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SUMMARY

Dwindling fossil fuel reserves and severe pollution necessitate the innovation of

new technologies to harvest energy from clean and renewable sources. This effort depends

crucially on the development of advanced new materials. In this work, we perform first-

principles simulations based on Density Functional Theory (DFT) to evaluate the properties

of Copper Sulfide (Cu2S) and Copper Selenide (Cu2Se) as well as Silicon Nanowires (SiNWs)

which make them of interest in the areas of thermoelectricity and photovoltaics.

SiNW solar cells are a vast improvement over conventional bulk Silicon solar cells in

terms of efficiency and cost. Still, challenges remain to enhance SiNW stability and tune

their electronic and light absorption properties through different surface passivations. We

utilize first-principles calculations on fluorine, methyl and hydrogen passivated [110] and

[111] SiNWs to explain how surface passivations fundamentally alter the electronic structure

through quantum confinement and strain. Moreover, we demonstrate how SiNWs may be

modeled as circular quantum wells and elaborate on why [110] SiNWs are more strongly

affected by their surface passivation than [111] SiNWs.

Thermoelectric materials open new avenues for waste heat recovery by converting tem-

perature differences into potential differences. Cu2S and Cu2Se have recently been demon-

strated to have remarkably high thermoelectric efficiencies by virtue of a unique solid-liquid

hybrid phase which disrupts thermal transport while maintaining good electrical charac-

teristics. Using first-principles molecular dynamics, we report very high Cu diffusion rates

and obtain phonon power spectra in Cu2S and Cu2Se, which we use to explain their low

thermal conductivities. Furthermore, we combine first-principles electronic structure calcu-

lations with Boltzmann Transport Theory to evaluate the Seebeck coefficient and obtain the

hole concentration corresponding to the optimum power factor in p-type Cu2S and Cu2Se.
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CHAPTER I

INTRODUCTION

The world’s heavy reliance on fossil fuels for its energy needs has led to myriad environmen-

tal and social problems. For example, fossil fuel combustion releases various toxic fumes

including oxides of carbon, nitrogen and sulphur which damage human health and also lead

to environmental degradation and unfavourable climate change via smog, acid rain and the

greenhouse effect. The limited supply of fossil fuels also conveys immense political leverage

upon certain unsavoury regimes which just so happen to be the major suppliers. Reducing

the world’s unhealthy dependence on fossil fuels demands the development of various clean

energy technologies. These include high capacity lithium ion battery for energy storage,

efficient photovoltaic cells for harvesting plentiful solar energy and more recently, utilizing

the thermoelectric effect to recycle waste heat. Success in developing each of these highly

advanced technologies hinges critically upon the discovery or engineering of new materials

which have the right combination of properties to drive performance. Silicon nanowires

and copper chalcogenides are examples of such advanced energy materials which each have

applications in a surprisingly diverse array of clean energy technologies.

1.1 Silicon Nanowires

The utility of silicon nanowires (SiNWs) as a class of advanced energy materials stems

primarily from their inherent one-dimensional (1D) quantum confinement and boundary

scattering mechanisms which are responsible for making their electronic and thermal prop-

erties almost completely different from the bulk.[1, 2, 3] Moreover, the latest advancements

in SiNW growth technology have also enabled large and highly ordered arrays of SiNWs to

be grown cost effectively.[4, 5, 6]

Arguably the most well known use of SiNWs is in the creation of photovoltaic arrays.

The 1D geometry of SiNWs allows for the creation of radial p-n junctions, where the core is
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p doped and the shell is n doped or vice versa. This design ingeniously orthogonalizes the

light absorption and carrier collection directions. The long length of each SiNW optimizes

the surface area available for light absorption while the short radius provides little room for

excited electrons and holes to recombine, thereby enhancing carrier collection.[7] Already,

SiNW photovoltaic arrays utilizing the radial p-n junction geometry have demonstrated very

promising results.[8, 9, 10]. Kelzenberg et al. in particular proved that SiNW photovoltaic

arrays could absorb up to 85% of day-integrated sunlight with a peak external quantum

efficiency of 89%. This was most impressively achieved using only a hundredth of the amount

of material in a traditional wafer based silicon photovoltaic cell. The main draw of SiNW

photovoltaic cells is not so much that they will one day exceed traditional limits on efficiency

but more so that they can radically lower the cost of silicon photovoltaic technology as they

require drastically less raw material for construction.[10]

SiNWs are also of great interest as thermoelectric materials. Thermoelectric materials

effectively convert temperature differences into voltage differences. This process allows us

recover waste heat as useful electrical energy. Hochbaum et al. [11] and Boukai et al.

[12] measured the experimental thermoelectric efficiency of silicon nanowires to be about a

hundred times greater than in the bulk. Using molecular dynamics simulations, Donadio

and Galli concluded that this was due to a huge reduction in thermal conductivity which

in amorphous SiNWs, was typically a hundred times lower than the thermal conductiv-

ity in bulk silicon (∼ 150Wm−1K−1).[13] Donadio and Galli further showed that this low

thermal conductivity even remains consistent over a wide range of temperatures from 200K

to 600K.[14] The primary mechanism behind the exceptionally low thermal conductivity

in SiNWs is the enhanced scattering of phonons at the SiNW surfaces.[15]. While SiNWs

may not be as efficient as the current state-of-the-art thermoelectric materials, cheap and

ubiquitous silicon, coupled with low material requirements, non-toxicity and manufacturing

ease nonetheless provide SiNWs with a competitive edge.

Raw SiNWs have highly unstable dangling bonds on their surfaces which lead to low

ambient stability and undesirable surface states within the band gap. Therefore, it is

common practice to have such bonds passivated prior to further use or study. This is
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usually achieved via hydrogen (H) surface passivation. Yet, even H terminated silicon

nanowire surfaces are susceptible to surface oxidation and are not stable when exposed to

air for more than a few days.[16] As such, different chemical surface passivations have been

studied for the purpose of improving the ambient stability of SiNWs. Most notably, methyl

(CH3) passivated SiNWs have been demonstrated to be far more stable than H-passivated

without experiencing severe degradation of their critical electrical characteristics.[16, 17, 18]

In fact, experiments by Haick et al.. have indicated that CH3-passivated SiNWs were even

able to maintain superior transport characteristics over H-passivated SiNWs for more than

40 days.[17] The enhanced stability of CH3-passivated SiNWs is attributable to the strong

Si-C bonds and high surface coverage (over 85%) of CH3.[16, 19] Moreover, Shen et al..

demonstrated that CH3-passivated SiNW arrays were even stable enough against oxidation

and corrosion when in contact with electrolytes, thereby making SiNW arrays viable as

photoelectrochemical cells.[18]

The process of passivating SiNW surfaces typically involves multiple steps. The inter-

mediate steps often involve passivation with some halogen or hydroxyl (OH) group, all of

which we note are highly electronegative.[16, 17, 18, 19, 20, 21] For example, passivating

a SiNW with CH3 first involves passivating it with H which are subsequently replaced by

chlorine (Cl) and finally the Cl are substituted by the CH3 groups.[18] Naturally, steric ef-

fects and other imperfections prevent the complete substitution of intermediate passivants.

Haick et al. found that no more than 85% of their SiNW surfaces could be covered by the

desired CH3 groups which is one of the smaller types of surface passivants.[16]

The presence of organic or electronegative atoms or groups on an SiNW surface can

be expected to change the electronic structure of the SiNWs. This will affect band gaps

and carrier group velocities which can alter performance in applications dependent on op-

tical absorption and electrical conductivity among other properties. The effects of surface

passivation on SiNWs should not be viewed in a negative light though. In fact, surface

passivation may be considered as a form of electronic band engineering. This affords us the

ability to tune the electronic and optical properties of SiNWs which is especially important

in the area photovoltaics and even sensor development. It is therefore imperative that we
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gain a full understanding of how various surface passivants affect the electronic structure

of SiNWs. As SiNWs have various possible growth orientations, it is also interesting to

analyze how strongly surface passivants affect the electronic structures of SiNWs grown in

different directions.

1.2 Copper Chalcogenides

Like SiNWs, the copper chalcogenides1 namely copper sulfide (Cu2S) and copper selenide

(Cu2Se) also have with a wide variety of energy applications. Their near ideal band gaps of

around 1.2eV make them excellent choices as photovoltaic materials. In this area, they are

known to interface especially well with the cadmium (Cd) chalcogenides CdS and CdSe to

form high efficiency core-shell nanowire photovoltaic arrays.[22, 23, 24, 25, 26, 27, 28, 29]

Furthermore, they are prime candidates as cathode materials in rechargeable ion batteries,

where they have demonstrated better performance than the more well-known but expensive

platinum.[28, 30, 31, 32, 33, 34] However, it is in the field of thermoelectricity that the

properties of Cu2S and Cu2Se really shine.[35, 36, 37, 38] Thermoelectric efficiency is most

often measured by the dimensionless thermoelectric figure of merit (ZT ).

ZT =
S2σT

κ
(1)

measures how high the thermoelectric efficiency is for a particular material. In the formula

for ZT , S is the Seebeck coefficient, σ is the electrical conductivity, T is the thermodynamic

temperature and κ = κe + κl is the sum of the thermal conductivities due to electrons (κe)

and phonons (κl) respectively. The quantity S2σ, otherwise known as the power factor, is

a purely electronic contribution. In general, a good thermoelectric material requires high

electrical conductivity and low thermal conductivity. So far, ZT values for Cu2S and Cu2Se

have been measured to be as high as 1.7 and 1.5 respectively, at temperatures of around

1000K.[36, 38] The high ZT values of Cu2S and Cu2Se puts them on par with some of the

best known thermoelectric materials to date such as PbTe [39] and SiGe [40, 41, 42] alloys.

1Chalcogenides are compounds formed from a group 16 element (oxygen (O), sulphur (S), selenium (Se),
tellurium (Te) and polonium (Po)) and a more electropositive element. The group 16 elements are collectively
known as chalcogens.

4



Moreover, many of their thermoelectric competitors tend to contain rare, expensive or toxic

heavy elements such as Pb, Co and Te, while Cu2S and Cu2Se do not suffer such severe

disadvantages. Cu2S in particular is a highly abundant and inexpensive copper ore that is

completely non-toxic.

As in the case of the SiNWs, what makes Cu2S and Cu2Se such outstanding thermo-

electric materials is their unexpectedly low thermal conductivities. He et al. [36] and Liu et

al. [38] found the thermal conductivities of Cu2S and Cu2Se to both be under 1Wm−1K−1

at temperatures of about 1000K. Both Cu2S and Cu2Se owe their exceptionally low ther-

mal conductivities to their unique solid-liquid hybrid nature. At around 1000K, the S (Se)

atoms of Cu2S (Cu2Se) form a crystalline face centered cubic (FCC) sublattice with the

Cu atoms randomly distributed in between. However, the Cu atoms are not frozen into

position. Contrariwise, the diffusion rates of the Cu atoms are so high that the Cu atoms

may be considered liquid-like.[43] It is precisely this liquid-like nature of Cu that enables

them to strongly scatter phonons in order for Cu2S and Cu2Se to maintain low thermal con-

ductivities. In regular materials, electron and phonon pathways are typically more strongly

coupled to each other, where for example, disrupting thermal conductivity almost always

results in similarly reduced electrical conductivity and hence insignificant or no overall gain

in ZT . However, the solid-liquid nature of Cu2S and Cu2Se is conducive for allowing κ

and S2σ to be optimized independently of each other to an extent, such that a high ZT

can be achieved.[36, 38]. Materials such as Cu2S and Cu2Se which have special properties

that result in the decoupling of electron and phonon interactions are jointly referred to as

phonon-liquid electron crystals or phonon-glass electron crystals depending on how mobile

their constituent atoms are.[36, 38, 44]

Being solid-liquid hybrids, Cu2S and Cu2Se are naturally related to class of materials

known as superionic conductors. The difference between Cu2S and Cu2Se and the superi-

onics is subtle. As we shall see from Bader charge analysis in Chapters 4 and 5, the Cu-S

(Cu-Se) bonds in Cu2S (Cu2Se) are more covalent in nature and hence we simply refer to

Cu2S and Cu2Se as solid-liquid hybrids. Superionic conductors themselves are very interest-

ing materials for they allow the relatively fast hopping of ions throughout their rigid crystal
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structure. Superionic conductors also qualify as solid state electrolytes and are popularly

studied for use in the development of solid state batteries and fuel cells.[45, 46] Well known

superionic conductors include the metal halides CuX and AgX (X=Cl, Br and I). In these

metal halides, the metal cations exhibit high diffusion rates within a crystalline anion sub-

lattice. The diffusion coefficients of the metal cations in CuX and AgX have been recorded

to be over 10−5cm2s−1 although they are usually only achieved at very high temperatures

of 700K.[47, 48, 49, 50, 51] However, Wang was able show, from first-principles molecular

dynamics simulations, that the Cu atoms in Cu2S become liquid-like with diffusion coef-

ficients of about 10−6cm2s−1 at a much lower 450K.[43] Since melting can be expected to

begin on surfaces before occurring in the bulk, this finding suggests the intriguing possibility

of observing solid-liquid hybrid behaviour in Cu2S and Cu2Se at even lower temperatures

than previously recorded.

Due to the disordered liquid behaviour of Cu, the structural properties of Cu2S and

Cu2Se are still not well understood. Experimental attempts at obtaining their structural

details via X-ray diffraction [52, 53, 54, 55] are often inconsistent with each other. Theoret-

ical and computational studies [29, 56, 57] which specifically include Cu disorder have also

been few. Developing good structural models for these materials will allow us to learn much

more about their electronic and vibrational properties which are important for understand-

ing their thermoelectric properties. In addition, Cu diffusion rates have only been measured

at low temperatures experimentally to the best of our knowledge. As high temperature ther-

moelectric materials designed to operate around 1000K, it is insightful to know how high

the Cu diffusion rates can be in Cu2S and Cu2Se and how they compare to diffusion in the

related superionics. This should furthermore shed light on the lithiation and delithiation

mechanism in CuS Li ion batteries where Cu2−xS forms an intermediate phase.[30, 33]

1.3 Thesis Outline

In the next Chapter, we outline the main theoretical and computational methods which we

use in this work. These mainly pertain to first-principles density functional theory (DFT),

molecular dynamics simulations and Boltzmann transport theory.
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Following on in Chapter III, we detail our investigation of the electronic structures of

[110] and [111] SiNWs using DFT. Using their H passivated forms as a basis for comparison,

we will see how surface passivation with highly electronegative fluorine (F) and the inert but

larger CH3 groups alter the electronic structures of [110] and [111] SiNWs, through basic

mechanisms such as quantum confinement and mechanical strain. In addition, we show how

the infinite circular potential well can effectively model the electronic charge density states

in these H, F and CH3 passivated [110] and [111] SiNWs.

In Chapter IV, we discuss a first-principles random structure search method to find

stable structures of the disordered phases of Cu2S and Cu2Se. We then proceed to anal-

yse the electronic structures of these materials based on the structural models developed

also from first-principles calculations. Using their electronic band structures, we calculate

their corresponding thermoelectric properties, namely their Seebeck coefficients, electrical

conductivities and power factors, via Boltzmann transport theory.

Finally, we continue our analyses of the disordered phases of Cu2S and Cu2Se in Chapter

V by performing first-principles molecular dynamics. These simulations provide atomic

trajectory data as output, from which we calculate Cu diffusion coefficients, pair correlation

functions and phonon power spectra.
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CHAPTER II

THEORETICAL AND COMPUTATIONAL

BACKGROUND

In this chapter, we review the theoretical and computational methods employed in this

work.

2.1 The Quantum Many-body Problem

The starting point for describing the properties of matter is the Hamiltonian for a system

of nuclei and electrons

H = −
∑
i

1

2
∇2
i −

∑
I

1

2MI
∇2
I +

∑
i

∑
j>i

1

|ri − rj |
+
∑
I

∑
J>I

ZIZJ
|rI − rJ |

+
∑
i,I

ZI
|ri −RI |

. (2)

In the above equation, we adopt Hartree atomic units where ~ = me = e = 1
4πε0

= 1.

Lower case subscripts label electron quantities while upper case subscripts label nuclear

quantities. Z and M denote the proton numbers and masses of the nuclei respectively. The

first two terms are the kinetic energies of electrons and nuclei and the last three terms are

the electron-electron, proton-proton and electron-proton Coulomb interaction energies.

Considering the fact that electrons are far lighter than the nuclei, the electrons must

also be moving that much faster than the nuclei which in effect are very nearly stationary

in comparison to electron motion. Therefore, the second term of Equation 2 for the kinetic

energy of nuclei is often neglected when considering electronic motion. This is commonly

known as the Born-Oppenheimer approximation.

In the picture given by the Born-Oppenheimer approximation, electrons are able to

almost instantaneously adapt to any changes in arrangement of nuclei. As such, it is also

customary to treat the Coulomb potential of the nuclei as part of the external system. In

other words, we define an external potential energy Vext(~r) of the electric field due to all

the nuclei and also with other electric fields external to the material system of nuclei and
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electrons. All in all, the many-body Hamiltonian simplifies to

H = T + Vint + Vext + EII , (3)

where

T = −
∑
I

1

2MI
∇2
I (4)

Vint =
∑
i

∑
j>i

1

|ri − rj |
(5)

EII =
∑
I

∑
J>I

ZIZJ
|rI − rJ |

. (6)

In particular, the Coulomb interaction energy between nuclei EII may be viewed simply

as a constant contribution to the total energy of the system. Thus, the Hamiltonian in

Equation 3 is a fundamental description of the electronic structure of matter.

The normalised many-body wave function Ψ which satisfies the time-independent Schrödinger

equation

HΨ(~r1, ~r2, ..., ~rN ) = EΨ(~r1, ~r2, ..., ~rN ), (7)

allows us to determine the various physical properties of a system having N electrons. Here,

the ~ri are the positions of the electrons within the system. The total electron density of the

system is then given by

ρ(~r) = N

∫
|Ψ(~r, ~r2, ..., ~rN )|2d~r2...d~rN∫
|Ψ(~r1, ~r2, ..., ~rN )|2d~r1d~r2...d~rN

. (8)

Unfortunately, solving the many-body Schrödinger equation is an 3N coordinate problem

which is made intractable largely due to the coupling term Vint in the Hamiltonian. Density

functional theory (DFT) offers a way out of this predicament.[58]

2.2 Density Functional Theory

The central principle of DFT is that for a system of interacting particles, any of its properties

may be expressed as a functional of its ground state electron density. Dealing with electron

densities instead of wave functions effectively simplifies a 3N coordinate problem to one

associated with the usual 3 spatial coordinates. Several versions of density functional theory

have been proposed over the years but we focus here on the formulation by Hohenberg and

Kohn which is currently the most useful and widely adopted approach.[59]
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2.2.1 Hohenberg-Kohn Theorems

The two theorems of Hohenberg and Kohn lay the foundation for modern density functional

theory. However, they stop short of providing any guidance for setting up the form of the

density functionals.

2.2.1.1 Hohenberg-Kohn Theorem I

Consider a system of electrons with the Hamiltonian again given by Equation 3

H = T + Vint + Vext + EII . (9)

The first Hohenberg-Kohn theorem states that Vext(~r) is completely determined by the

ground state electronic density ρ0(~r), except for a trivial constant. The proof of this theorem

is surprisingly simple. For the sake of argument, let us assume that there exists two external

potential energies V ′ext(~r) and V ′′ext(~r) which are determined by common ground state density

ρ0(~r). This leads to two separate Hamiltonians H ′ and H ′′ with their respective ground

state wave functions Ψ′ and Ψ′′ as well as ground state energies E′ and E′′. Since Ψ′′ is not

the ground state of H ′, we have by definition that

〈Ψ′|H ′|Ψ′〉 < 〈Ψ′′|H ′|Ψ′′〉 (10)

〈Ψ′|H ′|Ψ′〉 < 〈Ψ′′|H ′′|Ψ′′〉+ 〈Ψ′′|H ′ −H ′′|Ψ′′〉 (11)

E′ < E′′ + 〈Ψ′′|H ′ −H ′′|Ψ′′〉. (12)

However, if we repeat the above analysis by beginning with 〈Ψ′′|H ′′|Ψ′′〉 < 〈Ψ′|H ′′|Ψ′〉

instead, we end up with

E′′ < E′ + 〈Ψ′|H ′′ −H ′|Ψ′〉. (13)

Separately summing up the left and right hand sides of Eqs. 12 and 13 leads to the obviously

contradictory statement

E′ + E′′ < E′′ + E′. (14)

Therefore, we are forced to conclude that ρ0(~r) uniquely determines Vext(~r). From this it

follows that H and consequently E are also uniquely determined by ρ0(~r).[58]
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2.2.1.2 Hohenberg-Kohn Theorem II

The second Hohenberg-Kohn theorem states that the total energy of a system may always

be expressed as a functional of electronic density ρ(~r) for any external potential Vext(~r).

The ground state energy of the system is then determined by minimising this energy func-

tional with respect to ρ(~r). Furthermore, the ρ(~r) which minimises the energy functional

corresponds exactly to the ground state electronic density ρ0(~r).

From the first Hohenberg-Kohn theorem, we know that various properties of a sys-

tem such as the total energy EHK , kinetic energy T and internal energy U are uniquely

determined by ρ(~r), we have

EHK [ρ(~r)] = T [ρ(~r)] + Vint[(ρ(~r)] +

∫
d~rVext(~r)ρ(~r) + EII . (15)

Suppose we have a Hamiltonian H with ground state wave function Ψ. The ground state

energy E0 will always be less than the energy calculated using any other wave function Ψ′.

E0 = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉. (16)

Therefore, it must be the case that by minimising the functional EHK(ρ(~r)) with respect

to ρ(~r), the ground state energy E0 will be obtained along with the corresponding ground

state electronic density ρ0(~r).[58]

2.2.2 The Kohn-Sham Ansatz

In the modern formulation of density functional theory, practical application of the Hohenberg-

Kohn theorems is made possible through the Kohn-Sham ansatz.[58, 60] In the Kohn-Sham

ansatz, we first consider an auxiliary independent electron system. The Hamiltonian for

this auxiliary system with N non-interacting electrons

Haux =
∑
i

hauxi =
∑
i

(
−1

2
∇2
i + Veff (~ri)

)
(17)

consists of the usual kinetic energy operator and an effective local potential operator. The

eigenvalues εi which satisfy

hauxi φi(~r) = εiφi(~r), (18)
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while important in the mathematical formulation of the theory, have no physical meaning

of their own. The eigenfunctions φi(~r) of hauxi are referred to as the Kohn-Sham orbitals.

