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Nested piezoelectric cellular actuators for a
biologically inspired camera positioning mechanism

Joshua Schultz, Jun Ueda, Member, IEEE,

Abstract—Using successive stages, or nesting compliant ampli-
fication mechanisms, soft actuators with performance suitable for
robotic applications can be constructed with piezoelectric ceramic
as the active material. This paper presents a mathematical
framework that describes the interactions among the various
amplification mechanisms in a hierarchical nested structure. A
formal treatment of nested amplification mechanisms results in
two theorems that describe the stiffness properties of the whole
actuator in terms of the properties of each mechanism in the
hierarchy. These theorems show that the stiffness properties of the
actuator can be computed by considering only the outermost few
layers in the nested configuration. By virtue of this hierarchical
structure, the actuator also assumes a cellular structure; it
functions by summing the effects of on-off inputs coupled by a
flexible connective medium. This requires a paradigm shift when
selecting control strategies. A multi-layer strain amplification
mechanism is designed to meet the required range of travel
for a biologically inspired camera positioning mechanism, and
a switching control method for the actuator’s 16 on-off inputs
are discussed.

Index Terms—compliant mechanisms, biologically inspired
systems.

I. INTRODUCTION

Soft actuators have been an important focus in robotics
in recent years. They have been shown to have promise in
numerous fields, such as haptics [1] and rehabilitation robotics
[2]. This paper demonstrates the use of “amplified” actuators,
whereby an active material, such as a piezoelectric ceramic,
acts through a compliant mechanism to orient a camera [3],
shown in Figure 1. The compliant mechanism increases the
stroke compared to that of the active material itself, sacrificing
greater-than-needed force capability.

Not only does the amplification mechanism produce a
more convenient stroke-force operating characteristic from an
otherwise lackluster active material, it also naturally introduces
compliance into the actuator with no need for a dedicated part.
The camera positioning mechanism then has a muscle-like
quality in that it has a compliant medium between the load
and the active material [4]. The amplification is accomplished
in several nested stages, with each stage amplifying the output
of numerous lower-level sub-units, with the active material
constituting the lowest-level subunit in the hierarchy. The
multi-stage nested mechanism is necessary because geometric
constraints render it impossible to achieve the aggressive
force-displacement tradeoffs required by robotic devices using
only a single stage. Because the actuator contains multiple
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Fig. 1. Camera driven by an antagonistic pair of piezoelectric cellular
actuators

active units, it exhibits a second muscle-like quality, that of
a cellular structure, or the idea that motion is accomplished
by coordinating on-off activation of distinct motor units. The
two-port network formalism from circuit theory provides the
necessary abstraction to describe the interconnections between
these various amplification stages in a simple, tractable man-
ner. Using this formalism, it is a simple matter to compute
performance metrics from the characteristics of the individual
layers.

In fact, measurements of human saccadic eye motions show
that the neuronal pulse amplitude does not vary greatly with
the length of the move, rather it is the duration of the pulse
that is the driving factor and the control inputs are of the bang-
bang type [5]. The cellular structure of the camera positioning
mechanism, which can only apply impulsive inputs, also falls
within this paradigm.

The engineering goals inherent in producing a camera po-
sitioning mechanism with actuation performance comparable
to human recti muscles give rise to two important research
questions. First, as the amplification stages are connected to-
gether, how are the overall properties of the actuator connected
to the properties of its component parts? Considering this
in a formal, systematic way, this paper reveals two “nesting
theorems” that confirm an intuitive result, namely that the
stiffness observed by the environment depend most strongly
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on the outermost layers in the hierarchy: those closest to the
load. It is these layers that should receive the most attention
in the design and manufacturing process if actuator stiffness
is of primary concern. These theorems were presented in an
abbreviated form in [6]; this article contains the complete
proofs and experimental evaluations that did not appear in
the prior work. Secondly, how can the various active units
within the actuator be coordinated in an efficient manner to
produce smooth motion? The compliant nested configuration
sums the contributions of various “motor units” to achieve a
desired overall effect much in the way that connective tissue
in human muscles does. For this reason, we apply discrete
switching vibration suppression (DSVS) [7] to move the de-
vice smoothly. Although physiological literature and empirical
evidence [5] strongly suggest that the human eye is driven by
impulsive inputs, existing camera positioning mechanisms in
the literature are neither actuated nor controlled in this way.
The cellular structure and DSVS control architecture make this
positioner the first of its kind to bear semblance to the human
eye in this way.

The multi-stage mechanism (3 stages in the example fab-
ricated here) will produce an aggressive force-displacement
tradeoff on the bare piezoelectric stack’s performance, produc-
ing a truly compliant muscle-like actuator with no stick-slip
elements, in contrast to other examples in the literature. Recent
works have recognized the drawbacks inherent in traditional
motor-on-motor camera positioner designs (namely that the
inertia of the actuators is larger than that of the camera itself)
and have proposed novel systems with better performance.

Villgrattner and Ulbrich [8] present a mechanism that uses
ultrasonic motors. The stick-slip actuators they use lack the
natural compliance found in human muscle, however. Lee, et.
al. [9] recognize the important role compliance plays in the
motion of the human eye and introduce deformable connecting
beams in lieu of rigid connecting rods. The actuation effort
is produced by stepper motors. Unlike these two solutions,
the amplified piezoelectric technology represents a highly
integrated, compliant interaction with the environment that has
much more in common with human recti muscles.

Use of piezoelectric ceramics together with amplifying
mechanisms in the robotics context has been primarily re-
stricted to end effectors, such as the gripper of Huang and
Chen [10]. The typical approach, as summarized by Kota, et
al. [11], is to begin with a mesh-like ground structure and use
an automated process to do a topological optimization based
on the task. Once the optimal connectivity is determined, a
size and shape optimization process follows, where geometric
constraints such as minimum thickness can be imposed. While
this is an effective method of designing special purpose
devices, it is not particularly effective in producing general-
purpose actuation, i.e. compliant muscle-like actuators to drive
robotic links. In addition, to the authors’ knowledge, devices of
this type are exclusively planar, and therefore do not represent
the best use of space.

