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   Abstract  

This paper documents an approach to conceptual and early
preliminary aircraft design in which system synthesis is
achieved using statistical methods, specifically Design of
Experiments (DOE) and Response Surface Methodology
(RSM).  These methods are employed in order to more
efficiently search the design space for optimum
configurations.  In particular, a methodology
incorporating three uses of these techniques is presented.
First, response surface equations are formed which
represent aerodynamic analyses, in the form of regression
polynomials, which are more sophisticated than generally
available in early design stages.  Next, a regression
equation for an Overall Evaluation Criterion is constructed
for the purpose of constrained optimization at the system
level.  This optimization, though achieved in a innovative
way, is still traditional in that it is a point design
solution.  The methodology put forward here remedies this
by introducing uncertainty into the problem, resulting in
solutions which are probabilistic in nature.  DOE/RSM is
used for the third time in this setting.  The process is
demonstrated through a detailed aero-propulsion
optimization of a High Speed Civil Transport.
Fundamental goals of the methodology, then, are to
introduce higher fidelity disciplinary analyses to the
conceptual aircraft synthesis and provide a roadmap for
transitioning from point solutions to probabilistic designs
(and eventually robust ones).

I.    Introduction  

Over the past few years, a significant amount of
research has taken place on the topic of how to efficiently
design complex aerospace systems, especially as historical
databases (once the centerpiece of conceptual design)
become increasingly obsolete.  This obsolescence has
resulted from departures from traditional products
(configurations outside historical databases, changing
missions and functionalities, etc.) and processes
(manufacturing methods, information exchange, etc.).

This connection of product and process characterizations
form the heart of Integrated Product and Process Design
(IPPD).  To truly achieve the “Integrated” part of IPPD,
numerous groups have been conducting research under the
general term of Multidisciplinary Design Optimization
(MDO).  MDO has been defined as “A methodology for
the design of complex engineering systems that are
governed by mutually interacting physical phenomena and
made up of distinct interacting subsystems”.(1)  One of the
earliest and most well known approaches to executing
MDO was through the Global Sensitivity Equations
(GSE) approach, where “what  if” questions are answered
through so-called system sensitivity derivatives which
relate a system response to changes in design variables,
including the interactions of the disciplines involved.
Examples are seen in References 2 and 3, though there are
numerous others.  Reference 4 provides an excellent
survey of recent work and current tools being utilized by
MDO researchers.

So a key to successful MDO is developing means to
intelligently analyze these systems with mutually
interacting phenomena.  The strength of the GSE lies in
the determination of interactions between disciplines in a
structured and logical manner.  These interactions,
represented as sensitivities, can then be used as gradient
information in a traditional optimization exercise.  The
GSE approach, though, provides only local gradient
information and some of the derivatives may be difficult
to calculate.  Further, the point design paradigm is still
employed. Thus, others, including the authors in
Reference 5, have used the GSE approach in
combination/coordination with other techniques and tools
in an attempt to improve the process and give more
insight to the designer.  However, for conceptual level
vehicle synthesis, with numerous interacting disciplines,
many design variables (both continuous and discrete), and
often times large deviations from the baseline, an effective
and comprehensive methodology has not emerged.

This paper describes new developments which form
the initial execution of an evolving IPPD approach,
providing a potential solution to this methodology need.
The approach puts vehicle synthesis in its proper role of
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the integrator of the mutually interacting disciplines.
Traditional sizing and synthesis is generally performed
with first order tools due to the impracticability of
connecting complex codes together into an iterative sizing
code.  The use of statistical techniques in the proposed
method allows for more flexibility in searching a design
space by representing large amounts of knowledge (e.g.
complex, expensive analysis codes or physical
experiments) via response surface equations (RSEs).
Caveats in the use of statistical approximations in the
replacement of complex analysis include accuracy and
scope issues.  How well the fitted equations represent the
given data will be important in determining the validity of
the results.  Also, the RSEs are valid only in the design
space (multidimensional region bounded by the range
extremes for each design variable considered) for which
they were formed.  These issues will be revisited
throughout the remainder of this paper.

So then, the approach put forward here addresses a
multidisciplinary problem (the synthesis of an aircraft)
from an IPPD perspective, where the recomposition
portion of synthesis is executed using Design of
Experiments (DOE) and the above mentioned RSEs.
These techniques allow for the introduction of more
accurate contributing analysis into the synthesis and
sizing process.  RSEs have been used in the aerospace
field over the past several years by several groups.(6),(7),(8)

A key development presented here, however, is that a
systematic plan for incorporating RSEs directly into a
vehicle synthesis code as “model” equations has been
developed.  This process is demonstrated by modeling the
mission aerodynamics (i.e. vehicle drag as a function of
planform shape, overall geometry, and flight condition)
via RSEs, incorporating these RSEs into a synthesis
code, and then using this modified code to conduct a
system level optimization.  The key objective at the
system level is affordability.

Finally, the last step of the approach involves the
recognition that aircraft design is not truly deterministic in
nature.  Uncertainties, in a variety of forms, exist
throughout the design sequence.  Thus, a framework for
creating probabilistic solutions is presented which
transitions from the point design solution to one in the
form of a distribution.

II.   IPPD Approach to System Recomposition  

IPPD specifically brings together design and
manufacturing considerations.  Designing aircraft in an
IPPD (and Concurrent Engineering) framework could be
viewed as designing with a focus on affordability, which
implies an understanding of how the various discipline,
mission, design, and economic variables affect the
feasibility (“can it be built”) and viability (“should it be
built”) of an aircraft.  The Georgia Tech IPPD
methodology can best be viewed as a recomposition
process, employed once the various parts of the problem
have been broken down and analyzed.  In order to do this
recomposition in an meaningful way, Product and Process
design variables and constraints must be considered
simultaneously.  Product characteristics are those that
pertain directly to the subject of product design, such as

geometry, materials, propulsion systems, etc.  Process
characteristics, on the other hand, refer to those items
related to how the product is designed, produced, and
sustained over its lifetime.  A rational approach to
executing the integration process  takes the form of a
"Funnel", as illustrated in Figure 1.
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Figure 1:  Systematic Recomposition-
Implementing IPPD for Affordability

