (October 1965), 589-602; and IEEE Con-
vention Record, Part 3 (1965), 214-225,

De Rivet, P. H. Data Traffic Models for the Performance of Modular
Computer Systems. Ph,.D. Dissertation, Case Western Re-
serve University, 1971,

Des Roaches, J. S. Survey of Simulation L.anguages and Programs,
MTR-2040, MITRE, January 1971.

Dewan, P. B., Donaghey, C. E., & Wyatt, J. B. '"OSSL--A Special-
ized Language for Simulating Computer Systems, ' SJCC (1972),
799-814,

Dijkstra, E. W. 'A Class of Allocation Strategies Inducing Bounded
Delays Only,'" SJCC (1972), 933-936.

129

Dijkstra, E. W. '"Complexity Controlled by Hierarchial Ordering of
Function and Variability,"” NATO Conference on Software Engi-
neering (October 1968), 181-185,

Dijkstra, E. W. '"The Humble Programmer,'" CACM (October 1972),
859-866.

Dijkstra, E. W, Notes on Structured Programming, EWD 249, Techni-
cal University of Eindhoven, 1969,

Dijkstra, E. W. '"Solution of a Problem in Concurrent Programming
Control,'" CACM (1965), 569.

Dijkstra, E. W. "T.H.E. Multiprogramming System,'' CACM (May
1968), 341-346.

Doherty, W. J. "Scheduling TSS/360 for Responsiveness,'' FJCC (1970),
97-112,

Donovan, J. J., Alsop, J. W., & Jones, M. M. !"A Graphical Facility
for an Interactive Simulation System, ' Proceedings of IFIPS

Congress (1968), 593-596,

Dopping, O. '"Test Problems Used for Evaluation of Computers, "
BIT (1962), 197-202,

Dorn, P. H. '"How to Evaluate a Time-Sharing Service,' Datamation
(November 1969), 220-223,

Draper, M. 'V1108 EXEC 8 Augmented Accounting Data,' Technical
Papers of USE Conference, October 12-16, 1970, 421-435,

Draper, M. 1108 EXEC 8 Performance Evaluation and Scheduling.
Paper presented to Fall 1970 Univac User's Association meeting.

Drummond, M. E., Jr. "A Perspective on System Performance
Evaluation, ' IBM Systems Journal (1969), 252-263.

Ebeling, D. G. A General Purpose Conversational Time Sharing Pro-
gram for Probabilistic Analysis, General Electric Corpora-
tion, August 1969,

Eisenstein, B, A., & Shen, D. W, C. ''Adaptive Stochastic Tracking
of Quasi-Repetitive Processes,' Proceedings of IFAC Kyoto

Symposium, 1970,

130

Eisenstein, B. A, Decision-Directed Adaptive Estimators for Repe-
titive Processes. Ph.D, Dissertation, University of Pennsyl-
vania, 1970,

Emshaff, J. R., & Sisson, R. L. Computer Simulation Models, Mac-
Millan, 1970.

Erikson, W. J. '"An Analytical Cost Comparison of Computer Operating
Systems, ' SDC-TM-3525 or AD 661 983, June 30, 1967.

Estrin, G., & Kleinrock, L. '"Measures, Models, and Measurements
for Time-Shared Computer Utilities, ' Proceedings, 22nd
National ACM Meeting (1967), 85-96.

Estrin, G., Muntz, R. R., & Uzgalis, R. '"Modeling, Measurement,
and Computer Power, ' SJCC (1972), 725-738,

Estrin, G., Hopkins, D., Coggan, B., & Crocker, S. D. ''Snuper
Computer: A Computer in Instrumentation Automation, "
SJCC (1967), 645-656.

Evans, T. G., & Darley, D, L. "On-Line Debugging Techniques:
A Survey,' FJCC (1966), 37-50,

Famolari, E. FORSIM IV User's Guide SR-99, The MITRE Corpora-
tion, February 1964,

Fano, R. M., & Corbato, F. J. "Time-Sharing on Computers,'
INFORMATION, Scientific American, September 1966,

Feeley, J. M. "A Computer Performance Monitor and Markov Analy-
sis for Multiprocessor System Evaluation, '" Statistical Com-
puter Performance Evaluation, Academic Press (1972), 165-
226,

Fenichel, R. R., & Grossman, A. J. '""An Analytic Model of Multi-
programmed Computering,' SJCC (1969), 717-721,

Ferdinand, A. E. '"An Analysis of the Machine Interference Model, "
IBM Systems Journal (1971), 129-142,

Ferrari, D. "Workload Characterization and Selection in Computer
Performance Measurements,' Computer (July-August 1972),
18-24,

131

Fifield, A, J. '"A System for Timing Systems,' The Computer Bulle-
tin (November 1968), 256-260.

Fine, G. H., & Mac Isaac, P, V., ''Simulation of a Time-Sharing
System, '' Management Science (February 1966), B180-B194,

Fisher, D. A. Program Analysis for Multiprocessing, TR-67-2,
Burroughs, May 1967.

Fishman, G. S., & Kiviat, P. J. "The Analysis of Simulation-Generated
Time Series, " Management Science (March 1967), 525-557,

Fishman, G. S., & Kiviat, P. J. "The Statistics of Discrete-Event
Simulation, ' Simulation (April 1968), 185-195,

Flores, I. '"Swapping vs. Paging,'" Modern Data (April 1970), 152-157,

Flores, I. ''Virtual Memory and Paging,'' Datamation (August 1967),
31-34, and (September 1967), 41-48,

Foley, J. D. "A Markovian Model of the University of Michigan Execu-
tive System, ' CACM (September 1967), 584-588.

Forgie, J. W. "A Time and Memory Sharing Executive Program for
Quick Response,' FJCC (1965), 599-609.

Fox, D., & Kessler, J. L. '"Experiments in Software Modeling, "
FJCC (November 1967), 429-436,

Fox, R. L. Optimization Methods for Engineering Design, Addison-
Wesley, 1971.

Fredrickson, R. M. Estimates of Supervisor Overheads for the IBM
S/360/67 Simulation. Stanford University Computation Center
Memo, August 8, 1966,

Freeman, D. N., & Pearson, R. R. "Efficiency vs. Responsiveness
in a Multiple-services Computer Facility,!" Proceedings, 23rd
National ACM Conference (1968), 25-34,

Freiberger, W. Statistical Computer Performance Evaluation,
Academic Press, 1972,

Friedman, C. J. '"Constraint Algebra--A Supervisory Programming
Technique, ' IEEE Transactions on Computers, July 1963,

E32

GSA. ''Restriction on Use of Simulation for Evaluating ADPE Perfor-
mance, ' GSA Federal Property Management Regulations,
TR E-23, June 6, 1972.