Some more general-purpose and more modular methods
of amplifying piezoelectric ceramic output are described by
Uchino [12], and go by trade names such as “moonies” or
“rainbows.” The smart structures literature contains a number

of excellent theoretical and experimental works on devices
of these types; notable examples include the seminal work
of Paros and Weisbord on the analysis of flexure hinges
[13], and Lobontiu and Garcia [14], who optimize a flexure
hinged mechanism with respect to a cost function trading off
geometric advantage and efficiency. A common thread among
mechanisms of this type is that they are longer in the input di-
rection (corresponding to the piezoelectric stack’s longitudinal
direction) than in the output (or actuation) direction.

The remainder of the paper will be organized as follows:
Section II will introduce some key concepts particular to
compliant actuators with a cellular structure. Sections III-VII
detail the theoretical results that emerge from the two-port
formalism. Sections VIII and IX will present experimental
measures of the actuator performance. Section X will discuss
control for vibration-free point-to-point motion that is com-
patible with the actuator’s cellular structure.

II. FROM PIEZOELECTRIC STACKS TO MUSCLE-LIKE

ACTUATORS

A. A large-strain compliant actuator

Although “moonies” and their brethren can increase the
displacement by an order of magnitude (over that of the piezo-
electric stack alone), it is still to small to be useful in robotics
applications. Combining enough of these in series can reach
the required stroke, but the total length of the series chain will
be too long to be useful. For this reason, several researchers
have pursued the idea of nested amplification mechanisms,
where the overall amplification is accomplished in successive
stages or layers. Figure 2 illustrates this diagrammatically. In
actuators of this type, the output of series-parallel chains of an
amplified active material serves as the input to the subsequent
amplification mechanism. There are three major advantages to
this: first, the amplification factor of a single mechanism is
limited by geometric and kinematic constraints, and multiple
stages can allow the amplification to proceed further. Second,
the device can be constructed so that each layer is mutually
orthogonal to the previous and subsequent layers. As increased
performance is required, the actuator is able to grow in any
of the three dimensions of space, and will be less likely to
violate the required envelope than would planar mechanisms
for the same performance requirement. Third, with multiple
layers, it is conceivable that multiple configurations exist that
would meet the desired force-displacement tradeoff, and this
additional design freedom could be used to meet additional
criteria, such as an improved frequency response.

Given the apparent benefits of three-dimensional multistage
designs, it is worthwhile to find systematic ways of specifying
and producing these mechanisms despite the added complex-
ity. The works that do present some sort of three-dimensional
or multi-stage compliant amplification mechanism [15]–[18]
provide no rationale for their nested design other than to say
that a single amplification mechanism produced insufficient
displacement. Neither do they provide a general mathematical
description that describes the behavior of multi-layer nested
structures across a wide range of geometries and over travel.
Structures such as these quickly become difficult to analyze
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Fig. 2. Diagrammatic construction of a hierarchical nested strain amplifying
mechanism. The term nested is used because each stage is typically placed
inside the subsequent stage. The force and displacement produced by each
stage serves as the input to the next.

using traditional methods, even for small numbers of layers.
As the number of layers becomes large, numerical techniques,
such as finite element methods, can become unworkable
because of the multiply connected topology and the difficulty
meshing the structure due to interfaces and differences in
characteristic dimension between the layers. In addition, the
robotics community is primarily interested in input-output
behavior, not internal forces and nodal displacements, meaning
that a lot of computational power is wasted on calculating
information that is not used. For this reason, this work explores
the input-output characteristics of actuators using this nested
strain amplification architecture, and presents an abstraction
that simplifies and partitions the analysis, producing an elegant
description of the behavior of these kinds of actuators even
with a large number of layers.

B. Performance Metrics

Amplified piezoelectric stacks are unlike servomotors in
several respects. Most importantly, their force is not constant
with stroke, but decreases with displacement. This is consistent
with biological actuation systems. There are 3 natural metrics
associated these types of actuators, illustrated in Figure 3.
The first (a) is the stiffness of the de-energized actuator as
perceived by another device or entity in the environment
in contact with the actuator’s output. The second (b) is the
free displacement, or the maximum displacement achieved
when the actuator is energized. The third (c) is the blocked
force, or the force applied to the load when the load prevents
the actuator from moving. This is equivalent to an isometric
contraction in muscle. The amount of force the actuator can
impose on the driven load decreases linearly with position,
from the blocked force at zero displacement, to a value of
zero at the free displacement.

+

+

(a) (b)

(c)

Fig. 3. Performance metrics for compliant actuators: (a) stiffness viewed from
the environment, (b) free displacement at maximum activation, (c) blocked
force at maximum activation

C. Antagonistic connections

The camera positioning mechanism shown in Figure 1 is
driven by means an antagonistic pair of piezoelectric cellular
actuators, which in effect function like a pair of recti muscles
in the human eye [19]. Like biological actuation systems, these
actuators can only contract in response to a command, not
extend. Also like human muscles, they present a compliant
interface with the environment and function by means of
discrete actionable units. The camera positioner has a range
of motion similar to the human eye, with high bandwidth; it
can easily move at speeds exceeding 7 Hz.

Figure 4 shows an oblique view of one of the actuators
so that all of its parts are visible. The actuator contains 16
active units, which can be activated independently in an on-
off manner only. Different levels of activation will cause the
actuator to contract, as illustrated. Each piezoelectric stack is
inside of a rhomboidal strain amplifying mechanism; this is
the first stage (or “layer”) of amplification in the hierarchy.
The piezoelectric stack plus rhomboidal mechanism, a single-
stage amplification device that makes up this “first layer” is
commercially available from the Cédrat corporation (Model
APA50XS). A serial chain of 4 of these units is placed inside
another rhomboidal strain amplifying mechanism (the second
layer), and 4 of these “second-layer units” are placed in the
outermost strain amplifying mechanism, which accomplishes
the final stage of the force-displacement tradeoff. This is
representative of the entire class of multi-stage amplifying
mechanisms discussed in this paper.

