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SUMMARY OF RESEARCH RESULTS

. The following report titled "Computation of Optimal Low- and Medium- Thrust
Orbit Transfers" gives the detail of the research results. We summary these
results and future research plan here.

The first-order necessary conditions for a general final mass maximization
problem has been set up. In the problem formulation we include second-
harmonic oblateness, atmospheric drag, and allow three-dimensional, non-
coplanar, non-aligned elliptic orbits. In order to ease the numerical calculation
we transform the original free final-time problem to a fixed final-time problem,
and non-dimensionalize the state variables.

Although we can use the constant angular momentum equation, the
conservative energy equation, and the orbit equation to specify the boundary
conditions for the terminal orbit, we notice that this set of boundary conditions
does not uniquely determine an orbit. This is due to the fact that for a given
point in space we can have two different velocity vectors (difference in direction
only) and yet have the same angular momentum and energy. Proper boundary
conditions should be three eccentricity vector equations plus three angular
momentum vector equations. Since both eccentricity and angular momentum
equations specify the same orbit plane, one of these equations is redundant. That
is for a three dimensional problem we only need five equations out of both sets
of equations. For two dimensional problem we need two eccentricity equations
and one angular momentum equation.

We have applied two indirect optimization methods: BOUNDSCO and MBCM
(minimizing-boundary-condition method) successfully to several simplified
examples. The examples are two dimensional with oblateness effect and
atmospheric drag force. Both methods converge to the solutions with about the
same sensitivity in the initial guess. Although we have more freedom in
selecting the initial guess at every node points, BOUNDSCO does not adjust the
number of switching points and the switching pattern during the iteration. On
the other hand, MBCM implements the switching function into the integrator
and adjust the switching points and the switching pattern automatically during
the iteration.

. Our current plan is to combine advantageous features of BOUNDSCO and MBCM
into a new algorithm. The new algorithm will use the idea of the multiple-point
shooting method to spread the unknowns among the node points, and between
two node points applies the minimizing-boundary-condition method.

. There is still a question about the local optimum or global optimum for free final
time problem. We have some difficulty in converging the transversality
condition for the free final time case. In Edelbaum's paper, he shows that three
impulses control is usually minimum. However, such claim for low and



medium thrust has not been shown anywhere. Our current hypothesis suggests
that the global minimum solution will be at infinite final time and local
minimum solutions exist for finite final time. We expect to answer this
question by obtaining all the local minimum solutions (if they exist) and
compare their cost functions along the final time axis.



Computation of Optimal Low- and Medium-
Thrust Orbit Transfers

ABSTRACT

This report presents the formulation of the optimal low- and medium-
thrust orbit transfer control problem and methods for numerical solution of
the problem. The problem formulation is for final mass maximization and
allows for second-harmonic oblateness, atmospheric drag, and three-
dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup
some examples to demonstrate the ability of two indirect methods to solve
the resulting TPBVPs.

The methods demonstrated are the multiple-point shooting method as
formulated in H. J. Oberle’s subroutine BOUNDSCO, and the minimizing
boundary-condition method (MBCM). We find that although both methods
can converge solutions, there are trade-offs to using either method.
BOUNDSCO has very poor convergence for guesses that do no exhibit the
correct switching structure. MBCM, however, converges for a wider range of
guesses. However, BOUNDSCO’s multi-point structure allows more freedom
in guesses by increasing the node points as opposed to only guessing the
initial state in MBCM. Finally, we note an additional drawback for
BOUNDSCO: the routine does not supply information to the users routines
for switching function polarity but only the location of a preset number of
switching points.

L. INTRODUCTION

The ability to perform any given orbit transfer with a minimum use of
fuel is obviously desirable. Useful solutions to this problem will account for



at least some approximation to real-life. Therefore, a formulation that
includes second-harmonic oblateness and atmospheric drag will be useful.

This report follows such a derivation all the way through to the
establishment of a two-point boundary-value problem for optimal low- and
medium- thrust orbit transfer. The core cost function is defined simply as the
final mass of the spacecraft plus fuel, setting the tone for the maximization
problem. The differential constraint is thoroughly defined in terms of the
oblateness model and an assumed atmosphere model.

The thrust (control) appears linear in the differential constraint. This
results in bang-bang control or singular-arc solutions for the final mass
maximization problem. Although bang-bang control is assumed here the
possibility of having a singular arc has not been ruled out for a general case.
In order to ensure the singular arc solution does not occur, we check the
derivative of the switching function at each switching point. However, when
our programs reach a non-optimal solution high frequency chattering
solutions do occur occasionally. This could indicate that singular-arc
solutions are possible for some modification of system parameters and
models.

The final mass maximization problem should be a free final time
optimal control problem. For impulsive thrust, the Hohmann transfer gives
minimum fuel but maximum transfer time. Although the three-impulse
Hohmann transfer performs better than a two-impulse Hohmann transfer,
Edelbaum! shows that the number of impulses may be finite for a global
minimum. for low- and medium-thrust orbit transfer the same conclusion
has not be shown anywhere. One hypothesis is that the global minimum will
be at infinite final time and local minimum solutions exist for finite final
time. In other words, this assumes for a given number of switching points
(must be at least two) there is a local minimum with finite final time. We do
have difficulties in converging the transversality condition corresponding to
optimal final time.

We present solutions to three specific optimization problems. These
solutions represent the ability of the two TPBVP solvers. The methods



considered are (1) BOUNDSCO, a multi-point shooting algorithm devised by
H. J. Oberle and (2) the minimizing boundary-condition method (MBCM), a
modification to the shooting method devised by the authors of ref(9).

Both methods converge solutions for about equal sensitivity in initial
guesses. In order to achieve the same accuracy along the path, BOUNDSCO
needs to converge the boundary conditions at every node point to the same
accuracy as the integration routine. the number of switching points and the
switching pattern need to be assumed and stay unchanged when BOUNDSCO
is used. On the other hand, MBCM does not constrain the number of
switching points and MBCM updates the switching pattern along the
integrated path.

II. THE PROBLEM

The problem discussed herein is the following: maximize the final
mass of a thrusting spacecraft for a given orbital transfer. The craft can be
considered as under the influence of some planet’s gravitational field and
atmospheric drag. The thrust of the spacecraft is limited between zero and
some Tmax. The transfer will be defined by the terminal orbits. Solutions are
sought for both fixed and free final time problems and both the case of fixed
and free terminal points.

II. 1. The Cost Functional
The core cost functional must be defined. We shall define the cost as
J = m(tp) (1)

where m(tp) represents the mass of the spacecraft plus its fuel at the end of the
orbital transfer. We shall use the methods of optimal control to maximize
the cost functional, thereby maximizing the final mass and solving the
problem.



1. 2. Differential constraint: System Dynamics

We represent the spacecraft by a point mass and assume it to be a
thrusting craft acted upon the by the aerodynamic drag and oblate-body
gravity forces of a central body. We also represent the central body, or planet,
as a point mass positioned at its own center of gravity. We restrict the
problem to crafts of mass much smaller than that of the central body,
allowing us to fix the planet in inertial space. We shall describe this inertial
space with a rectangular Cartesian inertial reference frame. All motion
within this frame of reference agreeing with the above assumptions must
satisfy the well-known Newton’s equation:

i;=d(m V) @)

where m is the spacecraft mass and v is its velocity with respect to the
reference frame.

In this case, gravity, drag, and thrust make up the total force acting on
the craft. The thrust on the craft is composed of two separated thrusts, the
pressure thrust and the thrust created by the expulsion of mass. That is,

—

F = Fpressure thrust - Fdrag - Fgravity = mv - mv, 3)

where v, is the expulsive velocity of mass. Therefore,

Fiotal thrust = Fprcssure thrust + M Ve 4)
and
= — — —
mV = Furust - Farag - Fgravity )

We write the total thrust, herein referred to as just thrust, as some
time-varying magnitude, T, independent of a time-varying direction, €:



ﬁthms[ = T-é (6)

Note that € is expressed as a unit vector. For a three dimensional thrust
vector the control requires three components. For two dimensional problems
only two independent control components are required.

The mass will decrease according to

m=-—1 @)
g0 Isp

We assume that the atmosphere surrounding the central body can be
described by an exponential model of the standard atmosphere?. The
following equation? describes such a drag force:

f‘:drag =":12'—po C-B(r-n’) S CD MZ_-!._ = %po e-ﬁ(r-ro) S CDMV (8)

M

where B and r, are constants from the atmosphere model describing air
density variation in the prescribed altitude region, p, is the atmosphere
density for the altitude ry, S is the wetted area of the craft, Cp is the craft’s drag
coefficient, and Vv is craft’s current velocity with respect to the inertial
reference frame. We are assuming that no matter the orientation of the craft
the product of SCp remains the same and that the craft always remains in a
region where the chosen exponential atmosphere model is valid.

Within the confines of this study, the only other influence on the craft

is gravitational potential energy. The gravitational potential energy to the
second harmonic is%:

U=-ZE - LRt BE(1- 3c00) ©)

Where R is the equatorial radius of the central body, 0 is the latitude angle of
the current position from the equator, and r is the distance from the central



body’s center of gravity to the current position of the craft with respect to the
inertial reference frame, p is the gravitational constant for the central body, m
is the mass of spacecraft, and J is a constant describing the mass distribution of
the planet. There are additional mass distribution terms but we shall truncate
the series here.

We now assume that (1) the central body is fixed at the center of the
reference frame and (2) that the plane of the central body’s equator is aligned
with the x-y plane. The assumption (1) means that the position, velocity, and
acceleration of the craft are now measured with respect to the central body.
The assumption (2) means that we may describe r with Cartesian coordinates

by

r="/x + y2 + 2 (10)
and we may describe 6 with Cartesian coordinates by

z=r1rcos O (1n

We may now write the gravitation potential as

my my (12)
U=- — - llkz—r-;(l- 3(2F)

The force experienced by moving in a potential field U is %—;
T
Performing this operation on the gravitational potential yields
- QU\T (13)
Fgravity = (“":“)
or

and



%q=%—x+JR2£];—x(l-5(%)2) (14)
X

U mp my (15)
> = —y + IR —~y(1- 502

oU mp mp (16)
Pl A + JRZ—IS—Z(3— 5(2f)

All of the dynamics combines to form the following equations of motion

% = Jmp o Rr2@H . 5{ZRYy - 15 e-Ben) :
mi = Te, - —=x - JR*—=x (1 5E) - LperwsCovi (17a)
. m mp 1 B .
=T -—v - JR* F—— 1- Z - A B(X'fo)s
my c)’ 13 y 15 Y( S(r)z) 2p0€ CDVy (17b)
- mH ;MU 2y 1 -Be- .
mz=Te - —z-JR*—z(3-5(4)) - L pePe=)SCpvz
B s 2t E-2e ? 170)
which can be written in vector-matrix form as
1 5(%)2 0 0
T =Te_Ki. 'y > 1 Pop-Bie-r) 5
ro=_-e I3r JRrs 0 1_5(_zr_)2 0 T zme SCovr (18)
0 0 3. 5(%)2

To conform to convention we make the change from J to J; as described in
ref(4):



. ’3_ i’ 100 sills Lpe pems . (19)
r- p.Jz-r? 010]- 5(;) r-;me SCovr

(20a)

00 . ip .
10]- 5(%_-)2 r -azLﬁ;ie'p‘"“”SCva (20b)
03

HOI. THE FIRST-ORDER NECESSARY CONDITIONS

All problems herein perform a maximization of the final mass. Now,
in order to write the adjoined cost functional we need to know what is
included in the state, in the control, and what the constraints on these are.

First, however, we note that the problems herein are also free-final-
time problems. The three differential equations above are written with
respect to the independent variable t (time). For ease in numerical methods,
we want to transfer the problem from free- to fixed- final time. This means
that we must define a new independent variable T (non-dimensional time) to
be used in the place of t (dimensional time). This allows tf to become a state
variable. We make the following scaling:

t=tsn (21)
Therefore, to translate this to a fixed-time problem, tf must multiply the
derivatives of the states. The dot above a variable now means a derivative

with respect to 1.

We know what to include in the state, x(t):



iv=[ fr @ m@® t [ (22)

We also know that our state is confined by the system dynamics so that

:’ - 5(—1-)2)}; SL1Pe b s vy
. r 2m
X(1) =t

(23)

.

for all time t € [0,1]. This is the differential constraint of the control problem.
The thrust magnitude has both an upper and a lower bound. The
upper bound we shall call Tmax, the lower bound is obviously zero. We,
therefore, also have an inequality constraint that must be satisfied for all time
1e [0,1]):
(T- Tnax)T <0 (24)
and Eqn (25) can be rewritten as an equality constraint

(T-Tma)T+02=0 (25)

where « is a slack variable, free to change with time. Finally, we need to
specify the terminal orbits. We will do so by writing a vector equation

YEO)X(1) = 0 26)



that is only satisfied when our initial and final states both lie on their
respective orbits.

Now we know enough to write the adjoined cost functional for this
problem:

1

J=m(l) + VEO).R(1) + ] ‘f[%(i’(t),ﬁ(t)) F]+ (T - Ty T + a2]} &t @)

[}

where m(1) is the final mass and \_,1}(35(0)55(1)) = 0 represents the boundary
conditions.

The A shown in the cost functional is the costate vector, also called the
Lagrange multipliers. This vector will be of the same dimensions as the state.
For simplification’s sake, we will segment this vector as follows:

- — T
}v(t) =[ 7\¢T(I) ;\’:T(t) Am(t) th ] (28)

Also, in Eqn (27), v is the Lagrange multiplier corresponding to the boundary

conditions \T; v is a constant in time.
I.1. The Hamiltonian
With the pertinent dynamics defined, we are now able to write the

Hamiltonian for the system. We take the Hamiltonian from the cost
functional as

— =T - — —-
HE®,8(0) = A FE®),3)] + u(T - TnaoT + o] (29)

A major simplification can be made now. Notice that, excluding the
constraint on the thrust, the Hamiltonian is linear with respect to the control
T (but we shall see it is not linear with respect to € ):

10
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T
HEW8@®) = Lay & - Am—LT + ..

Zolsp (30)

This, in conjunction with the structure of the thrust constraint, means
that we may assume that this is a ‘bang-bang’ control problem. Enough is
known about this type of problem so that we may do the following:

(1) Define a new Hamiltonian that differs from the original only in the
omission of the thrust constraint.

T
HE®),41) = A [fE©),50))] GL

(2) Establish what will be called the switching function. In general, the
switching function is defined by the partial derivative of the Hamiltonian
with respect to the control by which it is linear. For this problem, This is

done by evaluating %’}i‘l_:

QU

H
2 - Hyp=
T T

e

€. Ap
m Iy 8o (32)

This, Eqn (32), is the switching function.

(3) Evaluate a restricted case of the well-known Euler-Lagrange
equations. Most of these determine the costate dynamics and we shall see
these in section IIL.2, however, the last one determines part of the control for
the problem. This equation is

Q
& T

(33)

Evaluating (33), it appears that H is linear with respect to e. However, we
must remember that e represents only the direction of the thrust. If we

11
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exchange e for some angle 6 and define this angle as between € and A, we

may write
H = _;_{;Tg + =%—l’:‘ﬁcos@+ (34)
H = —[;'-Tl)\_:lcose 4.0 since |§ = 1 (35)
Evaluating Hg we find that
%’3. =T bl sin 6 (36)

and this equals zero only when the vectors are parallel. There are only two

—

choices for €: in the direction of A, or in the exact opposite direction. Since we
are maximizing the final vehicle mass, we need to have Hgg negative (one of
the sufficient conditions for the second variation). This is only satisfied with

—

e in the direction of Ay Or

@
0
k!

(37)

1

We must obey this for all time 1 € [0,1]. This result is consistent with that of
Lawden'’s primer vector>.

(4) Perform bang-bang control with T. This means that T is always on-
boundary, i.e. T=0 or T=Tmax at any 1 € [0,1]. We know which value to use
for T by evaluating the switching function, which we can now write as

HT=l3‘;]Y--f;"r-jg-: (38)

The bang-bang control law is

12



Hr20 T=Tmnax (39)
Hr<0 T=0

This switching structure satisfies the Pontryagin maximum principle by
maximizing the Hamiltonian using T.

I1.2. The Costates

The costate dynamics can be found from the following Euler-Lagrange
equations, relating them to the Hamiltonian:

- o7 (40)
o

A - OHT (41)
&
’ JH

A'm = -"a—'r;l" (42)

To evaluate these, we must first substitute the equations of motion into the
Hamiltonian

-_l.i _E22*_l_Ei -Blreo v
2]21_7R(z)]r Sm et S Covy] 43)
T
+
Amgolsp}

13
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When evaluated, these become the following vector and scalar differential
equations:

—T

: — —T }.
i: =tf{l-lti% - 3(2‘—”-—{)—5] - p"E—e"”’*’)SC‘Dv(XV V)f

2 1’ r’ 2 r’ Y r 1’
- 0
where k =| 0
1
——oT 1
— —T - viv (45)
= - 1P g-ptrn) ( (Jl’i_,\ill)
}uv ¥ { 7\4‘ + > m e SCO )\-vV + v |
. __I'__-.T—. l po —‘T—o- (46)
Am = % | - Av © + ePlr)SCVAy V
m2 2 m2 ]

IV. SOLVED PROBLEMS
IV.1. Simplifications

We have made a few simplifications that ease the formulation of the
numerical problem and its solution. The first of these is the reduction from a
three-dimensional problem to a two-dimensional problem. To remove this
dimension, we simply remove the z-component to all equations. Because of
the chosen coordinate system, this also means that all orbit transfers
considered are equatorial. Unfortunately, the effect of oblateness is
substantially decreased for this case. The other simplification is the restriction
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of problems to fixed-initial points. This also greatly eases the problem
formulation. The third and final simplification is the fixing of the final time.

IV.2. The Two-Point Boundary Value Problem

As a result of the simplifications, the boundary conditions have been
stated in two dimensions. The starting orbit determines the initial conditions
on position and velocity. The final conditions, however, require a more
abstract specification as we do not know exactly at what point the craft will
enter this orbit. The following relations specify the final orbit: (All of the
following conditions is to be evaluated at the final time, tf, or 1=1.)

RxV=H l
(Angular Momentum) y1: {<X,y> x <uy,v> =xV - yu = h ’ (47a)

ex = -&L—[(Vz-%)x - (;Tv)u]

(eccentricity vector (x) ) y2: ! (47b)

i[(v2-%)x - (fTV)u] -ex =0

ey = ﬁ[(Vz-m)y - (;TV) v]
(eccentricity vector (y) ) y3: (47¢)

-&[(Vz-%)y - (?Ti”)v] -ey =0

Note that the orbit equation for x-axis aligned orbits and the energy
equation can replace (47b) and (47c). However, the combined constraints of
angular, momentum, orbit, and energy equations do not uniquely specify an



x-axis aligned final orbit. There are two possible velocity vectors at one point
with the same angular momentum and energy.

These conditions completely determine the final orbit. However, these
conditions do not complete the two-point boundary-value problem. To
complete the TPBVP, the methods of optimal control supply use with a set of
natural boundary conditions found by evaluating

Al < ( 3G )T (48)

a x(1)

where G is the constructed from the function portion of the cost functional,
e.g. for the cost functional

1

¥ =m(1) + VEO)Z(1) + f (XG0, 8) - %) + LT - Toed T+ &t a9)

]

Gis
G = m(1) + V y&(0),X(1)) (50)

Constructing G with the above conditions on the states, we can find
conditions on the costates at 1=1:

G=m+vi(xv-yu-h+[ v, v3 ][

p =R

(v2-m)i - (V) V) - 'é} (51)

evaluating Eqn(49) gives

}\.x -X—VI(V) + VoIV --17+~;§--11— +V3(r—3-___

G Xy Hooy? 2) (52b)
Ay = =— = vi(u) + vo[=L-UV} 4 yafv2. T 4LV
y =5y = Vikw 2(r3 u) (V25 -y

16
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7\41=%—(3=V1('Y)+v2(;}%)+V3&(2yu-xv) (52¢)
7&\:=a—€=vl(x)+V2L-11{2xv-uy)+V3(%‘l) (52d)
= 98 21 (52e)

om

note that the constant Lagrange multipliers v; are additional unknown’s.

The last condition deals with the final time. If the final time were free
we would use the transversality condition

HED,EMA) = - L0 (52f)
tf
or, for this problem
HE(1),8(1)A1) = 0 (52g)

However, all the solutions presented in this report are fixed-final time. Note,
however, that the same algorithm can be used for both types of problems, all
that is required is that equation (53g) be replaced by the specification of t.

IV.3. Non-Dimensionalization

To improve accuracy, we have non-dimensionalized the problem.
This aids in a few ways. First, the integration of the state is more accurate
because all variations are on the same order. Second, convergence is
improved because all the boundary conditions are immediately placed at or
near the same order. Our non-dimensionalized parameters are as follows:



a1
1

e

:
il
<

and they require the following

H
—
oq
©

pt
)
")
-

(8o Isp)

¥r
(poCDS)=(poCoS) 5

w
Il

R
r*

(53a)

(53b)

(53¢)

(53d)

(53e)

(53f)

(53g)

(53h)

(53i)

(53i)
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The choices of r* and m* are completely arbitrary. However, it needs to be said
that after a problem is solved by these nondimensionalizations, rescaling
must be excersized with caution. This is a direct result of the atmosphere
model; if the rescaling is not consistent with the atmosphere model, the
results are invalid, e.g. rescaling also rescales the atmosphere model (note Eqn

8.

If we solve Eqgs (53a-j) such that the dimensional parameter is on the
left-hand side and then substitute into the original dynamics we find
equations that are exactly equal to the original equations with p=1 (The value
of J», however, has no dimensions and is not changed). This can be extended
to the boundary equations and the costate differential equations. A special
note is required for the costates: the costates resulting from the solution to the
problem with this transformation will be some scalar multiplied by the
‘dimensional’ costates, e.g.

Y (53k)
A= F

which requires
;Ei\% (531)

* . . . o e
where A is completely arbitrary. This is easily verified by substitution into
the differential equations and boundary conditions.

IV.4. Atmosphere Model

Any atmosphere is usable by simple substitution early in the
derivation of the differential constraint. For the purposes of this report we
have chosen a very simple atmosphere model. The model is not intended to
accurately represent the Earth’s atmosphere, or any other planet for that
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matter. It is implemented only for the purpose of demonstrating the
methods for solving the optimization problem.

Our model is defined at 450km altitude above the planet’s equator. The
entire atmosphere is assumed isothermal. The temperature is 1000K. The
density at the definition altitude is 1.184x10-12 kg/m3. This definition point
for this model is taken from the 1976 U.S. Standard Atmosphere®. The
atmosphere is assumed spherical above the oblate planet. For real-world
solutions, we strongly recommend the use of the latest standard atmosphere
or some appropriate approximation thereof. The contemporary standard
atmosphere can be found in ref (7).

IV.5. The Multiple Point Shooting Method of BOUNDSCO

One method we are currently using to attempt to solve the TPBVP is
the multiple point shooting method. The specific algorithms we are
currently using are those given by H. ]J. Oberle in his subroutine
BOUNDSCOY, written in FORTRAN. His method, a complete description of
which can be found in ref(8), is a modification of the traditional well-known
multiple point shooting method.

The use of this method requires the writing of a few routines that
define the problem. These routines include, of course, the calling program
itself, a subroutine defining the differential constraint (or system dynamics),
and a subroutine that defines the constraints on the problem.

The state used in BOUNDSCO differ slightly from the state defined in
this report. We have simply adjoined the v vector to the state. This requires
also that the system dynamics includes a corresponding number of zero
derivatives. We justify for this by noting that it allows the statement of the
absolute and natural boundary conditions exactly as they are in this report. If
we did not implement this, we would have to solve the system of three of the
natural boundary conditions for the v and substitute the result into the
fourth equation, using it in place of the four. This may seem desirable, one
equation in the place of four, however, the simple structure of the four
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equations is much more desirable than the complex structure of the one
equation.

There is one particular feature that makes BOUNDSCO attractive: the
explicit inclusion of switching points in the problem formulation. Oberle
allows the user to specify the switching function outside of the system
dynamics. This simplifies integration and improves convergence. There is a
tradeoff; the user must assume a switching structure and verify it outside of
BOUNDSCO.

IV.6. The Minimizing-Boundary-Condition Method

The second method we are using is called the Minimizing-Boundary-
Condition Method (MBCM)3. It is described in ref(9). This method is a
modification to the shooting method. It expands the set of available solutions
by removing one boundary-condition. The choice of this boundary-condition
is arbitrary. Since there is a much larger set of solutions, it is much easier to
solve the resulting boundary-value problem. Once this is accomplished, the
search for the solution that incorporates the final boundary conditions is
treated as a minimization problem. The gradient is numerically calculated
and used to update the initial state until the last boundary condition is
satisfied. This method is at least as effective as BOUNDSCO in solving the
two-point boundary-value problems for the current solved optimal orbit
transfers.

The switching structure of optimal control is included in MBCM. The
program checks the switching function at each integration step. If the
switching function alters sign at one integration step, the program stops the
integration and restores all the states to the beginning of the step. A secant
method then calculates a smaller step size for integrating the switching
function to an exact zero point. From our experience with MBCM some
sensitive problems need fourteen digits of accuracy in their switching
function. Once the integration passes the switching points the program
switches the control and uses a normal step size for integration.

IV.7. Sample Problems and Solutions
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Several solutions are presented in this section, all of which both
methods were able to converge. As a matter of fact, in most cases, the
solution to one problem can be used as the guess to a different problem and
the program(s) will converge. All problems have been nondimensionalized
and use the atmosphere model presented above.

The first problem presented is a fixed-final-time circle-to-circle orbit
transfer:

Find an extremal for the maximum final-mass problem which travels from a
circular orbit of a=3.847 at y=3.72 to another circular orbit of a=1.5.
The available thrust is (a) 0.9, (b) 0.2 and golsp=51.254. The initial
mass is 1.527. The allowed time for transfer is 12.5. p,SCp=3.894x10-
17
The optimal trajectories are shown in Fig. 1 for T=0.9 and in Fig. 3 for
T=0.2. Their switching functions are shown in Fig. 2 for T=0.9 and in Fig. 4
for T=0.2.

The second problem presented is a fixed-final-time apse-aligned ellipse-
to-ellipse orbit transfer:

Find an extremal for the maximum final-mass problem which travels from an
orbit of a=3.847 and rp=3.756 at y=3.76 to another orbit of a=1.5 and
rp=1. The apses of the orbits are aligned with the x-axis. The
available thrust is (a) 0.9, (b) 0.2 and gol sp=51.254. The initial mass
is 1.527. The allowed time for transfer is 12. poSCp=3.894x10-17.

The optimal trajectories are shown in Fig. 5 for T=0.9 and in Fig. 7 for
T=0.2. Their switching functions are shown in Fig. 6 for T=0.9 and in Fig. 8
for T=0.2.

The third problem presented is a fixed-final-time non-apse-aligned
ellipse-to-ellipse orbit transfer:
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Find an extremal for the maximum final-mass problem which travels from an
orbit of a=3.847 and rp=3.756 at y=3.76 to another orbit of a=1.5 and
rp=1. The apses of the initial orbit is at an angle of 153° with the x-
axis, clockwise. The apse of the final orbit is at an angle of 109° with
the x-axis, counter-clockwise. The available thrust is (a) 0.9, (b) 0.2
and golsp=51.254. The initial mass is 1.527. The allowed time for
transfer is 10. p,SCp=3.894x10-17.

The optimal trajectories are shown in Fig. 9 for T=0.9 and in Fig. 11 for
T=0.2. Their switching functions are shown in Fig. 10 for T=0.9 and in Fig. 12
for T=0.2.

V. CONCLUSIONS

The performance of BOUNDSCO was mixed. The ability of the routine
to converge solutions is quite strong, however, there is a flaw. BOUNDSCO
does not supply information to the user’s routine concerning the polarity of
the switching function. The user must assume in all his/her code that the
desired switching structure is correct. The result of this is that BOUNDSCO
often allows itself to converge solutions with inconsistent switching
functions. This would not be so bad, except for one other difficulty with
BOUNDSCO: the routine does not attempt to aid the user in any way with the
initial guess. For example, one finds it nearly impossible to converge a two-
burn solution without the insight to guess an initial state that, when
integrated, produces two crossings of the switching function (this is actually,
not too difficult, if one pays attention to the sign of the switching function
and its derivative when making guesses). However, when BOUNDSCO does
produce correct solutions, they are as accurate as the user can specify. The
solutions presented above satisfy their boundary conditions within 10-14
absolute error.

The performance of the minimizing-boundary condition method was
also quite promising. This method has one distinct advantage over
BOUNDSCO, it explicitly disallows inconsistent switching functions. The
method checks the switching function during, but separately from,
integration to determine where the switching points are and, most
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importantly, what the switching function polarity is. This method is,
however, currently a simple shooting method and it exhibits the difficulty of
the same. It is expected that if the method is extended to a multiple-point
shooting method, it’s performance will rival, if not exceed that of
BOUNDSCO.

And thereby we come to the recommendation of this study: the
development of a method that is a hybrid of multiple-shooting and the
minimizing-boundary-condition method.

IEdelbaum, T.N., “How Many Impulses?” Aeronautics and Astronautics, Nov. 1967.
2Anderson, J.D., Introduction to Flight, McGraw-Hill Book Co., New York, 1989.
3Anderson, }J.D., Fundamentals of Aerodynamics, McGraw-Hill Book Co., New York, 1984.

4Space Technology Laboratories, Flight Performance Handbook for Orbital Operations, Wiley,
New York, 1963.

5Lawden, D.F., Optimal Trajectories for Space Navigation, Butterworths, London, 1963.

6COESA, U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.
1976

7Oberle, H. J., BOUNDSCO - Hinweise zur Benutzung des Mehrzielverfahrens fiir die
numerische Lsung von Randwerproblemen mit Schaltbedingungen, Hamburger Beitridge zur
Angewandten Mathematik, Berichte 6, 1987.

8Chuang, C.-H., and Speyer, J.L., “Periodic Optimal Hypersonic Scramjet Cruise,” Optimal
Control Applications & Methods, Vol. 8, pp. 231-242 (1987)
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SUMMARY OF RESEARCH RESULTS

1. The following report titled "Computation of Optimal Low- and Medium- Thrust
Orbit Transfers" gives the detail of the research results. The report is an
extension of the previous semi-annual report submitted January 6, 1993. The
following is a summary of the extended results.

2. At the time of the last report we had formulated the optimal orbit transfer
problem for the three-dimensional, time free cases with atmospheric drag effect
and earth oblateness effect. Numerical solutions were obtained for two
dimensional and fixed transfer time cases by using BOUNDSCO and MBCM.
These transfers have a fixed initial orbit exit point and have thrust levels on the
order of 107. Following the submittal of that report we have done work on
finding out how well the methods we have chosen (BOUNDSCO & MBCM)
handle optimizing the initial orbit exit point and lowering the thrust level.

3. We have used a continuation method to optimize the initial orbit exit point
which has worked satisfactorily in test cases. Specifically, this method has been
used successfully for multiple examples in two completely different orbit classes:
a two-burn descent transfer and a three-burn ascent transfer. In both classes, an
optimal exit point was found without much difficulty.

4. During the effort of lowering the thrust level we have found that the TPBVP
solvers require more time to do computations on lower thrust problems.
However, the TPBVP solvers have so far been able to handle these problems.
We have taken the family of solutions presented in our last report and reduced
the thrust by at least a factor of 10, bringing us just above the desired 10-3 level.

5. Since the previous report we have also begun work on the free final time
problem. This work has become connected with lowering the thrust level and
increasing the number of burns. It seems that our previous hypothesis that the
global minimum solution will be at infinite final time and local minimum
solutions exist for finite final time is not completely true. Our current results
indicate that at least for two burn transfers extremal solutions exist only up to a
maximum transfer time. For a given final time longer than this maximum
transfer time we could not obtain any extremal solution. However, the cost
functional becomes very flat with a nearly zero derivative at the maximum
transfer time.

6. The next major step is development of a guidance scheme so that a spacecraft will
be able to follow an optimal space curve with some degree of accuracy. At this
time we are considering using neighboring optimal feedback control. This
approach will use a time-varying feedback control law. Our experience in this
area indicates that this feedback controller may be very robust for the orbit
transfer problems.

7. In the meantime, we are using the TPBVP solvers to produce lower thrust
transfers. The difficulty in producing these trajectories has so far shown itself in
the fact that low thrust transfers need longer transfer times. We expect that an
even longer transfer times can be performed with less fuel and have found that
optimal solutions with longer transfer times require more burns.

8. The process of adding or subtracting burns is well-suited to indirect methods



because of the accessibility of the switching function. We can refer to this
function to verify the need for more burns. The difficulty has been in actually
adding this burn to the transfer. We have found that removing burns from a
solution is relatively straightforward task. As the allowed transfer time is
decreased, the number of burns required for optimality also decreases. This has
manifested itself in a general decrease in burn time for one burn in the transfer.
Once this burn time is sufficiently short we remove it altogether.

9. Finally, we are working on expanding the class of solutions to escape trajectories.
This requires a modification of the TPBVP but we are not expecting
insurmountable difficulty.



COMPUTATION OF OrPTIMAL LOW- AND MEDIUM-THRUST
ORBIT TRANSFERS

ABSTRACT

This report presents the formulation of the optimal low- and medium- thrust orbit transfer
control problem, numerical methods for solution, and numerical solutions of the problem. The
problem formulation is for final mass maximization and allows for second-harmonic oblateness,
atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We
show examples that demonstrate the ability of two indirect methods to solve the resulting two point
boundary value problems (TPBVP). The methods demonstrated are the multiple-point shooting
method as formulated in H. J. Oberle’s subroutine BOUNDSCO, and the minimizing boundary-
condition method (MBCM). We find that although both methods can converge solutions, there are
trade-offs to using either method. We present numerical solutions of two burn planar transfers in
which both the initial orbit exit and final orbit entry points have been optimized. The methods used
show an ability to handle thrust down to at least T/Wo=0(10-2). They also show similar
convergence abilities with or without the oblateness and drag terms. We discuss the issue of
maximizing with respect to the final time and provide evidence that implies a local optimum at a
maximum final time for a given number of burns.

L. INTRODUCTION

The minimum fuel orbit transfer optimization problem has been studied for many years now.
Some of the most complete early work on impulsive transfers can attributed to Lawden!, who
presented a direct solution to the costate differential equations on a coasting arc. He also verified
the optimality of the Hohmann transfer using early optimal control theory. In the finite thrust
arena, many papers have been submitted, some with direct and some with indirect methods. For
example, using collocation once then direct transcription later, Enright and Conway23 examined
circular, point-to-point planar transfers with ideal gravity. Zondervan, Wood, and Caughey* used
a hybrid direct/indirect method to study three-burn transfers with Splane changes in ideal gravity and
for thrust levels down to T/Wo=0.04. Vulpetti and Montreali® used nonlinear programming to
optimize transfers between circular orbits with inclinations. They did include oblateness and drag
in their gravity model; their thrust level was about 40N. All these studies mentioned above either
used fixed final time, fixed entry/exit positions in orbits, or both.

1Lawden, D.F., Optimal Trajectories for Space Navigation, London: Butterworths, 1963.

2 Enright, P.J. and Conway, B.A., “Optimal Finite-Thrust Spacecraft Trajectories Using
Collocation and Nonlinear Programming,” Journal of Guidance, Control, and Dynamics, Vol.
14, No. 5, 1991, pp. 981-985

3Enright, P.J. and Conway, B.A., “Discrete Approximations to Optimal Trajectories Using Direct
Transcription and Nonlinear Programming,” Journal of Guidance, Control, and Dynamics,
Vol. 15, No. 4, 1992, pp. 994-1002

4Zondervan, K.P., Lincoln, L.J., and Caughey, T.K., “Optimal Low-Thrust, Three-Burn Orbit
Transfers with Large Plane Changes,” Journal of the Astronautical Sciences, Vol. 32, No. 3,
1984, pp. 407-427

5Vulpetti, G. and Montereali, R.M., “Hight-Thrust and Low-Thrust Two-Stage LEO-LEO
Transfer” Acta Astronautica, Vol. 15, No. 12, 1987, pp.973-979 (84-354),



Among the studies using indirect methods, we find the work by Redding® which handles
point-to-point low-thrust transfers with plane changes. The study was limited to transfers to
geosynchronous orbits in an ideal gravity field. Horsewood, Suskin, and Pines” modified earlier
work by Edelbaum, Sackett and Malchow?® (a minimum time formulation using equinoctial orbital
elements) to produce code for the optimization of point-to-point orbit transfers with plane changes
between circular orbits with relatively low thrust in an ideal gravity field. Redding did formulate
the problem with transfer time optimization while Horsewood, Suskin, and Pines fixed the final
time.

With this report we examine further the increased difficulty of a formulation that includes
realistic effects such as oblateness and drag. We also examine the question of optimizing the final
time.

This report follows the derivation all the way through to the establishment of the two-point
boundary-value problem (TPBVP) for optimal low- and medium- thrust orbit transfers. The cost
function is defined simply as the final mass of the spacecraft including fuel, setting the tone for the
maximization problem. The differential constraint is stated in terms of the gravity model, including
oblateness and an assumed atmosphere model.

The thrust (control) appears linear in the differential constraint. This results in bang-bang
control or singular-arc solutions for the final mass maximization problem. Although bang-bang
control is assumed here the possibility of having a singular arc has not been ruled out for a general
case. In order to ensure the singular arc solution does not occur, we check the derivative of the
switching function at each switching point. However, when our programs reach a non-optimal
solution high frequency chattering solutions may occur. This could indicate that singular-arc
solutions are possible for some modification of system parameters and models. For the solutions
presented in this report singular-arc solutions do not occur.

The final mass maximization problem should be a free transfer time optimal control problem.
For impulsive thrust, the Hohmann transfer gives minimum fuel use. The three-impulse bi-elliptic
transfer performs better than the two-impulse Hohmann transfer for radius ratios greater than
15.589. A similar conclusion for low- and medium- thrust transfers has not been shown anywhere
to our knowledge. One hypothesis is that the global extremum will be at infinite transfer time and
local extremum solutions exist for finite transfer time. In other words, this assumes for a given
number of switching points (must be at least two for two burns) there is a local extremum with
finite transfer time. Our numerical results imply another qualification to this hypothesis: the
transfer time that produces the local extremum is just short of the transfer time with which one
more burn improves fuel savings. Another important observation is that, when searching among
optimal solution, when the transfer time is increased, the final mass monotonically increases. This
is discussed with more detail in Section IV.8.

We present numerical solutions to specific optimal transfer problems. These solutions
represent the ability of two TPBVP solvers. The methods considered are (1) BOUNDSCO, a
multi-point shooting algorithm devised by H. J. Oberle, described in Ref. 15 and (2) the
minimizing boundary-condition method (MBCM), a modification to the shooting method devised
by the authors of Ref. 8.

6Redding, D.C., “Optimal Low-Thrust Transfers to Geosynchronous Orbit,” NASA Lewis
SUDAAR 539, Cleveland, Ohio 44135, Sept. 1983.

THorsewood, J.L., Suskin, M.A., and Pines, S., “Moon Trajectory Computational Capability
Development,” NASA Lewis TR-90-51, Cleveland, Ohio 44135, July 1990

8Edelbaum, T.N., Sackett, L.L., and Malchow, H.L., “Optimal Low Thrust Geocentric Transfer”
AIAA Paper 73-1074, AIAA 10th Electric Propulsion Conference, Lake Tahoe, Nevada,
November 1973

9Chobotov, Vladimir A., Orbital Mechanics, Washington: AIAA, 1991, pp. 116



IL. THE PROBLEM

The problem discussed herein is the following: maximize the final mass of a thrusting
spacecraft for a given orbital transfer. The craft can be considered as under the influence of some
oblate planet’s gravitational field and atmospheric drag. The thrust of the spacecraft is limited
between zero and some Tmax. The transfer will be defined by two terminal orbits.

I1. 1. The Cost Functional
The cost functional is

J = m(t;) M

where m(1y) represents the mass of the spacecraft including its fuel at the end of the orbital transfer.
We shall use the methods of optimal control to write the conditions necessary for maximizing the
cost functional.

II. 2. Differ:

We represent the spacecraft by a point mass and assume it to be a thrusting craft acted upon the
by the aerodynamic drag and oblate-body gravity forces of a central body. We also represent the
central body, or planet, as a point mass positioned at its own center of gravity. We restrict the
problem to crafts of mass much smaller than that of the central body, allowing us to fix the planet
in inertial space. We shall describe this inertial space with a rectangular Cartesian inertial reference
frame (Oxyz). The central body is fixed at the center O of this reference frame and the z-axis is
perpendicular to that body’s equator. All motion within this frame of reference agreeing with the
above assumptions must satisfy Newton’s equation:

F = 4imv) @)
dr

where m is the spacecraft mass and v is its velocity with respect to the reference frame.
In this case, gravity, drag, and thrust make up the total force acting on the craft. This gives us

. 3
myv = Fthrust - Fdrag —Fgravizy @)
We write the thrust as some time-varying magnitude T independent of a time-varying direction

er:

4
F st =Ter @

Note that e, is expressed as a unit vector. For a three dimensional thrust vector the control
requires a magnitude and three components or two angles. For two dimensional problems, the one
magnitude and only two independent control components or one angle are required.



The mass will decrease according to

T &)

We assume that the atmosphere surrounding the central body can be described by an
exponential model of the standard atmosphere. The following equation!® describes such a drag
force:

Faas = 5Po¢ P 7SComv ©

\where B is a constant from the atmosphere model describing air density variation in the prescribed

altitude region, p, is the atmosphere density at the altitude r,, § is the wetted area of the craft, Cp
is the craft’s drag coefficient, v is the craft’s current velocity vector with respect to the inertial
reference frame, v is the magnitude of that velocity, and r is the magnitude of the position vector
with respect to the inertial reference frame. We assume that the product SCp is not a function of
time and that the craft always remains in a region where the chosen exponential atmosphere model
is valid.

Within the confines of this study, the only other influence on the craft is gravitational potential
energy. The gravitational potential energy to the second harmonic isl1

U =-H" __;_JRZ _”“gn_(l —3cos2(6)) @
r r

where R is the equatorial radius of the central body, @ is the latitude angle of the current position
from the equator, and r is the distance from the central body’s center of gravity to the current
position of the craft with respect to the inertial reference frame, U is the gravitational constant for
the central body, m is the total mass of the spacecraft, and J is a constant describing the mass
distribution of the central body. There are additional mass distribution terms but we shall truncate

the series here. 6 is described with Cartesian coordinates by

z =rcos(6) 8)
Eq. (7) now becomes
9
y=_Hm_1 o lim 1_3(.2.)2 ®
r 3 r’ r

10Anderson, J.D., Fundamentals of Aerodynamics, New York: McGraw-Hill Book Co., 1984.
USpace Technology Laboratories, Flight Performance Handbook for Orbital Operations, New
York: Wiley, 1963.



We can write the equations of motion by evaluating oU/dr, and, along with Eq(4) and Eq(6)
substitute into Eq(3). The equations of motion are then

2
mi = Tey -5 x - JR? _@,{1 ) 5(5) }— %Poe'ﬁ(""’)SCDvi

r r r
(10a)
- pm 2 z}?) 1 —B(r-r,) .
my =Tey ——5y—JR"—y 1-—5(—) ——pPo€ °’SCpvy
r r r 2
(10b)
" pm 2 pum z2)2) 1 ~B(r-r,) .
mz=Te;——52z2—JR" =2 3—5(—) ——pPo€ °’SCpvz
r r r 2
(10c)

which, after conforming to convention by changing from J to J2 as described in Ref. 11, can be
written as a first-order system in vector-matrix form as

r=v (11a

)
) ) (11b)
v= z’—eT - -l%r - {-3— 1) R—S(_I\_I - 5(-2-) J}r—lg‘le'ﬂ('-'o)SCva
m r 2 r r 2

where N=diag{1,1,3}.
II1. THE FIRST-ORDER NECESSARY CONDITIONS

The necessary conditions require the formulation of an adjoined cost functional.
The state vector, x(t), shall be defined as

T 2
x(t)=[r"(6) V(&) m(1)] (12

The state is confined by the system dynamics, Eqgs. (11a-b) and Eq. (5), for all time r € [0,f].
The right-hand sides of these form the differential constraint of the control problem and shall be
referred to collectively as f(x(r),u(s)).

