
MATHEMATICAL APPROACHES TO IDENTIFICATION PROBLEMS –
COUNTING, RNA FOLDING, AND PDE IDENTIFICATION

A Dissertation
Presented to

The Academic Faculty

By

Mengyi Tang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mathematics

Department of Mathematics

Georgia Institute of Technology

Dec 2023

© Mengyi Tang 2023



MATHEMATICAL APPROACHES TO IDENTIFICATION PROBLEMS –
COUNTING, RNA FOLDING, AND PDE IDENTIFICATION

Thesis committee:

Dr. Sung Ha Kang, Advisor
School of Mathematics
Georgia Institute of Technology

Dr. Wenjing Liao
School of Mathematics
Georgia Institute of Technology

Dr. Rachel Kuske
School of Mathematics
Georgia Institute of Technology

Dr. Luca Dieci
School of Mathematics
Georgia Institute of Technology

Dr. Haomin Zhou
School of Mathematics
Georgia Institute of Technology

Date approved: Nov 7, 2023



In my mathematical odyssey, beauty flourishes within the ceaseless joy of exploration.



For my parents and Miles



ACKNOWLEDGMENTS

First and foremost, I would like to express thanks to my esteemed research advisor, Dr.

Sung Ha Kang. Her guidance and support have helped me reach where I am today. Dr.

Kang has had a significant impact on how I approach research and my attitude towards it.

Her mentorship has not only contributed to my academic growth but has also taught me

how to think and do research more independently. She has also shown care and support in

my personal life. I’ve learned valuable lessons from her that I will carry with me throughout

my entire life.

In addition, I wish to express my gratitude to Dr. Liao and, in particular, to Dr. Kuske,

Dr. Liu, my dedicated advisor, for their instrumental roles in our work within the differen-

tial equation identification project. Our countless discussions and the substantial time we

invested in this project have had a significant impact on my research. I would also like to

extend my heartfelt thanks to Dr. Yashtini, with whom I collaborated closely on the Count-

ing Project. Her expertise and collaborative spirit were invaluable in the achievement of

our collective goals.

Special recognition is also extended to my parents, whose unwavering support has been

a constant presence in my life. Additionally, I am deeply grateful to my husband, Milosz

Rajchel, for his exceptional support and encouragement. Miles has provided me with the

strongest mental support, allowing me to grow both personally and academically. His belief

in my abilities and his encouragement to pursue my passions have been instrumental in my

success. Lastly, I wish to acknowledge all my cherished friends who have been my steadfast

companions throughout this academic journey.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: StemP - Predicting RNA Secondary Structure . . . . . . . . . . . . . 6

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 StemP Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 StemP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Short RNA sequences . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 tRNA sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 5s rRNA sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 StemP comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Further considerations of StemP . . . . . . . . . . . . . . . . . . . . . . . 42

vi



Chapter 3: Counting Objects by Diffused Index - Identifying the Quantity of
Objects in Digital Images . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Ingredients: seed, mask, and edge images [Step 1] . . . . . . . . . . 51

3.2.2 Diffusion Phase [Step 2] . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Clustering and Counting [Step 3] . . . . . . . . . . . . . . . . . . . 57

3.3 Properties of the proposed methods . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Open boundary and counting accuracy . . . . . . . . . . . . . . . . 60

3.3.2 Further grouping counts of similar sized objects . . . . . . . . . . . 60

3.4 Numerical Experiments and Comparisons . . . . . . . . . . . . . . . . . . 64

Chapter 4: WeakIdent - Identifying Differential Equations Part I ( Physical Do-
main) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Modeling dynamics and Weak Formulation . . . . . . . . . . . . . . . . . 86

4.2.1 Formulating dynamics using differential equations . . . . . . . . . 86

4.2.2 The Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.3 Error Analysis of the Weak formulation . . . . . . . . . . . . . . . 90

4.3 WeakIdent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Column-wise error normalized matrix . . . . . . . . . . . . . . . . 95

4.3.2 Highly dynamic regions . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.3 Trimming the support . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



4.4 WeakIDENT results and comparions . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 WeakIdent on PDEs . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 WeakIdent on ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Additional experiments on the Effectiveness of WeakIdent . . . . . . . . . 109

4.5.1 Influence of the initial condition in WeakIdent . . . . . . . . . . . . 109

4.5.2 The choice of the trimming parameter . . . . . . . . . . . . . . . . 109

4.5.3 Effects of subsampling . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.4 Speed of WeakIdent . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 5: FourierIdent - Identifying Differential Equations Part II ( Frequency
Domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Problem set-up and Fourier features . . . . . . . . . . . . . . . . . . . . . 126

5.2.1 Error analysis for Fourier feature . . . . . . . . . . . . . . . . . . . 129

5.3 Fourier feature denoising and core regions of features . . . . . . . . . . . . 131

5.3.1 Denoising Fourier features . . . . . . . . . . . . . . . . . . . . . . 132

5.3.2 The meaningful data region Λ in the frequency domain . . . . . . . 133

5.4 Fourier features for Identifying differential equations (FourierIdent) . . . . 138

5.4.1 Subspace Pursuit (SP) and Group trimming . . . . . . . . . . . . . 139

5.4.2 Identification of coefficients from the core regions of features . . . 141

5.4.3 Solving least square with column rescaling . . . . . . . . . . . . . 143

5.5 Numerical Implementation Details . . . . . . . . . . . . . . . . . . . . . . 144

5.5.1 Domain extension for different boundary conditions . . . . . . . . . 144

5.5.2 Error-normalization on the core region of features . . . . . . . . . . 145

viii



5.5.3 Threshold computation for the core region of features . . . . . . . . 146

5.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6.1 Workflow of FourierIdent . . . . . . . . . . . . . . . . . . . . . . . 149

5.6.2 Effect of the meaningful data region . . . . . . . . . . . . . . . . . 151

5.6.3 Understanding the new energy . . . . . . . . . . . . . . . . . . . . 152

5.6.4 Increasing complexity . . . . . . . . . . . . . . . . . . . . . . . . 153

5.6.5 Increasing time for data collection . . . . . . . . . . . . . . . . . . 154

5.6.6 FourierIdent comparison results . . . . . . . . . . . . . . . . . . . 156

5.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 6: Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 162

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Appendix A: Appendix for chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 167

Appendix B: Appendix for chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 177

Appendix C: Appendix for chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 187

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

ix



LIST OF TABLES

2.1 StemP parameters for short RNA sequences (length up to 50) from Protein
Data Bank[77]. Wobble pair can be considered in addition. . . . . . . . . . 20

2.2 StemP for short RNA sequences from Protein Data Bank (length up to 50).
In the first column, superscript p indicates pseudo knots, superscript w in-
dicates we allowed wobble base pairs. Superscript L indicates using L = 2,
otherwise we set L = 3, and S indicates when SL is used. The second col-
umn shows the best MCC value among all maximal clique, the third column
shows Standard Competition Ranking (SCR) of this best MCC in the form
of SCR(m), and the forth column shows the CPU time in milliseconds (ms).
293∗ denotes SCR(m)= 293(512) for 2OZB. . . . . . . . . . . . . . . . . . 21

2.3 StemP parameters for tRNA. For Cysteine, Glutamic Acid, Glutamine,
Histidine, SL upper bound 4.7 is used. For Alanine, Asparagine, Aspar-
tic Acid, Glutamic Acid, Glutamine, Glycine, Histidine, Isoleucine, Ly-
sine, Methionine, Phenylalanine, Proline, Tryptophan, Tyrosine, SL upper
bound 5.4 is used. l̂ is the total length of the sequence. . . . . . . . . . . . 25

2.4 Comparison of tRNA prediction between StemP and [96]. The 47 se-
quences in [96] from Gutell Lab [95]. Accn denotes the Accession number
of the corresponding sequences. F top

1 is the best F1-score among predic-
tions with SCR = 1. F best

1 is the highest F1-score of among all predictions
of clique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 StemP for 53 different 5S rRNA sequences. (a) The number and the per-
centage in parenthesis for SCR≤ 1, 3, 5 or > 5. The true structure is mostly
within top 5 ranking. (b) The number of the StemP results (with SCR = 1)
of MCC ≥ 0.97, 0.95, or 0.92. (c) The number of the best StemP results
of MCC ≥ 0.97, 0.95, 0.92 and < 0.92. (d) StemP results on 53 differ-
ent Archaeal 5s rRNA sequences. Accn denotes the Accession number of
each sequences. Top represents the highest MCC score among all predic-
tions that has SCR = 1. Best represents the highest MCC score among all
predictions with clique structure. . . . . . . . . . . . . . . . . . . . . . . . 35

x



2.6 StemP parameters for 5S rRNA Archaeal. Canonical and Wobble base-
pair matching is considered, and Partial Stems are included. ∗: Helix I is
Domain α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Comparison of 5s rRNA structure prediction between StemP, RNAPre-
dict[101], SA [102], TL-PSOfold[103], RNAfold[104], SP[56], Mfold[42],
and COIN[105] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 A general bound of parameters for 5S rRNA. This table is based on the true
structure in Gutell Lab [95]. (Canonical and Wobble base-pair matching is
considered, and Partial Stems are included.) . . . . . . . . . . . . . . . . . 39

2.9 Comparison of 12 different Bacterial 5s rRNA sequences in [108] using
StemP, PMmulti[106], RNAalifold[107] and Profile-Dynalign [108]. Both
the top and the best predictions of StemP give highest MCC and PPV com-
pared to other methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Comparison of 5s rRNA sequences between StemP and [96]. The 50 se-
quences from [96]. We adopted the general bound of parameters for 5S
rRNA for Archaeal, Bacterial and Eukaryotic on sequences 1-15, 16-21
and 22-50 respectively. Overall, StemP has higher F1-score in both the top
and the best prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 StemP result on a TS0, a subset of bpRNA-1m dataset[110], used as a test
set in [109] and bpRNA-new from [109, 110]. This can be compared to
results in [109] and [4]. We consider open ended modification in (Equa-
tion (2.5)) for vertex with d > l̂/2 for all sequences. For short sequence
with length ≤ 65, we use L = 3, 2 ≤ SL ≤ 20 to find vertex. For longer
sequences, we add a stronger condition d ≤ 12 and 3 ≤ SL ≤ 6 to reduce
computation cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 A list of PDEs considered in this paper. Here L is the total number of
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with MCC = 1. (c) one (MCC = 0.89) of the 56924 (average MCC =
0.1) top predicted structures with energy 10 with 2 false positive base pairs
using L = 1 with the same SL, pseudoknot condition. (For this example,
we use circular plot to show the difference between structures better.) . . . . 43

2.15 (a) StemP gives unique top prediction, MCC =1 (with L = 3), which is
the true folding of 361D (length 20). (b) one of the 3 predictions (all with
MCC = 0) with top energy 7 via maximum base pairs (i.e. L = 1) without
pseudoknot. (d) one of 24744 predictions with top energy 8 via maximum
base pairs (L = 1) with pseudoknot. . . . . . . . . . . . . . . . . . . . . . 46

2.16 (a) The length of sequence (x-axis) vs the number of vertex (y-axis). (b)
The number of vertex (x-axis) vs the number of edges (y-axis). (c) The
length of sequence (x-axis) vs the density of edges (y-axis). The experi-
ment is done on 33 sequences from Protein Data Bank. . . . . . . . . . . . 46

3.1 Outline of two proposed counting methods (scalar or vectorial seeds). Given
image with 9 cells. [Step 1] Uniformly distributed seed (Scalar or multi-
dimensional seeds). [Step 2] Diffusion of seeds to find unique index for
each object. [Step 3] Counting stage: the number of indexes is counted
using clustering methods. Both methods give 9 objects. . . . . . . . . . . . 50

3.2 [4 dimensional seed, edge function and mask image] (a)-(d) shows an ex-
ample of multi-dimensional seed. (a) U1

0 (horizontal), (b) U2
0 (vertical), (c)

U3
0 (random) (d) U4

0 (random). (e), (g) and (i) are three given images, (f),
(h) and (j) show the corresponding edge function ḡ, a mask imageM and
a mask and edge functionM · ḡ used for each image respectively. . . . . . 52

3.3 [CODI-S and CODI-M] (a) Given image with three cells (b) The mask im-
age showing open boundaries between the objects. (c) The histogram and
Gaussian fitted curve of CODI-S. (d) The visualization of CODI-S cluster-
ing in image domain. (e) The clustering results of CODI-M, projected onto
two dimension for visualization. (f) The visualization of CODI-M cluster-
ing in image domain. Both methods counts three cells. . . . . . . . . . . . 58
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3.4 [Open boundary experiments] (a), (b) and (c) show three synthetic images
where two square objects are separated with various size of gaps. An iden-
tical seed image U1

0 is used for CODI-S and the first dimension of CODI-M.
U2
0 is used for second, and two random seed images for third and forth di-

mensions. The third and forth columns show CODI-S, and the fifth and
sixth columns CODI-M after 40 and 80 iterations respectively. When the
gaps between objects are wide and thin, it is helpful to have diffusion iter-
ation small for CODI-S and large for CODI-M. . . . . . . . . . . . . . . . 61

3.5 [Counting similar size objects] (a1) and (b1) are given images from [135],
and CODI-M found K = 74 and K = 43 cells respectively. (a) and (b) are
graphs of λ vs. the number of groups. Three λ values for Regularized k-
mean (Equation (3.6)) is picked from plateaus λ = 1×104, 5×104,1×105

for (a1) and λ = 3× 104, 5× 104, 1× 105 for (b1). Each λ shows different
grouping depending on the size of objects from S. (a3) shows grouping to
three different sizes, while (a4) shows grouping to two groups: one with
one big object and another with all others. (b3)-(b5) also show different
grouping possibilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 [Cell counting] (a1) and (b1) are two cells images in Figure 3.5 from [135].
(a5) and (b5) are results from [135]. (a6) and (b6) are results of CODI-S.
(a7) and (b7) are results of CODI-M. CODI-M experiments are performed
20 times, with the counting results between [72, 74] for (a1) where 74 cells
are found in 18 out of 20 trials. For (b1), the counting between 42 and 46
among 16 out of 20 trials. The average cpu time is 0.82 second and 0.77
second for (a1) and (b1) respectively. CODI is geometry-independent, and
able to count cells of various sizes and shapes, very efficiently. . . . . . . . 65

3.7 [VGG cell counting] Comparison results on cell images in VGG dataset.
We let 0.1 ≤ σ ≤ 1.2 and r = 2 in CODI-S, and ϵ = 0.08 and MinPts =
17 in CODI-M. We tested on 10 images (No.1, 48, 79, 84, 96, 127, 140,
155, 175, 196), and performed CODI-M 15 times and CODI-S once. Their
corresponding mean and standard deviation of MAE are presented in the
table. We observe that CODI is comparable to the existing methods without
any training process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 [Counting human marrow MBM dataset] (a) a cell image from MBM-Cell
dataset [153]. CODI-S and CODI-M are tested on 10 images (No.4, 10, 14,
23, 26, 28, 29, 31, 32, 44). . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 [Counting non isometric cells - ADI dataset] (a) a cell image from ADI-Cell
dataset [153]. CODI-S and CODI-M are tested on 32 images. Experiments
are performed for 15 times for CODI-M. . . . . . . . . . . . . . . . . . . . 69
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3.10 [Hela cell counting] Comparison results on 11 Hela images. We let 0.1 ≤
σ ≤ 2.7 and 1 ≤ r ≤ 10 in CODI-S, and ϵ = 1.5 and MinPts = 20 in
CODI-M. CODI is comparable to the existing methods without any training
process. CODI-M experiments are performed 5 times, and the mean and
standard deviation of MAE are presented in the table. The results from
FCRN, Log, ITCN, IRV , CNN-SR, and NERS are adopted from [159]. . . 70

3.11 [Hela cell counting] Hela cell images from [164]. CODI-S and CODI-M
give comparable counting results to [127] and [169]. In the parenthesis,
we show the CPU times for each computation. CODI-M experiments are
performed 5 times, and the best results are presented here, while all com-
parisons are given in Table Figure 3.10. . . . . . . . . . . . . . . . . . . . 71

3.12 [Counting seamless leaf patterns ] (a) Given image of where manual count-
ing is given between 70 and 72. (b) The edge function g̃. (c) CODI-S
counts 72 leafs. For 20 CODI-M experiments, the counts varies between
[68,70] and 13 out of 20 trials results in count 70. The subtle uncertainty
comes from the small objects in the original image. The average cpu time
is 2.81 second. Figure (d) shows one representative result of CODI-M. . . . 72

3.13 [Arabidopsis plant leaf counting] (a) Given image of Arabidopsis plant
[171]. (b) The ground truth image in [171] showing 10 leafs. (c) The den-
sity map estimation [129], showing 8 leafs. (d) CODI-S counts 9 leafs. (e)
CODI-M counts 10 leafs. Experiments are performed 20 times on CODI-
M, where 10 out of 20 trials results in count between 9 and 11. The subtle
uncertainty comes from the delicate boundaries between the leaves in the
original image. The average cpu time is 0.07 second. Figure (e) shows the
best results among 20 CODI-M experiments. . . . . . . . . . . . . . . . . 73

3.14 [Counting fruits] (a) An apple tree (b) A bunch of cherries. (c) an apple
tree image from Five-Tropical-Fruits dataset [172]. (d) a tomato image
from [173] Both CODI-S and CODI-M find a number within the accepted
range. Experiments are performed 20 times on CODI-M. For (a), the results
varies in [208, 226], where 14 out of 20 trials generate results in [217, 226].
For (b) the result varies between [25,40] where 14 out of 20 experiments
results in [27,33]. This result is consistent with the large quantity of apples
in (a) and the unclear boundaries between cherries in (b). The average cpu
time is 4.85 and 0.07 for each image respectively. For (c), the result from
CODI-M varies between [8,10] where 7 out of 20 experiments results in 9
or 10. For (d), the result from CODI-M caries between [16,22] where 9 out
of 20 experiments result in [18,20]. . . . . . . . . . . . . . . . . . . . . . . 74
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3.15 [Counting objects in the production lines] (a) A cart of eggs. (b) A case
of soda bottles. The second column shows results by CODI-S, the third
column by CODI-M, and the forth column by [126]. Experiments are per-
formed 20 times on CODI-M. For (a), the results varies in [29, 31], where
18 out of 20 trials generate 30 as counting result. For (b) the result varies in
[18, 23] where 18 out of 20 experiments generate results between [18, 20].
CODI gives comparable results to [126] without exploiting any geometrical
information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.16 (a) Concert crowd image (b) GPS image from DOTA dataset [179, 180]. (c)
Penguin image from [181]. An estimated number of people and vehicles
are obtained by manual counting. Experiments are performed 20 times on
CODI-M. For (a), the results varies in [283, 315], where 13 out of 20 trials
generate result in [285,302]. For (b) the result varies in [93,96] where 14
out of 20 experiments generate results between [93,95]. The subtle unstable
of the result for (a) is due to the large quantity of people in the original
image. † The ground truth of 94 is provided in the dataset. For (c) the result
varies within the range [14,17], and more than 50% of experiments gives
16 or 17 counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.17 [Seed sparsity/distance] (a) The given image. (b) and (c) are two different
seed images. If there are objects without any seeds inside, CODI misses
counting these objects as expected as in (b1) and (b2). With multiple seeds
within all objects, both methods count correctly as in (c1) and (c2). This il-
lustrates the importance of having the distance between seeds to be smaller
than the minimum distance between objects. . . . . . . . . . . . . . . . . . 77

3.18 [Seed size v.s. Convergence] From one given image, two different sizes
of seeds are used while keeping the distance between the seeds to be the
same (smaller than the minimum distance between the objects). For smaller
seeds in third and forth row, CODI gives good counting results with Rn =
0.05 − 0.09. For bigger seeds Rn = 0.01 is needed, since changing given
seed values to become a diffused index for each object takes. . . . . . . . . 79

3.19 [Downsample and cpu time] (a) The given image of 1000×1097 with man-
ual counting in the range of [203, 213] which is shown as the highlighted
region in (c). (b) a visualization of seven different downsampled image,
ranging from 76% to 88%. (c) The blue circles represents CODI-S, the red
circles the cpu time. The blue error bars denotes the mean and standard
deviation of 50 experiments of CODI-M, and the red error bars those of
cpu times. Notice while the counting results are near the correct range, cpu
time clearly reduces with downsampling. . . . . . . . . . . . . . . . . . . 80
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3.20 [CODI-S parameter space] Visualization of countingresult in the parameter
space (r, σ) ∈ [2, 15]× [0.01, 3]∪ [1.6, 3] based on different diffusion stage.
(a)-(e) shows when Rn = 50%, 40%, 30%, 20%, 10%. The ground truth of
counting result is 30, where the more yellow the color is more accurate the
result. This result is consistent with Figure 3.4 where smaller number of
iteration is favorable for CODI-S. . . . . . . . . . . . . . . . . . . . . . . 81

3.21 [CODI-M parameter space] Visualization of counting result in the param-
eter space (MinPts, ϵ) ∈ [2, 25] × [0.5, 1.8] based on different diffusion
stage. The ground truth in this example is 30, i.e., the green area repre-
sents good result. (a)-(c) shows when Rn to be 15%, 10%, and 5%. The
red marks denotes the parameters we recommend for similar cases. With
enough iterations, the counting result of CODI-M is not affected by a small
perturbation of the parameters. . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 WeakIdent flowchart: Input weak formulation W and b in (Equation 4.8)
subsampled as (Equation 4.11). [Step 1] SP for a given sparsity k gives the
first candidate of coefficient support Ak

0. [Step 2] Narrow-fit and [Step 3]
Trimming improves the coefficient values c(k, j) and support Ak

j . Steps
2 and 3 are iterated at most k − 1 times. Finally, in [Step 4] the result
c(k∗, Jk∗) with the minimum Cross Validation among all different sparsity
level k give the identification of the differential equation. . . . . . . . . . . 94

4.2 Error normalization: (a) The given noisy data Û with σNSR = 0.5 in x − t
plane. (b) The entry-wise magnitude of the matrix W . (c) The matrix
W̃narrow in (Equation 4.23). We use log 10 scale in (b) and (c). The dif-
ference in scale has been reduced approximately from 1029 in the unnor-
malized matrix (b) to 106 after normalization in (c). Our error normaliza-
tion results in more uniform entry values with less variance across different
columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Highly dynamic regions for an experiment using the KdV equation (Equation 4.33)
with σNSR = 0.5. (a) The given noisy data Û with σNSR = 0.5 in x−t plane.
(b) The separation point Γ(black) for H (Equation 4.24) is found, from the
accumulated function B(j) (blue) and the fitted piecewise linear function
r(j) with one junction at Γ (red). (c) The location of highly dynamic re-
gions in the x− t plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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4.4 Trimming is demonstrated in an experiment using the KS equation (Equation 4.34).
For each sparsity level k in x-axis, the bar shows the cross validation (item 4.30)
of the recovered coefficient c(k∗, Jk∗). Notice for most sparsity levels 5
and above the correct support is found. After SP finds k supports, the trim-
ming step reduces the support until only the correct ones are left. Here
σNSR is the noise-to-signal ratio (Equation 4.44), TPR is true positive rate
(Equation 4.47) and PPV is positive prediction value (Equation 4.48). . . . 101

4.5 Transport equation with diffusion (Equation 4.32): clean data case in (a),
(b) and (c), and noisy data with σNSR = 100% in (d), (e) and (f). WeakIdent
is compared with WPDE [36], RGG [38], IDENT[29], SC[30], and ST[30].
The error measures are in Table (b) and (e) and the recovered equations are
in (c) and (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Transport equation (Equation 4.32), statistical comparison between WeakI-
dent (the top row) and WPDE [36] (the second row). The errors E2, E∞,
TPR and PPV are shown from 50 experiments for each σNSR ∈ {0.01, 0.1, 0.2, , ..., 0.9}
using box-plots. The E2 and E∞ errors by WeakIent are lower than the er-
rors of WPDE, with less variations. The TPR and PPV by WeakIdent are
closer to 1 with less variations as well. . . . . . . . . . . . . . . . . . . . . 116

4.7 Anisotropic Porous Medium (PM) equation (Equation 4.36) on a 2-D spa-
tial domain with cross derivative feature. We set σNSR = 0.08, which is
equivalent to σNR = 0.4139 in WPDE [36]. (a) Given noisy data Û(x, 0)
and (b) Û(x, T ). (c) Identified equations with the E2 error. . . . . . . . . . 117

4.8 Reaction-diffusion equation (Equation 4.37) on a 2D spatial domain with
σNSR = 0.08 (equivalent to σNR = 0.08 defined in [36]). (a) Given noisy
data Û(x, 0) and (b) Û(x, T ). (c) The identified equations and the E2 er-
rors. WeakIdent finds the correct terms with a small coefficient error. . . . . 118

4.9 The Identification results from WeakIdent for the reaction diffusion equa-
tion (Equation 4.37): The E2, E∞ errors , TPR and PPV are shown from
50 experiments for each σNSR ∈ {0.01, 0.02, , ..., 0.1} using box-plots. . . . 118
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4.10 The identified PDEs in Table 4.1 for different noise levels. We compare
WeakIdent (Red) and WPDE (Blue). The x-axis is σNSR, while the y-axis
is the average E2 error, TPR and PPV over 50 experiments. The relative
noise ratio σ̃ = σNSR/σNR compares our noise level σNSR vs. σNR in
[36]. We present results for the transport equation (Equation 4.32), the KdV
equation (Equation 4.33), the KS equation (Equation 4.34), the NLS equa-
tion (Equation 4.35), the PM equation (Equation 4.36), and the reaction-
diffusion (2D) equation (Equation 4.37). The noise-to-signal ratio σNSR

ranges in {0, 0.1, 0.2, ..., 0.9}, {0.01, 0.02, 0.04, ..., 0.24}, {0, 0.1, 0.2, ..., 0.9},
{0.01, 0.1, 0.2, ..., 0.5}, {0.01, 0.03, 0.05, ..., 0.15}, and {0.01, 0.02, ..., 0.1}
for each equation respectively. . . . . . . . . . . . . . . . . . . . . . . . . 119

4.11 WeakIdent results for ODE systems in Table 4.2. (a)-(e): Given noisy data
compared to the true dynamics. (f)-(j): Recovered systems via WeakIdent
using true initial conditions. WeakIdent recovers the dynamics close to the
true dynamics with a small identification error. . . . . . . . . . . . . . . . 120

4.12 The Lotka-Volterra equation (Equation 4.42). Statistical comparisons be-
tween (a1)-(a4) WeakIdent, (b1)-(b4) WODE [37], (c1)-(c4) SINDy[198],
(d1)-(d4) SC[30] and (e1)-(e4) ST[30]. The E2, Eres errors, TPR and PPV
are shown from 50 experiments for each σNSR ∈ {0.01, 0.02, , ..., 0.1} us-
ing box-plots. Notice that for WeakIdent, the E2 error is lower with less
variations, and the TPR and PPV are closer to 1 as compared with that
obtained from other methods. . . . . . . . . . . . . . . . . . . . . . . . . 121

4.13 The KS equation (Equation 4.34) using five different initial conditions (1)-
(5) with the noisy level of σNSR = 0.6. In (a)-(f) the x-axis is the index of
initial conditions (1)-(5). For each initial condition, the box plot represents
the statistical results over 50 experiments. WeakIdent gives a smaller E2

error, and PPV is closer to 1 with less variations. . . . . . . . . . . . . . . 122

4.14 The coefficient E2 error (y-axis) versus the trimming parameter T (x-axis)
for the identification of (a) the KdV equation (Equation 4.33) and (b) the
KS equation (Equation 4.34). Different color curves represent results for
various noise-to-signal ratios σNSR ∈ {0, 0.1, ..., 1}. Notice a wide range
of T gives the same recovery. . . . . . . . . . . . . . . . . . . . . . . . . 122
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4.15 Effects of the final time T (the top row), ∆t,∆x for NxNt of the given
data (the second row), and subsampling ∆t∗,∆x∗ in (Equation 4.11) in
the third row. Each graph shows the average of the E2 error, the TPR
and PPV values over 20 experiments for one varying variable among the
variables in {T,∆x,∆t,∆x∗,∆t∗} while the rest is fixed. The noise level
is σNSR = 0.1. The left column gives the PDE results for the KS equa-
tion while both ∆t,∆x are shown. The right columns show ∆t only for
ODEs, including the 2D Linear system (Equation 4.39), the Duffing equa-
tion (Equation 4.41) and the Lotka-Volterra equation(Equation 4.42). There
is a transition point in T such that the given data up to T contain enough
dynamics. The recovery is in general better with smaller ∆t and ∆x, and
the rate of uniform subsampling has a minimal effect on the results. . . . . 123

5.1 Decay fit in the frequency and physical domains. (a) Blue dots are the given
data, orange and green dotted lines are the fitting lines to find the transition
frequency mode a∗x (Equation 5.17) in log-log scale. (b) the same plot in
physical domain and original unit. Red curves in both graphs show the
fitting loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 The flowchart of FourierIdent. A discrete Fourier system (Equation 5.6)
is constructed from the given data. In [Step 1], Fourier features are de-
noised and a smaller system (Equation 5.19) is constructed. In [Step 2],
we apply Subspace Pursuit to obtain initial supports for each sparsity level
k = 1, 2, ..., K and new group trimming is applied. In [Step 3], the best co-
efficient is computed from the energy (Equation 5.27) based on core region.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 The KdV equation (Equation 5.41) with σNSR = 0.3 as an example. (a)
The frequency domain and Λ (the red box). (b) Zoom of Λ and the fre-
quency response R(|F(uxxx)|). (c) The white region represents the core
region of uxxx further reduced from Λ. There is a big reduction in the size
of the region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Effect of the meaningful data region Λ, illustrated by the KdV equation
(Equation 5.41) with σNSR = 0.3. The x-axis provides a list of features and
the y-axis represents the scale of features in terms of the ℓ2-norm of the
feature column. We compare F with FΛ, S(F ) with S(F )Λ, and Fourier
features with the Weak-form features in W in WeakIdent [3]. A restriction
to the meaningful data region Λ helps to reduce the range of Fourier features
and make the shape of the scale similar to that in the weak form. . . . . . . 152
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5.5 Benefits of using the energy in (Equation 5.27) to find the optimal k∗. (a)
and (b) are both for KS equation with σNSR = 0.8. The x-axis represents
the initial sparsity level. The dots represent the cases when the trimmed
support is the correct one. In (a), the y-axis represents the values of Cross-
Validation error and the energy in (Equation 5.27). When the given data
are noisy, as in (a), the results with sparsity levels 10, 13, 14, 15 give rise
to small cross-validation errors but large energy defined in (Equation 5.27).
In (b), the green curve shows the fitting residual in (Equation 5.25), and the
purple curve shows the stability term in (Equation 5.26). The new energy
as the sum of the fitting residual and the stability term is represented by the
yellow curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Influence of increasing complexity. (a) - (e) Clean data of the KdV equa-
tion (Equation 5.41) for the initial condition (Equation 5.43) with R = 1,
20, 30, 40, and 50. From (a) to (e), the patterns become more complex. (f) -
(i) show comparison results between FourierIdeant and WeakIdent for dif-
ferent noise levels such that σNSR ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}.
Each dot represents the e2 identification error in each experiment. When
10 < R < 40, FourierIdent gives rise to more accurate recovery results. . . 155

5.7 Influence of increasing time in data collection. (a) - (b): The given data
of the KS equation (Equation 5.42) (a) for 0 < t < 500, and (b) for
0 < t < 5, 000. (c)-(e): the x-axis represents the final time tend for data
collection, and the y-axis shows the e2 error of the identified coefficient, for
FourierIdent (blue) and WeakIdent (yellow). In (c), for low levels of noise
σNSR = 0.01, both FourierIdent (blue) and WeakIdent (yellow) give small
e2 errors. In (d) and (e), when σNSR = 0.5 and 1, as tend gets bigger, both
FourierIdent and WeakIdent yield smaller errors, while FourierIdent gives
rise to a smaller error than WeakIdent. . . . . . . . . . . . . . . . . . . . . 157

5.8 Heat equation (Equation 5.38). (a) e2 error, (b) eres, (c) TPR, and (d) PPV.
For each noise level σNSR, we generate noise using 20 random seeds, and
show a box plot for FourierIdent, WeakIdent, and WSINDy. . . . . . . . . 159

5.9 Transport equation (Equation 5.39) (a) e2 error, (b) eres, (c) TPR, and (d)
PPV. For each noise level σNSR, we generate noise using 20 random seeds,
and show a box plot for FourierIdent, WeakIdent, and WSINDy. . . . . . . 159

5.10 The Burgers’ equation (Equation 5.40) (a) e2 error, (b) eres, (c) TPR, and
(d) PPV. For each noise level σNSR, we generate noise using 20 random
seeds, and show a box plot for FourierIdent, WeakIdent, and WSINDy. . . . 160

5.11 The KdV equation (Equation 5.41). (a) e2 error, (b) eres, (c) TPR, and (d)
PPV. For each noise level σNSR, we generate noise using 20 random seeds,
and show a box plot for FourierIdent, WeakIdent, and WSINDy. . . . . . . 160
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5.12 Comparison results on the KS equation (Equation 5.42) using multiple iden-
tification errors e2 in (a), eres in (b), TPR in (c), and PPV in (d). For each
noise level σNSR, we generate noise using 20 random seeds and show a box
plot for FourierIdent, WeakIdent, and WSINDy. . . . . . . . . . . . . . . . 161

A.1 StemP Results of SPA on 6 5s rRNA sequences. (a)-(f) show the best pre-
dicted folding structures by StemP on sequences with Accession Number
X67579, AF034620, X01590, AJ251080, V00336 and AE002087. Notice
that there is no False Positive pairs found by StemP. The green dash line
indicates the False Negative pairs. . . . . . . . . . . . . . . . . . . . . . . 168

B.1 KS equation (Equation 4.34) with σNSR = 0.5. (a) Given noisy data Û(x, t).
(b) The identified equations using WeakIdent, WPDE[36] and RGG [38]
where the E2 error is given in the right column. . . . . . . . . . . . . . . . 179

B.2 Nonlinear Schrodinger equation (Equation 4.35) with two variables. The
given noisy data Û(x, t) and V̂ (x, t) are shown in (a) and (b) respectively.
Table (c) and (d) show the identified equations using WeakIdent, WPDE
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SUMMARY

Mathematical algorithms have become an essential tool in uncovering hidden patterns

and unraveling dynamic behaviors within complex datasets, aiding in gaining deeper in-

sights and making informed choices in an era driven by data-driven decision-making. In

this thesis, we present several works that utilize numerical algorithms in identification

problems derived from mathematical models. These works place a specific emphasis on

the identification and prediction of structures and patterns within various type of datasets,

while also offering the capacity to forecast the behavior of future data. Chapter 2 illus-

trates our work in predicting the secondary structure of RNA sequences, where a novel

idea of using Stem and the Clique structure is introduced to form a Stem-graph to represent

the secondary structure of an RNA sequence. In Chapter 3, we propose a new method,

Counting Objects by Diffused Index (CODI), which is an application of diffusion algo-

rithm to count objects in digital images. An efficient algorithm is proposed based on an

operator-splitting approach and the alternating direction minimization method. Chapter 4

and Chapter 5 focus on identifying differential equations in the physical domain and fre-

quency domain, respectively. Both methods use Subspace Pursuit and weak formulation of

features to stabilize the output support and handle noises. Chapter 4 proposes a general and

robust framework to identify differential equations using a weak formulation with two new

mechanisms, narrow-fit and trimming, for both ordinary and partial differential equations

(ODEs and PDEs) in the physical domain. Chapter 5 explores the benefits and challenges

of utilizing the frequency domain in differential equation identification. In this work, we

introduce Fourier feature denoising and define the meaningful data region and the core

regions of features to eliminate noise from the frequency domain. Additionally, We intro-

duce a group trimming step to refine the support of new energy based on the core regions of

features for coefficient identification. Comprehensive experiments are presented for both

methods to demonstrate the benefits. Chapter 6 provides conclusions and discussion upon
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all the works presented and potential future directions.

This thesis includes published work from three sources: [1] in chapter 2, [2] in chap-

ter 3, and [3] in chapter 4.
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CHAPTER 1

INTRODUCTION

Mathematical algorithms have gained increasing importance and are used in widespread

applications across various domains. These algorithms integrate diverse aspects of math-

ematics, such as discrete mathematics, geometry, and differential equations, enabling en-

hanced data comprehension and the potential to forecast future or unseen data patterns. In

this thesis, we focus on mathematical algorithms in identification problems.

First, we explore a problem related to RNA structure. RNA contributes to cellular

life with its profound significance in human biology. Predicting RNA’s cellular functions

can be useful in understanding the interaction dynamics among nucleotide bases linked

by phosphate groups and polysaccharide molecules. Here, each RNA sequence comprises

nucleotide bases denoted by the characters A, U, C, and G, which can be meticulously

folded into distinct structural components. These structural components are instrumen-

tal in various biological activities. A lot of methods have been proposed to predict the

secondary structure of the sequences. This includes dynamic programming algorithm [4]

with Minimum Free Energy (MFE), Maximum Expected Accuracy (MEA), combination

of MFE and MEA [5] , single-sequence analysis, multiple-sequence analysis, and deep

learning. In chapter 2, we define the concept of stem as a fundamental structural unit in

RNA, defined by consecutive base pairs, and explore its significance and its relationship

with other characteristics within the secondary folding structure of RNA. We further devel-

oped a novel deterministic methodology called StemP to predict the secondary structure of

RNA sequences. This method works by treating stems as vertices in a graph and predicts

a stem-based graph that connects these vertices based on their coexistence. The idea of

using graph building blocks gives StemP the beauty of being simple and deterministic. To

enhance the accuracy and stability of structure predictions, we further propose the utiliza-
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tion of two key stem characteristics, the minimum stem length, and the Stem-Loop score,

especially for short RNA and tRNA sequences. The main idea behind StemP is to consider

all possible stems with certain stem-loop energy and strength to predict RNA secondary

structure. A full Stem-graph presents all possible folding structures, from which we pick

sub-graph(s) that yield the best energy match for structure prediction. Stem-Loop score

adds structure information and speeds up the computation. In addition, we propose us-

ing Generalized-Stem-Loop score, which represents the total strength of basepair matching

over the total length of the sequence enclosed several stems, to capture the complex folding

structures in the longer sequences. The proposed method can predict secondary structure

even with pseudo knots. We also provide numerical experiments on various sequences from

Protein Data Bank and the Gutell Lab using a laptop, and results take only a few seconds.

Another interesting problem is about cells counting. As a fundamental building block

of life, cells play an important role in various biological processes. Automating the process

of quantifying the cells can aid biologists in tracking the growth and activities of specific bi-

ological behaviors. There are traditional methods, such as watershed [6] and Hough Trans-

form [7], that work well for objects with uniform characteristics, clear shapes, and distinct

background colors. This counting task can also be categorized into detection-oriented tech-

niques and deep learning-based methods. For example, integrating representative methods

[8] and Principal Component Analysis combined with histogram processing [9] are two

types of detection-oriented methods. Deep learning can be used to create density maps

from image patches, extracting features like texture and gradients for counting [10, 11,

12, 13, 14]. Most of the above works aim to identify the objects in a given image, which

leads to certain additional work and limitations due to the texture of objects. In contrast,

we aim to automate the process of quantifying objects, emphasizing the total number is

our goal in chapter 3. We propose a novel diffusion-based, geometry-independent, and

training-free method to count the number of objects in images, inspired by color inpaint-

ing problems. This method can be applied to various types of images, while most of the
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existing methods, including learning-based methods, are problem-specific. The main idea

is to represent each object by a unique index value regardless of its intensity or size and

to simply count the number of index values. First, we place different vectors, referred to

as seed vectors, uniformly throughout the mask image. Secondly, the seeds are diffused

using an edge-weighted harmonic variational optimization model within each object. We

propose an efficient algorithm based on an operator splitting approach and alternating di-

rection minimization method. For computational efficiency, we stop the diffusion process

before a full convergence and propose to cluster these diffused index values. We refer to

this approach as Counting Objects by Diffused Index (CODI). We use Gaussian fitting in

histograms, and a high-dimensional clustering method for the final step of counting via

clustering. We present counting results in various applications such as biological cells,

agriculture, concert crowds, and transportation. Some comparisons with existing methods

are also presented in this chapter.

We also explore a different aspect of imaging in relation to the dynamic generated

from differential equations. Consider taking a video, where images are captured at specific

intervals, creating a series of signals. Within this series of signals, objects or patterns

vary with respect to time. The changes in each pixel, akin to a single signal in the one-

dimensional case, can be modeled by a mathematical differential equation and identified.

There has been an increasing interest in discovering physical or biological dynamics from

complex data. The discovery of differential equations can offer important insights into

contemporary neuroscience [15], fluid mechanics, physical systems[16, 17], and biology

[18]. Different methods in the area of identifying differential equations include symbolic

regression [16, 17], optimization approach in [19, 20, 21], sparse regression [22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Recent progress [35, 38, 36, 37]

has shown the benefit of using a weak/integral formulation in addressing noise in sparse

coefficient identification. The weak form of features involves using integral features instead

of differential features to enforce denoising effects with a proper test function. In Chapter
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4, we propose a new work, WeakIdent, to identify the differential equations governing

specific behaviors given time-dependent sequences. This chapter is focused on the problem

of identifying differential equations in the physical domain, especially when the given data

are corrupted by noise. We model the identification problem as solving a linear system,

with the feature matrix consisting of linear and nonlinear terms multiplied by a coefficient

vector. This product is equal to the time derivative term and thus generates dynamical

behaviors. Then, the goal is to identify the correct terms that form the equation to capture

the dynamics of the given data. We propose a general and robust framework to recover

differential equations using a weak formulation for both ordinary and partial differential

equations(ODEs and PDEs). The weak formulation facilitates an efficient and robust way

to handle noise, and two new mechanisms, narrow-fit and trimming, improve the coefficient

support and value recoveries, respectively. For each sparsity level, Subspace Pursuit is

utilized to find an initial set of support from the large dictionary. Then, we focus on highly

dynamic regions (rows of the feature matrix) and error normalize the feature matrix in

the narrow-fit step. The support is further updated by trimming the terms that contribute

the least. Finally, the support set of features with the smallest Cross-Validation error is

chosen as the result. A comprehensive set of numerical experiments are also presented for

both systems of ODEs and PDEs with various noise levels. The proposed method gives a

robust recovery of the coefficients and a significant denoising effect, which can handle up

to 100% noise-to-signal ratio for some equations. We also compare the proposed method

with several state-of-the-art algorithms for the recovery of differential equations.

