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Abstract— In this paper, we study hybrid models that not
only undergo mode transitions, but also experience changes
in dimensions of the state and input spaces. An algorithmic
framework for the optimal control of such Multi-Mode, Multi-
Dimension (or M

3
D) systems is presented. We moreover derive

a detailed M
3
D model for an ice-skater, and demonstrate the

use of the developed framework on the ice-skater model.

I. INTRODUCTION

Hybrid systems, i.e. systems whose dynamics contain both

a continuous and a discrete component, have proved to

be useful tools when modelling complex physical systems,

where the dynamics changes among different dynamical

regimes in response to external as well as internal events.

Examples range from bipedal, walking robots [1], where

each leg undergoes a swing-phase and a stance-phase, and

high-velocity mobile robots [2], where the wheels transition

between rolling and slipping modes, to models in systems

biology [3], [4], in which regulatory networks inhibit or

excite different aspects of the cell dynamics. This paper

follows this tradition by focusing on constrained (physical)

systems (see for example [5]). However, rather than focusing

on modelling and analysis, we make the control of these

systems the explicit aim.

Unfortunately, producing computationally feasible algo-

rithms for hybrid control design has proved to be a daunting

task from a complexity point of view. As an example, one can

consider the problem of optimal control of hybrid systems,

where [6], [7] early on formulated variants of the hybrid

maximum principle. However, the leap from optimality con-

ditions to computational algorithms has proved computation-

ally infeasible except for restricted problem classes, such as

piecewise affine systems [8], systems in which the mode

schedule is predetermined [9], [10], to classes of suboptimal

solution methods [11] .

In this paper, we make no claims about solving the general,

hybrid optimal control problem, but rather focus our attention

on systems for which the mode sequence is fixed and given.

The control parameters then becomes the control signals

within each individual mode and parameterized characteri-

zations of the switching conditions and transition relations.

This work can be viewed as an extension of [12]. In [12]

a new class of systems, the so-called Multi-Mode, Multi-

Dimension (or M3D), was introduced where the dimension

of the system is allowed to change from mode to mode.

Furthermore, various state transition maps and an optimal
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control problem were considered. In this paper, however, we

will, as an extension, also allow the dimension of the control

space to change as the system undergoes mode switchings.

Due to the possible changes of dimensions in the control and

state space, it is necessary to introduce a new computational

algorithm to implement the optimality conditions. Although

it is possible to embed this algorithm into a more classical

and larger algorithm, our approach has the advantage that it

is significantly less demanding in terms of computational

time and complexity because only relevant variables are

computed. Moreover, we will consider a fairly elaborate

model of a ice-skater to illustrate the modeling and control

of M3D systems. This skating model will operate in four

different modes as the skater moves forward, where each

mode characterizes the particular motion of both skates. A

corresponding optimal control problem will be considered as

well.

The outline of this paper is as follows: In Section II,

the ice-skater model will be introduced as a vehicle for

illustrating the various modelling issues. Following this, in

Section III, M3D systems will be formally introduced and

optimality conditions will be derived within the framework of

the Calculus of Variations. This section moreover contains a

description of the development of a computational algorithm,

which is then applied to the ice-skater model in Section IV.

The conclusions are given in Section V.

II. A MOTIVATING EXAMPLE

In this section, we introduce a M3D model for an ice-

skater. Figure (1) shows the trajectories of both the left and

right skate (dotted lines) with respect to the forward motion

(from left to right).The human body is modelled by three

masses; m for each leg and M for the torso and head.

The skating motion is modelled as a M3D system having

four modes. These modes are the ‘Stride-Right’ (SR) mode,

the ‘Glide-Left’ (GL) mode, the ‘Stride-Left’ (SL) and the

‘Glide-Right’ (GR) mode. The detailed dynamics of each

mode are presented next.

• SL mode:

Throughout the skating motion, the angles of the left

and the right skate with respect to the x-axis are denoted

by αl and αr, respectively.