In essence, the Funnel represents a concurrent
recomposition process in which all of the various
disciplinary interactions, ideally, are accounted for during
"synthesis", or recomposition.  For this study, the
aerodynamic and propulsion disciplines were examined in
detail, and structures considerations being limited to
component weight estimation based on historical data
compiled in the sizing code FLOPS (FLight OPtimization
System)(9).  The first level in the funnel represents
fundamental design variables in each category.  These are
the parameters available to the engineer in formulating
configurations.  The importance of the next level, the
introduction of RSM, lies in two facts.  First, it allows
the formation of response equations which can be used to
replace complex simulation codes needed to arrive at a
point design optimum.  Second, as is illustrated at the
bottom of the figure, once economically viable
alternatives are synthesized, these RSEs can be used to
obtain the discipline metrics, such as L/D or SFC, which
correspond to the optimal configuration.  After the
equations are formed, this discipline level information is
used to perform system synthesis (with appropriate
constraints) through the use of a synthesis code.  What is
thus obtained are the various design variable settings
which correspond to the point design optimum (i.e. one
aircraft configuration) and a corresponding $/RPM value.
The $/RPM (average required yield per Revenue Passenger
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Mile) is the selected Overall Evaluation Criterion (OEC)
for commercial aircraft.  This metric implicitly represents
the ticket price, on a per mile basis, that an airline must
charge in order to achieve a specified return on investment
(ROI)  It also accounts for a required ROI for the
manufacturer of the aircraft.  

Unfortunately, this optimal OEC result can never be
achieved exactly due to economic factors which the
designer cannot control, such as market and airline
considerations.  These economic factors introduce
uncertainty to the design process resulting in a
distribution for $/RPM.  This distribution, or more
precisely its characteristics (such as mean and variance for
a normal distribution), is subsequently used to determine
if economic viability has been achieved based on a the
needs of the airline and manufacturer.  If not, a design
iteration (see Figure 1) is necessary.

The need for disciplinary approximations becomes
evident in Figure 1, as the connection of complicated
analysis tools  (e.g. CFD for aerodynamics, FEM for
structures, cycle analysis for propulsion, etc.) from each
discipline would be impractical.  Common design
variables, if they exist, between areas can be represented as
noise factors in the formation of particular RSEs.  For
example, the position of the engine nacelles, a decision
generally made by the structures  and propulsion and
engineers, is kept as a variable in the aerodynamic model
equation formation.  A brief review of the fundamentals of
DOE/RSM is presented next.  More detailed information
can be obtained from numerous references.(10),(11),(12),(14)

III.  Design of Experiments and
  the Response Surface Method  

Understanding the characteristics of the design space
and behavior of the proposed designs as efficiently as
possible is as important to the designer as finding the
numerical optimum.  This is particularly true for complex
aerospace systems which require multidisciplinary
analyses, a large investment of computing resources, and
intelligent data management.  As an alternative to standard
parametric approaches to design space search and complex
iterative optimization routines, the DOE/RSM application
developed here appears to have several advantages.  Before
applying the methods, the following paragraphs outline
the fundamentals of DOE/RSM.

The (RSM) comprises a group of statistical
techniques for empirical model building and exploitation.
By careful design and analysis of experiments, it seeks to
relate a response, or output variable, to the levels of a
number of predictors, or input variables.  In most cases,
the behavior of a measured or computed response is
governed by certain laws which can be approximated by a
deterministic relationship between the response and a set
of design variables; thus, it should be possible to
determine the best conditions (levels) of the factors to
optimize a desired output(11).  Unfortunately, many times
the relationship between response and predictors is either
too complex to determine or unknown, and an empirical
approach is necessary to determine the behavior.  The
strategy employed in such an approach is the basis of the
RSM.  In this paper, a second degree model of the selected

responses in k-variables is assumed to exist.  A notional
example of a second order model is displayed in Figure 2
for two variables x1 and x2.  

x1

x2

Figure 2: Second Order Response Surface Model

The second degree RSE takes the form of:
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where, bi are regression coefficients for the first degree
terms, bii are coefficients for the pure quadratic terms, bij
are coefficients for the cross-product terms (second order
interactions), and bo is the intercept term.  To facilitate the
discussion to follow, the components of equation (1) are
further defined.  The xi terms are the “main effects”, the
xi

2 terms are the “quadratic effects”, and the xixj are the
“second-order interaction terms”.

Since it is in a polynomial form (though other forms
are possible, e.g. exponential or logarithmic, through a
transformation of both the independent and dependent
variables), the RSE can be used in lieu of more
sophisticated, time consuming computations to predict
and/or optimize the response R. If one is optimizing on
R, the “optimal” settings for the design variables are
identified (through any number of techniques) and a
confirmation case is run using the actual simulation code
to verify the results.  Since the RSE is a regression curve,
though, a set of experimental or computer simulated data
must be available.  

One organized way of obtaining these data is the
aforementioned DOE, which is used to determine a table
of input variables and combinations of their levels
yielding a response value (but also encompasses other
procedures, like Analysis of Variance).  There are many
types of DOEs.  Table 1 displays a simple full factorial
example for three variables (or factors) at two levels, a
minimum and a maximum (sometimes also described as "-
1" and "+1" points).

Table 1:  Design of Experiment Example for a

two-level, 23  Factorial Design( 1 1 )

Factors
Run 1 2 3 Response

1 - - - y1
2 + - - y2
3 - + - y3
4 + + - y4
5 - - + y5
6 + - + y6
7 - + + y7
8 + + + y8
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The response can be any of a variety of metrics (such as
thrust, drag, pitching moment, weight, etc.), while the
design variables and their ranges  define the design space.
For the approach in this paper, the factors become input
variables to the analysis code, while the response is
generally the desired output of the program.

The same full factorial DOE approach can be used for
variables at three levels, requiring more runs but obtaining
more information by going from a linear representation to
a quadratic one.  On the other hand, evaluation of all
possible combinations of variables at two or three levels
increases the number of cases that need to be tested
exponentially, and thus quickly becomes impractical.  In
fact, testing 12 variables at three levels, their two
extremes and a center point, would take a total of 531,441
cases for a 312 factorial design.  

Table 2 illustrates that one way of decreasing the
number of experiments or simulation runs required is to
reduce the number of variables.  But as Table 2 also
displays, a 37 full factorial design still requires an
impractical 2,187 runs.  Hence, fractional factorial and
second order model designs (of which the Central
Composite is an example) are proposed as a more
plausible means to perform experiments.  Table 2
provides three examples.

Table 2:  Number of Cases for Different DOEs(11)

DOE 7 Varia-
bles

12 Varia-
bles

Equation

3-level,
Full Factorial

2,187 531,441
3
n

Central
Composite

143 4,121
2

n
+2n+1

Box- Behnken 62 2,187 -
D-Optimal

Design
36 91 (n+1)(n+2)/2

Fractional factorial DOEs use less information to
come up with results similar to full factorial designs.
This is accomplished by reducing the model to only
account for parameters of interest.  Therefore, fractional
factorial designs neglect third or higher order interactions
for an analysis (see RSE in Equation (1)), accounting only
for main and quadratic effects and second order interactions.