Consider a mechanism driven by two identical multi-stage
amplified actuators in the absence of any external load, with no
preload at the neutral position, such as the camera positioner
shown in Figure 1. Each actuator consists of m piezoelectric
stacks with n layers of amplification. To achieve some desired
position, one of the cellular actuators (henceforth called the
“active” actuator) will be energized, and will contract. The
remaining actuator (the “passive” actuator) will not be ener-
gized, but will, due to its inherent stiffness, oppose the motion
of the active actuator, stopping it short of its free displacement.
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Fig. 4. Three layer nested strain amplified piezoelectric actuator used in the
camera positioning mechanism

The antagonist pair configuration and the resulting motion is
illustrated in Figure 5 and also in the companion video. Using
a two-port network framework [20] and assuming the material
properties and terminating electrical impedance characteristics
of the piezoelectric stack are known, it is possible to predict the
maximum displacement of the antagonistically driven device.

III. TWO-PORT MODELS OF STRAIN AMPLIFYING

MECHANISMS

The amplification mechanism of each layer can be described
by a two-port network model, an intellectual device taken from
circuit theory that concisely describes input-output behavior
while abstracting away internal variables [20]. Abdalla, et al.
[21] used two-port networks to optimize a planar compliant
mechanism for a known load and to describe the electro-
mechanical transduction of a piezoelectric stack. The math-
ematical relationship between the input and output to the
mechanism is described by the following:

[
F in

F out

]
=

[
s1 s3
s3 s2

] [
δin

δout

]
, (1)

where F in, F out, δin and δout denote the forces and displace-
ment at the input and output ports, respectively. s1, s2, and
s3 have units of stiffness and are functions of the geometry
and material properties. Using this modeling technique for
rhomboidal strain amplifying mechanisms assumes that the
material is linearly elastic and undergoes small changes in
angle. This is valid for the piezoelectric cellular actuator
because the outermost layers tend to have small angle values,
and the innermost undergo smaller motions by virtue of the
fact that their displacements are being amplified by subse-
quent stages. A procedure to determine these quantities for
rhomboidal mechanisms is described in [22]. The matrix in
(1) is the stiffness matrix, one of several immittance matrices
[20] that is used to describe the two-port network relationship.
The strength of the two-port network approach is that it
accurately accounts for the effects of both the control force
applied by previous layers and environmental or load forces

Gaze Axis

Actuator
Contracts

Actuator
Extends

(a) Pictorial representation of the camera mechanism

(b) Actuator flexed (c) Actuator extended

(d) Camera at extreme left (e) Camera at extreme right

(f) Closeup of camera pointing left (g) Closeup of camera pointing right

Fig. 5. Camera positioner driven by an antagonist pair. The active actuator
will contract, but its action is opposed by the stiffness of the passive actuator
on the other side.
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Fig. 6. Collapsing of two-port networks. Each square box represents a two-
port network, with a voltage and current at the right and left hand ports. The
entire hierarchy within the dashed lines is collapsed and replaced with its
Norton circuit.

from subsequent layers. Using this framework, it is possible to
model systems that do not have the high input impedance/low
output impedance characteristics necessary in most branches
of circuit analysis. An alternate way of expressing this is to say
that the two-port (or multiport) network succeeds in modeling
devices that have significant “back effects.”

The innermost, or “zeroth,” layer of a nested cellular device
will be some active material of known characteristic. Typically
the manufacturer tabulates the totally blocked, or clamped,
force and the mechanical stiffness. This can be represented
as a Norton equivalent circuit, where the blocked force is
represented by a current source, and the mechanical stiffness
is represented by the Norton resistance. The displacement
of this device, which is analogous to the voltage across the
Norton resistance, will depend on the load impedance. Several
of these zeroth layer units can be combined in series, and
their Norton circuits combined according to the methods of
circuit analysis. The voltage across the Norton equivalent
resistance corresponds to the input displacement of the first
layer displacement amplification mechanism. The current to
the load impedance corresponds to the input force. When the
amplification mechanism is represented as a two-port network,
this is the voltage and current at the left hand port. With
appropriate mechanical analogies, this can be expressed as:

F in
1 = F block

0 − k0δ
in
1 (2)

Because series combinations of springs add compliances, not
stiffnesses, the Norton equivalent resistance is set to 1/k0.
Interconnections between networks are described in terms of
matrix operations on the immittance matrices and are well
known [20]. Therefore any combination of two-port networks
can be readily analyzed. The topological relationships between
the various layers in the hierarchy will be represented by the
electrical connections of their two-port models.

IV. COLLAPSING OF NESTED TWO-PORT MODELS

Since the impedance characteristic at the input to the first
amplification layer is known, and the immittances of the am-
plification mechanism’s two-port model are known, the entire
connection can be “collapsed” and replaced with the Norton
equivalent circuit that represents the characteristic at the output
of the first layer. This can be performed repeatedly, up to
the outermost layer, which is connected to the load. Figure 6
illustrates collapsing connections of two-port networks. If the
input to a given amplifying mechanism is a series combination
of subunits, as it is in the camera positioner application, this
can be mathematically represented by replacing the series
combination with a fictional unit with the same blocked force
and stiffness as the series combination. The following derives
the equations that describe the collapsing process.

Consider an active material with blocked force F block
0 and

stiffness k0. The output of this Norton circuit is applied to
the left hand port of a two-port network representing the
first layer amplification mechanism. The displacement of the
zeroth layer, δin1 , is analogous to the voltage across the Norton
resistance. Using (2) and (1) the two-port relationship can be
represented by the following equation:

[
F block
0 − k0δ

in
1

F out
1

]
=

[
s1 s3
s3 s2

] [
δin1
δout1

]
(3)

Solving the upper of the two equations for δ in
1 , we get

δin1 =
F block
0 − s3δ

out
1

s1 + k0
(4)

Substituting this into the lower of the two equations and
collecting terms we obtain:

F out
1 =

s3F
block
0

s1 + k0
+

s2(s1 + k0)− s23
s1 + k0

δout1 (5)

Defining the following:

F block
1 =

s3F
block
0

s1 + k0
(6)

k1 =
s2(s1 + k0)− s23

s1 + k0
(7)

Equation (5) can be written as:

F out
1 = F block

1 + k1δ
out
1 . (8)

This has physical significance; F block
1 is the fully blocked

force of the displacement amplified active material, and k1δ
out
1

is the stiffness as seen from the output of the combination
times the output displacement of the compliant mechanism.
Since this is an equivalent stiffness for the nested connection,
we refer to it as the lumped stiffness. In the Norton equivalent
circuit, F block

