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ABSTRAC T

Of concern is a micromechanical derivation of effective stiffnesses of paper from fiber properties.

Special attention is given to the problem of a mechanical model of interacting fibers - either

fibers carrying axial forces or fibers carrying axial, shear, and bending forces. The choice of such

a discrete model, set in the context of a triangular lattice, is closely related to the type of a contin-

uum approximation: either classical or micropolar. It is found that, as the fiber density grows, the

fiber bending tends to increase the effective Young's modulus and decrease the effective Poisson's

ratio. A full comparison with the theory of Cox requires an introduction of a perforated plate

model for the regime of high fiber density.



INRODUCTION

One of the fundamental challenges in paper physics is the determination of effective contin-

uum-type elastic properties from the fiber mechanics and fiber-fiber interactions. Considering the

composite material structure of every single fiber, one is naturally tempted to replace it by an

appropriate mechanical element and proceed to derive the overall properties of a system of fibers

that makes up the paper sheet. Such was the approach originated by Cox [ 1], whereby the fibers

were taken as axial load carrying elements. However, the simple observation that fiber-fiber con-

tacts are of a finite surface area, suggests that they act as 'welded' contacts, so that fibers must

really behave as flexing beams. Examination of the effect of this flexing on the effective in-plane

elastic moduli of paper is one of the goals of the present study, with attention being focused on the

isotropic case - handsheets.

Let us note another aspect of the Cox model: an assumption of straight fibers that span the

entire domain of the paper sheet under consideration. This justified the state of uniform strain,

whereby the effective stiffnesses could be derived. Additionally, the domain over which an inte-

gration with respect to an angular distribution function of fiber orientations was carried out, played

the role of a Representative Volume Element (RVE). Now, in the case of finite length fibers - i.e.,

shorter than the RVE dimensions - the uniform strain assumption is not correct unless one deals

with a unit cell of a regular lattice of fibers, and in that case, the unit cell becomes an RVE. We are

thus led to a triangular lattice model, whose advantage lies in a possibility of explicitly deriving

the effective moduli in terms of the fiber stiffnesses and fiber volume fraction in the sheet. In order

to assess the basic types of possible dependencies, the analysis is set in the context of an isotropic

in-plane response that corresponds to handsheets.

The first system we consider is a regular triangular lattice of elements (fiber segments) carry-

ing axial forces only. This model is then generalized to the case of elements behaving as extensi-

ble, flexing beams; these two lattice models have their roots in the crystal lattice theory. As the

porosity decreases, this treatment of fiber segments as beams becomes questionable, and a porous

plate model is introduced. Throughout the paper, comparisons of these models to the Cox model

are being made, with the final conclusions drawn in the last section.

POROSITY IN A LATTICE MODEL

It will be important, for the sake of reference, to have several basic relationships [2]. First,



grammage is defined as

m
(1)L×L

where m is the total mass of fibers in the given L x L window and is given as m - Vfp? - VPa.

Here Vf is the total volume occupied by all the fibers; Pr is the mass density of the fibers; V - L2ta

is the total volume; and Pa is the apparent mass density; and ta is the apparent thickness. Next,

the fiber volume fraction and the porosity (or the volume fraction of pores) are

v-v s p
Vf P - - 1-P y- I _ (2)Ps:v v Ps

Notations Pr and Pp reflect the fact that these are the probabilities of hitting the f-phase (fibers) or

the p-phase (pores) in an image analysis.

There are, basically, three periodic nearest-neighbor lattices in two dimensions (2D)' triangu-

lar, square, and honeycomb. Now, a square lattice would result in an orthotrpic response, while a

honeycomb lattice would seem too remote from any fiber microstructure. Thus, given our interest

in isotropic materials, we take a triangular lattice (Fig. 1a) as an idealized model of a single-layer

fiber network, which may be interpreted as a single-layer mat of intersecting long fibers. The inter-

node elements play the role of free fiber segments [2]; their thickness, width, and length are

denoted by ta , w, and the internode spacing s, respectively. Pores are clearly defined in such a lat-

tice (Fig. lb), so that porosity Pp and relative bonded area RBA are expressed in terms of the fiber

aspect ratio w/s

2 2-wsPS-
s _s; 2,,/_ _ 3TMs

Note that in the hypothetical limiting case of Pf - 1.0, w/s - 1/(dr3), and RBA becomes 2/3.