The thrust magnitude has both an upper and a lower bound. The upper bound we shall call
Tmax, the lower bound is zero. We, therefore, also have an inequality constraint that must be

satisfied for all time € [0,f]:

0ST<T,. (13)



Finally, we need to specify the terminal orbits. The terminal orbits are specified by a vector
equation

V(x(0),x(t,)) =0 (14)

that is only satisfied when our initial and final states both lie on their respective prescribed orbits.
These constraints come together to form the adjoined cost functional:

J=m(t,) +V'y(x(0),x(z,)) + f{x’[f(x(z),u(t)) - x]}dt (15)
0

where m(1f) is the final mass and v, the Lagrange multiplier corresponding to the boundary
conditions.
The A shown in the cost functional is the costate vector, also called the Lagrange multiplier or

adjoint vector. This vector will be of the same dimensions as the state. For simplification’s sake,
we will segment this vector much as we did the state:

AO=AT0) L@ A,0] (16)

IIL1, The Hamiltonian

With the pertinent dynamics and the cost functional defined, we are now able to write the
Hamiltonian function for the optimal control problem. We take the Hamiltonian from the cost
functional as

H(x(®),u(®)) = ATf(x(0),u(r)) (17

A major simplification can be made now. Notice that the Hamiltonian is linear with respect to
the control T:

T a®)

H(x(e),u() = -"-;-x,’e, -

o

This, in conjunction with the structure of the thrust constraint, means this is a ‘bang-bang’
control problem. Enough is known about this type of problem so that we may do the following:

(1) Establish what will be called the switching function. In general, the switching function is
defined by the partial derivative of the Hamiltonian with respect to the control.



H=—=—1__mn (19)
T or m 81,

(2) Evaluate a restricted case of the well-known Euler-Lagrange equations. Most of these
determine the costate dynamics and we shall see these in Section II1.2, however, the last one
determines part of the control for the problem. This equation is

oH

— 0

e, (20)
Evaluating (20), we must remember that e, represents only the direction of the thrust. If we
define yas the angle between e, and A, we may write

H= I—K,"erﬂ. = I—P», cos(+L (21)
m m
Evaluating Hywe find that
%=-;’;-|x,|sm<y) 22)

and this equals zero only when (1) the thrust is off, (2) the vectors e, and A, are parallel, or (3)

[A.|=0. The only case that we can apply for all time and that will not be trivial is (2). This means

that there are only two choices for e,: in the direction of A, or in the exact opposite direction.
Since this is a mass-maximization problem, we need to have Hyynegative (one of the sufficient
conditions for the second variation). It can be easily shown that this is satisfied with e, in the
direction of A, or

A

e = IT| 23)

The thrust must obey this for all time 7 € [0,4f]. The result is consistent with that of Lawden’s
primer vector, Ref. 1.

(3) Perform bang-bang control with T. This means that T is always on-boundary, i.e. T=0 or
T=Tmax at any t € [0,ff]. We know which value to use for T by evaluating the switching
function, Eq. (19), which is written as



PP N 24)
m gl

The bang-bang control law is

H, >0, T=T,,

25
H, <0, T=0 =

This switching structure satisfies the Pontryagin maximum principle by maximizing the
Hamiltonian using T. If H, were to be zero for a finite time the control would be singular.
Higher order derivatives of H, would then be needed to calculate T.

IIL2. The Costates

The costate dynamics can be found from the following Euler-Lagrange equations, relating them
to the Hamiltonian:

T
i, ._._(%H) (26)
T
i, =_(£’£) @
i=-2 (28)

To evaluate these, we must first substitute the equations of motion into the Hamiltonian:

T 3 R (= z\?
=T T H
H—XV v+lr {—CT‘—;?I'—{EHJZ’-—S(N-S(';) J}I‘

—-l-p—oe—B('_'°)SCva}-7\.m T
2m golsp 29)

When evaluated, these become the following vector and scalar differential equations:



T
A = p[—’%’- -3 (lv 5r)r:|_ 1 Po -Ee"B (r -"’)SCDV(?LVTV)r
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3 2| NA, (XvTﬁr)r 15 R2 sz AT 722 2z g

¥ RLR = =3 |- T LR v=("1) T 1 (30)
. AT (3D
A, =—A, +—1—££e'”"""SCD[2.,v+( > v)v]

2m v
A, =LA Te,—LPegpergc i Ty (32)
m 2m
IV, SOLVED PROBLEMS

We have reduced the problem from three-dimensions to two-dimensions. To remove the
dimension, we simply remove the z-component to all equations. Because of the chosen coordinate
system, this also means that all orbit transfers considered are equatorial. Unfortunately, the effect
of oblateness is substantially decreased for this case.

We have also fixed the transfer time for the solutions presented here. By examining the
behavior of the solution as the transfer time is varied we are able to see why the transversality
condition is difficult to converge.

The differential equations above are written with respect to the independent variable ¢ (time).
Since neither method used is written to iterate on the transfer time we need to make this variable
part of the state. The state here is for the numerical code and not for the optimal control problem.

Now, this means that we must define a new independent variable 7 (non-dimensional time) to be
used in the place of ¢ (dimensional time). The following scaling is made:

1=1,7 (33)

Therefore, to accomplish this, #f must multiply the derivatives of the states and costates and the
time interval must be changed to [0,1].

Two-Point B Pr

As a result of the simplifications, the boundary conditions have been stated in two dimensions.
The orbit conditions, however, require a more abstract formulation as we cannot specify exactly at
what point the craft will enter or leave an orbit. The following relations completely specify an

orbit: (All of the following conditions are to be evaluated at the appropriate time, 7=0 or 1)



v,=rxv-h=xv-yu—-h=0 (342)

| ] 34b
V.= (V2 - %)x— (r'v)u |- ue, =0 (34b)

i ] 4
Y, = (V2 - %)y —(r'v)v|- pe, =0 (34c)
L -

All that is required to specify an orbit without specifying a position on that orbit is the angular
momentum and eccentricity vectors. In a full three-dimensional case, these conditions will form
six equations. Since the two vectors are perpendicular, one of these equations will be redundant
and thus removable. It follows that it does not matter which equation is removed, but there is no
doubt that one must be removed and no more. In the two-dimensional case, as demonstrated
above, the angular momentum vector has two zero components while the eccentricity vector has
one zero component. Since there are only four orbital elements for the two-dimensional case, we
do not have to worry about removing one of the equations; orthogonality has already removed
them.

It would seem that the ellipse equation and the energy equation can replace (34b) and (34c).
However, the combined constraints of angular momentum, orbit geometry, and energy equations
do not uniquely specify an orbit. Angular momentum and energy do determine the pair of orbital
elements a and e. However, this orbit may be rotated to find more than one argument of perigee
such that the specified conic section is intersected and the proper velocity magnitude, but not
direction, is found. This results because there are two possible velocity vectors at one point with
the same angular momentum and energy.

Eqns (34) completely determine the final orbit without setting the position on the orbit.
However, these conditions do not complete the two-point boundary-value problem. To complete
the TPBVP, the methods of optimal control supply a set of natural boundary conditions

(35a)
(6 Y
MD= (ax(n)
e 5 )T | (35b)
— L ax(0)

where G is constructed from the function portion of the cost functional, e.g. for the cost functional
in Eq. (15) G is

G = m(1) + vIy(x(0),x(1)) (36)

Constructing G with the above conditions on the states, we can find conditions on the costates:

10



37
G = m(D)+[Vy; + VoWy + VaWs ]|, +[Vaw; +Vsia + vews] g GD

Evaluating Eq.(35a) gives, at t=1:

, (382)
(38b)
X bopy
A, ==vu+ vz(r—g’— uv)+ v,(u2 - +7]
Ay ==VY + Vy(—yV) + V5 (2yu — xv) (38c)
A, = Vx+ v,(2xv - uy) + v,(~xu) (38d)
A, =1 (38¢)

Note that the constant Lagrange multipliers v; are additional unknowns. At 1=0 we get the
expressions identical to Eqs. (38a-d) but with a negative sign placed as indicated by Eq. (35b).

The last condition deals with the final time. If the final time was to be optimized indirectly we
would use the transversality condition

(381)
H(x(1),u(1),A(1)) = —§ =0
f

However, we choose to specify the final time in the solutions presented. By looking at the
characteristics of the solution as the transfer time is varied, we may gain some important insights as
to the nature of this optimization.

Since the transfer time has been included in the state for BOUNDSCO, Eq. (38f) is replaced by
a condition on #f. for the fixed transfer time problem.

v n; . :

To improve accuracy, we have non-dimensionalized the problem. This aids in a few ways.
First, the integration of the state is more accurate because all variations are on the same order.
Second, convergence is improved because all the boundary conditions are immediately placed at or
near the same order. Our non-dimensionalizations follow:

11



(39a-d)

. i. = —E; ’ G = v ,;l = -ﬁ; ’ $ = tf
- * ’ m =
ulr R
and they require the following
. (39¢-g)
* @1 )=l rifu , Caa *
7‘.‘,5 T/m , 8 p 8 p / (poscb)__._—__pascb_r_;. .
ul/r* m
- (35h-j)
- B=pr*, . R !
r,= _r? s Ra = -;*—

The choices of r* and m* are completely arbitrary. However, it needs to be said that after a
problem is solved by these nondimensionalizations rescaling must be exercised with caution. This
is a direct result of the atmosphere model; if the rescaling is not consistent with the atmosphere
model, the results are invalid, e.g. rescaling also rescales the atmosphere model (note Eq. (6)).

If we solve Egs (39a-j) such that the dimensional parameter is on the left-hand side and then
substitute into the original dynamics we find equations that are exactly identical to the original
equations with g=1 (The value of J2, however, has no dimensions and is not changed). This can
be extended to the boundary equations and the costate differential equations. A special note is

required: the costates resulting from the solution to the problem with this transformation will be
some scalar multiplied by the ‘dimensional’ costates, e.g.

s _ A 39k)

A= - (
which requires

v= _ﬂ* o

where A* is completely arbitrary. This is easily verified by substitution into the differential
equations and boundary conditions.

IV4. T

Any atmosphere is usable by simple substitution early in the derivation of the differential
constraint. For the purposes of this report we have chosen a simple atmosphere model. The
model is not intended to accurately represent the Earth’s atmosphere, or any other planet for that
matter. It is implemented only for the purpose of demonstrating the methods for solving the
optimization problem.

The model is defined from a reference altitude of 450km above the planet’s equator and is

12



assumed spherical above the oblate planet. The entire atmosphere region is assumed isothermal
with a temperature of 1000K. The density at the definition altitude is 1.184x10-12 kg/m3. This
definition point for our model is taken from the 1976 U.S. Standard Atmosphere!2.

IV.S. The Multiple Point Shooting Method of BOUNDSCO

One method we are currently using to solve the TPBVP is the multiple point shooting method.
The specific algorithms are those given by H. J. Oberle in his subroutine BOUNDSCO!3, written
in FORTRAN. His method is a modification of the multiple point shooting method.

The use of this method requires the writing of a few routines that define the problem. These
routines include, of course, the calling routine itself, a subroutine defining the differential
constraint (or system dynamics), and a subroutine that defines the constraints on the problem.

The state defined for the optimal control problem differs slightly from the state used in

BOUNDSCO. The state used in BOUNDSCO includes the v vector, from the natural boundary
conditions, to the state. This requires also that the system dynamics includes a corresponding
number of zero derivatives. We justify this by noting that it allows the statement of the absolute
and natural boundary conditions exactly as they are in this report. If we did not do this, we would

have to solve a system of three of the four natural boundary conditions for v and substitute the
result into the fourth equation, using it in place of the four. This may seem desirable, one equation
in the place of four, however, the simple structure of the four equations is much more tractable for
BOUNDSCO than the complex structure of the one equation.

There is one particular feature that makes BOUNDSCO very attractive: the explicit inclusion of
switching points in the problem formulation. Oberle allows the user to guess the switching points
outside of the system dynamics. In doing so, he provides the equivalent of guessing the burn
times and lengths as usually only done in direct methods. This simplifies integration and improves
convergence because it removes a lot of sensitivity between the trajectory and the guessed
switching times. The switching times are no longer determined by integrating from the guessed
initial state; they are specified directly. There is a tradeoff: the user must assume a switching
structure and verify it outside of BOUNDSCO. If the switching structure assumed is not correct,
BOUNDSCO will not modify the switching structure to achieve optimality.

The guessing of the switching times requires a brief explanation. It makes no sense to guess
an initial burn-on time because then the first point in the initial guess is indeterminate, i.e. it doesn’t
matter where you start coasting from but it does matter when you start burning. Therefore, we
always assume switching structures that begin with a thrusting arc and that end with a thrusting
arc. The same reasoning holds for the final point.

v imist o B ] ion M
The second method we are using is called the Minimizing-Boundary-Condition Method

(MBCM)!4, This method is a modification to the simple shooting method. It expands the set of
available solutions by removing one boundary condition. The choice of this boundary condition is

12United States. COESA. U.S. Standard Atmosphere, 1976, Washington: GPO, 1976

130berle, H. J., BOUNDSCO - Hinweise zur Benutzung des Mehrzielverfahrens fiir die
numerische Losung von Randwerproblemen mit Schaltbedingungen, Hamburger Beitrdge zur
Angewandten Mathematik, Berichte 6, 1987.

¥Chuang, C.-H., and Speyer, J.L. “Periodic Optimal Hypersonic SCRAMjet Cruise,” Optimal
Control Applications & Methods, Vol. 8, 1987, pp. 231-242.
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arbitrary. The number of unknowns is unchanged; he solutions become a one-dimensional family.
Since there is a much larger set of solutions, it is much easier to solve the resulting boundary-value
problem. Once this is accomplished, the search for the solution that incorporates the final
boundary conditions is treated as a minimization problem. The gradient is numerically calculated
and used to update the initial state until the last boundary condition is satisfied. This method is at
least as-effective as BOUNDSCO in solving the two-point boundary-value problems for the current
solved optimal orbit transfers.

The switching structure of the optimal control is implicit in MBCM. The program checks the
switching function at each integration step. If the switching function alters sign at one integration
step, the program stops the integration and restores all the states to the beginning of the step. A
secant method then calculates a smaller step size for integrating the switching function to a zero
point. From our experience with MBCM some sensitive problems need fourteen digits of accuracy
in their switching function. Once the integration passes the switching points the program switches
the control and uses a normal step size for integration.

IV.7. Optimizing the Initial Poi

The TPBVP we have described is for optimizing both the exit point on the initial orbit and
the entry point on the final orbit. However, it is much easier to obtain a solution between two
orbits if one fixes at least the initial point at first. This is because the natural B.C.’s are replaced by
the specification of a terminal position and velocity. With the fixed-point problem solved, the
simplest way of optimizing the fixed point, of course, is to, holding all other parameters fixed, take
a range of true anomaly values on that orbit and look at the resulting final mass. We performed
this task on the transfer shown in Fig. 4 and the results are displayed in Fig. 1. The results are
quite satisfactory. There is one obvious local maximum in the range of values searched. This is
the best initial point.

1.2

1.19

-~ 1.18
R 127 86"

1.15

1.14

85 105 125 145 165

True Anomaly of
Initial Orbit Exit Point (deg)

Figure 1 Plot of the final mass as the true anomaly on the initial
orbit is varied for the transfer in Fig. 4
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However, if we desire to know the optimal initial orbit exit true anomaly with any accuracy we
must satisfy the necessary conditions. This is accomplished by simply using one of the solutions
we already found as the guess for converging a solution constrained by the full set of necessary
conditions. We choose from the results of our search one that landed closest to the optimum, we
then use BOUNDSCO or MBCM to converge the necessary conditions.

IV.8. What i the Optimal Transter Time?

The only optimization that remains to be discussed is with respect to the transfer time. We
have found this to be somewhat more complicated than optimizing with respect to the initial or final
orbit true anomalies. Figure 2 shows the results of searching our example transfer for a range of
final times. In doing this search we discovered two interesting things: (1) as the transfer time was
lowered, the coasting arc was shortened; in fact, at the shortest transfer time examined, there was
no coasting arc; and (2) after a certain transfer time BOUNDSCO did not return an optimal two-
burn, and the cost appears to be locally maximized. Fig. 3 shows the switching times as the
transfer time was varied and illustrates the property described above.

Now when we say that BOUNDSCO did not return an optimal two-burn solution, we mean
that the Pontryagin Maximum Principle was violated (as we have mentioned before that
BOUNDSCO will allow this). The lower bound makes perfect intuitive sense: this is the quickest
that one can do the transfer in an optimal fashion, it is also the least fuel-efficient - the motor is on
for the entire transfer. Now, as we relax the time constraint and allow for longer transfers, we
approach an optimal transfer time. However, we only approach the optimal transfer time. We can
claim to be quite near the optimal transfer time as also indicated by Fig. 2 . This figure shows that,
as required by optimal control theory, the transversality is close to being satisfied when the mass is
close to being optimized. We can meet the transversality condition for the two-burn transfer with
an accuracy of 104,

15
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solution as the transfer time is varied (for the
transversality condition) for the transfer in Fig. 4
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We must be very careful in attempting to explain why BOUNDSCO did not return an optimal
transfer after #~18.9. Our speculation is that this transfer represents a point where both the two-
and three-burn solutions have the same cost, and that for transfers with a greater transfer time, the
three-burn gives the greater final mass.

IV.9. Sample Problems and Solutions

Two solutions are presented in this section, all of which both methods were able to converge.
All have been nondimensionalized and use the atmosphere model presented above. All include a
drag and oblateness model as mentioned above, with J,=1082.61x10-6. The drag model is based
on a reference state from the 1976 standard atmosphere. At an altitude of 450 km the temperature

is 1000k and the density is 1.184x10-12 kg/m3- This gives us ppSCD=7.632x10-". Now, for the
salmc reasons as mentioned earlier, we are forced to specify =200 km. We do not have to specify
m'.

The first solution’s tranjectory is shown in Fig 4, it’s velocity portrait is shown in Fig. 5, and a
plot of the thrust vector angle is shown in Fig. 6. This is a fixed transfer time transfer and
corresponds to the trajectory represented by the leftmost point in Fig. 3. The transfer time for this
trajectory is the shortest allowed an optimal transfer with these terminal orbits. And, as such, it
has the lowest final mass of the allowed transfers. This is a descent trajectory; the initial orbit is
higher than the final orbit. The initial orbit is: a=3.847, ¢=0.02378. The final orbit is: a=1.5,
€=0.3333. The initial and final orbits are the same as for Fig. 4. The transfer time is 16.2. The
initial mass is 1.608 and the final mass is 1.1547.

initial
Orbit

Y coordinate

.

-3 Thrusting Arc

-4 -3 -2 -1 0 1 2 3 4
X coordinate

Figure4 Mass-Optimal, Ellipse-to-Ellipse Transfer with Exit and
Entry Points Optimized. 7=0.03, g, /sp=1.313, {f=16.2
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This transfer is accomplished in one burn, however, at 1.=0.54, the switching function comes
extremely close to zero. We shall, therefore, speak of this as an instantaneous transfer orbit, The
first burn, then, is about Ar=8.748 and imparts AE=-0.0578 and Ah=-0.5282. The instantaneous
coast is over an orbit of a=2.663, ¢=0.4786, and w=-39.06°. The second burn is about Ar=7.452
and imparts AE=-0.1456 and Ah=-0.278.

The second solution presented, Figs 7-9, is similar to the previous one.. It corresponds to the
trajectory represented by the rightmost point in Fig. 3. The transfer time for the this trajectory is
the longest allowed an optimal transfer with these terminal orbits. And, as such, it has the highest
final mass of the allowed transfers. It has the same initial and final orbits as the previous transfer.
The transfer time is 18.95. The initial mass is 1.608 and the final mass is 1.214.

Two burns are used to complete the transfer. The first burn is about A=7.47 and imparts

=-0.0672 and Ah=-0.598. The coast is Ar=5.26 over an orbit of a=2.536, ¢=0.518, and w=-

10.5°. The second burn is about Ar=6.22 and imparts AE=-0.136 and Ah=-0.2079. Again, this
transfer has many similarities to the other two.

Looking at the transfers above, we find just what we expect. The quickest transfer has to
impart the most energy to complete its transfer and the longest transfer is just the opposite. We
also found that after a certain maximum transfer time there was no optimal two-burn. We also
expect to find that a family of optimal three-burn transfers occupy the next range of transfer times.
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Orbit

Y coordinate
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-3 Thrusting Arc

-4 -3 -2-1.0 1 2 3 4
X coordinate

Figure 7 Mass-Optimal, Ellipse-to-Ellipse Transfer with Exit and
Entry Points Optimized. T=0.0143, g,/sp=1.313,
17=18.95
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Y. CONCLUSIONS

The performance of both BOUNDSCO and MBCM was acceptable. There are significant
tradeoffs between the two, however. The main distinguishing feature of BOUNDSCO, in the
interests of this study, is the implementation of switching conditions. BOUNDSCO does not
supply information to the user about the polarity of the switching function. This leaves the user
uncertain as to whether the solution satisfies the Pontryagin Maximum Principle. However, this
weakness of BOUNDSCO is also an advantage in that it allows the burn times to be guessed
directly. MBCM applies the switching conditions directly and, therefore, every solution that it
converges satisfies all the necessary conditions. From this viewpoint, MBCM has an advantage.
But the difference that matters more is that MBCM has a greater region of convergence than just
simple shooting; this increase being the result of removing a boundary condition.

In this report we have demonstrated the ability of two indirect methods to solve the orbit
transfer mass-optimization problem. In particular, we have presented two and three bum
solutions, one low and one medium thrust. Both of these transfers were created with indirect
methods.

Through the use of these methods we have uncovered some information about the optimal
transfer time for finite burn transfer. We have evidence that implies that as the transfer time is
increased, the final mass of an optimal transfer monotonically increases.

Addressing the question of difficulty in including drag and oblateness effects we have found
that these are not difficult to include. We were able to obtain solutions with drag and oblateness
terms via BOUNDSCO and MBCM.
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Numerical Computation of Fuel-Optimal, Low- and
Medium- Thrust Orbit Transfers in
Large Numbers of Burns

ABSTRACT

This report presents two numerical methods considered for the computation of
fuel-optimal, low-thrust orbit transfers in large numbers of burns. The origins of these
methods are observations made with the extremal solutions of transfers in small numbers
of burns; there seems to exist a trend such that the longer the time allowed to perform an
optimal transfer the less fuel that is used. These longer transfers are obviously of interest
since they require a motor of low thrust; however, we also find a trend that the longer the
time allowed to perform the optimal transfer the more burns are required to satisfy
optimality. Unfortunately, this usually increases the difficulty of computation.

Both of the methods described use small-numbered burn solutions to determine
solutions in large numbers of burns. One method is a homotopy method that corrects for
problems that arise when a solution requires a new burn or coast arc for optimality. The
other method is to simply patch together long transfers from smaller ones. An orbit
correction problem is solved to develop this method. This method may also lead to a
good guidance law for transfer orbits with long transfer times.

1. INTRODUCTION

.- Electric propulsion, with its high specific impulse, promises very low fuel
consumption but it produces less thrust than its counterparts. If one wants to use electric
propulsion, one needs to be prepared to tolerate the long transfer times that will be
incurred. The greater time spent thrusting must be spent wisely if fuel savings are to



realized. Furthermore, the effects of Earth’s oblateness and atmospheric drag become
more significant on the orbits of long transfer times.

To spend the thrusting time wisely, we form an optimal control problem to
maximize the mass at the end of the transfer. This, therefore, is our cost function

J=m(ts) (1)
subject to the boundary conditions

w(r(0),v(0).x(t/), ¥(t)) =0 @)

and the state dynamics

r=v 3
V= I—eT - % r @
m r
P (5)
8olsp

where e is the thrust direction, a unit vector, and the thrust magnitude, T, is limited
between zero and some maximum value Tpgy, M is the gravitational constant, g, is the
gravitational acceleration at sea-level, and / 5 is the specific impulse of the motor.
Sometimes golsp is referred to as the exit velocity of the motor. If the boundary
conditions referred to in Eqn. (2) are designed for the rendezvous problem, this results in
the well-known bang-bang optimal control problem, discussed in detail by Lawden!.
However, herein the boundary conditions are designed such that the initial and final
points lie on the desired orbits without specifying the position, or true anomaly, on either
orbit.
As a brief review, the optimal thrust direction for this problem is

A4

er = m ©)

where Ay is found from the following differential equations
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The optimal thrust magnitude for this problem is a bang-bang solution. This is

determined by applying the following switching law, Eqn. (10), to the switching function,
Eqn. (11).

Hs>0, T=Tmax

10
m goIsp

We are interested in solutions of this problem with long transfer times and,
therefore, large numbers of burns. There are many methods that have been successively
used to compute n-burn transfers, where n is anywhere from 1 to about 6. However,
fewer methods successively compute transfers for larger values of n. These methods for
the former attempt to solve the optimal control problem either directly, indirectly, or with
a hybrid of the two. In this report, we will assume that a mostly indirect method, such as
BOUNDSCO or MBCM or that of Brusch?, et. al, or of Redding3 is being used.

One idea to obtain interesting solutions is to first compute some n-burn transfer,
where n is generally less than the number of burns initially desired. Using this as a
starting point, increase the allowed transfer time and compute the new transfer.
Obviously, it is expected that the desired transfer is relatively similar to the starting
transfer. This homotopy method seems to work well as long as the number of burns
performed in the transfer do not need to increase so that optimality is satisfied. For
example, in many cases BOUNDSCO is unable to find a three burn solution when the
two burn solution to an almost identical problem is given as the initial guess. The
Direction Correction Method has been developed to attempt to alleviate this difficulty.
It’s purpose is to find an n burn solution to an orbit transfer problem with allowed



transfer time e+ Btf using an n-1 burn solution to the same problem but with allowed
transfer time I

Another idea is to patch together a set of n-burn transfers, where n is a small
integer, usually unity, to produce an m-burn transfer, where m is the desired number of
burns. This method requires that the sequence of transfer orbits be either guessed and
iterated upon for optimality, or simply prespecified. From the theory of optimal control,
this patched solution will be a suboptimal solution. However, possible analytical
solutions for the one burn solution of two very close orbits may give a feedback guidance
law. Since the drag model is only approximate for large numbers of burns it may be
more important to have a good guidance law in terms of fuel-savings.

II. DIRECTION CORRECTION METHOD

The first idea, referred to herein as the Direction Correction Method, is based on
the common homotopy strategy. A homotopy method, though slow in producing results,
would be considered effective here as long as the number of burns does not change. It is
expected, however, that one is going to be using this method to increase the transfer time
so that the fuel consumed will be less. To understand the ensuing difficulty, we must
study the history of a successful implementation of this homotopy method.

All parameters describing transfers in this section and below have been

nondimensionalized such that the gravitational constant, g, is unity. This

* and m™ with units

nondimensionalization is accomplished through two parameters, r
of length and mass, respectively. These are chosen appropriately to the problem and may

be, for example, initial semimajor axis and initial mass, respectively. The following

equations detail the calculation of nondimensional parameters, denoted by the ** symbol,
describing the transfer:
. T/m*
fell ™ (12a)
ulr
(8olsp) = 8l oo™ /1 (12b)
A t f

——

Iy = m (120)



The optimal transfer we will examine is a planar transfer under ideal gravity
conditions. The transfer leaves an initial orbit with a semimajor axis of 2.239,
eccentricity of 0.1160, and an argument of perigee of -85.94°. The orbit to be entered has
a semimajor axis of 7.000, eccentricity of 0.7332, and an argument of perigee of 114.6°.
The motor used to perform the transfer delivers a thrust of 0.01386 with an exit velocity
of 0.3898. The allowed transfer time is 73.33. This transfer performed in two burns is
shown in Figure 1 with its corresponding parameters in Table I. It was computed using
the multiple-shooting method of BOUNDSCO#. The switching function for this transfer
is shown in Figure 2a.

Figure 1. Transfer in Two Burns for Burn Addition Demonstration

85, =|0.3898 a;i= |2.239 w=|-8594° |ar= | 7.000 o= 114.6°

T= 0.01386 |e= |0.1160 |t= |73.33 e~ |0.7332 mg= | 0.5545

Table L Parameters of the transfer shown in Figure 1
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The initial mass of the spacecraft was 1.6, the final mass is 0.5545. Now, suppose that a
greater fuel savings is desired. As the allowed transfer time is increased from 73.33 to
77.48 and then to 85.00, the shown sequence of switching functions (Hg(?) in Figs. 2a-c)
will result. These show a clear indication of a new burn/coast being anticipated in the
optimal solution. The orbit transfer corresponding to the switching function in Fig. 2c is
plotted in Figure 3. The parameters of this transfer are identical to that of Fig. 1 except
that the transfer time is longer, #=85, see Table II for the listing. Also, note that the final
mass of this longer transfer is indeed larger than the shorter transfer, indicating a greater

fuel savings.
4 JlL L £ 1 1 Il 3 1 d it 1 i i | 2.
] [
2 - =
0 \
-2 i
s -
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8 i
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j I
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X
Figure 3 Transfer in Three Burns for Burn Addition Demonstration
8olsp=10.3898 ai= | 2.239 W= -85.94° | ar= | 7.000 o= 114.6°
T= 0.01386 |e= [0.1160 |1= |85.00 e~ | 0.7332 ms= | 0.6056
Table IL. Parameters of the transfer shown in Figure 3



It has been seen in many cases that local minima and maxima of the switching
function will move down or up on the graph as we examine successive solutions. As in
Fig. 2b, once this critical point becomes a root of the switching function, we reach a point
where the number of burn/coasts is somewhat indeterminate. Is this, in Fig. 2b, a two- or
three- burn extremal? There are only two burns of finite length but there is a third that is
infinitely small. This indeterminacy shows itself as a discontinuity in the slope of a plot
of the initial guess versus the homotopy variable, transfer time, Figure 4.

—+&— Initial True Anomaly (deg‘ —o6— Final True Anomaly (deg)l

54 E\ -146
g : \ / [ o
©
= 50 / -150 %
5 i N / F s
< 48 -152 ¥
E ] [ 5
[ J / o £
s 46 154 &
€ ] // \ [ &
44 . [ -156
] \S\ﬂ\ﬂ [
42 ] 1 T Ll T T i L] T L] T L T LIRS LI L) L] L§ T I '1 58
68 70 72 74 76 78 80 82
Transfer time
Figure 4 Plot of Initial and Final True Anomaly Values of Successive Solutions

which Differ only in Transfer Time, ¢.

Figure 4 shows the initial and final true anomalies as a function of the allowed
transfer time. The feature of interest here is the slope discontinuity (note that there is no
point discontinuity) in both curves. The effect is not as prominent for the initial true
anomaly as it is for the final, but it is still noticeable. As a result of this discontinuity
there is difficulty in the homotopy method: the next solution may not converge because
the method being used, based on the linear slope of previous points, is not calculating the
correct initial state. To overcome this difficulty we must be able to compute the correct



slope, which should be the slope after Iy = 77.48, so that the homotopy method can

continue.

The change in the initial state needs to be computed such that satisfaction of the
boundary conditions is maintained and optimality is preserved. This problem shall be
approached for the following general Two-Point-Boundary-Value-Problem (TPBVP):

C(z(0))=0 m equations (13a)
D(z(t f)) =0 m- nequations (13b)
Z(t)=f(z(r)) nequations (13¢)

where z(t) is the state consisting of the original state plus the Lagrange multipliers, f(z) is
the right-hand side of the original state dynamics plus the Euler-Lagrange equations, and
C(z(0)) and D(z(zf)) are the boundary conditions for the initial and final orbits,
respectively.

Now, since we are interested in maintaining the boundary conditions, we set their
variations equal to zero. First, the initial conditions from Eqn. (13a):

sc=2Y  s0)=0 (14)
2(0)

Next, a similar operation is performed on a vector describing the final conditions from
Eqn. (13b). However, so that the initial state is referred to, it is necessary to invoke the
transition matrix.

D
dD==— dzlt;)=0 (15a)

a2l (f)
JdD )

= ozt )+, )dr (15b)
o"zz(,f)( (f) (f) f)
D ap| .

=§,(,,)"’(°”f)&(°)+§|, ,f)z(‘f)d‘fz‘) (159

Here, d(-) denotes a variation with variable time and ®(0,fy) is defined as the transition
matrix, initialized at #=0, and evaluated at 1=tf, where



. of(z(t

D(1,,1) = () d(z,,1) (16a)

D(t,,1,)=1 (16b)
Now at each switching time, ¢; (i=0,1...q), the switching function must be satisfied. So,

we set the variation of the switching function, Hg(z), equal to zero at each switching time,
giving g scalar equations:

oH
dHS £ d ti =0 (17)
az z(i‘;) Z( ) :
- % (©(0,)62(0) + 2(z;)d}) =0 (17b)
z(ti)
oH, oH;| .
™ z(“)d)(O,t,-)az(o)+ ™ z(n)z(ti)dtizo e

Consideration of the switching function also calls attention to a necessary correction in
the transition matrix calculation. At each switching point, there is a discontinuity in
f(z(t)) due to the thrust being turned on or off. This discontinuity results in a ‘jump’ term
for @(0,). To calculate this term, we again must set the total change in H; equal to zero.

H,((1;))=0 (18a)
oH
dH, =% da(t;)=0
7 b, (1) (18b)

Now, recognize that the total variation in the state at the switching time #; must be the
same looking from either direction. This situation is illustrated in Figure 5.

de(t;) = 8z{y;” )+ {1 )dy; (19a)
= S8+ + 3{1* ), (19b)

10
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A (8" ) /
|
&{si*)
5z(t,~~) dz(t;)
2(1) + 8a(s) i),
\
z(t)
>t
5 L+ dl"
Figure 5. Nlustration of Equations 19a and 19b
Substitute Eqn. (19b) into Eqn. (18b)
dH, = agls z(,i)(&(ti—)+ 2t )dt,-) =0 (20)

Equation (13) can be solved immediately for dr; which is then substituted into Eqns. (19a-
b). This can manipulated to produce

(21)

Equation (21) can be rewritten by inspection in terms of the transition matrix:

11



(D(ti+:ti_)= I+ z(1;) (22)

This is the jump matrix across the switching point ;.

We must recognize that these variations are considered in a range of transfer times
across which the number of switching points changes. Specifically, this is an addition of
a burn or coast arc. The situation is illustrated in Figure 6. The assumed change in the
switching function is shown at the top of the figure. The nominal solution’s switching
function has a touch point at t=1,=t;,. The solution with a slight different transfer time
has two new switching points, 7, + df, and z; + df;. The assumed change in one element
of the state vector is shown at the bottom of Figure 6. The derivative, z{t), is assumed
equal before and after the new addition and to the nominal value, i(tc) . The slope during
the new bumn is denoted ¢. To relate the two solutions across the arc, we write the
following equation.

8z(ty + dty ) = 82{t, + dt,) +(c — 2(ty )ty — at,) (23)

This relation has been verified using data from the example presented here.

12
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Figure 6: Model Describing Changes Incurred Between n and n+l Burn
Solutions
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Now, a model is required to locate the new switching points. We have looked
into different models for this. The first model is a simple variational model, but unlike
Eq (17a), second-order terms are considered. The equation of this model is

oy 1 \TO?H, _
AHs 2d Hs = Zdz(ta) dzdz 2(t )dz(ta)" 0 (24a)

=l(5z(z,,)+z(t,,)dta)5"?-2-’i~s (62(2,) + 5(1, ), (24b)

2 dudey,
B it i/ IR

2 a azaz a a &az a a

z(ta) z(t,)
2
Sk IR
z{t,

where the lesser of the two solutions is dz, leaving the other to be dz;. Unfortunately this
model does not result in a sufficiently accurate answer for dz, and dz;.

We have also attempted to model the situation through the information on the
placement of . + dz.. Since this point can be defined as the point of zero slope, we can
find with an analog of Eq. (17). The solution is, therefore,

a;i‘ oz(t,)
dt, = —— 2(1.) (25)
T )
2(1.)

To complete the model we need to have a point on the graph of AHs and we need the
curvature of Hg. The former can be had by rewriting Eq (17) for ¢, and evaluating it at
dr,. We assume that the latter is well represented through a curve fit to the original
switching function in the neighborhood of H(z.), denoted by k. in the following equation
for AHyg,

AH, ==k(t-—tc)2+(—t2}—1i

dz(tc)] (26)

2(r.)

14



The solutions we are interested in are

oH
ERD
dt, =di, -—V z(r;) (27a)
7
S )
dty = + ’(’2) (27b)

We have found that the solutions with this model are better than that with the previous
model, but still not very accurate with errors greater than 10%. However, this accuracy
may still prove to be well enough for BOUNDSCO to produce solutions. The intention
here is merely to provide the TPBVP solver an initial guess closer to the n+1 burn
solution.

Taking all of this together, a system of linear and non-linear equations can be
written, starting with Eqs (14) and (15)

o« ®(0,1, +dt,)0z(t, +dt,)=0 (28a)

oz z{0)

dD

9P D1, +dty, 17 )f(B2(t, +adt,)) = -5

i(tf)dtf (28b)
2(1;)

(1)

where f(6z) refers to the right-hand side of Eq. (23) as a function of dz(t, + dr;). The
solution to this system is &z(z, + d#;), The transition matrix can be used to give the
change in the initial state required to produce the desired solution. Then the variation of
each switching point can be found one at time using Eqn. (17¢).

The solution information can easily be put into a form useful for a variety of
numerical methods. For example, the change 6z(0) can be propagated through the
transition matrix to calculate the changes at each node point for a multiple point shooting
method. This method is still under development but shows promise as relatively simple
way of getting to the n+1 burn solution in the right direction.

Once we have the ability to find optimal solutions with successively increasing
transfer times, there is another characteristic of the extremals that may be encountered.
Experience has shown that the length of the new burn will increase monotonically as the

15



transfer time is increased and usually the situation detailed above will be repeated so that
the number of burns will increase again. However, there are cases where the cycle ends
and the transversality condition, giving the optimal transfer time, is satisfied and there
may be no nearby solution that has better performance. The following solution is an
example. It is a descent trajectory from an orbit with a semimajor axis of 3.847,
eccentricity of 0.02378, and an argument of perigee of 0°. The transfer terminates at an
orbit with a semimajor axis of 1.500, eccentricity of 0.3333, and an argument of perigee
of 0°. The motor used to perform the transfer delivers a thrust of 0.03 with an exit
velocity of 1.313. The allowed transfer time is 19.05. This transfer performed in two
burns is shown in Figure 7a. It also was computed using the multiple-shooting method of
BOUNDSCO. The switching function for this solution is shown in Figure 7b.

- .‘--—_-
-4 FEFGTITIS IPWAT AP STSTUTAPI Errw i i
LB S s o i e o e AU

Figure 7a:  Two Burn Extremal with Transversality Converged

8, =| 1313 |a= |3.84T |- |0000° [am= | 1.500 0.000°

T= 0.03 e= | 0.02378 | 1= | 19.05 e~ |0.3333 m=|1.214

Table IIL Parameters of the Transfer Shown in Figure 7
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Figure 7b:  Switching Function for Two Burn Extremal in Figure 7a

This solution was presented previously®, however, with one difference, oblateness and
atmospheric drag were included in the dynamics. It was found that with these terms
removed, the transversality condition could be converged. It was also observed that the
initial and final points of the switching function were driven to zero. There is certainly
no conflict here in terms of optimality: the initial and final points are now switching
points.

III. PATCHED TRANSFER METHOD

The second idea was inspired in part by the work of others. Zondervan, et. al
made some simple guidance observations®, specifically that in some regions the primer
vector is relatively constant in a velocity-fixed reference frame. This implies that a
simple control law is available in some cases. Marec presents a solution to the orbit
correction problem?. This motivated a notion that solutions to linearized and/or
approximated problems were available. In this spirit a solution was obtained for the
optimal transfer between two close orbits. The transfer leaves a circular initial orbit with
a radius of 1.038. The orbit to be entered has a semimajor axis of 1.069, eccentricity of
0.02633, and an argument of perigee of -50°. The motor used to perform the transfer
delivers a thrust of 0.01438 with an exit velocity of 0.3861. The allowed transfer time is
1.553. This transfer is performed in one burn and is shown in Figure 8a. It was
computed using the multiple-shooting method of BOUNDSCO. The switching function
for this transfer is shown in Figure 8b.
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Figure 8a:  One Burn Transfer Between Close Orbits: An Example of a Solution
with a Simple Optimal Control
85, =|0.-3861 a;= | 1.038 w= | /2 ar= | 1.069 -50°
T= 0.03 e~= | 0.000 t= | 1.553 er~ |0.02633 1.542
Table IV. Parameters of the Transfer Shown in Figure 8a

angle is linear in time. And, in addition, we find that the control direction is almost

coincident with the velocity direction.

18

Most interesting about this transfer is the simplicity of the control. Over this short
transfer between a circular orbit and a close target orbit, the optimal control of the thrust
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Figure 8b:  Switching Function for One Burn Transfer Shown in Figure 8a
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Figure 8: Plot of Thrust Direction, the Optimal Control, Alongside the Angle of
the Velocity Vector,

o To match this transfer analytically, a modified optimal control problem is
considered. The dynamics for this problem are again the equations of orbital motion,
however, this time the state is defined relative to the initial orbit. Assuming that the
distance from the initial orbit is small compared to the radius of the initial orbit, we
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ignore all terms to the order of (&r/p)2. This assumption results in the following

dynamics:
or = v (29a)
§i=Lep +3lXop), B 5 (29b)
m p
. T
m=-— (29¢)
8olyp

Here, &r=[x y]T and &v=[u v]T, e, is the thrust direction, T is the thrust, m is the mass,
is the gravitational constant, and p represents the initial orbit which satisfies identical
dynamics but without the thrust term. Now, assuming that the initial orbit is circular,
these can be rewritten as:

i=u (30a)
y=v (30b)
i= %ex + %[3(): cos(ar) + ysin(ax))cos(er) - x] (300)
b=e,+ %[3(;: cos(ar)+ysin{ax))cos(ar) - y] (30d)
s g;sp (30e)

Writing the Hamiltonian for this system and evaluating the Euler-Lagrange equations
results in the following differential equations involving the costates:

;{u =-A, (31a)
i, = -2, (31b)
Ay=-2, %(3 cos*(wr) - 1) -2, %BCos((ot)sin(a)t) (31c)
iy =-1, —:)—13-(3 cos(ot)sin(wt)) — lv;)‘—g—(3sin2(wt) - 1) (31d)

) L .
" oM A2 A2 (51¢)

We also learn that the control, e is

20



1 lu} (32)
er = ——————
T az+a? [lv
and the control T is bang-bang, governed by the switching function, Hr, as

_ ;Vu2+2'v2 _ A’m (33)
m 8ol

Hp

Hp >0, T=T,,,

(34)
Hp <0, T=0

Pleasantly, Eqns. (31) happen to be the equations for the costates on a coast arc
coinciding with the initial orbit. In fact, this result is not limited to the assumption of a
circular orbit. The coast arc costates have been solved by Lawden and other authors8:9,
It also can be shown that Eqns. (31) are, in fact, identical to Eqns. (30), without the thrust
terms, up to sign. Therefore, once we solve the system in Eqns. (31) we have the
homogeneous solution to the system in Equations (30). Now to solve the differential
Eqns (26), they must first be rewritten in a more useful form:

i, i, cos(ar) _ 2,7 [A,
=¥ |==31 3 t +1 35
M H [sfn(wr) [eoster) sintn] " [+12, G
where I=y/p3=w?. Now, define vectors ey(f) and eq?), as the radial and circumferential
directions associated with the initial orbit over time ¢. This can now be written as
- r
A =3leje, A\ —1I) (36)

where A=[4, A, ]T. Multiply Eqn. (36) by e,T and eg,T, respectively to obtain

e,Th = 3le,TA — le, T\ = 2le,TA = 200%, A (372)

- e,TA= 3Iea,TepepT?» —le,TA=—le,"A = -w?e, A (37b)

To complete the simplifications, it is necessary to obtain an expression for left-hand side
of Eqn. (36) in terms of ey and ey, . That expression is
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Using this expression, Egns. (37) become

Ap—204,-0*A, =204, (39a)
A +20h, - 0%1, =-04, (39b)

This can be represented with a matrix differential equation,

ALJTOo 0 1 074,
] 0O 0 O 1 1A
Ao ) ® (40)
Ay 30° 0 0 20| 4
ALl Lo 0 =20 0],
where A1= dMp/dt and A2= d).4/dt. The solution to this system is
A, 2 cos(wt) sin(ax) 0
A 3wt —2sin(ot) 2cos(wt) 1
“l=a + . (41)
A 0 —w sin(ot) wcos(awt) 0
Ay 30 —2wcos(wr) -2 sin(wr) 0

where a, b, ¢, and d are independent constants. The vector A can be interpreted as the
thrust direction in a reference frame fixed to the radius of the initial orbit, referred to here
as the initial orbit reference frame. From the solution above, Eqn. (41), we see that there
are four modes of the thrust direction. The mode associated with d is fixed with respect
to the initial orbit reference frame. The mode associated with a is not fixed to that frame
but is very simply described in it. The last two modes do not seem as well described in
this frame.

o To be sure, we would like to see that the approximate state dynamics given in
Eqgns (29) and (30) closely match those given in Eqns (3,4,5). To validate the
approximate dynamics, it was simplest to simulate both systems using the same control.
The most obvious choice for this control is the optimal control from the transfer in Fig.
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7a. Figure 9 shows the results of the simulation. In this figure, “Delta-" states refer to
the states from Fig. 7a with the initial orbit states subtracted, producing the desired plot
for or. The “X1,Y1,” etc. states refer to the states obtained by integrating Eqns. (30).
The results seen in this figure are very promising: there is almost exact agreement
between the two state histories. In fact, the worst error between the two at the end of the
transfer is only about 1.5%.

