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PREFACE

SYMBOLS

General coefficients in assumption of vorticity

General Fourier series coefficients

General coefficients in assumption of base profile shape
Wing chord

Lift coefficient

Lift force

Ly 25 35 ¢ w6 SO

Pressure

Pressure coefficient

Pressure coefficient correspornding to zero airfoil
thickness

Basic pressure coefficient distribution for airfoil of
finite thickness

Additional pressure coefficient distribution for airfoil
of zero thickness

Basic pressure coefficient distribution for airfoil of
zero thickness

Source or sink strength
Freestream dynamic pressure
Radius of airfoil leading edge
Reynolds MNumber

Effective Reynolds MNumber
Temperature OF

Airfoil thickness

Wind tunnel turbulence factor

Local velocity



I_.f'd < <

<3
ct

O-d ll—"q C';'q Il'bq

|

]
o]

‘1!;1

]

Velocity
Freestream velocity
Indicated freestream velocity

True freestream velocity

Base profile velocity distribution

Airfoil lower surface velocity distribution

Reference base profile velocity distribution

Airfoil upper surface velocity distribution

Base profile difference velocity distribution

Horizontal distance along chord; the abscissa of any
point on the airfoil
Lower surface abscissa of any point on airfoil

Upper surface abscissa of arny point on airfoil

Vertical distance perpendicular to chord; the ordinates

of the airfoil
Ordinates of cambered airfoil

Ordinates of mean camber line corresponding to zero
additional pressure distribution

Ordinates of airfoil base profile
Ordinates of cambered airfoil, upper surface

Ordinates of cambered airfoil, lower surface
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Angle of attack
Ideal angle of attack

dy,
The angle whose tangent is —
dx

Vorticity for airfoil of zero thickness
Finite difference

2¢
The angle whose cosine is (1 - x )

Mass density of air

Viscosity of air

A subscript referring to any particular value of ©
held constant during the process of integration
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ANALYTICAL AND EXPERIMENTAL INVESTIGATION

OF ALLEN AIRFOIL THEORY
SUMMARY

The Allen airfoil theory as given in Reference (1) is investi-
gated analytically and experimentally with regard to the determination
of the airfoil corresponding to a given velocity distribution.

The theory is carefully examined and much of the detailed in-
formation omitted in the above reference is presented,

Use of the theory is well illustrated and explained by assuming
an arbitrary distribution of velecity from which the corresponding air-
foil is computed by the method defined in Reference (1), A model of the
derived airfoil was constructed and subsequently tested in the small,
low speed wind tunnel at the Georgia Institute of Technology to obtain
the actual velocity distribution over the profile.

The actual and the desired velocity distribution are compared

with generally favorable results.



INTRODUCTION

The problem of determining the velocity distribution for an
arbitrary airfoil, or the inverse problem of determining the airfoil
for an arbitrary velocity distribution, has been solved mathematically
by several investigators in recent years. Among the most notable of
these theories is the work of lMunk, Glauert, Theodorsen and Betz.

The method of Theodorsen in determining the velocity distribution
corresponding to a given airfoil is particularly prominent, but it is
not of utility in the solution of the inverse problem. A notable method
of solving the imverse problem of determining the airfoil corresponding
to an arbitrary velocity distribution is given by Betz in Reference (8),
but this solution is intricate and laborious to apply.

Using the contributions of these and other researchers, an
extension of the general theory imvolving certain new analysis has been
developed by H. J. Allen at the Ames Aeronautical Laboratory of the
Hational Advisory Committee for Aeronautics, The inwvestigations by Allen
have resulted in a new method presented in Reference (1) which solves
either the direct or the inverse problem concerring airfoil shape and
the corresponding velocity distribution, This method, which is
comparatively rapid and easily applied, solves the problem directly
and accurately,

The Allen solution results essentially from the fact that many
of the properties of wing sections are primarily functions of the mean
camber line or of the airfoil base profile, Thus, by the method defined
in Reference (1), from an arbitrary velocity distribution the correspording

mean camber line and base profile are determined. Proper addition of



these configurations then yields the airfoil correspording to the
arbitrary distribution of velocity. This is the problem considered and

analyzed in this writing.



THEORY

The mean camber line theory and the base profile theory presented
in Reference (1) are considered separately in detail in the subsequent
pages. Equations are numbered in accordance with those of Reference (1)
in order to facilitate comparison. The mean camber line is defined as
the locus of points situated halfway between the upper and lower surfaces
of the airfoil section, these distances being measured normal to the mean
line. The base profile of the airfoil is the profile if the camber were
removed and the resulting symmetrical airfoil set at zero angle of attack.
Reference (9) shows that in a determination of the velocity distribution
over a cambered airfoil the effects of the camber and the thickness dis-
tribution may be considered independently,

The analysis of the base profile is based upon the replacement
of the actual base profile by a source-sink system, and similarly the
mean camber line study evolves from replacing the mean line by a vortex
system. The induced velocity at amy point on the cambered airfoil,
as demonstrated in Reference (9), may be found by superimposing the
induced velocity at the point due to the vortex system and that at the

point due to the source-sink system,



THE MEAN CAMBER LINE THEORY

Replace the actual mean camber line by an infinite number of -
point vortices employed along the same geomeirical shape as the original

camber line, Now, as shown in Figure A below, if the camber is small,
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Figure A, Diagram of mean camber line

the velocity induced at a point P(Xy, ¥eo) On the mean camber line by a
vortex at any other point P(x, y;) on this line is approximately that

which would be induced at the point on the x axis P(xy, 0) by the same
vortex at the point P(x, 0)s /% ¢f/'dx and the vortex strength at

any point is %-{x:'dx' The velocity induced at any point on the camber
line due to all the vortices distributed along the camber line is
- ¢ dfax
1| =
V(xo) " 2w (x = %) @)

as shown in Reference (2), and is perpendicular to the x=axis, The flow

direction close to the camber line must be parallel to the surface of



the camber line so that if the angle c{ between the x-axis and the
direction of flow of the undisturbed stream is small, then it is evident

from Figure B that
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!

Figure B

where Vo is the velocity of the urdisturbed strean,
At this point it is converient to introduce the new coordinate ©

such that
x = c/2(1L - Cos ©)

Xo=c¢/2(1 ~ Cos Qg) (3)
dx = ¢/2 Sin @ de

where ¢ is the airfoil chord. Assuming the distribution of vorticity
./-' s where the prescript , indicates that this circulation applies to

an airfoil of zero thickness, along the x-axis to be:

QO
do/7= 2 [18 Cot o/2 + 4y Tan 6/24+ S 4, 51n nﬂ] (L)
|

o0
+ 44 /l - Cos @ /(l - Cos 6)(1 4 Cos @) ¢ gAn Sin © Sin IQ]d@
1l 4 Cos @ )




e
dofax Vo {gé(h Cos ©) + AB(1=-Cos 8) +3 ApSin n® Sin e}de (5)
1

dx
And now from equations (1), (2), (3), and (5), the slope at 6, may
be obtained as follows: Substitute equation (5) into equation (1) and

we have

o0
V(xo) ® 1 J\c‘i’o@o(h Cos _9) + Ag(1~-Cos @) +§ ApSin n® Sin B]ﬂ

Z(l Cos ©) = -(1 - Cos 8p)

hence

NI
@¥eo o .7 . cVo S{Ao(li- Cos 9)+A (1-Cos 9){.&115111 n® Sin ?}d@
dx
Yo Zﬂ"o o c/2 (Cos 8y = Cos ) + ¢/2 - ¢/2

1
Now from the trignometric identity Sin A Sin B = E{Gos(A-B) - Cos (A+

1
B)t, we may write Sin n® Sin & = E{Cos (n=1)8 - Cos (n+1)8{ and thus
L

1
dye, o 1&[&5(1+0039)+ Ag(1~Cos®) + Zé An{Cos(n-l)Q—Cos(n+l)§ld9
ax o Cos 90.- Cos ©

(6)

It is shown in Reference (2) that

ﬂ‘
J\ Cos n® 4o " Sin no,

Cos © =~ Cos 8 = Sin 6,
)

or

T
f Cos né do - Sin n8o

Cos 6 — Gos © Sin 89 (7)

o



and now equation (6) may be written in this particular form as follows:

w QO
1
dyc o - 1 J{A&A};)Cos 084(Ag=Ap)Cos 8+ 5 gAn E:os(n—l)e- Cos(n-n-]_)e]}dg
dx 0t

o Cos By -~ Cos &

Therefore, equation (7) yields:

We _ o ol (A8+4g) (-TSin 085) 4 L (A5-4g) (=T'Sin 6)

dax W Sin 6, ™ Sin 6¢
2 W Sin(n=1)8,+ W Sin(n+1)6
+(1/2%0) Zhn [ g °]
! Sin ©g
(A+R) (A-B
Using the trignometric identity, Sin A - Sin B = 2os|[~5—|Sinm731,
we have:
(n+1+n-~1) 95‘ [(n+1—n+l )Bo]
Sin (n*1)8, = Sin (n=-1)8y = 2008[ Sin
° t 2 1L 2 ]
= 2 Cos nBg Sin 84
so that:
1 w
% -QQ-A,§+A3+'2'2§An Cos n8y Sin 6,
! Sin 64
and finally
dy oo
c
&__,. ={~A6+Ag+ AﬁCOBnGo ' (B)

!
and now integrating from 0 toT’,

g Cf oo P
% . d0 = f(h( - Ay + Ag) de "‘4‘; (Cos nG)dQ
[e]

C



aye =
2 48 = g(ct-Ad+AD) + X AnSin e
''n

hence, since the last term vanishes for all n, the coefficients are given

by

1 |dyc . a8
oC- Ay + A5 = %Jj&— (9a)
o

The general coefficlent, A, is found as follows: multiplying equation

(8) by Cos n®, we have by integrating:

14
fﬁc Cos n6 d8 = ﬁoc Ay + Ag)Cos n® d8 + Ap SVCoaz(nQ) de, since

0 o o
all of the cosine terms in the summation vanish upon integration from O

to W except the Cosz(nG) term. And now performing the indicated inte-

gration:
g 5 w
1 . in 2 ne
% Cos n® @8 = 5(0( - Al + Ap) Sin ne]-l- An/2 [(9 + -‘TE——)]
o o

-‘Tﬂ
Sﬂd;" Cos 1@ d® = 5 An, and thus we write

5——- Cos n® de (9b)

The 1ift force may be found from

d(./' Ydx d of ax

on ——— , and substituting equation (5) for =



m
2 1 n >
ol = P(Vo) c [Ao(l'l" Cos 8)+ Ag(l - Cos M (An Sin n@ Sin 9]- de
0 !

The i1
- Q(Vo)ac S(n;-l-ag)de-!- ec(vo)zf(a.; - Ag) Cos 6 de

vo T
-+ ec(vo)z IEAHJ‘EOS(H - 1)0 = Cos(n++ 1)9]:19

Upon performing the integration, we have

Q
o)
n

oL = f:c(vc,)2 (Ao + AgJT+@c(Vo)2 (Ag - hg) (Sin T - Sin 0)
[
(V)2 [in(n-1)8 _ sin(nt1)e
+ P 20 %ﬂnl ]

(n-1) (n+l)
o

The last term of the above expression vanishes for all values of "n"
Sin (n-1)e@

except for n = 1 for which —y
nn—

is indeterminate in its present

form. Therefore:

1 " 2 - _I
ol = f)c(vo)%f(ﬁo“*“ko)'l"% ‘['ﬁlsj’?n(f l)l) ]

Consider the last term: expanding and dividing by (n - 1) yields:

Sin (el ()T _ -0’1 L @1’ | @u'nl ...
(n-1) (n-1) (n-1) |3 (n-1) |5 (n-1) |7

sin (DT g D2 4 0012 00wy @0’y L
(n-1) 1z 5 L7 L9

For n = 1, the value of Sin(i—n_-f)t’!rbacomes o | !