In Chapter 5, we delve deeper into identifying differential equations by presenting

FourierIdent, a method designed to identify a partial differential equation within the fre-

quency domain. We illustrate how we address these more challenging tasks as it ex-

pands our investigation from studying physical characteristics (in WeakIdent) to analyz-

ing frequency-based features. We investigate the benefits and challenges of utilizing the

frequency domain in differential equation identification. Similar to WeakIdent, assuming
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that a single noisy realization of space and time-dependent data is given, we consider the

underlying differential equation to be a linear combination of various linear and nonlinear

differential and polynomial terms. Identifying differential equations in the frequency do-

main is more challenging due to large magnitudes and sensitivity against noise. To address

these challenges, we introduce a Fourier feature denoising technique and define the mean-

ingful data region and the core regions of features to eliminate noise from the frequency

domain. We use Subspace Pursuit on the core region of the time derivative of the given

data and introduce a group trimming step to refine the support. We further introduce a new

energy based on the core regions of features for coefficient identification. Utilizing the

core regions of features serves two critical purposes. It enhances the accuracy of identified

coefficients by eliminating low-frequency noise response regions and facilitates the iden-

tification of stable coefficients, which minimizes the residual error. The proposed method

is tested on various differential equations with linear, nonlinear, and high-order derivative

feature terms. Our results demonstrate the distinct advantages of the proposed method,

particularly on complex and highly corrupted datasets.

In summary, this thesis offers novel mathematical insights and algorithms for modeling

identification problems with broad applicability in physics, imaging, and biology. These

contributions advance our understanding and problem-solving capabilities across a spec-

trum of scientific disciplines, bringing new possibilities for innovation and discovery.
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CHAPTER 2

STEMP - PREDICTING RNA SECONDARY STRUCTURE

This chapter reproduces our previously published paper [1]. The author of this thesis per-

sonally contributed to Data curation, Investigation, Methodology, Software, Visualization,

and Writing – original draft.

We propose Stem-graph based structure Prediction (StemP). The benefit of the proposed

method is to explicitly study the main contributions of folding process, such as minimum

stem length, Stem-Loop score and co-existence of stems. We first build the graph which

represents all possible folding structure of the sequence, which we refer to as the full Stem-

graph. Then, we extract a sub-graph or multiple sub-graphs which has the best matching

energy for folding structure prediction. We introduce the Stem-Loop score to give structure

information in vertices construction, and to make algorithm computationally more efficient.

The main contributions of this chapter is to propose a simple, flexible, efficient and

deterministic method for folding structure prediction.

• This method can handle pseudo-knots and 3D structure naturally without any other

modification.

• The proposed method is computationally efficient that for sequences of length smaller

than 200, results can be computed within one second.

• The proposed method is flexible, and applicable to predict structures of short RNA

sequences, tRNA sequences, and rRNA 5S sequences.

This chapter is organized as follows. In Section 2.2, we give a general outline and

details of Stem-graph approach, including how to construct the vertices and edges utilizing

Stem-Loop score. In Section 2.4.1, Section 2.4.2 and Section 2.4.3, we present details and

6



comparison results for RNA sequences from Protein Data Bank (PDB), tRNA sequences,

and 5S rRNA sequences respectively.

2.1 Literature Review

There have been a wide range of literature on prediction of the secondary structure of a

RNA sequence. Minimizing Free Energy (MFE) [39] is applicable for large molecules in

terms of efficiency and is widely extended. For an efficient computation, dynamic pro-

gramming is suggested in [40], which conquers numerous possible folding structures by

dividing them into smaller sub-problems. A practical dynamic algorithm can be found in

[41]. Mfold [42] is a well-known method dynamic programming method using thermo-

dynamic parameters. A standard dynamic programming algorithm can suffer from time

complexity O(N3) (N represents the length of a RNA sequence) [43] and accuracy. The

time complexity of dynamic programming was improved in a Four-Russians method [44]

exploiting the number of sub-sequences belonging to an optimal folding set and the maxi-

mum number base-pairs. A more recent work [45] on dynamic programming claims to be

the first to achieve linear in time and space complexity and shows it’s benefits in predicting

long sequences such as 16s and 23s. In [46], an optimal structure is assembled based on

Maximum Energy Accuracy (MEA) without using dynamic programming algorithm. A

novel method based on both MFE and MEA is proposed in [47] for experimental probing

data, and structural probing data is incorporated in related work such as [48] as supple-

mentary information to enhance accuracy. Recent studies[49] suggests replacing MEA by

a partition function-based algorithm Threshokont and shows that this thresholded version

of ProbKnot can give accurate prediction. Another work in linear partition can be found in

[50].

We explore single sequence approach to focus on the effect of stems in each sequence.

Single sequence analysis approach includes, CONTRAfold[51] which uses fully-automated

statistical learning algorithms to evolve model parameters instead of relying on thermody-
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namics, and CyloFold[52], an approach based on reproducing the folding procedure in a

coarse-grained manner by choosing folding structures based on free energy contribution.

Related work on single sequence analysis includes [53, 54, 55, 56], and we refer to [57] for

more details in various categories. Alternatively, comparative methods reduce the space of

possible folding structure by using evolutionary approaches [58, 59, 60],[61], and recently,

various machine learning techniques are developed, e.g. [62, 63, 64].

To represent the structure, we construct a Stem-graph, where any possible stems are

represented as vertices of the graph, and edges represents all possible co-existences among

the vertices. This setting is similar to [65], where a maximum clique finding algorithm is

implemented to assemble compatible conserved stems among multiple sequences. Multiple

possible optimal structures are assembled in topological order according to their compati-

bility among k sequences. This vertex-edge representation is considered as dual graph and

analyzed in [66], which reveals the importance of such labeled dual graph in RNA structure

identification and biotechnological applications. In [67], a graph based method formulated

the structure prediction problem as a maximum weighted clique finding problem to predict

RNA complex consisting multiple RNA sequences by considering the best the combina-

tion with respect to free energy and RNA-RNA interactions. In [68], the author employs

the idea of tree graphs for archiving RNA tree motifs and dual graphs for general RNA

motifs. A graph mining algorithm is proposed in [69] to detects all the possible motifs

exhaustively. One important advantage of these graph methods is that it allows the exis-

tence of pseudo-knots in plausible folding structures [65, 68, 70]. In general, pseudo-knots

is particularly difficult to identify efficiently since it leads to a structure with at least two

helical stems. With the help of a graphic representation, a pseudo-knot can be efficiently

considered as a possible folding structure without further annotation.
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2.2 StemP Methodology

We briefly review some definitions. A complete graph is a simple undirected graph in which

every pair of distinct vertices is connected by a unique edge. A clique in an undirected

graph is a subset of vertices, such that every two distinct vertices are adjacent. It’s induced

subgraph is complete. Maximal Clique is a clique which cannot be extended by including

any more adjacent vertices.

The proposed Stem-graph based Prediction algorithm has two steps: [Step1] Stem-

graph construction which presents all possible folding structure from the given sequence,

where Stem-Loop score is used in vertex construction, and [Step2] Prediction, where we

pick an optimal folding structure among maximal cliques. Figure 2.1 represents the outline

of StemP, using an example of 2QUX (structural protein/RNA) from Protein Data Bank :

r = GGCAC AGAAG AUAUG GCUUC GUGCC. (2.1)

[Step1] Stem-graph construction. First, any possible stems are assigned as a vertex. We

add two pieces of information for vertex construction, minimum stem length L and Stem-

Loop score (Equation (2.3)). We consider the canonical base-pair matching, i.e., only A-U

and C-G, unless mentioned otherwise in the later sections. A stem is constructed if there

are at least L number of consecutive base pairs matching. The integer L represents the

minimum stem length to consider for each vertex. In the case of (Equation (2.1)) we set

L = 3, starting from the first base G1, we search for the first base C in this sequence after

G1 which matches it. If the pair G1-C3 is matched, since G2 is not match to any other

bases to form a stem including G1-C3, the stem length is L = 1, and this is not considered

as a vertex. A stem starting from G1 with L ≥ 3 is only possible for C25. In fact for this

case, consecutive 5 base pairs, G1-C25, G2-C24, C3-G23, A4-U22, and C5-G21, match

to form a stem with length 5. We consider the longest stem which can be constructed from

the starting G1 and ending bases C25, and this is assigned as the first vertex v1. If the first
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base G1 forms other different stems, they are assigned as separate vertices, e.g., v2, etc. In

this example, v1 is the unique vertices starting from G1. Once all possible stems starting

with the first base G1 are found and assigned as vertices, we move to the second base G2

and repeat the process. Then, we move to the third base C3 and repeat, i.e., sequentially

consider each base one by one to find all vertices. Figure 2.1 [Step 1]-Vertex shows all

vertex for 2QUX. We note that the stem formed from the first base G1 may include the

stem formed from the second base G2, as a sub-stem, e.g. v1, v2 in Figure 2.1. We consider

these to be two different vertices.

Each vertex stores it’s corresponding property, for example:

v1 = (i1, j1, l1, d1) = (1, 25, 5, 24) (2.2)

here i1 is the starting base number, j1 the ending base number, l1 the length of the stem

(the number of consecutively matched bases), and d1 = j1 − i1 the distance between the

starting and the ending bases. We use the ratio between l1 and d1 to define Stem-Loop score

in Equation (2.3). For short sequences Stem-Loop score is not needed, while for longer

sequence, we define a range of Stem-Loop score to only consider biological or physically

meaningful stems for vertex construction. This also helps to reduce the number of vertex

for an efficient computation.

After all possible stems are found and represented as vertices, in [Step1]-Edges, edges

are constructed based on the co-existing possibilities between vertices. For example, v2 and

v3 are sub-stems of v1 that they cannot co-exists, but v1 and co-exits with v4. Figure 2.1

[Step 1]-Edge considers all such possibility and e14, e24, e34, e15, e25, e35 are constructed

in the full Stem-graph. Note that in this full Stem-graph (i) every sub-graph represents

different folding structure, and that (ii) pseudo knots and 3D prediction comes naturally

without any extra consideration.

[Step2] Prediction. With all possible structure presented in the full Stem-graph, struc-
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ture prediction is to choose a sub-graph satisfying certain energy. Since plausible structure

requires compatibility between every two vertices, for all sub-graphs with multiple vertices,

only a complete sub-graph can be recognized as a possible structure.

We consider maximal cliques of the full Stem-graph as possible folding struc-

tures. We sort all maximal clique by the total number of base-pair matching as

a simple energy.

The principle idea of Stem-graph Prediction is to find the maximum matching among

the stable structures, which is maximal cliques among complete subgraphs since it repre-

sent the most complete structure where at least one vertex is a part of.

For 2QUX (Equation (2.1)), as shown in Figure 2.1 [Step2], there are 7 cliques in

total. The full Stem-graph of 2QUX only have 2-vertex cliques (six of them), and no 3-

vertex clique, and one 1-vertex clique. The maximal clique constructed by v1 and v4 is

the maximum base-pair matching with maximum energy 9. This is picked as the result of

StemP, which matches with the true folding.

For numerical computation for finding maximal cliques, we employ a modified Bron-

Kerbosch algorithm with pivoting [71] to find maximal cliques of the full Stem-graph. In

this algorithm, depth-first search algorithm with pruning methods are implemented based

on Bron and Kerbosch algorithm [72], which is a recursive backtracking algorithm. The

time complexity of the worst-case time is O(3
n
3 ) for an undirected graph with n vertex. The

problem of finding cliques is also studied in many research area such as social network,

bioinformatics, computer vision and computational topology. Another improved methods

based on Bron-Kerbosch algorithm can be find in [73].

StemP gives a deterministic folding structure prediction, while showing all possible

folding structure in a compact full Stem-graph. In practice, to reduce the number of vertices

for more efficient computation, we use the minimum stem length L ≥ 2, and Stem-Loop

score which we introduce in next subsection.
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Stem-Loop score and Generalized Stem-Loop score When constructing Stem-graph,

we further utilize structure information to reduce the number of vertices. We introduce the

Stem-Loop score for each vertex vk:

SL(vk) =
the total length of vertex vk
the stem length of vertex vk

=
dk
lk
. (2.3)

The main idea behind this score is to explore the energy balance between the stem length

lk and the size of the loop the stem encloses. The stem length lk is not too small compared

to the size of the loop dk, since there will not be enough binding force to hold the loop

stable. The stem length lk is not too large compared to the size of the loop dk, since it is

somewhat unnatural. We observed that SL values among the same type of sequences are

similar, and we can learn the range of this value from known sequences. This is in spirit

similar to recent trend of active learning methodology such as Neural Network [62, 64] or

Motif analysis[74, 75], that one can learn Stem-Loop score from a known sequence, and

biological property can be added.

For a long sequence like rRNA 5S, Stem-Loop score itself may not be enough to capture

the complex structure of the folding, such as stems enclosing another stems. We generalize

SL to include such structures. We define a set of vertices, Vk, which is understood as a

structure starting from a base stem leading up to one hairpin loop, including all internal

loop and bulge in between. This set Vk = {vk1 , ...vkm} represents a set of several stems

in which one encloses the rest of the stems. For this set Vk, we consider the following

Generalized-Stem-Loop score:

GSL(Vk) = GSL(vk1 , ...vkm) =
dk1

lk1 + ...+ lkm
. (2.4)

The first vertex vk1 encloses all the other vertices vk2 , ...vkm (i.e. ak1 < akj , bk1 > bkj for all

j > 1). Here dk1 denotes the total length of Vk, and lk1 + ...+ lkm denotes the sum of stem

length within Vk. GSL represents the total strength of basepair matching over the total
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length of the sequence enclosed in Vk. We discuss details in Section 2.4.3 for 5s rRNA.

The case such as tRNA Acceptor, the sequences have a self closing form, that is there is

a stem connecting starting and ending bases of the entire sequence. When the total length

dk of the stem-loop is sufficiently large to enclose the whole sequence, we consider the

Acceptor-Stem-Loop score:

ASL(vk) =
l̂ − dk + 2lk − 2

lk
, (2.5)

where l̂ is the size of the given sequence. This is a way to account for the open end closing

stems. We consider the open-end loop to be closed and compute the Stem-Loop score in

the opposite direction of a normal stem.

2.3 StemP Algorithm

In this section, We present the outline of the StemP algorithm and sub-algorithms for tRNA

and 5s rRNA. One of the best part of this algorithm is its simplicity: a simple code can be

easily written and experiments can be done on a regular laptop for the sequence of length

up to 150.

In Algorithm 1 [Step 1] constructs vertex and edges respectively. Then we employ

Bron-Kerbosch algorithm with pivoting [71] to find the cliques of the full Stem-graph.

Along with the bound of Stem-Loop score, Length Threshold L of a stem is introduced to

narrow down the choice of possible vertex. This gives priority to overall skeleton of the

folding structure, which is driven from big binding forces, i.e. by longer stems. The longer

the sequence is, the longer this threshold can be. This Algorithm 1 is a general algorithm

that can be applied to any sequences with unknown structure.

Algorithm 2 illustrates the details in finding partial stems when predicting tRNA se-

quences. An example of predicting Archaeal 5s rRNA sequence can be found in Algo-

rithm 3. This algorithm is based on the results of vertex construction for 5 helix H1, H2, H3, H4, H5
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with minimum Stem Length L. Both Algorithm 2 and Algorithm 3 are an extension of Al-

gorithm Algorithm 1 which utilized the known structure of a given type of RNA sequences

to increase accuracy and computing efficiency. Example of finding particular structure

l1[n1/n2]l2 vertex can be found in Algorithm 4.

2.4 Numerical Experiments

Comparison Measure for Numerical Experiments

In Section 2.4.1, Section 2.4.2 and Section 2.4.3, we present StemP results and compare

with existing methods. To evaluate the prediction, we consider True Positive (TP ), True

Negative (TN ), False Positive (FP ), and False Negative (FN ) base pair matching. We use

Specificity/ Positivity Prediction Value (PPV), Sensititity, the Matthews Correlation Coef-

ficient (MCC) [47, 76, 69], and F1-score. For each predicted matched base pair, if it exists

in the true folding structure, then it counts towards TP , otherwise, it counts towards FP .

For each matched base pair in the true folding structure that doesn’t exit in the prediction,

it counts towards FN . TP + FP gives the total number of base pairs in the prediction.

TP + FN gives the total number of base pairs in the true folding. Both MCC and F1

takes values in between [0,1] and 1 represents 100 % matching without any additional nor

missing basepair matching. Both MCC and F1-score give an overall justification of the

prediction with respect to the False prediction.

In practice, StemP prediction of the maximum matching maximal clique may not be

unique. We use Standard Competition Ranking (SCR)(“1224” ranking) to present the re-

sults. If there are multiple ranked 1 folding, we report with the value m in the parenthesis

to indicate that there are multiple structures with the same maximum number of base pairs

matched. For example, SCR(m) = 1(2) represents that there are total of 2 sequences in the

top rank, the same maximum matching, and 3(4) represents that there are 4 sequences in

the third rank.
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Algorithm 1 Structure Predicting Algorithm (StemP)
Input: The sequence r of size n, the stem length threshold L, and bounds of SL : SLmin

and SLmax.
Step 1-1: full Stem-graph construction (Vertex Construction)
k ← 1
for i = 1 : n do

for j = i+ 3 : n do
if IsBasePair(ri, rj) then
k ← k + 1, l← 1
while j − l > j + l and IsBasePair(ri+l, rj−l) do
l = l + 1

end while
l← l − 1,d← j − i, SL← d

l

if l > L and SLmin ≤ SL ≤ SLmax then
vk ← (i, j, l, d, SL),k ← k + 1

end if
end if

end for
end for
Step 1-2: full Stem-graph construction (Edge Construction)
for m = 1 : length(V ) do

for n = m+ 1 : length(V ) do
if (i) jm < in or (ii) jn < im or (iii) im + lm − 1 < in and jn < jm − lm + 1 or (iv)
im + lm − 1 < in and in + ln − 1 < jm − lm + 1 and jm < jn − ln + 1 then
emn = 1

end if
end for

end for
Step 2: Choose a Subgraph

Find all the cliques, using [71].
Compute the total matching energy for each cliques.
Choose the maximum matching and/or maximal clique as the folding pre-
diction.
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Algorithm 2 tRNA algorithm

Input: (i)tRNA Sequence r of size l̂, (ii)lower bound SLmin,Acceptor of SL for Acceptor
stem, (iii)the stem length threshold L, (iv)bounds of SL : SLmin and SLmax, and (v)
bounds of distance dmin, dmax.

Ensure: secondary structure of tRNA
Step 1: vertex construction
Find all possible vertices vk of lk ≥ L and store them in Vtemp

V← ϕ
for vk ∈ Vtemp do

if dk > l̂/2 then
SLk ← (l̂ − dk + 2lk − 2)/lk
if SLk ≤ SLmin,Acceptor then
V ← V ∪ vk

end if
else
SLk ← dk/lk
while SLk ≤ SLmin do
li ← lk − 1, SL← dk/lk

end while
if SLmin ≤ SL ≤ SLmaxandlk ≥ L and dmin ≤ dk ≤ dmax then
V ← V ∪ vk

end if
end if

end for
Step 2: go to step 2 of Algorithm 1.

17



Algorithm 3 5S rRNA algorithm for Archaeal
Input: (i) five sets of possibles vertex in each Helix: H1, H2, H3, H4, H5, (ii)
lower/upper bounds of Generalized-Stem-Loop score in α domain and β domain:
GSLα

min, GSLα
max, GSLβ

min, GSLβ
max.

Output: secondary structure of 5S rRNA
V ← ϕ, V = V ∪H1

for vm ∈ H2 do
for vn ∈ H4 do

if ExistEdge(vm, vn) and GSLα
min ≤ GSL(vm, vn) ≤ GSLα

max then
V ← V ∪ (min(im, in),max(jm, jn), lm + ln, dm, GSL(vm, vn))

end if
end for

end for
for vm ∈ H3 do

for vn ∈ H5 do
if ExistEdge(vm, vn) and GSLβ

min ≤ GSL(vm, vn) ≤ GSLβ
max then

V ← V ∪ (min(im, in),max(jm, jn), lm + ln, dm, GSL(vm, vn))
end if

end for
end for
Step2: go to step 2 of Algorithm 1.

Remark: ExistEdge can be found in Algorithm 1 Step 1-2. each vertex v in V has 5 attributes: (i, j, l, d, SL)
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Algorithm 4 algorithm to construct l1[n1/n2]l2 vertex in 5S rRNA
Require: (i)5S rRNA Sequence r of size n, (ii)bound of SL: SLmin, SLmax, (iii) subvertex

size: l1, l2, and (iv) gap size n1, n2

Ensure: All possible vertex of structure l1[n1/n2]l2 with stem-loop score SL satisfying
SLmin ≤ SL ≤ SLmax

l← 0, V ← ϕ, k ← 0
for i = 1 : n do

for j = i+ 2 : n do
d← j − i
idx← 0, l← 0
while IsBasePair(ri, ri) and i < j and l < l1 + l2 do

index← idx+1, l← l + 1
if idx ̸= 11 then
i← i+ 1, j ← j − 1

else
i← i+ 1 + n1, j ← j − 1− n2

end if
if i > n or j ≤ i then

break
end if

end while
LS ← d

l

if smin ≤ SL ≤ smax then
k ← k + 1, vk ← (i, j, l, d, SL), V ← V ∪ vk

end if
end for

end for

19



Table 2.1: StemP parameters for short RNA sequences (length up to 50) from Protein Data
Bank[77]. Wobble pair can be considered in addition.

StemP parameters for short RNA sequence

Base-pair matching Canonical base pair (Wobble pair)

Minimum Stem Length L = 3 (or 2)

Stem-Loop score 2 ≤ SL ≤ 20 (optional)

Optimal Structure Maximum base-pair matching (often)

2.4.1 Short RNA sequences

We first experiment with data from the Protein Data Bank (PDB) [77], which preserves

structure information of a large number of biological molecules including proteins and nu-

cleic acids. There are various experimental work on structure prediction of sequences from

PDB. In [76], Nucleotide Cyclic Motif (NCM) is introduced to represent nucleotide rela-

tionships in structured RNA. Experiments were performed on 182 sequences from PDB of

sizes from 8 to 35 and the corresponding result reached 0.87 of MCC on average. From

the point of view of graph structure, base triples were explored in [78]. Related work in-

cludes Direct-Coupling Analysis[79], orientation and twisting of β-sheets [80] and multiple

threading alignment approaches [81].

Parameters: We experiment with RNA sequences of length up to 50, and provide

the accuracy of our results based on the folding structures formed by Parallel Watson-

Crick/Watson-Crick (tww) and Anti-Parallel Watson-Crick/Watson-Crick (cww) based pairs

retrieved from Nucleic Acid Database [82, 83]. Table 2.1 shows the parameters we chose

for StemP. We set the minimum stem length to be L = 3, and set Stem-Loop score to be

2 ≤ SL ≤ 20. These two mild conditions enhance the computing speed by reducing the

number of vertices in the full Stem-graph. For example, for sequence 1KXK, MCC 0.96

is obtained in 11 seconds with 2 ≤ SL ≤ 20, while it took 89 seconds to obtain the same

accuracy without the conditions. We found that for a short sequence, the correct structure

may be a single vertex, when there is no clique of size bigger than 2.
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Table 2.2: StemP for short RNA sequences from Protein Data Bank (length up to 50). In
the first column, superscript p indicates pseudo knots, superscript w indicates we allowed
wobble base pairs. Superscript L indicates using L = 2, otherwise we set L = 3, and
S indicates when SL is used. The second column shows the best MCC value among all
maximal clique, the third column shows Standard Competition Ranking (SCR) of this best
MCC in the form of SCR(m), and the forth column shows the CPU time in milliseconds
(ms). 293∗ denotes SCR(m)= 293(512) for 2OZB.

RNA StemP SCR CPU [84] [85] [46] [76] [86]

1RNG w 1.00 1 (1) 61 1.00 1.00 1.00
2F8K 0.91 1 (1) 19 0.91 0.82 0.91 o x

2KVN 1.00 1 (1) 6 1.00 1.00 0.91

2AB4 1.00S 1 (1) 4 1.00 1.00 0.93 o x

361D 1.00 1 (1) 12 0.79 0.79 0.79 o o

2ANN 1.00 4 (4) 12 0.65 0.71 0.77 x o

1RLG 0.91L 1 (3) 244 0.79 0.79 0.79 x o

2QUX 1.00 1 (1) 25 1.00 1.00 1.00 o x

387D 0.77 4 (3) 7 0 0 0.42 x x

2L5Z w 0.95 1 (1) 41 0.95 0.95 0.95
1MSY w 0.91S 4 (1) 30 0.77 0.77 0.83 x o

1L2X p 0.94S 1 (1) 29 0.79 0.79 0.72 x o

2AP5 p 1.00S 1 (1) 13 0.79 0.79 0.79 x x

1JID w 0.80 1 (2) 34 0.80 0.80 0.80 o x

1OOA w 1.00 3 (3) 31 1.00 1.00 0.87 x o

430D 0.83 1 (3) 6 0.83 0.83 0.83 x o

2OZB w 1.00L 293∗ 1k 1.00 0.95 0.89 o o

1MJI 0.95 1 (1) 7 0.95 0.95 0.95 x x

1ET4 p 0.47 6 (1) 17 0.13 0.13 0.15 x o

2HW8 w 0.96 9 (11) 97 1.00 1.00 0.89 o o

1I6U w 0.87 3 (13) 150 0.87 0.87 0.87 o o

1F1T 0.88L 2 (3) 101 0.88 0.88 0.73 o o

1ZHO 1.00 2 (4) 23 1.00 1.00 0.90 o o

5NZ3 p 0.82 8 (4) 24 0.55 0.55 0.68

1SO3 1.00L 1 (18) 3k 0.89 0.89 0.92 o o

1XJR w 0.94L 6 (34) 27k 0.94 0.90 0.79 o o

1U63 0.97 2 (3) 153 0.97 0.97 0.97 o x

2PXB w 0.97 12(42) 389 0.97 0.97 0.97 o o
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StemP Results and Comparison for short sequences: Table 2.2 presents predic-

tion results for sequences of length up to 50. The comparisons are presented between the

proposed method StemP, FOLD[84], MaxExpert[85], ProbKnot[46], MC [76] and NAST

[86] based on MCC value. The experimental results of those methods were performed on

RNAstructure web server[87] with default parameters1. MC [76] and NAST [86] results

are from [88], where O and X indicate success or failure of these methods, and if empty,

experiments were not known.

Some variations are presented as superscripts in Table 2.2. The superscript p indicates

existence of pseudo knots. For StemP, pseudo knots are naturally predicted without any

a priori information, but for some methods it is important to indicate. The superscript w

indicates that we allow wobble base G-U pairs in StempP. If a structure is known to have a

Wobble base pair, it helps to add this possibility in vertex construction to identify the true

folding. Typically short RNA sequences don’t have a strong structure known a priori, that

using Stem-Loop score is not necessary. We indicated with superscript S to denote that

Stem-Loop score are imposed. For other sequences, the same results are obtain with or

without SL condition.

StemP is computationally efficient. In Table 2.2 forth column, we present the CPU time

in milliseconds (ms) for predicting structure with StemP for each sequence. The average

CPU time in Table 2.2 is 1.18 seconds. We used MATLAB with Intel®Core i5-9600K

processor with 3.7GHz 6 Core CPU and 16 GB of RAM.

In Table 2.2, StemP results in second column show the best MCC values among all

maximal cliques. These best MCC values show that they are more accurate compared to

other methods for all sequences except for one 2HW8. The SCR(m) in the third column

shows, 10 out of 28 results are SCR(m)=1(1), that the unique top choice (maximum match-

ing) is the structure prediction, and the matching accuracy is of MCC 1 or above 0.91 (i.e.

1Temperature = 310.15(K), Maximum Loop Size = 30, Maximum % Energy Difference = 10, Maximum
Number of Structures = 20, Window Size = 3, Gamma = 1, Iterations = 1, Minimum Helix Length = 3,
SHAPE Intercept = -0.6, SHAPE Slope = 1.8, Maximum probabilities to show = 2.
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(a) MCC 0.98 (b) MCC 0.92 (c) MCC 0.95
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Figure 2.2: Examples of StemP of MCC above 0.9. Missing pairings are non-canonical or
a single canonical pairing. (a) StemP of 1MJI (length 34). (b) StemP of 2F8K (length 16).
(c) StemP of 1MMS (length 58). The green lines is missing base-pair matching (False Neg-
ative), which are either non-canonical pairing or a single canonical pairing. (VARNA[89]
is adopted for visualization of secondary structures.)

100% or above 91% matching). Another 4 is the top choice, but with a multiple possibil-

ities. We list the rank 1, MCC values for the case, when the best structure prediction is

not ranked 1: in Table 2.2, 2ANN 12ms, 387D 7ms, 1MSY 30ms , 1OOA 31ms, 2OZB

1s, IET4 17ms, 2HW8 97ms, 1I6U 153ms, 1F1T 101ms, 1ZHO 23ms, 5NZ3 24ms, 1XJR

27s, 1U63 153ms, and 2PXB 389ms.

Figure 2.2 shows examples when the best matching is not MCC 1 (100 % matching).

Typical examples are shown for MCC 0.95, 0.91 and 0.85. These mismatches are causes by

(i) non-canonical basepair matching such as G-G, A-G, C-U, or (ii) a singe canonical base

pair with length 1. In our current setting, vertex only considers the stem of length L ≥ 2.

For the cases when the best MCC is not ranked 1, we give an example in Figure 2.3

with 1MSY (length 27). The best prediction result is found in SCR=4. The true structure

is similar to (b) SCR=2(2) and (d) SCR=4, with one more basepair in (b), yet the true

structure is closer to (d). This example shows, although there are similar folding structures

with more matching, the true structure does not connect all the basepair matching. StemP

with maximum matching ranking, it found (a) as a top choice.
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(a) SCR = 1 (b) SCR = 2(2) (c) SCR = 2(2) (d) SCR = 4
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Figure 2.3: For 1MSY (length 27), the true structure is not maximum matching. The true
folding is closest to StemP result SCR=4 shown in (d) with MCC=0.91. (a) is StemP result
rank 1 with MCC 0, (b) SCR(m)=2(2) with MCC 0.83, and (c) another SCR(m)=2(2) with
MCC 0. The green lines show the missing base pairs, and the red line wrong matching.
One base pair C(12) - G(16) is missing in (d), and (b) also shows similar result.

2.4.2 tRNA sequence

The folding structure of tRNA is mostly standard as shown in Figure 2.5(b). There are 4

distinct regions, which are Acceptor, D loop, Anticodon loop and TC loop. The structure of

transfer RNA (tRNA) was determined through comparative analyses of RNA structure, and

various methods are developed [90]. Different types of RNA including tRNA were studied

in [91] regarding secondary structure and tertiary structure. It was shown that the secondary

structure is more significant and stable than the latter one. MC-fold [76] is a classical model

to unify all basepair matching energetic contributions. Minimum Free Energy model was

adopted by [92], [40] and [93] to discover tRNA sequences, where probing data is utilized

in [40]. In [69], a possible RNA alignment sequence was represented by finding the most

frequent stem patterns from a database, and experiments were performed on a variety of

RNA sequences including tRNA. From the geometric point of view, the author of [68]

employs the idea of tree graphs and dual graphs to represent RNA tree motifs and general

RNA motifs which makes it possible to characterize the typologies of RNA structure. There

are probability based methods[46, 94] which measures the probability of the structure of

a nucleic or base pair based on a large learning group. Some methods provide multiple

sequences alignments with probabilities and can be extended to different types of RNA
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Table 2.3: StemP parameters for tRNA. For Cysteine, Glutamic Acid, Glutamine, His-
tidine, SL upper bound 4.7 is used. For Alanine, Asparagine, Aspartic Acid, Glutamic
Acid, Glutamine, Glycine, Histidine, Isoleucine, Lysine, Methionine, Phenylalanine, Pro-
line, Tryptophan, Tyrosine, SL upper bound 5.4 is used. l̂ is the total length of the sequence.

StemP parameters for tRNA folding

Basepair matching Canonical and Wobble matching

Stem type Partial Stems included

Minimum Stem Length L = 3

Stem-Loop Distance 12 ≤ di ≤ 18

Stem-Loop score 3 < SL ≤ 4.7 or 5.4

Stem-Loop Distance (Acceptor) l̂/2 < di

Acceptor-Stem-Loop score ASL ≤ 3

Optimal Structure Maximum matching Maximal clique

3’

5’

3’

5’

3’

5’

(a) (b) (c)

Figure 2.4: Partial stem considered for tRNA folding. (a) and (c) are typical vertex con-
structed. (b) a new type of partial stem considered for tRNA in addition. Notice one interior
basepair is not connected.

sequences.

Parameters: For StemP for tRNA, (i) Table 2.3 shows all the StemP parameter used

for the tRNA folding structure prediction. To account for the standard shape of tRNA, we

add following modifications: (ii) We use Acceptor-Stem-Loop score in (Equation (2.5)) to

find the Acceptor stem, and consider (iii) Partial Stem. For tRNA, it is common that some

of matching base pairs at the end of the stem do not pair. We consider these Partial Stem,

which is a sub-stem of a typical vertex. Figure 2.4 (b) shows Partial stem considered in

addition.

StemP Results for tRNA: We present an outline of typical result of StemP for tRNA

in Figure 2.5 (tRNA Accession Number AB041850 from organism Alanine). Figure 2.5
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(a) Stem-graph (b) Prediction
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Figure 2.5: StemP for tRNA. (a) The full Stem-graph of sequence with Accession Number
AB041850. (b) The maximum matching maximal clique (SCR=1) predicted by StemP, su-
perposed with the folding structure. In this example, StemP reaches 100% correct matching
(MCC = 1.00).

(a) shows the full Stem-graph and the red subgraph represents a maximal clique predicted

by StemP. (b) shows the maximal clique superposed with the folding structure. In this

example, StemP gives 100% matching (MCC=1).

In Figure 2.6, we present results of StemP for tRNA structure prediction for 27,010

different tRNA sequences containing 15 subset of tRNA from The Gutell Lab [95]. True

folding structures are taken from the Gutell Lab. We consider sequences that satisfies the

following two criteria as valid inputs: (i) The length larger than or equal to 50; (ii) There

exists at least one base pair in the true folding structure. The typical number of vertices in

full Stem-graph for tRNA ranged from 20 to 40, edges from 120 to 150, and cliques from

180 to 2000. In (a), we show the percentage of SCR in [1, 1], (1, 5], (5, 10], (10, 15], (15,∞)

for the best MCC prediction. In (b), we show the percentage of MCC values for the top

SCR=1 prediction. In (c), we show the percentage of the best prediction score (MCC) in

[0.95, 1], [0.90, 0.05), [0.85, 0.90), [0.80, 0.85), [0, 0.8) for each organism respectively.

StemP finds the shape of the tRNA structure well with a short computation time, in

general in less than 0.3 seconds. Figure 2.6 shows that the majority of the sequences,

20,463 among 27,010 (75.8%), reach the maximum MCC as the top ranking (SCR=1)
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(b) MCC values of SCR=1
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Figure 2.6: StemP result for 27,010 different tRNA sequences. (a) The percentage of
sequences that have SCR in [1, 1], (1, 5] ,(5, 10],(10, 15],(15,∞) for the highest MCC pre-
diction. (b) The percentage of sequences with SCR = 1 that have the prediction score
(MCC) to be in [0.95, 1], [0.90, 0.05), [0.85, 0.90),[0.80, 0.85),[0, 0.8) in each organism. (c)
The percentage of sequences that have the best prediction score (MCC) to be in [0.95, 1],
[0.90, 0.05), [0.85, 0.90),[0.80, 0.85),[0, 0.8) for each organism.

27



(a) MCC 0.95 (b) MCC 0.90 (c) MCC 0.85
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Figure 2.7: Examples of StemP results with MCC above 0.85 tRNA. (a) StemP (rank 1) and
true structure of (L00194) superposed. Green dotted line shows the missing pairs (False
Negatives), while all other base-pairs matching are correct. (b) StemP, SCR=1(9), and
true structure of (AF146727.1) superposed. (c) AY653733. StemP, SCR = 7(3), with true
folding.

using StemP, i.e., maximum base-pair matching. The second graph shows that for SCR=1,

the majority of the sequences (74.8%), 20,202 among 27,010, give MCC above 0.9. The

majority of the sequences (89.1%), 24,053 among 27,010, reaches MCC value in [0.90, 1]

in the best prediction, and 24,398 (90.3%) gave the maximum MCC within top 5 SCR.

When MCC is around 0.95, the prediction may miss base-pair matching, typically non-

canonical pair like U-U, G-A or C-U. Figure 2.7 shows example of typical structure with

MCC 0.95, MCC 0.90 and MCC 0.85. (a) with Accession Number L00194 and MCC

0.95, (b) with Accession Number AF146727.1 and MCC 0.90. (c) with Accession Number

AY653733 and MCC 0.85. In (a), the mismatch (False Positive) is non-canonical pair

U(49)-U(63). Similarly, in (b), the mismatches are non-canonical pair G(26)-A(44)

and C(5)-U(68). In (c), the missing stem starting with G(25)-U(43) and ending with

C(30)-G(38) is broken into two sub-stems of length 3 and 2 due to the non-canonical

pair A(28)-G(40), which fall out of the Stem-Loop score range and the stem length

range. It is shown that these miss-match does not affect the general shape of the folding

structure.

Comparison results for tRNA: Figure 2.8 shows comparison results using StemP,

FOLD, MaxExpect, and Probknot for a tRNA sequence with Accession Number L00194.

In Figure 2.8, (a) StemP has only 2 base pairs missing (False Negative) and no extra match-
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(a) StemP (b) MaxExpect (c) ProbKont
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(d) FOLD1 (e) FOLD2 (f) FOLD3

Figure 2.8: tRNA (Accession Number L00194) prediction comparison. False-Positive
(Green), and False-Negative (Red). (a) StemP result of SCR=1(1) (MCC 0.95) (b) Max-
Expect (MCC 0.86), (c) ProbKont (MCC 0.84), and (d)-(f) 3 possible FOLD predictions
(MCC 0 - 0.86).

ing (False Positive). (b) MaxExpect and (c) ProbKont have only acceptor stem correctly

identified, and in (c), there are 3 base pairs missing (False Negative) and 4 extra pairs

(False Positive). (d)-(f) are multiple structures provided by FOLD, there are some base

pairs missing (False Negative), and extra pairs (False Positive).

In Table 2.4, we present comparisons on 47 different tRNA sequences between StemP

and [96]. We show the highest F1 among the predictions with SCR=1 by F top
1 , the highest

F1 among all possible clique structure predictions by F best
1 . StemP has higher F top

1 and

F best
1 for 46 sequences out of 47. There are 40 sequences reach the highest F1-score when

SCR = 1. StemP has 0.95 as an average for best prediction and 0.92 for top prediction on

this test. For StemP, Table 2.3 parameters are used with 3 ≤ SL ≤ 5.4 uniformly for all

testing sequences.

[96] StemP [96] StemP

Accn F1 F top
1 F best

1 Accn F1 F top
1 F best

1

AY934184 0.63 0.98 0.98 AE014184 0.73 0.98 0.98
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AE013169 0.59 0.98 0.98 CP000473 0.62 0.98 0.98

AY934018 0.60 0.73 0.75 CP000492 0.58 0.77 0.98

AJ010592 0.47 0.98 0.98 CR382129 0.55 0.68 0.73

U41549 0.58 0.93 0.93 X03154 0.56 0.98 0.98

AE000520 0.70 0.57 0.78 CP000254 0.55 0.85 0.85

CP000143 0.68 0.98 0.98 CP000493 0.73 0.93 0.93

AY934254 0.67 0.98 0.98 BA000021 0.50 0.98 0.98

AE009952 0.54 0.93 0.93 CP000412 0.51 0.79 0.95

AE017159 0.48 1.00 1.00 AP006618 0.56 0.98 0.98

AY934351 0.60 0.98 0.98 CP000099 0.56 0.93 0.93

BA000023 0.70 0.95 0.95 CP000141 0.68 0.98 0.98

AY934387 0.55 0.98 0.98 AC006340 0.62 0.93 0.93

AY933864 0.53 0.98 0.98 BX569691 0.63 0.98 0.98

AJ248288 0.68 0.95 0.95 AF137379 0.51 0.98 0.98

CP000471 0.64 0.98 0.98 DQ396875 0.59 0.98 0.98

BA000011 0.64 0.98 0.98 CP000142 0.69 1.00 1.00

BX321863 0.61 0.98 0.98 BX640433 0.58 0.73 0.98

CP000423 0.55 0.55 0.98 AJ294725 0.43 0.98 0.98

CR936257 0.65 0.93 0.93 X04779 0.57 0.98 0.98

AC004932 0.53 0.93 0.93 AY934393 0.49 0.98 0.98

AY933788 0.58 0.98 0.98 AE008623 0.61 0.98 0.98

X04465 0.41 0.93 0.93 AE000657 0.73 0.98 0.98

DQ093144 0.62 0.98 0.98

Average 0.59 0.92 0.95

Table 2.4: Comparison of tRNA prediction between StemP and [96]. The 47 sequences
in [96] from Gutell Lab [95]. Accn denotes the Accession number of the corresponding
sequences. F top

1 is the best F1-score among predictions with SCR = 1. F best
1 is the highest

F1-score of among all predictions of clique.
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2.4.3 5s rRNA sequences

5S rRNA plays a critical role in ribosomes of organisms. The sequences typically con-

tains about 120 nucleotides with a particular structure [97]. This structure has been recog-

nized by comparative sequence analysis. The size and ubiquity of 5S rRNA, that enabled

RNA sequencing using direct methods, made it an ideal candidate for a molecular phyloge-

netic marker[97]. Similar to tRNA, different methods such as Minimum Free Energy[92],

constructing tree structure[68] and sequence analysis[98, 76] are available for predicting

5s rRNA structures. TurboFold II [94] is an extension of TurboFold [99], a comparative

method that provide multiple sequence alignments by iteratively estimating the probabili-

ties for nucleotide positions between all pairs of input sequences. A modified version of

TurboFold II in [100] uses basepair probabilities from SHAPE experimental data. In [46],

309 sequences were tested by a probability based method ProbKnot where 69.2% of known

pairs were correctly predicted in average.