The electron density for this auxiliary system is given by the sum of the squares of these

individual electron Kohn-Sham orbitals

ρ(~r) =
∑
i

|φi(~r)|2. (19)

ρ(~r) is also assumed to be identical to electron density of original interacting system. The

wavefunction Φ(~r1, ~r2, ..., ~rN ) of the entire system of non-interacting electrons is constructed

using a Slater determinant of the individual Kohn-Sham orbitals φi(~ri)

Φ(~r1, ~r2, ...~rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~r1) φ2(~r1) . . . φN (~r1)

φ1(~r2) φ2(~r2) . . . φN (~r2)

...
...

. . .
...

φ1(~rN ) φ2(~rN ) . . . φN (~rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (20)

This Slater determinant construction guarantees that exchange anti-symmetry is satisfied.

The form of Veff (~r) in Haux, unmentioned as yet, becomes apparent by considering the

total energy of the system

E[ρ(~r)] = TKS [ρ(~r)] +

∫
d~rVextρ(~r) +

1

2

∫
d~rd~r′

ρ(~r)ρ(~r′)

|~r − ~r′|
+ Exc[ρ(~r)]. (21)

In the above equation for E[ρ(~r)], the first term TKS [ρ(~r)] is the kinetic energy of the

non-interacting electrons

TKS [ρ(~r)] = −1

2

N∑
i

〈
φi(~r)

∣∣∇2
∣∣φi(~r)〉 =

1

2

N∑
i

|∇φi(~r)|2 . (22)

The second and third term of E[ρ(~r)] are the external potential and Hartree energies

EHartree[ρ(~r)] respectively. Exc[ρ(~r)] represents the electron exchange and correlation en-

ergies which are missing from the auxiliary independent electron system, together with the

error between the actual kinetic energy and the Kohn-Sham kinetic energy TKS . Minimising

E[ρ(~r)] with respect to the density ρ(~r)

δE[ρ(~r)]

δρ(~r)
=
δTKS [ρ(~r)]

δρ(~r)
+ Vext +

∫
d~r′

ρ(~r)

|~r − ~r′|
+
δExc
δρ(~r)

= 0 (23)
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leads to the ground state energy E0 and electron density ρ0(~r) of the original interacting

system. Furthermore, it is now clear that the effective potential

Veff (~r) = Vext +

∫
d~r′

ρ(~r)

|~r − ~r′|
+
δExc
δρ(~r)

(24)

= Vext + VHartree[ρ(~r)] + Vxc[ρ(~r)] (25)

is simply the sum of external, Hartree and exchange-correlation potentials respectively.[58]

2.2.2.1 Iterative Solution to the Kohn-Sham Equations

As can be seen from the description of the Kohn-Sham equations{
−1

2
∇2 + Veff (~r)

}
φi(~r) = εiφi(~r) (26)

in the previous section, we may solve the Kohn-Sham equations using an iterative self-

consistent scheme as follows. We begin with a trial electron density as input. Using this

trial electron density, we formulate Veff and hence the auxiliary Hamiltonian. From here,

we solve the Kohn-Sham equations for φi(~r) which yields a new electron density. If this

new density is not self-consistent with the original input, then the process is repeated using

the new electron density as the input. This process is similarly implemented in the Vienna

Ab-initio Simulation Package (VASP) and various other first-principles simulation packages.

We show in Fig. 1 a summary of this computational workflow.[58, 60]

2.2.3 Exchange-Correlation Functionals

The exact form of the exchange-correlation functional Exc[ρ(~r)] is unknown but there has

been much success in simply approximating it as a local or nearly local functional of the

electron density.
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Calculate effective potential
Veff = Vext + VHartree[ρ(~r)] + Vxc[ρ(~r)]

Guess initial
electron

density ρinit(~r)

Solve set of Kohn-Sham equations{
−1

2∇
2 + Veff (~r)

}
φi(~r) = εiφi(~r)

Calculate new electron density ρnew(~r)

Update
ρ(~r)

Self consistent?

Exit loop
Proceed to calculate forces,
energy, atomic update, ...

No

Yes

Figure 1: Typical computational workflow for solving the Kohn-Sham equations self-
consistently leading to a converged electron charge density
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2.2.3.1 Local Density Approximation (LDA)

In the LDA, Exc[ρ(~r)] approximated as the integral of the exchange-correlation energy

density εxc of a homogeneous electron gas (HEG).

EHEGxc [ρ(~r)] =

∫
d~rεHEGxc [ρ(~r)]ρ(~r) (27)

=

∫
d~r
(
εHEGx [ρ(~r)] + εHEGc [ρ(~r)]

)
ρ(~r) (28)

where εHEGxc [ρ(~r) itself is a sum of the exchange energy density εHEGx [ρ(~r) and the corre-

lation energy density εHEGc [ρ(~r) of the HEG. The HEG is perhaps the simplest model for

a condensed matter system. In the HEG model, the nuclei in the actual system are rep-

resented by a uniform positively charge background. The LDA was initially proposed by

Kohn and Sham since exchange and correlation effects in typical solids are normally short

ranged which is the case for the HEG model. Therefore, the LDA works particularly well

for systems where the electron density is slowly varying or very highly localized.[58, 60]

Yet, it is known that the LDA still yields remarkably good results for systems with highly

inhomogeneous electron densities. This is because it preserves a number of constraints on

Exc[ρ(~r)], especially the sum rules.

The expression for εHEGx [ρ(~r)] above is exact and given by

εx[ρ(~r)] = −3

4

(
3ρ(~r)

π

) 1
3

. (29)

However, εHEGc [ρ(~r)] has no analytical expression.[58] Consequently, various approxima-

tions for εHEGc [ρ(~r)] have been proposed. The most accurate of these known to date are

derived from Quantum Monte Carlo (QMC) calculations, originally proposed by Ceperley

and Alder.[61, 62, 63] Other well known approximations for εHEGc [ρ(~r)] have been developed

by Perdew and Zunger (PZ) as well as Vosko, Wilkes and Nusiar (VWN).[64, 65]
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2.2.3.2 Generalized Gradient Approximation (GGA)

A second widely used approximation for Exc[ρ(~r)] is the generalized gradient approximation

(GGA). The modern GGA functional form for the exchange-correlation energy is given as

Exc[ρ(~r)] =

∫
d~rεxc[ρ(~r),∇ρ(~r)]ρ(r) (30)

=

∫
d~rεHEGx [ρ(~r)]Fxc[ρ(~r),∇ρ(~r)] (31)

which attempts to account for non-homogeneity in a real system by including information

about the charge density gradient ∇ρ(~r). In the above expression, Fxc[ρ(~r),∇ρ(~r)] is a

dimensionless factor for which there exists a number of different approximations, with the

most popular for solid state applications being those by Perdew and Wang (PW91) [66] as

well as Perdew, Burke and Enzerhof.[67]. The exchange contribution to Fxc[ρ(~r),∇ρ(~r)] is

Fx[ρ(~r),∇ρ(~r)] and in all cases, Fx ≥ 1. This results in the GGA exchange energy always

being lower than that predicted by the LDA. Usually, the GGA predicts lower binding

energies than the LDA which normally overestimates the binding energies. In this way, the

GGA generally yields results which agree better with experiment.[58]

2.2.4 Pseudopotential Methods

A pseudopotential is intended to be the effective potential acting on valence electrons which

accounts for effects due to the ionic nuclei and the tightly bound core electrons. In typical

molecules and solids, core electrons are normally highly localized around the nuclei. There-

fore, in order for the valence electron wavefunctions to be orthogonal to the core electron

wavefunctions, the valence electron wavefunctions need to be highly oscillatory, with many

nodes within the core regions of the nuclei. For this to be achieved, the valence electron

wavefunctions each require a huge plane wave basis set, which naturally contributes to

increased computational costs. With a pseudopotential though, the resulting pseudowave-

function will be consistent with the original valence electron wavefunction outside the core

regions of the nuclei and also smooth within those core regions. Therefore, we can afford to

use a smaller plane wave basis set to constitute the pseudowavefunctions and this tremen-

dously helps in keeping computational costs low. A good pseudopotential should be possible
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of being generated from a simple atomic environment and still be transferable to complex en-

vironments such as molecules and solids. This is generally possible since core wavefunctions

in molecules and solids are similar to their atomic forms.[58] Norm-conserving, ultrasoft and

projector augmented wave pseudopotentials are three important kinds of pseudopotentials

which we elaborate upon in this section.

2.2.4.1 Norm-conserving Pseudopotential

The norm-conserving pseudopotential is a popularly used type of pseudopotential originally

developed by Hamann, Schlüter and Chiang.[68] Norm-conserving pseudopotentials have

five fundamental characteristics. These are listed as follows:[58, 68]

1. Pseudo valence and all-electron eigenvalues agree for a given atomic configuration.

2. Pseudo valence ψPS and all-electron ψAE wavefunctions agree beyond the core radius

rc.

Together, properties 1 and 2 imply that the norm-conserving pseudopotential must

equal the atomic potential for r > rc.

3. Charge densities of the pseudo valence and all-electron wavefunctions agree when

integrated within the range 0 < r < rc.

This property ∫ rc

0
drr2|ψPS(r)|2 =

∫ rc

0
drr2|ψAE(r)|2 (32)

is known as norm-conservation and it is particularly important for two reasons. Firstly,

it guarantees a correct total charge in the core region. Secondly, it ensures that the

normalized pseudo-orbital always agrees with the actual all-electron orbital outside of

the core region where bonding occurs.

4. Logarithmic derivatives of the pseudo valence and all-electron wavefunctions agree for

r > rc.

In other words, we consider the dimensionless quantity

r
d

dr
lnψ = r

ψ′

ψ
(33)
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to be continuous across the boundary r = rc for both pseudo valence and all-electron

wavefunctions.

5. The first energy derivatives of the logarithmic derivatives of the pseudo valence and

all-electron wavefunctions agree for r > rc.

It is because of property 5 that the norm-conserving pseudopotential is transferable be-

tween various simple and complex environments, as required for a good pseudopotential.[58,

68]

2.2.4.2 Ultrasoft Pseudopotentials

Ultrasoft pseudopotentials [58, 69, 70] are also commonly used in modern density functional

theory. The main idea here is to radically reduce the required cutoff energy in the expansion

of the pseudo wavefunctions for a given target accuracy. This has the effect of improving

the smoothness (or ”softness”) of the pseudo wavefunctions. However, the norm-conserving

condition as described above is relaxed in order for this to be achieved. The valence electron

wavefunctions are also split into a smooth part ψ̃ and an auxiliary part which varies rapidly

within the core region. The smooth wavefunctions are orthogonoalized according to

〈ψ̃i|S|ψ̃j〉 = δij (34)

where

S = 1 +
∑
ij

∆qij |βi〉〈βj | (35)

is known as the overlap operator which only differs from unity inside the core region. The

|βi〉 are projectors and

∆qij =

∫ rc

0
d~r[ψi(~r)

∗ψj(~r)− (ψi(~r))
∗ψ̃j(~r)] (36)

represents the charge difference between the current choice of ψ̃ and the norm-conserving ψ.

∆qij 6= 0 is the reason for the loss of the norm-conserving condition. The valence electron

charge density is given by

ρ(~r) =
∑
n

|ψ̃n(~r)|2 +
∑
n

∑
ij

[ψi(~r)
∗ψj(~r)− (ψi(~r))

∗ψ̃j(~r)]〈ψ̃n|βi〉〈βj |ψ̃n〉. (37)
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2.2.4.3 Projector Augmented Wave (PAW) Pseudopotential

Another well known pseudopotential is the projector augmented wave pseudopotential

(PAW). Like in the case of the ultrasoft pseudopotentials, PAW valence electron wavefunc-

tions are split into a smooth part and a localized part. The smooth part of the wavefunction,

which we refer to as |Ψ̃〉 is related to the full all-electron wavefunction by the transformation

|Ψ〉 = T |Ψ̃〉. (38)

In the above equation, T is known as the transformation operator. It is desired that T be

unity only outside a sphere centered around an atomic nucleus such that |Ψ〉 and |Ψ̃〉 agree

outside the atomic nucleus. Therefore, we may write

T = 1 +
∑
i

τi (39)

where the τi are non-zero only within the sphere around the atomic nucleus. This region is

known as the augmentation region.

Within the spherical augmentation region around an atomic nucleus, we may expand

the smooth wavefunction as

|Ψ̃〉 =
∑
i

ci|ψ̃i〉. (40)

For a linear transformation operator T , the ci correspond to projections within the aug-

mented spherical region [58, 71, 72]

ci = pi|Ψ̃〉 (41)

where the pi are the required set of projection operators pi with the property

〈pi|ψ̃j〉 = δij . (42)

Since the full all-electron wavefunction may be written as

|Ψ〉 = |Ψ̃〉+
∑
i

ci

(
ψi − ψ̃i

)
, (43)

we see that

T = 1 +
∑
i

(
ψi − ψ̃i

)
pi. (44)

In this work, we use PAW pseudopotentials for all our DFT based calculations.

19



2.2.5 Hellmann-Feynman Forces

Once the ground state charge density has been determined for a given configuration of ionic

nuclei, the forces on the ionic nuclei are typically evaluated using the Hellmann-Feynman

theorem. These forces may then be used to perform further calculations such as ionic

optimisations and molecular dynamics. The Hellman-Feynman theorem states that for a

system with a Hamiltonian Hλ depending on some parameter λ, then the derivative of its

total energy with respect to λ is equal to the expectation value of the derivative of the

Hamiltonian also with respect to λ. Simply put,

dE

dλ
= 〈Ψλ|

∂H

∂λ
ψλ〉. (45)

Proof of the Hellman-Feynman theorem is simple. We begin with the Schrödinger equa-

tion for the system

Hλψλ = Eλψλ (46)

and see that the total energy is as usual given by

Eλ = 〈ψλ|Hλ|ψλ〉. (47)

Taking the derivative with respect to λ on both sides, we have

dEΨλ

dλ
= 〈dψλ

dλ
|Hλ|ψλ〉+ 〈ψλ|

dHλ

dλ
|ψλ〉+ 〈ψλ|Hλ|

ψλ
dλ
〉 (48)

= Eλ〈
dψλ
dλ
|ψλ〉+ 〈ψλ|

dHλ

dλ
|ψλ〉+ Eλ〈ψλ|

ψλ
dλ
〉 (49)

Now assuming that Ψλ is already a normalised wavefunction of Hλ and likewise taking

derivatives with respect to λ, we have

〈ψλ|ψλ〉 = 1 (50)

〈dψλ
dλ
|ψλ〉+ 〈ψλ|

dΨλ

dλ
〉 = 0. (51)

Therefore, we see that the first and second terms of equation 49 add up to 0 and we are left

with

dE

dλ
= 〈Ψλ|

∂H

∂λ
ψλ〉. (52)

which is the Hellmann-Feynman theorem.[58, 73, 74]
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2.3 Statistical Mechanics

2.3.1 Statistical Mechanical Ensembles

A physical system may be thought of as having a large collection of imaginary systems which

are all characterized by the exact same set of macroscopic parameters as the physical system.

This collection of imaginary systems is referred to as a statistical mechanical ensemble. The

systems of the ensemble are each unique according to the coordinates and momenta of their

constituent particles. There are three main ensembles in statistical mechanics, namely

the microcanonical, canonical and grand canonical ensembles which we describe briefly

below.[75, 76]

2.3.1.1 The Microcanonical Ensemble

The microcanonical ensemble is a statistical ensemble where its members have the same

number of particles (N), volume (V) and total energy (E). For this reason, it is also referred

to simply as the NVE ensemble. The microcanonical ensemble can only describe a com-

pletely isolated system which does not exchange heat or matter with its surroundings.[75]

2.3.1.2 The Canonical Ensemble

In actual experiments, it is usually temperature rather than energy which is kept constant in

a system. The canonical ensemble describes such a system with a fixed number of particles

(N), volume (V) and temperature (T) so it is commonly known as the NVT ensemble. A

system in the canonical ensemble is closed to prevent particle exchange with its surroundings

as is the case with the microcanonical ensemble. However, it is thermally coupled with its

surroundings, referred to as the heat bath or reservoir, with which it exchanges energy so

as to maintain its temperature.

In the canonical ensemble, the probability of the system being in a particular microstate

i with total energy Ei is

P (i) =
1

Z
e−βEi . (53)

In the above equation, we introduce the commonly occurring quantity

β =
1

kBT
(54)
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where kB is the Boltzmann constant. The quantity Z is known as the canonical partition

function

Z =
∑
i

e−βEi . (55)

Z, also known as the ”sum-over-states”, may be viewed as a normalization constant which

guarantees that the sum of all P (i) is unity.[75]

Using the canonical partition function, the expectation value for energy 〈E〉E may be

expressed rather elegantly as [75]

〈E〉 =
∑
i

EiPi (56)

=
1

Z

∑
i

Eie
−βEi (57)

= −∂lnZ
∂β

. (58)

2.3.1.3 The Grand Canonical Ensemble

The grand canonical ensemble or µVT ensemble best describes an open system which allows

for both particle and energy exchange so as to keep chemical potential (µ), volume (V) and

temperature (T) constant.

The grand canonical partition function is

Ξ =
∑
i

eβ(Niµ−Ei) (59)

where Ni is the total number of particles in microstate i. Similar in form to its canonical

ensemble counterpart, the probability of the system being in a particular microstate i within

the grand canonical ensemble is [75]

P (i) =
1

Ξ
eβ(Niµ−Ei). (60)

2.3.2 Maxwell-Boltzmann Distribution

Consider a classical ideal gas system withN particles at equilibrium temperature T . We seek

to find the probability distribution fv for the particles at various speeds v. The probability

of finding Ni particles with energy Ei is

Ni =
N

Z
e−βEi . (61)
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Here, Z is the partition function for a single particle which is the same for all particles.

First assuming this to be a 1D system, we may rewrite the above probability in terms of

momentum

Ni =
N

Z
e−β

p2i
2m . (62)

which is proportional to the momentum probability distribution fp. Of course, momentum

is a continuous variable so we write∫
fpdp = C

∫
1

Z
e−β

p2

2mdp = 1. (63)

where C is the normalization constant. Evaluating the gaussian integral, we find that

C = Z

√
β

2πm
(64)

Hence, we see that

fp =

√
β

2πm
e−β

p2

2m . (65)

In the 3D case, the momentum probability distribution is easily generalized to

fp =

(
β

2πm

) 3
2

e−β
p2

2m (66)

Finding the scalar speed probability distribution simply involves a change of variables

from the 3D momentum vector representation.∫
fpd~p =

∫ (
β

2πm

) 3
2

e−β
p2

2mdpxdpydpz (67)

=

∫ (
βm

2π

) 3
2

e−β
mv2

2 dvxdvydvz (68)

=

∫ (
βm

2π

) 3
2

e−β
mv2

2 v2sinθdvdθdφ (69)

where it is clear that

fv = 4πv2

(
βm

2π

) 3
2

e−β
mv2

2 (70)

which is the well known Maxwell-Bolztmann velocity distribution.[75, 76]
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2.3.3 Pair Correlation Functions

The partial pair correlation function gαβ(r) is a measure of the probability of finding an

atom of species β at various distances around a reference atom of species α. This reveals

the structural details of solid and even liquid systems.

gαβ(r) =
1

Nαρβ

〈
Nα∑
i=1

Nβ∑
j=1

δ(~r + ~ri − ~rj)

〉
. (71)

The angular brackets refer to an average over various configurations of the system over

time in a regular molecular dynamics simulation. In practice, we deal with the 3D Dirac

Delta function δ(~r) by defining very thin spherical shells around each reference particle and

counting the number of neighbours it has within each shell. gαβ(r) vanishes at small r due

to short range repulsion. For large r in the case of liquids which lack long range structure,

gαβ(r) = 1 typically. This is because gαβ(r) is normalized by the mean particle number

density ρβ =
Nβ
V and so gαβ(r) = 1 indicates a completely random structure. The average

number of particles within a range of r to r + dr of a reference particle may be estimated

as 4πr2gαβ(r)dr. This further allows us to estimate its coordination number as Nαβ

Nαβ =

∫ Rmin

0
4πr2gαβ(r)dr (72)

where Rmin is the first minimum of gαβ(r).[76, 77]

The total pair correlation function g(r) may be obtained from a weighted sum of the

various partial pair correlation functions

g(r) =

∑
α

∑
β xαxβbαbβgαβ(r)∑
α

∑
β xαxβbαbβ

(73)

where xα is the molar concentration of atomic species α. g(r) may be obtained experimen-

tally by neutron or x-ray scattering. As such bα may represent either neutron scattering

lengths or atomic form factors as appropriate to the type of scattering experiment being

used to calculate g(r).[77]

2.3.4 Static Structure Factors

Static structure factors are obtained by Fourier transforming the pair correlation functions.

Since g(r) depends only on the magnitude r, the Fourier transform can be vastly simplified.
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Furthermore, S(k) will depend only on the magnitude k in the same spirit.

S(k) =

∫
d~rei

~k·~rρg(r) (74)

=

∫
r2sin(θ)eikrcos(θ)ρg(r)r2drdθdφ (75)

= −2πρ

∫ [
eikrcos(θ)g(r)

ikr

]cos(θ)=−1

cos(θ)=1

dr (76)

= 4πρ

∫
sin(kr)g(r)

kr
r2dr (77)

This works equally well for both partial and total static structure factors. Partial static

structures also combine using the Faber-Ziman formalism to give the total static structure

factor [77]

S(k) =

∑
α

∑
β xαxβbαbβSαβ(k)∑
α

∑
β xαxβbαbβ

. (78)

2.3.5 Diffusion

Fick’s law states that the diffusive flux J of a particular atomic species is directly propor-

tional to the negative of its concentration gradient.

J = −D∇c(~r, t) (79)

where c(~r, t) is the concentration and the constant of proportionality D is commonly known

as the diffusion coefficient.

Let us consider the case where a particular atomic species is initially concentrated at

~r = 0. Simply put, c(~r, 0) = δ(~r, 0) and we also demand that
∫
c(~r, t)d~r = 1. The time

evolution of c(~r, t) may then be studied by applying the continuity equation

∇ · J = −∂c(~r, t)
∂t

. (80)

By multiplying the continuity equation with r2 and integrating over all space, we have

D

∫
r2∇2c(~r, t)d~r =

∫
r2∂c(~r, t)

∂t
d~r. (81)

It is reasonable to consider a J that vanishes at infinity so the left hand term may be

integrated by parts to yield 2NdimD where Ndim is the number of spatial dimensions. Using
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the boundary condition
∫
c(~r, t)d~r = 1, we see that the right hand term is simply equivalent

to ∂〈∆r2(t)〉
∂t where 〈∆r2(t)〉 = 1

N

∑N
i=1 |ri(t) − ri(0)|2 is the mean squared displacement

(MSD) of N atoms. Therefore, the diffusion coefficient is directly proportional to the

gradient of the MSD.[78]

D =
1

2Ndim

∂〈∆r2(t)〉
∂t

(82)

This is a very useful relation as it provides a practical method for evaluating the diffusion

coefficient in MD simulations using only atomic displacements.[78]

2.3.6 Time Correlation Functions

The time correlation function CAB(t) between two functions A and B is given by

CAB(t) = 〈A(t+ t0)B(t0)〉 = lim
τ→∞

1

τ

∫ ∞
0

A(t+ t0)B(t0)dt0. (83)

where the angled brackets refer to the time average. Since equilibrium probability densities

are independent of time, CAB(t) is invariant under any translation in time. A special class

of time correlation functions is the autocorrelation function where A and B are identical to

each other.[76]

2.3.6.1 The Velocity Autocorrelation Function

The velocity autocorrelation function (VACF) in MD simulations yields particularly impor-

tant information.[76, 77, 78] Firstly, the diffusion coefficient D introduced in the previous

subsection may also be calculated using the VACF instead of the MSD.