During this mode, the skater applies a force u on the

right skate along the line of the body as shown in figure

(2). The mass of the torso (M) and of the right leg (m)

are assumed to be resting on the left skate during this

acceleration. Therefore, the total mass going along the

left skate is m+M . Accordingly, the mass on the right

skate is m. As the right skate pushes outward, the same
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Fig. 1. Skating trajectories using the proposed M3D model.
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Fig. 2. Depicted is the force applied during the SL mode

force is being applied to the right and left skate by

the ice, but in the opposite direction. The components

perpendicular to each skate edge are cancelled by the

forces normal in the plane. The remaining components

along the skate edge are responsible for the forward

motion. The friction between the ice and both skates is

proportional to the normal force. The proportionality

constant, in turn, is a function of the velocity [13].

This friction, however, is significantly smaller than air

friction that accounts for 75% of the resistance [13]. The

air friction force satisfies µkv2, where µk is a constant

depending on the drag coefficient, frontal area, and the

posture of the skater [15]. A physical constraint is the

distance R, R =
√

(xl − xr)2 + (yl − yr)2 between

the two skates. Furthermore, the heading angle θ is

constrained to be αl ≤ θ ≤ αr. Using Newton’s second

law, the state equations are readily obtained:

ẋl = vl cos(αl)

ẏl = vl sin(αl)

v̇l =
u

m + M
sin(αl − θ) −

µk

m + M
v2

c

ẋr = vr cos(αr)

ẏr = vr sin(αr)

v̇r =
u

m
sin(αr − θ) −

µk

m
v2

c

where µk is the air friction coefficient and vc =
(m+M)vl+mvr

M+2m
is the velocity of the center mass. Also,

the heading angle θ = tan−1(xl−xr

yl−yr
).

• GL mode:

This mode is the continuation of the previous mode,

where the skater rests on his left skate while the right

skate is lifted in the air for repositioning. The state

equations, obtained by setting the applied forces to zero

in the previous mode, are

ẋl = vl cos(αl)

ẏl = vl sin(αl)

v̇l = −
µk

M + 2m
v2

l

• SR mode:

After the right skate has been replanted, the right skate

begins its striding phase, while the left skate applies

the force. This is similar to the SL mode with the

role reversal between the left and right skates. The state

equations are

ẋl = vl cos(αl)

ẏl = vl sin(αl)

v̇l =
u

m
sin(θ − αl) −

µk

m
v2

c

ẋr = vr cos(αr)

ẏr = vr sin(αr)

v̇r =
u

m + M
sin(θ − αr) −

µk

m + M
v2

c

where vc = mvl+(m+M)vr

M+2m
.

• GR mode:

The end of the previous mode leads to the Glide-Right

mode, where the skater glides on his right skate. This

is the right skate analogue of the ‘GL mode,’ and the

corresponding state equations are

ẋr = vr cos(αr)

ẏr = vr sin(αr)

v̇r = −
µk

M + 2m
v2

r

The boundary conditions at mode switching instants can

be determined by physical arguments. Assuming the conser-

vation of momentum, the velocity of the left skate at the

onset of the GL from SL mode is v+
l =

mv−

r +(M+m)v−

l

M+2m
.

Since the position of left skate is determined from the end

of SL, the position of the left skate at the onset of GL
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Fig. 3. State Transition

satisfies x+
l = x−

l and y+
l = y−

l . We further denote this set

of conditions FSL. During the GL mode, the right skate is

being repositioned a distance of rx units forward to prepare

for the SR mode. Therefore, at the onset of the SR mode,

x+
r = x−

l + rx and y+
r = y−

l − ry . Furthermore, the position

and velocity of the left skate continues from the end of GL.

Hence, x+
l = x−

l , y+
l = y−

l , v+
l = v−l , and v+

r = v−l .We

denote this transition map as FGL. By similar arguments, the

transition map FSR from the SR mode to the GR mode is

x+
r = x−

r , y+
r = y−

r , v+
r = (m+M)vr+mvl

M+2m
, and the transition

map FGR from GR to SL is x+
l = x−

r + rx, y+
l = y−

r + ry ,

v+
l = v−r , x+

r = x−

r , y+
r = y−

r , and v+
r = v−r .

