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PREFACE 

SYMBOLS 

A % A " General coefficients in assumption of vorticity 

A , B General Fourier series coefficients 

B !, B " General coefficients in assumption of base profile shape 

C Wing chord 

C-L Lift coefficient 

L Lift force 

n 1, 2, 3, . . . <=>& 

p Pressure 

P Pressure coefficient 

o 
P Pressure coefficient corresponding to zero airfoil 

thickness 

P. Basic pressure coefficient distribution for airfoil of 
finite thickness 

(Pa Additional pressure coefficient distribution for airfoil 
of zero thickness era 

P, Basic pressure coefficient distribution for airfoil of 
zero thickness 

Q Source or sink strength 

q Free stream dynamic pressure 

r Radius of airfoil leading edge 

RN Reynolds Number 

RN Effective Reynolds Uumber 

T Temperature °F 

t Airfoil thickness 

T.F. Wind tunnel turbulence factor 

v Local velocity 



V 

V Velocity 

V Freestream velocity o 

V. Indicated freestream velocity 

V+ True freestream velocity 

Base profile velocity distribution 
v f 

V0 

\ 

V0 

Airfoil lower surface velocity distribution 

Reference base profile velocity distribution 

Airfoil upper surface velocity distribution 

A v Base profile difference velocity distribution 
"o 

x Horizontal distance along chord; the abscissa of any 
point on the airfoil 

x-j_ Lower surface abscissa of any point on airfoil 

x Upper surface abscissa of any point on airfoil 

y Vertical distance perpendicular to chord; the ordinates 
of the airfoil 

yc Ordinates of cambered airfoil 

7 c b Ordinates of mean camber line corresponding to zero 
additional pressure distribution 

y^ Ordinates of airfoil base profile 

y u Ordinates of cambered airfoil, upper surface 

y- Ordinates of cambered airfoil, lower surface 



Angle of attack 

°^i Ideal angle of attack 

P The angle -whose tangent is 
dx 

o/~ Vorticity for airfoil of zero thickness 

A Finite difference 
2c 

The angle whose cosine is (1 - x ) 

P Mass density of air 

s** Viscosity of air 

o A subscript referring to any particular value of 6 
held constant during the process of integration 
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ANALYTICAL AND EXPERIMENTAL INVESTIGATION 

OF ALLEN AIRFOIL THEORY 

SUMMART 

The Allen airfoil theory as given in Reference (l) is investi

gated analytically and experimentally with regard to the determination 

of the airfoil corresponding to a given velocity distribution. 

The theory is carefully examined and much of the detailed in

formation omitted in the above reference is presented. 

Use of the theory is well illustrated and explained by assuming 

an arbitrary distribution of velocity from which the corresponding air

foil is computed by the method defined in Reference (1). A model of the 

derived airfoil was constructed and subsequently tested in the small, 

low speed wind tunnel at the Georgia Institute of Technology to obtain 

the actual velocity distribution over the profile. 

The actual and the desired velocity distribution are compared 

with generally favorable results. 



INTRODUCTION 

The problem of determining the velocity distribution for an 

arbitrary airfoil, or the inverse problem of determining the airfoil 

for an arbitrary velocity distribution, has been solved mathematically 

by several investigators in recent years. Among the most notable of 

these theories is the work of Munk, Glauert, Theodorsen and Betz. 

The method of Theodorsen in determining the velocity distribution 

corresponding to a given airfoil is particularly prominent, but it is 

not of utility in the solution of the inverse problem. A notable method 

of solving the inverse problem of determining the airfoil corresponding 

to an arbitrary velocity distribution is given by Betz in Reference (8), 

but this solution is intricate and laborious to apply. 

Using the contributions of these and other researchers, an 

extension of the general theory involving certain new analysis has been 

developed by H. J. Allen at the Ames Aeronautical Laboratory of the 

National Advisory Committee for Aeronautics. The investigations by Allen 

have resulted in a new method presented in Reference (1) which solves 

either the direct or the inverse problem concerning airfoil shape and 

the corresponding velocity distribution. This method, 7/hich is 

comparatively rapid and easily applied, solves the problem directly 

and accurately. 

The Allen solution results essentially from the fact that many 

of the properties of wing sections are primarily functions of the mean 

camber line or of the airfoil base profile. Thus, by the method defined 

in Reference (1), from an arbitrary velocity distribution the corresponding 

mean camber line and base profile are determined. Proper addition of 



these configurations then yields the airfoil corresponding to the 

arbitrary distribution of velocity. This is the problem considered and 

analyzed in this -writing* 



THEOHZ 

The mean camber line theory and the base profile theory presented 

in Reference (l) are considered separately in detail in the subsequent 

pages. Equations are numbered in accordance v/ith those of Reference (1) 

in order to facilitate comparison. The mean camber line is defined as 

the locus of points situated halfvray between the upper and lower surfaces 

of the airfoil section, these distances being measured normal to the mean 

line* The base profile of the airfoil is the profile if the camber were 

removed and the resulting symmetrical airfoil set at zero angle of attack. 

Reference (°) shews that in a determination of the velocity distribution 

over a cambered airfoil the effects of the camber and the thickness dis

tribution may be considered independently. 