∂〈∆r2(t)〉
∂t

=
∂

∂t

〈∫ t

0
~v(t′)dt′ ·

∫ t

0
~v(t′′)dt′′

〉
(84)

= 2
∂

∂t

∫ t

0
dt′
∫ t′

0
dt′′〈~v(t′) · ~v(t′′)〉 (85)

= 2

∫ t

0
dt′′〈~v(t) · ~v(t′′)〉 (86)

= 2

∫ t

0
dt′〈~v(t) · ~v(t+ t′)〉 (87)

where we perform a simple substitution t′′ = t′ + t in the final step. Recall that the

angled brackets refer to an average over the number of atoms. In practice, this is often and
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equally well extended to be the average over both atoms and time. Hence, we recognise

Z(t) = 〈~v(t) · ~v(t+ t′)〉 as the VACF.[77] Combining equations 82 and 87, we have

D =
1

Ndim

∫ ∞
0

Z(t)dt. (88)

Evaluating the diffusion coefficient using the distinct VACF and MSD methods provides a

good consistency check. Secondly, the power spectrum obtained by Fourier transforming

the VACF,

Ẑ(ω) =
1

2π

∫
Z(τ)eiωtdt (89)

is useful for studying the vibrational properties of a system as it is directly proportional to

the phonon density of states.[76, 77]

2.4 Molecular Dynamics

Molecular dyanmics (MD) is a technique for computationally simulating particle motion

within a system over time. Here we are primarily concerned with first-principles MD. In

this scenario, forces on the particles are computed using the Hellmann-Feynman theorem,

which is a quantum mechanical principle. However, the particle motion resulting from these

Hellman-Feynman forces are determined entirely by the classical Newtonian equations of

motion.[58, 76, 77, 78]

2.4.1 Verlet Algorithm

The Verlet algorithm is arguably the most widely used method for solving the Newtonian

equations of motion in order to update particle trajectories in MD simulations. This method

does not make use of particle velocities. Instead, it requires only particle positions and

accelerations. To understand this method, first consider the Taylor expansions of ~r(t+ ∆t)

and ~r(t−∆t) about ~r(t).

~r(t+ ∆t) = ~r(t) + (∆t)~v(t) +
1

2
∆t2~a(t) +O(∆t3) (90)

~r(t−∆t) = ~r(t)− (∆t)~v(t) +
1

2
∆t2~a(t)−O(∆t3) (91)
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Adding both equations, we see that the velocity terms ~v(t) cancel out and simple rearrange-

ment gives

~r(t+ ∆t) = 2~r(t)− ~r(t−∆t) + (∆t)2~a(t) +O(∆t4) (92)

which is accurate to fourth order in ∆t. The advantage of not having to make explicit use of

the velocities is that velocities are usually accurate to only (∆t)2. Also, the Verlet algorithm

allows particle coordinates to be updated in a single step which keeps computational costs

low.[76]

2.4.2 Temperature Fluctuations

In this section, we shall see that the temperature of a system in the canonical ensemble

always experiences finite temperature fluctuations. By the equipartition theorem, each

degree of freedom for each of the N particles in a system contributes 3
2kBT of energy to

the total energy of the system. Following this, the temperature T of the system is related

to the kinetic energy of the system by

3

2
NkBT =

∑
i

1

2
mi|vi|2 =

∑
i

1

2

|pi|2

2mi
. (93)

However, we realise that there are fluctuations in the kinetic energy of the individual

particles. This is quantified by the coefficient of variance in the kinetic energy. We have

〈p2〉 =

∫
fpp

2d~p (94)

=

∫ (
β

2πm

) 3
2

p4e−β
p2

2m sinθdpdθdφ (95)

= 3
m

β
(96)

and

〈p4〉 =

∫
fpp

4d~p (97)

=

∫ (
β

2πm

) 3
2

p6e−β
p2

2m sinθdpdθdφ (98)

= 15

(
m

β

)2

. (99)

Therefore the coefficient of variance in the kinetic energy is

σ2
p

〈p〉2
=
〈p4〉 − 〈p2〉
〈p2〉

=
2

3
. (100)
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which is finite and manifests itself as temperature fluctuations. Assuming the particles to

be non-interacting such that we deal with an uncorrelated system, the expected relative

variance or fluctuation in temperature is simply [78]

σ2
T

〈T 〉2
=

2

3N
. (101)

2.4.3 Nóse-Hoover Thermostat

From the previous subsection, we see that the canonical ensemble has finite temperature

fluctuations. In molecular dynamics, the main aim of a thermostat is to simulate these

characteristic temperature fluctuations while simultaneously fixing the mean temperature

at a specified level. It is in this sense that the temperature is said to be held constant

when simulating a system in the canonical ensemble. The Nóse-Hoover thermostat is a

popular algorithm for simulating such a constant temperature environment. The basis for

this method was first proposed by Nóse [79] and further developed by Hoover [80].

The Nóse-Hoover thermostat is formulated by adding an extra coordinate s to the Nóse

Hamiltonian HN . s functions as an additional degree of freedom for the simulated heat

bath.

HN =

N∑
i

|~pi|2

2mis2
+
∑
j>i

Uij +
p2
s

2Q
+ 3NkBT ln(s) (102)

Q is a fictitious mass which is coupled to s, In the above equation,

~pi = mis
2~̇ri (103)

ps = Qṡ (104)

Uij refers to the interatomic potential between atomic pairs. It is from this modified Hamil-

tonian HN that the equations of motions are then derived. These equations of motion are

[78]

~̇ri =
~pi
mis2

(105)

~̇pi = −∂Uij
∂~ri

(106)

ṡ =
ps
Q

(107)

ṗs =
1

s

(
N∑
i

|~pi|2

mis2
− 3NkBT

)
(108)
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2.5 The Thermoelectric Effect

The thermoelectric effect refers to the conversion of temperature differences into voltage

differences. This effect is very useful for converting waste heat into useful electrical energy.

We show in Fig. 2 a simple schematic of a thermoelectric generator making use of both p

and n doped thermoelectric materials. From it, we see excited carriers from the hot side

diffusing over the cold side and establishing the desired electrical current in the process. An

actual thermoelectric generator would consist of many more p and n type thermoelectric

legs in parallel between the heat source and heat sink. This set up in fact allows the size

of a thermoelectric generator to be easily scaled to fit applications of various shapes and

sizes. Typical thermoelectric generators do not contain any moving parts which also makes

them very silent and easy to maintain. The thermoelectric generator shown in Fig. 2 may

of course also be run in reverse as a solid state refrigerator. Unfortunately, despite the

immense utility of thermoelectric devices, and the fact that the thermoelectric effect has

been known for the past two centuries, there has been little progress in this field until

the past two decades. This is simply because the thermoelectric efficiency of most regular

materials is far too low. Indeed, good thermoelectric materials often have rather complicated

structures which typically have to be artificially engineered or enhanced. These structures

typically disrupt phonon transport while having little effect on the electronic transport

properties so as to maximize thermoelectric efficiency. For example, skutterudites [81] and

clathrates [81, 82] are two classes of materials characterised by their very large and open

unit cells. Guest atoms can be incorporated into these cage like cells where they introduce

new phonon rattling modes [81, 82] that disrupt the lattice thermal conductivity. Other

examples include the use of grain boundaries and alloy scattering to scatter phonons as in

the case of silicon-germanium (SiGe) thermoelectrics.[40, 41, 42]

2.5.1 Thermoelectric Efficiency and Figure of Merit

The thermoelectric efficiencies of various materials are compared against each other by their

dimensionless figures of merit ZT .[83, 84] The ZT value is related to the Carnot efficiency of

the thermoelectric device employing the thermoelectric material such as the one illustrated
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Figure 2: Schematic of a typical thermoelectric generator. The n and p doped legs are
made from the actual thermoelectric material, outlined by the dot-dashed border.

in Fig. 2. The definition of ZT is credited to Ioffe.[84] Recall that the Carnot efficiency

represents the theoretical maximum efficiency of any heat engine.[75]

Let us refer again to Fig. 2 as we derive the Carnot efficiency η of a thermoelectric

generator. In doing so, we assume that the dimensions and all material properties, such

as electrical and thermal conductivities, of both p and n type thermoelectric materials are

identical. We first consider the input heat energy per unit time (Pin) into the device. This

is given as

Pin =
∆T

Rθ
+ STHI −

1

2
I2r. (109)

The three terms on the right hand side of this equation respectively represent heating due

to thermal transfer from the heat source, Peltier heating [85, 86] and heat dissipation due

to internal resistance. ∆T = TH − TC is the temperature difference between the hot and

cold reservoirs at TH and TC respectively. Rθ = l
κA is the thermal resistance with l and

A respectively being length and area of the thermoelectric legs and κ being the thermal

conductivity. I is the current flowing through the external load with electrical resistance R.

r = l
σA is the internal electrical resistance of the thermoelectric generator where σ is the

corresponding electrical conductivity. S represents the most interesting material quantity

known as the Seebeck coefficient. The Seebeck coefficient is given as

S = −∆V

∆T
(110)
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from which we see that it qualitatively represents the amount of useful electrical voltage

that can be obtained for a given temperature difference. Knowing this, we can write the

current through the external load as

I =
S∆T

r +R
(111)

The output power of the external load is

Pout = I2R =
S2∆T 2R

(r +R)2
. (112)

The Carnot efficiency is related to the input and output powers via

η =
Pout
Pin

=
∆T

TH
· S2R

(r +R)2

(
1

THRθ
− S2r∆T

2TH(r +R)2
+

S2

r +R

)−1

. (113)

To find the R = Rmax corresponding to the maximum η, we solve for

dη

dR
= 0 (114)

which leads us to

Rmax = r

√
1 +

S2σ

κ
· 1

2
(TH + TC) (115)

= r
√

1 + ZT (116)

where we define

ZT =
S2σ

κ
· 1

2
(TH + TC) (117)

=
S2σT

κ
. (118)

Note that ZT is defined with respect to the average temperature T between the hot and

cold reservoirs. The quantity S2σ depends only on electronic transport properties. The

thermal conductivity in the numerator κ = κe + κl is the sum of electronic (ke) and lattice

thermal conductivities (kl). Substituting R = Rmax back into Eq. 113, we find that

ηmax =
TH − TC
TH

·
√

1 + ZT − 1
√

1 + ZT + TC
TH

(119)

represents the maximum possible Carnot efficiency for the thermoelectric generator.[83,

84] ZT very neatly rolls into a single term all the material properties which influence

thermoelectric efficiency.
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2.6 Boltzmann Transport Theory

Boltzmann transport theory enables us to calculate various thermoelectric quantities of

interest, namely the electrical conductivity (σ) and Seebeck (S) coefficient, directly from

electronic band structures.[85, 86, 87]

Charge carrier transport is influenced by various factors such as external electromagnetic

fields and temperature gradients. We capture the essence of these effects by studying the

variation of the non-equilibrium distribution function f
n,~k

(~r, t) where n is labels the band

index. The behaviour of f~k(~r, t) is governed by the Boltzmann transport equation [86] which

we set up by considering the following mechanisms:

1. External electric field

An external electric field ~E exerts a force on a carrier with charge q and changes its

momentum according to

∂(~~k)

∂t
= q ~E. (120)

Assuming that the f
n,~k

(~r, t) is constant along the trajectory of the system (Liouville’s

theorem [85, 86]), we can write

f
n,~k

(~r, t) = f
n,~k−t∂t~k(~r, 0). (121)

Therefore we have

∂f
n,~k

(~r, t)

∂t

∣∣∣∣
E−field

= −∂
~k

∂t
·
∂f

n,~k
(~r, t)

∂~k
(122)

= − q
~
~E ·

∂f
n,~k

(~r, t)

∂~k
(123)

as a result of external electric field ~E.

2. Carrier diffusion

Carriers with velocity ~c
n,~k

will be displaced by ~c
n,~k
t in time t. Again assuming Liou-

ville’s theorem as with the case for external electric field scattering, we may write

f
n,~k

(~r, t) = f
n,~k

(~r − ~c
n,~k
t, 0) (124)
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from which it naturally follows that

∂f
n,~k

(~r, t)

∂t

∣∣∣∣
diffusion

= −~c
n,~k

∂f
n,~k

(~r, t)

∂~r
(125)

due to carrier diffusion.

3. Scattering

The effect of scattering on f
n,~k

(~r, t) is considerably more complicated than the above-

mentioned effects. For now, we shall simply refer to it as

∂f
n,~k

(~r, t)

∂t

∣∣∣∣
scattering

. (126)

We assign its form as we discuss the relaxation time approximation below.

Combining the effects of diffusion, external electric field ~E and scattering, we have the

Boltzmann transport equation

∂f
n,~k

(~r, t)

∂t

∣∣∣∣
diffusion

+
∂f

n,~k
(~r, t)

∂t

∣∣∣∣
E−field

+
∂f

n,~k
(~r, t)

∂t

∣∣∣∣
scattering

= 0 (127)

for describing the steady state evolution of f
n,~k

(~r, t).[86]

2.6.1 Relaxation Time Approximation

In order to make any progress in using Eq. 127, we need to have a form for f
n,~k

(~r, t) and

∂tfn,~k(~r, t)|scattering. For this, we turn to the relaxation time approximation.[85] In the

relaxation time approximation, the probability of an electron undergoing a collision within

the time interval dt is

dt

τ
n,~k

(~r)
. (128)

Generally. the relaxation time τ
n,~k

(~r) depends on band index as well as position. However,

in our approach, we shall treat it as a constant τ
n,~k

(~r) = τ . Furthermore, we assume that

the form of the non-equilibrium distribution function

f
n,~k

(~r, t) =
1

e
(ε
n,~k
−µ(~r))/(kBT (~r))

+ 1
(129)

is essentially the same functional form as that of the Fermi-Dirac distribution although we

explicitly label temperature T (~r) and chemical potential µ(~r) as being position dependent.
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In addition, we assume that the functional form of f
n,~k

(~r, t) is not altered by collisions. Since

collisions actually result in electrons switching bands and momentum, this must mean that

df
n,~k

(~r, t) = − dt

τ(~r)
f
n,~k

(~r, t). (130)

Now returning to the scattering effect on f
n,~k

(~r, t), we can write

∂f~k(~r, t)

∂t

∣∣∣∣
scattering

= −
f
n,~k

(~r, t)

τ
. (131)

Now we return to Eq. 127 and substitue for the diffusion, external electric field and

scattering contributions.[85, 86] This gives us

∂f
n,~k

∂t

∣∣∣∣
scattering

=
∂f

n,~k

∂t

∣∣∣∣
E−field

+
∂f

n,~k

∂t

∣∣∣∣
diffusion

(132)

f
n,~k

(~r, t)

τ
= − q

~
~E ·

∂f
n,~k

∂~k
− ~c

n,~k

∂f
n,~k

∂~r
(133)

= − q
~
~E ·

∂f
n,~k

∂ε
n,~k

∂ε
n,~k

∂~k
− ~c

n,~k

∂f
n,~k

∂µ

∂µ

∂~r
− ~c

n,~k

∂f
n,~k

∂T

∂T

∂~r
(134)

= −
∂f

n,~k

∂ε
n,~k

~c
n,~k
·
(
q ~E − ∂µ

∂~r
−
ε
n,~k
− µ
T

∂T

∂~r

)
(135)

≡ −
∂f

n,~k

∂ε
n,~k

~c
n,~k
·
(
q ~E −

ε
n,~k
− µ
T

∂T

∂~r

)
. (136)

Above, we use the relations ∂~kε = c, ∂µf = −∂εf and ∂T f = − ε−µ
T ∂εf . In the last step, we

also drop the ∂~rµ term as the electric field due to the gradients in the chemical potential

may be jointly described with the external electric field ~E. Finally, we see that

f
n,~k

= −
∂f

n,~k

∂ε
n,~k

τc
n,~k
·
(
q ~E −

ε
n,~k
− µ
T

∂T

∂~r

)
. (137)

2.6.2 Current Density

The most well known form of the current density [86] is

~J = σ( ~E + S∇T ). (138)

However, the current density can also be calculated from f
n,~k

as

~J =
1

4π3

∫
q~c
n,~k
f
n,~k
d~k (139)

= − 1

4π3

∫ ∂f
n,~k

(~r, t)

∂ε
n,~k

τc
n,~k
c
n,~k

(
q2 ~E − q

T
(ε
n,~k
− µ)

∂T

∂~r

)
d~k (140)
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Comparing Eqs. 138 and 140, we deduce that

σαβ(µ, T ) = −q2
∑
n

∫
d~k

4π3

∂f
n,~k

(µ, T )

∂ε
n,~k

τcα
n,~k
cβ
n,~k

(141)

σαγSγβ(µ, T ) = − q
T

∑
n

∫
d~k

4π3
(ε
n,~k
− µ)

∂f
n,~k

(µ, T )

∂ε
n,~k

τcα
n,~k
cβ
n,~k

(142)

in the appropriate tensor notation.[85, 86] We are primarily interested in how σ and S

behave as functions of chemical potential µ and temperature T . The electrical conductivity

σ given by Eq. 141 is a function of the constant relaxation time τ . On the other hand, we see

from Eq. 142 that the Seebeck coefficient is calculated by multiplying σαγSγβ(µ, T ) with the

inverse of σαβ(µ, T ). This cancels out the unknown constant relaxation time in Eq. 142 such

that the Seebeck coefficient in our approach is evaluated without knowledge of the relaxation

time. We make use of the BoltzTraP package [87] to perform the above Boltzmann transport

calculations. The only required input for BoltzTraP is the electronic band structure which

provides information about c
n,~k

and ε
n,~k

. The electronic band structures are evaluated from

first-principles using the VASP. However, the calculation of the electronic relaxation time

is beyond the scope of this work and so we treat it simply as an unknown constant. As

mentioned, this is not an issue when evaluating the Seebeck coefficient but in the work that

follows, we report the calculated electrical conductivity as σ/τ .[87]
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CHAPTER III

SURFACE PASSIVATION AND ORIENTATION

DEPENDENCE IN THE ELECTRONIC PROPERTIES OF

SILICON NANOWIRES

3.1 Introduction

The electronic properties of one-dimensional (1D) silicon nanowires (SiNWs) are vastly

different from the electronic properties of bulk silicon. This is particularly due to the

increased quantum confinement of electrons within SiNWs. Most notably, this leads to a

direct band gap in SiNWs which is a huge advantage over bulk silicon as it leads increased

optical sensitivity, thereby making way for various new technological applications. It is also

known that the size of the direct band gap in SiNWs may be tuned simply by adjusting their

diameters. Recent advances in engineering have also led to the low cost and manufacturing

ease of high quality SiNW arrays.[4, 5, 6] As such, SiNWs have garnered much attention

for applications as diverse as solar cells,[7, 8, 9, 10] sensors [20, 88, 89] and thermoelectric

devices.[11, 12, 13, 14, 15] Unfortunately, SiNWs are prone to degradation when exposed

to the environment over long periods of time. Therefore, much effort has been devoted

towards improving their ambient stability, in order to enhance their utility. Chemical surface

passivation is one particular method for improving the ambient stability of SiNWs. In

particular, CH3 passivation has shown to dramatically increase the stability of SiNWs, even

to the point of making them resistant electrolytic oxidation and corrosion such that they

are viable in photoelectrochemical water splitting cells.[16, 17, 18]

Surface passivation obviously alters the SiNW band structure. However, this is not

always negative since surface passivation may be considered a mechanism for electronic band

engineering. Passivants which have been considered for the purpose of band engineering in

SiNWs include the halogens,[90, 91, 92, 93] hydroxyls (OH)[93, 94, 95] and long-chained
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organic functional groups.[20, 21, 88, 89] These atoms and chemical groups are typically

electronegative. Moreover, surface passivation with organic functionalities such as CH3 is

often performed by substitution reactions on halogen or OH passivated SiNWs.[16, 17, 18,

19, 20, 21] In this process, it is common for steric effects and imperfections to prevent all

surface halogens and OH groups from being substituted. Therefore, the end result is a

SiNW which may have multiple surface passivants. Hence, it is crucial to be able to predict

the effects which various such passivants may have.

Previously, first-principles calculations have indicated that electronegative surface passi-

vants have a tendency to reduce the band gap of SiNWs by a few electronvolts in comparison

to H-passivated SiNWs.[92, 93, 94, 95] According to Leu et al.., highly electronegative pas-

sivants such as iodine, bromine and chlorine cause the electronic state corresponding to

the valence band maximum to acquire surface-like characteristics, which in turn prevents

it from being drawn out of the band gap. The amount of surface-like character acquired

depends on the strength of the Si-passivant bond, with weaker bonding resulting in a more

a surface-like character and a smaller band gap.[92] Ng et al.. was also able to demonstrate

that SiNW growth orientation plays a pivotal role in determining the amount of influence

which an electronegative passivant may have. Ng et al. compared [100], [110], [111] and

[112] SiNWs passivated separately with H, OH and F. They discovered that [110] SiNWs

always experienced the largest band gap reduction upon switching from H to either OH

or F passivation. On the other hand, [111] SiNWs were the least affected.[93] Neverthe-

less, there is a lack of a thorough explanation of the fundamental mechanisms behind how

electronegative passivants affect states near the band edge. In this chapter, we tackle this

issue by comparing and contrasting the electronic structure of hydrogen (H), fluorine (F)

and methyl (CH3) passivated [110] and [111] oriented SiNWs based on first-principles cal-

culations. We will also show how electronic states in these SiNWs may be modelled by the

strikingly simple infinite circular potential well.
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3.2 Computational Details

All calculations are performed using the local density approximation (LDA) [64] within

density functional theory (DFT) with projector augmented wave (PAW) pseudopotentials.

These DFT calculations are performed using the Vienna Ab-Initio Simulation Package

(VASP) [96, 97, 98, 99].[71, 72]

Periodic boundary conditions are used in all directions. The SiNWs continuously extend

to infinity along the z direction. Within the xy plane though, we ensure that the simulation

cells contain enough of a vacuum region such that there is a minimum separation of 7

Å between neighbouring SiNW images. This is sufficient to ensure that the interaction

between images is insignificant.[100] The plane-wave energy cutoff is set to 400eV and we

sample the Brillouin zone using a 1× 1× 8 Monkhorst-Pack k-point mesh.

