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SUMMARY

Applications of the existing steady-state plant-wide optimization and the single-

scale dynamic optimization strategies to an integrated plant with a material recycle loop

have been impeded by several factors. While the steady-state optimization strategy is very

simple to perform, the very long transient dynamics of an integrated plant have limited the

execution rate of the optimizer to be extremely low, yielding a suboptimal performance. On

the other hand, the single-scale dynamic plant-wide optimizer that executes at the same rate

as local controllers would require an exorbitant on-line computational load. In addition,

it may be sensitive to high-frequency dynamics that are not relevant to the interaction

dynamics of the plant, which are slow-scale in nature. This thesis presents a novel multi-

scale plant-wide optimization strategy suitable for an integrated plant with recycle. The

dynamic plant-wide optimizer in this framework executes at a slow rate in order to track

the slow changes that are relevant to the plant-wide interactions and economics, while

leaving the fast changes in unit operations to be handled by local controllers. Moreover,

the computational requirement of solving the optimization problem will be much smaller

than that of the single-scale dynamic optimizer running at a very high rate.

An important issue of the suggested method is in obtaining a suitable dynamic model for

optimization. When dynamic first-principles models are available, model reduction tech-

niques that reduce model order, while retaining slow-scale information in the frequency

range of interest by the optimizer can be used. On the other hand, when fundamental

constitutive equations are not available, system identification experiment needs to be per-

formed to obtain information on the interaction dynamics of the system. The difficulties in

this process are how to design input signals to excite this ill-conditioned system properly

and how to handle the lack of slow-scale dynamic data when plant experiments cannot

be conducted for a very long period of time compared to the plant’s settling time. This

work addresses the experimental design and suggests a new grey-box modeling method to

xvi



incorporate steady-state information to improve model prediction quality.

To extend this framework to a nonlinear integrated plant while ensuring a small on-line

computational requirement and robustness against uncertainties, the Approximate Dynamic

Programming (ADP) framework is adopted. This method offers advantages over conven-

tional mathematical programming based approaches in that it can compute an optimal

operating policy under uncertainties off-line. The on-line multi-stage optimization problem

can be reduced to a single-stage problem, thus requiring much less real-time computational

effort. In process system community, where the system has continuous state and action

space, a simulation-based ADP method coupled with a function approximation scheme has

been proposed. However, the existing ADP framework is inadequate to handle an inte-

grated plant problem, which has a large action space and a high-dimensional system model.

In this thesis, we use a case study to show the drawbacks of the existing mathematical

programming framework and motivate the ADP approach. We combine a local gradient

search technique and a nonlinear model reduction approach to overcome a very large off-line

computational requirement of the existing ADP approach. The resulting framework shows

superior performance in solving an optimal control problem of an integrated plant in both

deterministic and stochastic cases and can be generalized to larger problems.
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CHAPTER 1

INTRODUCTION

The objective of this thesis is to develop a novel dynamic plant-wide optimization and

control framework for an integrated plant with a recycle loop. Such an integrated process

system possesses very challenging process characteristics because this high-dimensional sys-

tem is governed by both fast changes in individual process units, as well as slow changes from

the recycle network. The presence of two time-scale dynamics leads to an ill-conditioned

process model, which is difficult for process identification, control and optimization. The

current state-of-the-art automation scheme in refineries typically has a fast-rate unit-based

controller to optimize each unit operation separately, and a plant-wide real-time optimiza-

tion (RTO) to find for all unit-based controllers in the plant the setpoints that maximize

the economics of the plant’s operations in the face of price variations of raw material and

end products. In other process industries where the upstream unit operations can severely

constrain the downstream process units, the plant-wide RTO system can be very beneficial

in coordinating the entire plant and maximizing operating profit. Consider as an example,

a pulp mill evaporation plant. There, weak black liquor consisting of chemicals and residual

lignin from wood chip is evaporated by several evaporation stages as shown in Figure 1 in

order to concentrate the black liquor until it can sustain combustion in the recovery boiler.

The objective of this process is to supply the strong black liquor of desired concentration

and production rate to the recovery boiler, while minimizing the electricity and the steam

consumption. As a result, the plant-wide RTO is needed to coordinate the entire evapora-

tion process in order to achieve the desired final liquor production in response to variable

liquor supply, while minimizing the operating cost.

Currently, the RTO based on a steady-state plant model is the standard in the refiner-

ies. Due to the steady-state assumption, this RTO is only executed when the plant is near

the steady-state condition. However, for an integrated plant with a large recycle loop and
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Figure 1: Process schematic of the pulp mill evaporation plant

storage capacity, which are common in the chemical and the pulp and paper industries, the

execution rate of the steady-state optimization can be severely limited because of the very

long transient dynamics. The work in this thesis is based on the development of a dynamic

plant-wide optimization scheme suitable for an integrated plant. The proposed optimizer

is intended to dynamically track the dominant slow changes relevant to the plant-level in-

teractions in the integrated plant. The main advantage of the new framework over the

steady-state optimization is due to the fact that more dynamic degrees of freedom can be

used to maximize the plant’s economic performance. Outstanding issues related to dynamic

optimization include obtaining a suitable dynamic model, handling of large on-line compu-

tational requirements, and ensuring robustness against uncertainties. Hence, this thesis

brings forward a novel slow-scale dynamic optimization method designed for an integrated

2



plant, presents a study on modeling of an integrated plant, and addresses practical issues

associated with on-line computational time and handling of stochastic uncertainties.

1.1 Motivation

With an ever-increasing need for improving process economics, efficiency, and quality in

a globalized market environment, plant-wide optimization schemes, such as the real-time

optimization (RTO) technology have attracted the attention of process industries and has

been adopted widely [2, 3]. The deployment of RTO in the refineries has been increas-

ing and approximately 250 installations have been reported worldwide as of 1998 [4]. A

typical RTO system is model-based and implemented on top of unit-based multivariate

controllers, like the model predictive controllers (MPC). Although these two layers involve

solving process-related optimization problems, they typically differ in the choice of the ob-

jective function and the scope of the problem. The objective function of the RTO is to

optimize the plant operation based upon an economic performance measure under changing

production schedule and other changes. This RTO layer takes into account the target from

the production planning/scheduling layer and holistically calculates setpoints for all the

multivariate controllers deployed throughout the plant. These local controllers function at

high rates, typically in the range of minute(s), to steer their respective units to the given

setpoints, while taking into account process constraints and local disturbances. Without

the RTO, each unit-based controller may try to perform its best action in response to dis-

turbances without realizing its effects on other unit operations and the economics of the

entire plant operation.

Currently, the steady-state model-based RTO is the standard plant-wide optimization

scheme in the refineries. One reason is that the steady-state plant model is easier to obtain

than the dynamic model of the plant. Especially, for a large-scale integrated plant with re-

cycle that has multiple time scales, identifying a complete dynamic model that is accurate

across all frequencies is an excessively demanding task. In addition, for the steady-state

model assumption to be valid, once the setpoints have been sent to the local controllers, the

RTO has to wait until the entire plant settles down before the next execution commences

3



[2, 3]. For crude refinery plants where the process scheme is sequential, this steady-state

requirement may not place a strong limitation on the execution rate of the RTO. However,

in many integrated plant with material recycle loops, transportation delays, and large in-

termediate storage capacities, which are commonly found in the chemical processes and the

pulp and paper industries, the transient dynamics of the plant often last several days. A

good example illustrating the latter point is provided by the Tennessee Eastman process.

This is one of the most well-known benchmark industrial chemical processes developed by

Downs and Vogel [5], and consists of a reactor, a condenser, a stripper, a compressor, and a

vapor/liquid separator with a recycle loop. While the residence time of each unit operation

is less than half an hour and the recycle-to-feed ratio is about 2, the settling time of the

plant has been shown in [6, 7] to last as long as 40 hours. In a reactor and a separator

process with recycle studied by Wu and Yu [8], where the recycle-to-feed ratio is only 1.1

and the longest residence time of process is 2.5 hours, the transient dynamics of the plant

also lasted 30 hours after a step change in the feed. Based on this, the application of a

conventional steady-state RTO to an integrated plant can have several disadvantages. First,

once a change occurs, it will take very long time for the plant to reach a new steady state,

which limits the execution frequency of the RTO. In many situations, the plant seldom

reaches the steady state due to additional changes or disturbances occurring in the mean-

time, so the usage of steady-state RTO may drop and the system may eventually be turned

off [4]. Second, optimal operating conditions calculated from one predicting point at the

steady state may not necessarily yield an optimal dynamic trajectory. In fact, it may even

be infeasible at the local units due to several factors, such as the transient dynamics, model

errors, or local disturbances. Third, the steady-state assumption automatically precludes

the use of dynamic degrees of freedom present in the storage capacities of various units,

leading to suboptimal solutions.
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1.2 Issues in Applying Existing Dynamic Real-Time Opti-
mization Methods

To remove the limitations in the steady-state RTO, some researchers have embraced the idea

of performing the plant-wide dynamic optimization at the same frequency as the local unit-

based controllers. One approach uses the model predictive control (MPC) formulation to

perform both the control and the economic optimization functions by adding the economic

objective term to the quadratic objective function used by MPC [9, 10, 11]. The resulting

optimizer could respond to changes in the plant condition faster than does the steady-state

RTO [10, 11]. However, this method is applicable to plants that are not very complex,

such as an oil blending application, where a linear model is suitable to describe the plant

and the settling time is relatively short. However, in many large-scale integrated plants

with recycle loops, the systems are much more complex due to the presence of many highly

nonlinear unit processes (e.g. distillation columns) and multiple time-scale problems. To

ensure satisfactory optimizer performance in the face of long settling time, this single-

scale fast-rate dynamic optimization and control scheme needs to have very long prediction

horizon, thereby leading to a very large on-line optimization problem to be solved in a very

short sample time. Furthermore, the problems of ill-conditioning and nonlinearity impose

additional computational load in generating a multi-step output predictions.

Another single time-scale plant-wide optimization and control framework proposed in

the literature is the single-point dynamic RTO scheme as used in [1]. In this approach,

the RTO is separated from the MPC layer, but both are executed at the same rate. In

order to reduce the on-line computational requirement of solving a plant-wide optimization

problem at a fast rate, the RTO uses only one prediction point in the economic optimiza-

tion. Nonetheless, because the optimal solution is determined with respect to a single time

instance, it gives no guarantee that the entire dynamic trajectory is optimal. Moreover, one

can expect significant model uncertainties and disturbances in the high-frequency range.

This may lead to a robustness problem in the single-scale fast-rate RTO scheme.

Based on the aforementioned issues in existing plant-wide optimization techniques,

this research proposes a multi-scale plant-wide optimization and control framework, where
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the plant-wide optimizer performs a dynamic optimization based upon multiple prediction

points, but executes at a rate significantly lower than that of the local controllers. This slow

execution rate allows the optimizer to respond to the slow changes that are relevant to the

plant-wide interactions and economics, while leaving the fast changes in unit operations to

be handled by local controllers. In addition, the use of multiple prediction points ensures

that the performance along the dynamic trajectory is evaluated, unlike the single-point

optimization approach, whose performance can be sensitive to the choice of the optimizing

point. Nonetheless the applicability of this approach to large-scale integrated plants can

still be limited by the followings:

1. Difficulties in obtaining the dynamic model: In practice, a complete first-

principles dynamic model of the integrated plant is not always available and the

dynamic model for optimization has to be obtained from identification experiments.

When the plant has a recycle loop, the long-lasting slow-dynamics often complicates

the system identification experiment. Literatures on identification often assume that

model identification experiment can be performed over a long period of time, such as

more than three days [12, 13]. However, in general situations the experiment may be

limited to a much shorter period of time. In this case, the obtained model may be

accurate in describing the initial response of the plant, but unable to capture the slow

dynamics of the system accurately. Many practitioners try to overcome the inaccuracy

in the model’s long-term prediction by truncating the prediction horizon to a short

period of time, thereby giving up the ability to make a long range prediction on the

plant’s output. As a result, there is a lot of room for improvement in the modeling of

an integrated plant. On the other hand, in practice, steady-state description of the

plant is usually available, such as from material balances, thermodynamic equations,

flowsheet simulator, etc. Therefore, a dynamic model that is suitable for a long-range

prediction should be developed by incorporating the initial dynamic information from

the identified model and prior knowledge about the plant’s steady state gains. Ul-

timately, the prediction from the resulting model should eventually converge to the

steady-state that is known a priori.
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2. Handling of large on-line computational load and uncertainty: Currently,

the most commonly used approaches to solve dynamic optimization problems in MPC

and RTO are based on mathematical programming frameworks. In these methods,

dynamic models, state information and disturbances measured up to the current time

are used to build a prediction of the future output of the plant, from which the on-line

optimizer finds a sequence of manipulated variables that optimizes the objective func-

tion. Despite this popularity, there are two outstanding limitations of the mathemat-

ical programming based approaches. First, the on-line computational load of solving

an on-line optimization problem can be very large when applied to a high-dimensional

nonlinear integrated plant. This is because the optimization time depends on the time

required to solve the system model to generate the output prediction and the length of

the prediction horizon. In process industries, plant models often take the form of stiff

and high dimensional ordinary differential equations (ODEs) or differential algebraic

equations (DAEs). In addition, the long transient dynamics demand the use of long

prediction and control horizon to ensure satisfactory performance. Given this, on-line

optimization via mathematical programming can present a computational challenge.

The second limitation of this framework is in the handling of uncertainty. Uncer-

tainty is a crucial part of a plant-wide optimization problem of process industries.

However, the current mathematical programming based approaches mainly solves at

each sample time a deterministic open-loop optimal control problem, which precludes

the considerations of stochastic uncertainty and future feedback. As a result, they are

inherently suboptimal in situations where uncertainty and feedback are present.

Alternatively, both issues can be addressed by the approximate dynamic programming

framework (ADP). This approach offers a way to compute the approximate of an

optimal feedback control policy for a multi-stage dynamic optimization off-line. The

resulting ‘cost-to-go’ function of ADP can reduce an on-line multi-stage optimization

problem into an equivalent single stage problem. As a result, the on-line optimization

time dramatically decreases in this framework. In the process control community,

applications of this approach are still in an early stage and are limited to problems
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with a small action space. The current state of the art of this approach presented by

Lee and coworkers [14, 15] still has difficulties when directly applied to an integrated

plant. In particular, it can suffer from an exponential growth in computation when

applied to a problem with a large action space. In addition, when the process model is

highly nonlinear and is of high order, the off-line computational load can be very large

because of the large number of model simulations required to solve such a complex

model to obtain the cost-to-go values. Given the fact that many variables of the

chemical processes are often highly correlated, it is possible to derive a significantly

lower-order plant model using an appropriate model reduction technique in order

to reduce the simulation time. As a result, to overcome the drawbacks of existing

mathematical programming framework, a systematic methodologies to bring together

the existing ADP framework, the model reduction technique, and other tools are

required in order to develop an adequate framework to solve the optimization problem

of an integrated plant under uncertainties.

1.3 Thesis Objectives and Outline

In summary, the model-based RTO system attempts to find the setpoints for all the unit-

based controllers in the plant that maximize the plant-wide economic objectives. Therefore,

it can be applied not only to the refineries, but also to many other processes that have some

of the following characteristics:

1. Processes that involve several final products, where a product allocation is an im-

portant decision to maximize the profit of the plant. This situations can be found

in many chemical plants where it is important to maximize the yield of the valuable

products in the face of variable raw material compositions and price fluctuations.

2. Processes whose upstream processes constrain the economic of the downstream units.

For example, in semiconductor industries, the processing steps are very sequential

and several process variables along the production line can be adjusted to change

the quality of the final products. Therefore, the fab-wide RTO can be very useful in
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finding dynamic setpoints for the upstream processes in order to achieve the target

product quality and to minimize the processing cost.

3. An integrated plant with recycle, where the upstream processes can affect the down-

stream, and vice versa. As a result, the plant-wide RTO is very crucial in coordinating

the upstream and the downstream processes in order to optimize the operation objec-

tive of the entire plant.

In this thesis, we proposes a novel multi-scale dynamic optimization and control scheme,

specifically for solving an optimization of an integrated plant with recycle to overcome the

limitations of the existing plant-wide optimization and control methods. For successful

application of this framework, a systematic grey-box identification technique that provides

reliable long-range prediction capability is developed. In addition, this work shows how to

apply nonlinear optimal control to a large-scale integrated plant with stochastic uncertainty

by combining the existing ADP, model reduction, and other methodologies. Note that this

research does not limit the plant-wide optimizer to necessarily be an RTO that optimizes

the economic objective of the plant. Instead, we are interested in a more general case

where the plant-wide optimizer may have the control objective (e.g. to optimize the grade

transition), or the economic objective (like in the RTO). Nonetheless, the literature review

of the plant-wide optimization strategy will be based upon the RTO technologies due to

the fact that there exists a wealth body of research in this area.

The remainder of this thesis is organized as follows. In Chapter 2, an overview of the

existing model-based real-time optimization system is provided. In particular, we discuss

the formulations of the steady-state RTO, and the single-scale dynamic RTO. To motivate

the work, we address advantages and potential disadvantages of each approach. Although,

these methods may have been applied to optimize the refineries, there is still much room

for improvement when considering the applications to an integrated plant system.

In Chapter 3, the slow-scale dynamic optimization framework for an integrated plant is

suggested. The proposed framework optimizes multiple prediction points, but executes at

a rate significantly lower than that of the local controllers. Notable issues involve choosing
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an appropriate optimization frequency and designing the interface between the plant-wide

optimizer and the unit-based control layer in a way that will guard against the transfer of

infeasible setpoints to local controllers. A performance comparison between the suggested

approach and previous approaches is also illustrated in two examples. The first example

consists of two interacting linear processes studied by Lu [1]. In the second example is a

system of a reactor, a storage tank, and a separator with recycle. We intentionally chose

a very high recycle-to-feed ratio for this problem to accentuate the multiple time-scale and

the ill-conditioning characteristics of the integrated plant. Nonetheless, in other processes

where the recycle-to-feed ratios are smaller, the two time-scale problems can still be very

pronounced, such as in the Tennessee Eastman challenge problem discussed previously.

In Chapter 4, we propose a dynamic model of an integrated plant that is suitable

for the plant-wide optimization. We are interested in practical cases where identification

experiment is limited to a much shorter period of time than the plant’s largest time constant,

but prior knowledge about the plant’s steady state gains is available. Since the experiment

is relatively short, the dominant pole (or the longest time constant) of the system will not

be captured by the model, making it unreliable for the long range prediction. Therefore,

our approach is to parameterize the identified model as a step response model truncated

at the time when the prediction accuracy starts to degrade. Then the residual dynamics

are approximated as a first-order system and augmented to the step response model, while

ensuring that the settling gains of the model match up with the steady-state gains from

the prior knowledge. The results show that a plant-wide optimizer using the augmented

model has better performance than the one using an original identified model from the short

experiment.

In Chapter 5, a representative case study of an integrated plant with a reactor, a distil-

lation, and a material recycle loop is presented. This example shows the characteristics of

most integrated plants that have large state and action spaces, as well as a multiple time

scales behavior. We use this case study to present the inherent drawbacks of a conven-

tional nonlinear model predictive control (NMPC) and point out the issues of the existing

ADP method. From this example we can infer that the existing ADP framework requires
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an excessive off-line computational load due to the high dimensional action space and the

computational time in approximating the cost-to-go function. In additional, because an

interpolation scheme used to approximate the cost-to-go values is a function of the state, it

is important to identify state variables that are relevant to the cost-to-go values and apply

appropriate weighting factors to them in order to obtain a reliable cost-to-go approximation.

Based on these considerations, the work presents a heuristic to restrict the search space for

the optimal action within a region defined for each state by the good suboptimal control

policy used in the simulation, and incorporates the nonlinear model reduction technique

and data analysis to improve the efficiency and the accuracy of the cost-to-go learning step.

These methodologies successfully apply a nonlinear optimal control to the integrated plant

example and show a superior performance and a drastic reduction in on-line computational

load compared to the conventional NMPC in both a deterministic and a stochastic cases.

Finally, Chapter 6 summarizes the contributions of this thesis and suggests possible

directions for future work.
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CHAPTER 2

PRELIMINARIES

In this chapter, we explain typical behaviors of an integrated plant with recycle, which

show a two time-scale characteristics with fast initial changes followed by slow transient

dynamics. Then, we present the architecture of the steady-state RTO in lieu of the steady-

state model-based plant-wide optimization strategy, and identify its potential disadvantages.

Finally, the alternative single-scale dynamic RTO formulations that have been proposed in

the literature are presented.

2.1 Dynamic Behaviors of an Integrated Plant with Recycle
System

Recycle streams are commonly found in the process plants nowadays. During the last two

decades, several researchers have devoted their studies on the dynamic behaviors of the

process with recycle in order to propose suitable regulatory control schemes for this system

(see [16, 17, 18, 8, 19] for examples and references of research in this area). In this work, we

are interested in applying a plant-wide optimization strategy to an integrated. Therefore it

is important to understand the behaviors of this process and address key issues in dealing

with this system.

One of the earlier works that provide insight into the behavior of the system with recycle

is from Luyben [16], which considered the open-loop behavior of the system at different

values of the recycle loop gains. The recycle system was represented by a process model

shown in Figure 2. The forward path has a simple first-order dynamics with a steady-state

gain K and a time constant τ . The recycle is of first order with a gain KR and a time

constant τR. The output and the input variables are denoted by y and u, respectively.

This paper studied the eigenvalues, which are the inverse of the system’s time constants,

as the recycle gain varied. The system’s transfer function is represented by Eq. 1 and the

12



+

u

1

K
sτ ++++

1

R

R

K

sτ ++++

y

R

Figure 2: Simple open-loop process with recycle

characteristic equation of the open-loop system is shown by Eq. 2.

y

u
=

K(τRs + 1)
ττRs2 + (τ + τR)s + 1−KKR

(1)

ττRs2 + (τ + τR)s + 1−KKR = 0 (2)

Suppose K = 1, τ = 1, and τR = 1. When the recycle gains are varied, the eigenvalues are

observed as follows:

• Case 1: 0 < KKR ≤ 1. Many plants with material recycles fall into this category.