—o6— Delta-X —a— Delta-U —e— X1 —&— U1
—8—Delta-Y —— Delta-V —a— Y1 —%— V1

0.015

T T T T

oor —
3 vy

0.0057 /
0

-0.005 = b
0.2 0 02 04 06 038 1 1.2

Time

Figure 9: Validation Plot for the Dynamics in Equations (29) for the Transfer
shown in Figure 7a

IV. CONCLUSIONS
The development of the Direction Correction Method is proceeding rather well.
The ideas that it is based upon have been validated individually. At this point, the only

weak link is the prediction of the new switching points. Testing of the method will be
required in order to determine just how critical is the accuracy of that prediction.

23



The Patched Transfer Method is very promising. The dynamics resulting from
assumptions made closely matches the dynamics before the approximations. Also, the
simplicity of the resulting optimal control problem promises a state feedback guidance
law. The usefulness of these results will outweigh the loss in accuracy. However, much
more analysis must be performed to completely validate the linearized problem and its
solution. Specifically, the approximate optimal control solution must be compared to
exact solution; based on the agreement of the state, positive results are expected, but they
must be verified. '

V. REFERENCES

1] awden, D.F., Optimal Trajectories for Space Navigation, Butterworths, London, 1963.

2Brusch, R.G. and Vincent, T.L., “Low-Thrust, Minimum-Fuel, Orbital Transfers,” Astronautica Acta, Vol.
16, pp 65-74.

3Redding, D.C., “Optimal Low-Thrust Transfers to Geosynchronous Orbit,” NASA Lewis SUDAAR 539,
Cleveland, Ohio 44135, Sept. 1983.

40berle, H. J., BOUNDSCO - Hinweise zur Benutzung des Mehrzielverfahrens fiir die numerische Losung
von Randwerproblemen mit Schaltbedingungen, Hamburger Beitriige zur Angewandten Mathematik,
Berichte 6, 1987,

5Chuang, C.-H., Goodson, T.G., and Hanson, J. “Theory and Computation of Optimal Low- And Medium-
Thrust Orbit Transfers,” AIAA Guidance, Navigation, and Control Conference Paper, September 1992.

6Zondervan, K.P., Lincoln, LJ., and Caughey, T.K., “Optimal Low-Thrust, Three-Burn Orbit Transfers
with Large Plane Changes,” Journal of the Astronautical Sciences, Vol. 32, No. 3, 1984, pp. 407427

7Marec, J.P., Optimal Space Trajectories, Elsevier Scientific Publishing, New York, 1979.

8Glandorf, DR., “Lagrange Multipliers and the State Transition Matrix for Coasting Arcs,” AIAA Journal,
Vol. 7, No. 2, Feb. 1969, pp 363-365.

9Eckenwiler, M. W., “Closed-Form Lagrangian Multipliers for Coast Periods of Optimum Trajectories,”
AIAA Journal, Vol. 3, No. 6, June 1965, pp 1149-1151.

24



o]
.

SEMI-ANNUAL STATUS REPORT

Submitted to: NASA Marshall Space Flight Center

Grant Title: Theory and Computation of Optimal Low- and Medium-
Thrust Transfers

Grant Number: NAGS8-921

Principal Investigator

/ Project Director: Dr. C.-H. Chuang

School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0150

Phone: (404) 894-3075

Fax: (404) 894-2760

E-mail: ch.chuang@aerospace.gatech.edu

Research Assistant:  Troy Goodson
School of Aerospace Engineering
Georgia Institute of Technology

Period Covered: January 7, 199% to July 6, 1994

Date of Submission:  July 6, 1994



<zERT

ABSTRACT ....
INTRODUCTION
DIRECTION CORRECTION METHOD PROGRESS
PATCHED TRANSFER METHOD PROGRESS
CONCLUSIONS

REFERENCES

TABLE OF CONTENTS

...............................................................................................................
........................................................................................................
..............................................
.......................................................
............................................................................................................

................................................................................................................



Progress in Computing Fuel-Optimal Orbit Transfers
in Large Numbers of Burns

C.-H. Chuang and Troy D. Goodson
Georgia Institute of Technology, Atlanta, Georgia 30332

ABSTRACT

This report describes the current state of development of methods for calculating
optimal orbital transfers with large numbers of burns. Reported on first is the homotopy-
motivated and so-called Direction Correction method. So far, this method has been
partially tested with one solver, the final step has yet to be implemented. Second is the
Patched Transfer method. This method is rooted in some simplifying approximations
made on the original optimal control problem. The transfer is broken up into single-burn
segments, each single-burn solved as a predictor step and the whole problem then solved
with a corrector step.

I. INTRODUCTION

Electric propulsion, with its high specific impulse, promises very low fuel
consumption but it produces less thrust than its counterparts. If one wants to use electric
propulsion, one needs to be prepared to tolerate the long transfer times that will likely be
incurred. The greater time spent thrusting must be spent wisely if fuel savings are to be
realized. Furthermore, the effects of Earth’s oblateness and atmospheric drag become
more significant on the orbits of long transfer times.

To spend the thrusting time wisely, form an optimal control problem to maximize the
mass at the end of the transfer. This, therefore, is the cost function

J=m(tys) D
subject to the boundary conditions

¥(r(0).v(0).r{t;)v(t/)) =0 @)

and the state dynamics
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where e7 is the thrust direction, a unit vector, and the thrust magnitude, 7, is limited
between zero and some maximum value Tpyqy, M is the gravitational constant, g, is the
gravitational acceleration at sea-level, and Igp is the specific impulse of the motor.
Sometimes gol;p is referred to as the exit velocity of the motor.

This results in the well-known bang-bang optimal control problem, discussed in detail
by Lawden!. However, where the boundary conditions are often designed for the
rendezvous problem, herein the boundary conditions are designed such that the initial and
final points lie on the desired orbits without specifying the position, or true anomaly, on
either orbit.

As found using the Euler-Lagrange necessary conditions, the optimal thrust
direction for this problem is

¥

ér = m (6)

where Ay is found from the following differential equations

. Ay ATr)r

7»,.=#l:';§"3( r5) } 7
7-"v =—Ar (8)
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The optimal thrust magnitude for this problem is a bang-bang solution. Polarity for the
on-off control is determined by applying the following switching law, Egn. (10), to the
switching function, Eqn. (11).

HS >0, T-—"—me

10
Hs<0, T=0 ( )



HS=M— A (11)
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Solutions of this problem with long transfer times and, therefore, large numbers of
burns are desired. There are many methods that have been successfully used to compute
n-burn transfers, where n is anywhere from 1 to about 6. However, fewer methods
successfully compute transfers for larger values of n. Methods for the former attempt to
solve the optimal control problem either directly, indirectly, or as a hybrid of the two. In
this report, assume that a mostly indirect method, such as BOUNDSCO?2 or MBCM3 or
that of Brusch#, et. al, or of Redding? is being used.

One idea to obtain interesting solutions is to first compute some n-burn transfer,
where n may be less than the number of burns desired. Using this as a starting point,
increase the allowed transfer time and compute the new transfer. It is expected that the
new transfer is relatively similar to the starting transfer. New transfers are then
successfully produced this way until the desired transfer is reached. This homotopy
method seems to work well as long as the number of burns performed in the transfer does
not need to increase so that optimality is satisfied. For example, in many cases
BOUNDSCO is unable to find a three burn solution when the two burn solution to an
almost identical problem is given as the initial guess. Introduced in this report, the

Direction Correction Method is an attempt to alleviate this difficulty. Its purpose is to
find an n+1 bumn solution to an orbit transfer problem with allowed transfer time te+diy

using an n burn solution to the same problem but with allowed transfer time .

Another idea is to patch together a set of n-burn transfers, where »n is a small integer,
perhaps unity, to produce an m-burn transfer, where m is the desired number of burns.
This method requires that the sequence of transfer orbits be either guessed and iterated
upon for optimality, or simply prespecified. From the theory of optimal control, this
patched solution will be a suboptimal solution. This idea will be referred to herein as the
Patched Transfer method.

More than likely, once an optimal transfer has been computed, interest will shift to
developing a guidance law. Possible analytical solutions found from consideration of the
patched transfer method for the one burn solution of two very close orbits may give a
simple guidance law.



II. DIRECTION CORRECTION METHOD PROGRESS

The first idea, referred to herein as the Direction Correction method, is based on
the common homotopy strategy. The Direction Correction is designed to aid a homotopy
strategy in calculating successive optimal transfers. In particular, the difficulty arises
when the desired transfer has one more burn arc than the current computed transfer.

The method is attractive because it only requires the solution of a relatively small
set of nonlinear equations. These equations are of the following form

%S— D(0,2, +dt,)Oz(t, +dz,)=0 (12a)
z(0)
oD oD .
—| D1, +dt,,t (02t +dt,)) =~— #lt/)dt (12b)
e o e ) =g

For reasons given in a previous report and a paper submitted to the 1994 AIAA
Guidance, Navigation, and Control conference®, both equations are evaluated at time 1, +
dt,. The first equation propagates a guess made for this instant in time back to the initial
time, using it to check a condition on the boundary conditions at the initial time, denoted
C(z) where z is the state vector. The second equation is a similar situation, except that it
is applied to the boundary conditions at the final time, denoted D(z). The function f(z)
takes into account the fact that the number of burns in the desired transfer, z(r) + dz(t), is
one greater than in the computed transfer, z(?).

The solution information can easily be put into a form useful for a variety of
numerical methods. For example, the change 8z(0) can be propagated through the
transition matrix to calculate the changes at each node point for a multiple point shooting
method. This method is still under development but shows promise as relatively simple
way of getting to the n+1 burn solution.

Using the IMSL routine DNEQBF to solve Eqns. (12a-b), the method has been used
to predict the correct change, or ‘direction,’ for an example. The algorithm starts with
information from a given transfer. Then, it iteratively improves upon an initial guess,
using DNEQBF. The method has produced an approximate solution to Eqns. (12a-b).
Comparing this solution to the correct answer, errors are only about 4%. The final step is
to add the solution to the computed transfer and attempt to converge the desired transfer
with a solver such as BOUNDSCO. Although this has not been implemented yet, success
is expected.



III. PATCHED TRANSFER METHOD PROGRESS

The second method was inspired in part by the work of others. Zondervan, et. al
made some simple guidance observations’, specifically that in some regions the primer
vector is relatively constant in a velocity-fixed reference frame. This implies that a
simple control law is available in some cases. Marec presents a solution to the orbit
correction problem8. This motivated a notion that solutions to linearized and/or
approximated problems were available. In this spirit a solution was obtained for the
optimal transfer between two close orbits. This solution has been presented in [6].

Most interesting about this transfer was the simplicity of the control. Over this
short transfer between a circular orbit and a close target orbit, the optimal control of the
thrust angle was almost linear in time. And, in addition, the control direction was almost
coincident with the velocity direction.

To review, a modified optimal control problem is considered. The dynamics for this
problem are again the equations of orbital motion; however, this time the state is defined
relative to the initial orbit. Assume that the distance from a reference orbit is small
compared to the radius of the reference orbit and ignore all terms to the order of (&/p)2.
This assumption results in the following dynamics:

8t = dv (13a)
8\"=-T—eT+3E(-8r:—p)p——u?5r (13b)
m p p
P (13c)
&1,

Here, ér and dv represent displacement from an osculating orbit or the initial orbit, ey is

the thrust direction, T is the thrust, m is the mass, g is the gravitational constant, and p

represents the initial orbit which satisfies identical dynamics but without the thrust term.
Writing the Hamiltonian for this, the approximated system, gives

H=2\"dv+ KVT[I—CT+3H-(§:E)p—E;5rJ—XM T (14)

m p’ P g1,

Evaluating the Euler-Lagrange equations results in the following differential equations
involving the costates:
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The control, e is
_A
er = ﬁ—l (16)
and the control T is bang-bang, governed by the switching function, Hr, as
A
HT=l ”|—- A an
m gl
Hr >0, T=T,
HT _ max (18)
<0, T=0

Pleasantly, Eqns. (15) happen to be the differential equations for the costates on a
coast arc coinciding with the initial orbit or the osculating orbit. The coast arc costates
have been solved by Lawden and other authors?:10. However, it is Glandorf’s
formulation, actually based on work by Pines!!, that is currently being considered. His
formulation is in the following form:

[—;‘7:,((?)}P(’)[P("’)r[}{,((?o))} (19)

Considering the form of the state dynamics, their solution can then be written as

0
| [P(2)]” 20)
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An analytical expression for the integral has been rather elusive. Currently, work is
focused on approximating the integral. For example, if the magnitude of the Lagrange
multiplier is approximated as

kvd)

where the function g(¢) represents a “curve fit” of sorts, then Eq.(20) becomes

I, (7)| = g(7) 1)

] x'v (to) ] (22)
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Now, the integral only has to be evaluated once for each choice of burn, saving a
considerable about of computation time. Finally, note that burns are not restricted in
length, using osculating orbits (much as in Encke’s method) the burn lengths are actually
rather arbitrary. The only consideration for burn length, then, is the error accumulated by
approximated functions during integration.

To formulate a method for computing the transfer, the above discussion hints to a
burn-by-burn approach. Burns would be guessed by a user via a set of transfer orbits and
burn times. Each burn would then be approached as a single-burn rendezvous problem.
This produces a sub-optimal transfer and can be thought of as a predictor step. The
corrector step would then consist of iterations to make it an optimal transfer; either a
direct optimization of the transfer orbit elements and burn times or an indirect
optimization by multiple-shooting.

IV. CONCLUSIONS

The development of the Direction Correction method is proceeding rather well.
At the time of this report we are not prepared to say whether the method will be
successful. The ideas that it is based upon have been validated individually. It has also
produced a fair approximation to the solution of a known problem. Further testing of the
method is required in order to determine just how robust it is; but at this point it seems
pretty clear that method will work.

The Patched Transfer Method is very promising. Glandorf’s formulation for the
Lagrange multipliers been checked numerically and a suitable approximation for the



Lagrange multiplier magnitude is forthcoming. The next steps are to refine the predictor-
corrector idea, code the method, and test it.
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Multiple Burn Fuel-Optimal Orbit Transfers:
Numerical Trajectory Computation and
Neighboring Optimal Feedback Guidance

C.-H. Chuang, Troy D. Goodson, and Laura A. Ledsinger
School of Aerospace Engineering '
Georgia Institute of Technology, Atlanta, Georgia 30332

ABSTRACT

This report describes current work in the numerical computation of multiple bum,
fuel-optimal orbit transfers and presents an analysis of the second variation for extremal
multiple bumn orbital transfers as well as a discussion of a guidance scheme which may be
implemented for such transfers. The discussion of numerical computation focuses on the
use of multivariate interpolation to aid the computation in the numerical optimization.
The second variation analysis includes the development of the conditions for the
examination of both fixed and free final time transfers. Evaluations for fixed final time
are presented for extremal one, two, and three bum solutions of the first variation. The
free final time problem is considered for an extremal two burn soluﬁoni. In addition,
corresponding changes of the second variation formulation over thrust arcs and coast arcs
are included. The guidance scheme discussed is an implicit scheme which implements a
neighboring optimal feedback guidance strategy to calculate both thrust direction and

thrust on-off times.

L. INTRODUCTION

The necessary conditions which result from analyzing the first variation of a cost
functional are widely used. These are commonly referred to as the Euler-Lagrange
equations. Many problems require additional considerations, for example, the problem
considered herein, fuel-optimal orbit transfer, requires consideration of Pontryagin's

Maximum Principle.



Many researchers have used the first variation to compute extremal solutions to
the fuel-optimal orbit transfer problem. Some have used them to apply twd-point
boundary value problem solvers to optimization problems, forming indirect methods.123
Others have used a partial set of the conditions to form hybrid indirect/direct methods
where certain highly sensitive parameters are optimized directly.4-5 However, to the
knowledge of the authors, few, if any, have made use of the conditions related to the
second variation of the cost functional. These provide sufficient conditions which, when
met, declare an extremal solution as a local, weak optimal solution.

Once the second variation of the cost functional is verified so that it is known
whether the sufficient conditions are met, the information obtained can then be used to
implement a guidance scheme. Guidance is defined to be the determir.ation of a way to
follow an optimal trajectory when presented with obstacles such as environmental
disturbances or uncertainties in navigation data. Two different types of guidance
schemes exist: implicit and explicit. Implicit guidance systems are characterized by the
fact that the vehicle’s motion must be precomputed on the ground and then compared to
the actual motion. The equations which need to be solved are based upon the difference
between these measured and precomputed values. The solutions to these equations are
used in the vehicle’s steering and velocity control. Explicit guidance systems are
generalized by the fact that the vehicle’s equations of motion are modeled and solved for
by on-board computers during its motion. The solutions for the equations are solved
continuously and are used to determine the difference between the vehicle’s current
motion and its destination. Commands are then generated to alleviate the anticipated
error.

Existing guidance schemes have been presented in various papers. An iterative
guidance scheme which is implemented using a linear tangent steering law is presented
by Smith.® This guidance scheme has been used for the Saturn V and is in currently used
by the Space Shuttle, the Atlas-Centaur, and the Titan-Centaur. In a paper by Lu7> a

general nonlinear guidance law is developed using two different strategies. One strategy



uses optimal control theory to generate a new optimal trajectory onboard from the start,
while the other uses flight-path-restoring-guidance to bring the trajectory back to the
nominal. A guidance scheme that is developed using inverse methods for unthrusted, lift-
modulated vehicles along an optimal space curve is presented by Hougil.8 Linearized
guidance laws applicable to many different types of space missions are presented by
Tempelman.® These guidance laws are based on fixed and free final time arrivals.
Naidu!0 presents a guidance scheme applicable to aeroassisted orbital transfers. This
scheme is developed by implementing neighboring optimal guidance and linear quadratic
regulator theory. Some interesting techniques for making the neighboring optimal
guidance converge about the nominal path are introduced in a paper by Powers.1!

The guidance scheme proposed in this report is an implicit one which implements
neighboring optimal feedback guidance. An implicit guidance system was chosen due to
the fact that that type of guidance system handles disturbances well.1? The neighboring
optimal feedback guidance was chosen because it inherently uses the nominal solutions.
Also, it has the advantage of being a feedback system, as a opposed to open-loop
guidance.

In this scheme, the initial orbit exit point is assumed to be perturbed from the
nominal point but the boundary condition, specifying the final orbit, is assumed
unchanged. The goal is to use the controller to bring the trajectory back to the nominal

path at some point by using minimal fuel.

II. FIRST VARIATION CONSIDERATIONS

Within this report results are restricted to the planar case, no plane changes are
considered at this stage of development. The solutions examined in this report satisfy the
conditions related to the first variation. In the next section, the conditions sufficient for
declaring a minimizing solution will be checked for these transfers. Some of these

transfers are multi-bumn transfers and in order to simplify initial analysis new nominal



solutions have been constructed from these which are single-bum transfers, i.e. the thrust
is kept on for all time between the initial orbit exit point and the final orbit entry point.
Only that part of the original trajectory which is contained in the last burn is taken
to constitute the new extremal solution. This new extremal solution has a fixed initial
point and fixed transfer time but the final point is only constrained in that it must lie on

the final orbit.

II.1. CONDITIONS FROM THE FIRST VARIATION

The first order conditions for this problem have been stated many times12 and will
be given here only briefly. The optimization problem consists of a cost functional (Eq.
[1]), state dynamics (Eqs. [2-4]), fixed initial point conditions (Eq. [5]), and boﬁndary

conditions on the terminal point (Eq. [6]); each of these is expressed below.

J=-m(t,) (1)
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where r=[x y]7 is the radius vector, v=[u v]T is its time derivative, er is the thrust

direction, a unit vector, T is thrust magnitude (limited between zero and some maximum
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value Tpuay), i is the gravitational constant, g, is the gravitational acceleration at sea-
level, I is the specific impulse of the motor. The quantity go/gp is often referred to as

the exit velocity of the motor. The Euler Lagrange conditions are then

_-A
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where A={A, Ay]T and Ay={A, A,]T. The natural boundary conditions are

A (t)= vav+ vi(v2 = pfr + px? [P) + vy(pxy [ — ) an
A ()= —vau+ vi(uxy/r —uv) + (o - pfr+ uy? 7). (12)
A, (z ,) =-V;y - V,yv+ vs(2yu- xv)L_', (13)
A.(t;)= vsx+ v,(2xv—uy) - vgxul,,, : 14
Aa(t;)=-1 (15)

The conditions resulting from applying Pontryagin's Minimum Principle are



H,<0, T=T,,

H;>0, T=0 (16)
where
a, = M +i-] an
m  gl, ;

Note that when the derivatives of Hg are zero, singular arc solutions may exist. This has
been checked numerically.12

Finally, the free final time problem will also be considered here. For these
extremal solutions the final, or transfer, time is selected such that the transversality
condition is satisfied, i.e. the Hamiltonian is zero at =f.

H(t)=2"t+ }‘-T‘.’L., =0 (18)

In a previous paper!2 this problem was given as a maximization problem. To conform to
the convention used for the second variation 13, it is now stated as a minimization
problem. If an extremal solution to the maximization problem is given as state time
history x(t), Lagrange-multiplier time history A(t), and Lagrange multipliers v, associated
with boundary conditions, then the extremal solution of the above minimization problem
is x(t), (-1)*A(t), and (-1)*v.

Additionally, it makes more sense in the guidance problem to consider the control

as the angle 6, rather than individual components of a unit vector. This simplifies

analysis because the control is now a scalar. Equation [7] must now be restated as

A
tan(6) = -—-i-’- (19)



IL2. EXTREMAL SOLUTIONS
All quantities associated with the solutions presented here have been

nondimensionalized so that g=1 and will be presented here in that form. The relations

used to nondimensionalize are given below.

f=t V= (20-21)
& ufr
= = (22:23)
m* Ry
~ * A
L L (g‘ol )=g,1,ﬂ/r*/y (24-25)

u/(*)
where r* andm* are indicated in the tables for each case of the extremal solutions.

Each of the transfers given below have both the initial orbit exit point and final
orbit entry points free. However, for the guidance problem it makes more physical sense
to consider the initial orbit exit point as fixed and equal to the optimal choice, for it
cannot be updated once the transfer has begun.

The last burn of any multi-burn transfer below may also be taken as a complete
transfer unto itself. The initial point can be chosen as the one at the very first instant (or
shortly thereafter) of thrusting for the last burn. The final orbit exit point must remain
unchanged. Obviously, for these choices the natural boundary conditions for final orbit
entry point are still satisfied. This new transfer can then be considered as a new extremal
solution, though to an orbit transfer problem with a different initial orbit.

Figure 1 shows a one bum ascent extremal solution. This trajectory is a transfer
leaving an orbit with a semimajor axis a=1.069, eccentricity =0.02633, and argument of
perigee w=-50°. The transfer ends at a nearby orbit with a=1.038 and e=0. Other
pertinent transfer data sre given in Table I. This transfer was produced by shortening the

time of a two-buin transfer until the coast arc between them vanished. This transfer is



therefore both a minimum mass and minimum time extremal solution because mass and
time have an affine relationship in the one-burn case.

Figure 2 displays a two-burn transfer, in fact a descending transfer, from an orbit
with elements a=3.847, ¢=0.02378 to a final orbit with elements @=1.5, e$9.3333. The
apses of the terminal orbits are aligned and lie on the X' axis of the figure. | The initial
mass is 1.608 and the final mass is 1.1547. Other pertinent transfer data are given in
Table I1. This transfer has the transversality condition converged, therefore it is a
candidate fuel-optimal free final time solution. By the same right, it can also be

considered a candidate optimal solution for the fixed final time problem.

0.4 ] P % PR S'Y J( PP t SN i N % PR _} P
. { Final Orbit < i
0.2 .._ ................. ........... —
) Initial Orbit ~
P S — S S \
B ; : H r
0.2 _:_. ............................................................
> 0.4 e .......... S SRR L— A Jreererrenaces -
06 __ ................................................................................. 4
0.8 i e R }_
1,2 ; li """" 1 [ 1‘
0.2 0 02 04 06 08 1 1.2
X
Figure 1: One-Burn Extremal with Fixed Final Time.



8/ =10.3861 |a= |1.038 | &= |nfA ar= | 1.069 o= | -50°
T= 0.03 g= [0.000 |4 [1.553 e= |0.02633 | m~|1.542
r¥%= [ 6378km |m%= |14 Mg

Table 1. Parameters of the Transfer Shown in Figure 1.
4 g P R B -
3T /' nitial Orbit
b S
3 '/ COGSI AI'C AT
[ ! £ '/'/ i,
I \ / 7" Final Orbit
d [/
: ®
Y 0% \ \ K
{ et A /
- ,’ ‘.\\__.__../"/ SN
\~ . Thrust Arc
) ‘
3
[ - .
4 R

o

Figure 2: Two-Burn Extremal Orbit Transfer Solution with Free Final Time.

8 p=11313 a=_|3847 |a=|C a= |15 a= | 0°
T= 0.03 g=_|0.02378 |t= |19.05 e= (03333  |m~|1.608
ri= 6878 km | m¥= | 200 kg

Table I Parameters of Transfer in Figure 2.

A three-bum transfer is shown in Figere 7. Since this transfer is between orbits of

increasing semimajor axis, it will be referred to +  an ascending transfer. The initial orbit



has elements a=2.239, ¢=(0.1160, and w=-85.94°. The elements of the final orbit are =7,

e=0.7332, and w=114.6°. Other pertinent transfer data are given in Table IIL

Figure 3: Three-Burn Extremal Orbit Transfer with Fixed Final Time .

8l =103898 |ag= [2239 |m=|-8594° |[a= |7.000 o= | 114.6°
T= 001386 |e= |0.1160 |4 |85.00 e= [0.7332 ms~=|0.6056
r%= | 6378km |m%= |14 Mg

Table IIL. Parameters of the transfer shown in Figure 3.
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III. CHECKING THE SECOND VARIATION

Extensive derivation of the conditions for the second variation of the cost
functional has already been detailed in Ref [13]. Equations given in this< section are the
results of applying this work to our problem. 7

Considering the second variation of the augmented cost functional, J, a new
optimal control problem can be stated. In this new problem, the state is dx, the control

éu, and the Lagrange-multipliers are 44 and dv.. Thus the new cost function is

87 = %[&"(«pn +(V yf,)x)sx]‘_,! +-;—Z[5x7 &u" ][Z: Z:][gﬂdt 26)
subject to

8k = f,8x+ £, 6u @

8x(to)=8%o (28)

where x=[rT vI' m]T and u=0.

In general, neighboring optimal feedback guidance allows the designer to consider
changes in final boundary conditions. We consider no such changeé, assuming that the
destination orbit was accurately planned well in advance. Formulation will be made
below for both the fixed and free final time cases.

Evaluating the terms in Eq. [26-28], for orbital transfer, the partial derivatives for

the dynamics and for the Hamiltonian are:

[ 0 0 1 0 0 )
0 , 0 01 0
B 3ux 3uxy T
[ = -( r3) S - . 00 - cos(6) 29
3uxy _( “ ) 3y’ T
r r r’ 00 m sin(6)
0 0 00 0 |

11



0
TO

f = ——sin(0)
0 m

(30)
lcos(e)
m
L. 0 -
PFECIRERT LN EEEREC R
Ay +A.x) 15(Ar)xy 334,y +4.x)  15(ATr)y

H, = "#[ 3 A —H| s +— 00 O 31)

0 0 00 0

0 0 600 0

0 0 00 21,|1,|
L m Rk
T
Hoo =—JA.| 32
Ho =0 (33)
The fixed and free final time problems have the following equations in common:
&x = A(t)dx — B(t)6A (34)
Sk =—C(1)8x — AT (t)5A (35)
where

At)=f ~f H_H, 36)
B(t)=f,H,_f] 37)
C(t) =H, - HmH;:Hu (38

12



For a muitiple-bumn solution, one finds that Hgg becomes zero during coast arcs.
This makes it impossible to solve for the change in control, §6. However, since the thrust

is off during a coast arc, it physically makes no difference what choice is made for the

control. Therefore, 86 may be chosen as zero and simpler expressions for A, B(1), and

C(t) can be written as

A()=F, (39)
B(t)=0 (40)
C(t)=H, 1)

Using the sweepback method for nonlinear terminal constraints, as is the case for this

development, the form for SA and Sy are assumed as
SA(t) = P(t)8x(t) + S(t)dv ‘ 42
Sy =8 (t)ox(t) + V(t)dv (43)
which allows the solution for dv to be written as
dv=V7(t, )5~ S (t,)x(t, )] (44)

As mentioned above, dy=0 will be considered here. The boundary condition equations

are given by:
P(t;)= [¢,, +(vTy, ), ]m‘ (48)

13



S(t,)= [WI ]m‘ (49)

V(t)=0 h (50)

where in the development for the orbital transfer these are:

a bde O
b c fgo
P(t,)=|d f h i O (51)
e gi jo
0000 0
where
t.) 3x%(t,) 2x(t ) 3x3e Wit
a= V’#[xl({:)_ XR(st) + ’;{(31')]_F Vd‘[ylg;)— X (1;2)’( f):l (52a)
) 3x*(t,)y(t ) 3x(t,)y(t
b= Vzul:yl({’t)— X (I;ZY( r):! V"l[xl(zg)_ x( 111)5' ( r)] (52b)
¥ 36 2], [x(t) 3y 520
c v,,u[ ¥ ot [PV 3
(52d)
d=-wv,v(t,)
e=v, - vyu(t)+2v,v(t) (52¢)
f=-v,— vv(t;) +2vyu(t,) (52
g=-vu(t,) (52g)
h =2V3}’(tf) (52h)
i=-vsx(t,) - v,y(t) (52i)
i=2vx(t,) (52i)

14



W ()Ll )y
-u(t,) ﬂt—‘—l){y,(i)—u(t,)v(nf) m,y%%
st)=| ) FoM)  25(eult) (e
M) BML-uE) el
0 0 0

(53)

Following from the assumptions expressed as Eqgs. [46-47], the following nonlinear

equations for P, S, and V must be integrated backwards. The results will be used to

check the sufficient conditions governing a minimizing solution.
P=-PA-A"P+PBP-C
S=-(AT -PB)S
V=S"BS
To satisfy the sufficient conditions, Heg, P, S, and V must be such that
convexity condition: Hgy(t) > O fort, <t<t,
normality condition: V~'(t) exists fort, St < t,

conjugate point condition: P(t)— S(t)V~(t)ST(t) finite fort, <t <t

The convexity condition is satisfied for any transfer satisfying the choice of

control specified by the Euler-Lagrange equations. This can be seen by noting that

64

(55)

(56)

&)

(58)

(59

Eq.[32] is positive definite, irrespective of the time history for the Lagrange multipliers.

15



III.1. NUMERICAL RESULTS FOR FIXED FINAL TIME

The results discussed in this section were obtained for nonﬁnal‘solutions with
fixed transfer time. The eigenvalues of the V(t) matrix are plotted in Figure 4 for the 3-
burn extremal solution. Note that V(t) is not negative definite, one of the eigenvalues is
zero for all time and the other two eigenvalues are positive. Therefore, the normality
condition is violated. Furthermore, the conjugate point condition cannot be checked. It
must be concluded that the 3-burn extremal does not satisfy the sufficient conditions and
cannot be considered an optimal solution for fixed final time. Figure S shows the
eigenvalues of V(t) over the one-burn extremal constructed from this solution in the

manner described earlier. The same conclusions must be made for this transfer.

—— A Y

1 . e 2
‘ Eigenvalues of V A,
3 - ‘n\ 0.04
2.} i

4

i
T

Ll
L )

$ IR B T O S W O Y 334
™ T Tt L

0 30 40 50 60 70
time (nondimensional)

8

Figure 4: Plot of Eigenvalues of V(t) for Three Burn Extremal.
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Eigenvalues of V —o—A,

5_F %)\\ 0.00025
E N A
3 \\ 0.0002
1.5+ N R
— N >,
< o F N \\Q 0.00015_:
- 0.0001
0.5-F \ A\
a: AN N 510°
s \ﬁ\@_—\a
0 i : 0
-0.5:::::::::{4::: -+ -5 107

80 81 82 83 84 85 86
time (nondimensional)

Figure 5: Plot of Eigenvalues of V(t) for Last Burn of Three-Burn Extremal.

The eigenvalues of V(t) for the single-burn transfer are shown in Figure 6. This
plot is again made for the two-burn extremal in Figure 7 and a one-burn constructed from
it in Figure 8. These figures all show similar results, namely that V(t) is not negative
definite, but positive semidefinite. The situation has been repeated, namely that the
normality condition has been violated and the conjugate point condition cannot be
checked. Therefore, none of the extremal solutions with fixed final time given in this

report satisfy the sufficient conditions for a minimizing solution.

17
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Figure 6: Plot of Eigenvalues for One-Burn Extremal.
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Figure 7: Plot of Eigenvalues of V(t) for Two-Burn Extremal.
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Figure 8: Plot of Eigenvalues of V(t) for Last Burn of Two-Burn Extremal.

IN.2. NUMERICAL RESULTS FOR FREE FINAL TIME
When the final time is unspecified, a new condition, the transversality condition,

must be satisfied by the nominal solution. This condition is expressed in Eq. [60a)

do
Q(x,u, V")Ll, = (—&? + L)m, =0 (602)
where @ = ¢(x,t) + viy(x,1) (60b)
@ _0 . (60c)
dt ot Jx

This slightly complicates the process of checking the sufficient conditions. The
sweepback method can be used with some additions. Three differential equations and

thus three boundary conditions must be added to those for P, S, and V.

T
@ =—(AT-PB)m, m(t, )= (%J (61)

ty
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n=S"Bm, n(t,)=(g-“-’—)

. v (dQ
a=m'Bm at,) at

These additions are used to form P, S, and V matrices as follows:

ﬁ=P_mm
(44

T
§=S_mn
o

T
-‘—/,___v__nn
o

(62)

63)

4

(65)

(66)

The equations for dv and 3A change by substituting P, S, and V for P, S, and V

respectively, giving
dv=V7(t,) 5y -5 (t,)8x(t,)]

SA(t) = P()x(t) + S(t)dv

67

(68)

Note again, however that Sy has been assumed zero. Now, the sufficient conditions

based on the second variation with free final time are:

convexity condition: Hg,(t) > 0 fort, St<t,

_ . V7(t)exists fort, <t<t,
normality condition: ]
o (t) exists fort, St<t,

conjugate point condition: P(t)—S(t)V'(t)ST(t) finite fort, <t <t,

20

(69)

(70a)
(71b)

(72)



The eigenvalues of V are plotted in Figure 9. Figures 10-12 plot the elements of
the conjugate point condition matrix. Figure 13 is a plot of a(t). Figure 9 shows that V
is positive definite in the required interval. Figure 13 shows that oft) is negative definite
in the required interval. Since the normality condition requires that the inverse of V and
oft) exists in the interval, this solution is normal. Figures 10-12 show that the conjugate
point condition is satisfied. The elements are bounded in the required interval and grow
asymptotically at the final time. Therefore, this solution satisfies the sufficient conditions

for minimizing the cost functional with free transfer time.
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Figure 9 Plot of Eigenvalues of V (t) for Two Burn Extremal.
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Plot of P-SV''§" Elements
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Figure 10:  Plot of Elements of Conjugate Point Condition Matrix for Two Burn

Extremal.
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Figure 11:  Plot of Elements of Conjugate Point Condition Matrix for Two Burn

Extremal.
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Figure 12:

Figure 13:
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Numerical results were also obtained for a one burn case using the same free final
time solution. Figs. 14 & 15 show that the normality condition is indeed met in that,

respectively, a(z) exists and V-1 exists

, Plot of oft)
1.4 10— I

1.3 107

1.2 107"

1.4 1074
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1107+

9 102 _._ .................
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12 13 14 15 16 17 18 18
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Figure 14:  Plot of oft) for One Burn Extremal.
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Figure 15:  Plot of Eigenvalues of V for One Burn Extremal.
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As seen above in Figs. 10-12, the conjugate point condition is met for the two
burn case in that the elements of the matrix required for that condition are finite; thus the

conditions can be met similarly for the one burn case for the same solution.

IV. NEIGHBORING OPTIMAL FEEDBACK GUIDANCE

Conveniently, construction of a neighboring optimal feedback guidance law uses
the same information as that required to check the second variation of the cost functional.
As a result, much of the derivation required of guidance law has been stated already. The
remaining discussion will describe how to form the feedback control law and adjust the
characteristics of the bang-bang control in a feedback law.

The control, 86, for the fixed final time problem can be found using

86(t) = ~Hoy [ (F1P)8x + £1Sav]
=—H[fI(P-SV~'S)|x

(73)

Note that this continuous feedback law has been constructed by estimating dv at each
instant of time. The feedback law depends on P, S, and V as functions of time. A
particular advantage of the sweepback method is the solution of P(td), S(tp), and V(ig),
allowing the guidance law to store these values and propagate them forward to the current
time to calculate the current feedback gain. Propagation of the feedback gain may be by
integration or more practically by interpolation between stored values. Use of this control
should keep the trajectory on a neighboring optimal solution and deliver the spacecraft to
the required orbit in the specified transfer time.

If the transfer time is not fixed, and was chosen optimally for the nominal
trajectory. Then the formulation for free final time as stated earlier can be used to obtain

the feedback guidance law
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86(t) = —Hy[(FTP)ox + f1Sav] 74

= —Ho;[f1(-SV~'87)]ox

and the change in the final time, dty, is:

T T )
dt, = {[%-%V-‘S‘T J]&x (75)

Evaluating diy determines when the thrust will be turned off to complete the transfer.

The block diagram for the feedback controller needed for neighboring optimal

feedback guidance is shown in Figure 16.

Nominal
control —N‘;)-—-
ui) +

Nom inal
x(1) storage u(t)

x(t)

+>é) XY Natiplicr

Observable -
Sersors quantiies Physical
and sysem M
estimaor x =f(x,ult

Feedback Controller

Figure 16: Diagram of Neighboring Optimal
Implementation. 13
In Figure 16 A1(t) is the feedback gain for the 86 equation.

To determine when the new switching times should be, a variation of the

switching function must be taken

dH, =H, dx +H,,dA +H,,d0 =0 (76)
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Therefore, the equation to find the change in the switching time is

1 T . T
4 o Hy, 50 M50 9[AT8x - 6{1)/ar -
© Hpx+Hpd+Hp8 o 9(-ATk-x"A)/or
_ATox-%"54
-2x74

In order to implement changes in the switching times it will be necessary to predict future
errors in the state. The state transition matrix should be sufficient in this matter. Such
predictions will provide the foresight to make switching times earlier or later when

necessary.

V. SIMULATION RESULTS FOR THE FREE FINAL TIME SOLUTION USING THE ONE BURN
CASE

The controller was implemented by simulating the one burn case for the free final
time solution. The simulation corresponds to a forward integration of the states, costates,
and the assumed variables, P, S, V, m, n, and o from the initial time to the final time.

A comparison of the nominal and actual trajectories is shown in Fig. 17. (The
actual trajectory being that generated from the simulation results.) Fig. 18 shows a plot
of the actual and approximated errors in the trajectories when each state is perturbed from
a value of 104 (actual refers to the difference between the nominal and actual trajectories
and approximated refers to the integrated error). It is seen that the actual and
approximated errors are concurrent with one another; however, they do not approach zero
which implies that stability in this case is not guaranteed. Figure 19 shows the
approximated error during the backward integration in which the error at the final time as
set to a small number. This plot seems to show a stable response. In order to examine
response on a more general basis, the 2-norm of the system transition matrix was plotted
in Fig. 20. Obviously, if the 2-norm went to zero, response to initial conditions would be

stable. By this plot, it would seem that in general the response will not be decreasing.
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Nominal and Actual Trajectories
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Figure 17:  Plot of the Nominal and Actual Trajectories.
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Figure 18:  Plot of the Actual and Approximated Errors.
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VL PATCHED TRANSFER METHOD PROGRESS

Recent work in this research project has been directed toward developing a

., numerical computation scheme that performs well for a wide range of acceleration levels
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and target parameters. Current effort is in assembling a method referred to here as the
Patched Method.

The Patched Method is to consist of two phases: a transfer orbit optimization
phase and a orbit transfer solver phase. The transfer orbit optimization phase is not so
much concemned with what values of the Lagrange multipliers are required to take the
craft from orbit A to orbit B as it is with how much time or fuel is required. The orbit
transfer solver phase, however, is more concerned with obtaining an accurate
representation of the transfer and is equally concerned with the values of the Lagrange
multipliers as it is with the transfer time. Finally, it also seems reasonable to desire a
method that will search for the optimal solution satisfying the target parameters but will
also, if that fails, be able to return a sub-optimal solution satisfying the target parameters.
In other words, it would be better to calculate a sub-optimal solution than obtain no
solution at all.

Obviously, the key algorithm is one that can quickly determine the minimum
transfer time (and fuel requirement) between two given orbits in a single burn. One
approach that may give satisfactory results is an application of multivariate interpolation.
Interpolation requires calculation and storage of data ahead of time. Therefore, the first
question is what needs to be stored? To completely specify a problem the following
twelve (12) values are required: semimajor axis a(t,) and a(ty), eccentricity e(t,) and e(tr),
true anomaly W(t,) and v(t;), argument of perigee «Xt,) and @(ts), mass m(l,), thrust T,
specific impulse / gp, and transfer time, 75 To specify the problem’s solution storage of
the Lagrange multipliers 4,(t,), Ay(to), Au(to), Au(to), An(to) is Tequired.

The first of the nondimensionalization equations, Eqn. [23], says that a(t,) can be
set to unity (a(t,)=1) for any orbit transfer problem. A simple choice of coordinate axis,
aligning it with perigee, will set the initial argument of perigee to be set to zero degrees,
which alsc works for any orbit transfer problem. Neither eccentricity nor true anomaly
have such :: rorable scaling qualities. Additionally, now that the initial values havé been

scaled, the “"..al values cannot. The influence of specific impulse can be removed by
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assuming a constant mass. The mass may be corrected at the end of the burn, so that
calculation of the following burn is more accurate. Assuming constant mass also
removes the need to store A4,,.

The influence of the thrust level may be removed by a somewhat restrictive
assumption, (8r/p)? << 1, where & is distance between the actual position of the craft and
a point on a reference orbit with current radius p. This assumption is consistent both with
low thrust levels, which stay close to a reference orbit for several revolutions, and
medium thrust levels, which may only stay close to a reference orbit for a few
revolutions. The advantage is that the assumption linearizes the dynamics and allows the

solution to be written as

r r ! 0
[?v§i§]=“’<"‘o)[§v323]*T,{[%E'z?[e,mﬂ“ ! o
Where @X1,2,,) is the state transition matrix for the homogeneous solution. If the initial
conditions are set to zero, then the solution is linear with respeét to the thrust. Now, one
solution can easily be scaled for any thrust level, however, the resulting solution must
satisfy the assumption. The orbital elements can then be determined using a Jacobian

matrix, as shown in Eq. [79] and easily obtained by taking partial derivatives of equations

used to convert Cartesian coordinates to orbital elements.

~

éa

(79)
de =J(a e,V w)5r
6\/ o' ot To? o 6"
ow

The number of parameters required to specify a given transfer are reduced to
seven (7): da(ty), e(t,), 8(1p), daXts), W(1o), U1g), and tf; the transfer time stored with this
data is the minimum iiitie required for the transfer. To store the solution, it is still

required to know all the _agrange multipliers.
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Before proceeding much further with this discussion a few words should be said
about multivariate interpolation. It is assumed the reader is familiar with univariate, or
single variable, interpolation in which there is only one independent variable and one
scalar function of that variable, though any number of such dependent variables is
allowed. Bivariate interpolation is then interpolation involving two independent variables
and at least one function of these variables. Bivariate interpolation, and this applies
equally well to multivariate interpolation, is most easily implemented when the values for
independent variables are evenly spaced in a grid14.

However, in the case of orbital transfer it would be quite difficult to obtain data
with the orbital elements of the target orbit evenly spaced because this would require an
iterative solver for each data point. If that process were easy, there would be no need for
this approach. On the other hand, it is relatively easy to obtain a grid with the Lagrange
multipliers, orbital elements of the initial orbit, and the transfer time evenly spaced. ’fhe
equations of motion can then be integrated and the orbital elements of the destination
orbit are known. The difficulty associated with the unevenly spaced grid is evident when
one has values for the elements of the target orbit and wants to obtain the values of the
Lagrange multipliers and the required transfer time. Currently, both types of grids are
being considered.