Electronic structure calculations are only performed on the SiNWs after they have been

structurally optimised. We find the optimal lattice constant along the z direction for each

SiNW by structurally relaxing it at various trial lattice constants and then plotting the

total energy of the system against the corresponding trial lattice constants. We then fit

each of these curves according to a quadratic relation in order to locate the optimal lattice

constant which corresponds to the minimum point of the quadratic curve.

3.3 Silicon Nanowire Models

We use the bulk silicon model with a lattice constant of 5.431Å as the basis for constructing

simulation models for our SiNWs. Silicon atoms from this bulk model having coordinates

falling within predefined cross sections along the [110] and [111] directions are then extracted

from the bulk model to form SiNW models of various sizes. This ensures that the Si atoms

within each SiNW have the expected tetragonal geometry and a good initial guess for Si-Si

bond length in order to speed up the geometric optimization process using DFT in VASP. Si

atoms on the surface of each bare SiNW which lack either one or two nearest neighbours are

then passivated with the appropriate number of H, F or CH3 passivants. Si atoms lacking

three nearest neighbours are themselves replaced by the desired passivant. The passivants

are attached to the Si atoms so as to maintain the tetragonal geometry except on the
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Table 1: Structural data and band gaps for [110] wire configurations. p refers to the
passivant. d and a are the wire diameters and lattice constants along the SiNW axis
respectively. All band gaps are direct.

[110] SiNWs

p Si:p ratio d (nm) a (Å) Band gap (eV)

H

16:12 1.07 3.86 1.72
24:16 1.25 3.87 1.60
42:20 1.70 3.85 1.15
54:24 1.87 3.86 1.11
80:28 2.31 3.85 0.91
110:32 2.76 3.85 0.81
130:36 2.95 3.85 0.78
168:40 3.36 3.85 0.73

F

16:12 1.08 3.89 1.03
24:16 1.27 3.89 1.04
42:20 1.72 3.87 0.80
54:24 1.89 3.87 0.78
80:28 2.33 3.86 0.71
110:32 2.78 3.85 0.66
130:36 2.97 3.86 0.64
168:40 3.39 3.86 0.61

CH3

16:12 1.20 4.17 0.89
42:20 1.82 4.04 0.55
80:28 2.44 4.00 0.22
130:36 3.06 3.97 0.30

{100} facets of the [110] SiNWs, where Si atoms are bonded to two passivants. In order to

prevent these passivants from being unphysically close, they are canted at 90◦ to each other.

This starting 90◦ angle is allowed to change during geometric optimization which generally

results in it increasing, as will be discussed in detail later. Our choice of initial structure is

validated as the final energies of structures optimized using purely tetragonal bonding are

significantly higher than the final energies resulting from our proposed initial structures.

We show the typical [110] and [111] SiNWs before relaxation in Fig. 3. A summary of the

structural data for SiNWs after geometric optimization is displayed in Tables 1 and 2.

3.3.1 The infinite circular potential well

Previous studies have shown that the electronic states of SiNWs may be modelled using

simple potential well models.[102, 103] Here, we aim to demonstrate how the infinite circular
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(a) [110] wire cross section (b) [110] wire longitudinal profile

(c) [111] wire cross section (d) [111] wire longitudinal profile

Figure 3: Cross sectional and longitudinal views of [110] and [111] oriented silicon nanowires
passivated with CH3 groups. Dotted lines show where canted Si-passivant bonds specifically
occur on [110] wire surfaces. Solid lines demarcate unit cells along the axial direction in
both cases. This figure along with 12 and 13 were illustrated using VESTA.[101]
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Table 2: Structural data and band gaps for [111] wire configurations. p refers to the
passivant. d and a are the wire diameters and lattice constants along the SiNW axis
respectively. Indirect band gaps are indicated by *.

[111] SiNWs

p Si:p ratio d (nm) a (Å) Band gap (eV)

H

38:30 1.06 9.36 2.11
74:42 1.46 9.37 1.54
122:54 1.86 9.37 1.21

182:66 2.27 9.37 1.01*

F

38:30 1.07 9.36 1.61*

74:42 1.47 9.37 1.50*

122:54 1.87 9.37 1.23*

182:66 2.27 9.37 1.08*

CH3

38:30 1.23 9.75 2.03
74:42 1.64 9.65 1.54
122:54 2.04 9.58 1.21

potential well modified with a ring shaped potential dip can model the effect of electroneg-

ative surface passivants on the electronic states in SiNWs. The infinite circular potential

well models which we consider for this purpose are depicted in Fig. 4. For a regular flat

bottom infinite circular potential well, the analytic solution to Schrödinger’s equation are

Bessel functions. [104] However, only numerical solutions exist for the well modified with

the ring-shaped potential dip. For the sake of consistency, we solve both Schrödinger’s equa-

tion numerically in both systems. We do this using the fourth order Runge-Kutta method

(RK4) [105, 106] as detailed in Appendix D. Our solutions give us the wavefunctions for

the first few eigenstates from which we calculate their corresponding charge densities. In

Fig. 5, we show the charge density profiles of these states. In the sections that follow, we

will compare these charge density profiles with those from our SiNWs.

3.4 Effective Electronic Potential Under H, F and CH3

Passivations

In this section, we consider how F and CH3 surface passivations alter the effective electronic

potential Veff of SiNWs in comparison to H passivated SiNWs. Veff here is defined as the

sum of the ionic, Hartree and exchange-correlation potentials. Fig 6 shows the Veff for

typical H, F and CH3 passivated [110] SiNWs. These are in the form of contour plots
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(a) (b)

Figure 4: (a) Infinite circular potential well and (b) infinite circular potential well with a
ring-shaped potential dip. Note that the core potentials in both wells have the same zero
of energy.

(a) (b)
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Figure 5: Normalized charge density profiles of the first six eigenstates in each of two types
of infinite circular wells. (a) Flat bottom well. (b) Well with a ring-shaped potential dip.
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Figure 6: Contour plots of the effective potential over [110] SiNW cross sections. The
effective potentials were averaged along the z direction of each unit cell. Each half is
symmetric.

of Veff averaged over the z direction within the unit cell. Throughout the cross sections

of these [110] SiNWs, we notice a series of peaks and troughs in Veff , with the troughs

centered on the Si sites. Most notably, these troughs are significantly deeper on the Si sites

located on the {100} facets for F and CH3 passivated wires, with F passivation giving the

greater increase in depth. From Fig. 3, it may be seen that it is along this {100} facet

that Si atoms alternate with the surface passivants along the z direction. Thus, the canted

structure of surface passivants along the {100} facet of [110] SiNWs brings a secondary

layer of passivants closer to the SiNW surface and allows the surface potential to penetrate

deeper into the [110] SiNW cross section.

In Fig. 7, we show the Veff for typical H, F and CH3 passivated [111] SiNWs. As with

the [110] SiNWs, we see a series of peaks and troughs throughout each cross section again

with the troughs located at Si sites. In contrast with the [110] SiNWs though, the average

Veff trough in [111] SiNWs is not as deep and there are none which are significantly deeper

than average. Referring back to the nanowire configurations shown in Fig. 3, this is likely

due to the more even spread of surface passivants along the [111] SiNW facets which allows

for a more regular Veff .

3.4.1 Surface dipole corrections

H, F and CH3 are all more electronegative than Si. Therefore these surface passivations

result in surface dipoles all around the [110] and [111] SiNW surfaces. This effect may be

modelled with a cylindrical capacitor having oppositely charged inner and outer shells. In
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Figure 7: Contour plots of the effective potential over [111] SiNW cross sections. The
effective potentials were averaged along the z direction of each unit cell. Each half is
symmetric.

the case of the cylindrical capacitor, the potential of the outer shell is equal to the vacuum

potential. However, there will be a potential offset between the inner and outer shells

which is constant in the volume between them. This may be proven using basic principles

of electrostatics. As such, we expect there to also be a potential offset between the inner

core of the SiNW and the vacuum potential which depends on the electronegativity of

the surface passivant. This must be taken into account when aligning the electronic band

structure of differently passivated SiNWs. For this purpose, we choose the H passivated

SiNW in each growth direction as the basis for comparison. Of course, the hexagonal

geometry of the SiNWs may not result in a constant potential offset as in the case of the

perfectly cylindrical capacitor model. Hence, we estimate an average potential offset ∆dipole

with respect to H-passivated wires using

∆dipole = (φvac − Vc){F/CH3} − (φvac − Vc){H}. (143)

The quantity (φvac−Vc){passivant} provides an estimate of the strength of the surface dipole

for a SiNW with a particular surface passivant. φvac is the vacuum potential and Vc is the

mean of the average electrostatic potential of Si near to the center of the SiNW.[107, 108]

The average electrostatic potential V of each Si at location ~RSi is calculated using

V =

∫
d~rρtestVeff (~r)ρ(|~r − ~RSi|) (144)

where ρtest is the charge density of a test charge. For [110] and [111] SiNWs, we calculate

the mean of V from Si atoms located within 5 Å and 4 Å radii of the respective SiNW cores
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(a) [110] SiNWs (b) [111] SiNWs

Figure 8: Band gaps of H (©), F (�) and CH3 (4) passivated wires at various [111] and
[110] wire diameters.

where the values of V are found to relatively similar to each other.

The procedure which we use for aligning the various electronic band structures is as

follows. Initially, all band structures are aligned using the vacuum potential φvac as the

reference zero of energy. In the next step, the electronic bands of F and CH3-passivated

SiNWs are further shifted by their respective ∆dipole in order to negate the difference in

dipole potential which they have relative to H-passivated SiNWs. With differences in dipole

potentials accounted for in the electronic bands, we can then proceed to study how quantum

confinement effects alter the band alignment.

3.4.2 Dependence of band gap on wire size, surface passivation and growth
orientation

In Fig. 8, we show the diameter dependence of the band gaps of H, F and CH3-passivated

[110] and [111] SiNWs.

The data points shown in Fig. 8 are fitted using the relation

Eg = Eg,bulk +
C

dα
. (145)

In Eq. 145, Eg is the band gap magnitude, d is the wire diameter, and C and α are fitting

parameters. Eg,bulk is the band gap of bulk Si. For consistency, we use the band gap of bulk
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Table 3: Fitting parameters for the band gap versus diameter curves using (145). The first
data point is excluded from the fit for each H and F-passivated SiNW.

[110] SiNWs [111] SiNWs
H F CH3 H F CH3

C 1.6 0.8 1.1 1.9 1.6 2.1
α 1.5 1.4 1.5 1.5 1.2 1.4

Si as calculated from VASP (Eg,bulk = 0.46 eV) instead of the true experimental band gap.

We are able to achieve good fits for all the data using the above model in all cases except

for the CH3-passivated [110] SiNWs. We make use of standard curve fitting packages in

Mathematica to achieve our fits. For this special case, we achieve a good fit only with an

arbitrary value of Eg,bulk = 0.04 eV. The reason for this anomaly is due to significant strain

in the CH3-passivated [110] SiNWs. We elaborate on this in a later section.

145 is derived from the effective mass approximation for a particle in a box. In general,

it relates the band gap reduction to increasing quantum confinement. In an ideal case,

α = 2.[100, 102] However, the cross sections of our model SiNWs are not perfectly square

and so we expect discrepancies between our fitted α and the ideal α = 2. This is especially

true when considering small SiNWs with very high surface-area-to volume ratios. Therefore,

we exclude the first data point (d < 1.2 nm) for H and F-passivated SiNWs in the curve

fitting process. In Fig. 8, we see that the first data points in the F-passivated [110] and [111]

SiNWs are particularly far off the trend. This is due to a combination of high surface-area-

to volume ratio and the strong electronegative F surface potential which is consequently

able to penetrate closer to the core of the small diameter SiNW.

Fig. 8 highlights two interesting issues. Firstly, it is clear that both F and CH3 surface

passivations strongly reduce the band gaps in [110] SiNWs, while the band gaps of [111]

SiNWs are barely affected by the different forms of surface passivations considered in this

study. Secondly, in the case of [110] SiNWs, CH3 surface passivations are able to reduce

the band gaps much more effectively than F surface passivations. The reason for this is not

obvious considering that F is the more electronegative of the two types of passivants. In

the sections that follow, we address these issues by performing detailed electronic structure

analysis on the H, F and CH3 passivated [110] and [111] SiNWs.
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Table 4: Dipole potential offsets in F and CH3 passivated [110] SiNWs measured with
respect to H passivated [110] SiNWs. Si:p refers to the Si to passivant ratio.

[110] SiNWs

Si:p = 42:20 Si:p = 80:28

∆dipole,F−H 1.82±0.05 1.77±0.03
∆dipole,CH3−H -0.88±0.05 -0.80±0.03

Table 5: Dipole potential offsets in F and CH3 passivated [111] SiNWs measured with
respect to H passivated [111] SiNWs. Si:p refers to the Si to passivant ratio.

[111] SiNWs

Si:p = 74:42 Si:p = 122:54

∆dipole,F−H 1.9±0.2 2.0±0.2
∆dipole,CH3−H -0.8±0.3 -0.7±0.1

3.4.3 Electronic structure of [110] silicon nanowires

Fig. 9 displays the typical band structures of H, F and CH3-passivated [110] SiNWs. They

have been aligned using the procedure outlined in Section 3.4.1. We list the relevant dipole

corrections used for this purpose in Tables 4 and 5.

In bulk Si, there exists six conduction band minima isosurfaces along the kx, ky and kz

directions and there is also a valence band minimum isosurface at the center of the Brillouin

zone. Since two of the conduction band minima may be projected onto the origin of the

axis along the [110] direction, we see that the band gap in the [110] SiNWs is always direct

at the Γ point, regardless of surface passivation.[85]

In Fig. 9, we also see that the form and symmetry of F and H-passivated [110] SiNWs

are relatively similar. However, F passivation does result in a sizeable upwards shift in

the valence bands and this accounts for the band gap reduction observed for F-passivated

SiNWs. As for CH3 passivated SiNWs, we see that it is both conduction and valence bands

closing in on each other which results in the much larger band gap reduction. It is clear

though, that the shift in the conduction band states is around two times larger than the

shift in the valence band states. We turn to an analysis of the charge density profiles of

states close to the band gap at the Γ point for an explanation of our observations.
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(a) Si:H = 42:20 (b) Si:F = 42:20 (c) Si:CH3 = 42:20

(d) Si:H = 80:28 (e) Si:F = 80:28 (f) Si:CH3 = 80:28

Figure 9: Electronic band structures of H, F and CH3-passivated [110] silicon nanowires.
Si to passivant ratios are indicated beneath each plot. The vacuum potential φvac is the
zero energy reference point. Dipole corrections ∆dipole in (143) have been applied to F and
CH3 SiNWs.
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3.4.3.1 [110] Conduction band

We show in Fig. 10 charge density profiles for the bottom six conduction band states in each

of the H, F and CH3-passivated [110] wires. We find it most useful to analyze them in the

form of contour plots averaged along the z direction. They can be seen to be very similar

to each other in terms of symmetry and ordering.1. In fact, the larger the diameters of the

SiNWs, the more similar their charges states become under different surface passivations.

We gain a number of insights when comparing the charge density profiles of these con-

duction band states in Fig. 10 together with those of the infinite circular potential well

shown earlier in Fig. 5(a). In all cases, we see that the lowest energy state is s-like with

the charge concentrated at the core of the system. Going up in energy, we see two and then

four distinct regions where charge is concentrated. Above these, we see states where there

is a primary region of high charge density at the core and a secondary region near the edges.

These strong similarities prove that the confining potential for conduction band states is

not strongly affected by changes in the potential due to different surface passivations. Fig.

6, show that the different surface passivations do not greatly affect the form of the potential

in the interior of [110] SiNWs. Therefore, we conclude that conduction band states of [110]

SiNWs are strongly localized close to the core.

Comparing the conduction band profiles in Fig. 10, we also notice that the charge

density profiles for CH3-passivated SiNWs are slightly more elongated along the y axis than

those of the F and H-passivated SiNWs. This is unlikely due to the change in surface

potential induced by the CH3 groups since CH3 is far less electronegative and inert than F.

Instead, we may attribute this effect to mechanical strain. We note from Table 1 that CH3

passivated SiNWs have much larger lattice constants along the z direction than the H and

F passivated SiNWs. This results in greater charge spread longitudinally in CH3 passivated

SiNWs which in turn causes the perceived redistribution of charge in xy plane. Moreover,

this large amount of charge spread in CH3 passivated [110] SiNWs due to strain greatly

lowers the energy levels of their conduction band states which contributes to the band gap

1The energy difference between the fifth and sixth conduction band states of the CH3-passivated wire is
only about 0.01 eV.
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Figure 10: Contour plots of the cross sectional charge density profiles for the bottom
six states of the conduction band in each [110] wire with different passivants. Charge
densities are averaged over the z direction. The Si:passivant ratio is 80:28 in each case. The
conduction minima are at the bottom.
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reduction.

3.4.3.2 [110] Valence band

Fig. 11 shows the valence band charge density profiles of H, F and CH3 passivated [110]

SiNWs. Again, we represent these using contour plots averaged over the z direction. The

charge density profiles shown here generally bear less resemblance to those of the infinite

circular potential well. Nevertheless, there are still some interesting similarities. Consider

first the charge density profile of the valence band maximum state of the H-passivated [110]

SiNW. It is clearly s-like and therefore similar in nature to the ground state charge density

profile of the infinite circular potential well. Also, the next nodal state (fourth from the

top) is similar to the sixth eigenstate of the infinite circular potential well. Both of them

have a primary region of high charge density at the core and a secondary region close to

the edges.

We turn now to examining how switching from H to F-passivation changes the valence

band electronic structure. We specifically compare the valence maxima and next nodal

states of these two types of wires. For greater clarity, we show these states in the form of 3D

isosurface plots in Fig. 12. With F passivation, the valence maximum state of the original

H-passivated [110] SiNW changes from being s-like to having charge concentrated mainly

around the {112} facets, leaving a minimum at the core. This is exactly what happens in the

case of the infinite circular potential well ground state after the ring shaped potential dip

is introduced as seen in Fig. 5. As for the next nodal state, we see that the central charge

region in the H-passivated [110] SiNW becomes larger while the side regions decrease in size.

Again, this change is similar to what happens to the sixth eigenstate in the infinite circular

potential well upon modification with the potential dip. These observations indicate that

valence band states of F-passivated [110] SiNWs are experiencing an exceptionally strong

potential dip close to the wire edges. Recall that this is indeed the case as seen from

the effective potential contour plots of F-passivated [110] SiNWs in Fig. 6. However, the

potential drop as seen from Fig. 6 is concentrated only at the {100} facets. As valence

band states may be thought of excited hole states, the charge distribution are preferentially
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Figure 11: Contour plots of the cross sectional charge density profiles for the top six states of
the valence band in each [110] wire with different passivants. Charge densities are averaged
over the z direction. The Si:passivant ratio is 80:28 in each case. The valence maxima are
at the top.
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pulled closer to the {112} side facets. Moreover, this results in the charge distribution being

more spread out or less quantum confined, such that the hole energy states shift upwards

in energy and shrink the band gap.

Comparing the charge density profiles of CH3 and H-passivated [110] SiNWs in Fig.

11, we see that the ordering of the states has been changed. Yet, the form of the charge

density profiles remain relatively similar, which indicates that valence band states in CH3

and H-passivated [110] SiNWs experience a similar surface potential. The top two valence

states in CH3-passivated [110] SiNW are equivalent to the fifth and eighth (not shown)

valence states of the H-passivated [110] SiNW. The main difference in form is due to the

CH3-passivated wire having more charge concentrated on the {100} facets. As alluded to

earlier, this can be explained by mechanical strain effects, specifically along the z axis and

also locally on the {100} facets. Fig. 13 illustrates this concept. Axial strain in the z

direction stretches the bond angle between Si1, Si3 and Si2 and other similar groups of Si

atoms. However, there is an almost right angle between atoms C1, Si4 and C2 and similar

atomic groupings on the {100} facet due to the tight packing of CH3 groups. This is also

true for bond angles between Si4, C1 and any H attached to C1. Thus, the strong distortion

of tetrahedral bonding in these cases causes charge to be redistributed to regions similar to

that between Si3 and Si4, which are least affected by strain and typically lie within the xy

plane of the {100} facets. In comparison, the H-Si-H and F-Si-H bond angles along {100}

facets are respectively found to be 105◦ and 97◦. This is why the third and fifth states

from the top of the F-passivated valence band have appearances which are intermediate

between the top two states in the CH3-passivated SiNW and the corresponding states in

the H-passivated SiNW.

From Table 1, we see that CH3-passivated SiNWs have lattice constants which are

between 3% and 8% longer than the lattice constants of comparable H passivated SiNWs.

This is accompanied by a sizeable band gap reduction of between 0.3 eV to 0.48 eV. The

strained lattice constant in CH3-passivated SiNWs explains the predicted 0.04eV band gap

of bulk Si from fitting the Eq. 145 using CH3-passivated SiNW data. Again using LDA

calculations in VASP, we calculate the band gap of bulk Si, which has been uniaxially
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(c) (d)

Figure 12: (a) and (b) are the 3D charge density profiles of the valence band maximum and
next nodal state of the H-passivated [110] SiNW respectively. (c) and (d) are the charge
density profiles of the valence band maximum and next nodal state of the F-passivated [110]
SiNW respectively. All profiles here are taken at the same isosurface level. The Si:passivant
ratio is 80:28 in each case.
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(a) (b) (c)

Figure 13: (a) Close up view of a portion of the {100} facet on a CH3-passivated [110] SiNW.
(b) and (c) show canted Si to passivant bonds on the {100} facet of H and F-passivated
[110] SiNWs respectively. All structures have been relaxed.

strained by 5%, to be 0.11 eV. This band gap even vanishes at 10% strain. Thus we see

that mechanical strain is a mechanism by which band gaps can be reduced in both bulk and

low-dimensional systems. This phenomenon has been studied in detail elsewhere by Leu et

al. [108] and Wu et al. [109]. Leu et al. reported that in the case of H-passivated [110]

SiNWs, every 1% of either tensile or compressive strain corresponds to a band gap reduction

of about 0.1 eV. Even though these calculations performed by Leu et al. made use of the

generalized gradient approximation (GGA) instead of the LDA which we have use so far in

this study, we still expect the general conclusions to agree in both cases. To support this

point, we perform additional calculations using the GGA on our H-passivated SiNW sample

which has 80 Si atoms per unit cell. Our original LDA calculations resulted in an optimized

lattice constant of 3.85 Å and a band gap of 0.91 eV for this particular SiNW. The band

gap was reduced to 0.38 eV when the lattice constant was increased by 5%. Repeating the

same calculational procedures but with the GGA led to a slightly larger lattice constant of

3.89 Å and band gap of 1.09 eV. This band gap was similarly reduced to a value of 0.6 eV

with the same 5 % strain. While the GGA predicts a band gap which is larger by about 0.2
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eV in comparison to the LDA method, we see the a similar 0.5 eV band gap reduction in

both instances when 5 % strain is introduced. From this analysis, we find that our results

are comparable with those of Leu et al. which lend support to our case that large CH3

passivants introduce strain as opposed to larger changes in the surface potential, in order to

reduce the band gaps in [110] SiNWs. We may attribute differences between our study and

that of Leu et al. to geometrical differences between CH3 and H-passivated SiNWs, which

results in the CH3-passivated [110] SiNWs experiencing additional strain localized on their

{100} facets.