Gaver, D. P. '"Probability Models for Multiprogramming Computer
Systems, ' JACM (July 1967), 423-438.

Gaylord, C. V. '"Multiprogramming and the Design of On-line Control
Systems,!" Data Processing Magazine (May 1968), 26-38.

Geisler, M. A., & Markowitz, D. A Brief Review of SIMSCRIPT as
a Simulating Technigue, RM-3778-PR, Rand, 1963.

Gibson, J. €. The Gibson Mix. Technical Report TR00-2043, IBM,
June 1970,

Gibson, C. T. '"Time Sharing in the IBM S/360/67," SJCC (1966),
61-78,

Glinka, L. R., Brush, R. M., & Ungar, A. J. '"Design Thru Simula-
tion, of a Multiple-Access Information System,' FJCC (1967),
437-447-

Gold, M. M, Methodology for Evaluating Time-Sharing Computer
Usage. Ph.D. Dissertation, AD 668 084, M. I. T., 1967.

Goodroe, J. R., & Leonard, G. F. "An Environment for an Operating
System, "' Proceedings of the 17th National ACM Conference
(1964), pp. E2.3-1--E2,.3-11,

Gordon, G. System Simulation, Prentice-Hall, 1969,

Gould, R. L. "GPSS/360--An Improved General Purpose Simulator, "
IBM Systems Journal (January 1969), 16-27.

Graham, R. L. '"Bounds on Multiprocessing Anomalies and Related
Packing Algorithms," SJCC (1972), 205-217.

Graham, R. L. "Bounds on Multiprocessing Timing Anomalies, "
SIAM Journal of Applied Mathematics (April 1969), 416-429,

Graham, R. L. '"Bounds for Certain Multiprocessing Anomalies, "
Bell System Technical Journal (September 1966), 1563-1581.

E2.3-l--E2.3-ll

133

Greco, R. J. Evaluation of Real Time Computer Systems. Internal
Memorandum GITIS-69-11, School of Information and Computer
Science, Georgia Institute of Technology, December 1969,

Greenbaum, H. J. A Simulator of Multiple Interactive Users to Drive
a Time-Shared Computer System, Report No. MACTR-58,
M. Lo Ty 1969

Greenberg, S. GPSS Primer, Wiley, 1972,

Greenberger, M. "A New Methodology for Computer Simulation, "
Computer Methods in the Analysis of Large-Scale Social Systems
(1965), 147-162,

Greenberger, M. '""The Priority Problem and Computer Time-Sharing, "
Management Science (1966), 888-906,

Greenberger, M., Jones, M. M., Morris, J. H., Jr., & Ness, D. N.
On-Line Computation and Simulation: The OPS-3 System,
M, I, T., 1965,

Greenberger, M., & Jones, M. M., "On-Line Simulation in the OPS-3
System, " Proceedings of the 21st National ACM Conference
(1966), 131-138,

Grenander, U., & Tsao, R. F. '"Quantitative Methods for Evaluating
Computer System Performance: A Review and Proposals, '
Statistical Computer Performance Evaluation, Academic Press
(1972), 3-24.

Grochow, J. M. "Utility Functions for Time-Sharing System Perfor-
mance Evaluation,' Computer (September-October 1972), 16-19.

Grochow, J. M. "A Utility-Theoretic Approach to the Evaluation of a
Time-Sharing System, ' Statistical Computer Performance
Evaluation, Academic Press (1972), 25-50.

Habermann, A, N. On the Harmonious Cooperation of Abstract Ma-
chines, Ph,D, Dissertation, Eindhoven Technological Univer-
sity, 1967.

Habermann, A, N. "Prevention of System Deadlocks,' CACM (July
1969), 373-377,

134

Hansen, P, B, ''"The Nucleus of a Multiprogramming System,'" CACM
(April 1968), 74-84,

Hansen, P. B. ''Short Term Scheduling in Multiprogramming Sys -
tems, " SIGOPS (June 1972), 101-105.

Harary, F., et al. Structural Models, Wiley, 1965,

Hare, V. C. System Design, 1967,

Harrison, M. C. 'Implementation of the SHARER 2 Time-Sharing
System,'" CACM (December 1968), 845,

Harrison, M. C., & Schwartz, J. T. "SHARER, A Time-Sharing
System for the CDC 6600,'" CACM (October 1967), 659-665.

Hart, L. E. "The Users Guide to Evaluation Products, ' Datamation
(December 15, 1970), 32-35,

Hart, L. E., & Lipovich, G. J. ''Choosing a System Stethoscope, "
Computer Decisions (November 1971), 20-23,

Hartley, D. F., Landy, B., & Needham, R. M, "The Structure of a
Multiprogramming Supervisor,' Computer Journal (November
1968), 247-255,

Hastings, T. Operating Statistics of the MAC Time-Sharing System,
MAC-M-280, M. I. T., December 8, 1965,

Hatfield, D. J. "Experiments on Page Size, Program Access Patterns,
and Virtual Memory Performance,' IBM Journal Research and
Development (January 1972), 58-66,

Hatfield, D. J., & Gerald, J. '"Locality: Working Set, Request String,
Distance Function, and Replacement Stack, ' Statistical Com-
puter Performance Evaluation, Academic Press (1972), 407-
422,

Hauck, E. A., & Dent, B. A, "Burroughs B6500/B7500 Stack Mechan-
isms, ! SJCC (1968), 245-251,

Hauth, C. "Turnaround Time for Messages of Differing Priorities, "
IBM Systems Journal (April 1968), 103-122,

135

Havender, J. W. ""Avoiding Deadlock in Multitasking Systems, ' IBM
Systems Journal (April 1968), 74-84.

Hebalker, P. G. Deadlock-Free Sharing of Resources in Asychronous
Systems. Sc.D. Dissertation, MAC TR-75, 1970,

Heller, J., & Legemann, G, '"An Algorithm for the Construction and
Evaluation of Feasible Schedules,' Management Science (Janu-
ary 1962), 168-183.