Hence: oL = Pc(vo)z'ﬂ"(k;-l-ﬁ; +%’- Ap)

so that the 1lift coefficient is,

10
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1
o1 = 2 T (Ad+ 4% + 3 A) (20)
In the case of an airfoll wherein the trailing edge is sharp, the "Kutta
condition" must be satisfied. This condition is that enough circulation
will arise about the airfoil so that the flow will leave the trailing
edge smoothly. This hypothesis, in turn, requires that there shall be
no angular velocity, W , at the airfoil trailing edge. Hence the
vorticity is zero at the trailing edge, and this condition requires that
the Ag = 0, The coefficients therefore become
2 = -3 [Fedo

ax
O
"

Ay = O (13)

i\ d
2 |dyc cos @ 4@
ba = "‘J&T
o}

It is noted in Reference (2) that the coefficients A, of the Sin n®
series in the assumed distribution of vorticity of equation (L) are
independent of the angle of attack and are functions of the mean camber-
line shape only. The coefficient Ay varies with the angle of attack.
Now the pressure coefficient P 1is expressed in terms of q, the
stream dynamic pressures oP is the difference at x between the upper
and lower surface pressure coefficients, Pj = Py3; and hence from the

Kutta-Joukowski theorem of 1ift,

(4] aofy

) #13“ dx AL & 2 a(of} 10,
” 1 (p/2We)2 T = =

and now substituting from equation (L)
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o0
oP = % 2 Vo (A(',CO'I:%Q-FAETM%Q-* gAnSian) (15)
]

It has been found convenient in the past to consider the above
expression for the chordwise pressure distribution to be composed of two
distinct parts. This concept first appeared in Reference (3). That
part which is in magnitude independent of the angle of attack and in form
dependent solely upon the camberline shape is known as the basic pressure
distribution, and that which is in magnitude variable with the angle of
attack and in form independent of the mean camber-line shape is the
additional pressure distribution. Hence, for the infinitesimally thin

airfoil the additional pressure distribution is given by
] 1 ]
oPa ™ U(Ag Cot 78), since Ay = O, (16)
and the basic pressure distribution is given by
o0
oFb = thnsmne (17)
¢

It is convenient to consider the basic 1ift distribution only as
characteristic of a given camber-line shape since the additional distri-
bution may be modified at will by a change in the angle of attack and so,
at some angle, must be zero. The angle of attack at which the magnitude
of the additional distribution is zero for an airfoil is known as the
"ideal angle, o ;". For an airfoil for which the Kutta condition holds,
the magnitude of the additional distribution is determined by the

coefficient A:,, which is given as the first of equations (13) as

™
1 (ay
A - °C'1?Jaf'd°
(o)



since when °C = oy, Ad = O, then we have that the ideal angle <(j

is
-ni
Ll |dyc de
Ly = vl 1)

The ordinates of the mean camber line corresponding to the case when the
additional distribution is zero, denoted by Yops are related to the

ordinates y, as shown in Figure C below.

1

Figure C

The magnitude of &; is inherently very small, Figure C has
shown °C1 greatly enlarged to clarify the sketch. The following

relations are derived consideringcc i to be very small.

z Jep Y, b'd
Tanoly = s =, . Tws, — = EE'Z"Ci (19)
and differentiation yields
da'cb dyc
& " & - {20)

Now substituting equation (8) into equation (20) gives: since o= o(;,
Ag = 0, and considering only the basic distribution since the additional

distribution is zero at 021



ay =
T ioros Fuos -
—d-';— = |é,t"knco.‘.‘::ng (20a)

Thus we have from equations (17) and (20a) the following two series:

=al
T‘-:;- - |§ An Cos n® -

P
ofb
'_i‘;"‘ - g.&n Sin ne

The coefficients Ap of these equations are developed as follows:
dyep

dx
integrate from O to ™. Thus

Consider

ag
= é Ap Cos n@, Multiply the equation by Cos n® and
1]

v T
'rd\YCb Cos n® d®@ = Ap fCosz (n8) @8 since all of the Cosine
dax
o o

products disappear upon integration from 0 to ™ except Cos(n®).

Hence
i i T
deh Cos n@ dO = ..25[9 » Sin 2.29.]
2 dx 2n
r
and decb Cos n6 d@ = Whn
ax 2
[¢]
fi-l
2
Therefore Ay = ¢ jd_g%l Cos ne dé (22a)
Q

Vel
In a similar manner, consider the series ? - Ekn Sin n6, Multiply
\



15
by Sin né ??d integrate from O to W . Thus

i
T Sin n® 4@ = A, | Sin~ (n8) d® since all the Sine

o) (o}

' -
products disappear upon integration from O to M except Sin~ (n®). Hence

(Tl
T
QEP Sin n® de '22 e =
kL 3 -2 2n
[¢]
and
T
L S5in ne d = >
(8]
Therefore
T
2 \eb Sin n® de (22b)
A, = " in n
o

Using equations (21) and (22), the chordwise pressure distribution
corresponding to & given mean camber line or the mean camber line corre=-
sponding to a given chordwise pressure distribution can be found. How-
ever, in general the calculations using the above infinite series will be
very lengthy so that it is desirable to replace the Fourier expansions
by integral expressions, as was done in the development of the method of
Reference (L4). In order to accomplish this, the expression for the
Fourier coefficients given by the equations (22) can be substituted in

equations (21). At the point 6, then

T
e
dy
9-?39 & T%‘ —-d%b é Sin ng, Cos né dé (23a)

o l
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™ oo
and dreby . 2 Q_F gsm n® Cos np dé (23b)
o o ‘
[ o]

It is to be noted that the interchanging of the integral sign, N
and the summation sign, :E’, necessary in the obtaining of equations
(23) is actually an assumption of uniform convergence of the function.
Theodorsen, in Reference (L) where this procedure first appears, has
considered a basic transformation which he defines as composed of
uniformly convergent series. Since equations (23) result from manipula-
tion of these particular series, no further qualification of equations
(23) is given. 6, simply indicates the angle kept constant while the

integrations are performed.

Now,
Sin n@ Cos n® = 1 [Sin n(e+8,) - Sin n(e -8o)}
2
(23c)
Sin 06 Cos 8, = 1 [Sin n(6+8,) + Sin n(e-8,)]
2
and further, it is given in References (L) and (5) that
g . o2 & o g,
gsm n(etey) = 1 Cot\~ 2 ) Cos (2n+1)\7 (23d)
2

) CRLRN
2 Sin\ 2

so that substitution of (23c¢c) into equations (23a) and (23b) gives

.
QEb’.-. igngfﬁhé [éin n(@+e,) - sin n('B—Bo)] ae
[+

%m =1T2'J:éb é l—gin n(&46,) + Sin n(e-eo)] de
o
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and now substituting equation (23d) into the above expressions

[|
9{.}_3.0 = n;,iﬁﬁ-n-; E__:B Elot.{g-—;—-?-?-) - Cotf—;—B%] de

(ﬁd e+ 8¢ 0= 90
1 \dyep [008(21&*1)(‘?““) - 005(211"1)( 2 o
2m S dx Sm(e.;.so) . (886, Bl ke
: siaf 2%2)
and similarly
Tr 8 +8 e -0
0Ycpg [oﬁ: [Cot( °) + Cot ( - ]de
LIk
L 6+ 8, e~ 8,
1 |of [Gos (2n+1)\~3 , Cos (2ml) —2—) :
| of L e+ 8, e -8\ A
m( 5 ) Sink > )

Now consider the second integrals in the above expressions for

;‘EE" and ji"bo. First let us examine the second integral in the

equation for ﬁ% It is noted that the slope of the camber-line, dep

L
is uniquely determined at the point 8, about which the integration is

3

being performed, and hence is constant for any particular integration.
Note that the values of n as defined in equations (21) range from 1
to O, At this point a special condition is imposed upon ©,, and this
is that 0 < 8o ¢ " . The method presented here is to prove that the
second integrals vanish for all values of 0 € 85 < ; and then to
consider the special cases where 8, = 0 and T, The second

integral in the equation for QEE is


file:///dycb

18

Ly 8+ 8g - 8o)
1 dycp [Cos(2n1)\ ™2 ) _ Cos(2n+1) "'2‘_](19

C
I=Lim. 24‘,dx [ 3
o sin [ * 9 8 - Bq
2% i“{“'z“‘") Sm(z

dyep

=C; (2n+1) =

Now for simplification of the symbols we define:
8 + B¢

2
4@ = 2dx; & = T givesx = /2 +98,/2; 6 = 0 gives x = 8,/2.

k. Also, in the first term above we pub ( ) = X. Therefore,

Likewise, put (9 ; 90) = X in the second term. This is valid since
the integration is between limits and the variable disappears when the
limits are substituted, Hence for the second integral: d& = 2dx;
@ = Mgives x = T/2-6,/2; 8 = 0 givesx = = 8,/2,

Substituting we have

o
e w_ o
ar . 2o -
57 ‘ 7 2
gE Egg kx dx 20 Cos kx dx
I =on sinx T 2F) o Tsinx
O 7T
2
6o
c 2 Cos kx dx
Dividing by ¢ , then adding and subtracting " Sin x @ We have
S
2 2
80/2 "72+ 80/2 Ma- 8,/2 8o/2
1 |Geslxdx | Coskxax | Cosldx _ | Cos o dx
I Sin x Sin x Sin x
¥o-0,/2 8o/2 - 8,/2 2-0,/2
Therefore,
T/r"2+ 80/2 + 8p/2
i Cos kx dx Cos kx dx
mr—— - ch S oo - beusteis i Mivcicd (23
C/ Sin x Sin x 2

/2= 80/2 - 8,/2
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Consider now the first integral, and apply integration by parts. Let

Sin kx 1
Coz kkdx = dvy; hence v = X o« lLet u = Sin % ? hence du
08 x dx
- =——<-— and thus
Sin? x
/24 8/2 T2+ 00/2 W2+ 6,/2
Cos kx dx Sin kx . 1, Sin kx Cos x dx
Sin x k Sin x k Sin? x
V2-05/2 Wo-0o/2 “W2-0,/2

Since the Sine terms are always of such 2 magnitude that the expressions
in the brackets and under the integral sign are finite within the above

ranges of integration, these expressions vanish as k—» =0 | Thus

W2+ 0,/2
Cos

- (EEE
k>0

2= 85/2

80/2
Cos it dx
Now consider the second integral, Sin x Since Sin x =
- 80/2

O within the range of integration, the function is not continuous.
Therefore, we write the integral in the standard form for evaluating an

integral which is discontinuous at a point:

a 80/2 0-€ 85/2
Cos kx dx c G
Tma o Jmp | EE o | %R
€>0 x
- 90/2 "90/2 +€

In the first integral term above, let x = =x; thus dx = =dx. When



X = - €, =-x =*€ ; when x ="60/2, ~x =%*00/2. Substituting and

writing the second integral first

90/2 99/2 G
Coslxdx = Lim|[| Coslxax Coskxdx]
Sin x €0 Sin x Sin x
-8,/2 € 80/2
8,/2 (] 0
Thus Cos kx dx = Lim |Cos kx dx - Cos kx dx = 0  (23h)
Sin x €>0 5in x Sin x
-80/2 € 0
Therefore
™ i
o+6, 8 —8o
I=1Lim |1 dycbrCos (2n+1)(T n) __ Cos (2::1-1)("_“2 @ = 0
nd+e0 | 2w dx

—

s 7 stn(Z2)

And now turning to a similar examination of the second integral
in the expression for %ﬁbo’ we observe the following conditions: the
value of the basic pressure distribution, QIEQ, is uniquely determined
at the point% about which the integration is being performed, and
hence is constant for any particular integration. 1 < nZ"U; 0< &,
{ 1% As was noted previously the method presented here is to prove
that the second integrals vanish for all values of 0 < ©¢<1; and
then to consider the special cases where 8, = O and W, The second

integral in the equation for dycp, is
dx



(9*9

I= ﬂ?, [Coa (eng)\ 2 Cos (2n+1 ] e
n-no 3 sm(9+9 sm

Now as before, for simplification of the symbols, we define: o =~ C3

(2n+1) = k. Also, in the first term above we put 9:% = x; there-

fore, d® = 2dx, © = Tgives x = W2+69/2, © =0 gives x = 6,/2.