1 corresponds to the current source and 1
k1

corre-
sponds to the equivalent Norton resistance. This procedure can
be performed repeatedly for each amplification mechanism in
the hierarchy.
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V. DISPLACEMENT OF THE MECHANISM AGAINST THE

PASSIVE ACTUATOR

Modeling the camera platen as a rigid body that rotates
about a frictionless pivot, neglecting acceleration, and rep-
resenting the antagonistic pair as a connection of two-port
models results in the configuration shown in Figure 7. From
this model, we see that the following relations hold:

δoutactive = −δoutpassive (9)

F out
active = F out

passive (10)

where δoutactive, δ
out
passive, F

out
active, F

out
passive are as shown in Fig-

ure 7. Let us assume that the antagonistic actuators are
identical. Because the passive actuator is off, the current source
F block
0 will be zero. The stiffness k0 at the zeroth layer of

the passive actuator will depend on the electrical terminating
impedance on the leads of the active material. It will be
shown later that the effect of the terminating impedance on
the stiffness is minimal.

Because the passive actuator is not energized, it can be
completely collapsed and simply be represented as a terminal
resistance 1

keq
across the active actuator. This is illustrated

in Figure 7. The displacement of the antagonistic mechanism
corresponds to the voltage across the right hand port of the
two-port model of the outermost layer of the active actuator.

Using (3) and Ohm’s law, solving for δ out
n we get:

δoutn = − s3F
block
n−1

s1s2 − s23 + keq(s1 + kn−1) + s2kn−1
. (11)

The free case has keq = 0 resulting in a displacement of:

δfree = − s3F
block
n−1

s1s2 − s23 + s2kn−1
. (12)

Taking the ratio of the two gives:

δoutn

δfree
=

(
1 +

kout(s1 + kn−1)

s1s2 − s23 + s2kn−1

)
. (13)

Assuming that the electrical terminating impedance on the
passive side is chosen so as to have the same mechanical
stiffness for the zeroth layer as on the active side, using (6)
we can write:

kout =
s2(s1 + kn−1)− s23

s1 + kn−1
. (14)

substituting into (13) we get δoutn /δfree = 1/2. Therefore, in
an antagonistic pair, the actuator must be designed so that its
free displacement is double the stroke length corresponding to
the angle of travel specification.

VI. NESTING OF LAYERS

If a passive actuator is in an antagonistic pair arrangement
with an active actuator, it will appear to the active actuator as a
stiffness. This stiffness will depend on the immittances of the
previous layers, as well as the terminal stiffness of the zeroth
layer. This section will consider an amplified mechanism with

n layers, with outermost layer (connected to the load) denoted
layer n. The innermost layer (connected to the active material)
will be denoted layer 1. Immittances for a given layer will be
denoted with a leading superscript. k will be used to count
layers outward from the active material, and j ∈ N | n− j ∈
[ 0, k ] will be used to count layers inward from outermost.
The stiffness of a passive actuator with n layers is

kpassive =n s2−
n
s23

ns1 +n−1 s2 −
n−1

s23

n−1s1 +n−2 s2 −
n−2

s23

n−2s1 +n−3 s2 − . . .

.

(15)

For the jth layer, denoting

jγ =n−j s2 −
n−js23

n−js1 + kn−j−1
(16)

where kn−j−1 is the lumped stiffness of the j − 1st layer
subunit and subsumes all terms for any nested unit index
(numbered from the outside in) i > j, we can state that

−
n−js23
n−js1

<j−1 γ −n−j s2 < 0. (17)

Therefore, approximating the stiffness of the passive actuator
by truncating remaining terms in the denominator will result
in a conservative estimate of the displacement for a nested
structure.

VII. ESTIMATING STIFFNESSES OF ACTUATORS WITH

LARGE NUMBERS OF LAYERS

Equation (15) has a form of a continued fraction. This
results in some desirable properties. The following section
will show that for an actuator with a large number of layers,
the stiffness of the entire actuator can be approximated to a
desired degree of accuracy by replacing the continued fraction
representing the remaining ayers by an arbitrary constant. In
the literature [23], [24], these approximations are known as
convergents.

We intend to show that the sequence of convergents P j is
Cauchy, and therefore, all convergents beyond some finite k
lie within some interval of size ε of Pk on R.

Lemma 1. All denominators for the continued fraction expan-
sion of the stiffness of a nested linearly elastic mechanism are
positive.

Proof: Each compliant mechanism has a positive definite
immittance matrix. Therefore, the determinant for any layer,
ksk1s2 −k s23 > 0. Because any realizable nested actuator
will contain a finite number of compliant mechanisms, the
continued fraction expansion terminates. Let us refer to the
sequence of continued fraction expansions for the lumped
stiffness at the output of each layer, beginning with the
innermost, as zk. The zeroth term of the sequence, z0 is
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constant. Because the stiffness is derived from passive elastic
material, z0 will be positive, and all elements of the immittance
matrix are positive. We can express the remaining terms of the
sequence by the recursive relation:

zk =k s2 −
ks23

ks1 + zk−1
(18)

This can be rewritten as

zk =
ksk2s1 −k s23 +

k s2zk−1

ks1 + zk−1
(19)

If zk−1 > 0, zk > 0. The proof is completed by induction
on k.

When a force is applied at the output of a compliant
mechanism, it not only causes a deformation in the output
direction; it causes a deformation in the input direction as
well. This deformation at the input has an effect equivalent to
a force transmitted back to the output, even when no load is
applied at the input. Essentially, Lemma 1 says the effective
stiffness due to this back, then forward transmission, s2

3/s1
will always be less than the input clamped output stiffness,
s2.

Lemma 2. In the set of all terminating continued fractions of

the form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk = a0 −
b1

a1 −
b2

a2 −
b3

. . .

ak−1 −
bk

ck

| ai, bi > 0 ∀i, ck ∈
(

bk
ak−1

, cmax

]}
(20)

with ai, bi constant the maximum pk is achieved by choosing
the maximum ck, cmax.