III. OPTIMALITY CONDITIONS

Having motivated the need for optimal control of multi-

dimensional hybrid systems in the previous section, in this

section we begin by formalizing the optimal control problem.

Then we use variational arguments to derive the necessary

conditions for optimality. Once these conditions are obtained,

we will present a numerical algorithm that utilizes these

optimality conditions to converge to a local solution for the

optimal control parameters.

A. Problem Formulation

The dynamical system discussed in this paper corresponds

to a specific class of hybrid systems, where the dimension of

the state and control space changes between different modes

of operation. We assume that switches between the different

dynamics is time-driven, where the switching-time vector

~τ = [τ1, . . . , τN−1]
T is also a control parameter. However,

the ordering of the modes is assumed fixed. Also, the initial

time τ0 = 0 and final time τN = T will be assumed fixed. It

will be beneficial to introduce an identifier p(i), taking values

in a finite set, denoting the mode of operation during the time

interval [τi−1, τi). As mentioned earlier, the dimensions of

the state and control spaces vary from mode to mode. Hence,

we let xp(i) ∈ R
np(i)

, while up(i) ∈ R
mp(i)

. Now, the state

evolution during time interval [τi−1, τi) is given by

ẋp(i) = fp(i)(xp(i)(t), up(i)(t)), (1)

where fp(i) ∈ C2 : R
np(i)

× R
mp(i)

→ R
np(i)

is a twice-

differentiable continuous-state transition function in mode

p(i). Thus the control, thus far, consists of a continuous

time input up(i)(·) for each mode p(1), . . . , p(N) and the

switching time vector ~τ .

Note that since the state trajectory switches between differ-

ent dimensions, the state trajectories are discontinuous at the

switching instants. The transition functions at the switching

time instants are given as

xp(i+1)(τi+) = F p(i)(xp(i)(τi−), wp(i)), (2)

for i = 1, . . . , N . Here, F p(i) ∈ C2 : R
np(i)

× R
kp(i)

→
R

np(i+1)

is a twice-differentiable discrete-state transition

function, and wp(i) ∈ R
kp(i)

is a control parameter. For ease

of notation, let’s parameterize the state and control vectors

by their sequential index rather than the identifier p(i). Thus

if we start with the initial state x1(0), the state trajectory

will be given as follows:

ẋi(t) = fi(xi(t), ui(t)), when t ∈ [τi−1, τi) (3)

xi+1(τi+) = Fi(xi(τi), wi), (4)

for i = 1, . . . , N . Note here once again, that xi ∈ R
ni ,

ui ∈ R
mi when t ∈ [τi−1, τi), and wi = R

ki .

Now that we have a characterization of the state trajectory,

we can formulate an optimal control problem. More specif-

ically, the problem is to determine the optimal continuous

control signal ui(t) for i = 1, . . . , N , discrete control signal

wi for i = 1, . . . , N − 1, and switching time vector ~τ =
[τ1, . . . , τN−1]

T in order to minimize a performance index

J=

N
∑

i=1

∫ τN

τi−1

Li(xi, ui)dt +

N−1
∑

i=1

φi(xi(τi−), wi)+Φ(xN (τN )) (5)

Here Li ∈ C2 : R
ni × R

mi → R is the instantaneous cost

in mode i, while φi ∈ C2 : R
ni × R

ki → R is a state

transition cost between modes and Φ ∈ C2 : R
nN → R is

the terminal cost. In the next subsection, we will derive the

optimal control via calculus of variations.

B. Optimality Conditions

In this section, we derive the optimality conditions for the

problem defined above using a variational approach. This

approach avoids the explicit computation of the perturbations

with a clever choice of the Lagrange multipliers. Adjoining

the dynamical constraints (3) to the cost (5) via different

Lagrange multipliers (or co-states), λi(t) ∈ R
1×ni , defined

over time interval (τi−1, τi), will not alter the value of J .