As KR approaches 1, one of the eigenvalues moves closer to the origin as shown in

Figure 3, while the other eigenvalue is pushed away to a more negative territory. In

other word, one of the time constants becomes larger as KR increases from 0 to 1, and

the other time constant exhibits a very fast response. This answers why an integrated

plant with a material recycle displays a two time-scale behavior that shows a fast

initial response to a step change and followed by a very slow transient behavior. Note

that when KKR is 1, the process is a pure integrator.

• Case 2: KKR > 1 In this case one of the eigenvalues is positive as shown in Figure 3,

making the system unstable. This unstable plant should be stabilized before the plant-

wide optimizer is applied. If the gain K is not too large, installing a controller in the
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forward path may make the system stable if it can make the resulting effective gain

in the forward path be less than 1 [16]. However, if the system cannot be stabilized,

a plant redesign should be considered.

• Case 3: KKR < 0 In this case, the eigenvalues are complex conjugates as shown in

Figure 4. The real part of the eigenvalue is -1 (for τ = 1,K = 1) and the imaginary

part moves further away from zero as KR becomes more negative. This system would

exhibit an underdamped behavior with higher oscillatory characteristic as KR is more

negative. Note that the systems with negative recycles are not common [16], but

might be found in a unit operation that uses energy from the product stream to heat

the feed (see examples in [16, 20]).

In this work we focus on a more general case of an integrated plant with a dominant

material recycle loop that exhibits long transient dynamics as shown in case 1, which is

commonly present in the process industries. This two-time scale behavior poses challenges

to the plant-wide optimization as will be described in the next section.

2.2 Existing Plant-wide Optimization and Control Tech-
niques

A typical automated decision hierarchy in the refineries consists of several cascade layers as

shown in Figure 5.

The lowest control layer includes regulatory controllers, which are typically the single-

input-single-output (SISO) controllers, such as level controllers, pressure controllers, etc.

They are in charge of eliminating effects of disturbances on each output, and hence must be

executed at a very fast rate. Multivariate unit-based controllers, such as the Model Predic-

tive Controller (MPC), are deployed in major process units to supervise several regulatory

controllers in order to drive the control variables (CVs) of respective units to the given

setpoints under various process constraints, arising from equipment safety, output quality

requirement, etc. Therefore, the execution rate of the MPC is typically in the time scale

of minute(s). Typical optimization problem solved at each time step of the MPC is shown

in Eq. 3 where a dynamic model is used to build a prediction of the future output, based
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Figure 5: Typical plant automation hierarchy

upon which an open-loop optimal input profile is computed.

min
∆u(0),...,∆u(m−1)

p∑

i=1

‖Q (ys − y(i)) ‖2
2 +

m−1∑

j=0

‖R∆u(j)‖2
2 (3)

subject to

ymin ≤ y(i) ≤ ymax, i = 1, . . . , p

∆umin ≤ ∆u(j) ≤ ∆umax, j = 0, . . . ,m− 1

where ys is a vector of output setpoint specified for the MPC controller. It may be manually

set or given by the higher automation layer. The output vector y is predicted out to

several time instances i. The prediction and the control horizons are denoted by p and m,

respectively. Weighting matrices Q and R are tuned to balance between the output tracking

performance and the aggressiveness of the input moves. In addition, local constrains of the

output and input variables are denoted by umin, umax, and ymin, ymax, respectively.

Above the unit-based control level, there typically exists an optimization layer that

considers the entire plant operation. The plant-wide optimizer whose objective function is
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to optimize the economics of the plant explicitly is known as the real-time optimizer (RTO).

It utilizes a plant model to determine the manipulated variable actions that steer the entire

plant to the economic optimum. The solution from the RTO is then sent to the control layer

to implement. A general optimization problem in the RTO can be written as a following

nonlinear program

max
yg ,ug ,x

feco (4)

subject to

h(yg, ug, x) = 0

g(yg, ug, x) < 0

yg,min ≤ yg ≤ yg,max

ug,min ≤ ug ≤ ug,max

where feco is the economic objective function, yg is a vector of calculated global setpoints

for the controlled variables, ug is a vector of calculated global setpoints for the manipulated

variables, x is a vector of state variables, h is a set of equality constraints, and g is an

additional set of inequality constraints. Lower bounds and upper bounds of controlled

variables are denoted by yg,min and yg,max, respectively, whereas those of the manipulated

variables are ug,min and ug,max, respectively. In RTO, the above problem is repeatedly

solved at an appropriate frequency, with the model state and parameters being updated

before each optimization.

Currently, several real-time optimization schemes have been proposed, which can be

divided into two major categories, namely the steady-state RTO, and the single-scale fast-

rate dynamic RTO.

2.2.1 Steady-State Real-Time Optimization

In current industrial practice, RTO is mostly based on a steady-state model, using only

steady-state gains to calculate output yg in solving the optimization problem (4). The

frequency of optimization depends on the settling time of the entire process, since this

approach requires the process to be near a steady state before performing data reconciliation,
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parameter estimation, and optimization [3, 21]. The main advantage of this approach is that

it requires less modeling and on-line computational efforts. The former is because steady-

state description of the plant is in general much easier to develop than dynamic models;

whereas the latter is because the on-line optimization is only done at only a single predicted

future point (i.e. the steady-state), and the computational time is allowed to be long due

to the fact that the window of the settling time of the plant is much longer. However,

the restricted frequency of optimization in this approach results in the shortcomings, which

include the limited utilization of the dynamic degrees of freedom in the plant as well as the

discrepancy of the steady-state prediction and the dynamic behavior of the plant.

2.2.2 Single-scale Dynamic Real-Time Optimization

To overcome the shortcomings of the steady-state approach, many researchers have adopted

the idea of performing the plant-wide optimization at the same frequency as the local

unit-based controllers. The plant measurement and the state update for the plant-wide

optimizer are all performed at the fast time scale of minutes. In this section, we highlight

two formulations based on this framework that have been proposed in the literature.

2.2.2.1 Receding-Horizon Optimization and Control Method

In this approach the RTO and the model predictive controller (MPC) are combined into a

single entity [9, 10, 11]. The architecture of this approach can be represented as in Figure 6.

The formulation of this approach from [10] is similar to the MPC formulation except

that the economic objective function is added to the typical quadratic control objective

term used by the MPC as shown in Eq. 5.

min
ys,us,∆u(0),...,∆u(m−1)

W1feco +
p∑

i=1

‖W2 (ys − y(i)) ‖2
2

+
m−1∑

j=0

‖W3∆u(j)‖2
2 + ‖W4(u(0) +

m−1∑

j=0

∆u(j)− us)‖2
2 (5)
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subject to

us = u(0) +
m−1∑

j=0

∆u(j)

h(us, ys, x) = 0

ymin ≤ y(i) ≤ ymax, i = 1, . . . , p

umin ≤ u(j) ≤ umax, j = 0, . . . ,m− 1

∆umin ≤ ∆u(j) ≤ ∆umax, j = 0, . . . ,m− 1

where ys and us are the calculated output and input vectors at the steady-state condition.

The prediction and the control horizons are denoted by p and m, respectively. In this

scheme, the weighting factors, W1 −W4, must be carefully tuned to strike the balance be-

tween the importance of the control and the economic objective. The optimizer formulated

by this method has been applied to optimize the fluid catalytic cracking (FCC) converter

used in the LPG production and shown to respond to changes in the economic objective

much faster than does the existing steady-state RTO. However, because the economic and

the control objectives are formulated together, its economic performance can be very poor

when implemented on the process with large disturbances and model errors [10, 11].

RTO+MPC
(minutes)

Regulatory Control 
(seconds)

Figure 6: Schematics of the full-fledged dynamic RTO scheme

Many integrated plants are much more complex due to the presence of many highly

nonlinear unit processes (such as distillation columns) and a recycle loop. As a result, the

computational and modeling demand of this approach will become unmanageable when

applied to such problems. This is because the computational time of dynamic optimization
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depends strongly on the size of the system (number of state and input variables), the

prediction horizon, and the system’s complexity. With the recycle, the settling time of

the plant will be extremely long that the fast-rate optimizer in this scheme will need to

carry a very large prediction horizon. This will result in a potentially exorbitant on-line

computational requirement to calculate the optimal solution at a very fast sample time.

As a result, it is unlikely that such approach can efficiently solve an optimization problem

of an integrated plant despite all the advances in computational hardware and software

nowadays.

2.2.2.2 Single-point Fast-rate Dynamic RTO Scheme with a Coordination Layer

Another plant-wide optimization framework that allows the optimization to be performed

while the plant is in transient state is the single-point dynamic RTO scheme recently pro-

posed by Lu [1]. This framework employed the hierarchical structure, where the RTO is

separated from the MPCs, but both are executed at the same rate as shown in Figure 7. At

RTO
(minutes)

Regulatory Control 
(seconds)

MPC
(minutes)

MPC
(minutes)

Regulatory Control 
(seconds)

Figure 7: Schematics of the single-point dynamic RTO strategy

each execution, the plant’s output is predicted out to a single future point, referred to as

the ‘optimization point’. This way, the optimizer works like a gain-only predictive optimizer

based on the gain matrices evaluated at the optimization point. As a result, this method will

not require as much computational load as the previous approach that considers multiple
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optimization points, while executing at a very fast rate. In addition, this scheme considers

the use of a least-square coordination collar to ensure that the setpoint calculated by the

RTO is feasible at the local MPCs. This coordination layer will be explained in Chapter 3.

Because the execution rate is in the range of the fast-scale dynamics, a potential dis-

advantage of this approach is that the prediction can be sensitive to high-frequency model

errors or high frequency dynamics in the unit-level that may not be related to the plant-wide

interactions, which are much slower changes in nature [22, 23]. In addition, the optimal

solution that was determined with respect to a single optimization point may not guarantee

the optimality of the entire dynamic trajectory.

2.3 Conclusions

In this chapter, we introduced the characteristics of an integrated plant with a recycle.

The plant with a material recycle interested in this work shows a two-time scale behavior

with fast dynamics and slow dynamics. Then, the formulations of the existing frameworks

for plant-wide optimization schemes, including the steady-state RTO, and the single-scale

fast-rate dynamic RTO have been presented. We pointed out potential drawbacks of each

approach when applied to an integrated plant with a material recycle. This motivates the

need for an alternative plant-wide optimization approach that can perform better than

the existing frameworks. We will discuss the proposed framework and show its efficacy in

applying to an integrated plant in Chapter 3.
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CHAPTER 3

MULTI-SCALE REAL-TIME OPTIMIZATION AND

CONTROL FRAMEWORK

The objective of this chapter is to propose a novel multi-scale dynamic optimization and

control strategy suitable for an integrated plant with a recycle. We reason why the frame-

work is appealing for this problem and present its architecture. We use two examples to

illustrate the efficacy of the proposed approach.

3.1 Overall Multi-scale Optimization and Control Struc-
ture

An integrated plant is characterized by a two-time scale dynamics, with fast modes from

individual units’ dynamics and slow modes from the interactions introduced by the recycle.

The steady-state RTO strategy introduced in Chapter 2 will, therefore, suffers from a lim-

ited execution rate, while the single-scale optimization strategies performed at a fast rate

can be very sensitive to high-frequency changes that are not pertaining to the plant-wide

interactions.

Based on the aforementioned problems, this research proposes a multi-scale dynamic

optimization strategy, where the plant-wide optimizer is executed at the slow dynamic time

scale of the plant. In this approach, the optimizer is performed at a rate significantly lower

than the local unit-based MPC controllers in order to dynamically track changes at the

plant-wide level, but it does not have to wait for the plant to reach the steady state. The

lower execution rate would be more manageable from the modeling viewpoint because a

slower rate dynamic model, which describes only dominant slow modes, should be easier

to identify than the fast-rate dynamic model. The overall architecture of the proposed

approach can be represented by Figure 8.
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In this scheme, the dynamic optimization problem (6) is solve at every Topt time interval,

which is slower than the sample time of the MPCs.

min
Ug(k)

f(Ug(k)) (6)

Yg,min ≤ Yg(k + 1|k) ≤ Yg,max

Ug,min ≤ Ug(k) ≤ Ug,max

∆Ug,min ≤ ∆Ug(k) ≤ ∆Ug,max

where

Ug(k) =




ug(k)

ug(k + 1)
...

ug(k + M − 1)




, Yg(k + 1|k) =




yg(k + 1|k)

yg(k + 2|k)
...

yg(k + P |k)




. (7)

The current sample time is denoted by k. In this framework, the output vectors yg are

optimized along the prediction horizon of P , while constrained within lower and upper

bounds of Yg,min and Yg,max, respectively. The vector of manipulated variables is denoted

by ug. The input profile in this problem has the control horizon of M and is subject to

the magnitude constraints Ug,min and Ug,max, as well as the rate constraints ∆Ug,min and

∆Ug,max. Once the optimal setpoint profile is found, the first move (ug(k) and/or yg(k+1|k))

is sent to the lower-level controllers to implement. In many chemical plants nowadays, there

exist MPCs in major unit operations to track the setpoints from the plant-wide optimizer

as illustrated in Figure 8. At each MPC sample time, the MV profile is calculated and the

first input move is implemented on the plant. Then plant output is measured and used

to update the MPC state vector for the next execution. With some appropriate filtering,

this information is also used to update the plant-wide state vector at each MPC sample

time. This process is repeated until the next execution time of the RTO is reached, then

the plant-wide state vector is sampled and used in the optimization.

Key questions related to the architecture design of this framework are how to choose

the optimization frequency for the plant-wide optimizer, how to obtain the model for the
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optimizer, and how to coordinate the slower-rate plant-wide optimizer to the lower-level

fast-scale control layer. We address these questions and propose a design guideline in the

following section.

3.2 Design Issues of the Proposed Framework

3.2.1 Determination of the Optimization Frequency

Choosing an appropriate dynamic optimization frequency is an important step. It should

be decided based on various factors, including

• Bandwidth of interaction dynamics. One may obtain an estimate of the fast inter-

action dynamics by examining the time constant of each individual unit operation.

The plant-wide optimization frequency should not be performed at a rate faster than

the time constant of the units; otherwise the optimizer may observe a lot of local

fast-rate dynamics, which should be handled by local controllers instead of the plant-

wide optimizer. For the case where the first-principles dynamic model is available,

one may examine the eigenvalues of the system around its steady state. Those eigen-

values lying far away from zero correspond to fast modes of the process, and should

be of interest at the unit-based control level. In contrast, those eigenvalues that are

close to zero correspond to slow modes, which should be considered by the plant-wide

optimizer. Therefore, one may choose the optimization frequency that marks a time-

scale separation as indicated by a large magnitude of difference between two adjacent

eigenvalues.

• Computational feasibility. Once the fast frequency region of the process is deter-

mined, we can choose the optimization frequency anywhere slower than that range.

However, the optimization sample time has an implication on the computational load.

Therefore, apart from the consideration of the inherent dynamic characteristics of the

system, in practice one also has to consider the computational capability of their sys-

tem. When the transient dynamics of the plant is very long, the prediction horizon of

the optimizer should span as far into the future as possible to ensure a satisfactory per-

formance. However, if this requires a significantly large on-line computational load,
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increasing the sampling interval by few hours may substantially reduce the on-line

computational requirement without causing a significant impact in the performance

of the optimizer.

3.2.2 Obtaining Model for Slow-scale Dynamic Optimization

Once the frequency of the plant-wide optimizer is decided, one must develop a plant-wide

model accurate within the chosen frequency range. This model may be derived from first-

principles fundamental equations or from system identification. In the former case, one

usually gets a very large set of differential algebraic equations (DAEs), which tend to be very

stiff. In the simplest scenarios, users may use linear/linearized models of all the process units

and connect them through some ‘bridge’ dynamics to formulate the plant-wide model. The

linear plant-wide model so obtained can be reduced through the procedure of a frequency-

weighted model reduction technique (FWMR) [24, 25, 26], which attempts to derive a lower

dimensional approximate of the original model that minimizes the truncation error within

the chosen frequency range, i.e.

‖Wo(G−Gr)Wi‖∞ (8)

where G and Gr are the original and the reduced-order model, respectively. The output

and input weighting matrices, Wo and Wi, are designated to make the approximation more

accurate at the low frequency.

In the case of a highly nonlinear system that cannot be well approximated by a linearized

model, nonlinear model reduction techniques such as the proper orthogonal decomposition

method [27, 28, 29, 30] coupled with residualization technique should be used. This will

result in a lower-order nonlinear system of equations, which allows the nonlinear model

integration to be performed faster. We will illustrate the use of this method in Chapter 5.

When the first-principles dynamic model is unavailable, system identification needs to

be performed on the plant. Subspace identification algorithms [31, 32] are commonly used

methods to derive a multi-input multi-output subspace model that can be used for optimiza-

tion directly. The most challenging steps in identifying an integrated plant model, however,

lie in the design of experiment and making sure that the long-term slow-scale prediction of
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the model is reasonably accurate. These issues will be discussed in more details in Chapter

4.

3.2.3 Coordinating with the Lower-level Fast-rate Control Layer

In the situations where there are multiple MPC controllers in the plant, it is possible that

the setpoints calculated from the RTO are infeasible for the local MPCs. This is because

each MPC is built from a local process model and it makes an open-loop prediction of the

plant’s future behavior using only the available information of the state and disturbance

estimate up to the current time. When the new setpoint from the RTO is issued, each

MPC has no information about the future changes in other units, and therefore may find

the RTO setpoint infeasible.

In light of this, Lu [1] suggested building a coordination collar on top of each MPC

controller to find for each MPC a locally feasible setpoint that are closest to the global

solution in a least-square sense:

min
uls(k)

[uls(k)− ug]T [uls(k)− ug] (9)

ymin ≤ yls(k) ≤ ymax

umin ≤ uls(k) ≤ umax

where

yls = Gxx(k) + Guuls(k) + Gdd(k) (10)

The subscript ls denote the setpoint computed from the least-square coordination collar.

Output constraints, ymin and ymax, as well as input constraints, umin and umax, are the

constraint sets of the local MPC at the end of its prediction horizon. Gx, Gu, and Gd in

Eq. 10 are the dynamic gain matrices at the optimization point, which relate the state,

the input, and the disturbance to the output, respectively. Note that it is also possible to

formulate Eq. 9 to find the feasible CV values closest to the RTO solution. The choice of

minimized variables should be based on the given plant-wide objective.

In our proposed multi-scale dynamic RTO scheme, the coordination collar is built for

each MPC to ensure the feasibility of the setpoints from the plant-wide optimizer. the
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execution rate of this coordination layer should be chosen according to the dynamic inter-

actions among the unit operations. That is, when the process interactions are rather fast,

the coordination layer may need to be executed at higher rate than the RTO. Nevertheless,

in most cases the process interactions tends to be slow and the coordination collar can be

executed at the same rate as the RTO.

3.3 Application to an Integrated Plant Example

In this section we provide two examples to compare performance of the proposed multi-scale

dynamic plant-wide optimization and control approach to the previously existing methods.

The first example considers a two interacting units example studied in [1]. Then, the second

example involves a reactor, a storage tank, and a flash tank connected via a large recycle

stream studied in [33, 34]. This example is very stiff, and therefore adds further complexity

to the control and optimization calculations.

3.3.1 Example 1

3.3.1.1 Process Description

The transfer function model of this problem is given in Figure 9. Each unit comprises two

controlled variables and two manipulated variables. The controlled variables are denoted as

CVij, where i represents unit operation and j indicates whether it is the first or the second

variable in that unit. Similar indices are also used for the MVs. At the initial state, all

variables are scaled to 0. The two MVs in the first unit are the product draws, which are

processed and fed to the second unit. The first MV in the second unit is a recycle stream

that goes back to the first unit. The first CVs of both units are quality variables that must

be controlled to the setpoints. The seconds CVs of the units are economic variables to

be optimized. The simulation begins at time 0 to increase the setpoint of CV11 to 1 and

maximize the summation of CV12 and CV22, while maintaining CV21 at 0

3.3.1.2 Unit-based Control Layer

At the unit level, an MPC controller was built for each unit. Their parameters are given in

Table 1, where p is prediction horizon, m is control horizon, Q and R are weighting matrices
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Table 1: Parameters used in local MPCs

Unit p m ∆uij,max [uij,min, uij,max] [yij,min, yij,max] Q R

1 20 10 0.3 [-10, 10] [-10, 10]


 100 0

0 1





 30 0

0 30




2 100 20 0.3 [-10, 10] [-10, 10]


 100 0

0 1





 30 0

0 30




for CV and MV, respectively. Each controller is built based on the local model, so it has no

knowledge of the interaction dynamics from the bridge model. The local MPCs compute

control actions every one minute.

3.3.1.3 Plant-wide Optimization by the Steady-state RTO

The economic optimization problem for the steady-state RTO was formulated as a linear

program (LP) of the following:

max
∆MVij

[CV 12 + CV 22] (11)

subject to

−10 ≤ CV ij ≤ 10

−10 ≤ MV ij ≤ 10

where CVij were computed from the MV move times the steady-state gains of the process.

To compare the economic performance of the different RTO schemes, the performance

measure defined by Eq. 12 was used. The results are summarized in Table 2

E =
200∑

t=1

CV 12(t) + CV 22(t) (12)

At time 0, the steady-state RTO calculated the input setpoints for MV11, MV12, MV21,

and MV22 to be -1.4037, 3.8012, 0.0306, and 1.9797, respectively. However, at that point

in time, each MPC did not know the future disturbance from the other unit. The second

MPC only had the information that the current disturbance was zero. From the local
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Table 2: Economic performances of different RTO strategies applied to an interacting
plant example [1]

Strategy E

One execution of the steady-state RTO without a coordination
layer

Infeasible

One execution of the steady-state RTO with a coordination layer 3281

Steady-state RTO executed every 30 min interval with a coordi-
nation layer

3199

Single-point dynamic RTO 3309

Proposed multi-scale dynamic RTO 3570

model and the disturbance information at that time, the setpoint for CV21 was infeasible

to the second MPC. As a result, we modified the steady-state RTO scheme by applying the

coordination collar to each MPC and executing them at the same rate. The steady-state

RTO scheme executed only once at the initial steady state yielded the performance of 3281.

The trajectories of the CVs and MVs are shown in Figures 10 and 11.