5S rRNA has a particular structure, consisting of 5 stems (I-V) and 5 loops (A-E). We

use the notation of Domain α, β, γ to help illustrate the structure of 5s rRNA. Domain α is

identical to Helix I. Domain β and Domain γ can be understood as a structure starting from

a base stem leading up to one hairpin loop, including all internal loop and bulge in between.

Domain β has Helix II enclosing Helix IV while Domain γ has Helix III enclosing Helix

V. Figure 2.10 (b) shows a typical example of full Stem-graph of a 5s rRNA sequence. We

explore 5s rRNA sequences from the Gutell Lab [95] and the true foldings given in it.

Parameters: In 5S rRNA, often helix doesn’t have consecutive basepair matches, but

has one or two bases gap. We consider the stem variations to account for such cases,

which counts a combination of shorter stems as one vertex. The structure l1[n1/n2]l2 or

l1[n1/n2]l2[n3/n4]l3 denotes such variation, where li(i = 1, 2) the length of consecutive base

pairs, and nis denote the gaps between the shorter stems, as illustrated in Figure 2.9. Notice

that, not considering the gaps, this vertex have stem length to be l1 + l2. We use Stem-
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(a) 2[1/2]6 (b) 2[0/1]6
3’

5’

3’

5’

Figure 2.9: Two examples of 5s rRNA vertex variation. Both has stem length L = 8, but
with gaps. We consider such cases as one vertex for 5S rRNA structure prediction.

Loop score (Equation (2.3)) to identify each Helix (I-V) and Generalized-Stem-Loop score

(Equation (2.4)) to identify the Domain β, γ which contain more than one Helix.

For the computation, we add a step to use GSL for more efficient computation. From

the input data,

1. find five different sets of vertices vi with appropriate SL score (each set of candidates

for Helix I-V).

2. Use GSL to find two (additional) sets of vertices Vk to find Domain β and γ.

3. Construct edges between each domain.

4. A maximal clique that represents the highest energy gives the prediction.

We summarize the StemP parameters for 5S rRNA in Table 2.6 for Archaeal, and gen-

eral parameters in Table 2.8.

StemP Result for 5s rRNA: Figure 2.10 shows a typical result of StemP for a 5s

rRNA sequence (Accession number AE000782). StemP result in (a) gives MCC 0.97 accu-

racy with only 2 non-canonical base pairs C(28)-U(56) and A(81)-G(103)matching

missing. Not considering non-canonical pairs as positive pairs, StemP gives MCC 1 for this

sequence.

In Table 2.5, StemP is tested on 53 sequences in organism Archaeal based on the refined

parameters in Table 2.6. For some sequences such as AE010349, X07545, the cpu time is

longer than 1 minute because of the number of allowed possible structures is very large.

The average cpu time for each sequence is 15.5 seconds. Table 2.5 (a) SCR shows that
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(a) Prediction (MCC 0.97) (b) True folding
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Figure 2.10: StemP for 5S rRNA (Accession number AE000782). (a) StemP which has
MCC 0.97 (not considering non-canonical pairs, MCC=1). (b) True folding. There are 154
vertices, and 8986 cliques. The best predicted is SCR=1(16). The average MCC for these
16 structures is 0.89 (not considering non-canonical pairs).

79.2% of the sequences have rank 1, and 90.6% of the sequences have rank 5 or higher.

For 5S rRNA, maximum matching and maximal clique seems to be a good choice for the

prediction. Table 2.5 (b) shows that 90.6% sequences have top MCC to be more than 0.92.

(c) shows that 66% of the sequences have MCC higher than 0.95 and 100% of the tested

sequences has MCC higher than 0.92. (d) shows the top and the best MCC values for each

Archaeal 5s rRNA sequences.

(a) SCR ranking of best MCC

Organism # =1 ≤3 ≤5 >5

Archaeal 53 42 (79.2) +2 (83.0) +4 (90.6) 5 (9.4)

(b) Top MCC values of StemP

Organism # ≥0.97 ≥0.95 ≥0.92 <0.92

Archaeal 53 16 (30.2) +9(50.9) + 21 (90.6) 5 (9.4)

(c) Best MCC values of StemP

Organism # ≥0.97 ≥0.95 ≥0.92 <0.92

Archaeal 53 16 (30.2) +19(66.0) + 18 (100.0) 0 (0.0)
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(d) Prediction of StemP on 5s rRNA sequences

Accn Top Best Accn Top Best

AE000782 0.97 0.97 X62859 0.78 0.95

AE006649 0.97 0.97 U67537 0.96 0.96

AE010349 0.89 0.96 U67518 0.96 0.96

AM180088 b 0.95 0.95 M34911 0.94 0.94

AP000006 0.95 0.96 X62860 0.96 0.96

AP000986 0.96 0.96 X62861 0.95 0.95

AP006878 0.97 0.97 M34910 0.97 0.97

Arc.fulgidus 0.97 0.97 X62862 0.97 0.97

BA000001 b 0.95 0.96 X62864 0.44 0.94

BA000002 0.83 0.97 M26976 0.97 0.97

BA000023 b 0.96 0.96 X15364 0.96 0.96

CNSPAX02 0.82 0.96 X72495 0.96 0.96

CNSPAX03 0.94 0.95 M21086 0.99 0.99

CP000254 b 0.95 0.95 X15329 0.96 0.96

CP000477 b 0.95 0.95 V01286 0.97 0.97

CP000493 0.99 0.99 U05019 0.96 0.96

CP000575 0.97 0.97 X01588 0.97 0.97

CR937011 0.95 0.95 Y08257 0.97 0.97

DQ314493 b 0.95 0.95 X05870 0.97 0.97

DQ314494 0.95 0.95 X07692 0.95 0.96

X07545 0.97 0.97 M12711 0.96 0.96

E.coli.ref 0.93 0.96 X02709 0.95 0.95

AF034620 0.95 0.95 M32297 0.95 0.95
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L27343 0.97 0.97 AL445066 0.95 0.95

L27169 0.95 0.95 NC 002689 0.95 0.95

L27236 0.96 0.96 BA000011 0.95 0.95

X15364 0.93 0.95

Average 0.94 0.96

Table 2.5: StemP for 53 different 5S rRNA sequences. (a) The number and the percentage
in parenthesis for SCR ≤ 1, 3, 5 or > 5. The true structure is mostly within top 5 ranking.
(b) The number of the StemP results (with SCR = 1) of MCC≥ 0.97, 0.95, or 0.92. (c) The
number of the best StemP results of MCC ≥ 0.97, 0.95, 0.92 and < 0.92. (d) StemP results
on 53 different Archaeal 5s rRNA sequences. Accn denotes the Accession number of each
sequences. Top represents the highest MCC score among all predictions that has SCR = 1.
Best represents the highest MCC score among all predictions with clique structure.

Archaeal Stem Length Variation Stem Loop score

Helix I∗ 6, 5, 4[1/0]1, 4 17.82 ≤ SL ≤ 27.5

Helix II 8, 2[0/1]6, 2[0/1]5, 6.37 ≤ SL ≤ 7.72

2[1/2]5, 1[1/2]6, 2[0/1]1[2/1]4

Helix III 3[0/2]4, 2[0/2]4, 2[2/4]2 5.66 ≤ SL ≤ 10.76

Helix IV 7, 6, 5, 3[1/1]2, 3[2/2]1, 3.9 ≤ SL ≤ 6.6

2[1/1]2

Helix V 8, 1[1/1]5[2/1]2, 1[1/1]6[1/0]2, 2.24 ≤ SL ≤ 3.1

8[1/0]2, 1[1/1]5, 1[1/1]8, 1[1/1]7

Domain β 3.46 ≤ GSL ≤ 4.26

Domain γ 2.52 ≤ GSL ≤ 3.43

Table 2.6: StemP parameters for 5S rRNA Archaeal. Canonical and Wobble basepair
matching is considered, and Partial Stems are included. ∗: Helix I is Domain α.

Comparison on 5s rRNA: Figure 2.11 shows comparison on sequences AE000782

using StemP, MaxExpect, ProbKnot and Fold. Using the parameters in Table 2.6, StemP

correctly found all base pairs except for two non-canonical base pairs C(28)-U(56) and

35
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(d) FOLD1 (e) FOLD2
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Figure 2.11: 5S rRNA(AE000782) prediction. (a) StemP (MCC 0.97), (b) MaxExpect
(MCC 0.82), (c) ProbKnot (MCC 0.85), (d)-(e) FOLD (MCC 0.73 - 0.80). FalsePosi-
tive(Green), and FalseNegative (Red).

A(81)-G(103). MaxExpect, ProbKnot and FOLD all mismatched base pairs in the first

branch. For Helix II, (a), (b), and (d) successfully identified the branch while (c) has one

missing base pair (False negative) U(14)-G(69) and (d) has a missing base pair (False

Negative) A(18)-U(65) as well as a False Positive base pair A(18)-U(66). Note that

Helix IV has structure 3[0/2]4 with one non-canonical base pair C(28)-U(56), (b)-(e) all

failed to identify at least 3 base pairs in Helix IV completely. For Helix III, (a),(b),(c)

successfully recognized this branch while (d),(e) both lost one pair U(70)-A(113) as

the first pair of the vertex. The special structure of Helix V with one non-canonical base

pair A(81)-G(103) in the middle made it difficult for all methods to identify the com-

plete structure. FOLD, MaxExpect, ProbKnot all lost two pairs: U(80)-A(104) and

A(81)-G(103) and MaxExpect found two extra pairs in (b). StemP is robust in predict-

ing structures of 5s rRNA sequences.

In Table 2.7, we present the comparison of StemP on 6 different 5s rRNA sequences

with Genetic Algorithm (RNAPredict) [101], SA [102], two-level particle swarm optimiza-

tion algorithm (TL-PSOfold)[103], RNAfold[104], Sarna-predict (SP) [56], Mfold[42],
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Table 2.7: Comparison of 5s rRNA structure prediction between StemP, RNAPredict[101],
SA [102], TL-PSOfold[103], RNAfold[104], SP[56], Mfold[42], and COIN[105]

Accn Method Spe % Sen % F1% CPU(s)

X67579

StemP 100.0 94.6 97.2 0.16
RNAPredict[101] 84.6 89.2 86.8 101.89

SA [102] 89.1 89.1 89.1 401.34

TL-PSOfold[103] 33 86.8 89.2 88.0

RNAfold[104] 82.5 89.2 85.7

SP[56] 84.6 89.2 86.8

Mfold[42] 80.5 89.2 84.6

COIN[105] 97.1 89.2 93

AF03462

StemP 100.0 89.5 94.4 1.97
RNAPredict 90 71.1 79.4 102.66

SA 90 71 79.4 479.08

TL-PSOfold 81.6 86.1 83.8

RNAfold 81.6 86.1 83.8

SP 90 71.1 79.4

Mfold 85.3 76.3 80.6

COIN 100 86.8 93

X01590

StemP (Top 1(1)) 84.2 80.0 85.9
1.18

StemP (Best 2(14)) 100.0 92.5 96.1
RNAPredict 91.7 82.5 86.8 120.45

SA 53 65 58.4 481.98

AJ251080
StemP (Top 1(8)) 94.3 86.8 90.4 0.14
RNAPredict 69.7 60.5 64.8 98.07

SA 52.3 57.9 55.0 398.23

V00336
StemP 100.0 92.5 96.1 0.27
RNAPredict 25.6 25 25.3 99.09

SA 43.5 50 46.5 397.56

AE002087
StemP 100.0 87.5 93.3 0.12
RNAPredict 75.8 62.5 68.5 123.55

SA 46.2 45 45.6 490.00
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and Two-level particle swarm optimization algorithm (COIN)[105]. The six sequences

X67579 (S.cerevisiae), AF03462 (H.marismortui), X01590 (T.aquaticus), AJ251080 (G.stearothermophilus),

V00336 (E.coli), AE002087 (D.radiodurans) are obtained from Gutell Lab [95]. X67579

belongs to Archaeal organism, AF03462 belongs to Eukaryotic organism and the rest be-

long to Bacterial organism. The result of TL-PSOfold is from [103], and RNAPredict and

Mfold from [101].

For each sequence, we provide the top prediction with Sensitivity, Specificity, and F1-

score listed across different methods. We use the general parameters in Table 2.8. For

sequences X01590 and AJ251080, where the best prediction has SCR larger than 1, we

show the highest measures among the unique or multiple sequences with SCR = 1. All

sequences except for X01590, StemP’s top prediction has highest Sensitivity, Specificity,

and F1 among all methods. For X01590, the best prediction, which has SCR = 2, has

the highest top prediction among all other methods. In addition, in the best prediction of

all 6 sequences, there is no incorrect base-pairs (False Positive) found by StemP, all the

False Negative base pairs associated with the best prediction are non-canonical base pairs

including U-C, G-A, G-G, A-A, A-C, U-U, C-C. Compared to other methods,

there is significant improvement in cpu time, where the maximum of 2 seconds is needed

for StemP while typically more than a minutes is needed for other methods.

In Table 2.9, we present comparison results of 5s rRNA sequences with PMmulti[106],

RNAalifold[107] and Profile-Dynalign [108]. We implement StemP on a test set containing

12 different 5s rRNA Bacterial sequences from Gutell Lab [95] in [108]. The general pa-

rameters of Bacterial Sequences in Table 2.8 is used. In Table 2.9, we show the Sensitivity,

PPV, and MCC of the top and the best prediction results of StemP. StemP has an average

of MCC 0.922 for top predictions and an average of MCC 0.936 for the best predictions.

PMmulti + RNAalifold has the highest Sensitivity, which means that fewer False Nega-

tive pairs while more incorrect pairs (False Positive pairs) were found. Overall, StemP has

higher performance over the other methods when considering both False Negative rate and
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Table 2.9: Comparison of 12 different Bacterial 5s rRNA sequences in [108] using StemP,
PMmulti[106], RNAalifold[107] and Profile-Dynalign [108]. Both the top and the best
predictions of StemP give highest MCC and PPV compared to other methods.

Method % Sens % PPV MCC

StemP (Top) 92.0 96.9 0.922
StemP (Best) 87.7 100.0 0.936
PMmulti 36.8 88.9 0.572

Profile-Dynalign 35.9 94.7 0.583

Clustal W + RNAalifold 86.5 80.3 0.833

PMmulti + RNAalifold 96.6 85.3 0.908

Profile−ynalign + RNAalifold 66.1 80.5 0.729

False Positive rate.

In Table 2.10, we present comparison results on 50 different 5s rRNA sequences in [96].

For StemP, we used the parameters in Table 2.8 (for Archaeal, Bacterial and Eukaryotic) on

sequences 1-15, 16-21 and 22-50 respectively. Here, for sequences 1-15, we present results

not using any GSL for domain β and γ. This is due to the absent of similar sequences

in the learning set of StemP, which is where the parameter bounds are learned. For these

sequences 1-15, not using GSL (only using the top Helix I-V parameter) was enough to

find the structure prediction, some even giving higher accuracy. This allows more possible

helix in each domain to construct maximal cliques. It is shown that 33 out of 50 sequences,

StemP’s top prediction (with or without GSL) with SCR=1 has higher F1-score. Overall,

StemP has 0.77 as an average of best prediction and 0.73 as highest prediction on this test

set, which is higher than 0.635 in [96].

2.4.4 StemP comparison

We present details on three examples of maximum matching (i.e. L = 1) compared with

StemP with L = 3 in predicting RNA sequences. All the sequences are from Protein data

bank.

In Figure 2.12, we show (a) the true folding of sequence 2ANN with length 20, and (b)
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Table 2.10: Comparison of 5s rRNA sequences between StemP and [96]. The 50 sequences
from [96]. We adopted the general bound of parameters for 5S rRNA for Archaeal, Bacte-
rial and Eukaryotic on sequences 1-15, 16-21 and 22-50 respectively. Overall, StemP has
higher F1-score in both the top and the best prediction.

[96] StemP [96] StemP

Accn F1 F t
1 F b

1 Accn F1 F t
1 F b

1

X07545 0.90 0.85 0.85 K02343 0.85 0.86 0.86

X14441 0.19 0.68 0.84 AB015590 0.67 0.97 0.97

X72588 0.20 0.66 0.84 X06102 0.74 0.86 0.86

M10691 0.47 0.69 0.69 M25016 0.72 0.86 0.86

M36188 0.77 0.00 0.00 X13718 0.70 0.41 0.56

M26976 0.73 0.85 0.86 X06996 0.86 0.94 0.96

X62859 0.63 0.60 0.66 U31855 0.49 0.93 0.94

U67518 0.76 0.67 0.67 M74438 0.84 0.31 0.70

M34911 0.86 0.26 0.26 Z75742 0.36 0.86 0.86

X62864 0.55 0.41 0.45 X01004 0.81 0.33 0.33

X72495 0.94 0.94 1 X00993 0.61 0.86 0.86

AE009942 0.89 0.62 0.62 D00076 0.82 0.59 0.59

M21086 0.88 0.89 0.89 Z93433 0.38 0.86 0.86

X05870 0.88 0.90 0.90 V00647 0.15 0.93 0.94

X07692 0.87 0.89 0.89 M10432 0.31 0.86 0.86

X02627 0.33 0.93 0.95 L49397 0.29 0.93 0.94

V00336 0.27 0.96 0.96 M18170 0.58 0.86 0.86

AJ251080 0.75 0.90 0.93 X00996 0.24 0.69 0.70

M24839 0.25 0.50 0.67 Y14281 0.68 0.86 0.86

M25591 0.79 0.90 0.93 Z33604 0.75 0.30 0.59

U39694 0.72 0.80 0.80 AJ242949 0.83 0.69 0.70

X99087 0.89 0.43 0.75 M24954 0.17 0.93 0.94

X13035 0.74 0.44 0.70 X13037 0.77 0.70 0.70

Y00128 0.79 0.70 0.70 K00570 0.87 0.86 0.86

AB015591 0.60 0.91 0.91 X06094 0.69 0.99 0.99

Average 0.64 0.73 0.77
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Figure 2.12: StemP vs. maximum matching. (a) The true folding of 2ANN (length 25). (b)
The unique StemP top prediction using L = 3 without SL condition (Top MCC=0.77). (c)
Maximum matching; one of the 3 predictions (all with MCC = 0) with top energy 10.

the prediction using L = 3 without SL condition with/without pseudoknot enforcement.

The MCC of the top prediction is 0.77. In (c), we show one of 3 predictions (all MCC =

0) of the top energy 10 cases by considering maximum base pairs (using L = 1). In

Figure 2.13, we show (a) the true folding of a sequence 2L5Z with length 26 and the

unique top prediction using L = 3 without SL restriction and with/without pseudonot in

(b) with MCC = 0.95 where only one non-canonical pair is missing. (c) presents one of

the 63 predicted structures (MCC = 0) with maximum base pairs using L = 1 without SL

condition and pseudoknot. Note that 34 out of these 63 structures with maximum base pairs

have MCC = 0. Although the folding in (b) is also one of these 63 structures, for StemP

this is the unique result. In Figure 2.14, we show (a) the true folding of a sequence 2AP5

of length 28, and the unique StemP top prediction using L = 3 with 2 ≤ SL ≤ 20 and

with pseudonot in (b) with MCC = 1. (c) gives one (MCC = 0.89) of the 56924 (average

MCC = 0.1) top predictions with energy 10 with 2 false positive base pairs using L = 1

with the same SL, pseudoknot condition. These examples show benefits of using proper

Stem length condition and Stem-loop score, compared to only considering maximum base

pair matching.

2.5 Further considerations of StemP

In Table A.6, we present experimental results of StemP on general sequences with un-
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Figure 2.13: StemP vs. maximum matching. (a) The true folding of 2L5Z (length 26)
(b) StemP using L = 3 without SL condition. (c) one of the 63 predicted structures with
maximum base pairs using L = 1.
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Figure 2.14: StemP vs. maximum matching. (a) True fold of 2AP5 (length 28) (b) unique
top prediction using L = 3 with 2 ≤ SL ≤ 20 and with pseudonot with MCC = 1. (c) one
(MCC = 0.89) of the 56924 (average MCC = 0.1) top predicted structures with energy
10 with 2 false positive base pairs using L = 1 with the same SL, pseudoknot condition.
(For this example, we use circular plot to show the difference between structures better.)
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known structures. The first dataset is TS0 from [109]. We experimented on a subset of 468

sequences of length ≤ 90. TS0 was selected from the bpRNA-1m dataset[110] which in-

cludes sequences from the Comparative RNA Web (CRW), Protein Data Bank (PDB), and

the RNA Family database (RFAM) which covers 2495 families of RNA sequences. The

family of each sequence is not considered to blind test StemP. We experimented on 316

sequences in TS0 with length in [50, 81] using vertex algorithms for tRNA in Table 2.3,

among which 119 sequences has the best prediction with F1 ≥ 0.95 while the rest of the

sequences has F1 ∈ [0, 0.95], with a total average 0.55.

The second dataset in Table 2.11 is a subeset of bpRNA-new containing sequences

from 1500 new RNA families extracted by [109] originally from [110]. The subset we

experimented on include 2483 sequences of length ≤ 87. In Table 2.11, we show the

best prediction of StemP for both subsets from bpRNA-1m and bp-RNA-new. These

results can be compared to [109] where comparison results of MXfold2 [109], SPOT-

RNA[63], TORNADO[111], ContextFold[51] are presented showing F1 scores ranging

around 0.5-0.6, and [4] showing comparison with Ufold [4], RNAstructure[39], RNA-

soft[112], e2efold[113], Eternafold[5], Linearfold[45], and Mfold[42] F1 ranging from 0.1

to 0.65. We present the table in Appendix. While many recent methods require training of

networks, this method explores deterministic approach giving insight into explicit process

of folding, with a simple computation.

For StemP computatin, we consider open ended modification in (Equation (2.5)) for

vertex with d > l̂/2 for all sequences. For short sequence with length ≤ 65, we use L = 3,

2 ≤ SL ≤ 20 to find vertex. For longer sequences, we add a stronger condition d ≤ 12 and

3 ≤ SL ≤ 6 to reduce computation cost. If a sequence has a potential to be close to certain

structure such as tRNA and 5s rRNA, then StemP is able to predict with high accuracy

using corresponding vertex construction algorithm. When family structure is known, we

recommend using a general condition of L = 3 and 2 ≤ SL ≤ 20 as in Table 2.1 along with

an open ended modification in (Equation (2.5)). For longer sequences with length > 64,
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Table 2.11: StemP result on a TS0, a subset of bpRNA-1m dataset[110], used as a test set
in [109] and bpRNA-new from [109, 110]. This can be compared to results in [109] and
[4]. We consider open ended modification in (Equation (2.5)) for vertex with d > l̂/2 for
all sequences. For short sequence with length ≤ 65, we use L = 3, 2 ≤ SL ≤ 20 to find
vertex. For longer sequences, we add a stronger condition d ≤ 12 and 3 ≤ SL ≤ 6 to
reduce computation cost.

TS0 Count %F1 %Sen %PPV
StemP(Best)[1, 90] 468 0.714 0.775 0.701

bpRNA-new Count %F1 %Sen %PPV
StemP(Best)[1, 87] 2483 0.737 0.771 0.726

we enforce a stronger condition, such as d ≤ 12 and 3 ≤ SL ≤ 6 to reduce computation

cost.

Figure 2.15 shows an comparison of a simple dynamic programming schemes that aim

at maximizing the number of base-pairs, compared to StemP and the true folding. We

show true folding and identical prediction results from StemP (L = 3, with/without SL

condition) in (a). Considering maximum base pair matching (i.e. L = 1) is presented in (b)

and (c). We obtained 3 different prediction by considering maximum base pairs with L = 1

without pseudoknot with all MCC = 0. We show one of theses prediction in (b). (c) gives

one of the 24744 predictions with top energy 8 by considering maximum base pairs using

L = 1 with pseudoknot. In addition to being able to find pseudo-knots, StemP using SL

helps with prediction. More examples of how prediction can be improved using a proper L

and SL are shown in Section 2.4.4.

StemP gives a good prediction typically within a few seconds of CPU time. Typically

algorithms can be time consuming, e.g., as expensive as O(N6) [114], and it is difficult

to quantify the time complexity across different methods. The computation cost of StemP

depends on the number of vertex n and the density of edges in the Stem-graph, which we

measure by # edges/(N(N − 1)/2). StemP has a computational advantage over a standard

dynamic programming for free energy minimization, given by limiting the total number of

all possible base pairs: from N(N−1)
2

combinations which cost O(N3)[43], to considering
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Figure 2.16: (a) The length of sequence (x-axis) vs the number of vertex (y-axis). (b) The
number of vertex (x-axis) vs the number of edges (y-axis). (c) The length of sequence
(x-axis) vs the density of edges (y-axis). The experiment is done on 33 sequences from
Protein Data Bank.

n vertex via imposed Stem-Loop Score and minimum stem length L. In Figure 2.16, we

show how the computation scales as the length of RNA increases. (a) and (b) show in

general longer sequence gives more number of vertex and more edges in the Stem-graph.

Otherwise, (c) shows that the cost of computation is not directly correlated to the length of

the sequence, but to the combination of the number of vertex and edges, i.e. complexity of

Stem-graph which depends on each sequences.

In the Appendix, we present details of the algorithms and results, e.g., additional results,

statistical result of tRNA in Figure 2.6, prediction results of 5s rRNA in Table 2.7 and

Table A.1, and prediction of 15 5s rRNA in Table 2.10 without GSL.
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CHAPTER 3

COUNTING OBJECTS BY DIFFUSED INDEX - IDENTIFYING THE QUANTITY

OF OBJECTS IN DIGITAL IMAGES

This chapter reproduces our previously published paper [2]. The author of this thesis per-

sonally contributed to the Methodology, Investigation, Software, Visualization, and Writing

– original draft.

In this chapter, we propose a diffusion-based geometry-free and training-free counting

method. The main idea is to give a unique index to each object regardless of its intensity or

size, and to simply count the number of indexes. First, we place different-value vectors, i.e.

seed vectors, uniformly through out the given image. The seed values are independent from

requiring precise prior knowledge about the image and objects to be counted. Secondly,

these seed vectors are diffused using an edge-weighted harmonic variational optimization

model to give a unique index to each object. Our edge-weighted harmonic variational op-

timization model is motivated by [115, 116] which was used for color image inpainting

[117]. Inspired by recent developments on solving structured optimization models [118,

119, 120, 121, 122, 123, 124, 117, 116], we exploit variable splitting, alternating direction

method of multipliers, as well as periodic boundary condition to develop a fast algorithm to

solve this optimization model. We refer this part as Diffusion Algorithm. An optimal solu-

tion of the model is reached when the uniformly distributed seeds are diffused and reached

different gray-level intensities. At this point, each object in the image has a unique index.

For efficiency and more flexibility, we cluster the index values of each pixel before the

Diffusion Algorithm is fully converged. We investigate both scalar and multi-dimensional

seed vectors. For scalar seed vectors, we count the number of peaks in the Gaussian fit-

ted curve of the histogram. For multi-dimensional seed vectors, we use high dimensional

density based clustering algorithm. The main contribution of this paper is outlined below:
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1. We introduce new simple geometry-free and training-free counting methodologies.

2. We propose a fast diffusion algorithm to count number of objects.

3. The proposed method works well for various applications without being depended on

geometry or training. This method can count objects without clear or closed bound-

aries. We propose a simple extension to counting different size objects separately.

3.1 Literature Review

Counting object is an important problem in various applications such as biological cells

[125], production line items [126], vehicles [127, 128], plant organs [129, 130, 131] ,

animals [12, 128], crowd [12, 128, 132, 133] counting and others. In literature, various

different approaches have been explored. Studies such as watershed [134, 6] and floodfill

[135, 125] consider cases where the objects to be counted have uniform intensity, similar

shapes and sizes, and are disconnected from each other by distinct background color. For

these classical techniques, the counting results are highly dependent on the quality of seg-

mentation result of a given image. Utilizing geometrical features of objects can be useful in

such cases. Hough Transform is often implemented to segment objects with a similar cir-

cular shape [126, 136, 7], and aid the segmentation stage. If the objects have overlapping

boundaries, more preprocessing is required. For instance, in [137], the authors split the

blood cell clumps by finding the maximum curvature on object boundaries and use Delau-

nay triangulation. In [138], the authors first detect concavity at the edge of a cluster to find

the points of overlaps between two nuclei, then use the ellipse-fitting technique for seg-

mentation. There are other detection oriented segmentation methods, such as, integrating

representative [8], hough transform technique in detection [139, 140, 141], principle com-

ponent analysis combined with histogram processing [9], low-rank decomposition[142],

and saliency diffusion [143].

In machine learning, quantification problems is solved by segmentation, i.e., a detec-

48



tion based method. For example, in [144], the authors present an ImageJ plugin which is

an adapted U-Net for single-cell segmentation and quantification based on a pre-trained

model. In the scenario of counting by segmentation, object detection models such as Mask

R-CNN [145] can be useful for counting. There are certain limitations for the cases of a

lot of overlapping objects, objects with varying textures, or in lack of large enough data set

with accurate boundary annotations. More recent works focus on learning from a density

map of which the integration gives the estimate of number of objects by regression [146,

13, 147, 148, 149, 150, 151]. SAU-Net [152] incorporates a self-attention module with a

segmentation network, U-Net, to learn the density map. Such regression based methods

only require dot annotations as ground truth in the training set. There are other works that

directly learn from image patches without generating a density map. The authors of [12]

adapt a convolutional neural network to produce a patch-based regressor to count people,

animals, vehicles and cells. The authors of [153] propose an architecture adapted from the

Count-ception network to perform redundant counting based on receptive field to average

over errors. In [154], the author formulates the counting task as an image classification

problem and takes the counts as class labels. In [155], the authors consider mapping ob-

jects to blob-like structures and applied a Laplacian of Gaussian filter to localize objects.

Overall, learning based methods can be time consuming, and a large dataset with ground

truth is always necessary. An accurate count is usually learned by a particular network for

a certain type of objects such as cells or crowd. Learning to count general objects is still a

challenging task.

3.2 Proposed Model

Let us consider a given image in which there are objects to count. We aim to give a unique

index to each object regardless of its intensity, shape or size, then we simply count the

number of indexes to provide the quantity of the objects. There are three simple steps to

this method:

49



Diffused Image
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Given Image

Step 3

Mask Image
Vector Seeds

Scalar Seeds

Diffused Images

Clustering

Clustering

CODI-S: # local maximums 9

CODI-M: # clusters: 9

Step 2Step 1

Figure 3.1: Outline of two proposed counting methods (scalar or vectorial seeds). Given
image with 9 cells. [Step 1] Uniformly distributed seed (Scalar or multi-dimensional
seeds). [Step 2] Diffusion of seeds to find unique index for each object. [Step 3] Counting
stage: the number of indexes is counted using clustering methods. Both methods give 9
objects.

• [Step 1] Place different gray-value seeds uniformly though out the given image;

• [Step 2] Diffuse the seeds to obtain different index values within each object;

• [Step 3] Counting the different indexes to obtain the number of objects. We can

further cluster objects based on their size.

Outline of the proposed method is presented in Figure 3.1. Based on the given image, in

[Step 1] we put uniformly distributed seed onto a corresponding mask image. We choose

the seeds to be all different from each other. In [Step 2], the seeds, whether scalar or multi-

dimensional, are diffused within each object. The diffusion process is done by an iterative

algorithm where after the decay rate reaches to a certain level, each object is reached to

a different gray-intensity value. This is shown in [Step 3] via histogram of the diffused

image. Each object is associated to a peak in the histogram. In [Step 3], we provide two

counting methods for scalar and vectorial seeds.
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3.2.1 Ingredients: seed, mask, and edge images [Step 1]

Let Ω ⊂ R2 be the image domain with Lipschitz boundary and Φ0 : Ω → R be the given

image. We place different gray-value seeds through out the given image. Let U0 : Ω →

[0, 255] denote the seed image with M different seeds si,j : Ωi,j → vi,j , where Ωi,j ⊂ Ω,

i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, M = n1n2, and n1, n2 ∈ N. We explore both scalar value

seed as vi,j ∈ (0, 255] and multi-dimensional seed as vi,j ∈ RN . For multi-dimension seeds,

we use superscript to represent each dimension, e.g., U j
0 with j = 1, 2, . . . , N . Different

seeds are placed on a small region Ωi,j ⊂ Ω such that D = ∪n1
i=1 ∪

n2
j=1 Ωi,j ⊂ Ω, and

Dc = Ω\D ⊂ Ω. In practice, Ωi,j are considered to be square shape, all with the same size,

and dimension d × d, and the distance between two adjacent seeds to be l. Outside of the

seeded region Dc, U0 is set to be zero. For scalar seeds, we set a constant gray-scale values

vi,j ∈ (0, 255] on each seed domain Ωi,j . Thus, the seed image U0 has M + 1 gray values

{0, v1,1, . . . , vn1,n2} such that for any x ∈ Ω, U0(x) = vi,j if x ∈ Ωi,j , i = 1, 2, · · · , n1,

j = 1, 2, · · · , n2, and U0(x) = 0 otherwise. Typically, we picked vi,j =
255
M

[(i− 1)n2 + j]

for i = 1, 2, · · · , n1, j = 1, 2, · · · , n2 as uniformly distributed value in (0, 255].

Depending on the image and the objects, to stabilize the small separation between

objects and to avoid having the same index for different objects, we also utilize multi-

dimensional seeds. Figure 3.2 shows a multi-dimensional seed, where each seed dimen-

sion is shown separately in (a)-(d). In the first dimension, we increase the seed values in

x-direction (horizontally) then y−direction (vertically) such that the lowest value is located

on the upper-left corner and highest value is on the bottom-right corner. This is identical

to the scalar seeds, i.e., U1
0 = U0. In the second dimension, we start with the bottom-left

corner, increase the values in y-direction first then increase in x-direction, where the lowest

gray-value is on the bottom-left corner while the highest gray value is on the uppper-left

corner: U2
0 (x) = vi,j if x ∈ Ωi,j, i = 1, . . . ,M where seeds are assigned in the same logic:

vi,j = 255
M

[n1n2 − in2 + j] for i = 1, 2, · · · , n1, j = 1, 2, · · · , n2. We add two additional

dimensions with random seeds given by a random permutation of the set {v1, ..., vM}. The

51



(a) (b) (c) (d)

(e) (f) ḡ (g) (h)M (i) (j) ḡ · M

Figure 3.2: [4 dimensional seed, edge function and mask image] (a)-(d) shows an example
of multi-dimensional seed. (a) U1

0 (horizontal), (b) U2
0 (vertical), (c) U3

0 (random) (d) U4
0

(random). (e), (g) and (i) are three given images, (f), (h) and (j) show the corresponding
edge function ḡ, a mask imageM and a mask and edge functionM· ḡ used for each image
respectively.

values vi of seeds in different dimensions are identical, but the order of placement is differ-

ent in each dimension. We recommend p ≥ 3 for multi-dimensional seeds, where p denotes

the number of seed dimension, i.e. U0 = [U1
0 , . . . , U

p
0 ] ∈ Rp. Through out this paper, we

consider p = 4.

The most important geometric features of any image are the edges. When objects in

a given image Φ0 are separated by edges, we define a continuous monotone decreasing

function ĝ(t) : R→ [0, 1] such that ĝ(|∇Φ0|) gives the edge information. Here ∇ denotes

the gradient operator and | · | represents the ℓ2 norm. Some examples of ĝ includes

g̃(t) = e−τt2 , and ḡ(t) = (1 + τt2)−1 (3.1)

with τ > 0. With the monotone decreasing property of ĝ(t) with respect to t, the diffusion

process stops close to the object boundaries. To eliminate the coarse boundary features

and remove noise, we consider g(Φ0) = ĝ(|∇(Gσ ∗ Φ0)|), where Gσ denotes the two

dimensional Gaussian function with the variance σ.

If objects are separated with a different background color, we utilize a mask image
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M : Ω → [0, 1] that is a binary image having zero values on the background and one on

the objects. In this case, we set g(Φ0) = M in the model (Section 3.2.2). Both ĝ and

M can be considered at the same time when it is required to distinguish the objects from

background as well as edges from objects. Figure 3.2 gives three examples of using edge

function and mask images, where ĝ,M andM · ĝ are suggested for image (e), (g) and (i)

respectively.

3.2.2 Diffusion Phase [Step 2]

The weighted harmonic variational diffusion model is given by

min
U

{
Fη[U ]

∣∣ U ∈ BV (Ω;R2) a ≤ U(x) ≤ b
}
, where (3.2)

Fη[U ] =

∫
Ω

g(Φ0)|∇U |2dx+
η

2

∫
Dc∩M

|U − U0|2dx.

The first term is the regularization term and the second term is the data fidelity term, η > 0

is the fidelity parameter, 0 < a < b < 255,∇U denotes the gradient of the image U defined

by∇U := (∂xU, ∂yU), where ∂x and ∂y are the partial derivatives along the horizontal and

vertical directions, and the function g is described near (Equation (3.1)) in Section 3.2.1.

The parameter η in the fidelity term enforces the solution to stay close to the seed image

U0 on the regions Ωi,j, i = 1, . . . , n1, j = 1, . . . , n2. To obtain the unique index in each

object, η should not chosen too large.

We propose the diffusion algorithm to solve (Section 3.2.2) efficiently, by exploiting

variable splitting and alternating direction method of multiplier [118, 121, 122, 123, 117,

116]. We let the auxiliary variable V ∈ L2(Ω;R) and we define Γ := {V ∈ L2(Ω;R)|a ≤

V (x) ≤ b}. We rewrite (Section 3.2.2) equivalently as the following constrained optimiza-
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tion problem

min
U,V

{∫
Ω

g(Φ0)|∇U |2 dx+
ηD
2

∫
Ω

|V − U0|2dx
}

(3.3)

subject to V = U and V ∈ Γ,

where ηD : Ω→ (0,+∞) is given by

ηD(x) =

 0, x ∈ D

η, x ∈ Dc ∩M.
(3.4)

We let λ be the Lagrange multiplier associated with the linear constraint V − U = 0. The

augmented Lagrangian functional associated to (Equation (3.3)) is given by

Lµ(U, V, λ) =

∫
Ω

{
g(Φ0)|∇U |2 +

ηD
2
|V − U0|2 + ⟨λ, V − U⟩+ µ

2
|V − U |2 + χΓ(V )

}
dx,

where µ > 0 penalty parameter, χΓ(V ) is the indicator function given by

χΓ(V ) :=

 0, V ∈ Γ

+∞, otherwise.

The algorithm to solve (Equation (3.3)) is given as follows. We initially set k = 0, and

let V (0) = 0 and λ(0) = 0 be the initial values. For any k ≥ 1, given V (k) and λ(k), we

compute U (k+1) by solving

U (k+1) = argmin
U
L(U, V (k), λ(k)).

More precisely, we compute U (k+1) by solving

min
U

∫
Ω

{
g(Φ0)|∇U |2 + ⟨λ, V (k) − U⟩+ µ

2
|V (k) − U |2

}
dx. (3.5)
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To find the close-form solution and to encourage a fast diffusion, we modify this energy

functional as follows. We let G0 = max
{
g(Φ0(x))

∣∣x ∈ Ω
}

, H(U) =
(
g(Φ0(x)) −

G0

)
|∇U |2, and write g(Φ0)|∇U |2 = G0|∇U |2+H(U). We exploit the second order Taylor

polynomial approximation ofH(U) about U (k) to get

H(U) ≈ H(U (k)) +
〈
∇H(U (k)), U − U (k)

〉
+

θ

2
|U − U (k)|2

=
(
g(Φ0)−G0

)
|∇U (k)|2 +

〈
2∇ ·

(
(G0 − g(Φ0)∇U (k)

)
, U − U (k)

〉
+

θ

2
|U − U (k)|2,

where θ > 0 is a scalar. With this approximation, the U -minimization subproblem (Sec-

tion 3.2.2) becomes

U (k+1) = argmin
U

∫
Ω

G0|∇U |2 dx+

∫
Ω

〈
2∇ ·

(
G0 − g(Φ0)∇U (k)

)
, U
〉
dx

+
θ

2

∫
Ω

|U − U (k)|2dx+
µ

2

∫
Ω

|U − V (k) − µ−1λ(k)|2dx.

The first-order optimality conditions of this problem is given by

(
(θ + µ)I − 2G0∆

)
U (k+1) = θU (k) + 2∇ ·

(
(g(Φ0)−G0)∇U (k)

)
+ µV (k) + λ(k).

We exploit the Fast Fourier Transform (FFT) to obtain the closed form solution of this

problem. Since FF−1 = I we then obtain

U (k+1) = F−1
[
F
(
θU (k) + 2∇ ·

(
(g(Φ0)−G0)∇U (k)) + µV (k) + λ(k)

)
/D
]
,

where D = (θ + µ)I − 2G0F(∆)F−1.