Hellerman, H. '"Complementary Replacement--A Meta Scheduling
Principle, " ACM Second Symposium on Operating Systems Prin-
ciples (October 1969), 43-46.

Hellerman, H. Digital Computer System Principles, McGraw-Hill,
1967, 124-125,

Hellerman, H. '"Some Principles of Time-Sharing Scheduler Strategies, "
IBM Systems Journal (April 1969), 94-117.

Hellerman, H., & Smith, H. J. "Throughput Analysis ,'" Com-
puting Surveys (June 1970), 111-118,

Herman, D. J. "SCERT: A Computer Evaluation Tool,' Datamation
(February 1967).

Herman, D. J., & Ihrer, F. C. '""The Use of a Computer to Evaluate
Computers, ! SJCC (1964), 383-395,

Highland, H., J. "A Matter of Communication,'" ACM SIMULETTER
(October 1972), 82-93, 100-106.

Hillegass, J. R. ''Standardized Benchmark Problems Measure Com -

puter Performance, '' Computers and Automation (January 1968),
12-15.

Hills, P. R. "SIMON--A Computer Simulation Language in ALGOL, "
Digital Simulation in Operation Research (1967), 105-115,

Hobgood, W. S. '"Evaluation of an Interactive-Batch System Network, "
IBM Systems Journal (January 1972), 2-15,

Hoffman, J. M. A Pre-Scheduler and Management Model for a Class
of Computer-User Systems. Ph.D. Dissertation, January 1971,

136

Holland, F. C., & Merikallio, R. A. '"'Simulation of a Multiprocessing
System Using GPSS," IEEE Transactions on Systems Science
and Cybernetics (November 1968), 395-400.

Holt, A, W., & Commoner, F. Events and Conditions (Parts 1-3),
Applied Data Research, Inc., 1969.

Holt, A. W., Saint, H.,, Shapiro, R. M., & Marshall, S. Final Report
for Information System Theory Project--Contract Number AF 30
(602)-4211, AD676972, Applied Data Research, Inc., 1968.

Holtwick, G. M. ''Designing a Commercial Performance Measurement
System, '" ACM Workshop on Systems Performance Evaluation
(April 1971), 29-58.

Hornig, D. F., et al. Computers in Higher Education, U. S. Printing
Office: 1967-0-272-973, 1967.

Huesmann, L., R., & Goldberg, R. P. '"Evaluating Computer Systems
through Simulation,' Computer Journal (August 1967), 150-155,

Hughes Aircraft Company. Simulation Models--A Tool for the Develop-
ment of Real-Time Computer Systems, August 1970.

Huntable, D, H. R., & Warwick, M. T. !'Dynamic Supervisors--Their
Design and Constructions,' ACM Symposium on Operating Sys-
tems Principles, preprint, 1967.

Hutchinson, G. K. "A Computer Center Simulation Project,'" CACM
(September 1965), 559-568,

Hutchinson, G. K., & Maguire, J. N. '"Computer Systems Design and
Analysis through Simulation, " FJCC (1965), 161-167,

IBM. IBM System/370 Principles of Operation, GA22-7000-2, July 1972.

IBM. ""Functional Structure of OS/360, ' IBM Systems Journal (April
1966), 2-51 L]

IBM. GPSS II, IBM, 1963.

IBM. SIMULATION, FORM #520-1538-1, 1968.

IBM. Simulation Evaluation and Analysis Language (SEAL), System Ref-
erence Manual, January 17, 1968.

137

IBM. Time-Sharing System/360 Development Workbook, IBM Internal
Document, 1966.

Ihrer, F'. C. "Benchmarking vs, Simulation,'" ACM SIMULETTER
(October 1972), 94-99,

Ihrer, F. C. "Computer Performance Projected through Simulation, "
Computers and Automation (April 1967), 22-27.

ISC. A Brief Introduction to Interactive Sciences Corporation, Inter-
active Sciences Corporation, 1968,

ISC. Computer Systems--Analysis and Simulation, Interactive Sciences
Corporation, 1969,

Jackson, P. E., & Stubbs, C. D. '"A Study of Multiaccess Computer
Communications, " SJCC (1969), 494-504.

Johnson, R. H., & Johnston, T. Y. PROGLOOK Users' Guide (Revi-
sion 3), COSMIC-02250 or SLAC User Note 33 or SCC-007,
October 1971,

Johnson, R. R. ''Needed--A Measure for Measure,' Datamation
(December 15, 1970), 22-30,

Johnson, R. R. Systems Performance Measurement, Prediction, Opti-
mization--Part 3, presented at Fall 1971 meeting of Cooperating
Users of Burroughs Equipment (CUBE).

Jones, M. M. Incremental Simulation on a Time-Shared Computer,
Ph,D. Dissertation, MAC-TR-48, 1968,

Jones, M. M. '"On-Line Simulation,'! Proceedings of ACM 1967 National
Conference (1967), 591-600,

Jones, M, M, On-Line Version of GPSS II, MAC-M-140, March 1964,

Jones, P, O, "Operating System Structures,'" IFIP (1968), 29-33,

Jordain, P, B. Condensed Computer Encyclopedia, McGraw-Hill, 1969.

Joslin, E, O, "Application Benchmarks: The Key to Meaningful Com-
puter Evaluations,'' Proceedings of the 20th National ACM Con-
ference (August 1965), 27-37.

138

Joslin, E. O. '"Cost-Value Technique for Evaluation of Computer Sys-
tem Proposals,' SJCC (1964), 367-381.

Joslin, E. O., & Aiken, J. J. '"The Validity of Basing Computer Se-
lection on Benchmark Results,' Computers and Automation
(January 1966), 22-23,

Karr, H, W., Kleine, H., & Markowitz, H. M. SIMSCRIPT 1.5,
California Analysis Center, 1966,

Karush, A. D, Benchmark Analysis of Time-Shared Systems, SDC SP-
3347, SDC, June 30, 1969.

Karush, A. D. Definition and History of Regenerative Recording, TRN-
24317/103/00, SDC, February 1970.

Karush, A. D. "Evaluating Timesharing Systems Using the Benchmark
Method, " Data Processing Magazine (May 1970), 42-44,

Karush, A, D, "Program Quality Assurance,' Datamation (October
1968), 61-66,

Karush, A. D. Towards a Study of the Regenerative Recording of Time-
Sharing Systems, TRN-24317/104/00, SDC, 1970.