Thus, a tradeoff exists in fractional factorial designs.
The number of experiments or simulations (often referred
to as “cases”) grows as the increasing degree to which
interaction and/or high order effects are desired to be
estimated.  Since generally only a fraction of the full
factorial design number of cases can be run, high order
effects and interactions are not estimable.  They are said to
be confounded, or indistinguishable, from each other in
terms of their effect on the response.  This aspect of
fractional factorial designs is described by their resolution.
Resolution III implies that main effects are entirely
confounded with second order interactions.  Thus, one
must assume these interactions to be zero or negligible in
order to estimate the main effects.  Resolution IV
indicates that all main effects are estimable, though second
order interactions are confounded with other such
interactions.  Resolution V or greater means that both
main effects and second order interactions are estimable

(though for Resolution V designs, third order interactions
would be confounded with second order effects, hence must
be zero)(12).  The example presented in Section IV will
employ a Resolution V design for the RSEs.  

Problems in aircraft design typically have many
design variables, complicating sizing and optimization.
As a general approach in DOE/RSM, a first DOE is
performed in order to reduce the number of variables by
identifying the significant contributors to the response.
This exercise, termed a “screening test”, uses a two level
fractional DOE for testing a linear model, thus estimating
the main effects of the design variables on the response.
It allows for an investigation of a high number of
variables in order to gain an initial understanding of the
problem and the design space.

A visual way to see the results of this screening is
through a Pareto Chart(13), displayed in Figure 3.  It
identifies the most significant contributors to the response
based on the linear equation generated from the DOE data.
Bars indicates which variables contribute how much while
a line of cumulative contribution tracks the total response.
By defining the percentage of contribution desired, the
variables to be carried along to the RSE generation can be
determined from the array of variables in the Pareto Chart.

Term
LF
$-Fuel
ROI-A
U-Comp
ProdQ
#Pax
E-TF
LC
ROI-M
Util
R&S
LabRate
A-TF
Insur
TRT
Maint

Scaled Estimate
-0.0242133
0.02019050
0.01529961
-0.0093494
-0.0082122
-0.0071229
0.00690495
0.00495633
0.00471449
-0.0046931
0.00347228
0.00252888
-0.0023878
0.00090584
0.00048753
0.00036315

.2 .4 .6 .8

Figure 3:  Sample Pareto Chart - Effect of Design
Variables on the Response

After identifying the variables to be carried through to
an RSE, a particular type of DOE must be selected.  In
this study, the Central Composite Design (CCD), an
example of which is seen in Figure 4, was selected to
form the RSEs.  The particular CCD chosen is a five
level composite design formed by combining a two level
full or fractional factorial design with a set of axial or star
and center points as described in References 10 and 14.  It
is an economical design in terms of the number of runs
required, as Figure 4 illustrates by displaying a design for
three variables as a cube with star and center points.

Star points
Center point
Full factorial points

Figure 4:  Central Composite Design
 Illustration for Three Variables
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The distance between axial points describes the extent
of the design space. The center provides multiple
replicates, for estimating experimental error, which is
assumed non-existent for simulation-based analysis.
Hence, just one replicate is required for the center point.

Finally, with the Central Composite Design in hand,
an RSE can be obtained by using Equation (1) as a model
for regression on the generated data.  Unlike for true
experiments, a statistical environment without any error
can be assumed, so that all deviations from the predicted
values are true measures of a model fit.  A lack of fit
parameter for the model expresses how good the model
represents the true response.  A small lack of fit parameter
usually indicates existing higher order interactions not
accounted for in the model.  Depending on the level of
this lack of fit, a new design with a transformed model to
account for these interactions should be used.

IV.  Example:
   Aero-Propulsion Optimization for an HSCT  

With the IPPD method and accompanying DOE/RSM
tools described, the approach is now demonstrated via an
example: synthesis and optimization of a High Speed
Civil Transport.  Choosing a wing planform shape for a
supersonic transport is a task that to this day is still a
long and tedious one.  The need for efficient performance
at both sub- and supersonic cruise conditions exhibit
immediately the presence of conflicting design objectives.
Studies by Boeing and Lockheed during the 1970's for the
SuperSonic Transport (SST) program looked extensively
at this issue(15),(16).  In brief, one resulting conclusion was
that low aspect ratio, highly swept wings have low drag at
supersonic speeds (since the cranked leading edge serves to
provide subsonic type flow normal to the wing leading
edge).  Unfortunately, such planforms are poor in
subsonic cruise.   The variable sweep wing option had
complications involving reduced fuel volume and weight
and complexity penalties; thus this concept was never
seriously considered.  The so-called double delta emerged
as a compromise.  Here the outboard panel helps retain
some subsonic performance while keeping acceptable
supersonic cruise efficiency(15).  The study carried out
presently employs a DOE technique which models and
examines planforms ranging from the pure delta (arrow) to
the double delta.  

The trades involved in planform selection are
complicated by other discipline considerations (e.g.
propulsion) and the presence of design and performance
constraints at the system level which are directly related to
the wing.  The limit on approach speed, for example, is
mostly a function of wing loading.  Fuel volume
requirements impact the wing size and shape.  Both of
these issues become sizing criteria and both tend to
increase the wing in size.  Of course, increased wing area
brings with it higher induced and skin friction drag.
Terminal performance at takeoff and landing (especially
field length limitations) also present a challenge.
Increasing the low speed aerodynamic performance of the
aircraft will reap benefits for noise control through reduced
thrust and more modest climb rates.  The HSCT will need

its maximum C
L at takeoff, and the use of high lift

devices will play a major role in making that maximum
as high as possible.  For this study, a configuration of
flap settings was selected for the baseline aircraft based on
the SST studies and the takeoff and landing polars were
generated using the code AERO2S(19).

  Problem Formulation  

The problem consists of using the new techniques
outlined in Sections II and III in synthesizing and
eventually optimizing an HSCT type aircraft for a given
mission.  Improved aerodynamic procedures over what is
currently available in the synthesis code FLOPS are
incorporated via RSEs.  Next, an RSE for the overall
objective function ($/RPM) and several performance
constraints are generated and a constrained, point design
optimal solution (using aerodynamic and propulsion
design variables) is found.  Finally, steps necessary for
introducing and accounting for economic uncertainty are
described.  The execution of this uncertainty exercise is
described in Reference  8, also for an HSCT.

