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GEORGIA INSTITUTE OF TECHNOLOGY 
ATLANTA. GEORGIA 30332 

SCHOOL OF 
CHEMICAL ENGINEERING September 29, 1976 

Naval Coastal Systems Laboratory 
Attn: Mr. Max Weber 
Minesweeping Division - Code 721 
Panama City, Florida 32401 

Subject: Monthly Letter Report No. 2, Task HR-18 and NCSL Omnibus R&D 
Program Contact N61339-75-C-0122, "A High Current Minesweeping 
Electrode Investigation" covering the period 20 Aug 1976 to 
24 Sept 1976 

Gentlemen: 

Further, more comprehensive tests, have been conducted, primarily on 

the carbon filled polyethylene cable jacket. One of the problems in initial 

studies was contact resistance and various methods have been used to reduce 

the resistance between the jacket and the core. In addition electrochemical 

tests in actual and simulated sea water were conducted. The following 

information provides a summary of the studies to date: 

1. 	Electrical Property Measurements  

Resistivity measurements were made on a 2.0" x 2.0" x 0.069" thick piece 

of jacket material clamped tightly between two flat base copper electrodes. 

Measured voltages between the electrodes were in the range 0.155 - 1.04 volts 

as currents in the range 0.5 to 3.0 amperes were impressed. The resulting 

values of resistivity were in the range 45.8 to 51.2 ohm-cm. The average 

value of resistivity of the jacket material is thus 49.1 ohm-cm. The 3.0 

ampere current corresponds to a current density of 0.11623 amps/cm 2 . 

Measurements were also made using a 3.0" long coaxial electrode cell 

composed of inner and outer electrodes of aluminum separated by 3.5% NaC1 

solution (r 1  . = 0.5", r
o 
= 0.57"). Currents in the range 0.5 - 3.0 amperes 

were impressed, yielding an apparent (linear resistance of 0.21 ohm with a 

constant overpotential of 0.8 volt. The 60.8049 cm 2  surface area of the inner 

electrode and the 3.0 ampere current results in a current density of 0.04934 

A/cm2. 
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Further tests were also made using the same coaxial electrode cell but 

with the conducting jacket material covering a smaller diameter aluminum 

electrode (radius of jacket material = 0.525"). Currents in the range 0.5 -

3.0 amperes were impressed. After stabilizing, the cell exhibited an apparent 

resistance of 1.80 ohms at an overpotential of 5.8 volts. The surface current 

density on the jacket material was 0.047 A/cm2  at 3.0 amperes impressed 

current. No agitation or circulation of the NaC1 ('600 ml) was employed, and 

the cell became noticeably warm. Efforts are underway to perform this test 

with flowing NaCl solution. 

2. 	Polarization Tests  

Measurements of anodic and cathodic current densities were made in slowly 

stirred 3.5% sodium chloride, and preliminary tests of electrode performance 

in sea water flowing at velocities of up to 30 knots. The test program also 

includes microscopic examination of the samples following the exposures. 

Samples of the jacket of the size 1 cm2  were attached to copper holders 

using Engelhard flexible silver coating #3 or Emerson & Cuming Eccobond solder 

66C. The contact resistance was found to be about 100 ohms for Eccobond 66C 

when allowed to harden without pressure, and about 2 ohms for Eccobond 66C 

hardened under pressure and for the Engelhard coating. Samples with the 2 ohm 

resistance were used in all but the initial tests. 

Samples have been tested by passing current between the sample and a 

platinum electrode in a polarization cell containing slowly stirred, aerated 

3.5% sodium chloride solution at room temperature. The current was limited to 

a maximum of 50 mA. The maximum available source voltage was 34 volts. The 

voltage drop in the solution was found to be about 1 volt at maxiumum current. 

Summary of results: 

In anodic polarization tests the current density was 50 mA/cm 2  at the 

beginning of the test; the source voltage increased slowly and reached the 

maximum available (34 V) in about 45 minutes. Because of the limited voltage 

the current density then slowly decreased with time. Some deterioration of 

the sample surface was observed after 24 hours of performance. 

Tests of the behavior of the samples as cathodes are in progress. 
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A system for testing under controlled flow velocity has been constructed 

for laboratory tests of samples of electrodes in sea water. The system consists 

of a variable flow pump, a flowmeter, a flow-through cell with the samples, and 

connecting tubing, fittings and valves. The maximum flow velocity is 30 knots 

at 20 GPM. The samples tested at this time are in the form of a short length 

of the cable jacket attached to a copper tube. The copper tube not covered 

with the sample is insulated by an acrylic tubing. The surface area of the 

sample is 20 cm2 . 

In the initial tests two samples have been placed in-line (separation 

about 0.8 in.), and current was passed between them; thus, the two samples 

performed one as an anode and the other as a cathode. The current and voltage 

were monitored as a function of time and flow velocity. Only preliminary 

data is available at this time. Results will be reported next month when 

significant information is available. 

Respectfully submitted, 

RObert7-  Hochman 
Project Co-director 
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FOREWORD 

This final report was prepared by the Metallurgy Department of the 

School of Chemical Engineering, and the School of Electrical Engineering, 

Georgia Institute of Technology, Atlanta, Georgia 30332 in fulfillment 

of the requirements of Task HR-18 under NCSL Omnibus R & D Program 

Contract N61339-75-C-0122 for the Naval Coastal Systems Laboratory, 

Panama City, Florida. 

The period of performance covered by Task HR-18 and this report 

is 20 July 1976 to 31 January 1977. 

Report authors are R. F. Hochman, M. Marek, J. G. Rinker, and K. J. 

Bundy from the Metallurgy Department of the School of Chemical Engineering 

and E. B. Joy, G. K. Huddleston, and W. M. Leach from the School of 

Electrical Engineering. 

The authors acknowledge the assistance and expert guidance of 

Mr. Miller Epps and Mr. Max Weber of the Naval Coastal Systems Laboratory 

in providing operational and historical insight concerning the minesweeping 

problem and for their direction and concern. 

The views and conclusions contained in this document are those of 

the authors and should not be interpreted as necessarily representing the 

official policies, either expressed or implied, of the Naval Coastal Systems 

Laboratory or the U.S. Government. 
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CHAPTER I 

BACKGROUND 

The initial investigation on this program, "A High Current, Mine-

sweeping Electrode Investigation," carried out at Georgia Tech, proposed 

two major alternatives for replacing the existing high current aluminum 

minesweeping electrodes. The first alternative was a cross linked carbon-

impregnated polyethylene jacket electrode, and the second, was a platinum-

plated (platinized) niobium electrode with a configuration to be designed. 

Basically, the first program indicated the design contents were feasible and 

raised hopes that long life, low drag, and a cost effective high current 

electrode would be possible. 

The purpose of this program was to initiate a test phase to evaluate 

the basic characteristics of the carbon impregnated polymer-conductive 

materials and platinized niobium. These materials showed the best properties 

for operating with the current densities and potentials desired. Studies in 

this program include basic electrochemical electrode evaluations as well as 

studies in flowing sea water, simulating speeds up to 30 knots. In addition, 

continuing programs in the evaluation of the electromagnetic characteristics 

of the general electrode system (in sea water) and the magnetic field 

calculations of these electrical systems in sea water were continued to 

provide a more definite precise evaluation of the characteristics of the 

system. 

This report will provide an in-depth summary of the test program to 

date as well as conclusions and recommendations regarding the continuation 

and completion of the test phase of the program. In addition, the fundamental_. 

 characteristics of the noble metal system design, including thermal and 



mechanical characteristics, will be provided as well as in initial mockup 

of the general configurations proposed for the noble-metal electrodes to 

be evaluated. 

Extended studies in electro-magnetic field evaluations for the mine-

sweeping configurations are extended further. General conclusions and 

recommendations on the present data and electrode design configurations for 

the high current minesweeping electrodes will be discussed. 

2 
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Chapter II 

TEST PROGRAM 

A. 	Introduction  

The test program was designed to evaluate the most promising electrode 

materials in a variety of laboratory tests. Resistivity measurements 

(Section B) were performed on samples of the carbon-impregnated polyethylene 

jacket to obtain data required in the mathematical analysis of the system. 

Initial galvanostatic tests of the electrode materials (Section C) were 

performed on small samples in a standard laboratory cell using a simple 

salt solution; they provided basic information on the electrode behavior of 

the materials under static conditions. Other static electrode tests 

(Section D) were performed on samples of the carbon-impregnated polyethylene 

jacket using a coaxial electrode cell to obtain data on resistances in such 

cells. Tests in flowing sea water (Section E) provided the most important 

data on the performance of the various materials under conditions simulating 

the field conditions. Following the sea water tests, the polyethylene 

samples were examined in a scanning electron microscope (Section F) to 

evaluate the extent of deterioration. Tests of several combinations of 

materials (Section G) were performed to explore the possibility of modifying 

the basic materials to improve their performance. 
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B. 	Resistivity Measurements  

Test Conditions: A 2.0"x2.0"x0.06875" (avg.) thick piece of jacket material 

was placed between two flat, bare copper electrodes and clamped tightly as 

shown in Figure 1. The copper electrodes and the sample were cleaned with 

soap and water and dried thoroughly just prior to measurement. The sample 

was clamped tightly to ensure good contact. Clamping pressure was applied 

until minimum electrical resistance was indicated; additional pressure 

would indicate an increased resistance due presumably to deformation. Copper 

electrodes were found by experiment to give the lowest contact resistance. 

Results: The results are shown in Table I. The average value of resistivity 

of the jacket material is 49.1 ohm.cm. The range of values obtained was 

45.8 to 51.2 ohm.cm. 

The variability of results due to electrode contact resistance is 

illustrated in Figure 2. Note that aluminum does not appear to be a good 

choice of electrode due to the high contact resistance between it and the 

jacket material. 



(a) Cable from which samples were taken. 

(b) Electrode arrangement (from left to right: plexiglas, aluminum, 
copper, sample, copper, aluminum, plexiglas.) 

Figure 	1. Conducting Plastic Jacket Material and Measurement Apparatus 

5 
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TABLE I. MEASUREMENT RESULTS - RESISTIVITY OF JACKET MATERIAL'  

Sample #2: 2.0" x 2.0" x 0.06875" thick 

MEASURED 
CURRENT (A) 

MEASURED 
VOLTAGE (V) 

CALCULATED 
RESISTANCE 

3 
CALCULATED 

(2)
2 	

RESISTIVITY 	(Q.cm) 

0.5 .164 .328 48.47 
1.0 .335 .335 49.51 
1.5 .500 .333 49.26 
2.0 .680 .340 50.25 
2.5 .860 .344 50.84 
3.04  1.04 .347 51.23 
2.5 .845 .338 49.95 
2.0 .660 .330 48.77 
1.5 .490 .327 48.27 
1.0 .320 .320 47.29 
.50 .155 .310 45.81 

pavg.=49.06 

NOTES: 

1. General Cable Co. samples provided by E. B. Joy with 
jacket markings "HS XLP MILS 2 AWG AL 15 KV 1975." 

2. Calculated Resistance = (Measured V)/(Measured I) = R . 

3. Resistivity calculated according to 

RDArea 
02.cm = 	 - 147.78 R Q  

thickness 

4. 3.0 amperes corresponds to 0.11623 amps/cm
2 

current density. 
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Figure 2 Measured Results for Parallel Plate 
Electrodes Showing Variability of 
Results Due to Electrode Material 
and Surface Preparation. 
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C. 	Potentiostatic and Galvanostatic Polarization Measurements Test  

Conditions: Samples of the electrode materials were prepared with a surface 

area of 1.0 cm2 . The samples of the carbon-filled polyethylene were cut out 

of a cable jacket supplied by General Cable Company (cable markings "HS XLP 

MILS 2 AWG AL 15 KV 1975"); they were attached to copper supports using a 

silver-filled electrically conducting glue (Engelhard flexible coating #13). 

The samples of a noble metal electrode were short lengths of platinized 

niobium wire dia. 0.093", supplied by Engelhard Industries, Inc. (Part. No. 

37975-4). For the test, the sample was placed in a 3-electrode polarization 

cell filled with about 500 ml of air-saturated, mildly stirred, 3.5% sodium 

chloride solution. Current was passed between the sample and an auxiliary 

platinum electrode. The potential difference across the boundary layer at 

the sample electrode was measured by means of a reference electrode probe 

placed close to the surface of the sample. The reference electrode was a 

standard commercial saturated calomel electrode. 

In the potentiostatic tests, the samples were polarized from the natural 

potential to progressively higher overpotentials, anodic or cathodic; the 

potential scanning speed was 1.0 volt/hr. The test was terminated when the 

design current density was reached or exceeded, or when the maximum 

controlled potential was reached (±10 volts). The current density versus 

potential curve was continuously recorded on a X-Y recorder. 

The polarization setup consisted of the Wenking Electronic Potentio-

stat Model 68TS3, Wenking Potential Meter Model PPT69, and Wenking Stepping 

Motor Model SMP69. 

In the galvanostatic tests, the current was controlled; both current 

and the potential of the sample with respect to the reference electrode were 

continuously recorded as a function of time. 
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Results and Discussion: The potentiostatic polarization curves for both 

tested materials, i.e., the carbon-impregnated polyethylene and the platinized 

niobium, are presented in Figures 3 and 4. The result of the anodic 

galvanostatic test on the carbon-impregnated polyethylene is shown in 

Figure 5. The galvanostatic results for platinized niobium are not shown 

in graphical form because both current and potential remained constant 

during the 24-hour test; at the current density of 0.5 A/cm 2 , the potential 

was 3.5 volts (SCE). 