The spacing of the grid is another issue altogether. The spacing of the grid, or its
density, will determine the accuracy of the estimated minimum transfer time. Since
speed of the algorithm and storage space required for the software are always important,
the grid will need a somewhat wide spacing. There are 7 values to store for each point in
the grid; whichever of the other 4 variables are evenly spaced, it is easy to determine their
values though proper indexing of the grid points. If each variable is allowed n different
values and 8 bytes are used to store each number in the computer, then the grid will
occupy 56n7 bytes of memory. For th.2 grid to need under one megabyte of space, then

n=4 is required. For n=S§, the grid wcJid occupy just over 4 megabytes of space. More
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than likely, different spacings of each variable would be most efficient but will this will
not change the fact that the grid cannot be dense.

This interpolation will most surely produce a quick, though rough estimate of the
transfer time between two chosen orbits. The next phase of the method is to obtain
accurate solutions for the transfers between these orbits. Estimates for the Lagrange
multipliers can be also obtained through the interpolation. These can then be used as an
initial guess for a numerical solver. And, if that fails, a homotopy algorithm can be
initiated from a nearby grid data point since that data point is already an accurate

solution.

VL. CONCLUSIONS

Concerning the calculation of optimal transfers, the current direction has been
elaborated upon, which is to test numerical methods within the framework of the Patéhed
Method. Some work from previous reports and borrowing techniques from the literature
will be incorporated along with the discussed methods. Results from this work are
forthcoming.

A few conclusions, which lend themselves to study in current research work, can
be made from the analyses presented here. If there are no algorithm mistakes, then it can
be concluded that the extremal solutions examined may not be locally optimal solutions
for fixed transfer time. However, some considerations necessary for an accurate
examination of the second variation may have been overlooked. Ongoing research work
is in examining why these conditions are not met.

It was found that the sufficient conditions were satisfied for the free final time
problem. Software has been developed in order to simulate neighboring optimal
feedback guidance. Currently, this software is not producing stable solutions. The issue
of stability of the response must be investigased further and is an area of current research

endeavors.
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LI1ST OF SYMBOLS

Bold type always indicates a vector quantity

For variables, italics indicates a scalar quantity

Vectors with Greek symbols are indicated by plain text with no italics

Unless otherwise specified, subscripts refer to partial derivatives with respect to
the subscripted variable.

a, denotes the skew symmetric matrix representation of the cross product:

Cp
Ci

diag{z;,...2y}
er1n)

0 =g aq a,
={a 0 =-a, | wherea=la
-a, a, O a,

Characteristic velocity of the rocket motor. c=g,/ .

The drag coefficient of the spacecraft, see Eq. (1.4)

Denotes the set of i-dimensional vector functions continuous with
respect all arguments, vector and/or scalar

An NxN mauix where the jth diagonal element is z;

Rocket motor thrust direction at time f (a unit vector)

The component of the eccentricity vector in the X-direction of OXYZ
The component of the eccentricity vector in the Y-direction of OXYZ
The component of the eccentricity vector in the Z-direction of OXYZ
A Force acting on the spacecraft; cause of force denoted by subscript
Earth's gravitational acceleration at sea-level

An auxiliary function defined for derivation of the necessary
conditions

The Hamiltonian, defined in the usual manner for bang-bang optimal
control problems

The switching function, defined in the usual manner for bang-bang
optimal control problems

The component of the angular momentum vector in the X-direction of
OXYZ

The component of the angular momentum vector in the Y-direction of
OoXYZ
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u(t)
V(1)
v(1)
V(D)
w(?)

The component of the angular momentum vector in the Z-direction of
oxXYZ

The identity marrix - if subscripts are given they denote its dimensions
Specific impulse of the rocket motor

A cost functional or performance index

The constant describing the mass distribution of the central body; for
Earth it is often taken as J,=1082.61x10

Total spacecraft mass at ime ¢

The 3x3 matrix diag{1,1,3)

This is a Rectangular Cartesian inertial reference frame. Here O is
fixed at the gravitational center. The directions X,Y,Z form a right-
handed system; X and Y are in the equatorial plane. Z completes the
right-handed system.

The equatorial radius of the gravitating body - for oblateness effects
Denotes the set of i-dimensional real numbers

Radius vector from origin O of OXYZ to spacecraft's location at time ¢
Magnitude of r(z)

Reference altitude for reference atmospheric density (p,) in
atmospheric model, see Eq. (1.4)

The cross sectional area of spacecraft used in computing drag, see Eq.
(1.4)

The upper bound on rocket motor thrust magnitude

Time

Transfer time, the total length of time required to execute the transfer
Rocket motor thrust magnitude at time ¢

The gravitational potental function, see Eq. (1.5). This definition only
holds in Section ]

Denotes the set of piece-wise continuous scalar functions with one
scalar argument. This definition does not hold in Section I

The component of v in the X-direction of OXYZ

The component of v in the Y-direction of OXYZ

Velocity vector in OXYZ at time ¢

Magnitude of v(z)

The component of v in the Z-direction of OXYZ

Weight of spacecraft at initial point of transfer.
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x(1)
x(7)

y(1)
z(1)

. uf

v(x)

The component of r in the X-direction of OXYZ

Vector [rT(t) V(1) m(x)]T; this definition changes in Section 1
The component of r in the Y-direction of OXYZ

The component of r in the Z-direction of OXYZ

State used in numerical computation

These vectors contain the orbital elements which are used to specify
the initial and final orbits of the transfer, respectively.

A vector containing the orbital elements of the ith transfer orbit. For
an N bumn transfer the zeroth orbit is the initial orbit and the Nth orbit
is the final orbit. This only applies for numeric subscripts.

Constant from the atmosphere model describing air density variation
in the prescribed altitude region, see Eq. (1.4); this definition changes
in Secton Il

Dummy nonsquare matrix used for generality in Lemnma II1.1
Dummy matrix function used for generality in Lemma 1.2

The latitude angle of the current position from the equator; thrust
angle in plane; this definition changes in Section I

The Lagrange multiplier associated with the constraint on ey
magnitude

The Lagrange multiplier associated with m

The Lagrange multiplier associated with r

The Lagrange multiplier associated with v

The gravitational constant for the central body

Lagrange multipliers associated with boundary conditions at initial and
final points

Ammnospheric density at reference altitude (r,) for atmospheric model,
sec Eq. (1.4)

The independent variable used in numerical computation, represents
normalized time

Vector function that calculates the orbital elements for the state x

Symbol Definitions Applying Only 1o Section Ill, Subsection 1112 .2

g

Transfer time for the jth bumn
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er,(’)
A, ()

B,
S
m (1)

f(x,(1).e5, (1))

J

¢

A,(y“,mﬁ)

Thrust direction function for the jth burn

Lagrange multiplier functions for the jth bumn

A vector containing the Lagrange multipliers associated with the
respective boundary condition. Even indices indicate association with
the final orbit; odd indices indicate association with the initial orbit.
The initial condition for the mass of the jth bumn

The Lagrange multiplier associated with the initial mass constraint of
the jth burn

The mass as a function of time for the jth bum

Represents the state dynamics with the thrust always on, as in the one-

burn problem. :
Adjoined cost functional for the jth bumn of an approximate discretized

problem; application of a direct optimization method is anticipated
Final mass from the discrete problem, jth burn, at the jth time node

Same as v; except that these are for the discrete problem’s boundary

conditions
Function that computes the initial orbital elements associated with the

initial state y,, for the discretized problem

Function that computes the initial orbital elements associated with the
initial state y; ,, for the discretized problem

The Lagrange multiplier associated with the initial mass constraint of

the jth burn for the discretized problem
Lagrange mulupliers associated with the state y,; for the jth burn at

time node §, discretized problem .
Thrust direction at time node i, for the jth bumn, discretized problem

Constraint at time node i for the jth burn that enforces implicit

integration, discretized problem

Symbol Definitions Applying Only to Section Ill, except Subsection 111 2 2

£(x(1))
g(y(r),v(1))

Defined in problem {P}, the state dynamics without control
Defined in problem {P}, the controlled portion of the state dynamics
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)

(1)

{111}

(P)

¥(1)

>

(r)

Defines a set of necessary conditions that represent a typical
application of optimal control theory, excluding Pontryagin's
Minimum Principle; defined in subsection I11.2 4.

Defines a set of necessary conditions that represent the Patched
method; defined in subsection II1.2.4.

Defines a set of necessary conditions that represent the Modified
Patched method; defined in subsection I11.3.1.

A definition for an optimal contro] problem that generalizes the
optimal orbit transfer problem; defined in subsection II1.2.4.

The fixed initial ime for the problem {P}

The free final time for the problem {P}

The switching times defined as variables in the conditions {J)

For conditions {17} and {111}, the initial time of bumn {

For conditions {11} and {II1}, the final ime of burmn {

Defined in problem (P}, the scalar control that appears linearly in the
Hamiltonian, this is assumed to be a bang-bang control

The maximum value allowed for the conwol u(r)

Defined in problem {P}, the control vector that optimal control
determines to be a continuous function of time.

State vector in problem {P) that contains all states except y(7). In
problem {P}, conditions {1}, {II'}, and {III} these states are defined
for the time interval {1,,13

One of the states in problem {P}, separated from the rest of the state
vector so that it may be treated separately. In {P} and {I} this state is
Defined for the time interval [r0:1]]

Defined in conditions {7}, Lagrange multiplier vector functdons
associated with the whole state vector - it is partitioned as

Lo 4]

Defined in conditions {17}, Lagrange multiplier vector functions
associated with the whole state vector on the ith u=u,, , arc, which is
the interval 1 € 1,1, ] for i=1,..N - it is partitioned as[inT(r) i, (t)]
Defined in conditions {I}, Lagrange multiplier vector functions
associated with the state vector x(7) |



A0 Defined in conditions {I}, Lagrange multiplier vector functions
associated with the state y(r)

?:u.(r) Defined in conditions {11}, Lagrange multiplier vector functions
associated with the state vector x(r) on the ith u=u,,,, arc, which is the
interval r € [r,,tﬁ] for i=1,.N

A.0) Defined in conditions {II), Lagrange multiplier vector functions
associated with the state y(r) on the ith u=u,,,, arc, which is the
interval te[t‘,rﬁ] fori=1,.N

v Defined in conditions {/), the Lagrange multipliers associated with the

boundary conditions at the initial ime

v s Defined in conditions (I}, the Lagrange multipliers associated with the
boundary conditions at the final time

P Defined in conditions {II}, the Lagrange multipliers associated with
the boundary conditions at the time 1, for i=1,..N

Vg Defined in conditions {17}, the Lagrange multipliers associated with
the boundary conditions at the time 15 for i=1,..N

A Defined in conditions {17}, the Lagrange multiplier associated with
the state x and A=A, 2‘\.,,T]T

A(D) Defined in conditions {III}, the Lagrange multiplier associated withr

(1) Defined in conditions {111}, the Lagrange multiplier associated with v

v; Defined in conditions {111}, Lagrange multipliers associated with

boundary conditions at {; i=0,N+1

Symbol Definitions Applying Only to Section IV

Lagrange multiplier symbols are the same as above, however, here they referto a
minimization problem.

A(r) Matrix in the differential equations for the linear correction to the state

and Lagrange multipliers, control correction accounted for
B(1) Matrix in the differential equations for the linear correction to the state

as depending on the Lagrange multiplier corrections, control
correction accounted for "
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C(1) Matrix in the differential equations for the linear correction to the
Lagrange multipliers as depending on the state corrections, control

correcton accounted for
d, Correction to final time

H The Hamiltonian
P(1),S(1), V(1)  Sweepback matrices used to compute P(1), S(1), V(r)
P(1), S(1), V(1) Sweepback matrices for free final time

m(r), n(1) Sweepback vectors used to compute P(1), S(1), V(1)

{20estive IN) Time nodes for discrete guidance with time-to-go

At Length of guidance time interval i

di, Correction to final time, computed at start of guidance time interval i
6x (1) Linear correction for the state of the nominal trajectory, control

correction accounted for

a(t) Sweepback scalar

66(r) Contol (thrust direction angle) correction

&) Thrust direction angle (control)

éA.(1) Linear correction for the Lagrange multipliers of the nominal
trajectory, control correction accounted for

av Linear correction for the constant Lagrange multipliers, control
correction accounted for

o(x) Cost function for minimization problem

oy Linear correction to boundary conditions, control correction accounted
for

Q(x,v,1) Hamiltonian for minimization problem
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SUMMARY

This report presents new theoretical results which lead to new algorithms for the
computation of fuel-optimal multiple-burn orbit transfers of low and medium thrust.
Theoretical results introduced herein show how to add bums to an optimal trajectory and
show that the traditional set of necessary conditions may be replaced with a much simpler
set of equations. Numerical results are presented to demonstrate the utility of the

theoretical results and the new algcrithmé.

Two indirect methods from the literature are shown to be effective for the optimal
orbit ransfer problem with relatively small numbers of bumns. These methods are the
Minimizing Boundary Condition Method (MBCM) and BOUNDSCO. Both of these
methods make use of the first-order necessary conditions exactly as derived by optimal

control theory.

Perturbations due to Earth’s oblateness and atmospheric drag are considered.
These perturbations are of greatest interest for transfers that take place between low Earth
orbit altitudes and geosynchronous orbit altitudes. Example extremal solutions including

these effects and computed by the aforementioned methods are presented.

It is a commonly accepted notion in the field of optimal orbit transfer that the
more burns an optimal transfer executes, the lower the cost. Unfortunately, many
numerical methods are not robust enough to simply "jump" from an N-burn solution to an
N+1 bumn solution. A new algorithm is presented which greatly eases this process. The
method is just as easily implemented in the framework of MBCM as BOUNDSCO, any
indirect method, or a hybrid method.
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Using this algorithm and the indirect methods mentioned above, the phenomena
of multiple solutions is demonstrated for the optimal orbit transfer problem. A simple
empirical guideline is proposed which chooses between two or more multiple solutions
when using this a]gon’tfxm. It is not claimed that the algorithm will obtain the globally

optimal solution.

Intuitively, one might want to think of an optimal multiple-burn transfer not as
one large trajectory, but as a sequence of optimal one-burn transfers between transfer
orbits that are optimally chosen. For ideal gravity, a strong relationship is shown to exist
between these two problems. Based on this relationship, two new numerical methods are
presented which iteratively compute optimal orbit transfers. The first method, named the
Patched Method, appears to be very robust yet sluggish in convergence. The second
method, named the Modified Paiched Method (MPM) seems somewhat less robust but
much faster in convergence. For optimal orbit transfers in ideal gravity with large
numbers of burns, MPM seems to be superior to the other methods investigated in this

report.

Finally, an investigation is made into a suboptimal multiple-burn guidance
scheme. This scheme is, in fact, seen to have somewhat less than desirable terminal
error. This terminal error is improved through a time-to-go indexing scheme. Future

directions for multiple-burn guidance are suggested.

The FORTRAN code developed for this study has been collected together in a
package named ORBPACK. ORBPACK and a user manual are provided. The manual is

included as an appendix to this report.
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SECTION 1
THE ORBIT TRANSFER PROBLEM

Ll Introduction
The most popular motor today for performing orbit transfers is of high thrust and
usually a solid, sometimes a liquid rocket motor. These typically have a specific impulse,
or Igp, in the lower hundreds of seconds (250s-450s) and thrust in the thousands of
Newtons! and up. In this range, they can be considered impulsive?, applying changes in
velocity on a time scale much shorter than the orbit period. For many years the study of

optimal orbit ransfer has focused on these impulsive motors.

With the hopes of lower fuel consumption due to an /g, typically in the thousands
of seconds, electric propulsion has recently grown in popularity and many studies have
been performed to develop the motors; a major satellite manufacturer is already designing
satellites which use a Xenon Ion Propulsion System (XIPS)3. The thrust produced by
these motors is in the tens to thousandths of Newtons; for example, XIPS produces 18
thousandths of a Newton with an /,, just under 3,000 sec. Obviously, orbit ransfer
maneuvers with such electric propulsion will take more time and practical transfers can
no longer be modeled as impulsive. Since it is necessary to specify the maneuver with
continuous functions as opposed to discrete impulsive events, the optimal transfer

problem has been too complicated for exact analytical solutions.

IHertz, J. R.., and Arson, W. J., Space Mission Analysis and Design, Kluwer Academic
Publishers, Boston, 1991.

2Robbins, H. M., “An Analytical Study of the Impulsive Approximation,” AJAA Journal,
Vol. 4, No. 8, 1966, pp. 1417-1423

3Christensen, R. A., ed., “Space Propulsion’s Latest Thrust,” Vectors, Vol 37, No. 1,
1995, Hughes Electronics, Los Angeles.



Numerical methods for the computation of optimal orbit transfers have been
widely studied. These numerical methods fall into three categories: direct, indirect, and
hybrid methods. Direct methods parameterize the thrust program and then attempt to
optimize these parameters while satisfying boundary conditions. Indirect methods
employ the mathematics of optimal control to formulate a Two-Poim Boundary Value
Problem (TPBVP) which can then be approached with a variety of numerical methods.
Hybrid methods are a combination of the two. These methods are often formed by
simply removing difficult conditions from the TPBVP and optimizing some equivalent

cost function over the released parameters.

The main objective of this research was the computation of fuel-optimal low and
medium thrust orbit transfers. Here, medium thrust was taken as 1 > 7/W_2 0.01 and
low-thrust as 0.01 > 7/W_ 2 0.001. This particular definition has been made because it is
the initial acceleration which the rocket motor produces compared with the gravitational
acceleration at that point that determines how easily changes in the initial orbit will be
made. In contrast, comparing the initial rocket motor acceleration with the weight of the
spacecraft as it would measure on the planet’s surface does not directly indicate the

motor’s ability to move the spacecraft away from a very high orbit.

Of the utmost interest was the ability to compute highly efficient transfers for the
ideal case. This will provide mission planners with the ability to compute a "best”
ransfer which can be used to judge more practical schemes. However, the ideal case
does not quite represent reality; the ability to handle orbit perturbations is desirable as
this would produce more realistic "best" transfers. For trajectories that spend much time
near or beyond geosynchronous orbit, the dominant orbit perturbations will result from

cither Earth oblateness effects or atmospheric drag.!



Software using multiple-point shooting and modified-shooting techniques were
used and produced many solutions. Using these, some characteristics of the solution have
been observed and studied. Identification of these characteristics has resulted in the
development of a new method for improving optimal orbit transfers. The method
introduces additional burns to optimal ideal-gravity orbit transfers using an under-
exploited property of the switching function. A set of improved transfers were

constructed and these uncovered new properties of optimal transfers.

Furthermore, two new methods have been developed. The first is a new hybrid
approach called the Patched Method. This method combines the robustness of a direct
approach and the greater convergence speed of the multiple-shooting approach in a
configuration that can handle wansfers with large numbers of burns. However, the

Patched Method pays for its robustness with speed.

The second new method is the Modified Patched Method (MPM). MPM trades
back some of the sluggishness of the Patched Method for a small loss in robustness. This
trade-off is accomplished by making use of properties specific to the orbit transfer
problem. Some of these properties appear to be new, developed here for the first time.

Overall, MPM seems to be superior to any of the other methods applied in this report.

The other objective of this research was the examination of a capable guidance
algorithm for multiple-burn orbit transfer. Work on this has produced a one-burn
guidance algorithm using neighboring optimal feedback control. This guidance algorithm

could be used on a burn-by-burm basis to produce a sub-optimal trajectory.

The spacecraft is represented by a point mass and assumed to be a thrusting craft

acted upon by the aerodynamic drag and oblate-body gravity forces of a central body.



The central body, or planet, is also represented as a point mass positioned at its own
center of gravity. Furthermore, the problem is restricted to crafts of mass much smaller
than that of the central body; therefore, the planet is assumed fixed in inertial space. This
inertial space is described with a rectangular Cartesian inertial reference frame (OXYZ2).
The central body is fixed at the center O of this frame and the z-axis is perpendicular to
that body’s equator. All motion within this frame agreeing with the above assumptions

must satisfy Newton's Second Law:

d:
where m is the spacecraft’s mass, v is its velocity with respect to the reference frame, and

2 F represents the sum of forces on the craft.

In this case, gravity, drag, and thrust make up the total force acting on the craft.

This gives

myv = Te]‘ - Fdrag - Fgraviry (1.2)

in which the thrust is some time-varying function T(r) independent of a time-varying

direction er(r). This is most clearly derived by considering a momentum balance of the

spacecraft as it expells mass to produce thrust; absorbing the dm/dr term into the thrust

term produces Equation (1.2).

The thrust direction is expressed as the unit vector e{z). For a three-dimensional
thrust vector the control requires a magnitude and three components or two angles. For
two dimensional problems, the one magnitude and only two independent control

components or one angle is required.

It is assumed that the fuel consumption of the motor is represented by



ms——— (1.3)

where g, is Earth’s gravitational acceleration at sea level and /g, is the motor’s specific

impulse.

It is assumed that the atmosphere surrounding the central body can be described
by an exponential model as in the standard atmosphere? resulting in the following

aerodynarnic drag force:

i

1 -Bir-r,}
Fou=3pe SCpvv (1.4)
where f is a constant from the atmosphere model describing air density variation in the
prescribed altitude region, p, is the atmosphere density at the altitude r,, S is the cross-
sectional area of the craft, Cp is the craft’s drag coefficient, v is the magnitude of the

velocity v, and r is the magnitude of the position vector r.

The gravitational potental energy to the second harmonic is®

U=-‘ir’1’-+%J,R3—r“§"-(1-3cos’(9)) (1.5)

where R, is the equatorial radius of the central body, 6 is the latitude angle of the current
position from the equator,  is the gravitational constant for the central body, and J, is a
constant describing the mass distribution of the central body; for Earth J,=1082.61x10-5.

There are additional mass distribution terms, but the series is truncated here. € is

4Anderson, 1. D., Fundamentals of Aerodynamics, New York: McGraw-Hill Book Co.,
1984,

5Space Technology Laboratories, Flight Performance Handbook for Orbital Operations,
New York: Wiley, 1963.



described with Cartesian coordinates by z=r cos(8). This gravitational potential exers

the following force on the spacecraft

2
r...o-—%r{ih{“n uJ,R2[ -5(2) I]}r (16)

where N =diag{1,1,3) and I is the identity matrix.

The equations of motion for the spacecraft are

x(1)=1(x(r),7(1),€,(1)) (1.7)
where
x(=[r"(0) V(1) m()] (1.8)
and
v (1.9a)
F(x(1).T (1) e (1)) = {;e,-%r—{%u] & (K 5(’) )}r—%%e”"""’SCDV\‘ (1.95)
~7/(g.1;) (1.9¢0)

The thrust magnitude has both an upper and a lower bound. The upper bound is
called T,,,,, the lower bound is zero. Therefore, the following inequality constraint must

be satisfied for alltime r € [O,zf] :

 0ST ST,y (1.10)



For the purposes of this study a simple atmosphere model was chosen. The mode!l
was not intended to accurately represent the Earth’s atmosphere, or any other planet for
that matter. It is implemented only for the purpose of demonstrating the methods used
herein and to allow examination of its effects on the optumal transfer.

The model was defined from a reference altitude of 450 km above the planet’s
equator. The entire atmosphere region was assumed isothermal with a temperature of
1,000K. The density at the definition altitude was defined to be 1.184x10-12 kg/m3. The
definition point for this model was taken from the 1976 U.S. Standard Atmosphere®.
Also, it was assumed that Cp=2, a common approximation for spacecraft’, and the cross
sectional area of the satellite was arbitrarily chosen to be 47 m2.

For problems in which the ideal gravity assumption is acceptable, coasting
trajectories are well understood and can be analytically represented. Therefore, it is
simplest to optimize the exit, or “thrust on,” point on the initial orbit and the entry, or
“thrust off,” point on the final orbit. A real spacecraft implementing the orbit transfer
could simply wait in the initial orbit until arrival at the initial orbit exit point, indicating

that the maneuver should begin.

Hence, the boundary conditions must determine all orbital elements except

position on orbit, and are written as

v(x(s,)) =<, (1.112)
v(x(t,))=e, (1.11b)

where the function y determines these orbital elements for the state in question and a,
and o, are vectors containing the desired values at the initial and final points,

respectively. Such a determination could be accomplished several different ways.

€United States. COESA. U.S. Standard Atmosphere, 1976, Washington: GPO, 1976.
"King-Hele, D. Theory of Satellite Orbits in an Atmosphere, London, Butterworths, 1964.



However, using the angular momentum and eccentricity vectors is perhaps the simplest.®

For planar transfers, all motion can be placed in X-Y plane and the components of the v

function are

% =h=xv- yu
Y, = le, = [(v2 -~ u/r)x - (rT\')u] (1.12)
V,=pe, = [(v2 -u/rly- (rTv)v]

Where 4 is the angular momentum, e, is the X-component of the eccentricity vector, and

e, is the Y-component of the eccentricity vector.

In the three-dimensional case, these vectors will compose six components. Since
the angular momentum and eccentricity vectors are always perpendicular, one of these
components will be redundant and thus removable. There is one restriction on which
component is removed; it can be seen clearly by considering the property that the vectors

are always orthogonal, expressed as
he,+he +he =0 (1.13)

A component of one of the two vectors can be removed if it can be computed uvsing
Equation (1.13). In other words, since Eq. (1.13) always holds, knowledge of the
removed component is implied and it is unnecessary to explicitly compute it. Another
way to state this is to say that the six components are linearly dependent. Therefore, if
for the orbit transfer problem in question, 4,0 on a terminal orbit, then the y function

components can be written as

SKaplanS: M. H9 Modern Spacecraft Dynamics and Control, New York, John Wiley &
ons, 1976.



q/l-_-h‘-.:yw-zv (1.14a)

V,=h =zu-xw (1.14b)
Vy=h =xv-yu (1.14¢c)
v =pe, = [(vV = p/r)x=(rTv)u] (1.14d)
Vs = ue, -:[(v2 -p/r)y-—(rTv)v] (1.14¢)

where x,y, and z are the components of r in OXYZ and u,v, and w are the components of

vin OXYZ.

If the initial or final portion of a transfer traverses altitudes where ideal gravity is
not a valid assumption, then the boundary conditions likely need to be reformulated. For
example, a trajectory that begins at a very low Earth-altitude cannot truly coast with zero
cost because energy would be lost due to atmospheric drag. For such a transfer, it would
be more realistic to fix the initial point. Likewise, some missions may be more interested
in delivering the spacecraft to a specific point in space, in which case the final condition

should be a rendezvous conditon.

Anticipating numerical applications, note that the problem can be
nondimensionalized. This aided by making all states roughly the same order. In the
presentation of example solutions, the hat (*) notation will be dropped and solutions are
assumed nondimensionalized unless stated otherwise. The non-dimensionalizations

follow:

f=r/r* : m=m/m* (1.15a-b)

te z/ r fu (1.15¢)

and they require the following:

ve v/-\/p/r* I, E:J/-\/r*3//,4 (1.15d-e)



P

Foer [r* B=prt (1.15f-g)
(8.SC,) = p.SC,(r*/m*) (.7,)=80,Nr*/u (1.15h-1)
Te (T/m*)/(p/r*’) R =R/r* (1.15-k)

The choices of r® and m® are completely arbitrary. However, it needs to be said that
after a problem is solved by these nondimensionalizations rescaling must be exercised
with caution; rescaling changes the atmosphere model and changes the equatorial radius
used for the oblateness terms. For example, a given transfer with nondimensionalized

parameters must specify the value for R, if oblateness effects were considered. If, after

rescaling, one intends this transfer to represent a2 maneuver about Earth then r* must be
such that R, is the radius of Earth by Equation (1.15k). Similar arguments may be made
concerning the nondimensionalized parameters for atmospheric drag effects.

Substitution of Egs. (1.15a-k) into Eqgs. (1.9a-c) shows that the nondimensional
dynamic equations are equivalent to Egs. (1.9a-c) with u=1 (the value of J,, however, has
no dimensions and is not changed). In Eq. (1.9a), choosing the scalings for r and 1,
shows that the only consistent scaling for v is Eq. (1.15d). Then, in Eq. (1.9b) it is clear
that Egs. (1.15a-h) and (1.15j-k) are required for consistency. Substitution into Eq. (1.9b)
also shows that the factor y appears on both sides of Eq. (1.9b), in the numerator of every
term; therefore, it may be dropped from both sides. Finally, substitution into Eq. (1.9¢)

reveals that Eq. (1.151) is required for consistent scaling.

10



SECTIONII

COMPUTATION OF OPTIMAL ORBIT
TRANSFERS

ILL Literature Revi

One of the earliest and most notable applications of the calculus of variations to
the orbit transfer problem was by Lawden9. His work established the now widely-used
pointer vector theory. Lawden also derived many useful analytical results including an
analytical solution for the Lagrange multipliers over coast arcs in ideal gravity!0; his
expression is easily configured to trajectories where the transfer time is unconstrained.
He went on to conclude that for the case of escape from a circular orbit, tangential
thrusting would be nearly optimal!!; however, he noted that this thrust program may not
fare so well in other cases. Lawden studied the possibility that, in addition to arcs of
maximum thrust and null thrust, arcs of intermediate-thrust may exist in an optimal
transfer!2. He later wrote a general review of rocket trajectory optimization!3 and stated

that issue of the existence of intermediate-thrust arcs was still unresolved.

After Lawden's formulation was published, many other researchers produced

solutions to the Lagrange multipliers over coast arcs in ideal gravity. A set of

9Lawden, D. F., Optimal Trajectories for Space Navigation, London, Butterworths, 1963.

10l awden, D. F., “Fundamentals of Space Navigation,” Journal of the British
Interplanetary Society, Vol. 13, No. 2, 1954, pp. 87-101, 1954,

111 awden, D. F., “Optimal Escape from a Circular Orbit,” Astronautica Acia, Vol. 4, No.
3, 1658, pp. 218-233.

12L awden, D. F., “Optimal Intermediate-Thrust Arcs in a Gravitational Field,”
Astronautica Acta, Vol. §, No. 2, pp. 106-123.

13Lawden, D. F., “Rocket Trajectory Optimization: 1950-1963,” Journal of Guidance,
Control, and Dynamics, Vol. 14, No. 4, 1991, pp. 705-711.
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expressions derived by Danby!4 appear to be the earliest such work. This was actually
for the equivalent problem of determining the matrizant. At almost the same time, Pines
published work which derived constants of integration!3, some which apply during any
part of the trajectory, even intermediate-thrust arcs, and some in restricted cases. Later,
both Eckenwiler!¢ and Hempel!? produced formulations valid in a two-dimensional
system. Lion and Handelsman)® derived equations for a three-dimensional system.
Glandorf!® produced a very useful form for the Lagrange multiplier’s that used the
current radius, velocity, and angular momentum vectors as reference directions. Vinh20
developed equations which reduced the solution of the Lagrange multipliers for any

central force field to a problem of simple quadratures.

These analytical results have all proved useful in many studies of optimal orbit
transfers. However, to date no closed-form expressions have been obtained for optimal
orbit transfers, including the fuel-optimal thrust-limited case considered in this report.
Therefore, numerical methods are used to produce exact solutions for this problem which
has challenged the most sophisticated algorithms. These methods are traditionally

divided into three types: indirect, direct, and hybrid.

14Danby, J. M. A, “The Matrizant of Keplerian Motion,” AIAA Journal, Vol. 2, No. 1,
1964, pp. 16-19.

13Pines, S., “Constants of the Motion for Optimum Thrust Trajectories in a Central Force
Field,” AIAA Journal, Vol. 2, No. 11, 1964, pp. 2010-2014.

16Eckenwiler, M. W, “Closed-Form Lagrangian Multipliers for Coast Periods of
Optimum Trajectories,” AJAA Journal, Vol.3, No. 6, June 1965, pp. 1149-1151.

17Hempel, P. R., “Representation of the Lagrangian Multipliers for Coast Periods of
Optimum Trajectories,” AIAA Journal, Vol. 4, No. 4, June 1966, pp. 720-730.

18Ljon, P. M., and Handelsman, M., “‘Primer Vector on Fixed-Time Impulsive
Trajectories,” AIAA Journal, Vol. 6, No. 1, 1968, pp. 127-132.

19Glandorf, D. R., “Lagrange Multipliers and the State Transition Matrix for Coasting
Arcs,” AIAA Journal, Vol. 7, No. 2, 1969, pp. 363-365.

20Vinh, N. X., “Integration of the Primer Vector in a Central Force Field,” Journal of
Optimization Theory and Applications, Vol. 9, No. 1, 1972, pp. 51-58.
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I1.1.1. Indirect Methods
Indirect methods conver the optimization problem into a TPBVP though optimal
control theory. The most popular indirect methods by far seem to be the shooting and

multiple-point shooting methods.

Among the studies using indirect methods, the work by Brown, Harrold, and
Johnson?! produced an indirect method named OPGUID/SWITCH which handles
rendezvous trajectories or free entry/exit points and free final time using a modified set of
boundary conditons. Results with OPGUID/SWITCH were presented for medium thrust

levels and two to three burns.

Another indirect method, developed by McAdoo, Jezewski, and Dawkins?2 and
dubbed OPBURN, was actually a combination of two approaches. The first
approximated ideal gravity using a mode] for gravitational accelerations linearly varying
with altitude. This assumption results in a linear steering law and was used to simplify
low-accuracy calculation of the transfer. The data from this approach were used as the
starting iterate of another, more accurate code. Results with this method were presented

for medium thrust acceleration levels and two to three bums.

Edelbaum, Sackett, and Malchow?3 produced computer code to solve minimum
time transfers (one burn) using equinoctial orbital elements as state variables. Constraints

on exposure to solar radiation were considered. This method relied heavily upon the

21Brown, K. R., Harrold, E. F., and Johnson, G. W., “Rapid Optimization of Multiple-
Burn Rocket Flights,” NASA CR-1430, Sept., 1969.

22McAdoo, S., Jr., Jezewski, D. ], and Dawkins, G. S., *“Development of a Method for
Optimal Maneuver Analysis of Complex Space Missions,” NASA TN D-7882,
April, 1975. :

BEdelbaum, T.N., Sackett, L. L., and Malchow, H. L., “Optimal Low Thrust Geocentric
Transfer” AIAA Paper 73-1074, Proceedings of the AIAA 10th Electric
Propulsion Conference, Lake Tahoe, Nevada, November 1973,
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method of averaging and was named SECKSPOT. Horsewood, Suskin, and Pin¢524
modified SECKSPOT to produce a code for the optimizaton of multiple-bum rendezvous
orbit transfers with plane changes between circular orbits with low-thrust in an idea)

gravity field. The transfer times for these trajectories were fixed.

A study by Redding?’ handled point-to-point, or rendezvous, Jow-thrust transfers
with plane changes. The method presented in the study includes the reduced set of
boundary conditions established earlier by Brown, et. al.2) It was limited to transfers 1o
geosynchronous orbits in an ideal gravity field and no results are discussed for elliptical
terminal orbits. Solutions with low-thrust were obtained for transfers with two to six

burns.

I1.1.2. Direct Methods

The most common technique for direct methods is to discretize the control and
possibly the state, then optimize the performance index by varying the control and state at
each node of the independent variable. This optimization is usually subject to some
constraints. In orbit transfer optimization, it obviously makes sense to use any helpful
results from the application of optimal control theory. Almost universally, direct
methods for orbit transfer optimization make use of a bang-bang assumption which
eliminates the possibility of intermediate-thrust arcs. The conwrol is then taken as a

combination of switching imes and directions.

The Direct Collocation with Nonlinear Programming (DCNLP) technique makes

use of polynomial approximation to both perform integration and approximate the control

24Horsewood, J.L., Suskin, M.A_, and Pines, S., “Moon Trajectory Computational
Capability Development,” NASA Lewis TR-90-51, Cleveland, Ohio 44135, July
1990. .

LRedding, D.C., “Optimal Low-Thrust Transfers to Geosynchronous Orbit,” NASA
Lewis SUDAAR 539, Cleveland, Ohio 44135, Sept. 1983.
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at nodes. Dickmanns and Wells26 made a significant contribution using a DCNLP
method based on piece-wise Hermite polynomial approximations for the state and
Lagrange multpliers. More recently, Hargraves and Paris?? used this technique in their
OTIS (Optimal Trajectories by Implicit Simulation) program. The Direct Transcription
and Nonlinear Programming (DTNLP) technique is very similar to DCNLP, with

transcription replacing collocation for implicit integration.

Using DCNLP once then DTNLP later, Enright and Conway28:29 examined
circular, point-to-point planar transfers with ideal gravity. The methods demonstrated in
these studies were shown effective for two- and three-burn trajectories. In using the
DTNLP method, a technique was developed for calculating the Lagrange multipliers so
that Pontryagin’s Minimum Principle could be checked. In some cases, it was found that

this principle had been violated.

Vulpetti and Montreali30 used nonlinear programming to optimize transfers
between circular orbits with inclinations. They did include oblateness and drag in their
gravity model; their thrust acceleration level was about 0.0019g. Example transfers

included from two to four burns. Pourtakdoust and Jalali3! used DTNLP for three-

26Dickmanns, F.D., and Well, K.H., “Approximate Solution of Optimal Control Problems
Using Third Order Hermite Functions,” JFIP-TC7, VI Technical Conference on
Optimization Techniques, Novosibirsh Springer, 1974,

2'Hargraves, C.R., Paris, S.W., Vlases, W.G., “OTIS Past, Present, and Future,”
Proceedings of the 1992 AIAA conference of Guidance, Navigation, and Control,
Hilton Head, S.C. 1992

28Enright, P.J. and Conway, B.A., “Optimal Finite-Thrust Spacecraft Trajectories Using
Collocaton and Nonlinear Programming,” Journal of Guidance, Control, and
Dynamics, Vol. 14, No. §, 1991, pp. 981-985.

25Enright, P.J. and Conway, B.A., “Discrete Approximations to Optimal Trajectories
Using Direct Transcription and Nonlinear Programming,” Journal of Guidance,
Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994-1002.

30Vulpett, G. and Montereali, R.M., “High-Thrust and Low-Thrust Two-Stage LEO-
LEO Transfer” Acta Astronautica, Vol. 15, No. 12, 1987, pp. 973-979 (84-354)

31Pourtakdoust, S.H. and Jalali, M.A., “Optimal Three-Dimensional Orbital Transfer
Using Direct Optimization Methods,” Engineering Systems Design and Analysis,
Vol. 64-6, ASME, 1994, pp. 53-58.
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dimensional two-burn transfers with a medium thrust level. All these studies mentioned

above either used fixed final time, fixed entry/exit positions in orbits, or both.

Another direct method that is gaining in popularity makes use of a technique
called differential inclusion.32 Coverstone-Carroll, V. and Williams, S.N.33 used
differental inclusion concepts in a direct optimization scheme that produced one- and
two-burn planar interplanetary rendezvous trajectories. The title of the study states that
these trajectories are for low-thrust, but the thrust levels fit in the medium thrust range

defined for this repor.

11.1.3. Hybrid Methods

Methods are called hybrid if they don’t fit neatly into either of the above
categories. Typically, hybrid methods for the orbit transfer problem involve some use of
the Lagrange multipliers and the Euler-Lagrange equations but also use direct

optimization to determine other parameters of the trajectory.

Zondervan, Wood, and Caughey34 used 2 hybrid method 1o study three-bum
transfers with plane changes in ideal gravity and for thrust levels in the medium and low-
thrust range. Their approach was 1o take the indirect setup and release the switching

function constraint. The switching points were then optimized directly.

32Kisielewicz., M., Differential Inclusions and Optimal Control, Kluwer Academic
Publishers, Boston, 1991.

- 33Coverstone-Carroll, V. and Williams, S.N., “Optimal Low Thrust Trajectories Using
Differential Inclusion Concepts,” Proceedings of the AAS Rocky Mouniain
Guidance Conference, Colorado, 1994.

34Zondervan, K.P., Wood, L.J., and Caughey, T.K., “Optimal Low-Thrust, Three-Burn
Orbit Transfers with Large Plane Changes,” Journal of the Astronautical
Sciences, Vol. 32, No. 3, 1984, pp. 407-427.
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Ilgen33 used a hybrid scheme called HYTOP to compute low-thrust transfers for
an Orbit Transfer Vehicle (OTV) study. The HYTOP algorithm uses the fact from
optimal control theory that the pointer vector function is continuous for the duration of
the transfer. The pointer vector function, and only this function, is discretized into piece-
wise linear functions. The state was represented by equinoctial orbital elements. The
final mass was then optimized over the choice of the pointer vector function parameters

subject to the TPB VP constraints.

Each hybrid method is unique, these two are by no means representative of all that
have been attempted. To date, there does not appear to be any standard hybrid

methodology.

1.2, Using Indi Method 1H topy to C te Soluti

The following subsections describe work in this research effort using indirect
methods and homotopy to compute solutions. Modified forms of both shooting and
multiple-point shooting were found capable of computing medium thrust transfers with
small numbers of burns and some low-thrust transfers. In this domain, a new method for
increasing the number of burns in a transfer was developed and is based a new property
of the switching function. This new method was used to demonstrate that optimal orbit
transfers may have multiple solutions. Also, when using this method there is a rule-of-
thumb that may help compute the more efficient of the multiple solutions, thus, avoiding
the need to compute all possible transfers and comparing the cost directly. However,

there is no guarantee of a global minimum.

11.2.1. Application of Optimal Control

For this problem the choice of performance index is clear:

35Tigen, M.R., “A Hybrid Method for Computing Optimal Low-Thrust OTV
Trajectories,” Proceedings of the AAS Rocky Mountain Guidance Conference,
Colorado, 1994 (AAS 94-129).
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J=m(1,) (2.1)

where m(1p) represents the mass of the spacecraft including its fuel at the end of the orbit

transfer. The intention, then, is 1o maximize the performance index, viz, maximize the

mass at the end of the transfer.

The TPBVP is constructed using the necessary conditions in the usual manner.36
Include the steering direction vector constraint in the Hamiltonian, which can be defined

for the optimization problem as
H(x(1),T(1), e, (1), () = AT (x(1), T (1), e, (1)) + A, (e, 7 (e, (1) 1) (2:22)

2 2
H= }‘ Tv+k (_e ...H.r._{%“]zR [1\-5(%) j|}r (22b)
r

_1p e Pl ) T T
= SC )b """'—+11 ‘"1
2 - vy - 2., .(er €; )

from which the Euler-Lagrange equations are obtained as ODEs governing the Lagrange

multipliers
- oH Y A (Ar)r 10, B -s0-r) T
=] — = _—e Y e r=Te , ' (233)
A, (ar) u[r3 3 = 7 e SCov(A,¥)r
JRA, (ARe)r| a5 122 722 2z 0
—"L]2R rs -3 ? —_‘Uth —:I';"v-‘(}"v r) ~—r—-= 0
r 2 r r |
Toly
;i,' =-(§fi) =-A, += 1 Pe -80-n)e [A'V+M:l (2.3b)
ov m v

3¢Bryson, A.E. and Ho, Y.-C., Applied Optimal Control, New York: Hemisphere
Publishing Corporanon
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The next Euler-Lagrange equation is easily derived as

oH (T T
. = x(;x,'fe, +A,(e;Te, - 1)) = —”-17&,’ +24,e, =0 (2.4)

so that the necessary condition is satisfied if e, =4, /[A,| and 4, = (T]l,l)/(Zm); in other
words, the thrust direction is parallel to A,, which Lawden thus referred to as the pointer

vector. This choice is further supported by a sufficient condition; note that

oH
de,de,

T
= 22,1-;|x,11 >0 (2.5)

when A,

>0, T>0, and m finite. Also, note that if any one of these is violated during a

burn, the trajectory is immediately indeterminate. The choice for the Lagrange multiplier

A, has been made and does not need to be solved for.

The switching function is derived by an application of the maximum principle.
The thrust magnitude, which has bounds T, and 0, will give H its maximum value if it
is at its maximum value when Hy > 0 and at its minimum when Hy < 0. The switching

function is

A
H, = L.l - _.&z_. (2.6)
m gl,
and the switching law is
HT >0, T=T,,
H. <0, T=0 @7
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If Hy were to be zero for a finite time the control would be singular. Higher-order
derivatives of Hy would then be needed to calculate 7. In subsection IL.1,, it was noted
that this singular control has been investigated by many different researchers but no

conclusions are widely accepted as to when, or if, it will be part of the optimal control.

Many authors21.34.25.37 have identified the switching law, and associated

switching function, as a source of swong sensitivity in numerical solutions.

To complete the TPBVP, the methods of optimal control supply a set of natural

boundary conditions

).(r!)zi:af(i)(x(zo),x(z/),vo,v/)} (2.82)

T
oG
A1) = - 50 )(x(to),x(z]).vo,vj):l (2.8b)
where G is defined as

G(x(ro),x(t!),vo,v,) =m(t, )+ v,T[\y(x(t,))- aj]+ v,’[w(x(to)) - ao] (2.9)

and y(x) was defined in Equations (1.12). Therefore, the natural boundary conditions

can be expressed as

37Chuang, C.-H. and Goodson, T.D. “Optimal Trajectories of Low- and Medium- Thrust
Orbit Transfers with Drag and Oblateness,” Submirted 10 the Journal of the
Astronautical Sciences.
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Aulrr)=
where
. [r.] v - ()1 o

20

and the subscript "X" denotes the skew symmetric matrix representation of the cross

[-v.] {(v’v)l w4 -(—F’;lsﬁ(rﬂ - (rTr)I)jl

product.