The analysis of the base profile is based upon the replacement 

of the actual base profile by a source-sink system, and similarly the 

mean camber line study evolves from replacing the mean line by a vortex 

system. The induced velocity at any point on the cambered airfoil, 

as demonstrated in Reference (9), may be found by superimposing the 

induced velocity at the point due to the vortex system and that at the 

point due to the source-sink system. 
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THE MEAN CAMBER LINE THSOBX 

Replace the actual mean camber line by an infinite number of 

point vortices employed along the same geometrical shape as the original 

camber line. Now, as shown in Figure A below, if the camber is small, 

Figure A, Diagram of mean camber line 

the velocity induced at a point P(XQ, yc0) on the mean camber line by a 

vortex at any other point P(x, yc) on this line is approximately that 

which would be induced at the point on the x axis P(XQ, 0) by the same 

vortex at the point P(x, 0) # / \ « / /*dx and the vortex strength at 

d r 
any point is — — ^3C. The velocity induced at any point on the camber 

line due to all the vortices distributed along the camber line is 

'<*>) (x - X Q ) (1) 

as shown in Reference (2), and is perpendicular to the x-axis. The flow 

direction close to the camber line must be parallel to the surface of 



the camber line so that if the angle between the x-axis and the 

direction of flow of the undisturbed stream is small, then it is evident 

from Figure B that 

1 - <frc - Of 
Vo dx (2) 

Figure B 

where Vo is the velocity of the undisturbed stream. 

At this point it is convenient to introduce the new coordinate © 

such that 

x r c/2(l - Cos ©) 

x0=c/2(l - Cos ©o) (3) 

dx Z c/2 Sin Q 69 

where c is the airfoil chord. Assuming the distribution of vorticity 

*r, where the prescript Q indicates that this circulation applies to 

an airfoil of zero thickness, along the x-axis to be: 

oO 
< 

1 
Then 

d / : 2V0 |A6 Cot 9/2 + Ag Tan 0/2 4- ^ ^ Sin n©] (h) 

< y / d x = 2Vo c f n / i ± C o s g / ( l - Cos ©)(1 f Cos ©) 

oO 

+ AS A - Cos Q /(i -
* 1 \ Cos Q 7 

Cos 0 ) (1 +Cos ©) + S An Sin 9 Sin ndj 



and 

22li£ - cVo -/A0(1+ Cos 9) + AS(1- COS 9) + ̂  AnSin n9 Sin e\d© (5) 
dx L 1 J 

And now from equations (1), (2), (3), and (£), the slope at 90 may

be obtained as follows: Substitute equation (£) into equation (1) and 

we have 

1_ cVo^o(l+ Cos 0) + AS(1- Cos 0) +^f AnSin n0 Sin dlde 
(xo) " 2V v 

2s* v / " 2 
§(1 - Cos 9) - |(1 - Cos 90) 

hence 

Jtf" °° 

A0(l+ Cos e)+ Aj(l- COS 9)i^AnSin n9 Sin 9Jd9 
" ~" - o c/2 (Cos 0 O - Cos 9) • c/2 - c/2 

1 f 
Now from the trignometric identity Sin A Sin B • 2 *(Cos(A-B) - Cos (A+ 

B)K we may write Sin n9 Sin 0 • J J Cos (n-l)9 - Cos (n+l)9l and thus 

dyc if[A0(l+Cos9) + AS(l-Cos9) + 2 ^ An{cos(n-l)9-Cos(n+l)¥Jd9 
°- - ^ «<ff \ — — —*• •*"— (6) 

dx ^ 0 Cos 9Q - Cos 9 

It is shown in Reference (2) that 

fr 

I Cos n9 d9 fTSin n9, 
Cos 0 - Cos 90 Sin 90 

o 

or 

ilr 
Cos n9 d9 -tf Sin n90 

Cos 90 - Cos 0 Sin 90 

o 

(7) 
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and now equation (6) may be written in this particular form as follows: 

JT 

dye 
dx 

1 |XA0+AS)Cos oe+(Ao-A0)Cos 9+ £ ^An[cos(n-l)9- Cos(n+l)eJ)d9 

Cos 9o - Cos © 

Therefore, equation (7) yields: 

5 E - «C - i <A°+ Ao) (-ITSin 080) + i (AJ-Aj) (-IfSlnep) 
dx 1P Sin e 0 tr Sin 90 

°^ r 
(i/2ir)^An[ 

-TSin(n-l)©o+irSin(n+l)e0 

Sin ©o 

Using the trignometric identity, Sin A - Sin B • 2Cos 

we have: 

l 

Sin (n+l)90 - Sin (n-l)e0 - 2Cos 
(n+l+n-l)eo 

Sin 
(n+l-n+1)© i 

• 2 Cos n©0 Sin 90 

so that: 

dyc 
dx 

1 
° C - A o + Ao + 2 2 ^ An Cos ne0 Sin 60 

» Sin 90 

and finally 

g S - < - A i + AS + f A n Cos n£, (8) 

and now integrating from 0 to It' , 

J S £ - d e • i ^ " A i + ^ • + i v * * (Gosne) 
o o o 

d© 
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J 
~ # d© = ir ( cC.- A 0 + Ag) + ^ A n Sin n© 
** * T i 

o 

hence, since the last term vanishes for all n, the coefficients are given 

r 
1 dyc . da 

*C- A0 + A0 - v dT (9a) 

The general coefficient, An, is found as follows: multiplying equation 

(8) by Cos n©, we have by integrating: 

— Cos n© d© * I ( °C - A 0 + Ag)Cos n© d© + A n \Cos2(n©) d©, since 

o o o 

all of the cosine terms in the summation vanish upon integration from 0 

toTT except the Cos (n©) term. And now performing the indicated inte

gration: 