  Forming RSEs for Mission Drag  

The goal of introducing RSEs is to replace the
existing drag calculation in the synthesis code FLOPS.
As FLOPS is executing the input mission profile, it
requires calls to an aerodynamics module for drag at that
flight condition (M, h, CL).  Ordinarily FLOPS
determines drag by one of three methods: internal
calculations (based on the EDET aero prediction
program(9)), externally generated drag table, externally
generated polar equation.  Considering the functional form
of the drag polar equation:

C C k CD Do L= + ⋅2
2                 ( 2 )

RSEs for CDo and k2, are to be formed as a function of
design variables and operational Mach number.  Thus, the
total drag for a given aircraft configuration will still be a
function of Mach number and C

L
 as well as configuration

design variables.  
The first step in forming RSEs is to first conduct a

screening test.  Even with the computational advantages
brought by DOE, an excessive number of design variables
can make the RSE generation expensive/difficult (See
Table 2).  The design variables which are to make up the
RSE model for vehicle drag must be the ones which have
the most influence on the aerodynamic characteristics of
the airplane.  A screening test is designed to identify the
subset of design variables which contribute most to a
given response (i.e. the variables for which the response
has the highest sensitivity).  For all of the aerodynamic
analyses performed in this study, public domain tools
were used, including the Boeing Design and Analysis
Program (BDAP)(17) for supersonic drag due to lift
prediction and skin friction drag, WINGDES(18) for
optimum camber and twist, AERO2S(19) for subsonic drag
due to lift, and AWAVE(20) for fuselage area ruling.
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To begin the screening process, a parametric wing
planform definition scheme is selected which encompasses
the variety of wing shapes considered for a supersonic
transport, from a pure arrow wing to a kinked double
delta.  A summary of all the design variables selected can
be found in Figure 5.

Planform Variables
(Normalized by semi-span)

Other Design Variables
for the Aerodynamic Screening

xwing
t/c at root
t/c at tip

Nacelle Scaling
Horizontal Tail Area

CL Design
Root Airfoil (loc. max. thickn.)
Tip Airfoil (loc. max. thickn.)

Nacelle X-location
Wing Reference Area

(X1, Y1)

(X2,1)

(X3,1) (X4, Y1)
(X5, 0)

Xwing

naY1naY2

X-axis

Y-axis

(0,0)

Figure 5:  Aerodynamic Design Variable
S e l e c t i o n

Choosing meaningful ranges for the design variables
is critical.  On the one hand, the ranges should be
somewhat large to include the largest design space
possible and increase the chances that the eventual optimal
configuration is captured.  On the other hand, the range
must not be chosen so large as to reduce the prospects of a
good regression fit of the RSE to the actual highly non-
linear response.  Additionally, there are physical
restrictions which limit the range choices.  For example,
the wing at its aftmost location with longest root chord
must not interfere with the horizontal tail.  Table 3 shows
a summary of all design variables with their chosen
ranges.  Recall that planform variables are normalized by
span and their ranges are selected based on review of past
and present concepts.  Variable “xwing” is normalized by
fuselage length.  Note also that the screening test is a 2-
level (or linear) test.  Since we are not interested in
forming an equation just yet, the linear sensitivities are
expected to do just as well in determining which are the
most important contributors. A sampling of some shapes
investigated is shown in Figure 6.

Table 3:  Ranges for Aerodynamic
 Design Variables

Variable Symbol Low Bound Up. Bound

Kink, leading edge x-location X1 1.54 1.69
Tip, leading edge x-location X2 2.10 2.36
Tip, trailing edge x-location X3 2.40 2.58
Kink, trailing edge x-location X4 2.19 2.36
Kink, y-location Y1 0.44 0.58
Root Chord X5 2.19 2.50
Nacelle #1 y-location nay1 0.25 0.35
Nacelle #2 y-location nay2 0.45 0.55
Nacelle x-location nax 10.30 16.50
Wing Area (sq. ft.) S 8500 9500
Wing x-location xwing 0.25 0.33
Root t/c tci 2.70 3.30
Tip t/c tco 2.30 2.80
Nacelle Scaling nac 1.0 1.20
Area of Horizontal Tail (sq. ft.) S-tail 400 750
CL Design Cl-desig. 0.08 0.12
Loc. of max thickness, Root iaf 0.50 0.60

24e

Figure 6:  Variety of Planform Possibilities for
HSCT Example

Two 2-level experiments are conducted, one each for
the two selected responses (CDo, k2) and the results are
visually inspected via the aforementioned Pareto Chart, an
example of which appears in Figure 7 for the M=2.4 case
as an example.  As explained in Section III, the important
information in the Pareto Chart is the relative importance
of each term, as illustrated graphically by the cumulative
bar chart.  The scaled estimates listed in the figure are
actual regression coefficients for the linear equation
formed, though this equation is not used.

Pareto Plot of Scaled Estimates
Term
nal
S
S-tail
nay2
xwing
tci
nay1
X5
Y1
X1
tco
oaf
nax
X2
iaf
X3
X4

Scaled Estimate
0.00029964
-0.0001615
0.00013194
-0.0001070
0.00008539
0.00007739
0.00007450
0.00006732
0.00003904
-0.0000382
0.00003049
-0.0000234
-0.0000228
0.00001856
-0.0000039
0.00000258
0.00000038

.2 .4 .6 .8

Figure 7:  Screening of Aerodynamic Variables
for C D o , Mach 2.4

Table 4 shows some sample screening results for
both sub- and supersonic screening.  Often, screening tests
confirm a designer’s intuition as to which parameters are
important.  However, some important variables identified
require further thought.  For example, the area of the
horizontal tail (S-tail) is important for the drag due to lift
at supersonic speeds.  In this case, it most probably is due
to the comparatively large range chosen for this parameter,
since tail area, intuitively, should not contribute greatly to
drag due to lift.  One might consider refining variable
ranges in light of such conclusions.  Other variables,
however, clearly proved their importance.  For example,
the spanwise location of the kink (y1) was the most
contributing parameter for lift induced drag in the subsonic
flight regime.  The outboard wing section with low sweep
angle is the efficient source of lift in subsonic flight
whereas in supersonic conditions it is more of a drag
penalty.  Once the screening results are collected, the RSE
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generation is performed with the identified most
contributing parameters, leaving the others fixed at their
nominal values.