Next, as the execution rate was increased to once every 30 minute without waiting for

the system to reach steady-state, the worse performance of 3199 resulted. This was because

the optimizer was re-executed when the plant was still in the transient state. Therefore, the

assumption that the initial state was at the steady-state condition was severely violated,

causing incorrect prediction. Therefore, it did not help running the RTO faster when the

prediction was poor.
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Figure 10: CVs (top) and MVs (bottom) of unit 1 using the steady-state RTO scheme
(solid lines: measured outputs, dotted lines: setpoint trajectories).
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Figure 11: CVs (top) and MVs (bottom) of unit 2 using the steady-state RTO scheme.
(solid lines: measured outputs, dotted lines: setpoint trajectories).
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3.3.1.4 Plant-wide Optimization by the Single-point Dynamic RTO

For the single-point dynamic RTO, the optimization point, from which the dynamic gains

were obtained, was at the end of the MPCs’ prediction horizons. The calculated MV

setpoints from the RTO were sent to the coordination layer to check for feasibility before

sending them to the MPCs. In this case, the optimizer and the coordination collar run at

same rate as the MPCs.

The simulation plots are shown in Figures 12 and 13 where solid lines represent MPC

prediction and dotted lines represent setpoint trajectory sent to the MPCs. The result

from Table 2 shows a slight improvement in performance from the steady-state RTO with

a coordination collar case. The time required for CV22 to reach the maximum value still

takes as long as 200 minutes. There is a big room for improvement

3.3.1.5 Plant-wide Optimization by the Proposed Multi-scale Dynamic RTO

In this scheme, one first needs to determine the optimization frequency. To prevent the

plant-wide optimizer from capturing a lot of the fast dynamics from the local units, the

optimization frequency has to be slower than the largest time constant of the process units,

which is 27 minutes. Since this system model is rather simple and would not require a high

computational load, we chose the time period of 30 minutes as the optimization interval. The

low-order model for optimization was derived from the frequency-weighted model reduction

technique, where the diagonal elements of the weighting matrices Wo and Wi in Eq. 8 are

the low-pass second order Bessel filter of the following form:

ω2

(s/ωB)2 + 2ζω (s/ωB) + ω2
(13)

where ω = 1.27, ζ = 0.87, and ωB = 0.21. After this procedure, the plant model was

reduced down to 5 states. We used the prediction and the control horizons of 4 and 1,

respectively. The economic optimization problem was formulated as a linear program (LP)

of the followings:
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max
∆MVij(k)

4∑

`=1

[CV 12(k + `) + CV 22(k + `)] (14)

subject to

− 10 ≤ CV ij(k + `|k) ≤ 10, ` = 1, · · · , 4

− 10 ≤ MV ij(k|k) ≤ 10

The calculated MV setpoints from the optimizer were sent to the coordination layer for

feasibility check. Then, locally feasible output setpoint trajectories were generated from

Eq. 10 and sent to the MPC. The performance of the suggested approach compared to the

previous methods is shown in Table 2. The trajectories of the MVs and CVs from this

strategy are depicted in Figures 14 and 15, which showed better transition of CV12 and

CV22 to the target. This is because the optimizer calculated the MV setpoints based upon

multiple output prediction points along the dynamic trajectory. Therefore, it provided

much better transition trajectories than the previous approaches that considered only a

single optimization point.
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Figure 12: CVs (top) and MVs (bottom) of unit 1 using the single-point dynamic RTO
scheme. (solid lines: measured outputs, dotted lines: setpoint trajectories).
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Figure 13: CVs (top) and MVs (bottom) of unit 2 using the single-point dynamic RTO
scheme. (solid lines: measured outputs, dotted lines: setpoint trajectories).
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Figure 14: Output (top) and input (bottom) variables of unit 1 in example 1 using the
multi-scale dynamic RTO. (solid lines: measured outputs, dotted lines: setpoint trajecto-
ries).
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Figure 15: Output (top) and input (bottom) variables of unit 2 in example 1 using the
multi-scale dynamic RTO. (solid lines: measured outputs, dotted lines: setpoint trajecto-
ries).
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Figure 16: Schematic of the reaction-storage-separation network in example 2.

3.3.2 Example 2

Next, we consider a process with a CSTR, a storage tank, and a flash tank with a material

recycle stream shown in Figure 16. A fresh feed stream F0 consisting of pure component 1

is fed to the reactor, where two irreversible reactions 1 k1→ 2 k2→ 3 take place to produce a

desired product 2 and an undesired product 3. The reactor effluent stream FR consisting of

components 1, 2, and 3 enters the storage tank, from which the downstream flow FM leads

to the flash tank. We assumed that the volatility of component 1 is much higher than that

of component 2, and component 3 is nonvolatile. Hence, most of reactant 1 goes up the

overhead, where it is completely condensed into liquid and sent back to the reactor. Since

it is important to keep the selectivity of component 2 high, a single-pass conversion has to

be low. High yields can still be achieved by maintaining a high ratio of the recycle flow to

the fresh feed flow (D/F0). This is a challenging control problem as the system can exhibit

a severe snowball effect [35] if not properly controlled. That is, only a small change in the

feed stream can cause a large variation in the process, especially when the recycle-to-feed

ratio is very high.

For simplicity we assume a constant liquid density in every vessel and an isothermal

operation for the entire process. Under this circumstance, the material balance consists of
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12 equations as follows:

ḢR =
1

ρAR
(F0 + D − FR)

˙x1R =
F0(x10 − x1R) + D(x1D − x1R)

ρARHR
− k1x1R

˙x2R =
−F0x2R + D(x2D − x2R)

ρARHR
+ k1x1R − k2x2R

˙x3R =
−(F0 + D)x3R

ρARHR
+ k2x2R

˙HM =
1

ρAM
(FR − FM )

˙x1M =
FR

ρAMHM
(x1R − x1M )

˙x2M =
FR

ρAMHM
(x2R − x2M )

˙x3M =
FR

ρAMHM
(x3R − x3M )

ḢB =
1

ρAB
(FM −B −D)

˙x1B =
1

ρABHB
[FM (x1M − x1B)−D(x1D − x1B)]

˙x2B =
1

ρABHB
[FM (x2M − x2B)−D(x2D − x2B)]

˙x3B =
1

ρABHB
[FM (x3M − x3B) + Dx3B] (15)

where HR, HM , and HB denote the liquid levels in the reactor, the storage tank, and

the flash tank, respectively. Here, xij denotes the molar liquid fraction of component i

(i = 1, 2, 3) in the stream j (j = 0, R, M, B, D for feed, reactor effluent, storage tank

effluent, product draw, and recycle stream, respectively). The nominal values of the process

and operating parameters are given in Table 3.

The test scenario is to increase the production throughput by 20%, while keeping the

product compositions and operating conditions within the constraints given in Table 4. In

this problem, there are 5 MVs, including F0, FR, FM , B, and D. However, as the liquid

level in each tank behaves as an integrator, some of these streams must be used to stabilize

the levels. According to Richardson’s rule [35], the largest stream should be selected to

control the liquid level in the vessel. However, if we select FR, FM , and D to control the

levels of the reactor, the storage tank, and the flash tank, respectively, the three levels are
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Table 3: Nominal values for the process and operating parameters for example 2

Parameters Value

Liquid density ρ = 1

Volatility α1 = 90 αB = 1

Rate constant k1 = 0.0167 k2 = 0.0167

Vessel area AR = 5 AM = 10 AB = 5

Vessel holdup HR = 20 HM = 20 HB = 20

Flowrate, hr−1 F0 = 1.667 FR = 31.33 FM = 31.33

B = 1.667 D = 29.67

Mole fraction x10 = 1.00 x20 = 0 x30 = 0

x1R = 0.8861 x2R = 0.1082 x3R = 0.0058

x1M = 0.8861 x2M = 0.1082 x3M = 0.0058

x1B = 0.1139 x2B = 0.7779 x3B = 0.1082

x1D = 0.9295 x2D = 0.0705

P-Controller gains KC,R = −10 KC,M = −10 KC,B = −5

not independently controllable as the MVs are all internal flow variables. Instead, we used

FR, FM , and B to stabilize the levels through P-only controllers. Although these flows

are no longer available as manipulated variables for the plant-wide optimizer, the degree of

freedom remains the same as the level setpoint of each vessel can be used as a MV. The

following subsections provide more details on the MPC and the plant-wide optimization

formulations, which were obtained from the linearized model of the nonlinear plant.

3.3.2.1 Unit-based Control Layer

The plant was divided into two process units: Unit 1 consists of the reactor and the in-

termediate tank, whereas Unit 2 includes the flash tank. An MPC controller was built for

each unit in order to steer the CVs to the setpoints, which are specified by the plant-wide

optimizer, while respecting the constraints. A list of output and manipulated variables of

each unit as well as their constraints are given in Table 4.

The sample times of both MPCs are 6 minutes. The linearized plant model model was

used to formulate the prediction model of the MPCs. As the transient dynamics last as
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Table 4: Output and manipulated variables of unit 1 and unit 2

Unit 1 Unit 2

output variables operating range output variables operating range

1 x1R [0,1] 1 x1B [0,0.15]

2 x2R [0,0.15] 2 x2B [0.75,1]

3 x3R [0,0.02] 3 x3B [0,0.15]

4 x1M [0,1] 4 B [0.67,3]

5 x2M [0,0.15]

6 x3M [0,0.02]

7 FR [8,47]

8 FM [8,47]

MV variables operating range MV variables operating range

1 HR [10, 30] 1 HB [10, 30]

2 HM [10, 30] 2 D [8, 45]

long as 12 hours, we used the model predictive control formulation for integrating dynamics

[36, 37], which allows the step-response models to be truncated well before the responses

settle with little sacrifice in accuracy. The parameters for both MPCs are given in Table 5,

where ttrnc is the truncation time of the step-response model, p is the prediction horizon, m

is the control horizon, Q and R are output and input weighting matrices, respectively. Note

that in the MPC optimization problem, the output constraints were implemented as soft

constraints to avoid computational infeasibility. Nevertheless, a large penalty term (equal

to 106
∑

ε2i , where εi is a slack variable representing the magnitude of violation of the ith

output) was added to the objective function to avoid output constraint violations.

3.3.2.2 Plant-wide Optimization by a Steady-state Optimizer

First, the steady-state optimization strategy was applied to this system. The optimizer

sample time was chosen to be 10 hours, as the plant dynamics would be very close to the
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Table 5: Parameters for local MPCs

Parameters MPC1 MPC2

∆t 6 min 6 min

ttrnc 8 hr 8 hr

p 40 40

m 10 10

∆umax [0.3; 0.3] [0.04; 0.5]

Q




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 7 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 3




R


 1 0

0 1





 3 0

0 1




41



steady-state conditions after 10 hours. The plant-wide optimization problem is as follows:

min
∆ug ,yg

(ysp − yg)T QT
g Qg(ysp − yg) + ∆uT

g RT
g Rg∆ug + 106εT ε (16)

subject to

ymin ≤ yg ≤ ymax

umin ≤ ug ≤ umin

where ysp is the output target vector, i.e. to increase the production rate B by 20%. Qg

is a diagonal output weighting matrix, whose only nonzero element is for the production

rate and is equal to 10. Rg is a diagonal input weighting matrix equal to I5×5. The output

vector yg is calculated from the input ug times the gain matrix at the steady-state. The

simulation scenarios include cases when: (A) there is no disturbance, and (B) there is a

feed bias disturbance of +0.2 at time 700 minutes. Performances of the different plant-wide

optimization schemes were measured by an integral squared error between the production

target and the actual production rate from a nonlinear plant over 30-hour period.

The changes in major MVs and CVs when there was no disturbance are shown in

Figures 17 and 18, respectively. The dash-dot lines represent the global setpoints from

the plant-wide optimizer. At time 0, the optimizer decided to increase the setpoints of

the feed by 20% to the value of 2 and increase the recycle to 45, which translated to

a decrease in the concentration x2M to 0.078 and an increase the concentration of the

product x2B in the long run. However, this optimal solution was only determined at the

steady-state point. The optimizer had no knowledge of the transient behavior of the plant,

and therefore did not realize that these changes were very aggressive for the plant. As the

MPC 1 tracked the setpoints of x2M , the product concentration x2B quickly violated its

lower bound constraints within 1 hour. Furthermore, because the optimization frequency of

the steady-state optimizer was very low, the setpoints were not corrected until the system

reached the next steady state. As a result, the constraint violation lasted for around 5

hours. For the other case where a bias disturbance was introduced to the feed at the

time 700 minutes, which was in between the sample time of the optimizer, the steady-state

optimizer performance severely deteriorated as shown in Table 6. This was because it had
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Figure 17: Selected manipulated variables from the steady-state optimization scheme
when there was no disturbance.
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Figure 18: Controlled variables of unit 1 (top) and unit 2 (bottom) from the steady-state
optimization scheme when there was no disturbance.
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Table 6: Economic loss defined by the integral square of error of the production rate over
30-hour period

Simulation scenarios Steady-state Single-point Multi-scale

optimizer dynamic optimizer dynamic optimizer

(a) No disturbance 5.02 9.95 3.98

(b) Feed disturbance of 0.2 12.17 10.54 4.94

at t = 700 min.

to wait for the plant to reach the steady state before the optimizer could recalculate the

setpoints.

3.3.2.3 Plant-wide Optimization by the Single-point Dynamic Optimizer

The optimization point of this scheme was chosen to be at the end of the MPC prediction

horizon, which was 240 minutes into the future. The least-square coordination collars were

applied to check the global setpoint feasibility before passing them to the MPCs. In this

scheme, the optimizer, the coordination layer, and the MPCs were all running at every 6

minutes. The grade transition performance for the case where there was no disturbance is

shown in Figures 19 and 20.

At time 0, the optimizer calculated the MV setpoints for the feed flow and the recycle

setpoints to be 1.96 and 43.5, respectively. This corresponded to the setpoints of 0.063

for x2M and 0.81 for x2B. However, during the first six minutes, the output concentration

x2B decreased as x2M decreased. After 6 minutes the optimizer took the measurement and

responded to the initial dynamic changes by reducing the recycle setpoint sharply to 37.0

and increasing the feed to 2.16. In the subsequent sample times, the feed and the recycle

were adjusted multiple times in response to the fast-rate measurements obtained from the

plant. As a result, the optimizer could prevent the concentration x2B from violating its lower

bound constraint. However, because the MV setpoints changed very often, the production

stream, which was paired with the level controller for the flash tank, was moved very widely

as shown in Figure 20 as a dark area. For the case where a bias disturbance entered the feed

at the time 700 minutes, the performance of the single-point dynamic optimizer was superior
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Figure 19: Selected manipulated variables from the single-point dynamic optimization
scheme when there was no disturbance.
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Figure 20: Controlled variables of unit 1 (top) and unit 2 (bottom) from the single-point
dynamic optimization scheme when there was no disturbance.
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to the steady-state optimizer. This was because it utilized the feedback measurement to

recompute the setpoint without waiting for the steady state.

3.3.2.4 Plant-wide Optimization by the Multi-scale Dynamic Optimizer

To determine the optimization frequency for the slow-scale dynamic optimizer, the eigen-

values of the system around its steady state were examined in Table 7.

Table 7: Eigenvalues of the integrated plant with a reactor, a storage, and a flash separator

Magnitude of the eigenvalue Corresponding time constant (min)

0.0097 103.29

0.0167 60

0.0167 60

0.1567 6.38

0.1567 6.38

0.3133 3.19

0.3279 3.05

0.3458 2.59

0.3458 2.59

1 1

1 1

2 0.5

There is a large time scale separation between the frequencies of 0.0167 and 0.1567

min−1, which corresponds to the time constants of 6.38-60 minutes. As a result, we selected

the optimization period of 60 minutes and obtained a corresponding slow-scale model by the

frequency-weighted model reduction technique. The optimization is a quadratic program

(QP) shown below.

min
Ug

(Ysp − Yg(k + 1|k))T QTQ (Ysp − Yg(k + 1|k)) + UT
g RTRUg + 106εT ε (17)
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subject to

Ymin ≤ Yg(k + 1|k) ≤ Ymax

Umin ≤ Ug ≤ Umax

where Yg(k + 1|k) = [yg(k + 1|k)T , . . . , yg(k + P |k)T ]T

Ug(k) = [ug(k)T , . . . , ug(k + M − 1)T ]T

The prediction (P ) and the control horizons (M) were chosen as 8 and 2, respectively. The

weighting matrices were constructed as follows:

Q = diag([ Qg, Qg, . . . , Qg
︸ ︷︷ ︸

P

])

R = diag([ Rg, Rg, . . . , Rg
︸ ︷︷ ︸

M

])

where diag(·) is an operator that diagonalizes all the matrices inside. The first MV setpoints,

ug, were sent to the coordination layer to compute the closest feasible MV setpoints. Then,

the output setpoints (yls) for each MPC were computed from Eq. (10) and sent to the

MPCs.

The linearized plant model was used to formulate the prediction model for the plant-wide

optimizer. The implementation result on the nonlinear plant when there was no disturbance

is shown in Figures 21 and 22. At time 0, the setpoints for the feed and the recycle were 2

and 37, respectively, which were not as aggressive as in the previous RTO cases. As a result,

the setpoint for x2M was much less aggressive and did not cause the concentration of x2B to

violate the lower bound constraint. In addition, the fluctuation in the product flow rate was

much less than in the case of the single-point dynamic optimizer because the MV setpoints

were changed smoothly. This was because the optimizer waited 60 minutes for the short-

term dynamics to be handled by the local controllers before it recalculated the setpoints

for the plant. In addition, with higher execution rate than the steady-state optimizer, this

scheme could regulate the output concentration above its lower bound constraint at all time.

The performance of this method is summarized in Table 6. In the case where a feed bias
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disturbance entered the system, this scheme still showed satisfactory performance compared

to other methods.

3.4 Conclusions

The novel plant-wide dynamic optimization based on a slow-scale model is a computational

middle ground between the existing steady-state optimization and the single-scale fast-

rate dynamic optimization schemes proposed earlier. This scheme provides a hierarchical

decomposition in the automation layer, where the plant-wide optimizer tracks slow changes

relevant to the plant-wide interactions and economics, and the local control layer functions

at the fast time scale to control the individual units. In choosing the optimization frequency,

one should consider the bandwidth of the system dynamics as well as the computational

capability of their hardware/software system. The examples in this chapter showed that

suggested method is a promising alternative compared to the current steady-state or the

single-scale dynamic optimization schemes. The former is limited in terms of the execution

frequency, whereas the latter may be very sensitive to fast dynamics that are irrelevant to

the plant-wide objective.
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Figure 21: Selected manipulated variables from the multi-scale dynamic optimization
scheme when there was no disturbance.
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Figure 22: Controlled variables of unit 1 (top) and unit 2 (bottom) from the multi-scale
dynamic optimization scheme when there was no disturbance.
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CHAPTER 4

GREY-BOX MODEL IDENTIFICATION OF AN

INTEGRATED PLANT

The objective of this chapter is to provide a set of guideline for systematically identifying

a dynamic model of an integrated plant that is suitable for the plant-wide optimization.

We are interested in cases where the identification experiment is limited to a much shorter

period of time than the plant’s settling time. The method is intended to take advantage of

prior knowledge about the plant’s steady-state gains. We use an example of an integrated

plant composed of a reactor and a distillation column to identify the potential issues and

to illustrate the effectiveness of the proposed grey-box identification approach.

4.1 Introduction

In a plant-wide dynamic optimization application, a model is required to predict future

behavior of the system. Typically, models built from fundamental principles are globally

valid, and hence well-suited to the predictive optimization and control task, which can

involve a large range of operating variables. However, in practice it is often very difficult

to obtain an accurate first-principles model for an entire plant. Even when it is possible,

rigorous first-principles models for complex plants can be of very high order, which makes

them unsuitable for the on-line computation.

When a suitable fundamental model is unavailable, system identification may be the only

viable approach to obtain a predictive dynamic model. The system identification process

is depicted in Figure 23. First, an identification experiment is conducted to obtain plant

data rich in the information relevant for the intended dynamic optimization. After outlier

removal and appropriate pre-filtering, data is used to select a model structure and estimate

its parameters. The obtained model is validated. Based on the outcome, the whole or a

part of the process may have to be repeated until an adequate model is found.
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Figure 23: System identification process

Currently, there are many well-established identification techniques for linear systems.

For a large dimensional multivariable system, nonparametric model identification methods

such as finite impulse response (FIR) model identification require a very large number of

parameters to be estimated. As shown in [38], the variance of an identified model is propor-

tional to the number of estimated parameters. Large parametric uncertainty could result

in a nonparsimonious model, which can lead to a robustness problem. Recently, subspace

identification method, which identifies a linear state-space model from input-output plant

test data, has attracted much attention in identifying a MIMO system. Most subspace

identification algorithms attempt to construct the state variables via certain projection of

data matrices. Once the state data is constructed, it is straight forward to fit a state space

model. This method involves numerically simple linear algebra, unlike most other para-

metric identification approaches that require solving iterative optimization problems to find

parameters that best fit the given data. In addition, according to the general algorithm of

this approach shown in [31, 32], one can automatically obtain a parsimonious model from

this algorithm.

Despite advances in subspace identification algorithms, designing a good identification

experiment for an integrated plant is not simple. Two requirements need to be fulfilled in

order to have a model with good long-term prediction accuracy. First, input signals must

excite the dynamic system sufficiently in order to obtain information rich in the relevant

dynamic behavior of the system. Secondly, the duration of the plant experiment has to be

adequate so that the slow-scale dynamic behavior of the system be captured in the data.

However, the characteristics of an integrated plant make those conditions difficult to be

fulfilled in practice.
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4.1.1 Difficulties Associated with Identifying a System with Very Long Time
Constant

One of the biggest concerns in multivariable system identification of an industrial process

is the cost of conducting a plant test. This is one of the motivations for the departure from

the traditional step test experiments, where a step signal is injected to each MV separately

and the output responses are used to identify the transfer function between each input

and output pair. Zhu [39] had studied an identification problem of a crude distillation

process consisting of three distillation columns in series with 19 MVs, 36 CVs and the

settling time of 2.5 hours. The study reported that when the step test method was used to

identify the system model, the entire experiment required as long as 2 weeks to complete.

However, the model derived from this approach still showed poor prediction quality [40].