J ^ £ Cos n© d© « i ( < - A 0 + AS) Sin n © U An/2 |"(© + ^ - | ^ ) 

o o o 

\ djc *tT 
J «r— Cos n© d© » 2 An> and thus we write 
o 

2 I dyc 
An " <v ) S r C o s ^ dG W 

The lift force may be found from 

f T d(y)dx M d A 

0L » )pvo —" ' 9 and substituting equation (5) for — 
o 



= p(V0)2c J | A O ( 1 + COS ©)•+• AQ(1 - Cos ©)f <A n Sin nG Sin el-

M (A 0 4.Ao)d^- | -^c(V 0 ) 2 J(^ , *" 

oa nT 

0L s o(V0) c J (A04-A0)d9-h (>c(V 0r j (A0 - A0) Cos © d© 

oa pT 

+ ^ C ( V Q ) 2 ^ A n J E o s ( n - 1)9 - Cos(n4- l)old© 

Upon performing the integration, we have 

0L = iQc(V0)
2
 (AO-V- Ao>Tr+(>c(V0)

e (A0 - AQ) (SinlT - Sin 0) 
«o r - I f 

4. fic(Vo)2<« (sin(n-l)9 Sin(n-H)© ] 
+ P - T - X ^ L (n-l) " (n+1) 

The last term of the above expression vanishes for all values of "nn 

except for n = 1 for which ^ ~ • is indeterminate in its present 
(n-l) 

form. Therefore: 

0L = pciVofo&o + Al)*-?^2 . U Si*{J»_ ^ r ] 

Consider the last term: expanding and dividing by (n - l ) yields: 

Sin (n-lfa- (n-pTT m (n-l) V 3 . ( n - l ) 5 ^ 5 _ (n-l)7TT7 

(n-l) (n-l) (n-l) L3 (n-l) \$ (n-l) \l 

Sin (n-l)TT _ ^ (n- l ) 2 IT? + (n-l)U ft5 (n - l ) 6 IT7 + ( n - p V 
(n-l) E IT L? L 9 

For n = 1, the value of — /•" " ̂ becomes IT. 
(n - 1) 

Hence: 0L = pc(V0) V(A0-h kQ + ± kj) 

so that the lift coefficient is, 



1 
oCi - 2 r (A0 • Ag + 2 Ai) (10) 

In the case of an airfoil -wherein the trailing edge is sharp, the "Kutta 

condition" must be satisfied. This condition is that enough circulation 

will arise about the airfoil so that the flow will leave the trailing 

edge smoothly. This hypothesis, in turn, requires that there shall be 

no angular velocity, "UT , at the airfoil trailing edge. Hence the 

vorticity is zero at the trailing edge, and this condition requires that 

the All • 0. The coefficients therefore become 

/Of 

o - *\. - ^ 
*J 
o 

foe d9 
dx 

< - 0 (13) 
p1V 

£ dyc Cos ^ dQ A* " ̂ JiT o 

It is noted in Reference (2) that the coefficients AJJ of the Sin n© 

series in the assumed distribution of vorticity of equation (h) are 

independent of the angle of attack and are functions of the mean camber-

line shape only. The coefficient A0 varies with the angle of attack. 

Now the pressure coefficient P is expressed in terms of q, the 

stream dynamic pressure* QP is the difference at x between the upper 

and lower surface pressure coefficients, P^ - P^j and hence from the 

Kutta-JoukowskL theorem of lift, 
d(c/) d(o/) 

oP . #I<L^L_ . £IL*L_ . f- tjd oil) 
q (p/2)(V0)

2 V° fa 

and now substituting from equation (h) 
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oO 
y T 1 

oP . - Yb 2 V0 (A0 Cot 2© + AQ Tan £9 + ^ A n Sin ne) (15) I 2 V0 (A0 Cot 2© + AQ Tan |9 + ; 
i 

It has been found convenient in the past to consider the above 

expression for the chordwise pressure distribution to be composed of two 

distinct parts* This concept first appeared in Reference (3)« That 

part which is in magnitude independent of the angle of attack and in form 

dependent solely upon the camberline shape is known as the basic pressure 

distribution, and that which is in magnitude variable with the angle of 

attack and in form independent of the mean camber-line shape is the 

additional pressure distribution* Hence, for the infinitesimaliy thin 

airfoil the additional pressure distribution is given by 

oPa - U(Ao Cot p ) , since AjJ - 0, (16) 

and the basic pressure distribution is given by 

0Pb « U ^ A n S i n n B (17) 
i 

It is convenient to consider the basic lift distribution only as 

characteristic of a given camber-line shape since the additional distri

bution may be modified at will by a change in the angle of attack and so, 

at some angle, must be zero. The angle of attack at which the magnitude 

of the additional distribution is zero for an airfoil is known as the 

"ideal angle, of j/1. For an airfoil for which the Kutta condition holds, 

the magnitude of the additional distribution is determined by the 

coefficient A0, which is given as the first of equations (13) as 

ftt ^ i (<*yc d© 
A° " ^ - t O S T 

o 



Since when ^C 

is 

°Ci> Ao = °> Vhen we have that the ideal angle «Ci 

cC i " ir J; rg'dx (X8) 

The ordinates of the mean camber line corresponding to the case -when the 

additional distribution is aero, denoted by VQ, , are related to the 

ordinates yc as shown in Figure C below, 

Figure C 

The magnitude of **C ̂  is inherently very small* Figure C has 

shown °CJL greatly enlarged to clarify the sketch* The following 

relations are derived considering °C ± to be very small. 