Karush, A, D, '"Two Approaches for Measuring the Performance of
Time-Sharing Systems,'" ACM Second Symposium on Operating
System Principles (October 1969), 159-166,

Katz, J. H. "An Experimental Model of IBM S/360," CACM (November
1967), 694-702,

Katz, J. H. ''Simulation of a Multiprocessor Computer System, ' SJCC
(1966), 127-139,

Kay, I. M. "An Over-the-Shoulder Look at Discrete Simulation Lang-
uages, ' SJCC, 791-798.

Keefe, D. D. ''Hierarchical Control Programs for Systems Evaluation, "
IBM Systems Journal (April 1968), 123-133,

Kernighan, B. W. "Optimal Segmentation Points for Programs,' ACM
Second Symposium on Operating Systems Principles (October
1969), 47-53.

139

Kernighan, B, W. Some Graph Partitioning Problems Related to Pro-
gram Scgmentation, Ph.D. Dissertation, Princeton University,

19690

Kerr, R., Bernstein, A,, Detlefsen, G., & Johnston, J. Overview of
R & DC Operating System, TIS Report 69-C-355, General Elec-
tric, October 1969,

Kimbleton, S. R. '"Performance Evaluation--A Structured Approach,’
SJCC (1972), 411-416.

Kimbleton, S. R. '""Role of Computer Systems Models in Performance
Evaluation, " CACM (July 1972), 586-590.

Kimbleton, S. R., & Moore, C. G. A Limited Resource Approach to
System Performance Evaluation, TR 71-2 ISDOS, University of
Michigan, 1971.

Kimbleton, S, R., & Moore, C. G. "A Probabilistic Framework for
System Performance Evaluation,'" ACM SIGOPS Workshop on
System Performance Evaluation (April 1971), 337-361.

Kiviat, P. J. GASP--A General Activity Simulation Project, Applied
Research Laboratory, 1963.

Kiviat, P. J. 'Introduction to the SIMSCRIPT II Programming Lang-
uage, ' Symposium on Simulation Techniques and Languages,
May 1966,

Kiviat, P. J., & Prittsker, A. A. B. Simulation with GASP II,
Prentice-Hall, 1969,

Kiviat, P, J., Shukiar, H, J., Urman, J. B., & Villanueva, R. The
SIMSCRIPT II Programming Language: IBM 360 Implementa -
tion, RM-5777-PR, Rand, 1969,

Kiviat, P. J., Villanueva, R., & Markowitz, H. M. The SIMSCRIPT
II Programming Language, Prentice-Hall, 1968,

Kleinrock, L. "A Continuum of Time Sharing Scheduling Algorithms, "
SJCC (1970), 453-458,

Kleinrock, L. "Time-Sharing Systems: Analytical Methods,' In Criti-
cal Factors in Data Management, Prentice-Hall (1969), 3-32,

140

Kleinrock, L. '"Time-Shared Systems: A Theoretical Treatment, "
JACM (April 1969), 242-261,

Kleinrock, L., & Coffman, E. G. ''Distribution of Attained Service in
Time-Shared Systems, " Journal of Computer and System Sci-
ences (March 1967), 287-298,

Knight, D. C. "An Algorithm for Scheduling Storage on a Non-Paged
Computer, ' Computer Journal (May 1968), 17-21.

Knuth, D. E. "Additional Comments on a Problem in Concurrent Pro-
gramming Control," CACM (May 1966), 321-322,

Knuth, D. E, Fundamentals of Programming, Vol, 1, 2, & 3, Addison-
Wesley, 1968, 1969, 1972.

Knuth, D. E., & McNeley, J. L. '""A Formal Definition of Sol, " IEEE
Trans on Electronic Computers (August 1964), 409-414,

Knuth, D, E., & McNeley, J. L. '"Sol. . . ," IEEE Trans on Elec-
tronic Computers (August 1964), 401-408,

Kolence, K. W. "A Software View of Measurement Tools,'" Datamation
(January 1, 1971), 32-38.

Kolence, K. W. ''Systems Measurement--Theory and Practice,' Pro-
ceedings of Share XXXIV (March 1970), 510-521,

Koster, R. Low Level Self-Measurement in Computers, REPT, R-69-
57, University of California, October 1969,

Kosy, D. W. 'Experience with the Extendable Computer System Simu-
lator, ' Proceedings of the Fourth Conference on Applications of
Simulation, December 1970,

Krasnow, H. S, Highlights of a Dynamic System Description Language,
TR-195, IBM, 1966,

Krasnow, H. S., & Merikallio, R. A. ''The Past, Present and Future
of General Simulation Languages,'' Management Science (Novem-
ber 1964), 236-267.

Krishnamoorthi, B,, & Wood, R. C. "Time-Shared Computer Operations
e« « , " JACM (July 1966), 317-338.

141

Lasser, D. J. '"Productivity of Multiprogrammed Computers, ' CACM
(December 1969), 678-684.

Lassettre, E. R., & Scherr, A. L. '""Modelling the Performance of
the OS/360 Time Sharing Option (TSO), " Statistical Computer
Performance Evaluation, Academic Press, 1972, 57-72.

Lehman, M. M., & Rosenfeld, J. L. '"Performance of a Simulated
Multiprogramming System, ' FJCC (1968), 1431-1442,

Licklider, J. C. R. '"Discussion on Simulation Models,' Computer
Methods in the Analysis of Large-Scale Social Systems, MIT
(1965), 163-165,

Llewellen, R, W. FORDYN--An Industrial Dynamics Simulator, North
Carolina State University, 1965.

Lock, K. "Structuring Programs for Multiprogram Time-Sharing On-
Line Applications,' FJCC (1965), 457-472,

Losapio, N. S., & Bulgren, W. G. '"Simulation of Dispatching Algo-
rithms in a Multiprogramming Environment,'" Proceedings of
ACM 1972 National Conference (1972), 903-913,

Lowe, T. C. '""Analysis of Boolean Program Models for Time-Shared,
Paged, Environments,'' CACM (April 1969), 199-205.

Lucas, H. C. '"Performance Evaluation and Monitoring, ' Computing
Surveys (July 1971), 79-92.

Liucas, H. C. "Synthetic Program Specifications for Performance
Evaluation,'" Research Paper 33, Graduate School of Business,
Stanford University.

Luderer, G. W. '"On Memory Usage under Multiprogramming,' Com-
puter (September-October 1972), 31-34.