This is often the case because the multivariable relationship cannot be capture when only

a single input is perturbed at a time. In an effort to improve the identification process

of multivariable systems, pseudo random binary signals (PRBS) are normally used as test

signals and MVs are perturbed simultaneously. An existing guideline for identifying models

for MPC application in [40] suggested that the optimal average switching time of the PRBS

signal should be about 1/3 of the estimated process settling time. For the same crude

distillation process, the PRBS test lasted for about 2 days.

In the case of identifying a model of an integrated plant with recycle, we cannot use

the existing guideline of the MPC model identification. This is because the plant settling

time can be several days, and it is unlikely that one could hold the plant in the test mode

for such a long period of time. We may not even expect to hold the plant test as long as

the plant’s largest time constant. This will result in an identified model that shows poor

prediction quality in the low frequency range. When it is used in the plant-wide predictive

control, the controller performance can be severely compromised. One may argue that

the model can still be used in the plant-wide control by reducing the controller prediction

horizon so that the inferior long-term prediction information is not considered. Nonetheless

a systematic approach is needed to improve the long-term prediction quality of the model,

instead of trading off the long-term prediction capability, because the long term model
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prediction information can be very useful for inventory planning and other higher level

decision making. As a result, in Section 4.3 we present a method to improve the long-range

model prediction quality by incorporating the available steady-state model information of

the system. Oftentimes in practice, a steady-state description of the plant is available or can

be obtained, such as from material balances, thermodynamic equations, flowsheet simulator,

etc. In such cases, it is sensible to try to incorporate such prior knowledge to improve the

model quality.

4.1.2 Directionality of an Integrated Plant

In this section we want to show that a plant with large recycle stream can exhibit ill-

conditioned behavior. One way to examine the ill-conditioning of a system is to perform a

singular value decomposition on the steady-state gain matrix of the system. For example,

to identify a model of the reactor-storage-flash separator system shown in Chapter 3, it is

natural to make equal step changes of one unit in the feed and the recycle flow rates, which

would result in an equal amount of change in the internal flow rate (FR and FM ) of the

system. The steady-state gains of the concentrations observed from this experiment are as

follows:

Gss =




0.0518 −0.0009

−0.0491 0.0010

0.0518 −0.0009

−0.0491 0.0010

0.2970 −0.0035

−0.2259 0.0019




(18)

where Gss denotes the steady-state gain matrix. The first column in the gain matrix in

Eq. 18 represents the gains from a step change in the feed, and the second column is the

gains from the recycle. The outputs are x1R, x2R, x1M , x2M , x1B and x2B. The singular
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value decomposition of these steady-state gains is:

Gss = UΣV T , (19)

where U = [u1, u2] =




0.13409 −0.34060

−0.12712 0.45626

0.13409 −0.34061

−0.12712 0.45626

0.76828 −0.16363

−0.58436 −0.56996




,

Σ = diag(σ1, σ2) =




0.3866 0

0 0.0011


 ,

V = [v1, v2] =




0.9999 0.0111

−0.0111 0.9999


 .

where U is an orthonormal output rotational matrix, Σ is a matrix of singular values, and

V is an orthonormal input rotational matrix. This decomposition shows that changes along

the first input direction, which is an external flow change, has a much greater impact on

the system’s output at the steady state than changes along the second input direction,

which is an internal flow change. Note that the ratio of the singular values σ1/σ2, or the

condition number, of the system is 0.3866/0.0011 = 351. This presents a problem during

the identification experiment because output changes along the direction v2 would be very

small, and hence its effect can be completely masked by the bigger effect and system noise in

real situations. This would be critical in on-line optimization because poor model accuracy

along the low gain direction can result in an adverse control decision. Note that this

singular value analysis of the system’s steady-state gain matrix is by no mean a complete

description of the directionality problem in the integrated plant. The singular values and

the rotational matrices vary along the frequencies. But in general the condition number is

high over a medium and low frequency range as shown in Figure 24 for this example and

this is consistent with what was reported in [41] for other systems.
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Figure 24: Condition number ‖σ1(jω)/σ2(jω)‖ of the reactor-flash separator example.

This directionality problem in an integrated plant resembles that of the high-purity

distillation system posed by Skogestad and Morari [42] and studied in the identification

context during the past several years by several researchers [43, 44, 45, 41, 46]. Because

the input design is very important in getting informative data of the system’s behavior, the

literature review on the input magnitude design for an ill-conditioned system is presented

in Section 4.2. These approaches primarily use the approximation of the singular values

and the directionality of the steady-state gain matrix to design the magnitude of input

perturbation signal. Even though, the directionality and the condition number do not stay

same over the whole frequency spectrum, we base the input design on the steady-state

information because in our application we use the model to make a long range prediction

of the system’s slow-scale behavior. Over the frequency spectrum of our interest, we can

expect the condition number to be high and the gain directionality to remain similar to

that of the steady-state. Therefore, some of the techniques will be incorporated into the
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identification of an integrated plant model and we demonstrate the impact of input design

in Section 4.4.

4.2 Guideline on Input Design for Ill-conditioned System
Identification

The work presented in [43] and [41] have demonstrated that when using a traditional PRBS

input design that perturbs all inputs by equal magnitude can result in nearly collinear

output perturbations. This is because changes along the high gain direction will show up

in a much more pronounced way than the low gain direction.

Consider the system

y(s) = G(s)∆MV (s) (20)

where y and ∆MV is magnitudes of change of the output and the manipulated variable,

respectively. Let the singular value decomposition of the model be represented by G(s) =

U(s)Σ(s)V (s)T . To avoid the collinearity problem, all output directions should contribute

equally to the data. That is, by Parseval’s theorem, it is suggested that

∫ ∞

0
‖ui(jω)‖2|σi(jω)|2|vi(jω)T ∆MV (jω)|2dω = constant, ∀i = 1, . . . , rank[G(s)] (21)

Because ui are orthonormal, assuming

|σi(jω)||vi(jω)T ∆MV (jω)| = constant, ∀i = 1, . . . , rank[G(s)],∀ω (22)

would satisfy the condition given in Eq. 21. In the guidelines provided in [43] and [41], the

authors suggested designing the magnitudes of the rotated inputs |vT
k ∆MV | based on the

ratio of the steady-state singular values. That is,

|vT
k ∆MV |

|vT
1 ∆MV | =

σ1

σk
, ∀k, k 6= 1 (23)

Bruwer and MacGregor [46] extended this concept to consider process constraints when

designing the magnitude of the input for the high-purity distillation column example. They

also suggested reducing the input magnitude ratios to 10 percent of the singular value ratios

as in Eq. 24 to recognize the fact that the initial estimate of input rotational vectors could
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be inaccurate.

|vT
k ∆MV |

|vT
1 ∆MV | = 0.1

σ1

σk
, for k = 2, . . . , rank[G(s)] (24)

If that is the case and the condition number is very high, the design guideline from Eq. 23

can result in a large perturbation along the high-gain direction. However, there is no

rigorous reason given on why 10% is the chosen value and whether this is generalizable to

other systems.

In our work, we recognize the importance of input magnitude design as discussed pre-

viously. One could argue that since these input magnitude designs were based on the

steady-state directionality, it may not be optimal across all the frequencies because the

directionality and the condition number do vary as mentioned before. Nonetheless, one

generally does not have any information on the directionality of the system at other fre-

quency before the dynamic model is obtained. Therefore, the steady state gains, which

can be used to identify the steady-state gain directionality, are often the only information

available for designing the input signal. In addition, because our plant-wide dynamic model

is intended to be used over the low-frequency range, designing the inputs to excite the

steady-state’s low-gain directions will generally give better results than completely ignoring

the gain directionality as will be shown in Section 4.4.

4.3 Proposed Grey-box Modeling Method

Because a model obtained from a short experiment can suffer from poor quality of long-

term prediction, in this section we suggest incorporating into system identification the

information of the steady-state gains and the settling time of the system. In our approach,

one first performs an identification experiment on the integrated plant up to an allowable

period of time, which might be up to 2-3 days, with appropriately designed input signals

as discussed in the previous section. Then, the data is used to identify a dynamic model.

Because the high-frequency model prediction quality should not be affected by truncating

the experiment, we can use this model for short-range predictions by parameterizing it as

a step response model truncated at the time when the prediction accuracy is expected to

start to degrade. Then the residual dynamics are approximated as first-order dynamics
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and augmented to the truncated step response, while ensuring that the settling gains of

the augmented model match the steady-state gains from the prior knowledge. Note that

the idea of approximating the slow-scale dynamics as a first-order system here resembles

the work presented by Hovd and coworkers [47]. However, in their work the entire step

response coefficients for an integrating system were available, and they attempted to derive

a compact representation of this system for the MPC calculation by truncating the step

response model and approximating the residual dynamics as a first-order system. They

used the slope of the step response before the truncation point to find the poles of the

first-order system. On the contrary, the purpose of approximating the residual dynamics

as a first-order system here is to extend the prediction capability of an identified model. In

addition, the first-order model parameters are derived so as to ensure that the long-term

prediction from the model converges to that predicted by the known steady state gain of

the plant.

4.3.1 Model Prediction Formulation

Let the identified model be represented by

x(k + 1) = Ax(k) + Bu(k) (25)

y(k) = Cx(k) + Du(k)

Suppose the obtained model is reliable up to the time step n. In other words, the model

can be used to predict a step response up to this time. The step response coefficient matrix

can be built from the model in Eq. 25, and the output prediction up to n future samples

can be derived as follows:



y(k + 1)

y(k + 2)
...

y(k + n− 1)

y(k + n)




=




S1

S2

...

Sn−1

Sn




∆u(k) (26)

58



where

Si =




S1,1,i S1,2,i . . . S1,nu,i

S2,1,i S2,2,i . . . S2,nu,i

...
...

. . .
...

Sny ,1,i Sny,2,i . . . Sny,nu,i




, i = 1, . . . , n (27)

The coefficient Sk,l,i is the ith step response coefficient of the lth manipulated variable on

the kth output. ny and nu are numbers of output and manipulated variables, respectively.

To extend the prediction up to a longer horizon, some physical insight about the system’s

residual dynamics is required. It is known that a system with recycle has poles that are

close to the origin, which causes the system to slowly approach the steady state. In this

work we assume that the residual dynamics can be approximately modeled as a first-order

system. Hence, there are only two parameters, the steady state gains and the dominant

time constant, required to specify the model. Let the steady state gains of the system be

denoted by Gss. Then, the gain of the residual dynamics (K) is the equal to K = Gss−Sn.

The dominant time constant of the system can also be approximated from the settling time

as τ = (1/4)(Tss − n∆t), where Tss is the settling time of the plant and ∆t is the sample

time of the step-response model. The residual dynamics of each input and output pair is

to be modeled as:

yr
k(s) =

Kkl

τs + 1
∆ul(s) (28)

where k = 1, . . . , ny and l = 1, . . . , nu. This can be written in the discrete-time domain as

yr
k(z) =

bkl

z − akl
∆ul(z) (29)

In the above equation, the residual dynamics are assumed to be decoupled. akl and bkl are

the discrete-time model parameters between each output k and input l. The residual dy-

namics are to be augmented onto the initial step response model obtained from identification

as shown in Figure 25.

Let AT , BT , CT be a state space model of the residual dynamics that describes the effect

of changes in the manipulated variables on the outputs after the truncation point at the
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Figure 25: The suggested grey-box identification approach

nth sample into the future. The augmented prediction model up to the pth (p > n) sample

time takes the following form:



y(k + 1)

y(k + 2)
...

y(k + n− 1)

y(k + n)

y(k + n + 1)
...

y(k + p)




= Mp




ỹ(k|k)

ỹ(k + 1|k)

ỹ(k + 2|k)
...

ỹ(k + n− 1|k)

xT (k|k)




︸ ︷︷ ︸
Ỹ (k|k)

+S




∆u(k)

∆u(k + 1)
...

∆u(k + m)




(30)

where ỹ(i|k) is the expected process output at time i based on the input and the measure-

ment information up to time k from the memory, xT represents the state of the residual
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dynamics through which the change in the input enters,

Mp =




0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
. . . . . .

...
...

0 0 0
. . . I 0

0 0 0
. . . I CT AT

0 0 0
. . . I CT

2∑

i=1

(AT )i

...
...

. . . . . .
...

...

0 0 0
. . . I CT

p−n∑

i=1

(AT )i




(31)

S =




S1 0 · · · 0

S2 S1
. . . 0

...
...

. . .
...

Sm Sm−1
. . . S1

Sm+1 Sm
. . . S2

...
. . . . . .

...

Sn Sn−1
. . . Sn−m+1

Sn + CT BT Sn
. . . Sn−m+2

Sn + CT

1∑

i=0

(AT )iBT Sn + CT BT
. . . Sn−m+3

...
. . . . . . . . .

Sn + CT

p−n−1∑

i=0

(AT )iBT Sn + CT

p−n−2∑

i=0

(AT )iBT
. . . . . .




. (32)

With the first-order approximation, the state space model of the residual dynamics can

be constructed as follows.

AT =




a11

a21

. . .

anynu




(33)
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BT =







b11

...

bny1




. . . 


b1nu

...

bnynu







(34)

CT =

nu︷ ︸︸ ︷[
Iny Iny . . . Iny

]
(35)

Once a sequence of optimal MV moves is calculated, the first move is implemented to

the plant. Then memory vector can be updated as follows:

Ỹ (k|k) =




0 I · · · 0 0 0

0 0
. . . 0 0 0

...
...

. . . . . . . . .
...

0 0
. . . 0 I 0

0 0
. . . 0 I CT AT

0 0
. . . 0 0 AT




Ỹ (k − 1|k − 1) +




S1

S2

...

Sn

CT BT

BT




∆u(k − 1)

+ K(ym(k)− ỹ(k|k − 1)) (36)

where Ỹ (k|k) = [ỹ(k|k)T , ỹ(k + 1|k)T , . . . , ỹ(k + n − 1|k)T , ỹ(k + n|k)T , xT (k|k)T ]T . The

measurement vector at time k is denoted by ym(k). The filter gain matrix K can be

parameterized as follows:

K =




I

0







f1

. . .

fn




(37)

I =

n︷ ︸︸ ︷[
Iny Iny . . . Iny

]
(38)
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Figure 26: Reactor-distillation example for identification

4.4 Illustrative Example

In this section we use an example of an integrated plant with a reactor and a distillation

column studied by Kumar and Daoutidis [48] to show the efficacy of the proposed modeling

method. In this example, the feed stream consists of reactant A, which reacts to yield a

desired product B in the reactor. Impurity product C is also generated by a side reaction.

The reactor effluent is fed to the 4th tray of a 15-tray distillation column, which separates

the desired product B as the bottom product and recycles back the distillate containing

primarily the reactant A. We assume the levels of the reactor, the condenser, and the

reboiler are perfectly controlled by the regulatory control scheme shown in Figure 26.

There are 3 manipulated variables for plant-wide control including the feed (F0), the

reflux flow rate (L), and the vapor flow rate (V ). The concentrations in the reactor, the

condenser, and the product stream are denoted by xij , where i indicates chemical species (1:

reactant A, 2: desired product B, 3: undesired product C) and j represents locations (R:
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Table 8: Nominal values for the process variables of the reaction-distillation integrated
plant example

feed flow rate (F0) 100 hr−1 reactor outlet flow rate (F ) 1880 hr−1

recycle flow rate (D) 1780 hr−1 reflux flow rate (L) 290 hr−1

vapor boilup rate (V ) 2070 hr−1 product flow rate (B) 100 hr−1

kinetic rate 1 (k1) 1 kinetic rate 2 (k2) 1

volatility constant 1 (αA) 4 volatility constant 2 (αB) 2

reactor holdup (MR) 110 condenser holdup (MD) 173

reboiler holdup (MB) 181 tray liquid holdup (MT ) 175

x1R 0.8996 x2R 0.0939

x1D 0.9496 x2D 0.0494

x1B 0.0104 x2B 0.8863

Table 9: Hard limits on the flow rates of the reactor-distillation plant

F0 L V F D B

nominal value 100 290 2070 1880 1780 100

lower limit 20 20 500 500 500 10

upper limit 300 1340 3570 3570 3570 300

reactor, D: condenser, B: reboiler, 0: feed). There are 39 nonlinear differential equations

that govern the dynamics of this system as will be shown in Section 5.2. The nominal

operating point of the system is summarized in Table 8. In addition, we specify the hard

constraints on the flow rates as shown in Table 9.

For the purpose of demonstrating the linear identification method, we linearize the

model around this operating point and use it as a virtual plant for the identification. The

state-space model representing this plant can be found in Appendix A.

4.4.1 Problem Statement

In this example, measured output variables are y = [x1R, x2R, x1D, x2D, x1B, x2B, B]T .

With the perfect level control assumption, the production rate is equal to the feed. The
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identification experiment is, therefore, intended to produce a model between the concentra-

tions and the MVs. In this case, the system exhibits a strong two-time scale behavior. The

residence times of the reactor and the distillation column calculated from the capacities

divided by the throughputs are approximately 4 and 50 minutes, respectively. However,

the plant’s settling time is on the order of several days. In addition, we observe strong gain

directionality in the input and the output changes. Figure 27 shows the condition number

of this system as a function of frequency.
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Figure 27: Condition number of the linearized reaction-distillation integrated plant

We define the output and manipulated input vectors as

y = [ x1R x2R x1D x2D x1B x2B ]T , (39)

u = [ F0 L V ]T (40)
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Results of the singular value decomposition of the steady state gains are shown in Eqs. 41-43.

U =




−0.43456 −0.40668 −0.25079

0.40501 0.31760 0.22842

−0.48070 0.26074 0.48836

0.47485 −0.25729 −0.41437

−0.41981 0.33657 −0.62845

−0.11967 −0.69734 0.28246




(41)

Σ = 10−2 ·




1.0980 0 0

0 0.0046 0

0 0 0.0029




(42)

V =




−1.00000 −0.00050 −0.00267

−0.00272 0.18968 0.98184

−0.00001 −0.98185 0.18968




(43)

The input rotational matrix suggests that the strongest input direction is governed by

the change in the feed, which amounts to a change in the external flow to the system.

The internal flow changes (L and V ) correspond to the low-gain input directions. Large

differences in the singular values mean it requires relatively large input moves in order to

make the system change along the second and the third output directions.

In the next section, we proceed to identify the model of this system and use it for

plant-wide control. In the first case, we examine the conventional approach that applies

perturbations of magnitudes to all the input variables. The obtained model will be used

on its own, as well as with the augmentation of the first-order residual dynamics for the

plant-wide control as described earlier. In this work, we will use a MPC running at a slow

rate as a plant-wide controller. Then, in the second case the input is designed to perturb

the low gain directions more than the high gain direction and the control performances will

be compared. The test parameters and conditions to be kept in common are as follows:

• Test duration: In each case, we limit the identification experiment to last up to 40

hours. This amount of time is much shorter than the plant’s settling time. However,
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longer experiments would incur much more cost in practice. During the experiment,

the interval between the input signal switching is 12 minutes.

• Measurement noise: Measurement noise is present in all the output channels with the

magnitudes ±10% of the signals.

• Unmeasured feed disturbances: Feed impurities include components B and C, which

are not measured. Their changes are modeled as two random independent integrated

white noise processes:

η1(k) = η1(k − 1) + e1(k) (44)

η2(k) = η2(k − 1) + e2(k) (45)

where e1(k) and e2(k) are white noises of N (0, 5× 10−5).

• MPC parameters: The sample time for the MPC is 1 hour. The prediction and control

horizons are 24 and 8, respectively. Note that the controller sample time was chosen

to be larger than the residence times of both the reactor and the distillation column.

This is so that the plant-wide controller tracks changes that are in the slower time

scale corresponding to the plant-wide interaction introduced by the recycle stream.

The optimization problem is written as follows:

min
U(k)

(Y sp − Y (k + 1|k))TQTQ(Y sp − Y (k + 1|k)) + ∆U(k)TRTR∆U(k) (46)

Ymin ≤ Y (k) ≤ Ymax

Umin ≤ U(k) ≤ Umax

(47)
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where

Y (k + 1|k) =
[

y(k + 1|k)T , y(k + 2|k)T , . . . , y(k + 24|k)T

]T

,

U(k) =
[

u(k)T , u(k + 1)T , . . . , u(k + 7)T

]T

,

y =
[

x′1R

x̄
,

x′2R

x̄
,

x′1D

x̄
,

x′2D

x̄
,

x′1B

x̄
,

x′2B

x̄
,

B′

B̄

]T

,

u =
[

F ′
0

F̄0
,

L′

L̄
,

V ′

V̄

]T

The ′ denotes the deviation variable. The scaling factors x̄, B̄, F̄0, L̄ and V̄ are 0.1, 10,

10, 30, and 100, respectively. The plant-wide controller tries to manipulate x1D, x2B

and B to the setpoints. The weighting matrices are chosen as follows:

Q = diag([ Q, Q, . . . , Q
︸ ︷︷ ︸

24

]) (48)

R = diag([ R, R, . . . R
︸ ︷︷ ︸

8

]) (49)

where

Q = diag([0, 0, 50, 0, 0, 50, 50]T ) (50)

R = Inu×nu (51)

where diag(·) is an operator that diagonalizes the elements inside.

4.4.2 Case 1: Model Identification with Equally Perturbed Input Signals

To design the input magnitude, we first consider the physical constraints of the system.