Moreover, by adjoining the state transition constraints at the

switching times (4) via Lagrange multipliers µi ∈ R
1×ni+1 ,

and assuming that the optimal control variables are chosen,

we obtain the optimal cost J̄0.

Defining the Hamiltonians, Hi(xi, λi, ui) = Li(xi, ui) +
λifi(xi, ui), the augmented (but unaltered from an evaluation

point of view) cost is given by

J̄0 =

N
∑

i=1

∫ τi

τi−1

[

Hi(xi, λi, ui)−λiẋi

]

dt + (6)

+

N−1
∑

i=1

µi

[

Fi(xi(τi−), wi)−xi+1(τi+)
]

+

N
∑

i=1

φi(xi(τi−), wi).

In the equation above, we let φN (xN (τN−), wN ) =
ΦN (xn(τN )).
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Now we perturb (6) in such a way that ui → ui + ǫνi

for i = 1, . . . , N , τi → τi + ǫθi and wi → wi + ǫωi for

i = 1, . . . , N − 1. With ǫ << 1, this perturbation induces a

sequence of perturbations {ηi} in the state trajectories xi, e.g.

xi → xi + ǫηi. Note that θ0 = θN = 0 since the initial and

final times are assumed fixed. The first order approximation

of the perturbed cost, J̄ǫ, is given by

J̄ǫ=

M
∑

i=1

∫ τi

τi−1

[

Hi(xi, λi, ui) − λiẋ
]

dt+

N
∑

i=1

∫ τi+ǫθi

τi

Li(xi, ui)dt −

−

N
∑

i=1

∫ τi−1+ǫθi−1

τi−1

Li(xi, ui)dt +ǫ

N
∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λiη̇i

]

dt

+

N−1
∑

i=1

µi

[

Fi

(

(xi(τi + ǫθi)−), wi + ǫωi

)

−xi+1(τi + ǫθi)+)
]

+ǫ

N−1
∑

i=1

µi

[∂Fi

∂xi

ηi(τi−) − ηi+1(τi+)
]

+ (7)

+

N
∑

i=1

φi

(

(xi((τi + ǫθi)−), wi + ǫωi

)

+ ǫ

N
∑

i=1

∂φi

∂xi

η(τi−).

Note that we explicitly used the fact that fi(xi(t), ui(t)) −
ẋi(t) is zero in the open intervals (τi−1, τi−1 + ǫθi−1) and

(τi, τi + ǫθi).
Now the first variation in the performance index (5) can

be expressed as the limit for ǫ → 0 of

δJ = lim
ǫ→0

J̄ǫ − J̄0

ǫ
. (8)

Thus using (6) and (7), it follows that

δJ =
N

∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λiη̇i

]

dt +

+
N

∑

i=1

Li(xi, ui)|τi
θi − Li(xi, ui)|τi−1θi−1 +

+
N−1
∑

i=1

µi

[ ∂F

∂xi

ẋi(τi−)θi +
∂F

∂wi

ωi − ẋi+1(τi+)θi

]

+

+

N−1
∑

i=1

µi

[∂Fi

∂xi

ηi(τi−) − ηi+1(τi+)
]

+

+

N
∑

i=1

[∂φi

∂xi

ẋi(τi−)θi +
∂φi

∂wi

ωi +
∂φi

∂xi

η(τi−)
]

. (9)

Reordering the sum, reorganizing terms, and remembering

that θ0 = θN = 0, we get

δJ=

N
∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λiη̇i

]

dt +

N−1
∑

i=1

[

Li(xi, ui)

−Li+1(xi+1, ui+1)
]

τi

θi +

N−1
∑

i=1

[

µi

∂F

∂xi

fi(τi−) − µifi+1(τi+)

+
∂φi

∂xi

fi(τi−)
]