Table 4:  Results of Screening Tests:
The Important Variables

Supersonic
 k2

Subsonic
k2

Supersonic
CDo

Subsonic
CDo

Stail y1 Stail nac

y1 x1 S y1
x1 x2 tci x1
x3 x5 x5 x4
x5 x-wing x-wing x-wing

CLdesign CLdesign CLdesign CLdesign
nay1
nay2
nac

With the number of variables now shrunk to a
manageable level, a new DOE is set up to generate the
data to be used in forming the actual response equations
for C

Do
 and k

2.  Since drag varies with Mach number
which itself varies throughout the mission, it was decided
that including Mach number as a variable in the RSE
models for drag would add another nonlinearity to the
already nonlinear model, thus complicating the fitting
process.  Therefore, RSEs for C

Do
 and k

2
 are to be formed

for a series of Mach numbers covering the expected
operational speed range of the aircraft.  

So then, following the procedure outlined in Section
III, a 5-level Central Composite Design is constructed and
the resulting series of simulation runs are executed using
the aerodynamic analysis tools listed in Appendix A.  The
data generated is used to form the second-order polynomial
RSEs for each of the two responses in the polar equation
at each of the operational Mach numbers.  A sample
listing of the regression coefficients, or the “b(*)”, for one
of the RSEs is shown in Figure 8 under the heading
“Estimate”.

Parameter Estimates

T e r m E s t i m a t e Std Error t Ratio Prob> | t |
In te rcep t -5 .8 7 8 8 1 3 5 .3 7 2 9 2 1 - 1 . 0 9 0 .2891
x 1 2 .3984876 2 .573549 0 . 9 3 0 . 3 6 4 4
x 3 2 .3956492 2 .503083 0 . 9 6 0 . 3 5 1 9
y 1 -0 .6 7 4 0 6 8 1 .9 6 3 6 0 3 - 0 . 3 4 0 .7356
x 5 1 .1983904 1 .05529 1 . 1 4 0 . 2 7 1 9
S-Tail - 0 . 0 0 0 4 1 5 0 .0 0 0 7 4 5 - 0 . 5 6 0 .5846
CLDes 8 .6087716 6 .640273 1 . 3 0 0 . 2 1 2 1
x1*x1 - 0 .9 3 3 0 8 0 0 .6 6 1 5 9 7 - 1 . 4 1 0 .1765

x3*x1 0 .4738990 0 .484103 0 . 9 8 0 . 3 4 1 3
x3*x3 - 0 .7 0 1 5 5 3 0 .4 5 9 4 4 3 - 1 . 5 3 0 .1452
y1*x1 2 .240618 0 .622419 3 . 6 0 0 . 0 0 2 2
y1*x3 -1 .0 1 3 8 3 5 0 .5 1 8 6 8 2 - 1 . 9 5 0 .0673
y1*y1 -1 .6 7 8 3 8 3 0 .7 5 9 4 8 7 - 2 . 2 1 0 .0411
x5*x1 -0 .6 9 6 1 3 2 0 .2 8 1 0 9 2 - 2 . 4 8 0 .0241
x5*x3 0 .3819572 0 .234244 1 . 6 3 0 . 1 2 1 4
x5*y1 0 .5088605 0 .301170 1 . 6 9 0 . 1 0 9 4
x5*x5 - 0 .2 5 7 2 3 5 0 .1 5 4 9 0 1 - 1 . 6 6 0 .1151
S-Tail*x1 0 .0003073 0 .000249 1 . 2 3 0 . 2 3 3 9
S-Tail*x3 0 .0000541 0 .000207 0 . 2 6 0 . 7 9 7 5
S-Tail*y1 - 0 .0 0 0 3 5 5 0 .0 0 0 2 6 7 - 1 . 3 3 0 .2008

S-Tail*x5 0 .0000482 0 .000120 0 . 4 0 0 . 6 9 4 0
S-Tail*S-Tail - 1 . 8 1 4 e - 7 1 . 2 1 5 e - 7 - 1 . 4 9 0 .1538
CLDes*x1 -1 .8 9 1 5 0 4 2 .1 7 8 4 6 4 - 0 . 8 7 0 .3973
CLDes*x3 -1 .3 3 1 7 0 5 1 .8 1 5 3 8 7 - 0 . 7 3 0 .4732
CLDes*y1 1 .7865949 2 .334069 0 . 7 7 0 . 4 5 4 5
CLDes*x5 - 0 .4 8 1 9 4 4 1 .0 5 4 0 9 6 - 0 . 4 6 0 .6533
CLDes*S-Tail 0 .0002250 0 .000934 0 . 2 4 0 . 8 1 2 4
CLDes*CLDes - 1 1 .2 0 0 1 9 9 .3 0 3 7 1 3 - 1 . 2 0 0 .2451

Figure 8:  Response Surface Equation
 for k2 at M=2.4

These are the actual coefficients which, along with the
design variables, make up the RSE of the form of
Equation (1).  The “t-Ratio” and the “Prob>|t|” are
statistical measures reporting the importance of each term
to the regression equation.

There are several ways to validate the accuracy of the
RSEs.  The Whole Model Test in Figure 9 is a plot of the
actual response values for k

2
 over the predicted values,

based on the second order model for the RSE at M=2.4.
The straight line indicates a perfect fit, i.e. all predicted
values are equal to the actual for the same levels of input
variables.  As illustrated in Figure 9, the regression model
predicts the values for k

2
 quite well, since all data points

are rather close to the straight line.  This model fit
corresponds to an R-square value of 0.973728.  The R-
square value is the square of the correlation between the
actual and predicted response.  Thus, an R-square value of
one means that all the errors are zero (i.e. a perfect fit)(11).
The dotted lines indicate the confidence interval for the
model, showing a small range with no points falling
outside of this range.  

The quantification of statistical error is based on the
assumption that the residuals will be normally distributed.
The Residual Plot on the right side of Figure 9 is an
important verification for the assumption of normality.
The residuals are plotted against predicted values for k

2
,

based on the assumed model.  A "cloud" of data points,
indicating no particular pattern, confirms the validity of
the normality assumption for residuals.

k2
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)
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Figure 9:  Whole Model Fit Test- A Validation

Once the series of RSEs representing parametric drag
polars are obtained, the task is now to insert them into the
synthesis code as the new “aerodynamics module”.