And likewise, put 25229 = x in the second term, as previously

explained, Hence d®8 = 2 dx; © = T gives x = T2 - 6y/2;

® = 0 gives x = = 0p/2. Substituting we have

Ny2v0, /2
Cos kx dx
~Sin x +
kanND
80/2
Dividing by G{r and rewriting, we have as follows:
T2+eo/2 9o/2 T72-60/2
Cos kx dx + Cos kx dx + Cos kx dx
I = Lim Sin x T 8in x Sin x
7
80/2 -00/2 8o/2
80/2
Cos kx dx
Now as previously shown the integral Sin x = 0, and applying
-0,/2

integration by parts to the first and third integrals, we have

T/2reo/2  M2460/2 Me~0o/2
Il = Lim Sin kx & Sin kx Cos x dx 4+ Sin kx +
(T k30 k Sin x k Sin*x k Sin x

80/2 80/2 80/2
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%'— 80/2

SinbcCosx_d_JE

+ k Sirfx

80/2

Since the Sine terms are always of such a magnitude that the expressions
in the brackets and under the inbtegral sign are always finite within the

above ranges of integration, these expressions vanish as k—> © ,

Therefore
+9 -0
1 o Cos(2n+1) Cos(2n+1)\™2
I = Lim 2% oo J© "%
n-»eo ———— Sin (................
0 ( 2 2 )

And thus it has been demonstrated that the second integrals in
the expressions for O—EP-°, equation (23e); and gﬁ?& s equation (23f)
vanish as n~» a0 , 0< 6,<T,

Consider now the special case where 8p = ™ 3 that is, at the
trailing edge. Examination of equa.tn.on (21) reveals that -EE 0 at

=T~ . Hence the expression for —h_— , equation (23e), = 0. By
inspection the integrand of the first term of this expression is zero,

and thus the second integral term is zero. In addition, the second

integral term in the expression for icbo , equation (23f), is zero
since E-E—l?- = 0,

Finally, consider the special case where 85 = 0; that is, at

the leading edge. Examination of equation (21) reveals that j_‘i_b, = 0
d

at 8o = 0, Hence the second integral term in the expression for ——o yebo

equation (23f), is zero. Moreover, the second integral term in the



o
expression for 'EEQ is zero by inspection.
Therefore, the expression for EEEQ , equation (23e), and for

dycho, equation (23f), reduce to

ofbo = T ?;b[ Cot(gge - Cot(gggo)q de (2ka)
bn' 9+e 0 -0\ |

%3‘9.0 %ngfn [ Cot(z 0} + Cot(_.é__.n)-ldg 2lib
-]

Let us examine the trignometric portion of the integrand in

equation (2La). Rewriting, using known trignometric identities, we havs

£(g)= 0808/2C0865/2 = SinB/28in8a/2 _ C0s8/20088q/2 + S$in®/25in8o/2
Sin®/2C0880/2 4+ 5inBo/2C0s8/2 Sin6/2Cos60/2 - Sing°7200;%§§

sl sme/zcos29,,/20039/2:5mzejgggaeo/zsineg (2-81:;9_9420039‘1/200329/2
= Sin“8/2 Cos“8g/2 = S5in“8y/2 Cos<8/2

4 51n20,/254n6/2C080/2 - Sin@[?CosG/ZCoszg_Q/z’ - 51n%0/251n8,/2C0500/2
5in°8/2 Cos°Bo/2 - Sin“By/2 Cos 8/2

~Sin 0,/2 Cos 0o/2 Cos®8/2 = Sin 6/2 Cos ©/2 S5in?e, /2

+
Sin®e/2 Cos0y/2 = Sin°0y/2 Cos®8/2
= =2 sm"’e/z Cos Bg/2 Sin 8,/2 - 2 Sin 85/2 Cos 60/2 00329/2
54n°8/2 CosBo/2 = Sin°8y/2 Cos<8/2
e -Sin @9 Sin9/2 - Sin 8o Cos6/2

1/L(1-Cos ©)(1+Cos 8p) =~ 1/L(1-Cos 6)(1 +Cos ©)

23



(B - - Sirl 90
1/L(1+CosBg = Cos@ = CosBC058,) = 1/L(1+Cos8 = Cosdg= Cos8,Cos)

1/1;(1+Cos0g~ Cos®~ Cos8oCos® =1+ Cosbg= Cose+ Cosdolosd)

-~ Sin @4 - Sin @,

1/4(2Cos 6y = 2 Cos ©) 1/2(Cos 8 = Cos ©)

f(e)

and hence equation (24a) becomes

T
oo _ 1 |Wep _5in 8o o (25a)
L LI P Cos & - Cos ©g
=]
and in like manner, equation (2Lb) becomes
™

Fevo -1 | oPb _Sine de (25b)
i 1Yoh Cos & = Cos 85

which may be useful if the functions under the integrals are expressed zs
simple functions of €.
When the functions are expressed in terms of x, the following

substitutions reduce equations (25) to a more convenient form:

x = ¢/2(1 - Cos ©) X0 = ¢/2(1 = Cos ©)
2x/c = 1 - Cos @ 2to/c = 1 - Cos 8o
2x/c =1 = =Cos @ 2xp/c =1 = = Cos 6q
Cos ® = 1 - 2x/c Cos 8 = 1 = 2xo/c
o = —20x

¢ Sin ©
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And Cos 8, = (1= 2x0/c), Sin® 6, = 1 - fos 93
1 = 14-kxg/c - Lxa/o?
So that Sin 8, = 2/c 1/xs(c - x5)

Thus Sinzﬁo

]

Now substituting into equation (25a) we have

ofpb 1 |dep 2/c_yxo(c = xo) 2/c dx

L T W | ax [(1 - 2x/c)-(1 - 2xo/cﬂ E/c v x(e - x)]

oo 1 (e, fkole - xo) ax

L ST | x-x) Ale-x 268y

(&)

and similarly,

c
_1 QEB 2/c Vx(c = x) 2/c dx
Tr'

Wep, _

dx - [(1 ~ 2x/c)-(1 - 2xo/c)] [2/c 7x(c - x)]
dyep, _ oPp dx

o™ ﬂ'f L(x = xo) b

However, in general the algebraic expressions for Py and g—iﬁ are
not simple and the direct integrations using equations (25) and (26) are
not convenient. Thus it is desirable to perform the integrations
numerically using equations (24). The computations may be shortened

considerably by use of the following mathematical device:

™ +9 i
S‘f(e) cot(9 3 °) e = -| f(21-9g) cm-,(g ; 9") de
[o]

Development of this device is as follows:
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L + 65
Given I = £(8) Cot\™ de Let @ = 2T~ x, When o =0,
[]

+ 8¢
x=2W; when © =T, x = W, Then £(8) = £(2T =~ x), and Cott'a'z__")-

cot‘\zn' ": - 9°) - cot(ﬂ"- (’5—';—9‘3)) Now Cot (T"-C) =—Cot o,

+ -
so that Cot (9 5 9°) = - Cot(x . 90) . Also d® = - dx. And therefore

we have

g
I = ff(e) Cot(e—;—eg)de

Q

W
fz‘:(zﬂ- - x) [- cot(x ; 9")] (- dx)
M e
J £(2M =~ x) Cot [=— dx
: [+

21

_S £(2 1= x) Cot(x . 9°\ ax

T

Now the letter representing the variable in any integral makes no

difference; hence we replace x by ©. And therefore:

Ly + e -
Ir(e) 001-,(9 = 9°) o = -J £(21 - 8) COt(Q - 9°) do

T
: dyep
And now applying the above device to equations (2)); where f£(8) = =
and '2% respectively, and £f(2” - ©) = g_c:?. and E?i respectively, we
have
20 ™

OPbo ~1 *dyc'b -0 +dy,

—_— = Sw— — C - o --!- —-E L] o 9

I = = ot( . ) s AT CotH de
(o]

W
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So that .
210
ﬁ . ~L i’fl’. Cot(e - 9") de (27a)
L ow | ax 2

o
defin:i.ng (d-,y% = (dycb
dx ™+ 0 dx M-8

and in the same manner

J. co 9 > a") ) (27b)
(o]

deflm.ng _1_39_ "= (ﬁ
h +0 b -8

These integrals may be evaluated numerically by the method of
Referance (l}) which is given in Appendix IIT.

In the preceding theory it was assumed that the airfoil was of
infinitesimal thickness, hence the velocity at each elemental vortex
along the camber line was taken to be the free-stream velocity Vo. For
airfoils of finite thickness, the wvelocity differs somewhat from Vo. A
better approximation is to assume that the velocity at each vortex is
the velocity on the surface of the base profile at the same station.

Hence, the effect of airfoil thickness will be to change the local 1ift

Ve
P o= OP Vo)

where V¢ is the local velocity on the base profile at x., The calculation

at x to approximately

of Vs is considered elsewhere in this paper.
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THE BASE PROFILE THEORY

The problem of determining the velocity distribution over a given
base profile or the base profile which will promote a given velocity
distribution over its surface may be treated in a manner analogous to

that of the mean camber line theory.

i

Figure D. Diagram of base profile

Consider the base profile shown in Figure D. If the thickness is
small, the velocity induced al a point P (Io;Yto) on the surface of the
profile by a fluid source or sink at the point P (x,0) is approximately
that which would be induced at the point P (x,,0) by this source or sink.
If the source strength at a point x is (dQ/dx)dx, then, the velocity

induced by all sources or sinks distributed along the x-axis will be
¢

g2

dx

- X

V(%) = oy (31)

&

This stems directly from the relation, v = Q/21r in Reference (2).
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The source strength can be related to the shape in the following
approximate manner: If the profile is thin, the velocity at the surface
does not differ materially from the freestream velocity Vo, and hence the
flow velocity within the profile due to the sources and sinks is as a
first approximation Vo. Within the profile the difference between the
quantity of fluid flowing at x + dx and x is the amount supplied by the
source contained within this interval, hence

— dx = 2V S i - 2V, .
dx = (Yt’ dx dx) Tt
This equation is clarified by Figure E and the following information:

éjx X

Figure E

The fluid output per source is Q, ft?/aec in two dimensional
analysis. Since the horizontal velocity on the surface and inside the
body is essentially Vo, the quantity is Vo y4 between points A and B,
or 2Vo * yt for the whole airfoil. At x +the source strength is
2Vo yt, and at x + dx the source strength is 2Vo * y; + 2Vo gt— dx,.

Hence the inerement in fluid flowing between x + dx and x is given by:

- d
B ax = WOYt*Woa?-dx-Evoyt

dx



or

dQ ot dyt
dx = 2V + —— dx] - 2Vo j
) Q (yt 3 ) o ¥t
and
aQ dyt
== = 2Vo Y% 2
i G2

so that equation (31) becomes approximately
c

dyt

1| — dx
o = ¢ | & (33)
Xo = X
0
By equation (3) we have that
x = ¢/2(1 - Cos 6)
Xo = c¢/2(1 = Cos 84)
dx = ¢/2 Sin 6 d8
and now assuming that the slope of the profile is given by
cbr ag
&3‘- = B) Cot /2 + B! Tan /2 + éBn Sin n8 (3L)
N

and thus

oD

4% ax = [B! Cot 8/2 S A ' '

o = | By Cot 8/2 Sin 6+ By Tan 6/2 Sin ©+ & B, Sin n® Sin 8| ¢/2 d6
1

Using the trignometric identities
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s ¥cus 8
Cot ©/2 = 1 - Cos ©
- Cos @

Sin e = fl-COSZB = /(1-!-0039)(1-0059)

Sinn® Sin 6 = 1/2 [Coan- 1)8 - Cos(n+1)q

Then
. F*C ~Cos®
T gx= 0/2[ —CosO ﬁ'*Cos 8)(1-Cos ©) + Bo&; 1(1+uos 8)(1-Cos 8)

+1/2 an {Cos(n—l)g - Cos(n+1)9}] ae (3La)

Equation (3) yields that: whenx =0, 8 =0; whenx =c¢, @ =7T.