The potentiostatic and galvanostatic results for platinized niobium 

show the expected behavior, i.e., high efficiency as an electrode in both 

the anodic and cathodic regimes. Passivation is indicated on the anodic 

polarization curve, but it did not seriously affect the performance of the 

electrode. The overpotential remained low (3.5 volts) even for the high 

design current density (0.5 A/cm 2 ). 

The potentiostatic polarization curves show that the tested type of 

carbon-impregnated polyethylene is a rather inefficient electrode material. 

At the potential limit of the potentiostat ( -110 volts), the current density 

was only about 3.3 mA/cm 2  in the anodic regime and about 11.5 mA/cm 2  in the 

cathodic regime. The galvanostatic results (Figure 5) show that the full 

voltage of the potentiostat (34 volts) was reached in about 40 minutes to 

maintain the current density of 50 mA/cm 2 . At longer times this voltage 

was insufficient to maintain the current density and the current decreased 

continuously with time. Exploratory measurements on the tested samples 

showed that the average resistivity increased by two to three orders of 

magnitude by the end of the anodic test. 
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D. 	Static Measurements in a Small Coaxial Cell Test Conditions:  

A coaxial cell was constructed for testing the jacket material in a 

configuration similar to that anticipated in the actual application. The 

outer electrode was made from 1.25" O.D. aluminum tube (1.14" I.D.). Two 

inner electrodes were constructed: (1) a 1.0" O.D. aluminum tube electrode; 

and (2) a jacketed electrode consisting of a length of conducting jacket 

material forced tightly over a length of 0.92" O.D. aluminum rod. The 

inner and outer electrodes were held in the coaxial configuration by plexiglas 

end caps. The space between the inner and outer electrodes was filled with 

simulated sea water (3.5% NaCl) for testing. The inner electrode was used 

as the anode. With the end caps in place, the length of electrode exposed 

to the brine was 3.0 inches. Approximately 10 cc of NaCl solution was used 

to fill the space between the coaxial electrodes. No stirring or other 

agitation was used during the tests. A significant amount of NaC1 solution 

was "bubbled out" through the small filling hole during the tests. This 

loss was most significant for the jacketed electrode tests wherein the cell 

became too hot to handle. 

Results: Figure 6 shows the results of measurements made using coaxial 

electrodes separated by simulated sea water (3.5% NaCl solution). The lower 

curve shows the results for aluminum anode and cathode; the apparent 

resistance is 

1.42 - 0.9 
R - 	 = 0.210 

3.0 - 0.5 

with a constant overpotential estimated to be 0.8 volts. The cell is 3.0" 

long, resulting in an anode surface area of 60.8 cm2 . The 3.0 ampere cell 

current thus corresponds to a current density of 0.049/Acm2 . Fringing effects 

are assumed small to yield uniform electric field distributions. 



Test #2 (Jacket Anode) 

Test #1 (Jacket Anode) 
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Figure 6 	. Measured Results for Coaxial Electrodes 
and 3.5% NaCl (Non-circulating) Solution. 



The upper curves of Figure 6 show the results when an inner aluminum 

anode is encased in the conducting plastic jacket (p
jacket 

= 50 0 cm). 

In Test #1, the apparent cell resistance appears to decrease at 2.5 

amperes so that the minimum cell resistance is given by 

11.2 - 5.8 
R - 	 = 1.80 Q 

3.0 

at an estimated overpotential of 5.8 volts. For the cell length of 3.0 

inches, 3.0 amperes corresponds to a surface current density on the outer 

periphery of the jacket of 0.047 A/cm 2 . 

Test #2 was performed using the same arrangement as in Test #1. New 

NaCl solution was used. The curve in Figure 6 indicates that the behavior 

was approaching that of Test #1. 

In Tests #1 and #2, the cell became very warm due to the electrical 

power dissipated. 

15 
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E. 	Tests in Flowing Sea Water  

Test Conditions: A special flow-through cell with coaxial electrodes 

was designed and made for the tests. The final design is shown in Figure 7a. 

In principle, a cylindrical sample was placed along the axis of the cell, and 

sea water was pumped at high speed through the annular passage between the 

sample and a concentric auxiliary electrode. For anodic test the auxiliary 

electrode was made of copper; for cathodic tests the copper electrode was 

lined with platinum foil. 

The nominal O.D. of the samples was one inch and they were one inch 

long. For tests of the carbon-impregnated polyethylene the samples were 

made from jackets cut from cable samples supplied by the General Cable 

Company. The one-inch-long segment of the jacket was forced tightly over a 

copper rod, and insulating acrylic rods were attached on both ends. The 

samples of the platinized niobium were made by winding platinized niobium 

wire dia. 0.093" into grooves machined in a polyethylene rod 1.0" in diameter 

on a length of one inch. Both types of specimens are shown in Figure 7b. 

The electrode surface area of both types of samples was close to 20 cm2 . 

Initially, the distance between the sample and the auxiliary electrode 

was about 0.04", and the sea water velocity at full pump capacity was about 

50 ft/sec. The cell was then re-designed and the distance between the 

electrodes was increased to 0.125"; the test velocity was then about 16 ft/sec. 

The final design of the testing setup is shown in Figure 8. The sea 

water was pumped by means of a centrifugal pump from a holding tank, through 

the cell, through a flowmeter, and back into the tank. A cooling coil was 

installed in the tank to keep the water temperature constant. The tests 

were run at approximately room temperature. The sea water was supplied by 



a 

b 

Figure 7. (a) Cell for Flowing Sea Water Tests, (b) Platinized Niobium 
and Conductive Polymer Samples. 
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Figure 8. Apparatus for Flowing Sea Water Tests. 
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Naval Coastal Systems Laboratory. The current between the electrodes was 

kept constant by means of a regulated power supply, and the required 

voltage was recorded as a function of time on a strip-chart recorder. Table 

II summarizes the test conditions. 
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TABLE II 

TEST CONDITIONS IN FLOWING SEA WATER TESTS 

Sample Water Velocity 
ft/sec 

Current Density 
A/cm2  

Total Test Period 
hrs:min 

Platinized Niobium 16.3 0.5 24:00 

Carbon Impregnated 
PE jacket 15.8 0.072 2:00 

. 16.0 0.036 5:10 

sample "A" 16.3 0.036 5:30 

I. 

sample "D" 16.0 0.036 2:00 

sample "H" 16.0 0.036 3:00 
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Results and Discussion  

The results of the tests are presented in Figures 9 and 10, which 

show the cell voltage as a function of time at a constant cell current. The 

cell voltage is a sum of the overvoltages at the two electrodes and the 

voltage drop in the sea water. For the higher current density in tests of 

the platinized niobium, the overvoltage on the auziliary electrode and the 

voltage drop in the water had to be taken into account. Polarization 

tests with the copper electrode showed that the overvoltage at 0.5 A/cm 2 

 was about 3 volts, and the voltage drop in the sea water was calculated to 

be about 2.9 volts. Thus, for the measured cell voltage of 10.4 volts, the 

corrected overvoltage on the tested platinized niobium electrode was about 

4.5 volts. 

For the samples of carbon-impregnated polyethylene jacket, which were 

tested at a current density of 70 mA/cm2  or lower, the overvoltage on the 

auxiliary electrode and the voltage drop in the water could be neglected, 

especially in view of the high measured overvoltages on the samples. 

Basically, all cable jacket samples exhibited similar anodic behavior: the 

overvoltage first increased rapidly to a moderate to high value, then 

decreased, and increased again. Samples examined after the second increase 

started, which was usually in less than 3 hours, invariably showed signs of 

deterioration. Continuation of the test resulted in further deterioration and 

high overvoltage, and eventual perforation of the jacket. 

Both types of electrode materials were tested as cathodes in short 

exposures at about 18 ft/sec. The platinized niobium exhibited a steady 

overvoltage (corrected) of 2.4 volts at the end of a 3-hour exposure at 0.3 



5 1 0 15 20 
time (hours) 

Figure 9. Flowing Sea Water Test of Platinized Niobium at 500 ma/cm2 . 
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A/cm2 . The carbon-impregnated polyethylene sample exhibited an overvoltage 

increasing from the initial value of 7.8 volts to a steady value of 9.4 

volts at 50 mA/cm2  after 2 hours. 



F. Microscopic Examination  

The samples of the carbon-impregnated polyethylene jacket were 

examined visually following each test. Several samples were also examined 

in a scanning electron microscope (SEM). Figure 11 shows low magnification 

SEM photographs of the surface following a galvanostatic test. The surface 

is blistered and cracks can be observed. High magnification photographs of 

the surface before and after the exposure (Figure 12) show some changes in 

the structure, but do not show enough detail to allow interpretation. No 

changes were observed on the platinized niobium electrodes after a 24-hour 

exposure at 0.5A/cm2 . 
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a 

b 
Figure 11. Scanning Electron Micrographs of of a Conductive Polymer 

Sample; (a) 30X, (b) 300X. 
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a 

b 
Figure 12. Scanning Electron Micrographs of Conductive Polymer Samples 

Showing the Surface Topography at 7500X; (a) Before Testing, 
(b) After Testing. 

27 
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G. 	Miscellaneous Coaxial Cell Tests  

Test Conditions: A large coaxial cell was constructed which allowed 

circulation of salt water between the inner and outer electrodes. The 

outer electrode was made from 1.5" copper tube (1.52" I.D.). A copper 

inner electrode (0.92" 0.D.), identical in dimensions to the aluminum 

electrode made earlier for the small coaxial cell, was also constructed. 

Plexiglas end caps with 0-rings were used to hold the electrodes in the 

coaxial configuration with waterproof joints. The electrical length of the 

cell was 3.0 inches. 

The cell is shwon in Figure 13. The small peristaltic pump and speed 

controller also shown were used to circulate 3.5% NaCl solution through the 

cell from a 2000 ml reservoir (not shown). The flow rate used was 15.4 cm 3/sec, 

which corresponds to approximately 0.05 mph towing speed. 

Results and Discussion: Figure 14 shows the salient results of the important 

tests performed using the cell. Curve 1 is a plot of cell voltage versus 

time for a jacketed copper inner electrode for impressed currents of 1.0 

ampere and 2.0 amperes. Note the large increase in voltage when the current 

was increased from 1.0 A to 2.0 A. Note also the steady decline of cell 

voltage to a minimum of approximately 11 volts at % 50 min followed by a 

steady increase to 13.3 volts at 130 minutes (not shown) when the test was 

terminated. 

Curve 2 shows the cell voltage obtained using a jacketed copper inner 

electrode with a 14" length of platinized niobium wire spiralled tightly 

around the jacket. The dramatic decrease in cell voltage is evident when 

comparing curves 1 and 2. 
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Figure 13. 	Illustration of Large Coaxial Cell and Pump Used for Dynamic 
Testing 



1 -- Conducting Jacket only on Cu Anode 

2 -- Jacket with Platinized Wire on Cu Anode 

3 -- Jacket with Eccoshield (Al Anode) 

4 -- Jacket with Eccoshield and Platinized Wire 
(Al Anode) 

5 -- Al Anode, Cu Cathode (outer electrode) 
for reference. 
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Curve 3 was obtained by painting the inner and outer surfaces of the 

conducting jacket with conducting silver paint . When the paint was removed 

from the very ends of the cylindrical jacket, there resulted a coaxial 

resistor with a dc resistance of ti 0.9 ohm. This value of resistance 

corresponds to a resistivity of 320 ohm.cm for the jacket material. The 

painted jacket was then forced onto the aluminum inner electrode for testing. 

In Figure 14, the steady increase in cell voltage (curve 3) indicates that 

the inner electrode became less conducting with time. This behavior is 

attributed to the fact that as the silver was removed by electrolysis from 

the paint on the jacket, the lacquer film left behind formed an insulator 

which inhibited the flow of current. 

Curve 4 of Figure 14 shows the most promising results obtained. In 

this case, the jacket material was painted inside and out with Eccoshield 

ES and then forced onto the aluminum electrode. A 14" length of platinized 

niobium wire was then spiralled tightly around the painted electrode as 

indicated in Figure 15a. The dc resistance between inner aluminum electrode 

and the platinized wire was approximately 0.5 ohm. 

Curve 5 shows the results obtained when the inner electrode was an 

aluminum tube with outer diameter equal to that of the jacketed electrode. 

This curve is provided as a reference curve and is a standard for any other 

electrode configuration. 

* 
Emerson and Cuming, Inc., Eccoshield ES in aerosol spray can. 
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a) Anodes Corresponding to Curves 1, 3, and 4 (left to right). 

b) Anode 3 after failure (cell on right). 

Figure 15 	Photographs of Anode Configurations Used in Large Coaxial Cell 
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H. 	Discussion 

In a two-electrode, open-loop system operating in sea water, an 

electronic current flows through the metallic conductors, and an ionic current 

through the water. On the electrode surfaces electrochemical reactions take 

place, the sum of the reaction rates being equal to the total current 

flowing in the circuit. If the electrodes are inert, the main reactions on 

the anode in sea water are electrolytic evolution of oxygen and chlorine: 

2H20 = 02 + 4H
+ 

+ 4e 

2C1 = Cl2 + 2 e 

A certain overvoltage is needed to maintain the required current density; it 

depends on the polarization characteristics of the electrode material. 

If the electrode is not inert, anodic dissolution and/or electrochemical 

formation of various compounds may take place. resulting in deterioration. 

All the electrochemical reactions are potential-dependent, and the rates of 

the individual reactions depend on the overvoltage which is needed to main-

tain the required current density. The lower the overvoltage, the more 

efficient is the electrode, and less power is dissipated in the surface 

reactions. Although the sea water path resistance is the major term in the 

total circuit resistance and thus in the total power dissipation, the term 

due to the electrode overvoltage can also be significant and create 

unacceptable demand on the power supply unless an efficient electrode is used. 