On the other hand, in the case of Pr - 0.0, w/s - 0, and RBA - 0. In the following, a formula,

inverse to (3), will be useful

w = 1- J1-Pr (4)
45

Considering the fiber overlap at the lattice nodes of either lattice, one could proceed here with a

somewhat different interpretation for the apparent thickness of the fiber mat: namely, ta to be



effectively equal to three or two fiber thicknesses rather than just one. The ambiguity of ta for 2D

fiber mats is also noted in other models of fiber networks. For example, Kanmes & Corte [3] define

a 2D sheet as one in which the area covered by more than two fibers is negligible, i.e., less than 1%.

TWO-DIMENSIONAL(PLANAR)VERSUSTHREE-DIMENSIONALELASTICITY

Classical Elasticity

Measurement of the z-direction strain in tensile tests of paper sheets is a challenge, e.g., [4].

Noting such experimental constraints as well as the 2D character of a generic fiber mat model, it is

more convenient to work with a so-called planar rather than the conventional 3D elasticity. This

section is thus devoted to a brief exposition of basic concepts of aplanar elasticity (or 2D elastic-

ity) in x1 -x2 , and its relation to the 3D elasticity.

We begin by noting that the constitutive relations for a linear elastic isotropic 3D material are

1+vsD (5)
1 [Gll_V3D(O.22+O.33 )] F-'12 = _lJ12

ell - Es D E3D

together with cyclic permutations 1 --->2 --->3, whereby E3D and V3D stand for the conventional

3D Young's modulus and Poisson's ratio. On the other hand, in 2D elasticity, there is no xs direc-

tion, so that we have

1 l+v
Ell -- E [13'11 -vG22] £12 = E c_12 (6)

with cyclic permutation 1 --->2. In (6), E and v stand for the 2D (or planar) Young's modulus and

Poisson's ratio. Applying the concept of bulk and shear moduli to the above relations, we readily

find that the planar bulk and shear moduli are
E E

K- 2(l-v) bt- 2(1+v) (7)

Furthermore, the planar Young's modulus, E, and Poisson's ratio, v, are connected to these by

4 1 1 K-g-- =--+- V-

E K g K + kt (8)

It is important to note here that v is seen to range from -1 through +1, in contradistinction to V3D,

which is bounded by -1 _<VsD _<0.5. For positive values of v and vsD, we have the following



relationships

E3D V3D
E - v - (9)

2 1 --V3D1 -V3D

We refer to [5] for a detailed discussion of relationships among this planar, the well-known

plane stress, the well-known plane strain, and the 3D isotropic elasticity.

Micropolar Elasticity

It will be shown below that the presence of beam-type interactions in a fiber network necessi-

tates a consideration of an additional degree of freedom besides two in-plane dispalcements,

namely the rotation qo about an axis normal to the plane of the sheet. The force transmission now

occurs not only through the surface force traction, but also through the surface moment traction.

This leads to a so-called micropolar elasticity model, and the corresponding constitutive law is of

the following form

A+S S S P

g'll = 4 (13'11 + 0.22) -- 5 °.22 E'12 = 4 (Gl2 + G21) + 4 (Gl2-- O'21) 1 --->2 (10)

lc1 - Mkt1 1 --->2

with cyclic permutations as shown. In the above, we use lc's to denote torsion-curvatures, while

_Seij are now asymmetric strains and c_j's asymmetric stresses. Also, in (10), we introduced four

planar compliances

1 1 1 1 1
A - - - S - - P = - M- ._ (11)

K h+kt g cz y+£

Observe that (11) 1 defines a planar bulk compliance K, and (11)2 a planar shear compliance S,

which is the same as the 3D shear compliance. It is noteworthy that the planar Young's modulus

and Poisson's ratio are given through (8) as before; see [6] for a complete exposition of the 3D

micropolar theory and [7] for a planar setting.