Along with the band gap reduction due to mechanical strain in H-passivated [110]

SiNWs, the works of Leu et al. and Wu grossman also both predict a direct to indirect gap

transition. This occurs as a result of valence bands away from the Γ point shifting above

the original valence band maxima. We do not observed this direct to indirect band gap

transition in CH3-passivated SiNWs despite the comparable levels of strain which the CH3

groups induce. These observations highlight the possibility of using large surface passivants

to introduce axial strain in order to adjust the band gap magnitude, while simultaneously

causing localized strain on certain SiNW facets to readjust the band curvature so as to main-

tain a direct band gap. This effect has important technological applications where SiNWs

are involved in areas such as photovoltaics and sensors [17, 18, 20, 21, 88, 89], especially

where long-chain organic groups are attached to the SiNW and high optical sensitivity is

critical.

3.5 Electronic Structure of [111] Silicon Nanowires

The electronic band structures for H , F and CH3-passivated [111] SiNWs are illustrated

in Fig. 14. In general, the band gap of [111] SiNWs is not expected to be direct. This is

because the conduction band minima do not project onto the [111] axis. In the conduction

bands, we see that the major effect of surface F is to cause the conduction minimum to

shift away from the Γ point. Surface CH3 though causes greater upward curvature in the

conduction bands close to the band edge. Overall, the conduction bands are relatively

flat and F and CH3 passivations do not significantly change the position of the conduction
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band minimum. In the valence bands, we see that both F and CH3 passivations cause

an upwards shift of bands below the valence maximum but these do not end up shifting

above the valence maximum. Since the valence maximum and conduction minimum remain

relatively unaffected by F and CH3 passivations, the band gap magnitude of [111] SiNWs

is not affected by these two surface passivations.

Analyzing charge density profiles of [111] SiNWs shown in Figs. 15 and 16, we see that

although there are slight ordering differences between the states, F and CH3 passivations

do little to alter the charge distributions in both valence and conduction band states. This

implies that conduction and valence band states in [111] SiNWs under H, F and CH3

passivations experience a similar confining potential.

The reasons why F and CH3 passivations do not strongly alter the electronic states of

[111] SiNWs can be obtained via structural considerations. From Fig. 3, we see that the

surface passivants in [111] SiNWs are more evenly spread out than those in [110] SiNWs

where the passivants are more neatly aligned in rows along the z direction. Furthermore,

there are two rows of passivants on the {100} facet of the [110] SiNWs. Therefore, the

surface potential, particularly due to highly electronegative surface passivants like F, is able

to penetrate much deeper into the interior of [110] SiNWs and affect the electronic states.

In addition, the structure of [111] SiNWs does not allow for the type of tight packing of

surface passivants and loss of tetragonal bonding geometry as seen on the {100} facet of

[110] SiNWs. This prevents localized strain from building up on certain facets of [111]

SiNWs as is the case in the [110] SiNWs. Finally, we see that along the z axis of [111]

SiNWs unit cells, there are six Si-Si bond linkages, three of which are parallel to the z axis.

In contrast, there are only two Si-Si bond linkages along the length of the unit cell for [110]

SiNWs, both of which are not parallel to the z axis. Hence, axial strain is always more

effectively distributed over the Si-Si bond linkages in [111] SiNWs than in [110] SiNWs,

such that charge states in [111] SiNWs experience less distortion along the z direction.
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(a) Si:H = 74:42 (b) Si:F = 74:42 (c) Si:CH3 = 74:42

(d) Si:H=122:54 (e) Si:F = 122:54 (f) Si:CH3=122:54

Figure 14: Electronic band structures of H, F and CH3-passivated [111] silicon nanowires.
Si to passivant ratios are indicated beneath each plot. The vacuum potential φvac is the
zero energy reference point. Dipole corrections ∆dipole in (143) have been applied to F and
CH3 SiNWs.
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Figure 15: Contour plots of the cross sectional charge density profiles for the bottom six
(degeneracies not shown) states of the conduction band in each [111] wire with different
passivants. Charge densities are averaged over the z direction. The Si:passivant ratio is
122:54 in each case. The conduction band minima are at the bottom.
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Figure 16: Contour plots of the cross sectional charge density profiles for the top six (de-
generacies not shown) states of the valence band in each [111] wire with different passivants.
Charge densities are averaged over the z direction. The Si:passivant ratio is 122:54 in each
case. The valence band maxima are at the top.
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3.6 Summary

Using first-principles calculations, we have investigated how F and CH3 surface passivations

affect the electronic structure of [110] and [111] oriented SiNWs, using their H passivated

counterparts as a basis for comparison. Common to both [110] and [111] oriented SiNWs

was that a reduction in diameter always caused a band gap increase, regardless of surface

passivation. This effect could be readily explained and modelled by considering how a

diameter reduction naturally corresponded to an increase in quantum confinement and

vice-versa.

In [110] SiNWs, it was found that F and CH3 surface passivations always resulted

in considerable band gap reductions. However, this effect was achieved by very different

fundamental mechanisms in both cases. Surface F, with high electronegativity, caused the

band gap reduction by strongly altering the electron potential close to the {100} facets of

the [110] SiNWs, which in turn changed the quantum confinement of the electronic states.

Specifically, electronic states just under the valence maxima became more distributed closer

towards the {100} facets and hence less confined, such that they moved upwards in energy

to reduce the band gap in F passivated wires. CH3 groups were found to be relatively

inert as they did little to alter the confining electronic potentials in [110] SiNWs. Instead,

their relatively large size caused longitudinal strain of up to almost 10% which resulted

in significant charge spread axially. Close packing of the bulky CH3 groups on the {100}

facets also caused additional bond distortion and charge redistribution locally on those

facets. All in all, quantum confinement of electronic states is reduced more strongly by

strain introduced by large CH3 groups, than it is by the drop in confining potential near

the wire surface due to highly electronegative F passivation

In [111] SiNWs, F and CH3 surface passivations had little effect on the electronic struc-

ture. Electronic band structures, charge densities and band structures were all relatively

similar for F, CH3 and H passivated [111] SiNWs of the same diameter. The reason for

this was that the structure of [111] SiNWs permitted surface passivants to be more evenly

spread on their facets. This prevented strain from building up locally on the facets and

also hindered the surface potential from penetrating too much into the interior of the wires.
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Longitudinal strain was also further mitigated by the longer [111] SiNW lattice constants

and the fact that there were more Si-Si bonds parallel to the wire axis which allowed for a

more effective and even distribution of strain amongst the various Si-Si bonds.

Throughout our study, we also demonstrated that electronic states close to the band

edges of F, H and CH3-passivated [110] and [111] SiNWs could be modelled well by the

infinite circular potential well. We also proposed a method for calculating the potential

offset between SiNWs having different surface dipole potentials due to surface passivations

of varying electronegativity.[110]
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CHAPTER IV

ELECTRONIC AND THERMOELECTRIC PROPERTIES

OF COPPER SULFIDE AND COPPER SELENIDE

4.1 Introduction

The high temperature phases of p-type copper sulfide (Cu2S) and copper selenide (Cu2Se)

have recently been demonstrated by experiment to possess very high thermoelectric efficien-

cies. The ZT values of Cu2S and Cu2Se are 1.7 and 1.5 respectively. This, combined with

their non-toxic nature, makes them highly competitive with other leading thermoelectric

materials such as PbTe and SiGe alloys which happen to be far more expensive.[36, 38] On

top of this, Cu2S and Cu2Se have potential applications as photovoltaic materials [22, 23,

24, 25, 26, 27, 28, 29] and in the development of lithium ion batteries.[28, 30, 31, 32, 33, 34]

The high temperature phases of Cu2S and Cu2Se are most interesting. S or Se atoms

form an ordered crystalline sublattice but Cu atoms are disordered. Currently, there is still

much uncertainty over the structure of these materials arising from the Cu disorder. This

presents a problem in calculating their electronic and thermoelectric properties since there

are no reliable structural models to begin with. Most first-principles studies rely on the

antifluorite structure of Cu2S and Cu2Se to make predictions. A major issue with this is

the lack of band gap in most of these calculations as a result of using a purely fictitious

antifluorite structure.[56, 111, 112]

A number of first-principles electronic structural analyses have previously been per-

formed on Cu2S [29, 56, 111] and Cu2Se [111, 112, 113] by various groups. Rasander et al.,

Lukashev et al. and Tyagi et al. have analyzed the electronic structure of the unphysical

but nevertheless insightful ordered antifluorite structure of cubic Cu2S and Cu2Se. In this

antifluorite structure, all the Cu atoms are fixed in the 8c tetrahedral sites and S or Se

atoms occupy FCC sites. This is different from the actual disordered cubic phases of Cu2S
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and Cu2Se at high temperature where in reality, the Cu atoms are disordered and occupy

the 8c sites and also other nearby sites according to a certain probability distribution. Typ-

ical DFT calculations on the antifluorite form of Cu2S and Cu2Se lead to band structures

which have no gap unless an on-site Coulomb interaction (+U) [114] is included or hybrid

functionals are used.[111, 112] Only the works of Lukashev et al. and Xu et al. attempt

to address the effect of Cu disorder in the high temperature phases of Cu2S. Most notably,

the Cu disorder opens up a band gap.[29, 56]

Based on first-principles electronic structure calculations on antifluorite Cu2Se, Tyagi

et al. proceeded to calculate the thermolectric properties of Cu2Se. Despite not accounting

for Cu disorder, good agreement was found between their theoretical predicted Seebeck

coefficients and the experimentally observed Seebeck coefficient.[38, 113]

Evidently, there are a number of shortcomings in previous theoretical and computational

studies on Cu2S and Cu2Se. They either lack a good structural model for Cu2S or Cu2Se

which incorporates realistic Cu disorder to begin with or they fail to provide sufficient

details concerning the electronic structure and thermoelectric properties of these materials.

As mentioned, the thermoelectric properties of Cu2S and Cu2Se are of immense interest due

to recent experimental results which show that Cu2S and Cu2Se are currently amongst the

most efficient thermoelectric materials in the world. We seek to address these issues in this

chapter by providing a comprehensive study on the electronic and thermoelectric properties

of Cu2S and Cu2Se with the inclusion of realistic Cu disorder. We begin by elaborating on

a first-principles random structure search method to find energetically stable structures of

high temperature Cu2S and Cu2Se which include the vital Cu disorder. We then discuss

the electronic structure of the most energetically stable structures found for Cu2S and

Cu2Se and proceed to evaluate their thermoelectric properties using Boltzmann transport

theory. In particular, we calculate their Seebeck coefficients, electrical conductivities and

power factors as a function of hole concentration. These three quantities represent purely

electronic contributions to ZT .
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4.2 Phases of Copper Sulphide and Copper Selenide

Copper sulfide and copper selenide may exist in various phases depending on temperature

and percentage composition of Cu. This results in both materials having very complicated

phase diagrams which we show in Appendix E. We focus here on Cu2S and Cu2Se and give

a brief overview of their main phases below.

Cu2S with small amounts of Cu deficiencies, has three important primary phases which

we label below as α, β and γ.

1. α-Cu2S

The α phase represents the most stable low temperature phase of Cu2S and it is also

widely known as low chalcocite which is an important ore from which Cu is harvested.

α-Cu2S, which exists at temperatures ranging from room temperature to around 380K,

has an ordered monoclinic structure with Cu and S atoms in fixed positions. The

primitive unit cell of α-Cu2S is very big with a complicated arrangement of 96 Cu

atoms and 48 S atoms. The most notable feature in the structure of α-Cu2S is

its layered structure. Each layer consists of a roughly hexagonal arrangement of S

atoms. Cu atoms both within and between layers are trigonally bonded with 3 other

S neighbours.[52, 115]

2. β-Cu2S

The β phase of Cu2S, existing at temperatures between 380K and 700K, is similar to

its α phase as it too retains a layered structure. The S atoms are arranged in a distinct

hexagonal close-packed lattice but the Cu atoms are completely disordered within and

between the hexagonal S layers. As seen from the copper sulphide phase diagram in

Appendix E, the phase field of beta-Cu2S is particularly narrow.[43, 52, 54, 56, 116]

3. γ-Cu2S

Beyond 700K, the layered structure of Cu2S disappears as it transitions into the γ

phase. The S atoms remain ordered but in a face centered cubic (FCC) lattice while

the Cu atoms are disordered between them.[53] This γ phase of Cu2S is of particular

interest as a high temperature thermoelectric material which is designed to function
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at temperatures of around 1000K. The γ phase of Cu2S has a relatively large phase

field which makes it easier to access than the the β phase.[36, 38]

Cu2−xSe has only two major phases. Unlike Cu2−xS, it does not possess an intermediate

phase with a hexagonal arrangement of Se atoms.

1. α-Cu2Se

The structure of α-Cu2Se is widely accepted as being ordered. Yet, the exact details

of its structural form are still a subject of much debate. Recently, Nguyen et al. [117]

and Chi et al. [118] used first-principles techniques to show that α-Cu2Se has a small

monoclinic unit cell with few atoms unlike α-Cu2S. The structure proposed by Chi et

al. was slightly more energetically stable although both groups agreed that α-Cu2Se,

like α-Cu2S, has a layered structure.

2. β Cu2Se

The β phase of Cu2Se is similar to the γ phase of Cu2S only with Se forming the FCC

sublattice instead of S. The Cu atoms are likewise disordered. The close structural

relation between β-Cu2Se and γ-Cu2S makes β-Cu2Se another interesting high tem-

perature thermoelectric material with high ZT . However, β-Cu2Se notably begins to

form at a much lower 400K.[38]

4.3 Structural Models of Copper Sulfide and Copper Se-
lenide

In this study, we are primarily interested in the high temperature phases of Cu2S and

Cu2Se since they have been experimentally proven to be high ZT thermoelectric materials.

Specifically these are the β and γ phases of Cu2S as well as β-Cu2Se mentioned in the

previous section. In this section, we elucidate their structures in much greater detail. Since

in all cases, S atoms form an ordered crystalline lattice, the main issue which we address is

that of Cu disorder.

Before we begin further discussion, it is crucial for the reader to realise that the nomen-

clature for the various phases of Cu2S varies between authors and can be very confusing. For
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example, high chalcocite can refer to both the hexagonal and cubic phases [53, 56]. Other

authors may even label the low temperature monoclinic phase of Cu2S as the γ phase and

the higher temperature hexagonal and cubic phases of Cu2S as β and α respectively.[36, 119]

Similar inconsistencies in nomenclature exist for the different phases of Cu2Se as well. We

wish to avoid confusion over the structural features of the various phases of Cu2S and

Cu2Se that we are interested in. Therefore, from here on, we will refer to β-Cu2S simply as

hexagonal Cu2S, γ-Cu2S as cubic Cu2S and β-Cu2Se as cubic Cu2Se.

4.3.1 Hexagonal Copper Sulphide

In hexagonal Cu2S, where S atoms are hexagonally close-packed, it is reasonable to expect

that the interaction between Cu atoms with the crystalline S sublattice will result in Cu

atoms having certain preferred sites. Various groups have attempted to use X-ray diffraction

for the purpose of identifying these preferred Cu sites each with an associated occupation

probability. They typically agree on Cu preferring the 2b and 4f Wyckoff1 sites but disagree

on other possible Cu occupation sites.[53, 54, 116, 120] We find the models proposed by

Buerger and Wuensch [54, 116] and Will et al. [53] to be most agreeable with each other.

The Cu occupation data provided by Buerger and Wuensch lists the preferred Cu occupation

sites as 2b, 4f and 6g.[54, 116] Will et al. [53] predicted Cu to also favourably occupy the

2b, 4f and 6g in addition to 6h and 2a. However, the 2a occupation probability for Cu as

predicted by Will et al. is a measly 0.025 and should be ignored. Moreover, the 6h site

predicted by Will et al. is unphysically close to the FCC S sites.[56] We therefore find it

reasonable to develop structural models of hexagonal Cu2S based on the Cu preferentially

occupying the 2b, 4f and 6g sites using the occupation probabilities supplied by Buerger

and Wuensch.[54, 116] Details of the 2b, 4f and 6g sites and their occupation probabilities

are shown in Table 6. We choose to use lattice parameters provided by Will et al. as

they provide more recent and detailed methods. According to Will et al., a = 4.033Å and

c = 6.74Å for hexagonal Cu2S such that c/a = 1.67 at 573K. For comparison, in an ideal

1In Wyckoff notation, the number in front of the letter is the total number of equivalent symmetry sites
in the unit cell. For example, 2b has a total of 2 equivalent symmetry sites and 192l has a total of 192
equivalent symmetry sites.
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Table 6: S and Cu occupation probabilities for various XRD determined Wyckoff symmetry
sites in hexagonal Cu2S. The lattice parameters are a = 4.033Å and c = 6.74Å with
c/a = 1.67 at 573K.[53]

System Atom Wyckoff site Description Occupation
(Refs. [54]
and [116])

Occupation
(our initial
configura-

tion)

Hexagonal
Cu2S

S 2c (1/3, 2/3, 1/4) Hexagonal
close-packed

100% 100%

Cu (1) 2b (0, 0, 1/4) Intralayer with 3
S nearest

neighbours

43.5% 43.5%

Cu (2) 4f (1/3, 2/3, 0.578) Directly above
and below each S

35.5% 35.5%

Cu (3) 6g (0, 1/2, 0) Midway between
2 interlayer S

atoms

21.0% 21.0%

hexagonal close-packed lattice, c/a =
√

8
3 = 1.63.

The 2b, 4f and 6g Cu symmetry sites in hexagonal Cu2S are depicted in Fig. 17. The

occupation probability for these sites are listed in Table 6. 2b sites are in the same plane

as the S atoms and are in trigonal planar arrangements with the S atoms. The hexagonal

pattern formed by S atoms and all possible 2b Cu sites is clearly depicted in Figure 17(b).

The 4f and 6g are all interlayer sites. 4f sites are directly above and below each S atom.

Individual 6g sites at the exact center of each layer diagonally link 2 S atoms from separate

layers with both bond angles being 180◦.

4.3.2 Cubic Copper Sulfide and Cubic Copper Selenide

As mentioned earlier, the S atoms in the cubic phase of Cu2S are organized as an FCC

lattice while the Cu atoms are completely disordered and mobile within the FCC sublattice

of S atoms. Thus far, the structure of cubic Cu2S has only been investigated experimentally

by Will et al. [53] using X-ray diffraction (XRD) studies performed at a temperature of

773K. In this study, Will et al. found the lattice constant of cubic Cu2S to be 5.762Å at
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Figure 17: (a) and (b) show the hexagonal arrangement of S atoms (yellow spheres) in
hexagonal Cu2S as well as all equivalent Cu (blue spheres) symmetry sites of 2b, 4f and 6g.
Hexagonal unit cell borders are demarcated by thin black lines. This figure was illustrated
with VESTA.[101]

773K. Will et al. also determined the occupation probabilities of Cu at various Wyckoff

symmetry sites (8c, 192l and 4b). As in the case of hexagonal Cu2S, we interpret these

sites as the preferred sites for Cu atoms within the crystalline S sublattice. Results for the

structural properties of cubic Cu2S as determined by Will et al. are summarized in Table

7.[53]

The structure of cubic Cu2Se at 550K was investigated via XRD by Skomorokhov et al.

[57] and these results are summarized alongside those for Cu2S in Table 7. Unlike the case

of cubic Cu2S, Cu atoms in Cu2Se are seen to have a strong preference for the tetragonal

8c sites and also the 32f sites to a smaller extent. Skomorokhov et al. further determined

the temperature dependence of the lattice constant of cubic Cu2Se up to 625 K where the

lattice constant reached 5.8455Å. Extrapolating this data, we estimate the lattice constant

of Cu2Se to increase slightly to 5.85Å at 900K.

We illustrate the S and Cu Wyckoff symmetry sites of Cu2S in Figs. 18(a) and (c). Fig.

18 may be viewed as a conventional FCC S lattice with all possible 8c and 192l Cu sites

shown in between the S sites. For simplicity, we do not show the single 4b Cu site which

is at the center of the cell. The Cu 8c Wyckoff site is the tetragonal site which has four
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Table 7: S, Se and Cu occupation probabilities for various XRD determined Wyckoff
symmetry sites in cubic Cu2S at 773K and Cu2Se at . The lattice constant of Cu2S is
5.762Å.[53]

System Atom Wyckoff site Description Occupation
(Refs. [53]
and [57])

Occupation
(our initial
configura-

tion)

Cubic
Cu2S

S 4a (0, 0, 0) Face-centered
cubic

100% 100%

Cu (1) 8c (1/4, 1/4, 1/4) Tetrahedral 25.75% 30%

Cu (2) 192l (0.11, 0.17,
0.28)

4 clusters of 6
sites arranged
tetrahedrally

around each 8c
site

69.5% 70%

Cu (3) 4b (1/2, 1/2, 1/2) Octahedral 4.75% 0%

Cubic
Cu2Se

Se 4a (0, 0, 0) Face-centered
cubic

100% 100%

Cu (1) 8c (1/4, 1/4, 1/4) Tetrahedral 71.87% 70%

Cu (2) 32f (1/3, 1/3, 1/3) 4 sites arranged
tetrahedrally

around each 8c
site

28.13% 30%
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nearest S neighbours within each quadrant. The 192l sites form complex polyhedra within

each of the eight quadrants and are also located on the faces of the tetrahedra formed by

groups of four nearest S neighbours centered around their closest 8c site.

The Se and Cu Wyckoff symmetry sites of Cu2Se are likewise depicted in Figs. 18(b)

and (d). In this case, the Se instead of S atoms fully occupy conventional FCC sites and the

Cu 8c site is similarly described as for the case of Cu2S. The Cu 32f site form tetrahedra

around each Cu 8c site. In both Cu2S and Cu2Se, we see that S atoms form a tetrahedral

cage around the preferred Cu occupation sites.

4.3.3 Algorithm for Constructing Disordered Models of Copper Sulfide and
Copper Selenide

Here, we describe the algorithm which we use for creating structural models of the disordered

phases of copper sulfide and copper selenide. The input data for the symmetry sites and

their respective occupation probabilities are taken from Tables 6 and 7. Let us assume that

there are n Wyckoff symmetry types for Cu, each with occupation probability xn such that

x1 +x2 + · · ·+xn = 1.0. We then choose a random number r1 along the number line ranging

between 0 and 1 as drawn in Fig. 19. If the random number is within the range
∑m−1

i=0 xi

to
∑m

i=0 xi, where m is some number from 1 to n, then a type m Wyckoff site is selected.