The tests have shown that platinized niobium is a very efficient and 

almost inert anode. The overvoltage at the current density of 0.5 A/cm 2 

 was in the range of only 3.5 to 4.5 volts. No deterioration was observed in 
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tests of up to 24 hours duration and the industrial experience with this 

type of anode in cathodic protection systems gives confidence in a long 

life-expectancy. 

The carbon-impregnated polyethylene exhibited considerably higher 

overvoltages and rapid deterioration. Although the mechanism was not 

investigated in detail, the following general mechanism can be suggested to 

explain the observations: the amount of carbon in the surface layer is 

relatively low, and a high local current density must exist on the exposed 

particles to maintain the current. The high current density can be achieved 

only at a high overvoltage; the high overvoltage allows other reactions to 

occur, such as 

C + 2 H2O = CO2 + 4H + 4 e 

Carbon in the surface layer is thus depleted by conversion into carbon dioxide 

or other compounds; this results in a further increase in current density and 

overvoltage. As more and more carbon is exhausted, the reaction occurs 

deeper and deeper in the material, the average resistivity increases, and the 

gaseous products of the reactions cause blistering. Eventually, the 

deterioration causes a local perforation of the jacket. 

In the cathodic regime the main reaction is expected to be the electro-

lytic evolution of hydrogen, 

2H
+ 
+ 2e = H2 , 

but electrolytic deposition of various compounds from sea water may play a 

significant role. Platinum group metals are excellent electrodes for the 

hydrogen reduction reaction, and the tests with the platinized niobium 

confirmed this. However, niobium is highly susceptible to hydrogen embrittle- 
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ment, and the durability of this type of cathode is questionable. Platinizing 

of another substrate material may be the solution, but the stability of the 

platinum layer under the condition of high rate hydrogen evolution would 

have to be carefully examined. 

The carbon-impregnated polyethylene jacket has shown promising behavior 

in short-term cathodic tests. Although carbon can suffer cathodic deteroration 

by formation of methane, 

C + 4H
+ 
+ 4e = CH4 

which would result in a damage similar to the one observed under anodic 

conditions, the efficiency in the cathodic regime was higher and may be 

sufficient to keep the rate of the methane reaction low. Further tests of 

both types of materials will be needed to determine the life expectancy. 

U 
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CHAPTER III 

PRELIMINARY DESIGN OF A NOBLE METAL ELECTRODE 

A. General Design Features  

Platinized niobium anodes can be used at high current densities (up 

to 7A/in2 ); therefore, the electrodes can be made quite small even for high 

current demands. For the application in minesweeping, however, a reduction 

in size is limited by the consideration of the sea water path resistance, 

which is primarily a function of the electrode length. The length of the 

electrode is thus in effect fixed. The length of 150 feet was considered 

in the proposed design. 

Because of the high cost and weight of niobium, it cannot be used to 

conduct the full current flowing to all the electrode surfaces. Aluminum 

conductors are a natural choice for this function. Since they have to be 

insulated from the sea water by a jacket, and the electrode must have a 

certain buoyancy, the basic design specifications of a noble metal electrode 

are almost identical to those of the "S" cable, except for the addition of 

platinized niobium electrodes connected to the conductors of the cable. 

Theiefore, the proposed design calls for a modification of the new "S" cable 

and the electrode will have essentially same physical characteristics. 

Platinized niobium products are commercially available in a variety of 

forms, such as wires, rods, mesh, etc. To keep the drag and stiffness of the 

electrode as low as possible, it is proposed to use thin niobium strips 

platinized on one side. Niobium strips are readily available and so is 

platinizing on strips of up to 50 ft. in length. The present design uses 

10 strips 50 ft. in lenth each, 0.5x0.0626 in. cross section. Each strip 
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will be wrapped around the cable on a length of 15 ft. and connected to 

the aluminum conductors at both ends. More frequent connection can be made 

if necessary. The average current density on a 10,000 A electrode will be 

about 3.33 A/in 2 , 0.52A/cm2 . The strips will be connected to the aluminum 

conductors by means of simple open collars and the joints will be sealed by 

means of heat shrinkable polyethylene tubing combined with either adhesives 

or ultrasonic welding. The total added weight will be about 58 lb. 

The procedure of modification of the "S" cable will be basically as 

follows: 

a. Rings of the polyethylene jacket will be cut out from the cable every 

15 ft. to expose the aluminum conductors. The width of the rings will be 

about one to two inches. 

b. Open collars of the same width, made of preformed strips of a suitable 

metal of the same thickness as the polyethylene jacket will be attached to 

the aluminum conductors by welding, soldering or conductive adhesives. 

c. Ends of the platinized niobium strips will be attached to the collars by 

spot welding at the proper angle of the spiral, the strips being tightly wound 

around the cable between the collars. 

Note: It may be necessary to weld the strips to the collars before they are 

connected to the conductors. 

d. Short lengths of expanded, heat shrinkable polyethylene tubing will be 

placed over each collar, overlapping about one inch on each side over the 

cable jacket. The jacket and the inside surface of the tubing will have 

been chemically treated to improve adhesion. An adhesive for polyethylene 

will be applied on the overlapping surfaces, and the polyethylene tubing will 
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be heated to shrink it tightly over the joint. 

Note: Several segments of the heat shrinkable tubing with graduated 

lengths may be used to improve the tightness of the joint and the flow of 

sea water along the electrode. Instead of using adhesives, the polyethylene 

tubing can be ultrasonically welded to the cable jacket. 

The material and size of the collars, the methods of joining, and other 

design details have not been decided at this time, since they require 

further design analysis. 

Two models have been constructed based on the preliminary design. 

One is a scale model using a section of the same underground power distribution 

cable from which conductive jacket samples were taken. Aluminum strip and 

connecting collars were used and heat shrinkable tubing was applied over the 

collars. It was found that the addition of the strip did not impair the 

flexibility of the cable. Figure 16a shows this model bent to a radius of 

about five times the cable diameter. In Figure 16b, a full scale mock-up is 

shown along with a section drawing of the proposed design. 

A theoretical analysis has been performed of two factors which are 

important in evaluating the proposed design: 

1. Dissipation of the heat produced by the flow of electrical current; 

2. Stiffness of the electrode, which in large measure determines the ease 

of handling. 

The basic theory and the results of the calculations are given in the 

following two sections; Appendices 1 and 2 contain further information about 

the mathematical details. 
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Figure 16. Models of Preliminary Design of a Platinized Niobium Electrode; 
(a) Scale Model Flexion Test, 
(b) Full Size Mock-up and Section Drawing. 
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The helical geometry of the Nb strip produces analytical complications 

for both the stiffness and heat transfer problems. The latter is, in 

addition, complicated by the non-uniform distribution of current. To 

facilitate solution of the two problems, simplifying assumptions have been 

made as to geometry and current distribution which result in postulation of 

more severe operating conditions for the electrode than it would ever 

actually encounter in practice. Hence, these are "worst case" analyses. 

Since the S-cable material which forms the basis of the platinized 

Nb electrode design has undergone a prolonged development program and thus 

can be presumed to function adequately under the conditions which will be 

imposed on it, the aim of the calculations discussed here was to compare 

temperature distribution and stiffness of a cable with and without a Nb strip 

so as to determine the magnitude of the strip's influence. 

B. Temperature Distribution  

Two simplifications were made to obtain a one-dimensional problem: 

(1) the spiral Nb strip was replaced by a Nb tube of the same thickness and 

rate of heat production per unit volume, and (2) the currents in the Al and 

Nb conductors were assumed to be uniform and equal to the maximum values 

which occur in the real electrode. Both result in overestimation of the 

temperature rise since, for assumption 1, the polymer jacket surface is not 

in contact with the heat sink of the sea, and for assumption 2, since the 

axial heat flow (which results from non-uniform heating by non-uniform 

currents causing temperature gradients) which would tend to produce a more 

even temperature distribution is neglected. 
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Under these conditions, the differential equation governing the steady-

state temperature distribution in media which have heat sources is the one-

dimensional Poisson equation: 

dT2  + 1 dt + q"' 
- 0 

dr2  r dr k 

where T = temperature, r = radial coordinate, q"' = rate of heat production 

per unit volume, and k = thermal conductivity. 

The temperature distribution T(r) for an electrode with and without the 

Nb layer is shown graphically in Figure 17 (see Appendix 1 for a discussion 

of how this solution is obtained). Since, in general, polymer-based 

materials are much less stable at elevated temperatures than are metals, 

the basic reason for calculating temperature distributions is to determine 

the maximum temperature use above the ambient sea temperatures which will 

occur in the polymer regions of the electrode (i.e., central core and cable 

jacket). The central core temperature is 41.13 ° C without the Nb outer layer 

and 43.80 ° C with the outer layer. The maximum temperature of the cable 

jacket will be 41.05 °C without a Nb layer and 43.74 ° C with the layer. The 

increase in the maximum temperature rise in the polymeric portions of the 

cable will be 6.5% for this "worst case" analysis, so it can be concluded that 

the presence of the Nb strips will have only a slight influence on the 

temperature rise of the electrode. 

C. Stiffness Considerations  

The ease of handling an electrode when it is being coiled or uncoiled 

is related to the ease with which it can be bent. For a beam whose axis is 
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directed along the x-axis and which undergoes bending in the xy plane, the 

beam deflection, y, is given by: 

y = (1/EI) • f (x) 

.0 	where E = Young's modulus of the beam, and 

I = second moment of area of the beam cross-section about the z-axis. 

The function f(x) depends upon the applied loads and the boundary conditions 

(assumed to be the same for an electrode with and without Nb strips). 

Let the subscripts e and eps respectively stand for the electrode without 

the strips and the electrode plus strips. Then, for the same loads on both, 

the ratio of the deflections is: 

y
e
/y

eps 
= (EI)

eps
/(EI)

e 

The bending stiffnesses (i.e., the Els) are given by: 

(EI) eps = E 
sc  I  sc 

 + E
str

I
str 

(EI)
e 
= E I 

sc sc 

where subscript sc stands for S Cable material and str denotes the Nb 

strip. 

Substitution of (2) and (3) into (1) yields: 

E
s 

I 
trstr 

y
e
/y

eps 
= 1 4 

E I 
sc sc 

As was the case for the thermal analysis, a simplifying assumption is 

made to avoid dealing with the spiral geometry of the strip. The strip is 



assumed to lie on the S-cable with its axis straight and parallel to that 

of the cable. Bending occurs in the plane defined by the two axes. This 

again constitutes a "worst case" calculation, since here a greater portion 

of the strip provides resistance to bending than would be the case for a 

helically wrapped strip. 

Using this assumption, I 
sc 
 and  I

str 
are straight forwardly calculated 

(see Appendix 2). Estr  is known (E
str 

= E = 15x10 6  psi); however, we do 
Nb 

not know the value of E sc . Thus, at this time, the ratio 
ye/yeps 

given by 

(4) cannot be determined with precision numerically, but it is expressible 

in terms of the ratio of the Young's moduli: 

- 2 E 
y
e
/y

eps 
= 1 + 1.1x10 	•  str  

E 
sc 

Even for E
str

/E
sc 

= 10 (which is probably higher than the true value), 

the decline in deflection due to the strip is only 10%. Considering that 

this was a "worst case" analysis, it can be concluded that it is most 

unlikely that placing Nb strips on the S-cable material will result in more 

than a very modest increase in bending stiffness. 

44 
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D. Cost Estimate and Life Expectancy  

The cost of the noble metal electrode of the proposed design can be 

estimated as the cost of the "S" cable + conversion cost. The conversion 

cost is a sum of the costs of materials + labor. The cost of materials, 

based on the 1976 quotations from Kawecki Berylco Industries and Engelhard 

Industries for the niobium strips and platinizing, respectively, is estimated 

for one electrode as follows: 

500 ft niobium strip 0.5x0.0625 in, 56 lb @ $51.15/lb 	 $2,864 

Platinizing 100 p inch Pt, 0.5 in x 500 ft 	 2,370 

Heat shrinkable PE tubing, 4 in. ID, 10 ft 	 41 

Collars and miscellaneous 	 225  

TOTAL 	 $5,500 

The cost of materials in larger quantities will be lower by at least 5%. 

Considering the expected increases in prices, it is estimated that the total 

conversion cost (including labor) will be $10,000 or less. 

At the current density of 3.33 A/in 2  the life-expectancy of commercial 

platinized niobium electrodes with 100 p in Pt is about one year. At the 

high towing speed of the minesweeping electrodes, the life will be shortened 

due to erosion. It is estimated that the life will not be less than 1,000 

hours of operation. 
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CHAPTER IV 

ELECTROMAGNETOSTATIC ANALYSIS 

A method for the calculation of electrode currents is presented 

which combines integrals of Green's function solutions, superposition 

and the method of moments to yield accurate current densities for 

resistive electrodes in sea water of finite depth. The method al-

lows for submergence of the electrodes and includes specification of 

sea bottom conductivity, electrode physical and electrical properties. 

The solution is restricted such that each electrode is composed of N 

subsections, each of which are equal length conducting cylinders with 

an outer cylindrical layer of conducting jacket. 