θi +
N−1
∑

i=1

µi

[∂Fi

∂xi

ηi(τi−) − ηi+1(τi+)
]

+

+

N−1
∑

i=1

∂F

∂wi

ωi +

N
∑

i=1

[ ∂φi

∂wi

ωi +
∂φi

∂xi

η(τi−)
]

. (10)

Using integration by parts, the integral terms in (10) further

reduces to

δK =

N
∑

i=1

∫ τi

τi−1

[∂Hi

∂xi

ηi +
∂Hi

∂ui

νi − λ̇iηi

]

dt −

−

N
∑

i=1

[

λi(τi−)ηi(τi−) − λi(τi−1+)ηi(τi−1+)
]

.(11)

Substituting δK into δJ , and choosing λi in the intervals

(τi−1, τi) to solve

λ̇i = −
∂Hi

∂xi

(xi, λi, ui), (12)

yields

δJ =

N
∑

i=1

∫ τi

τi−1

Aiνidt +

N−1
∑

i=1

Biωi +

N−1
∑

i=1

Ciθi +

+

N−1
∑

i=1

[

λi+1(τi+) − µi

]

ηi+1(τi+1+) +

+

N−1
∑

i=1

[

µi

∂Fi

∂xi

+
∂φi

∂xi

− λi(τi−)
]

ηi(τi−) +

+
[ ∂Φ

∂xN

− λN (τN−)
]

ηN (τN−), (13)

where

Ai =
∂Hi

∂ui

, and Bi =
∂φi

∂wi

+ µi

∂F

∂wi

(14)

Ci =
[

Li(xi, ui) − Li+1(xi+1, ui+1)
]

τi

+

+
[

µi

∂F

∂xi

fi(τi−) − µifi+1(τi+) +
∂φi

∂xi

fi(τi−)
]

. (15)

Here we used the fact that φN (xN (τN−), wN ) =
ΦN (xn(τN )) and η1(0+) = 0. The computation of the

perturbations {ηi} is avoided by choosing

µi = λi+1(τi+), (16)

λi(τi−) = µi

∂Fi

∂xi

+
∂φi

∂xi

, and (17)

λN (τN−) =
∂Φ

∂xN

. (18)

These conditions specify the boundary conditions of the co-

state defined by (12).

With this choice of the co-state, the first order variation

of J reduces to

δJ =
N

∑

i=1

∫ τi

τi−1

Aiνidt +
N−1
∑

i=1

Biωi +
N−1
∑

i=1

Ciθi. (19)

Since θi, ωi, and νi are independent, the necessary

conditions for optimality are the vanishing of Ai’s, Bi’s,

and Ci’s in (13). These results are summarized in a theorem

below:

Theorem 3.1: Given a multi-dimensional hybrid system

of the form (3) and (4), an extremum to the performance
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index J in (5) is attained when the control variables ui, for

i = 1, . . . , N , τi and wi, for i = 1, . . . , N − 1, are chosen

as follows:

Euler-Lagrange Equations: λ̇i = −∂Hi

∂xi
(xi, λi, ui), with

t ∈ (τi−1, τi), for i = 1, . . . , N .

Boundary Conditions: λN (τN−) = ∂Φ
∂xN

, and λi(τi−) =

λi+1(τi+)∂Fi

∂xi
+ ∂φi

∂xi
, for i = 1, . . . , N − 1.

Optimality Conditions: ∂Hi

∂ui
= 0, ∂φi

∂wi
+ λi+1(τi+) ∂F

∂wi
=

0, andHi(τi−)−Hi+1(τi+) = 0, where Hi is the Hamilto-

nian Hi(xi, λi, ui) = Li(xi, ui) + λifi(xi, ui).

C. Numerical Algorithms

Now that we have derived the necessary conditions

for optimality, we introduce numerical algorithms that

utilize these conditions to attain optimal control values:

- Initialize with a guess of the control variables τ
(0)
i ,

w
(0)
i , for i = 1, . . . , N − 1, and u

(0)
i (t) with t ∈

[τ
(0)
i−1, τ

(0)
i ) for i = 1, . . . , N , and let p = 0.