The last condition deals with the final time. For free transfer time the

transversality condition must be satisfied

H( bu( )l ) =- 52 =0 o

11.2.2. BOUNDSCO
One method used here to solve the TPBVP is a modification of the multiple-point
shooting method. The specific algorithms are those given by H..J. Oberle in the

subroutine BOUNDSCO38, written in FORTRAN.

The state defined for the optimal control problem differs slightly from the state

used in BOUNDSCO. The state used in BOUNDSCO for numerical computation is

380berle, H. 1., “BOUNDSCO - Hinweise zur Benutzung des Mehrzielverfahrens fiir die
numerische Ldsung von Randwerproblemen mit Schaltbedingungen”, Hamburger
Beitrige zur Angewandten Mathematik, Berichte 6, 1987.
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2(7)=[x"(1) A7(7) 1, V] v,’]T

and includes a state denoting the transfer time, I, and the v, and v, vectors, from the
natural boundary conditions. BOUNDSCO does not allow user-defined parameters that
are determined in the iteration process, only functions of time; therefore, these last
quantities must be included in the state z and specified to have zero derivatives with
respect to ime. Also, BOUNDSCO is restricted to problems with a fixed partition of the
independent variable, therefore, the independent variable has been defined as 7€ [0,1]

with 1= 71,. This requires that the system dynamics be properly transformed to the

independent variable 7 so that

[x(1)] [x(1)]
., M1l | A(z)
-2; t/ = 0 Y!df
v, 0
[ Vs L O]

and these derivatives with respect to 1 are Egs. (1.9a)-(1.9¢) and (2.3a)-(2.3¢). If x had N
components, then the BOUNDSCO state, z, has 2N+2(N-2)+1 components.

BOUNDSCO addresses the switching function sensitivity problem by the explicit
inclusion of switching points in the problem formulation. The number of switching
points is not changed by BOUNDSCO. It iteratively drives the guessed switching points
to be zeros of the switching function, Eq. (2.6). The user must then decide in which
intervals to have the thrust on and in which to have thrust off. Unfortunately, with this
scheme the switching law, Eq. (2.7), may not be satisfied and must be checked after

BOUNDSCO claims convergence to a solution.
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I1.2.3. The Minimizing-Boundary-Condition Method

The second method used herein is called the Minimizing-Boundary-Condition
Method (MBCM)3°. MBCM is a modified shooting algorithm in which the switching
structure of the optimal control is implicit. The program checks the switching function
and the switching law to ensure that Eqgs. (2.6) and (2.7) are satisfied at each integration

step.

As a modification to the simple shooting method, MBCM, expands the set of
available solutions by removing one boundary condition while keeping the same number
of unknowns. The choice of this boundary condition is arbitrary. With the number of
unknowns unchanged, the solutions become a one-dimensional family. Since this givesa
much larger set of solutions, it is much easier to solve the resulting boundary-value
problem. Once that is accomplished, the search for the solution that incorporates the final
boundary conditions is treated as a minimization problem. The gradient is numerically
calculated and used to update the initial state until the last boundary conditon is satisfied.
This method is about as effective as BOUNDSCO in solving the two-point boundary-

value problems for the solved optimal orbit transfers.

I1.2.4. Example Two-Burn Extremal

A solution is presented in this subsection, obtained by both BOUNDSCO and
MBCM. It is nondimensionalized and assumes ideal gravity. The transfer is made
between two planar, aligned orbits. The solution’s trajectory is shown in Figure 2.1. The
transfer time has been optimized and is 19.05. The initial mass is 1.608. The initial

semimajor axis is 3.847 and eccentricity is 0.02378. The final orbit semimajor axis is 1.5

and eccentricity is 0.333. The product galsp is 1.313 and the thrust level is 0.03.

-

33Chuang, C.-H., and Speyer, J.L., “Periodic Optimal Hypersonic SCRAMjet Cruise,”
Optimal Control Applications and Methods, Vol. 8, 1987, pp. 231-242.
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Since initial altitude for the wansfer is 3.905, the initial T/W, is 0.2845 and the
transfer may be categorized as a medium thrust transfer by the definition stated earlier.
With the initial orbit higher than the final orbit, this transfer may be viewed as an optimal
descent ransfer. However, since atmospheric drag has not been considered, it should not
be viewed as an optimal de-orbiting ransfer, where the spacecraft would be intentionally

placed in an orbit low enough for drag to eventually destroy it.

Two burns are used to complete the transfer. Most of the change in energy occurs
in the longer second bumn, but most of the change in angular momentum occurs in the

first burn.

11.2.5. Example Three-Burn Extremal Considering Perturbation Effects

In this subsection, another example transfer is presented. This transfer was also
obtained with both BOUNDSCO and MBCM. However, this is a three-burn transfer
whose terminal orbits are not planar. The initial orbit has the same semimajor axis and
eccentricity as the transfer from Fig. 1 except now the orbit is inclined 20°, has a right
ascension of 13°, and an argument of perigee at 15°. The final orbit is also identical but
inclined 1° with 0° right ascension and an argument of perigee at 0°. The thrust level and
specific impulse are also the same. This solution includes oblateness effects but excludes
drag effects. For the computation of oblateness effects, Earth's value for J; (1082.61x10-

6) was used along with R,=0.9696. Since this transfer is intended to be about the earth,

r?=6578 km must be specified as it ensures the correct equatorial radius scaling.
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Figure 2.1 Two-Bumn Extremal Orbit Transfer Solution with Free Final Time.

The trajectory is shown in Figs. 2.2-2.3. This is a fixed transfer time transfer with
1,=28.75. Recall that this is a descent trajectory; the initial orbit is higher than the final
orbit. It is interesting to look at this transfer in terms of the normalized time, 7, the
energy, E, the angular momentum, A, the semimajor axis, g, the eccentricity, e, the right
ascension, £2, the argument of perigee, @, and inclination, i, for certain segments and
points on the trajectory. For the first burn Ar=0.3616, AE=-0.07760, and Ah=-0.6566.
The burn ends at what would be an orbit of a=2.409, €=0.5420, £2=8.320°, «=1.123°, and
i=1.665°. For the second burn A7=0.1450, AE=-0.1048, and Ah=-0.1310. The second
burn ends at what would be an orbit of a=1.601, =0.3742, £2=-1.073°, w=0.3892°, and
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i=1.202°, For the third burn A7=0.02420, AE=-0.02101, and Ah=-0.01865. The final
mass for this transfer is 1.1656, the initial mass was 1.527.  As a result of the oblateness
effects, this transfer has poorer performance than if it could be performed in ideal gravity,

where it’s final mass would be 1.1659.
If drag is considered in the trajectory, performance improves and the final mass is

1.1663. This is consistent with a descending transfer whose final orbit is rather Jow. The
altitude of perigee for the final orbit is 6578 km where drag needs to be considered,
thcréforc, atmospheric drag can be used to improve performance. Obviously, with the
consideration of atmospheric drag, this transfer could be considered as an optimal de-
orbiting transfer.

The loss in performance caused by the oblateness effect is expected. The terminal
orbits have their apses aligned; since the oblateness effect causes the line of nodes to
regress, the optimal thrust program must fight this effect to return the orientation to that
of the initial orbit. The improvement caused by drag is also expected for this is a
descending trajectory and drag encourages descending trajectories.

It is interesting to note that the change in right ascension was almost exactly
divided between the first two burns while the change in both inclination and argument of
perigee happened almost entirely in the first burn. The change in inclination can be most
dramatically seen in Fig. 2.3. The bumn at the top of the figure is the first bum. The next
two burns are difficult to distinguish but not very interesting from this vantage point. The
second coasting orbit, or transfer orbit, is quite similar to the final orbit; fittingly, the

third burn imparts the least energy of any of the burns.
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This example demonstrates the ability of these methods to obtain exact solutions
to the orbit transfer problem for nonplanar trajectories that include perturbing effects.

BOUNDSCO typically can obtain such trajectories within the desired tolerance if given
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the solution under ideal gravity as the initial guess. However, performance usually
becomes unacceptable if the number of burns was increased beyond six; this is an
empirical observation and by no means constitutes an absolute limitation of
BOUNDSCO. There may well be certain cases in which BOUNDSCO can compute
transfers with more than six burns quite easily; however, experience indicates that these

€ases arc upcommon.

3 Y
A very interesting property of the optimal control solution under ideal gravity is
that the initial and final values of the switching function are equal. Even more interesting
is that for the free transfer time problem they are both equal to zero at the initial and final

ames.

This property may be explained with the following theorem. In the following, C/°
denotes the set of i-dimensional vector functions that are continuous with respect to all
arguments, vector and/or scalar, and U denotes the set of piece-wise continuous scalar

functions with one scalar argument.

TheoremI1.1 : Given a bang-bang optimal control problem of the form:

J= }[L(x(f)»f) + M(x(e),1)u(r)]dr where L(x(1),r) € C and M(x(1),1) € C}

LA

and subject to the following:

X(r) = f(x(r).2)+ g{x(1),¥(2), 1 )u(r), x(r) e CL, v(1)e C2;

Upin SUWD) S U, u(r)eU;

vilx()= 0w, {x(ty))= 0. wi(x(0)) e 3w, (a1 )) e €5,
; and £, are free for optimization
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and satisfying the following assumptions:

@) L{x(8)1)= L{x(t;).r )
i) [Ov, (x(1))/ax (] (x(1).1) =, [a\yf(x(r))/&x(z)]f(x(r),t)= 0,
(idi) u(r)=u(1p=0

then, considering the usual optimal control formulation, introduction of the A(r)
functions, and the Hamiltonian H(x(1),v(0),u(n),A(1),r) function3é, the following
statements are tue:

(1) The switching function, S(x(¢),A(r).1)= A(t)Tg(x(r),v(t),z)-i» M(x(s),1), satisfies
S(x(5,).A(r)) = S(x(tf),i\(zf)) = -—L(x(xf),zf)/u(xf) if and only if
H(x(5;),¥(;)u(t;).A(1;).1,) = 0 and H(x(:/),v(tf),u(rf),l(tf), rf) =0.

(2) If the Hamiltonian is autonomous with 7; and #,fixed, then
S(x(r,-),?.(t‘))=S(x(:f),l(:f)) and

S(x(e ) 7o) = [0 ) oo o b2 o)) = Loy )) o)
Proof:

In the usual optimal control formulation, the boundary conditions at #; and 1,

result in the familiar natural boundary conditions on the Lagrange multipliers, written as

T
7»(1") ‘(N,/&X) V“ € Rn
T n
Meg)=(dvy/ox) vy eR
which involve the constant Lagrange multiplier vectors v; € R? and v /€ R where Ré

denotes the set of i-dimensional vectors with real-valued components. Now, consider the

dot product of A(r;) and A(ty) with vectors calledn; € R” and n; € R", respectively:
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l(fi)Tnx =-—v,~T(ani/8x)n1
A1) ny ==-v,™(3y /ax)n;

This shows that, at both the initial and final times, any vector in the null space of the

relevant constraint gradient matrix is perpendicular to the corresponding Lagrange

multiplier vector. Assumption (ii) indicates appropriate choices for n; and n, as

m, =f(x(z))
n, =1(x(,).1,)

With these choices, the Hamiltonian at either terminal time may be written in the

following form:

H(x(2),v(1)u(r),2(1),1) = [k(z)Tg(x(x),v(z),t) + M(x(z),r)]u(z)+ L{x(1).1)
Staternents (1) and (2) follow immediately. B

The theorem is useful because it leads to a method for finding time-optimal
extremals with additional upmay arcs when upn,;,=0. Although not attempted in this work, it

may also lead to a method for finding extremals with fewer ung; arcs.

Applied to the orbit wansfer problem with ideal gfavity and free transfer time,
condition (1) implies the switching function must be zero at the entry/exit points. A
similar condition was successfully used in the place of Egs. (2.10) by Brown, et. al.2! for
free transfer time problems in ideal gravity. In that work, however, the condition was

used as a boundary condition in order to reduce the number of variables in the problem.
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One may make more use of this property of equal switching function values than
a boundary condition; it can be used to help add burns, improving the performance of

extremnal orbit transfers as shall be seen in the following subsections.

11.3.1 Family of Extremals

Exploitation of the property described earlier by Theorem II.1, along with the
favorable performance of these indirect methods allowed the study of the characteristics
of families of solutions. Herein a family of solutions is defined as a set of solutions
whose transfer times and numbers of burns vary but whose terminal orbits do not. The
optimal terminal points will vary from solution to solution because they are free for

optimization.

Figure 2.4 displays a family of optimal transfers. Each data point in the figure
represents an extremal orbit transfer by its total transfer time and final mass. The
transfers are planar and the dynamics do not take drag or oblateness effects into account.

Furthermore, their terminal orbits are the same as for the transfer shown in Figure 2.1.

Though this family appears quite disjointed, it is actually quite connected. These
connections can be best seen by starting at the leftmost transfer (point (1) in Fig. 2.4) and
tracing solutions of increasing transfer ime. The solutions from point (1) to point (2) are
the original set of two-burn solutions, obtained via homotopy and a TPBVP solver

(BOUNDSCO and MBCM).

At point (1) the total burn time equals the transfer time; point (1) is a one-burn
solution. Point (2) represents a local optimum in transfer time; the Hamiltonian for point

(2) is zero and this satisfies the transversality condition.
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Figure 2.4 Plot of a Family of Optimal Transfers as Final Mass versus Transfer

Time

As a result of Theorem I1.1, the switching function at point (2) indicates the
existence of additional solutions. The situation is shown in Figure 2.5. Because of the
slope of HT and the fact that it is zero at both the initial and final times (from Theorem
I1.1), the transfer may be extended optimally by the addition of a coast arc at the
beginning and/or at the end of the transfer. This may seem trivial; one might observe that
coast arcs can always be added; however, this particular situation leads to the addition of
burns. Lawden’s solution!? to the costates on a coast arc shows that on such an arc with
a vanishing Hamiltonian the switching function is periodic. This means tha: the
switching function, once crossing zero, must return to zero. In other words, for an n burn
wransfer like that represented by Fig. 2.5, the periodicity of the coast arc switching
function hints at the existence of two different n+1-burn solutions and an n+2-burn

solution; each by different additions of coast arcs.

To optimally extend a transfer with coast arcs such that the switching function

will again vanish, it is required that the switching function at a terminal orbit both be
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equal to zero and have an appropriate sign for its slope: positive at the initial time and/or

negative at the final time. This situation can be seen in Figure 2.5 below, for the portion

of the switching function Jabeled *“Original Transfer.”
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Extending the Switching Function to Create More Optimal Transfers;
symbols @ and @ refer to points in Figure 2.4

One may observe that the process does not guarantee a new burn - only a new

coast arc. However, using numerical methods, one may discover that the bumn can be

lengthened.

Adding the coast arc is trivial; lengthening the burn arc is not. The following

burn-addition procedure worked well. To add a burn to an n-burn solution with optimal

transfer time that begins and ends with a burn arc: Append a coast arc to the solution at

the chosen time, initial or final, making sure that states and costates are continuous. This

is easily done by integrating forward from the final time or backward from the initial

time. At both ends of the new coast arc the switching function must be zero. Use this
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extended transfer as a guess for the numerical routine setup for an n+1-bumn problem with
a slighdy Jonger transfer ime. Finally, use homotopy to obtain an n+1-burn solution with

a longer transfer time.

For the guesses constructed in this reporn, the new coast arc was extended so that
the switching became positive for a finite time. Since the thrust was set to 7., for this
new interval, the boundary conditions were violated and the new arc was a non-optimal
burn because the natural boundary condition was violated. However, it was found that

this new burn aided in the convergence of iterations.

There are three options for creating the next transfer in the family: extend the
transfer to right, extend it to the left, or extend it in both directions. However, because of
numerical difficulties, this last option was not favored. First, consider extension to the
right. Physically, this corresponds to adding the new burn closer to the final orbit. The
resulting transfer is represented by point (6) in Figure 2.4. Starting with point (6),
solutions with longer transfer times were easily found but solutions with shorter transfer

times were not found at all.

Now consider the second option, extension to the left. Physically, this
corresponds to adding a burn near the initial orbit. The resulting transfer is represented
by point (3) of branch (3-4-5) in Figure 2.5. Numerical difficulty was discovered in
attemnpting to find a solution with a greater wransfer time than point (3); however,
solutions with Jower transfer times were found constituting branch (3-4-5). Additionally,
note that this branch, though a branch of optimal solutions, is unfavorable when
compared to branch (6-7) of the family. This example of multiplicity may be viewed as a
rearrangement of the burns in the trajectory. It has not been shown analytically, but there

is likely a connection to a similar result for non-optimal impulsive trajectories?®.
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By the above discussion, points (2) and (3) and (6) are, in fact, the same transfer.
The only difference between these transfers is the addition of a coast arc,>which makes no
difference in the performance associated with the transfer. This means that the branches
of the family are connected and these connections are as follows, with the ransfer time
increasing: (1) to (2) (which is identical to (6)) to (7); or (5) to (4) to (3) (which is
identical to (2)).

Figure 2.6 shows the switching function corresponding to the transfer represented
by point (7). Compare this to Figure 2.5. The situation is repeating itself; the terminal
switching points in Fig. 2.6 are close to zero. Clearly, one may attempt to expand this

family of transfers from point (7).
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0 0.2 04 06 0.8 1
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Figure 2.6 Switching Function of Transfer at Point 7 in Figure 2.5

I1.3.2 Multiple Solutions in the Family

Evidence of the existence of multiple solutions was found. For a specified
problem (including specification of the transfer time and the number of burns) there may
exist more than one extremal transfer. Such multiple solutions are represented by any

point on branch (3-4) and any point on branch (6-7) which have equal transfer times.
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Conditions for multiplicity are not clear, but it is clear that solutions are not necessarily
unique. It is also clear that one cannot say that just because the transfer time for one
solution is longer than another, the former has a greater final mass; although this is

typically an assumption made in the literature.

One cannot help but wonder why the solutions of branch (6-7) are more fuel-
conservative than those of branch (3-4). Both branches are extensions of branch (1-2),
but the difference is where the new burn is placed. When the bumn was placed near the
initial orbit, far from the attracting body, the branch was unfavorable. When the burn was
placed near the final orbit, close to the auracting body, the branch was favorable. A
principle often seen in impulsive trajectories seems to carry over in some form to finite
burn trajectories; it appears to be better to implement changes in velocity near the
atrracting body, where changes in velocity will produce large increases in the already
large kinetic energy, as opposed to far away from the attracting body, where kinetic

energy is lower.

Finally, it is clear that during the burn addition process, one may control the
placement of new burns. By tending to place new bumns closer to the attracting body,

undesirable solutions might be avoided.

The possibility of multiple solutions was recognized by Brusch4? for one-burn
low-thrust transfers originating from a circular orbit. Brusch also provides some
excellent analysis concerning this phenomenon. In this research, it was found that
multiple solutions exist for multiple-burn low-thrust transfers originating from an
elliptical orbit. That the phenomenon may occur for the more general case indicates that

there are likely many cases with multiple solutions.

40Brusch, R.G. and Vincent, T.L., “Low-Thrust, Minimum-Fuel, Orbital Transfers,”
Astronautica Acta, Vol. 16, pp. 65-74.
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IL4, Conclusions
In this section the indirect methods BOUNDSCO and MBCM have demonstrated
the ability to solve the optimal orbit transfer problem for small numbers of bumns and
small numbers of revolutions. Particular solutions have been presented in some detail.

These solutions demonstrate some effects of drag and oblateness on the optimal transfer.

A new method for adding burns to time-optimal orbit transfers has been
presented. This method is based on a newly observed property of the optimal switching
function and a proof has been given for this property. The method has proven its

practical utility by generating a family of solutions.

This family of solutions is a set of fixed-time optimal transfers with identical
terminal orbits and parameterized by transfer time. Using this family, some new
properties of optimal orbit transfers have been seen: multiple-burn transfers are not
necessarily unique, transfers with greater transfer time do not necessarily have greater
final mass, and local optima do not necessarily occur at transitions between N and N+1

burns when using homotopy to increase the transfer time.

Addressing the inclusion of orbit perturbations, neither BOUNDSCO nor MBCM

had difficulty obtaining solutions with atmospheric drag or oblateness terms.
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SECTION III

NEW METHODS FOR OPTIMIZING ORBIT
TRANSFERS

L1 Introduction
The bang-bang structure of the optimal orbit transfer solution is well-known. This
means the optimal transfer is made up of a series of individual interior transfers between
a sequence of orbits beginning with the specified initial orbit and ending with the desired
final orbit. However, the fact that these transfers are, individually, optimal transfers has
not yet been widely exploited. In this section, this notion is expressed concisely in a

mathematical sense and shown to be quite useful for numerical methods.

Two methods that originated with this notion are presented. First, the Patched
Method is a hybrid method with a greatly reduced number of parameters. In fact, not

only are the number of parameters reduced, but they are all free for optimization.

The Patched Method also takes advantage of another simple idea: any interior
one-burn transfer taken between two neighboring interior orbits of an N-burn transfer
should be easier to solve than the N-burn transfer as a whole. It then makes sense to
consider using the orbital elements of each intermediate transfer orbit as free parameters.
Given these parameters, the performance (final mass) is computed by solving each

individual one-burn problem in succession.

The Patched Method, however, pays for its robustness in speed. Therefore, it
seems to be most useful as a way of refining and developing initial guesses for the second

method, the Modified Patched Method (MPM). MPM is an indirect method; no variables
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are directly optimized. It enforces conditions necessary for the transfer to be an extremal
solution. MPM assumes a bang-bang structure; however, as in BOUNDSCO, the Paiched
Method, and many other methods found in the literature, MPM does not enforce
satisfaction of Pontryagin's Maximum Principle. For this problem, Pontryagin’s
Maximum Principle supplies the switching law as Eqs (2.6) and (2.7). These methods
only guarantee that the thrust will switch values at the zeros of the switching function,
Eq. (2.6); they do not guarantee that the polarity will be consistent with Eq. (2.7).

However, this turns out to be an easy condition to check after iterations converge.

A few reasonable and common assumptions are made in both methods. It is
assumed that the only forces on the spacecraft are ideal gravity and the thrust from the
rocket motor. The number of arcs of maximum thrust is assumed fixed; choosing the
number of burns is often desirable and makes the problem easier to solve. The first and
last arcs are assumed to be of maximum thrust; however, no generality is lost here under
the assumption of ideal gravity. Arcs of intermediate thrust are assumed not to exist in
the trajectory because numerical experience indicates that such arcs are rare if they exist
at all. It is assumed that no part of the trajectory will be rectilinear; in other words, the
angular momentum vector never vanishes. Rectilinear trajectories are unlikely to ever be
of interest in an orbit transfer problem and, if they are of interest, the implications of zero

angular momentum should motivate the development of specialized software.

111.2. The Patched Method

Usually, when a hybrid method is formulated the assumption is made that the
solution to this new problem is always a solution to the original problem. Intuitively, this
is often easy to accept. However, it is even more reassuring to prove whatever

equivalency exists between the original formulation and that used by the hybrid method.
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This subsection describes the architecture of the Patched Method, explaining how
it functions. Also, it is shown that necessary conditions from the traditional problem
statement are, in fact, equivalent to the necessary conditions which arise from the

optimization Joop of the Patched Method.

IOL2.1. Architecture of the Method

The architecture of the Patched Method is best described as an inner and an outer
loop. Given a choice of orbital elements, the inner loop solves each one-bum problem in
succession. Each one-burn transfer has its terminal points and transfer time free for
optimizaton. However, the result is a suboptimal transfer; it lacks the optimal choice of
intermediate transfer orbits. The choice of transfer orbits is made by the outer loop via

unconstrained minimization of the complete trajectory’s fuel consumption.

The method that has been chosen for the outer loop is the conjugate gradient
method. Since such methods tend to have better performance if they are supplied with an
analyucal gradient, such a gradient was formulated for this case; the formulation will be
presented in this section. The particular FORTRAN code is taken from a common .

referencedl,

The architecture of this method indicates a useful new paradigm for the orbit
transfer problem. One might think of the multiple-burn transfer optimization problem as

optimizing the fuel used by choice of the intermediate transfer orbits, expressed as

N i (3.1
given oy, 0y,m,,c,T; min zfﬁ(a.--pa.:T»C:mo"C}:I,(,»-l)]

a,, i=] N=1 = j=l

41Press, W.H., et al. Numerical Recipes: the Ar1 of Scientific Computing, New York:
Cambridge University Press, 1989.
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where 1,,=0 and tﬁ(a,,,,a,.T.m,) shall be called the transfer time function which

computes the optimal transfer time for the orbit transfer problem defined by the initial
orbital elements a,_,, the final orbital elements a,, the thrust level T, the initial mass m,
and the fuel consumption rate ¢. In (3.1), the value for the initial mass of each burn is
calculated knowing the transfer times for the burns before, giving an unconstrained
minimization problem; alternatively this could have been expressed as a constraint on the

minimization.

In this section it will be proven that certain conditions necessary to solve (3.1) are
equivalent to certain conditions necessary to solve the orbit transfer fuel-optimization
problem, under certain assumptions. It will be seen that the restrictions imposed are few
and quite practical; however, it is not claimed that the two problems themselves are
equivalent; this may or may not be true. Nevertheless, this paradigm has certain
advantages. The problem expressed in (3.1) is a parameter optimization problem. If an
expression for the transfer time function were available, this would quite likely be easier

to solve than the TPBVP.

Unfortunately, there are no analytical expressions or approximations for the
transfer time function. The Patched Method must compute it numerically in the inner
loop. The inner loop uses both Direct Collocation with Nonlinear Programming
(DCNLP) and multiple-shooting to solve the one-burn transfer. Each time the optimal
solution for a one-bumn trajectory is required, either method may be used. For the first
iteration, the choice is up to the user. If DCNLP is requested, the solution is found for a
high tolerance. Once this tolerance is achieved, a multiple-shooting guess is constructed.
Multiple-shooting is then used to reduce the error to the desired, lower, tolerance. If
muhiple-shoéting was requested as the initial method and it fails, a DCNLP guess is

constructed and DCNLP is attempted. If DCNLP is successful, then muldple-shooting is
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used again. This structure was chosen because it was found that DCNLP was typically
much 100 slow to use with each outer-loop iteration but multiple-shooting typically could
not converge rough guesses. The failure of multiple-shooting typically occurred with the
first iteration if the initial guess for the transfer was poor or the failure would occur if the

outer Joop took 100 large a step.

I11.2.2. Using Direct Method Solutions as Guesses for Indirect Methods

At this point, the question of converting the solution from a direct method to the
guess for an indirect method arises (the inverse process is trivial because the solution
obtained by an indirect method inherently contains more information). The adjoined

performance index for the jth of N one-burn problems (j=1,...,.N) is

J,=m, (n ) + v;,-,T[\v(x/ (0)) - a;-:]"' Vz,T[W(X,-(f,, )) _ a:] (3.2)

+¢7[m,0)- 5,]-1- 'Ilf(r)[f(x,(t),e,j(t))- i}(r)]dz

where x;(1) is the state, u;(1) is the control, ) is the free final time (the initial time is fixed

at 0), ;.7 and @; are the initial and final boundary parameters, y;(x) and y2(x) are the

boundary constraint vector functions, m;(z) is the spacecraft mass,f(xl(r),ez,(r)) is the
state dynamics, and m;(1)) is the performance index to be maximized. The parameter f3, is

fixed while solving each one-burn; its value is equal to initial mass constraint (m,) or the

final mass of the prcviohs burn:

B = m/—x(’/(,-})) . (3.3)

The discretized version for the same problem, divided into M nodes indexed by i

and designed for a direct method, follows:
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.7;‘ =7, + nz;-IT[C1(y;.l)° a/-‘] + nz/T[gz(yf'”)— a’] (3.4)

M
+U/T [Fn'“ - ﬁ;] + ,2,:, H,JTA,(_V},, ,(1)',,,)

where y; is the state, @ is the control, {;(y) and {3(v) are the boundary constraint
functions, A(y;, ) are integration constraints, i ; is the spacecraft mass, and 7; y is
the performance index to be maximized Assignment of f3;, in this case, is similar to Eqn.

(3.3) as follows:

ﬁ/ = ?n.;—l.M (3.9

Since, for any 1<k<M, both formulatons solve the same problem with j=k, one
can assume that J, = J, for any choice of &, and 0., withm,_, = m/_x(r/()._,)), then
a5, o1, &, o o7

; ; ; i T :
P , - ,and - . The implications of this are
aa j aa/ aa}#l aa/ﬁl 3"1)'1(1/()'-1)) a'—ﬁl'l.M

/
best seen in the first-order changes for both performance indices:

&= 6m (1)
V5 [Wia (%,(0))8%,(0) - 8]
+Vz,T[Wz,(X,-(f,))ax,-(f,)" &'x/]
+¢;[6m,(0)- 58, ]
H{ e 1 e
+][A(x, (0,01, 0)6%,0)

+H, (%), e, (0). %, (1)) ey, ()= 2T, (1) Jar

(3.6)
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&, = om
#1017 [8 (v,4)05,, - Ba ,_,]
+, [cz,( )88, = 80,
+0, [ /3]

M
T , , T
"’2“,,;‘ 4, .(.‘,,ww,.i 3',',.‘"’2“,’.; A, (yj',.,w“)éw,,
in} ” i=} »

(3.7)

Knowing the solutions for both optimal control problems, one can substitute for the state
and contro] of the local extremals into Egs. (3.6)-(3.7), respectively. The resuliing

equations are simply:

8. = —vzj_,T Sa, - vzj'réa} - 5175,61 (3.8)

J

5.7! = 'ﬂz,‘—zT&“j-x 'ﬂz,’T&l, - U,'T‘Sﬁ, (3.9)

It is now quite clear that since the gradients were surmised to be approximately equal,

then vy, 1=N2;.1, V27=N2;, and §J=O:,.

A simple approach to converting a solution obtained with a direct method into an
appropriate guess for an indirect method is now clear. One may use a direct method to
compute T, M,,,» and 0O,; then use Eq. (2.8b) to obtain an approximation of the
costates at the initial ime. Knowing the states and the costates at the initial time,
obtaining an approximate time history merely requires the solution of an initial value

problem.

II1.2.3. Gradient of the Cost Function
For this application, the gradient of the cost is required. The cost for the entire

transfer 1s



Joveran = th—' [mn(ff'v) m(O)] (3.10)

1=

where the mass at the end of the jth burn is a function of &;, @;.;, and m;.;. This is
obviously equivalent expression to (3.1). Omitting some simple steps of calculus and

algebra, the gradient of the cost functional J,..ra1, may easily be written as

oJ = ~8.1,, ﬁ amn!(f/(ju)) am..l(r,u.;)) 8M,.,( /(,.1)) 8m,(rﬁ) el N2
aa T LR} aml (Il) aa. am' (tﬁ) aa‘ ) beesy
3.11)

ol _ =&l ﬁm,\.(tﬁ)_ omy(ty) L (.
day,, T | da,, amh,_l(z A ) da

J{N=1) L8

Equations (3.11) are not yet sufficient to implement the Patched Method.
Expressions for evaluating the terms in Egs. (3.11) are required. To begin, note that m; is

the performance index of the jth bumm. Referring back to Eq. (3.8), one observes that

BJ}. - am/(‘ﬁ) -y T 312
e = Jo, ==V, (3.122)
oJ. omlt
Ja, a;(a,ﬁ) =-v,/ (3.12)
oJ am}(rﬁ)
= ==¢; 3.12
9/3,' c.7‘mj_1 (’,{(;‘-1)) ! ( <)

so that Eqgs. (3.11) can be restated as

J [
'(‘9—5‘ = g%{n(“gm)][vxur + §i¢1v2iT]’ i=1..,N=2

i j=i%)
o gl . (3.13)
a,aN-l =T[VZN’1 6wV 2(N-1) ] -
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Which, simply, gives the gradient of the overall cost function in terms of the Lagrange
multipliers from each respective one-burn problem. It is interesting 10 note that zeroing
this gradient supplies simple relations between the Lagrange multipliers associated with
the beginning of one burn to those associated with the termination of the previous burn.
11 is the "patching” together of optimal burns implied by these relations that inspired the

name of the Patched Meithod.

111.2.4. An Equivalent Set of Necessary Conditions
The following results will prove useful to showing the practicality of the Patched

Method conditions and, later, the practcality of the Modified Patched Method conditions:

Lemma II.1: If the matrix I € R™"™** yields rank(I') = n =1 and satisfies

I'f=0, f e R” while f satisfies A'f=0, AeR” and f'f # 0,
then A may be expressed as A=T"v where ve R,

Proof:
If rank(T)=n-1,TT=0, and f'f # 0, then f is in the null space of T and it is

obvious that rank([I’T f]) = n. This in turn implies that there exists a ve R*/ and B eR

such that
\’
n=[r r[ }
o)
Now, ATf=0 = VIIT+81f=0 = Bi'f=0 = B=0. [ |

Lemma II1.2: Consider the following system of ordinary differential equadons:

@) ~5—1x(1)= f(r)
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(ii) %A(r):-[é%f(x(r))] A

and a martrix function I'(x), if%l‘(x(r))-{-]‘g"-f(x(t)):(), then the vector
function A(r) = l"(x(t))Tv is a solution to the differential equation (ii).

Proof:
To show that a function is a solution to (ii), it suffices to substitute the function

into both sides of (ii) and show that equality holds.

LHS= %(I‘(x(r))Tv)

[-g- I‘(x(x))]Tv
RH.S= —[-éax——f(x(t))Tl"(x(r))Tv

The left hand side will equal the right hand side if -‘%I‘(x(x)) + I‘% f(x(r))=0. |

The following definitions are precursors to a theorem that will prove the
equivalence between necessary conditions for the Patched Method, which will be
expressed in the definition of conditions {I7}, and necessary conditions derived from the
usual application of optimal control theory, which will be expressed in the definition of
conditions {I}. The specific problem formulation for which such conditions are

equivalent will be defined as {P}.

In what follows, C? denotes the set of i-dimensional vector functions that are
continuous with respect to all arguments, vector and/or scalar, and U denotes the set of

piece-wise continuous scalar functions with one scalar argument.
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Definition: The optimal control problem (P} is of the form:

minimize J = y(z,) subject 1o the following constraints:

x(1) = f(x(1))+ g(3(). v(n))ulr), x(r) € C°, v(1)e C;
¥(1)=cu(r), y(1)e &}
0 S u(t) S Upgy ,ut)eU

w(x(zo))-u, =0, w(x(z,))—a, =0, y(x(1))eCy, ;
Y(1)=Yo

Ir is free for optimization, 1, is fixed

and satisfying the following assumptions:

ox
(i1) u(1)#0, u(1p=0, and the number of arcs with u=u,,,, is N
(i) g(x(#),(2),v(7)) is not linear in v()

O] 22x0) Jtst) =0

(iv) the solution only contains arcs with u=0 or u=upmax ;

(v) rarzk(aw (x(r))) =n-1;

ox
(vi) [%gx- (x(x))+§;w(x(z))§-f(x(z)))= 0 when x(r) = f(x(r))

vii) T (x(0))f(x(1)) = 0 V1 e [10,1,]

Consider the usual optimal control formulation, introduction of the Lagrange
muliplier functions i(t), the Hamiltonian H(x(z),y(r),v(r),u(t),i(z)) function, and the

following partition of 4(r)

48



Definition: For optimal control problem {P}, the conditions {7} are

H{x(1),y(), ¥ (). u(r), A1) = A, () £(x(2)) (3.14)
1,70 o) V(1) + Ak, (Out) = 0

23.0)= -[gx-f(x(z))]Ti, (1 (3.15)
g;i,(z)-:-i,(r){%g(y(:),v(r))}u(:) (3.16)

A, (r)T[% g(x(1), V(t))] =0 (3.17)

uly)- |2t ))]To, (3.18)

6= 260)] . 319

Afr)=1 (3.20)

A (0) g ) ¥(5,))+ €A (1) =0, i=1,.. 2N -1) (3.21)

These are the transversality condition, Eq. (3.14); the Euler-Lagrange differential
equations, Egs. (3.15)-(3.17); the natural boundary conditions, Eqgs. (3.18)-(3.20); and
that the switching function vanishes at the switching points, Eq. (3.21). Itis also required
by conditions {I] that the control u(r) switch values across each switching point, in a

pattern consistent with assumption (ii).

Definition: For optimal control problem {P}, the conditions (I} are
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H(x(0).y().¥1u(n).A, (:)) =4, ()7 1(x(1))

+ [ih(t)'rg(y(z),v(t))+ ci,,(:)]u(z) =0

a5 ()=-h .(1)7[55)—3

A,

()= (1) = (1)
u(r)=0, 1€ [t,,.f.u]

\

ii,,(z):-[%r(x(x))] A1)

(y(r).\’(t))]u(t)

v

J

(3.22)

(3.23)
(3.24)

(3.25)

(3.26)
(3.27)
(3.28)

(3.29)
(3.30)

(3.31)

where Egs. (3.22)-(3.26) are defined for? € [t,,:f,] and the following parition is

defined

i ()= [in(‘)] A (nect i mec

?:’1(1)
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All conditions in {17} are defined for i=1...N except Egs. (3.30)-(3.31) which are
only defined for i=1..N-1. Finally, r;=1, is assigned and the value for 7/is seen to

be 1.
Theorem I11.1: If and only if

{x(z), y(z),v(z),u(z),i(:)l te [to,t,]},ii,,\",,r,,{rn[ i=1..2(N-1)} (332

satisfies {7} then

{x(r),y(z),v(x),u(z){ te [zl,tﬁ]},{(?—\,(t), te [r‘,tﬁ]),z‘,tﬁ,\'zm..\'fﬁl i= 1,...N} (3.33)

satisfies {IJ}, assuming that the consraints and assumptions from {P} are
satisfied.

Proof:
It will be shown, for both the necessary and sufficient parts of the theorem, that if

one condition holds, then a construction may be made such that the other is satisfied.

Assume that (3.32) satisfies {I}. A solution to {II} will be constructed from
(3.32) going backwards in time. For the last u=u,, ., arc, wherer € [z,v,rm], define

Va=V, (3.34)
In=10n0 (3.35)
Ae()= A1), 1€]tytp] (3.36)

These definitions allow Egs. (3.14)-(3.18) and Eq. (3.20) to imply satisfaction of Egs.
(3.22)-(3.26), (3.28), and (3.29) for € 1,1,y ] and i=N. Eq. (3.21) for i=2(N-1) specifies

that the switching function is zero at the beginning of this interval, where r=1y.

Therefore, satisfaction of Eq. (3.22) for i=N clearly implies thatA,,7(r, ) f(x(1y)) = 0.

Considering this result, Lemma IIL.1 with T{x(z, )) = %(x(rh,)) and assumptions (i), (v),
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and (vii), implies that there exists a ~V,, € R*” such that Eq. (3.27) is satisfied for i=N.
This completes the definitions for the final u=u,,,, arc.
Consider the next interval, where :e[tm_”,:ﬁ], the definitions will now be

extended into this interval. Define tgy ;)=f;on.3) The conditions {1} specify that u(1)=0
for ¢ in this interval. This implies that Eqs. (3.31) with i=N-1 are consistent with the

switching structure of {I}. Define

- -

Aa(r)=2,01) 1€ [’p’~1v'h‘]

With this definition and that Eq. (3.27) is satisfied for i=N, Lemma IIl.2 with
I(x(1))= %(x(z)) and assumption (vi) implies that the Lagrange multipliers satisfy

ix(’/uv-a)):[o;.\;’( (1 v ))}[ Vo] = A (tanes)

)=“‘—1—‘79~ then implies that Eq. (3.30) for i=N-1 is satisfied.
)')(Ih')

The construction for the last u=0 arc is complete.

The definition v,

Define
Inay = Lanegy
1
Ana()= I_) t)» Ie Ih‘—l*’/(h‘-x)]

Note that this definition implies satisfaction of (3.29) for i=N-1 because

-

1,(’;~')=3:,(’,(~-1))- This also makes satisfaction of Eq. (3.30) for i=N-1 imply

satisfaction of (3.28) for i=N-1. After establishing these constructions, the arguments for

the previous u=u,,,, and u=0 arc may be repeated. With each repeat, the construction is
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made with scaling by an even earlier value from i’(r) in the following sequence

i,(r, ).i=N,...2. Such repetition may be continued until the beginning of the first burn

is reached. At this point, the definition

- 1 .
vol = —’——vo
A)(IZ)
implies satisfaction of (3.27) with i=] and completes the proof of the “if”’ part of the

theorem.

Assume that (3.33) satisfies {I1}. The construction of the solution to {I} will

proceed backwards in time. Consider the last u=u,,,, arc, wherer € [z,',,tﬂ\.]. Define

-~

Vy=Voy

Lan-1) = In

-

XOEYNORTIINN

For 1e [r,,,r,,,.] and i=N, this construction lets Egs. (3.22)-(3.26) and (3.28) and (3.29)

imply satisfaction of Egs. (3.18) and (3.20) at the final point and Egs. (3.14)-(3.17)
during the interval. Now, it is obvious that satisfaction of Egs. (3.14) and (3.27) with i=¥
in this interval under assumption (i) implies that Eq. (3.21) is satisfied for i=2(N-1); in

other words ¢,, ., is a switching point. This completes the construction for the last

=l AIC.

The definitions will now be extended into the interval [1yy.;;2v]. With Eqgs.
(3.31), the conditions {17} specify that u(r)=0 for in this interval. Define 1yon 3=t15.1).
This implies that Egs. (3.31) are consistent with this switching structure of {I} up to and

including this interval. Now define
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A (1)= [%(x(r))f[—m]

for all 1 in this interval. Knowing u(r)=0 and that Egs. (3.31) are satisfied in this interval,

EW

Lemma I11.2 with assumption (vi) and T(x(:))=§(x(l)) implies satisfaction of Eq.

(3.15) in this interval. Define

i,(!)z;:yh'(’h‘)

for all 1 in this interval. Knowing u(r)=0, this immediately implies satisfaction of Eq.
(3.16) in the interval. Finally, since Eq. (3.14) was satisfied in the previous interval, Egs.

(3.15)-(3.16) are satisfied continuously from r=1, to any point in the current interval, and
since the control switched values at a switching point, then Eq. (3.14) is satisfied in this

interval. This completes the construction for the last u=0 arc.

Define 155v4)=tn.;. Consider the interval [1y. ).ty 1)]- Conditions {IT} specify
that this is a u=u,,, interval which, by the definitions, is consistent with the switching

structure of {I}. Define

P (8)= 2 (1 )R ey (1)

2, (1) = 2 (0 )A (1)
in this interval. Equations (3.22) and (3.28) with i=N-1 imply that £y ;) is a switching
point. Considering the definitions, Eq. (3.28) with i=N-1 and Eq. (3.30) with i=N-2

obviously imply continuity of the Lagrange multipliers ?1,(:) across the switching point

In.1)> continuity of ):y(l) across this point is immediately implied by the definition.

Therefore, Eqs (3.15) and (3.16) are Eatisﬂcd across the switching point.
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The previous arguments for the final u=u,, and u=0 arcs may be repeated,
implying satisfaction of the conditons in {I} for each interval. After repeating the
arguments and reaching the beginning of the trajectory, the following definitions will

have been made and are presented for the sake of clarity:

f.,(t)=[fli,j(zl)][%(x(:))y[-ﬁﬂ], IE[II(‘._,),I‘-], i=2,..N-1

Jmid]

- N

Z,(z)=[nlﬂ(z!)], re[t,(‘_,),z,], i=2,.N-1
FLIE

jmiel

Aln) = [fl’in(’, )}i‘(:), te [t,,tﬁ], i=1,..N=-1

Finally, for the first u=u,,,, interval, one more definition is required. The definition

= T

forces satisfactdon of Eq. (3.27) with i=1 to imply satisfaction of Eq. (3.19). |

The theorem does not assure satisfaction of Pontryagin’s Minimum Principle.

This principle requires that

u(t)=0 when &, (z)’g(y(:),v(r))+ci,(r) >0
u(t)=u_, when ?1,‘(:)T g(y(r).v(r))+ ci,(r) <0

(3.37)

It should be noted that in the application of the Patched Method to the optimal
orbit transfer problem, a second-order condition was taken into account. Lawden's

pointer vector theory is a second-order condition and is explicitly specified. Also, note
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that this condition was determined considering the maximization problem instead of the

equivalent minimization problem.

To epply Theorem III.1 to the orbit transfer optimization problem, the
assumptions of the theorem must be satisfied. Assumptions (i), (iii), and (vii) are
obviously satisfied. There may still be debate over assumption (iv), however, based on

numerical experience, orbit transfers that violate (iv) are rare if they exist at all.