Since the lower bound on the production rate is the tightest among the hard constraints,

it is used to calculate the input magnitude of change. The steady-state mass balance

suggests that B = F + L− V . To keep the production rate above 10, the magnitude of the

production rate perturbation from the nominal value must be less than or equal to 90 . As

a result, the input perturbation signals in this scheme will be kept as ±30 to comply with

this constraint. The input perturbation signals are PRBSs with the switching time of 12

minutes. We performed 50 disturbance realization scenarios and identified the model using

the N4SID subspace identification algorithm in MATLABTM .
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The N4SID algorithm in Matlab always suggested models of order 3 for all the 50 realiza-

tions. However, during the model validation, such model order gave a very poor prediction

result. The low model order resulted from the fact that the output data might be collinear

because the low-gain output directions were not strongly perturbed. Therefore, we pur-

posely increased the identified model order to 5. The model prediction results from one of

the realizations are shown in Figures 32-34, which clearly show that the predictions of the

output responses to the feed change were much more accurate than those of the other input

changes. In all the other realizations, the same model characteristics were observed. This

can be attributed to the fact the plant is ill-conditioned and the strong input direction was

dominated by the feed in the medium and low frequency ranges. Therefore, when all the

inputs were equally perturbed during the identification experiment, the feed change would

contribute more to the output data. As a result, the prediction model is not very accurate

in the directions of the reflux and the reboiler changes.
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Figure 28: Model prediction (dashed) vs. actual plant response (solid) for a 30-unit step
change in the feed
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Figure 29: Model prediction (dashed) vs. actual plant response (solid) for a 30-unit step
change in the reflux

70



0 10 20
0

0.5

1

1.5

2
x 10

−3 x
1R

0 10 20
−1.5

−1

−0.5

0
x 10

−3 x
2R

0 10 20
−5

0

5

10
x 10

−4 x
1D

0 10 20
−10

−5

0

5
x 10

−4 x
2D

0 10 20
−5

0

5

10
x 10

−4 x
1B

hour
0 10 20

−5

0

5

10

15
x 10

−4 x
2B

Figure 30: Model prediction (dashed) vs. actual plant response (solid) for a 30-unit step
change in the vapor boilup
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4.4.2.1 Plant-wide Control Results

In this section we tested several setpoint changes by the MPC using the identified model.

The performance is measured by Eq. 52.

performance =
40∑

i=1

[
(Y sp − y(i))T QT Q(Y sp − y(i)) + ∆u(i)T RT R∆u(i)

]
(52)

For the case of the grey-box model, the model obtained from N4SID was used for

prediction during the initial period of 5 hours. After that the first-order approximation

is used to extend the prediction up to the settling gain. From the results in Table 10 the

mean performance of the grey-box model showed significant improvement over the use of the

identified model. In addition, the histograms in Figure 31 showed the number of realizations

vs. the range of the MPC performance from all tests. Under all the setpoint change

scenarios, the worst performance of the MPC resulted from the use of the original identified

model. These worst case scenarios differed significantly from the mean performance.

Table 10: Grade transition performances using the model identified from equally perturbed
input signals

Setpoints for [x1D, x2B, B]

[0.99, 0.86, 120] [0.98, 0.94, 110] [0.96, 0.93, 90] [0.98, 0.94, 100]

Original Model

mean 717.74 386.05 344.94 402.62

standard deviation 111.52 152.94 105.54 125.66

Grey-box Model

mean 703.77 377.09 320.50 382.08

standard deviation 52.62 76.73 33.09 59.48
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4.4.3 Case 2: Model Identification with Ill-conditioned Adjusted Input Signals

One way to design the input signal to excite the low-gain direction more than the high-gain

direction is to design the input magnitude according to the steady-state singular values

shown in Eq. 42. Because the input variables in the input rotational matrix are almost

decoupled, for simplicity we regard the 1st, 2nd, and 3rd strongest input directions as

the feed, the vapor boilup, and the reflux flow rate directions, respectively. Applying the

formula in Eq. 24, the desired ratios for |∆L| : |∆F0| and |∆V | : |∆F0| are 38:1 and 24:1,

respectively. To keep |∆B| ≤ 90, |∆F0| needs to be less than 1.43, which is a very small

perturbation and will result in an extremely poor signal to noise ratio. In this work, we

set the magnitude of |∆F0| to be 10 so that the signal-to-noise ratio be improved. Then,

the magnitudes of |∆L| and |∆V | are set to 50 and 30, respectively. This input magnitude

in the low gain direction may not be the as strong as suggested by the guideline, but will

give an improved performance compared to the previous case while respecting the process

constraints.

We performed simulations under 50 disturbance realization scenarios and identified the

models using the N4SID subspace identification algorithm in Matlab. This time the al-

gorithm suggested the model of 6th order. The model prediction results from one of the

realizations are shown in Figures. 32-34, which show that the prediction of the output

responses to the low-gain input directions are more accurate than those of the previous

case.

4.4.3.1 Plant-wide Control Results

The performance of the plant-wide controller using the model obtained from the input

signals that perturbed the weak directions more strongly is shown in Table 11 and Figure 35.

In this case, the controller showed improvement in performance from the previous case, in

both the mean and the worst case performance. This can be attributed to better accuracy

in the prediction model. In addition, the performance of the grey-box model is slightly

better than the case of using the original model.
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Figure 32: Model prediction (dashed) vs. actual plant response (solid) for a 30-unit step
change in the feed
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Figure 33: Model prediction (dashed) vs. actual plant response (solid) for a 30-unit step
change in the reflux
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Figure 34: Model prediction (dashed) vs. actual plant response (solid) for a 30-unit step
change in the vapor boilup

Table 11: Grade transition performance using the model identified from ill-conditioned
adjusted input signals

Setpoints for [x1D, x2B, B]

[0.99, 0.86, 120] [0.98, 0.94, 110] [0.96, 0.93, 90] [0.98, 0.94, 100]

Original Model

mean 680.65 347.78 294.97 383.38

standard deviation 25.78 23.36 4.86 28.70

Grey-box Model

mean 665.81 338.54 294.00 367.59

standard deviation 18.47 15.67 2.55 17.57
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Figure 35: Performance comparison between the use of the original model and the grey-
box model
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4.5 Conclusions

The challenging aspects of obtaining a dynamic model of an integrated plant with a material

recycle, which is very ill-conditioned, are in the experimental design and the lack of slow-

scale dynamic information due to limited identification experiment time. The guideline to

obtain an appropriate model for plant-wide optimization is established in this chapter. This

includes a proper design of input signals to excite the low-gain directions more than the

high-gain ones. In addition, the step response coefficients from the obtained model are only

used for the short-term prediction. The prediction from that point onward is approximated

as the first order systems that will extend the prediction to the steady state values as

predicted by the gains available from the prior knowledge. The resulting method was

shown to improve the performance of the plant-wide control in an integrated plant example

composed of a reactor and a distillation column. The ease of design and implementation

makes it potentially appealing to extend to other industrial examples.
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CHAPTER 5

CASE STUDY: A NONLINEAR OPTIMAL CONTROL OF

AN INTEGRATED PLANT OF REACTOR &

DISTILLATION COLUMN WITH RECYCLE

So far we have discussed the proposed plant-wide optimization scheme and demonstrated

its efficacy in linear system examples. Given the fact that the actual chemical process is

nonlinear, the linearized model used in the optimization may only be accurate near the

operating point where the model was obtained. In addition, increasing market competition

will continue to force process industries to deal more and more with complex integrated pro-

cesses with highly nonlinear unit operations, recycle streams, and several operating modes.

In this situation, it is more appropriate to perform a multi-stage nonlinear optimization of

an integrated plant. In this chapter, we present a case study of a nonlinear optimal control

of an integrated plant with a reactor, a distillation column, and a material recycle loop.

This example is chosen because it is a representative example of a common integrated plant

that shows a multiple time scale characteristics and has high dimensional state and action

spaces.

Currently, there are two conceptual frameworks for solving a nonlinear multi-stage op-

timal control problem: a mathematical programming framework and an approximate dy-

namic programming (ADP) framework. The first part of this case study is to justify why

a nonlinear model predictive control (NMPC), which is the most popular mathematical

programming based approach in solving a nonlinear optimal control problem in the process

industries nowadays, may not necessarily be efficient in terms of the on-line computational

requirement and the robustness against stochastic uncertainty. We also apply a nonlinear

model reduction technique via Proper Orthogonal Decomposition (POD) as a tool to re-

duce the on-line computational time in solving the nonlinear model, which can moderately
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reduce the optimization time of NMPC. Then, the second part of this study outlines the

current state of the art of the ADP method for an optimal control problem and addresses

the difficulties in applying it in the way presented in the literature to this nonlinear inte-

grated plant. Finally, we propose several methodologies to combine with the existing ADP

framework to apply a nonlinear optimal control to an integrated plant and show its superior

performance compared to NMPC in both deterministic and stochastic situations.

5.1 Problem Description

In this study we use a reactor-distillation-recycle system shown in Figure 36, which was

first studied by Kumar and Daoutidis [48], to represent an integrated plant with a material

recycle.

A B

B C

F0, x1,0

F

L D

V

B

Figure 36: Process schematic of the reactor-distillation integrated plant

Note that the regulatory control scheme used in this case is slightly different from the

one used in Chapter 4. The holdups in the reactor, the condenser, and the reboiler are
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stabilized by proportional controllers that manipulate the reactor effluence, the recycle flow

rate, and the vapor boilup flow rate, respectively.

This system is described by 39 nonlinear ODEs as shown below.

ṀR = F0 + D − F

ẋ1R =
1

MR
[F0(x1,0 − x1R) + D(x1D − x1R)]− k1x1R

ẋ2R =
1

MR
[F0(x2,0 − x2R) + D(x2D − x2R)] + k1x1R − k2x2R

ṀD = V − L−D

ẋ1D =
V

MD
(y1,1 − x1D)

ẋ2D =
V

MD
(y2,1 − x2D)

For trays 1 to 3 (1 ≤ i < 4):

ẋ1,i =
1

MT
[V (y1,i+1 − y1,i) + L(x1,i−1 − x1,i)]

ẋ2,i =
1

MT
[V (y2,i+1 − y2,i) + L(x2,i−1 − x2,i)]

For the feed tray:

ẋ1,4 =
1

MT
[V (y1,5 − y1,4) + F (x1R − x1,4) + L(x1,3 − x1,4)]

ẋ2,4 =
1

MT
[V (y2,5 − y2,4) + F (x2R − x2,4) + L(x2,3 − x2,4)]

For trays 5 to 15 (5 ≤ i < 15):

ẋ1,i =
1

MT
[V (y1,i+1 − y1,i) + (L + F )(x1,i−1 − x1,i)]

ẋ2,i =
1

MT
[V (y2,i+1 − y2,i) + (L + F )(x2,i−1 − x2,i)]

ṀB = L + F − V −B

ẋ1B =
1

MB
[(L + F )(x1,15 − x1B)− V (y1B − x1B)]

ẋ2B =
1

MB
[(L + F )(x2,15 − x2B)− V (y2B − x2B)]

where the concentrations are denoted by xij , where i indicates chemical species (1: reactant

A, 2: desired product B, 3: undesired product C) and j represents processes (R: reactor,

D: condenser, B: reboiler, 0: feed, 1-15: tray location). The vapor compositions in the
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distillation column of components A (y1,i) and B (y2,i) are computed as follows:

y1,i =
αAx1,i

1 + (αA − 1)x1,i + (αB − 1)x2,i
(53)

y2,i =
αBx2,i

1 + (αA − 1)x1,i + (αB − 1)x2,i
(54)

where αi is the volatility constant of component i. We define 4 operating modes for this

system as shown in Table 12.

Table 12: Operating modes of the reactor-distillation integrated plant

Specifications Mode 1 Mode 2 Mode 3 Mode 4

Product composition x2B 0.886 0.85 0.905 0.82

Production rate B 100 115 85 125

Nominal values of process variables in the operating mode 1 are shown in Table 8.

The feed compositions of component A (x1,0) and component B (x2,0) are 1.0 and 0.0,

respectively. There are 6 manipulated variables for plant-wide optimization including the

feed (F0), the holdup setpoints (i.e. M sp
R ,M sp

D , M sp
B ), the reflux flow rate (L), and the

production rate (B). This system is very ill-conditioned because of the large recycle stream

that causes a two-time scale behavior. The residence times of the reactor and on each tray

of the distillation column are within a few minutes. However, the transient dynamics of the

entire plant last 2-3 days after a step change. The objective of the optimal control is to

maneuver the system from the nominal operating mode 1 to other modes, while constraining

the manipulated and the output variables within their operating limits as shown in Tables 13

and 14, respectively.

Table 13: Operating range of the inputs in the reactor-distillation-recycle system

F0 M sp
R M sp

D M sp
B R B

nominal value 100 110 173 181 290 100

lower limit 60 50 113 121 60 60

upper limit 140 170 233 241 350 140
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Table 14: Output constraints in the reactor-distillation-recycle system

x3B F D V

nominal value 0.1033 1880 1780 2070

lower limit 0 1000 1000 1200

upper limit 0.25 2400 2400 2600

5.2 Optimal Control via Nonlinear Model Predictive Con-
troller (NMPC)

Recently, nonlinear dynamic optimization has gained a wide interest in the process system

community. In particular, the nonlinear model predictive control (NMPC) is currently the

accepted framework for advanced process control of nonlinear systems. In this framework,

an optimal control problem over a moving time window is cast as a nonlinear program (NLP)

based on a dynamic nonlinear model and the information of the state and the disturbance

up to the current time. Then an on-line optimizer is used to find the optimal input profile.

Currently there are two ways of solving this optimal control problem on-line: a sequential

and a simultaneous approaches. The sequential approach, often called a control vector

parameterization (CVP) method, discretizes only the control trajectory [49] and obtains

the state profile by integrating the ODEs/DAEs model using the current state information

as the initial condition. In other words, the state prediction is obtained by solving an

initial value problem (IVP), which can be done by efficient IVP solvers such as DASSL [50],

and DASSPK [51, 52]. Then a general-purpose NLP solver, such as a successive quadratic

programming (SQP) method can be employed to find the optimal values of the discretized

control sequence. An overview of SQP can be found in general optimization textbooks

such as [53, 54, 55]. It has been reported that the computational effort of this sequential

optimization technique is O{(nx + nu + ny)(p + 1)}3 where nx, nu, and ny are numbers of

state, manipulated, and output variables, respectively, and p is the prediction horizon. A

more tailored decomposition technique has been proposed to solve problems that have a

smaller control horizon than a prediction horizon (m < p), leading to the computational

effort of O{(num)3 + [(nx + ny)(p + 1)]3}, which may still be very large for a large-scale

83



problem [56].

On the other hand, the simultaneous approach discretizes both the control and the state

variables using polynomials, such as Lagrange interpolation polynomials. The polynomial

coefficients then become the decision variables in a much larger NLP problem [57]. For

example, if the orthogonal collocation on finite element method is used for discretization,

number of variables in the optimization problem will scale with the number of elements and

the number of collocation points within each element. Therefore, a special solution strategy

is required to solve the resulting large-scale NLP. In this approach, the model is only solved

once at the optimal point, and therefore it avoids the computation involved in solving for the

intermediate solutions. Several tailored algorithms try to exploit the almost block diagonal

structure of the Kuhn-Tucker matrix and this can lead to much faster computational time

than in using the sequential optimization approach. An excellent review of the simultaneous

strategies can be found in [58].

To this end, it seems that the recent and future development of sophisticate NLP algo-

rithms may allow larger and larger nonlinear predictive optimization problems to be solved

in real time. However, the problem solved at each sample time is a deterministic open-

loop optimization problem, which does not consider the future uncertainties or feedbacks.

Although the receding horizon implementation and the state update scheme attempt to

address the uncertainties by incorporating the output mismatch into the state estimate and

resolving the optimization problem at every sample time, the solution of this approach can

still be highly suboptimal.

In the following subsection, the base case control study with a NMPC controller that

uses a full-scale nonlinear model and a conventional simultaneous optimization approach is

presented to point out its inherent problem with the computational load. Then, the nonlin-

ear model reduction technique is applied to improve the computational time. Although, the

model reduction technique may not drastically reduce the on-line optimization time when

using the mathematical programming framework, it is a very important tool to be used

with the ADP method in the later section to improve the off-line computational load of the

ADP.
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5.2.1 Grade Transition by a full-order NMPC

In this section, the centralized NMPC uses the full-order nonlinear model to generate the

output prediction, based upon which the optimal input profile for the grade transition is

computed. We chose the sequential quadratic programming (SQP) method to solve the

optimization for the NMPC in MATLABTM 7.0 environment. The hessian and gradient

information was numerically computed by the algorithm. The optimization was carried

out in a Xeon dual processor 2.66 GHz/2.66 GHz and 2.00 GB of RAM. The optimization

frequency was chosen to be at every 4 hours, which was larger than the residence time of the

distillation column in order to optimize the slow-scale dynamics of the plant. The output of

the plant has white measurement noise with maximum magnitude of ±5% of the nominal

values of the output. An extended Kalman filter (EKF) was used to update the state from

the measurement information, and it had a sample time of 0.02 hr. The objective function

was formulated as follows:

min
∆u(k),...,∆u(k+m−1)

p∑

i=1

Qy

(
xsp

2B − x2B(k + i)
x2B,ss

)2

+
m−1∑

j=0

[
Qu

(
Bsp −B(k + j)

Bss

)2

+ ∆u(k + j)T R∆u(k + j)

]
(55)

where ∆u = [∆F0, ∆M sp
R , ∆M sp

D , ∆M sp
B , ∆L, ∆B]T /100. The prediction and the control

horizons were chosen as p = 12 and m = 3, respectively. Bss and x2B,ss are the steady-state

values of B and x2B, respectively. The weighting factors Qu, Qy, and R in Eq. 55 are 10000,

6000, and 20I6×6, respectively.

The result of grade transition from mode 1 to mode 2 via the full-order NMPC is shown

in Figures 37 and 38. In this case, the NMPC was able to steer the system to the second

operating mode successfully and smoothly. The performance of the controller as measured

by Eq. 56 over the 60-hour period is equal to 90.70.

performance =
15∑

k=1

[
Qu

(
Bsp −B(k)

Bss

)2

+ Qy

(
xsp

2B − x2B(k)
x2B,ss

)2

+ ∆u(k − 1)T R∆u(k − 1)

]

(56)
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Figure 37: Product variables during the grade transition performed by a NMPC with a
full-order nonlinear model (solid: output, o: prediction)
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Figure 38: MV profiles during the grade transition performed by a NMPC with a full-order
nonlinear model
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However, it required several minutes to solve the optimization of this nonlinear system as

shown in Table 16. For a problem with a much large size, this method can pose a challenge

in on-line computation.

Table 15: Computational time (in minutes) of NMPC schemes using a full-order nonlinear
model running at every 4 hours

run number 1 2 3 4 5 6

8.6883 3.3734 3.6133 3.4581 3.8854 2.3268

run number 7 8 9 10 11

2.2977 2.2482 2.1891 1.9180 2.9276

5.2.2 Grade Transition by a reduced-order NMPC

5.2.2.1 Background

Given the fact that many variables of a process system are highly correlated, it is possible

and necessary to derive a significantly lower-order plant-wide model by using an appropriate

method available in the literature. Most importantly, the reduced-order model should

provide an accurate estimate of the slow-scale dynamics of the real plant. For a linear

system, there are several well-proven model reduction approaches. Among these techniques,

the optimal Hankel norm approximation [59, 60] and the balanced truncation [61] methods

are the most frequently used. The former method looks at the singular value of the Hankel

matrix (a product of the controllability and observability matrices) and attempts to truncate

the part that corresponds to small singular values. However, this method suffers from the

difficulty in recovering the system matrix from the truncated Hankel matrix. On the other

hand, the balanced truncation finds the coordinate changes that transform the observability

and controllability gramians into the same diagonal and ordered matrices with the first

element corresponding to the most observable and controllable state and so on. Then, less

observable and controllable states are removed and the system matrices can be recovered

from the reduced-order gramians. A general procedure of this linear balanced truncation

approach can be found in Appendix B. As our proposed plant-wide optimization scheme
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is interested in the slow dynamics of the plant, the model reduction method to be used

must ensure that the slow dynamics in the bandwidth of interest by the optimizer are

accurately described. Enns [24] proposed the method known as the frequency-weighted

balanced truncation, which minimizes the frequency weighted error between the original

model and the reduced-order model:

‖Wo(G−Gr)Wi‖∞ (57)

where G is the original model, Gr is the reduced model, Wo and Wi are the output and input

weighting transfer function matrices, respectively. The weighting matrices are normally

diagonal, wherein each diagonal element is a filter of selected bandwidth. By choosing

the low-pass filter with a “cutoff” frequency higher than the optimizers’ frequency, we can

emphasize the state information of the desired frequency band, and the reduction in the

model order will not cause large errors in the slow frequency range. Therefore, this method

is suitable for constructing the low-frequency, reduced-order approximation for the linear

system.

Since real chemical processes are mostly nonlinear, several approaches for nonlinear

model reduction have been proposed. Unlike in the linear case, there exists no complete

theory for nonlinear model reduction [62]. The earliest approach is to lump the original

model parameters into a low-dimensional one, such as the approaches proposed to sim-

plify the kinetic models [63, 64]. In particular, the work by Li et al [64] applied a non-

linear perturbation theory to separate the fast reaction variables from the slow variables

and transformed the system into a canonical form by nonlinear transformation. The fast

variables are lumped and its analytical solution can be obtained by singular perturbation

method. A special case where important products or initial reactant should not be lumped

was also discussed in [65]. There are also other simplification techniques that substituting

complex thermodynamic equations by simpler models. For steady-state flowsheet simu-

lation, Ganesh and Biegler [66] proposed the use of ideal mixture properties to perform

flash calculation instead of a rigorous hydrocarbon thermodynamic model represented by

Soave-Redlich-Kwong (SRK) equations. Their method used a rigorous model to compute
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the initial parameters for the reduced problem, which was solved until convergence. This

method could save 20-40% of the computational time, while ensuring the convergence to

the true values. Hendriks and van Bergen [67] studied the model reduction method applied

to the phase equilibria calculations in the oil reservoir simulation. Their approach was to

approximate the interaction coefficients on a basis of eigenvectors and truncate the terms as-

sociated with small eigenvalues. The resulting reduced-order model drastically reduced the

computational requirement, but the method could not be generalized to arbitrary mixture.

Perregaard [68] used the simplified model to provide a cheap computation of the Jaco-

bian matrix, which subsequently reducing the model simulation time for any Newton-like

integration method.

Model reduction method based on singular perturbation approach has been used to re-

duce the nonlinear model of chemical reaction systems. The underlying assumption was

that the system consists of both the fast and the slow reactions. The method involved

deriving an appropriate change of coordinate to transform the original model into a two-

time scale standard form of singular perturbation, and the fast reaction is assumed to be

at the quasi-steady state. The work by Breusegem and Bastin [69] considered isothermal

reaction systems and used a linear change of coordinate. Kumar et al. [70] derived nec-

essary and sufficient conditions for the existence of a nonlinear coordinate change for the

general cases where the system may not have an explicit time-scale separation. However,

the analytical procedure to derive the ordinate changes becomes increasingly tedious with

the problem complexity. Vora et al. [71] also applied the singular perturbation approach

to non-isothermal reaction systems to identify the low-dimensional equilibrium manifold

where the slow dynamics of the system evolved.