A. 	Electrode Current Calculation  

The starting point for the development of this method is the 

solution for the voltage in a three region media generated by a point 

of current I located in the middle medium. This solution is called 

the Green's Function for the problem. Figure 18 shows the three 

region media, the point of current, and the reference coordinate 

system for this point problem. The three regions are characterized by 

their conductivities and planar boundries at z'=b and z'=-a. The 

solution to the problem is obtained from Laplace's Equation in cylindri-

cal coordinates independent of the angle (1). In cylindrical coordinates 

the solution for the voltage is separable into functions of z', Z(z') 

and cylindrical r, R(r) for the case of no 41 dependence as 

V(r,z') = R(r)Z(z') 
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Laplace's Equation for this case reduces to 

r 	a 	aR(r) 	r2 a 2
Z(z')  V 2V(r,z i ) = 	 (r 	) + 	 = O. 

R(r) ar 	ar 	Z(z') 
az' 2 

The general solution to the equation is given as 

I 	oo 
' 

V(r,z') - —2  J o  8(k)J'
o
(kr)e

-±kz 
 dk 

47ra  

where 0(k) is an arbitrary function of k. The general solution is 

seen to have two possible functional forms with respect to z' and in 

general both forms must be employed. 

The general solution for region three can now be written as 

follows: 

I /3 

V3 	47a 
(r,z') = —a- 	Q(k)J

o
(kr)e-kzdk, 	b 	 (1) 

2 o 

where the +kz' solution must have a zero coefficient, for z' = +co 

the voltage V 3 (r,00)=0. The conductivity 0 2  is used instead of 0 3  in 

the multiplier to keep the coefficients for all regions identical. 
Q
2 

The missing multiplying factor — , if needed, is absorped in the 
3 

unknown function Q(k). 

The general solution for region 2 is written as 

+ 	8(k)J
0
(kr)e

+kz'
dx , -a 	z' 	b . 
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The solution for region two is seen to contain both the +kz' and 

-kz' general solutions. In addition, the first term of this solution 

is a forcing solution in the form of the known solution for a point 

current of magnitude I in an infinite region of conductivity a 2 . 

The unknown functions tp(k) and e(k) must then compensate for the 

forcing function. 

The general solution for 

I 
-2- 

region one is written as 

13, (k)J 	(kr)el-kz' dk 	z' 
o 

Too 
-a. (3) V

1 
 (r

' 
 z') 	= 

47a
2 

As seen in this solution, the multiplying function for the -kz' 

solution was set to zero in order that the voltage at z' = -co would 

be zero. 

The above set of three equations is seen to possess four unknown 

functions Q(k), 4)(k), 8(k) and 1, (k) which must be determined to solve for 

the voltages in the three regions. Four equations can be generated by 

applying boundary conditions to the solutions at the two boundries 

z'=b and z'=-a. At each planar boundary the voltage on each side of 

the boundary must be continuous at the boundary (i.e.) 

V3 (r , b) = V
2
(r,b) 

and 

V
2
(r,-a) = V

1 
 (r,-a) 

(4) 

(5)  
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Also at each boundary the current normal to the boundary must be con-

tinuous as it crosses the boundary (i.e.) 

aV
3
(r,b) 	aV2 (r,b) 

a3 	az' 	- 0 2 
	a 2 ' 

and 

aV2 (r , -a) 	DV1 (r ' -a) 
a
2 	az 	 - 61 	az i  

The solution to the four unknown functions as determined from the four 

boundary conditions is aided by the fact 1] that for equality of in-

tegral equations of this type, the integrands must be equal. Also, 

as differentiation is not performed with respect to r in any of the 

four equations all terms have the common factor J o (kr) which may be 

divided out of each side of the equations. Boundary condition equations 

(4) and (5) result in the following algebraic equations: 

Q(k)e
-kb 

= e
-kb 

+ zp(k)e-kb + O(k)e
kb 

(1)(k)e
-ka 

= e
-ka 

+
ka 

+ 0(k)e
-ka 

Likewise, boundary condition equations (6) and (7) result in the 

following algebraic equations 

-a
3
Q(k)e

-kb 
= -a

2
e-kb - a

2
11)(k)e

-kb 
+ a

2 0(k)e
kb 

a (1)(k)e
-ka 

= a 2 e
-ka 

- a
2
IP(k)e

ka 
+ a 2e(k)e

-ka 

(6)  

(7)  



The solution of the four equations for the four unknown functions is 

straight forward but tedious. The results are given as: 

where: 

Q(k) 
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G
1—G 2 

1-K
12
K
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e-2kc 

G
3
—G
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K32 
	, 32 = a

3
+a

2 

and 

c A a+b 

Substitution of these functions into the voltage equations ( 1), (2), 

and (3 ) yields integrals of the following form 

e
-2kd 

J (kr)e
+kz'

dk 
o 

where d takes on the positive values a, b, c, or zero. The denominator 
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K12   12 = G
1
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(co 
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K
32e
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of the integrand may be recognized as the sum of a power series of the 

form 

1 	2 	3 	4 	5 
-x+x+x+x+x+ . 

1-x 

where lx1 < 1. 

It can be seen from the definition of K
12 

and K
32 

that each has 

a magnitude of one or less and that because both c and k are positive, 

the magnitude of 
e-2kc 

is always less than one except when k=0. The 

k=0 point is integrable in this form and therefore does not present a 

problem and may be ignored. Expanding the denominator of the integrand 

of integral M in its power series representation, yields integrals of 

the following form 

MN 
 = (K12K32)

N 	
Jo(kr)e

±k(zT+2d+2Nc)
dk 

where N is any non-negative integer and d is as defined previously. It 

is known that integrals of this form have the following value 

N 

= 	

(K
12

K
32

) 

[r 2  +(z'+2d+2Nc)] 

Applying the above procedure of substituting the solution for the four 

unknown functions into the three voltage equations, expanding the 

denominators of each integral in a power series and integrating term 

by term, yields the following infinite series for the voltages in the 

three regions: 
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V (r,z') = 	 
1 	2Tr(a

1
+a

2
) 

(K
12

K
32

)  

X 	 . 	2 i=o [r
2
+(z 1 -21c) 

(10)  

    

(K
12

K
32

)3-  
- K

32 
X 

2 	 . 	2 1=0 [r+(z 1 -2b-21c) ] 

for z' 	-a 

The above three equations are called the Green's function solution for 

each medium and in the next section will be integrated to find the 

voltages due tc lines of currents. 
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S. 	Voltage Produced by Horizontal Lines of Current  

In this section the Green's function solutions (point source 

solutions) are used in the determination of the voltages produced in 

the three regions due to a horizontal line of current. A different 

coordinate system (coordinates x,y,z) will be used in this development. 

The coordinate system is the same as defined in Figure 18 except 

that Z = 0 is located at the air-sea interface surface. 

The superposition theorem is employed to find the voltage in the 

three regions as a summation of the voltages due to a distribution of 

point currents which are located on a horizontal line. The line is 

assumed to be parallel to the x axis with a length 2L, and center lo-

cated at the rectangular coordinates (xI, yI, and zI). Let the total 

current, I, be uniformly distributed along the length of the line, 

resulting in a current density of 

= 2L 
I 

P  (amps/meter) 

Now, let the line be segmented into infinitesimal segments of length 

dx
s
. The current associated with each segment is pdx

s 
= 

2
—
L 
 dx

s
. Then 

the contribution to the voltage at a point in (x,y,z) in any of the 

regions due to the segment with x-coordinate x c  can be obtained by 

the use of equation (8 ) (9 ), or (10) with I
p 

replaced by 	dxs , r 

replaced with /(x-x
s

)
2 + (y-yI) 2 and z replaced by (z-zI). The incre- 

mental voltage contributions can then be integrated to yield the total 

voltage due to the line current. For example, if we let V
L3

(x,y,z) be 

the voltage at a point (x,y,z) in region three due to a line of current, 

we have 
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1=0 Ax_x 2 
) +(y-yI)

2
+(z-zI+2ic)
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Similar expressions are obtained for V L2 (x,y,z) and VL1 (x,y,z). Thus 

each voltage expression is an infinite series of terms of the form 

P = K 

-xI+L 
I 
2L 

dx
s 

'xI-L (x-x ) 2 +(y-yI) 2+(z-zI+2E) 2 
s 

 

where K and E are constant for each integration. The evaluation of this 

integral is straightforward for all points (x,y,z) not colinear with the 

line current. For points colinear with the line current but not on the 

line of current, the denominator reduces to the lx-x s
Iwhen the constant E 

is zero. The evaluation of this integral for points on the line current 

will be presented later. In all cases, except for points on the line 

current, the evaluation of this integral is determined as 

P = K — Zn 
1 	 )(ix-xIl+L) 2+(y-yi' 2 ' +(z-zI+E3-1x-xIl+L  

2L 
)(1x-xI I-L) 2+(y-yI) 2+(z-zI+E) 2+1x-xII-L 

Applying the above integral evaluation to each term in the voltage 

equations yields: 
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I  
V
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12 K32 ) 
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2
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 +1x-xI 1+1,  

.  
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2
+ (y-yI) 

2+ (z-zI+2a+21c) 2  + x-xil-L 

    

for z>_0 

and 

2,n (11) Vf( I X-XI +L)
2
+ (y-yI) 

2 + ( 	)
2
+1x-xI1+L 

V
L2

(x,y, z) 	- 
8T- La

2 
141x-xIi-L) 

2
+ (y-yI) 

2
+ (z-zI) 

2
+lx-xI 1 -L 

-K
12 

X  (K12K32)  ikn 
1/(IX-XI +L)

2
+(Y-YI)

2
+(z-zI+2a+2ic)2+1x-xIi+L  

i=o 
141x-xii-L) 2+ (y-yI) 

2
+ (z-zI+2a+2ic) 

2
+1x-xII-L 

kn 

_FL)  2+ (y_y_, 2, , 
V/( 1 	 1) +  kz-zI+2ic) 2 + 1 x-xI I +L 

A 1 x-xII-L) 
2
+ (y-yI) 

2
+ (z-zI+21c)

2 
 + x-xI1-L 

V(1x-xi i +L) 
2
+ (y-yI) 

2
+ (z-zI-2b-21c)

2 
 + x-xI [-FL  

4 1x-xI1-L) 2+  (y-yI)  2+ ( z-zI-2b-2ic) 4+1x-xII-L 

. 	2 V/(1x-xI +L)
2+ (y-yI) 2  + (z-zI-21c) +1x-xI 1 +L  

. 
I( 1 x-xI1-L) 

2
+ (y-yI) 

2
+ ( z-zI-21c)

2 
 + 



57 

and 

for 	-c 	z 0 	and (x,y,z) not on the line of current 

        

V
Ll

(x,y,z) - 
I 

 

L 
(K

12
K
32

)12,n 
 i=o 

 

/(ix-xIl+L) 2+(y_17,)2+ (z-zI-2ic) 2+1x-xIl+L  

   

47rL(0
1
+o

2
) 

     

     

  

4 1x-x I I -L) 2+(y-yI) 2+ 

 

        

i 	r/i(i  
-K 	(K K )

x-x11+L) 2+(y_y_l_.) 2+ (z-zI-2b-2ic) 2+1x-xII+L  
32 iyo 	12 32 = 2 	2 	

2 $(1x-xII-L) 
+(y_y,s 

 +(z-zI-2b-2ic) 

	

+(y-yI) 	 +1x-xII-L 

for z 5 - c 

where b = -ZI and a = C + ZI 

The equations for the voltage in region two were restricted, in that the 

voltage could not be evaluated on the line of current. It will be necessary 

in what follows to be able to evaluate this voltage. Examination of 

the expressions for VL _ V 
l' L2' 

V
L2

(x,y,z) becomes undefined for a point on the conductor (i.e. y=y1, 

z=zI, xI-L 	x 	xI+L). Define this term to be VL 2  (x,y,z). It is also 

noted that VL2  (x,y,z) has physical significance. This term is recognized 

as the voltage at (x,y,z) which would have been produced had the problem 

been composed only of an infinite  medium of homogenous conductivity 0 2 

 with a line of current of length 2L, directed parallel to the x axis 

and having a center at (xI,y1,z1). The solution of this problem is 

now obtained with an alternate method and will be substituted for the 

undefined term in V
L2 

whenever the point of solution lies on the current 

line. 

For the purposes of calculating the potentials on the line of 

current in an infinite medium, the line of current may be replaced 

and VL3  show that only the first term of 



with a tube of current of length 2L and diameter 2d, with a total 

current I leaving from the surface of the tube, uniformly distributed 

over the surface area of the tube with current density p given by 

p - 	 - 	 
(gird) (2L) 	4irdL 

The equation for the potential in an infinite medium of homogeneous 

conductivity 0 2  is given by the surface integral of the current dis-

tribution weighted by 1/47r0 2 , where r is the distance measured from 

each current element to the point of voltage evaluation. For a 

current tube parallel to the x-axis centered at (xI,yI,zI) the voltage 

on the tube center line (y=yI, z=zI) is 

J27 TI+L 

V(x,yI,zI) = 1 
	 47dL 	

dx dda 
470   s 

2 
o xI-L /(x-x)

2+d
2 

s 
 

where a is defined in Figure 19. 
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Evaluating the integral yields 

V(x,yI,zI) - 
1 	

in 
✓/(1x-xII+L)2+d2+x-xIl+L  

&fru
2
L 

1/(lx-xI 1-L) 24.d24. lx-xII-L 

(12) 

Thus for cases in which the voltage of the line current must be 

evaluated on the line current, the first term of equation (11) is re-

placed with equation (12). When the voltage is evaluated at the center 

of the line current (center of tube current) the resulting voltage is 

known as the self-potential  of the tube. For self-potential evaluation, 

equation (12) becomes 

VL
2 
 (xI,yI,zI) - 

8Ra L 
in 

2 

7L 2+d 2+1,  

/ L 2+d 2 -L  
(13) 

Comparison of equation (12) with the first term of equation (11) 

shows that they are identical when d=0 and that the two results become 

asymptotically equal as lx-xIl increases beyond L. As an example, let 

lx-xIl be greater than L by 10 radii, 10d; the voltage equation derived 

above for the tube of current becomes: 

V(10d+ xI +L, yIzI) = 	 in 
400d2+d2+20d  

8Ra
2
L 

/100d2+d 2+10d 

	 in 
✓401d2+20d  

affa
2
L 

/101d2+10d 

I  
Rn 

1400d2+20d  
8Ru

2
L 

✓100d 2+10d 



The last expression is seen to be equal to the first term of equation 

(11) when evaluated on a line colinear with the line source. 