At this point, there are now M symmetry sites of type m to choose from, with each choice

being equally probable. A second random number r2 ranging from 1 to M is generated

in order to finally choose one of the M symmetry sites of type m for Cu to occupy. This

process is repeated until the desired number of Cu atoms have been added to the structure.

The S or Se sites are themselves all fully occupied. Lukashev et al. [56] applied a similar

method for generating their random structures of hexagonal and cubic copper sulfide. We

make use of the GNU Scientific Library (GSL) [121] random number generator to generate

the random numbers which we require.

To simulate enough Cu disorder, we make use of 2 × 2 × 2 supercells for each case.

Thus, in our hexagonal copper sulfide supercells, there are 32 Cu and 16 S atoms. In our

cubic copper sulfide (selenide) supercells, there are 64 Cu and 32 S (Se) atoms. Supercells

any larger than 2 × 2 × 2 are too expensive to handle computationally, given our current
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(a) Cu2S (b) Cu2Se

(c) Cu2S (d) Cu2Se

Figure 18: (a) and (b) highlight the preferred Cu symmetry sites relative to the tetrahe-
dron formed by closest S or Se atoms. (c) and (d) show the cubic structure of the high
temperature phases of Cu2S and Cu2Se. S (yellow spheres) and Se (green spheres) atoms in
both structures occupy fixed FCC sites. Cu (blue spheres) atoms are shown at all preferred
symmetry sites. For simplicity, we do not highlight the numerous Cu sites with blue spheres
in (c). This figure was illustrated with VESTA.[101]
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x0 = 0.0x0 = 0.0x0 = 0.0x0 = 0.0x0 = 0.0 x1 x1 + x2 x1 + x2 + x3
. . . ∑n

i=0 xi = 1.0

Figure 19: Number line from 0.0 to 1.0. The xn are occupation probabilities for the n
different Cu symmetry site types.

resources.

4.3.4 Random Structure Search

In order to find stable structures of disordered hexagonal copper sulfide and cubic copper

sulfide and selenide, we create and structurally optimize twenty different random structures

for each of these materials. We then keep the four lowest energy structures of each material

for further analysis.

For structural optimizations, we use a generalised gradient approximation (GGA) [122,

123] within the context of density functional theory (DFT) with projector augmented wave

(PAW) pseudopotentials.[71, 72] We are able use a relatively small K-point grid to sample

the Brillouin zone since our supercells are large. For hexagonal copper sulfide, we use a

3 × 3 × 2 k-point grid while for both cubic copper sulfide and copper selenide, we use

a 2 × 2 × 2 k-point grid. We also use a force convergence criterion of 0.02eVÅ−1. All

structural optimizations are implemented using the Vienna Ab-Initio Simulation Package

(VASP).[96, 97, 98, 99]

We use denser k-point grids for electronic band structure and density of states calcu-

lations. For density of states calculations on cubic Cu2S and Cu2Se, the k-point grid size

of 9 × 9 × 9 and in hexagonal Cu2S, we use a k-point grid of 13 × 13 × 7. The electronic

structures calculated using these parameters are fed as input to BoltzTraP which calculates

the related thermoelectric properties.

We show in Fig. 20 the fully optimized lowest energy structures of hexagonal and

cubic Cu2S and cubic Cu2Se. The defining features of each structure are still intact after

optimization, despite the lack of symmetry resulting from massive Cu disorder. Specifically,

a rough hexagonal sublattice of S is maintained in hexagonal Cu2S while an approximate

FCC S (Se) sublattice is maintained for cubic Cu2S (Cu2Se). In hexagonal Cu2S, most if

not all of the Cu atoms are also still clearly intralayer or interlayer.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Lowest energy structures of hexagonal ((a) and (b))and cubic ((c) and (d))Cu2S
and cubic ((e) and (f)) Cu2Se after structural optimization. Solid black lines demarcate the
2× 2× 2 supercell boundaries. This figure was illustrated using VESTA.[101]
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Table 8: Energy per Cu2S/Se unit in the four most energetically stable structures of
hexagonal and cubic Cu2S and cubic Cu2Se from a random structure search.

Energy per Cu2S/Se unit (eV) in sample
1 2 3 4

Hexagonal Cu2S -11.975 -11.972 -11.969 -11.966
Cubic Cu2S -11.936 -11.927 -11.927 -11.927
Cubic Cu2Se -11.209 -11.205 -11.194 -11.189

The energies of the four most energetically stable structures hexagonal and cubic Cu2S

and cubic Cu2Se are recorded in Table 8. The four samples in each system are labelled such

that the energies increase from sample 1 to sample 4. As can be seen, the differences in

energy between all four lowest energy structures in each system is less than 0.05eV which is

very small. Yet, this is enough to account for sizeable differences between their electronic

structures and thermoelectric properties, particular in the case of hexagonal Cu2S.

4.4 Bader Charge Analysis

First-principles quantum theory, as applied in VASP and similar simulation packages, does

not specify how the electronic charge density of a molecule or solid should be partitioned

between the constituent atoms. However, Bader developed a formalism for partitioning

molecules or solids into individual atoms based on this continuous electronic charge den-

sity. In Bader charge analysis as this is commonly known, the constituent atoms are quite

intuitively separated by surfaces which pass through the minima in the electronic charge

density of a molecule or solid.[124] Thus, Bader charge analysis affords us the opportunity

to estimate charges on atoms within molecules and solids given the electronic charge density

of the entire system. We use the Bader code developed by Henkelman et al. to perform

the required Bader charge analysis on Cu2S and Cu2Se in order to estimate the number of

electrons on individual S, Se and Cu atoms.[125, 126, 127] These are averaged over each

atomic species in hexagonal and cubic Cu2S and cubic Cu2Se and listed in Table 9.

In our simulations, the valence electron configuration for Cu is 3d10 4s1 while that for S

and Se are 3s2 3p4 and 4s2 4p4 respectively. The results from our Bader charge analysis show

that in both cubic and hexagonal Cu2S, each Cu on average transfers about 0.4 electrons
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Table 9: Average number of electrons on S, Se and Cu atoms within hexagonal and cubic
Cu2S and hexagonal Cu2Se. The average number of electrons on Cu atoms is listed within
brackets beside the average number of electrons on either S or Se atoms.

Average number of electrons per S, Se and Cu in sample
1 2 3 4

Hexagonal Cu2S 6.79 (10.61) 6.78 (10.61) 6.76 (10.62) 6.77 (10.61)
Cubic Cu2S 6.79 (10.61) 6.78 (10.61) 6.80 (10.60) 6.78 (10.61)
Cubic Cu2Se 6.53 (10.73) 6.54 (10.73) 6.54 (10.73) 6.54 (10.73)

to each S atom, which then receives 0.8 electrons on average, since there are 2 Cu atoms

for every S atom. In Cu2Se, each Cu atom transfers close to 0.25 electrons to each S atom

which receives about 0.5 electrons. Therefore, we conclude that Cu-S and Cu-Se bonds in

hexagonal and cubic Cu2S along with cubic Cu2Se are not completely ionic. We perform

additional Bader charge analysis on cubic Cu2−xS and Cu2−xSe during molecular dynamics

simulations at 900K. These results lend further support to our conclusions here and we

describe them in detail in the next chapter.

4.5 Electronic structure

Figs. 21, 22 and 23 show the band structures and density of states (DOS) of hexagonal Cu2S

cubic Cu2S and cubic Cu2Se respectively. Each figure consists of four plots corresponding

to the four most energetically stable structures in each case. We focus primarily on the

valence bands since Cu2S and Cu2Se are normally p doped. Considering all electronic band

structures, we see a few common trends within the valence bands. Firstly, all the electronic

band structures shown have finite band gaps. We list the size of these gaps in Table 10. Of

course, these gaps are all far smaller than the experimentally predicted band gap of around

1.2eV for each material. This is a well known and common issue with the use of approximate

exchange correlation functions in DFT. Nevertheless, the fact that we obtain finite band

gaps is highly significant because it underscores the importance of Cu disorder on the size

of the band gap. Previous electronic studies on the fictitious ordered antifluorite structures

of Cu2S and Cu2Se failed to produce a band gap without the use of additional Coulomb

interaction terms or hybrid functionals.[111, 112] Secondly, the valence bands just under the

77



Table 10: Band gaps of hexagonal and cubic Cu2 and cubic Cu2Se. Samples 1 to 4 for
each system are in order of increasing energy as determined by first-principles structural
optimization using VASP.

System Sample Band gap (eV)

Hexagonal Cu2S

1 0.44
2 0.27
3 0.27
4 0.40

Cubic Cu2S

1 0.61
2 0.61
3 0.61
4 0.45

Cubic Cu2Se

1 0.10
2 0.18
3 0.22
4 0.14

valence band edge are composed predominantly of a mix between S/Se-p and Cu-d orbitals.

Thirdly, bands close to the valence band edges are typically very flat, especially for those

further below the conduction band edge.

The electronic band structures of cubic Cu2S and Cu2Se are most different close to

the band edges. Here, the conduction minima and valence maxima of the Cu2Se bands

are clearly more dispersive than those belonging to Cu2S. Furthermore, the band gaps in

Cu2Se are noticeably smaller than those in Cu2S. This is likely because cubic Cu2Se, having

a higher proportion of Cu atoms located closer to the tetrahedral 8c position, has a structure

that is more closely related to the idealized antifluorite structure. Earlier first-principles

studies have shown that Cu2S and Cu2Se in the ordered antifluorite structure have either

minimal or no band gap.

In general, the features of the electronic bands and density of states do not change

much with Cu disorder amongst the most energetically stable structures which we examine.

Extending the range of the density of states for the lowest energy structure of hexagonal

Cu2S, cubic Cu2S and cubic Cu2Se, we note a few more interesting features. From Fig. 24,
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Figure 21: (a), (b), (c) and (d) are the electronic band structures and density of states
of hexagonal Cu2S. They are arranged in order of increasing energy. The zero of energy is
arbitrarily located at the gap center.
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(c) Sample 3
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Figure 22: (a), (b), (c) and (d) are the electronic band structures and density of states
of cubic Cu2S from first-principles structural optimization. They are arranged in order of
increasing energy. The zero of energy is arbitrarily located at the gap center.
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Figure 23: (a), (b), (c) and (d) are the electronic band structures and density of states
of cubic Cu2Se from first-principles structural optimization. They are arranged in order of
increasing energy. The zero of energy is arbitrarily located at the gap center.
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Figure 24: (a), (b), (c) and (d) are the density of states of most energetically stable structure
obtained for hexagonal Cu2S, cubic Cu2S and cubic Cu2Se respectively.

we see that each density of states plot may be divided into three regions within the valence

bands. The first region is far below the band gap at around -15eV. This is where the lowest

energy non-bonding S-s or Se-s states are concentrated.

Between about -4eV to -7eV, there is a second region. The lower part of this region

consists mostly of S/Se-p and Cu-s bonding states while the upper portion is dominated

by S/Se-p hybridized with Cu-d bonding states. This makes sense since the symmetry of p

orbitals allows p orbitals to overlap much better with s orbitals than d orbitals.

The third region represents the density of states from around -4eV up to the valence

band edge around 0eV. In this third region, despite a strong presence of S-p or Se-p states

close to the band edge, there is an overwhelmingly huge peak in the number of Cu-d non-

bonding states. d orbitals in general are highly non-interacting and they therefore manifest

themselves as very flat bands in the electronic band structure. This is exactly what we see

for bands within a few eVs under the valence band edge. The flatness of the valence bands

a few kBT below the valence band edge has important consequences. Generally, flat bands
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imply a high carrier effective mass since carrier effective mass is inversely proportional to

band curvature. This is highly beneficial as it contributes towards large Seebeck coefficient.

At the same time though, it also results in a lower carrier group velocity which lowers con-

ductivity. We show in detail how the electronic bands balance out the Seebeck coefficient

and hole conductivity in the next section.[85, 128] We elaborate further on these points

when we discuss the thermoelectric properties of Cu2S and Cu2Se in the next section.

Interestingly enough, the general features of the density of states described above are

also present in the density of states for the highly idealized antifluorite structure of Cu2S

and Cu2Se.[56, 111, 112, 113] However, there is one main difference which stands out. In the

case of antifluorite Cu2S (Cu2Se), the second (S/Se-s,Cu-s and Cu-d bonding orbitals) and

third region (Cu-d nonbonding orbitals) in the density of states as just described above will

become narrower and separate with a distinct energy gap of about 1eV.[56, 111, 112, 113]

We find our first-principles density of states for Cu2S and Cu2Se to be consistent

with those obtained via photoemission studies performed by Kashida et al..[129] Although

Kashida et al. were unable to confirm the phases and structures of their Cu2S and Cu2Se

samples, their photoemission results show the peak density of S-p or Se-p states are sep-

arated from the peak density of Cu-d states by about 2.5eV.[129] This is also what our

first-principles results also indicate.

4.6 Thermoelectric properties

Cu deficiencies are common in Cu2S and Cu2Se which make them natural p-type semicon-

ductors. As such, we focus on their p-type thermoelectric properties which are determined

by their valence bands.

4.6.1 Hexagonal Cu2S

We first discuss the thermoelectric properties of hexagonal Cu2S which are shown in Fig.

25. These thermoelectric properties namely are the Seebeck coefficient (S), electrical con-

ductivity (σ/τ) and power factors (S2σ/τ). Recall that in the constant relaxation time

approximation which we use for calculating thermoelectric properties, the relaxation time

is an unknown constant and only the Seebeck coefficient can be calculated independently of
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the relaxation time (τ) and be compared directly with experiment. We also calculate these

quantities only after applying a scissor operator shift [130] to the conduction bands such

that the band gap resembles the experimental gap as closely as possible. The rationale for

doing so is to prevent the smearing factor ∂f/∂ε in the Boltzmann transport equations (Eq.

142) from including erroneous contributions from the conduction bands. This smearing is of

particular concern especially at high temperatures. We choose a constant 0.8eV shift for all

cases which is high enough for the conduction bands to have minimal influence as expected

within experimental samples. Since hexagonal Cu2S has a layered structure, we average

these tensor quantities in-plane (xy) and out-of-plane (z) and present them separately.

At a carrier concentration of 1×1019cm−3, the in-plane Seebeck coefficient for hexagonal

Cu2S ranges between 325µVK−1 and 475µVK−1 for our four most energetically stable struc-

tures. From here, the Seebeck coefficient generally decreases, although not always smoothly,

with increasing hole concentration. This is consistent with the Mott relation.[131] The in-

plane Seebeck coefficients of samples 1 and 4 are considerably larger than those of samples

2 and 3. Considering their electronic band structures in Fig. 21, this is related to how

dispersive the valence bands are near to the valence band edge. We note that samples 1

and 4 have the flattest valence bands. According to Kuroki et al. [132], the magnitude

of the Seebeck coefficient is generally proportional to the difference between the squares of

the carrier group velocities above and below µ in Eq. 142. This implies that flatter bands

contribute to a higher Seebeck coefficient and this is indeed what we are observing here.

The out-of-plane Seebeck coefficients for samples 1,2 and 4 are similar to their in-plane

counterparts for low hole concentrations. Only for sample 3 is the out-of-plane Seebeck

coefficient significantly larger than its in-plane Seebeck coefficient. As hole concentration

is increased, these out-of-plane Seebeck coefficients decay to zero but not as quickly as the

corresponding in-plane Seebeck coefficients. Overall, our results indicate better performance

of the Seebeck coefficient in the layer direction. Since we see from Eq. 142 that the

Seebeck coefficient is calculated from the inverse of the electrical conductivity, this is a

direct consequence of the electrical conductivity in the layer direction being an order of

magnitude less than it is within the layer.
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Figure 25: (a), (b) and (c) are the Seebeck coefficient, electrical conductivity and power
factor for hexagonal Cu2S respectively averaged over x and y directions. (d), (e) and (f)
are the Seebeck coefficient, electrical conductivity and power factor for hexagonal Cu2S
respectively in the z layer direction only. All quantities are calculated at T = 450K.

85



Expectedly, the electrical conductivity coupled with the relaxation time as σ/τe, in-

creases with the hole concentration as the Fermi level is shifted to include more valence

bands. This is opposite to the behaviour of the Seebeck coefficient. Due to this compe-

tition between the Seebeck coefficient and the electrical conductivity, we are interested in

the optimal power factor S2σ/τ which represents the trade off between the two quantities.

We cannot predict an absolute value for the power factor due to the unknown electronic

relaxation time. However, from our results, we are still able to predict the range of hole

concentration within which the power factor can be optimized. The in-plane power factor

reaches its optimum within a large range of hole concentrations between 2× 1020cm−3 and

2× 1021cm−3 while the out-of-plane power factor is more precise and reaches its optimum

at hole concentrations between 3× 1021cm−3 to 5× 1021cm−3.

4.6.2 Cubic Cu2S and Cu2Se

The thermoelectric properties of cubic Cu2S and Cu2Se are far more pertinent than those

of hexagonal Cu2S. The high ZT values of Cu2S and Cu2Se were experimentally obtained

at temperatures of around 1000K which is well above the temperature beyond which they

transition into their cubic phases.[36, 38] In Fig. 26, we show how the Seebeck coefficient

(S), electrical conductivity (σ/τ) and power factors (S2σ/τ) of our structurally optimized

cubic Cu2S and Cu2Se vary with hole concentration at 900K. These quantities as presented

in Fig. 26 are the average of the xx, yy and zz tensor components since all cubic axes are

equivalent. At first glance, we see a lot more precision for the cubic structures in comparison

to the those for the hexagonal Cu2S structure. This is likely due to the cubic structures

being more isotropic which is not the case in the layered hexagonal Cu2S structure.

As mentioned earlier, only the Seebeck coefficient is calculated independently of the

electronic relaxation time. We therefore use the Seebeck coefficient as a basis for comparing

our results. In cubic Cu2S, we see that differences between our optimized structures have a

spread of about 80µVK−1 in the Seebeck coefficient at hole concentrations of 1019cm−3. This

spread subsequently decreases as the carrier concentration is increased. For cubic Cu2Se,

the corresponding spread of calculated Seebeck coefficients is a smaller and more consistent
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Figure 26: (a), (b) and (c) are the Seebeck coefficient, electrical conductivity and power fac-
tor for Cu2S respectively. (d), (e) and (f) are the Seebeck coefficient, electrical conductivity
and power factor for Cu2Se respectively. All quantities are calculated at 900K.

87



40µVK−1 over the entire range of carrier concentrations. This implies that thermoelectric

measurements carried out on cubic Cu2S can be expected to be more reproducible at least

in comparison to those performed on hexagonal Cu2S. We see that for both cubic Cu2S

and Cu2Se, the Seebeck coefficient can attain high values of over 200µVK−1 for hole con-

centrations as high as 3× 1020cm−3, which is essential for coinciding with a high electrical

conductivity. Overall, the Seebeck coefficient of cubic Cu2S and Cu2Se can be expected to

be larger than that of hexagonal Cu2S.

The power factor, which we report as S2σ/τ , again describes the hole concentration at

which we expect to find a good balance of Seebeck coefficient and electrical conductivity for

optimum ZT . As can be seen, the optimum hole concentration for the power factor occurs

occurs at about 8×1020cm−3 in cubic Cu2S and 5×1020cm−3 in cubic Cu2Se.

In Table 11, we show some experimental measurements for hole concentration p and

Seebeck coefficients for Cu2S and Cu2Se extracted from Reference [36]. We calculate Seebeck

coefficients for Cu2S and Cu2Se for comparison with these experimental results at 750K

based on the hole concentrations p provided in Table 11. Do note though that the structures

of Cu1.98S and Cu1.97S which have extra Cu deficiencies are different from Cu2S but only

slightly as the defining FCC S lattice is still maintained. As such, we do not expect an

exact agreement with experimental results in these cases.

According to experiments, increasing Cu deficiencies in Cu2S naturally results in in-

creased p doping. This in turn results in decreasing Seebeck coefficients which our theo-

retical results agree with. However, we overestimate S in Cu2S by between 90µVK−1 to

140µVK−1 but we underestimate S in Cu2Se by around 150µVK−1 at 750K using the hole

concentrations provided by Reference [36].

In Fig. 27(a) we show how our calculated S, using only our lowest energy structures

of cubic Cu2S and Cu2Se, vary with temperature for the fixed hole concentrations given in

Table 11. Judging by the consistency in the Seebeck coefficients in Fig. 26, we do not expect

the results shown here to vary greatly among different random structures. Generally, S is

seen to vary minimally by about 25µVK−1 between 750K to 1000K at constant hole concen-

trations. The experimentally determined variation of S in Cu2−xS (x = 0.00, 0.02, 0.03) with
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Table 11: Experimental data obtained from Reference [36] for Cu2S and Cu2Se. We also
list our calculated Seebeck coefficients for comparison. Experimentally measured hole con-
centrations p are performed using Hall measurements.[36] Discrepancies between theoretical
and experimental results are listed on the last row.

Properties Cu2S Cu1.98S Cu1.97S Cu2Se

p at 750K (1020cm−3) (Ref. [36]) 0.276 0.522 1.56 20.1
S at 750K (µVK−1) (Ref. [36]) 338 295 242 192

S at 750K (µVK−1) (Our calculation) 480 425 331 47
Discrepancy in S (µVK−1) 142 130 89 -145

temperature is shown in Fig. 27(b) which is taken directly from Reference [36]. From Fig.

27(b), we see that the Seebeck coefficient of Cu2−xS vary within the range of 350µVK−1 to

450µVK−1 as temperatures rise from 750K to 1000K. In the same temperature range, Fig.

27(c) shows the Seebeck coefficient in Cu2Se rising from about 200µVK−1 to 300µVK−1.

However, all this likely includes the effect of changing carrier concentrations which can

drastically affect S. As seen in Table 11, hole concentrations are capable of increasing by

around five times in Cu2S and Cu2Se between 300K and 750K.

Overall, our theoretical results shown in Fig. 26 agree with experiment in that the See-

beck coefficient of Cu2Se is typically less than than of Cu2S. We also agree that it is entirely

possible for the experimental Seebeck coefficient to reach as high as 400µVK−1 in the case of

Cu2S and 300µVK−1 in Cu2Se at temperatures close to 1000K and with hole concentrations

of the order 1020cm3. These points are demonstrated clearly in Fig. 26 However, we are

unable to perform a more rigorous comparison due to a lack of experimental data. Another

issue is that thermoelectric properties calculated from experiment are notoriously difficult

to reproduce,[42, 44] especially when dealing with complex materials. This often leads to

conflicting reports of ZT for the same material system.