While these methods may work well to suit their specific tasks, when the problem gets

larger, it becomes very complicated or impossible to generalize these methods to other sys-

tem model. Therefore, in this chapter we consider the proper orthogonal decomposition

(POD) approach, which is a semi-empirical technique. It employs a linear projection ap-

proach to transform the system onto the new coordinate, where a reduced-order model can

be derived. This method does not require analytical derivation procedures, and therefore
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can be applied to high dimensional nonlinear systems. Another projection method that has

been proposed in the literature is the method based on empirical gramians, pioneered by

Lall [72, 73] for the continuous-time formulation. The method was further elaborated and

posed for the discrete-time system by Hahn et al. [74]. The main difference between this

method and the POD is in the obtaining of a projection matrix. We include the procedures

of this approach in Appendix B. However, an extensive study by van den Berg [75] that ap-

plied the reduced-ordered models via POD and via the empirical gramians to optimization

problem has revealed that POD model was computationally more efficient in many cases.

In addition, from a practical viewpoint the procedures of POD approach is much simpler.

5.2.2.2 Proper Orthogonal Decomposition Approach

This method is also known as the empirical eigenfunctions or the Karhunen-Loève decom-

position approach. Earlier work has applied this approach to study the coherent structures

in turbulent flows (see [27] for references therein). During the past recent years, it has been

applied in the dynamical system context, especially to derive a low-order dynamical system

for controller design. The applications include the distributed parameter system where the

system is described by partial differential equations (PDEs) [76, 77], as well as the systems

of ODEs [72, 74]. Sun and Hahn [30] also applied this technique to reduce the differential

states of the index-1 DAE system and used a black-box identification technique to reduce

the algebraic constraints, leading to the reduction of the overall DAE system.

For a nonlinear ODE system of the form:

ẋ = f(x, u), x ∈ Rn (58)

the model reduction technique based on POD has three important steps:

1. Collecting representative simulation data of the dynamical system. Let the data

ensemble be denoted by X:

X =
[

x(t1)− xss, x(t2)− xss, . . . , x(tN )− xss

]
∈ Rn×N (59)

where n is the dimension of the state, N denotes number of the data set, xss is a

vector of the steady-state values of the system, and ti denotes the snapshot when
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data was captured. This step is very crucial for the success of this method because

the representative data is required to form the approximate of the lower-dimensional

subspace.

2. Identify an empirical eigenfunction basis of the data from the eigenvalue decomposition

of the covariance matrix.

XXT = ΛV (60)

where Λ is a diagonal matrix of eigenvalues and V is a matrix of corresponding eigen-

vectors. We can arrange the element in the eigenvalue matrix in a descending order,

i.e.

Λ =




λ1

λ2

. . .

λn




, (61)

V =
[

v1, v2, . . . , vn

]
(62)

where λ1 > λ2 > . . . > λn are the eigenvalues and vi are the orthogonal eigenvectors

of the system. High correlations in the state variables will result in several eigenvalues

with small magnitudes.

3. Perform the Galerkin projection. The idea of this step is to replace the original

model by the dynamical system that evolves on its eigenvector subspace. Let P =

[ v1, v2, . . . , vr ]T and Q = [ vr+1, vr+2, . . . , vn ]T , where r is the order of

the reduced-order model. Typically, r is chosen so that λr+1, . . . , λn are very small.

Once the order is chosen, the original nonlinear system can be transformed to:

˙̄x1(t) = Pf
(
[P T , QT ]x̄ + xss, u(t)

)
(63)

˙̄x2(t) = Qf
(
[P T , QT ]x̄ + xss, u(t)

)
(64)

where

x̄ =




x̄1

x̄2


 =




P

Q


 (x− xss) (65)
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In this step, the nonlinear dynamic states x̄1, which are the projection onto [ v1, . . . , vr ]

eigenvector directions are the states that encounter much larger magnitudes of change than

those projected onto the [ vr+1, . . . , vn ] eigenvector directions. Based on this consider-

ation, the reduced-order dynamic model can be derived by two approaches.

Residualization: Intuitively, the eigenvectors with small eigenvalues correspond to the

directions of state changes that are not prominent. These are mostly the high-frequency

dynamic changes that occur and disappear quickly. In residualization method, the projec-

tion of these modes is assumed to be at the quasi-steady state and the approximate system

is in a DAE form.

˙̄x1(t) = Pf
(
[P T , QT ]x̄ + xss, u

)
(66)

0 = Qf
(
[P T , QT ]x̄ + xss, u

)

So in this case, the original state vector is approximated as:

x = [P T , QT ]x̄ + xss (67)

To integrate the system in Eq. 66, the initial values from the original subspace x(0) can be

transformed as follows:

x̄(0) =




P

Q


 (x(0)− xss) (68)

Truncation: On the other hand, model reduction via truncation assumes that the states

with small eigenvalues do not change at all. Therefore, only the states x̄1 is solved in the

reduced-order ODE system of the form:

˙̄x1(t) = Pf
(
P T x̄1 + xss, u

)
(69)

x = P T x̄1 + xss (70)

With a reduced-order system from either (66) or (69), the on-line computational time

in solving the model equation can be reduced.
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5.2.2.3 Simulation Results

To identify the underlying empirical eigenvector basis, the inputs to the plant were excited

in the range of ±10% around their nominal operating points. Eigenvalue decomposition

of the simulation data was performed and the eigenvalue plot is shown in Figure 39.

This suggested that only the first 7 eigenvectors should be considered as the basis in the

projection matrix P of Eq. 63, since the eigenvalues become very close to zero after 7

modes. Hence, the reduced-order model via residualization method contains 7 ODEs and

32 algebraic equations, while the truncation method considers only the 7 ODEs.
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Figure 39: Eigenvalue plots of the data collected from dynamic simulations of the reactor-
distillation-recycle system

Grade transition results from the reduced-order NMPC based on residualization are

shown in Figures 40 and 41. This controller can also steer the system to the mode 2

successfully. The performance over the 60-hour period is 91.73. On the other hand, the

NMPC based on the truncation method shows worst performance of 96.02. The output and

input trajectories from this approach are shown in Figures 42 and 43, where there is an

offset between the model prediction and the actual output concentration. This is because
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Figure 40: Product variables during the grade transition performed by a NMPC derived
from a reduced-order model with residualization (solid: output, o: prediction)
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Figure 41: MV profiles during the grade transition performed by a NMPC derived from
a reduced-order model with residualization
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Figure 42: Product variables during the grade transition performed by a NMPC derived
from a reduced-order model with truncation (solid: output, o: prediction)
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Figure 43: MV profiles during the grade transition performed by a NMPC derived from
a reduced-order model with truncation
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the changes of the fast modes occur and reach the new steady states so quickly. Without

taking into account these changes, the truncation approach results in the approximation

error. On the other hand, the residualized model takes into account the influence of the

new steady states of the fast modes. Therefore, the projection of the transformed states

back to the original state space in Eq. 67 is more accurate than the one in Eq. 70 of the

truncation method. In terms of computational time comparison, the reduced-order NMPCs

require almost half the time of the full-order NMPC as shown in Table 16. This method, if

coupled with even more powerful optimization algorithms, will be much more efficient for

solving an on-line optimization problem.

Table 16: Computational time (in minutes) of NMPC schemes running at every 4 hours

run number NMPC with NMPC with POD/ NMPC with POD/

full order residualization truncation

1 8.6883 5.8588 5.9911

2 3.3734 1.9979 2.0766

3 3.6133 1.6026 1.7638

4 3.4581 1.5703 1.8888

5 3.8854 1.8060 1.5893

6 2.3268 1.3018 1.8138

7 2.2977 1.5320 1.5940

8 2.2482 1.5677 1.5466

9 2.1891 1.5573 1.5086

10 1.9180 1.3203 0.7323

11 2.9276 0.8359 0.7198

5.3 Optimal Control via Approximate Dynamic Program-
ming (ADP)

In this section, an Approximate Dynamic Programming (ADP) method is applied to the

case study. ADP has been shown to be useful in applying optimal control to process con-

trol applications. One of the outstanding advantages of this approach is the significantly
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lowered real-time computational requirement because one solves an equivalent single-stage

optimization of the original multi-stage optimization problem. In addition, stochastic un-

certainty and feedback information can be taken into account in a general and computation-

ally amenable manner, unlike in the conventional mathematical programming framework.

Nonetheless, the existing framework can require excessive off-line computational time to ob-

tain the cost-to-go table when applied to problems with large state and action spaces typical

of an integrated plant optimization. This section provides useful insights into the issues and

shows how to apply systematic approaches to reduce the off-line computational load so that

the ADP framework can be applied to optimization of high-dimensional integrated plants

efficiently.

5.3.1 Introduction

A dynamic programming (DP) allows us to find optimal control strategies under stochas-

tic uncertainties in complex multi-stage decision making problems. The objective of this

framework is to compute the optimal ‘cost-to-go’ function, which parameterizes the control

solution with respect to the state. With the known ‘cost-to-go ’ function, the on-line multi-

stage optimization can be reduced to an equivalent single-stage optimization problem, and

hence the real-time computation can be drastically simplified. Nevertheless, the original

algorithms based on solving the Bellman’s equation suffer from an exponential growth in

computation with the size of the problem. This problem is known as the curse of dimen-

sionality, which makes this framework impractical for most of the real world problems.

During the past two decades, a wealth of research in various disciplines such as machine

learning, operations research, and artificial intelligence, has focused on finding approxi-

mate solution to the Bellman’s equation so that the framework can be applied to practical

problems. This framework is known as Approximate Dynamic Programming (ADP). Many

real world problems, such as power system control [78], helicopter flight control [79], large-

scale job shop scheduling [80], financial problems [81], etc. have been solved within this

framework. There are many different ADP strategies developed and adopted by different

disciplines, and they are all based on the use of value function approximation, with the
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Taylor series, the lookup tables, the multi-layer perceptrons, etc. There is no consensus on

which method is the best, because some are better in some applications, while others are

better suited in other application domains [82].

In process control community, applications of ADP are still in an early stage. This is

perhaps because the nature of process control problems differs from those in the robot learn-

ing and operations research problems. Outstanding features of process control problems are

continuous state and action spaces, small operating space relative to the size of the entire

state space, and very costly on-line experiment [14]. Selection of value function approxi-

mator is critical to ensuring the accuracy of the value function and the robustness of the

ADP-based controller. Recently, Lee and coworkers have developed an ADP algorithm for

process control problems based on the use of lookup table and k-nearest neighbor function

approximator. This method overcomes the curse of dimensionity in the state space and has

been applied to several complex nonlinear processes, such as a 2x2 bioreactor control [83],

and a polymerization reactor control problem [15] with 8 state and 2 manipulated variables.

Since the action space was small in these problems, the Bellman’s equation could be solved

by evaluating every discretized action without encountering excessive computational issue.

5.3.2 Mathematical Preliminaries

5.3.2.1 Dynamic Programming Framework

A multi-stage optimization problem to find an action sequence that minimizes a certain

objective function over a future time horizon may be represented as follows:

min
u(0),...,u(p−1)

p−1∑

i=0

φ(x(i), u(i)) + φt(x(p)) (71)

subject to

Path constraint: g(x(i), u(i)) ≥ 0, i = 0, 1, . . . , p (72)

Model constraint: x(i + 1) = Fh(x(i), u(i)) ≡
∫ (i+1)∆t

i∆t
f(x(τ), u(τ))dτ (73)

where x(i) represents a state vector at the ith sample time, u is a vector of manipulated

variables, and ∆t is the sampling interval. The stage-wise cost function and the terminal

cost function are denoted by φ, and φt, respectively. The path and model constraints may
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be nonlinear functions. A continuous process model ẋ = f(x, u) is assumed to be available

to be integrated over the sample time ∆t with a piece-wise constant input u(τ) = u(i) for

i ·∆t ≤ τ < (i + 1) ·∆t.

Dynamic Programming (DP) framework is based upon the Bellman’s optimality princi-

ple, which states that if a control policy µ∗ is optimal, then no matter how the intermediate

state x(k) is reached the rest of the trajectory under the policy µ∗ will be optimal for the

remaining subproblem:

min
u(k),...,u(p−1)

p−1∑

i=k

φ(x(i), u(i)) + φt(x(p)) (74)

The term “policy” (µ) here represents a rule that maps the state to the control action, i.e.

u(i) = µ(x(i)). The theoretical proof of the Bellman’s optimality principle can be found in

various DP textbooks such as [84, 85]. This principle is used to derive the optimal control

policy. In this approach, we define the ‘cost-to-go’ of a starting state x under the control

policy µ, denoted by Jµ(x), as the sum of a stage-wise cost incurred from the state x until

the end of horizon, i.e.

Jµ(x) =
p−1∑

i=0

φ (x(i), µ(x(i))) + φt(x(p)), x(0) = x (75)

Jµ(x) is to be defined over S, which is a set of all possible state points. The goal of DP

is to derive the optimal cost-to-go function, J∗, which is the minimum cost-to-go function

under the optimal policy. That is, J∗ = inf
µ

Jµ.

From Bellman’s optimality principle, it follows that the optimal cost-to-go function

satisfies the following Bellman’s optimality equation [86].

J∗(x(i)) = min
u∈U

[φ(x(i), u(i)) + J∗(x(i + 1))] , ∀x ∈ S (76)

where U is a set of all possible actions. The objective of the off-line cost-to-go learning is

to arrive at the optimal cost-to-go function. Once J∗ value for every state point is known,

the solution to an on-line optimization of Eq. 71 can be obtained by solving an equivalent

single-stage optimization problem shown in Eq. 77. As a result, the on-line computational

load can be drastically reduced.
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µ∗(x(i)) = arg min
u(i)∈U

[φ(x(i), u(i)) + J∗(Fh(x(i), u(i)))] (77)

5.3.2.2 Stochastic System

So far, we explain the deterministic formulation of DP. For stochastic system, the optimiza-

tion problem can be represented as follows:

min
u(i),...,u(p−1)

E

[
p−1∑

i=0

φ(x(i), u(i)) + φt(x(p))

]
(78)

u(i) = µ(I(i)) (79)

where E is an expectation operator. Note that the action is no longer evaluated in a deter-

ministic manner. Instead, it is evaluated from the available stochastic information denoted

by I. This information vector typically includes the conditional probability distribution of

the state vector. Then the Bellman equation is defined as the following.

J∗(I(i)) = min
u(i)

E [φ(x(i), u(i)) + αJ∗(I(i + 1), u(i))|I(i)] (80)

where α ∈ [0, 1) is a discount factor that signifies the importance of the immediate cost

compared to the future cost. It is assumed that the stochastic equation governing the

one-time step transition of I is available.

5.3.2.3 Conventional DP Algorithms

Because the solution to the Bellman equation can seldom be obtained in a closed-form,

value iteration or policy iteration algorithms are commonly employed to obtain optimal

cost-to-go function numerically. For a discrete finite state space problem, these algorithms

can be described as follows.

Value Iteration:

Value iteration starts with an initial estimate of the cost-to-go for each state, and then

iterates the Bellman equation for every state point until convergence. The procedure of this

approach is as follows:

1. Initialize the cost-to-go function J0(x) for all state points x ∈ S
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2. For each state x ∈ S, evaluate

J i+1(x) = min
u∈U

E
[
φ(x, u) + αJ i(x′)

]
(81)

where the superscript i here denotes the iteration index, and x′ represents the succes-

sive state.

3. Repeat the iteration step 2 until convergence

In this framework, every state point has to be updated once in each iteration.

Policy Iteration:

Policy iteration iterates between two steps: a policy evaluation and a policy improvement.

The policy evaluation step starts with a certain policy and computes the cost-to-go values

under that policy. Then the improvement over the previous policy is done in the policy

improvement step. These two steps are repeated until the policy no longer changes. These

procedures are summarized as follows:

Policy Evaluation:

1. Given a policy µ, initialize Jµ(x), ∀x ∈ S.

2. For each state x, update the cost-to-go value according to

Jµ,j+1(x) = E
[
φ(x, µ(x)) + αJµ,j(x′)

]
(82)

where the superscript j is the iteration index of the policy evaluation step

3. Repeat the iteration step 2 until Jµ converges.

Policy Improvement:

Given a policy µi and the corresponding cost-to-go function Jµi
, the next improved policy

is given by

µi+1(x) = arg min
u
E

[
φ(x, u) + αJµi

(x′)
]

(83)
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Value iteration converges monotonically to the optimal cost-to-go function [87]. Whereas

the policy iteration typically requires lesser iterations than value iteration, each iteration

may take very long time as finding the cost-to-go function itself involves iterations [88].

Both value iteration and policy iterations perform full update of every state point in

the stored state set in a sequential manner. That is, the cost-to-go update of a state is per-

formed once in each iteration and not repeated until every state is updated. This can lead

to a prohibitively large off-line computational load. Although there are other algorithms

to improve the cost-to-go learning rate without updating every state in such a strict order

in every iteration, we argue that they are unlikely to improve the off-line computational

time when applied to the process control problem of an integrated plant. The well-known

methods include the Asynchoronous value iteration algorithm as in [89, 90, 91], and a fam-

ily of so-called General Prioritized Solvers (GPS) [92]. The former considers the situation

whereby several processors participate simultaneously in the computation while maintaining

coordination by information exchange to the neighboring nodes via communication links.

In this method some states may be updated several times, while others are only updated

once. Lee et al. [93] argued that many problems require large numbers of update to attain

the optimal cost-to-go function. The GPS methods include three principal enhancements

to accelerate the value and policy iterations: partitioning, prioritization, and variable re-

ordering. Partitioning method groups states that are interdependent together into sets,

and updates the cost-to-go of the whole set before moving on to another set. Prioritization

and reordering methods attempt to order the state updates in a more effective way, such

that after the value function of a state point x is updated, every states dependent on x

will be updated. The case studies in [94, 95, 92] showed that these techniques are useful in

the problems where states are not highly dependent, such as in an acyclic markov chain.

That is because states that are not dependent on many other states are not required to

update in every iteration. On the other hand, in the problems where all states are highly

interdependent, these enhancement techniques may require more computational overhead

to update the priority queue when most states have to be updated in each iteration anyway.
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5.3.2.4 Approximate Dynamic Programming

DP is often considered impractical for solving medium- or large-scale problem because

its off-line computational load is proportional to the cardinalities of the state space, the

action space, and the uncertainty space, which can grow exponentially with their dimen-

sions. This is the ‘curse-of-dimensionality’ problem. As a result, an approximate dynamic

programming (ADP) framework has been widely studied in the literature in order to ap-

proximate the optimal cost-to-go function of the state. A comprehensive review of ADP

research and applications can be found in [96] and [93]. Among these works, only few can

be applied to process control problems in which the state space and the action space are

continuous and can have a very large number of discretized values. In addition, the training

data is limited due to the fact that the processes are normally controlled in small operating

regions compared to the size of entire state space. Earlier approach applied to continuous

state space problems relied upon the use of global approximators, such as artificial neural

networks in the Neuro-dynamic programming (NDP) framework [88], to fit simulation data

to the cost-to-go function. When this technique is applied to process control problem with

sparse data, it can often cause divergence in the iterative off-line learning due to overfitting

as demonstrated in [15]. To overcome such problems, Lee and coworkers [15] combined

the lookup-table approach with the use of a local approximator with nonexpansion prop-

erty, particularly a k-nearest neighbor approximator, as well as a quadratic penalty term to

guard against cost-to-go extrapolation in the region not covered by the training data. Their

suggested ADP framework with off-line value iteration scheme is depicted in Figure 44. It is

important to note that at the stage of their framework development, the Bellman equation

was solved by enumerating all possible discretized actions in the entire action space because

the problems of interest had small action space of 1 or 2 manipulated variables.
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Figure 44: Algorithmic framework of Approximate Dynamic Programming
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Because the optimization problem of an integrated plant encompasses continuous vari-

ables and sparse operating data similar to the optimal control problems solved by Lee and

coworkers, we adopt their approach as a precursor to our work. The key idea of this frame-

work is not to solve for the optimal cost-to-go function for the entire state space, but to use

the closed-loop simulations with suboptimal control policies to generate state trajectories

that cover the state space, denoted by X, relevant to the optimal control problem. The

premise is that the optimally controlled trajectories are confined to very small region of the

entire state space. Therefore, the search for optimal policy could be limited to this relevant

state space. However, this relevant space is not known a priori, so it is approximated by

simulating a number of suboptimal policies. Once the simulation data is available, the cost-

to-go lookup table can be initialized by summing the cost starting from each state point

until the end of horizon. Then, this lookup table is iteratively improved in the off-line value

iteration step.

5.3.2.5 Cost-to-go function approximation

In the algorithm proposed by Lee et al. [15], the cost-to-go update of each state point is

done by evaluating every discretized action and computing the corresponding immediate

cost and the cost-to-go of the successive state, as shown in Eq. 84 and Figure 44.

J i+1(x) ← min
u∈U

φ(x, u) + J̃ i(Fh(x, u)) (84)

Since the subsequent state Fh(x, u) may not be pre-stored in the lookup table, the cost-

to-go approximation scheme has to be used. As mentioned previously, the operating space of

process control problem can be much smaller than the size of entire state space, and hence

this approximation step has to be done cautiously. The approximation function should

interpolate the cost-to-go value within the region covered by the simulation data and avoid

extrapolation into an unexplored region to avoid the risk of introducing an unsafe operation.