The above analysis has shown that the voltage equations for lines 

of currents are the same as the equations of tubes of currents with 

finite diameter as long as the evaluation of the voltages is performed 

many diameters from the tube. The analysis concludes having developed 

voltage equations in all three regions of space for a tube of current 

located at (xI,yI,zI). The self-potential was defined as the voltage 

at the center of the tube. The next section is devoted to solving 

for the currents leaving N tubes of current all located in the middle 

region of a three region conducting space. 
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C. SOLUTION FOR N CONDUCTORS  

The development up to this point has been devoted to the calcula-

tion of the voltage due to a single tube of current in the middle region 

of a three region space. In this section a method will be presented for 

the calculation of the voltage in all three regions due to N current 

tubes each with a different potential. This procedure requires that the 

currents from each tube be computed first and their effects combined by 

superposition to obtain the voltages in the three regions. 

From the superposition theorem, the voltage at any point is space is 

equal to the sum of the voltages due to all sources in the space. The 

equation for the voltage in region two due to N tubes of current in 

region two is given by: 

N
C  V

LN2 (x,Y,z) = ) 
VL2i 	 1 	1 	1 	1 i i=1 

where, for clarity, the voltage 
VL2i, 

 the voltage due to the i
th 

tube 

of current, is shown explicitly to be a function of the coordinates of 

the center of the tube 	 the length LENGTH, and diameter 
i 	1 	1 

DIA. of the tube and the total current leaving the tube I.. With the 
1 	 1 

location, length and diameter of the conductor specified V
L2 

becomes a 

function of only the coordinates of the point of evaluation (x,y,z) and 

the current I i . 	Examination of all voltage equations derived thus 

far, v
L2i 

is seen to be linearly dependent on the current I.
1 
 leaving the 

tube. 	A new function is now defined to emphasize the linear dependence 

th. 
of I. The function is called the mutual resistance  between the 1 

current tube and the point of evaluation, the current tube being parallel 

to the x axis with center at 	 with length 2L and diameter 2d. 
1 	1 	1 



62 

The function is defined as 

VL21 
.(x,y,z,I) 

RLM2i (x ' Y ' z) = I 

The mutual resistance is seen to be just the voltage at the point of 

evaluation due to the i
th 

tube divided by the total current of the i
th 

tube. When the evaluation point is the center of the conductor itself, 

the mutual resistance becomes the self-resistance of the conductor and 

the special first term of the VL2  equation (Equation ( 13 )) must be em-

ployed. It is noted that the mutual and self-resistances are only func-

tions of geometry and the electrical properties of the media. The 

equation for the voltage at any point (x,y,z) due to N conductors (current 

tubes) may be written utilizing the newly defined resistances as 

N 
V
LN2

(x,y,z) = y I.RLM21  .(x,y,z) -  
1=1 

(14) 

Thus, the values of the currents, I., must be obtained. This is done by 

the following procedure. If the self-potentials of the N current conduc-

tors are known, N voltage equations may be written and the N unknown 

currents solved for. Let the voltage at the center of each conducting 

tube be given by Vi  E
2 	1 	1 	1 	

i = 1,2, . 	. ,N. Also define 

R(i,j) = 	.(xI.,yI.,zI.), the mutual resistance RLM2i (xI j, yI j, zI j ) 

. 
between the i

th 
and 3

th 
 current tubes. Then one can write equation (14) 

for the i
th 

tube voltage as 

V. =_- 	.R(i,j), 	J-.= 1,2, . 	. ,N. 
j=l  

The self potential equations for all N conductors can be 

written in matrix form as: 
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V1 
 

R(1,1) R(1,2) . 	. 	. 	. 	R(1,N) 
1 

V
2 

R(2,1) R(2,2) I
2 

V
N 

R(N,1) R(N,N) I
N 

4111■Ny 

If 	the voltages 	are specified, the matrix equation is then solved for 

theNcurrentsI—The resulting I.'s are used in equation (14) to solve 

for the voltage at any point in region two. Voltages in region one and 

three are calculated using equations similar to equation (14) as 

N 
VLN1

(x,y,z) = y I.R_ LMli(x,y•z) 
'  

i=1 

and 

N 
V
LN3

(x,y,z) = X I.R_M31 .(x,y,z) 1,  
1=1 

where 

h V .• (x,y,z) 

I. 
(x,y,z) 8 Lai 

RLMli 

and 

v 	.(x,y , z) 
R 	.(x,y,z ) A 	L31  

—11131 
	

I. 
i 
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and VLli (x,y,z) is the voltage produced in region one at (x,y,z) due to 

the i
th 

current tube. A similar definition holds also forV L3i  (x,y,z). 

In summary, a method has been presented for the calculation of 

the voltage at any point in space due to N tubular conductors of finite 

length and diameter, each with a known voltage and each embedded in the 

middle region of a three-layered conducting media, and each parallel to 

the x axis. The N conductors were considered to be independently 

located within the middle region and the conductors are assumed to be 

electrically disconnected. The next section will consider the problem 

of supplying the conductors from a power source, connecting the N 

conductors together and allowing current flow from one conductor to 

the next. 
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D. INTERCONNECTION OF CONDUCTORS  

The current leaving each of the N conductors must be supplied by 

an external power source or by interconnection of the N electrodes to 

external power at some point of the interconnected network. The tubular 

conductors up to this point have not been physically defined other than 

by their physical dimensions (length 2L and diameter 2d), by their 

location (xI,yI,zI) within the middle region and by the fact that they 

are assumed to be conducting such that current can leave them and enter 

the conducting media. The tubular conductors are now given a physical 

form containing some general properties. The cross section of the sub-

section conductors is shown in Figure 20 where the conductors are seen 

to have a hollow, non-conducting core of radius r l , a cylindrical metallic 

tube of conductivity a c , with outer radius r 2 , and a semi-conducting 

jacket of outer radius r
3 
and conductivity a . The physical description 

is general to the extent that r
I 
may have a minimum value of zero, and 

ac' aJ, r 2 , and r
3 
may be variable over wide ranges. The primary restric- 

tions as will be seen later, are that the longitudinal impedance of the 

subsections be predominantly determined by the metallic conductor and that 

the radial impedance be determined primarily by the semiconducting jacket. 

Most metallic conductors used for high current transmission such as 

aluminum or copper have conductivities on the order of 5x10 7 mhos/meter, 

whereas typical cable semiconducting carbon impregnated jackets have 

conductivities on the order of 2 mhos/meter, thus the above restrictions 

are easily met as long as the cross-sectional area of the jacket is not 

2.5x10
7 
 times greater than the cross-sectional area of the conductor. 

Under these conditions, a resistive circuit model for a small conducting 

segment is given as shown in Figure 21. The current leaving the small 



Figure 20 

CROSSECTION OF CONDUCTOR 
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section of cable is divided into two components, a longitudinal current 

I
L 

and a radial current 	The The longitudinal current produces a voltage 

drop of 

VdL
= 
 IL RL 

over the length of the section. The radial current is assumed to be 

distributed uniformly over the length of the conductor with a radial 

current density given by 

I
R 

Pr = L • 

Associated with the radial density is a longitudinal current which has a 

value of I
R 

at the beginning of the section and zero at the end, this 

longitudinal current is given by 

I
LR 

= I
R
(1 - 

where x is the longitudinal distance along the conductor length. The 

longitudinal voltage drop, as a function of distance x along the section, 

is given by 

ix 
V
L 

= 	I
R
(1 - ;R dy 

L 
o 

2 
VL  = I

R
[x -R 

2L 

where R is the longitudinal resistance per unit length. 



Evaluation at x=L gives the total longitudinal voltage drop across 

the section due to radial currents as 

IR
L 

V
L
(L) = I R 1-= = 

R  
R 2 	2 

where R
L 

= R•L is the longitudinal resistance of a length L of cable 

section. 

L 
Evaluating x = -igives the longitudinal voltage drop at the center 

of the cable section due to radial currents as 

L L
2 

VL2 
(—) = IR 

- —
8L

] R = 

R._ 1  I 
R L 8 

3 I
R
RL 

8 

The radial voltage drop is given by 

VR  = IR  RR  

In summary, the total longitudinal voltage drop across the length 

of the cable is given by 

VL (L) = IL  RL  + IR  RL  

and the total longitudinal voltage drop at the center of the cable is 

given by 

V
L 

(-
2
) = —

1 
2 IL L 

R_ + 8 I 
R  R L 
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The total radial voltage drop is given by 

VR  = IR  RR  

The voltage on the outer surface of the cable evaluated at L/2 would 

involve both the longitudinal and radial voltage drops as given by 

V(L/2) = V
I 
 - 

VL(2) 
 - V

R 

1 
= VI  - -i. IL  RL  - Ti I R  RL  IR  RR  

70 

where V
I 

is the voltage on the inner conductor at x= 
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E. 	LONGITUDINAL IMPEDANCE  

The longitudinal impedance of aluminum or copper conductors at DC 

is purely resistive and dependent on cross-sectional area and temperature 

of the conductors as given below. The longitudinal resistance per meter 

of an aluminum conductor is given by 

R - 
1 	1 + .0056(t-20°)  

L AREA 	
GAL20° 

where: 

= 3.536x10
7 
mhos/meter, the conductivity a

AL20° 

of aluminum at 20° celsius 

t 	= temperature in degrees celsius 

The longitudinal resistance per meter of copper conductor is 

R - 
1 	1  + .004(t-20 ° )  

L AREA 	aCV20 

where: 

aCV = 5.8x10
7 
mhos/meter, the conductivity of 

copper at 20° celsius 

The area in the above equations has the units of meters squared. However, 

cable conductor area is often given in circular mills. The diameter in 

inches of a round conductor with area of CM circular mills is given by 



R - 	 
1 	2ffLa 

1 

72 

CM  
Dia" - 

1000 

The area in meters squared of that conductor is given by 

2 	Tr CM (2.54)  
2 

Area(m) - 	[ 
4 

10
10  

Area(m)
2 

= CM[
5.067075

] 
10

10  

As an example, an aluminum conductor with 1,250,000 circular mill area at 

75°C has a resistance per meter of 

1  
[ 	

3.537x10
7 	

]- 
1 + .0056(75-20) 	1.308  R - 

L 
1.25x10

6
[
5.067075

] 	
2240.28 

10
10  

RL  = .00058386 0/meter 

RADIAL IMPEDANCE. 

The radial impedance of L meters of a cylindrical tube of conducting 

material with inner radius r
o 

and outer radius r l , a conductivity 0 1 , and 

a permeativity of E 1  can be modeled as a parallel resistor and compacitor 

with the following values: 

kn(r / (r -r )) 	 2TI-LE 
1 0 	 1  

C1 
- 
 kn(r

1
/(r

1
-r

o
)) 

This circuit model of radial impedance can be extended to the multi-

layered concentric cylindrical tube as shown in Figure 22. The corres-

ponding circuit model, the resistor, and capacitor values are given in 

the same figure. At DC the capacitances have no effect on the electrical 
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Figure 22 
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behavior of the cable and the coaxial impedance is purely resistive. 

The radial resistance of a 3.51 inch outer diameter jacket of thickness 

0.1 inch and a conductivity of 2 mhos/meter for a one meter length is 

given by 

3.51 3.31  
kn( 	/ 	) 

2 	2  
= .0046686 ohm R

R 
= 	  

2v(1) (2) 
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F. ELECTRICAL MODEL FOR CABLE  

A length Lc  of cable can be modeled as N sections of cable in 

series, each with length 
Lc/N. 

 On each subsection the assumption is 

made that the radial current is uniformly distributed over the surface 

area of the subsection. The magnitude of the radial current of each 

subsection is unknown and is to be determined by the method presented. 

What is needed at this point is a relationship between the various 

currents and voltages on such a cable including the exciting source 

voltage and its internal resistance and any load resistance at the far 

end of the cable. 

The electrical model for such a cable is shown in Figure 23 

where it is seen to be composed of N subsections electrical models as 

derived previously. 

Using the equations derived previously for the voltage at the 

surface of the cable jacket mid point of each subsection, the equation 

th 
for the voltage at the i subsection is given by 

i-1 
Vi  = Vs  - 

.=1-
1  I. [R

s 	
0-1))-Ii[Rs+RL(i-1)+RL 

3 
 +RR] 

7 , 
	3 

 

N 
- y 	I. [R 

s
+R,(i-1)]-IL [Rs+RL (i- 1)] 

j=i+l  

A similar equation is written for V
L 

as 

N 
V = Vs - X I [R +R_O-1))-I L (Rs+NRL ) 

L 	
j=1 	s L  

(15) 
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FIGURE 23. Distributed Circuit Model for N Subsection Electrode. 
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Another equation may be written for V
L 
which includes the resistance of 

the load R 	as 
LOAD 

 

VL 
I
L
R
LOAD 

Subtracting the two equations for V
L 

and rearranging yields: 

N 
0 = Vs  = X Ij[Rs+RL(j-1)]  -IL  [R s +NR..+R: LOAD 

j=1 
(16) 

This equation is the auxiliary equation which must be used when a load 

is attached to the cable. 