And now substituting the above expression for (dyt/dx)dx into equation (33)
™
ﬁo(1+0056)+ Bo(1-Cos®) + 1/2 i Bn{Cos(n-l)G Cos(ml)e_}] ‘c/2 48
v/Vo & (c/2)(1 - Cos eo) - (c/2)(1 - Cos ©)

(1
o(l+CoaG) + By (1=~Cos8) + 1/2 an@os(n—l)G Cos(n*-l)%}ig
viio -1" Cos 85 = Cos ©
-1 ((Bé+33)00509+ (By=Bo )Cose d9 {gn@os(n-l)a Cos(n+l)?ld9
v/Vo= wJ Cos 8o - Cos © Cos 8, - Cos ©

However, as previously indicated

T
Cos n® =+ dé . _ Wsin ne,
Cos 8, - Cos © Sin 64

Q

Now examining the first integral above,
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-1 moin 080 1 1 rSin 8,
I; = 1; (BS + BY (- 5""‘-""'—"in 90) _ﬁ: (BO B:) ( Sin 6,

I; = Bg = Bp

And similarly examining the second integral above,

o
-t 2Bn _ qSin(n - 1)8, R M'Sin(n + 1)901
) Sin g S5in 8 |

(A+B
Using the trignometric identity: Sin A - 5in B = 2 Cos ["’“2 .
A -
Sin F—-—-——B%] we have Sin (n + 1)85 = Sin (n - 1)8g =

+1+ =4 +1-n+1)e
2 Cos [(n = L] Rn 2“ )°-] 2 Gos 18y Sin 6.
-l Cos mBg Sin 8
And thus Ip = 2“’2 - © = -anCosnBo. Now
]

5in 8,
combining I; and Iy we have for the velocity ratio at any general value

of
o0

v/No = By =By - S By, Cos nd (35)

And now integrating equation (35) from 0 to T,

r ™ ;o
Jv/‘Vo e = j(B:, ~By) d® - | S B, Cos 0@ do
(o] o (o] '

Therefore
W
Sin
¥ d9 = (Bo - By)W SBn ng The last term here
o
vanishes for all wvalues of n so that
g
1 v
) - ——
BO = Bg = m Vo 28 (363-)



33

To find the general Fourier coefficient B,, multiply equation (35) by

Cos n® and integrate from 0 +to T , Thus

v w r
Y Cosmd @& = J(Bé - By)Cos n® d® - BnJGos@ nd 4@ since
Vo

[e] (o] 0

all the Cosine products vanish upon integration from & to I~ except

Cos n® Cos nB.

w ‘“ SinZnQTr
v 1 —
j%c.asnede = ;(Bo-Bo)SinnG]-Eg(e" on )
2 o) 2 o)
d B
f%(}osngdg - '-éri(m’)
0
Therefore
T
-2 v
B, = 1; ?;Cosnﬁde (36b)

o
The condition that the trailing edge shall close is that the
summation of the vertical ordinate increments from the leading edge to

the trailing edge shall be zero. That is
I m
fd:n-, - fﬂ'{t_ dx = 0
dx
o [

Substituting the slope as given by equation (3lLa)into the above expression

and integrating from O toM , it follows that

" o)
ﬁ:Bé(l'*Gos @)+ Bp(1=Cos 8)+ 1/2 lan {Cos(n-l)g- Cos(m-l)e}] c/2 d8 = 0,

o)



3L

[ o0
f[(sc',ﬂaf;) Cos 08+ (Bg-Bg) Cos @+ 1/2 iBn%os(n—l)e- Cos(n-fl).G}] c/2 d@=0
|

And performing the integration, we have

T
. L : Sin(n=1)6  Sin(n+1)8\|.
9%(30*'30] “'%(Bo" o) Sin @[ + 1/2 an n-1 =~ n+1 J2=0

o o ! 0

a>
Now as shown in the development of equation (10), the é B, term above

1
vanishes for all n except n = 1, For this value of n, it has been
demonstrated that the value of the expression =CBy T,

£,
Therefore %_(Bé + Bo)T + 1/2 B (Mg = o

And thus Bo + Bo +1/2B; = O. (37)

An examination of equations (34) and (35) reveals that these
equations may be used to find the shape of the base profile corresponding
to a given velocity distribution or inversely, the velocity distribution
corresponding to a given base profile shape., However, equation (3L4) for
the base profile shape bacomes infinite for © = 0 and @ =T 3 that is,
at the leading edge and at the trailing edge. We avoid this undesirable

phenomena by utilizing the method of superposition and select a known

profile as a base and thus compute the values of d‘iyt and Y with

respect to this base profile, Addition of the values of ddAth’ oemd -%E
calculated from equations (3L) and (35) with respect to the base profile
to the known values of % and % for this reference base profile yields
the desired values. Now the immense value of this method of obtaining
the desired base profile shape and velocity distribution is the fact
that by proper selection of the reference base profile so that it

possesses the same slope characteristics as the actual profile under
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consideration at the leading edge and trailing edge, and letting A y¢
represent the change in shape from the reference profile to the profile
under consideration, we have from equation (3l4) at the leading and

trailing edges respectively:

y ==
dAy; = O =B Cot O + By TanQ +anSinnO
dx 2 2
i e
ddy; =0 =By Cot™ 4 By TanT 4 an Sin Y
dx 2 2 I

Thus the coefficients B:_, and Bg must be identically zero to
satisfy the above equations. Now letting Av represent the change in
velocity from the reference profile to the profile under consideration,

we may rewrite equations (3L4) and (35) as follows:

dAy; = 'an Sin no
(Lo)
o
_%g - —-?Bn Cos no

and the coefficients, which may be developed in the identical manner as

shown in equations (22a) and (22b), are

ﬂ-/
By = 2 [ dAyy Sin 0 do
™) &
o

or ™~ (L1)
Bp==2 |Av_Cos ne do
m™ | Yo

o
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It is apparent from equation (37) that the coefficient By must be
zero since By and Bg are both zero, Therefore when it is desired to
find & change in base profile shape corresponding to a given change in
the velocity distribution, having established the condition that
Bé = Bg = By = 0, it is evident from equations (36) that the change in

velocity distribution must be so chosen thal the conditions

“jﬁfLXZde =
(L2)
Jﬂ" Cos @ d® = 0

must be satisfied if the velocity distribution chosen is to cerrespond
to a real base profile.

Using equation (4O) and (L1) the chordwise velocity distrdibution
corresponding to a given base profile or the base profile corresponding
to a given velocity distribution may be found, The calculations will
in general be very lengthy so that it is desirable to replace the
expansions by integral expressions as was done in the development of
the method of the mean camber line theory. Thus substitution of the
expressions for the Fourier coefficients given by equations (L1) into

the equations (LO) yields that at 8:

I
ddy‘oo -2 F éCos 18 Sin nd, A
(L2a)
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X v
Vo . =2 ______i Sin n® Cos nB dO
Yo ™+ dx )

Now

Sin n@, Cos nd = [Sin n(6 + 8,) - Sin n(6 - 90)]

(L2v)

o= Nl

Sin n® Cos nBy = [51!1 n(e + €,) + Sin n(e - 90)]

and further, it is given in References (L) and (5) that
6 % 89

e % Cos (2n + 1) |
Ssinn (@x6) = = Got(e > 9°) - ( 2 (L2c)
|

et 0,
2 8in \—5

so that substitution of equations (L42b) into equations (L2a) gives

dAYto . =2 f g Eg;m n(é + 85) = Sin n(6 - G‘o?] de

-2 |dAyt <1 1,
= F d‘i g-z- [Sm n(e + 8,) + 5in n(e - 90)] de
Q

and now substituting equation (L2c) into the above expressions

dAyto _ -1 f [ (9 8\ _ Cot(g '2'90)] de

*1 |Av [(:05(2:14-1)(9"'9
(L2d)

= = ) ) Cos(2n+1)(9-£—§2)J -

e+ 8, - -8
o Sin ( °) si 4
% B {3
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and similarly:

Qg - dAYt [_C‘bf—% + Cot(g——)- 90]d
Vo n..;QO 2“’

J:m_vt Cosf%i;f&)) ) Co:i:n*-i):@? ] i (L2e)
2 2

In the limit the second integrels in the above relations become zero,

as shown previously in the development of equations (2Lha) and (2Lb),

and thus the equations may be written as:

™
ddyr, | Av |'-c°t(-J E 90) _ COtke - 90}] s
dx 2w _J Vo 2 2
o]
Av, . 1 fdA:rt [Got (9 6 9°) + Cot P"‘*)] de
Vo 21 2 2

For the occasions when the change in shape or velocity distri-

(Lef)

bution is knowm as a relatively simple trigonometric function in 8, it

is sometimes convenient to use the equations

"I
ddyt, -1 | Av  Sin 6o d®
dx ™ Vo Cos & - Cos 6¢
¥ (L3)
and
W
Avo _ 1 |ddyt Sin © de
Vo T/ & Cos & -~ Cos 6,
Q

which are derived from equations (L42f) in the identical manner as in
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the development of equations (25a) and (25b).
When the change in shape or velocity distribution is known as a

relatively simple function of x, then it may be convenient to use the

equations

c

dAyt, _ J;YLV/VO 7xo(c - x0) dx
o L (x = x5) ¥ x(c - x) ()

v

dAyt
Av | -1l =
Vo m X - Xo

which are developed from equations (43) in the same way that equations
(26) are derived from equations (25) as previously shown.

Again utilizing the mathematical device

L o + 6g 21T B
fr(e) Cot( 5 )dQ = -J £(27- o) cmf—,‘,——) ae

© ™

where £(8) = X and Ay respectively; and £(2T-90) = -‘:r—v and

Vo dx o)
E_‘éﬁ respectively, we have from equations (l2f)
dx
27 ™
dAyto i il _43 Cot(g- eo)de - A_vCot@:%dQ
dx 2m Vo 2 Vo 2
)
2m ™
Avo . 22 |_[ ddw Cot( °)d9 + |44yt GotM e
Vo 2m ax 2 dx 2
()

which may be written as follows:



2
adyee 1 [ Av c::;t.(g - 9°) a8
dx 2T | vo 2

o]

and
al g
dvo _ -1 | dAw 001-,( 9°) de
Vo 2| dx 2

o

— t‘dyt. __ [aAwy
ex w+0 dx m-e

These integrals may be evaluated numerically by the methed of Reference

(L) which is given in Appendix III,



APPLICATION OF THE THEORY TO THE PROBLEM OF
DETERMINING THE AIRFOIL CORRESPONDING

TO A GIVEN VELOCITY DISTRIBUTION

General Procedure

The desired velocity distribution is selected and the correspording
velocity distribution over the base profile is found by averaging the
upper and lower surface velocities at each chordwise station., It is to
be noted that the shape of a two-dimensional body corresponding to the
desired velocity distribution may not represent a real airfoil section
which is both "closed'" and "pointed" at the trailing edge. Thus the base
profile corresponding to the desired velocity distribution will, in gerneral,
be modified slightly to conform to a real profile. After this adjustment,
the base profile shape corresponding to the corrected base profile
velocity distribution is calculated. It is important to note that any
slight change to the original base profile in making the adjustment to a
real profile necessitates corresponding changes in the original velocity
distribution, and thus the desired velocity distribution will, in general,
be modified slightly to conform to the adjusted base profile. Usually,
these changes are small and will not affect the utility of either the
velocity distribution or the airfoil, The chordwise pfessure distribution
is calculated from the adjusted upper and lower surface velocity distribu-
tions. Then the chordwise pressure distribution for the airfoil with the
thickness removed is determined and the mean camber line shape is
calculated. Finally, the calculated mean camber line and base profile

shapes are combined to give the agirfoil section shape corresponding to the
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modified velocity distribution. All the steps outlined above are

presented in detail in the following pages.