A LATTICE OF FIBERS CARRYING AXIAL FORCES

Consider a regular triangular lattice of Fig. 1a) with central force interactions only, that is, one

where each bond represents an elastic spring (or fiber) f, all of which are connected by frictionless



nodes. Next, let us introduce hexagonal-shaped unit cells centered at each node (Fig. 1c), which

are made of half-lengths of all six springs incident onto the node. It will be convenient to take the

spacing s of the triangular mesh to be 21. Thus, the area of the hexagonal cell is A - 2,j312 . The

constitutive (force-displacement) response law of each spring is given as

F i kU)ni_njO3uj k ® Aff)E ®- = (12)
l

In the above,

k 03 is an effective (axial) spring constant of the fiber within the hexagonal cell;

n i (f) is a component, in tensor notation, of a vector aligned with the fiber;

is a displacement component;.j
AU) - taw is a cross-sectional area of the fiber;

E 03 is a Young's modulus of the fiber; and

l is a half-length of each fiber, i.e., the part contained within the hexagonal cell.

Let us now assume the cell to be under uniform strain _ so that the displacement field is linear

Ui -- P-'ijXj (13)

It follows from (13) that the strain energy of a unit hexagonal cell of such a lattice, under conditions

of uniform strain _, is a sum of energy contributions of six fiber segments (f- 1, ..., 6)

1 12 6
Snetwork = 2Eijgkm'2 E k('Dn_n_n_ n_ (14)

f=l

On the other hand, the strain energy of the same unit cell, in the continuum sense, is expressed

in the tensor notation by

Scontinuum : m gijeTffm gkm (15)2

By the energy equivalence Unetwor k = Ucontinuu m , the effective stiffness tensor is now calculated

from (14) and (15) as

ceffijkm- X kO3n__%n_nm03 (16)
f=l

The existence of the strain energy implies a symmetry ij _ km, which reduces the number of

stiffness components from 16 to 10. Next, the symmetries i <--->j and k <-->m, which follow from



the definition of stress and strain tensors, reduce that total number to 6. Furthermore, the symme-

tries of the equialteral lattice imply CiVil = C2222 and C_112 = C2212 = 0. And finally, by

inspection of (16), the symmetry j _ k indicates that a Cauchy relation

C1212 = Cl122 (17)

holds, which is expected in any system carrying axial, node-to-node forces only [8]; this will

change in fiber networks carrying non-axial forces as discussed below. Thus, Ci)k_will only have

two independent components with Poisson's ratio 1/3. However, we should also ask a question:

under what conditions is the assumption (13) correct? In other words, if we were to displace the

end points of six fibers at the boundary of the hexagonal cell according to (13), under what condi-

tions would the center point displace according to (13) as well?

Assumption of the uniform strain is correct in the special (but not the only) case of all the k (f)

spring constants being the same, and we get from (16)

ce..-.'_f _ 12kU) 6
_jr_rt_

f=l

and calculate

eff 3 (f) 7f 3 kO9C_15 elf 9__9__.k09 C_152- C2211- - _ (19)1= =

The effective planar bulk and shear moduli, I_ ff and kteff, are related to the k Ct) constant by

Kerf J'g k _ eff _ k _ (20)
-4 g -8

Recalling formula (7), we find

Eeff _ Eeff = kCt) veff 1= - (21),/5 3

Clearly, v _ff does neither depend on the fiber stiffness, nor on the micro structural geometry. How-

ever, the effective Young's modulus Eeff does, and, in view of (11), we find

taw (f) (22)
E ,/siE
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Furthermore, noting (3), we obtain