U.  

■ 

• 

■ I 

• I 
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G. SOLUTION FOR UNKNOWN RADIAL AND LOAD CURRENTS  

The two sets of voltage equations, one from the solution of Laplace's 

equations for cylindrical conductors, and one from the circuit model for 

the cable can now be equated and unknown currents solved for. The 

Laplace equation solution yields a linear set of N equation relating 

the N cylindrical subsection mid point voltages to the N uniform radial 

currents for each subsection as: 

R(1,1) 	R(1,2) . . . . R(l,N) 

R(2,1) 	R(2,2) . . V
2 

V
N 

R(N,1) 
	

R(N,N) 

1
2 

I
N 

111••■•■ •■■•••■•■■ 

where the R(i,i) terms are the self-resistances of each cylindrical 

subsection and the R(i,j) terms are the mutual resistances between 

the subsections. 

The ohms law solution of the cable circuit model yielded as a 

set of N+1 equations relating the N radial currents plus the load 

current to the N subsection mid point voltages plus the load voltage. 

This set of equations is written 



V
1  

•■•• 

V
s 

. 	. 	. 	TR.(1,N) 

•••■••■ 

R(l,N+l) 

,11■1■ 

V
2 

V
s 

R(2,1) . 	. I
2 

V
N 

V
s 

R(N,1) R(N,N) I
N 

0 V
s 

R(N+1,1) R(N+1,N+1) IL  

— . 
where R(i,j) 1 5 i 	N, 1 	j < N+1 are the resistance terms in 

equation (15) derived above and R(N+l,j) 1 	j 	N+1 are the resistance 

Yaw". 

terms in equation 

Subtracting these 

(16) 	for the load voltage. 

two sets of equations yields: 

V
s 

■••■•••••• 

R(1,1)+R(1,1) R(1,2)+i(1,2) 	. 	. R(l,N)+R(l,N) R( 1 , N+ 1 ) 
1 

V
s 

R(2,1)+1.(2,2) R(2,2)+R(2,2) 
2 

[II 

Vs 
 R(N,l)+R(N,l) R(N,N)i(1,N) i(N,N+1) I

N 

V
s 

R(N+l,l) R(N+l,N) i(N+1,N+1) IL  

This set of N+1 simultaneous linear equations may now be solved for the 

N radial currents and the load current as all other terms in these 

equations are known. For the case of no load resistance and hence 

IL=O, this set of equations reduces to the first N equations where the 

(N+l) th  term of each equation is missing. 
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H. 	TWO ELECTRODE SOLUTION  

The Laplace solution of N electrode subsection currents is not 

influenced by the electrical connections of the subsections. Thus the 

N linear equations developed from the Laplace solution remain the same 

for any connections or location of subsections. The key factor in 

determining the number of electrodes present is the circuit 

model which links certain subsections together, such that longitudinal 

current leaving the i
th 

subsection enters the i+1
th 

subsection. For 

the case of two electrodes which are each excited by a source: one 

of voltage + V
s 
and the other by a source of -V

s
, the circuit model 

becomes: 

RL 
	

RL 
	

RL 	 RL 

 

+V
s RR 

 
N 

 

I
N 

RL RL RL RL 

- 
	 • 

RR 	 RR 	 RR 

VN+2 	 VN+3 	
V
2N 

I
N+2 	

I
N+3 	

I
2N 

ri 



vi  V
s 

V
N 

V
s 

-V
s 

V
N+1 

-V
s 

V2N 
atm, 11.■•••• 	 ••■=11, 

I l  

I
2N 

where it can be seen that, for simplicity, the source impedances have 

been set to zero and there is no load attached to either electrode. 

Thus, in the two electrode problem subsections 1 through N are con-

nected in series and supplied by +Vs  and subsections N+1 through 2N are 

connected in series and supplied by -V s . The ohms law circuit equations 

developed previously are written for each electrode. From these 

equationsandfromthecircuitmodelitcanbeseenthatV.is N+1 

independent of I. for 	and 	The resulting matrix of 
7 

equations, resulting from the two electrode circuit model is 
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R(1,1) . . . R(1,N) 

R

- 

(N,1) . . . R(N,N) 

0  

0 

TR(N+1,N+1) . . . i(N+1,2N) 

R

- 

(2N,N+1) . . . R(

- 

2N,2N) 

Subtracting the Laplace solution set of linear equations, which are the 

same for any set of 2N conductors, yields: 



V 

V 

-V
s 

-V
s 

I 
1 

IN  

2N 

R(1,N+1) . . 	 R(1,2N) 

R(N,N+1) . . 	 R(N,2N) 

R(N+1,1) 

R(2N,1) R(2N,N+1)+R(2N,N+1) . . R(2N,2N)+R(2N,2N) 

R(1,1)+R(1,1) . . . R(1,N)+R(1,N) 

R(N,1)+R(N,1) . . . R(N,N)+R(N,N) 

R(N+1,N+1)+R(N+1,N+1) . . . R(N+1,2N)+R(N+1,2N) 
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This set of 2N linear equations may be solved for the unknown 

radial currents. Examination of the terms of the matrix equation shows 

that the following variables affect the resultant currents: 

Source Voltages 

Longitudinal Resistance 

Temperature of Conductor 
Area of Conductor 
Conductivity of Conductor 

Radial Resistance 

Jacket Conductivity 
Thickness 
Outer Diameter 

Length of Cables 

Number of Subsections 

Head to Tail Separation of Cables 

Conductivity of Sea 

Electrical Depth of Sea 

Submergence of Cable 

Conductivity of Sea Bottom 

Thus many variables must be considered in the electrical design of 

111 	

the two electrode system. 

The resultant currents are used in two ways. First, the current 

density for each subsection is determined by dividing the subsection 

current by the surface area of the subsection as follows: 

I. 

P. 
7 

2d * Length  

The current density is used in electrochemical calculations for 

the electrode. Second, the total resistance of the two cable circuit 
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including the combined effects of electrode longitudinal resistance, 

electrode jacket radial resistance and sea path resistance is determined 

as follows: 

R — 
N 
y 	I. 

i=1 1 

This resistance plus the resistance of the S cable are used to 

determine the voltage requirements for a desired total current. 

2V
s  



Length 

Outer Diameter 

Submergence 

Metallic Conductor 

Metal Conductivity (20°  C) 

Metal Crossectional Area 

Metal Temperature 

Jacket Type 

Jacket Conductivity 

Jacket Thickness 

Longitudinal Resistance 

Radial Resistance 

Cathode Parameters: 

(Same as anode) 

Electrical Separation: 

Source Voltage 

45.72 meters 

0.09 meters 

3.0 meters 

Aluminum 

3.536 x 10
7 mhos/meter 

1,250,000 cm 
75o 

semi-conducting 

2 x 10 3 mhos/meter 

0.00254 meters 

.0000584 ohms/meter 

.0046235 ohm meters 

91.44 meters 

100 volts 
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I. 	Preliminary Results  

A computer program has been written and tested to implement the 

solutions presented above. The following hypothetical two-electrode 

case, as given in Table =was programmed. 

Table III 

Analysis Conditions 

Sea Parameters: 

Water Conductivity 

Electrical Depth 

Bottom Conductivity 

Anode Parameters: 

4.0 mhos/meter 

100 meters 

5.0 x 10 3 mhos/meter 



The anode was segmented into 10 subsections, each of 4.572 meters in length,86  

and the cathode was likewise segmented into 10 subsections, each of 4.572 

meters in length. Segment #1 was the leading subsection of the anode and 

subsection #10 was the trailing subsection of the anode. Segment #11 was 
• 

the leading subsection of the cathode and segment #20 was the trailing 

subsection of the cathode. Table IV gives the results of the computations. 

	

1 	The total current leaving the anode was determined to be 6174.12 amps 
and the total current entering the cathode from the sea was determined to be 

6174.13 amps, in good agreement with the anode current. The total resistance 

of this electrode configuration less S-cable is 

1 

	

1 	 R 100 volts  - 	 0.0162 ohms . 
6174.12 amps 

Total power delivered by the source is 

P = 100 volts * 6174.12 amps = 617,412 watts . 

Total power dissipated in electrodes is 15,330.2 watts. 

REFERENCE 

Smythe, W.R., "Static and Dynamic Electricity," McGraw-Hill Book Company, 
1950, Chapter V. 



Table Iv 

Computer Program Results 

Segment 
Number 

Current Entering 
Sea from Segment (Amps) 

Average Current 
Density on Segment 

Amps/cm2 ) 

Power Dissipated 
in Segment Metallic 
Conductor (Watts) 

Power Dissipated 
in Segment 
Jacket (Watts) 

Total Dissipated 
Power in Segment 
(Watts) 

1 812.11 62.8 1943.1 145.9 2088.9 
2 671.52 51.9 1475.4 99.7 1575.2 
3 615.16 47.6 1121.9 83.7 1205.6 
4 582.34 45.0 836.3 75.0 911.3 
5 562.22 43.5 602.5 69.9 672.4 
6 551.40 42.7 411.7 67.2 478.9 
7 549.43 42.5 258.7 66.8 325.5 
8 558.56 43.2 140.4 69.0 209.4 
9 587.17 45.4 55.8 76.3 132.1 

10 684.22 52.9 6.8 103.5 110.4 

11 -828.04 -64.1 1937.7 151.7 2089.4 
12 -681.94 -52.8 1463.0 102.9 1565.9 
13 -622.11 -48.1 1106.7 85.6 1192.3 
14 -586.37 -45.4 820.8 76.0 896.8 
15 -563.55 -43.6 588.3 70.2 658.3 
16 -550.09 -42.6 400.0 66.9 466.9 
17 -545.42 -42.2 250.1 65.8 315.9 
18 -551.62 -42.7 135.1 67.3 202.4 
19 -576.74 -44.6 53.4 73.6 127.0 
20 -668.24 -51.7 6.5 98.8 105.3 
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CHAPTER V 

MAGNETIC FIELD CALCULATIONS 

A. 	INTRODUCTION  

The magnetic field produced by a two electrode system in salt 

water has three components. These are the field produced by the current 

in the water, the field produced by the current in the electrodes, and 

the field produced by the current in the interconnecting cable between 

the electrodes, i.e. the S-cable. Of these, the calculation of the 

field due to the current in the water is the most difficult, for the 

magnetic field at any one point is a function of the current at every 

point. This dependency makes any numerical solution difficult to im-

plement because of the tremendous number of steps which would be 

required in the computations. For this reason, it was decided at the 

beginning of this phase of the project to attempt only a two-dimensional 

solution to the problem, thus reducing all three-dimensional integrals 

in the solution to two-dimensional ones. It is well known that the 

solution to a two-dimensional problem can be used to predict the solu-

tion to the equivalent three-dimensional problem if certain symmetries 

are present. That is the case with the two electrode system. 

The major objective of the magnetic field calculations in this 

phase has been to develop a rapid numerical technique for the 

calculation of the three components of the magnetic field in the 

water and their resultant sum. From these calculations, the predominant 

component of the total magnetic field can be identified and changes in 

the field can be predicted for different electrode and S-cable 

geometries. For example, it will be shown in the following that, 



under the stated assumptions, the predominant component of the two-

dimensional magnetic field is that produced by the S-cable for the 

assumed geometry. In addition, it will be seen that the magnetic 

field in this particular case increases by approximately 25% if the 

length of the S-cable is increased by 50%. 

The solution for the three-dimensional field has been obtained, 

but it has not been implemented numerically. This solution is in a 

form such that the total magnetic field can be computed from the 

point source current calculations described in Chapter IV. The 

three-dimensional solution will be implemented in the next phase of 

this work. A derivation of the pertinent mathematics is presented 

in this chapter. 

B. 	THE MAGNETIC FIELD DUE TO THE CURRENT IN THE WATER  

Consider the two electrode geometry illustrated in Figure 24. 

In this figure, the separation between electrodes is 2a and the length 

of each electrode is b-a. A closed form solution to the electric 

field in the water, and thus the current in the water, can be obtained 

if it is assumed that the net charge per unit length on the electrodes 

is constant. Although this assumption will not permit precise deter-

mination of the magnetic field near the electrodes, it will not 

significantly alter the field in the region far from the electrodes. 

It can be shown that a uniform line charge has an electric field 

associated with it that is the same as that produced by an equipoten-

tial ellipsoid. Thus the assumption of a uniform line charge is 

equivalent to that of approximating the electrode by an ellipsoidal 

conductor which has the shape of a cigar. 



N 

Y 

Figure 24. Illustration of 
the two-dimensional two 
electrode geometry, 

90 
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To compute the electric field associated with a uniform line 

charge, consider the geometry in Figure 25. The two-dimensional radial 

electric field at the point (x,y) due to the charge element pdx' 

located at x' is given by [1] 

dE = 1 
	pdx'  

r 	27TE 	r 

where p is the two-dimensional line charge density with units coulombs 

per meter, and r is the distance given by 

r = ✓ (x-x') 2 
 + (y-y')

2  

The field component dE r  can be resolved into its x and y components by 

multiplication by cose and sine, respectively, where e is defined in 

Figure 2. The values for these trigonometric functions are given by 

cose - x-x' 
	

(3) r 

sine = Y 	 (4) 
r 

The total x and y electric field components at the point (x,y) 

can be obtained by summing the differential components due to each 

charge element pdx. In the limit, these sums become the following 

integrals: 

(1)  

(2) 

p 	(x-x')dx'  
E
x
(x,y) - 

271E 
(x-x')

2 2 
-d 	

+y 
-  

(5) 
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Figure25. Geometry for the 
calculation of the electric 
field associated with a uni-
form two dimensional charge. 