Detailed Procedure

In gereral, it is required that the airfoil corresponding to the
desired velocity distribution be one having a specified thickness ratio.
This requirement - together with the requirement that the desired
velocity distribution correspond to that for a real airfoil section
which is both closed and pointed at the trailing edge - complicates the
problem since it is not apparent from the velocity distribution whether
the requirements are fulfilled, By choosing the wvelocity distribution
wisely these difficulties can largely be eliminated. Of particular
value is reference to known velocity distributions over existing airfoils
having similar thickness ratios and velocity distributions to those
desired.

Figure 1 defines the desired velocity distributions for upper
ard lower surfaces. (This is the theoretical velocity distribution for
the NACA 66(215)-216 airfoil given in Reference (6)., This same reference
includes the ordinates for the airfoil.) Having thus defined the desired
velocity distribution, it is further specified that the airfoil to be
derived shall be of approximately 16 per cent thickness. Therefore, the
calculated airfoil may be compared with the actual airfoil corresponding
to the desired velocity distribution.

It is necessary that existing airfoil data be examined and from
these data to select an airfoil whose upper surface velocity distribution
is very similar to the desired upper surface velocity distribution; and

similarly, selection of a second airfoil whose lower surface velocity



distribution is very similar to the desired lower surface velocity
distribution., Figure 2 illustrates this procedure. The similar air-
foils selected are the NACA 66h-021 upper surface velocity distribution
for Cq = 0 and the NACA 66,1-012 lower surface velocity distribution for
C; =0. These airfoils and data are available in Reference (6). The
reason for introducing these similar airfoils is to facilitate selection
of a reference base profile from a table of Joukowski base profiles in
Reference (1l). Now the airfoil to be derived will obviously have a
leading edge radius approximately midway between that for an NACA
66h*021 and the NACA 66,1-012 airfoils. The leading edge radii for
these two respectively are:

r/c = .02550

r/c & 00893
and thus the average radius is r/c = .01l722., Now using this average
leading edge radius as a guide, we select a Joukowski base profile from
Table II of Reference (1) that has .a leading edge radius of approxi-
mately the same magnitude. The Joukowskl base profile for which
t/c = 0,12 has nearly this radius (.01706) and is therefore used as the
reference base profile,

By computing the average of the desired upper and lower surface
velocity distributions (vufvo)l and (Vl/Vo)l respectively, at various
chordwise stations the base profile velocity distribution (vf/vo)l is
obtained, The subscript (1) is used to denote that these velocity
distributions are a first trial and are subject to slight modifications.

Figure 2 shows the base profile velocity distribution, (Vf/Vo)l.
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The difference between the desired and the reference base profiles

(%} = - @)

The values of (&%) are found in Table I for the usual values of x/c.
v,
p E

is found from

Values of @ and Cos © corresponding to various values of x/c are con-
veniently available in Table V, Reference (1). Values of (‘QI) x Cos 8
1

0
are calculated as shown in Table I. Then both (‘9‘-! and.(#-'f) » Cos 0 are
o/1

Vo
plotted as functions of ® in Figure 3.
It is now necessary to make some adjustments to the first choice
velocity distributions, That is, we employ the fact that - in order for

the desired velocity distribution to represent a2 real airfoil which closes

and has a sharp trailing edge - it is required that the relations

r
Av -
fvade_o

be satisfied. These conditions are discussed elsewhere in this writing,
(loc. cit. equations (U42)), and are not satisfied since a theoretical
velocity distribution, not the true velocity distribution, for the NACA
66(215)=216 airfoil was utilized as the desired distribution of velocity.

Using a planimeter the area under the (%I) curve is integrated
o
1
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from 0 to™ and it is found that

w
(%‘_’) de = -.0268
%,
°
Similarly, the area under the %!) x Gos ® curve is integrated from O
o
1

to T with the result that
AT

J&V)x Cos8de= =,0277
o
o 1

Obviously, an adjustment of the curves is necessary. The second trial,
designated (%-E) and thus (’%E) xCos ©, is an estimate based on inspec-
tion of the aboE'e results and ?ohe characteristics of the curves in

Figure 3. Again the mechanical integrations are perfarmed and we have

™
J‘ ‘%E de = .005200

(o]
o

1'1"

%E* Cos & d ® = .001532

o

Hence, the conditions are nearly satisfied. In order to completely
satisfy the conditions, it is strongly recommended that the method of
final correction defined in Reference (1) be utilized. This eliminates
the undesirable trial and error procedure otherwise necessary at this
point. Therefore, according to Reference (1), the conditions may be
satisfied completely by slightly translating and rotating the second trial
of %—Y- « Assuming that a small increment

O
Av
A(ﬁ;) = ky+ky( g- ) (6L)
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be added to the distribution (A—V) sirice
2

vO
ar
D(u)d 6= wk,
VO
o]
and (65)
v
ﬂ(%l")cos 8de =2k
(o]
o]
then nmaking
Ky = :-'—O——?fzog -.00166
and
kyp = = og 2 = -,000766
the velocity distribution
Ay Av A(Ax 66
i (VoJ T (vo) by

will completely satisfy the requirements. 1In Table I the valuesof

ﬁ(ﬂ) = =.00166 - 00766 (‘L" - )
¥, 2

o

are given and the final value of the difference velocity distribution
%‘—’ is calculated using equation (66).

° It is now possible to calculate the base profile ordinates. The
procedure here is to calculate values of %ﬁi by numerical integration
of equation (L45); then by plotting 9(—?—% versus x/c and mechanically
integrating find the values ‘-&—Y-E, which finally yield values of the base

c
profile ordinates y, from
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?:ﬁ.;‘i’.t (67)

v ' Ay
iF = iF — 68
Vo T + T (68)

The method of mmerical integration of equation 45 is illustrated in
Reference (1). For convenience, the method is given in Appendix III of

this writing. Tables II amd III present the complete calculation of

d Ay

g and are carefully explained in Appendix I,

Now having obtained values of %, these values are plotted as
a function of x/c as shown in Figure l. By mechanical integration with
a plarmimeter the curve in Figure L is integrated to each desired value
of x/c and thus the value of —-A-é-:’-rii is obtained at the desired chordwise
stations. Having values of -952 and corresponding values of 'E—E-', the

base profile ordinates are obtained from

Tt

c

nh'-ci

+ -é? (61)

and these ordinates correspond to the base profile velocity distribu-

tion EI which is found from
* v
o

. o A (68)

v
Values of ‘-Iz are given in Table I. The base profile ordinates are
fe]

plotted in Figure 5.
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In this particular calculation the maximum thickness is approxi-
mately 16 per cent of the chord as was desired. In the event that the
calculated thickness %, is different from the required thickness ta,
then the ordinates and wvelocity distribution for the base profile of

thickness tz can be obtained from the following:

®), - 2(2)
(9, - >+ 269 -1

Now at this stage in the calculation of the airfoil corresponding
to the desired wvelocity distribubtion it is necessary to revise the
desired velocity distribution so as to account for the changes made to
the original base profile velocity distribution (vf) to make that
distribution represent a real profile. This, it is lbelleved, is best
accomplished graphically on the plol of the corrected base profile
velocity distribution. The writer used a different method based on

the following equations:

v v P
o= £, b/ (71)
Vo vo Vf/vo

V1

vo vo Vf o

Correction of the original upper and lower surface velocity
distributions was accomplished by specifying that the original upper

surface velocity distribution (V,/V,); was not to be changed and thus
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all the correction was absorbed into the lower surface velocity distri-

bution. Thus the basic pressure distribution Pb/h was computed from

Yo - V¢ Pb/h (71)

+
Vo Vo Vs Vo

since it is the only unknown involved. Hence the corrected lower surface

velocity distribution was calculated from

Ei = Ei = EQ&E (71)

Vo Vo vf/vo
Table IV presents results of these calculations.

In géneral this methed of correcting the original velocity distri-
butions is satisfactory if a plot of the corrected distributions is made
and compared with the desired distributions and it is determined that
the changes in the V,/V, distribution are not unsatisfactory. The
importance of this procedure was not evident to the writer since it was
agsumed that the changes to the desired velocity distribution would be
small. Usually this is true, but by the above method the lower surface
distribution alone absorbs all the change, and it was later found that,
in this case, the resulting corrected V1/V, distribution was not particu-
larly desirable. This is apparent in Figure 6 where it is evident that
the lower surface distribution is no longer laminar to the 60% chord
station as was desired. The laminar flow is lost at about the 20% chord
station.

It is to be noted, however, that the preceding method is very

useful if it were important to maintain either the upper or lower surface



origimal velocity distributions, and as stated previously, it is also
satisfactory if the resulting corrections to one surface are not
urdesirable.

However, the graphical method by direct examination of the
corrected base profile velocity distribution curve in conjunction with
the desired distribution curves is satisfactory at all times and has
the advantage that it is apparent whether or not the changes to the
desired curves are satisfactory.

Figure 6, therefore, is the new desired velocity distribution
for which the airfoil will be derived.

We now proceed to the calculation of the mean camber line
ordinates, In this calculation the basic pressure distribution corres-
ponding to zero profile thickness ofp Must be used, We have from

equation (5l) of Reference (1) that

on = vf /vo (5L4)

and hence by virtue of equation (71) this distribution can be obtained

directly from

v v
B o= 2 (VO B v_ﬂ (73)
Values of ofp and B, are shown in Table V.

The problem is therefore to determine the mean camber line shape
which will promote the above basic pressure distribution. The procedure
here is to calculate values of fﬁ:ﬁp by numerical integration of equation

d
(27); then by plotting -azgh versus x/¢ and mechanically integrating

T T
find the values -%h . The final step is to correct these values of _gp
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which are with reference to the ideal angle of attack;xf i, to the
regular coordinate system consisting of the x-y axes.

The method of numerical integration of equation (27) has pre-
viously been discussed. Figure 7 is the required plot of ng/h versus 6,
and Tables VI and VII present the complete calculation of _Ezzh and are
explained in detail in Appendix I.

Upon obtaining the values of Eazih, these values are plotted as a
function of x/c¢ as shown in Figure 8. By mechanical integration employ-
ing a planimeter the curve in Figure 8 is integrated to each desired
value of x/c and thus the value of Yoy is obtained at the desired
chordwise stations. Table V presents the values of Yoy

The mean camber line thus obtained is at the ideal angle of
attack; that is, the ordinates obtained are referenced to the angle of
atback for which the additional pressure distribution is zero; and
hence, unless the ideal angle is zero, the trailing edge is either below
or above the x/c axis. Ordinates of camber lines are gemerally specified
with the extremities of the camber line on the x/c¢ axis and designated
by the usual symbol Yoo

Now the ideal angle of attack is simply

i = ({Eh)% & @g'h) 2m g (7L)
and
0 = DX (75)
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o = Fop + (79)

dx

The above relations may be verified from an inspection of Figure C given
elsewhere in this paper. The value of o 5 in this calculation is
.00l42ly radians = ?25 . Values of the mean camber line ordinates are
given in Table V, and Figure 9 is a plot of the mean camber line.

Therefore, having bobth the values of the base profile ordinates,
T4 s and the mean camber line ordinates, Ye , it is now possible to calcu-
c C

late the airfoil ordinates from the following relations:

Xy e .Y.t_Sinp
c c Cc

I
c

u
°k
+
<
L]
&
S\

(76)
X o= X+ Ty
bt % sinB

b
1l
|
tq
:
4:1
™

where

5
g

p

The above relations may be verified from an inspection of the following
diagram, Figure F, where the camber line is greatly exaggerated for

clarity.
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Figure F.

Calculation of the final airfoil coordinates is presented in
Table VIII, ard the resulting airfoil is plotted in Figure 10. Also
shown in Figure 10 is the plot of the NACA 66(215)-~216 airfoil

correspornding to the original desired velocity distribution.



EXPERIMENTAL APPARATUS, TESTS, AND RESULTS

In order to test the validity of the theory, a suitable model of
the derived airfoil was constructed for the purpose of obtaining the
actual velocity distribution over the airfoil, and hence to compare the

actual distribution with the desired distribution.