Lundell, E. D. "GSA Restricts Simulation Use As Tool for Comparing
Systems, ' Computerworld (June 28, 1972), 1-2,

Lynch, W. C. "Operating Systems Performance,' CACM (July 1972),
579-585,

McArdell, R. T. '"Design Fundamentals of Transaction-Oriented Sys-
tem, " (Part I, II, & II[), Control Engineering (June-August 1967),
110-114, 79-82, 81-84,

142

MacDougall, M. H, "Computer System Simulation: An Introduction, "
Computing Surveys (September 1970), 191-210,

Mclssac, P. V. Time-Sharing Job Descriptions for Simulation, SDC-
TM-2713, SDC, November 4, 1965,

McKeag, R. M. Burroughs B5500 MCP, report in series Investigation
of Operating System Techniques, 1971.

McKinney, J. M. Optimization Problems Arising in Time-Shared Sys-
tems, AD 697 788, September 1969,

McKinney, J. M. "A Survey of Analytical Time-Sharing Models, "
Computing Surveys (June 1969), 105-116,

McNeley, J. '"'Simulation Languages,' Simulation (August 1967), 95-98,

Maher, R. J. ''"Principles of Storage Allocation in a Multiprocessor
Multiprogrammed System, ' CACM (October 1961), 421-422,

Manacher, G. K. '"Production and Stabilization of Real-Time Task
Schedules, ' JACM (July 1967), 439-465.

Markowitz, H. M. '"Simulating with SIMSCRIPT, " Management Science
(June 1966), 396-409,

Markowitz, H. M., Hausner, B., & Karr, H. SIMSCRIPT, A Simula-
tion Programming Language, Prentice-Hall, 1963.

Marshall, B, S. ''Dynamic Calculation of Dispatching Priorities under
0S/360 MVT, "' Datamation (August 1969), 93-97.

Martin, F. F. Computer Modeling and Simulation, Wiley, 1968,

Menon, M. V. "Problem Concerning a Central Storage Device Served
by Multiple Terminals, ' JACM (July 1965), 350-355,

Merikallio, R. A,, & Holland, F. C. ''Simulation Design of a Multi-
processing System,'' FJCC (1968), 1399-1410,

Meyerhoff, A. J., Routh, P. F., & Troy, J. P. BOSS, Applications
Manual, Burroughs, July 19, 1968,

Mills, H. "Top-Down Programming in Large Systems,' Debugging
Techniques in Large Systems (1971), 41-56,

143

Mittman, A. B. SPURT Users' Guide, Northwestern University, 1969.

Moberg, L. V. "An Executive System for On-Line Programming on a
Small-Scale System, " FJCC (1967), 243-254,

Morenoff, E., & McLean, J. B. 'Inter-program Communications,
Program String Structures, and Buffer Files,' SJICC (1967),
175-183.

Morganstein, S. J., Winograd, J., & Herman, R, SIM/6l. . . . ,"
ACM SIGOPS Workshop on System Performance Evaluation
(April 1971), 142-172,

Morris, J. B. '"Demand Paging through Utilization of Working Sets on
the MANIAC II,!" CACM (October 1972), 867-872,

Morse, P. M. Queues, Inventories, and Maintenance, Wiley, 1958.

Muntz, R. R., & Coffman, E. G. 'Optimal Preemptive Scheduling on
Two-Processor Systems,' IEEE Transactions on Computers
(November 1969), 1014-1020,

Nakamura, G. "A Feedback Queueing Model for an Interactive Com-
puter System, ' FJCC (1971), 57-64.

Nemeth, A, G., & Rovner, P. D. "User Program Measurement in a
Time-Shared Environment,'" CACM (October 1971), 661-667,

Nielsen, N. R. The Analysis of General Purpose Computer Time-
Sharing Systems. Ph.D. Dissertation, Stanford University,
1967.

Nielsen, N. R. ''Analysis of Some Time-Sharing Techniques,' CACM
(February 1971), 79-90.

Nielsen, N, R. B6500 Time-Sharing Design Study Data, ETM # 508,
October 1970.

Nielsen, N, R. B6500 Time-Sharing System Simulator, User's Refer-
ence Manual, ETM # 329, December 1969.

Nielsen, N. R. ""Computer Simulation of Computer System Perform-
ance,'' Proceedings of 22nd National ACM Conference (1967),
581-590.

144

Nielsen, N. R. ECSS: Extendable Computer System Simulator,
RAND CORPORATION, RM-6132-PR, January 1970.

Nielsen, N. R. '"The Simulation of Time-Sharing Systems,'" CACM
(July 1967), 397-412.

Noe, J. D. A Note on the Representation of Operating Systems, TR #
70-09-03, University of Washington, 1970,

Noe, J. D. "A PETRI Model of the CDC 6400,'" ACM SIGOPS Workshop
on System Performance Evaluation (April 1971), 362-378,

Noe, J. D. Systems Performance, Measurement, Prediction, Optimiza-
tion--Part 2, presented at Fall 1971 meeting of Cooperating Users
of Burroughs Equipment (CUBE).

Noe, J. D., & Nutt, G. J. '"Validation of a Trace-Driven CDC 6400
Simulation, ' SJCC (1972), 749-758.

O'Connor, T. J. Analysis of a Computer Time-Sharing System--A Simu-
lation Study. Ph.D. Dissertation, Stanford University, 1965.

O'Neill, R. W. "Experience Using a Time-Shared Multiprogramming
System with Dynamic Address Relocation Hardware, " SJCC
(1967), 611-621.

Ophler, A, '"Measurement of Software Characteristics,'" Datamation
(May 1964), 42-45.

Oppenheimer, G., & Weizer, N. ''Resource Management for a Medium
Scale Time-~Sharing Operating System,'" CACM (May 1968), 313-
322,

Ossanna, J. F., Mikus, T. E., & Danten, S. D. "Communications
and I/O Switching in a Multiplex Computing System, '' FJCC
(1965), 231-241,

Parente, R. J. A Language for Dynamic System Description, TR-180,
IBM, 1965,

Parente, R. J., & Krasnow, H. S. "A Language for Modeling and Simu-
lating Dynamic Systems,' CACM (September 1967), 559-567.