Next, we compute V (k+1) given U (k+1) and λ(k) by solving

V (k+1) = argmin
V
L(U (k+1), V, λ(k)), where
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L(U (k+1), V, λ(k)) =

∫
Ω

{ηD
2
|V−U0|2+⟨λ(k), V − U (k+1)⟩+µ

2
|V − U (k+1)|2+χΓ(V )

}
dx.

The objective function is the sum of a qudratic functional and an indicator function, so the

solution is given in a closed form in form of projection as follows

V (k+1)(x) = ProjΓ(γ), where γ =
ηDU0(x) + µU (k+1)(x)− λ(k)(x)

ηD(x) + µ
.

By the definition of Γ, then we have

V (k+1)(x) =


a γ ≤ a

γ a ≤ γ ≤ b

b γ ≥ b

.

Finally, we update the multiplier λ(k+1) by

λ(k+1) = λ(k) + µ(V (k+1) − U (k+1)).

This algorithm is referred as Diffusion Algorithm, summarized in Algorithm 5.

Algorithm 5 The Diffison Algorithm
Data: A digital image Φ0, mask imageM, seed image U0

Output: Diffused Image U∗
Initialization: k = 0; V (0) = 0, λ(0) = 0
Parameters: µ > 0, θ > 0, η > 0
Set D = (θ + µ)I − 2G0F(∆)F−1

For k = 1, 2, . . . do

U (k+1) = F−1
(
F
(
θU (k) + 2∇ ·

(
(g(Φ0)−G0)∇U (k)) + µV (k) + λ(k)

)
/D
)
;

V (k+1)(x) = ProjΓ(γ(x)), γ(x) = (ηDU0(x) + µU (k+1)(x)− λ(k)(x))/(ηD(x) + µ);
λ(k+1) = λ(k) + µ(V (k+1) − U (k+1));

If stopping criteria satisfied, set U∗ = U (k+1).

For multi-dimensional seeds, the minimization problem (Section 3.2.2) is solved for

each seed dimension separately and can be performed in parallel for efficiency. As a result,
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the diffused image is also multi-dimensional.

The converged image U∗ has a diffused value of nearby seeds. The parameter η in

(Section 3.2.2) controls how close the value in the domain Ωi,j to the given seed si,j , and

it is not necessary to keep η very large. Since the edge function g gives information about

the boundary of the objects, the diffusion will stop or slow down near the boundary, and

give unique index to each object. The value of the diffused image U gives unique index di

to each object for i = 1, . . . , K, i.e., we refer to this as the diffused index image.

3.2.3 Clustering and Counting [Step 3]

During the diffusion process, seeds within each object start to converge to an unique index

di, for i = 1, . . . , J . Considering the histogram H(U) of image U , the number of local

maximum J in H(U) starts from the total number of seed plus zero value on Dc, i.e.,

M + 1, and converges to K, the number of objects. Since different values of seeds are

placed uniformly, especially when multidimensional seeds are used, it is highly unlikely

for two objects in different locations to converge to the same index. Local seeds converge

to one unique index di as long as they are within one object.

In [Step 3], we count the number of local maximum by clustering the histogram H(U)

of U . Each local maximum represents di, a unique index for an object, and the number of

such local maximums K is the number of the objects in the image and bigΦ0.

For one-dimensional scalar seed image, we consider Gaussian fitting on H(U) and we

refer to it as Counting Objects by Diffused Index - Scalar seed clustering (CODI-S). The

histogram can be described as a discrete function h(rk) = nk/N where rk is the kth gray

level intensity within the range [0, 255] in U , nk is the number of pixels having the intensity

value rk, and N is the total number of pixels in the image. A discrete Gaussian filter

p(i) = 1
σ
√
2π
e−i2/2σ2 for i = −r, · · · , r, (where σ > 0 denotes the variance) is considered

onto H(U) to obtain a smooth fitting curve. The number K of local maximums is counted

by implementing binary search recursively. A larger r and bigger σ results in smoother
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(a) (b) (c) (d) (e) (f)

Figure 3.3: [CODI-S and CODI-M] (a) Given image with three cells (b) The mask image
showing open boundaries between the objects. (c) The histogram and Gaussian fitted curve
of CODI-S. (d) The visualization of CODI-S clustering in image domain. (e) The clustering
results of CODI-M, projected onto two dimension for visualization. (f) The visualization
of CODI-M clustering in image domain. Both methods counts three cells.

curve which gives a fewer number of local minimums. A smaller r and smaller ϵ involved

more details from the labeled pixels that it can give larger number K. CODI-S has a large

stable range of optimal parameters, due to smoothing H(U) with the Gaussian convolution.

We used σ ∈ [0.05, 1.2], and r = 5 though out this paper. Figure 3.3 demonstrates the result

obtained by the CODI-S on the cell image shown in (a). The mask image described in [Step

1] is shown in (b). Notice the open boundaries between the three cells. (c) demonstrates

the histogram and Gaussian fitted curve after the diffusion process [Step 2]; we observe

three peaks where each peak corresponds to each cell. The visualization of the clustering

by CODI-S is also shown in (d), where the histograms in (c) are split into 3 sets at the two

minimum values between the local maximums.

For multi-dimensional seeds, we use high dimensional density method, such as DB-

SCAN, and refer to as Counting Objects by Diffused Index - Multi-dimensional seed clus-

tering (CODI-M). Using DBCAN [156], the seed vector similarity is tracked by the density,

defined by ϵ and MinPts via l2 Euclidian distance norm. Here ϵ defines ϵ-neighborhood,

Nϵ(x) = {y ∈ Rp : dist(x,y) ≤ ϵ}, and MinPts is the minimum number of points

required within ϵ-neighborhood to be connected as one cluster. This property is called di-

rect density reachability of x from y. For points x that does not have density reachable

points in its ϵ-neighborhood, they are classified as noise. To find a cluster of 4-dimensional

histogram H(U) of U , we start with an arbitrary point U(x) and retrieves all density-

reachable points from U(x) with respect to given ϵ > 0 and MinPts > 0. The reaching
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procedure ends when all points in a cluster has been visited and all the neighboring points

in distance ϵ from any of the point in this cluster have been included in this cluster. The

next step is to move onto the next unvisited point. The accuracy of the method depends

on the two parameters ϵ and MinPts. A relatively small MinPts and large ϵ gives fewer

and bigger clusters, while a relatively large MinPts and small ϵ leads to more and smaller

clusters. In this paper, we use ϵ ∈ [1, 1.2],MinPts ∈ [12, 18] as the optimal range.

In CODI-M with DBCAN, clusters {Ci|i = 1, . . . , K} are formed, where the centroid

is the unique index di for each object. In Figure 3.3 (e) is a projection in two directions

for visualization. Each object is visualized in multi-dimensional space with a different

color. The number of different colors accurately gives the number of cells K. For each

data x ∈ Ω, it is associated with the diffused index value and a cluster

{(x,U(x), Ci) : U(x) ∈ Ci, i = 0, 1, . . . , K},

where Ci denotes the i-th cluster in the high dimensional histogram domain, and K denotes

the count. Let C0 stores x which is considered as noise, and in Figure 3.3 (e), C0 is marked

as black circles. (f) shows a visualization of each cluster Ci in Ω for i = 1, 2 and 3.

3.3 Properties of the proposed methods

In this section, we focus on a few interesting properties of the proposed methods. Since

the proposed CODI counts the diffused index before the full convergence of the diffusion

algorithm, we utilize this aspect to count objects that have open boundaries and explore

this aspect. Secondly, since we use clustering methods to count the diffused index, we can

further extend this idea and count different-sized objects separately. By using regularized

k-means [157], we show how different-sized objects can be separately counted just by one

simple additional step.
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3.3.1 Open boundary and counting accuracy

The proposed CODI counts the diffused index before the full convergence of diffusion

algorithm is reached. These method can handle not fully closed boundaries in the objects,

and we present the effect of such cases. In Figure 3.4, three synthetic images with different

open boundaries are presented: (a) thick and narrow boundary opening, (b) thin and narrow

boundary opening, and (c) thin and wide boundary opening. The given image size is 47×91

with the sizes of gaps as (a) 9 × 15, (b) 9 × 3 and (c) 21 × 3. Identical seeds distribution

U1
0 is used for CODI-S and the first dimension of CODI-M. For CODI-M, we use U2

0

for second dimension, and two random seeds similar to the idea in Figure 3.2 for third

and forth dimensions. The third and forth columns demonstrate CODI-S and the fifth and

sixth columns demonstrate CODI-M after 40 and 80 iterations of the diffusion process

respectively.

We observe that even after short iterations for images (a) and (b), both CODI-S and

CODI-M find two objects clearly, even with partially opened boundary. (a1)- (a4) and (b1)-

(b4) all finds two objects. When the boundary opening is large and separation between the

objects are not very clear like image (c), it is better for CODI-S to have smaller number of

iteration while CODI-M needs a larger number of iterations.

3.3.2 Further grouping counts of similar sized objects

Since the proposed method utilize clustering of H(U), we can further distinguish different

sizes after the clusters Cis are found. The clustering of H(U) gives data x ∈ Ω in the form

of

{(x, U(x), Ci) : U(x) ∈ Ci, i = 0, 1, . . . , K},

where Ci denotes the i-th cluster in the multidimensional histogram domain, and K denotes

the counting result. Now, we consider the size of each clusters S = {|Ci||i = 1, . . . , K}

and use the Regularized k-means algorithm [157] to further cluster this set S. The Regu-
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Seeds & Images CODI-S-40 iter CODI-S-80 iter CODI-M-40 iter CODI-M-80 iter
(a) U1

0 (a1) (a2) (a3) (a4)

(b) U2
0 (b1) (b2) (b3) (b4)

(c) (c1) (c2) (c3) (c4)

Figure 3.4: [Open boundary experiments] (a), (b) and (c) show three synthetic images
where two square objects are separated with various size of gaps. An identical seed image
U1
0 is used for CODI-S and the first dimension of CODI-M. U2

0 is used for second, and
two random seed images for third and forth dimensions. The third and forth columns show
CODI-S, and the fifth and sixth columns CODI-M after 40 and 80 iterations respectively.
When the gaps between objects are wide and thin, it is helpful to have diffusion iteration
small for CODI-S and large for CODI-M.
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larized k-mean energy is given by

E[k, {Ii}, {ci}|S] = λ

(
k∑

i=1

1

ni

)
+

k∑
i=1

∑
|Cj |∈{Ii}

||Cj| − ci|2, (3.6)

which is minimized for given size of each cluster |Ci|. Here k is the number of groups

found in the grouping process, ni = |Ii| is the number of objects that are contained in

the group Ii, and ci = { 1k
∑k

j=1 |Cj| : |Cj| ∈ Ii} is the average object size in the group

Ii. This li represents the group with similar size objects, and this similarity of the sizes

are determined by the λ. This model automatically picks a reasonable number of cluster k

with a parameter λ. A large λ gives fewer clusters while a small λ gives more number of

clusters.

In Figure 3.5, (a1) is the given image from [135] where we used the edge function as

g(t) = χt<130 and g(t) = χt>125, with χt∈Ω(t) =


1 t ∈ Ω

0 o.w.

to threshold the given image.

As a counting result, CODI-M identifies K = 74 objects. From the given image (a1) and

its counting result {(x, U(x), Ci) : U(x) ∈ Ci, i = 0, 1, . . . , K}, (a) shows a graph

of λ vs. the number of groups. Notice that the Regularized k-mean (Equation (3.6)) has

large plateaus showing the clustering result (the number of k) is not very sensitive against

the choice of λ. We picked three λ values around different plateaus λ = 1× 104, 5× 104,

1×105 for (a1) and λ = 3×104, 5×104,1×105 for (b1). The colored image shows different

size objects identified by different colors, and the histogram of S and tables below show

more details. In each histogram, each bar denotes a group of different size objects. The

horizontal axis – centroid size of each group – is the average size of objects in each group.

The height of bars denote the number of objects that belongs to the same group. In the

table (a2)-(a4), Ii shows how many different kinds of sizes are identified, ci represents the

average size in that group, and |Ii| represents how many of such object exists in each group.

For example in (a2), the table shows there are 5 different size of objects in image (a), with
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32 number of the size around 54 objects, 23 of bigger objects of size 150, 16 of bigger ones

of size 236, 3 of bigger ones of size 357, and one very big one of size 1199. As λ gets

bigger the grouping gets simplified: (a3) separates objects to three, two of smaller sizes (46

of size around 78, and 28 number of size around 230), and one big one of size 1199. (a4)

shows it can be also separated to two different sizes one big one and all other smaller of

average size 135.

The sizes of cells in (b1) are similar size. Table (b2) shows that when using 3×λ = 104,

3 groups are formed, where the largest group has 24 objects of average size 327.71 pixels,

and the smallest group contains 5 objects of size 558 pixels. As shown in table (b3), as 3λ

increases to as large as 105, 2 groups are formed, where the larger group has 30 objects with

averages size to be 169.57 pixels, which distinguishes the longer cells and shorter cells.

When λ = 2 × 105, all objects move into one single group of average size to be 252.33

as shown in table (b4). In conclusion, a smaller λ gives more groups and the plateaus of

k−λ curves in Regularized K-means provide meaningful justification about the number of

groups of objects with respect to the distribution of size of objects in a given image.

3.4 Numerical Experiments and Comparisons

In this section, we demonstrate the effectiveness and efficiency of the proposed methods

on various examples. All experiments are performed on MATLAB using Intel®Core i5-

9600K processor with 3.7GHz 6Core CPU and 16 GB of RAM. In all experiments, we fix

µ = 5×10−5, θ = 1, and η = 0.0001 in Diffusion Algorithm. In some cases, downsampling

of original image is used for computational efficiency. An artificial outline is added on the

boundary of the image domain Ω to prevent merging of objects near the boundary due to the

effect of Fast Fourier transform. For CODI-S, we use a horizontal seed and for CODI-M

we use a 4-dimensional seed involving one vertical, one horizontal, and two random seeds,

as shown in Figure 3.2. Due to the two dimensions with random seeds, multiple tests are

performed.
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(a1) (a5) (a6) (a7)

(b1) (b5) (b6) (b7)

Given image CODI-S CODI-M Existing result

(a1) 70 (1.68s) 74 (0.82s) 74 from [135]
(b1) 45 (1.87s) 43 (0.77s) 43 from [135]

Figure 3.6: [Cell counting] (a1) and (b1) are two cells images in Figure 3.5 from [135].
(a5) and (b5) are results from [135]. (a6) and (b6) are results of CODI-S. (a7) and (b7)
are results of CODI-M. CODI-M experiments are performed 20 times, with the counting
results between [72, 74] for (a1) where 74 cells are found in 18 out of 20 trials. For (b1),
the counting between 42 and 46 among 16 out of 20 trials. The average cpu time is 0.82
second and 0.77 second for (a1) and (b1) respectively. CODI is geometry-independent, and
able to count cells of various sizes and shapes, very efficiently.

Cell counting: We experiment on cells images in Figure 3.5 (a1) and (b1). The count-

ing results are illustrated in Figure 3.6. (a5) and (b5) show the results from [135]. (a6)-

(a7) and (b6)-(b7) are results by CODI-S and CODI-M respectively. The method in [135]

counted 74 cells in (a5) and 43 cells in (b5). The CODI-S count 70 cells in (a6) and 45 in

(b6). The CODI-M count 73 cells in (a7) and 43 cells in (b7). For CODI-M, experiments

are performed 20 times, and the counting results varies between [72, 74] for (a1) where 74

cells are found in 18 out of 20 trials. For (b1), the counting result locates between 42 and

46 among 16 out of 20 trials. The average cpu time is 0.82 second and 0.77 second for (a1)

and (b1) respectively. This shows that the CODI-M and CODI-S are both comparable to

[135], and geometry-independent, and able to count cells of various sizes and shapes very

efficiently.

65



Counting synthetic cell images: In Figure 3.7, we show the comparative counting

results on the VGG-cell dataset [158], which is one of the public benchmark datasets. This

dataset consists of images of size 256 × 256 with blue synthetic cells with blurry and

overlapping boundaries. For CODI-S and CODI-M, we stop the diffusion iteration at ratio

defined in (Equation (3.7)) to be 0.2 to 0.3 and 0.01 respectively. Since the data set has

many overlapping or connected cells, for CODI-M, we further utilize the grouping strategy

described in Section 3.3 for more accurate counting result. From the result of regularized

k-means with λ = 10, 000, consider the cluster for the smallest cells. We take the average

size of objects in this cluster to represent the average cell size in the image. We multiply this

value to the cluster with bigger cell to get a good counting result. We tested on 10 images

(No.1, 48, 79, 84, 96, 127, 140, 155, 175, 196), and performed CODI-S once, and CODI-M

15 times (for random initial condition) for each image. The MAE of CODI-S is 1.78 with

standard deviation 1.40. For g, we use the threshold χt>137. We let 0.1 ≤ σ ≤ 1.2 and

2 ≤ r ≤ 3 for CODI-S and ϵ = 0.08 and MinPts = 17 for CODI-M method. The MAE of

CODI-M of 150 experiments has average 1.73 with standard deviation 1.42. We compared

proposed methods against some benchmark learning based methods in cell counting. The

results of [158, 145, 144, 159, 146, 13, 147] are from [147] and the results of [160, 161,

148, 149, 155] are from [155].

Counting cells in human bone marrow in MBM dataset: In Figure 3.8, we present

statistical comparison results of proposed methods on MBM dataset. This dataset was first

released by [162] and modified by [153] into a set of 44 images of 600 × 600 size with

126± 33 identified nuclei in each image. We tested on 10 images (No.4, 10, 14, 23, 26, 28,

29, 31, 32, 44) and performed CODI-S once, and CODI-M 15 times for each image. For g,

we use the threshold χt>150. We let 0.01 ≤ σ ≤ 0.7 and r = 3 for CODI-S and ϵ = 0.7 and

MinPts = 10 for CODI-M. The MAE of CODI-S is 3.10 with standard deviation 2.29. The

MAE of CODI-M is 6.84 with standard deviation 4.22. We compare the proposed methods

to some benchmark learning based methods [13, 12, 150, 146, 153, 147, 151, 152, 155] in
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Comparison results on VGG Cell Dataset
Methods MAE Methods MAE
Lempitsky’s method [158] 3.52± 2.99 Artea’s method [160] 4.5± 0.6
Mask R-CNN [145] 36.92± 19.73 Fiaschi’s method [161] 3.2± 0.1
U-Net [144] 27.77± 25.48 Count-Ception [148] 2.3± 0.4
StructRegNet[159] 9.80± 8.68 Jiang’s method [149] 2.2± 0.5
Cell-Net [146] 2.2± 0.5 Rodriguez’s method[155] 2.2± 0.5
FCRN [13] 2.75± 2.47
C-FCRN+Aux [147] 2.37± 2.27
CODI-S 1.78± 1.40 CODI-M(5) 1.86± 1.59

CODI-M(15) 1.73± 1.42

Figure 3.7: [VGG cell counting] Comparison results on cell images in VGG dataset. We
let 0.1 ≤ σ ≤ 1.2 and r = 2 in CODI-S, and ϵ = 0.08 and MinPts = 17 in CODI-M.
We tested on 10 images (No.1, 48, 79, 84, 96, 127, 140, 155, 175, 196), and performed
CODI-M 15 times and CODI-S once. Their corresponding mean and standard deviation
of MAE are presented in the table. We observe that CODI is comparable to the existing
methods without any training process.
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Comparison results on MBM Cell Dataset

Methods MAE Methods MAE
FCRN-A [13] 21.3± 9.4 Marsden’s method [12] 20.5± 3.5
Jiang’s method [150] 14.5± 0.4 Cell-Net [146] 9.8± 3.2
CountCeption [153] 8.8± 3.2 He’s method [147] 6.6± 5.3
Jiang’s method [151] 6.0± 2.2 SAU-Net [152] 5.7± 1.2
Rodriguez’s method [155] 4.2± 2.4
CODI-S 3.10± 2.29 CODI-M(5) 6.58± 3.38

CODI-M(15) 6.84± 4.22

Figure 3.8: [Counting human marrow MBM dataset] (a) a cell image from MBM-Cell
dataset [153]. CODI-S and CODI-M are tested on 10 images (No.4, 10, 14, 23, 26, 28, 29,
31, 32, 44).

cell counting. Both CODI-S and CODI-M give relatively low counting loss, and CODI-S

achieves the lowest MAE among all the methods.

Counting Non-isometric Cells in ADI dataset: In Figure 3.9, we show statistical

comparison results on Adipocyte Cells. This dataset contains human subcutaneous adipose

tissue and was originally released by [163]. We used the downsampled version from [153]

where each image has size 150 × 150 and contains 165 ± 44.2 cells. The cells in this

image have light boundaries with different sizes and shapes, which makes this dataset to be

difficult to learn for some learning based methods [153, 152, 155, 149, 151], as shown in the

table. For the proposed methods, we apply a simple histogram equalization follow by the

mask g with the threshold χt>70. We let σ = 0.1, r = 2 for CODI-S and ϵ = 0.1,MinPts =

7 for CODI-M. CODI-S and CODI-M are tested on 32 images, and performed CODI-S

once and CODI-M for 15 time. The comparison results in Figure 3.9 are from [155]. It is

shown that the proposed methods achieves the lowest MAE and they are robust in counting

the isometric cells.
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Comparison results on ADI Cell Dataset

Methods MAE Methods MAE
CountCeption[153] 19.4± 2.4 SAU-Net[152] 14.2± 1.6
Rodriguez’s method [155] 17.3± 3.6 Jiang’s method [149] 10.6± 0.3
Jiang’s method [151] 10.1± 0.2
CODI-S 9.62± 5.70 CODI-M(5) 5.21± 3.41

CODI-M(15) 5.03± 3.45

Figure 3.9: [Counting non isometric cells - ADI dataset] (a) a cell image from ADI-Cell
dataset [153]. CODI-S and CODI-M are tested on 32 images. Experiments are performed
for 15 times for CODI-M.

Counting Hela Cells: In Figure 3.10, we present the statistical comparison results on

Hela Cell Data set introduced in [164]. The Hela Cell images have a low percentage of

overlapping cells where cells are separated by the bright edge boundaries.

Figure 3.10 compares the statistical results obtained by StructRegNet[159], Log [165],

ITCN [166], IRV [167], FCRN-A, FCRN-B [13], CNN-SR [168], which were from [159].

In [169], a tree-structured discrete graphical model is used to classify non-overlapping re-

gions by optimizing of a classification score. The detection is learned within the structured

output SVM framework through dynamic programming on a tree structured region graph.

In [127], the problem is formulated as a matching problem and the image self similarity

property is used. Then a Generic Matching Network is trained using a few labeled exam-

ples. Figure 3.10 shows that both CODI-S and CODI-M methods are comparable to [169,

127, 165, 166, 167, 13] without any need of learning.

The statistical counting results on the whole Hela Data set, containing 11 test images,

are given in Figure 3.10. The comparisons are made with Singletons [169], Full system w/o

surface [169], and Class Agnostic method [127], which their data are taken from [127].

All these methods require training and learning procedure. The CODI-S and CODI-M
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Comparison results on Hela Cell Dataset

Methods MAE Methods MAE
Singletons [169] 2.35± 0.67 ITCN [166] 71.72± 41.63
Full system w/o surface [169] 3.84± 1.44 IRV [167] 54.36± 40.06
Class Agnostic [127] 3.53± 0.18 FCRN-A [13] 32.9± 21.9
StructRegNet[159] 1.36± 1.67 FCRN-B [13] 1.38± 1.91
Log [165] 20.82± 13.91 CNN-SR [168] 2.18± 3.82
CODI-S 2.36± 2.25 CODI-M(5) 3.33± 3.11

Figure 3.10: [Hela cell counting] Comparison results on 11 Hela images. We let 0.1 ≤
σ ≤ 2.7 and 1 ≤ r ≤ 10 in CODI-S, and ϵ = 1.5 and MinPts = 20 in CODI-M. CODI
is comparable to the existing methods without any training process. CODI-M experiments
are performed 5 times, and the mean and standard deviation of MAE are presented in the
table. The results from FCRN, Log, ITCN, IRV , CNN-SR, and NERS are adopted from
[159].

do not require any training thus to obtain some statistics, we exploit CODI-S once and

CODI-M five times on each image in the training data set, containing 11 images. For g,

we implemented a threshold with χt≤100, contrast enhancement [170], a threshold with

χt≤70, and a dilation step with structuring element parameters to be (disk,1,4). We let

0.1 ≤ σ ≤ 2.7 and 1 ≤ r ≤ 10 for CODI-S and ϵ = 1.5 and MinPts = 20 for CODI-M

method.

For numerical comparison measures, we use Mean Average Error (MAE) = 1
n

∑n
i=1 |y−

y∗| for the number of objects. Here y∗ represents the ground truth counting number, y is

the computed number, and n is the number of images in the test set. Note that a lower

MAE is preferable. In Figure 3.10, we observe that CODI is comparable to the exsiting

method, but without any training. CODI-M is also able to track the objects location in

the image. Additional visualization results between the proposed methods, Class Agnostic

method [127], and Singletons [169] are shown in Figure 3.11.
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(c) (c1) [169] (c2) CODI-S (c3) CODI-M

0 10 20 30 40 50 60 70 80 90

Pixel Intensity

0

0.05

0.1

0.15

0.2

0.25

0.3

histogram

Gaussian Fitted

Hela Cells Size Ground truth CODI-S CODI-M Others

(a) 400× 400 177 177 (0.95s) 175 (5.34s) 171 [127]
(b) 400× 400 85 85 (2.06s) 88 (3.07s) 84 [127]
(c) 400× 400 67 65 (1.95s) 68 (1.39s) 67 [169]

Figure 3.11: [Hela cell counting] Hela cell images from [164]. CODI-S and CODI-M give
comparable counting results to [127] and [169]. In the parenthesis, we show the CPU times
for each computation. CODI-M experiments are performed 5 times, and the best results are
presented here, while all comparisons are given in Table Figure 3.10.
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(a) Given image (b) Edge function (c) CODI-S (d) CODI-M
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Given image Manual Count CODI-S CODI-M

(a) [70,72] 72 (2.16s) 70 (2.81s)

Figure 3.12: [Counting seamless leaf patterns ] (a) Given image of where manual counting
is given between 70 and 72. (b) The edge function g̃. (c) CODI-S counts 72 leafs. For 20
CODI-M experiments, the counts varies between [68,70] and 13 out of 20 trials results in
count 70. The subtle uncertainty comes from the small objects in the original image. The
average cpu time is 2.81 second. Figure (d) shows one representative result of CODI-M.

Counting seamless leaf patterns: We consider a seamless leaf image with lace veins

patterns, in Figure 3.12 for visualization. The manual counting give the number between

[70, 72]. For g, we use the edge detecting function ḡ in Equation (3.1) where ḡ > 0.7 is

considered as 1 as the binary output. In this example, CODI-S and CODI-M find 72 and

70 objects respectively.

Arabidopsis plant leafs: We consider an image of Arabidopsis plant from MSU-PID

dataset [171] shown in Figure 3.13 (a). In the ground truth image in (b) shows 10 leafs. We

compare our methods with [129], a Domain-Adversarial Neural Network (DANN) where

the counting is done by the density map estimation shown in Figure 3.13(c). For g, we used

a threshold with χt>137. To further separate the edges between the overlapping leaves, an

edge detecting function ḡ in (Equation (3.1)) where ḡ > 0.8 is considered as 1 as the binary

output. It finds 8 leafs, while CODI-S and CODI-M find 9 and 10 leafs, respectively.

Agriculture and fruits: We consider agriculture images in Figure 3.14: (a) an apple

tree (594 × 800), (b) a bunch of cherries (800 × 800), (c) a sparse apple tree (585 × 768)

from [172], and (d) a tomato plant (214 × 181). These are color images where the fruits

are red or orange and the rest of image is roughly green. For g, we subtracted the green
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(a) Given image (b) Ground truth (c) [129] (d) CODI-S (e) CODI-M

Pixel Intensity

Given image Manual Count CODI-S CODI-M Other

from [171] 10 9 (1.33s) 10 (0.07s) 8 [129]

Figure 3.13: [Arabidopsis plant leaf counting] (a) Given image of Arabidopsis plant [171].
(b) The ground truth image in [171] showing 10 leafs. (c) The density map estimation [129],
showing 8 leafs. (d) CODI-S counts 9 leafs. (e) CODI-M counts 10 leafs. Experiments
are performed 20 times on CODI-M, where 10 out of 20 trials results in count between 9
and 11. The subtle uncertainty comes from the delicate boundaries between the leaves in
the original image. The average cpu time is 0.07 second. Figure (e) shows the best results
among 20 CODI-M experiments.

channel (the second dimension) from the red channel (the first dimenstion) followed by

a thresholding χt>80, χt>110, χt>130, χt>110 for (a)-(d) respectively. Since there are many

overlapping objects, a rough estimate of manual counts are provided in form of intervals.

We apply the proposed methods to count the number of apples in (a),(c), cherries in (b)

and tomatoes in (d). For (c) and (d), we compare the proposed methods with some learning

methods [172] and [173] respectively. Figure 3.14 shows that the proposed methods are

able to find a correct estimation for the number of fruits.

Objects in the production line: The production line images are considered in Fig-

ure 3.15: (a) a cart of eggs and (b) a case of soda bottles. We compare CODI-M and

CODI-S with the method in [126]. In [126], the authors considered the segmentation,

Gaussian filter, Otsu Thresholding [174], Sobel Edge Detection [175, 176], and Hough

Circle Transform [177, 178]. For g, we used a threshold χt>205 for (a), χt>120 for (b) and

an erosion step on (b) with structuring element parameters to be (disk,1,4) to further distin-

guish the boundary. Due to the use of Hough Circle Transform, the work [126] is geometry

dependent. Figure 3.15 shows CODI is comparable while being geometry-free.
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(a) (b) (c) (d)

Given image Manual Count / Group Truth CODI-S CODI-M [172] [173]

(a) [205, 235] 202 (7.57s) [217, 226] (4.85s)
(b) [27,33] 31 (0.25s) [27,33] (0.07s)
(c) [172] 10 9 (1.85s) [8,10] (0.19s) 9
(d) [173] 19 19. (2.69s) [16,22] (0.23s) 16

Figure 3.14: [Counting fruits] (a) An apple tree (b) A bunch of cherries. (c) an apple
tree image from Five-Tropical-Fruits dataset [172]. (d) a tomato image from [173] Both
CODI-S and CODI-M find a number within the accepted range. Experiments are performed
20 times on CODI-M. For (a), the results varies in [208, 226], where 14 out of 20 trials
generate results in [217, 226]. For (b) the result varies between [25,40] where 14 out of 20
experiments results in [27,33]. This result is consistent with the large quantity of apples in
(a) and the unclear boundaries between cherries in (b). The average cpu time is 4.85 and
0.07 for each image respectively. For (c), the result from CODI-M varies between [8,10]
where 7 out of 20 experiments results in 9 or 10. For (d), the result from CODI-M caries
between [16,22] where 9 out of 20 experiments result in [18,20].
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(a) (a1) [126] (a2) CODI-S (a3) CODI-M

Pixel Intensity
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(b) (b1) [126] (b2) CODI-S (b3) CODI-M

Pixel Intensity

Given image CODI-S CODI-M Others

(a) 29 (0.38s) 30 (0.28s) 30 [126]
(b) 20 (1.08s) 19 (0.10s) 20 [126]

Figure 3.15: [Counting objects in the production lines] (a) A cart of eggs. (b) A case of soda
bottles. The second column shows results by CODI-S, the third column by CODI-M, and
the forth column by [126]. Experiments are performed 20 times on CODI-M. For (a), the
results varies in [29, 31], where 18 out of 20 trials generate 30 as counting result. For (b) the
result varies in [18, 23] where 18 out of 20 experiments generate results between [18, 20].
CODI gives comparable results to [126] without exploiting any geometrical information.
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(a) (b) (c)

Given image Manual count CODI-S CODI-M

(a) 292± 10 286 (6.48s) [285,302] (6.29s)
(b) 94† 94 (3.22s) [93,95] (3.26s)
(c) 17± 1 17 (0.33s) [14,17] (1.10s)

Figure 3.16: (a) Concert crowd image (b) GPS image from DOTA dataset [179, 180]. (c)
Penguin image from [181]. An estimated number of people and vehicles are obtained by
manual counting. Experiments are performed 20 times on CODI-M. For (a), the results
varies in [283, 315], where 13 out of 20 trials generate result in [285,302]. For (b) the
result varies in [93,96] where 14 out of 20 experiments generate results between [93,95].
The subtle unstable of the result for (a) is due to the large quantity of people in the original
image. † The ground truth of 94 is provided in the dataset. For (c) the result varies within
the range [14,17], and more than 50% of experiments gives 16 or 17 counts.

Crowd , Vehicle, and Wild animal: Figure 3.16 displays (a) an image of concert

crowd, (b) a GPS image from DOTA dataset [179, 180], and (c) a wild animal penguin

image from dataset in [181]. An estimated number of people, vehicles, and penguins are

obtained by manual counts given in Figure 3.16. For g, we used χt<155 in (a), χt>220

followed by a dilation step with structuring element parameters to be (disk,1,4), and χt>220

in (c). We observe that the proposed CODI-S and CODI-M methods give good estimation

of the counts.

In the following, we present a few aspects of CODI. First, to ensure the quality of

diffused index, we present ideas to properly choose the seed location and size. Then,

we present the effect of the downsampling of original image, and finally comment on the

choice of parameter in computation.

Since CODI counts the diffused index, it is helpful to have the indexes to be as separated

as possible. We propose the following simple rules on the distance between seeds and size

76
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(c) (c1) Count = 10 (c2) Count = 10

Figure 3.17: [Seed sparsity/distance] (a) The given image. (b) and (c) are two different seed
images. If there are objects without any seeds inside, CODI misses counting these objects
as expected as in (b1) and (b2). With multiple seeds within all objects, both methods count
correctly as in (c1) and (c2). This illustrates the importance of having the distance between
seeds to be smaller than the minimum distance between objects.

of seeds, for better performance of CODI:

1. The distance between (the boundary of) seeds should be smaller than the minimum

distance between the boundary of objects, that every object has at least one seed

inside.

2. The size of seed itself should be small compared to the minimum size of objects, that

no two objects are covered by only one unique seed. In addition, we found that the

convergence is faster with smaller seed size.

Figure 3.17 shows the effect of counting results based on different sparsity of seeds.

(a) is a synthetic image of size 126 × 127, and experiments are preformed based on two

seed images (b) and (c), with two different distance between seed boundaries d = 38 and

d = 6 respectively. The size of seeds are both 2 × 2. (b1)-(b2) and (c1)-(c2) provide the

counting results form CODI-S and CODI-M respectively. If there are objects without any

seeds inside, CODI misses counting these objects as expected, shown in (b1) and (b2). As a

comparison, both proposed methods count 10 objects in (c1) and (c2), if there are multiple

seeds within all objects to be counted. This illustrates the importance of Rule 1 that it
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is important to have the distance between seeds to be smaller than the minimum distance

between objects.

As for the size of the seeds, if multiple objects have only one large seed shared, it will

be identified as one object in CODI. Rule 2 suggest each seeds to be small compared to

the minimum size of the objects to ensure separation between different objects. We further

experiment with the size of seed in Figure 3.18. It shows that even if the size of the seed is

smaller than the size of the objects to be counted, it is better to have smaller seeds for faster

diffusion. We experiment on a binary image of size 281× 87 with 6 hexagons using seeds

of size 20×20 and 2×2 respectively. The distance between the boundaries of big seeds and

small seeds are both 10 pixels, which is smaller than the minimum distance between any

two hexagons to be counted. The first and second rows show CODI-S and CODI-M using

big seeds, while the third and fourth rows show CODI-S and CODI-M using small seeds

respectively. With smaller seeds, less than 40 iteration for both CODI-S and CODI-M give

correct counting of 6, while for bigger seeds (top two rows) takes 300 to 400 iteration to

find the correct counting. To demonstrate the relation between seed size and convergence,

we set the objective function in (Section 3.2.2) at nth iteration to be En, and consider

Rn =

∣∣∣∣En − En−1

En−1

∣∣∣∣ (3.7)

for convergence measure. If Rn is small, it means the diffusion is converging. For each

experiments, the clustering results are shown in 3 stages: first column: Rn = 0.09, second

column: Rn = 0.05, and third column: Rn = 0.01. In Figure 3.18 the third row, after

32 iterations, Rn = 0.09 in CODI-S, 6 objects are found. After another 9 iterations, Rn

decreased to 0.05 and 6 objects are found by CODI-S again. This shows that using rela-

tively small seeds results in good counting results with Rn = 0.05− 0.09. For bigger seeds

Rn = 0.01 is needed, since changing given seed values to become a diffused index for each

object takes longer.
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Figure 3.18: [Seed size v.s. Convergence] From one given image, two different sizes of
seeds are used while keeping the distance between the seeds to be the same (smaller than
the minimum distance between the objects). For smaller seeds in third and forth row, CODI
gives good counting results with Rn = 0.05− 0.09. For bigger seeds Rn = 0.01 is needed,
since changing given seed values to become a diffused index for each object takes.

79



(a) Given image (b) Visualization (c) Downsample test (CODI-S)
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Figure 3.19: [Downsample and cpu time] (a) The given image of 1000× 1097 with manual
counting in the range of [203, 213] which is shown as the highlighted region in (c). (b) a
visualization of seven different downsampled image, ranging from 76% to 88%. (c) The
blue circles represents CODI-S, the red circles the cpu time. The blue error bars denotes the
mean and standard deviation of 50 experiments of CODI-M, and the red error bars those
of cpu times. Notice while the counting results are near the correct range, cpu time clearly
reduces with downsampling.

Given an image of high resolution, reducing the size of image while keeping the bound-

ary information can significantly reduce the cpu time. Figure 3.19 shows reduction of size

vs the counting result. (a) is the original image of size 1000 × 1097. With manual count-

ing, there are about [203, 213] number of cells, depending on how very small objects are

counted. This image is reduced to 7 different levels of quality as shown in (b), level of

reduction ranging from 76% to 88% reduced from the original image. For example, after

88% reduction, the given has been reduced to size 140×154. For each of the seven reduced

image in (b), we perform CODI-S for once and CODI-M for 50 times. In (c), blue dots are

CODI-S, blue bars are CODI-M, and the yellow color bar is a range of correct counting.

Red bar graphs show the CPU time in seconds for CODI-S and CODI-M showing the clear

reduction on cpu time. The x-axis shows the downsampling rate. Notice while the counting

results are near the correct range, cpu time clearly reduces with downsampling.

As for the stability of parameters for CODI-S and CODI-M, we consider the parameter

space in terms of r and σ for CODI-S, and in terms of MinPts and ϵ for CODI-M. We test
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Figure 3.20: [CODI-S parameter space] Visualization of countingresult in the parameter
space (r, σ) ∈ [2, 15]× [0.01, 3] ∪ [1.6, 3] based on different diffusion stage. (a)-(e) shows
when Rn = 50%, 40%, 30%, 20%, 10%. The ground truth of counting result is 30, where
the more yellow the color is more accurate the result. This result is consistent with Fig-
ure 3.4 where smaller number of iteration is favorable for CODI-S.

with Figure 3.15(a) image. In Figure 3.20 and Figure 3.21, the most yellow region denotes

the parameter set that produce 100% correct counting results. We present the parameter

graph as the diffusion algorithm convergence. We consider Rn in (Equation (3.7)) for con-

vergence measure. If Rn is small, it means the diffusion is converging. In Figure 3.20,

we show five experiments (a)-(e) where Rn ∈ {50%, 40%, 30%, 20%, 10%}. The ground

truth of counting result is 30. When Rn = 10%, there are larger green region in the pa-

rameter space that produces high accuracy. These graphs also present the relation between

the smoothing of histogram, the number of iteration and the counting results. In general,

there are large regions with yellow which represent good counting results. This result is

consistent with Figure 3.4 where smaller number of iteration is favorable for CODI-S. In

Figure 3.21, the same experiments are conducted for CODI-M where we have Rn set to be

15%, 10%, 5% in (a)-(c). The red marks denotes two examples of the optimal parameters

we recommend for the experiment in similar cases. When Rn ≤ 10%, the counting result

won’t be affected by small perturbation of the parameters. As in the case of open boundary,

CODI-M with longer iteration give stable results.

81



(a)Rn = 15% (b)Rn = 10% (c)Rn = 5%

5 10 15 20 25

MinPts

0.6

0.8

1

1.2

1.4

1.6

1.8
20

25

30

35

40

Default choice

5 10 15 20 25

MinPts

0.6

0.8

1

1.2

1.4

1.6

1.8

Default choice

20

25

30

35

40

5 10 15 20 25

0.6

0.8

1

1.2

1.4

1.6

1.8
20

25

30

35

40

MinPts

Default choice

Figure 3.21: [CODI-M parameter space] Visualization of counting result in the parameter
space (MinPts, ϵ) ∈ [2, 25]× [0.5, 1.8] based on different diffusion stage. The ground truth
in this example is 30, i.e., the green area represents good result. (a)-(c) shows when Rn to
be 15%, 10%, and 5%. The red marks denotes the parameters we recommend for similar
cases. With enough iterations, the counting result of CODI-M is not affected by a small
perturbation of the parameters.
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CHAPTER 4

WEAKIDENT - IDENTIFYING DIFFERENTIAL EQUATIONS PART I (

PHYSICAL DOMAIN)

This chapter reproduces our previously published paper [3]. The author of this thesis per-

sonally contributed to Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Software, Visualization, and Writing – original draft.