vcb T - « i - 37s--<k. • » . - i 2 ' ? - ; < i (19) 

and differentiation yields 

foqb 
dx 

dye 
dx -«Ci (20) 

Now substituting equation (8) into equation (20) gives: since oC« cQ^} 

A0 * 0, and considering only the basic distribution since the additional 

distribution is zero at 



1U 

dych ****" 
— ~ - oC± - 0 + 0 + <> An Cos n© - OQL 
dx i 

d7cb ^ 
» >* An Cos n© (20a) 

dx p 

Thus we have from equations (17) and (20a) the following two series: 

GO 

^ An Cos n© 

' (21) 

f 

dygb 

obc 

o^b 
Sin n© 

The coefficients An of these equations are dereloped as follows: 

dy<n% •* 
Consider • .>> AJJ Cos n©» Multiply the equation by Cos n© and 

dx r 
integrate from 0 to IT* • Thus 

0 0 Cos n© d© - An Cos2 (n©) d© since all of the Cosine 
dx ^ 

o ^ o 
products disappear upon integration from 0 to ^ except Cos2(n©). 

Hence 

^cb Cos n© d© - ^ A Sin 9 + — . ~] 
o <** 

/>T 
a n d ^ b Cos n© d© - ^ 

J dx 2 

o 
r̂ T* 

2 dycb cos n© d© (22a) 
n r JIT 

o 
o£> 

In a similar manner, consider the series — £ • ^ An Sin n©« Multiply 
k \ 

Therefore 
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by Sin n9 and integrate from 0 toTT, Thus 
•Tr 

oPb 

J 
0 

Sin n6 d0 r 
= An I Sin 

Sin (n©) d© since all the Sine 

products disappear upon integration from 0 to TT*except Sin (n©)• Hence 

•sr̂  

r" 
j 
o 

opb 
T " Sin n© d© 

A.n p Sin 2n© 

= r|?- — 
and 

r 
TT 

J 
orb 
T ~ Sin n© d© 

1TA 
n 

Therefore 

Sin n© d© (22b) 

Using equations (21) and (22), the chordwise pressure distribution 

corresponding to a given mean camber line or the mean camber line corre

sponding to a given chordwise pressure distribution can be found. How

ever, in general the calculations using the above infinite series will be 

very lengthy so that it is desirable to replace the Fourier expansions 

by integral expressions, as was done in the development of the method of 

Reference (h)• In order to accomplish this, the expression for the 

Fourier coefficients given by the equations (22) can be substituted in 

equations (21). At the point ©0 then 

vTT-

0 ^ 

h 
Cos n© d© (23a-) 



dycbp . 

ir 

It is to be noted that the interchanging of the integral sign, 

and the summation sign, S 9 necessary in the obtaining of equations 

(23) is actually an assumption of uniform convergence of the function. 

Theodorsen, in Reference (h) where this procedure first appears, has 

considered a basic transformation -which he defines as composed of 

uniformly convergent series. Since equations (23) result from manipula

tion of these particular series, no further qualification of equations 

(23) is given. 60 simply indicates the angle kept constant while the 

integrations are performed, 

Now, 

Sin n0o Cos n8 m 1 [sin n(e+80) - Sin n(e-60)] 

r -1 (23c) 

Sin ne Cos n80 2 1 [Sin n(S+80) + Sin n(9-90)J 
2 L J 

and further, i t i s given in References (U) and (5) that 

£ + G=M teiaJ 
S S i n n ( e - e 0 ) = 1 Cotl 2 J ^ Cos (2n4-l)V 2 / (23d) 
\ 2 * J /e±e0\ 

2 Sin\ 2 J 

so that substitution of (23c) into equations (23a) and (23b) gives 

f* ,5 

oPy^s 2 d y ^ O [Sin n(G+e0) - Sin n ( 6 - e 0 ) J dfr 

dyp^ a 2 oPfc <Ti p ^ n(fr+©0) + Sin n(e-et>)| d© 

t j • (• 1 
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and now substituting equation (23d) into the above expressions 

t - ^ l&w^- 0 ^* 
C^ r /e+M f*m*A-

1 \dycb Gos(2n+l)\^ ) _ Cos(2n+l) ^ y — ^ 
" 2T J~&T [ /e+e0\ ~~ /e~e«\ ei&) sj^) 

d9f (23e) 

and similarly 

dx n-*°° (̂  o 
ae 

1K 

-i- f— fi 
~^t h L" 

^>OZJ + 
Cos (2n+l)\~2 / Cos (2n+l)^2 

f&" e o\ ., 

- 1 1 ^ ) - 1 1 ^ ) J 
d9K23f) 

Now consider the second integrals in the above expressions for 

°!kO nrri ^ b 
dx 

y i " and .-P.O. First let us examine the second integral in the 

equation for ^r—°* I"t is noted that the slope of the camber-line, ?£, 
4 dx 

is uniquely determined at the point &0 about -which the integration is 

being performed, and hence is constant for any particular integration. 