Assumption (ii) is made in anticipation of the ideal gravity assumption. In sucha
case, coasting before the first burn contributes zero cost and coasting after the final burn
contributes zero cost. It therefore makes no sense to allow such arcs as part of the
trajectory to be calculated. If an initial and/or final coast arc is desired, it may be added

to the computed trajectory without affecting optimality.

Rectilinear orbits will be explicitly excluded from candidate orbit transfer
trajectories. Such orbits intersect the center of gravitation and are, therefore, rarely of
interest for the orbit transfer problem. With this exclusion made, assumptions (v) and

(vi) may now be shown true for the orbit transfer optimization problem.

It is desired that if A =|r x v|= 0, then the vector function

r rxv
\V(x)=‘¥([ D=[st5 0., vx(rxv)~ E_rleC

v Jrr
yields rank[-‘zw-éx@)=5. Note that this formulation for y(x) calculates the angular

momenturn and eccentricity vectors, then removes the third component of the eccentricity

vector. y(x) as defined above yields

56



[-v.] [r.]
oy(x) _
x [Tses 0] {(v’v)l -wT+ -—————Tu — (rrT - (rTr)I)J [erT =(rTv)1- vrT]

l"l')

where the subscript "X" denotes the skew symmetric matrix representation of the cross

oy(x(1))

3 )=5 is desired. The task is simplified by the
X

product. The result, rank(

following simple manipulation

[-v.) [r.]
W(X(I)) 13:3 03-3
o =[Lsus 05"’][ v, I ] -——n-'u r.r [rvT-vrT]
X Ix3 (r'rr) X' X

which makes use of the identity ayb, =ba” —(a"b)I. This, in combination with

I 0
rank[[ls-s 05:1][ ::3 13”:’): 5
X 3Ix3

implies

[-v.] [r.]

rank(&wg‘(r))J=”‘i" 5, rank [ 7] . "x"x} [rVT-—\'l‘T]

(r'r)

It is most convenient to consider, without loss of generality, the following rotation of

vectors r and v into the X-Y plane via an orthonormal matrix W defined such that

x u
Wr=|y| and Wy={v
0 0
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It is easy to show that this rotation does not affect rank(awg‘({))} Substitution reveals
that, after rotation,
(T O 0 -v 0 0 yM
, 0 0 u 0 0 -x
[-v.] [r.]
' . v -u 0 3y x 0
ran = ran
[-(—rr—f)-;-z-rxrx} [T = vrT] -y gxy 0 0 -k O
ox =-gx* 0 h 0 O
\L O 0 0 0 0 0
where h=xv-yu andg = -(-7—#)-5—2 It can be shown that
rr
T 0 0 —-v 0 y7)
0 0 u -x
det!| v -u 0 0 ||=-gxk®
- g 0 -k O
lexy -g2 0 0 0]
(T 0 0 -v 0 37
0 0 u 0 -x
derf| v. -u 0 y 0 ||=gyH
-’ g 0 0 0
ey -2x* 0 h 0]

!
so that as long as A=0, 8\4}‘(;;( ) has 2 nonzero minor of order 5. In other words, as long
oy (x(1))

as the orbit is not rectilinear, rank[-————-]: 5.

ox

Now, for assumption (vi) it must be shown that if the vector function f(x) is
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(-

and y(x) is as already defined, then when —da-;-x(:)= f(x(r)),

(&2 y(xt0)+ SV ZA(x() ) =0

It is easy to show that

5 (0] (1]
5;r(x)= {_ B j+3 Tu” rr'rjl (0]
('r)

(r'rr)B'2

Note that the time notation has been dropped for convenience. Evaluating

[@;—%ﬁ][j%f(x)] gives

pe] 0 M, M
‘;.,;W(X)gf(x) =[I,,, Om][M: Mlzj where
M, =-v,
M, = Tﬂ 77X
(v'r)

M, =(vIvI-w' + --—--‘-1--5-,-:-(rr-r -(r'r)1)

(r'r)

M, = )22 - )

(F'r)"

. o .0
Next, the time derivative of each term in — y/(x) can be expressed as:
X

0
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Z(v,)=- (r,‘:)l,,z r,
Z(r.)=v.
;("T‘)="2F§)ﬁ“7
V)= )

With these expressions it can easily be shown that

E};W.(X(I))‘* axW(x(f))axf(x(f)) 0

This is more than just satisfaction of a simple condition that proves useful to the theorem.
In fact, this shows that Eq. (2.12) is the solution of the ODEs for the Lagrange
mulupliers, Egs. (2.3a-c), when the Hamiltonian vanishes and ideal gravity is assumed.
As reviewed earlier, many previous research efforts have focused on obtaining such

solutions, but the form found herein is different from those.

II1.2.5. Solution using the Paiched Method with Eleven Burns

The plots below represent the current capability of the Patched Method. The

eleven-burn solution represented by these plots has a larger number of bumns than
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obtained BOUNDSCO or MBCM, in this study. Few solutions, if any, with this number
of burns have been obtained in the literature. However, the Modified Patched Method,
introduced in the next subsection, has produced solution with even larger numbers of

bums.

Also indicative of the Patched Method, the convergence tolerance for the outer

loop was set relatively high, 10-3, to prevent prohibitively long computation times.

For this example, the thrust level is 0.09698, the product g/, is 0.3929, the initial
mass is 10. The initial orbit is circular with a radius of 1; the final orbit has an
eccentricity of 0.398 and a final semimajor axis of 1.708. With this information the value
of T/W, for this wansfer is cafculatcd to be 0.009698, placing it in the low-thrust transfer

range.

Figure 3.1 is a plot the transfer orbit elements, viz. angular momentum,
eccentricity vector x-component, and eccentricity vector y-component, versus transfer
orbit number. The shape of the angular momentum and eccentricity x-component curves
seem 1o indicate a second order polynomial fit could be used to reduce the number of
variables in the problem. The eccentricity y-component is always small in this mansfer;
suggesting that it could be assumed zero or, more generally, the same parameterization
may be used. The zeroth orbit is the fixed initial orbit and the eleventh orbit is the fixed

final orbit.
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Figure 3.1 Orbital Elements of Each Transfer Orbit of Eleven Burn Solution

Figure 3.2 shows the angular position of the initial orbit exit point and final orbi:
entry point of each versus the index enumerating which transfer orbit the burn ends at.
The symmetry of this plot is somewhat surprising. Even though each transfer orbit has its
apse roughly aligned with the x-axis, each pair of angular positions are not reflected
about the x-axis. The trend over time is almost exactly opposite between the two
positions, but note that the values are not quite the negatives of each other. Also, it is

clear that each burn of this transfer are perigee burns; each occurring around perigee.
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Figure 3.2 Orbit Transfer Terminal Points Indexed by Ending Orbit

Another interesting wend is found in Fig. 3.3, showing the bumn length versus the
same index as before. The burn length decreases monotonically with each successive
burn, but does not decrease linearly. One can, of course, observe a relationship in the
trend of burn length and angular positions from Figure 3.2. Both plots have a sharp
change at the third burn which holds till the fourth burn and then returns to follow the
trend from the first two. The irregular trend for this burn is attributed to the high

tolerance given for the convergence criteria.
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Figure 3.3 Transfer Time Indexed by Ending Orbit for the Eleven Burn Solution
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1.3, The Modified Patched Method (MPM
The Relaxed Patched Method is tailored to the orbit transfer optimization problem
through known relations concerning the behavior of states and costates at different points
along the trajectory. The concept central to these relations is that each burn of a multiple-
burn orbit transfer qualifies as an optimal transfer between its own local terminal orbits.

This method uses an algorithm similar to shooting methods.

This method puts forth an algorithm for computing problem constraints given the
values of the problem variables. The number of variables and constraints are equal.
Also, the method can be used with any multi-dimensional root-finding algorithm. The
discussion below describes the variables and computation of the constraints for a two-

burn trajectory.



In the following description of the variables and constraints, the vector

r=[T A,T]T is used instead of the more common [A,” A, 1,,]T so that 4, can be
discussed separately.

The arc between points #1 and #2 is assumed to be an arc of maximum thrust.
Referring 1o Fig. 3.4, the variables at #] are the initial true anomaly, €,; the first burn
length, 15, and, the vector of constant Lagrange multipliers for the start of the first burn,

v,. The only constraint associated with point #1 is for v; to have unity magnitude.

final orbit

initial orbit

#1

Figure 3.4 Diagram Ilustrating the Layout of a Two-Burmn Transfer

Knowing the true anomaly, 6, and the rest of the orbital elements, a, state, x(¢)

may be calculated with the function X(6,;a). Therefore, the Lagrange muldpliers, A(t;),

and the state, x(z;), at the initial orbit exit point may be computed using

x(r,)=%(6,;a,) (3.38)
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Ar)= [%i’- (x(z, ))T v, (3.39)

Where y(x) is a function that calculates the orbital elements & given the state x. The
Lagrange multipliers, K(rﬂ), and final state of the first burn, x(1y,), are calculated by

numerical integration of the Euler-Lagrange and state differential equations.

The vector variables @, and v, are associated with point #2. These are used to

evaluate the constraints at point #2 as
\y(x(tﬂ)) =qQ (3.40)
T
l(zﬂ:[%(x(zﬂ)] v, (3.41)

The trajectory between points #2 and #3 is assumed to be an arc of null thrust.

The variables 6, the initial true anomaly for the second bum, and 1, the second burn

length, are associated with point #3. With these values, the Lagrange muldpliers and the

state may be calculated, much as before, with

x(,)=x(6,,0,) (3.42)

A1) = [%(x(z,)):r v, (3.43)

Using the integration results from the first burn and Eq. (3.43), the following constraint is

evaluated at point #3

()| = 2 (20 ) (3.44)
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The arc between points #3 and #4 is assumed to be of maximum thrust. The
variables 8,, @, and v,, specified at points #2 and #3 enable the calculation of the
Lagrange multipliers, k(tﬁ), and final state, X(1p), in the same manner as the previous
burn - numerically integrating from 1, to f;; with the initial conditions Eqs. (3.42) and

(3.43).

The two-burn trajectory ends at point #4. The constant Lagrange multiplier vector

vy is associated with this point. The constraints evaluated at point #4 are
v(x(t,)) =0, (3.45)

l(x,z) = [%(x(tﬂ)):}.rv, (3.46)

These constraints complete the system.
With the discussion of the formulation for a two-burn trajectory concluded, the
formulation for a more general problem is clear. For an N-bumn trajectory with ¢, Q.

my T, 8, and I, specified, the variables are

{afi=1. .N-1}{6,1li=1,. N}{vli=1..N+1]} (3.47)
By use of which, the following quantities are calculated

x(1,)=%(6;a,,);i=1..N (3.48)

A(L)= [%’-(x(:‘.))yv‘; i=1,...N (3.49)
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| x(t,)=x(1,)+ 'ff(x(t))+—Lv(t)dt ‘ (3.50)
g Yo m(1)
" T
?.(tﬁ)= An)+ j[—% (x(z))] Aln)d (3.51)
J h A (1) »i=1,...N
where v(1)= ——= (3.52)
W= )
T i
La»nd m(f)=mo— ] (!-I/]')‘le(lﬁ"f,)} le[rntﬁ]J (3.53)
ofsp -
The constraints that must be then evaluated and satisfied are
vi|=1 (3.54)
v(x(r,))=ai=1..N (3.55)
v T
k(rﬁ):[-a;(x(rﬁ))] Vo i=1..N (3.56)
(=) =1 N =1 (3.57)

This gives a total of 2N(M+1) variables and the same number of constraints, where M is
the number of orbital elements. For nonplanar transfers M=35 but for planar wransfers, it is

more efficient to rotate the coordinate system so that M=3.

In summary, the Modified Patched Method executes the following procedure for
the ith burm, i=1...N, of an N-burn transfer. Given the current iterates 6;, &, ;, and v,,
(note, however, that o is not an iterate but a specified constant) calculate x(z;) and A(r))
with Eqs (3.48)-(3.49). If i=1, evaluate the scaling constraint, Eq. (3.54). Given #;, and
the calculated initial values x(z;), A(z,), compute x(15), l(tﬁ) with Egs (3.50)-(3.53).
Evaluate the burn terminal point constraints, Egs (3.55)-(3.56). If i<N, evaluate the
switching function constraint, Eq. (3.57), where A,(1,, ;) is calculated with (3.49) knowing

Vies-
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When implementing MPM on a computer, the angular variable 6; should be
replaced by the variables /y;, /;; and the constraint /;2+ /y2=1. This common substitution

removes the periodic redundancy that may confuse a numerical method.

Completion of the iterative process updating the variables in (3.47) to satisfy the
conditions in Egs. (3.54)-(3.56) allows the final condition of the Modified Patched
Method to be checked. Briefly, this checks the switching law:

M—M>O,T=TM

M(I) go]:p (358)
RO 20 o 720
m(t) 8,

This condition is, in fact, borrowed directly from the application of Pontryagin’s
Maximum Principle. When all conditions are satisfied, it may be claimed that an

extremal solution has been obtained.

The relationship between the Patched Method and MPM is primarily in the use of
Eqgs. (3.49) and (3.56), which perform basically the same function as Egs. (3.27), (3.28),
and (3.30) from the Patched Method. However, MPM also includes a technique
apparently first employed by Brown, et. al.2! which removes one Lagrange multiplier

(A,,) and significantly affects the way the switching conditions are handled. This

technique is present here as the use of Equation (3.57).

II1L3.1. Equivalency of MPM Conditions and Necessary Conditions
This subsection is concerned with proving the equivalency between necessary
conditions and the Modified Patched Method conditions. From the standpoint of showing

mathematical equivalence, some combinations of variables and constraints in MPM are
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unnecessary. Essentially, guessing intermediate orbital elements can be replaced by

requiring the state to be continuous between bums.

Definition: For optimal control problem {P]}, the conditions (111} are

vi|>0 (3.59)

()= [%"- (x(rﬁ)):T Vi i=1..N (3.60)
7.(:,):{%-(::(:, ))ij‘; i=1,..N (3.61)

M1a) (1) V() = A1) B (1)) 5 i = 1 N =1 (3.62)

v i=1,...N (3.63)

X

=) T
y >‘(I)=>‘(r,+,) >(z,) b i=1..N~-1 (3.64)
u(1)=0, te[zﬁ,

i+]

|)‘(‘f~ )T g(y(tﬂ" ) ¥(t ))l

I . l> 0 (3.65)

where 1;=1, is assigned and the value for 1;is seen to be 1.

Theorem I11.2: If and only if
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{x(r), HONOPOMO [zo,z,]},o,,o o {li=1.2(v - 1) (3.66)
satisfies {I} then
{x(r),y(:), \'(1),u(!),7\(1)}t € [z,,zm]},{t,,:ﬁ]i = l,...N},{v,]i =1..N+1}  (3.67)

satisfies {I1I}, assuming that the constraints and assumptions from {P} are
satisfied.

Proof:

Both sufficiency and necessity will be proven by assuming satisfaction of one set
of conditions and then constructing the solution to the other. From here on, assume that
the constraints and assumptions from (P} are satisfied. The “if”’ part will be proven after
the “only if’ part. To prove the “only if’ part, it will be useful to follow time in reverse

from 1=t to the initial time, 1=1,,.
Assume that (3.67) satisfies {III}. Define a scaling factor YeR,

M )Tg(y-(r,_\. ) v(in)) (3.68)

Equation (3.65) ensures that the ¥ exists as a finite real number. Define V, = yv,.,,

‘y:

RAE yM1x), and recall that t=t5y. Note that this construction makes satisfaction of

(3.60) with i=N imply satisfaction of (3.18). Now, déﬁne i,(:,)=l which satisfies

(3.20); this makes the switching function in the form of Eq. (3.21) vanish for =t

It is obvious that when assumption (i) holds, Eq. (3.18) is satisfied, and Eq. (3.21)

vanishes for 1=1,then Eq. (3.14) is satisfied at #=1. Now, extend the construction so that
i,(r): 7A(1), te[!N,t,N] and Eq. (3.16) is satisfied. Note that this and Egs. (3.63) imply
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that all Euler-Lagrange differential equations, Egs. (3.15)-(3.17), are satisfied in this
interval. Therefore, the Hamiltonian is constant in the interval and is hence equal to zero
at r=1y. Now, with the Hamiltonian zero, assumption (i) and Eq. (3.61) with i=N imp]iés;
that the switching function vanishes again at r=ty. Define 1,5y ;=ty. Since by (3.64) and
(3.63), the bang-bang control, u(r), switches from u,,,, to zero at r=1), the Hamiltonian
will be continuous across this switching point and, therefore, zero.
Lemma I0.2 with I‘(x(:))=%(x(r)) forre [z,,_,,z,..], Eq. (3.64), and assumption

(vi) implies satisfaction of Eqgs. (3.15) and (3.17) in this interval. Extend the construction
so that ):,(r)z ):,(r,,-)= ?:,(t,,,._,) in the interval, thereby satisfying Eq. (3.16). Having
this construction, knowing that the switching function vanishes at r=1, that u(1)=0 is
assigned in this interval by (3.64), satisfaction of Eq. (3.62) implies that the switching
function vanishes at 1=ty ;. In order to imply satisfaction of Eq. (3.14) at the end of this

interval, it must be recognized that again, the bang-bang control switches values at r=1py ).

Define IJ‘(ZN-I)-‘-IJN-J‘

The arguments in the preceding two paragraphs may be repeated until the initial
time, 1, is reached. Recall that 7;=1,. Definev =—o, and recall that previous

definitions require i,(:,)= ¥.(1,); these definitions imply satisfaction of (3.19). The

proof of the “‘only if”’ part is complete.

For the “if” part of the theorem, assume that (3.66) satisfies {I}. Define
A =24,0), re [t,,r,] and recall that 1=ty and 1;=1,. Definev,=-V, and v, =V,

Given assumption (i), it is immediately obvious that all conditions in {I1]} except Egs.
(3.59), (3.62), (3.65), (3.61) with i=1, and (3.60) with i#N. Note that (3.61) and (3.60)

cach apply at a switching point and when u=u,,,,. Furthermore, Eq. (3.14) specifies that

the Hamiltonian is zero throughout the trajectory. Therefore, by Lemma III.1, Eqs (3.14),
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(3.21), and assumptions (v) and (vii) there exists a different value v for each switching

point such that Egs. (3.60) and (3.61) hold; however, Lemma III.1 does not guarantee that
the value of v at one end of the kth u=0 arc (i=4-1 in (3.60)) equals the value of v at the

other end (i=k in (3.61)). But, Lemma II1.2 withI'(x(r)) = %%(x(:)) and assumption (vi)

u
implies that A, (r) =[-§x-\ﬂ-(x(t)):l v solves (3.15) when u=0. Therefore, the value of v at

one end of a u=0 arc must equal the value of v at the other end of the u=0 arc.

Eq. (3.65) is implied by the switching function vanishing at r=1,. Finally, it is
obvious that the boundary value problem cannot be solved if 7:,(1) = 0; therefore [V,[> 0,

by assumption (v). That implies satisfaction of Eq (3.59). | |

I1.3.2. MPM Example Solutions
The following examples satisfy all the conditions implied by the Euler-Lagrange
equations and the Pontryagin Maximum Principle. All quantities have been

nondimensionalized.

The first example solution is a 5-burn transfer reproducing a solution presented in
a paper by Redding. Both the initial orbit and the final orbit are circular. However, there
is an inclination of 28.5° between them. In this presentation of the solution, the initial
orbit is equatorial and the final orbit is inclined 28.5°. The iniﬁal orbit radius is 1, the
final orbit radius is 6.4. The initial nondimensional acceleration is 0.0517 and the
nondimensional characteristic velocity is 0.567. Both the ransfer computed by Redding
and this solution calculated with the Modified Patched Method have final transfer orbits
with €=0.723 and an inclination 26.5° away from that of the final orbit. Perigee burmn
durations for both range from 1.26 to 1.13. Both have a total transfer time of 60. Finally,
it is worth noting that the solution presented here was ¢computed without knowing the

particulars of Redding’s solution.
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Figure 3.7 Transfer Time Vs Orbit Number for each Bumn of a 5-Burn Transfer
with Plane Changes
The second example is a 19-burn transfer. The initial nondimensional
acceleration produced by the rocket motor (T/m,) is 0.09698 and the initial
nondimensional characteristic velocity (go/sp) is 0.3929. The initial orbit is circular with
a radius of 1, the final orbit has eccentricity of 0.73315 and a semimajor axis of 9.26.
The total burn time for this trajectory is 26.84. Figures 3.8 — 3.9 show data in similar

form for this transfer as Figures 3.5-3.7 for the previous transfer.

This 19-burn trajectory was extended to a 27-burn trajectory. This process
involved the determination of transfers with 20, 22, 23, 24 .burns, etc. It was found that
adding bumns one at a time was usually successful, two at a time slightly less successful,
and so on. It was also interesting to see the decreasing improvement of the transfer’s

performance as plotted in Figure 3.10.
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The third example is the aforementioned 27-burn trajectory. All parameters are
identical between this transfer and the previous except the number of burns. The total
burn time for this trajectory is 26.64. This is only a 0.7% decrease in transfer time for

42% more burns.
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Figure 3.11 = Orbital Elements for each Transfer Orbit Vs Orbit Number of a 27
Bum-Transfer
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Figure 3.12 Transfer Time vs Orbit Number for each Bumn of a 27-Burn Transfer

The fourth transfer is identical to the third except that the final orbit has an
inclination of 63.4° This inclination angle was chosen because it is large and represents
the inclination of the useful Molniya class of orbits. To obtain the solution, the planar
transfer was used as the initial guess and the Modified Patched Method obtained the

solution in 6 iterations. The following figures represent the transfer.

Each of these transfers show similar trends. An almost linear variation in the
largest components of the angular momentum and eccentricity vectors and for the transfer
time when plotted against the orbit or burn number. However, this trend is broken for the
last burn. In each wransfer, the last burn is an apogee burn and all previous burns are
perigee burns. Each perigee burn steadily changes the angular momentum and
eccentricity. The apogee burn then makes a last large change that brings the spacecraft to
the final orbit. This last burn is also considerably longer than the burn before it. In the 5-
burn case, Fig. (3.7) shows that the last burn is much longer than the first burn. In the 19-
burn case, Fig. (3.9) shows the last burn almost just as long as the previous burn; in the

27-bumn case, Fig. (3.15) indicates that it is considerably longer.
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Figure 3.13 Components of the Angular Momentum Vector for each Transfer Orbit
vs Orbit Number of a 27-Burn Transfer with a 63.4° Plane Change

55— Ey —»—E2 —o— Ex

5 10°

0

-5 10%

Ey.Ez
X3

-1 10

1.5 10° =

F - § L

2 10°% 4+ o ma e M Y

0 3 6 8 12 15 18 21 24 27
Orbit Number
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Figure 3.15 Transfer Time vs Orbit Number for each Burn of a 27-Burn Transfer
with 2 63.4° Plane Change

One feature that seems common to the large number of burns case and the small
number of burns case is the use of the distant burn for inclination changes. Referring
back to the nonplanar 3-burn transfer shown in Figs. 2.2-2.3, it is clear that the first burn
is making most of the inclination change. Also, it is clear from the 27-burn transfer
represented in Fig. (3.13) that the h, component of the angular momentum vector, which
indicates the inclination, has very little variation until the final burn takes its value from
almost zero to almost -2. This same trend can be seen for the 5-bum transfer represented

by Fig. 3.5; where the h, component indicates inclinaton for this transfer.

IIL4. Inclusion of Perturbation T
Neither the Patched Method nor MPM are equipped to produce exact solutions to
fuel-optimal orbit transfer problems in the presence of orbit perturbations. Note that

including orbit perturbations will cause assumption (i) from (P} to be violated.

The radeoff between making the ideal gravity assumption and obtaining solutions

with much larger numbers of burns was deemed acceptable. It is hoped that the
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techniques used in this tradeoff will find application in future research into the orbit

transfer problem including perturbations.

However, BOUNDSCO was able to obtain a solution including orbit perturbations
for the 5-burn wansfer presented above in Figure 3.5. Perturbations are considered for
this trajectory as opposed to the others, because BOUNDSCO iterations did not converge
for the others, even after several trials including initial guesses that were slightly

perturbed from the exact solution.

Figures 3.16-3.18 shows the changes in orbital elements and transfer time induced
by the inclusion of atmospheric drag and oblateness effects. It is clear that the extremal
trajectory includes a lengthened second bum which raises the energy of the second
transfer orbit, thereby raising its altitude and decreasing the effect of drag. It is not so
clear what decides that the longer bum will be the second and not the first. The nodal
regression seems to manifest itself as a decreasing H, component, it is interesting to note
that, like inclination changes, the extremal wansfer doesn’t make the correction until the
last bumn. Turning attention to the burn lengths, note that the amount by which the first
burn is shortened almost exactly counters the amount by which the next burn is
lengthened. A similar wend shows itself for the third and fourth burns. The last burn is
only slightly shorter, but not enough to indicate whether the total bum time is longer or
shorter. In fact the final mass of the ideal gravity wransfer was 3.762; for the transfer with
perturbations it was 3.760. This is a performance loss of only 0.07%, a surprising result

considering that the individual burn times change by as much as 1.6%.
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I1LS Conclusions
In this section, two new methods for computing multiple-burn orbit ransfers are
presented. These methods, the Patched Method and the Modified Patched Method, have
been developed specifically to fill an apparent gap in computational ability for fuel-
optimal transfers with large numbers of burns. For this type of problem, both methods

have out-performed BOUNDSCO and MBCM from the previous section.

The conditions upon which each of these methods are based on have been proven
equivalent to necessary conditions. However, for both methods it is required that

Pontryagin’s Maximum Principle be checked after iterations have stopped.

The Patched Method, though slow, was very robust in obtaining solutions.
Because of its use of a direct method, it was usually able to obtain the one-burn solutions
between each pair of orbits. Also, the optimization of the transfer orbits usually
proceeded well in the sense that each iteration would produce a better choice of orbital

elements. However, the overall method tended to be quite slow because the cumulative
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time required to compute the one-burn transfers in succession was guite long and

increased with number of burns.

MPM computed solutions beyond the capability of any of the other methods
investigated in this report. MPM was much quicker and slightly less robust, as would be
expected of a method more akin to multiple-point shooting. Therefore, it is suggested
that the Patched Method be used with a very low tolerance to obtain initial guesses for

MPM.

Neither the Patched Method nor MPM is designed to handle orbit perturbations.
However, the marked improvement in performance found with these configurations
should be motivation enough for a future research effort to produce similar configurations

that can handle orbit perturbations efficiently.

Also in this section, a new formulation for the solution of the Lagrange
multipliers is presented. This formulation is valid over coast arcs where the Hamiltonian

vanishes.
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SECTIONIV
GUIDANCE FOR OPTIMAL ORBIT TRANSFERS

1V.1 Introduction
The guidance scheme examined here is an implicit one which implements
neighboring optimal feedback guidance. An implicit guidance system was chosen due to
the fact that that type of guidance system often handles disturbances well42, Neighboring
optimal feedback guidance was chosen because it has the advantage of being a feedback
system, as opposed to open-loop guidance and it can be implemented very easily as with
a gain-scheduling scheme. There also appears to be a lack of studies in the literarure

which examine this type of guidance scheme for this problem.

In this formulation, the initial orbit exit point is assumed to be perturbed from the
nominal point but the other boundary condition, specifying the final orbit, is assumed
unchanged. The goal is to use the controller to bring the wajectory to the final orbit at

some point with minimal fuel.

In order for this guidance scheme to be implementable, the neighboring trajectory
must exist; the sufficient conditions for a local extremal must be satisfied. The
satisfaction of these conditions for the nominal solution will be shown. Following that,
the guidance scheme will be investigated, including the use of a time-to-go indexing

scheme.

42Naidu, D. Subbaram. Aeroassisted Orbital Transfer: Guidance and Control Strategies.
New York: Springer-Verlag, 1994.
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/ i Vviey
Many researchers have used the first vaniation to compute extremal solutions to
the fuel-optimal orbit transfer problem. However, few, if any, have made use of the
conditions related to the second variation of the cost functional in computation. These
provide sufficient conditions which, when met, declare an extremal solution as a locally

weak optimal solution.

Once the second variation of the cost functional is verified so that it is known
whether the sufficient conditions are met, the information obtained can then be used to
implement a guidance scheme. Guidance schemes can typically be divided into two
categories: implicit and explicit. Implicit guidance systems are characterized by the fact
that the vehicle’s motion must be precomputed on the ground and then compared to the
actual motion. The equations which need to be solved are based upon the difference
between these measured and precomputed values. The solutions to these equations are
used in the vehicle’s steering and velocity control. Explicit guidance systems are
generalized by the fact that the vehicle’s equations of motion are modeled and solved for
by on-board computers during its motion. The solutions for the equations are solved
continuously and are used to determine the difference between the vehicle’s current
motion and its destination. Commands are then generated to alleviate the anticipated

CITor.

Guidance schemes have been presented in various papers.43 A guidance scheme

which is implemented using a linear tangent law is presented by Sinha, Shrivastave, Bhat,

43Chuang, C.-H., Goodson, T.D., Ledsinger, L.A., “The Second Variation and
Neighboring Optimal Feedback Guidance for Multiple Burn Orbit Transfers,”
Proceedings of the 1995 AIAA Conference on Guidance, Navigation, and Conrrol,
Baltimore, Maryland, USA.

86



and Prabhu.#* In a paper by Lu45: a nonlinear guidance law is developed using two
different strategies. One strategy uses optimal control theory to generate a new optimal
trajectory onboard from the start, while the other uses flight-path-restoring-guidance to
bring the trajectory back to the nominal. A guidance scheme that is developed using
inverse methods for unthrusted, lift-modulated vehicles along an optimal space curve is
presented by Hough.4® Linearized guidance laws applicable to many different types of
space missions are presented by Tempelman.47 These guidance laws are based on fixed
and free final time arrivals. Naidu4? presents a neighboring optimal guidance scheme

applicable to aeroassisted orbital ransfers.

Earlier, the optimal orbit transfer problem was given as a maximization problem.
To conform to the convention used for the second variation3$ it is ransformed to a
minimization problem. For the minimization problem, the performance index can be

made negative and considered a cost functional
J=-mlt,) @.1)

As the necessary conditions are first-order conditions, they remain unchanged. However,

Lawden’s pointer vector theory is second-order and requires that the contol be such that

e =t
i 4.2)

44Sinha, S. K., S. K. Shrivastava, M. S. Bhat, and K. S. Prabhu. “Optimal Explicit
Guidance for Three-Dimensional Launch Trajectory,” Acta Astronautica. Vol. 9,
1989, pp. 115-125.

45Lu, P., “A General Nonlinear Guidance Law,” Proceedings of the the AIAA Guidance,
Navigarion, and Control Conference, Scottsdale, Arizona, 1994,

46Hough, M. E., “Explicit Guidance Along an Optimal Space Curve,” Journal of
Guidance, Control, and Dynamics. Vol. 12, 1989, pp. 495-504.

47Tempelman, W., “Linear Guidance Laws for Space Missions,” Journal of Guidance,
Control, and Dynamics. Vol. 9, 1986, pp. 495-502.
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Furthermore, Pontryagin's Minimum Principle requires that an extremal solution satisfy

Hy<0, T=T,,

4.
Hi>0, T=0 “3)

where

m gl

H; =—(&L+—AA) 4.4)

If an extremal solution to the maximization problem is given as state time history
x(1), Lagrange-multiplier time history A(1), and Lagrange multipliers v, (associated with
boundary conditions) then an extremal solution for the minimization problem with the

cost function in Eq. (4.1) can be constructed as x(r), (-1)*A(r), and (-1)*v.

Additionally, it makes more sense in the planar guidance problem to consider the

control as an angle 6, rather than individual components of a unit vector. This simplifies

analysis because the control is now a scalar. Equation (4.2) now gives

1an(6) =--;-'— (4.5)

A practical approach to guidance is suggested by previous results in this report. If
a multiple-burn transfer can be thought of as consisting of multiple optimal one-burn
transfers, then it should be reasonable to examine a guidance scheme that attempts to
match each of the intermediate transfer orbits of the multiple-burn transfer. In other

words, use neighboring optimal feedback guidance for one burn at a time.
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This is not suggested to be an optimal guidance scheme. By focusing on each
burn with neighboring optimal feedback, but not considering the trajectory as a whole,

this guidance scheme becomes a sub-optimal guidance scheme.

Each burn can be considered an extremal solution. These extremnal solutions are
considered to have a fixed initial point and free transfer time but the final point is only
constrained in that it must lie on the final orbit. Recall, however, that in computing the
multiple-burn transfer the initial point was not fixed; this condition is imposed for
practical considerations. If the spacecraft is delivered to the correct orbit, and coasting to
the nominal burn-on point has zero cost, then there is no reason to attempt to compute a

new bumn-on point. This reasoning holds for the beginning of each burn.

7 Variati .

Considering the second variation of the augmented cost functional, J, a new
optimal control problem can be stated.3® In this new problem, the state is &x, the control
éu, and the Lagrange-multipliers are SA and dv. The new problem is linear and can be

solved using a sweepback method. For the problem considered here, x=[rT vT m]T and

u=6.

When the final time is free for optimization, the transversality condition must be

satisfied by the nominal solution. The notation for this condition is

dG oG .
Q(x,v, =| — = | — = .
(x A% f)l;::! ( di )‘.‘, (ax x)‘-l/ 0 (4 63)

where

G(x,v) = o(x)+ viy(x) (4.6b)
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In general, neighboring optimal feedback guidance allows consideration of

changes in boundary conditions. No such changes are considered, assuming that the

destination orbit is fixed. Formulation will be made below for the free final time case.

The change in state and costate can be estimated with a linear time-varying

dynamic system. This dynamic system is given below, where it is understood that matrix

functions are evaluated with the nominal trajectory.

ds . _
Z&—A(z)éz B(r)on

4 5. = ~C1)5x - AT(1)5%
dr
where
A(=f, -f HIH,
B(1)=f Hf7

C(t)=H, - H HH,

Evaluating Egs. (4.7)-(4.11) the recurring terms in the differential equations are:

- 2 T
00 (4]
r r r R
00 2 -(-“;)————3"3 0
f = r r r
Tl o 0 0 0
0 1 0 0 0
0 0 —=—cos(6) ~-—sin(6) O
L m m .

T
f,=[o 0 -Lsine) Leoso) o]
m m

90

(4.7)

(4.8)

(4.9)
(4.10)

4.11)

(4.12)

(4.13)



Hy =

Q 0
T3 ' (4.14)
m

Q=3# {32445 =S} {(Ay+ax)r=s(ino) | g5
r’ {(A,y-#).,x) 5(AIr)xy } {(31,)""1\})72 -5(kfr)x)'}
Ho=Lp| (4.16)
m
H_ =0 4.17)

note that r=[x ], v=[u v]', and &, =[4, 2] are taken as the nominal

rajectory. Using the sweepback method for nonlinear terminal constraints the form for

8\ and Sy can be written as

Sh(r)=P(1)8x(r) + S{r)av (4.18)

Sy = S7(1)6x (1) + V(1)av (4.19)
which allows the solution for dv to be written as
dv=V"(t,) 0y -57(1,)5x(s, )] (4.20)

As mentioned above, dy=0 will be considered here. The matrices P(s), §(z), and V(1),

are computed using the following relations:

P(r)= p(,)_'_“_(’_)ﬂzﬂ

o5 (4.21)
S(r)=S(1)~ E%Q (4.22)
V)= V(- “(2'(‘:)(’) 4.23)
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Now the matrices P(1), S(1r), V(1), m(r), n(r), and the scalar function a(r) are computed

from a dynamic system. The boundary condition equations for this system are given by:

P(1,)= [¢’” +HV'wa), ]w'/

S;)=[v3]..,
V(,)=0
where in the development for the orbital transfer these are:

b

o O O O

X
r r r r
y 3y 2y x 3x?
c=vl L -4 S p | -
3'“[,.3 s r3J 2}1[’3 rS
d=-Vv,yv

€=V, = Vyu+2vyy
J==v,—vyv+2vu
g==-vu
h=2vy
i==Vx—V,y
i=2vx

and expression for Eq. (4.25) was previously given as Eq. (2.11).
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(4.25)

(4.26)

(4.27)

(4.28a)

(4.28b)

(4.28¢)

(4.284)
(4.28¢)
(4.281)
(4.28g)
(4.28h)
(4.281)
(4.28))



Following from the assumptions expressed as Egs. (4.18)-(4.19), the following
nonlinear equations for P, S, and V must be integrated backwards. The results will be

used to check the sufficient conditions governing a minimizing solution.

P=-PA-A"P+PBP-C (4.29)
S=-(A"-PB)S (4.30)
V=S"BS (4.31)
m=-(A"-PB)m (4.32)
n=S"Bm (4.33)
G@=m'Bm (4.34)

with the following boundary conditions applying

:

m(tf) = (%?) (4.35)
A\II

n(t, )= (%) (4.36)
p=ty,

Q'

aft,)= (-g,-) (4.37)

th,

The sufficient conditions for a minimizing solution can now be stated as follows:

convexity condition: Hg,(r) > 0 for 1, S151, (4.38)
V(1) exists for 1, 1<t 4

normality condition: _ ! (4.392)
a”'(1) exists for ¢, St <1, (4.39b)

conjugate point condition: P(r)= S(s)V"'(1)S™ () finite for 1, <1<y, (4.40)
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The convexity condition is satisfied for any transfer satisfying Equation (4.5). This can
be seen by noting that Eq. (4.16) is positive definite, irrespective of the time history for

the Lagrange multipliers.

The eigenvalues of V are plotted in Figure 4.1. Figures 4.2-4.4 plot the elements
of the conjugate point condition matrix. Figure 4.5 is a plot of a(t). Figure 4.1 shows
that V is positive definite in the required interval. Figure 4.5 shows that a(t) is negative
definite in the required interval. Since the normality condition requires that the inverse of
V and a(1) exists in the interval, this solution is normal. Figures 4.2-4.4 show that the
conjugate point condition is satisfied. The elements are bounded in the required interval
and grow asymptotically at the final time; the curves in the figures have been truncated to
show their varjations prior to this asymptotic growth. Therefore, this solution satisfies

the sufficient conditions for minimizing the cost functional with free transfer time.

It seems appropriate to first attempt the guidance scheme for a relatively
uncomplicated wransfer. Such a wansfer was presented in Fig. 2.1 and discussed in
subsection [I1.2.4]. The transfer is planar; no plane changes occur. The guidance scheme

considered here will be simulated for this Uajectoi’y.

IV.4.1. Neighboring Optimal Feedback Guidance

Conveniently, construction of a neighboring optimal feedback guidance law uses
the same information as that required to check the second variation of the cost functional.
As a result, much of the derivation required of guidance law has been stated already. The
remaining discussion will describe how to form the feedback control law and adjust the

characteristics of the bang-bang control in a feedback law.

The control, 86, for the fixed final time problem can be found using
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56(r)= -HZ[(1TP)6x + f1Sav] (4.41)

S
= -HZ[f1(-SV"'57))ox

and the change in the final time, di, is:

T T (4.42)
i, = -[(E‘&- Ly ﬂax

Evaluating drydetermines when the thrust will be turned off 1o complete the transfer.
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This continuous feedback law has been constructed by estimating dv at each instant of

time instead of solving for dv at the initial time and then using this value for all ime

The feedback law depends on P, S, and V as functions of time. A panicular
advantage of neighboring optimal feedback is that the linearized TPBVP only has to be
solved once. Afterwards, sampled values of the feedback gains may be stored. The
feedback gains may then be computed for any time by interpolation between stored
values. Use of this control should keep the spacecraft on a .neighboring optimal solution

and deliver it to the required orbit.

The block diagram for the feedback controller needed for neighboring optimal feedback

guidance is shown in Figure 4.6.
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Figure 4.6 Diagram of Neighboring Optimal Feedback Controller Implementation

where A1(1) is the feedback gain from Eq. (4.41), computing 86.
I'V.4.2. Simulation of the Guidance Algorithm

Justification for a feedback algorithm lies in Fig. 4.7 and Fig. 4.8. It can be noted
that there is error in the variation of the states from the neighboring optimal trajectory
when guidance is not used, Fig. 4.7, i.e., when the control correction is not used.
However, Fig. 4.8 shows that a feedback law is needed because when implementing it,
the errors in the variation of the states becomes much less, comparatively, than that using
no guidance whatsoever. The neighboring optimal trajectory referenced in Figs. 4.7-4.8

was computed with BOUNDSCO.

IV.4.3. Time-To-Go Implementation

Since this problem is a free ﬁﬁal-timc problem, the possibility exists that the final-
time will increase and the guidance algorithm will *“run out of gains™; this is a familiar
issue for neighboring optimal feedback guidance. The approach used in this study is
based on discretizing the gains by N time nodes {1,,....%;,...Iy} where 1 is earlier than the
nominal 7 The gains at the nominal 1, will be infinite and impractical to store. Both the
gains for calculating di,, via Eq. (4.42), and for 86, via Eq. (4.41), are then calculated at

any time by linear interpolation between stored values.
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To consider time-to-go, the guidance must make active use of the di; estimation.
Since both the nominal and the actual trajectories start at 1,, dr;, can be initially calculated
using the gains at that time. The length of the first guidance interval is then found by

relating it to the estimated time-to-go.

1, +dt,, (4.43)

Ar, = J"‘l—“L‘(’z - ’z)
J

Then, at the end of the i-J7th guidance interval, the gains at 1, are used to calculate di;.

Using this information, the length of the ith guidance interval can be computed as

i=l (4.44
+di = AL )
A’u’ = t/ - ’i'] (th] = tu)

This continues until Az, is computed as zero or a negative number or until i=N. When
i=N, the Nth gain is used for the entire interval Ary. When this interval ends, the

guidance scheme is finished.

The plots below compare guidance performance with and without this time-to-go
formulation. The curves represent the time history of the boundary condition errer, i.e.
Egs. (1.12) minus the desired orbital elements, evaluated continuously. Figure 4.9 makes
continuous use of the gains but indexes these gains at the current actual time without
calculating di,. For the perturbation simulated, the transfer time needs to increase and this
first scheme must terminate prematurely. Figure 4.10 makes use the discretized gains and
time-to-go formulation. This simulation also incorporates a practical saturation limit on
the size of the gains. The improvement due to the time-to-go formulation is obvious

when comparing these plots. Therefore, this is both a practical and superior
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implementation of the continuous burn guidance considering the boundary condition
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Figure 4.9 Plot of Boundary Condition Error for Continuous Guidance
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Go
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V.5 Multiple B Guid

The guidance for multiple burns can also be discretized. For the two burn case,
discretized guidance using time-to-go is used for the first burn. The guidance algorithm
will place the spacecraft on the intermediate transfer orbit via the neighboring optimal
trajectory. Since the cost on this coast arc is zero, the spacecraft can coast on this arc
until it reaches the point at which the next burn is to start. Once the spacecraft reaches
this point, discretized guidance using time-to-go can be used again for the second bum.
The boundary conditions for the second burn should than be satisfied by the neighboring

path. For multiple bumns, this guidance scheme is extended in a straightforward manner.

The guidance scheme detailed above was used to recover the two burn transfer of
Fig. 2.1 in the presence of an initial perturbation. Fig. 4.11 shows the boundary condition
errors for the first burn given an initial perturbation of 10-3 in non-dimensionalized units.
The boundary conditions are satisfied rather well for this bumn. The resulting boundary
condition errors for the second burn are shown in Figure 4.12. The boundary conditions

are satisfied very well for this burn.

Figures 4.13 & 4.14 show the boundary condition errors during the second burn
for a perturbation of the same magnitude as above in only the x position and the u
velocity, respectively. Note that the error in the boundary conditions is slightly greater i}n
Figure 4.14. This suggests that the rajectory is more sensitive to disturbances in the u

velocity than in the x position.
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The resulting orbit transfer trajectory is shown in Figure 4.15. This plot corresponds to

the boundary condition errors as shown in Figures 4.11 and 4.12.
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1V.6. Conclusions

Extremal one bum trajectories have been shown to be weak locally optimal
solutions using sufficient conditions. This does not prove that the multiple-burn transfer
from which they were taken is itself a weak locally optimal solution, but it does allow the

use of a new suboptimal guidance scheme.

This scheme was shown to reduce the terminal errors for small perturbations of

the initial state. To increase the size of allowable perturbations, a time-to-go indexing
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scheme was simulated. This time-to-go indexing did improve the performance of the

guidance scheme.

The suboptimal multiple-burn guidance with time-to-go indexing was simulated
for a planar wansfer. The performance of this guidance scheme did not match
expectations. The implication is that the region in which a linear control correction is a
valid assumption was quite small. Actually, this is not a surprising conclusion since
obtaining the nominal solutions is usually quite a challenge for iterative algorithms that
attempt linear corrections for each iteration. If indeed this implication is correct, then a

more sophisticated approach for neighboring feedback control is required.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER STUDY

Y.1. Transfers with Small Numbers of Burns
It has been found that methods already present in the literature are capable of
computing fuel-optimal orbit transfers with small numbers of burns. The methods
investigated here were multiple-point shooting and modified shooting. However, a
common way to attempt to increase the performance of a transfer is to increase the
number of burns executed and, unfortunately, these methods are not very robust in that

sense.