In this chapter, we propose a Weak formulation for Identification of Differential Equa-

tions with Narrow-fit and Trimming (WeakIDENT). To recover (Equation 4.1) where f is

a linear combination of various differential terms, we construct a linear system: the feature

matrix consisting of linear and nonlinear terms called features, multiplied by a coefficient

vector, is set equal to the time derivative. We use the term coefficient support to refer to

a collection of nonzero components in the coefficient vector, such that the linear system

is composed of the collection of features that contribute to the dynamics represented by

the data. For the weak formulation, we follow the derivation proposed in [36]. For our

sparse coefficient recovery, we perform an iterative greedy support identification scheme

as in [30] to find the support which gives the collection of linear and nonlinear differential

terms. For each sparsity level, we use the Subspace Pursuit (SP) algorithm [182] to first find

the initial guess of the coefficient support. We propose new narrow-fit and trimming steps

which improve the support selection as well as coefficient value recovery. Among different

sparsity results, we choose the one with the minimum Cross-Validation (CV) error as the

final result. For Cross-Validation, we randomly separate the given data in half, use one set

to find the coefficients, then use this coefficient vector with the other set of data to compute

the error. We provide an error analysis in Theorem 4.2.1 to show that the error in the linear

system under the weak form is significantly smaller than that under the differential form.

Our contributions can be summarized as follows:
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1. Proposing WeakIDENT to robustly identify differential equations in (Equation 4.1)

from highly corrupted noisy data. The weak form proposed in [36] allows us to

move the derivative to the test functions and facilitates robustness against noise. We

propose two new and novel mechanisms, narrow-fit and trimming, to improve the

coefficient support value and the coefficient support recovery, respectively. These

mechanisms utilize a column-wise error normalization to improve the robustness of

the coefficient recovery. Narrow-fit focuses on highly dynamic regions to reduce the

size of the feature matrix, and trimming the features with small contributions to the

result further contributes to the improvement.

2. We provide comprehensive numerical experiments for ordinary differential systems

(ODEs) and partial differential equations (PDEs), and compare with existing methods

such as [29, 30, 35, 36, 37].

4.1 Literature Review

In this chapter, we focus on the inverse problem of identifying a differential equation cor-

responding to given data corrupted by noise. Given a time-dependent discrete data set, we

aim to discover the underlying equation of the form

∂tu = f(u, ∂xu, . . . , ∂
k
xu, . . . , u

2, ∂xu
2, ..., ∂k

xu
2, . . . , u3, ∂xu

3, ..., ∂k
xu

3, . . .) (4.1)

where each differential term in the right hand side of (Equation 4.1) is called a feature in this

prescribed dictionary. In particular, f is called the governing equation of (Equation 4.1).

We assume that f in (Equation 4.1) is a linear combination of the features, so that this

inverse problem becomes the identification of a sparse coefficient vector where both the

support and the values of this coefficient vector are unknown. Since the features include lin-

ear and nonlinear terms, this f in (Equation 4.1) includes nonlinear differential equations.

This model identification problem is very challenging when the given data are corrupted
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by noise.

Parameter identification in differential equations and dynamical systems has been stud-

ied by scientists in various fields. Earlier works include [19, 20, 183, 16, 21, 17], where the

differential equation (Equation 4.1) is considered in [20, 21], symbolic regression is used

in [16, 17], and an optimization approach is taken in [19, 20, 21]. In recent years, sparse

regression is incorporated into the model identification problem to promote sparsity in the

coefficient recovery [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Rep-

resentative works include Sparse Identification of Nonlinear Dynamics (SINDy)[22, 23,

24, 25], Identifying Differential Equations with Numerical Time evolution (IDENT)[29,

30], Weak SINDy [36, 37], RGG [38] and many others[31, 184, 32, 185]. The PDE and

dynamics identification problem is also addressed by deep learning approaches [186, 187,

188, 189, 190, 191, 192].

The majority of existing works apply sparse regression on a linear system formed from

(Equation 4.1) with differential features [22, 23, 24, 25, 29, 30, 31, 33]. From the given

data, differential features are approximated via numerical differentiation. When the given

data contain noise, a denoising step is applied before numerical differentiation. Least-

squares moving average is applied in [29], successively denoised differentiation is proposed

in [30] and regularization is used in [193]. In terms of sparse regression, L1 or regularized

L1 minimization has been widely used [22, 29, 31, 184]; Sequentially thresholded least-

squares is used in [24, 26, 27, 28]; Greedy algorithms are used in [30]. More generally, the

coefficients are allowed to be spatially dependent in [194, 29], and the Group Lasso is used

to promote group sparsity where each group represents a feature, which is also used for

varying coefficient case in [29]. While these methods using differential features give good

results, numerical differentiation can be unstable for high-order features, and the coefficient

recovery may not be robust when the given data is corrupted by noise.

Recent progress using a weak/integral formulation [35, 38, 36, 37] shows improvements

in the robustness of the sparse coefficient identification. A weak form for (Equation 4.1)
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with a set of test functions gives rise to a linear system with integral features instead of

differential features. Noise is tackled through the weak form, since a proper test function

gives a denoising effect. The test functions are chosen to be localized smooth functions

vanishing on the boundaries, thus resembling kernel functions commonly used in kernel

denoising methods. It is shown in [36, 37] that using the weak form with the standard se-

quentially threshold least-squares algorithm gives rise to superior numerical performance.

Differential equations with high-order derivatives, including the Korteweg–De Vries (KdV)

equation, the Kuramoto–Sivashinsky (KS) equation, and 2D reaction-diffusion equations

can be recovered even with a significant amount of noise. A related work [195] focuses

on the identification of advection-diffusion equations, and shows that a Galerkin-type algo-

rithm using the weak form outperforms the collocation-type algorithm using a differential

form.

4.2 Modeling dynamics and Weak Formulation

In this section, we illustrate how to formulate a linear system in a weak form and state

the identification problem for differential equations. We also discuss the choice of test

functions and provide an error analysis of the weak formulation.

4.2.1 Formulating dynamics using differential equations

We present the identification problem with one spatial variable for simplicity. It can be

easily extended to multi-variables, and numerical results are provided for the multi-variable

case. We consider a spatial-temporal domain Ω = [X1, X2] × [0, T ] with X1 < X2 and

T > 0. We assume a set of discrete time-dependent noisy data is given:

D = {Ûn
i |i = 1, 2, ...,Nx;n = 1, ...,Nt} ∈ RNx×Nt , (4.2)
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where Nx, and Nt ∈ N are the size of discretization in spatial and temporal dimension

respectively. The data point Ûn
i is an approximation to the true solution of a differential

equation

Ûn
i ≈ u(xi, t

n) for (xi, t
n) ∈ Ω,

at the spatial location xi = i∆x ∈ [X1, X2] and tn = n∆t ∈ [0, T ]. Here ∆x = (X2 −

X1)/(Nx − 1) and ∆t = T/(Nt − 1). In the noisy case, we express the noisy data Ûn
i in

terms of the clean data Un
i = u(xi, t

n) as:

Ûn
i = Un

i + ϵni , (4.3)

where ϵni, represents the noise at (xi, t
n). The objective is to identify a differential equation

in the form of (Equation 4.1) from the given data (Equation 4.2).

We assume that the governing equation f in (Equation 4.1) is a linear combination of

linear and nonlinear terms including the derivatives of u. This covers a vast range of ODEs

and PDEs in applications, e.g., the Lorenz equation, the Lotka-Volterra equation, transport

equations, Burgers’ equation, the heat equation, the KS equation, the KdV equation, and

reaction-diffusion equations. In this chapter, to utilize the weak form, we consider the

function f to be a linear combination of different derivatives of powers of u:

∂u

∂t
(x, t) =

L∑
l=1

clFl with Fl =
∂αl

∂xαl
fl, where fl = fl(u) = uβl . (4.4)

The lth feature Fl(u) represents the αth
l spatial derivative of the monomial fl = fl(u) = uβl

for some nonnegative integer βl. Let the highest order of derivative be ᾱ such that αl ∈

{0, . . . , ᾱ}, and the highest order of monomial be β̄ such that βl ∈ {0, . . . , β̄}. We use L

to denote the total number of features in the dictionary, which depends on ᾱ and β̄, since it

includes all combinations. The formulation of (Equation 4.4) has the advantage in accurate

feature approximation particularly for the weak form, since integration by parts moves the
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derivatives to the test function. When the spatial domain is multi-dimensional, we consider

fl as monomials in the multivariable case, and we allow Fl to be partial derivatives of fl

across different spatial dimensions.

In (Equation 4.4), the coefficient can be considered as a sparse vector

c = (c1, ..., cL)
T ∈ RL (4.5)

which parametrizes the differential equation. The objective of this chapter is to recover the

differential equation from the given noisy data set D (Equation 4.2), by finding a sparse

coefficient vector c (Equation 4.5) of the linear system (Equation 4.1).

4.2.2 The Weak Formulation

The weak formulation of (Equation 4.4) is

∫
Ωh(xi,t

n)

ϕh(xi,tn)(x, t)
∂u(x, t)

∂t
dxdt =

L∑
l=1

cl

∫
Ωh(xi,t

n)

ϕh(xi,tn)(x, t)Fldxdt, (4.6)

where the test function ϕh(x, t) is locally defined on a region Ωh(xi,tn), which is centered

at (xi, t
n) and indexed by h. Specifically, each test function ϕh(x, t) is a translation of a

fixed function ϕ(x, t) such that ϕh(xi,tn)(x, t) = ϕ(x − xi, t − tn). Integration by parts of

(Equation 4.6) gives rise to

−
∫
Ωh(xi,t

n)

u(x, t)
∂ϕh(x, t)

∂t
dxdt =

L∑
l=1

cl

∫
Ωh(xi,t

n)

(−1)αluβl
∂αlϕh

∂xαl
dxdt, (4.7)

as long as ϕh and its derivatives up to order ᾱ vanish on the boundary of Ωh(xi,tn). The lth

term ∫
Ωh(xi,t

n)

(−1)αluβl
∂αlϕh(x, t)

∂xαl
dxdt
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is the lth integral feature with the test function ϕh. Since the test function is smooth, the

numerical integration can be carried out with higher order accuracy. With numerical inte-

gration, we obtain the following discrete linear system for WeakIdent:

Wc = b (4.8)

where

W = (wh(xi,tn),l) ∈ RH×L, c = (cl) ∈ RL, and b = (bh(xi,tn)) ∈ RH ,

for

wh(xi,tn),l =
∑

(xj ,tk)∈Ωh(xi,t
n)

(−1)αlÛk
j

∂αl

∂xαl
ϕh(xj, t

k)∆x∆t

and

bh(xi,tn) = −
∑

(xj ,tk)∈Ωh(xi,t
n)

Ûk
j

∂ϕh(xj, t
k)

∂t
∆x∆t. (4.9)

Here the numerical integration is computed with the data points (xj, t
k) ∈ Ωh(xi,tn), and

wh(xi,tn),l represents an approximation of the integral of the feature Fl in the integral region

Ωh(xi,tn) centered at (xi, t
n). The numerical integration is computed from NxNt grid points.

For the test function, we follow the derivation and use ϕ(x, t) as in [36]:

ϕ(x, t) =

(
1−

(
x

mx∆x

)2
)px (

1−
(

t

mt∆t

)2
)pt

, (x, t) ∈ Ωh(xi,tn) (4.10)

for i = 1, ..,Nx, n = 1, ...,Nt where px and pt give the smoothness of ϕ in terms of x and t.

The test function satisfies
∫
Ωh(xi,t

n)
ϕ(x, t)dxdt = 1 and ϕ(x, t) = 0 for (x, t) ∈ ∂Ωh(xi,tn),

with ϕ(x, t) localized around (xi, t
n) and is supported on Ωh(xi,tn) = [xi − mx∆x, xi +

mx∆x]× [tn−mt∆t, tn+mt∆t] for some positive integers mx and mt. The weak features

wh(xi,tn) in (Equation 4.9) can be written into a convolution form U ∗ ∂αl

∂xαl
ϕ and calculated
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through Fast Fourier Transform in terms of F−1
(
F(U) ◦ F

(
∂αl

∂xαl
ϕ
))

, where ◦ denotes

point-wise multiplication, and px, pt, mx and mt are carefully chosen to give a denoising

effect depending on the frequency of the given data as in [36]. For the completeness, more

details are presented in Section B.2.1.

The the weak form (Equation 4.8) has NxNt rows. For computational efficiency, we

subsample W to

H = NxNt ≤ NxNt, (4.11)

rows by uniformly subsampling Nx and Nt points in space and time respectively. Then,

we consider highly dynamic regions to further reduce the size of W and b for an improved

coefficient recovery (details in Section 4.3.2). In comparison, random subsampling is used

in [38] for sparse regression, and regions with large gradients in time are considered in

[37].

4.2.3 Error Analysis of the Weak formulation

We next analyze the approximation error of the weak formulation in (Equation 4.7). Sup-

pose the given noisy data D (Equation 4.2) has mean-zero i.i.d Gaussian noise, E[ϵni ] = 0,

and Var(ϵni ) = σ2. Let cl be the lth true coefficient in the true support Supp∗. The associ-

ated integral formulation using the test function (Equation 4.10) with the true coefficients

from the true support becomes

∫
Ωh

u(x, t)
∂ϕh(x, t)

∂t
dxdt+

∑
l∈Supp∗

(−1)αlcl

∫
Ωh

fl(x, t)
∂αlϕh(x, t)

∂xαl
dxdt = 0. (4.12)

We next analyze the error for the discretized system in (Equation 4.8) using the noisy

data {Ûn
i }, approximating the true equation (Equation 4.12). The hth row of the linear

system (Equation 4.8) is obtained from the weak form with the test function ϕh. The error
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for the discretized system in (Equation 4.8) is defined as

e = Wc− b (4.13)

where the row-wise error is

eh =
∑

l∈Supp∗

∑
(xj ,tk)∈Ωh(xi,t

n)

(−1)αlclÛ
k
j

∂αl

∂xαl
ϕh(xj, t

k)∆x∆t

+
∑

(xj ,tk)∈Ωh(xi,t
n)

Ûk
j

∂ϕh

∂t
(xj, t

k)∆x∆t.

We decompose the error as

e = eint + enoise (4.14)

where

enoiseh = eh− ∑
l∈Supp∗

∑
(xj ,tk)∈Ωh(xi,t

n)

(−1)αlclU
k
j

∂αl

∂xαl
ϕh(xj, t

k)∆x∆t+
∑

(xj ,tk)∈Ωh(xi,t
n)

Uk
j

∂ϕh

∂t
(xj, t

k)∆x∆t


einth =

 ∑
l∈Supp∗

∑
(xj ,tk)∈Ωh(xi,t

n)

(−1)αlclU
k
j

∂αl

∂xαl
ϕh(xj, t

k)∆x∆t+
∑

(xj ,tk)∈Ωh(xi,t
n)

Uk
j

∂ϕh

∂t
(xj, t

k)∆x∆t


−

 ∑
l∈Supp∗

cl

∫
Ωh(xi,t

n)

(−1)αluβl
∂αlϕh

∂xαl
dxdt+

∫
Ωh(xi,t

n)

u(x, t)
∂ϕh(x, t)

∂t
dxdt.

 .

In this decomposition, eint represents the numerical integration error of the noise-free data

U . It has been shown in [36] that eint = O((∆x∆t)q+1), where q is the order of the

numerical integration as in [36], if the the decay of test function ϕ near the boundary of the

test region satisfies max{ϕ(1− 1/mx, 0), ϕ(0, 1− 1/mt)} ≤ (2max{mx,mt}−1
max{mx,mt}2 )q+1.

The following Theorem 4.2.1 provides an estimate of the error enoise arising from noise.
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Theorem 4.2.1. Consider a dynamical system

ut =
∑

l∈Supp∗
cl

∂αl

∂xαl
uβl

of one spatial variable where Supp∗ denotes the true support of the underlying differential

equation. Assume the noise ϵni are i.i.d. and satisfies E[ϵni ] = 0, Var(ϵni ) = σ2, and

|ϵni | ≤ ϵ for all i and n. Each test region Ωh(xi,tn) for i = 1, ...,Nx, n = 1, ...,Nt has area

|Ωh| = mxmtNxNt. Then,

1. In (Equation 4.14), the error from noise enoise for the discretized system satisfies

∥enoise∥∞ ≤ S̄∗|Ωh|ϵ+O
(
ϵ2
)

(4.15)

with a constant

S̄∗ = max
h

sup
(xj ,tk)∈Ωh

∣∣∣∣ ∑
l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1∂
αlϕ

∂xαl
(xj, t

k)− ∂ϕ

∂t
(xj, t

k)

∣∣∣∣. (4.16)

2. The leading error in enoiseh (that is linear in noise) for the test function ϕh has mean 0

and variance σ2S∗
h where

S∗
h = ∆x∆t

∑
(xj ,tk)∈Ωh(xi,t

n)

 ∑
l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1∂
αlϕh

∂xαl
(xj, t

k) +
∂ϕh

∂t
(xj, t

k)

2

.

(4.17)

Theorem 4.2.1 is proved in Appendix Section B.1. In summary, we prove that the error

e in (Equation 4.13) for the discretized linear system under the weak formulation satisfies

the following upper bound

∥e∥∞ ≤ O((∆x∆t)q+1) + S̄∗|Ωh|ϵ+O(ϵ2) (4.18)
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where q is the order of the numerical integration as in [36]. By comparison, the error for

the discretized system under the differential form [29] is on the order of

O
(
∆t+∆xp+1−r +

ϵ

∆t
+

ϵ

∆xr

)
, (4.19)

where r is the highest order of derivatives for the features in the true support, and the numer-

ical differentiation is carried by interpolating the data by a pth order polynomial. By com-

paring (Equation 4.18) and (Equation 4.19), we observe that the error for the discretized

linear system in the weak form is significantly smaller than the error in the differential

form.

4.3 WeakIdent Algorithm

In this section, we present the details of the proposed Weak formulation for Identifying

Differential Equation using Narrow-fit and Trimming (WeakIdent) model. There are mainly

four steps to the algorithm: After the system is set-up as in (Equation 4.8),

[Step 1] For each sparsity level k, we use Subspace Pursuit (SP)[182] to find an initial choice

of support Ak
0 from the dictionary of L features. SP finds the choice with the min-

imum residual from a column-wise normalized (Equation 4.21) linear system as in

[30].

[Step 2] Narrow-fit. To recover the coefficient value using the support Ak
j , we (i) identify

highly dynamic regions of certain features of interest; (ii) normalize the reduced

feature matrix according to the leading error term, then (iii) determine a coefficient

value vector c(k, j) from this reduced narrow system (We set j = 0 on the first

iteration).

[Step 3] Trimming. With the updated coefficient values c(k, j) in [Step 2], we identify a

single feature with the least contribution to f . If the contribution score is less than a
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Figure 4.1: WeakIdent flowchart: Input weak formulation W and b in (Equation 4.8) sub-
sampled as (Equation 4.11). [Step 1] SP for a given sparsity k gives the first candidate of
coefficient supportAk

0. [Step 2] Narrow-fit and [Step 3] Trimming improves the coefficient
values c(k, j) and support Ak

j . Steps 2 and 3 are iterated at most k − 1 times. Finally, in
[Step 4] the result c(k∗, Jk∗) with the minimum Cross Validation among all different spar-
sity level k give the identification of the differential equation.

preset trimming parameter T , we trim the corresponding coefficient. This trimming

yields a new updated support Ak
j . We iterate [Step 2] and [Step 3], with increment j,

until no change is made to Ak
j at j = Jk.

[Step 4] Cross Validation. With the final support Ak
Jk

and coefficient value vector c(k, Jk)

for each different sparsity level k, we select the one c(k∗, Jk∗) with the minimum

Cross-Validation error (item 4.30) as the final result.

A schematic of the algorithm is given in Figure 4.1. From the weak form input W and

b, for a fixed sparsity level k, SP is used to find the initial set of support Ak
0. Then [Step 2]

Narrow-fit and [Step 3] Trimming are iterated until the support does not change, where the

number of iterations is at most k − 1. Here we use c(k, j) to indicate the coefficient vector

for the sparsity level k and j iteration. The cross validation is used to select the optimal

solution c(K, JK) among all k ≤ L.

We present the details in the following subsections. In [Step 2], we normalize each col-

umn of the feature matrix according to its leading error term, to balance the effect of noise

perturbations across the features. The details for this error normalization of the feature ma-

trix are given in Section 4.3.1. We detail the implementation of Narrow-fit using the highly

dynamic regions in Section 4.3.2. In [Step 3], we trim the support removing features with

contributions below a threshold, as described in detail in Section 4.3.3. The algorithm is
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Figure 4.2: Error normalization: (a) The given noisy data Û with σNSR = 0.5 in x−t plane.
(b) The entry-wise magnitude of the matrix W . (c) The matrix W̃narrow in (Equation 4.23).
We use log 10 scale in (b) and (c). The difference in scale has been reduced approximately
from 1029 in the unnormalized matrix (b) to 106 after normalization in (c). Our error nor-
malization results in more uniform entry values with less variance across different columns.

summarized Section 4.3.4.

4.3.1 Column-wise error normalized matrix

We use least squares for coefficient recovery. The accuracy of least squares is highly de-

pendent on the conditioning of the feature matrix [196, 197]. In this chapter, we utilize

two types of normalization for the columns of the feature matrix to improve the coef-

ficient recovery. For the linear system (Equation 4.8), we introduce a diagonal matrix

D = diag(d1, ..., dL) and solve

WD−1c̄ = b and then c = D−1c̄ (4.20)

instead.

The first type of normalization we consider is column normalization, which is applied

to the feature matrix as an input to SP in [Step 1]. Denote W = [w1 w2 . . . wL]. We let

D = diag(∥w1∥, ..., ∥wL∥) and each column of W is normalized by its own norm:

W † =

[
w1

∥w1∥
,

w2

∥w2∥
, . . . ,

wL

∥wL∥

]
. (4.21)
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We observe that the scale of the columns in the feature matrix usually varies substantially

from column to column, which negatively affects the SP step. This column normaliza-

tion helps to prevent a large difference in the scale among the columns. For example, in

Figure 4.2 (b) shows that the magnitude of the entries in W vary from 0 to 1029.

In [Step 2], we introduce our second normalization – error normalization, which is

particularly effective for coefficient recovery. The columns in W are given by certain

derivatives of a monomial of u. When we compute the feature matrix with noisy data, the

noise has different effects on different features. For the feature ∂α

∂xα

(
uβ
)
, the noisy data

with noise ϵ in (Equation 4.3) give rise to the following integral feature:

∫
Ωh

(−1)α(u+ ϵ)β
∂α

∂xα
(ϕh(x, t)) dxdt =

β∑
k=0

(−1)α
(
β

k

)
ϵβ−k

∫
Ωh

uk ∂α

∂xα
ϕh(x, t)dxdt.

The leading coefficient in the error (that is linear in ϵ) in this integral feature is obtained for

k = β − 1:

s(h, l) = β

∣∣∣∣∫
Ωh

uβ−1 ∂α

∂xα
(ϕh(x, t)) dxdt

∣∣∣∣ , h = 1, 2, ..., H, β ≥ 1. (4.22)

When α = β = 0, we set s(h, l) = 1. This leading coefficient s(h, l) depends on the row

index h and the column index l. For the lth column, we define

⟨s(h, l)⟩h =
1

H

H∑
h=1

s(h, l)

as an average of these leading coefficients over the rows.

By error normalization, we normalize W with the diagonal matrix D = diag(⟨s(h, 1)⟩h, . . . , ⟨s(h, L)⟩h)

such that W is normalized to

W̃ =

[
w1

⟨s(h, 1)⟩h
,

w2

⟨s(h, 2)⟩h
, . . . ,

wL

⟨s(h, L)⟩h

]
(4.23)
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Figure 4.2 shows an example, with the given noisy data in (a) and the unnormalized feature

matrix W in (b). Figure 4.2 (c) shows the normalized matrix W̃ after the error normaliza-

tion. We use log 10 scale in Figure 4.2. The difference in scale has been reduced approx-

imately from 1029 in the unnormalized matrix (b) to 106 after normalization in (c). Our

error normalization results in more uniform entry values with less variation across different

columns.

In the following Subsection, we further discuss how error normalization is used to select

the highly dynamic regions .

4.3.2 Highly dynamic regions

One of the benefits of using the weak form is to consider the influence of different regions

on the integral computation. We take advantage of this and choose a subset of test func-

tions indexed by {h|h = 2, . . . , H} to improve the coefficient recovery. We propose the

following Narrow-fit procedure: (i) define the features of interest, (ii) determine the highly

dynamic regions of the chosen features, and then (iii) use the subsampled matrix based on

the highly dynamic regions for the coefficient recovery. This Narrow-fit procedure focuses

on the regions with higher dynamical behaviors for the features of interest, so that these

regions play a larger role in the coefficient recovery.

Features of interest: We focus on a small group of features which give the variation

information for the differential equation, thus highlighting which rows to choose for the

coefficient recovery. In this paper, we choose the features of interest to be the terms corre-

sponding to u and first derivatives consistently for all experiments. We simply utilize the

high variance region of the function value u and the first derivative, e.g., a term such as

uux which gives a combined information, since they would likely represent a broad range

of dynamical behavior observed in the data. We explored including other terms as features

of interest, but they did not provide consistent improvements.

Details are as follows: In 1D, we choose the features with (α, β) = (1, 2) for the case
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Figure 4.3: Highly dynamic regions for an experiment using the KdV equation
(Equation 4.33) with σNSR = 0.5. (a) The given noisy data Û with σNSR = 0.5 in x − t
plane. (b) The separation point Γ(black) for H (Equation 4.24) is found, from the accumu-
lated function B(j) (blue) and the fitted piecewise linear function r(j) with one junction at
Γ (red). (c) The location of highly dynamic regions in the x− t plane.

of one variable in 1D which corresponds to
∂

∂x
u2, this term is uux. For a system with two

variables u, v in 1D, (α, βu, βv) = (1, 2, 0), (1, 0, 2), they are
∂

∂x
u2 and

∂

∂x
v2. In 2D, we

choose the features with (αx, αy, β) = {(1, 0, 2), (0, 1, 2), (1, 1, 3)} for a scalar equation in

2D, i.e., the features of interest are
∂

∂x
u2,

∂

∂y
u2 and

∂2

∂x∂y
u3. For the case of 2 variables (u

and v) in 2D, (αx, αy, βu, βv) = {(1, 0, 2, 0), (0, 1, 2, 0), (1, 0, 0, 2), (0, 1, 0, 2), (1, 0, 2, 1), (0, 1, 1, 2)},

that is there are six features of interest:
∂

∂x
u2,

∂

∂x
v2,

∂

∂y
u2,

∂

∂y
v2,

∂

∂x
u2v, and

∂

∂y
uv2.

For each feature of interest, we utilize the leading coefficient error (Equation 4.22) to

select highly dynamic regions. For multiple features of interest with indices l = l1, l2, ..., lL,

we take the average over l, and let

s̄(h) =
1

L

L∑
i=1

|s(h, li)|,

with s = s̄ for L = 1.

Highly dynamic regions: We consider the set S = {s̄(h)|h = 1, . . . , H}, which is the

collection of averaged leading coefficient errors over the features of interest. We divide the

set S into mildly and highly dynamic regions, automatically identifying the transition point

Γ between these two types of dynamics as follows.
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After partitioning the histogram of S into NS bins (b1, b2, ..., bNS ), we consider the

cumulative sum of the bins B(j) =
∑j

i=1 bi. We used NS = 200 for PDEs and NS = 100

for ODEs in this paper. We fit the function B(j) with a piecewise linear function r(j) with

one junction point, using the cost function
∑

j(B(j)− r(j))2/B(j)2. The junction point Γ

separates the highly dynamic and mildly dynamic regions. Any h with s̄(h) ≥ Γ gives the

highly dynamic region Ωh which we include for the coefficient recovery. Let the collection

of the row indices of highly dynamic regions be an ordered set:

H = {hi | s̄(hi) ≥ Γ, hi < hj for i < j}. (4.24)

Figure 4.3 illustrates how the transition point Γ is computed in (b) from the given data

in (a). Figure 4.3 (c) shows the locations in x− t plane of the highly dynamics regions with

the index set H.

Narrow-fit: We consider a submatrix using only the ordered rows from the highly

dynamic region H, indicated by a subscript H, for both W and b :

Wnarrow := WH and bnarrow := bH.

We also error normalize this matrix, using the rows in H:

W̃narrow =

[
w1H

⟨s(h, 1)⟩H
,

w2H

⟨s(h, 2)⟩H
, . . . ,

wLH

⟨s(h, L)⟩H

]
, (4.25)

where wiH represents the ith column with the rows indexed by H, and ⟨s(h, l)⟩H takes the

average of s(h, l) for h ∈ H. This matrix is represented in Figure 4.2 (c). Let b̄ = ⟨bnarrow⟩

be the average of the entries of bnarrow. After narrow-fitting, We solve:

W̃narrowc̃ = b̃narrow where b̃narrow = bnarrow/b̄. (4.26)
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We then compute the coefficient c by rescaling c̃ back:

c = b̄ c̃ diag
{

1

⟨s(h, 1)⟩H
,

1

⟨s(h, 2)⟩H
, . . . ,

1

⟨s(h, L)⟩H

}
. (4.27)

4.3.3 Trimming the support

After the coefficient values in c are recovered, some features give very small contributions

to ut. We further trim the support by eliminating these features corresponding to small

contributions.

From the solution c̃ of the linear equation (Equation 4.26), we define a contribution

score ai of each feature as

ai =
ni

maxi≤L ni

where ni = ||w̃i||2|c̃i|, i = 1, 2, . . . , L. (4.28)

Here w̃i denotes the ithcolumn of W̃narrow. We consider the L2 norm of this column mul-

tiplied by the coefficient value of the ith component of c̃. Since ai is normalized by the

maximum value of ni, ai gives the score of the contribution of the ith feature relative to the

contribution of the feature with the largest contribution.

We trim the coefficient, thus the feature, when the contribution score of that feature is

below T , i.e. ai < T . Typically, we set T = 0.05 to trim the features with contributions

less than 5% of ut. Each time [Step 3] is called to trim the support setAk
j to the new support

set Ak
j+1, and [Step 2] narrow-fit is called to find the updated coefficient value c(k, j + 1).

(Figure 4.4) shows the effect of trimming. For each sparsity level k in x-axis, the bar

shows the cross validation value (item 4.30) of the recovered coefficient c(k∗, Jk∗). For a

large sparsity level, thanks to the trimming step, the correct support and coefficient values

are found.
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Figure 4.4: Trimming is demonstrated in an experiment using the KS equation
(Equation 4.34). For each sparsity level k in x-axis, the bar shows the cross validation
(item 4.30) of the recovered coefficient c(k∗, Jk∗). Notice for most sparsity levels 5 and
above the correct support is found. After SP finds k supports, the trimming step reduces
the support until only the correct ones are left. Here σNSR is the noise-to-signal ratio
(Equation 4.44), TPR is true positive rate (Equation 4.47) and PPV is positive prediction
value (Equation 4.48).

4.3.4 Algorithms

Our WeakIdent algorithm is summarized in Algorithm 6. From the linear system in (Equation 4.8)

Wc = b,

we input b and W computed through (Equation 4.9), with subsampling in (Equation 4.11).

For each sparsity level k = 1, 2, . . . , K,

[Step 1] First, Subspace Pursuit (SP)[182] is applied to findAk
o = supp{SP (W †, b̃, s)} using

the column normalized matrix W † in (Equation 4.21) and b̃ = b/||b||.

[Step 2] Narrow-fit. To recover the coefficient values using the support Ak
j , we find the row

index set H of highly dynamic regions in (Equation 4.24), and solve

W̃narrowc̃ = b̃narrow

in (Equation 4.26) and get c(k, j) in (Equation 4.27).

[Step 3] Trimming. Update to Ak
j+1, if there is any column with the contribution score in

(Equation 4.28) below T , i.e. ai < T . If trimmed, move to [Step 2] to get a new
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updated c(k, j + 1). If no column is trimmed, move to [Step 4] and set Jk = j.

[Step 4] Cross Validation. With the support c(k, Jk) computed for each sparsity level k =

1, . . . , K, we select the final support by finding the k∗ which gives the minimum

cross-validation error. For a sparsity level k, we randomly sample regions from the

NxNt regions and equally partition these regions into two sets indexed by A and B

respectively. We consider the linear system in (Equation 4.26):

W̃ =

[
w1

⟨s(h, 1)⟩H
,

w2

⟨s(h, 2)⟩H
, . . . ,

wL

⟨s(h, L)⟩H

]
, and b̃ = b/b̄ (4.29)

utilizing the highly dynamic region error normalization for the large full matrix. Here

H indicates ordered row index from the set H, and ⟨s(h, l)⟩H taking the average of

s(h, l) for h ∈ H. We solve least square problems W̃Ac̃A = b̃A and W̃Bc̃B = b̃B,

where W̃A and B contain the rows of W̃ indexed by A and B respectively. Then, we

compute the cross validation (CV) error

CV(k) = λ||W̃Ac̃B − b̃A||2 + (1− λ)||W̃Bc̃A − b̃B||2, (4.30)

where we set λ = 1/100. In practice, for each k, we generate 30 different random

partitions of H to A and B, then select the minimum:

c(k∗, Jk∗) = argmin
k
{CV(k)|k = 1, 2, ..., L}. (4.31)

Here K ≤ L, since L is the total number of features in the dictionary. In practice,

a small K is needed. (Figure 4.4) illustrates that for (small) values of K around

K = 10 and below, the correct coefficients are found, thanks to the trimming step.
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Algorithm 6 WeakIdent Algorithm

Input: W ∈ RH×L, b ∈ RH , from (Equation 4.8) uniformly subsampled as
(Equation 4.11); Parameter T = 0.05
for k = 1, 2, ..., K do

[Step 1] Ak
0 = supp{SP(W †, b̃, s)} use SP [182] and set j = 0;

[Step 2] Find c(k, j) by narrow-fit (Equation 4.26)
while there exists ai < T as in (Equation 4.28) do

[Step 3] Trim as in Section 4.3.3 and set j = j + 1
[Step 2] Find c(k, j + 1) by Narrow-fit (Equation 4.26)

end while
end for
Among k = 1, . . . , K, find c(k∗, Jk∗) by Cross Validation in (item 4.31).
Output: c = c(k∗, Jk∗) ∈ RL such that Wc ≈ b.

4.4 WeakIDENT results and comparions

In this section, we provide detailed experimental results. We summarize a list of PDEs and

ODE systems in Table 4.1 and Table 4.2. For the systems of ODEs, we consider features

with polynomial order between 3 and 5 , with L ≤ 21 for all the cases. For the systems of

PDEs, we consider features with both polynomial order and derivative order between 4 and

6, which gives a dictionary of size L ≤ 65 for the 1 spatial dimension and L ≤ 190 for 2

spatial dimensions. Simulation and feature details are presented in Table 4.1 and Table 4.2

for each experiment.

For PDEs, Nx and Nt are chosen such that NxNt ∈ (1, 000, 3, 000) to reduce the com-

putational cost. In particular, we set

Nx = ⌈Nx − 2mx − 1

⌊Nx/N⌋
+ 1⌉ and Nt = ⌈

Nt − 2mt − 1

⌊Nt/N⌋
+ 1⌉, (4.38)

with N = 50 as a default choice. Here ⌈·⌉ and ⌊·⌋ denotes the ceiling and floor operator. In

Table 4.1, (Equation 4.38) is used for the transport question (Equation 4.32), the KS equa-

tion (Equation 4.34) and the nonlinear Schrodinger equation (Equation 4.35). For certain

cases such as the KdV equation (Equation 4.33) where |H| is very small, we increase Nx
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and Nt, e.g., using N = 70, such that |H| > 800. For the spatially 2 dimensional cases,

we use N = (25, 25) for the anisotropic porous medium equation (PM) (Equation 4.36),

and N = (19, 16) for the 2D reaction-diffusion equation (Equation 4.37) to reduce the time

of computation. For the ODEs listed in Table 4.2, we choose Nt ≈ 1000 by default with

N = 1000. Since we use different subsampling, we present additional comparisons in

Section 4.5.3 to demonstrate that the effect of subsampling on the result is minimal.

The experiments are performed on both clean data and noisy data with various Noise-

to-Signal Ratio, σNSR defined as follows:

σNSR =
ϵni

1
NtNx

∑
i,n

|Un
i − (max

i,n
Un
i +min

i,n
Ui)/2|2

(4.44)

for i = 1, ...,Nx, n = 1, ...,Nt. Note that our definition of NSR reflects the local variation

of the given data. This is different from the absolute variation (absolute root mean squared

of Un
i ) σNR used in [36], and this σNSR value tends to be smaller than the σNR value.

We also mention the σNR value in the following experiments when it is relevant. We use

Gaussian noise, such that ϵni ∼ N (0, σNSR) for ϵni , and Ûn
i in (Equation 4.3). For the case

of multiple variables, we compute (Equation 4.44) for each variable.

Error measures: To quantify the quality of the recovery, we utilize different error

measurements listed in Table 4.3. The relative coefficient errors E2 in (Equation 4.45) and

E∞ in (Equation 4.46) measure the accuracy of the recovered coefficients c against the

true coefficients c∗ in terms of the l2 and the infinity norm, respectively. We introduce two

new measures to quantify the accuracy of the support recovery. The True Positive Rate

(TPR) 1 (Equation 4.47) measures the fraction of features that are found out of all features

in the true equation, and is defined as the ratio of the cardinality of the correctly identified

support over the cardinality of the true support. The TPR is 1 if all the true features are

found. The Positive Predictive Value (PPV) (Equation 4.48) indicates the presence of false

1The definition of TPR in (Equation 4.47) is different from that used in [36]
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positives: it is the ratio of the cardinality of the correctly identified support over the total

cardinality of the identified support. The PPV is 1 if the recovered support is also in the true

support. The residual error Eres in (Equation 4.49), which is also used in [30], measures the

relative difference between the learned differential equation and the given data. To show

the effectiveness of WeakIdent in the recovery of the dynamics, we define the dynamical

error Edyn in (Equation 4.50) to measure the difference between the true dynamics and

the expected dynamics simulated from the recovered equation. In (Equation 4.50), we

use Un
i,forward and Un

i,clean to denote the simulated data and the true data without noise. We

simulate ODEs using RK45 with the relative error tolerance to be 10−10. This is measured

for ODEs only, due to restricted stability conditions for PDEs. If the identified equation

blows up before the final time T is reached, we compare Un
i,forward and Un

i,clean just before the

blow-up.

4.4.1 WeakIdent on PDEs

We present the WeakIdent and comparisons in this subsection for PDEs, and in Section 4.4.2

for ODEs. We compare with existing methods, such as the IDENT in [29], the Robust Ident,

with Subspace pursuit Cross validation (SC) and Subspace pursuit Time evolution (ST) in

[30], SINDy [22], and methods using the weak form such as RGG [38], Weak SINDy for

first order dynamical systems (WODE) [37], and Weak SINDy for PDEs (WPDE) [36].

For fair comparisons, when available, we used the same underlying equations provided

by SINDy[22], WODE[37], WPDE [36] or RGG [38] provided in their respective Githubs2.

WeakIdent and WPDE use the same dictionary of features as well as the same parameters

for the weak form (a system with the same number of variables and dimensions in the

spatial domain) to each other. RGG [38] uses a subset of features (e.g. 8-14 features),

which is different from other methods which use the full feature matrix (L = 21 to 190

features). For each experiment in the comparison, we specify which features are used for

2SINDy and WODE at https://github.com/dm973/WSINDy ODE, WPDE at
https://github.com/dm973/WSINDy PDE, and RGG at https://github.com/pakreinbold/PDE Discovery Weak Formulation
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RGG. In many of the PDE experiments in this section, we show comparisons only between

our proposed WeakIdent and WPDE [36], since these two methods give the best results

compared to others, based on the error measures in Table 4.3.

Transport equation

The first set of results in Figure 4.5 shows results for the transport equation (Equation 4.32)

with clean and noisy data. (a), (b) and (c) compare the recovery results with clean data, and

(d), (e) and (f) compare the results with highly corrupted data where σNSR = 100%. For

the case of clean data, RGG [38], WPDE [36] and the proposed WeakIdent find the correct

support ux, uxx, while the latter two methods have higher accuracy. In the noisy case of

σNSR = 100%, only WeakIdent is able to identify the correct support with the E2 value as

low as 0.008.

In Figure 4.6, we provide statistical comparisons between our proposed WeakIdent

and WPDE [36] applied to the transport equation (Equation 4.32) for different levels of

σNSR. We show box-plots for the distribution of the identification errors E2, E∞, TPR and

PPV over 50 experiments for each level of σNSR ∈ {0.01, 0.1, 0.2, , ..., 0.9}. The WeakI-

dent results are robust even for large noise levels: Panels (a3) and (a4) show that in the

majority(> 75%) of the cases, a correct support is found by WeakIdent with low E2 error

in Panel (a1).

Anisotropic Porous Medium (PM) equation

In Figure 4.7, we compare the recovery results for the 2D anisotropic porous medium

equation (PM) (Equation 4.36), which includes a feature with the cross-dimensional deriva-

tive uxy. Figure 4.7 (a) shows Û(x, 0) and (b) shows Û(x, T ), where the given noisy data

has noise-to-signal ratio σNSR = 0.08. This noise level is equivalent to σNR = 0.4139

as defined in WPDE [36]. We show different recovered equations with the identification

error E2 in (c). WeakIdent is able to identify the correct support with the coefficient error

E2 = 0.0056, demonstrating WeakIdent’s capability to identify features across multiple

dimensions on 2D spatial domain.
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Reaction-diffusion equation In Figure 4.8, we compare the recovery results for the 2D

reaction-diffusion equation (Equation 4.37). These systems can generate a variety of pat-

terns such as dots, strips, waves and hexagons. The Laplacian (diffusion) features ∆u,∆v

in this equation may be difficult to identify in general, particularly in the case where the

diffusion coefficients are small compared to those of other features, and accumulated noise

can be emphasized. We use the spiral pattern data set from [36]. Figure 4.8 (a) shows

Û(x, 0) and (b) shows Û(x, T ), where the given noisy data has σNSR = 0.08 (equivalent

to σNR = 0.08 defined in [36]). We show different recovered equations with the E2 identi-

fication error in Figure 4.8 (c). WeakIdent finds the correct terms with a small coefficient

error.