4.7 Conclusions

Copper sulfide and copper selenide have various phases depending on temperature and Cu

deficiencies. Over the years, there have been a handful of first-principles studies on Cu2S

and Cu2Se. Unfortunately, most of these pertain to the fictitious antifluorite structure of
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Figure 27: Variation of Seebeck coefficients with temperature in Cu2S and Cu2Se calculated
from (a) theory with fixed hole concentrations and experimentally in (b) and (c). (b) and (c)
are respectively taken directly from References [36] and [38]. We use the same experimental
symbols and color schemes for comparison where possible.
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Cu2S and Cu2Se. The few studies which actually do include the all-important effect of real

life Cu disorder lack details in potentially high interest areas such as the thermoelectric

effect which Cu2S and Cu2Se are most well known for. In response, we have provided

here, a comprehensive study of the electronic and thermoelectric properties of hexagonal

and cubic Cu2S and cubic Cu2Se, including a description of how we mimic the real life

effect of Cu disorder in these structures. In these materials, either S or Se atoms form

an ordered crystalline sublattice but Cu atoms form a separate disordered sublattice. We

elaborated upon a first-principles random structure search method for finding energetically

stable structures of hexagonal and cubic Cu2S and cubic Cu2Se exhibiting Cu disorder. We

then discussed the electronic structures of hexagonal and cubic Cu2S and cubic Cu2Se based

on first-principles calculations on each of their four lowest energy structures. We note that

Cu disorder opens up a band gap in all of these materials. Bader charge analysis indicated

that Cu-S/Se bonding in these compounds have covalent features and so not completely

ionic. An analysis of their electronic density of states further revealed that their valence

bands close to the valence band edge are composed predominantly of nonbonding Cu-d

orbitals. Electronic density of states slightly further below this region are composed mainly

of Cu-d and S or Se-p bonding orbitals. This large contribution of typically inert Cu-d

orbitals results in noticeably flat bands close to the valence band edge. This in turn results in

hexagonal and cubic Cu2S and cubic Cu2Se having notably large Seebeck coefficients which

we calculated using Boltzmann transport theory. Hexagonal Cu2S can attain a Seebeck

coefficient of around 200µVK−1 up to hole concentrations of around 1020cm−3 while both

cubic Cu2S and Cu2Se can do so up to even higher hole concentrations of 3 × 1020cm−3.

This agrees well with experiment. Moreover, the layered structure of hexagonal Cu2S lowers

electrical conductivity by an order of magnitude in the layer direction which contributes

to only a slightly larger Seebeck coefficient also in the layer direction. We also calculated

the hole concentration for optimum power factor in hexagonal Cu2S to be in the range of

3×1020cm−3 to 5×1021cm−3. For cubic Cu2S and Cu2Se, we predict the hole concentrations

corresponding to optimum power factor to be 5× 1020cm−3 and 8× 1020cm−3 respectively.

Overall, we find that the optimized structures for cubic Cu2S and Cu2Se give more precise

91



results amidst Cu disorder than hexagonal Cu2S because of their more isotropic structural

nature.
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CHAPTER V

MOLECULAR DYNAMICS SIMULATION OF COPPER

DIFFUSION IN CUBIC COPPER SULFIDE AND CUBIC

COPPER SELENIDE

5.1 Introduction

In the previous chapter, we evaluated the thermoelectric power factors of copper sulfide

and copper selenide using a combination of Boltzmann transport theory and first-principles

electronic structure calculations. Our results are in line with experimental evidence stat-

ing that both copper sulfide and copper selenide, being able to achieve ZT values of 1.7

and 1.5 respectively, are potential high performance thermoelectric materials.[36, 38] How-

ever, we note that their exceptional thermoelectric efficiencies are not so much due to their

power factors but more so because of their unusually low thermal conductivities. The ther-

mal conductivities of copper sulfide and copper selenide are both well below 1Wm−1K−1

at temperatures of around 1000K.[36, 38] The origin of their low thermal conductivities

is attributed to their highly mobile, to the point of being liquid-like, Cu atoms at high

temperatures.[36, 38] At temperatures close to 1000K, both copper sulfide and copper se-

lenide are in their cubic phases where S and Se atoms vibrate about well defined crystalline

FCC lattice sites while the Cu atoms are free to diffuse through the S or Se sublattice.

This phenomenon makes copper sulfide and copper selenide similar to the more well known

superionic conductors. However, as Bader charge analysis in the previous chapter reveals,

their respective Cu-S and Cu-Se bonds are more covalent than ionic in nature which is why

they are referred to as a solid-liquid hybrid instead of superionics.[36, 43]

Recently, Wang used first-principles molecular dynamics simulations to demonstrate

that, similar to regular superionics, Cu atoms in copper sulfide (Cu2S) exhibit fast diffu-

sion within a crystalline S lattice. Wang’s results pertain specifically to the β phase of
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Cu2S where the S atoms are organized in a hexagonal lattice. Wang calculated the dif-

fusion coefficient of Cu in this case to be 2.2×10−6cm2s−1. This diffusion coefficient is

most impressive not because it is high but rather because it is achievable at a relatively

low 450K.[43] Earlier experimental results concerning the Cu diffusion coefficients in cop-

per sulfie and copper selenide have been carried out but at lower temperatures of under

350K.[133, 134, 135] Nevertheless, they generally lend support to theoretical results by

Wang.[43] Rickert and Wiemhöffer [134] discovered Cu diffusion coefficients ranging from

1×10−7cm2s−2 to 6×10−6cm2s−2 for copper sulfide at 333K. Tinter and Wiemhöffer [133]

found the diffusion coefficient of Cu in copper selenide to be between 4.3×10−7cm2s−2 to

2.4×10−6cm2s−2 at 293K. Danilkin et al. performed the most recent study and found the

self-diffusion coefficient of Cu in copper selenide to be as high as 6.1×10−5cm2s−1 but

stopped short of calculating the chemical diffusion coefficient of Cu.[133]

So far, information regarding the high temperature diffusive behaviour of Cu in copper

sulfide and copper selenide and how this relates to their structural properties is lacking. It

is expected that the Cu diffusion rate will be significantly higher at temperatures of 1000K

and this will likely have important implications in the development of high temperature

thermoelectric materials.[36, 38] In this chapter, we study Cu diffusion in copper sulfide and

copper selenide along with their structural and vibrational properties using first-principles

molecular dynamics simulation at 900K. We also analyse how these results change when

copper deficiencies are introduced.

5.2 First-principles Molecular Dynamics Simulation De-
tails

The structural details of cubic Cu2S and cubic Cu2Se are described in the previous chapter.

We use the most energetically stable structures cubic Cu2S and cubic Cu2Se obtained from a

random structure search, also described in the previous chapter, to begin our MD simulation.

Each MD simulation starts at 0K and the temperature is gradually ramped up to 900K over

a period of 2ps. Next follows an equilibration period of 30ps at 900K. No data is collected

during this 30ps equilibration period and we describe below how we check that equilibrium
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has been achieved at the end of it. After equilibration, we run the simulation for a final

50ps during which we collect atomic trajectory data for analysis. To study the effect of

Cu deficiencies, we remove one random Cu each from the most energetically stable Cu2S

and Cu2Se optimized structures and re-optimize them in VASP before repeating the MD

simulation as just described. Recall that we use 2 × 2 × 2 conventional FCC supercells in

each case where there are 96 Cu and 64 S or Se atoms in total. Therefore, the removal of

one Cu atom from Cu2S and Cu2Se gives us Cu1.97S and Cu1.97Se.

The entire MD simulation described above is carried out in the formalism of density

functional theory (DFT) using VASP.[96, 97, 98, 99] In the context of DFT, we use the

generalized gradient approximation (GGA) [122, 123] for the exchange-correlation energy

functional and the projector augmented wave (PAW) [71, 72] pseudopotentials. Due to

the large size of our 2 × 2 × 2 simulation supercells, we only sample the Brillouin zone at

the Γ point. Each simulation timestep is 1fs long and we implement the canonical NV T

ensemble using the Nóse-Hoover thermostat to maintain a constant temperature.[79, 80]

Forces which determine the atomic trajectories are calculated from first-principles using the

Hellmann-Feynmann theorem.[58, 73, 74] Atomic trajectories themselves are updated using

the Verlet algorithm.[136].

5.2.1 Checking for Equilibrium

Before we begin collecting data, it is important to verify that a system is in equilibrium. We

do this by running separate simulations of the system under the constraints of the micro-

canonical NV E ensemble. Simply put, we will remove the constant temperature constraint

and see how the temperature changes over time. In this situation, a clear indication that

the system is already in equilibrium will be its ability to still maintain a relatively constant

temperature over a substantial period of time.

Below in Fig. 28, we show how the temperatures of our Cu2−xS and Cu2−xSe systems

vary under the microcanonical NV E constraints for 10ps directly after the 30ps equilibra-

tion period. Clearly, their temperatures fluctuate about a constant level over 10ps and this
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Figure 28: Temperature profiles for (a) Cu2S, (b) Cu1.97S, (c) Cu2Se and (d) Cu1.97Se from
ab-initio molecular dynamics simulation at 900K under constraints of the microcanonical
NV E ensemble over 10ps. The mean temperature in each plot is indicated by the red
dashed line while the range of the standard deviation of temperature is shaded.

indicates that they are already in equilibrium at the start of their respective NV E simu-

lations. We record the mean and standard deviation of temperature for each of these 10ps

long NV E simulations in Table 12.

5.3 Temperature Fluctuations During Simulations

In Fig. 29, we show how temperature varies in cubic Cu2−xS and Cu2−xSe over 50ps

following the 30ps equilibration under the canonical NV T ensemble. We collect atomic tra-

jectory data for analysis during this 50ps time frame and discuss the various analyses which

we perform in the following sections. In Table 13, we list the mean and standard deviation

of temperature for each system over their respective 50ps long simulations. Recall that in

the canonical ensemble, temperature fluctuations are normal and the expected standard
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Table 12: Temperature data for Cu2−xS and Cu2−xSe (x = 0, 0.03) from ab-initio molecular
dynamics simulation at 900K under constraints of the microcanonical NV E ensemble over
10ps.

Initial T (K) Mean T (K) Standard Deviation of T (K)

Cu2S 1077 1000 60
Cu1.97S 1005 940 50
Cu2Se 923 920 50

Cu1.97Se 887 850 50

Table 13: Temperature data for Cu2−xS and Cu2−xSe (x = 0, 0.03) from ab-initio molecular
dynamics simulation at 900K under constraints of the canonical NV T ensemble over 50ps.

Initial T (K) Mean T (K) Standard Deviation of T (K)

Cu2S 1076 900 60
Cu1.97S 1003 900 80
Cu2Se 921 900 70

Cu1.97Se 886 900 70

deviation in temperature is σT =
√

2
3N T .[78] Since we have 96 atoms in our simulation at

900K, we have σT = 75K. This is entirely in accordance with our data in Table 13.

5.4 Pair Correlation Functions

The partial pair correlation functions

gαβ(r) =
1

Nαρβ

〈
Nα∑
i=1

Nβ∑
j=1

δ(~r + ~ri − ~rj)

〉
. (146)

tell us much about structure and bonding within cubic Cu2−xS and Cu2−xSe.[76, 77, 78]

We describe how to deal with the 3D Dirac Delta function numerically in Chapter 1. Recall

also that gαβ(r) gives us a measure of the probability of finding an atom of species β around

a reference atom of species α. We show in Fig. 30 the pair correlation functions between

the various constituents of cubic Cu2−xS and Cu2−xSe. In Fig. 30, we arbitrarily show

g(r) for r ranging from 0 to 10Å . However, note that g(r) is actually valid for 0 ≤ r ≤ a
2

where a is the length of one side of the relevant cubic supercell. This is because if atom β is

separated from reference atom α along a lattice vector direction by distance x ≥ 0.5 in direct

coordinates, periodic boundary conditions ensure that there is an identical β atom separated
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Figure 29: Temperature profiles for (a) Cu2S, (b) Cu1.97S, (c) Cu2Se and (d) Cu1.97Se from
ab-initio molecular dynamics simulation at 900K under constraints of the canonical NV T
ensemble. The mean temperature in each plot is indicated by the red dashed line while the
range of the standard deviation of temperature is shaded.
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Figure 30: (a), (b) and (c) are the partial pair correlation functions gαβ(r)between pairs of
S, Se and Cu atoms of Cu2−xS and Cu2−xSe (x = 0, 0.03) from ab-initio molecular dynamics
simulation at 900K. (d) is the total pair correlation function found by combining (a), (b)
and (c).

from atom α by only 1.0− x. Each pair correlation curve is averaged over trajectory data

separated by 100fs or 100 time steps over 50ps. In searching for nearest neighbours around

each reference atom, care is taken to also include those neighbours which are beyond the

periodic boundaries of the supercell.

From Fig. 30, we first note that Cu deficiencies barely affect the pair correlation func-

tions. Hence, we expect that such minor deficiencies will not drastically affect the structural

properties of cubic Cu2−xS and Cu2−xSe. From experiments, we know that Cu deficiencies

cause substantial differences in the observed thermoelectric properties.[36, 38]. Since the Cu

deficiencies do little to change structural properties, we attribute these experimentally ob-

served differences to the increase in p type doping which naturally accompanies the increase

in Cu deficiencies.

Examining gSS(r) and gSeSe(r), we see that there are very distinct peaks and troughs.
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This confirms the expectation that S and Se adopt an ordered crystalline sublattice. Both

gSS(r) and gSeSe(r) peak at about 4.1Å which is close to the expected S-S and Se-Se

nearest neighbour distance given the lattice constants which we use in our cubic Cu2−xS

and Cu2−xSe structural models. We also note that these peaks are relatively broad which

due to thermal oscillations. The peak of gSeSe(r) is particularly flat which is indicative of

Se atoms undergoing larger oscillations about their mean position. This can be understood

by considering the larger size of Se in comparison to S, which requires that Se make larger

displacements, in order for Cu to diffuse through the Se sublattice in cubic Cu2−xSe.

gCuCu(r), gSCu(r) and gSeCu(r) all have a single peak which then decays to unity. Since

we already know that S and Se atoms have crystalline order, the single peaks all mean that

there is some short range structure of Cu around the S, Se or other Cu atoms. However,

in all cases, the decay to unity after the initial peak without any further distinct peaks

or troughs indicates that Cu quickly appears disordered beyond a certain minimum range

of around 2.5Å. This behaviour, being very characteristic of a typical liquid, confirms the

expected liquid-like nature of the Cu atoms.

Comparing the gCuCu(r) between cubic Cu2−xS and Cu2−xSe, we find that gCuCu(r) of

Cu2−xSe has small but nevertheless clear oscillations after the initial peak while gCuCu(r)

for Cu2−xS has smooth decay to unity. These oscillations imply that there is substantially

more backscattering of Cu in Cu2−xSe, which again may be expected since Se is larger in

size than S. The backscattering in this case is more commonly referred to as the cage effect.

gSCu(r) and gSeCu(r) have the sharpest and tallest peak of all the partial pair correla-

tion functions. This implies that S-Cu and Se-Cu interactions are the strongest and most

important types of interactions as compared to the other S, Se and Cu self-interactions.

Also, the primary peaks of gSCu(r) and gSeCu(r) are very clearly separated from each other

by 0.15Å. This shows that the ideal separation between Se-Cu pairs is about 5% larger than

that between S-Cu pairs.

We combine the partial pair correlation functions using the Faber-Ziman formalism
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Table 14: Coordination numbers between pairs of S, Se and Cu atoms in cubic Cu2−xS and
Cu2−xSe (x = 0, 0.03) from ab-initio molecular dynamics simulation at 900K.

NSS/SeSe N(S/Se)Cu NCu(S/Se) NCuCu

Cu2S 12.0 6.1 3.1 7.0
Cu1.97S 12.1 6.0 3.1 6.9
Cu2Se 12.5 8.1 4.0 6.1

Cu1.97Se 12.6 7.7 4.0 6.0

[76, 137] to give the total pair correlation function

g(r) =

∑
α,β xαxβbαbβgαβ(r)∑

α,β xαxβbαbβ
. (147)

In the above equation, xα is the molar fraction and bα is the scattering amplitude for species

α. To make our results relevant to neutron scattering experiments, we choose to use neutron

scattering lengths Ref. [138] as the bα. For S, Se and Cu, the bα are 2.847fm, 7.970fm and

7.718fm respectively. We show the total radial distribution function g(r) also in Fig. 30.

We see that g(r) most strongly resembles gCuCu(r) and SCuCu(k). This is reasonable since

Cu has the largest molar fraction of all.

5.4.1 Coordination Numbers

The coordination numbers

Nαβ =

∫ rmin

0
4πr2gαβ(r)ρβdr (148)

between S, Se and Cu pairs in cubic Cu2−xS and Cu2−xSe may be estimated by integrating

the relevant partial pair correlation functions.[76, 77, 78] We list these coordination numbers

in Table 14.

From Table 14, we see that S (Se) are coordinated to about 12 other S (Se) atoms in

Cu2−xS (Cu2−xSe). This is expected since each atom in a perfect FCC crystal lattice has

exactly 12 nearest neighbours.

In Cu2−xS, each Cu is coordinated to 3 S neighbours on average. Since we know that

S atoms are in FCC sites, we conclude that Cu atoms in Cu2−xS spend a good amount of

time near the center of the triangular faces formed by groups of four nearest S neighbours.

This is consistent with the fact that Cu atoms prefer 192l sites based on XRD results.[53]
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In Cu2−xSe, each Se is coordinated to around 8 Cu atoms while each Cu is coordinated

to 4 S neighbours on average. Recall from Fig. 18 that 8c sites are at the center of the

tetrahedra formed by groups of four nearest S neighbours and each S also has 8 equally

spaced 8c nearest neighbour sites around it. Therefore, our observations here strongly

support the experimental findings that Cu atoms in Cu2−xSe have a strong preference for

visiting the 8c tetrahedral.[57]

Overall, we note that Cu atoms in Cu2−xS, with a preference for being within the

triangular planes formed by neighbouring S atoms, tend to clump up and hinder S atoms

from sharing a similar set of Cu neighbours. This explains why NSCu < NSeCu and also

why NCuCu is larger in Cu2−xS than it is for Cu2−xSe. The stronger cage effect in Cu2−xSe,

due to the larger size of the Se atoms, is thus seen to force the Cu atoms in Cu2−xSe into

a more open structure.

5.4.2 Static Structure Factors

We obtain the partial static structure factors by Fourier transforming the partial pair cor-

relation functions according to

Sαβ(k) = 1 + 4πρ

∫
sin(kr)gαβ(r)

kr
r2dr. (149)

Static structure factors are highly relevant since they are directly accessible from X-ray

or neutron scattering experiments. In fact, pair correlation functions are calculated in

experiments by first calculating the static structure factors and then Fourier transforming

them into the pair correlation functions. This is opposite to the procedure applied in

molecular dynamics simulation which we describe here.[76]

In the above integration for calculating Sαβ(k), the integration over r ideally ranges

from 0 to∞. However, we only have a finite sized system and with r ranging from 0 to half

the length of any side of the relevant cubic supercell a
2 . This finite maximum range of r

places a limit on the minimum range of k below which Sαβ(k) cannot be calculated reliably.

We use simple quantum mechanical ideas to estimate this minimum kmin. For a particle in

a 1D flat bottom potential well of width L with infinitely high walls, the smallest possible

wave vector is 2π
L . Thus, we use the approximation kmin ∼ 2π

a/2 ∼ 1Å−1 .
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Figure 31: Partial static structure factors Sαβ(k) between pairs of S, Se and Cu atoms of
Cu2−xS and Cu2−xSe (x = 0, 0.03) from ab-initio molecular dynamics simulation at 900K.
(d) is the total static structure factor found by combining (a), (b) and (c).

The total static structure factor may be calculated either by Fourier transforming the

total pair correlation function g(r) or by applying the Faber-Ziman formalism [76, 137]

S(k) =

∑
α,β xαxβbαbβSαβ(k)∑

α,β xαxβbαbβ
. (150)

Both methods yield identical results. We show the various partial and total static structure

factors in Fig. 31.

5.5 Mean Squared Displacement of Cu

The mean squared displacement (MSD) gives a clear picture of atomic diffusion occurring

within cubic Cu2−xS and Cu2−xSe. The MSD
〈
∆rα(t)2

〉
for atomic species α is given by

〈
∆rα(t)2

〉
=

〈
1

Nα

Nα∑
i=1

|~ri(t)− ~ri(0)|2.

〉
(151)

Nα is the number of atoms of species α and ~ri(t) represents the coordinates of individual

atoms of species α at time t during the simulation.
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Figure 32: Mean squared distance 〈∆r2(t)〉moved by S and Se atoms from cubic (a) Cu2−xS
and (b) Cu2−xSe as a function of time from ab-initio molecular dynamics simulation at 900K.

The MSDs for S, Se and Cu in cubic Cu2−xS and Cu2−xSe are depicted in Figs. 32 and

33. Each of the MSD curves are averaged over twenty 40ps long intervals. The origins of

each interval are separated from each other by 500fs. We choose an origin shift of 500fs

between separate intervals because this is about the time it takes for atomic correlations

to become insignificant. We will see this later in analysing the velocity autocorrelation

functions in Fig. 34. Within each 40ps interval, atomic trajectories are sampled every 20fs.

Of course, periodic boundary conditions cause sudden jumps in the ri(t) as atoms move

through the supercell boundaries but we are careful to make the necessary corrections for

this effect.

In Fig. 32, we see that the MSD of S and Se is insignificant over the entire 40ps

interval. Over 40ps, they typically shift only between 1Å and 2Å from their original positions

which is too minute to constitute actual diffusion. Rather, we interpret these values as the

displacements of S and Se atoms as they oscillate about their mean FCC positions.

We show in Fig. 33 the MSD of Cu in cubic Cu2−xS and Cu2−xSe.

From Fig. 33, it is clear that there is a nearly linear increase of the MSD of Cu atoms

with time in both cubic Cu2−xS and Cu2−xSe. Over the 40ps interval, the MSD of the

various Cu typically reach roughly 100 Å2 meaning that on average, Cu atoms can be

expected to diffuse about 10Å over 40ps in cubic Cu2−xS and Cu2−xSe.
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Figure 33: Mean squared distance 〈∆r2(t)〉 moved by Cu atoms from cubic (a) Cu2−xS and
(b) Cu2−xSe as a function of time from ab-initio molecular dynamics simulation at 900K.

Table 15: Diffusion coefficients of Cu2−xS and Cu2−xSe calculated using the mean squared
displacements (DMSD) and velocity autocorrelation functions (DV ACF ) methods obtained
from ab-initio molecular dynamics simulation at 900K.