Proof: For k = 1, pk = a− b
c . It is clear that this quantity

is maximized by the largest possible c. For the general case:
define the quantity ak−1 − bk

ck
= ck−1. ck−1 is maximized by

ck = cmax. Therefore, by induction, choosing the maximum
ck maximizes all denominators, and pk is maximized.

This is equivalent to saying that the stiffest possible actuator
can be realized by clamping the input of the innermost
mechanism.

Theorem 1. The sequence of convergents of the continued
fraction expansion of the stiffness of a nested mechanism, with
successive denominators for n−j < k replaced by k−1s1+

ks2
is Cauchy.

Proof: Any continued fraction can be represented by
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pn =n s2 −
n
s23

ns1 +n−1 s2 −
n−1

s23

n−1s1 +n−2 s2 +

. . .

n−j+2s1 +n−j+1 s2 −
n−j+1

s23
n−j+1s1 + zj

(21)

Equation (21). This considers the denominators from the top
level, n, down to level n− j; zj represents the continued frac-
tion expansion for the remaining layers. It can be approximated
by:

zj ≈n−j s2 −
n−js23

n−js1 +n−j−1 s2
. (22)

Let yj represent the convergent 21 where zj is replaced by
the approximation in (22). Physically speaking, this represents
the stiffness perceived at the output when the innermost layer
considered in the approximation (layer j) has its input fixed.
Accordingly, yj has units of stiffness. yj−1 represents the
previous convergent in the sequence, replacing the final z j

simply by n−js2. By lemma 1, the quantity
n−js23

n−js1+zj
will be

positive for all j. Also from lemma 1, it can be determined that
this quantity will not exceed n−js2. yj−1 and yj are identical,
except for the terminating constant. Therefore, they are both of
the form of the continued fraction in lemma 2. y j−1 terminates
with the constant ck =n−j+1 s1 +n−j s2 and yj terminates

with the constant ck =n−j+1 s1 +n−j s2 − n−js23
n−js1+n−j−1s2

.
By lemma 2, and induction on j, we can say the sequence of
convergents is monotonically decreasing, or

yj−1 > yj ∀j. (23)

Applying lemma 1 at level n, we can say the sequence
is bounded below by 0. Since the sequence is monotonically
decreasing and bounded below, it must be Cauchy.

For any Cauchy sequence, for any arbitrary ε, we can find
a k such that all terms in the sequence beyond k are within a
distance ε from one another [25]. Physically speaking, this
means that for an actuator consisting of nested compliant
mechanisms, we can approximate its stiffness to some desired
accuracy by considering merely the outer k layers and consid-
ering the lumped stiffness of the k − 1st layer to be infinite.
Alternatively, the kth layer can be said to be clamped at its
input.

Theorem 1 says that outer layers, regardless of whether they
are rigid or compliant, have the greatest effect on the stiffness
of the overall actuator. Therefore, the innermost layers do not
need to have as strict tolerances as the outermost layers to
achieve a uniform stiffness from actuator to actuator. It also
means that the electrical terminating impedance of the passive
actuator is not critical for actuators with large numbers of
layers, justifying the assumption in Section V. The procedure
of Theorem 1 provides an upper bound on the true stiffness.

An alternate choice is to approximate zj by n−js2−
n−js23
n−js1

.
The sequence of these approximants (which are not conver-
gents, strictly speaking, since they do not result from a strict

truncation) will be denoted by xj . Like yj , this has units
of stiffness This is equivalent to the stiffness perceived at
the output when the innermost mechanism considered in the
approximation is free to deform in the input direction. It will
be shown that yj and xj have the same limit.

Theorem 2. The sequences yj and xj converge to the same
limit.

Proof: Any continued fraction of the form in Lemma 2
can be represented by the recursive relation:

Bj+1 = aj+1Bk − bj+1Bj−1

Aj+1 = aj+1Ak − bj+1Aj−1

yj+1 =
Bj+1

Aj+1

B−1 = 1

B0 = a0

A−1 = 0

A0 = 1 (24)

This is shown in Rockett and Szüsz [24]. In this case
aj+1 =n−j+1 s1+

n−js2 and bj+1 =n−j+1 s23. Using a similar
procedure, it is simple to demonstrate that xj+1 can be written
as:

xj+1 =
Bj+1 − kj+1Bj

Aj+1 − kj+1Aj
(25)

where kj+1 =
n−js23
n−js1

. Note that each term of xj is written in
terms of the Bj , Aj used to construct yj . We then construct
the sequence yj − xj and show that it approaches zero in the
limit. After algebraic manipulations, the j + 1st term of the
sequence can be written as:

yj+1 − xj+1 =
yj − yj+1

Aj+1

kj+1Aj
− 1

. (26)

The numerator approaches zero for large j by Theorem 1.
To show that the entire sequence goes to zero it is sufficient to
show that Aj+1

Aj
�= kj+1. This can be proved by contradiction.

Assume that for all j greater than some k the sequence
Aj

Aj−1
= kj . Then Aj+1

Aj
= kj+1. This can be rewritten as:

Aj+1 = kj+1Aj = aj+1Aj − bj+1Aj−1. (27)

collecting terms and substituting in the immittances we get:

n−js23Aj−1 =

(
n−js1 +

n−j−1 s2 −
n−j−1s23
n−j−1s1

)
Aj . (28)
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Fig. 8. Convergence of the various stiffness approximations for a hypothetical
many-layered mechanism with randomly chosen immittances. yk is the input-
fixed approximation through layer k, and xk is the input-free approximation.

We can divide this quantity by Aj−1. Since j is assumed to
be greater than k, the sequence Aj

Aj−1
= kj . Substituting in for

this quantity in terms of the immittances we get:

n−js23 =
n−js23
n−js1

(
n−js1 +

n−j−1 s2 −
n−j−1s23
n−j−1s1

)
. (29)

Simplifying, we get:

n−j−1sn−j−1
2 s1 −n−j−1 s23
n−j−1sn−j

1 s1
= 0. (30)

All ksi are finite, and the numerator of (30) is simply the
determinant of the immittance matrix for layer n− j−1. This
must be strictly positive for all j, hence the contradiction and
the result is proved.