This is the main reason why the popular Neuro-dynamic programming (NDP) framework,

which utilizes Artificial Neural Networks (ANN), as function approximators may not be

applied to process control problems, which often have sparse training data sets. Therefore,
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the use of k-nearest neighbor function approximator for cost-to-go approximation and the

parzen density estimation to guard against extrapolation as described in [15] are more

suitable for process control problems. There are two steps in computing the cost-to-go

estimate:

1. Local cost-to-go approximation: The k-nearest neighbor approach approximates the

cost-to-go of the query point x0 = Fh(x, u) as a weighted average of the cost-to-go

values of its neighbors. The first step in the procedure is to compute the Euclidean

distance between the query point x0 and every state point xi in X, where X is a set

of the stored state points as follow:

di =
√

(x0 − xi)T W (x0 − xi) (85)

where W is a user-defined diagonal matrix assigning weights to different state vari-

ables. Then the distance is sorted and only the k closest points are considered for the

cost-to-go approximation:

J̃(x0) =
∑

xi∈Nk(x0)

wiJ(xi) (86)

wi =
1/di

k∑

i=1

(1/di)

(87)

where Nk(x0) is a set of the k-nearest neighbors of x0 and wi is a distance weighting

parameter.

2. Local data density estimation: To discourage excessive extrapolation into the region

faraway from the training data set, Parzen data density estimator is employed. The

Parzen density estimate of a query point x0 in the training data set X is defined as

fX(x0) =
1

Nσn

N∑

i=1

K

(
x0 − xi

σ

)
(88)

where n is the state dimension, xi represents the stored state point, N is the number of

stored state points in X, σ is a parameter defining confidence bandwidth, and K is a

multivariate Gaussian Kernel function defined as:

K

(
x0 − xi

σ

)
=

1
(2πσ2)n/2

exp
(
−‖x0 − xi‖2

2

2σ2

)
(89)
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Hence, the parzen density function is based on the Euclidean distance between the query

data point x0 and every point in the stored data set. Kernel function value is high when the

data point xi is close to the query point, and low when they are far apart. Finally, if the

Parzen density estimate of the query point is too small, a quadratic penalty term is added

to the cost-to-go estimate as follows:

Jbias(x0) =





Jmax

[
(fX(x0))−1−ρ

ρ

]2
if (fX(x0))−1 > ρ

0 otherwise
(90)

J̃(x0) ← J̃(x0) + Jbias(x0) (91)

where parameters Jmax is the upper bound on the cost-to-go value, and ρ is the threshold

value. A guideline on the design of these parameters can be found in [15].

5.3.3 Computational Issues of the Existing ADP Method

According to the procedure of the existing ADP approach described in the previous section,

total off-line value iteration time of the ADP approach will be proportional to (i) the

number of discretized actions in the action space, (ii) the time required to approximate

the cost-to-go value of the successive state resulting from each action in Eq. 84, (iii) the

number of stored state points N , and (iv) the number of iterations needed for the cost-to-go

function to converge. This paper is concerned with reducing the computational time arising

from the first three factors. The number of iterations required typically depends upon the

effectiveness of the initial control policy used in the simulations. The closer they are to the

optimal policy, the less number of iterations is required.

5.3.3.1 Curse of dimensionality in the action space

In this case study, the action space has 6 dimensions, including the feed (F0), holdup

setpoints for the reactor (M sp
R ), the condenser (M sp

D ), and the reboiler (M sp
B ), the reflux

flow rate (L), and the production rate (B). The operating range of these input variables is

shown in Table 13. Clearly, there needs to be many discretized values for each input variable

in order to ensure the solution quality of the ADP-based controller. Unfortunately, this will

lead to the curse of dimensionality in the action space. Even if we use coarse discretization
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grid size, there will still be too many action combinations to evaluate in order to update

the cost-to-go of each state point. For example, if the grid size is 5 for each input, there

will be as many as 16× 24× 24× 24× 58× 16 ≈ 205× 106 action combinations!

5.3.3.2 Computational load to approximate J̃(Fh) per action

As explained in the previous section, approximating J̃(Fh(x, u)) for each action u involves

the model integration and the computation of Eqs. 85-91. We perform the value iteration on

a XeonTM dual processor with 2.66 GHz/2.66 GHz and 2.00 GB of RAM and using Matlab

7 software. The average time to compute the approximate of the cost-to-go in Eq. 84 per

state per action was 0.664 seconds. Suppose that there are 1000 stored data points. If

we assume optimistically that the optimal solution to Eq. 84 can be found within some

heuristic trials of 1000 actions, then the time required to perform 1 value iteration would

be ≈ 0.664 s. ×1000× 1000 = 7.7 days! If the control policies used in close-loop simulation

were far from optimal, number of iterations for the cost-to-go to converge could be large.

This means that it would take several months to have the converged cost-to-go function for

on-line optimization!

5.3.4 Proposed Methodologies to Apply ADP to Optimal Control of an Inte-
grated Plant

In this section, we propose a method to overcome the curse-of-dimensionality in the action

space. In addition, for problems with high-dimensional state space, the feature weighting

matrix in the k-nearest neighbor cost-to-go approximating step has to be carefully chosen

so that the approximation is accurate. Furthermore, removing state dimensions irrelevant

to the cost-to-go values from the computation of Eq. 85 will save additional computational

overhead. Finally, because the cost-to-go update requires a simulation to generate the state

transition, the reduction in model integration time plays a crucial role in reducing the overall

off-line computational time.

5.3.4.1 Gradient Search Approach for Finding Optimal Action

As mentioned in the previous section, applying a poorly directed search strategy for optimal

action to high dimensional problems can lead to extremely large computational time. Our
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goal is to systematically direct the search in a way that allows quick convergence to locally

optimal actions. This is because in large real-time control problems, convergence to globally

optimal policies is not always possible. The approach suggested here is to apply the gradient-

based search approach for finding an optimal action. Secondly, we further reduce the

computational load by restricting the search regions for the optimal action making it possible

to apply to high-dimensional problems.

Because the dynamical system and the cost-to-go function studied in this work are

nonlinear, an efficient nonlinear optimization algorithm has to be used. This can be a

general-purpose NLP solver, such as the Sequential Quadratic Programming (SQP) solver.

In addition, a more sophisticate simultaneous optimization solver can be applied, although

it is not clear whether it will give an advantage over the sequential optimization approach.

This is because in this case only a one-time step integration of the model equation is

required, which is very simple to perform in a sequential optimization setting. On the

other hand, using a simultaneous approach will render a larger optimization problem due

to discretization.

In this case the cost-to-go update for each state point x ∈ X is the solution of a

constrained optimization of the form:

J i+1(x) = minφ(x, u) + J̃ i(Fh(x, u)) (92)

s.t. xLB ≤ Fh(x, u) ≤ xUB

uLB ≤ u ≤ uUB

where xLB and xUB are the lower and the upper bounds on the state variables, respectively.

Oftentimes, a nonlinear constrained problem can be solved in fewer iterations than an

unconstrained problem using SQP. This is because the optimizer can use the information

of the feasible area to make decisions regarding directions of search and step length. As

a result, it is important to specify appropriate lower and upper limits, uLB and uUB, and

good initial guess that allow the optimizer to quickly converge to a locally optimal solution.

Local Action Set Heuristics

Our proposed heuristic is to construct for each state point x ∈ X a local action set denoted

110



by Ax. This local action set is initialized by storing good actions that have been applied

to the state point x and the nearest neighbors of x during the off-line simulation. Then,

the cost-to-go update of each state point x is done by solving the optimization problem

(Eq. 92) with the input feasible region be the polyhedron spanned by the local action set

Ax. That is, uLB and uUB are constructed from the minimum and maximum magnitudes

in each input dimension of Ax. By including the information of past local actions, we can

assure that the best of the search covers the regions of the action space where good starting

control policies used during the close-loop simulations have been found. The idea of the

local action set can be visualized as shown in Figure 45.
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Figure 45: Local action set heuristic

Initial Guess

The lookup table of the local action set can be arranged in a way that the local actions

are ordered from the best to the worst, measured in terms of the corresponding cost-to-go
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values of the resulting next state. During the cost-to-go update of each state x, the initial

guess for the optimization Eq. 92 is the first action from the local action lookup table.

Then after the optimal solution to Eq. 92 is found, the optimal action is stored as the first

action on the local action set and can be used as initial guess for the optimization in the

next iteration. The modified ADP algorithm that incorporates this local gradient search

approach is summarized in Table 17.

5.3.4.2 Data Analysis and Dimensionality Reduction in Computing k-nearest Neighbor

As described in the previous section, this ADP algorithm requires the computation of dis-

tance between the query point and every stored state point. Oftentimes for processes with

large state dimensions, not every state variable is relevant for determining the cost-to-go

value of the state. Therefore, those state dimensions that do not affect the cost-to-go value

can be taken out from the Euclidean distance computation (di) to save the computational

overhead and to improve the prediction accuracy of the k-nearest neighbor cost-to-go ap-

proximation step. Nonetheless, the naive approach that keeps only the variables that show

up explicitly in the stage-wise cost function may leave out other state variables that are

strongly correlated with the cost-to-go. Therefore, we suggest the use of a systematic vari-

able selection or feature selection technique to select a subset of state variables from the

original state vector and use them in the k-nearest neighbor cost-to-go value approximation.

There are several techniques in the literatures that attempt to capture the correlations be-

tween the predictors and the regressors; they include linear projection techniques like the

Partial Least Square (PLS) [97] method, or nonlinear methods like Kernel-based regres-

sion. Choice of methods is problem-dependent and users should cross-validate the chosen

method to make sure the reduced-dimensional state vector still captures the relationship

between the state and the cost-to-go value adequately. In addition, correlation coefficients

between the state variables and the cost-to-go value can be used as the feature weights in

the Euclidean distance computation (Eq. 85).

For brevity, we only explain the use of PLS technique for dimensionality reduction. The

objective of PLS in choosing the input subspace is to maximize the covariance between the
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Figure 46: The structure of Partial Least Square (PLS) method

input data matrix X and the correlation to the output matrix Y. The computation involves

the determination of the orthogonal score matrices T and U, and the loading matrices P

and Q. Because this method is scaled dependent, both the input and the output data

matrices should be mean centered and scaled by their standard deviations. The PLS model

can be visualized as shown in Figure 46. Currently, the most commonly used PLS algorithm

is called NIPALS for nonlinear iterative partial least square technique, which can be found

in [97].

This algorithm gives regression model as shown in Eq. 93, where Ŷ is the predicted

output matrix and Bpls is a matrix of regression coefficients that can be computed from

Eq. 94.

Ŷ = XBpls (93)

Bpls = W(PTW)−1BQT (94)

where

W = [w1,w2, . . . ,wk]

P = [p1,p2, . . . ,pk]

B = diag([b1,b2, . . . ,bk])

Q = [q1,q2, . . . ,qk]

where k the number of scores and loadings (commonly called latent variables in PLS)
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required to adequately explain the covariance in the data. From PLS model, state variables

whose correlation coefficients are very small can be removed from the k-nearest neighbor

computation. Let the superscript r denote the state vector after removing the variables with

small coefficients, and Br
pls contains only those large coefficients. The distance computation

in Eq. 85 can be replaced by

di =
√

(xr − xr
i )T |Br

pls|(xr − xr
i ) (95)

5.3.4.3 Reducing Model Simulation Time via Nonlinear Model Reduction

Integrating high-order nonlinear dynamic plant model to find the successive state can be

computationally demanding especially when the system is “stiff”, which is often the case

when the plant has a large recycle loop like in this example. Given the fact that many

variables of a plant-wide system are often highly correlated, it is possible to derive a signifi-

cantly lower-order plant model using an appropriate method that preserves the accuracy of

the resulting model. As a result, we consider the Proper Orthogonal Decomposition (POD)

method coupled with the residualization technique presented in the previous section as a

step to reduce the model integration time.

With all the improvement techniques proposed in Sections 5.3.4.1-5.3.4.3, the modified

ADP procedures can be summarized in Table 17.
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Table 17: Modified ADP algorithm with local gradient-based search for optimal action

1. Closed-loop simulation with known control policies µi, i = 1, ..., nµ.

Store visited states {x(1), . . . , x(N)} ≡ X and the actions applied to the state point

x(j): uxj = µi(x(j)), j = 1, . . . , N .

2. Initialization of the cost-to-go table:

J0(x(k)) =
p−1∑

j=0

φ(x(k + j), u(k + j)) + φt(x(k + p)), k = 1, . . . , N

3. Initialization of the local action sets.

For each x, construct a local action set Ax from

[ux, ux1 , . . . , uxm ] ∈ Ax

where xj , j = 1, . . . , m is the first m nearest neighbor points of x.

4. Data Analysis for dimensionality reduction:

− Apply a feature selection method (such as the PLS method) to find appropriate

feature weighting matrix and to reduce the dimension in the k-nearest

neighbor procedure.

− Obtain a reduced-order model (such as via POD/residualization technique).

5. Value Iteration

REPEAT

For each x ∈ X, solve

J i+1(x) = minφ(x, u) + J̃ i(Fh(x, u))

s.t. xLB ≤ Fh(x, u) ≤ xUB

uLB ≤ u ≤ uUB, uLB = inf(Ax), uUB = sup(Ax)

where J̃ i is the k-nearest neighbor cost-to-go approximation.

LOOP

i ← i + 1

UNTIL convergence
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5.3.5 Results of ADP Applied to a Deterministic Nonlinear Optimal Control

In this section, we implemented the proposed ADP method to the grade transition problem

of an integrated plant shown in Figure 36. To generate the sample trajectories of the grade

transitions from mode 1 to 2, 3, and 4, we used a reduced-order NMPC controller designed

with prediction and control horizons of 5 and 2, respectively. We varied the weighting

parameters of the controller so as to cover wider regions of the state space. The sample

time of the controller was chosen as 4 hours. Here we assumed that the full state variables

were measured. Total number of sample data collected was 990 points. The state for ADP

was defined as:

X =
[
xplant

1 , . . . , xplant
39 , x3B, F, D, V, (xsp

2B − x2B), (Bsp −B), xsp
2B, Bsp

]T
(96)

We include all the output variables of the process. x3B was a concentration of product

impurities, which has to be within a product specification limit. The internal flow rates

F, D, and V were also included, since there are constraints on their upper and lower limits,

as shown in Table 14. The setpoints as well as errors from setpoints were part of the state

as they are required to compute the stage-wise cost, which is defined in Eq. 97, where

Qu = 10000, Qy = 6000, and R = 20I6×6.

φ(x(k), u(k)) = Qy

(
xsp

2B − x2B(k + 1)
x2B,ss

)2

+ Qu

(
Bsp −B(k)

Bss

)2

+ ∆u(k)T R∆u(k) (97)

In this work, we design the confidence bandwidth parameter σ as 3% of 6
√

n, where n is

the state dimension. The initial cost-to-go values of the stored state points range from 0 to

479. A quadratic penalty term is added to discourage and extrapolation to the region not

covered by the simulation data. The maximum cost-to-go value Jmax is set to 1000. The

number of nearest neighbors used for the cost-to-go estimation was 4. The value iteration

was performed using MATLAB 7 software in a XeonTM dual processor with 2.66 GHz/2.66

GHz and 2.00 GB of RAM.

5.3.5.1 Implementation of the Improved Off-line Learning Approach

First, the curse of dimensionality in the action space was overcome by using the SQP

technique to find the optimal action within the region spanned by past actions stored for
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a given state and its neighbors. For each sample point, the number of nearest neighbors

whose actions were kept in the local action set were 10. Since during our off-line simulation

we had applied good MPC controllers, actions applied to the nearest neighbors provided

good starting points from which the SQP search could be performed. In most cases, the

search converged quickly to the optimal solution. Had the initial controllers been very poor,

one should consider exploring many more nearest neighbors’ actions to expand the search

region.

To reduce the state dimension in the k-nearest neighbor computation, the PLS technique

was applied to determine the correlations between the state and the cost-to-go value. The

PLS model coefficients are plotted in Figure 47 and the descriptions of the states with

large coefficients are given in Table 18. In addition to the state variables 39, 45-47, which

explicitly show up in the stage-wise cost function, the PLS model also shows that reactor

variables (states 1-3, and 41) and some distillation variables (states 33, 35, 36, 38, 40) have

a lot of variations that affect the cost-to-go values. Therefore, to reduce the computational

overhead and improve the accuracy of J̃(Fh) computation, only these state variables were

used in the computation and their corresponding feature weights were set as the magnitudes

of the PLS regression coefficients shown in Table 18.

For the nonlinear model integration to find the successive state, we applied the POD

method to reduce the model integration time. As shown in Section 5.2, the projection

matrices P and Q in this case have 7 and 32 row ranks, respectively. In addition, the

residualization technique was better than the truncation in terms of preserving the steady-

state characteristics of the system. Therefore, in this study the residualization method was

used to derive the reduced order model of the form in Eqs. 98-99 for the integration, where

x = [P T , QT ]x̄ + xss.

˙̄x1(t) = Pf
(
[P T , QT ]x̄ + xss, u

)
(98)

0 = Qf
(
[P T , QT ]x̄ + xss, u

)
(99)

The value iteration step was performed with the convergence criteria as shown in Eq. 100

∣∣J i+1(x)− J i(x)
∣∣
∞ < 1 (100)
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Figure 47: Coefficient of the PLS Model
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Table 18: Descriptions of the state variables with large PLS regression coefficients

State Number Description Coefficient

1 Reactor holdup (MR) 0.668

2 Composition of A in the reactor (x1R) -0.474

3 Composition of B in the reactor (x2R) 0.556

33 Composition of A on tray 14 (x1,14) 0.287

35 Composition of A on tray 15 (x1,15) 0.394

36 Composition of B on tray 15 (x2,15) 0.686

38 Composition of A in the product (x1B) 0.409

39 Composition of B in the product (x2B) 0.563

40 Impurity in the product (x3B) -0.567

41 Reactor effluent flow rate (F ) -0.730

45 Error from x2B setpoint (Bsp −B) 0.290

46 Error from B setpoint (xsp
2B) 0.284

47 Production rate setpoint (B) -0.678

The value iteration converged after 18 iterations as shown in Figure 48.

We also compare the off-line computational time between before and after the improve-

ment methods were applied and results are summarized in Table 19. Clearly, without the

model reduction technique, solving the high-dimensional model equation would be require

very high off-line computational load.

5.3.5.2 On-line Performance Compararison

Once the cost-to-go table converged, it was used in the on-line optimization. The result

of grade transition from mode 1 to 2 is shown in Figures 49 and 50, which show that the

system can achieve the grade transition very quickly. The resulting performance as defined

by Eq. 56 with Qu, Qy and R equal to 10000, 6000, and 20I6×6, respectively, is 13.27. This

shows a lot of improvement from the use of the NMPC shown in Section 5.2 as compared

in Table 20.
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Figure 48: Absolute errors of value iteration: deterministic case

Table 19: Value iteration time of different improvement methods

Methods
Average computational time per
iteration (minutes)

• SQP search over local action sets 595.13

• SQP search over local action sets

• reduced order model for state transition 112.30

• SQP search over local action sets

• reduced order model for state transition

• reduced dimension in k-nearest neighbor
computation

92.31
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Table 20: On-line performance comparison between of NMPC and ADP schemes running
at every 4 hours

Method Performance

NMPC with a full-order model 90.70

NMPC with a reduce-order model via residualization 91.73

NMPC with a reduced-order model via truncation 96.02

ADP-based controller 13.27

In addition, the most striking feature of this method is in its drastic reduction in the on-

line computation as shown in Table 21. This is due to the fact that the ADP controller only

needs to solve a single-stage optimization problem at each time, which is a much smaller

problem than those solved in NMPCs. Note that the computational load of the mathemat-

ical programming-based approach, whether it is solved via a sequential or a simultaneous

method, is a function of the prediction and the control horizon. While longer prediction

horizons can potentially offer better performance, it increases the on-line computational

load of this approach. However, the on-line computational load of ADP is completely inde-

pendent of the size of prediction horizon as the multi-stage optimization problem is solved

off-line and the on-line optimization problem involves only a single stage optimization.
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Table 21: Computational time (in minutes) of NMPC and ADP schemes running at every
4 hours

run number NMPC with full order ADP

1 8.6883 0.4207

2 3.3734 0.1905

3 3.6133 0.1892

4 3.4581 0.0906

5 3.8854 0.1507

6 2.3268 0.1261

7 2.2977 0.1335

8 2.2482 0.0990

9 2.1891 0.0663

10 1.9180 0.0765

11 2.9276 0.0547
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5.3.6 Results of ADP Application to a Stochastic Nonlinear Optimal Control

In this section, we consider the case where the integrated white noises are introduced to the

feed composition and the kinetic rate constant k1. The feed now consist of components A

(x1,0) and C (x3,0). The changes in x3,0 and k1 have the sample time of 0.02 modeled as

x3,0(i + 1) = x3,0(i) + e1(i) (101)

k1(i + 1) = k1(k) + e2(i) (102)

where e1(k) ∼ N (0, 0.00052) and e2(k) ∼ N (0, 0.00052).

To maintain the data set at reasonable size, we chose 4 representative realizations of the

stochastic disturbances for the simulation:

1. k1 and x3,0 are trending up

2. k1 is trending down and x3,0 is trending up

3. k1 is trending up and x3,0 is up for the first 30 hours and down from there.

4. k1 is trending down and x3,0 is up for the first 30 hours and down from there.

The realizations of these disturbance scenarios are shown in Figure 51.

We designed seven reduced-order NMPC controllers with the sample time of 4 hours

for use as the initial controllers for simulations. The prediction and the control horizons

of all controllers were chosen as of 5 and 2, respectively. The weighting matrices of these

controllers are shown in Table 22.
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Figure 51: Representative disturbance scenarios for data generation

Table 22: Weighting matrices of the initial controllers

Qu Qy R

Controller 1 10000 6000 20I6×6

Controller 2 10000 96000 20I6×6

Controller 3 1250 6000 20I6×6

Controller 4 10000 6000 160I6×6

Controller 5 80000 6000 20I6×6

Controller 6 10000 750 20I6×6

Controller 7 10000 3000 160I6×6
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We consider the grade transition scenario from mode 1 to mode 2. We store 600 rep-

resentative data points from the simulations for the cost-to-go training. The discounted

factor used to compute the cost-to-go is 0.9.

The cost-to-go update in the off-line value iteration was performed by taking the expec-

tation of the cost over 30 stochastic disturbance realizations. The initial cost-to-go values of

the stored state points range between 0.398 to 167. The convergence criteria of the iteration

was chosen as
∣∣J i+1(x)− J i(x)

∣∣
∞ < 1, which is small enough relative to the range that the

cost-to-go values varied.