System DMSD (10−5cm2s−1) DV ACF (10−5cm2s−1)

Cu2S 5.1 4.7
Cu1.97S 3.9 3.9
Cu2Se 3.9 3.8

Cu1.97Se 4.6 4.5

5.5.1 Cu Diffusion Rates

We gain a more quantitative description of the Cu diffusion by analyzing the gradient of

each MSD curve. Each gradient is proportional to the relevant diffusion coefficient DMSD

of Cu

DMSD =
1

Ndim

∂

∂t
〈∆r2(t)〉/(2Ndim). (152)

Ndim refers to the dimensionality of the system which is 3 in all the cases we examine. We

list the calculated Cu diffusion coefficients using this MSD method in Table 15. Table 15

also contains Cu diffusion coefficients DV ACF calculated from the velocity autocorrelation

functions (VACFs) as a consistency check. We elaborate on the VACFs in and discuss

how diffusion coefficients may be calculated from the VACFs in the next section. For

now, we note that the diffusion coefficients calculated using the MSD and VACF methods

consistently indicate the same trend.

The diffusion coefficients of Cu listed in Table 15 are highly significant. They are all
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above 10−5cm2s−1 which is comparable to that of many compounds dissolved in water

or organic solvents.[139, 140, 141, 142] We also note that the diffusion coefficients of Cu

calculated here are an order of magnitude larger than the diffusion coefficient of Cu calcu-

lated by Wang in the case of hexagonal Cu2−xS at 450K via a similar molecular dynamics

simulation.[43] We also see that Cu deficiencies have a significant effect on the diffusion

coefficients in cubic Cu2−xS and Cu2−xSe. Cu deficiencies result in a 15% increase in the

Cu diffusion coefficient between Cu2Se and Cu1.97Se since Cu deficiencies allow Se to be

displaced more easily to facilitate Cu diffusion. In contrast, Cu2S has a much lower Cu

diffusion coefficient than Cu1.97S for reasons not yet understood.

5.6 Velocity Autocorrelation Functions

We analyse the dynamical processes within cubic Cu2−xS and Cu2−xSe through the velocity

autocorrelation functions (VACFs) of their constituents. The VACF for species α is given

by

Zα(τ) =

〈∑Nα
i=1 ~vα(0) · ~vα(τ)

〉
〈∑Nα

i=1 ~vα(0) · ~vα(0)
〉 . (153)

Here, τ is the time delay between signals. The angular brackets in the above equation

denote an average over time origins, for which we use a separation of 10fs between origins.

The VACFs for S, Se and Cu in cubic Cu2−xS and Cu2−xSe are shown in Fig. 34. They are

all normalized by their respective zero delay VACF
〈∑Nα

i=1 ~vα(0) · ~vα(0)
〉

such that a value

of 1 (-1) denotes perfect correlation (anticorrelation).

The VACF of S in cubic Cu2−xS is very clearly shows damped harmonic motion which

is characteristic of a regular solid lattice. However, the motion of Cu atoms in Cu2−xS is

very heavily damped which is characteristic of a normal fluid. This is because the highly

diffusive motion of Cu atoms in Cu2−xS counters oscillatory motion.

The VACF of Se atoms in cubic Cu2−xSe oscillates similarly to the VACF for S atoms

in cubic Cu2−xS. The main difference is that the motion of Se is more strongly damped,

which may be attributed to their heavier mass. Interestingly, the Cu atoms in Cu2−xSe are

heavily damped but still display some very slight oscillatory motion. This is likely due to
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Figure 34: (a) and (b) are the normalized velocity autocorrelation functions for S, Se and
Cu atoms in Cu2−xS and Cu2−xSe (x = 0, 0.03). Results shown here are obtained from ab-
initio molecular dynamics simulation at 900K. Error bars are too small to be distinguished
from plot points.

the stronger cage effect for Cu atoms in Cu2−xSe which causes Cu atoms to be backscattered

more than the Cu atoms in Cu2−xS.

5.6.1 Cu Diffusion Rates

Earlier, we demonstrated how the diffusion coefficient is calculated from the MSD. However,

the diffusion coefficient may alternatively be calculated from the VACF as

DV ACF =

∫
dτ〈~v(τ) · ~v(0)〉. (154)

This provides a good consistency check for the diffusion coefficients of Cu calculated previ-

ously using the MSD method. The diffusion coefficients of Cu in cubic Cu2−xS and Cu2−xSe,

calculated using the MSD and VACF methods, are listed and discussed in Table 15 in the

previous section. We see that both methods consistently predict the same trend. We use

a 10ps integration range in order to calculate DV ACF in each case. This is sufficient as we

see that the VACFs all decay almost to 0 within 1ps.

5.6.2 Phonon Power Spectra

The Fourier transforms of the VACFs yield the phonon power spectra

Ẑα(ω) =
1√
2π

∫
dτeiωτZα(τ) (155)
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Figure 35: (a) and (b) are the normalized power spectra in Cu2−xS and Cu2−xSe (x =
0, 0.03) obtained by Fourier transforming the relevant velocity autocorrelation functions.
The velocity autocorrelation functions are normalized by their value at τ = 0 while the
power spectra have been normalized by their areas. Results shown here are obtained from
ab-initio molecular dynamics simulation at 900K.

which are directly proportional to the phonon density of states. We show the |Ẑα(ω)|2 for

S, Se and Cu in Fig. 35.

Let us first consider the power spectra of S and Se. Since they both form solid sublattices,

their |Ẑα(ω)|2 are both zero at ω = 0. However, their is a clear difference in the location of

their peaks, with |Ẑα(ω)|2 for Se peaking first. This indicates that the Se sublattice is able

to transmit more low frequency acoustic phonons than the S sublattice. Since it is acoustic

phonons which are most dispersive, implying that they have higher phonon group velocities,

we expect that the Se sublattice will be much more efficient at transmitting phonons or heat

than the S sublattice. This is consistent with experimental results which show that Cu2−xSe

has consistently higher thermal conductivity than Cu2−xS.[36, 38]

The |Ẑα(ω)|2 for Cu are generally similar in both Cu2−xS and Cu2−xSe. Furthermore,

|Ẑα(ω)|2 of Cu in both cases is non-zero at ω = 0. This is an indication of the presence of

diffusive modes which is another signature of their liquid-like nature.[143] We do not expect

the liquid-like Cu to contribute significantly to thermal transport in comparison to the solid

S or Se sublattices since diffusive modes are not conducive for phonon transport.
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Table 16: Bader charges of Cu, S and Se in Cu2−xS and Cu2−xSe (x = 0.00, 0.03) aver-
aged over samples taken every 5ps over the 50ps molecular dynamics simulation at 900K.
Standard errors are given.

Cu2S Cu1.97S Cu2Se Cu1.97Se

Cu Bader charge 10.611± 0.004 10.605± 0.005 10.728± 0.004 10.723± 0.006
S/Se Bader charge 6.778± 0.009 6.78± 0.01 6.544± 0.008 6.54± 0.01

5.7 Bader Charge Analysis

We begin with Bader charge analysis. Throughout the 50ps simulation, we calculate the

average Bader charges on S, Se and Cu atoms in Cu2−xS and Cu2−xSe every 5ps. The

mean and standard deviation of all ten of these calculations are presented in Table 16.

Compared to the Bader charges calculated using optimized structures in Table 9 of the

previous chapter, we find near perfect agreement even with Cu deficiencies, meaning that

Cu2−xS and Cu2−xSe are still not completely ionic at 900K. We refer the reader back to

Section 4.4 for a discussion on the significance of the Bader charges.

5.8 Electronic Structure

In the previous chapter, we analyzed the electronic structures of structurally optimized cubic

Cu2S and Cu2Se shown in Figs. 22 and 23. In Figs. 36 and 37, we show for comparison, the

electronic band structures and density of states of Cu2S and Cu2Se during the molecular

dynamics simulation. These are are obtained at the 5ps, 15ps, 20ps and 50ps marks in the

50ps molecular dynamics simulation for each case. We shall refer to the molecular dynamics

structures as the unoptimized structures.

The optimized electronic structures of cubic Cu2S and Cu2Se, as detailed in Section 4.5,

are generally very similar to those of the unoptimized electronic structures so we only detail

a few minor differences here. The most notable differences in the electronic band structures

between the optimized (Figs. 22 and 23) and unoptimized structures (Figs. 36 and 37) are

in the conduction bands. In the unoptimized structures, the conduction bands are more

spaced apart with the lowest conduction band being significantly more dispersive, especially

109



−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

X Γ R

E
n
e
rg

y
 (

e
V

)

 0  0.2  0.4  0.6  0.8  1

PDOS (eV
−1

 per chemical unit)

S s

S p

Cu s

Cu p

Cu d

(a)

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

X Γ R

E
n
e
rg

y
 (

e
V

)

 0  0.2  0.4  0.6  0.8  1

PDOS (eV
−1

 per chemical unit)

S s

S p

Cu s

Cu p

Cu d

(b)

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

X Γ R

E
n
e
rg

y
 (

e
V

)

 0  0.2  0.4  0.6  0.8  1

PDOS (eV
−1

 per chemical unit)

S s

S p

Cu s

Cu p

Cu d

(c)

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

X Γ R

E
n
e
rg

y
 (

e
V

)

 0  0.2  0.4  0.6  0.8  1

PDOS (eV
−1

 per chemical unit)

S s

S p

Cu s

Cu p

Cu d

(d)

Figure 36: (a), (b), (c) and (d) are the electronic band structures and density of states of
cubic Cu2S from molecular dynamics simulation at 900K. They are taken at 5ps, 15ps, 20ps
and 50ps during the simulation and arranged in that order. The zero of energy is set to the
center of the band gap.
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Figure 37: (a), (b), (c) and (d) are the electronic band structures and density of states
of cubic Cu2Se from molecular dynamics simulation at 900K. They are taken at 5ps, 15ps,
20ps and 50ps during the simulation and arranged in that order. The zero of energy is set
to the center of the band gap.
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in the case of Cu2S. This results in smaller band gaps for the unoptimized structures. For

Cu2Se, the valence bands near the band edge of the unoptimized structures are also notably

flatter in comparison to those in the optimized structures. The band gap of Cu2Se during

the molecular dynamics simulation is particularly small. We can relate this to how its Cu are

coordinated to about four other Se atoms This implies tetrahedral bonding, making it similar

to the antifluorite structure of Cu2Se which we know has no gap. Only sufficient lattice

distortion and Cu disorder during the MD simulation prevents this gap from vanishing

completely.

5.9 Thermoelectric Properties

In Fig. 38, we show the thermoelectric properties of optimized and unoptimized cubic Cu2S

and Cu2Se together. Unoptimized structures taken at various points in our MD simulations

provide consistent results with those from optimized structures but only at hole concen-

trations greater than 4×1019cm−3. At lower hole concentrations, where bands close to the

valence band edge have greater influence, the results begin to differ significantly, especially

for Cu2Se. This is because bands closer to the valence band edge are much more sensitive to

structural differences. Seeing as how consistent the Seebeck coefficient is between optimized

and unoptimized structures, we attribute the larger electrical conductivity differences be-

tween structures to the differences in electronic relaxation time which we do not calculate

here. All in all, the MD results do not change our original conclusions drawn from the

optimized structures of cubic Cu2S and Cu2Se detailed in Section 4.6.2. We still predict the

hole concentrations corresponding to optimum power factor to be about 8×1020cm−3 in cu-

bic Cu2S and 5×1020cm−3 in cubic Cu2Se. They are both also capable of maintaining very

high Seebeck coefficients of over 200µVK−1 for hole concentrations as high as 3×1020cm−3.

5.10 Conclusions

At high temperatures approaching 1000K, Cu2S and Cu2Se each exist in a solid-liquid

hybrid phase. Solid-liquid hybrid Cu2S and Cu2Se are very closely related to the more
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Figure 38: (a), (b) and (c) are the Seebeck coefficient, electrical conductivity and power
factor for Cu2S respectively. (d), (e) and (f) are the Seebeck coefficient, electrical con-
ductivity and power factor for Cu2Se respectively. For each set of results, grey shaded ∇
markers represent results from the lowest energy optimized structures (identical to Fig. 26)
while red, blue, green and black markers represent results from structures at 5ps, 15ps, 20ps
and 50ps after equilibration in the 900K molecular dynamics simulation.
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well-studied superionic conductors but are fundamentally different because Cu-S and Cu-

Se bonds have more covalent than ionic characteristics. Nevertheless, they share similar

uses and properties. In Cu2S and Cu2Se, it is the S or Se atoms which form a crystalline

sublattice and the Cu atoms in diffuse so rapidly that they are considered liquid-like. The

solid-liquid hybrid nature of Cu2S and Cu2Se is of immense interest in the development

of thermoelectric devices. The liquid-like Cu sublattice promotes phonon scattering and

confers an unusually low thermal conductivity to Cu2S and Cu2Se while the crystalline S

or Se sublattice ensures that good electrical characteristics are preserved for an overall high

thermoelectric efficiency ZT .

We described in this chapter the use of first-principles molecular dynamics to evaluate

the structural and vibrational properties of Cu2−xS and Cu2−xSe (x = 0.00, 0.03) at 900K.

Pair correlation functions between various S, Se and Cu atomic pairs provided strong evi-

dence for the coexistence of liquid Cu with a crystalline S or Se FCC sublattice in Cu2−xS

and Cu2−xSe. They also indicated that Cu-S and Cu-Se were the strongest types of inter-

actions in Cu2−xS and Cu2−xSe. By analysing mean squared displacements and velocity

autocorrelation fucntions obtained from S, Se and Cu trajectory data, we also discovered

very high Cu diffusion coefficients reaching above 10−5cm2s−1. On the contrary, S and Se

atoms were seen to vibrate about fixed crystalline positions. While Cu deficiencies had

little effect on structure, they were seen to strongly influence Cu diffusion rates in Cu2−xS

and Cu2−xSe. Phonon power spectra were obtained from Fourier transforming the velocity

autocorrelation functions. These indicated that crystalline Se sublattices can be expected

to transmit low frequency acoustic phonons, more effectively than S sublattices. This is in

line with experimental obervations that Cu2−xSe has a larger thermal conductivity than

Cu2−xS. Overall, our results also indicated that the cage effect on liquid-like Cu in Cu2−xSe

was more significant than in Cu2−xS due to Se being larger in size than S.
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APPENDIX A

GAUSSIAN INTEGRALS

Gaussian integrals are commonly encountered when evaluating expectation values and vari-

ances in the realm of statistical mechanics. Though they appear daunting at first glance,

they may be evaluated analytically using some rather elegantmathematical methods.

Consider the simplest Gaussian integral

f(K) =

∫ ∞
−∞

e−Kx
2
dx. (156)

We may evaluate it analytically indirectly by dealing entirely with the square of f(K)

using circular coordinates and then taking the square root of the answer. This is shown as

follows.[105]

f(K)2 =

∫ ∞
−∞

e−Kx
2
dx×

∫ ∞
−∞

e−Ky
2
dy (157)

=

∫ r=∞

r=0

∫ φ=2π

φ=0
e−Kr

2
rdrdφ (158)

= 2π

[
1

−2K
e−Kr

2

]r=∞
r=0

(159)

=
π

K
(160)

Simply taking the square root of the above solution, we have

f(K) =

∫ ∞
−∞

e−Kx
2
dx =

√
πK−

1
2 . (161)

Repeated differentiation of f(K) above, with respect to the variable K , gives rise to

various other Gaussian integrals of increasing complexity, all of which can be evaluated
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exactly according to the pattern described below.

− d

dK
f(K) =

∫ ∞
−∞

x2e−Kx
2
dx =

1

2

√
πK−

3
2 (162)

d2

dK2
f(K) =

∫ ∞
−∞

x4e−Kx
2
dx =

1

2

3

2

√
πK−

5
2 (163)

− d3

dK3
f(K) =

∫ ∞
−∞

x6e−Kx
2
dx =

1

2

3

2

5

2

√
πK−

7
2 (164)

d4

dK4
f(K) =

∫ ∞
−∞

x8e−Kx
2
dx =

1

2

3

2

5

2

7

2

√
πK−

9
2 (165)

− d5

dK5
f(K) =

∫ ∞
−∞

x10e−Kx
2
dx =

1

2

3

2

5

2

7

2

9

2

√
πK−

11
2 (166)

...

(−1)n
dn

dKn
f(K) =

∫ ∞
−∞

x2ne−Kx
2
dx =

(2n)!

n!22n

√
πK−

2n+1
2 for n ∈ Z+ (167)
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APPENDIX B

FOURTH ORDER RUNGE-KUTTA METHOD

Runge-Kutta methods are a family of numerical methods for solving ordinary differential

equations. The most well known of these is the fourth order Runge-Kutta method, which is

commonly referred to as the RK4 method. As its name implies, it is accurate up to fourth

order. The RK4 method is usually applied for solving an initial value problem of the form

[105]

dx

dt
= F (t, x) (168)

with some initial condition x(t0) = x0. Applying the RK4 in this case involves calculating

four intermediate steps

K1 = F (ti, xi) (169)

K2 = F (ti +
h

2
, xi +

h

2
K1) (170)

K3 = F (ti +
h

2
, xi +

h

2
K2) (171)

K4 = F (ti + h, xn + hK3) (172)

and then stepping forward in x

xi+1 = xi +
h

6
(K1 + 2K2 + 2K3 +K4). (173)
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APPENDIX C

BESSEL FUNCTIONS

Bessel’s differential equation has the form

x2d
2f(x)

dx2
+ x

df(x)

dx
+ (x2 − n)f(x) = 0. (174)

The solutions to the Bessel equation are

f(x) =


AJn(x) +BYn(x), for integer n

AJn(x) +BJ−n(x), for non-integer n

(175)

where A and B are constants to be determined. Jn(x) and Yn(x) are known as the Bessel

functions of the first and second kind respectively. They are given as

Jn(x) =
∞∑
i=0

(−1)i

i!Γ(i+ n+ 1)

(x
2

)2i+n
(176)

and

Yn(x) =
Jn(x)cos(nx)− J−n(x)

sin(nπ)
(177)

where Γ(n) is the gamma function. We show plots of Jn(x) and Yn(x) in Fig. 39. As can

be seen in Fig. 39, only the Jn(x) are finite at the origin x = 0 while the Yn(x) are singular.

For this reason, the coefficient of Yn(x) is normally set to zero in order to describe physical

situations using the Bessel functions.
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(a)

(b)

Figure 39: (a) Bessel functions of the first kind Jn(x) and (b) Bessel functions of the second
kind Yn(x) shown for n = 0, 1, 2, 3, 4.

119



APPENDIX D

ELECTRON IN AN INFINITE CIRCULAR POTENTIAL

WELL

Here we discuss the solutions to the Schrödinger equation for an electron of mass m in an

infinite circular potential well. The Schrödinger equation is best expressed using cylindrical

coordinates as appropriate for the symmetry of the system

HΨ(ρ, θ) = EΨ(ρ, θ) (178)

− ~2

2m

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂2θ

]
Ψ(ρ, θ) + VΨ(ρ, θ) = EΨ(ρ, θ) (179)

which is a second order ordinary differential equation. Rewriting this equation as[
ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
+

2m

~2
(E − V )ρ2

]
Ψ(ρ, θ) = − ∂2

∂2φ
Ψ(ρ, θ), (180)

it is clear that we can solve the Schrödinger equation by separation of variables, in which

case, the wave function may be written as Ψ(ρ, θ) = R(ρ)Θ(θ). This leads us to search for

solutions to the two equations[
ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
+

2m

~2
(E − V )ρ2

]
R(ρ) = n2R(ρ) (181)

− ∂2

∂2φ
Θ(θ) = n2Θ(θ) (182)

where n is a constant.

The solution to the angular part of the overall wave function is simply

Θ(θ) = Ae−inθ (183)

where A is some constant to be determined. Circular symmetry demands that

Θ(θ) = Θ(θ + 2π) (184)
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and so n can only take on integer values

n = 0,±1,±2,±3, ... . (185)

The solution to the radial part of the overall wave function depends on the form of the

potential V . For the simple case of

V =


0, for ρ ≤ L

∞, for ρ > L

(186)

where L is the radius of the well, the radial equation reduces to

ρ2∂
2R(ρ)

∂ρ2
+ ρ

∂R(ρ)

∂ρ
+

(
2mE

~2
ρ2 − n2

)
R(ρ) = 0 (187)

which we recognize as the Bessel equation with integer n. The solutions to the Bessel

equation are discussed in Appendix C. Since n is an integer, we seek solutions of the form

R(ρ) = BJn(ρ) + CYn(ρ) (188)

where B and C are constants to be determined. However, since Yn has a singularity at

ρ = 0, we must always set C = 0 so as to obtain a physical solution. In other words, the

solution to the radial equation for a constant V are simply Bessel functions of the first kind

Jn(ρ) which are all finite at the origin as required for a proper electron wave function.

As for the more complicated case

V (ρ) =



0, for ρ ≤ l

−v, for l < ρ ≤ L

∞, for ρ > L

(189)

having three distinct regions of constant potential, we find it most efficient to seek a nu-

merical solution to the radial equation which is continuous across the boundary at ρ = l.

For a given n and trial E, we do this by applying the fourth order Runge-Kutta method

(RK4). In order to apply the RK4 method to the radial part of the Schrödinger equation,

we first rewrite it as

∂

∂ρ

∂R(ρ)

∂ρ)
=

∂

∂ρ
R′(ρ) =

[
n2

ρ2
− 2m

~2
(E − V (ρ))

]
R(ρ)− 1

ρ

∂R(ρ)

∂ρ
(190)

= F (ρ,R,R′). (191)
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At this point, we discretize V , R and R′ on a grid for ρ where each grid point is separated by

h. Then, we apply two separate RK4 methods which alternately calculate the intermediate

steps for R and R′ in the order

L1 = R′i (192)

K1 = F (ρi, Ri, R
′
i) (193)

L2 = R′i +
h

2
K1 (194)

K2 = F (ρi +
h

2
, Ri +

h

2
L1, R

′
i +

h

2
K1) (195)

L3 = R′i +
h

2
K2 (196)

K3 = F (ρi +
h

2
, Ri +

h

2
L2, R

′
i +

h

2
K2) (197)

L4 = R′i + hK3 (198)

K4 = F (ρi + h,Ri + L3, R
′
i +K3) (199)

before simultaneously stepping forward in R and R′

Ri+1 = Ri +
h

6
(L1 + 2L2 + 2L3 + L4) (200)

R′i+1 = R′i +
h

6
(K1 + 2K2 + 2K3 +K4). (201)

This process is repeated for various trial E and numerical solutions for R are found by

meeting the correct boundary conditions.
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APPENDIX E

PHASE DIAGRAMS OF COPPER SULFIDE AND

COPPER SELENIDE

We show here the phase diagrams of Copper Sulfide and Copper Selenide taken from Refs.

[144] and [145] respectively. In this study, we are primarily interested in the α, β and γ

phases of Cu2−xS and the α and β phases of Cu2−xSe (x=0.00,0.03).
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Figure 40: Phase diagram of Copper Sulfide taken from Ref. [144].
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Figure 41: Phase diagram of Copper Selenide taken from Ref. [145].
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[70] P. E. Blöchl. Generalized separable potentials for electronic-structure calculations.
Phys. Rev. B, 41(8):5414–5416, 1990.
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