Apparatus
The model constructed was of laminated mahogany, with a 10 inch

chord and a 30 inch span, Pressure orifices were situated at the
desired chordwise locations on upper and lower surfaces. The tests
were conducted in the small, low-speed wind tunnel at the Georgia
Institute of Technology. Figure 12 illustrates both the configuration
of the model and the installation of the model in the wind tunnel,
Figure 13 is a study of the tunnel test section, and of the auxiliary
apparatus, Pressures over the wing were observed on the alcohol
manometer bank shown in Figure 13, The tunnel control panel and the
alcohol manometer indicating velocity in the jet are alsc shown in

Figure 13,

Tests

All of the tests were two dimensional and were conducted with the
test section closed as shown in Figures 12 and 13. The indicated
velocity was 80.5 mph corresponding to a true velocity of 83.6 mph and to
a tunnel Reynolds Mumber of 579,000. These calculations are presented
in detail in Appendix IV. This Reynolds Number must be corrected for the

effects of tunnel turbulence by the relation
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RN = TF x RN

where R Ny is the effective Reymolds Number of the airfoil, and T F is

the tunnel turbulence factor, Reference (7). For this tunnel
TF = 1.375
and thus the effective Reynolds Number is
R No = 1.375 x 579,000 = 797,000

The lift coefficient for the desired velocity distribution of
Figure 1 is Cy = 0.21. The tests of the model were therefore conducted
at Gy = 0.21 which corresponded to an indicated angle of attack C(?: .33°.
Table IX presents the test data and reduction of the data to the velocity
distribution and is explained in detail in Appendix I. Figure 11
presents the comparison of the test data with the desired velocity dis-
tribution. In general, the agreement is satisfactory except for the
region near the trailing edge. In this area the flow is highly turbulent
and much of the airstream energy is lost to random rotational motion;

thus the region is one of very unstable flow conditions,



DISCUSSION

The method of obtaining the airfoil corresponding to a given
velocity distribution as presented in Reference (1) and in this writing
is the most direct procedure available to the aerodynamicist, In
addition this method undoubtedly yields results of a degree of accuracy
satisfactory to most engineering work. Certainly, it presents a solution
as accurate as any of the other existing methods, and has the decided
advantage that it is much less tedious.

There are, however, several things to be said concerning certain

steps in the process. For example, the numerical integration calculations

d(Ayy) dy
of el and —E—Eh involve measurements of the slopes of the curves
of ‘%,Y. and i% plotted as functions of © as shown in Figures 3 and 7.
0

Accurate measurements of these slopes is a tedious and difficult task,
particularly since in certain areas of these curves, between points from
which they were plotted, the shape of the curve is not well defined and
hence the slope is questionable., The writer found that the best method
of measuring the slopes was by using a thin polished aluminum mirror and
adjusting this mirror perpendicular to the curve. This establishes a
line perpendicular to the desired slope, The measurements should be done
twice, and preferably from opposite approaches to the points in question
along the curve,

These mumerical integration calculatious should, by all means,
be made using a good computing machine. A slide rule should not be
employed in any phase of the computation.

Another point worthy of special consideration is the adjustment

of the original velocity distribution in correcting it to a real velocity
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distribution. This has previously been discussed in detail.

It should be noted that all curves required by this method should
be plotted very accurately on large graph paper. It is now considered
by the writer that all the graphs presented herein are much too small.
These small curves are very destructive to high degrees of accuracy in
evaluating the curves at particular points, and in addition make the
mechanical integrations using a planimeter difficult and of questionable
accuracy.,

And now in considering the compariscn of the velocity distribution
obtained from the experimental data with the desired velocity distribu-
tion as shown in Figure 11, it is to be noted that this comparison does
not define the degree of accuracy attainable by this method of finding
the airfoil corresponding to a given velocity distribution. The particu-
lar calculation presented in this writing, as discussed in the preceding
paragraphs, could have been materially improved as regards accuracy in
the actual process of calculation, In addition, the airfoil model
constructed for testing is certainly subject to slight variations from
the true surface defined by the computed ordinates. Moreover, the
results of tests conducted in a small wind +tunnel of low capacity are
not as accurate as may be obtained from more expensive equipment. It
is very strongly believed by the writer that a more precise calculation
cambined with a more perfect airfoil model and high-performance testing
facilities would yield experimental data of extremely close agreement

to the desired velocity distribution,



58

RESULTS

The results of the calculation are essentially the ordinates of
the derived airfoil. These are plotted in Figure 10 in comparison
with the ordinates of the NACA 66(215)-216 airfoil, Now it will be
recalled that the original desired velocity distribution as defined
by Figure 1 is the theoretical distribution over this NACA configuration
Let us, therefore, consider the reasons why the computed airfoil dos not
exactly correspond to the NACA 66(215)-216.

First, it is to be noted that the plot of the difference velocity

Av

o
velocity distribution and from the selected reference velocity distri-

— oObtained from the base profile corresponding to the desired

bution — did not satisfy the requirements that

T
Ay de=0
Vo

Q
1'1-
Av«Cos ®d 6 =0
Vo

o}

That is, the base profile corresponding to the desired velocity distri-
bution did not correspond to a real base profile having a closed and

pointed trailing edge. Therefore, some adjustments were made to the

base profile to correct it to a real profile. Had the desired velocity
distribution been the true distribution of velocity over the NACA 66(215)-216
airfoil, these adjustments would not have been necessary., The fact that

the above requirements were not satisfied indicates that the theoretical
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distribution chosen as the desired velocity distribution is not the true
distribution for the NACA 66(215)-216 airfoil.

Second, the adjustment to the original velocity distribution —
made necessary by the changes to the original base profile — was not of
a nature such that the general characteristics of the desired velocity
distribution were completely retaired. And thus the modified velocity
distribution for which the corresponding airfoil was derived, no longer
conformed exactly with the NACA 66(215)-216 velocity distribution.
Therefore, the resulting computed airfoil does nol correspond exactly
with the NACA 66(215)-216 airfoil.

Consider now the results obtained by the wind-tunnel tests con-
ducted on the model of the derived airfoil. Figure 1l presents the
comparison of the experimental velocity distribution and the desired
distribution. The comparison over the aft section of the airfoil, parti-
cularly with regard to the lower surface velocity distribution, is not
as favorable as that over the forward portion of the model. The actual
and the desired distributions agree favorably from the leading edge to
approximately the 60% chord station., A discussion of the several reasons
for the discrepancies in the curves has previously been given. In general,
results of the wind-tunnel tests are satisfactory in that the actual
velocity distribution is essentially in agreement with the desired
distribution of velocity.

The general good agreement of the theory, which neglects viscous
effects, with the actual test results indicates that the effects of
viscosity are small in this Reynolds Number range. Thus the analysis

presented in Reference (1), although based on non-viscous fluid theory,
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which is never strictly justifiable, yields resulis of sufficient accuracy

for practical engineerirg purposes.
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CONCLUSIONS

The investigation of the Allen airfoil theory presented in this

thesis yields the following conclusions with regard to the method

defined in Reference (1) of obtaining the airfoil corresponding to a

given velocity distribution,

1.

3.

L.

The mumerical computations invelved in the method must be
performed with precision, A computing machine is essential,
Al] graphs necessary to the method must be on large sheets,
Sizes 8 1/2" by 11" and 11" by 17" are generally unsatis—
factory.

The effects of viscosity are small in the usual Reynolds
Mumber range,

The Allen theory is direct, accurate, and comparatively

rapid,
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TABLE I

CALCULATION OF BASE

PROFILE ORDINATES

(1) (2) (3) (L)
2 2

PR, R, 6
u 1 u

0 0 0 0
.025 1.225 870 1,108
.050 1.350 1,000 1,162
075 1,400 1.060 1.182
100 1.440 1,100 1,200
+150 1.h80 1.150 1.217
«200 1,520 1.190 1.232
300 1,560 1.230 1.250
1400 1.580 1,260 1.258
500 1.600 1.280 1.263
.600 1.620 1.300 1,272
700 1,400 1.180 1,182
800 1.130 1,000 1.063
900 880 800 »938
1,000 615 620 +78L



(8)

1.1226
1.1946
1.2151
1.2206
1.215}
1.2019
1.1668
1.128)
1.0896
1.0511
1.0135

9769

9h1é

.9072

(9)

0
.3176
21510
.554L8
6035
<7954
«9273

1.1593

1.3694

1,5708

1.7722

1,9823

2.2143

2,h981

3.1416

1.0000
9500
. 9000
«8500
8000
7000
.6000
.L1000

. 2000

-.2000
-.11000
-.6000
-. 8000

~1,0000

65



(13)

1.5708
1.2532
1.1198
1.0160
«9273
775k
6135
115
.201h

-.201)
-e1115
~6L35
~e9273
-1.5708

(16)

(-.000766)
2
-,00120)
~.000960
-.000857
-.000778
-,000711
~.00059)
-.000493
-.000315
—.0001542
0
.0001542
.000315
000493
000711

.00120L

-

(17)
)

-.0028
-.0026
-.002}
-.002L
-.0023
-.0022
~+0021
-,0019
-.0018
-.0016
-.001L
~.0013
-.0011
-+0009

-.000L



(18)

av
Vo

-.0766
-.082L
-.075L
-.0623

-.0362 -

-.0111
L0341
07L2
<112k
«1515
.12)2
-0540

~.0309

~e135L

(19)

A P
Vo

0
-.0728
-.07h1
-.06L0
-.0L98
-.025);
~.0067

0136
.0148
0
-.03030
-.0L96
-.032l
.02148
.135L

(20)

1.0L60
1.1122
1.1397
1.1583
1.1792
1.1908
1.2009
1.2046
1.2020
1.2026
1.1377
1.0309

9107

«7718

-.00075
-.00132
-.00049
00080
.00L28
.0086L
.01818
.02700
.03339
.03L82
02860
»01639
00171

0

(22)
Ir
c

0
02786
03795
<OLLT0
+0L959
+05587
05902
05936
05452
-0L6L9
.036L9
02562
01491
00559
0

The value of Av is arbitrarily made 0 at © = Q.

Vo
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(23)
T4
C

0
02711
+03663
0lL21
.05039
.06015
06766
07754
.08152
.07988
.07131
.0522
.03130
.00733
0



TABLE II

Av
VALUES OF 35 FOR VALUES OF 6

FROL 0 TO 2M, IN % INCRELENTS

o,

o av Av
De . - (bv
elining v:;)nf«r - (-a.rc)-,r_ 6

- 8 ay

Vo Vo

: Be
~.076 lic:" ~.036
~-.065 1_5_6“."_ 056
~.009 lll*——u?— 139

<052 E:{BE 1%

113 1;3” .052

139 17e ~.009

10

056 1535* -.065
-.036 1%" -.076
~s111 21 0
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TABLE III

d Ayt
NUMERICAL INTEGRATION CALCULATICN OF T x

FOR THE BASE FROFILE, WHERE

2
iyt _ 1 -
e BT ot O\ 4 0
d x To )
(1) (2) (3) (a) (5) (6) (7)
0 x a Av qbv 4 Av
Radians c Radians Vo Vo (ao) = G}E)
Vo Vo
d8 d0 .
0 0 0 0 0 0 - -
%6 0244 314 -,076 ~.1644 -.01644 -, 066
%% .0955 .628 -.065 ,1578 .01578 -.009
s .2061 941 ~.009 .1880 .01880 ,052
10
4n +3455 1,256 052 1868 .01868 .113
10
E% +5000 1,570 SIS .1952 .01952 .139
1
6545 1.888 .139 -, 1251 -.01231 .056
Tn «7939 2200 056 -.2836 -.02836 -.036
%% .9045 2,516 -.036 -.2820 -,02820 S B
%% .9756 2.830 -.111 -.1321 -.01321 -.135
1.0000 3.142 -.135 -.0358 0 > o
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(8) (9) (10) (11) (12) (13)

B, B8 o[ 8] @ @ e,

0 -,065 -.,022575 ~.009 «076 =-.085
-,076 «067 .023269 052 0 . 052
-.065 o117 040634 «113 -.076 «189
-.009 .122 +042371 « 139 -.066 204

.062 087 .030215 «056 ~-.009 « 065
113 -.057 -.019796 -,036 «052 -.088
«139 -.175 -.060778 -.111 «113 -.224
.066 - 167 =-,0567999 «135 +139 -e274
-.038 -,089 -,034522 -.111 +056 -+ 167

-0,111 0 0 -,036 ~-.036 0



1

(14) (18) (16) (17) (18)

8] B B, B8, <Bqe.