Note that the values of n as defined in equations (21) range from 1 

to CO # At this point a special condition is imposed upon 90, and this 

is that 0 ̂  6 0 ( f' , The method presented here is to prove that the 

second integrals vanish for all values of 0 < 9 0 ̂ TT • and then to 
consider the special cases "where ©0 * 0 and fr

-
 # The second 

oPh integral in the equation for z^z. is 
4 

file:///dycb


n-V 

Cos(2n+l) & _ . Cos(2n+l) 

«-p4^ Sin a m 
d9 

dycb 
Now for simplification of the symbols we define: ~ * C$ (2n + 1) « 

/9 + 90\ 
k. Also, in the first term above we put I—- s x« Therefore, 

d9 =* 2 dx$ 9 * 1** gives x » ̂ /2 + 90/2; 9 = 0 gives x - 90/2. 

f© - 90\ Likewise, put x in the second term. This is valid since 

the integration is between limits and the variable disappears when the 

limits are substituted. Hence for the second integral: d9 « 2dx; 

9 « TT gives x « 1*72 - 90/2j 9 - 0 gives x * - 90/2. 

Substituting we have a 

ir-.o 

i -

/ t r +
 9o 

rz 7 2G Cos kx dx 
2T 1 Sin x 

J ' ©0 
2 

ft 2 
— I Cos kx dx 
2frJ6o Stox 

Dividing by «jf , then adding and subtracting 
Cos kx dx 

S i n , we have 

L. 
C/V 

£/2+90/2 

Cos kx dx 

# 2 - 9 0 / 2 

Sin x 

y 3 o/2 

Therefore, 

p%+ 9c/2 

— - \ G o s feg dx 
G/7r Sin x 

1T/ 2 " e o/2 

+ e0/2 

Cos kx dx 

Sin x 

- 9 0 / 2 

(23g) 

/ 



Consider now the first integral, and apply integration by parts. Let 

Cos kx dx 

Cog x dx 

Sin2 x 

» dv$ hence v 

and thus 

Sin kx 
Let u • •-• '• : hence du 

Sin x 

Cos ta ds 

Sin x 

"*/2-60/2 

Sin kx 

k Sin x 

r/2+©0/2 #2+9 0/2 

1 f 
i x I SJLn jĝ  P.08 x ^ 
k J Sin2 x 

^2-9 0/2 ^72-e 0/2 
Since the Sine terms are always of such a magnitude that the expressions 

in the brackets and under the integral sign are finite within the above 

ranges of integration, these expressions vanish as k—^ •** • Thus 

Lim 

k^*? 

Vz+ ©0/2 

Cos kx_dx 

Sin x 

'2-&o/2 
.e0/2 

Cos kx dx 

Sin x Since Sin x • Now consider the second integral, 

J - eo/2 

0 within the range of integration, the function is not continuous. 

Therefore, we write the integral in the standard form for evaluating an 

integral which is discontinuous at a point: 

fy ©o/2 

Cos kx dx 

Sin x 

J - »o/2 

Lim 

L J 

Cos kx dx 

Sin x 

-e0/2 

~*o/2 

Cos kx dx 

Sin x 

oie 

In the first integral term above, let x • -x: thus dx a -dx. When 
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x - - £ s -at: -+£ ; when x :r~©o/2, -x s.+©o/2. Substituting and 

writing the second integral first 

*©o/2 

Cos kx dx 
Sin x 

-©o/2 

Lim 
fr* •i 

©o/2 

Cos kx dx 
Sin x 

k 
-f 

Cos kx dx 
Sin x 

e0/2 

Thus Cos kx dx -
Sin x 

Lim ICos kx dx 
C^O Sin x 

/ 
-e0 /2 

Cos kx dx s 0 (23h) 
Sin x 

Therefore 

1T-

I * Lim 1 dy c , | 
a+«o J 2tT cE 

r fei^l 
Cos (2irHLA 2 J 

L Wt$o\ 
U Sinl 2 

fezgsth 
Cos (2n+-l)V 2 i 

TP? Sin 

d© - 0 

And now turning to a similar examination of the second integral 

in the expression for dych , we observe the following conditions: the 
dx 

value of the basic pressure distribution, 0Pp, i s uniquely determined 

at the point % about which the integration i s being performed, and 

hence i s constant for any particular integration* 1 < n<^; 0 < 9 0 

<̂  fri As was noted previously the method presented here i s t o prove 

that the second integrals vanish for a l l values of 0 <̂  ©o^lf; and 

then to consider the special cases where ©0 3 0 and 1h% The second 

integral in the equation for dycb0 i s 



1)\"T~°) , Cos (2n+l)V 2 T | 
n+co 

i - a£b fcos (2n+l)\ 2 / , Cos (2n+l) 
2IT TT L Sin/©+©\ ^ Sin g - Q0\ J 

Now as before, for simplification of the symbols, we defines pPp • C; 

(2n+l) = k. Also, in the first term above we put 6 * Q ° = ** there

fore, d© r 2dx, © = Ogives x • Iff **"%>/2, © = 0 gives x = ©0/2. 

And likewise, put J" ° = x in the second term, as previously 

explained. Hence d© : 2 dx} © = TT gives x - 1^2 - ©o/2j 

© = 0 gives x = - ©o/2« Substituting we have 

Cos kx dx , C ICos kx dx M I - Lim hf I Sin x ir I Sin x 
k-*<*>[ 

V 2 *-©o/2 

Dividing by Ci_ and rewriting, we have as followss 

1*72+«0/2 ©0/2 'n72-©0/2 

I s Lira 
I Cos kx dx i I Cos kx dx i I Cos kx dx I 
J Sin x ^ 1 Sin x 1 Sin x ] 