Parslow, R. D. "AS: An ALGOL Simulation Language,' Simulation
Programming Languages (1968), 86-100,

145

Parpudi, M., & Winograd, J. 'Interactive Task Behavior in a Time-
Sharing Environment,' Proceedings of ACM 1972 National Con-
ference (1972), 680-692,

Pass, E. M. "SNOOPY --A Software Monitor Device for B5700 Programs, "
paper presented at Fall 1971 meeting of Cooperating Users of
Burroughs Equipment,

Patrick, R. L., ''Measuring Performance, ' Datamation (July 1964),
24-26,

Penny, J. P. '""An Analysis, Both Theoretical and by Simulation, of a
Time-Shared Computer System,' The Computer Journal (May
1966), 53-59,

Petri, C. A. Transitional Networks, 1962,

Petroni, L, "On a Simulation Language Completely Defined Onto the
Programming Language PL/I," Simulation Programming Lang-
uages (1968), 305-318.

Pinkerton, T. B. 'Performance Monitoring in a Time-Sharing System, "
CACM (November 1969), 608-610.

Pinkerton, T, B. "Program Behavior and Control in Virtual Storage
Computer Systems,' CONCOMP Project Report 4, April 1968,

Pomerantz, A. G. 'Predict Your System's Fortune: Use Simulation
Crystal Ball,' Computer Decisions (June 1970), 16-19,

Poole, P, C. '"Some Aspects of the EGDON 3 Operating System for the
KDF 9, " IFIP (1968), 43-47,

Prittsker, A. A, B. JASP: A Simulation Language for a Time Shared
System, RM-6279-PR, Rand Corporation, June 1970.

Pugh, A, L. DYNAMO User's Manual, MIT, 1961,

Pugh, A, L, DYNAMO II User's Manual, MIT, 1970,

Purser, W, F. C. ''System Timing for On-Line Computer Control, "
Instrumentation Technology (January & February 1969), 41-46,
51-56,

146

Raichelson, E., & Collins, G. "A Method for Comparing the Internal
Operating Speeds of Computers, ' CACM (May 1964), 309-310,

Randell, B., & Kuehner, C. J. ''Dynamic Storage Allocation Schemes, "
CACM (May 1968), 297-306.

Randell, B. '"A Note on Storage Fragmentation and Program Segmenta-
tion,!'" CACM (July 1969), 365-369.

Rasch, P. J. "A Queueing Theory Study of Round-Robin Scheduling of
Time-Sharing Computer Systems,'" JACM (January 1970), 131-
145,

Rawlins, W. H., & Weller, M. F. '"Peripheral Optimization in Operat-
ing Systems, '' Honeywell Computer Journal (Summer 1968), 10-
19.

Rehmann, S. T., & Gangwere, S. G., Jr. "A Simulation Study of Re-
source Management in a Time-Sharing System, ' FJCC (1968),
1411-1430.

Reingold, E. M. ''Establishing Lower Bounds on Algorithms: A Sur-
vey,' SJCC (1972), 471-482,

Richards, P. Parallel Programming, Report TD-B60-37, Technical
Operation, Incorporated, 1960.

Rodriguez-Rosell, J. '"Experimental Data on How Program Behavior
Affects the Choice of Scheduler Parameters,' SIGOPS (June
1972), 156-163,

Rodriguez-Rosell, J., & Dupuy, J. 'Instrumentation for the Evaluation
of a Time-Sharing, Page Demand System,' SJCC (1972), 759-
766.

Rosen, S. ''"Electronic Computers: A Historical Survey,' Computing
Surveys (March 1969), 7-36.

Rosen, S. Programming Systems and Languages, McGraw-Hill, 1967.

Rosenberg, A. M. "The Brave New World of Time-Sharing Operating
Systems, ' Datamation (August 1969), 42-47,

Rosin, R. F. '"Determining a Computer Center Environment,'" CACM
(July 1965), 463-468.

StorageAllocationSchem.es

147

Rosin, R. F. '"'Supervisory and Monitor Systems,'' Computer Surveys
(March 1969), 37-54.

Roth, P, F. ""The BOSS Simulator--An Introduction, '"" Proceedings of
the Fourth Conference on Applications of Simulation, December
1970.

Ryder, K. D. "An Heuristic Approach to Task Dispatching, ' IBM Sys-
tems Journal (September 1970), 189-198.

Saaty, T. L. Elements of Queuing Theory, McGraw-Hill, 1961.

Saltzer, J. H., Traffic Control in a Multiplexed Computer System.
Ph.D. Dissertation, MAC-TR-30, MIT, July 1966.

Saltzer, J. H., & Giotell, J. W, '"The Instrumentation of MULTICS, "
CACM (August 1970), 495-500, and Proceedings of Second ACM
Symposium on Operating Systems Principles (October 1969),
167-174.

Sayers, A. P. Operating Systems Survey, Auerbach, 1971,

Sayre, D. 'Is Automatic Folding of Programs Efficient Enough to Dis-
place Manual?'" CACM (December 1969), 656-660,

Scherr, A. L. '"Analysis of Main Storage Fragmentation,' Proceedings

of IBM Symposium on Storage Hierarchy Systems, TR-00-1556
(December 1966), 159-174.,

Scherr, A, L. An Analysis of Time-Shared Computer Systems. Ph.D.
Dissertation, MAC-TR-18, MIT, 1965.

Scherr, A. L. '"Time Sharing Measurement,' Datamation (April 1966),
22-26;

Schrage, L. E., & Miller, L. W. '""The Queue M/G/1 with the Shortest
Remaining Processing Time Discipline,' Operations Research
(July-August 1966), 670-684,

Schrage, L. E. Queuing Models for a Time-Shared Facility. Ph.D.
Dissertation, Cornell University, February 1966.

Schulman, F. D. '"Hardware Measurement Device for IBM System/360
Time-Sharing Evaluation,'" Proceedings 0f1967 National ACM
Meeting (1967), 103-109.

148

Schwartz, E. S. '"Computer Evaluation and Selection, ' Journal of
Data Management (June 1968), 264-279.

Schwetman, H., D. A Study of Resource Utilization and Performance
Evaluation of Large-Scale Computer Systems. Ph.D. Disser-
tation, University of Texas at Austin, 1970,

Schwetman, H., D., & Brown, J. C. "An Experimental Study of Com-
puter System Performance,' Proceedings of ACM 1972 Na-
tional Conference (1972), 693-703,

Seaman, P. H., & Soucy, R. C. ''Simulating Operating Systems, "
IBM Systems Journal (October 1969), 264-279,

Selwyn, L. L. '"Computer Resource Accounting in a Time-Sharing
Environment,'" SJCC (1970), 119-130.