A new method has been inroduced that is very useful for adding burns to fuel-
optimal orbit transfers. The method is used in conjunction with homotopy and an
iterative technique for computing transfers; the iterative technique must incorporate
knowledge of the Lagrange multipliers. The method does require that the initial point,
the final point, and the transfer time be free for optimization. It also assumes that the
wansfer is performed under the influence of ideal gravity. This assumption is required to

obtain the switching function property that the method relies on.

It is recommended that this method be further developed such that orbit
perturbations are taken into account. Since the switching function property in question
no longer applies for this case, the task is challenging. Obviously, a fairly different
approach must be taken. It is likely that requiring trajectories to begin and end with coast

arcs will be necessary, since cost arcs will no longer be orbits. Perhaps then some
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conditions may be identified under which the coast arcs could be extended to find optimal

Jocations for the burns to be added.

' q wl ,

The results of this research point to the Modified Patched Method as a practical
way to compute fuel-optimal transfers with large numbers of burns. It does not appear
that such a method existed previously in the literature, making MPM and theoretical

results behind it the central contributions of this report.

An interesting spin-off of the theoretical development is a new formulation for the
integration of the Lagrange multipliers over a time-optimal coast arc for the nonplanar
case assuming ideal gravity. The formulation results from satisfaction of Lemma III.2.
This particular formulation proved quite useful for MPM and may prove useful in future

algorithms and future theoretical developments.

MPM does not allow for orbit perturbations. This restriction was a small price to
pay for performance previously unobtained, viz. the ability to compute transfers with
upwards of 27-burns and large inclination changes. Now that this performance has been
obtained for the ideal gravity case, it is suggested that a future research effort should be
able to produce a method with similar performance, or better, while taking orbit

perturbations into account.

If an attemnpt is made to adapt MPM for orbit perturbations without recovering
any properties lost, then MPM will degenerate into multiple-point shooting. This study
has already concluded that multiple-point shoo'ging does not perform well for large
numbers of burns; therefore, some recovery of the properties from Theorem II1.1 and/or

Theorem TI1.2 must be made. Since the concept central 1o both the Patched Method and
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MPM is the relationship of the optimal orbit mansfer problem with the problem expressed
by (3.1), it seems reasonable to expect some form of (3.1) to be recovered in the presence

of orbit perturbations.

V.2, Multiple-B Guid

A suboptimal multiple-burn guidance scheme was developed through this
research and its performance investigated. The scheme may be described as "bum-by-
burn” neighboring optimal feedback guidance with a time-to-go indexing scheme for each

burn. The performance of this guidance scheme did not match expectations.

Since guidance has much practical importance, it is suggested that future research
attempt to develop an improved guidance scheme. It is likely that this would involve
techniques to improve neighboring optimal feedback or replacing this with some other
one-burn guidance scheme. On the other hand, a future research effort might attempt to
find an optimal guidance algorithm for the multiple-burn transfer as a whole. Since there
is a strong relationship between the sufficient conditions for optimality and the
computation of neighboring optimal feedback gains for the one-burn problem, a similar
relationship might be expected for the multiple-burn problem. If an optimal multiple-
burn guidance scheme is developed, it will likely lead to the development of sufficient

conditions for the optimality of multiple-burn transfers.
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Appendix

ORBPACK Users Manual

A Package of FORTRAN Programs to Construct
Guesses and Solve Low- and Medium- Thrust
Optimal Orbit Transfer Problems

Applied Control Laboratory
Georgia Institute of Technology
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I1.2. Scaling 1t is very useful for numerical methods to work with numbers that
are at or near the same order. This can be accomplished through
nondimensionalizations. Such nondimensionalizations for the
orbit transfer problem follow:

rer/r°

a / «©
s m/m

I‘-I/\m

and they require the following:

Vav/\u/r

- o}/
I]:Ij/\fr /y
Fowr

(;3,,.52(5'0) - anCD(rQ/mQ)

(7 a7

Note that these nondimensionalizations result in dynamics with
u=1. The choices of r¥ and m™ are completely arbitrary. A choice
for m¥ might be one such that the initial nondimensionalized mass
is 1 or 10. A choice for ¥ might be the radius of the planet or a
number such that the initial semimajor axis, radius of perigee , or
an “average” radius is 1.

Applied Control Laboratory August 1985
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ORBPACK Users Manual

IT1. Making Guesses for the Optimal Transfer

l.1. GSHOOT Random
Guess (Single Burn Only)

How to use GSHOOT

There are many different ways that one could conceive of to make
guesses. The routines for making guesses, listed below, have been
provided.

The tutorials in Chapter V1III demonstrate how to make guesses with
these methods.

The subroutine GSHOOT will randomly make guesses for the one-
burn orbit transfer problem in two dimensions. Input for GSHOOT
is & text file. Its output consists of two text files which represent data
for direct and indirect methods.

GSHOOT requires a file, named “GINPUT,” for input. A typical
“GINPUT" file follows:

MU = 1.00
€] = 1.00
ISP e 0. 5673
THRUST = O .51€¢
[ « 1C COlT
A e 1 (L
£0 = C.0CC
w2 = 3.000
K « 1.2B5
| 2e] v (.219
wo = £.000
TMAX s 5.030
NGS s .00
NIX « 3

where MU (u ) is the gravitational constant, GO (g,) is the
gravitational acceleration of the earth at sea level, ISP (/) is the
motor’s specific impulse, and Thrust is the motor’s thrust level. MO
(m,) is the initial mass for the transfer. The next parameters
specify the terminal orbits: AO (a,) is the initial orbit’s semimajor
axis, EO (e_) the initial orbit’s eccentricity, and WO (w,) is the
initial orbit’s argument of perigee; AF (a/), EF (es), and (wy) are the
corresponding parameters for the final orbit. TMAX is the
maximum burn time; if it is set to zero, then TMAX is assigned by
GSHOOT to the amount of time required for the mass to vanish.
NGS is how many guesses to make; half of these will be almost
tangential thrusting with random initial true anomaly and the
other half will have random initial direction and random initial
true anomaly. For a detailed description of the file format, see
Appendix A.

GSHOOT will create output files “DIRECT.DAT" and
“INDIRECT.DAT” which can be used to construct a multiple burn
guess in the PATCH2D file format. Both of these files have
identical headers:

August 1985

Apphed Control Laboratory
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L Introduction
ORBPACK is a collection of FORTRAN 77 programs for computing
optimal orbit transfers. For the most part, these are all indirect
methods; they are concerned with solving the Two Point Boundary
Value Problem provided by optimal control theory.
None of these routines guarantee a globally optimum solution; only
extremal solutions are claimed by convergence of iterations. With
the exception of MBCM, solutions obtained with these methods must
have their switching law checked. One must be sure that, in the
computed solution, the thrust is on when the switching function is
positive and the thrust is off when the switching function is
negative. Furthermore, these methods assume that no intermediate
thrust arcs will be found in the solution.
The charts below summarizes the programs in ORBPACK:

Solvers

Name Method Libraries Sugpested Use

BND3D Multiple Shooting BNDSCO medium/low thrust;

(BNDSCO) few burns
MBCM3D Shooting w/ Minimizing VF02AD medium/low thrust,
Boundary Condition Method few burns

PAT2D Patched Method BNDSCO,; IMSL medium/low thrust

MPMM2D, Modified Patched Method IMSL,;, ODEPACK medium/low thrust;

MPMM3D short burns

Accessories

Name Use Libraries

GSHOOT random shooting for one-burn guesses IMSL; ODEPACK

MPM2D3D convert MPMM2D files to MPMMB3D files |[N/A

MP2BND convert MPMMa3D files to BND3D files ODEPACK

BND2MBCM convert BND3D files to MBCM files N/A

All codes as supplied in ORBPACK solve multiple burn orbit
transfers with free final time and free initial and final points.
BND3D is already configured so to switch between free and fixed
final time problems. MBCMS3D can easily be reconfigured for such.
PAT2D, MPMM2D, and MPMMa3D have fixed configurations.

PAT2D, MPMM2D, and MPMM3D are also fixed to solve only
problems where ideal gravity is assumed. BND3D and MBCM3D
are configured to solve problems that include drag and oblateness
effects. Finally, codes with the “2D" suffix are configured to solve
planar transfers; the “3D” suffix indicates that the code is
configured for nonplanar transfers.

Applied Control Laboratory

August 18385
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II. Orbit Transfer Problem Definition

11.1. Parameters

All the programs in ORBPACK require the following orbit transfer
parameters to be determined:

For the gravitating body:
» the gravitational constant for the central body (u )

For the rocket motor:
¢ maximum thrust
* specific impulse ()

For the terminal orbits, BND3D and MBCM3D require:
semimajor axis ‘

eccentricity

right ascension (degrees)

argument of perigee (degrees)

inclination (degrees)

For the terminal orbits, MPMM2D, MPMM3D, and PAT2D require:
s angular momentum vector (X, Y, Z components)
s eccentricity vector (X, Y components)

Each program also requires a value for Earth's acceleration at sea-
level (g,) in appropriate units; this number is only used in

conjunction with the specific impulse to compute the fuel
consumption.

BND3D and MBCM3D can account for oblateness and drag effects.
For oblateness: R, is the equatorial radius of the central body and J,

is a constant describing the mass distribution of the central body;
for Earth Jo= 1082.61x10-6. For drag: Bis a constant from the

atmosphere model describing air density variation in the
prescribed altitude region, p, is the atmosphere density at the

altitude r,, S is the cross-sectional area of the craft, and Cp, is the
craft’s drag coefficient.

The gravitational potential, including oblateness, is modeled as:

m 1 s pm
U= E;- $S LR "7,-(1 -3cos*(8))

where r is the magnitude of the position vector r. The drag force is
modeled as:

1
F,, = -2-p“e"" 'SCvv

where v is the magnitude of the velocity v. Note that this form for the
density variation indicates an isothermal region of the atmosphere.

August 1995
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How GSHOOT
works

T L3
GC CaN )
ISP = o
AT L ]
= Sal N ]
0o s ¢
AF = ¢
P =00
EXT = ¢

These output files contain the necessary information

1f this output file represents a guess for any but the last burn, delete
the last three of these lines (AF, EXF, EYF) when constructing the
multiple-burn guess file. However, if this guess is for the last burn.
keep the last three lines and delete lines six through eight (AQ, EXO,
EYO). If the guess is any but the first burn, then delete the first three
lines (T, GO, ISP).

GSHOOT makes a random guess by choosing the constant
Lagrange multipliers (v) as a random vector with unity magnitude.
Since all the Lagrange multipliers may be scaled by an arbitrary
constant, there is no loss of generality. The state vector is cocmputed
knowing the initial orbital elements and randomly choosing the
initial true anomaly. Next, the vectors 2, and 7., are calculated for
the initial time, using the following equation:

e

The initial value for A, is found by specifying that the switching
function is zero at the initial time:

(3.2¢

o)l

That the switching function is zero at the initial time is known to be
true for the free transfer time and free terminal points problem.
With the initial state and costate known, the initial value problem is
integrated forward in time unti] either the desired final semimajor
axis (AD) is reached. the current radius becomes small, the
spacecraft enters a parabolic orbit, or the mass becomes small.

For guesses that are almost tangential, A, is chosen to be (+/-}) v and
A, is chosen to be (+/-) (wrd)r. The positive sign usually produces
orbit raising and the negative sign orbit lowering. Note that this
initial guess for the costates zeros the Hamiltonian when the
switching function is zero. Therefore, the v,’s can be found by
solving the least-squares problem of Eq. (3.1).

GSHOOT will try as many guesses as the user requests. The guess
that best meets the required boundary conditions will be output.

Applied Controf Laboratory

August 1885



Page 6

ORBPACK Users Manua!

OL.2. PAT2D Sub-Optimal
Transfer Guess (Multiple
Burn Only)

Using PAT2D to
Compute Guesses

PAT2D creates sub-optimal trajectories in the sense that the choice
of intermediate transfer orbits has been fixed and each burn is an
optimal one-burn orbit transfer. PAT2D iterates upon the choice of
intermediate transfer orbits until it finds a choice that gives a local
maximum in final mass The PAT2D program is described in
detail in Chapter V.

PAT2D requires two files for input. The first file,
“PATCH2D.TOLS,” sets accuracy levels and limits the number of
iterations (for more information on this file, see Chapter V). The
second file, “PATCH2D.GUESS,” supplies the guess information
for both the choice of intermediate transfer orbits and the trajectories
of the burn arcs between them. This latter file must be in the PAT2D
format (for more information, see Appendix A and Chapter V).

The guess information from GSHOOT, or some other source, must
be put into the PAT2D format. When run, the first thing that PAT2D
will do is solve the one-burn problems defined by the intermediate
transfer orbits. Often, the output from this step aloneis a

sufficiently good solution guess . This output is contained in the file
“PATCH2D.INITIAL.”

On the other hand, it is not uncommon for that output to be an
insufficient guess. In this case, one approach is to allow PAT2D to
iterate. At some point during the iteration, the user may take the file
“PATCH2D.BEST” and use it as an initial solution guess.
Alternatively, the user may set a rather loose stopping criterion for
PAT2D and wait until this criterion is met. In this approach, the file
“PATCH2D.SOL” will be the solution guess.

Augus! 1898
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IV. The Modified Patched Method (MPMM2D, MPMM3D)

IV.1. Using MPMM2D to
Compute Solutions

Data File (Input)

MPMM2D

MPMM3D

The subroutine MPM2D (MPM23D) is a realization of the Modified
Patched Method in two (three) dimensions. The file “MPMM2D
(MPMM3D.f) contains an implementation of MPM2D (MPM3D,
using IMSL's NEQNF to solve the nonlinear equations, its
FORTRAN program name is MPMM2D (MPMM3D).

MPMM2D (MPMM3D) requires only one input file, which must
follow the PAT2D (PAT3D) format (see Appendix A). This data file
must be named “MPM2D.GUESS” (“MPM3D.GUESS")

The code “MPM2D3D.f~ will convert an *“MPM2D.GUESS" file into
a “MPM3D.GUESS" file. In this code, no other input is required
except “MPM2D.GUESS”

In “MPM2D.GUESS,” (“MPM3D.GUESS") the tolerance setting
(TOL) is the root-finding tolerance. The tolerance used in
numerical integration is one-thousandth of this number. No
information in the header is ignored.

For MPMM2D (MPMMa3D), the option SEL may only be chosen as 1
or 2. These options indicate the data for the burn is given in the
format for an indirect method. MPMM2D (MPMM3D) will treat
both SEL=1 and SEL=2 identically.

MPMNM2D (MPMMa3D) only uses specific items from the PAT2D file
format. The lines below are representative of the data for one burn
in the PAT2D format. The underlined “#” symbols indicate which
number items are important to MPM2D calculations.
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The important number items are “a,” “ex,” and “ey” with “x,” “y,”
“m,” “tf,” “g4,” “g5,” and “g6” on the first line only. All other
numbers are read by the program but not used. The “x™ and “y”
coordinates are used only to compute the true anomaly angle that the
burn begins at. The only mass value remembered is the initial
mass value. The mass costate is used to scale the constant
Lagrange multipliers “g4,” “g5,” and “g6” in a manner consistent
with patching the burns together; otherwise, it is not used.

MPM2D Iteration Listed below is sample screen output from “MPMM2D F”
Info to Screen

ur . Norm Ite Best Norm (st} ¢ Shert Tame En¢ Bst wWrst El Ele

0 45051E«00 1 0.45IE1E-00 3 0.1128SE-01 4 0.30%52E-LC 18
0.45CSIE-00 45 O©.45%CE1E-Q0 15 0.132E9E-01 4 0. 30%52E-00 iE
0. 63232E-C2 90 0 .€ILS0E-C2 89 (. 10551E-0) 4 0.28471E-C2 id
C 4E5TSE-C2 13% O 4ES7SE-C2 i0% C.1060EE-DL 4 C.2434EE-02 i

Reguired 9 Function Evals = 172

Tota: Burm Time = €.51402842448¢
Final Mass = 4 0664346237841

Shortest Burm Length = 1.12B8E3878329
Shortest Burm is ¢4

The first block of text is the iteration table. The column “Cur.
Norm” shows the current 2-norm of the constraint errors in the
absolute sense. The iteration, or number of times called, at which
this value was computed is listed in column “It#.“ The lowest norm
of constraint errors yet computed, next to the iteration number it was
computed at is given under the “Best Norm (at) #” column. The
length of the shortest burn at the current iteration is under “Short
Time“ and the burn with this length is indicated under the “Bn#*
column. Finally, the largest absolute value of a constraint
component for the best norm is listed under “Bst Wrst E1l.“ with
“El#* listing which constraint component this is.

MPM3D Iteration The iteration table from MPM3D is slightly different. It has the
Info to Screen following header:

TCF  NIRM ITe BIST NIRM (AT) ¢ WRST C. EL. ELe EST WRST EL. Els

where “WRST C. EL.” indicates the worst element of the current
iteration constraint error vector.

For MPMM2D and MPMMa3D, below the iteration table is the
number of function calls required to reach an error level indicated
by the tolerance. After this, some statistics of the solution are given.
The “Total Burn Time* is the total amount of time the motor is on.
The “Final Mass* is the mass of the spacecraft at the end of the
transfer. The “Shortest Burn Length” is length in time of the
quickest burn. Finally, the burn number for this quickest, or
shortest, burn is listed.

August 1895 Applied Control Laboratory
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Data File Output

IV2. The Structure of the

The subroutine MPM2D (MPM3D), if desired, creates an output file
that gives the status of iterations. The file is named
“MPM2D.ISTAT (“MPM3D.ISTAT"). This file is useful for
computer systems that operate under a queuing system because such
a system often does not show output to the screen unti] after execution
is completed However, such queuing systems usually allow files
that are created and closed to appear in the users directory.
Therefore, during execution under a queuing system, the user may
list the contents of “MPM2D.ISTAT” (“MPM3D.ISTAT") and see
current iteration information. The content of “MPM2D.1STAT"
(“MPM3D.ISTAT") is three lines long: the first two lines are the
table headings from the iteration table, the third line is the current
entry in the iteration table.

Both the main routine MPMM2D (MPMM3D) and MPM2D
(MPM3D) contribute to a file named “MPM2D.REPORT"
(“MPM3D.REPORT"). The first lines in this file gives feedback
from MPMM2D (MPMM3D) while reading “MPM2D GUESS"
(“MPM3D.GUESS") so that any errors in that file may be easily
identified.

The first eleven lines give the header parameters. At the beginning
of each line, the text from “MPM2D GUESS™ (“MPM3D.GUESS" is
given, then the number read from that line, and finally, in
parentheses, the name of the variable which MPMM2D (MPMM3D,
has assigned this number to. This same pattern is continued as
MPMM2D (MPMM3D) reads the orbital elements of the transfer
orbits.

The twelfth line and lines below are printed as each line of the input
are read. Following this is a listing of the values of each varniable
used by MPM2D (MPM3D) for the first iteration; then a listing of the
constraint values when given these variables.

Next is the iteration table as printed to the screen. Following this. a
total number of calls to MPM2D (MPM3D). Then a listing of
variables and constraint evaluations for the solution. Finallv. at
the bottom of the file is the solution summary statistics just as
printed to the screen.

The other file created by MPMM2D (MPMM3D) is “MPM2D.SOL"
(*MPM3D.SOL"), the solution file. This file contains the solution to
the orbit transfer problem in the PAT2D (PAT3D) format.

The structure of the MPMM2D (MPMM3D) program is generalized

MPMM2D (MPMM3D) Code in the following diagram, not intended as a formal flow chart:

Applied Control Laboratory
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MPMM2D/MPMMID Disgram

IMSL SOLVER (!EQNF)]

)TERM’IO’G AND GRADIENT LOOP

MPM2D
MPM3D Bwon TMROUGH EACH BURN
BURN ODEPACK INTEGRATOR
(LSODE)

m INTEGRATION LOOP
FBURN

The main routine, calls the multidimensional nonlinear equation
solver, IMSL’s NEQNF, with the guess from “MPM2D GUESS”
(“MPM3D.GUESS") The solver calls MPM2D (MPM3D) iteratively
to solve the problem and to numerically compute partial derivatives.
This recurrent use of MPM2D (MPM3D) is illustrated in the
diagram by a loop with an arrow on it, connecting the two blocks.

MPM2D (MPM3D) evaluates the MPM conditions given the
variables. For each burn in the orbit transfer problem, variables
are sent to BURN. This subroutine integrates each burn arc by
calling LSODE and evaluates boundary conditions for that burn by
calling BCC (BCC). The derivatives for integration, required for
LSODE, are supplied by FBURN. FBURN is called repeatedly by
1LSODE during solution of each burn’s initial value problem.

August 1895
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V. The Patched Method in Two Dimensions (PAT2D)

V.1. Using PAT2D to
Compute Sub-
Optimal/Extremal Solutions

V.2. How PAT2D Works

PAT2D Diagram

The subroutine FUNC is a realization of the Patched Method in two
dimensions. The file "PAT2D.f" contains an implementation of
FUNC with the conjugate gradient method. The conjugate gradient
algorithm was taken from "Numerical Recipes" and is only
slightly modified from what is presented there.

PAT2D requires two input files for execution. These files specify
iteration parameters ("PATCH2D.TOLS") and the initial solution
guess ("PATCH2D.GUESS"). The "PATCH2D GUESS" file must
be in the PAT2D format (see Appendix A). The format for
"PATCH2D.TOLS" is much simpler and demonstrated in the
example below:

FTOL = 1.0C00000C0COCOCO0CCR0E-OSE
LTOL = 1.000000000000000000CCE-CT
GTOL = 1.00000000000000000000E-03
TOLZ = 1.00000000000000000000E-03
I™X = 200

MFUN = 200

MITN = 1000

IT™E = 15

The FORMAT edit descriptors for the first four lines, containing
REALY values, are (1X,A6,D27.20) and likewise for the last four
lines, containing INTEGER values, (1X,A6,16). The value for
FTOL specifies the function value stopping criterion, when the
change in total burn time after a line search is less than FTOL the
iteration stops. The value for LTOL is the line search tolerance.
GTOL specifies how small the 2-norm of the gradient should be fore
stopping. TOLZ2 is the tolerance for DCNLP one-burn solutions.
ITMX is the maximum number of allowed conjugate gradient
iterations. MFUN limits function calls and MITN limits the
overall iteration count for DCNLP. ITNB limits the number of
multiple-shooting iterations performed by BOUNDSCO.

The diagram below shows the general structure of the code in the file
“PAT2D .1

MAIN FRPRMN

ITERATION

() (O
L OOPS
THROUGH FUNC p—{ DFUNC |
EACH
BURN

ONEBRN| | CNSTRN |gJBCC

GRADNENT
- - - | BNDSCO LooP
L]
! ! GRD
' TCOBIGFOR 4
« DAGRAM '
t o e e e e - L]
DNOONF
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The subroutine FUNC is the heart of PAT2D. This is the function
that, given the choice of intermediate orbital elements, calculates
the total burn time for the transfer. FRPRMN is the conjugate
gradient routine, from “Numerical Recipes,” that iteratively calls
FUNC and DFUNC (gradient routine) to find the optimal choice of
intermediate transfer orbits.

PAT2D has a two-loop structure; there is an inner loop
(FUNC/ONEBRN) and an outer loop (FRPRMN). The outer loop
successively changes the transfer orbits until a minimum is found
in the total burn time (maximum of final mass). The inner loop
solves the one burn trajectories between each transfer orbit. Solving
this trajectories yields the burn time s for each intermediate
transfer. These burn times are summed, giving the output of
FUNC.

Note that each successful outer loop iteration produces a suboptimal
transfer. This transfer satisfies all the conditions on the state but is
not an extremal transfer.

The main routine loads the solution guess and calls FUNC once,
before FRPRMN does. This is done because there is no assurance
that the trajectory guesses in the PATCH2D.GUESS file will
successfully produce a suboptimal solution. The output from this
first call is named *PATCH2D.INITIAL” and is often a good guess
for MPMM2D. However, if this is a poor guess, then a good strategy
is to allow PATZD several iterations to produce a transfer closer to
the solution.

The inner loop iterations are a little complicated. This is the result
of an attempt to make them robust. It is also designed so that each
successful inner loop iteration produces a solution to the Two Point
Boundary Value Problem (TPBVP) with BOUNDSCO, a multiple-
point shooting algorithm (MS). However, it is widely known that
direct methods often have a large region of convergence than
indirect methods. Therefore, Direct Collocation with Nonlinear
Programming (DCNLP) has also been implemented.

The following diagram shows how the ONEBRN subroutine
interprets the user’s selection as to what is the appropriate first
action, use MS or DCNLP first?

August 1995 Applied Control Laboratory
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ONEBREN Flow Chart part 1
{abridged)

ONERRN Flow Chart part 2
(abridged)

St MS a0
DCNLP
Patameiers

Conver M5

Yes o881
1% ve with M ov
@ o IMS guess sor S DONLF puess

Note that a MS guess can be given for DCNLP in this structure. A
DCNLP guess cannot be given for MS because a DCNLP solution is
required in the conversion process from DCNLP information to MS
information.

The next diagrams shows how MS (BNDSCO) and DCNLP (IMSL's
DNOONF) are incorporated:

Pariorr
DChiLP
fie/ators

ras BNOSTO beer 1rec
CETMAX times or s the
normec change in orona’
gienanily larger thar

e DeluDRtOr
wmr (CFFP; beer
reaches”

Attempts with either method have a similar structure. If a failure in
iterations occurs, the guess is perturbed and the method attempted
again. After each failure, the perturbation size is increased. If MS
{ails too many times, control is handed over to DCNLP. However, if
DCNLP fails too many times there is no backup and an error exit
occurs.

After ONEBRN succeeds in computing a MS solution, the SEL
parameter is set to 2 for that burn.

Applied Contro! Laboratory
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"PATCH2D HIST" (iteration data)

"PATCH2D.INITIAL" (first suboptimal sol) first optimal

solution obtained, in patch2d format

s "PATCH2D.SOL" contains the extremal solution obtained to
tolerance

e "PATCH2D BURN" (iteration status) prints iteration status;
file is useful when program is being run under a queuing
system and screen output is withheld. Printed after a burn is
solved.

* "PATCH2D.COST" (iteration status), file is usefu] when
program is being run under a queuing sys and screen output is
withheld. Printed after a complete transfer is solved.

o "PATCH2D.CURRENT" contains current suboptimal
trajectory, unless it is the best.

* "PATCH2D.BEST" contains best suboptimal trajectory to date

* "PATCH2D.PERT" gives information as to the progress of
solving the current burn.

e "FRPRMN.OUT" output from conjugate gradient routine,
"FRPRMN

e "FRPRMN.ITERATES" current output from FRPRMN, for info

when using a queuing system

Qutput files:

August 1895 Applied Control Laboratory
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V1. The Multiple Shooting Approach (BND3D)

VI1.1. Using BND3D to
Compute Solutions

Normal Execution:
Free Final Time, No
Homotopy

The BND3D program implements the modified multiple-point (MS;
algorithm of BOUNDSCO (Boundary value problem solver with
Switching Conditions). BOUNDSCO makes use of Newton's
method, a Broyden update, and Deuflhard'’s relaxation strategy.
One should refer to the BOUNDSCO manual! for detailed
information on BOUNDSCO. Note that BOUNDSCO does not make
use of an analytical gradient.

BND3D also has & homotopy loop around BNDSCO. A homotopy
variable U is defined such that, as the Joop repeats, U will change
from 1 to UMIN (The choice of UMIN is set by the user, but usually is
chosen as 0). Certain parameters for the orbit transfer problem
definition are included in the homotopy loop and vary as the value of
U changes. A tutorial using homotopy is included in the Tutorials
section.

The code MP2BND will convert MPMM3D input files into BND3D
input files.

BND3D requires two input files: “BND3D.SCRIPT" which contains
instructions and parameters, and another file (named by user)
which contains the solution guess.

The format of the file “BND3D.SCRIPT” depends on how BND3D is
to be used. This format is best described line-by-line. The
character in the first column of each line is ignored.

The four different layouts of the “BND3D.SCRIPT" file are
described below:

¢ Line 1. (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are aliowed.

Line 2. (1X,16) Here, a *1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here; this
output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “1” on this lines chooses the free final time
option.

Line 4: (1X,16) A “0” deselects the homotopy option.

Line 5. (1X,16) A “1” on this line tells BNDSCO to insert nodes
for the switching times in the output; a “0” says not to.

*

® @

10berle, H.J, Grimm, W., “BNDSCO: A Program for the Numerical Solution of Optimal Contro!
Problems,” English Translation of DFVLR-Mitt. 85-05.
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Fixed Final Time;
No Homotopy

Free Final Time,
Homotopy Activated

Line 6: (A, D12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

Line 7: (A, D12.5) The value on this line sets the BNDSCO
iteration tolerance.

Line 8. (1X,14) The maximum number of iterations.

e Line 9. (1X,A28) The name for the file containing the solution
* Line 10: (1X,16) A “1” on this line requests detailed solution

information (“BND3D.EXTRA” and the file named on
the next line). A “0” indicates otherwise.

Line 11: (1X,A28) The file name for additional information (if a
“1” on the previous line).

Line 1. (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

Line 2. (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here; this
output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “0” on this lines chooses the fixed final time
option.

Line 4: (A,D12.5) The value for the final time.

o Line5: (1X,16) A “0” deselects the homotopy option.
e Line 6: (1X,16) A “1” on this line tells BNDSCO to insert nodes

for the switching times in the output; a “0” says not to.
Line 7. (A, D12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.
Line 8 (A,D12.5) The value on this line sets the BNDSCO
iteration tolerance.

¢ Line 9. (1X,14) The maximum number of iterations.
* Line 10: (1X,A28B) The name for the file containing the solution
e Line 11: (1X,16) A “1” on this line requests detailed solution

information (“BND3D EXTRA" and the file named on
the next line). A “0” indicates otherwise.

Line 12. (1X,A28) The file name for additional information (if a
“1” on the previous line).

Line I: (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

Line 2: (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here; this
output is usually only useful in finding errors in the input
file.

Line 3: (1X,18) A “1” on this lines chooses the free final time
option.

August 1995
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Fixed Final Time,
Homotopy Activated
(in this case, the
fixed final time is
also achieved
through the homotopy
loop)

e Lined4: (1X,16) A “17 selects the homotopy option.
e Line 5: (1X,16) the suggested number of homotopy loops to

e ¢ & & o & & & 2

perform

Line 6. (*) Enter UMIN, the value of the homotopy variable to stop
at. The homotopy variable, U, starts at 1 and ends at
UMIN. Enter “0.0" here to attempt to achieve the values
below,

Line 7: (*) Enter the desired maximum thrust level

Line 8 (*) Enter the desired specific impulse

Line 9: (*) Enter the desired fina! orbit semimajor axis

Line 10: (*) Enter the desired final orbit eccentncity

Line 11. (*) Enter the desired final orbit argument of perigee

Line 12: (*) Enter the desired initial orbit semimajor axis

Line 13: (*) Enter the desired initial orbit eccentricity

Line 14: (*) Enter the desired initial orbit argument of perigee

Line 15. (*) Enter the desired initial orbit argument inclination

Line 16: (1X,16) A “1" on this line tells BNDSCO to insert nodes
for the switching times in the output; & 0" says not to.

Line 17: (AD12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

Line 18: (A D12.5) The value on this line sets the BNDSCO
iteration tolerance.

e Line 19: (1X,]4) The maximum number of iterations.
e Line 20. (1X,A28) The name for the file containing the solution
s Line 21: (1X,16) A “1” on this line requests detailed solution

information (“BND3D.EXTRA"” and the file named on
the next line). A *0” indicates otherwise.

Line 22: (1X,A28) The file name for additional information (if a
“1” on the previous line).

Line 1. (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

Line 2. (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here: this

.output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “0” on this lines chooses the fixed final time
option.

¢ Line 4: (A,D12.5) The value for the final time.
* Line5: (1X,16) A “1” selects the homotopy option.
e Line 6: (1X,16) the suggested number of homotopy loops to

perform

Line 7: (*) Enter UMIN, the value of the homotopy variable to stop
at. The homotopy variable, U, starts at 1 and ends at
UMIN. Enter “0.0” here to attempt to achieve the values
below.

e Line 8: (*) Enter the desired maximum thrust level
¢ Line 9. (*) Enter the desired specific impulse
e Line 10. (*) Enter the desired final orbit semimajor axis

Applied Control Laboratory
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V1.2. The BND3D Guess File

Format

Line 11:
Line 12:
Line 13:
Line 14
Line 15:
Line 16:
Line 17:

(*) Enter the desired final orbit eccentricity

(*} Enter the desired final orbit argument of perigee

(*) Enter the desired initial orbit semimajor axis

(*) Enter the desired initial orbit eccentricity

(*) Enter the desired initial orbit argument of perigee
(*) Enter the desired initial orbit argument inclination
(1X,16) A “1” on this line tells BNDSCO to insert nodes

for the switching times in the output; a “0” says not to.

e Line 18

(A, D12.5) The value on this line sets the BNDSCO

parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

e Line19:

{A,D12.5) The value on this line sets the BNDSCO

iteration tolerance.

* Line 20:
e Line 21:
e Line 22:

(1X,14) The maximum number of iterations.
{1X,A28) The name for the file containing the solution
(1X,16) A “1” on this line requests detailed solution

information (“BND3D.EXTRA" and the file named on
the next line). A “0” indicates otherwise.

e Line 23:

(1X,A28) The file name for additional information (if a

“1” on the previous line).

The BND3D Guess file (named in “BND3D.SCRIPT") has a specific
format. The first twenty lines specify orbit transfer parameters of
type DOUBLE PRECISION and have FORMAT edit descriptors
(1X,A9,F30.15). These parameters are as follows and in this order:

MU

REQ
J2

GO
BETA

RO
ROU

5

CD

ISP
THRUST
Al

El
OMEGAI
RAI

I-1

AF

EF
OMEGAF
RAF

I-F

gravitational constant of the central body (1.0 for no
dimensions)

equatorial radius of the central body

constant describing the mass distribution of the
central body; for Earth J,=1082.61x10°6

acceleration at sea-level

constant from the atmosphere model describing air
density variation in the prescribed altitude region
ro +REQ

atmosphere density at the altitude r,,

cross-sectional area of the craft
drag coefficient

specific impulse

maximum thrust

initial semimajor axis

initial eccentricity

initial argument of perigee (degrees)
initial right ascension (degrees)
initial inclination (degrees)

final semimajor axis

final eccentricity _

final argument of perigee (degrees)
final right ascension (degrees)
fina!l inclination (degrees)

August 1885
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V1.3. How BND3D Works

The 21st line (1X,15) gives the number of intervals (# nodes - 1).
The next line is a dummy string line (1X A) that, on output, is used
to provide a header for the data in the following lines (useful in
plotting results).

The next (# nodes) lines gives the BND3D state at each node with
edit descriptors (1X,F30.15,25(A2,F30.15)). The BND3D state is as
follows:

61 2 3 & 5 €& 7 8 9 10 11 12 13 14 it
(T, X, v, 2, U, VvV, w,. M, L-X, L-¥Y, L-2. L-VU, L-V, L-¥W, L-M TF

{ FINAL CORBIT } { INITIAL OPEIT )
16 17 18 1% 20 21 22 23 24 25
Gl, G2, G3, G4. G5, G&, G7, GE, G9. GiIC)

<X.Y.2> IS POSITION <L-X.L-Y.1-2> IS LAMECA-F
<U.V.W> IS5 VELOCITY <L-U.L-V.Ll-w> I€ LAMEZAH-Y
¥ IS MASS

1-M 1S LAMEDA-NM
T IS THE NIPMALIZED TIME {C.1)

Where TF is the final time and G# are components of the constant
Lagrange multipliers (v); G1-G5 being v for the final boundary
conditions and 6-G10 being v for the initial boundary conditions.

The nodes are entered in the reverse order, starting with the final
node and ending with the initial node.

Following the node information is a line (1X,15) for the number of
switching points. It is suggested to use an even number of switching
points - this indicates to BNDSCO that the first and last intervals are
burn arcs.

The next lines (1X.F30.15), one for each switching point, give the
switching times in normalized time [0,1]. No lines after these are
read.

BND3D supplies the necessary routines (F and CON) to BNDSCO
“F” supplies the derivatives of the state and “CON" evaluates the
boundary conditions. The routine “BCC” computes repeated
formulas, “LSG” loads the solution guess, “SAVSOL” saves solution
data in the same format as the guess data. The routine “DIFSYB~
performs numerical integration.

Appiied Control Laberatory
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The flow diagram below indicates the interdependence of the
BND3D subroutines.

BND3D Fiow Diagram _.{_Ls_c;_]

MAIN

( HOMOTOPY LDOP

|

ITERATON and
GRADIENTLOOPS

INTEGRATION LOOP

August 1995

Applied Control Laboratory



ORBPACK Users Manual

Panse 21

VII. The Minimizing Boundary Condition Method (MBCM3D)

VI.1l. Using MBCMa3D to
Compute Solutions

The Minimizing Boundary Condition Method (MBCM) is a relaxed
simple shooting algorithm. Instead of using 2 multidimensional

nonlinear equation solver for the two point boundary value problem
(TPBVP), it transforms the TPBVP into a nonlinear programming

(NLP) probiem.

As included in ORBPACK, MBCM3D uses the square of the
Hamiltonian as the NLP cost function. All other boundary
conditions are taken as NLP constraints.

MBCM3D requires one input file, MBCM3D.GUESS. This file has a
very specific format. The first 47 lines of this file have the
FORMAT edit descriptors (1X,A9,E30.15). They describe, in the
following order:

MU gravitational constant of the central body (1.0 for no
dimensions)

REQ equatorial radius of the central body

J2 constant describing the mass distribution of the
central body; for Earth J,=1082.61x 10-6

GO acceleration at sea-level

BETA constant from the atmosphere model describing air
density variation in the prescribed altitude region

RO ro, +REQ

ROU atmosphere density at the altitude r,,

S cross-sectional area of the craft

CD drag coefficient

ISP specific impulse

THRUST maximum thrust

Al initial semimajor axis

El initial eccentricity

OMEGAI initial argument of perigee (degrees)

RAI initial right ascension (degrees)

I-1 initial inclination (degrees)

AF final semimajor axis

EF final eccentricity

OMEGAYF final argument of perigee (degrees)

RAF final right ascension (degrees)

I-F final inclination (degrees)

[the next 14 lines give the initial state]

TF

transfer time

[the next 10 lines give G1-G10]

ACC

solution tolerance

Where G# are components of the constant Lagrange multipliers
(v); G1-G5 being v for the final boundary conditions and G6 G10
being v for the initial boundary conditions. :

The last line of “MBCM3D.GUESS" (1X,A9,110) gives the maximum
number of iterations.
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VIi12. How MBCM3D Works

MBCM3D Flow Diagram

The code “BND2MBCM.f° will convert a BND3D guess file named
“BND3D.GUESS” into a MBCM3D guess file (“MBCM3D GUESS").

MBCMa3D uses VF02AD to solve the NLP problem. VF02AD uses
reverse communication: the main routine calls OF to compute NLP
cost and constraints given input; then GRD to compute gradients;
then calls VF02AD to compute the new iterates. The main routine
then uses these new iterates as input for OF and repeats the loop until
VF02AD signals convergence.

OF evaluates the TPBVP as a NLP. The shooting problem is
integrated with RK, a Runge-Kutta integration routine. Integration
of the shooting problem is interrupted often to check the sign of the
switching function. If a sign change is detected, the integration
interval is adjusted until the exact switching point is located.
During this process, OF keeps track of the sign of the switching
function and appropriately adheres to the optimal switching law.
This should ensure that the switching law is followed, however, it is
always prudent to check the switching law after a solution is
claimed.

The flow diagram below indicates the interdependence of the
MBCM3D subroutines.

OF m DERIV
MAIN | B ‘ BCC

GRADIENY INTEGRATION
LooP LOOP

GRD

{0 ]
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VIII. Tutorials

VI1.1. Planar Five Burn
Transfer

Use GSHOOT to
Construct a Guess

The following tutorials demonstrate some aspects of using
ORBPACK that the user may commonly encounter.

This tutorial demonstrates the use of the supplied code in solving a
planar transfer from a circular LEO to circular GEO. The initial
radius is 6600 km, the final radius is 42241 km. The initial rocket
motor thrust is 9.918 kN, its Isp is 450 seconds. The initial mass s
20980 kg. A five burn solution is desired.

After nondimensionalization, these parameters are: initial
mass=10, thrust=0.5166, go=1, Isp=0.5673, initia! radius=1, final
radius=6.4.

Based on the characteristics of these types of transfers, the following
guess for the transfer orbits may seem reasonable:

a e
1.285 0.21889
1.570 0.3584
1.856 0.4550
3.707 0.7262

All their apses are aligned and the final transfer orbit is similar to
the Hohmann transfer orbit.

The trajectory for each burn will now be guessed using GSHOOT.
The “INDIRECT.DAT" files produced by GSHOOT will then be
concatenated together to form an “MPM2D guess” file. The first
burn input file for GSHOOT (“GINPUT”) is supplied as
“Tutorials/2D 5burn/GSHOOT/burn VGINPUT* and listed below:

Y = 1.0C

Ge = 1.00
Isp = . B¢
Thrus:y = [OS1€€E
& = 10.0007
azc = 1 .0CIlC
€: = C0.CLC
we = 000
ad s L.2E%
el = 0.2:8
w2 = C.C20
THAX = C.00C
NGS = 100
NIX = 3

GSHOOT reports:

Bes: constant lagrange multipliers (initial)

C... 0 15045E-300 O0.SEEZDE-20 C.145E1E-721
Bes: 1nitial true anomaly

voz 0.S304T7E-01
Best transfer time

tfz (. 19312E+00
Best relative errcrs (5, ex.ey,Hs)

G .. U.1BBI7E-OF -0.49E20E-C)  0.315555E-C2 0.27599E.02

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOT/burn VINDIRECT.DAT* The second burn
“GINPUT" is [“Tutorials/2D 5burn/GSHOOT/burn 2/4):
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Y] = 1.0C
Go * 1 00
Isp = 0.%€7)
Thrust = 0.51¢¢
Mo = 10 0200
ao = 1.28%
(2 e 0219
we v 0020
ad = 1.%70
[ -] = C.3584
wed = 0.000
THAX = & (0C
N3S = 00
NIX = 3

GSHOOT reports:

Best constant Lajrange multipliers (initial)

C... D 7C28%9E-00 C.179CIE«D0 -0.24402E-24
Best initial true shomaly

vor C.56451E+C1
Best transfer time

tis 0.11458E+01
Best relative errors (h. ex ey H

G... 0.10B46E-C7 -0 .B2EL5E- 62 O 16307E-02 0.32135E-03

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOT/burn 2/INDIRECT.DAT* The third burn “7 is
[“Tutorials/2D 5burn/GSHOOT/burn 3/¢]:

Mu s 1.00
Go e 1.00
isp s 0.%€73
Thrust = 0.51€¢€
Mo = 10,000
a0 = 1.¢70
el = 0.3584
wd = £.000
agd = ] . BS¢
ed = 0.4550
wd + 0.000
™AX = 0.000
NGS = 100
N1X s 2

GSHOOT reports:

Best constant lLagrange multipiiers (inicial)
C... 0.944%1E~00 €. 2€.9ZE-CQ -D.1033C0E-14
pest initial true ancmaly
ves 0. 6C064E-02
Best transfer time
tf= D.79429£~OC
Best relat:ve errcrs ik, ex. ey Hs)
G, D.9E374E-CR { &BS4E-DZ O.13ZEBE-0L -0.3543€E-D2

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOQOT/burn3/* The fourth burn “” [“Tutorials/2D
5burn/GSHOOT/burn 4/4):

mu = 1.00
G a 1.00
Isp = 0.8%€73
Thrust # 0.816¢
Mo s 10.0C00
ac = 1. 8BS
eo = 0.4550
wo « 0.00C
ad = 3.907
ed « £.7262
wd s 0.00C
TMAX = 0.000
NGS = 100
NIX = 3
GSHOOT reports:
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Best ccnstant lagrange mult:ipiiers (3nitial)
9 D.44C12E+0C G .309I%E.D0 C.35928E-14
Best a1nitial true snomaly
vos 0. 5378ZE-Q)
Best transfer tame
tis C.1B2€5E-C)
Best relat:ve errcre (h.ex, ey Hs)

G . O SBEJBE-OF -0.39504E-0) O 21798EE-C3

L. 3CEI3E-L2

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOT/burn 4/ The fifth burn *” [“Tutorials/2D

5burn/GSHOOT/burn 5/

m. = 1.00
Go = 1.¢C
Isp v 0. 8672
Thrust = 0 Bléé
M2 = 10 €000
[ 1 = 2,707
ec = 0 7262
we = 0.0C0
ad = £ 400
ed e C.0LTC
wi = £.000
THA = £.0CL
NGE t 1CC
4 KIX = 3

GSHOOT reports:

Best consiant lLajprange multipliers (inatial)
C... C.2BQ1%E-0C -0 .7)ELZE~CC ~C €2373SE-OC
Best initial true anoma.y
voe 0 3C0SEE~C2
best transfer tame
vtz 0. 32219E-72
Best relative errors (h.ex.ey.Hs)
G... C.26077E-11 -0.93204E-Cc -0.258E1E-C1

L E3elBE-LL

The GSHOOT output has been supplied as “Tutorials/2D

Sburn/GSHOOT/burn 5/

The files easily concatenate. The resulting file has been supplied
as “Tutorials/2D 5burn/GSHOOT/MPM2D.guess*

Attempt Computation At this point, we have a solution guess for the entire trajectory in the
PATCH2D format. One option for obtaining the solution is to run
MPMMZ2D with this input. However, one may get a iteration history

of Solution with
MPMM2D

MPMM2D Output

like this:
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If MPMM2D Fails,
Use PATCH2D

Cur. Nom Ity Best Norm tast) ¢ Short Time Bris  Bst wWrst E. Ele

0 68735E~C: 1 0 6873SE-C) 1 0.7842%E-C0 30 34T4LE-L 42
0. 6R=3ISE.C] 45 0 6B8735E-01 45 0.7942%E-00 3 € 34045E-TI &2
0 €B7ISE.D] $C 0. 6873SE.D) 48 0.75429E-0C 30 d4l4CE-C] 43

BCC: Possible cornflict an orbit choace
As-2 617712643152
Es2 335666952254
W2 $5£152238017
{LOCATION 05
BCC: Possible conflact in orbit cheice
Ax-2 617732642152
EsZ 3356669521254
We2 S5€3%0238017
[LOCATION o)
BURN  WARNING. BCC CLAIMS AN ERROF
IN THE IRITIAL POONT CALTULATION
Wisd 684341BRECRIEE-14
w2=] BLEBE7E578152
Wis0 7387094236306
[LOCATION 1)
BCC: Possiblie conflict in orbit choice
Ang 117897825629
Ex) 458915419989
We-0 5075814176646
[LOCATION €1}
INCONSISTENT :
A*(le0-E**2) LT .JED
STOP (called by BIC )
CF. 20.1%5s. Wallcieck: 2% .93%s. 32 7% of 2-CPU Machine
HwM mes. 213€17. HWM stack: 26610, Stack overflicws: 0

Note that the current norm error started at 6.3735: though such a
large error does not always induce failure of MPMM2D, it may.