L ©o/2 'So/* J ©o/2 
A>/2 

f Cos kx dx 
Now as previously shown the integral | Sin x = 0 , and applying 

-©oA 
integration by parts to the first and third integrals, we have 

T/2*-©o/2 ' V ^ o A ^H^/2 

+• H 
k- /O J Q 

1_ « Lim ̂  Sin kx | ̂  | Sin kx Cos x dx 4. Sin kx 

V "SirtSc k Sin x 

©o/2 ' ©o/2 ©o/2 



fh-%/2 

+ 

J 

Sin kx Cos x dx 

k Sin x 

©o/2 

Since the Sine terms are always of such a magnitude that the expressions 

in the brackets and under the integral sign are always finite -within the 

above ranges of integration, these expressions vanish as k — > °° • 

Therefore 

r (9+ 9Q\ 

Cos(2n+l)\~S~7 dO * 0 

And thus it has been demonstrated that the second integrals in 

the expressions for -p-°, equation (23e)$ and — 5 ° . , equation (23f) 
* dx 

vanish as n-V 00 , 0 < 60<lT"# 

Consider now the special case "where 8 0
 s *^* ; that is, at the 

* x o?b 
trailing edge. Examination of equation (21) reveals that -r- • 0 at 

©o "It" • Hence the expression for r - , equation (23e), • 0. By 

inspection the integrand of the first term of this expression is zero, 

and thus the second integral term is zero. In addition, the second 
dycu 

integral term in the expression for 2. , equation (23f), is zero 
^ dx 
oPb n since -:— = 0. 
h 
Finally, consider the special case "where 8 0 - 0$ that is, at 

, N oPb 
the leading edge* Examination of equation (21) reveals that - j — • 0 

afc 9O * 0. Hence the second integral term in the expression for -2., 
dx 

equation (23f), is zero. Moreover, the second integral term in the 



expression for ^ is zero by inspection, 

Therefore, the expression for 25-5°. , equation (23e), and for 

dycbof equation (23f), reduce to 

3* ^ 

oPbo = 1 (dych [ G o t ( ~ ^ a j - Cotf Q ~ 9 p\ l d9 (2l*a) 

J* 

» • * -

(tUb) gs. • k J * [ M ^ * °°'^)] d© 
6 

Let us examine the trignometric portion of the integrand in 

equation (2lia), Rewriting, using known trignometric identities, we have 

f ( * ) - Co39/2Cos9„/2 - Sin9/2Sin9„/2 Cos9/2Cos90/2 + SiJi9/2Sin9o/2 
K J Sin9/2Uos90/2 4- b~nQ0/* c 9/2 " Sin9/2Cos9o/2 - Sin90/2Cos9/2 

*fa\- Sin9/2Cos29/,/2Co39/2"Sin
29/2Cos9Q/2Sin9Q/2-Sin9o/2Cos9o/2Cos29/2 

* W " " Sin29/2 Cos20o/2 - SinZ90/2 Cos
29/2 

Sin290/2Sin9/2Cos9/2 - Sin9/2Co39/2Gos
29Q/2 - Sin

29/2Sin9n/2Cos90/2 

Sin2e/2^os2e0/2 - Sin
290/2 Cos

29/2 

-Sin 90/2 Cos 9Q/2 Cos
29/2 - Sin 9/2 Cos 9/2 Sin29n/2 

Sin26/2 Cos260/2 - Sin
290/2 Cos

29/2 

- -2 Sin29/2 Cos 9Q/2 Sin 9n/2 - 2 Sin 9Q/2 Cos 9Q/2 Cos
29/2 

Sin26/2 CosZ90/2 - Sin
290/2 Cos

Z6/2 

. -Sin 90 Sin
29/2 - Sin 9p Cos29/2 

l/Wl-Cos ©)(l-K!os 90) - l/U(l-Cos e0)(l + Cos 6) 



f(e)» ii?2J!a 
lA( l+Cos9 0 - Cos©- Cos©Cos©0) - l A ( l + c o s © - Cos©0- Cos©0Cos©) 

f (e) • Z Sin e°  
l/U(l+Cos©0- Cos©- Cos©0Cos© -1+ Cos©0- Cos© + Cos©0Cos©) 

f(8)- " S i n e o -Sin© 0 

lA(2Cos 90 - 2 Cos ©) l/2(Cos ©0 - Cos 9) 

and hence equation (2lja) becomes 

/^r 
o^bo 1 

IT " % 
3̂Tcb Sin 90 d© 

Jdx Cos © - Cos ©0 
<«0 

o 

and in like manner, equation (2i|b) becomes 

focbp - 1 \ £ b Sin © d© 

dx tP J \ Cos © - Cos ©o 
o 

•which may be useful if the functions under the integrals are expressed as 

simple functions of ©• 

When the functions are expressed in terms of x, the following 

substitutions reduce equations (25) to a more convenient form: 

x - c/2(l - Cos ©) XQ - c/2(l - Cos ©c) 

2x/c « 1 - Cos © 2xo/c - 1 - Cos 0 O 

2x/c - 1 - - Cos © 2XQ/C - 1 - - Cos ©0 

Cos © - 1 - 2x/c Cos ©0 = 1 - 2xo/c 

d© » 2 d * 
c Sin © 



And Cos 0O = (1 - 2xo/c), Sin2 ©o * 1 - £os e^ 

Thus Sin290 * 1 - l-\-hx0/o - bcoVc2 

So that Sin 90 =- 2/c T/XQCC - XQ) 