E (x,y) - 
Y 	2uE 

tan
-1

(
x+d

) - tan
-1

(
x-d

) 
CV 

d 

E (x,y) = 
27E 2 2 

-d 
(x-x') +y 

where the constant charge density p has been factored out of the in-

tegral. These expressions can be integrated to obtain 
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(6) 
p ydx 

  

E
x
(x,y) - 	 in 

4uE (7) 

  

E
y
(x,y) - 	 

2uE 
tan

-1
(
x+d

) - tan
-1

(
x-d

) (8) 

L._ 

The expressions for E
x 

and E are not in the desired form, for 
y 

p must be determined as a function of the electrode voltage V. These 

are related by the capacitance per unit length of the two-dimensional 

electrode system, or 

p = CV 	 (9) 

where C has the units of farads per meter. Substitution of (9) into 

(7) and (8) yields: 

E(x,y) = 	
CV 

x 
 
4uE 

in 
(x+d)

2
+y

2] 

(x-d)
2
+y

2 
( 1 0) 

   

The current densities J
x 

and J in the water follow from multiplication 
y 

of these expressions by the water conductivity a. They are 



(14) 
aCV 

J
x (x,y) - 

4 	
tn 

47rE 
[(x+a)2-1-172][(x-a)24172]  
[(x+b)

2
+y

2
][(x-b)+y

2 

aCV 
2nE 

J 
Y
(x,y) - 

-1 x+a 	-1 x -a 	-1 x+b 	-1 x-b 
tan (-----)+tan ( 	)-tan ( 	) -tan 	 (15) 

The above expressions for the current in the water are for the 

single electrode geometry in Figure25. The total current in the water 

for the two electrode geometry of Figure 1 can be obtained by suitable 

coordinate transformations. For a voltage of +V on the left electrode 

and -v on the right electrode, these are 

To solve for the magnetic field produced by these currents, we 

first solve for the two-dimensional magnetic vector potential function. 

Let the point (x,y) be the field point at which the magnetic vector 

potentials A
x 
and A are to be found. These are given by 

Ax (x,y) = 	 I 
2n 	

J x (x 1 ,y')9,n( -9-)dx'dy' 

A
y
(x,y) = 

2n I J y 	
-9- (x 1 ,y 1 )2n()dx'dy' 

where S is the area over which the currents flow, r
o 

is the radius of 

the arbitrary cylinder over which A
x 

= Ay 
= 0, and r is the distance 

J (x,y) - 
2 Y 	nE 

tan
-1

(
x+d

) - tan
-1

( 1) 

(16) 

(17) 

aCV 
9,n (12) 

4nE 

(13) 
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(x+d)
2
+y

2] 

(x-d) 2+y 2 
J
x
(x,y) = 

aCV 



between the points (x,y) and (x',y')given by (2). The magnetic 

field associated with the vector potential is given by 

B = V x 

DAx = z - — +ay 	@x 

where the V operator operates only on the unprimed coordinates. After 

a lengthy manipulation, it can be shown that B
z 

is given by 
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(18) 

i co 	co 
Jo 

i

" 

[(x 1 +a) 2+1,12 ][(x'-a)
2
+y'

2
] 	(y-y') 	dx'dy' aCV  

7 
2 

B
z
(x,y) 	

p  

8 E [(30+b)
2
+17 12 ][(x . -b)

2
+y'

2
] 	(x-x')

2
+(y-y')

2  

-1 x'+a 	-1 x'-a 	-
tan 
	 (x-x')  

2 
tan ( 	)+tan ( 	, )-tan 	, 	)-tan 	, 	) 	 dx'dy' 

(x-x')

2

+(y-y') 

  

(19) 

This is the desired expression. Although no method has been found to 

evaluate it in closed form, it can be evaluated numerically as will be 

discussed in a following section. 

A potential problem in the evaluation of (19) is that the inte-

grand in both integrals becomes singular at x=x' and y=y'. However, it 

can be shown that the integrals are zero over a small region containing 

this singular point. Thus the singularity can be avoided in any 

numerical evaluation of B
z
. To show this, construct a small circle 

about the point (x,y) as shown in Figure 26.  For d sufficiently small, 

the only terms in (19) which vary appreciably over this circle are the 

fractions which have the denominator (x'-x)
2 
 + (y'-y)

2
. Thus it is 



 

X - X 

Y 

Figure 26. Illustration 
for calculation of the 
singular integrals. 



only necessary to examine the behavior of the integrals 

-  I
1  = 
	 (Y2Y  

	

f 	2  dx'dy' 
,', 

)  

circle 	(x-x -. ) + k17- 17 1 ) 

	

1 2 = I I 	
(x-x2') 	

2  dx'dy' 
circle (x-x 1 ) +(y-y') 

To evaluate I
1 

and I
2
, we make the substitutions 

(x-x') = r cose 

(y-y') = r sine 

dx'dy' = r drde 

The integrals thus become 

I 	
2 

27 rd 
r sine  

	

I
1 

= 	 r drde 
o o 	r 

 

J 	2 
27 r, 

r cose  

	

I
2 

= 	 r drde 
o o 	r 

 

It can be seen trivally that both I I  and 1 2  are zero since they are 

respectively proportional to the integral of sine and cose over a 27 

interval. 

C. 	THE MAGNETIC FIELD DUE TO THE CURRENT IN THE ELECTRODES  

In Figure 24 it will be assumed that the left electrode is fed 

from the positive output of the generator at the point x=b. The 

negative output of the generator is connected by the S-cable to the 
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(20)  

(21)  

(22) 

(23) 

(24) 

(25)  

(26)  
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right electrode at the point x=-a. The two-dimensional, x-directed 

current at any point in the left electrode is given by 

I J (x 1 ,0)dx' 
a 

where J is given by (15). Similarly, for the right electrode, we 

have 

fx 

	

I
x(R) 

= - 	J (x 1 ,0)dx .  
-b 

It can be shown that these reduce to 

uCV  
I
x(L) 	2E 

= 	(x-a), 	a<x‹b 	 (29) 

(x+b), 
uCV  

I
x(R) 

= 	 (30) 
2€ 

The magnetic field at the point (x,y) due to the current in the 

electrodes is determined by first forming the two-dimensional magnetic 

vector potential 

A
x
(x,y) = -11-2Tr 	 I

x' (L) 

a 

a 

+ 
	I 
	in( -2-)dx' 

2ff 	x'(R) 	r 
-b 

(31) 

where r
o 

and r have been defined in conjunction with (16) and (17) 	The 

magnetic field associated with this potential is given by B z  = -Ax/ay 

(27) 

(28) 



(32) 
B 	= 	aCV  
z (xr Y ) 	271-  26 

fb 
	  dx' + 

a (x-x')
2
+y

2 
-b (x-x')

2
+y 

(xl+b)17 	
2 

dx' 

2Qn 
 

B (x,y) 	
u o-CV  

z 	27r 2€ 
[(x+a)

2
+If

2
][(x-b) 2+y2 ]  

[(x- a)
2
+y

2
][(x+b)

2
+y

2 

(36) tan
-1

(
x+a

)-tan
-1

(
x-b

) B(x,y) = - 
p aCV
----- (b -a) 

z 	2w 2€ 
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This expression can be evaluated in closed form to yield 

-1 x+a 
+(x -a)tan 

-1
()-(x -a)tan 

-1
(
x-b

)+(x+b)tan 
-1

(
±1,2
)-(x+b)tan 

This is the desired expression. 

D. 	THE MAGNETIC FIELD DUE TO THE CURRENT IN THE S-CABLE  

The magnetic field produced by the current in the S-cable can be 

calculated in closed form from the familiar relation 

B
z
(x,y) 	= 

27r 

where I 	is the current in 
sc 

(30) by setting x=-a to obtain 

I sc 

With this substitution, 	(34) 

dx' 

can be determined from 

to yield 

(34)  

(35)  

I sc 	, 2 
j -a 	(x'-x) 	+ 

2 
y 

the S-cable. 	This 

aV C 
(b-a) 

2€ 

can be evaluated 

This is the desired expression. 

(33) 
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E. 	NUMERICAL RESULTS  

The two-dimensional solutions presented in the preceding sections 

have been implemented numerically to solve for the three components of 

the magnetic field and their resultant or sum over a 1500 foot wide by 

750 foot deep rectangle containing the electrodes. Since it is meaning- 

less to calculate the absolute magnetic field levels in the two-dimensional 

field, only the normalized field has been calculated. Of the three 

field components, only that produced by the current in the water has not 

been solved for in closed form. Solution of (19) for this component of 

the field was implemented by employing the Gaussian quadrature method 

for numerical integration. The remaining two field components were 

calculated directly from (32) and (36). 

Figures 27, 28 and 29 show, respectively, contour plots of the 

calculated fields for the current in the water, the current in the 

electrodes, and the current in the S-cable. The sum of these three 

field components is shown in Figure 30. It can be seen from these 

figures that the resultant field is almost everywhere in the same 

direction as that produced by the current in the S-cable. Thus it can be 

concluded that the current in the S-cable is the predominant source of the 

magnetic field. Three-dimensional perspectives of the magnetic fields 

in Figures 27through 30are shown, respectively, in Figures3l through 

34. The vertical height of these plots above the base represents the 

magnetic field above the arbitrary normalized reference level of -45. 

The vertical scale is 30 normalized units per inch. 

To investigate the effect of the length of the S-cable on the 



Figure 27. Normalized two-dimensional magnetic 
field distribution due to the current in the 
water over a 1500 ft. wide by 750 ft. deep 
rectangle. 150 ft. electrodes spaced 300 feet 
apart. 



Figure 28. Normalized two-dimensional magnetic 
field distribution due to the current in the 
electrodes over a 1500 ft. wide by 750 ft. deep 
rectangle. 150 ft. electrodes spaced 300 feet 
apart. 



Figure 29. Normalized two-dimensional magnetic 
field distribution due to the current in the 
s-cable over a 1500 ft. wide by 750 ft. deep 
rectangle. 150 ft. electrodes spaced 300 feet 
apart. 



Figure 30. Total, normalized, two-dimensional 
magnetic field due to the three components of 
Figures 27, 28, and 29. 
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Figure 31. Three-dimensional perspective 
of the field illustrated in Figure 27. 
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Figure 32. Three-dimensional perspective 
of the field illustrated in Figure 28. 
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Figure 33. Three-dimensional perspective 
of the field illustrated in Figure 29. 
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Figure 34. Three-dimensional perspective 
of the field illustrated in Figure 30. 
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resultant magnetic field, the calculations were repeated for a 50% in-

crease in electrode separation. The total current was held constant. 

The results of these calculations are presented in Figures 35 through 38, 

It can be seen from Figure 38 that the resultant field in the region 

away from the electrodes has increased by approximately 25%. Whether 

this conclusions holds for increased distances from the electrodes is 

not known. However, it will be investigated in more detail with the 

numerical implementation of the three-dimensional solution derived in 

the following section. 

F. 	THE THREE-DIMENSIONAL FIELD  

Figure 39 illustrates a point source of current at the interface 

between a conducting and a non-conducting medium. It is desired to 

calculate the magnetic field produced by the current emitted by this 

source under the assumption that the current density in the conducting 

medium is constant over any sphere centered on the source. Once the 

field associated with a single point source is obtained, superposition 

can be used to obtain the field of a more complex shaped source by 

approximating the source with a set of point sources or by integrating 

over it. 

With reference to Figure 39 the current density at the point 

(x',y',z') is given by 

J(x',y',z') = r' 	 
2 

where I is the total current emitted by the source. By symmetry, the 

current must flow in the radial or r' direction. The three-dimensional 

(37) 
27rr' 



Figure 35. Normalized two-dimensional magnetic field 
distribution due to the current in the water over a 
1500 ft. wide by 750 ft. deep rectangle. 150 ft. 
electrodes spaced 450 feet apart. 



Figure 36. Normalized two-dimensional magnetic field 
distribution due to the current in the electrodes over 
a 1500 ft, wide by 750 ft, deep rectangle. 150 ft, 
electrodes spaced 450 feet apart. 



Figure 37. Normalized two-dimensional magnetic field 
distribution due to the current in the S-cable over a 
1500 ft. wide by 750 ft. deep rectangle, 150 ft, 
electrodes spaced 450 ft. apart. 
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Figure 38 • Total normalized two-dimensional magnetic field 
distribution due to the three components of Figures 12, 13, 
and 14. 
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Figure 39. Illustration of the 
three-dimensional point source 
geometry. 



magnetic vector potential at the point (x,y,z) associated with this 

current flow is given by [9] 

pI 	r 	r' 	1 
A(x,y,z) - 	 2 r" dv, 

2 
871- 	V r' 

 

where r" is the distance between the points (x,y,z) and (x',y',z'), 

and V is the volume of the conducting medium. The magnetic field at 

(x,y,z) is computed from the familiar relation B = V x A, where the 

curl operation differentiates with respect to the (x,y,z) coordinates. 