  Incorporating RSEs into Synthesis Code  

FLOPS (FLight OPtimization System) is the code
selected to perform the vehicle sizing portion of the design
methodology shown in Figure 1.  FLOPS, developed by
NASA Langley Research Center, a multidisciplinary
sizing tool used to assist in the conceptual and early
preliminary design process(9).  FLOPS contains nine
modules for aircraft synthesis: weights, aerodynamics,
engine cycle analysis, propulsion data scaling and
interpolation, mission performance, takeoff and landing,
noise footprint, cost analysis, and program control.  For a
given initial gross weight estimate, FLOPS flies the
input mission profile incrementally, comparing at the end
the fuel expended versus the fuel available.  This process
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is repeated (sizing iteration) until fuel balance is achieved.
The code does have its own optimization routine, which
allows for the variation of aerodynamic shaping variables
such as taper, sweep, aspect ratio, and wing area.  But for
wing shapes such as those seen in Figure 6, variables like
aspect ratio and sweep are not sufficient to uniquely define
a cranked, variable sweep planform.

Key to correct sizing, then, is an accurate
aerodynamic performance model.  Unfortunately, for
supersonic transport applications (with cranked wing
planforms), FLOPS does not model the aerodynamic
performance very well, generally because its routines were
tailored to high aspect ratio, subsonic type planforms.
This was an additional motivation (besides the general
increase in aerodynamic analysis fidelity) for replacing the
mission drag prediction with the RSEs.  FLOPS does
give the user the option to insert an externally derived
series of polars.  Of course, these polars apply only to a
single configuration.  To analyze a new configuration, a
whole new set of polars would have to be generated and
inserted manually via the input file, making any attempt
of planform optimization difficult.

Alternatively, the use of RSM overcomes the
limitations of using a single aerodynamic deck for each
corresponding configuration.  Further, the RSE drag
models give the user the ability to optimize a
configuration without regenerating aerodynamic decks (for
each iteration).  FLOPS was modified so that whenever a
call was made to the aerodynamics module for drag, the
appropriate RSEs (C

Do
 and k

2
) were evaluated for the

current flight condition and design variable settings.  In
effect, the RSE has captured the essence of a complex
external aerodynamic analysis and ported this capability to
the synthesis level.  This process is depicted in Figure 10.

Drag Polars
CDo = fcn(M, geometry)
K=fcn(M, geometry, CL)

created from analysis

Response Surface Equations

Modified FLOPS
$Namelist and coding

A Preliminary Design
FLOPS

Synthesis Code

CL

CD

CDo = bo + bi∑ xi + bii∑ xi
2 +. ..

K 2 = bo + bi∑ xi + bii∑ xi
2 +...

Figure 10:  Incorporating Aerodynamic RSEs
into FLOPS

   Constrained AeroPropulsion Optimization  

Revisiting Figure 1, it is seen that once RSEs for the
discipline(s) are formed, the optimization process, given a
mission definition, can proceed.  So, attention turns
toward the system level sizing and optimization problem
involving both aerodynamic and propulsion
considerations.  Once again a DOE/RSM approach is
employed, this time for the purpose of optimizing the
system level objective, $/RPM, (as opposed to the
modeling function represented by the aerodynamic RSEs)
given 11 design variables.  After determining variable
ranges, a DOE for the generation of simulation results

was selected.  Since 11 variables, even in the DOE
scheme, require many cases, the Central Composite
Design (CCD) was selected to generate a minimum
number of data points required to produce a quadratic
estimation equation.  Use of the fractional factorial CCD
with eleven variables at 5 levels requires 151 simulation
runs, if an additional center point is added and the cube
design has Resolution V (see Section III).

FLOPS either attempts to complete the given
mission with a specified engine or, if the user requests,
sizes the engine (based on a given cycle) in order to
complete the mission.  The cycle itself is defined by
certain key parameters: the Overall Pressure Ratio (OPR),
the Fan Pressure ratio (FPR), the Turbine Inlet
Temperature (TIT), and Bypass Pressure Ratio (BPR).
The engine cycle analysis capability in FLOPS is
sufficient for modeling a Mixed Flow TurboFan (such as
the one proposed here in the HSCT example) and contains
a fully operational ability to optimize an engine using the
four selected cycle variables above.  Thus, no RSEs for
propulsion responses were required.  Compressor and
turbine component maps, which describe the component’s
off-design performance, are generated externally and
provided to FLOPS at run time.  Other data such as
control laws, correct component map addresses, engine
cycle constraints, and engine configuration are provided
externally as well.

Next, the design variables for the optimization and
their ranges are selected and shown in Table 5, based on
experience gained during the aerodynamic RSE
construction and previous supersonic transport studies.
The ranges represent the outer points of the design space
spanned by the star points of the CCD.  Note that all
variables included here are either aerodynamic or
propulsion variables.  Incorporation of RSEs into the
simulation process which capture the effect of structures,
manufacturing, and stability/control was not addressed
here.  It is, however, an interesting and important topic
for future research, in order to fully complete the
recomposition outlined in Figure 1.  Also, for this study,
parameters such as number of passengers (300) and design
range (5000 nm) are fixed.

Table 5:  Design Variables for the Aero-
Propulsion Optimization

Aero / Prop. Variables
Lower
Bound

Upper
Bound

X1 1.54 1.62
X3 2.48 2.58
Y1 0.50 0.58
X5 2.19 2.35
S 8500 sq. ft 9500 sq. ft

xwing. 0.25 0.29
T/W 0.28 0.32
TIT 3000 ˚R 3250 ˚R
OPR 19 21
FPR 3.5 4.5
BPR 0.35 0.45

Figure 11 illustrates the sizing mission, a split
subsonic-supersonic 5000nm profile consistent with the
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current requirement of subsonic flight over populated land.
The stages of the mission are modeled in FLOPS, which
then executes it, iterating on gross weight (by adding or
subtracting fuel) until convergence.

~ 50,000 ft.

~ 58,000 ft.M = 2.4

M = 0.85
~ 35,000 ft. LOITER

M = 0.6
25000 ft.
30 min.

CLIMB

CRUISE

CLIMB

CRUISE

DESCENT

RESERVE

M = 0.6
25000 ft.

TAXI & T.O.
F.L. = 11000 ft.
S.D. & S.L.

LAND
F.L. = 11000 ft.
S.D. & S.L.

ABORT
3000 ft.

50 n.m. 730 n.m. 200 n.m.

5,000 n.m.

100 n.m.

Figure 11:  Typical HSCT Mission

Using the CCD for the variables and their ranges
depicted in Table 5, the simulation runs are performed.  A
quadratic equation for $/RPM is established using least
square estimators for the parameters.  The regression is
performed using data from the DOE with 151 simulation
runs for 11 variables (X1, X3, X5, Y1, xwing, BPR,
FPR, OPR, TIT, T/W, S).  These 151 cases represent 151
vehicle sizing problems in which the modified FLOPS
code is used to size the vehicle and determine the response,
$/RPM, as well as performance constraints, for each run.
This data is then used to form a RSE for $/RPM as well
as the constraints, including approach speed (Vapp),
flyover noise in (FONoise), sideline noise (SLNoise),
takeoff field length (TOFL), and landing field length
(LFL).  The noise measures are in units of Effective
Perceived Noise Level (EPNL).