Now substituting into equation (25a) we have 

o£b 1 t ^ c > 2/c y S T c - XQ) 2 /C dx 

k = IK J dx [ (1 . 2x / c ) - ( l - 2xo/c)J p / c ^ ( c - x) ] 

pPb I l ^ b y«o(c - xp) dx 
U = " r dx ( x - x o ) fk(e - x) <26a> 

''o 

and similarly, 

c 

dycbn _ 1 [pP^ 2/c Vx(c - x) 2/c dx 

«* = 1T | [(1 - 2x/c)-(l - 2xo/c)] [2/c /x(c - x)] 

£*> - J, fV^V («*> 
dx » j U(x - xo) 

o 
dyc However, in general the algebraic expressions for 0Pb and -r~- are 

not simple and the direct integrations using equations (25) and (26) are 

not convenient* Thus it is desirable to perform the integrations 

numerically using equations (2U). The computations may be shortened 

considerably by use of the following mathematical devices 

A T * * • 

\ f(e) cot^4^) d9 = - | f<2tr- e) C o t ^ - — 2 \ 

o V 
de 

Development of this device is as follows: 
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Given I J f(6) Cot( 2 °] d9 Let 9 = 21K- x. When 9*0, 
o 

x « 211-5 -when 9 - TT, x » F. Then f (9) « f (2TT - x), and Cot (^j -

C o t|pL-Y
 + g°) * Cotfa- (~~^j. NowCot (tr-cC) --Cotrf, 

so that Cot r * 6° ] - - Cot/x Z M . Also d9 - - dx. And therefore 

we have 

i - J *0) Got(^-^ 
o 

d9 Jf(2tr-x)[-Cot(^)](-dxj 

TT 
ff(2ir-x) Cotfej^ dx 

211 

- \ f (2 1^- x) CotP ~ 9\ dx 

1̂T 

Now the letter representing the variable in any integral makes no 

differencê  hence we replace x by 0. And therefore: 

rir 
f(9) CotF 

+ 9, 
d9 f(2lT- 9) Cotf z °) 

/-

dycb 

dx 
And now applying the above device to equations (2k), where f(9) 

and ~— respectively, and f (2 If' - S) a — — and ~ - respectively, we 
«* dx 4 

have 

,2tr 
O^bo 

c 
- 1 
2TT 

*frcb 
dx 

'ir 
• ̂ i * -ii? • - M * 
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So that 
^2TT 

opb„ - 1 

"J k 2TT 
dycb 

dx f-^) 
defining 5 ^ « /52^ 

vSc/tT'.. ̂  W tr+e vox / ^ e 

and in the same manner 

/»2Tr 

52& « JL s5» c o t f c ^ de (27b) 
dx 

o 
/oPb\ /o?b\ 

— (-t+; -(4. O 

These integrals may be evaluated numerically by the method of 

Reference (k) "which is given in Appendix III. 

In the preceding theory it -was assumed that the airfoil was of 

infinitesimal thickness, hence the velocity at each elemental vortex 

along the camber line was taken to be the free-stream velocity V Q. For 

airfoils of finite thickness, the velocity differs somewhat from Vo. A 

better approximation is to assume that the velocity at each vortex is 

the velocity on the surface of the base profile at the same station. 

Hence, the effect of airfoil thickness will be to change the local lift 

at x to approximately 

P « 0 P 
Vf\ 
Jo J 

where Vf is the local velocity on the base profile at x # The calculation 

of Vf is considered elsewhere in this paper. 



THE BASE PROFILE THEORY 

The problem of determining the velocity distribution over a given 

base profile or the base profile 'which -will promote a given velocity 

distribution over its surface may be treated in a manner analogous to 

that of the mean camber line theory. 

Y 

\L 

* 

%») 

Figure D. Diagram of base profile 

Consider the base profile shown in Figure D. If the thickness is 

small, the velocity induced at a point P (xo>yt0)
 o n ^ e surface of the 

profile by a fluid source or sink at the point P (x,0) is approximately 

that which -would be induced at the point P (xo,Q) by this source or sink. 

If the source strength at a point x is (dQ/dx)dx, then, the velocity 

induced by all sources or sinks distributed along the x-axis will be 

.c 

V(XQ) 21V 
XQ - X 

(31) 

This stems directly from the relation, v * Q / ^ r in Reference (2), 
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The source strength can be related to the shape in the folio-wing 

approximate manner: If the profile is thin, the velocity at the surface 

does not differ materially from the freestream velocity Vo, and hence the 

flow velocity within the profile due to the sources and sinks is as a 

first approximation Vo» Within the profile the difference between the 

quantity of fluid flawing at x + dx and x is the amount supplied by the 

source contained within this interval, hence 

| ft. ~ ». (,f|i*} -2V0yt. 

This equation is clarified by Figure E and the following information: 

u* 

Figure E 

The fluid output per source is Q, ft/sec in two dimensional 

analysis* Since the horizontal velocity on the surface and inside the 

body is essentially Vo, the quantity is Vo y^ between points A and B, 

or 2Vo • yt f o r "tne whole airfoil. At x the source strength is 

2Vo yt, and at x + dx the source strength is 2Vo ' y+ + 2Vo 2££ dx. 
dx 

Hence the increment in fluid flowing between x + dx and x is given by: 

^ d x 
dx 

2Vo yt + 2Vo — dx - 2Yo yt 

dx 



or 

-Q- dx ~ 2Vo (yt + ̂  dx\ - 2Vo j \ 
dx \ dx / 

and 

^ - 2Vo5£ 
dx dx 

so that equation (31) becomes approximately 
c 
dyt 

1 aT^ 
V/VO • -jf X Q - X 

o 

By equation (3) "we have that 

x - c/2(l - Cos ©) 