In Figure 4.9, we present the statistical results of WeakIdent over 50 experiments for

the 2D reaction-diffusion equation (Equation 4.37).

PDEs and sytems of PDEs with higher order features

In Figure 4.10, we show the average errors of WeakIdent and WPDE over 50 exper-

iments on the PDEs and systems of PDEs in Table 4.1 with different noise levels. Each

column gives the E2 error , TPR and PPV respectively. In each row, we present the re-

sults from the transport equation (Equation 4.32), KdV equation (Equation 4.33), the KS

(Equation 4.34), the nonlinear Schrodinger (Equation 4.35), the anisotropic PM equation

(Equation 4.36), and the 2D reaction-diffusion equation (Equation 4.37). In the first col-

umn, we present the ratio σ̃ = σNSR/σNR where σNR denotes the noise ratio in WPDE[36].

(The upper bounds of the noise ratio σNR [36] are 1.07, 0.78, 0.9, 0.81, 0.78, 0.1 for each

equation.) Here the KdV (Equation 4.33) and KS equations (Equation 4.34) include higher

order derivative features uxxx and uxxxx. These features are in general difficult to recover,

especially from highly corrupted noisy data. Each plot gives comparisons between WeakI-

dent (Red) and WPDE (blue), with σNSR on the x-axis. The y-axis is the E2 error, TPR, or

PPV averaged over 50 experiments for a given σNSR. According to the E2 error shown in

the first column, WeakIdent has smaller E2 errors than other methods, showing that WeakI-
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dent is more accurate in the coefficient recovery. According to the TPR and PPV in the

second and third column, WeakIdent is more accurate in support recovery since the TPR

and PPV values of WeakIdent are closer to 1.

4.4.2 WeakIdent on ODEs

Since ODE systems do not include spatial derivatives, they have lower computational cost

in feature computation. We consider polynomial terms with the highest order being 5.

Table 4.2 presents details of the parameters used for simulation. In Figure 4.11, we show

the identified dynamics and various identification errors obtained from WeakIdent on the

5 ODE systems listed in Table 4.2. The noise-to-signal ratio is σNSR = 0.2 for the linear

system (Equation 4.39), the Van der Pol nonlinear system (Equation 4.40) and σNSR =

0.1 for the rest of the systems. Figure 4.11 (a)-(e) show the phase portraits of the given

noisy data for the different ODEs (red) superimposed on the simulated true data (black).

Figure 4.11 (f)-(j) show the WeakIdent results (green) compared to the true solution (black).

WeakIdent is able to find the correct support in the majority of the cases with E2 ≤ 0.088.

Figure 4.12 compares the recovery results for the Lotka-Volterra (LV) system (Equation 4.42)

across different methods, showing results for the given data sets with various noise levels.

The methods we compare include WODE[37], SINDy[22], Robust IDENT SC[30] and

ST[30]. Each column is associated with an error type and each row gives results from one

method. WeakIdent is able to capture the correct support with a low coefficient error in the

last rows. WODE, SINDy, SC and ST has larger coefficient errors with incorrect support in

many cases. A similar statistical comparison between these methods on the Lorenz system

(Equation 4.43) is shown in Figure B.4 in the subsubsection B.2.0.2. We refer to Table B.1

and Table B.2 for the recovery results of the Lotka-Volterra system (Equation 4.42) and

the Lorenz system (Equation 4.43) from two noisy data sets with σSNR = 0.1. We also

provide a comprehensive comparison on all ODE systems listed in Table 4.2 in subsubsec-

tion B.2.0.2 (See Figure B.3 for the details).
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4.5 Additional experiments on the Effectiveness of WeakIdent

In this section, we show some additional experiments of using WeakIdent on equations

with differential initial conditions, using different trimming parameters T , and simulated

datasets with various subsampling parameters to further show the effectiveness of WeakI-

dent.

4.5.1 Influence of the initial condition in WeakIdent

Figure 4.13 shows comparisons of WeakIdent and WPDE for the KS equation (Equation 4.34)

on noisy data with σNSR = 0.6, using 5 different initial conditions: (1) u(x, 0) = cos(x/16).∗

(1 + sin(x/16)), (2) u = cos(x/4). ∗ (1 + sin(x/5)), (3) u = cos(x/10). ∗ (1 + cos(x/5)),

(4) u = sin(x/4). ∗ (1 + cos(x/5)), (5) u = sin(x.2/4). The top row illustrates the given

clean data from the different initial conditions yielding different pattern evolution. In each

box plot, the x-axis gives the indices of the initial condition (1)-(5). WeakIdent recovery is

robust across these different patterns in recovering this system with higher order features.

4.5.2 The choice of the trimming parameter

In Figure 4.14, we present the coefficient E2 error (y-sxis) against different values of the

trimming parameter T (x-axis) for different noise-to-signal ratios (different color curves)

for (a) the KdV equation (Equation 4.33) and (b) the KS equation (Equation 4.34). In gen-

eral, we use T = 0.05 as a default for all equations in Table 4.1 and Table 4.2, except

for the KS equation (Equation 4.34) and the PM equation (Equation 4.36) for which we

use T = 0.2. Our experiments use the same distribution of seeds for the noise with dif-

ferent variances. Different color curves represent the different values of noise-to-signal

ratio σNSR ∈ {0, 0.1, ..., 1}. For example, when there is no noise, σNSR = 0 (the lowest

blue curve), it gives the lowest recovery error (compared to other colored curves) over the

widest range of allowable T . There is a wide range of T that yields the same recovery. We
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use T = 0.2 for the KS and PM equations, by choosing a value of T from a large plateau.

This makes the algorithm more robust. In general, since the colored curves are decreasing

functions in terms of T , if the given data is highly corrupted by noise, using a larger T can

help with the identification.

4.5.3 Effects of subsampling

In Figure 4.15, we show the effects of changing the final time T (the top row), and of

changing ∆x and ∆t for NxNt (the second row), and of changing the uniform subsam-

pling in (Equation (4.11)), i.e., ∆t∗ and ∆x∗ for the generation of the feature matrix (the

third row). We compare for the KS equation (Equation 4.34), the 2D linear ODE sys-

tem (Equation 4.39), the Van der Pol equation (Equation 4.40), and the Duffing equation

(Equation 4.41) to illustrate the effects. The noise level is σNSR = 0.1 for each example.

We present the average of the E2 error , the TPR and PPV values from 20 independent

experiments for one varying variable among the variables {T,∆t,∆x,∆t∗,∆x∗} while

fixing the rest. The first row shows that the recovery by WeakIdent is robust as long as T

is above a sufficiently large value (e.g. 100 or 10), which indicates that there is a time T

such that the solution of the differential equations contains enough dynamics up to time T .

The second row shows that WeakIdent gives a smaller error with smaller ∆x and ∆t. The

bottom row shows that the size of uniform subsampling in space and time of the feature

matrix does not affect the recovery.

In Table 4.4, we show an example of the size reduction from W to Wnarrowfor the

PDEs and ODEs considered in this chapter. We use σNSR = 0.1 for the RD equation

(Equation 4.37) and σNSR = 0.2 for the rest of the equations. The given data is of size

NxNt and it is subsampled to H = NxNt number of rows for W . The narrow-fit further

reduces the feature matrix to W̃narrow for computational accuracy.
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4.5.4 Speed of WeakIdent

We perform experiments using Matlab on the Apple M1 processor with 8-core CPU and

16GB of RAM. The computational cost of WeakIdent is typically about 1-5 seconds for an

ODE system or a PDE with one dependent variable in a 1D spatial domain. For example,

the cpu times to recover the Lotka-Volterra system (Equation 4.42) and the KdV equation

(Equation 4.33) are 1.11 and 0.63 seconds, respectively. For the cases in 2D spatial do-

mains, such as the anisotropic PM equation (Equation 4.36) with one variable, and the 2D

reaction-diffusion equation (Equation 4.37) with two variables, the recovery can take about

3 and 35 seconds, respectively. The speed is comparable with WPDE[36], which takes 16

and 75 seconds for these two examples. We note that the main difference in computation

comes from using modified sequential thresholding least-squares (MSTLS) and Subspace

Pursuit as in this chapter. For the methods using MSTLS, thresholding lease square is per-

formed for a large number (e.g., 50) of different λ (a parameter in MSTLS) to seek for a

good threshold, so that the solutions are computed many times, while SP doesn’t require

to do this. For the computational cost scaling as the number of feature increases, with the

trimming step, as in the case of Figure 4.4, typical examples converged to the correct sup-

port for a smaller sparsity then L. One may be able to stop SP after a reasonable sparsity k

is reached to reduce unnecessary computation.

In Appendix B, we present additional results and more comparisons. The additional

results for PDEs are in subsubsection B.2.0.1 and additional results for ODEs are in sub-

subsection B.2.0.2. Details about how to construct test functions are given in Section B.2.1.
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(b) σNSR = 0
WeakIdent WPDE [36] RGG[38] IDENT[29] SC[30] ST[30]

E2 0.001 0.001 0.001 - 2.26 2.24
E∞ 0.001 0.001 0.001 - - 3.08
Eres 0.001 0.001 0.001 0.98 0.03 0.03
TPR 1.0 1.0 1.00 - 0.00 0.50
PPV 1.0 1.0 1.00 0.00 0.00 0.20

(c) σNSR = 0
True equation ut = −1.00000ux + 0.05000uxx

WeakIdent ut = −1.00145ux + 0.04999uxx

WPDE [36] ut = −1.00144ux + 0.05000uxx

RGG [38] ut = −1.00119ux + 0.04999uxx

IDENT[29] ut = −0.0006 + 0.0036u+ 0.0244u2 − 0.9992ux + 0.0004(ux)
2 + ...

SC[30] ut = +1.74039u2 − 1.03236ux + 0.05168uxx + 0.00298uuxx

ST[30] ut = +1.73061u2 − 1.01121ux − 0.10390uux + 0.05167uxx + 0.00298uuxx

(e) σNSR = 1
WeakIdent WPDE [36] RGG [38] IDENT [29] SC [30] ST[30]

E2 0.008 0.184 135.33 - 17.43 20.32
E∞ 0.008 1.129 0.13 - - 18.23
Eres 0.811 0.830 0.95 0.82 0.91 0.89
TPR 1.0 1.0 0.50 0.00 0.00 0.50
PPV 1.0 0.5 0.25 0.00 0.00 0.20

(f) σNSR = 1
True equation ut = −1.00000ux + 0.05000uxx

WeakIdent ut = −1.00792ux + 0.05029uxx

WPDE [36] ut = −1.02983ux + 0.10647uxx − 0.15741(u3)xx + 0.07197(u6)xx
RGG [38] ut = −0.00003uxxxx − 0.87531ux + 44.70146u2 − 127.91622u3

IDENT[29] ut = −0.2710 + 6.1120u− 3.4346u2 − 0.0000ux + 0.0000(ux)
2 + ...

SC[30] ut = −3.35704u− 17.09628u2 − 0.26659ux

ST[30] ut = +0.60609− 4.44906u− 19.79311u2 − 0.17997ux − 0.86156uux

For RGG [38], we use 8 default features {uux, uxx, uxxxx, u, ux, uxxx, u
2, u3} and the parameters px =

4, pt = 3, Nd = 100, D = (40, 20) are used. For IDENT [29], we use λ = 200 for the sparse regression
algorithm, and the dictionary is set to be {1, u, u2, ux, u

2
x, uux, uxx, u

2
xx, uuxx, uxuxx}. SC and ST [30] use

the same dictionary as IDENT. For SC, we use α = 100 and for ST, we use s = 20 and n = 5. These
parameters are from the original papers.

Figure 4.5: Transport equation with diffusion (Equation 4.32): clean data case in (a), (b)
and (c), and noisy data with σNSR = 100% in (d), (e) and (f). WeakIdent is compared with
WPDE [36], RGG [38], IDENT[29], SC[30], and ST[30]. The error measures are in Table
(b) and (e) and the recovered equations are in (c) and (f).
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In each box-plot, the red line is the median, the lower bound is the 25% quantile, the upper bound is the 75%
quantile, and + signs represent outliers of each identification error. We use the same criteria for the box-plots
in the rest of the figures.

Figure 4.6: Transport equation (Equation 4.32), statistical comparison between WeakIdent
(the top row) and WPDE [36] (the second row). The errors E2, E∞, TPR and PPV are
shown from 50 experiments for each σNSR ∈ {0.01, 0.1, 0.2, , ..., 0.9} using box-plots. The
E2 and E∞ errors by WeakIent are lower than the errors of WPDE, with less variations.
The TPR and PPV by WeakIdent are closer to 1 with less variations as well.

Equation Nx Nt Nx Nt W size(H × L) W̃narrow size
(Equation 4.32) 257 300 36 39 1404 ×43 824 ×43
(Equation 4.33) 400 601 71 65 4615 ×43 1367 ×43
(Equation 4.34) 256 301 46 43 1935×43 916×43
(Equation 4.35) 256 251 39 42 1225×190 159×190
(Equation 4.36) 200×200 128 14×14 16 3136×65 1349×65
(Equation 4.37) 256×256 201 13×13 14 2366×155 2271×155
(Equation 4.39) - 1001 - 851 877×21 127×21
(Equation 4.40) - 15001 - 958 958×21 295×21
(Equation 4.41) - 1001 - 915 915×21 57×21
(Equation 4.42) - 1001 - 947 947×10 338×10
(Equation 4.43) - 15001 - 983 983×20 930×20

Table 4.4: Typical examples of the feature matrix size and the reduction in narrow-fit.
The given data is of size NxNt and it is subsampled to H = NxNt rows for W . We
use σNSR = 0.1 for the RD equation (Equation 4.37) and σNSR = 0.2 for the rest of the
equations. For systems of equations, the size of the feature matrix for each dependent
variable is identical.
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(c) σNSR = 0.08
True equation ut = +0.30000(u2)yy − 0.80000(u2)xy + 1.00000(u2)xx
WeakIdent ut = +0.29912(u2)yy − 0.79416(u2)xy +

0.99568(u2)xx

E2 = 0.0056

WPDE ut = +0.29928(u2)yy − 0.79362(u2)xy +
0.99512(u2)xx

E2 = 0.0061

RGG[38] ut = +0.00028 + 0.23457u − 6.28949u2 + 21.31151u3 −
0.36341(u2)x + 0.48573(u2)y − 0.12914(u2)xx +
1.34146(u2)yy−1.18102(u2)xy+0.03796ux−0.03006uy+
0.06174uxx − 0.04775uyy + 0.06238uxy

E2 = 8.9376

For RGG [38], we use a dictionary of 14 features {1, u, u2, u3, (u2)x, (u
2)y, (u

2)xx, (u
2)yy, (u

2)xy, ux, uy, uxx, uyy, uxy}
adding the true features, and the parameters px = 2, pt = 1, Nd = 100, and D = (20, 10).

Figure 4.7: Anisotropic Porous Medium (PM) equation (Equation 4.36) on a 2-D spa-
tial domain with cross derivative feature. We set σNSR = 0.08, which is equivalent to
σNR = 0.4139 in WPDE [36]. (a) Given noisy data Û(x, 0) and (b) Û(x, T ). (c) Identified
equations with the E2 error.
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(c) σNSR = 0.08
True equation ut = +v3 + u+ 0.1uyy + 0.1uxx − uv2 + u2v − u3

vt = v + 0.1vyy + 0.1vxx − v3 − uv2 − u2v − u3

WeakIdent ut = +0.99213v3+0.98572u+0.09660uyy+0.09695uxx−
0.93229uv2 + 0.97678u2v − 0.99018u3

E2 =0.0316

vt = +0.97792v+0.09662vyy+0.09636vxx−0.97161v3−
0.96468uv2 − 0.95572u2v − 0.99605u3

WPDE ut = +1.34525v3 E2 =0.9081
vt = −1.34499u3

RGG[38] ut = +0.10204∇u+1.02296u− 1.01966u3+1.01341v3+
1.03003u2v − 1.01767uv2

E2 =0.0793

vt = +0.09244∇v − 0.07400u− 0.93640u3 + 0.95099v −
0.95370v3 − 0.95450u2v − 0.93750uv2

For RGG [38], the provided default features for reaction-diffusion type equation in [38] is
used: for u, the dictionary is {∇u, u, u2, u3, v, v2, v3, uv, u2v, uv2} and for v, the dictionary is
{∇v, u, u2, u3, v, v2, v3, uv, u2v, uv2}, and parameters px = 2, pt = 1, Nd = 100, D = (20, 10).

Figure 4.8: Reaction-diffusion equation (Equation 4.37) on a 2D spatial domain with
σNSR = 0.08 (equivalent to σNR = 0.08 defined in [36]). (a) Given noisy data Û(x, 0)
and (b) Û(x, T ). (c) The identified equations and the E2 errors. WeakIdent finds the cor-
rect terms with a small coefficient error.
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Figure 4.9: The Identification results from WeakIdent for the reaction diffusion equation
(Equation 4.37): The E2, E∞ errors , TPR and PPV are shown from 50 experiments for
each σNSR ∈ {0.01, 0.02, , ..., 0.1} using box-plots.
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Figure 4.10: The identified PDEs in Table 4.1 for different noise levels. We com-
pare WeakIdent (Red) and WPDE (Blue). The x-axis is σNSR, while the y-axis is the
average E2 error, TPR and PPV over 50 experiments. The relative noise ratio σ̃ =
σNSR/σNR compares our noise level σNSR vs. σNR in [36]. We present results for the
transport equation (Equation 4.32), the KdV equation (Equation 4.33), the KS equation
(Equation 4.34), the NLS equation (Equation 4.35), the PM equation (Equation 4.36),
and the reaction-diffusion (2D) equation (Equation 4.37). The noise-to-signal ra-
tio σNSR ranges in {0, 0.1, 0.2, ..., 0.9}, {0.01, 0.02, 0.04, ..., 0.24}, {0, 0.1, 0.2, ..., 0.9},
{0.01, 0.1, 0.2, ..., 0.5}, {0.01, 0.03, 0.05, ..., 0.15}, and {0.01, 0.02, ..., 0.1} for each equa-
tion respectively. 119
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Figure 4.12: The Lotka-Volterra equation (Equation 4.42). Statistical comparisons between
(a1)-(a4) WeakIdent, (b1)-(b4) WODE [37], (c1)-(c4) SINDy[198], (d1)-(d4) SC[30] and
(e1)-(e4) ST[30]. The E2, Eres errors, TPR and PPV are shown from 50 experiments for
each σNSR ∈ {0.01, 0.02, , ..., 0.1} using box-plots. Notice that for WeakIdent, the E2 error
is lower with less variations, and the TPR and PPV are closer to 1 as compared with that
obtained from other methods.
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(a) The KdV equation (Equation 4.33) (b) The KS equation (Equation 4.34)
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for the identification of (a) the KdV equation (Equation 4.33) and (b) the KS equation
(Equation 4.34). Different color curves represent results for various noise-to-signal ratios
σNSR ∈ {0, 0.1, ..., 1}. Notice a wide range of T gives the same recovery.
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CHAPTER 5

FOURIERIDENT - IDENTIFYING DIFFERENTIAL EQUATIONS PART II (

FREQUENCY DOMAIN)

This chapter studies this inverse problem of identifying a differential equation from a sin-

gle trajectory of noisy observations. In particular, we consider an identification in the

frequency domain

F
{
∂u(x, t)

∂t

}
= F{G(u)} = F{

L∑
l=1

clgl(x, t)}, (5.1)

where F represents Fourier transform. The G(u) is the governing equation which is as-

sumed to be a linear combination of linear and nonlinear features of u, e.g. gl(x, t)s are

monomials uβ and spatial derivative of monomials ∂α

∂xα (u
β), where α, β are nonnegative

integers. We consider one variable partial differential equation. Our objective is to find the

coefficient vector c = (cl) ∈ RL; the support and value of c for identifying the governing

differential equation. In this chapter, we present the challenges in working with data in the

frequency domain and propose a robust framework, FourierIdent, for differential equation

identification. We propose to use Fourier features for IDENTifying differential equations

(FourierIdent). After taking the Fourier transform of (Equation 5.1), we perform model

selection and parameter estimation in the frequency domain, which is different from exist-

ing works on model identification in the physical domain. This is motivated by the weak

formulation of features used in [37, 3], where the integral forms are calculated through

convolution and evaluated in the frequency domain using FFT. In [37, 3], the rest of com-

putation is done on the physical domain using inverse FFT.

The contributions of this chapter are summarized as follows:

1. We propose a stable denoising methods on frequency domain to effectively han-
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dle large frequency magnitudes and to reduce the sensitivity against noise. We use

Fourier analysis and fit the correct decay to the coefficients, and define the core re-

gion of features for identification. Using FFT gives the efficiency to the algorithm.

2. We develop a comprehensive framework, FourierIdent, to identify the coefficients of

the differential equation from a single observation. Within this framework, we use

Subspace Pursuit and group trimming to find the coefficient support for each sparsity

level. We further consider core regions of features to refine the coefficient value

identification and identify the optimal fit for the given data.

3. FourierIdent shows benefits in identifying equations under high level of noise, also

when the realization of equation, the given data, has a complex pattern, e.g., many

different frequency modes. We present various numerical experimental results for

comparison.

This chapter is organized as follows: In section 5.1, we provide a short literature review

of identifying differential equations in the frequency domain. In section 5.2, we provide

the problem setup and the formulation of Fourier features, and the error analysis of using

a Fourier feature is discussed in subsection 5.2.1. In section 5.3, we propose the denoising

method for Fourier features and define the core region of feature in the frequency domain.

In section 5.4, we present the methodology of FourerIdent, using Subspace Pursuit, group

trimming and the new enery using the core region of features for coefficient identification.

In section 5.5 and section 5.6, we provide details of implementation and numerical results

of FourierIdent. We conclude the paper with remarks in section 5.7.

5.1 Literature review

Parameter estimation for differential equations in the frequency domain has been consid-

ered in science and engineering applications. In [199], a sample maximum likelihood es-

timator in the frequency domain is used to identify some spatially dependent parameters
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in a parabolic equation, from the given PDE form. In [200], a frequency domain identi-

fication technique is proposed to estimate Linear Parameter-Varying differential equations

with weighted nonlinear least squares. [201] examines how physics-informed neural net-

works successively capture different frequencies of the solution that the low-frequency

components is captured at the beginning of training then the high-frequency components

as the training process proceeds. The authors in [202] consider cutting the given data in the

frequency domain after numerical differentiation of NN-denoised data in the model iden-

tification problem. The authors in [203] provide a mathematical theory on the possibility

of learning an PDE from a single solution trajectory. While frequencies have already been

considered important in some particular identification methods in the literature, no general

framework is available to identify an unknown partial differential equation using frequency

responses.

5.2 Problem set-up and Fourier features

In this paper, we present FourierIdent on one-dimensional PDEs, but our proposed method

can be extended to high-dimensional PDEs. Suppose the physical domain is Ω = [0, X]×

[0, T ] with X > 0, T > 0, and data are sampled on a uniform grid with step size ∆x, and

∆t. We denote xi = i∆x, tn = n∆t, and the PDE solution at (xi, t
n) as Un

i = u(xi, t
n).

Our observation of the solution at (xi, t
n) is contaminated by noise such that

Un
noise,i = Un

i + ϵni for (xi, t
n) ∈ Ω, (5.2)

where ϵni represents zero-mean noise at each point (xi, t
n). We denote the given data as

D = {Un
noise,i|i = 0, 1, 2, ...,Nx − 1, n = 0, 1, ...,Nt − 1} ∈ RNx×Nt , (5.3)
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where Nx and Nt ∈ N are the discretization sizes in the spatial and temporal dimensions.

We assume that the underlying equation has the form of (Equation 5.1):

∂u

∂t
(x, t) =

L∑
l=1

clgl =
L∑
l=1

cl
∂αlfl(u)

∂xαl
, with fl(u) = uβl , (5.4)

where L is the total number of features in the dictionary which consists of feature terms as{
∂αlfl(u)
∂xαl

}L

l=1
. The l-th feature ∂αluβl

∂xαl
is the αl-order derivative of the monomial uβl where

αl, βl are nonnegative integers. The objective of this paper is to find the support and values

of this coefficient vector in (Equation 5.4)

c = [c1, c2, · · · , cL]⊤

from the given data D.

Since we consider PDEs in the frequency domain, we assume that u is a periodic func-

tion in x and t. For non-periodic functions, we extend the function to a periodic function,

which is to be discussed in subsection 5.5.1. We define the Fourier transform of u(x, t) as:

F(u)[ξx, ξt] =
∫ T

0

∫ X

0

u(x, t)e−( ξxx
X

+
ξtt
T

)2π
√
−1dxdt.

The Fourier transform of (Equation 5.4) with respect to x and t becomes

2π

T
ξt
√
−1F(u)[ξx, ξt]

=
L∑
l=1

cl

(
2π

X
ξx
√
−1
)αl

F(fl)[ξx, ξt]

=

[
(2π
X
ξx
√
−1)α1F(f1(u)) · · · (2π

X
ξx
√
−1)αlF(f2(u)) · · · (2π

X
ξx
√
−1)αLF(fL(u))

]
c.

(5.5)

The first term in (Equation 5.5) is the Fourier feature of ut, and (2π
X
ξx
√
−1)αlF(fl(u)) in
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the right of (Equation 5.5) is that of the l-th feature in the library, i.e., ∂αluβl

∂xαl
.

Our idea is to find the support and values of the coefficient vector c from (Equation 5.5)

at the frequency modes (ξx, ξt) for ξx = 0, 1, ...,Nx − 1, ξt = 0, 1, 2...,Nt − 1. We denote

h = H(ξx, ξt) as the index of the frequency mode (ξx, ξt), where H is a map from the

frequency mode (ξx, ξt) to the unique index h ∈ {1, 2, . . . , H} with H = #{(ξx, ξt) : ξx =

0, 1, ...,Nx − 1, ξt = 0, 1, ...,Nt − 1} = NxNt. The notation # denotes the cardinality of a

set.

FourierIdent aims to solve a discrete Fourier system of (Equation 5.5)

Fc = b, (5.6)

where

F = (ah,l) ∈ CH×L, c = (cl) ∈ RL, b = (bh) ∈ CH ,

for

ah,l =

(
2πξx
X

√
−1
)αl Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(
2πp

Nx

ξx +
2πq

Nt

ξt

)√
−1 (

U q
noise,p

)βl

}
∆x∆t

and

bh,l =

(
2πξt
T

√
−1
) Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(
2πp

Nx

ξx +
2πq

Nt

ξt

)√
−1

U q
noise,p

}
∆x∆t.

Here ∆x = X
Nx
,∆t = T

Nt
. The l-th column of F is the discrete Fourier feature associated

with the l-th feature in the dictionary, and the vector b contains the discrete Fourier feature

for ut.
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5.2.1 Error analysis for Fourier feature

We analyze the error of the linear system (Equation 5.6) with discrete Fourier features.

Assume that {ϵni } in (Equation 5.3) are i.i.d and have zero-mean such that E(ϵni ) = 0.

Denote the true coefficient vector for the underlying PDE by c, and the support of the true

coefficient vector by Supp∗ = {l : cl ̸= 0}. The true coefficients satisfy the following

equation :

2π

T
ξt
√
−1F(u)[ξx, ξt] =

∑
l∈Supp∗

cl

(
2π

X
ξx
√
−1
)αl

F(fl)[ξx, ξt], (5.7)

for xix = 0, 1, ...,Nx − 1, ξt = 0, 1, ...,Nt − 1. The L∞-residual of (Equation 5.6) consists

of two errors: one is the discretization error of Fourier features and the other is the error

from noise:

e = ∥Fc− b∥∞ ≤ eFourier + enoise, (5.8)

where

eFourier =max
ξx,ξt

∣∣∣∣∣ ∑
l∈Supp∗

cl

(
2πξx
X

√
−1
)αl Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1 (
U q
p

)βl

}

−
(
2πξt
T

√
−1
) Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1
U q
p

}∣∣∣∣∣ XT

NxNt

(5.9)

enoise =max
ξx,ξt
|enoise[ξx, ξt]|

=max
ξx,ξt

∣∣∣∣∣ ∑
l∈Supp∗

cl

(
2πξx
X

√
−1
)αl Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1
((

U q
noise,p

)βl −
(
U q
p

)βl

)}

−
(
2πξt
T

√
−1
) Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1
ϵqp

}∣∣∣∣∣ XT

NxNt

. (5.10)

Here enoise[ξx, ξt] denotes the residual at the frequency mode (ξx, ξt).

In (Equation 5.8), we decompose the L∞-residual e to eFourier and enoise. The discretiza-
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tion error of Fourier features, denoted by eFourier, decreases to 0 as the data sampling grid

is refined:

lim
∆x,∆t→0

eFourier = max
ξx,ξt

∣∣∣∣∣∣
∑

l∈Supp∗
cl

(
2π

X
ξx
√
−1
)αl

F(uβl)[ξx, ξt]−
2π

T
ξt
√
−1F(u)[ξx, ξt]

∣∣∣∣∣∣ = 0.

In the following, we prove an upper bound for the error enoise resulted from noise.

Theorem 5.2.1. Consider the differential equation in (Equation 5.4) whose Fourier form is

(Equation 5.7). Assume that the given data D in (Equation 5.3) are contaminated by i.i.d.

noise: {ϵni } are i.i.d bounded random variables with E[ϵni ] = 0 and |ϵni | ≤ ϵ for some ϵ > 0.

The area of Ω is denoted by |Ω| = XT . Then the error enoise satisfies

enoise ≤
XT

NxNt

Sϵ+O(ϵ2), (5.11)

where

S = max
ξx,ξt

∣∣∣∣∣
Nx−1∑
p=0

Nt−1∑
q=0

e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1

 ∑
l∈Supp∗

cl

(
2πξx
X

√
−1
)αl

βl(U
q
p )

βl−1 − 2πξt
T

√
−1

∣∣∣∣∣.
(5.12)

Proof. Following the definition of enoise in (Equation 5.10), we have

enoise

=max
ξx,ξt

∣∣∣∣∣ ∑
l∈Supp∗

cl

(
2πξx
X

√
−1
)αl Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1
(
βl

(
U q
p

)βl−1
ϵqp +O((ϵqp)2)

)}

−
(
2πξt
T

√
−1
) Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1
ϵqp

}∣∣∣∣∣ XT

NxNt

≤ XT

NxNt

Sϵ+O(ϵ2),

where S is defined in (Equation 5.12).

First, Theorem 5.2.1 shows that the error enoise scales linearly with respect to the noise
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level ϵ. In comparison, numerical differentiation of the features in the physical domain can

give error as

O
(
∆t+∆xp+1−r +

ϵ

∆t
+

ϵ

(∆x)r

)
where r is the highest order of derivatives for the active features in the true support, and

numerical differentiation is carried by interpolating the data by a pth order polynomial [29,

204]. The noise is magnified by 1/∆t and 1/(∆x)r, which shows the challenges of dealing

with noisy data. Theorem 5.2.1 shows the formulation of Fourier features (Equation 5.11)

is more robust against noise in comparison with numerical formulation of differential fea-

tures. In the weak formulation, such as WeakIdent[3], the error (resulted from noise) of the

linear system also scales linearly with respect to noise,

eweaknoise ≤ S̄∗|Ωh|ϵ+O
(
ϵ2
)
, (5.13)

with S̄∗ = max
h

sup
(xj ,tk)∈Ωh

∣∣∣∣ ∑
l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1∂
αlϕ

∂xαl
(xj, t

k)− ∂ϕ

∂t
(xj, t

k)

∣∣∣∣,
where h is an index of the test function, Ωh is the support of the h-th test function, and

|Ωh| is the area of Ωh [3, Theorem 1]. The error bounds in both (Equation 5.11) and

(Equation 5.13) scale linearly with respect to the noise level ϵ, which demonstrates that

the numerical formulations of weak features and Fourier features are both robust to noise.

Secondly, the major difference between (Equation 5.11) and (Equation 5.13) is that,

the error in WeakIdent is local depending on the local support Ωh of the h-th test function,

while the error in FourierIdent is global.

5.3 Fourier feature denoising and core regions of features

One of the main difficulties of FourierIdent is that frequency responses may have large

magnitude, which is different from the linear system generated in the physical domain.

As in [29, 204, 3], even in physical domain denoising is very important for coefficient
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identification. In this section, we propose a denoising process for FourierIdent using (i)

Fourier feature denoising, and defining (ii) the meaningful data region, and (iii) the core

regions of features in the frequency domain. We denoise Fourier features as in the physical

domain, and further partition the frequency domain to the core regions of features and the

rest to separate noise from data. We give details of denoising in this section before we

present the main algorithm of FourierIdent in section 5.4.

5.3.1 Denoising Fourier features

We first denoise Fourier features by applying convolution with a Gaussian-shape kernel

ϕ(x, t). By the convolution theorem, we conduct all computations about convolution in the

frequency domain. This can be applied in a restricted domain. For example, let Λ be a

smaller region in the frequency domain, and the matrix FΛ and the vector bΛ be restricted

to the entries from the region Λ. We let (ξx, ξt) ∈ Λ, and h be the associated index such

that h = H(ξx, ξt), which is also the row index of the frequency mode (ξx, ξt) in S(F ). We

define the smoothing operator S on the matrix FΛ as follows:

[S(F )Λ]h,l (5.14)

=

(
2πξx
√
−1

X

)αl Nx−1∑
p=0

Nt−1∑
q=0

e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1 (
U q
noise,p

)βl ·
Nx−1∑
p=0

Nt−1∑
q=0

e
−
(

2πp
Nx

ξx+
2πq
Nt

ξt
)√

−1
Φq

p,

where (ξx, ξt) ∈ Λ, and h and l are row and column index of the smoothed matrix S(F )Λ,

ϕ(x, t) =

(
1−

(
x

mx∆x

)2
)px (

1−
(

t

mt∆t

)2
)pt

for

(x, t) ∈ (−mx∆x,mx∆x)× (−mt∆t,mt∆t)

and Φq
p (p = 0, ...,Nx−1, q = 0, ...,Nt−1) gives a discrete evaluation of ϕ(x, t) on the grid

point (xp, t
q). The operation with ϕ(x, t) in (Equation 5.14) smoothes the data, because the

132



point-wise multiplication between Φ and U in the frequency domain is equivalent to the

convolution between ϕ and u in the physical domain. This denoising process is motivated

by the weak form of feature as in [37, 3], and we apply the same method to determine

the nonnegative integers mx,mt, px, pt related with the decay of the test function ϕ, from

the given data. The idea is to match the shape of the smoothing kernel ϕ to the shape of

a Gaussian function, such that the noise region will be mostly in the tail of the Gaussian.

Another aspect is the smoothness of ϕ that mx,mt, px, pt are chosen to guarantee all the

features in the dictionary, including the highest derivative terms, are at least continuous.

5.3.2 The meaningful data region Λ in the frequency domain

We separate the frequency domain into the meaningful data region and the core regions of

features for further noise separation. We first utilize a theoretical bound for the decay of

Fourier coefficients to define a meaningful data region Λ.

Lemma 5.3.1. Let u ∈ L2([0, 1]) be continuous and denote its Fourier transform by F(u)

with F(u)[ξ] =
∫ 1

0
u(x)e−2π

√
−1ξxdx. If u(p−1) = ∂p−1u

∂xp−1 is continuous and u(p−1) ∈

L2([0, 1]). then the Fourier coefficients F(u(q)) of the q-th (q ≤ p) order derivative ∂qu
∂xq

satisfies

F(u(q))[ξ] ∝ 1

ξp+1−q
, (5.15)

where ∝ denotes the proportional relation.

Proof. It is shown in [205] that the Fourier coefficients of u satisfies F(u)[ξ] ∝ 1
ξp+1 . Since

F(u(q))[ξ] = (
√
−12πξ)qF(u)[ξ], we obtain that F(u(q))[ξ] ∝ 1

ξp+1−q .

Following Lemma 5.3.1, we assume that PDE solution satisfies F(u)[ξx, ξt] ∝ 1
ξ
c1
x

, and

F(u)[ξx, ξt] ∝ 1
ξ
c2
t

for some c1, c2 > 0. Motivated by this decay rate, we partition the

frequency domain into two regions. One region follows a proper decay rate which gives

the meaningful data region Λ for differential equation identification, and the other high

frequency region indicates the noise from the given data.
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For simplicity, we use U ∈ CNx×Nt to denote the given data. We can assume the data

are periodic in both time and space by the augmentation along the temporal domain in

subsection 5.5.1. After augmentation, the spatial and temporal dimensions are updated to

Nx = Nx and Nt = 2Nt − 2.

We take the two-dimensional Fourier Transform of the noisy data and accumulate the

responses in the ξx and ξt dimension (frequency index ξx and ξt) respectively, and exploit

the same decay rate in both dimensions:

Nt−1∑
ξt=0

∣∣F(U)[ξx, ξt]
∣∣ ∝ 1

ξc1x
,

Nx−1∑
ξx=0

∣∣F(U)[ξx, ξt]
∣∣ ∝ 1

ξc2t
,

This can be written in a linear form using the log function:

log

(
Nt−1∑
ξt=0

∣∣F(U)[ξx, ξt]
∣∣) ∝ −c1 log(ξx) + d1. (5.16)

We find a transition frequency mode ax separating two regions, by fitting a linear

relation for low frequency modes (ξx ≤ ax), and fitting a flat line for high frequency modes

(ξx > ax) in the log-log scale:

a∗x = argmin
ax∈{0,...,⌊Nx/2⌋}

{min
a,b∈R

∑
ξx∈{0,1,...,ax}

(a log(ξx) + b− log[y(ξx)])
2


+

⌊Nx/2⌋∑
ξx=ax+1

(log[ȳ(ax + 1)]− log[y(ξx)])
2

}
. (5.17)

with

y(ξx) =
Nt−1∑
ξt=0

∣∣F(U)[ξx, ξt]
∣∣, ȳ(ax + 1) =

1

⌊Nx/2⌋ − ax

⌊Nx/2⌋∑
ξx=ax+1

Nt−1∑
ξt=0

∣∣F(U)[ξx, ξt]
∣∣.

The first term in (Equation 5.17) fits the decay rate (Equation 5.16) and the second term

fits the flat noise region. This is based on the assumption that low frequency data are dom-
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(a) (b)

Figure 5.1: Decay fit in the frequency and physical domains. (a) Blue dots are the given
data, orange and green dotted lines are the fitting lines to find the transition frequency mode
a∗x (Equation 5.17) in log-log scale. (b) the same plot in physical domain and original unit.
Red curves in both graphs show the fitting loss.

inated by the actual dynamics of the differential equation, while the high frequency data

are mostly dominated by noise. Thus, a transition frequency mode can be detected by the

change of the relation between log
(∑Nt−1

n=0

∣∣F((U))[ξx, ξt]
∣∣) and log(ξx). The transition

frequency mode in time, denoted by a∗t , can be obtained similarly.

In Figure 5.1 (a) we show the accumulated frequency responses (blue dots), the lin-

ear fitting curve at the low-frequency modes (dash lines), and the total loss function L of

(Equation 5.17) (red lines). The x-axis and left-y-axis provide the scales of points (xi, yi) in

the linear fit. The right-y-axis provides the scale of the loss function L in (Equation 5.17).

In (b), visualization of the fitted curves is shown in the original scale (instead of log scale)

in the frequency domain. The transition mode is detected as a∗x = 27 from (Equation 5.17).

With the transition frequency modes a∗x and a∗t in ξx and ξt directions respectively, we

partition the frequency domain into two regions: the meaningful data region Λ and noise

regions, where

Λ = {(ξx, ξt) : ξx = 0, 1, ..., a∗x − 1, ξt = 0, 1, ..., a∗t − 1}

and the complement Λ∁ is the noise region. This is motivated from the theoretical decay
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rate of the Fourier coefficient of U .

When the given data are noisy, each Fourier feature F{gl} is affected by noise. The

region with a high response of F{gl} usually contains more signal information than the

region with a low response of F{gl}. We further define the core region of feature for gl,

denoted as V(gl) such that:

V(gl) = (VR(gl),VI(gl)) with (5.18)

VR(gl) =
{
h = H(ξx, ξt) : (ξx, ξt) ∈ Λ, |R

([
S(F )

]
h,l

)
| ≥ βgl

}
,

VI(gl) =
{
h = H(ξx, ξt) : (ξx, ξt) ∈ Λ, |I

([
S(F )

]
h,l

)
| ≥ βgl

}
.

Here V(gl) contains two ordered sets, in which the first set denotes the high response region

for the real part of the Fourier feature for gl, and the second set denotes the high response

region for the imaginary part of the Fourier feature for gl.

For the feature gl, we pick the high responses among the frequencies in Λ to be in

the core region, and consider low responses as noise and remove them from the system

(Equation 5.6). We refer to subsection 5.5.3 for more details on how to choose the threshold

βgl . For the feature ut, we consider the smoothed frequency response restricted to Λ, S(b)Λ,

and its magnitude at each frequency. We take the high response region as the core region

determined by a threshold βut . Specifically, the core region of ut, V(ut), is defined similarly

as V(gl) in (Equation 5.18), where βgl is replaced by βut and S(F )h,l is replaced by S(b)h.

Using the core region of feature ut, we construct the linear system as

S(F )V(ut)c = S(b)V(ut), (5.19)

where
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Construct
the Fourier

system
(Equation 5.6),

from the
given

data D
(Equation 5.3).

[Step 1]
Fourier feature

denoising
and construct
S(F )V(ut) and
S(b)V(ut) in

(Equation 5.19).