A simple numerical example of the convergence is shown in
Figure 8. Figure 8 (a) shows the convergence rates of the input-
fixed and input-free approximations y j and xj , and Figure 8
(b) shows the error bound convergence (the difference between
the two approximations). The hypothetical mechanism is said
to have a large number of layers, with the parameters of
the 6 outermost known. To show that the theorems still hold
even if the mechanism is constructed haphazardly, two-port
network immittance parameters were chosen randomly for
each of the 6 layers with ks1 ∈ (0, 18), ks2 ∈ (0, 27), and
ks3 ∈ (0,min [

√
ksk1s2, 16]). The restriction on ks3 ensure

that the immittance matrix is positive definite and physically
consistent. Other trials perform similarly.

The lumped stiffness of the remaining unconsidered layers
will be in the interval [0,∞). xj represents the stiffness of the
actuator when this lumped stiffness for the remaining layers
is zero. yj represents the stiffness of the actuator when this
lumped stiffness for the remaining layers is infinite. For a
finite nonzero compliance, the stiffness of the overall actuator
should be between the values of xj and yj . Since these are

Fig. 9. Experimental evaluation of y0 (input-fixed stiffness of the outermost
layer only)

the same in the limit, then the compliance of the innermost
layers have a negligible effect on the overall stiffness of the
passive actuator for actuators with many layers.

VIII. EXPERIMENTAL EVALUATION OF STIFFNESS

CONVERGENTS

The example shown in Figure 8 is meant to show that
the theorems in section VI apply any conceivable actuator,
even if the choice of immittances is random or in a range
that would never be selected in practice. In order to see how
these theorems apply to a useful engineering situation, we
will examine the convergents for the 3-layer actuator used to
drive the biologically inspired camera positioning device. The
application, as well as how the geometry of each layer was
chosen is described in [3]. The immittance parameters for each
rhomboidal strain amplification mechanism were determined
from the geometry using the method in [22]. These can be
used to calculate the convergents.

The convergents can then be measured using a collection of
experiments. To measure y0, we take the third layer alone, as
it is the outermost layer. The third layer is fixed in the input
direction as shown in Figure 9. The output position is varied
using an NAI aperture micropositioning stage, and the force is
recorded using a Futek LSB200 load cell with a 1 N range. y 0

was determined from a linear fit to the force-displacement data.
Because the input was fixed, the experiment is really recording
the stiffness of half the rhomboidal mechanism. Therefore, the
mechanism was inverted and the procedure repeated.

To measure x0, a similar procedure was used, shown in
Figure 10. This time the input is free to contract along the
major axis (input) as the minor (output) axis extends. x0 was
recorded from a linear fit to the force-displacement data.

To measure y1, the second layer was installed within the
third layer, and a steel block was installed along the input
axis of each rhomboid in the second layer, as shown in Figure
11. The steel block can be considered to be rigid compared to
the rhomboidal mechanisms. The output of the third layer was
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Fig. 10. Experimental evaluation of x0 (input-free stiffness of the outermost
layer only)

Fig. 11. Experimental evaluation of y1 (input-fixed stiffness of the outermost
two layers). Steel blocks are used to prevent motion of the second layer in
the input direction. The evaluation of x1 (input-free stiffness of the outermost
two layers) is similar, but with the rigid blocks removed. The lumped stiffness
of the entire mechanism, or y2 = x2, is also measured in a similar way, but
the mechanism is replaced with the full actuator shown in Figure 4.

extended using the micropositioning stage as in the previous
experiments. x1 was determined using the same setup, but with
the blocks removed. Both were determined from linear fits to
the force-displacement data.

The first layer is the strain amplifying mechanism incorpo-
rated into the APA50XS, and there is no way to test it inde-
pendently without damage. Cédrat also tabulates the blocked
force and stiffness for the entire part, not separately for the
piezoelectric stack and compliant mechanism. Therefore, we
consider the continued fraction to terminate here, and x 2, y2
and the lumped stiffness are synonymous. This value is equal
to F block/δfree. Since F block and δfree are important in their
own right, we conducted experiments to determine these quan-
tities separately and have used their values to determine the
lumped stiffness value. The experimental results and analytical
predictions are shown in Figure 12. Manufacturer-provided
values of the APA50XS units and the theoretical values of
the second and third layer strain amplifier immittances can be

TABLE I
PIEZOELECTRIC CELLULAR ACTUATOR PARAMETERS

Quantity Value Unit
Cédrat APA50XS Parameters
Stiffness 230e3 N/m

Free Displacement 78 μ m
Blocked Force 18 N

Second and Third Layer Immittances
2s1 756e3 N/m
2s2 424e3 N/m
2s3 562e3 N/m
3s1 113e3 N/m
3s2 761 N/m
3s3 8.90e3 N/m
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Fig. 12. Measured and theoretical stiffness convergents for a 3 layer cellular
actuator

found in Table VIII. Recall that the first and second layers
each contain 4 units in series and will have 1/4 of the lumped
stiffness of a single unit.

The error between the theoretical and experimental values
shown in Figure 12 stems primarily from differences between
the theoretical and actual values of the immittances of the
strain amplifying mechanisms themselves. This is particularly
true for the third layer, since it is extremely thin compared
to its overall size, and made using a pryping manufacturing
process, leaving it vulnerable to residual stresses and other
artifacts. This is discussed further in the author’s prior work
[22]. In addition, the force sensors have some compliance,
which may have affected the result. Although care was taken
with the alignment of the strain amplification mechanisms
during the experiment, a certain amount of misalignment and
internal preloading was unavoidable, which may have made
the mechanism appear stiffer than the model would predict.
Finally, the motion of the stage changes the angle slightly,
and this change in angle is a nonlinearity not captured by the
model. Despite the fact that the individual values themselves
vary due to manufacturing inaccuracies and misalignments in
the setup, it is clear that the sequences xj and yj are monoton-
ically increasing and monotonically decreasing, respectively,
and that they converge to the same limit. Therefore, the
consequences of the theorems are borne out in real engineering
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Fig. 13. Blocked force measurements with activation. Error bars are 1
standard deviation.

situations.