- while p < 1 or |J (p) − J (p−1)| < ǫ
1. Compute the state trajectories xi(t), for i =

1, . . . , N , and cost J (p) forward in time from

0 to T using (3), (4), and (5).

2. Compute the co-states λi(t), for i =
1, . . . , N , backward in time from T to 0
using (12), and (16) - (18).

3. Compute Ai, Bi, Ci for i = 1, . . . , N using

(14)-(15).

4. Update the control variables τi and wi as

follow :

τ
(p+1)
i = τ

(p)
i − γ(p)

τ Ci,

w
(p+1)
i = w

(p)
i − γ(p)

w Bi,

for i = 1, . . . , N −1,where γ
(p)
τ and γ

(p)
w are

step size parameters.

5. Update the control ui using the update-u

sub-function (defined below):

u
(p+1)
i = update-u(u

(p)
i ).

6. p = p + 1
- end while

In the algorithm above, γ denotes the step-size, and an

efficient method among others is to use the Armijo step-

size [14]. This algorithm is similar to a gradient descent

algorithm, however there is one big distinction. The τi’s

and wi’s can be readily updated in the negative gradient

direction as usual. However, the continuous control vector

ui cannot be updated using the standard approach because

of the change in dimensions between modes. To see why this

happens, consider the situation depicted in Figure 4. Here if

we update the control ui using the usual update method,

the u
(p+1)
i (t) ∈ R

mi when t ∈ [τ
(p)
i−1, τ

(p)
i ). However, upon

updating the switching times, there will be two regions of

conflict assuming the switching times change.

There are four distinct cases of conflict that can occur for

each control ui. To address the update issue and the regions

time (t)τ
(p)
i−1 τ

(p)
i

when t ∈ (τ
(p)
i−1, τ

(p)
i ),

u
(p)
i (t) ∈ ℜmi , xi(t) ∈ ℜni , λi(t) ∈ ℜ1×ni .

time (t)τ
(p+1)
i−1 τ

(p+1)
i

However, u
(p+1)
i (t) ∈ ℜmi when

t ∈ (τ
(p+1)
i−1 , τ

(p+1)
i ).

iteration p

iteration p + 1

standard update:

u
(p+1)
i = u

(p)
i − γ(p)

u

∂Hi

∂ui

′

∈ ℜmi ,

when t ∈ (τ
(p)
i−1, τ

(p)
i ).

regions of conflict!

Fig. 4. Depicted here is a situation where the standard update method
leads to a conflict in dimensions of the control ui.

of conflict, we propose the following update-u function:

u
(p+1)
i = update-u(u

(p)
i )

- utemp(t) = u
(p)
i − γ

(p)
u

∂Hi

∂u
(p)
i

′

- if
(

τ
(p+1)
i−1 ≥ τ

(p)
i−1 & τ

(p+1)
i ≥ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p+1)
i−1 , τ

(p)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i ) + (t − τ

(p)
i )u̇temp(τ

(p)
i );

t ∈ [τ
(p)
i , τ

(p+1)
i ).

- elseif
(

τ
(p+1)
i−1 ≥ τ

(p)
i−1 & τ

(p+1)
i ≤ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p+1)
i−1 , τ

(p+1)
i ).

- elseif
(

τ
(p+1)
i−1 ≤ τ

(p)
i−1 & τ

(p+1)
i ≥ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p)
i−1, τ

(p)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i ) + (t − τ

(p)
i )u̇temp(τ

(p)
i );

t ∈ [τ
(p)
i , τ

(p+1)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i−1)+(τ

(p)
i−1−t)u̇temp(τ

(p)
i−1);

t ∈ [τ
(p+1)
i−1 , τ

(p)
i−1).