[Step 2]
For k =
1, 2, ..., K,

apply SP and
group trimming

to obtain the
support Ak.

[Step 3]
Chose the best

sparsity k∗ as in
(Equation 5.27),
and use V∗ in

(Equation 5.28)
to compute the
coefficient cV∗ .

Output cV∗

Figure 5.2: The flowchart of FourierIdent. A discrete Fourier system (Equation 5.6) is
constructed from the given data. In [Step 1], Fourier features are denoised and a smaller
system (Equation 5.19) is constructed. In [Step 2], we apply Subspace Pursuit to obtain
initial supports for each sparsity level k = 1, 2, ..., K and new group trimming is applied.
In [Step 3], the best coefficient is computed from the energy (Equation 5.27) based on core
region.

S(F )V(ut) =

R (S(F )VR(ut)

)
I
(
S(F )VI(ut)

)
 and S(b)V(ut) =

R (S(b)VR(ut)

)
I
(
S(b)VI(ut)

)
 .

Here we use S(F )VR(ut) to denote the submatrix of S(F ) with rows restricted to the ones

indexed by VR(ut).

The overline denotes the vertical stacking of real and imaginary responses. This leads

to a reduced linear system that is defined only on the core region of the feature ut. To

represent the coefficients identified within the core region of ut, we use

cV(ut) = LeastSquare( ˜S(F)V(ut), ˜S(b)V(ut)). (5.20)

Here we use the error-normalized Fourier feature matrix ˜S(F )V(ut) and the error-normalized

dynamic variable ˜S(b)V(ut) defined in (Equation 5.30) to solve the least square problem in

(Equation 5.20) (details presented in subsection 5.5.2).
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5.4 Fourier features for Identifying differential equations (FourierIdent)

From the given data, Fourier features are denoised and a smaller linear system with reduced

size is constructed in section 5.3. We utilize Subspace Pursuit [182] for the coefficient

support identification, and we propose (i) a new group trimming for stable support recovery,

and (ii) a new energy based on the core regions of features for the coefficient identification.

There are three steps to the proposed FourierIdent, and Figure 5.2 shows the flowchart to

illustrate the process.

1. From the given input data, we construct a denoised linear system with S(F )V(ut)

and S(b)V(ut) in (Equation 5.19). This is generated by the denoising operation S in

(Equation 5.14), the discrete Fourier system (Equation 5.6) and using the core region

of ut, V(ut), to reduce the size and denoise the system.

2. For each sparsity level k = 1, 2, . . . , K, we apply Subspace Pursuit [182] on a col-

umn normalized system of S(F )V(ut)

†
, and S(b)V(ut)

†
(† denotes the column normal-

ization) and get an initial support A0
k. We apply a new group trimming to remove

features which minimally contribute to the dynamics of the system. This is applied

iteratively, until the support converges to Ak for each k.

3. To choose the optimal coefficient, we propose a new energy based on the core regions

of features. First, the optimal sparsity is determined by choosing k∗ which gives

the minimum residual on the union of the core regions of features identified in Ak.

Secondly, we identify the optimal coefficients, by finding the coefficients which gives

the minimum residual among least-square fits on the core region of each feature in

Ak.
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Algorithm 7 FourierIdent Algorithm
Input: Given data (Equation 5.3). ;
[Step 1] Construct the discrete linear system S(F )V(ut)

,S(b)V(ut)
as in (Equation 5.19)

[Step 2]
for k = 1,2,...,K do

Run SP(S(F )V(ut)

†
,S(b)V(ut)

†
, k) using SP [182] and set j = 0

Compute the coefficients cV(ut) by the Least Square in (Equation 5.20)
while Aj

k not convergent do
Perform group trimming in (Equation 5.23) with T = 0.08 and set j = j + 1
Update the contribution score sl in (Equation 5.22), using the updated coefficients
cV(ut) in (Equation 5.20)

end while
end for
[Step 3 - 1] Determine the optimal sparsity k∗ according to (Equation 5.27) and the
support Ak∗ .
[Step 3 - 2] Compute c∗ by minimizing (Equation 5.29).
Output: c∗ ∈ RL such that Fc∗ ≈ b .

5.4.1 Subspace Pursuit (SP) and Group trimming

With the denoised Fourier features, we apply Subspace Pursuit (SP) [182] to obtain an

initial support A0
k with each sparsity level k. Subspace Pursuit is a greedy algorithm where

one can input a column normalized matrix Φ, a vector b, and a sparsity k. The goal is to

find a k-sparse solution of the linear system Φx = b as

min
x:∥x∥0=k

∥Φx− b∥22. (5.21)

However, this optimization problem is hard to solve. Instead, SP(Φ, b, k) outputs a k-

sparse solution in a greedy way (See [182] for details).

For each sparsity level k = 1, . . . , K, we compute SP(S(F )V(ut)

†
,S(b)V(ut)

†
, k), and

denote the recovered support by A0
k. To further remove the insignificant features in A0

k,

we trim the features which have minimum contributions to the dynamics, measured by the

contribution score;

sl = s(gl) = |cl| · ∥S(F )V(ut),l∥2 . (5.22)
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Here S(F )V(ut),l is the l-th column of S(F ) with rows restricted to the core region V(ut).

The value cl is the l-th entry of the identified coefficient from the least-square fit of S(F )V(ut)

and S(b)V(ut).

To improve the efficiency of the algorithm, we propose to trim features as a group.

We remove a set of the least relevant features for a given sparsity level k using a threshold

T . In this paper, we fix this threshold to be T = 0.008. The group-trimming is used as

follows:

• Re-order features by contribution scores. We arrange the features in ascending or-

der, denoted as 1′, 2′, ..., k′, based on their respective contribution scores, represented

as s1′ ≤ s2′ ≤ ... ≤ sk′ .

• Remove the low contributing terms as a group. We identify the largest value k′
max

satisfying condition ∑k′max

j=1′ sj∑
k∈A0

k
sk

< T ≤
∑k′max+1

j=1′ sj∑
k∈A0

k
sk

, (5.23)

and remove features with contribution scores lower than sk′max
, i.e., sl ≤ sk′max

from

the support set Ai
k when k′

max > 0, where Ai
k denotes the support at the ith iteration

after the ith group trimming. This step reduces the size of the support and the support

becomes Ai+1
k . Here T helps to remove a subgroup of features that contributes less

than a threshold (which is set to be 8% in this paper) overall compared to all features

in the support Ai
k. This T is a measure of the relative significance of a smaller

subgroup of trimmed features compared to the whole set of features.

• Trimming in each iteration. This group trimming is applied iteratively within

each sparsity level k, and the converged support set is assigned as Ak. Note that

(Equation 5.23) changes in each iteration and must be recomputed.

The group trimming is a grouped version of trimming in WeakIdent [3]. The group

trimming improves efficiency by removing insignificant as a group and gives stable results

for different types of equations with various levels of noise.
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5.4.2 Identification of coefficients from the core regions of features

Once we have a collection of support sets Ak’s for k = 1, . . . , K, we choose the optimal

sparsity k∗ (and the associated support Ak∗) which minimizes an energy based on the core

regions of features. The energy consists of two terms:

Energy =Fitting residual on the union of core regions about Ak

+ Stability of the identified coefficient.
(5.24)

The first term in (Equation 5.24) is the fitting residual at the frequencies on the union of the

core regions for the features in Ak:

Fitting residual on the union of core regions :=
∥S(F )V(Ak)cV(Ak) − S(b)V(Ak)∥2

∥S(b)V(Ak)∥2
.

(5.25)

Here cV(Ak) denotes the coefficients recovered using an error-normalized feature matrix

˜S(F )V(ut) and dynamic variable ˜S(b)V(ut) defined in (Equation 5.30) in subsection 5.5.2.The

union of core regions for the features in Ak is

V(Ak) =
⋃
l∈Ak

V(gl).

While each feature gives different core regions (high response regions), by using the union

V(Ak), we consider fitting on the high response regions for all the features in Ak

The second term in (Equation 5.24) measures the stability of the identified coefficients.

For each feature gl such that l ∈ Ak, we compute the coefficients cV(gl) as in (Equation 5.20)

while the core region V(ut) is replaced by V(gl). We compare the normalized distance

among all coefficient vectors computed on the core region of each feature inAk, and define
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the follwing stability term:

Stability of the identified coefficients :=
1∣∣Ak

∣∣2 1∥∥cV(ut)

∥∥
2

∑
l,l′∈Ak,l ̸=l′

∥∥cV(gl) − cV(gl′ )
∥∥
2
,

(5.26)

If fitting on the core region of one feature gives a very different coefficient vector from

fitting on the core region of another feature, this stability term in (Equation 5.26) will be

larger than that when the coefficients computed on the core regions of different features are

similar. This term measures the stability of coefficient computation on the core regions of

different features in Ak.

We find the optimal sparsity k∗ and the associated support set Ak∗ by minimizing the

energy:

k∗ = argmin
k

{
∥S(F )V(Ak)cV(Ak) − S(b)V(Ak)∥2

∥S(b)V(Ak)∥2
+

1∣∣Ak

∣∣2 1∥∥cV(ut)

∥∥
2

∑
l,l′∈Ak,l ̸=l′

∥∥cV(gl) − cV(gl′ )
∥∥
2

}
.

(5.27)

The energy summing (Equation 5.25) and (Equation 5.26) measures how meaningful the

recovered support Ak is in terms of the best fitting on the union of core regions and the

stability of coefficient identification.

Finally, we compute the best coefficient vector c∗ by solving a least square problem on

a properly selected core region, that gives the smallest residual among the features in Ak∗

and ut. For each core region of each features inAk∗ and ut, residual error is computed. Let

V∗ be the best core region of features among all features in Ak∗ and ut, which gives the

minimum residual:

V∗ = argmin
V ∈
{
V(ut),V(gl):l∈Ak∗

} ∥S(F )V cV − S(b)V ∥2
∥S(b)V ∥2

. (5.28)

The core regions for each feature in Ak∗ and ut are used to find the minimum residual in

(Equation 5.28) such that V ∈
{
V(ut),V(gl) : l ∈ Ak∗

}
. In our experiments, using the
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union V(Ak∗) does not give good results. When fewer number of features are used for the

core region, it gives better coefficient recovery. In (Equation 5.28), we experiment on the

core regions for each feature, and pick one feature to define the core region.

With V∗, the identified coefficient vector c∗ is given by

c∗ = LeastSquare(S̃(F)V∗ , S̃(b)V∗). (5.29)

using normalized feature matrix S̃(F )V∗ and dynamic variable S̃(b)V∗ as defined in (Equation 5.30).

5.4.3 Solving least square with column rescaling

We define the rescaling factor as

s(l,V(ut)) =


βlAvgh∈V(ut)

|S(F )|h,l=L(αl,βl−1) βl > 1

Avgh∈V(ut)
|S(F )|h,l=L(αl,βl)

βl = 1

where |S(F )| represents the magnitude of the smoothed feature matrix with a vertical

stacking of the real and imaginative features, which is similar to that defined in (Equation 5.19).

Here Avgh denotes the average operation over the h index, and L(αl, βl) denotes the col-

umn index of a feature with derivative order αl and polynomial degree βl. This s(l,V(ut))

is the column scale of l-th feature in S(F ). Similarly, the scale constant for S(b)V(ut) is

s(b,V(ut)) = Avgh∈V(ut)
|S(b)|

Using these scale constants, an alternative least square problem on some customized core

regions A for S(F )Ac = S(b)A, such as (Equation 5.19), can be converted to

S̃(F )Ac̃ = S̃(b)A, (5.30)
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where

S̃(F )A = S(F )A · diag
(

1

s(1,V(ut))
, ...,

1

s(L,V(ut))

)
, S̃(b)A = S(b)A ·

1

s(b,V(ut))
.

Once we compute the coefficient vector c̃, it is rescaled to the coefficient c by

c = c̃ · diag
(
s(b,V(ut))

s(1,V(ut))
, ...,

s(b,V(ut))

s(L,V(ut))

)
. (5.31)

This normalization is applied to compute coefficients in determining sparsity level Equa-

tion 5.27 and recovering coefficients Equation 5.29.

5.5 Numerical Implementation Details

We present implementation details in this section. First, we propose a method to extend

and augment the data when the given data are not periodic. Secondly, we review the details

of error-normalization on how it is applied in the frequency domain. Thirdly, we discuss

the details of how the threshold is computed for the core regions of features.

5.5.1 Domain extension for different boundary conditions

Applying the Fourier Transform on u requires u to be periodic along both t and x directions.

When u(x, t) does not satisfy this periodic condition, we extend it to a periodic function to

compute Fourier coefficients.

We introduce two transformation operatorsHt and Gt defined as follows:

Gt(fl(u(x, t))) =


fl(u(x, t)) 0 ≤ x ≤ X, 0 ≤ t ≤ T

−fl(u(x, 2T − t)) 0 ≤ x ≤ X,T ≤ t ≤ 2T
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and

Ht(u(x, t)) =


u(x, t) 0 ≤ x ≤ X, 0 ≤ t ≤ T

u(x, 2T − t) 0 ≤ x ≤ X,T ≤ t ≤ 2T

,

where u(x, t) is a continues function for x ∈ [0, X] and t ∈ [0, T ]. The subscript t denotes

that we are extending u(x, t) along t. One can easily check that both extended functions

Gt(u(x, t)) andHt(u(x, t)) are periodic along t. Then the (Equation 5.4) is converted to an

alternative form

∂Ht(u)

∂t
(x, t) =

L∑
l=1

cl
∂αlGt(fl(u))

∂xαl
, (5.32)

where ut is computed with Ht(U
n
noise,i) instead of Un

noise,i and features on the right-hand

side are computed using Gt(fl(Un
noise,i)). For simplification of notation, we present the pa-

per with Un
noise,i. However, when the given data do not satisfy the period boundary condi-

tion, we consistently use the extended boundary (Equation 5.32) instead of (Equation 5.4).

5.5.2 Error-normalization on the core region of features

We review the method of error-normalization introduced in [3] and illustrate how this is

implemented in the frequency domain. The motivation is to unify the effect of noise

among different feature terms in the library. Using the noise model of the given data

(Equation 5.2), each Fourier feature has the following expression

(
2πξx
X

√
−1
)α Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(
2πp

Nx

ξx +
2πq

Nt

ξt

)√
−1 (

U q
p + ϵqp

)β}
,

where the leading coefficient of the error ϵqp is

(
2πξx
X

√
−1
)α Nx−1∑

p=0

Nt−1∑
q=0

{
e
−
(
2πp

Nx

ξx +
2πq

Nt

ξt

)√
−1

β
(
U q
p

)β−1

}
. (5.33)
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5.5.3 Threshold computation for the core region of features

We present how the threshold βut used in subsection 5.3.2 is chosen to determine the core

region of feature for ut. In subsection 5.3.2, we partition the meaningful data region Λ

further into the core region (high response region of the feature), and the noise region (low

response region of the feature). The partition is based on the threshold βut .

1. First, we collect absolute values of the smoothed responses for ut in Λ in a new

set denoted by B. We take the absolute values of both the real and imaginary parts

for each index h = H(ξx, ξt). Here the frequency index h = H(ξx, ξt) is in the

meaningful data region Λ such that ξx = 1, . . . , a∗x and ξt = 1, . . . , a∗t .

2. We partition the range of frequency responses in B into a fixed number of bins NB =

300. The partition is on an equally spaced grid. We denote the index of each bin

by θ = 1, ..., NB. Let bθ represent the number of Fourier responses located in the

θth bin. In other words, each bθ counts the number of elements of B with values in

[bleftθ , brightθ ], where bleftθ , brightθ denote the lower and upper bound of the responses in

the θth bin.

3. We apply a two-piece linear fit on the cumulative sums of these bins, denoted by

B(k) =
∑k

θ=1 bθ for k = 1, 2, ..., NB. The threshold βut is chosen as bleftθ∗+1 where θ∗

is determined by the minimizer of the sum of two linear fitting residuals:

βut = bleftθ∗+1

where

θ∗ = argmin
θ

{ k∑
θ=2

(
B(k)−B(1)

k − 1
θ +B(1)

)
+

NB−1∑
θ=k+1

(
B(NB)−B(k + 1)

NB − k − 1
θ +B(k + 1)

)}
.

For each feature gl, the core region of feature is computed with the threshold βgl . We
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choose the threshold βgl in a similar way to the choice of βut .

5.6 Numerical experiments

In this section, we present numerical experiments. The noise ϵni for i = 0, ...,Nx − 1,

n = 0, ...,Nt − 1, follows a Gaussian distribution with mean zero and variance σ2
Noise. For

the noise-to-signal ratio (NSR), we use the following definition:

σNSR =
σNoise√

1
NtNx

∑
i,n |Un

i |2
,

as in [3].

To measure the accuracy of identification, we use four identification errors in Table

Table 5.1. They are the Relative coefficient error e2, Relative residual error eres, True

Positive Rate (TPR), and Positive Predictive Value (PPV). Here e2 measure the accuracy

of the coefficient identification compared to the true coefficient; eres shows the relative

residual error of fitting the identified differential equation to the given data; TPR provides

the percentage of how many true features are identified compared to the total count of the

true features; PPV provides the percentage of the true features identified as a result among

all the identified features.

Name Definition Name Definition

e2
∥c− ctrue∥2
∥c∥2

(5.34) TPR
|{l : cpred(l) ̸= 0, ctrue(l) ̸= 0}|

|{l : ctrue(l) ̸= 0|
(5.35)

eres
∥Fc− b∥2
∥b∥2

(5.36) PPV
|{l : cpred(l) ̸= 0, ctrue(l) ̸= 0}|

|{l : cpred(l) ̸= 0|
(5.37)

Table 5.1: We use four errors to measure the accuracy of identifying a partial differential
equation in this paper: Relative coefficient error (e2), Relative residual error(eres), True
Positive Rate (TPR), and Positive Predictive Value (PPV).
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We experiment on various differential equations which are listed in Table 5.2. The Heat

(Equation 5.38), Transport equation (Equation 5.39), and Burgers’ equation (Equation 5.40)

are simulated using the spectrum method. The KdV (Equation 5.41) and KS (Equation 5.42)

are simulated using the ETD RK4 method [206]. The true features in these equations con-

tains ux, (u
2)x, uxx, uxxx, and uxxxx. A diffusion term is added to the transport and burger

equation to stabilize the pattern and increase the complexity of the model. These experi-

ments show the robustness of FourierIdent in identifying linear, nonlinear, or higher-order

derivative features.

Name Definition Simulation paramters

Heat Equation
∂u

∂t
= 0.1

∂2u

∂x2
(5.38) T = [0, 0.0999], [X1, X2] = [0, 10]

, ∆x = 0.0391, ∆t = 0.003.

Transport Equa-
tion with diffu-
sion

∂u

∂t
= −∂u

∂x
+ 0.1

∂2u

∂x2
(5.39) T = [0, 0.0999], [X1, X2] = [0, 10]

, ∆x = 0.0391, ∆t = 0.003.

Burger’s Equa-
tion with diffu-
sion

∂u

∂t
= 0.25

∂

∂x
u2 + 0.05

∂2u

∂x2

(5.40)

T = [0, 0.4995], [X1, X2] =
[−3.1416, 3.1293] , ∆x = 0.0123,
∆t = 0.001.

Korteweg-de
Vires (KdV)
equation

∂u

∂t
= −0.5 ∂

∂x
u2 − ∂3u

∂x3
(5.41) T = [0, 0.0200], [X1, X2] =

[−3.1416, 3.1416] , ∆x = 0.0157,
∆t = 4× 10−5.

Kuramoto-
Sivashinsky (KS)

∂u

∂t
= −0.5 ∂

∂x
u2 − ∂2u

∂x2
− ∂4u

∂x4

(5.42)

T = [0, 150], [X1, X2] =
[0, 100.53] , ∆x = 0.3927, ∆t =
0.5.

Table 5.2: A list of equations used for experiments of FourierIdent. For all the equations,
we use the maximum power β = 6, maximum order of derivative α = 6, and total number
of features L = 43 as the dictionary’s parameters.
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(a) Frequency domain (b) F(uxxx) on Λ (c) V(uxxx)
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Figure 5.3: The KdV equation (Equation 5.41) with σNSR = 0.3 as an example. (a)
The frequency domain and Λ (the red box). (b) Zoom of Λ and the frequency response
R(|F(uxxx)|). (c) The white region represents the core region of uxxx further reduced
from Λ. There is a big reduction in the size of the region.

5.6.1 Workflow of FourierIdent

We illustrate the procedure of FourierIdent step by step, from constructing a feature matrix

to achieving the identified coefficients.

In [Step 1], we obtain the feature matrix (Equation 5.19) and determine the core re-

gions of features. Figure 5.3 shows an example of the KdV equation (Equation 5.41) with

σNSR = 0.3 noise. (a) shows the meaningful data region Λ (red box) in relation to the entire

frequency domain, (b) shows the frequency response of uxxx in Λ (zoomed), and (c) shows

the core region of uxxx restricted in Λ. Note the significant reduction of the size, which

contributes to the efficiency of the method in (Equation 5.20).

In [Step 2], for each sparsity level k = 1, . . . , K, we use Subspace Pursuit to obtain

an initial candidate support A0
k which may be further reduced to a smaller support through

group trimming. Table 5.3 shows the first result of SP, A0
k, and how group trimming is

iteratively applied to get Ak for the KS equation (Equation 5.42). We present the cases

for k ≤ 5, but we computed Ak until k = 10. When k = 1, the candidate support has

one feature (u2)xxxxx, and the associated energy (Equation 5.27) is 0.8071. When k = 3,

the correct support is found as the initial support A0
3, and no more feature is trimmed such

that A3 = A0
3. When k = 4, the feature (u4)xxxxx is removed during group trimming.

When k = 5, the feature (u4)xxxxx, (u
2)xxx are removed during group trimming. The same

support was obtained after group trimming when 3 < k ≤ 10. In the end, optimal k∗ is
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given from 3, and the associated support is chosen to be A∗ = {uxx, uxxxx, (u
2)x}.

Sparsity Support Optimal k∗ energy
(Equation 5.27)

SP(1) A0
1 = {(u2)xxxxx} = A1 0.8071

SP(2) A0
2 = {(u2)xxxxx, (u

2)xxx} = A2 4.1957

SP(3) A0
3 = {uxx, uxxxxx, (u

2)x} = A3 0.1975

SP(4) A0
4 = {uxx, uxxxxx, (u

2)x, (u
4)xxxx}

Score
(Equation 5.22)

s(uxx) = 1, s(uxxxx) = 0.59, s((u2)x) = 0.63,
s((u4)xxxxx) = 0.01

Updated A1
4 = {uxx, uxxxxx, (u

2)x} = A4 0.1975

SP(5) A0
5 = {uxx, uxxxxx, (u

2)x(u
2)xxx, (u

4)xxxxx}
Score
(Equation 5.22)

s(uxx) = 1, s(uxxxx) = 0.59, s((u2)x) = 0.65,

s((u4)xxxxx) = 0.04, s((u2)x) = 0.02
Updated A1

5 = {uxx, uxxxx, (u
2)x} = A5 0.1975

Table 5.3: The KS equation in (Equation 5.42) with σNSR = 0.5 as an example. [Step 2] SP
and group trimming. For each sparsity level k, SP(k) to represent Subspace Pursuit being
applied on S(F )V(ut)

† with sparsity level k, we present the initial support and the converged
supportAk after the group trimming. While no features are trimmed when k ≤ 3, for k > 3
with the group trimming, it converged in one step. Note the same features A∗ are found
from k = 3 with the minimum energy (Equation 5.27).

In [Step 3], we pick the coefficient vector with the minimum energy based on the

core region of features (Equation 5.27). Note that these coefficient energies are associ-

ated with each individual core region, and Table 5.4 presents this computation from the

features of A∗ and ut, i.e., V(ut),V(uxx),V(uxxxx),V((u2)x), for the KS equation (Equa-

tion 5.42). The coefficient values are similar to each other, thanks to the consistency term

(Equation 5.26) in (Equation 5.27), and we choose the best coefficient vector. In this ex-

ample, V∗ = V(uxxxx) gives the lowest coefficient energy. The final output of this identifi-

cation example is ut = −0.9701uxx − 0.9916uxxxx − 0.4785(u2)x and the true equation is

ut = −uxx − uxxxx − 0.5(u2)x in (Equation 5.42).
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Features in A∗
k Coefficients Residual error

(Equation 5.28)

Use S(F )V(ut) cV(ut) = [−0.8834,−0.881,−0.4443] 0.2817
Use S(F )V(uxx) cV(uxx) = [−0.8912,−0.8921,−0.4464] 0.2817
Use S(F )V(uxxxx) cV(uxxxx) = [−0.9701,−0.9916,−0.4785] 0.1468
Use S(F )V((u2)x) cV((u2)x) = [−0.9642,−0.9706,−0.4867] 0.1483

Identified equation : ut = −0.9701uxx − 0.9916uxxxx − 0.4785(u2)x,
using V∗ = V(uxxxx),

Table 5.4: The KS equation in (Equation 5.42) with σNSR = 0.5. [Step 3] for each features
of A∗ ∪ {ut} = {ut, uxx, uxxxx, (u

2)x} computes the coefficients and find the minimum
residual energy (Equation 5.28) feature. The minimum coefficient energy is given by V∗ =
V(uxxxx) and the corresponding equation is identified.

5.6.2 Effect of the meaningful data region

We present the effect of the meaningful data region, using the KdV equation with σNSR =

0.3 as an example. Figure 5.4 shows the scale of features of F , FΛ (F restricted on Λ),

S(F ), S(F )Λ and W which is the Weak-form feature in the physical domain as in WeakI-

dent [3]. The magnitude of the Fourier features have a wider range, and using the mean-

ingful data region Λ helps to reduce this range by comparing F with FΛ and S(F ) with

S(F )Λ. With Λ restriction, the shape of the graph looks similar to the physical values of

Weak form. In addition, due to the symmetry, a quarter of data is used, i.e., the frequencies

ξx, ξt with the same magnitude have similar behaviors. We take a smaller collection of the

frequency modes which reduces the computational cost.

In Table 5.5, we compare the identification results with or without the restriction to

the meaningful data region Λ. For the KdV equation (Equation 5.41) and the KS equation

(Equation 5.42) on clean and noise data σNSR = 0.3, we show how the restriction to Λ helps

to find the correct equation. Without noise, the restriction to Λ makes little differences.

When the noise level increases, the results without restriction to Λ may give completely

wrong results.
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Figure 5.4: Effect of the meaningful data region Λ, illustrated by the KdV equation
(Equation 5.41) with σNSR = 0.3. The x-axis provides a list of features and the y-axis
represents the scale of features in terms of the ℓ2-norm of the feature column. We compare
F with FΛ, S(F ) with S(F )Λ, and Fourier features with the Weak-form features in W in
WeakIdent [3]. A restriction to the meaningful data region Λ helps to reduce the range of
Fourier features and make the shape of the scale similar to that in the weak form.

5.6.3 Understanding the new energy

We introduce a new energy based on the core regions of features in subsection 5.4.2. In

this subsection, we show the effect of the energy in (Equation 5.27) compared to the Cross-

Validation (CV) error used in [204, 3]. In Figure 5.5, we present the result for the KS

equation (Equation 5.42) with σNSR = 0.8. In Figure 5.5 (a), the yellow curve shows the

new energy (Equation 5.27) value and the blue curve shows the CV error. The x-axis shows

the initial sparsity as the input of SP, and the sparsity after group trimming is usually much

smaller than the initial sparsity. The yellow and blue circles indicate the cases when the

correct supports are found after group trimming. After the sparsity level k = 3, the CV

errors are all similarly low. If we use the CV error, the wrong supports are identified when

k = 10, 13, 14, 15. The yellow curve using the new energy is more consistent: the sparsity

associated with a low energy corresponds to the correct support. Figure 5.5 (b) shows the

values of the two terms in the energy (Equation 5.27): the green curve shows the fitting
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KdV (Equation 5.41) FourierIdent ut = −1.0uxxx − 0.5(u2)x

σNSR = 0 with Λ ut = −0.998uxxx − 0.499(u2)x
without Λ ut = −0.998uxxx − 0.499(u2)x

σNSR = 0.3 with Λ ut = −1.012uxxx − 0.499(u2)x
without Λ ut = −151.987ux

KS (Equation 5.42) FourierIdent ut = −1.0uxx − 1.0uxxxx − 0.5(u2)x
σNSR = 0 with Λ ut = −1.0uxx − 1.0uxxxx − 0.5(u2)x

without Λ ut = −0.999uxx − 0.999uxxxx − 0.5(u2)x
σNSR = 0.3 with Λ ut = −0.978uxx − 0.977uxxxx − 0.49(u2)x

without Λ ut = −0.035(u4)x

Table 5.5: Effect of applying FourierIdent with or without restriction to the meaningful data
region Λ. With an increased level of noise, the benefit of having Λ is clearly demonstrated.

residual, and the purple curve shows the stability term. The yellow curve shows the sum

of them, which is the same as the yellow curve in Figure 5.5 (a). While the residual curve

(green curve) is minimized at the wrong sparsity k = 1, the total energy as the sum of the

fitting residual and the stability term is minimized at the correct sparsity and support.

5.6.4 Increasing complexity

We experiment FourierIdent with an increasing complexity of the initial conditions. We

use the KdV equation in (Equation 5.41) with different initial conditions (IC) where we

can control the complexity:

u0 =
R∑

r=1

cos(rx+ c1) + sin(rx+ c2), (5.43)

where c1 and c2 are two random numbers and R denotes the total number of modes used

in u0. The larger the R is, the more complex the given data are in both physical and fre-

quency domains. We use periodic spatial domain such that x ∈ [−3.1416, 3.1293] with

spatial spacing ∆x = 0.123 and the time domain t ∈ [0, 0.02] with temporal spacing

∆t = 3.9978 × 10−5. In Figure 5.6 (a) - (e), we show clean data for the initial conditions

with R = 1, 20, 30, 40, and 50 modes. It is shown that the pattern in (a) is relatively simple,
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(a) σNSR = 0.8 (b) σNSR = 0.8

Equation (28)

Equation (28)

Equation (27)

Equation (26)

Figure 5.5: Benefits of using the energy in (Equation 5.27) to find the optimal k∗. (a) and
(b) are both for KS equation with σNSR = 0.8. The x-axis represents the initial sparsity
level. The dots represent the cases when the trimmed support is the correct one. In (a), the
y-axis represents the values of Cross-Validation error and the energy in (Equation 5.27).
When the given data are noisy, as in (a), the results with sparsity levels 10, 13, 14, 15 give
rise to small cross-validation errors but large energy defined in (Equation 5.27). In (b), the
green curve shows the fitting residual in (Equation 5.25), and the purple curve shows the
stability term in (Equation 5.26). The new energy as the sum of the fitting residual and the
stability term is represented by the yellow curve.

and pattern in (e) is the most complex one. We use a simulated solution from each complex-

ity mode from R = 1 to R = 60. Figure 5.6 (f)-(i) show the performance of FourierIdent

compared with WeakIdent, for different level of noise such that σNSR = 0.2, 0.25, 0.3, 0.35.

For each mode R ranging from 1 to 60, we simulate 20 different datasets with different

random seeds. In each graph, each column contains 20 dots for the 20 independent ex-

periments, and the height represents the e2 identification error of Fourierident (blue) and

WeakIdent (yellow).

This experiment shows that, for data with different complexity and with different noise

levels, FourierIdent gives rise to smaller e2 errors. Figures (f)-(i) shows that when K > 10,

FourierIdent (marked in blue) performs better than WeakIdent (marked in yellow), when

σNSR is large and the data have more frequency modes.

5.6.5 Increasing time for data collection

The next experiment shows how the increasing of time interval for data collection can

improve the identification result. Figure 5.7 (a) and (b) show a realization of the given data
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(a) 1 mode (b) 20 modes (c) 30 modes (d) 40 modes (e) 50 modes

(f) σNSR = 0.2 (g) σNSR = 0.25 (h) σNSR = 0.3 (i) σNSR = 0.35

Figure 5.6: Influence of increasing complexity. (a) - (e) Clean data of the KdV equa-
tion (Equation 5.41) for the initial condition (Equation 5.43) with R = 1, 20, 30, 40,
and 50. From (a) to (e), the patterns become more complex. (f) - (i) show compar-
ison results between FourierIdeant and WeakIdent for different noise levels such that
σNSR ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. Each dot represents the e2 identification error
in each experiment. When 10 < R < 40, FourierIdent gives rise to more accurate recovery
results.
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for the KS equation (Equation 5.42) with σNSR = 0.5. (a) is for 0 < t < 500 and (b) is

for 0 < t < 5, 000. The data in (b) clearly have more repetition of the pattern. Figure 5.7

(c)-(e) show experiments with varying noise levels such that σNSR = 0.01, 0.5, 1.0. For

each graph, the x-axis represents the final time tend used for the data, and y-axis shows the

e2 error of the identified coefficient. In (c), when the noise level is low, both FourierIdent

and WeakIdent show good results with the e2 error less than 10−3. This is based on one

experiment for each noise level. As the noise level increases, FourierIdent consistently

gives better results in (d) and (e). (e) shows an extremely noisy case for σNSR = 1 when

the given data are highly corrupted by noise. For both (d) and (e), as tend gets bigger, both

FourierIdent and WeakIdent give rise to decreasing errors , and the error of FourierIdent is

lower. The core region is defined by the high frequency responses, thus with more data,

the response will be stronger and the core region of feature can separate the noise better.

FourierIdent is slightly worse than WeakIdent when σSNR = 0.01 compared to σSNR = 0.5

or 1.0. This shows the effect that FourierIent performs well due to having enough high-

frequency responses when the data are exposed to large noise. In other words, FourierIdent

is relatively more effective and robust under noise compared to methods using physical

features, which is consistent with our observation in Figure 5.6.

5.6.6 FourierIdent comparison results

We test FourierIdent, and compare it with WeakIdent[3] and WSINDy [37]. We first present

an example showing the identified equations, and then present more statistics about the

recovery. In Table 5.6, we present the identified equation and the e2 error for the equations

listed in Table 5.2 with σNSR = 0.3. FourierIdent identifies the correct equation, i.e., the

correct support and highly accurate coefficient values, under various scenarios.

We further show the recovery statistics for the equations in Table 5.2, in Figure 5.8,

Figure 5.10, Figure 5.9, Figure 5.11, and Figure 5.12. We present the results with differ-

ent noise-to-signal-ratio σNSR using box plots of the identification error for FourierIdent,
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(a) 0 ≤ t ≤ 500 (b) 0 ≤ t ≤ 5, 000

(c) σNSR = 0.01 (d) σNSR = 0.5 (e) σNSR = 1.0

0 2000 4000
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Figure 5.7: Influence of increasing time in data collection. (a) - (b): The given data of the
KS equation (Equation 5.42) (a) for 0 < t < 500, and (b) for 0 < t < 5, 000. (c)-(e): the
x-axis represents the final time tend for data collection, and the y-axis shows the e2 error
of the identified coefficient, for FourierIdent (blue) and WeakIdent (yellow). In (c), for low
levels of noise σNSR = 0.01, both FourierIdent (blue) and WeakIdent (yellow) give small
e2 errors. In (d) and (e), when σNSR = 0.5 and 1, as tend gets bigger, both FourierIdent
and WeakIdent yield smaller errors, while FourierIdent gives rise to a smaller error than
WeakIdent.
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Equ Method Identified equation e2

Equation 5.38
FourierIdent ut = +0.1uxx 0.002536
WeakIdent ut = +0.1uxx 0.003609
WSINDy ut = 0.098uxx 0.012311

Equation 5.39
FourierIdent ut = −1.0ux + 0.099uxx 0.000719
WeakIdent ut = −0.997ux + 0.102uxx 0.003477
WSINDy ut = 0.434+−0.793uxxxxxx−1.003u2+

0.096(u2)x + 0.470(u2)xxxxxx

1.017465

Equation 5.40
FourierIdent ut = +0.051uxx + 0.249(u2)x 0.006846
WeakIdent ut = +0.052uxx + 0.248(u2)x 0.011226
WSINDy ut = +0.048uxx + 0.248(u2)x 0.009981

Equation 5.41
FourierIdent ut = −0.997uxxx − 0.499(u2)x 0.0031048
WeakIdent ut = −0.987uxxx − 0.497(u2)x 0.0121109
WSINDy ut = −0.977uxxx − 0.4967(u2)x 0.0203434

Equation 5.42
FourierIdent ut = −0.977uxx−0.97uxxxx−0.488(u2)x 0.02663459
WeakIdent ut = −0.95uxx−0.947uxxxx−0.476(u2)x 0.051067
WSINDy ut = −0.9529uxx − 0.9493uxxxx −

−0.4779(u2)x

0.048433

Table 5.6: Identification results by FourierIdent, WeakIdent[3] and WSINDy [37] for the
equations in Table 5.2 with σNSR = 0.3 using one realization of the PDE solution.
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WeakIdent[3] and WSINDy [37]. For each σNSR, the dataset is simulated 20 times with

various random seeds of noise. FourierIdent is compatible with other methods in identify-

ing a partial differential equation. It is robust to high levels of noise and capable of dealing

with features with high-order derivatives.
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Figure 5.8: Heat equation (Equation 5.38). (a) e2 error, (b) eres, (c) TPR, and (d) PPV. For
each noise level σNSR, we generate noise using 20 random seeds, and show a box plot for
FourierIdent, WeakIdent, and WSINDy.

5.7 Discussion and Conclusion

We proposed FourierIdent, a method to identify differential equations in the frequency do-

main. We introduced denoising Fourier features by smoothing, and the meaningful data

region and the core regions of features, and proposed an energy based on the core regions

of features for coefficient identification. Different collections of high frequency responses

h]
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Figure 5.9: Transport equation (Equation 5.39) (a) e2 error, (b) eres, (c) TPR, and (d) PPV.
For each noise level σNSR, we generate noise using 20 random seeds, and show a box plot
for FourierIdent, WeakIdent, and WSINDy.
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Figure 5.10: The Burgers’ equation (Equation 5.40) (a) e2 error, (b) eres, (c) TPR, and (d)
PPV. For each noise level σNSR, we generate noise using 20 random seeds, and show a box
plot for FourierIdent, WeakIdent, and WSINDy.
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Figure 5.11: The KdV equation (Equation 5.41). (a) e2 error, (b) eres, (c) TPR, and (d)
PPV. For each noise level σNSR, we generate noise using 20 random seeds, and show a box
plot for FourierIdent, WeakIdent, and WSINDy.

are used to identify features and improve coefficient recovery. We present numerical ex-

periments on various simulated datasets to compare FourierIdent with other state-of-art

methods using weak formulations. FourierIdent is robust to noise and can handle higher-

order derivatives. We show the benefits of FourierIdent on complex datasets simulated

using different numbers of Fourier modes.

FourierIdent may be computationally expensive since it iteratively finds different col-

lections of active features and solves the least square problem in many places, but this part

can be parallelized. In this paper, we consider features in the form of the derivatives of

monomials. Expanding the feature dictionary is a possible direction in our future work.
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Figure 5.12: Comparison results on the KS equation (Equation 5.42) using multiple identi-
fication errors e2 in (a), eres in (b), TPR in (c), and PPV in (d). For each noise level σNSR,
we generate noise using 20 random seeds and show a box plot for FourierIdent, WeakIdent,
and WSINDy.
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CHAPTER 6

CONCLUSION AND DISCUSSION

This thesis presents a series of works of identification problems utilizing mathematical

models and numerical algorithms. These works explore diverse research topics where fold-

ing patterns, objects, and differential equations are identified through innovative method-

ologies. The underlying intuition behind each model is both simple and novel, supported

by comprehensive experiments demonstrating the benefits of each model. These models,

built upon mathematical foundations, can be further applied to enhance our understanding

and address a wide array of challenges in various domains.

The first proposed method, StemP, is a deterministic Stem-based Prediction algorithm

for the RNA secondary structures prediction. By using mainly the Stem Length and Stem-

Loop score, we explore the question of what information about the Stem is important for

folding prediction. Extensive experiments have been conducted, including different types

of sequences: short RNA sequences, tRNA sequences, and 5s rRNA sequences across

different methods. One of the strengths of StemP is the simplicity and flexibility of the al-

gorithm, and it gives a deterministic answer. This makes it easier to study folding structure

energy more concretely. The significance of incorporating a Stem-Loop score for efficient

computation and improved prediction accuracy has been established. Different values and

types of Stem-Loop scores for different types of sequences are presented in this work. We

investigated and found good values for better predictions. Future directions may involve

refining the estimation of the range of such Stem-Loop scores by considering additional se-

quence properties or incorporating learning-based algorithms and Motif-based strategies to

enhance vertex construction. In addition, a sophisticated hierarchical structure clique mod-

els as well as chemical reactions can be further considered. Further direction in this area

also includes using StemP to predict RNA complex where multiple sequences are given,

162



and interaction between sequences is taken into account for finding potential stems.

The second presented work, Counting Object by Diffused Index with scalar and multi-

dimensional seeds, is a diffusion-based, geometry-free, and learning-free method. The

diffusion phase is based on an edge-weighted harmonic optimization model, using the g

weight function or mask image and the seed image. An efficient algorithm, called Diffusion

Algorithm, is proposed to obtain the diffused image. CODI-S is based on a Gaussian fitted

curve to the histogram data of the diffused image such that the number of local maximum of

this curve gives the number of objects in the image. For CODI-S, even with a small number

of diffusion iterations, there is a large region with 100% accurate counting in the parameter

space. CODI-M utilizes more flexible 4-dimensional seeds which can help to distinguish

objects better. Typically, a longer iteration compared to CODI-S helps accurate and stable

counting for CODI-M. CODI-M can also find each object location in the given image for

object identification. This method can further separately count different size objects by

clustering the set S of cluster size, as in Figure 3.5. In the numerical section of this chapter,

we experimented with the proposed methods on various images, including cells, plants,

fruits, and concert crowds. The results confirm that the proposed methods are geometry-

free and are able to provide good counts in various cases in a very short amount of CPU

time. The proposed method is flexible even if the boundary of the object is not clear nor

fully enclosed. We compared with different existing methods, many of which only work for

particular types of images considered in their paper. We also compared with methods that

require a learning and training process. The proposed methods show comparable results

in terms of accuracy. For an image with complex background, object extraction can be

difficult. More work can be done in relation to the edge function or the mask to separate

the objects and background in the future. In other words, there is more work to be done to

provide a better mask such that the diffusion algorithm is able to separate the object from

the background effectively in cases when the background is complicated.