The cost-to-go learning converged after 12 iterations as shown in Figure 52.
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Figure 52: Absolute errors of value iteration: deterministic case

The on-line performance was compared by generating 12 new realizations of the stochas-

tic disturbances in k1 and x3,0. We compared the performance of the ADP optimizer with

the seven reduced-order NMPCs used as the initial controllers for simulations. The per-

formance as measured by Eq. 56 over 60-hour horizon are shown in Table 23. The ADP

based controller shows superior performance compared to all the other reduced order NMPC
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controllers under uncertainty.

Table 23: On-line performance comparison with 12 stochastic disturbance scenarios

Performance mean cost standard deviation

ADP controller 37.83 5.30

NMPC 1 130.28 22.91

NMPC 2 122.33 13.62

NMPC 3 136.56 18.26

NMPC 4 152.98 27.84

NMPC 5 125.52 17.55

NMPC 6 147.43 29.76

NMPC 7 131.21 20.70

In this experiment, the disturbance scenario 6 was the one that the ADP controller

showed the median performance of 34.27. The disturbances are plotted in Figure 53.

The performance of the ADP controller are shown in Figures 54 and 55. From the time

10 hour, the production concentration was closely controlled around 0.85-0.86, while the

production rate reached reached the new target in 12 hours.
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Figure 54: On-line performance of the ADP controller during the disturbance scenario 6:
Output variables
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Figure 55: On-line performance of the ADP controller during the disturbance scenario 6:
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The performance of NMPC number 1, which was the best performance among all the

NMPC controllers in this case are shown in Figures 56 and 57. From the time 10 hour, the

product concentration varied between 0.84-0.86. In this case, the production rate reached

the target after 20 hours.
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Figure 56: On-line performance of the NMPC controller 1 during the disturbance scenario
6: Output variables
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Figure 57: On-line performance of the NMPC controller 1 during the disturbance scenario
6: Manipulated variables
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5.4 Conclusions

The approximate Dynamic Programming approach proves to be a more efficient method

for on-line optimization of an integrated plant than the conventional NMPC. However, the

off-line learning procedures suggested in [15] can take significantly long time for the cost-

to-go value function to converge. Therefore, this case study presented systematic ways to

reduce the search space for optimal action and the time taken in the cost-to-go update of

each state point. We incorporated local gradient-based search technique to accelerate the

convergence to local optimal action and overcome the curse-of-dimensionality in the action

space. The dimensionality reduction technique via Partial Least Square (PLS) technique

has been used to reduce the state dimension and to improve the prediction accuracy in

the k-nearest neighbor cost-to-go approximation. Finally, the nonlinear model reduction

technique via Proper Orthogonal Decomposition (POD) and residualization was applied to

reduce the model integration time, thus reducing the computational time of the cost-to-go

approximation. With the improvement techniques, the method can be applied to solve

the integrated plant problem efficiently and results in superior performance to conventional

NMPC framework in both deterministic and stochastic cases.
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CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

6.1 Contributions

This thesis was motivated by the need for efficient dynamic plant-wide optimization frame-

work for an integrated plant with material recycle loop. This system presents a challenge

in modeling, control, and optimization. This is because the system exhibits a multiple

time-scale phenomena, where the system shows very fast response at the initial time and

followed by very slow dynamics over a long period of time. The current steady-state opti-

mization strategy does not work very well in this system because of the limited execution

rate. Furthermore, the fast-rate dynamic optimization can result in an extremely high com-

putational requirement and sensitivity to high frequency dynamics that are irrelevant to

the plant-wide interactions. The major contributions of this thesis are:

• Proposing a novel multi-scale dynamic plant-wide optimization and control architec-

ture suitable for an integrated plant.

• Addressing problems in identifying a dynamic model of an integrated plant and

proposing a grey-box modeling technique to improve the long-range prediction ac-

curacy of the model.

• Understanding and overcoming the off-line computational difficulties in applying the

existing approximate dynamic programming (ADP) framework to solving a nonlinear

optimization of an integrated plant.

In Chapter 3, we proposed the multi-scale dynamic optimization framework for an inte-

grated plant. The optimization frequency should be chosen so as to avoid the fast frequency

range of the unit operations and to take into account the computational feasibility of the

framework. In the case where there are multiple MPCs at the unit-base control level, a

coordination scheme should be used to avoid passing infeasible setpoints to the MPCs. The
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examples used in this chapter showed that suggested method is superior to the current

steady-state and the single-scale dynamic optimization schemes. The former is limited in

terms of the execution frequency, whereas the latter may be very sensitive to fast dynamics

that are irrelevant to the plant-wide objective.

When the plant-wide interaction model based on first-principles is unavailable, a system

identification experiment has to be conducted. In Chapter 4, we addressed the difficulties

associated with the ill-condition and the long settling time characteristics of the integrated

plant. Input has to excite the low-gain directions more than the high-gain direction in

order to obtain a model that adequately explains the low-gain direction, which is very

difficult to control well. We also propose a grey-box modeling method that incorporates

the steady-state information of the plant to improve the model prediction quality of the

identified model. The main premise is that we assume the slow-scale dynamics can be

modeled as a first-order system. Then only the steady-state gain and the settling time of

the plant need to be supplied to construct the approximation. The proposed method was

shown to improve the performance of the plant-wide control in an integrated plant example

composed of a reactor and a distillation column. The ease of design and implementation

makes it potentially appealing to extend to other industrial examples.

In Chapter 5, a case study of a nonlinear integrated plant with a reactor, a distillation

column and a recycle loop is presented to show that the nonlinear model predictive control

can be very inefficient in solving an optimal control problem of this system. This study con-

sidered the use of the ADP framework for plant-wide dynamic optimization. This method

offers a way to compute the optimal policy with or without stochastic uncertainty in an off-

line manner. Then, the on-line optimization can be reduced to a single-stage optimization,

and thus decreasing the on-line computational load dramatically. The existing simulation-

based ADP framework for process control problems is based on the premise the part of the

state space that is relevant to optimal control or near optimal is much smaller than the en-

tire state space. The simulations with good suboptimal control policies are used to generate

state points. Then, cost-to-go values are improved by the value iteration scheme. We ad-

dressed the difficulties in applying the existing ADP method to an optimal control problem
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of an integrated plant; They include the curse-of-dimensionality in the action space, the

long model simulation time in a high dimensional system, and the determination of suitable

feature weighting factors in computing the cost-to-go approximation. Our contribution is

to combine several methodologies with ADP to overcome these difficulties and show how

to apply optimal control to an integrated plant. This resulting approach showed superior

performance in solving the optimal control problem of the integrated plant case study, with

or without uncertainty, compared to the conventional NMPC.

6.2 Future Work

The conceptual framework of a multi-scale optimization and control strategy can be ap-

plied to other challenging integrated plants with recycles. Some complex nonlinear process

systems, such as the recovery plant in the pulp and paper mill, has a very long transient

dynamics that it is seldom at the steady-state. One of the main advantages of our approach

is that it does not require the system to be at the steady state. Nonetheless, many nonlinear

complex process systems are still very difficult to optimize in real time. The ADP approach

may be the solution to these problems. Possible directions of future research should address

the following topics:

• Systematic exploration: Systematic way of exploring state space is an open question

for the ADP research. This may give a significant improvement in performance,

especially when the initial control policy is far from optimal. However, on-line learning

is often expensive in process industries and a cautious scheme to expand the learning

is necessary.

• Systematic on-line update of the cost-to-go function: Like any other model-based

control schemes, when the actual process changes, the process model used in the

optimization has to be re-evaluated. However, in the case of the ADP framework, the

cost-to-go function also needs to be retrained. The future research in ADP should,

therefore, consider on-line monitoring and updating scheme to detect the drift of the

process and provide an on-line update for the cost-to-go value.
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• Parallelization of the off-line iteration: The sequential update scheme in the off-line

value iterations can require significantly long time to complete as one considers an ap-

plication to larger and larger problems. In this case, parallelizing the value iteration

scheme can reduce the total time required to obtain the optimal cost-to-go. Partition-

ing scheme has been proposed to handle some discrete-time markov decision processes

where states are not highly dependent as mentioned in Section 5.3. However, for prob-

lems with continuous state-space, it remains an issue how to systematically partition

the state space and how to handle the trade-off between the convergence speed gain

and the potential information loss when states in different partitions are not updated

together.
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APPENDIX A

LINEARIZED MODEL OF THE ILLUSTRATIVE

REACTOR-DISTILLATION INTEGRATED PLANT

The state of the reactor-distillation integrated plant is defined as

X = [ x1R, x2R, x1D, x2D, x1,1, x1,2, . . . , x1,N , x2,N , x1B, x2B ]T (103)

where concentrations in the reactor, the condenser, and the product stream are denoted

by xij , where i indicates chemical species (1: reactant A, 2: desired product B, 3: unde-

sired product C) and j represents processes (R: reactor, D: condenser, B: reboiler). The

distillation column compositions are given by xi,k where k is the tray location.

The nonlinear ordinary differential equation of this system is given in Section 5.1. With

a perfect level control assumption, the linearized model of this system in the state space

form is given as follows:

ẋ = Ax + [Bu, Bd]




u

d


 (104)

y = Cx + Du (105)

where u = [F0, L, V ]T , d = [x2,0, x3,0]T . Feed stream may consist of impurity components

2 or 3 as denoted by x2,0 and x3,0, respectively. The non-zero elements in the matrix A

before any scaling is applied are shown in Table 24. Matrix B is shown in Eqs. 106.
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Table 24: Non-zero elements in the state space matrix A of the reactor-distillation inte-
grated plant

(1,1) -18.091 (1,3) 16.182
(2,1) 1 (2,2) -18.091 (2,4) 16.182
(3,3) -11.965 (3,5) 3.6241 (3,6) -2.9894
(4,4) -11.965 (4,5) -0.46651 (4,6) 6.1407
(5,3) 2.6364 (5,5) -8.3361 (5,6) 4.7016 (5,7) 5.8389 (5,8) -4.7016
(6,4) 2.6364 (6,5) 0.7337 (6,6) -12.294 (6,7) -0.83207 (6,8) 9.6946
(7,5) 2.6364 (7,7) -8.4753 (7,8) 4.7016 (7,9) 5.8773 (7,10) -4.7025
(8,6) 2.6364 (8,7) 0.83207 (8,8) -12.331 (8,9) -0.85709 (8,10) 9.7066
(9,7) 2.6364 (9,9) -8.5136 (9,10) 4.7025 (9,11) 5.8884 (9,12) -4.7031
(10,8) 2.6364 (10,9) 0.85709 (10,10) -12.343 (10,11) -0.86335 (10,12) 9.7111
(11,1) 17.091 (11,9) 2.6364 (11,11) -25.616 (11,12) 4.7031 (11,13) 6.1631
(11,14) -4.6951
(12,2) 17.091 (12,10) 2.6364 (12,11) 0.86335 (12,12) -29.438 (12,13) -1.0745
(12,14) 9.766
(13,11) 19.727 (13,13) -25.89 (13,14) 4.6951 (13,15) 6.6821 (13,16) -4.6759
(14,12) 19.727 (14,13) 1.0745 (14,14) -29.493 (14,15) -1.4763 (14,16) 9.8628
(15,13) 19.727 (15,15) -26.409 (15,16) 4.6759 (15,17) 7.647 (15,18) -4.6279
(16,14) 19.727 (16,15) 1.4763 (16,16) -29.59 (16,17) -2.2326 (16,18) 10.021
(17,15) 19.727 (17,17) -27.374 (17,18) 4.6279 (17,19) 9.3807 (17,20) -4.508
(18,16) 19.727 (18,17) 2.2326 (18,18) -29.748 (18,19) -3.6167 (18,20) 10.247
(19,17) 19.727 (19,19) -29.108 (19,20) 4.508 (19,21) 12.288 (19,22) -4.232
(20,18) 19.727 (20,19) 3.6167 (20,20) -29.974 (20,21) -5.9933 (20,22) 10.494
(21,19) 19.727 (21,21) -32.016 (21,22) 4.232 (21,23) 16.596 (21,24) -3.7013
(22,20) 19.727 (22,21) 5.9933 (22,22) -30.222 (22,23) -9.6039 (22,24) 10.649
(23,21) 19.727 (23,23) -36.324 (23,24) 3.7013 (23,25) 21.907 (23,26) -2.9121
(24,22) 19.727 (24,23) 9.6039 (24,24) -30.376 (24,25) -14.148 (24,26) 10.605
(25,23) 19.727 (25,25) -41.634 (25,26) 2.9121 (25,27) 27.172 (25,28) -2.031
(26,24) 19.727 (26,25) 14.148 (26,26) -30.333 (26,27) -18.707 (26,28) 10.397
(27,25) 19.727 (27,27) -46.899 (27,28) 2.031 (27,29) 31.447 (27,30) -1.2724
(28,26) 19.727 (28,27) 18.707 (28,28) -30.124 (28,29) -22.389 (28,20) 10.169
(29,27) 19.727 (29,29) -51.175 (29,30) 1.2724 (29,31) 34.5 (29,32) -0.73635
(30,28) 19.727 (30,29) 22.389 (30,30) -29.896 (30,31) -24.897 (30,32) 10.056
(31,29) 19.727 (31,31) -54.227 (31,32) 0.73635 (31,33) 36.687 (31,34) -0.40378
(32,30) 19.727 (32,31) 24.897 (32,32) -29.783 (32,33) -26.409 (32,34) 10.146
(33,31) 19.727 (33,33) -56.414 (33,34) 0.40378 (33,35) 38.618 (33,36) -0.21278
(34,32) 19.727 (34,33) 26.409 (34,34) -29.874 (34,35) -27.217 (34,36) 10.556
(35,33) 11.989 (35,35) -24.022 (35,36) 0.12931
(36,34) 11.989 (36,35) 16.541 (36,36) -6.9674
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B = 103




0.91234 −0.45416 0.45416

−0.85375 0.40469 −0.40469

0 0 0

0 0 0

0 0.42988 −0.060225

0 −0.40434 0.056646

0 0.1142 −0.015998

0 −0.10093 0.01414

0 0.031583 −0.0044246

0 −0.02468 0.0034576

0.13097 −0.1215 0.010695

−0.13111 0.12525 −0.011213

0.21134 0 −0.01021

−0.21068 0 0.010178

0.37593 0 −0.018161

−0.37473 0 0.018103

0.6289 0 −0.030382

−0.6268 0 0.03028

0.95141 0 −0.045962

−0.94792 0 0.045793

1.2407 0 −0.059936

−1.2351 0 0.059669

1.3385 0 −0.064661

−1.3297 0 0.064239

1.1786 0 −0.056939

−1.1638 0 0.056224

0.86625 0 −0.041848

−0.83862 0 0.040513

0.55581 0 −0.026851

−0.50093 0 0.0242

0.32624 0 −0.01576

−0.21525 0 0.010399

0.18155 0 −0.0087707

0.040474 0 −0.0019553

0.059491 0 −0.0028739

0.20101 0 −0.0097108




(106)
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APPENDIX B

MODEL REDUCTION BASED ON THE BALANCED

METHOD

Consider a stable linear time-invariant system of the form:

ẋ = Ax(t) + Bu(t) (107)

y(t) = Cx(t) + Du(t)

where x, u, and y represent a state vector, an input vector, and an output vector, respec-

tively. The controllability and the observability grammians of this system are defined as

shown in Definitions 1 and 2.

Definition 1: Controllability gramian

P =
∫ ∞

0
eAtBBT eAT tdt (108)

Definition 2: Observability gramian

Q =
∫ ∞

0
eAT tCT CeAT tdt (109)

The controllability gramian has full rank for a stable and controllable system. For stable

and observable systems the observability gramian will have full rank. In addition, these

gramians are the unique positive definite solutions of the Lyapunov equations as follows:

AP + PAT + BBT = 0 (110)

AT Q + QA + CT C = 0 (111)

These controllability and observability gramians can be coordinate transformed and denoted
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by P̄ and Q̄, respectively. The system is in a balanced form if and only if

P̄ = Q̄ = Σ =




σ1 0 0 . . . 0

0 σ2 0 . . . 0

0 0 σ3 . . . 0
...

...
. . . . . .

...

0 0 0 · · · σn




(112)

where

P̄ = TPT T (113)

Q̄ = (T−1)T QT−1 (114)

where T is a coordinate transformation matrix. σ1 ≤ σ2 ≤ . . . σn are referred as the

Hankel singular values of the system. The main idea here is that the singular values of

the controllability gramian correspond to the amount of input energy required to change

the corresponding states. On the other hand, singular values of the observability gramian

are the energy generated by the corresponding states. With this coordinate transformation

matrix, the system can be transformed into the the balanced form given in Eq. 115.

x̄ = TAT−1x̄ + TBu (115)

y = CT−1x̄ (116)

In this balanced form, the elements in the state vector x̄ are ranked form the most observable

and controllable states to the least ones. As a result, one can obtain a reduced order model

by eliminating the states that contribute very little to the input-output behavior of the

system. To obtain the coordinate transformation T , the following steps are involved.

R = QT Q (117)

RPRT = UΣ2UT (118)

T = Σ−1/2UT RT (119)

For nonlinear system, the gramians as defined in Eqs. 108 and 109 cannot be computed.

The original work in deriving the empirical gramians for nonlinear system by Lall [72, 73]
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only applied to a nonlinear control-affine system. Hahn et al. [74] generalized the method

to general nonlinear systems, which can be represented as follows:

ẋ = f(x(t), u(t)) (120)

y(t) = h(x(t)) (121)

where f and h are continuous nonlinear functions. The idea is to compute the so-called

controllability and observability covariance matrices by exciting the system and collecting

the data on the input-to-state and state-to-output behavior of the system. Lall defined the

following sets for the empirical controllability gramian:

T p = {T1, . . . , Tr|Ti ∈ Rn×n, TiT
T
i = I, i = 1, . . . , r} (122)

M = {c1, . . . , cs|ci ∈ R+, i = 1, . . . , s} (123)

Ep = {e1, . . . , ep|standard unit vectors in Rp} (124)

where r is the number of matrices for perturbation directions, s is the number of excitation

magnitudes in each direction, and p is the number of system inputs. The definitions for the

controllability covariance matrix is given as follows:

P =
r∑

l=1

s∑

m=1

p∑

i=1

1
rsc2

m

∫ ∞

0
Φilm(t)dt (125)

where the covariance of the state Φilm(t) ∈ Rn×n is computed from:

Φilm(t) := (xilm(t)− xss)(xilm(t)− xss)T (126)

where xilm(t) is the state corresponding to the input u(t) = cmTleiv(t) + uss(0). The input

direction is determined by Tlei and the type of input signal is denoted by v(t). The subscript

ss denotes the vector at the steady-state.

The observability covariance matrix is defined as follows:

Q =
r∑

l=1

s∑

m=1

1
rsc2

m

∫ ∞

0
TlΨlm(t)T T

l dt (127)

where the covariance of the output Ψlm(t) ∈ Rn×n is given by

Ψlm
ij (t) := (yilm(t)− yilm

ss )T (yilm(t)− yilm
ss ) (128)
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where yilm(t) is the output corresponding to the initial condition x(0) = cmTlei +xss. Once

these gramians are constructed, method to derive the coordinate transformation is same as

in the linear case.
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[35] W. L. Luyben, B. D. Tyréus, and L. M. Luyben. Plantwide Process Control. McGraw-
Hill, New York, 1999.

[36] J. H. Lee, M. Morari, and C. E. Garcia. State-space interpretation of model predictive
control. Automatica, 30(4):707–717, 1994.

[37] P. Lundström, J. H. Lee, M. Morari, and S. Skogestad. Limitations of dynamic matrix
control. Comput. Chem. Eng., 19(4):409–421, 1995.

[38] W. E. Larimore. Statistical optimality and canonical variate analysis system identifi-
cation. Signal Processing, 52(2):131–144, 1996.

[39] Y. C. Zhu, M. van Wijck, E. Janssen, A. J. M. Graaf, C. H. van Aalst, and L. Kieviet.
Crude unit identification for MPC using ASYM method. In Proc. of American Control
Conference, Albuquerque, New Mexico, 1997.

[40] Y. Zhu. Multivariable process identification for MPC: the asymptotic method and its
applications. J. Process Contr., 8(2):101–115, 1998.

[41] P. Misra and M. Nikolaou. Input design for model order determination in subspace
identification. AIChE J., 49(8):2124–2132, 2003.

[42] S. Skogestad and M. Morari. Understanding the dynamic behavior of distillation col-
umn. Ind. Eng. Chem. Res., 27:1848–1862, 1988.

[43] C. W. Koung and J. F. MacGregor. Identification for robust multivariable control: the
design of experiments. Automatica, 30(10):1541–1553, 1994.

[44] W. Li and J. H. Lee. Control relevant identification of ill-conditioned systems: estima-
tion of gain directionality. Comput. Chem. Eng., 20(8):1023–1042, 1996.

[45] J. Lee, W. Cho, and T. F. Edgar. Iterative identification methods for ill-conditioned
processes. Ind. Eng. Chem. Res., 37:1018–1023, 1998.

[46] M. J. Bruwer and J. F. MacGregor. Robust multi-variable identification: Optimal
experimental design with constraints. J. Process Contr., 16:581–600, 2006.

146



[47] M. Hovd, J. H. Lee, and M. Morari. Truncated step response models for model pre-
dictive control. J. Process Contr., 3(2):67–73, 1993.

[48] A. Kumar and P. Daoutidis. Nonlinear dynamics and control of process system with
recycle. J. Process Contr., 12:475–484, 2002.

[49] C. J. Goh and K. L. Teo. Control parameterization: a unified approach to optimal
control problems with general constraints. Automatica, 24:3–18, 1988.

[50] L. R. Petzold. A description of DASSL: A differential/algebraic system solver, pages
65–68. In R.S. Stepleman et al., editors, Scientific Computing. North-Holland Publish-
ing, Amsterdam, 1983.

[51] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Using krylov methods in the solution
of large-scale differential-algebraic systems. SIAM J. Sci. Comp., 15:1467–1488, 1994.

[52] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Consistent initial condition calcu-
lation for differential-algebraic systems. SIAM J. Sci. Comp., 19:1495–1512, 1998.

[53] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

[54] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. London, Academic
Press, 1981.

[55] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, NY,
1999.

[56] L. T. Biegler. Efficient solution of dynamic optimization and NMPC problems. In
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