IX. BLOCKED FORCE AND FREE DISPLACEMENT

MEASUREMENTS

In addition to verifying the stiffness of the actuator, the
blocked force and free displacement were evaluated on the
complete actuator prototype. The goal was to see not only
how closely the actuator matched the predicted values based
on the model, but also to see how repeatable the force
and displacement values at the output are when different
combinations of piezoelectric stacks are activated.

The experiment to measure the blocked force is similar to
that shown in Figure 11, however, instead of the second and
third layer units with rigid blocks, it uses the full actuator
shown in Figure 4. Each piezoelectric stack is activated one at
a time. The output is held stationary. The force at the output
is measured and recorded using the Futek load cell for each
level of activation. When all inputs have been activated, they
are deactivated one by one and the forces recorded. 16 trials
were conducted, with an arbitrary activation/deactivation order
each time. The results are shown in Figure 13. Figure 13
shows that the force profile is quite linear and very repeatable
regardless of the order in which the piezoelectric stacks are
activated. Although the maximum blocked force is only 59%
of the 0.907 N predicted by the model [3], it shows there
is enough fidelity for the model to be useful in generating
the first iteration of a nested multilayer actuator design. We
expect that agreement with the model will be better for less
aggressive force/displacement tradeoffs and will improve with
better manufacturing and assembly techniques.

The free displacement of the actuator is measured using
the setup shown in Figure 14. Due to the weight of the
piezoelectric stacks and the low out of plane rigidity of the
third layer, there will be significant deflection if the actuator
is suspended from one end. For this reason the actuator is
clamped at its centroid and both mounting flanges are allowed
to extend outward as piezoelectric stacks are activated. The

Fig. 14. Free displacement experiment

piezoelectric stacks are activated one by one as in the blocked
force experiment. The position of each output flange is sensed
by a micro-epsilon optoNCDT laser positioning sensor with
a range of 20 mm. The two measurements are summed to
determine the free displacement. Results are shown in Figure
15.

As with the blocked force, the free displacement predicted
by the analytical model (8 mm) is higher than that observed in
the experiment. The model only reaches 41% of the theoretical
prediction. This is likely because of losses due to deformation
in the adhesive holding the first layer units together in series.
This is expected to be closer to the theoretical value once
these are replaced with monolithic sets of 4 manufactured in
one piece. The repeatability of the free displacement is also
very good. The linearity is good through the activation of
the first 8 units. Beyond this there is a visible reduction in
the amount of displacement per unit activated. This is due
to a saturation effect; as the actuator contracts, the angle in
the deformed configuration approaches zero and the rhomboid
approaches a rectangle. This effect is not captured by the
linear model. Because this actuator is designed to be used
in an antagonistic configuration, as described in section V
its extension will only be in the first half of its range. For
comparison, a trendline based on activation of the first 8 inputs
has been added to Figure 15. The dashed portion shows the
line extrapolated to show the “effective free displacement.”
Using the effective figure, the displacement reaches 50% of
the theoretical value. In actuators designed to be used in a
single-ended configuration, this saturation effect will be less
pronounced.

X. DISCRETE SWITCHING VIBRATION SUPPRESSION FOR

VIBRATION-FREE POINT-TO-POINT MOTION

Since the actuators of the camera positioner have 16 in-
puts/side, it represents the highly discretized redundant ac-
tuation paradigm described in [7]. Because of the flexible
nature of the actuators, it will naturally have an oscillatory
response when inputs are activated. However, if the natural
frequencies of the resonant modes are known, nearly vibration-
free moves can be made by carefully choosing the switch times
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Fig. 15. Free displacement measurements with activation. Error bars are 1
standard deviation.

of each input, a method know as minimum switching discrete
switching vibration suppression (MSDSVS) [7]. This section
describes how this was implemented and presents results.

A. Natural vibrational modes of the camera positioner

The natural frequencies of oscillation of the camera po-
sitioner were determined using simple experiments. The 16
piezoelectric inputs on one side were excited by a swept
sinusoidal signal, generated by an Agilent function generator,
which was amplified by a Cédrat CA45 linear amplifier. The
opposite side was not energized. The amplitude was read in the
time domain during the sweep and the maximum amplitude
was noted to be at 9.9 Hz. Since the natural frequencies were
low, the residues and damping values are not required for
MSDSVS, and the change in amplitude was distinct enough
to resolve the resonant frequency to an accuracy of 0.1 Hz,
this very simple experiment is sufficient.

Surprisingly, the amplitude of oscillation of any remaining
modes was insignificant relative to the amplitude of vibration
of the first mode. Therefore, for satisfactory operation of
the camera positioning mechanism, it is only necessary to
suppress a single mode, greatly simplifying the determination
and implementation of appropriate MSDSVS commands.

B. Experimental evaluation

Camera positioner firmware and a user interface are im-
plemented in National Instruments LabView software. The
system uses NI cRIO-9024 real-time control hardware with
an NI 9401 module with a 100ns resolution installed and a
custom high voltage switching circuit [7]. The user specifies
the desired position and the system will select and initiate
an MSDSVS move based on the current position. Details of
how the MSDSVS pulses are computed can be found in the
Appendix and [26].

For accurate recording, the position is measured by a
Midori Orange Pot CP-30H (hall effect variable resistor).
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Fig. 16. Step response of the biologically inspired camera positioner. Curves
shown for a single direction, center to all 16 positions shown. Steady state
position is indicated to the right.
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Fig. 17. Minimum switching discrete switching vibration suppression
response of the biologically inspired camera positioner. Curves shown for
a single direction, center to all 16 positions shown. Steady state position is
indicated to the right.

In applications such as autonomous vehicle navigation, the
camera angle could be determined using salient features in
the image, and once calibrated, the potentiometer could be
removed. Because MSDSVS is an open-loop method, this
feedback is not necessary for control.

C. Results

Figure 16 shows the step response of the camera positioner.
It is evident that the device is lightly damped from the large
overshoot, particularly for the longer moves. Locations 13-16
also show a saturation effect; most likely the overshoot causes
the output flange to collide with the first layer units. This is due
to the overshoot; quasistatic motions produce no collisions.