The third and fourth works are in the field of identifying differential equations. In the
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third work, we propose a new method, WeakIdent for identifying both PDEs and ODE

systems from noisy data using a weak formulation in the physical domain. The proposed

WeakIdent does not require prior knowledge of the governing features but uses all features

up to a certain polynomial order and up to a certain order of derivative. We first use Sub-

space Pursuit to find a candidate support, then propose two novel techniques called narrow-

fit and trimming to improve both the support identification and the coefficient recovery. A

careful design of the test functions helps with the recovery, and a proper normalization

of the columns in the feature matrix improves the results in the implementation of least-

squares. The proposed WeakIdent requires at most L sparsity iterations (or including the

sub-iteration of narrow-fit and trimming, at most L2

2
iterations), where L is the number of

features. At the same time, the trimming step improves the recovery and gives good results

after a fraction of L is used to identify the correct support, as shown in Figure 4.4. Nar-

row fit based on highly dynamic regions also makes the computation more efficient, and

with error normalization of the feature matrix, the coefficient recovery is improved. Com-

prehensive numerical experiments on various equations/systems are provided, showing the

robust performance of WeakIdent compared to other state-of-the-art methods. The Weak

form in general, is effective when the noise level is high. The last work, FurierIdent, is a

method to identify differential equations in the frequency domain. We introduce a denoised

Fourier feature using smoothing and core regions of features and propose an energy based

on the core regions of features. Different collections of high-frequency responses are used

to identify features and improve coefficient recovery. We present numerical experiments

on various simulated datasets to show the identifiability of FourierIdent compared to other

state-of-the-art methods using weak formulations. It is shown that FourierIdent is robust to

noise and can handle higher-order derivatives. We show the benefit of FourierIdent on com-

plex dynamics throughout datasets simulated using a different number of Fourier modes.

FourierIdent may be computationally expensive since it iteratively finds different active

collections of modes and solves the least square problems for many possibilities. Hence,
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reducing the computation costs can be one of the future directions. FourierIdent considers

features that are the derivatives of monomials for straightforward feature computation. Ex-

panding the feature dictionary is another possible direction to take in the future. There are

a lot of common aspects of WeakIdent and FourierIdent.

There are some similarities between WeakIdent and FourierIdent. SubSpace Pursuit, a

greedy algorithm to minimize residual, is utilized for sparsity promotion for the purposes

of stabilizing a support. Additionally, the Fourier feature in FourierIdent is motivated by

the Weak Forms in WeakIdent to handle noise by carrying out the derivatives computation

in the frequency domain instead. The adapted trimming techniques in each method play

an important role in refining the support. The Narrow-fit in WeakIdent and Core regions

of features in FourierIdent share a similar idea – only selecting those features located in

a meaningful physical or frequency domain to enhance coefficients refinement. However,

it’s worth noting that identifying and understanding features and equations in the frequency

domain itself is a more challenging task, as elaborated in chapter 5. The use of core re-

gion of features in FourierIdent is crucial in sparsity selection to address the sensitivity of

features in the frequency domain. In terms of future directions for both works, there are

a lot of routes to explore. For example, various additional types of differential features

and equations could be discovered. Space or time-dependent equations might also be im-

portant to discover and identify, particularly in the case that the governing equation may

change w.r.t time or space. Exploring governing equations when given data are from real

lab experiments instead of simulated equations could also be interesting to discover.
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Appendices



APPENDIX A

APPENDIX FOR chapter 2

A.1 StemP on 5s rRNA

A.1.1 Visualization of StemP results

In Figure A.1, we provide the prediction on sequences with Accession Number X67579,

AF034620, X01590, AJ251080, V00336 and AE002087 by using StemP. Notice that there

is no False Positive pairs found by StemP. The green dash line indicates the False Negative

pairs.

A.1.2 12 set of 5s rRNA sequences

In Table A.1, we present the comprehensive prediction results in terms of Sensitivity, PPV

and MCC for 12 5s rRNA Bacterial sequences. The sequences is from Gutell Lab [95] in

[108]. For each sequence, the top result corresponds to the prediction that has highest MCC

values. The best result corresponds to the best prediction that has SCR = 1. For each best

prediction, we also provide the Standard Competing Rank (SCR) (“1224”), Dense Rank

(DR) (“1223”) and the cpu time. The top prediction gives MCC=0.922 as the average, and

the average cpu time of 0.143 seconds.

A.1.3 StemP with or without GSL.

We present additional StemP results on 15 number of 5s rRNA sequences, with or without

using the GSL which helps to reduce computation by identifying domain β and γ sepa-

rately. The 15 sequences are from [96] and obtained from Gutell Lab [95]. We adopt the

general parameters for 5S rRNA for Archaeal.

We consider StemP both with or without using GSL. Table A.2 shows that among 15
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(a) X67579 (b) AF034620 (c) X01590
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(d)AJ251080 (e) V00336 (f) AE002087
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Figure A.1: StemP Results of SPA on 6 5s rRNA sequences. (a)-(f) show the best predicted
folding structures by StemP on sequences with Accession Number X67579, AF034620,
X01590, AJ251080, V00336 and AE002087. Notice that there is no False Positive pairs
found by StemP. The green dash line indicates the False Negative pairs.

sequences, the best F1 value for 9 sequences are improved when GSL is not used. For

example, for sequence M36188, both top and best MCC has increased from 0 to a positive

rate. However, both CPU and SCR increased when GSL is not used. When computer power

is not limited, the true folding can be close to some clique structure, while GSL helps to

reduce the candidate set in general.

A.1.4 Structural information

In Table A.3, we present how the parameters are learned for Archaeal organism 5s RNA

sequences, using the data from Gutell Lab [95]. We count different variations of the stems.

A.2 StemP on sequences from Protein Data Bank

We present additional StemP results for RNA sequences with length larger than 50 from

(PDB) [77]. In Table A.4, we compare the prediction with FOLD, MaxExpert, Probknot,

MC and NAST.
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Table A.1: StemP results on 12 number of 5s rRNA Bacterial sequences from Gutell Lab
[95] in [108]. These are Bacterial Organism sequences. We use the general parameters of
Bacterial Sequences.

Top Results Best results (PPV=100)
CPU

Accn Sens PPV MCC Sens MCC SCR/DR

X08002 91.7 100.0 0.920 84.6 0.920 1/1 0.107

X08000 91.7 100.0 0.920 84.6 0.920 1/1 0.107

X02627 93.3 97.2 0.934 89.7 0.947 3/2 0.223

AJ131594 93.2 97.1 0.932 89.5 0.946 2/2 0.142

V00336 96.1 100.0 0.962 92.5 0.962 1/1 0.224

M10816 91.7 97.1 0.918 86.8 0.932 5/2 0.113

AJ251080 90.4 94.3 0.905 86.8 0.932 31/3 0.128

M25591 90.4 94.3 0.905 86.8 0.932 23/3 0.113

K02682 93.3 97.2 0.934 89.7 0.947 2/2 0.133

X04585 90.4 94.3 0.905 86.8 0.932 7/3 0.122

X02024 90.4 94.3 0.905 86.8 0.932 23/3 0.151

M16532 91.9 97.1 0.920 87.2 0.934 2/2 0.151

Average 92.0 96.9 0.922 87.7 0.936 0.143

Typically, these sequences have a large quantity of possible structures as well as stems

of size as small as 1 or 2. For the case where the best prediction does not has SCR =

1, we provide the top prediction here, which is the highest MCC value among possible

prediction with maximum number base pairs. These top MCC values are 2FK6 0.55, 3E5C

0.88, 1DK1 0.33, 1MMS 0.34, 3EGZ 0.72, 2QUS 0.00, 1KXK 0.81, 2DU3 0.49 and 2OIU

0.58. The highest accuracy of StemP result MCC is comparable to FOLD, MaxExpect,

ProbKnot, MC and NAST in the majority.

A.3 StemP on tRNA

In Table A.5, we present the results of StemP for tRNA folding prediction for 27,010 num-

ber of tRNA sequences containing 15 subset of tRNA from The Gutell Lab [95]. In Ta-
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Table A.2: StemP results of 15 different 5s rRNA sequences in [96] from Gutell Lab [95].
We use the general parameter and F1-score as validation measurement. We present StemP
with and without GSL restriction for comparison. Among 15 sequences, the best MCC
value for 9 sequences improved not using the GSL, while the CPU time increased.

Standard without GSL
[96]

Accn Top Best SCR DR CPU Top Best SCR DR CPU

1 X07545 0.85 0.85 1 1 0.11 0.85 0.85 1 1 2.41 0.90

2 X14441 0.68 0.68 1 1 0.07 0.58 0.84 7 3 0.18 0.19

3 X72588 0.66 0.68 7 4 0.07 0.84 0.84 1 1 0.14 0.20

4 M10691 0.69 0.69 1 1 0.07 0.82 0.82 1 1 0.68 0.47

5 M36188 0.00 0.00 1 1 0.08 0.24 0.44 77 5 0.24 0.77

6 M26976 0.85 0.86 11 2 0.10 0.85 0.86 11 2 1.50 0.73

7 X62859 0.60 0.66 19 4 0.09 0.59 0.77 2 2 8.52 0.63

8 U67518 0.67 0.67 1 1 0.07 0.77 0.77 1 1 0.16 0.76

9 M34911 0.26 0.26 1 1 0.07 0.00 0.60 93 6 0.16 0.86

10 X62864 0.41 0.45 49 5 0.09 0.41 0.62 177 7 0.30 0.55

11 X72495 0.94 0.94 1 1 0.08 0.94 0.94 1 1 0.23 0.94

12 AE009942 0.62 0.62 1 1 0.09 0.77 0.77 1 1 1.11 0.89

13 M21086 0.89 0.89 1 1 0.10 0.89 0.89 1 1 1.32 0.88

14 X05870 0.90 0.90 1 1 0.09 0.90 0.90 1 1 0.34 0.88

15 X07692 0.89 0.89 1 1 0.10 0.89 0.89 1 1 1.86 0.87
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Table A.3: For Archaeal organism from Gutell Lab [95], we counted different types of
stems to make a general and the refined parameter bounds.

Stem Length Variation (Count)

Helix I 6 (47) None (2) 5 (2) 4[1/0]1 (1) 4 (1)

Helix II 2[0/1]6 (26) 8 (20) 2[1/2]5 (3) 1[1/2]6 (2) 2 [0/1]1[2/1]4(1) 2 [0/1]5 (1)

Helix III 7 (27) 6 (18) 5 (4) 2[1/1]2 (2) 3[1/2]2 (1) 3[2/2]1 (1)

Helix IV 2[0/2]4 (44) 2[2/4]2 (5) 3[0/2]4 (4)

Helix V 1[1/1]6[1/0]2 (39) 1[1/1]5[2/1]2 (4) 1[1/1]5 (3) 1[1/1]8 (2) 8[1/0]2 (2) 1 [1/1] 7(1)

1[1/1]6[2/0]1(1) 8(1)

ble A.5 (a) shows the SCR values of the best prediction of StemP, (b) MCC values of the

top predictions, and (c) MCC values of the best predictions. The second column shows the

total number of experiments for each organism. The third column shows the total number

of results with the percentage in the parenthesis. The forth column shows additional num-

ber of folding results, and the combined percentage in parenthesis. The last column shows

the CPU time in seconds computed in average. The bold numbers show when it is near

90%. Notice majority of sequences (many over 85% of the sequence) matched MCC 0.9

or higher. It is shown that there are more than 90% of the sequences that have maximum

MCC within top 5 SCR.

(a) The SCR values for the best StemP prediction on tRNA

Organism # ≤ 1 ≤ 5 ≤ 10 ≤ 15 < 15

Alanine 43443261(75.1%) 325(82.6%) 108(85.0%)257(91.0%) 393(9.0%)

Asparagine 1250 977(78.1%) 156(90.6%)106 (99.1%) 5(99.5%) 6(0.4%)

Aspartic Acid 13991111(79.4%) 177(92.1%) 66 (96.8%) 5(97.1%) 40(2.9%)

Cysteine 596 450(75.5%) 98(91.9%) 16(94.6%) 30(99.7%) 2(0.3%)

Glutamic Acid18951291(68.1%) 492(94.1%) 31(95.7%) 2(95.8%) 79(4.2%)

Glutamine 1151 846(73.5%) 229(93.4%) 22(95.3%) 4(95.7%) 50(4.3%)

Glycine 24931465(58.8%) 892(94.5%) 75(97.6%) 12(98.0%) 49(2.0%)

Histidine 987 554(56.1%) 345(91.1%) 49(96.1%) 13(97.4%) 26(2.7%)
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Isoleucine 45584046(88.8%) 393(97.4%) 23(97.9%) 31(98.6%) 65(1.4%)

Lysine 1566 938(59.9%) 381(84.2%) 42(86.9%) 17(88.0%) 188(12.0%)

Methionine 17891228(68.6%) 273(83.9%) 137(91.6%) 15(92.4%) 136(7.6%)

Phenylalanine 26212279(87.0%) 286(97.9%) 11(98.3%)45(100.0%) 0(0.0%)

Proline 14111197(84.7%) 139(94.5%) 25(96.3%) 16(97.4%) 36(2.6%)

Tryptophan 173 138(79.8%) 25(94.2%) 4 (96.5%) 2(97.7%) 4(2.3%)

Tyrosine 777 681(87.7%) 84(98.5%) 3(98.8%) 0(98.8%) 9(1.2%)

(b) The MCC values of the top SCR = 1 StemP prediction.

Organism # ≥ 0.95 ≥ 0.90 ≥ 0.85 ≥ 0.80 < 0.80

Alanine 43442645(60.9%) 508(72.6%) 123(75.4%) 20(75.9%)1048(24.1%)

Asparagine 1250 865(69.2%) 109(77.9%) 4 (78.2%) 16(79.5%) 256(20.5%)

Aspartic Acid 1399 966(69.0%) 190(82.6%) 4 (82.9%) 11(83.7%) 228(16.3%)

Cysteine 596 179(30.0%) 225(67.8%) 40(74.5%) 38(80.9%) 114(19.1%)

Glutamic Acid18951065(56.2%) 309(72.5%) 11(73.1%)307(89.3%) 203(10.7%)

Glutamine 1151 533(46.3%) 389(80.1%) 66(85.8%) 18(87.4%) 145(12.6%)

Glycine 24931422(57.0%) 184(64.4%) 15(65.0%) 20(65.8%) 852(34.2%)

Histidine 987 407(41.2%) 192(60.7%) 62(67.0%) 29(69.9%) 297(30.1%)

Isoleucine 45583093(67.9%) 807(85.6%) 21(86.0%) 58(87.3%) 579(12.7%)

Lysine 1566 751(48.0%) 148(57.4%) 0 (57.4%) 47(60.4%) 620(39.6%)

Methionine 17891140(63.7%) 93 (68.9%) 13(69.6%) 17(70.6%) 526(29.4%)

Phenylalanine 2621 533(20.3%)1386(73.2%) 39(74.7%)241(83.9%) 422(16.1%)

Proline 1411 944(66.9%) 252(84.8%) 4 (85.0%) 5 (85.4%) 206(14.6%)

Tryptophan 173 123(71.1%) 7 (75.1%) 0 (75.1%) 0 (75.1%) 43 (24.9%)

Tyrosine 777 717(92.3%) 20 (94.9%) 2 (95.1%) 6 (95.9%) 32 (4.1%)

(c) The MCC values of the best StemP prediction.
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Organism # ≥ 0.95 ≥ 0.90 ≥ 0.85 ≥ 0.80 < 0.80 cpu

Alanine 43442693(62.0%)1141(88.3%) 233(93.6%)134(86.7%) 134 (3.4%)0.24

Asparagine 12501090(87.2%) 127 (97.4%) 5(97.8%) 16 (99.0%) 12(1.0%)0.23

Aspartic Acid 13991090(77.9%) 249 (95.7%) 6(96.1%) 7(96.6%) 47(3.4%)0.22

Cysteine 596 247 (41.4%) 255 (84.2%) 26 (88.6%) 45 (96.1%) 23(3.9%)0.09

Glutamic Acid18951412(74.5%) 328 (91.8%) 12 (92.5%) 35 (94.3%) 108(5.7%)0.19

Glutamine 1151 556 (48.3%) 449 (87.3%) 75 (93.8%) 14 (95.0%) 57(5.0%)0.11

Glycine 24932008(80.5%) 314 (93.1%) 46 (95.0%) 82 (98.3%) 43(1.7%)0.14

Histidine 987 713 (72.2%) 105 (82.9%) 71 (90.1%) 27 (92.8%) 71(7.2%)0.19

Isoleucine 45583267(71.7%) 970 (93.0%) 53 (94.1%) 94 (96.2%) 174 (3.8%)0.18

Lysine 15661087(69.4%) 247 (86.8%) 25 (86.8%) 49 (89.9%) 158 (10.1%)0.25

Methionine 17891399(78.2%) 118 (84.8%) 17 (85.7%) 38 (87.9%) 217 (12.1%)0.17

Phenylalanine 2621 533 (20.3%)1430(74.9%) 139(80.2%)371(94.4%) 148 (5.6%)0.04

Proline 14111023(72.5%) 310 (94.5%) 19 (95.8%) 5(96.2%) 54(3.8%)0.19

Tryptophan 173 127 (73.4%) 11(79.8%) 0(79.8%) 23 (93.1%) 12 (6.9%)0.16

Tyrosine 777 726 (93.4%) 28(97.0%) 5(97.7%) 4(98.2%) 14(1.8%)0.15

Table A.5: StemP for 27,010 different tRNA sequences. (a) The SCR values for the best
StemP prediction on tRNA. (b) The MCC values of the top SCR = 1 StemP prediction. (c)
The MCC values of the best StemP prediction.

A.4 StemP comparison on unknown family.

In Table A.6, we present results of StemP on general sequences with unknown structures.

This is the detailed version of Table 11 in the main paper. We also experimented 92 se-

quences with length in [120, 130] using 5s Bacteria finding parameters in Table 8, resulting

7 sequences with F1 ≥ 0.89 and total average 0.37. Similar results on these sequences can

be obtained using parameters for Archaeal or Eukaryotic in Table 6 in the main draft.
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The comparison results of Ufold[4], RNAstructure[39], RNAsoft[112], e2efold[113],

Eternafold[5], Linearfold[45], and Mfold[42] from Ufold [4], and results of MXfold2[109],

SPOT-RNA[63], TORNADO[111], ContextFold[51], RNAfold[207, 104] are from [109]

where sequence-wise cross validation for TS0 and family-wise cross validation for bpRNA-

new respectively. These results use all data from the two sets, while StemP experiments are

only for shorter sequences as mentioned. For longer sequences, not using SL poses great

computational costs for StemP.

TS0 Count %F1 %Sen %PPV

StemP(Best)[1, 90] 468 0.714 0.775 0.701

Ufold 0.654 - -

RNAstructure 0.532 - -

RNAsoft 0.535 - -

e2efold 0.189 - -

Eternafold 0.563 - -

Linearfold 0.551 - -

Mfold 0.538 - -

MXfold2 0.575 0.520 0.682

SPOT-RNA 0.597 0.652 0.578

TORNADO 0.561 0.554 0.609

ContextFold 0.575 0.583 0.595

RNAfold 0.446 0.631 0.508

bpRNA-new Count %F1 %Sen %PPV

StemP(Best)[1, 87] 2483 0.737 0.771 0.726

Ufold 0.635 - -

RNAstructure 0.629 - -

RNAsoft 0.620 - -
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e2efold 0.036 - -

Eternafold 0.647 - -

Linearfold 0.633 - -

Mfold 0.623 - -

MXfold2 0.632 0.585 0.710

SPOT-RNA 0.596 0.599 0.619

TORNADO 0.620 0.636 0.638

ContextFold 0.554 0.595 0.539

RNAfold 0.617 0.552 0.720

Table A.6: Comparison on a TS0, a subset of bpRNA-1m dataset[110], used as a test set
in [109] and bpRNA-new from [109, 110]. The comparison results of Ufold[4], RNAs-
tructure[39], RNAsoft[112], e2efold[113], Eternafold[5], Linearfold[45], and Mfold[42]
from Ufold [4], and results of MXfold2[109], SPOT-RNA[63], TORNADO[111], Con-
textFold[51], RNAfold[207, 104] are from [109]. These results are using all data from the
two sets, while StemP experiments are only for shorter sequences as listed.
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APPENDIX B

APPENDIX FOR chapter 4

B.1 Proof of Theorem 4.2.1

Proof. (a) Using the noisy data in the form Ûn
i = Un

i + ϵni in (Equation (4.3)), the hth entry

of enoise can be expressed as

enoiseh = ∆x∆t
∑

(xj ,tk)∈Ωh(xi,t
n) ∑

l∈Supp∗
(−1)αlcl

(
(Uk

j + ϵkj )
βl − (Uk

j )
βl
) ∂αlϕh

∂xαl
(xj, t

k) + (Ûk
j − Uk

j )
∂ϕh

∂t
(xj, t

k)


= ∆x∆t

∑
(xj ,tk)∈Ωh(xi,t

n) ∑
l∈Supp∗

(−1)αlclϵ
k
j

(
βl∑
r=1

(
βl

r

)
(ϵkj )

r−1(Uk
j )

βl−r

)
∂αlϕh

∂xαl
(xj, t

k) + ϵkj
∂ϕh

∂t
(xj, t

k)


= ∆x∆t

∑
(xj ,tk)∈Ωh(xi,t

n) ∑
l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1∂
αlϕh

∂xαl
(xj, t

k) +
∂ϕh

∂t
(xj, t

k)

 ϵkj +O
(
(ϵkj )

2
)
.

(B.1)

Hence,

∥enoise∥∞ = max
h
|enoiseh | ≤ max

h

[
ϵS̄∗

h|Ωh|
]
+O

(
ϵ2
)
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where

S̄∗
h = sup

(xj ,tk)∈Ωh

∣∣∣∣ ∑
l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1∂
αlϕh

∂xαl
(xj, t

k)− ∂ϕh

∂t
(xj, t

k)

∣∣∣∣.
Setting S̄∗ = maxh S̄

∗
h as in (Equation 4.16) gives rise to our estimate in (Equation 4.15).

(b) From (Equation B.1), the leading term in enoiseh is

∆x∆t
∑

(xj ,tk)∈Ωh(xi,t
n)

 ∑
l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1∂
αlϕh

∂xαl
(xj, t

k) +
∂ϕh

∂t
(xj, t

k)

 ϵkj .

Based on our noise assumption, this leading term enoiseh has mean 0, and variance σ2S∗
h with

S∗
h given in (Equation 4.17).

B.2 Additional results and comparisons

B.2.0 Additional results and comparisons for PDEs

In Figure B.1, we experiment on the KS equation (Equation (4.34)) with σNSR = 0.5. We

compare WeakIdent with WPDE and RGG. Figure B.1 (a) shows noisy data Û(x, t) and

(b) gives the recovered equation with the E2 error. WeakIdent finds correct support with a

small error E2 = 0.08831.

In Figure B.2, we show the identification results for the nonlinear Schrodinger equation

(Equation 4.35). Table (c) shows the results from noise-free data with σNSR = 0, and Table

(d) shows the noisy case with σNSR = 0.1. Figure B.2 (a) and (b) show the noisy data

Û(x, t) and V̂ (x, t), and the tables (c) and (d) show the identified equations for WeakIdent,

WPDE and RGG. WeakIdent finds the correct support with small errors in both the noise-

free and noisy cases.
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(a) Û(x, t)
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(b) σNSR = 0.5

True equation ut = −1.00000uxx − 1.00000uxxxx − 0.50000(u2)x
WeakIdent ut = −0.91387uxx − 0.90906uxxxx − 0.45686(u2)x E2 = 0.08831
WPDE[36] ut = −1.03383uxx − 1.27316uxxxx − 0.51246(u2)x E2 = 0.25635

−0.24197uxxxxxx − 0.11572(u2)xxx
RGG [38] ut = 0.90654uxx + 1.18313uxxxx + 0.58744(u2)x E2 = 0.33155

+0.00906u− 0.02481ux +0.34133uxxx +0.00175u2−
0.00952u3

For RGG [38], 8 default features {uux, uxx, uxxxx, u, ux, uxxx, u
2, u3} and parameters px = 4, pt =

3, Nd = 100, D = (40, 20) are used, as in the case for transport equation (Equation 4.32) in Figure 4.5.

Figure B.1: KS equation (Equation 4.34) with σNSR = 0.5. (a) Given noisy data Û(x, t).
(b) The identified equations using WeakIdent, WPDE[36] and RGG [38] where the E2 error
is given in the right column.

B.2.0 Additional results and comparisons for ODEs

In Figure B.3, we present the identification results for the ODEs in Table 4.2: the linear sys-

tem (Equation 4.39), Van der Pol (Equation 4.40), Duffing (Equation 4.41), Lotka-Volterra

(Equation 4.42), and Lorenz (Equation 4.43). We experiment with different noise levels

with different methods, including WeakIdent, WODE[37], SINDy[22], SC [30], and ST

[30]. Figure B.3 shows the median of the E2 error, TPR and PPV over 50 experiments for

each equation. Overall WeakIdent (light green curves) yields the lowest E2 error in the first

column, and the TPR and PPV values near 1, which demonstrates a good support recovery.

In Table B.1, we present the detailed results for the data in Figure 4.11(d). The noise

level is σNSR = 0.1. Table B.1 (a) shows the dynamics. The noisy data for each of the
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(a) Û(x, t) (b) V̂ (x, t)
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(c) σNSR = 0

True equation ut = +0.50000vxx + 1.00000v3 + 1.00000u2v
vt = −0.50000uxx − 1.00000uv2 − 1.00000u3

WeakIdent ut = +0.50000vxx + 1.00000v3 + 1.00000u2v E2 = 9.4887e-08
vt = −0.50000uxx − 1.00000uv2 − 1.00000u3

WPDE[36] ut = +0.50000vxx + 1.00000v3 + 1.00000u2v E2 = 1.3254e− 07
vt = −0.50000uxx − 1.00000uv2 − 1.00000u3

RGG [38] ut = +0.49996vxx + 0.99986v3 + 0.99988u2v E2 = 1.2391e− 4
ut = −0.50004uxx − 0.99990u3 − 0.99988uv2

(d) σNSR = 0.1

WeakIdent ut = +0.49872vxx + 0.98737v3 + 1.00001u2v E2 =0.011
vt = −0.49977uxx − 1.01550uv2 − 0.98785u3

WPDE[36] ut = +0.49868vxx + 0.98722v3 + 1.00068u2v E2 =0.388
vt = −0.06604+0.10805v2+0.14935v2xx−0.04445uxxxx+
0.04995uvxx−0.98964uv2−0.14989uv2xx−0.01231uv3xx+
0.08142u2−0.03497u2v2+0.06269u2v2xx−0.01519u2v4xx−
0.97427u3 − 0.09657u3

xx − 0.01753u3v2 + 0.01367u3v2xx
RGG [38] ut = +0.09242(u2)x + 0.13394uxx + 0.59688u +

0.20176ux − 3.29871u2 + 2.49062u3 − 0.42728(v2)x +
0.17625vxx − 2.52277v + 0.27970vx − 11.82022v2 +
5.53290v3 − 5.43222uv + 10.31760u2v + 16.92442uv2

E2 =17.668

ut = +0.09242(u2)x + 0.13394uxx + 0.59688u +
0.20176ux − 3.29871u2 + 2.49062u3 − 0.42728(v2)x +
0.17625vxx − 2.52277v + 0.27970vx − 11.82022v2 +
5.53290v3 − 5.43222uv + 10.31760u2v + 16.92442uv2

For RGG [38], we add an additional dictionary to include the correct features. We use a dictionary of 19
features: {(u2)x, uxx, uxxxx, u, ux, uxxx, u

2, u3, (v2)x, vxx, vxxxx, v, vx, vxxx, v
2, v3, uv, u2v, uv2}.

Figure B.2: Nonlinear Schrodinger equation (Equation 4.35) with two variables. The given
noisy data Û(x, t) and V̂ (x, t) are shown in (a) and (b) respectively. Table (c) and (d) show
the identified equations using WeakIdent, WPDE and RGG with σNSR = 0 and σNSR = 0.1.
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Eqn E2 TPR PPV

(Equation 4.39)

0 0.1 0.2

NSR

10-2

100

E 2
0 0.1 0.2

NSR

0.2

0.4

0.6

0.8

1

TP
R

0 0.1 0.2

NSR

0.4

0.6

0.8

1

TP
R

SINDy
SC
ST

WODE

WeakIdent

(Equation 4.40)

0 0.1 0.2

NSR

100

E 2

0 0.1 0.2

NSR

0

0.5

1

TP
R

0 0.1 0.2

NSR

0.2

0.4

0.6

0.8

1

TP
R

SINDy
SC
ST

WODE

WeakIdent

(Equation 4.41)
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(Equation 4.43)
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Figure B.3: WeakIdent results for the identification of ODEs listed in Table 4.2, with the
noise level σNSR from 0 to 0.1. Each graph shows the median over 50 experiments on
each equation using WODE (purple), SINDy (blue), SC (red), ST (yellow), and WeakIdent
(green). Each column shows the E2 error, the TPR and PPV values. The green curve of
WeakIdent gives the lowest E2 error and the TPR and PPV values are close to 1.
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dependent variables X̂ and Ŷ are shown in (b) and (c) respectively. Table B.1 shows the

identified systems by WeakIdent, WODE, SINDy, SC and ST with the E2 and Edyn errors,

TPR and PPV. WeakIdent gives the most accurate recovery.

(a) Equ.(Equation 4.42) (b) X̂ (c) Ŷ

0 5 10
x

0
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y

0 20 40 60
t

0

5

10

X̂

0 20 40 60
t

0

5

10

Ŷ

Method Equation(s) E2 Edyn TPR PPV
True equation ẋ = +0.66667x− 1.33333xy

ẏ = −1.00000y + 1.00000xy
WeakIdent ẋ = +0.61271x− 1.21729xy 0.07 0.65 1.00 1.00

ẏ = −0.97002y + 0.92339xy
WODE[37] ẋ = +0.62699x− 0.20740x2y 0.73 2.34 0.75 0.75

ẏ = −0.91948y + 0.91515xy
SINDy[198] ẋ = +0.65909x− 1.05803xy 0.58 5.57 0.75 1.00

ẏ = +0.61390xy
SC[30] ẋ = −0.05204y3 1.00 112.17 0.00 0.00

ẏ = 0
ST[30] ẋ = −0.05204y3 0.88 3.86 0.25 0.25

ẏ = +0.91700xy + 0.01157xy2 −
0.05996x2y

Table B.1: The Lotka-Volterra equation (Equation 4.42) with σNSR = 0.1. We use the same
data as in Figure 4.11(d). We present the comparisons between WeakIdent and WODE [37],
SINDy [198], SC, ST [30].

Table B.2 shows the detailed results for the Lorenz system (Equation 4.43). The data

set is the same as the one in Figure 4.11(e) with σNSR = 0.1.. The noisy data X̂, Ŷ , Ẑ are

displayed in (a), (b), (c) respecitvely. Table B.2 shows the recovered equations. Table B.2

provides more details associated with Figure B.4 where we present statistical comparisons

using 50 experiments for various noise level when σNSR varies from 0.01 to 0.1. The E2

error by WeakIdent is lower with less variations, and the TPR and PPV values are closer to
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1 compared to other methods.

B.2.1 Test functions and feature construction

We give an outline of the construction of test functions in (Equation 4.10). Specifically, we

discuss how to choose the parameters mx,mt, px, pt (simply m and p below) according to

[36]:

(1) Frequency consideration: Given the data {Un
i }, we consider the Fourier transform

of data in each dimension. For example, Fx(U) is the Fourier transform of U is the spatial

domain. We next find a junction point k∗
x by fitting the cumulative sum of the vectorized

data |Fx(U)| by a piecewise linear polynomial with one junction point. The k∗
x minimizes

the L2 fitting error.

(2) Fit with a Gaussian distribution: The test function ϕ is matched to Gaussian for

a denoising effect, i.e., ϕp(x) = C
(
1−

(
x

m∆x

)2)p ≈ ρσ(x) where ρσ(x) =
1√
2πσ

e−
1
2
( x
σ
)2

and σ = m∆x√
2p+3

. Here ϕp(x) matches ρσ up to the third moment such that |ϕ̂p(ξ)− ρ̂σ(ξ)| ≤

O(|ξ|4(m∆x)4p−3) and C is a constant such that ||ϕp||1 = 1 [36]. Here ϕ̂p and ρ̂σ denotes

the Fourier transform of ϕp and ρσ respectively. To suppress the noise, the high frequency

components of data with the mode larger than k∗
x or smaller than −k∗

x are set to be within

the 5% tail of the Gaussian. This gives 2π
Nx∆x

k∗
x = 2

σ
from the property of cumulative

distribution function of ρ̂σ = ρ̂1/σ, and relating this to p and m gives the first condition:

2π
Nx∆x

k∗
x = τ̂

√
2p+3
m∆x

, where τ̂ is a parameter [36].

(3) Vanishing of ϕ on the boundary To guarantee the decay of ϕ in each spatial

domain, p and m are set to satisfy the second condition: ϕp((m − 1)∆x) ≤ 10−10 and

p > αx+1 where αx is the highest order derivative in the x direction for all features. Using

the first and the second conditions above, p and m are determined.

The computation of the features in (Equation 4.9) is done by convolution in each
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(a)X̂ (b) Ŷ (c)Ẑ
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(d)

Method Equation(s) E2 TPR PPV
True equation ẋ = +5.00000y − 5.00000x

ẏ = −1.00000y + 15.00000x− 1.00000xz
ż = −2.00000z + 1.00000xy

WeakIdent ẋ = +4.97854y − 4.97406x 0.011 1.00 1.00
ẏ = −0.97267y + 14.88230x− 0.99353xz
ż = −1.96169z + 0.98105xy

WODE[37] ẋ = −4.12201 + 2.77136y + 0.39253y2 −
2.20585x− 0.89285xy + 0.45249x2

0.018 1 0.88

ẏ = −11.16919 + 3.46066z − 0.27237z2 +
3.89361y − 0.35785yz + 6.97398x −
0.47972xz − 0.55649xy + 1.16625x2

ż = −12.63547 + 0.71043y − 1.07591x +
1.36546xy − 0.72687x2

SINDy[198] ẋ = +4.94736y − 4.91610x 1.188 0.86 0.3
ẏ = −0.99564y + 14.88425x− 0.99267xz
ż = +0.29463− 2.01828z + 1.00702xy

SC[30] ẋ = +0.02392xy2 1.000 0.00 0.00
ẏ = −0.00906xz2
ż = −0.27194z2 + 0.01103z3 + 0.05702xyz

ST[30] ẋ = +0.03245x2y 1.000 0.00 0.00
ẏ = −0.00906xz2
ż = +0.02673y2z

Table B.2: The Lorenz equation (Equation 4.43) with σNSR = 0.2. This experiment shows
the comparisons of WeakIdent, WODE, SINDy, SC and ST using the same data set from
Figure 4.11(e). WeakIdent gives rise to the best recovery.
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Figure B.4: The Lorenz equation ((Equation 4.43)), statistical comparisons: WeakIdent
(a1)-(a4), WODE [37] (b1)-(b4), SINDy [198] (c1)-(c4), SC [30](d1)-(d4) and ST [30](e1)-
(e4). The E2, Eres errors , TPR and PPV are shown from 50 experiments for each σNSR ∈
{0.01, 0.02, , ..., 0.1} using box-plots. The E2 error given by WeakIdent is lower than others
with less variations, and the TPR and PPV by WeakIdent are closer to 1 compared to other
methods.
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dimension:

wh(xi,tn),l = (−1)αl

(
U ∗ ∂

αlϕ

∂xαl

)
(xi, t

n) = (−1)αl

n+mt∑
k=n−mt

i+mx∑
j=i−mx

Uk
j

∂αl

∂xαl
ϕ(xj−xi, t

k−tn),

and there is a similar form for bh(xi,tn) for each (xi, t
n) in the domain. FFT is applied to

compute the convolution. For the convolutions in the x direction when t = tn, we use the

vector ϕ = (ϕ(−mx∆x, tn), ..., ϕ(mx∆x, tn)) for convolution. Near the boundary, we pad

the data by zeros for the computation of convolutions.

186



APPENDIX C

APPENDIX FOR chapter 5

In this Appendix, we present some more details of the FourierIdent.

C.1 Effect of the core region of feature ut

In Figure C.1, we present the difference between the core region of feature ut from Fouri-

erIdent and the high dynamic region in physical domain given by uux as in WeakIdent [3].

The KdV equation (Equation 5.41) with σNSR = 0.3 is used, and it is shown in (a). We in-

troduce egiven to describe the point-wise relative error of an approximated discrete system:

for each frequency mode h = H(ξx, ξt),

egiven(ξx, ξt) =
S(F )h · ctrue − S(b)h

S(b)h
. (C.1)

It approximates the error of a constructed discrete system at this mode. Here S(F )h and

S(b)h represent the H(ξx, ξt)-th row of S(F ) and S(c), and ctrue represents the true coef-

ficient vector.

Figure C.1 (b) shows the error of the core regions of feature ut, and (c) shows the

highly dynamic region selected by WeakIdent. Both FourierIdent and WeakIdent choose

the region where the residual error egiven tends to be small, while FourierIdent’s choice is

more of a partial region depending on the high response modes in V(ut). The pattern of the

highly dynamic regions in the physical domain exhibits more variation in terms of scales

from 10−4 to 101 with more points located in H (Highly dynamic region of WeakIdent).

In contrast, FourierIdent has fewer points located in Vut with less variations, which makes

identification problems more challenging in the frequency domain.
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Figure C.1: Observation of the given error |Wctrue−b
b
| in the highly dynamic region in

the physical domain (WeakIdent) v.s. egiven on the core regions in the frequency domain
(FourierIdent). (a) represents given data of the KdV equation in (Equation 5.41) with
σNSR = 0.3. (b) shows the Highly dynamic region in blue (the mild dynamic region in
white). (b) shows the given error egiven of the FourierIdent feature matrix (real part) on
active response modes V(ut) in blue (otherwise in white). Note that the results for the
feature matrix in the imaginary part are similar to those in the real part. The patterns of
active response mode are relatively similar in FourierIdent, while those of highly dynamic
regions in the physical domain (WeakIdent) depends on the given data. The given error
of the feature matrix in the frequency domain indicates the connection between the core
regions and highly dynamic region.

C.2 Core region of features in finding an optimal coefficient

The right-hand side of (Equation 5.28) can be understood as measuring how well a pre-

dicted coefficient vector fits a certain collection of modes. We show an example of the dif-

ferent potential collections of responses with egiven in (Equation C.1) in Figure C.2, where

(b), (c), and (d) provide the region of these potential responses in the frequency domain.

It is shown that (a) consists of a larger area than an individual core regions region or the

union of core regions region. The dark blue region in (a), while not included in any of

(b)-(d), may be considered as those regions with mild dynamics in the physical domain.

They are a good approximation based on egiven but may not be meaningful in identifying

correct support. Hence, in Step 3 of FourierIdent, the V∗ is carefully selected to provide

more accurate identification results.
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Figure C.2: Visualization of the patterns of active frequency modes. We take the KdV
equation with σNSR = 0.3 as an example. We show the pattern of active response modes
in green on each true feature in the examples. In each figure (b) - (d), the x and y axis
represent the frequency mode in Λ. The different values of numbers represent the relative
residual of the feature matrix in this mode. The white region represents the frequency mode
that is not active in a particular feature ut (in (b)), uxxx (in (c)), and uux (in (d)).

C.3 Effect of SP and Group trimming

As in the example of subsection 5.6.1, SP and group trimming gives a stable recovery of

the support.

In Figure C.3, we use two examples to show the effect of the proposed group trimming

method. In this example, We take the KS equation in (Equation 5.42) with clean data and

noisy data with σNSR = 0.8. The first row provides results from FourierIdent. In addition,

we show results from WeakIdent in the same experiment in the second row. In each figure,

the x-axis and y-axis represent an individual feature and a sparsity level. A symbol of a

circle or star is shown if a feature has been selected after group trimming. These circles

will be replaced by stars if the reduced support matches with the exact true support. In

this example, the true features are (u2)x, uxx, uxxxx. It is shown that both FourierIdent and

WeakIdent can reduce larger support to the correct one in the majority of the cases with or

without noise.
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(a) Equation 5.42 (FourierIdent) σNSR = 0 (b) Equation 5.42 (FourierIdent) σNSR = 0.8
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(c) Equation 5.42 (WeakIdent) σNSR = 0 (d) Equation 5.42 (WeakIdent) σNSR = 0.8
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Figure C.3: Benefit of Group trimming. Visualize reduced supports from different sparsity
levels using Group trimming in FourierIdent v.s. using Trimming in WeakIdent on Clean
and Noisy datasets. We take the KS equation in (Equation 5.42) with σNSR = 0 and
σNSR = 0.8 as two examples. Each row provides the features in reduced support from
sparsity level k = 1, 2, ..., 15. If a feature is shown as a star, the current support is reduced to
correct support. It is shown that Group Trimming in FourierIdent is as stable as individual
feature trimming in WeakIdent.
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