Eeff l-d1-Pr=2 (23)
taE (f) 3

The above can now be compared with the wen-known formula of Cox-type theories (e.g., [1,

2]). We start with

E_jj = 1 WE _ v_ff = _1 (24)
3pr 3

Thus, E_ff can be compared between both models in terms of porosity Pr, and in a nondimension-

alized form (recall eqs. (1-2)) it is

EeSS = P--f (25)
taE(f) 3

It is now evident that the Cox model predicts a linear dependence on Pr' while a nonlinear depen-

dence is seen in (23). The reason for this qualitative difference is that the Cox-type formula

accounts for the fibers' density in the sheet only, but not for their geometry as expressed by the

aspect ratio w/s. In other words, no length scales appear in the Cox model. A quantitative com-

parison of both models is given in Figs. 2a) and c). In particular, the new Young's modulus displays

a nonlinearly increasing behavior as opposed to a linear behavior of the Cox model; we have the

agreement of both models in the limiting case Pi - 0. On the other hand, both models predict the

samePoisson'sratio.

A LATTICE OF FIBERS CARRYING AXIAL, SHEAR, AND BENDING FORCES

The fact that any two cellulosic fibers have a finite contact area calls into question any fiber

network model in which fiber segments are joined by pinned joints. Therefore, let us now consider

the regular triangular lattice of Fig. 1 again, but now with the free fiber segments (node-to-node)

behaving as flexing beams and connected through 'welded contacts' at their mutual bonds. A plan

view of such a single-fiber network is given in Fig. 3a), where, same as in the section on axial-force

fiber model, the lattice nodes are assumed to have the same thickness as the single fiber.

In accordance with the general concepts of Fig. 3b), we have to focus on the deformations of a

typical beam-fiber, its bending into a curved arch allowing the definition of its curvature, and a cut

in a free body diagram specifying the normal force F, the shear force F, and the bending moment



M. It follows that the force field within the fiber network is now described by fields of force-

stresses 6kz and moment-stresses mk; note the additional presence of moment-stresses due to the

beam-type fiber interactions. In a continuum sense, this lattice will be approximated by the

micropolar elastic medium discussed in an earlier section. While full derivation of the correspon-

dence of such beam lattices and micropolar media has been given in [9], in the following, we give

a simple account, along with an adaptation to fiber structures, of the principal results that are rele-

vant to our problem; see also [10].

The kinematics of the fiber network are described by three functions

uI (x) u2 (x) (p(x) (26)

which coincide with the actual displacements (u1, u2 ) and rotations ((p) at the fiber-fiber intersec-

tions. Similar to (13), these functions are assumed to be linear, although the torsion-curvature P_i

now enters the picture in addition to the strain gq; recall (10) 3. As before, the overbars denote spa-

tial averages over the unit cell. These two tensors are related to u1 , u2 , and (p by

gij -- ttj, i + F-'ijq) _i -- (P,i (27)

where ezk is the 2D counterpart of the permutation tensor.

On the other hand, we note from the mechanics of beams that the response (force-displacement

and moment-rotation) laws of each fiber segment are given as

FU) _ EU)A _ y(;9 F_ 12E (f)I (f) -Cf) 03 (f)109 03 (28)= 2 Y M -E _c
s

where the new quantities are
3

I ct) - t w /12 is the centroidal moment of inertia of the cross-sectional area of the fiber witha

respect to an axis normal to the plane of the fiber mat;

7 09 is a fiber elongation; and

_cCt) is a fiber curvature.