- elseif
(

τ
(p+1)
i−1 ≤ τ

(p)
i−1 & τ

(p+1)
i ≤ τ

(p)
i

)

- u
(p+1)
i (t) = utemp(t); t ∈ [τ

(p)
i−1, τ

(p+1)
i ),

- u
(p+1)
i (t) = utemp(τ

(p)
i−1)+(τ

(p)
i−1−t)u̇temp(τ

(p)
i−1);

t ∈ [τ
(p+1)
i−1 , τ

(p)
i−1).

- end if

The idea here is to trim and extend the control ui as

necessitated by the change in the switching times. The

extension is done by using a first-order Taylor approximation.

The instance shown in Figure 4 corresponds to the when

τ
(p+1)
i−1 > τ

(p)
i−1 and τ

(p+1)
i > τ

(p)
i . In this case, since τi−1

increased, the beginning (e.g. when t = [τ
(p−1)
i−1 , τ

(p)
i−1))

is trimmed. Also since τi increased, the end (e.g. when

t = [τ
(p−1)
i , τ

(p)
i )) must be extended. The other cases are

similar.

IV. OPTIMAL CONTROL OF ICE SKATER

In this section, we derive the optimal control of the ice

skater model presented in Section II using the algorithms

from the previous section. In particular, we assume the skater

has an initial velocity of vc(0) = 1 m/s and it is desired

to achieve a velocity of vd = 3 m/s in T seconds while

minimizing the energy expenditure (or work done). With this
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goal in mind, the following performance index is proposed:

J =

∫ T

0

C1(u(t)D(t))dt + C2(vc(T ) − vd)
2, (20)

where C1 and C2 are scalar weights, u(t) and D(t) represent

the force applied by the skater and the distance travelled

by the skates, respectively. In order to fit problem into the

general framework presented in Sections II and III. First, note

that u(t) = 0 in the GL and GR modes, hence L(t) = 0
in these modes. The instantaneous cost during the SL and

SR mode is L(t) = C1

(

u(t) sin(θ(t))
(

xl(t) + xr(t)
)

+
u(t) cos(θ(t))

(

yl(t)+yr(t)
))

, where xl(t), yl(t), xr(t), yr(t)
are the x and y coordinates of the left and right skates,

respectively and θ = tan−1(xl−xr

yl−yr
). Moreover, we note that

φi(xi(τi−), wi) = 0 and Φ(xN (τN )) = C2(vc(τN ) − vd)
2.

For the purpose of the simulation, it is assumed that the

state transitions (Fi) are autonomous (e.g. no discrete control

wi), and also αl = π
6 and αr = −π

6 are assumed fixed.

In this case, the control consists of the switching times τi

and the continuous control ui(t). We will start in the SL
mode and transition between different modes as specified in

Figure 2. In the simulation, the initial skate positions are

x0 = [0, 0, 1, 0.25,−0.25, 1] and we assume an skater of

average body type [15]: M = 40 kg, m = 20 kg, µk =
0.157 kg

m
, vd = 3 m

s
, T = 3 s, C1 = 0.01, and C2 = 50.

Figure 5 shows the optimal switching times by displaying the

active mode as a function of time, and Figure 6 depicts the

trajectory using the optimal control ui and optimal switching

times τi.

0 0.5 1 1.5 2 2.5 3

SL

GL 

SR

GR 

time (t)

m
o
d
e

Fig. 5. Depicted is the active mode as a function of time for the optimal
switching times.
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Fig. 6. Depicted is the optimal trajectory staring in SL mode and switching
between the GL, SR, GR modes.

V. CONCLUSIONS

In this paper, we presented an algorithmic framework for

the optimal control of systems that experience changes in

dimensions of the state and input spaces between different

modes of operation. These changes in the dimensions can be

imposed as infinite-dimensional state constraints, but these

constraint typically add significant computational overhead.

Instead, we introduced a non-standard Multi-Mode, Multi-

Dimension (M3D) model and derived optimality conditions

for such systems using variational arguments. We moreover

derived a detailed M3D model for an ice-skater, and demon-

strated the viability of the presented methods through an

optimal control example of the ice-skater.
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