Figure 12 displays two statistics validating the
$/RPM RSE.  The Summary of Fit lists several
characterizations of the least square estimation.  One is the
RSquare (or RSquare Adjusted) value, indicating the
quality of fit of the data points to the estimated line (See
Section III).

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.981485
0.961956
0.000956
0.152887
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Figure 12:  $/RPM RSE
Summary of Fit and Analysis Validation

As mentioned, a value of 1 denotes a perfect fit with
all data points lying exactly on the regression line.  The

R-square of 0.981485 (0.961956) indicates a very good fit
for the objective function $/RPM.  The Root Mean
Square Error (RSME) is the standard deviation around the
mean of the response, both listed in the Summary of Fit.
The low RMSE value of 0.000956 for a mean of
0.152887, like the Rsquare value, attests to a very good
fit of the regression line to the data points.

The Whole Model Test plots data of actual $/RPM
values against the values predicted with the equation.  It
displays a 95 % prediction interval, denoting that of all
predicted outcomes, 95 % of the data points will fall
between these two lines.  As discussed for the
aerodynamic RSE, the Residual Plot shows the residuals
(difference of predicted and actual value) of the response
against the predicted values.  If this plot shows a pattern
or a non-scattered behavior, the normality assumption can
usually not be justified.  For this analysis, the plot shows
a distinct scatter, therefore validating the assumption of
normality of the data.

Once validation is complete, the objective function
can be optimized in consideration of the constraint
equations.  A flowchart of the entire approach is displayed
in Figure 13.
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Figure 13:  Summary of Approach
HSCT Aero-Propulsion Optimization

From Figure 13, it is seen that the solution found is
the constrained point optimal configuration for an HSCT
within the design space specified by the ranges of the 11
variables.  A confirmation test to validate results and
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obtain component weights is performed.  These
component weights, together with the mission
parameters, describe the optimal configuration which is
passed over to the Economic Viability Assessment, where
economic uncertainty is introduced and the probability of
meeting a target for the $/RPM is calculated.

The generation of both the aerodynamic RSEs as well
as the just introduced overall objective RSE for $/RPM
was accomplished via UNIX shell scripts, which managed
the process of setting up input files, running the specified
codes in remote shells, and parsing output files for the
required response values.  This process automation saved a
considerable amount of time over a manual procedure of
running hundreds of simulations from the command line.

   Results  

An important motivation for forming RSEs for the
objective and constraints is presented in Figure 14.  It
displays the sensitivities, termed prediction profiles, of the
objective function ($/RPM) and the constraints (GW,
Vapp, TOFL, SLNoise, FONoise, and LFL) with respect
to the design variables (X1, X3, X5, Y1, xwing, BPR,
FPR, OPR, TIT, T/W, S).  These sensitivities indicate
the behavior of the response variables with respect to a
change in the design variable settings.  The statistical
analysis tool used here (JMP(11)) translates a change in the

settings with a real time update of the response values
(made possible by the underlying simple polynomial
equations), giving the designer a feel for the magnitude of
the sensitivities.  Recall that the perturbation of one
design variable causes changes in the responses resulting
from main effects, quadratic effects, and interactions.  

A further capability is to select “desirabilities” for the
objectives and constraints so as to perform an
optimization.  For example, the diagonal desirability
shown for $/RPM indicates that its lowest possible value
is the most desirable (i.e. minimize $/RPM).  The
constraints have their boundaries marked by a
discontinuity.  For example, all Vapp values above 154
knots have desirability of zero while all below 154 knots
have desirability of one.  One can adjust the design
variables according to the desirabilities below them to
quickly and interactively get near the optimum.  For more
rigorous optimization results, JMP can search the entire
design space based on the RSEs and the given
desirabilities to find the optimal settings.  For the present
case, the optimal settings are shown in Figure 14.

In terms of sensitivities, it can be seen that the effect
of T/W on noise is highly significant, with the effect of
root chord (x5) on $/RPM and the effect of wing area on
approach speed being important to a lesser extent.  

$/
R

P
M

0.165962

0.138514

0.134669

GW

1030640

786548

761970.8

V
ap

p

174.5

151.4

153.6154

TO
FL

11977

8168

9420.425

LF
L

18653

9283

9064.447

S
LN

oi
se

126.2

122.92

124.9387

FO
N

oi
se

123.2

117.74

120.7799

D
es

ira
bi

lit
y

1

0

0.989187

T/W

0.
28

0.
320.287

Sref

85
00

95
008500

x-wing

0.
25

0.
290.28

x1

1.
54

1.
621.54

y1

0.
5

0.
580.58

x3

2.
48

2.
582.58

x5

2.
19

2.
352.19

OPR

19 2121

TIT

30
00

32
503187

FPR

3.
5

4.
53.74

BPR

0.
35

0.
450.404

Desirability

0 1

Figure 14:  Prediction Profiles: Constrained Optimization and Sensitivities

The point design optimization results obtained for
this example are summarized in Table 6 and Table 7.
Table 6 contains the optimal setting of the design
variables while Table 7 lists the minimal value for the
objective function, $/RPM, and the values for the

constraints generated by the RSEs as well as the results of
a verification run of FLOPS.  The right hand column
displays the difference of these two values indicating a
percentage error for the RSE-based approach.  The errors
are seen to be modest.
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Table 6: Constrained Optimization for Minimum
$/RPM

Design
Variable

Optimized
Value

X1 1.54
Y1 0.58
X3 2.58
X5 2.19
S 8500 (sq. ft.)

xwing 0.28
T/W 0.287
OPR 21.00
TIT 3187 ˚R
FPR 3.74
BPR 0.404

Table 7: Constrained Optimization Results
and Accuracy Values

RSE FLOPS % Error

$/RPM 0.1348 0.1360 -0.9 %
GW (lbs) 761,870 731,799 +3.9 %

Vapp (kts) 153.6 150.1 +2.3 %
TOFL (ft) 9420 9616 -2.0 %
LFL (ft) 9064 9053 +0.1 %

FONoise, EPNL 124.9 120.4 +3.6 %
SLNoise, EPNL 120.8 124.0 -2.6 %

Note that for this optimization, the maximum noise
levels as specified by FAA FAR 36 were not activated
since noise suppression techniques were not modeled in
the synthesis code.  Hence, the noise constraints are not
met.  The fact that the constraint RSE was formed,
however, provides the capability to have a truly noise-
constrained vehicle once suppression can be accurately
modeled.  