Turning now to the continuum picture, the strain energy of the unit cell is expressed as

A_ ...eft _ A _ _DTjffp_jm - 5  jC jkm km+ (29)

from which we find

6 3 6· n. (30)
f=l f=l
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where

R 09' 2E (f)A 09 ~ 09 24E (J9109= R = S ® - 2E(J)1(9

()s_ _f_ s_ 3f_ sO3,j_ (31)

Consistent with the assumption of rectangular fiber cross sections (t a × w ), we readily establish

that the ratio R/R has a very simple significance in terms of the fiber segment's aspect ratio

= s (32)

Now, if we take all the fiber segments to be the same (R _ - R , etc.), we find

ceff _ C_2ff22 = 3 ~ eft 3 ( R + 3,R)1111 -- _ (3R + R) .C1212 =

ceff_ C_251 3 ~ ,fl ff 3 (R-R) (33)1122- -- § (R-R) Ce_221 : C_112:

eft neff 3
11 --"'22 -- _S

with all the other components of both stiffness tensors being zero. In other words, we have

_ff bikbimA bimbiflI DTff' 8ijF (34)Cijkm - _jijbkm '_'+ +

in which

3 3 3
(R + 3R) F -E = 1-I - §(R-R) A - § 5S (35)

Note that the Cauchy relation (17) does not hold here.

The effective bulk and shear moduli are now identified as

3 efy
= 3 (R + R) (36)

which are seen to reduce to the formulas (20) in the special case of flexural rigidity being absent.

Furthermore, it follows that the effective Young's modulus and Poisson's ratio are
,.., ,4.'

R R
1+- 1--

...eft R eff R
- 3R_ v = _ (37)

R R
3+- 3+-

R R
N

Again, let us note that these reduce to (21) in the case of fibers carrying axial forces only (R - 0).

Regarding the Poisson's ratio, we observe that the introduction of beam-type effects (i.e., as R/R
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increases) has a tendency to reduce it. Furthermore, noting (32), the effective Young's modulus

(normalized by E ® and ta) and Poisson's ratio may be expressed in terms of the fiber aspect ratio

Eeff 1 + 1-
___ _ v_SS s

taE(D-2_ TM = ()
w 2 (38)

s 3+ - 3+ s

or, given (4), in terms of the porosity

1 dl Pf)2 Pf)
Eeff (ps) 1+3 1- -...... _ veff _ 3- 1 - J1- 2

taE(f) 2 1 J1 _ _ (39)3+_ 1 9+ 1 ,/1

Formulas (39) have been investigated numerically in Figs. 2a) and c). First, we observe that

the beam model leads to a gradual increase of Eeff as compared to the previous model. This may

easily be explained by noting that more energy may be stored in fibers which carry shear and bend-

ing forces than in the fibers which carry axial forces only. This effect is accompanied by the Pois-

son's ratio falling off nonlineafiy from 1/3 with Pr increasing. It is gratifying to recall the same

result established in [11]: Poisson's ratio tends to decrease with the bonding of the sheet. Summa-

rizing, the beam effects have a rather small influence on the effective isotropic elasticity.

A PERFORATED PLATE MODEL

As Pf goes beyond 50%, the aspect ratio w/s increases, and one can no longer consider the

connections between the lattice nodes to be beams. Given the highly anisotropic nature of fibers

and a complex composite structure of fiber systems, a basic question arises' can any simple explicit

model be derived for this low porosity range? Probably not, and this problem is reflected in, for

example, a recent paper series [12, 13, 14], which had to culminate in a numerical solution of a

somewhat hypothetical equivalent unit cell. Another avenue is offered by brute force solutions of

complex fiber systems as exemplified by [15]. Here, for the sake of completeness of our analysis,

we consider the limiting case of a beam model - namely, a perforated plate.