Sewald, M. D,, Rauch, M. E., Rodiek, L., & Wertz, L. A. "A
Pragmatic Approach to Systems Measurement, '" Computer
Decisions (July 1971), 38-40,

Sharpe, W. F. The Economics of Computers, Columbia University
Press, 1969,

Shedler, G. S., & Yang, S. C. ''Simulation of a Model of Paging
System Performance,' IBM Systems Journal (April 1971),

113-128,

Shemer, J. E. '"Some Mathematical Considerations of Time-Sharing
Scheduling Algorithms, ' Journal of the ACM (April 1967), 262-
272,

Shemer, J. E., & Heying, D. W. "Performance Modeling and Empiri-
cal Measurements in a System Designed for Batch and Time-
Sharing Users,'" FJCC (1969), 17-28.

Shemer, J. E., & Robertson, J. B. ''Instrumentation in Time-Shared
Systems, ' Computer (July-August 1972), 39-48,

Sherman, S., Browne, J., & Baskett, F. '"Trace-Driven Modeling and
Analysis of CPU Scheduling in a Multiprogrammed System, "
ACM Workshop on Systems Performance Evaluation (April 1971),
]73“199-

149

Sherman, S., Baskett, F., & Browne, J. "Trace-Driven Modeling
and Analysis of CPU Scheduling in a Multiprogramming Sys-
tem,' CACM (December 1972), 1063-1069.

Shoshani, A,, & Coffman, E. G. Sequencing Tasks in Multiprocess,
Multiple Resource Systems to Avoid Deadlock, TR-78,

Princeton University, 1969.

Shoshani, A., & Coffman, E. G. Detection, Prevention, and Recovery
from Deadlocks in Multiprocess, Multiple Resource Systems,
TR-80, Princeton University, 1969.

Smith, J. L. "An Analysis of Time-Sharing Computer Systems Using
Markov Models, ' SJICC (1966), 87-95.

Smith, J. L. "Multiprogramming under a Page-on-Demand Strategy, '
CACM (October 1967), 636-646,

Smith, J. M. "A Review and Comparison of Certain Methods of Com-
puter Performance Evaluation,' The Computer Bulletin (May
1968), 13-18.

Software Products Corporation. A Technical Description of the CASE
System, Software Products Corporation, Virginia, 1968.

Statland, N. ''Methods of Evaluating Computer Systems Performance,
Computers and Automation (February 1964), 18-23,

Standeven, J., Bowden, K. F., & Edwards, D. B. G. "An Operating
System for a Small Computer Providing Time Shared Data Col-
lection, Computing, and Control Functions,' IFIP (1968), 55-
59.

Stang, H., & Southgate, P. '"Performance Evaluation of Third-
Generation Computing Systems, ' Datamation (November 1969),
].81 -] 900

Stanley, W. I. ''Measurement of System Operational Statistics,' IBM
Systems Journal (1969), 299-308,

Stanley, W. I., & Hertel, H. F. 'Statistics Gathering and Simulation
for the Apollo Real-Time Operating Systems,'' IBM Systems
Journal (1968), 85-102,

150

Stevens, D, F. "On Overcoming High-Priority Paralysis in Multi-
programming Systems: A Case Study,' CACM (August 1968),
539-54],

Stevens, D. F., ''System Evaluation on the Control Data 6600,' IFIP
(August 1968), C34-38.

Stimler, S. '"'Some Criteria for Time-Sharing System Performance, "
CACM (January 1969), 47-53.

Stimler, S., & Brons, K. A, '""A Methodology for Calculating and Opti-
mizing Real-Time System Performance,'" CACM (August 1968),
509-516.

Stone, D. L., & Turner, R. 'Disk Thruput Estimation,' Proceedings
of ACM 1972 National Conference (1972), 704-711,

Strachey, C. !'"System Analysis and Programming,' Information (1966),
56-75.

Strauss, J. C. "A Simple Thruput and Response Model of EXEC 8
under Swapping Saturation,' FJCC (1971), 39-50.

Teichrow, D.,, & Lubin, J. F. "Computer Simulation. ,
CACM (October 1966), 723-741,

Teory, T. J., & Pinkerton, T. B, "Comparative Analysis of Disk
Scheduling Policies, ! SIGOPS (June 1972), 114-121,

Tetzlaff, W. H., Cooperman, J, A,, & Lynch, W. A. "SPG: An Ef-
fective Use of Performance and Usage Data,' Computer (Sep-
tember-October 1972), 20-23,

Thompson, W. C. '"The Application of Simulation in Computer System
Design and Optimization,' Second Conference on the Applications
of Simulation (1968), 286-290,

Tocher, K. D. '""Review of Simulation Languages,' Operational Re-
search Quarterly (June 1965), 189-217.

Tocher, K. D., & Hopkins, D. A. ''New Developments in Simulation, "
Proceedings of Third International Conference on Operations

Research (1963), 832-848,

151

Tocher, K, D., & Owen, D. G, '"The Automatic Programming of
Simulations,!" Proceedings of Second International Conference
on Operations Research (1960), 50-68,

Tonik, A. B. '"'Development of Executive Routines, Both Hardware and
Software,! FJCC (1967), 395-408,

Torgerson, P. E., et al. '"Introducing Queuing Concepts: A Simula-
tion Approach,' JIE (May 1967), 328-333,

Totaro, J. B. ""Real-Time Processing Power: A Standardized Evalu-
ation,'" Computers and Automation (April 1967), 16-19,

Totschek, R. A. A User-Oriented Priority Scheme for a Time-
Sharing System, SDC-SP-211, SDC, June 14, 1965,

Totschek, R. A. An Empirical Investigation into the Behavior of the
SDC Time-Sharing System, AD622003 or SP2191, SDC, 1965,

Trachtenberg, M. '"Problems of Evaluating Operating Systems, ' Pro-
ceedings of 1968 DPMA Conference (1968), 21-27.

Turski, W. M, '"SODA--A Dual Activity Operating System, " Computer
Journal (August 1968), 148-156.

Ullman, J. D. The Performance of a Memory Allocation Algorithm,
Technical Report Number 100, Princeton University, 1971.

UNIVAC. "EXEC 8 Software Instrumentation,! UNIVAC Systems Pro-
gramming Fall USE Conference, pp. 7-53-7-73.

UNIVAC, UNS-Network Simulator Programmer's Reference, UP7548,
UNIVAC, 1967.