The optimum aerodynamic design variable settings
from Table 6 yield a wing planform illustrated in Figure
15.  The figure on the right displays the location of the
variables and their nominal values.  It can be seen from
the overlay plot (left) that the baseline had a lager span
but a smaller sweep in the outer part of the wing than the
optimized planform.  This may indicate that, for the given
split mission percentage (~ 15% subsonic, 85%
supersonic), the optimal planform prefers less outboard
panel sweep.  Note that the optimal planform had a root
chord (variable X5) significantly smaller than the baseline.
This concurs nicely with Figure 14, which shows that as
x5 is reduced, $/RPM is reduced.  In addition, with this
set of optimized design variables, all component weights
can be determined and passed through to an economic
uncertainty assessment, where the transition from a point
design to a probabilistic solution begins.  Steps for the
introduction of this uncertainty are outlined next, again
with emphasis on an HSCT application.

Optimized Planform:
Baseline Planform:

  
  X3
(2.58)

Y-axis

X-axis

  X1, Y1
(1.54, .58)

 X2
(2.10)

  X5, 0
(2.19, 0)

Values are normalized 
      by semi-span

Xwing
 (.29) (0, 0)

   X4,Y1
(2.27, .58)

Figure 15:  Optimal Design Planform
Comparison

  Steps for Economic Viability Assessment  

The purpose here is to take the feasible, optimized
vehicle and determine whether the concept is economically
viable.  The first realization which must be made is that
deterministic approaches will not be appropriate, since
economic considerations are dominated by “noise”, or
uncertainty, variables.

Returning to Figure 13, the emphasis now is on the
bottom portion which depicts the procedure to address
system variability due to economic uncertainty for a
generalized HSCT configuration.  The geometric,
component weight, and mission information needed is
provided by the point deign optimum configuration.  As
was the case for the point optimization, in order to
determine the $/RPM value, a code accounting for
manufacturing and airline business practices was utilized
and linked to the actual synthesis code.  The authors have
found that ALCCA(21), the Aircraft Life Cycle Cost
Analysis program, was the most suitable code to fulfill
this purpose.  Through the application of the DOE/RSM
approach, an RSE representing the ($/RPM) as a function
of the most significant economic variables is formed.
These variables (such as load factor, cost of fuel,
production quantity, engine technology factor, learning
curve, return-on-investment, and aircraft utilization rate)
are uncertain in that a designer cannot pre-specify (or
control) their values.  However, they affect tremendously
the ultimate viability of the product(8).  These independent
variables enter the problem by assigning probability
distributions to them within certain ranges.  An example
of such a probability assignment is seen in Figure 16,
with a normalized range depicted here for demonstration.
The triangular distribution is just one of many available
(normal, beta, etc.) to be used, depending on how much
knowledge is available for that particular variable.

Assumption:  Load Factor

-1.00 -0.50 0.00 0.50 1.00

LF

Figure 16:  Triangular Distribution Representing
Load Factor Uncertainty
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Given the point design optimum aircraft and a set of
economic variables with their corresponding distributions,
a Monte Carlo Simulation is performed with the aid of a
software package called Crystal Ball(22).  Crystal Ball
randomly generates numbers for the variables based on the
defined probability distributions and computes a
probability distribution for the response.  Benefits of the
RSE approach appear again, when one considers the
number of runs required for a valid Monte Carlo
Simulation (~10,000).  Performing such a task with an
actual program instead of a polynomial would be
impractical at the very least.  The product of the
simulation is a probability distribution of $/RPM, a
sample of which is shown in Figure 17.

Crystal Ball® Simulation

Frequency Distribution 10,000 Trials
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334
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$/RPM

Figure 17:  Economic Uncertainty (Frequency
Distribution) for $/RPM

A distinction is now drawn between a feasible design
and a viable one.  Since the point design optimum
satisfied all the performance constraints and was properly
sized for the given mission, it is said to be feasible (i.e. it
could be built).  Thus, all outcomes in Figure 17 are
feasible.  However, the paradigm of design for
affordability requires feasibility and economic viability.
To investigate viability, the just obtained $/RPM
distribution is compared against a desired target for both
mean and variance.  If the computed mean and variance do
not compare favorably with desired targets (or
management’s requirements), areas of possible technology
improvement (and their associated risk) must be identified
to make the design both feasible and economically viable.
This process is seen as the last decision box near the
bottom of Figure 13 and is elaborated  in Figure  18.
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Figure 18: Feasibility vs. Viability:
Shifting to Target

This figure stresses the difference between viability and
feasibility and graphically illustrates how means for
improvement would shift the distribution.  As mentioned,
this viability assessment is demonstrated in detail in
Reference 8.

V.    Conclusions  

An improved design methodology has been developed
and presented here which provides a means to bring
sophisticated analyses to an MDO problem: aircraft
synthesis and optimization.  The implementation of the
method is the first step towards a comprehensive IPPD
approach to aerospace systems design being developed at
ASDL.

A key objective in this work was the integration of
aerodynamic and propulsion analyses into the
sizing/optimization process and the investigation of their
combined effects on the design of an HSCT.  Under this
task, the use of DOE/RSM was a central part of the
solution approach.  DOE/RSM was successfully used to
generate Response Surface Equations (RSEs) representing
vehicle drag as a function of geometry and flight condition
parameters.  These equations were subsequently validated
and then integrated into the sizing program FLOPS,
replacing prediction methods in the code.  This
transformation of the sizing code into a more powerful
preliminary design tool enabled an innovative aerodynamic
/ propulsion integration to take place.

A five level, eleven (11) factor DOE was executed
using this new tool to find the variable settings which
minimized the objective function.  Included in the 11
factors were critical aerodynamic, propulsion, and sizing
design variables.  The result of the experiment was a
response equation for the average yield per Revenue
Passenger Mile ($/RPM).  This RSE was then used to
obtain the optimal setting of the design variables which
minimized the $/RPM in the presence of constraints such
as takeoff and landing field length, noise, and approach
speed.  The resulting settings represent an "optimal point
design" solution, as it represents a deterministic design
where uncertainties such as economic variance or
technology risk were not addressed.  Finally, avenues for
introducing and analyzing this economic uncertainty were
presented.

The results presented here provide the impetus for
further investigations.  Specifically, the introduction of
economic uncertainty (as performed in Reference 8) and
the modeling of more complex tools (such as CFD for
aerodynamics and FEM approaches for structures) via
DOE/RSM merit extended research.
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