- . ww - - - e - e - - o -

-.013362 .052 .065 -,013 =-.012948
«008174 »113 .076 + 037 «003685
.029711 .139 0 «139 0135844
032069 .056 ~.076 «132 «013147
.010218 -.036 ~-.065 028 .002888

-,013834 -.111 -.009 ~-.102 -.010159

-,035213 -+135 «062 -.187 -.018665

~,043136 ~-.111 <113 =-.224 -.022310

-.026252 -.036 «139 =175 -.017430

0 «066 .066 0 0



(19)

)

«113
+158
.056
=-,036
~,111
-.135
-.111
~.036
+056

«139

(20)

(21)

&), &) -

.009
.065

. 076

=-,076
-.065
~.009
052
2113

« 139

.104

»074
-.020
=.036
-,035
~,070
-.102
-.088

=-,057

(22)

Lk

.007186
.005113
001382
-,002488
-,002419
-+004865
-.007048
-,006081
~-.0032939

0

72

(23) (24)

] @), 8

«139 -,052
«056 +009
-.036 .065
-.111 «Q76
-.135 0
=-.111 =-,076
-,036 -.085
.066 -.009
» 139 «052
o113 113


file:///VojJ

(25)

(26)

0., # ]

191
047
~,101
-.187
-.135
-.035
029
.065

.087

.009607
.002364
-.005080
-.009406
-,006811
-.001761
.001458
+003270
.004376

0

(27)

(%,

-.036
.056
.139
.113

.052

(28)

).,

-, 113
-.052
009
065

.076

-,078
=+ 065
-.009

.052

13



(z0) (31)

-0 ] @9,

006185 -.036
.000586 =111
-.004392 -.135
-.007335 -s111
-.006844 -.036
-.001318 .056
004831 «139
007466 113
004465 .052

0 -.009

(32)

).

-.138
~.113
~-,052
+009
«065

076

-.076
-.065

-.009

(33)

(34)

£ ) ol -

«103
«002
-.083
-,120
=-.101
-.020
«139
«189

«117

002894
«000056
-+002330
-+003372
-.,002838
-.005620
.003906
006311
.003288

0

Th

]



]

(35) (36) (37) (38) (39)

B 0, 66, Be] &

-.111 -.0566 -,065 =-,000897 -+135
-+135 -.139 004 »000059 =.111
-.111 -.113 .002 «000033 -.036
- 4,036 -.052 .088 .001434 .0566
»056 .009 «047 .000766 »139
«139 »065 074 .001206 «113
.113 «076 «037 .000603 .062
052 0 .052 »000848 - 4009
-,009 ~.076 . 067 .001092 -.065

-,065 -.0656 e 0 ~-,076



76

(40) (41) (42) (43)
(&) by -@&) ) -(ﬁz)J a Ay,
Vo) _ VoJg Wol_g Volg Wo/_ Tdx
- - - . o*
036 -.171 ~,001371 -404172
-,056 -.055 -.000440 . 056865
-.139 .103 .000824 .09343
~+113 «169 .001352 «08645
~4052 .191 .001528 .04622
.009 .104 .000832 -. 06762
065 -,013 ~.000104 -+13937
+076 -.085 -, 000680 =-.14151
0 ~.065 ~,000520 -,08265
-.076 0 0 0

# The value of dAyt =0 at 9, =0
dx

by inspection of equation (LO).



TAELE IV

FINAL ADJUSTMENT OF THE DESIRED
VELOCITY DISTRIBUTION, AND CALCULATICN

OF THI BASIC FRESSURE DISTRILUTICH

(1) (2) (3) (L) (5)
X oV Py Po "
c Vo %o L V£ /o Vo
0 0 0 0 0
025 062 0855 062 2840
.050 .050 .0556 .050 1.0622
075 0l2 +CLT78 .0l2 1.0977
100 L2 0486 02 1.1163
150 .038 Olh7 .038 1,122
«200 Ol 0487 041 1.1498
«300 «0L9 - 40587 -0L9 1.1519
.00 .053 .0639 .053 1.1516
«500 061 0733 061 1.1410
.800 069 L0830 069 1,1336
.700 Ol 0500 Nohn 1.0937
+800 .032 0330 .032 9989
«$00 .027 L0249 027 .8a3hL
1.000 0 0 0 7718



,025
050
075
<100
+150
«200
« 300
1400
500
« 500
« 700
+500
+900

1,000

TABLE V

CALCULATION OF IEAN CAIBER

(2)

Vo V1

Vo Vo

LIIE ORDIVATES

(3)

ofb

0
0520
0499
0422
L0l19
L0379
Nolluk
0491

78

(5)

0
.3175
L1510
5548
<6435
«T95L
+9273

1,1593
1.359L
1.5708
1.7722
1,9823
2,213
2,1,981



(6)

Ve
Vo
1.0460
1182
1.1397
1,1583
1,1792
1.1908
1,2009
1,20L6
1.2020
1.2026
L2377
1.0309

<9107

7718

(7)

+2620
.222);
.1910
1942
1790
»1950
«2350
«2580
+2932
.3320
+2000
.1320
0995

(9)

0

c

.00011
00021
00032
.000L2
+00069
.00085
.00127
.00170
.00212
.00255
.00297
.00339
.00382

.00L2Y

00189
00309
L0022
00508
00669
.00821
.01107
.01318
.01428
L0119
01143
.00663
.00L3L
0

79



TABLE VI

Pp
VALUES OF 911-« FOR VALUES OF ©

FROM O TO 297, IN :-E'g INCRENENTS

Defining (Efé)ﬂ'+ & = - (EEE

0F e

L

O_E__b. e

117

¥ 10

.0620 120,
10

0l17 Lr
10

Lol16 1
10

0510 1om
10

0610 1o
10

058l 17
10

.0326 18m
10

0268 LA
10

0113 o

)11'_:- 6
oPb

—n

L

=.0113
-.0268
~40326
~.056L
-.0610
-.0510
-.0l16
-.0l17

—-0620

80



TAELE VII

WUMERICAL INTEGRATION CALCULATION OF ——0w—

FOR 1EAN cm-azaﬁgz LINE, VHERE

Je 1 P -
e s EE ot (9a~fgjd g
d x 2w, Iy 2
(1) (2) (3) (L) (5) (6) (7)
dfo Pp
- . e o ) o (F)] (D
Radians c HRadians N = de L
0 0 0 0 0 0 062
%% 02Ly .31l .0620 -.C750 00750 LOL1T
E%% .0955 628 L0417 ~. 001} ~.000L); 0l16
3%;. 2061 ol L0l16 L0L27 00427 .0510
0
E%% <355 1.256 0510 0182 .00182 0610
5%%- 5000 1.570 L0610 .0L03 00403 058
é%% +65L5 1,888 «058L ~.1053 -.01053 .0326
Z%%_ .7939 2,200 .0326 ~.03258 ~.00325 0268
EJ% 9048 2,515 L0268 —.0285  =.00265 L0113
2%% 9756 2,830 L0113 -.0625 -.00625 0

™ 1.0000 3.142 0 0 0 -,0113



82

(8) (9) (10) (11) (12)
D, D@ «“0-0] &
L/ u)l (1;)_1 al{ L7 u)_l] L/, (u)_2
-.0620 «1240 .0l3065 L0L17 -.0la7
0 .0L17 014482 O0L16 -.0620
+0620 ~.0204 -,007085 0510 0
LOL17 0093 003230 0810 0620
Q16 0194 006738 058l JOL17
»0510 +007L +002570 0326 LOL16
0810 -.028l -,009863 .0268 .0510
058l -.0316 -,010975 0113 0610
<0326 -.0213 -.007397 0 058l
L0268 -.0268 ~.009308 -,0113 0326

L0113 ~.0226 -.0078L9 -.0268 0268



(13)

=

(1k)

), < 6

,013110
016286
.008017
- 000157
,002625
-.001l15
-.00380L
-.0076813
-.009180
-, 005901

-.008L26

(15)

(),

Ko/ is

83



8L

(18) (19) (20) (21) (22)
B8] 6, @, -6, -6
bty Nt g L /), b bJy L/, b7 NL/
008287 0510 -.0510 1020 007048
009233 0610 ~.0415 1026 007090
012251 058l -.0l17 1001 006917
005817 0326 -.0620 0946 J006537
-.002928 0268 ' 0 0268 001852
~.001l8l .0113 ,0620 -.0507 ~,003503
-.003018 0 L0417 -.0l17 -.002881
~.005080 -.0113 0426 -.0529 -.003655
-.007201 -.0268 0510 -.0778 =.005376
~.008486 -.0326 L0610 -.0936 -.006L68

=.006L9Y -,058lL 058k -.1158 -,008071



(23)
()
L
«0610

058l
0326

Ui

.0268

»O113

-.0113
~.0268
~.0326
~.058lL
~+0610

———

)

(on

in

(25)

1220
.1094
07h2
0685
0733
o
~+0733
~.0685
-.0742
-.109L

_01220

(26)

-2 2

006137
.005503
.003732
003446
003687
0
-.003687
-.003446
-.003732
—-.005503

-.006137

85



(28)

()
L /-5
-.058l
-,0610
-.0510
-0L16
-o0l17
-, 0620
0
0620
0OL17
0L16

.0510

(29)

(30) (51)

(_qgg) - (9;2)-6 a@[(g?'j') i (o_ib‘) _;J (EJI.JTD)?

1168
0936
0778
+0529
LOL17
.0507
~.0268
- 0946
-.1001
~.1026

-.1020

004275 0326
003426 s
.00281,7 S5
001936 .
001526 B
.001856 R0
-,000981 =326
-, 003462 =058k
~.00368Y “sHEL0
~.003755 “eB500
-.003733 =016

86
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(#3) (3L) (35) (36) (37)
(9_.1’_@ 9_}_”2 __,) f (eib) (951) (ol'lj (e}ffz)
$0652 001832 0268 ~0268 0536
0852 .002394 0113 -.0326 0L39
0723 +002032 Q -.058] 058l
0510 001333 -.0113 -.0510 L0L97
0303 .000851 -.0268 -.0510 0242
0149 000419 -.0326 -.0415 0090
.029) 000826 -.058) -0l17 -.0167
-.058k -.0016l1 -.05610 -0520 .0010
=.1230 -.003L56 -.0510 0 -.0510
-,0927 -.002605 =015 0620 ~.1035

~.0832 -.002338 -.0l17 Ol17 -.083L



(38) (39) L4o) (L)

] 6, 6, 6.6

a8 7 -7
00087 +0113 -.0113 0225
000716 0 ~.0268 .0268
000952 -,0113 -.0326 .0213
+000810 =.0208 -.058L 0315
000394 ~0326 - 0510 +028l:
+0001L7 -.058L =,0510 ~,007h
~,000272 -,0610 -.0l15 -.0194

000015 -.0510 - OL1T -.0093
-,000831 -.0L16 -.0620 020l
=~.001589 -.0L17 0 -.0la7

=,001359 =620 ,0520 ~.120



-

(L2)

onﬁ
L
000181
00021
+000170
000253
000227
-.000059
—-.000155
-.000074
.000143
=.00033L
-.000992

J

(L3)
d yc,‘

b
dx
08181
L0518k
02940
02757
01579
00255

-.03436
-.03938
-.01;353
~.05130

89



(1)

[¢]

025
.050
075
+100
»150
. 200
300
« 4100
500
«&00
700
.800
+900

1,000

.0850
.0518

0343
0290
.0280
0271
.0208
.0120
.0026
-.0200
-.0376
-,0396
~.0l31
~.0450

TABLE VIII

(L)