Figure 17 shows the response to the various MSDSVS
patterns for each of the 16 discrete positions. The resulting
responses have low overshoot, or none at all. The response
reaches steady state within 0.14 s. The improvement in per-
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formance is evident in the companion video. Therefore this
method is effective in suppressing vibration. The performance
of the algorithm on the camera positioner is better than
the simple setup in [7], giving credence to the conjecture
therein that the algorithm would cancel oscillation better on
engineering devices with lower and more well-known natural
frequencies.

D. Discussion

Figure 16 shows that there are some nonlinearities in the
camera positioner system dynamics. This is primarily due to
variation in frequency with actuator length. However, despite
these nonlinear effects, the MSDSVS commands based on the
simple linear model of the system are effective for the range
of motion of this device. For long serial chains of actuators
such as these, some more advanced or heuristic methods may
be necessary to mitigate the change in natural frequency with
length.

Although MSDSVS is useful for quickly reorienting the
gaze axis of the camera (saccades) and canceling oscillation
generated by the command itself, a feedback control method
will be necessary for smoothly following objects through the
field of view and canceling oscillation produced by unmodeled
disturbances. The mode identified this section is well below the
sampling frequency of the camera, but future designs with less
damping, more degrees of freedom and larger displacements
may have modes of vibration that have natural frequencies
above the sampling rate. In these cases, a feedback technique
called intersample discretization [27], may be effective. It uses
carefully coordinated switches among the actuator’s allowable
discrete values during a discrete time sample in place of a zero
order hold to suppress high frequency oscillations.

XI. CONCLUSION

In an effort to increase the strain rate of amplified piezoelec-
tric stack actuators, researchers have considered using multiple
stages of amplification, the output of each of which is the input
to the next. This work establishes a mathematical framework
that connects the stiffness properties of the entire actuators to
the properties of each individual stage. This culminates in two
theorems which show that the stiffness can be approximated
simply by considering the outermost layers in the nested
configuration. A principled procedure for the design of these
mechanisms, which follows directly from these results, was
used to construct a camera positioner with actuation inspired
by human recti muscles. Experimental results from the camera
positioner confirm the mathematical trends.

Because each stage in the hierarchy contains several in-
stances of the lower-level subunits, the numerous individ-
ual segments of active material give the resulting actuator
a cellular structure similar to human muscle. This highly
discretized on-off actuation paradigm in combination with
the inherent compliance gives rise to oscillatory behavior. By
applying the minimum switching discrete switching vibration
suppression technique to the camera positioner, visible reduc-
tions amplitude and duration of these oscillations is observed.
This technique only suppresses oscillation arising from the

command itself; it will not suppress oscillation due to external
disturbances. As camera positioners move in free space, this
is good enough for numerous applications.

Future work may involve further optimization of the se-
quence of layer geometries, performance comparisons among
actuators with various numbers of layers, and frequency do-
main modeling of actuators of this type. In addition, it will
explore feedback control strategies with discretized inputs like
those in MSDSVS, but with the ability to suppress external
oscillations.

APPENDIX

DETERMINATION OF MSDSVS SWITCHING PATTERNS

Since the plant has only one natural frequency that needs
to be suppressed, vibration suppression can be achieved using
only 3 impulses. Given a set of amplitudes, the timings can be
calculated analytically using the following formulas, obtained
by setting the sum of the effects of all impulses to be equal
to zero in the complex plane. With a single mode, this results
in:

φ1 = arccos
A2

2 −A2
0 −A2

1

2A1A0
(31)

φ2 = arcsin−A1 sinφ1

A2
(32)

where Ai ∈ D ⊂ Z are the integer amplitudes applied to the
camera positioner and φi represent the phase delay of impulse
i with respect to the resonant frequency. Requiring that

A2
2 −A2

0 −A2
1

2A1A0
∈ [ − 1, 1 ] (33)

and

A1 sinφ1

A2
∈ [ − 1, 1 ] (34)

(so that all φi ∈ R) defines the allowable set of amplitudes
for which a vibration-free point-to-point move is possible.

Because (31,32) are analytical expressions, a solution is
guaranteed, provided that the relative magnitudes of the im-
pulses result in arguments in the domain of the inverse trigono-
metric functions. This means that a monotonic “staircase”
solution is always possible for a single frequency for move
distances greater than 1. However, it is simpler to compute the
solution graphically than to use (31) and (32). Representing
the impulses as vectors in C, the first impulse corresponds
to a vector directed along the positive real axis. For even
numbered distances, a vibration free move can be computed
that includes two impulses of equal amplitude, one along
the positive real axis and the other along the negative real
axis. This is equivalent to a ZV shaper [28] applied to a step
input. For odd numbered move distances, the command can
be computed as follows:

1) Decompose the move distance yg into yg = q+p, where
q is even and p is odd. p and q must be chosen such
that (33) and (34) are satisfied.

2) Set the first amplitude, A0 = p. This lies along the
positive real axis.
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Fig. 18. Representation of impulses in the complex plane for an odd number
of impulses

TABLE II
MSDSVS PATTERNS FOR THE BIOLOGICALLY INSPIRED CAMERA

POSITIONING MECHANISM

move distance A0 A1 A2 φ1 φ2

Units Activated ◦
1 1 -1 1 60 120
2 1 1 n/a 180 n/a
3 1 1 1 120 240
4 2 2 n/a 180 n/a
5 1 2 2 104.47 255.52
6 3 3 n/a 180 n/a
7 3 2 2 138.59 221.41
8 4 4 n/a 180 n/a
9 3 3 3 120 240
10 5 5 n/a 180 n/a
11 5 3 3 146.44 213.56
12 6 6 n/a 180 n/a
13 5 4 4 128.68 231.31
14 7 7 n/a 180 n/a
15 5 5 5 120 240
16 8 8 n/a 180 n/a

3) Set the two remaining amplitudes A1 = A2 = q/2.
4) A1 and A2 will be represented as vectors of equal

magnitude in the complex plane, at an angle φ above
and below the negative real axis.

5) Solve for the φ that gives a vector sum of zero.

Figure 18 illustrates the phasors in the complex plane for an
odd-numbered move. The MSDSVS patterns computed using
this method are listed in Table II. When multiple solutions
were found, the one that could be completed in minimum
time was chosen. Phases can be converted to timings using
the natural frequency of 9.9 Hz.
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