After a lengthy manipulation, it follows that this is given by 

i3(x,y,z) = 
p 
12 	

1 	1 	
[x(y1z-ziy) 

16ar 	V r'
3 

r"
3 

+ y(z'x-x'z) + z(x'y-y'x)]dv' 	 (39) 

The integration in (39) is more conveniently performed after 

conversion to spherical coordinates with the transformations 

x' = r' sine' coscp' 

y' = r' sine' sincp' 

z' = r' cose' 

dv' = r'
2 

sine' dr' de' dcp' 
	

(40) 

In this case, (39) is transformed into 
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(38) 
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27 [7/2 
W B(x,y,z) = 

pI 	
[x(zsine'si-ycose') 

7 16
2 	

1

3 o Jo 	o r"  

+y(xcose'-zsine'coscP 1 )+z(ysine'co0'-xsine'sin(P')] 

sine' dr' de' dcp' 	 (41) 

where r" is given by 

r" = [ r' 2  - 2r 1 (xsine'coscp' + ysine'sinV 

+ zcos0') + r
2

] 

By symmetry, the field must be symmetrical in cp. Thus we may set y=0 

to solve for B in the x-z plane. When this is done and when the point 

(x,o,z) is transformed into the spherical coordinates (r,e,o) with the 

aid of (40), B is given by 

pI  
f27 [7/2 

B(r,a,o) - 	 [xsine'sincO'cose 
167

2
r o Jo 

+ y(cose'sine - sine'coO'cose) 

- z sinesine l sinV] 

sine' de' dil)'  
1 - cose cose' - sine sine' cosh' 

(43) 

where the integration in r' has been performed. 

When the integration in 4' in (43) is considered, it is obvious that 

the x and z components of B are zero. Thus the y component is the only 
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non-zero component. Since this component is perpendicular to the x-z 

4- 
plane, it follows then that B must be in the cp direction. After a 

lengthy manipulation, it can be shown that this is 

pI 1-cosh  
B(r,04) 	

8irr 	sine 	' 
05_01/2 
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pI l+cos0  = th  
8irr 	sine 	

R/21E)R 	 (44) 
' 

This is the desired result. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

A. 	Conclusions  

Anode 

1. Platinized niobium is an efficient anode in sea water; it can operate 

at high current density (0.5A/ cm2 , 3.2 A/in2 ) and low overvoltage (3.5 to 

4.5 volts) with long life expectancy (1,000 hours or more). The low over-

voltage reduces demands on the power supply, and the high current density 

allows considerable flexibility in design. 

2. A preliminary design analysis has shown that a workable noble metal 

minesweeping electrode can be built by adapting the S-cable and using 

commercially available platinized niobium materials. In the design considered 

at this time, platinized niobrium strips of 0.5"x0.0625" cross section would 

be wrapped around an S-cable carrier or similar configuration at frequent 

intervals to the conductors of the cable. Sealing of the joints would be 

accomplished by using heat-shrinkable polyethylene tubing and adhesives. 

Thermodynamic and mechanical analyses have shown that heat distribution and 

stiffness would be only slightly affected by the niobium strips. 

3. A preliminary cost analysis has shown that one noble metal electrode 

designed for 10,000 A current capacity and life expectancy of at least 1,000 

hours can be built for the cost of the S-cable plus $10,000. The cost would 

be lower in larger quantities. 

4. Great care must be exercised to minimize the effects of contact 

resistance when making conventional electrical measurements to determine the 

resistivity of conductive polymers. 
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5. The large overpotentials associated with conducting polymer electrodes 

in contact with salt water are due to contact resistance on the inner surface 

of the jacket and high activation overpotential on the outer surface in 

contact with the salt water. 

6. Samples of carbon-impregnated polyethylene cable jacket tested to date 

have shown high overvoltage and deterioration at the anodic current density 

considered in the design of a high current minesweeping electrode (70 mA/cm 2 , 

0.45 A/in2 ). It appears that this is a result of oxidation of the carbon 

because of the high potentials necessary to achieve the desired current. 

Cathode  

7. Carbon-impregnated polyethylene cable jacket has indicated promise as 

a cathode in flowing sea water in short-term tests. Further tests are needed 

to determine the life expectancy of this type of cathode. 

8. Platinized niobium is an efficient cathode, allowing operation at high 

current density and low overvoltage. However, there is no industrial 

experience with commercial platinized products working in the cathodic regime, 

and the commonly used substrate materials (titanium and niobium) are 

susceptible to hydrogen embrittlement; peeling of the platinized layer can 

also be a problem. Further tests are needed to evaluate the possibility of 

successful use of platinized materials as cathodes for minesweeping operations. 

Substrates other than niobium and titanium may offer better performance in 

the cathodic regime. 

9. Our previous studies have indicated an approximate 150 to 200 hours of 

life for aluminum cathode in the high current system. This has been verified 
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by calculations, but needs to be established experimentally. If a 

somewhat better performance, than calculated is experienced, plus the 

existance of available materials, it is an economic possibility that at 

least for sea tests and possibly even extended sea trials aluminum cathode 

could be used. 

10. Preliminary results indicate that the computer program developed on 

this program for the electromagnetostatic analysis of magnetic minesweeping 

electrode longitudinal and radial currents is accurate. The computer 

program also calculates electrode and sea path resistances and heat dissipation 

along the electrodes. This program will play a major role in simulating 

electrode performance under a variety of electrode configurations and 

environmental conditions. 

11. The two-dimensional magnetic field calculations show that the predominant 

magnetic field component produced by the electrode/S-cable assembly is due 

to the return current in the S-cable. A solution for the three-dimensional 

magnetic field has been obtained from which all components of the true field 

can be determined by approximating the electrodes by a line a point source 

current emitters. 
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B. Recommendations  

1. It is recommended that a cable section with platinized Nb strips for 

test of the electrical and mechanical characteristics be prepared and tested. 

In this particular phase it is possible to use a section of the proposed "S" 

cable as a carrier for the system and tests will be made to verify the 

electrical properties calculated by the EE group. 

2. It is recommended that other potential polymer-graphite materials 

suggested by manufacturers be tested. The results of these tests will indicate 

if any one or more of these combinations will be better mechanically and 

electrically than the original carbon loaded material tested. 

3. It is recommended that new design concepts be studied and tested if 

manufacturing techniques are possible. This list of potential electrode 

jacket materials combines the advantages of a flexible waterproof jacket and 

the nobility of platinum or a similar noble material. 

4. It is recommended that other factors including hydrogen overvoltage, 

exchange current, maintaining electrochemical reaction on the surface, etc., 

to provide the best electrical properties available for a graphite-polymer 

system be evaluated. 

5. It is recommended that the cathode characteristics of Pt-Nb and polymer-

carbon electrodes be determined and tests on basic cathodic properties be 

completed and design recommendations of a cathode material be made. 

6. It is recommended that final evaluation of aluminum as a cathodic material 

be made and its possibilities as to cost and life efficiency in the cathodic 

mode be determined. 

7. It is recommended upon the completion of the above and with information 

from Aerojet General regarding the S-cable, a choice of anode and cathode 
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be made and anode cathode electrical design established. With this data 

and design information, potential manufacturers are to be consulted on 

manufacturing interests concerning engineering and necessary alterations to 

make production feasible. 

8. 	It is recommended that the electrical-magnetic characteristics of the 

final anode-cathode design be evaluated under various operational environments. 

Variables should include sea water conductivity, depth, sea water temperature, 

etc. In addition, thermal analysis and mechanical analysis of the designs 

should be evaluated in laboratory and sea test conditions. 
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APPENDIX I 

CALCULATION OF TEMPERATURE DISTRIBUTION 
IN PLATINIZED Nb ELECTRODES 

The three-dimensional Poisson equation for a r, 0, z coordinate 

system is: 

3 2T + 1 BT + 1 B 2T + B2T +  	
0 

Br2 	r Br 	r2  D02 	Bz2  

To eliminate 0 dependence of temperature T, symmetric geometry is assumed 

in which the strip is replaced by a Nb tube of the same thickness: 

Platinized Nb 

polymer jacket 

Al conductors 

Central core 

r
o 
 = 1.5" 

r 1  = 1.806" 

r2 = 1.93" 

r 3 
= 1.9925" 

The dimensions given above are accurate, but the drawing has not been 

done to scale in order to enhance clarity. 

The work of the EE group has shown that the current is dispersed into 

the sea in a non-uniform manner along the length of the anode. The maximum 

value is 131.5% of the mean and occurs in the first segment. Thus, for a 104 



amp, ten-segment system, the maximum currents in the Al and Nb conductors 

are: 

I
Al 

= 8,685 amp 	I
Nb 
 = 1,315 amp 

To eliminate z dependence of T, the assumption is made that these 

maximum currents, which produce maximum heating, are present throughout the 

electrode, and the Poisson equation thus becomes: 

d2T  + 1 dT + q"'  — o 
dr 2  r dr 

A solution to this equation which is valid for all four regions of the 

cable (central core, Al conductors, polymer jacket, and platinized Nb outer 

layer) when the appropriate values of q"', k, C l , and C
2 

are used is: 

T = -q"' . r 2  + C l ln r + C 2 	 (2) 
4K 

(where C
1 
and C

2 
 are constants). 

The thermal conductivities, k, of the various materials are: 

k
Al 

= 2.36 watts 	k 	= 0.523 watts 	k. = 3.33 x 10 -3  watts  
Nb 

cm - ° C 	 cm - ° C 	J 	cm - °C 

We do not know the actual value of thermal conductivity for the S-cable 

jacket; to estimate it we use the value k. given above which is the average 

value for the heat-set, cross-linked, carbon-impregnated polyethylene 

jacket material. 
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The rates of heat production per unit volume, q'", are: 

= a ll! .  = 0  q"' 
Al 

= 12 
Al 

R
Al 
 q"' 

Nb 
= 12 

Nb 
R
Nb 	core 

V
Al 	

V 
Nb 

where R and V respectively denote electrical resistance and volume of 

conducting material. These quantities are given by: 

R = pL 	 V = 	 (4) 
A 

where L = conductor length, A = cross-sectional area of conductor, and p = 

resistivity. The resistivities of the two materials (nelgecting the small 

temperature coefficients) are: 

p
Al 

= 2.6548x10 -6  ohm - cm 	p
Nb 

= 12.5x10 -6  ohm cm 

Actual dimensions are used to calculate-"'Al. The assumption is 

made that the Nb tube produces the same amount of heat per unit volume as 

does the strip, so the strip cross-sectional dimensions (0.5"x0.06259 are 

used in (3). Substitution of (1) and (4) into (3) shows that: 

q'"
Al 

- 0.4764 watts 	q"'Nb = 531.77 watts 

	

3 	 3 

	

cm 	 cm 

The remaining information necessary to determine the temperature 

distribution numerically consists of six boundary conditions, three of which 

involve continuity of temperature: 

T
Al 

= T
j 
 at r = rl 	 (5) 
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(3) 



(8) 

T
j 
= T

Nb 
 at r = r2 

Nb 	s 
= T T 
	
at r = r3 

where subscripts Al, j, Nb, and s, respectively, denote the Al conductor 

region, the polymer jacket, the Nb outer layer, and the sea. Boundary 

condition (7) is applicable since previous reports have shown that the 

convective heat flow at the external surface is such that there is a negligible 

temperature difference between the electrode and the sea. 

The other three boundary conditions involve continuity of heat flux 

across the boundaries between the materials in the electrode. The heat 

flux, q", is given by: 

q" = -k dT 
dr 

The three additional boundary conditions are: 

dT
Al 
 = 0 at r = r 

dr 

k
Al 

dT
Al 

= k. dTi  at r = r
1 

	

dr 	dr 

k.dT
j 
= k

Nb 
 dT

Nb 
 at r = r

2 

	

dr 	dr 

Boundary condition (8) indicates that no heat flux exists across the 

boundary between the central core and the Al conductor. This is because the 

core temperature is a constant (i.e., dT/dr = 0 in this region). This can 

easily be seen from the solution (2) since q"'
core 

= 0 and the temperature 

within the core must be finite (i.e., C
1
core 

= 0). Thus, from boundary 
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condition (5) the temperature throughout the central core is equal to the 

temperature at the inside radius of the Al conductor. 

The temperature distribution is determined by substituting the 

solution (2) into boundary conditions (5)-(10) and solving the resulting 

Nb 	Nb 
six equations for the six unknowns C1 

Al, 
 C2

Al
, C 1  , C2 j , C 1  , and C2  . 

The determination of the temperature distribution when the Nb strip is 

not present proceeds in similar fashion to that outlined above for the 

solution of the problem where the strip is present. The only differences 

are that a different value of q" 1 2111  is used, 	= 0.6315 watts/cm 3 

 (since here the Al carries all the current), boundary conditions (7) and 

(10) are omitted, and boundary condition (6) becomes T j  = T
s 
at r = r2. 

The results of these calculations are displayed graphically in the 

text of this report. 
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APPENDIX II 

SECOND MOMENTS OF AREA REQUIRED FOR 
BENDING STIFFNESS CALCULATIONS 

The cross-sectional geometry for an electrode consisting of cable 

"sc" with radius r, plus a platinized Nb strip, "str," with width b and 

thickness h is shown below. The size of the strip has been greatly 

exaggerated for clarity of presentation: 

str 

SC 

The second moments of area of the cross-sections of the cable and 

strip about the z-axis are: 

I = 	C y2dA 
sc 

A 
Sc 

I
str 

= 	y 2dA 

A
str 

where A
sc 
 and A

str are the regions of area occupied by the S cable and Nb 

strip respectively. 
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Thus: 	 129 

I 	= Tr 	r 
s c 4 

I 	= 
str 

 
+b/2 r+h 

-b/2 

y2dydz = br2h (1 + h + 1 h 2 ). 
T. -3-  P- 

I 	The numerical values for b, h, and r in inches are: 
b = 0.5 

r = 1.93 

h = 0.0625 

So that the ratio of the second moments is: 

I
str

/I
sc 

= 1.10x10-2  
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