In the limit of Pr --->1, we have a plate with a regular distribution of triangular-shaped pores,

Fig. 2b). This is a so-called "dilute limit" of a locally isotropic material with holes (in either peri-

odic or disordered arrangements), that has already been solved in [16, 17]. The respective formulas

are
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taE(f) = 1-o_(t-Pf) v eff- v ® -o_ vCt)-Vo (I-P r) (40)

The coefficients o_ - 4.2019 and v o - 0.2312 have been computed in the above references, and, in

fact, analogous coefficients are also available there for plates with other than triangular holes. It is

noteworthy that:

i) both formulas are uncoupled from one another;

ii) the formula (40) 1 gives a correctly expected behavior in Fig. 2a) for very high values of Pr, in

place of the beam lattice model;

iii) the formula for v _f7depends on the Poisson's ratio v (0 of the plate material, a value which

cannot be specified since the fibers are strongly anisotropic; we therefore do not plot v _ff for this

model.

One more question remains with reference to Fig. 2b)' what happens in the range of the Pr val-

ues which are too high for a beam lattice model to hold and too low for the dilute model to be truly

dilute? Or, in terms of Fig. 2a), can anything be done to smooth out the transition between the two

curves 3 and 4 at Pr around 0.8 ? Let us try here a usual device of micromechanics: an effective

medium theory. Following [16, 17], we adopt a so-called 'differential scheme' which is given by

taE(f) = J v - v -Vo +Vo (41)

While (41) 1through the curve 5 gives the desired behavior, (41)2 cannot be employed for the same

reason as listed in point iii) above. Summarizing, Eerris modeled by an upper envelope of all the

curves in Fig. 2a) - i.e., curves 3 and 5.

CONCLUSIONS

This paper presents an exploratory study of the adaptation of spring lattices to modeling elas-

ticity of paper, that was first reported in [18]. We started with the simplest, periodic geometries

that permitted an explicit derivation of effective properties based on the unit cell concept. Follow-

ing are the main observations'

i) Triangular networks with axial interactions result in the Young's modulus and Poisson's ratio

very similar to those obtained in Cox-type theories.

ii) Presence of the bending fiber action in addition to the axial one has the effect of increasing
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the Young's modulus and of decreasing the Poisson's ratio down from 1/3. Guided by [19, 20] we

expect that these effects are being countered by the spatial randomness of fibrous systems; these

two studies, set in the context of random triangular lattices carrying axial forces, established that

the geometric disorder decreases E_ff but increases v _ff.

iii) The beam lattice as well as the axial lattice models can be generalized to deal with random

geometries of fiber arrangements, shapes, sizes, and physical properties. Indeed, this appears to be

the current trend in studies of elasticity, strength, and transport phenomena in paper. However, no

close-form formulas can then be derived, and this is where the periodic models may serve as a guid-

ance, while various types of micro structural disorder can be investigated quantitatively.

iv) In the case of high fiber density (from 50 to 100%), the beam lattice model may be replaced

by a perforated plate model, which gives the theoretically correct, although physically unattain-

able, limiting behavior of the Young's modulus. This model is introduced here for the sake of com-

pleteness of the study.

v) Given the orthotropic character of paper sheets, lattice models can be generalized to anisot-

ropy, both in 2D and in 3D (also modeling the multilayered paper structure).

vi) A very similar approach - lattices and perforated plates - can also be adapted to conductivity

problems in fibrous systems.
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Figure Legends

Fig. la) A triangular lattice with a hexagonal unit cell shown; b) pore structure in a triangular lat-

tice network; c) six fiber segments (f= 1, 2, ..., 6) in a single hexagonal cell, showing the num-

bering of six springs k0').

Fig. 2a) Effective Young's moduli as a function of the fiber density Pf for the Cox model (1), the

axial-fibers lattice (2), the beam-fibers lattice (3), the dilute limit of a perforated plate (4), and the

effective medium for a perforated plate (5); b) the corresponding decrease in pore dimensions -

from slender beams to small holes at Pr = 10%, 50%, and 90%; c) effective Poisson's ratios as a

function of the fiber density Pr for the Cox model (1), the axial-fibers lattice (2), and the beam-

fibers lattice (3).

Fig. 3a) A plan view of a triangular lattice of beam-type fibers; b) internal loads in a fiber; c) cur-

vature of a deformed fiber.
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