UNIVAC, UNIVAC 1100 Series Executive Programmer Reference Man-
ual, 1971.

UNIVAC. 1108 ALGOL Programmer's Reference, UP7544 Rev 1,
UNIVAC, 1970,

UNIVAC. 1108 SIMULA Programmer's Reference, UP7556 Rev 1,
UNIVAC, 1971.

Van Felder, M. K., & England, A, W. "A Primer on Priority Inter-
rupt Systems, ' Control Engineering (March 1969), 101-105.

152

Van Horn, E, C. Computer Design for Asychronously Reproducible
Multiprocessing. Ph.D. Dissertation, MIT, 1966.

Varian, L,, & Coffman, E. G. '"An Empirical Study of the Behavior of
Programs in a Paging Environment,' Proceedings ACM Sym-
posium on Operating System Principles, October 1967,

Varney, R, C. ''Process Selection in an Hierarchial Operating System, "'
SIGOPS (June 1972), 106-108,

Wald, B. Throughput and Cost Effectiveness of Monoprogrammed,
Multiprogrammed, and Multiprocessing Digital Computers,
AD654384, U, S. Navy, 1967.

Walter, C. J., et al. '"Impact of Fourth Generation Software on Hard-
ware Design, " IEEE Computer Group News (July 1968), 1-10,

Walter, E. S., & Wallace, V. L. '"Further Analysis of a Computing
Center Environment,'" CACM (May 1967), 266-272.

Warner, C. D. '"Monitoring--A Key to Cost Efficiency,' Datamation
(January 1, 1971), 40-49.

Watson, R. A, Measurement and Analysis of Computer System Per-
formance, RAND CORPORATION, R-573-NASA/PR, Decem-
ber 1971,

Weaner, D, G. "QUIKSIM--A Block Structured Simulation Language
Written in SIMSCRIPT, " Proceedings of Third Conference on
Application of Simulation (1969), 1-11.

Wegner, P. Programming Languages, Information Structures, and
Machine Organization, McGraw-Hill (1969), 56-58,

Weik, M. H. Standard Dictionary of Computers and Information Pro-
cessing, Hayden, 1969.

Weil, J. W. '"A Heuristic for Page Turning in a Multiprogrammed
Computer,'" CACM (September 1962), 480-481.

White, P. '"Relative Effects of Central Processor and Input/Output
Speeds upon Throughput on the Large Computer,' CACM
(December 1964), 711-714,

Wichmann, B. A, "A Modular Operating System, ' IFIP (1968), 48-54,

Wickland, G. A. SIMQUEUE--A Queuing Simulation Model, WP Series
69-13, University of Jowa, July 1969,

Wiener, J., & De Marco, T. '"Tuning for Performance,' Modern
Data (January 1970), 54,

Wilkes, M. V. "A Model for Core Space Allocation in a Time-Sharing
System,'" SJCC (1969), 265-271.

Wilkes, M. V. "Automatic Load Adjustment in Time-Sharing Systems, "
ACM Workshop on Systems Performance Evaluation (April 1971),
308-320,

Wilkes, M. V. "The Design of Multiple-Access Computer Systems, "
(Part 1 and Part 2), Computer Journal (May 1967), 1-9,

Wilkes, M. V. Time-Sharing Computer Systems, Elsevier, 1968.

Williams, J. G. '"Experiments in Page Activity Determination, "
SJCC (1972), 739-748.

Williams, J. W. J. "ESP--The Elliott Simulator Package, ' Computer
Journal (January 1964), 328-331.

Williams, O., et al. "A Methodology for Computer Selection Studies, '
Computers and Automation (May 1963), 18-23,

Winograd, J., Morganstein, S. J., & Herman, R. "Simulation Studies
of a Virtual Memory, Time Shared, Demand Paging Operating
System, '" SIGOPS (June 1972), 149-155,

Wirth, N. '""Machine Coding, Multiprocessing, and Machine Organiza-
tion,'" CACM (September 1969), 489-498.

Wood, D. C., & Forman, E. H. "Throughput Measurement Using A
Synthetic Job Stream,'" FJCC (1971), 51-56,

Wood, T. C. "A Generalized Supervisor for a Time-Shared Operating
System, ' FJCC (1967), 209-214,

Wulf, W. A, "Performance Monitors for Multiprogramming Systems, "
Proceedings of Second Symposium on Operating Systems
(October 1969), 175-181.

154

Wyatt, J. B., & Dewan, P. B. OSSL--Operating Systems Simulation
Language--A User's Guide, University of Houston, November
1971,

Yeh, A. C. '""An Application of Statistical Methodology in the Study of
Computer System Performance, '" Statistical Computer Perform-
ance Evaluation, Academic Press, 1972, 287-328.

Youchak, M. S., Rudie, D. D., & Johnson, E. J. '""The Data Process-
ing System Simulator (DPSS),'" FJCC (1964), 251-276.

Yourdon, E. "An Approach to Measuring a Time-Sharing System, "
Datamation (April 1969), 124-126,

Ziegler, J. R. Time-Sharing Data Processing Systems, Prentice-Hall,
1967.

Ziegler, J. R. '"Time-sharing & Software,' Data Processing Maga-
zine (September 1966), 38-40,.

Zunich, L, H. "Study of OS-360-MVT SYSTEM-S CPU Timing,"
SHARE Computer Measurement and Evaluation Newsletter,
February 7, 1970,

155

VITA

Edgar M. (Bud) Pass was born September 13, 1945, in Atlanta,
Georgia. In 1963 he was graduated from East Atlanta High School as
valedictorian., In 1967 he was graduated from Georgia Institute of
Technology with the degree of Bachelor of Science in Applied Mathe-
matics. In 1968 he was graduated from the same institution with the
degree of Master of Science in Information Science.

During the years of 1965 to 1972, he worked for the Rich Elec-
tronic Computer Center at Georgia Institute of Technology as a systems
programmer primarily responsible for the maintenance of the Bur-
roughs B5700 software. During those years and to the present, he also
functioned as an independent consultant in the field of computer appli-
cations, developing such systems as credit card payment automation,
motor carrier rate and mileage computation, the automatic conversion
of ink-print text into Braille, a large online inventory system, and a
large state tax-collection information system. Also, from 1968 to
1971 he taught graduate courses in the area of analysis and design of
computer operating systems for the School of Information and Computer

Science.