#

Radians
0892
.0560
-0L56
0385
0332
0322
0316
.0250
»0162
.0068

-.,0158

=033

-.035)

-.0389

CALCULATION OF AIRFOIL ORDINATES

(5)

Sinf3
0892
0580
.0L56
.0385
0332
.0322
.0316
.0250
0162
.0068

-.0158

-.033L

-.035

~-.0389

(6)

Gosjg

«9960
9984
9990
9993
9995
1.0000
1.0000
1.0000
1,0000
1.0000
1.0000
1,0000
1.0000
1.0000

1.0000

(7)
Tt

c

0271
0366
JOLL2
0504
.0602
0677
0775
0815
0799

0713

0313
L0073



+0366
LOul2
«050L
0601
L0677
0775
.0815
0799
0713
<0542
.0313

.0073

(10)
Ve

.0019
L0031
.0042
.0051

0067

.0082

.0111
-0132
L0143
L0142
011l
0066

.0043

0235
.0L83
.0733
0983
1481
1979
2981
«3987
L1995
«5989
.6982
7989
8997

1.0000

.0290
0397
0L8l
0555
.0668
0759
.08386
L0947
L0942
.0855
0856
0379
L0115

0

91

(13) (1h)
:{l g
e (o}
0 0
0265 -.0252
0517 -,0335
0767 -.0L00
o LO17 -.0L53
<1519 -.053L
.2021 ~.0595
»3019 -.0658Y
L4013 -.0583
5005 -.0656
L5011 -.0571
+7018 -.0L28
«2011. -.0247
9003 -.N030
1.0000 0



(1)

olm

025
«050
075
.100
150
«200
« 300
-Li00
500
«500
<650
«700

« 500
1.000

TAELE IX

92

EXPERTVENTAL DATA AND DETERNMINATION OF THE ACTUAL VELOCITY

DISTRIBUTIQN FOR MODEL OF CALCULATED AIRFOIL TESTED IN THE

LOW-SPEED WIND-TUNNEL AT THE GEORGIA INSTITUTE OF TECHNOLOGY

(2)

Py
Centimeters
of Alcohol

=T+43
393
5449
5.8l
6.118
6496
8.11
8457
8.89
8485
T«91
7.06
5666
2,91
1.49
<096

(3)
APy
Centimeters
of Alcohol
10,00
~1.36
-2,92
=327
=391
~11e39
~5e5k
~5400
-6432
-5,28
~5e3L
-l 49
=299
- o34

1.08

2,147

(L)
Ary
a
996
~.136
-e291
-.326
=390
=137
=e552
-s591
-4530
- 525
-.532
~o 447
-.298
=03}
+108
o2Lb



(6)

P
Centimeters
of Alcohol

=7.113
2.27
3.69
Le20
Li.56
5.66
6402
5670
5492
5.7k
5e22
L.38
3.2
2401

,096

(1)
AP]_

Centimeters
of Alcohol

10,00

93



Column
(1)
(2)
(3)
(L)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(L)
(15)
(16)
(a7
(18)
(19)
(20)
(21)

9L

EXPLANATION OF TABLES

TABLE I
Remarks
Chordwise station
Desired upper surface velocity distribution, Figure 1

Desired lower surface velocity distribution, Figure 1

/(2)
7(3)

(L) + (5)
%l Base profile velocity distribution, lst choice, Figure 2
Reference base profile velocity distribution, Reference (1)

(7) - (8), Figure 3, uncorrected Av

Vo
e
Cos ©
(9)(11)
First adjustment of Av , Figure 3
(13)(21) h
T2 - (10) Reference (1). Method for final correction to Av
-.000766 x (15), Reference (1).Method for final correc'bionvzo %_1:
o

A(_-'}_E), -.00166 + (16), * ] " 1 " 0 T
Vo
(13) + (17), Corrected Av ., Figure 3 %
Vo
(18)(11)
(8) + (18)
Mechanical integration of Figure L



(22)
(23)

Ordinates for reference base profile, Reference (1)

(21) - (22), Ordinates of base profile

3* It is to be noted that the value of Av/Vo

is arbitrarily made 0 at © = O.

95



Column

Column
(1)
(2)
(3)
(L)
(5)
(6)
(7)

(8)

(9)

(10)
(11)-»(L2)
(L3)

96
TABLE II

Remarks

The values of Av_ are taken from Figure 3. The values
Vo
of %}_r_ for values of O greater than T are obtained
o

from the definition cav = (hv
°/wryo VOLT-Q
TABLE III
Remarks
e

Chordwise station

4]

Table I1

Slope as measured from Figure 3

ao(5), where a, = .1000

Av at 0p + nfr , where n = 1; Table II. DNote: The value

ofoddyt,/dx = z;els?-o at 6, = 0 by inspection of Equation (LO).

Av at @0 + nW , where n = ~1; Table II. Note: The value
o 10

of dAy/dx = zero at 6y = O by inspection of Equation (LO).

(7) - (8)

a,(9)s where a; = o3L73

Similar to (7) =» (11)y, n = 2,=2, evecccccccceady=9

(6) + (10) + (1) + (18) + (22) + (26) + (30) + (3L) +

(38) + (Lh2)


Chordgd.se

Column
(1)
(2)
(3)
(L)
(5)

Column
(1)
(2)
(3)
(1)
(5)
(6)
(7)
(8)

(9)
(10)

91
TABLE IV

Remarks

Chordwise station
[W) - (20], Tavle 1
[20), Table 1] x (2)
(3) # [(20), Table ]
K20), Table 1 - (k)

TABLE V

Remarks
Chordwise station
kw), mavle J - [5), Table ¢
2(2), Basic pressure distribution, zero profile thickness
(3)/4
e
k20), Tav1e 3
(3)(6), Basic pressure distribution
Mean camber line ordinates, uncorrected for (i, obtained
by mechanical integration of Figure 8
(a€1)(1), whereofi = ,00L42L radians

(8)+ (9), Corrected mean camber line ordinates


Chordsri.se
Chordvri.se

Column

(1)

Colum
(1)
(2)
(3)
()
(5)
(6)
(7)
(8)
(9)

(10)

(11)~~(h2)

TARLE VI

Remarks
ofb

98

The values of "ﬁ" are btaken from Flgure 7. The values of

9.31?. for walues of © greater than M are obtained from the

L T
derERition (.'if.b_.) 5 o (0* D) .
S+ 6 hi/ar_ g

TABLE VII

Hemarks
)
Chordwise station
&
Table VI

Slope as measured from Figure 7

ao (5), where ag = L1000

n
93[1 at 6,+ —“—: where n = 1, Table VI
b 10

ofb at e+ BT yhere n = -1, Table VI
I 10
(1) = (8)

a1 (9) where ay = 3473

Similar to (7)=(11), n =2, =2, « . . « 9, ~9.

(6) + (10) + (QUl) + (18) + (22) + (26) + (30) + (34) +

(38) + (L2)



Column
(1)
(2)
(3)
(L)
(5)
(6)
(7)
()
(9)

(10)

(11)

(12)

(13)

(k)

TAELE VITI

Remarks
Chordwise station
Figure 8
(2) + i, where oCi = ,00L2L
Tan™t (3), For small angles tangentP = angleP®
Sin (4), For small angles, the sine@= angleﬁ
Cos (L)
(23), Table I
(7)(5)
(7)(6)
(10), Table ¥
(1) - (8)
(9) + (10)
(1) + (8)
(10) - (9)

99



Column
(1)
(2)
(3)

(L)
(5)
(6)
(7)
(e)

100
TABLE IX

Remarls
Chordwise station
Lxperimental data, wind tunnel
Static prescure in tunnel test sec‘tion - (2), vhere Ps =
2.57 centimeters of alcoliol
(3) = g, where q = 10,03 centimeters of alcohol
1,000 = (L)
Experimental data, wind tunnel
Static pressure in tunnel test section - (6)
(7) =+ a, where ¢ = 10,03 centimeters of alcohol

1.000 - (8)
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APPENDIX II

FIGURES
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FIGURE 12. AIRFOIL MODEL IN TUNNEL TEST SECTICN



FIGURE 13, TUNNEL TEST SECTION, CONTRCL PANEL, AND MANOMETERS
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METHOD OF NUMERICAL INTEGRATION
1r

A numerical evaluation of the integral E = %;?-J:‘ Cot (QEQQ) de

o

is given in the appendix of Reference (4). A "20-point" solution is

a, (%L +2a.(F) =F_;) +ay(F, -E) +. . . +a(Fg - F_g)
where F, is the value of F at 9+]-_%', and F, is the value of F at 6 + %r
Values of nare;: n=1, -1, 2, =2, 3, =3, « + « 9, =9,

nglis the value of (Qi'g at e = 8,s and the coefficients are:

3

0.1000, a; = 0.3473, a, = 0.1572, 2y = 0.0996, 3 = 0.0691,

n
n
I

0.0503, ag = 0,0366, a; = 0.0281, ag 0.0163, ag = 0.0080.

as

d
The value of At for soﬁ given in Table IIT in the caleculation

dx il 7
of the base profile ordinates, for example, is obtained in the following

cyclic form;

— = 0.1000(.1952) 4 0.3473(.139 = .052) + 0.1572(.056 = .009)

+ 000996(-0036 S 0065) + 0-0691(-0111 B 00?6) + 0!0503(-l135 = O)
+0.0366(=.111 = .076) + 0.0281(~-.036 - .065) + 0.0163(.056 - .009)

+0.0080(.139 - .052) = 0.0L622

A more accurate "LO-point" solution is
darF
E=b (&E +by(F = F3) +5p(Fp = F_p) +. « « +byg(Fjg = F_jg) where

now Fl is the value of F at 9 + %I, and F is the value of F at 8, +-

The values of n ares n=1, =1, 2, =2, 3, -3, . . . 19, =19.
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%) is the value of -g-g at & = 8, and the coefficlents are given by:
0

b, = 0.05000, b, = 0.3L4906, b, = 0,16129, by = 0.1051k, by, = 0.07735,

1
be = 0.06057, bz = 0,04918, br = 0,04087, bg = 0.03L4L, be = 0,02929,
5 6 T 8 9

blO = 0.02503, byy = 0.02139, byp = 0,01819, b,, = 0,01532,

13

b18 = 0.00395, b19 = 0000197b

The "}j0-point" solution need be employed only when the function F

changes more or less abruptly with x/c.
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CALCULATION OF REYNOLDS NUMBER OF

ATRFOIL MODEL IN WIND TUNNEL TEST

Atmospheric conditions: T = 8L°F.; p = 28.90 inches of mercury
Static pressure in test section = 2.57 centimeters of alcohol when
the dynamic pressure g = 10.03 centimeters of alcohol. Specific
gravity of alcohol = ,808.

Determination of g in units #/ft2

Q = 10,03 cm, alcohol ft  (.808)(62.L)# 16.58 #/et?

30,5 ecm. f£t° aleohol
Calculation of corrected density

P=?O(P/p°)(to/'°) = .,002378 (28.90) gzoa = ,002195 slugs/ft’

Calculation of indicated and true wvelocities

2
Vi = 29 = 2(16,58)# fth = 13,940 ft2/se02
e £1° ,002378# sec?
V; = 118 ft/sec = 80.5 mph.

Vg = Viggh = (;i)’/zt/%.@ = 122.6 ft/sec = 83.6mph
.002378
Determination of corrected viscosity
4t = (3408 + 0,548 x°F)- 107 from Reference (7)
A = (340.8 4+ 0,518 % 8L)-10 = 386.9 1077 Hesec/ft?
Calculation of Wind Tunnel Reynolds Number

RN, ZQVeo = ,0021954sec® 122.6[rt) (£t°) 10/12 £t = 579,000
A £64  (dsec)  386.9 [sed 1077
Determination of Effective Reynolds Number

R.N.e = Turbulence Factor X Tunnel Reynolds Number; where T.F. = 1,375

ReNeg = 1.375X579,000 = 797,000