In such a situation, the more robust PATCH2D is useful. Since the
file format is identical, this is very convenient. PATCH2D does
require one additional input file, for its inner loop tolerances. The
file is called “PATCH2D.tols” and for this tutorial, it has been
supplied as “Tutorials/2D 5burn/PATCH2D/PATCH2D tols* and
listed below:

FTOL = . 0CCC0CCDOTI00CCCIOC00E-C8
Tl = 1.00CC0CC00COCOC0L0000E-0Y
GTCL = 10200000000 000000000E-C3
TOLZ = 1.000000CC0000CLT0O0JE-0%

We have chosen a rather strict tolerance for “function
improvement” convergence, a slightly less strict tolerance for “line
search” convergence, a very loose tolerance for “gradient norm”
convergence, and a rather loose convergence tolerance for DCNLP
iterations.

It needs to be said that the drawback to PATCH2D is its speed. For
this tutorial, PATCH2D was run. After renaming
“MPM2D.GUESS” to “PATCH2D.GUESS” and running PATCH2D,
we see the following iterations:
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Use PATCH2D

0. 34

s XN - RaNa N o NoleRaNoNale RaRiNoRuNale vluRaRafeNalsoRagafoRngele)

P
X
3
<

BERITE-C]

.4190BE-CL

5230°%E- 02
10740E-C2
SE8EZE-CL
13388E-C1

L122%%E-01
C17B4&KE-C2

EPSLLE-L2
BEZEEE-CL

L2i342E-C0
CLIZESE-TZ
LLCOECE-04

JOBEE-US

L1EEE4E- 04
CIBEZIE-CE

242¢5E-C2

C16SL2E-C2

C1CDAEBE-L(C

1125BE-04

LTETZEE-04

10€44E-12

C13474E-C2

JTIZE-C4

Z4BITE-L4
208STE-L3

Siiep.ci
treg-c:
1i1E-C3
TETE. 03
$I8E- 03

]

LY SEE S
R R R

o

Functien TOL (FT0L) = 1 E-¢
Grad:ent TCL (GTIL: s ] E-2
Line Searcr TO. (LTI0 e 3 E-7
Max ¢ 1terates (ITHMAX) = 2{0
ITs Cost Func imcrovenent Gradaern
© © 664%SE-C3 0 0000LE-SC 0. 472131E-L2
1 0.664%5E-C1 0.00000E-00 0.47213E-l2
2 0.66CJ1E-CI -0 €341BE-01 0.14435E-02
3 D.65911EC1 -0 . 54372E-0)  O.56%84E-C1
4 OD.6SBBSE-CL -0 S€9BEE-01 0.12130FE-C2
5 0. €SEI.E<CL -0 €235EE-0L1 D BSID(EIL
& 0 €5554E~01 -0 9C129E-C3 C.JEBSECE-C2
7 O €5ETE-0] -D . 9€E2€E-C) C.11852E-C2
8 0.€542%E~021 -0.1C299E-00 U.39034E~C1
$ 0.6541¢€E-0L -0 JCIEEE-0C 0.75207E-CL
10 D €E372E-0) -~U.10E33E-00 0 .7]069%-02
11 0.€5329E.0) -0.11259E-00 O.BCHEBE-OL
1 0 €532)1BE-CL ~0.312€€E-D0 D.32664E-()
13 C.65312E-01 ~0.31432E-0C 0.134SBE-D1
34 C.E€53JLE-C1 -C 1142SE-C0 C.SEBJ7E-CIC
35 0 . €%311E«C. -0.31436E-<0C 0.33CI2E-0C
16 © €%3311E-31 -0.31437E-S0 O.76E™7E-OC
15 0. €5310E~C) -0.1144€E-00 (.11374E«C1
16 0 €5308F-0L -0 1145BE.OC 0.193€5E-(C
3 C.€52DFE-C. -0 . 114€€E-D0 0. B3243E-(C
0 0 €53I0RE-C: ~C 134TIE-DC £.54440E-CO
2. 0 .€RACEE-CI -0 11471E-0C Q. 42573E-CC
22 0 €S3CTE<(l -C 11475E-0C 0. .BLIEE-CT
23 U €L3IJTE.DL ~C.I14ELE-TC O.I%5€SE-T]
28 C €S306E-D) -C . 11QETE-DD  0.42370E-T0
28 € €SZ0EE-C) ~C.11489E-0C 0.70424E-TC
2€ O0.65308E«T) ~0.15490E<00 O.SE3CEE-OD
@7 0 EE3CLE.QY -T.I1SCIE-TO CLILNIETESTL
<8 O ES303E.DY -C.33834E.00 C.30823E«CC
2% G €8280E-C1 -C.22048E-00 (.78671E-L0
{ 0.€5209F+01 -D.124€3E-00 ©.21314E-Q2
31 0. €RIZ{7E-C1 ~0.124BLE-CC  O.18J41E-0)

PV IR B B AL LS DI WIRAR RN AR D U U &)
—
LS
w

The PATCH2D code had been left to run overnight, about 12 hrs. It
did not satisfy any convergence criterion by the 31st iteration.
execution was terminated. The output file “PATCH2D BEST" has
been put into in the “Tutorial” folder as “Tutorials/2D

5burn/PATCH2D/PATCH2D .BEST*

Now, this file was renamed to “MPM2D . GUESS"™
Output for MPMM2D to “MPMM2D.” The iterations are listed below:

0.4CI4TE-CD 1
0.4024CE-0C 4c
0.35362E-C2 9s
. 244 2E-Q€ 128
T €54L4E-C7 iES
(. 280868BE-.0 422
C.72452E-D7  2%C
C.11827E-06 315
C.§70SEE-L7 LI
0.2B¢3IE-08 405
C.2376ZE-06 450
0.14141E-10 435
C.117E5E-DB 54°C
C.40533E-06 5SS
0.47061E-07 €20
0.78723E-07 55

OGO OOOO

BEST NOFPM (AT %

L4LZ40EACT
.4024CE-CO
LIS3EIE-C2
JASEECE-LD
L30384E-1C
.29068E-1C
L2506BE-1C
L2696EE-10
LedL4RE-I0
.20320E-10
.15318E-10
L13E18E-10
S13€15E-IC
.13329E-20
.11624E-20
.9E5LZE-11

**v FATAL ERRIFE 3 from NEONF
v The user may try 8 new iRi1tial guess.

1 0. €7€ESE-TT 3
41 0.676€5E-C0 3
72 0.108%89E.lC 3

323 O ILCZEEE.D: é
374 T.11ZBEE-L é
a2% [.1128fE.70 3
<2% (.1128BE-TC 3
27€ C.112EEE-CL 3
331 C.IL2BEE-Il 3
365 0.112BBE.LC [
84, L .1I2BEE~CL 4
483 0.1126BE-CL $
493 0.1128EE-01 é
544 O0.112BEE-CS é
595 0.112BBE-C1 $
65¢ C.1i2BEBE-Z. é

SHORT TIME  ENs

and used for input

OO OOO0O0

i

.. -t
E. 2
L84 €
i5 o
Py i
s¢ P
gs ot
§3 €
7€ Py
[ 3 Pis

The iteration has nct made ¢ooC progress

Obviously, the solution was found; however, a shortcoming in the
NEQNF solver did not allow it to claim convergence. This seems to
be common among nonlinear equation solvers. An easy fix is to
perturb the guess slightly. In this case, the eccentricity of the first
transfer orbit was perturbed from

| ex & C.14423753€80€7283€260E-00
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VII2. Convert MPMM3D
File to BND3D File, Run
BND3D

Run MP2BND

to

| ex e C.16432753690672B36260E-00

For this new guess, in the “Tutorial” folder as “Tutorials/2D
5burn/MPM2D.GUESS,* the MPMM2D iterations are:

CUR. NORM ITe BEST NORM (AT) ¢ SHORT TIME

-4C41BE-O0 b
.404LBE-CD 4°%

] O .4C41EE-0D 1 0 87€E5ELDD
[} O . 4C41BE-DD 41 0 676€SE-CC
© 30687E-0) 90 0. 30687E-0I $6 0.10688E-01
C.46F30E-07 13%  C.2.09IE-10 122 0.132BEE-TI
0.€08EE-D7 180 O0.1RO042E-10 17¢ D.1128EBE-C.
0.30214E-06 22% 0.17836E-10 220 O

.1128BE-CI

TCTAL BURN TIME = 6.512750674081
FINAL MASS = 4 O€BIB7BCS01S

SHORTEST BURN LENGTH = 1.12B8316158E8
SHORTEST BURN 15 ¢4

SOLUTION SAVED

BNe  BST WRST EL. ELe

C.3152%E-00 kT4
0.318258E-00 3¢
0.14727E-C3 26
$.13€3%2-10 k3
C.14477E-20Q i2
0.34CESE-CC 22

The solution file is given in the “Tutorial” folder as “Tutorials/2D

5burn/MPM2D.SOL".

This tutorial demonstrates how to use MP2BND to convert a

MPMM3D file to a BND3D file.

The file “Tutorials/MPM to BND3D/MPM3D.GUESS* is a solution
to an orbit transfer problem, as claimed by MPMM3D. The
particular problem it solves is not relevant, but it will be clarified

anyway. The header of this file follows:

TOL = 0.1000000C000G00000000E-08
MU = 0.1000000000000000C000E+01
T = 0.51€58300000000068052E-00
Go = 0.1C000000000000000000E-01
Isp = 0.56730999999999909278E+00
hxo = 0.47715876030000003993E-00
hyo = 0.00000000000C00COD00CE«O0
hzo = 0.87881711269999840397E+00
exo = 0.000000000G00000C0000E-DO
eyo = 0.0000006000C000000C000E+CD
hxf = 0.00000000000000000000E+00
hyf = 0.00000000000000C00000E+00
hzf = 0.2529B85177359999937248E+01
exf = 0.00000000000000000000E+00
eyf = 0.00000000000000000000E+00
NORB = 5

The orbit transfer is, therefore, from LEO to GEO and circle to circle
in 6 burns. Now, suppose we want to further investigate this problem
with the more general BND3D code, so that oblateness and drag

effects can be modeled.

The main task here is to simply run MP2BND. This code will
create the file “BND3D.GUESS” which hds been supplied as
“Tutorials/MPM to BND3D/BND3D.GUESS”
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Run BND3D to check Itis prudent at this point to use BND3D to check MPMM3D's results

In this tutorial, the following “BND3D.SCRIPT"™ file was used

BND3ID.GUESS
0

1

0

0

1d-4

1d-310

100
BND3D.SOL

1
BND2D.REINT

which is supplied as “Tutorials/MPM to BND3D/BND3D.SCRIPT.”
This says the input file is “BND3D.GUESS,” don’t show B.C. errors
to the screen, solve with free final time, don’t include switching
points as nodes in the output, FCMIN=1D-4, TOL=1D-10, use no more
than 100 iterations, save solution as “BND3D.SOL.” provide
additional info and save this info in “BND3D.REINT.” The output
BND3D produces to the screen is listed below:

gC.s ¢

FREE FINAL TIME
HINOTCPY: O

M= 1.008000200000000CT
RED= 0.000ICI2000000C0C0C0E-CD
Ja= 0.0CC2000000000CCCI0ESLC
GCs= 1.00000002000000C000
BETA= [ sisidlaeidaaeleiriddedeaiia L2y
Rl= [ Jedadadddddaddidsd e
FIls= [Rdedaddadadadagudds 2394
S= C.0CCI0CO0CLO00TTITT0E-CT
CO= 0.COT0COCTC0000C000CE-CT N
18F= C BETI 5E005F0LIESEL
THRUST® L E1€RE3000000003004
Al= 3.CITO0TIO0I085ET 92
El= C.00TToCLCC00Cl00000R~-00
OMEGAIx  0.00L0000L0I0TC0C0ICE-0D
1= BS . 955508966706 LEEL
I-1= 2B 8L20CI0008010808
= €.40CI40LR84I05102€
EF= C.0COIOTTITLC0CII000E-CT
OMEGAF= 0 00L00COICCCC0O00CITE-CE
= [ Juddaadatdaduadaca) Sidd
I-F= C.0000000000000C0C00DE-CT
KOTZ: ANSLES MUST BE IN DEGREES
M= 44
K= 2%

R R s R R ]

esorsessrevsresvaRVY sevsessrrvsevs

INITIAL DATA

N=25 M=44 Ms=10
PRESCRIBEC RELATIVE FRECISION L10D-09
MAXIMUY PERMITTED NOMEEF OF ITERATIONEICC

R A R R R T R R R R R R ]

e T TR IPEIPCNI P IEIIIPLIIEIIIIIVIISCEITIIRUDIRTSTY

I AES ERR LEVEL] LEVEL? LEVELR RELAY, NEW CORT Y NIFM @
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Useful Information
in BND3D EXTRA

] .140-07 .11D-07 .11D-07 .76D-08 0 .3EDe0R L§3%-22
.14D-C7 .13D-07 .11D-07 .76D-08 .ocC

b .14D-07 .67TD-07 .67D-07 .340-87 1 3€D-08 B§D-L&
. 142-07 €70-07 67007 .140-07 .00

2 (340-07 .63D-07 .67D-07 .14D-07 2 .36D+08& .883-01
140-07 .€E£D-07 .6€D-07 130-¢7 .008

3 .160-C7 €€C-07 6€T-07 13p-07 3 .3ED-LE (B8l
L1D-07 ElD-C7 $10-07 .10D-07 ¥

4 = 110-07 £10-07 £:p-C” .10D-07 4 L36D-08 €90+3%
.342-1% 44T-1% Jen-u3 43010 1.00C

) L4018 §42-1% L73T-i2 440-1C 5 J3en-Ce CB§T-T2
L260-15 L3102 .2ED-14 J58D-12  1.00C

€ .2€2-15% J3i0-1 3n-id .430-12 ] .20D+08 (B95-28
L73D-1% PPPal Iy | 32c-i4 L77D-11 1.000

7 .732-1% .2.T-14 21D0-14 .730-12 0 LA7D-CE L8903
43015 .13D+14 +20-18 .42D-13 .23¢

] .430-2% J120-34 13D-14 .50D-13 b 47D-09 ESO+L2
.67D-1¢ L1B2-16€ .24D-16 .76D-14  1.000

9 A7D-1€ .18D-16 .18D-1¢ -12D-14 2 .220-C9 L830.02
.24T-18 LBID-18 L1191 .140-1%  1.0CC

10 .eiD-18 LBLD-18 .11D-17 .16D-1% 3 L2025 .B5D«32
LI5D-20 .3BD-19 .14D-18 .250-16 1.000

11 .75D-20 .3ED-19 .B3D-19 L18D-16 4 .4 D08 LBSD-CZ
.32D-21 .66D-21 .550-20 .87D-17 1.00C

12 .33D0-21 .66D-21 LA50-20 .33D-17 H 45D+ 08 B85T-22
.16D-21 .552-21 .5€6D-20 LE1D-37  1.000

13 .16D-21 .550-21 .19D0-20 LA5D-16 o L3008 .8%D- 02
.48D-22 7 .26D-19 .1CD-1¢ 449

14 .46C--22 .26D-18 .10D-L € c 17D« 08 89Z-12
L3€2-28 .50D-19 L220-37  1.8I8

1% .3€0-28% .8.D-19 .23p-10 c 370408 CE§D-12
L3€0-25 .6E0-21 L18D-17 1800

1¢ LED-25 €60-21 .98D-1¢ i 420-C¢ esl-22
LIED-25 .3€D-29 L19D-17 L DlC
40C-19 L5ED-17 ]
.35D-19 .520-17 €8T
.23p-18 .11D-17 .0C7
.83D-20 .6BL-18 .0C1

17 .58D-2¢0 .17D-17 < .37D<C8 JBSOeCT2
.18L-19 .960-18 .oc2

it L170-19 .950-18 4 .37p-CE SB3T.TL
.96b-21 .33p-1e L1e3

9 .270-20 .1€D-18 1 JTEDS1Y BEC-C2

L R Y R R R R R ]

TreTeTEIIIICLINNCEIIPIIEIOVYCESITIOITRISITIOTIPIOICOEIIY

SILUTIIN CETAIRED AFTER 20 ITERATION STEPS

SCLTTION DATA

SWITCHING PCOINTS

P R R N Ry R R R LR R R R R

TeresPITIILIIIRETIIUSIOIIROIRNRSIVSITIIORITISILIOIOYTTY

NAME COF FILE FOR SCLUTION DATA: ->RND3D.SCL <=

It eventually computes the solution to its own criterion, however, it is
clear that BND3D has verified the MPMMa3D solution.

The information provided by BND3D.EXTRA is arguable
essential. This file contains data for the switching function and
Hamiltonian as functions of time. The plot below is a graphical
representation of what BND3D.EXTRA provides
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[ — switcHing) [---- HAMILTONIAN |
BND3D.EXTRA
01—~ - NN RETENN 2 10&
0oL - 4]
\ N
o O 210°% o
H . %
I -02- i 4107 =
(&) i
£ .03 610° ©
06 -+ + - - -3.210°
0 0.2 0.4 TIME 0.6 08 1

Useful Information
in BND3D.REINT

VII1.3. Run BND3D with
Homotopy

The Hamiltonian is almost zero, and very close to the tolerance.
The jumps in the Hamiltonian at the switching points is a common
numerical phenomenon. Also very important, note that this
verifies the assumed switching structure: thrust on at the
beginning. precisely ten switching points, and thrust on at the end.
Finally, note the hump between the fourth and fifth burns, noting the
location of such humps is often usefu] in deciding the location of an
additional burn

The file “BND3D.REINT” also supplies useful data in the form of a
detailed trajectory. The complete state and costate is included. The
plot below, a projection of the trajectory onto the x-y plane. was
created using the raw data in the “BND3D.REINT" file.

BND3D.REINT

Note that this plot is rotated 90° for clarity.

This tutorial begins with the solution file from the “Convert
MPMM3D File to BND3D File, Run BND3D;* tutorial.

Suppose we try and accomplish this change in one step, by altering
the “BND3D.GUESS” file. The script (“‘BND3D.SCRIPT") is,
simply:

Applied Control Laboratory
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BND3ID.GUESS
0

1

0

0

ld-¢

lé-1¢

1ce
BND3D.SOL

1
BND3D.REINT

Here is the BND3D output to the screen:

BC &0
FREE FINAL TIME. 1
HOMITOPY . ©

Mox 1.0000000000000C00C
REQe 0.0CCITOTCCCICTOiilOE-00
Jis 0.05CCO0CTI00CCA0000E-00
GO= 1.00000005000000000
BETAs 0.000000000000C30000E-0C
RO= € 0C0000000200000000E-C0
ROU= C.COL0CC0OCCICTL000E-0C
S= C.LCIOCRISSTiB200000E-00
Co= 0.0Q0C00C02Z0C000000E-00
ISPs 0.567309999999998982
THRUSTs 0.516%B3COI0000010:4
Als 1.00200C000020838732
El= €.00003C0C0CC00C00000E-00
OMEGAI= 0.0003CC000CC0000000E-0D
RAlx 89 955%9998870€66560

-1 2B SQTICIIC09CITBAY
AF= €.€C014999841C092043
EFs C.OCCIO0OCCO0COCICLCE-SD
OMEGAF= 0.0000C00COC0D000000E-00
RAF= 0. 0030205000000 CCL0DE~CO
I-F= 0.CCoOC2CC00O0SCALCTE-DOD
NOTE: ANGLES MUST BE IN DEGREES
Mx §4

*N=z 2¢

LR R R R R R R e X L AL R ]

ScervPereRrIIIITIIVIITIIIRISISIOIRFIIROIISOTIREISE

INITIAL DATA

N=2¢ ¥=44 MS=1C

PRESTEIEEDT RELATIVE PRECISICON L100-09
MAXIMIY PERMITTED NUMEER OF ITERATIONSICD

A AR R A R R A R R R A e R T L L

L R R R XX Y

IT ABS.ERR . LEVEL] LEVEL2 LEVEL] REAX. NEW CORD (M) RIFMINMG

0 L150-02 .3180-02 .220-01 211003 0 .390-(8 .330~02
.15D-02 .15D-02 .22D-01 .11D«03 .000

1 .15D-02 .15D-%2 .185-01 .30D-03 o L370-C8 .B30-02
.15D-02 .16D-02 .190-01 .10D+03 .003

2 .150-02 ,150-02 .4ED-01 .11D-03 1 .E7D-0F LESD+ 2
.16D-02 L18D-02 .22D+00 L13D+02 .02¢€
.15D-02 .150-02 .49D-01 .11D+02 .C05

2 -15D-02 .180-C2 .37D-00 .11D+03 o .37D-08 LEBDSC2
.1%D-02 .13D-02 .410+00 .11D-03 R

L} .15D-02 L315D-02 L9CD-01 L46D~02 0 .3€6D-0B LE9DC2
.15D-02 .15D-02 .88D-01 45D« 03 L0313

H .15D-02 L18D-02 .132+62 .62D+03 0 .37De08 LESD-02
.2.C-02 .2€60-02 .18D-C2 .82D-03 .GLe
L1400 L1E8D-C2 L1IDe02 L€1D-03 0a2

[ L140-02 .15D-C2 .18D-C2 LBiD-03 0 .27De08 (BSDel2
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.2€6D-C2 L3eb-C L2802 L125-04 [S]
.360-L2 J3s8n-C2 L17DeC2 L8003 cit
7 .J&T-C02 L380-02 .23D~C2 L 30004 C Kl ag 2771
310-02 L 44D-C3 .4CD-C2 L3004 052
14-02 S34D-L8 L 2eD=02 LI0D- 04 Ll
] Y Sarioy L1ED-T2 LQBDe 12 L13D<04 c 2€T-0F g:l-ll
o- ik L382-00 .9C-l2 L4TD-C4 L3144
L130-22 J180-04 .27D+L2 L12D-C4 .Gel
s L13n-32 .152-C2 L3ED-TL LIED-04 C L3er-lE ErI-ll
8CD-02 LAip-Cl . B&D-LS L3eD-04 155
JA3D-38 pY-Setiad L380-00 L3808 JReih)
e L130-C2 .38D-02 MED-CL L2LDe 04 L A et et gzl-ll
L142-2040 L300-00 L2280~ 05 Briaeie .13t
b3t S)4D-L0 LAeo-C1 .30D-C2 L14TeCE o] L2808 5.I-00
X Jariehd 7€0-CL L6103 L2708 LO2E
L140-C3 .3¢z-00 LA20-03 L140-CC foleXd
{many lines orztied for Lrevcity)
62 L1850 20 .1%D-C1 .253-01 .44D+03 9 LEIT-LE | 3
L14D-00 L18De 03 L2ED-Q1 .20D-C3 DES
€3 L340<00 L180-00 L2E2-03 L1002 A CBEZ.TE eerenl
LE2De 0L 1 Yelgop] LILD-04 L22De0€ 1007
L14T400 L140-03 2 Joi 3o J182-(2 .Gz
64 L340 00 L34D- 00 .23D+01 L2ED-C2 C CBED-TE gel-la
.1ED-0C L1€D-01 .22D-01 18003 L3128
€5 L1EDDT L1€2-01 .25D-01 .23D-02 [ 235- 3¢ LE3eR Sepd
[P P oatigon LA0D-12 [ Yeatyaxl LS00 000
L18040C L18D-C0 .220-72 LIED-Q2 LAC3
&€ L1BDe DL L1EDe 02 L242-C) L1BDW S 1 .92D-2¢ LET-00
-2 J=ld oy .280-(2 47003 C5BD-00 L0020
e ivie .15D-C1 .22D+02 L140-03 RN

Execution was terminated early because BND3D was clearly stuck
In this type of situation, where BND3D has difficulty, it is often
useful to resort to homotopy.

BND3D has a homotopy loop and is utilized, for this tutonal, with the
following script (supplied as “BND3D
HOMOTOPY/BND3D.SCRIPT*):

END3D, GUESS

) O

T ov
L I Y, ]
W
O om
O W
o

©

DO 0D OO

O h ARty Oy

a
>

O
3949 -
<

(&4
U
<>

000

2E8.5D0

G

id-4

18-7

100
BND2D.SOL

1
BNDID.REINT

To make convergence easier, the tolerance was reduced to 10°7. Ten
homotopy steps have been suggested and the final semimajor axis is
requested to be 6.6.

The output to the screen is very long for a homotopy run, and is
omitted from the tutorial, however, it may be found in the file
“BND3D HOMOTOPY/screen output.” One the other hand, the
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“BND3D HOMOTOPY/BND3D.REPORT" file indicates how the
homotopy progressed:

17, ¥P, v, DU
o, 25 .8000000D+00 . ~-.1000000D+00
1, 22 .8000000D-00 , -.1000000D+00
L2, 25 . .7000000D+00 , -.1000000D-00
3. 30 . .600000GD-G0 . -.1000000D00
' 19 . .5000000D+00 , -.1000000D+00 ,
s, 19 ,  .4000000D+00 . -.10CCO0CD-00
6 . 26 . .3000000D+00 , -.1000000D+00 .,
7, 19 . .2000000D+00 ., -.100000CD00 ,
8 . 28 ., .1000000D+00 . -.1000000D+00 ,
s, -4, .1387779D-15 , -.1000000D+00 ,
10, 17 ., .7500000D-01 , -.2500000D-01 ,
1, 14 . .5000000D-01 , -.2500C00D-01 ,
12, 23 , .2500000D-01 ., -.2500000D-01 ,
13, 17 . .1457168D-15 , -.2500C00D-01 .
This indicates that even though ten steps were suggest, thirteen were
required. Iterations failed for the ninth step. BND3D then adjusted
the step size (DU) to one-quarter and continued until completion.
VI1.4. Using MBCM3D

The following sample input file has been supplied for MBCM3D
(“Tutorials/yMBCM3D/MBCM3D.GUESS"):

Mz LO0TIII0oLILIlLL
Regs= C. :
Jix [Spe Ik Aieletefofol it ol ot ol el ]
Go= € Q09BICICLOH202D
Beta:= C sergoroooIaooed
Re= 0.Co0582350C00CL0
Rou= gc.oTeIpLIioceese
Se o.pleesll
Cd= ¢ 0Ll
Isps 234.00cceees
Thrusts, C 0300¢C00
Arz 3.B473CEICC000000
eir C.C23777042200800
omegaie 0.ogopgcoeziocoece
iz 0.0C0C20C002202030
i-i= s 0.000C0C02200003C
Af= s 1.50000000050¢0000
et= . 0.332333323332313
cmegafsz, [l dud
Rhfs . C.0C20220350000058
1= . C.0COITDIIT0o000
X = . ~3.117687390E7215¢6
Y = , < .3782(TESISZE2E9
Z= ) i eleiopelaleteladelelel efelel
U= , -0 3081335042231¢9
Ve , -0.393442660534349
W s s ¢.ocooacocoocenel
M= , 1.827¢0C002000000
Lam-X= O QB4l506494BCTE4
lam-ys -C.C700629152701£%
Lam-2= , 0.000000080000000
Lam-U= , C.53175E639754281
Lam-Vs C.7377B3173534899
Lam-wsz C.0C00C002030000C
Lam-M= ©.78211133702088¢
TF = 19.0531498€1397220
Gl = 0.000000000C2C000
G2 = 0.000300000C00000
Gl a ~0.E5€CETI95€359%7
. G4 = . ~0.235388651457670
GS = . -0.000€53092537198
G6 = . 0 00030C0C20200C0
G7 = , €.00000C00C000000
Gé = . 0.205432772910801 .
G9 = . -0.02B6054:0341027
Gi0s , 0.00€3219€6£99277
KCC= 0.0oCooiddieecoe
by 1 102
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' ncte all angles are in degrees

The MBCM3D iterations, output to the screen (see file
“Tutorials/MBCM3D/screen.output®) follow:

X = -C

<]
]
0
[
¢}

Lad
"

MMOO0ODDOOO

<

X = -7
-C
-C
-C.
« L,
-C

-0

X =

-0.2
-¢.28

L3317687
-0 3080
c.

C.0Cx0
©.00DCTLCLO0D020E-00

[N

F= C.
€= -C.

-0.3527

ITERATIONS = 3

I90E732E-02
33506322)17E-00
3507C00CTC0000E-0)
OLC00C00000E-CO

jgdiagddgudds 0y

.2259BBEBI45TETES OO

00C0C0000000008-00

(€351966€953770E-02

B€334454474322E-07

-0002C000C00000E- 00
L31BQ397EIZ

3701E-02
4275I€5LE9ETIE-T2

SBELLIET298517EE-L3

0LSCI2000CO000E-CO

.2453095994C8T6E-03
LR2TLTEE9TEO9ETE- 04
COTPLEHEII48LEILE- D5

ITERATIONS = «

3E502209544E-00
3€:EJ‘45:::!-::

GCOCCTO000E-CL
ECJ9E'94.C€3€”E-2C
GELEIEIZEIL0I5E-20
3022E.73E57CEZE-1S

L 43€20E58757290E- 00
<.
e.

24544301€2B€5€E-2C
64ECEERELSZI6EE-CL

Q45ICITTIECSIIE-2]
SELL25EI4ESSETE-20

EéEEEZBCO(ZS?EE-OS
TUCEELPEL5I404E-CT

€5€58TE3351EICE-C3
- 18E7423532267€E-20 -
JIEECEICQTEL

I3EE-C4

Tev

JIBIDETETTIRELLE-OS
LZ4EI6ETOETE2EIE-D0

ITERATIONS = 3

»-«80LUTION CONVERGED- -~
-0.31113)€6€282879E+C)

0.23E30894092E65E-C1

0.69905109?7

Ti20E-20
COS”OB‘JG&G”E <o

33270033103E-CC
ZBLETEITEESIE LT

0.1527300CC00000E-C2

0.
-0.

0
0
0
0
[
0

OO ODOOD

OO0 O0O00

L2352B64C

L3GLTREZLIED

CALLS OF VFO2AD = 1

237500788382€3E-C1
I9IELIEECLILITELLD

BELODEABEEITELE-(2

5317586997542 EE-LC
7821113170209k~ OC

.DOOZ00C00DICITELL
4530929371980
.2058327

TE-02
7251090800

.000C0000C000C0E-CO

JE7645ECTIII0EIE-02
[cldetdegodaadaee) Thedd

L000000D000DI0CE-CT
.0200C00C
C173231539€8645E-02
-0
-0.

J00LCCE~ DL

12177393€20I7EE-C
9UE235€L5406BIE-CE

CALLE OF VFIIAD = Z

1448FTELCL
ITETE.LT

CE3T7€83141956E0E-C
LSIESEDEZIERIEE- CC
CTE2CIELELSISITESLS
. 4de3203STEEESEE-3S
C20B€SETSI444€EE-0S
L20854283333718E-00

L300BEIS24€534E-20
LEZTTREIRAC2€I09E-C
CBEZETOBTIESLEE- 2L
.154“369‘"04”“CE 19
L21LBR3EES OEE"E-‘°
LEPSLI2ETY =
LBS22BTZIREEIEIE-CT
LI0ETEEEITBEECEE-CS

{lines omitted:

CALLS OF VFOZAD = 5

X = -C.33123)€€6253578F-01 (. 23EB30894C52€€5E-02
-0.32008703424240E-00 -0 282733270035 03E-00
O JE2PCTI00C00U0E-C01 (. BIG4QLESI4444CE-20
=0 ZEEZ3T€7458574E-20 U B334F€3I2857¢IE-CC
-0 TEOEBYZIE€0BI2E-20 0 TBILLIIZGEEST4E-CC
~C.7C8TESI20B25378E-2C -0 . 15€9520€3854¢8E-20
-C.2359665¢759€71E-00 -0 . 45337463 073011E-03
=0 797TI334222064E-37  C.20543273853€32E-0
C.€3%29253321€92E-02
F = 0.22217202906824E-25

€ » -0.5B81295987686B2E-20 0.894263524E1144E-23
~0.7794679290E268E-07 0.23CIB1236E2165E-0€
-0 T11327BBB4EIZE-D7 0, €7254€€E289EEYE-2D
~C.49€5152235%294E-CT 0,46273€C29€5€E7E-20

-0.20BE4E€2BESISRE-20 ~D.B479004216¢787E-2
-C.48292€23€38371E-09 C.35773772E32928¢E- D°
C.51403326040145E-11 -0 . 17852386235972E-31
0.33272211€22954E-20 (0.2311670€6B0SEZSIE-1C
THE PRINTING OF THE LAST ITERATION GIVES THE

VALUES THAT ARE RETURNET EY SUBRIUTINE VFLZAD

-0

-z.

-0

[=ReRalede]

7377E3L T 35349 E-2:
L 1S052145EE357E0
-[-A

ESELETTOREE LR
[9elsleaelviedad -::

LRBETELI0I4LTIVE-CL

JEL254T€R22E08E-(,
TELETLIETI4GI0E

OO O OO

YOO OO

'

IO

v

OOOMNODO0D

€85TEID
ECIELETEITEISIE-I!

L3GETIIZREIZEELIE-LE

SET"i1ZiE-Il

(5 2y

LCBEISEEIESFEITE DL

L2CT73E0BESEDEIIE-OF
.20CC1798435750E-C
L3ESTT4TGERE316E.07
LA0SCLEE L J6LESLE- .6
L B3L 25526‘5 R JE-T
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3945089044 44EE-01
TO3IS0590TIPLISE-DI

CE5B237674945°48-2¢C

5334862228%741E-00

CTIEILT4P255129E+00
.79958433B60922E-20

TEILIIl229BEET4E~TC

L1907378B066349E~02
.7%789120825379E-20

18€9520£359¢668E-20

656087621382 91E-00
L2159BBSLTRIETIESDL

45317483073022E-03

. 6ZB36I9LI0E568E-)"
L79771334023064E-17
L 20543273053€12E400
L2BECS4EIE5R62TE-0)
.63519253321692E-02
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Appendix A GSHOOT's File Format
The input file *” for “GSHOOT" has a specific file format. The file
must consist of exactly 14 lines. The variables read from this fije
have a specific order: MU, GO, ISP, THRUST, MO, AQ, EO, WO.
AD, ED, WD, TMAX. NGS, and NIX. All variables are of the type
REAL except the last two, NGS and NIX, which are of the type

INTEGER. An example file is listed below.

Mo = 1 CC
Ge = 1 00
Iisp = 0.5¢72
Thrust = 0 E1€¢
(24 s 20 (I3
ac = 2 DI
ec = C. 000
wo = 0 00
ad e ). 2F%
ed = (.219
ws = 0000
TV v { 0CC
NS x 10
NIX ® 3

On each line intended to supply a REAL variable, the FORTRAN
FORMAT layout is (1X,A9,F30.15); for INTEGER variables. this
statement is (1X,A9,110). Therefore, each line starts with a blank
space followed by nine characters, all of which are ignored. Only

the numerical data following is used.
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Appendix B The PAT2D and PAT3D File Formats
The PAT2D file format is used by MPMM2D and PAT2D. The
PAT3D file format is only used by MPMM3D. They are called the
PAT formats because all of the information supplied by the PAT2D
format is used by PAT2D,; only some of the information is used by
MPMM2D and MPMM3D. Exactly what information is used by
MPMM2D and MPMM3D is described in Chapter IV.

The PAT2D format is represented below:

L. =8

Mo = &

T [ 3 ]

ol =

1SP = ¢

AOC = 0

B = ¢

EYO = @

AF = ¢

EXF = ¢

BT = ¢

a = 0

o&x = ¢

ey = 0

NORE = 2

NODE = 3

SEL. s 1

index.x,y.u,v.m, Ix 1y, lu.lv. im tf, gl gi.g3.gé ¢t of
1,08, 9, 0, 6, 3 0, 0, €, 5, 9 4 5 ¢ 6 ¢ 0 9,
2, 6, 0, 80, 8 8, 0 6 8 ¢, 8, 9 ¢ ¢ 5 ¥ 8 3,
3,6, 0 6 0 2 s % 6 8, 8 9 8 3 0 8 9 &
6. %, 0, 0. 2. s, 6 s & 0 0 s 6 &, 4 ¥ 0 &,

a z ¢

&x z ¢

ey L3

KRIDE = 3

SEL = 2

index . x. .y, o v.m, lx ly, cu lv.im of gl gl g, gd g8 g€
1, 6. 8. 8, 4, 6§, 8 9 8 6, 4 & & 9, s s 8
2,08, 8. 8. 6, 8, 8. 6. 8, %, 0, s @, 0, ¥, 0 s 8
IR DUNE JUNY DU DERY DU DU RN DENE DENE BT DUNY DU DU AN DR DO N
[N DO DU DN DURY D TR DUNN DURN DUNN DO U DO DN DO DR DO

a = &

ex z @

ey = ¢

NCDE = 2

SEL = 3

INDEX. X, Y. U, V.M TF,L1.L2
1, ¢, 8, &, ¢ 8, & ¢ o
2.8, 0 8, 8, 0, 0 & s
3,06, 9, 0 8. 8, 8, 8 8
&, 8, 0, %, €, % 8, ¢ 8,

where the symbo! “#” is used in place of digits. The first eleven
lines give constants for the orbit transfer problem in type REAL.
These have a fixed order: TOL, MU, T, GO, ISP, AO, EXO, EYO, AT,
EXF, and EYF. Their descriptions follow:

TOL ... THE SOLUTION TOLERANCE

MU .. THE GRAVITATIONAL CONSTANT FOR THE CENTRAL BODY

b THE THRUST LEVEL OF THE ROCKET MOTOR

GO i EARTH' 'S GRAVITATIONAL ACCELERATICN AT SEA-LEVEL
{ONLY USED FOR GET MOTOR FUEL CONSUMPTION)

ISP ...l SPECIFIC IMPULSE OF ROCKET MOTOR

AC ... .. INITIAL ORBIT SEMIMAJOR AXIS

EXO ... INITIAL OREBIT X~COMPONENT ECCENTRICITY

EYO ...l INITIAL ORBIT Y-COMPONENT ECCENTRICITY

AF ........... FINAL ORBIT SEMIMAJOR AXIS

EXF ... FINAL ORBIT X-COMPONENT ECCENTRICITY

EYF .......... FINAL OREIT Y-COMPONENT ECCENTRICITY
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Note that these apply to the transfer as 8 whole, esp. when referring
to the initial and final orbits. The FORTRAN FORMAT edit
descriptors for each of these first eleven lines is (1X,A6,E27.20;.

The PAT3D format up to this point is identical except that HXO,
HYO, Hz20, EXO, EYO, HXF, HYF, HZF, EXF, EYF replace AO,
EXO, EYO, AF, EXF, and EYF. Their descriptions follow:

HXO .......... INITIAL ORBIT X-COMPONENT ANG. MOMENTUM
HYO ... ... INITIAL ORBIT Y-COMPONENT ANG. MOMENTUX
HIO .......... INITIAL ORBIT Z-COMPONENT ANG. MOMENTUM
EXO ... INITIAL ORBIT X-COMPONENT ECCENTRICITY
EYO .......... INITIAL ORBIT Y~-COMPONERT ECCENTRICITY
HXF .......... FINAL ORBIT X-COMPONENT ANG. MOMENTUN
HYF .. ........ FINAL ORBIT Y-COMPONENT ANG. MOMENTUM
HIF .......... FINAL ORBIT 2-COMPONENT ANG. MOMENTUM
EXF L., FINAL ORBIT X-COMPONENT ECCENTRICITY
EYF .......... FINAL ORBIT Y-COMPONENT ECCENTRICITY

For both PAT2D and PAT3D formats, the next line indicates how
many intermediate transfer orbits there are. The variable NORB
takes on this value. The FORTRAN FORMAT edit descriptors for
this line i1s (1X,A6,13). This same layout is used for the next two
lines, both also containing INTEGER data. These lines specify
data for the first burn. NODE is how many nodes, not counting the
first one, are to be used for this burn. Specifying a “3” for NODE
indicates that four lines of data will describe the burn.

The line after NODE’s is for SEL. The variable SEL indicates
which method should be used. Note that in the PAT2D
representation above, three different values are given for SEL. A
“1” indicates that the data below is in a multiple-point shooting
format but Direct Collocation with Nonlinear Programming
(DCNLP) should be used in the first attempt to obtain a solution. A
“2” also indicates that the data below is in a multiple-point shooting
format but that multiple-point shooting should be used in the first
attemnpt to obtain a solution A “3” indicates that the data belowisina
DCNLP format and DCNLP should be used in the first attempt to
obtain a solution. The following table summarizes:

SEL Guess Format Method to try First |
1 Multiple Shootin DCNLP
2 Multiple Shooting Multiple Shooting
3 DCNLP DCNLP

No matter what format the data lines will be in, the line following
SEL’s line has the FORMAT edit descriptors (1X,A). The contents of
this line are ignored.

Note that since MPMMB3D cannot accept SEL=3, in PAT2D only
SEL=1 or SEL=2 is acceptable.

The next NODE+1 lines are the guess data for that burn. The
FORMAT edit descriptors are (1X,13,A1,50(D27.20,A1) irrespective
of which guess format is intended. Considering only PAT2D, the
multiple-point shooting format has 18 elements in each line. These
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elements are in the following order: INDEX, X, Y, U,V M, LX LY,
LU, LV, LM, TF, G1, G2, G3, G4, G5, G6. “INDEX” numbers each
line; th.e first line represents the initial point for this burn and last
line represents the final point for this burn. The lines for each burn
are evenly spaced. “X, Y, U, V™ are the Cartesian components of the
2D position and velocity vectors, respectively. “M” is the mass.
“LX, LY, LU, LV, LM" are the values of the Lagrange multiplier
functions/or costates, A, Ay, and A, respectively. “TF” is the
length of time the burn lasts. “G1, G2, G3" are the constant
Lagrange multipliers, v, associated with the final boundary
conditions. “G4, G5, G6” are the constant Lagrange multipliers, v,
associated with the initial boundary conditions.

For PAT3D, the multiple-point shooting format has 26 elements in
each line. These elements are in the following order: INDEX, X, Y,
Z,UVWMIX LY LZ LU LV, LW, LM, TF, G1, G2, G3, G4, G5,
G6, G7, G8, G9, G10. Their meanings are simple extensions of those
from PAT2D.

The DCNLP format has 9 elements in each line. These elements

are in the following order: INDEX, X, Y, U, V, M, TF, L1, L2. All of
these are as described above, except “L1, L2” which are the Cartesian
components in the inertial frame of the thrust direction unit vector.
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