XQ » c/2(l - Cos 90) 

dx = c/2 Sin 9 d9 

and now assuming that the slope of the profile is given by 

BQ Cot 9/2 + B£ Tan 9/2 + *> % Sin n9 dyt 
dx 

and thus 

^L dx - [B 0 Cot 9/2 Sin 9+ B£ Tan 9/2 Sin 9+ ^ ^ Sin n9 Sin o] 

Using the trignometric identities 



/

i + Cos e 

rrzrs 
fl - Cos 9 

Tan 9/2 * f \ + Cos & 

Sin 9 - / l - C o s ^ » / ( l + Cos 9 ) (1 - Cos 9) 

Sin n9 Sin 9 = 1/2 j cos (n - 1)9 - Cos(n+l) 9] 

, f , il+Cos9 /• tl i -Cos9 f 
j / 2 [ B i l ^ ^ 5 y t l + C o s 9)(l-Cos 9) + %%%-$ £ 

Then 

^ dx- c/2|B01fj:5^5y(l+Cos 9)(l-Cos 9)+ B 0 f ^ r c ^ -/H-Cos 9)(l-Cos 9) 

+ 1/2 ^ Bn £cos(n-l)9 - Cos(n+l)0J J d9 (3i4a) 

Equation (3) yields that: when x * 0, 0 =» 0$ when x • c, 9 * If . 

And now substituting the above expression for (dyt/dx)dx into equation (33) 

1 feQ(l+Cose)+ B £ ( 1 - C Q S 9 ) + 1/2 ^Bn{cos (n - l ) e~ Cos(n+l)e}j-c/2 -de 
V / V°* Tf / ~" (C/2KT"- Cos 90) ̂ 7^KT"-^CoT9) ~ ~ 

o 
tr 

1 Po( l + Cos9)+ BS(l-Cos9)+ 1/2 ^ B n { c o s ( n - l ) 9 - Cos(n+l)^ ld9 
vAo= -«£• J 1 * — ™ — — _ L _ V ^ _ _ _ 3 L £ _ 

^J Cos 9 n - Cos 9 0 
* H JIT 

- 1 j(Bo^3S)Cos09+ (B0-3S)Cos6 d9 3^ | ^ n { c o s ( n - l ) 9 - Cos(nfl)g}d» 

' V J Cos 9 0 - Cos 9 * " 2 T ^ ' ~" CoaT©^"'Cos 9 v/Vb* ̂ * 

However, as previously indicated 

I: 
ir 
Cos n9 • d9 1*Sin n9 

o 
Cos 90 - Cos 9 Sin 90 

o 

Now examining the first integral above, 
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*L • f f ( B o + Bo) \- isrsr/ "IT (B° o) \ 
t r S i n 9 0 ' 

Sin ©o 

B 0 - BjJ 

And similarly examining the second integral above, 

*o -

ip - - a=,£aJ-gg»(B ~ 1)e-a + insia^U^l 
2 2 K , L Sin ©0 Sin 60 J 

f(* * B)1 
Using the trignometric identity: Sin A - Sin B » 2 Cos I *2 I* 

Sin P ~ ^ j we have Sin (n + 1)60 - Sin (n - l)e0 -

E(n + 1 + n - l)eJ ["(n + 1 - n + 1)801 ! _ — _ —'™2j Sin JJi _ _ L£j « 2 Cos n©0 Sin 0O. 

oO oo 
-1 <• <rfl Gos n^o Sin 8 0 << 

And thus 12 - rz, < B n iL~ s * - > Bv, Cos n0o. Now 

combining 1^ and I2 we have for the velocity ratio at any general value 

of e oO 

v/Vo - B0 - BS - ^ B n Cos n8 (35) 

And now integrating equation (35) from 0 to I f , 

nfT 
v/Vo d© 

r^ r£= 
(B0 - Bj) d8 - ^ Bn Cos n9 de 

Therefore 

J tr 
I-de = (Bi-Bj)T 
VO - <*=HI 

t r 

The last term here 

vanishes for all values of n so that 

Bo " Bo s * 

rTT 
d© 

Vo (36a) 



— Cos 09 d© « (B0 - B0)Cos n© d© - Bn Cos2 n© d© since 

To find the general Fourier coefficient B ^ multiply equation (35) by 

Cos n© and integrate from 0 to fT • Thus 

J Vo 
- b o o 

a~n the Cosine products vanish upon in tegra t ion from © t o l i " except 

Cos n© Cos n©« 

T ^ i "f / Sin2n©\V 
I — Cos n© d© = i (BQ - B0) Sin n©| - Bn I © + ~~£n' J I 

o 2 

J 
tfr 
1 - Cos n© d© - " ^ fT ) 
Vo 2 

Therefore 

Bn " 5 j ^ C o s n e d * (36b) 
o 

The condition that the trailing edge shall close is that the 

summation of the vertical ordinate increments from the leading edge to 

the trailing edge shall be zero. That is 

; • 

ir r^r 
dyt » I $t dx - 0 

J dx 
o o 

Substituting the slope as given by equation (3Ua) into the above expression 

and integrating from 0 to IT* , it follows that 

Atr oO 

J[B 0(1+COS ©)+B 0(1-COS ©)+l/2^B n |bos(n-l)©- Cos(n+l)©}] c/2 d© » 0. 



[ (BQ + BS) Cos 09+ (B0-Bo) Cos ©+ 1/2 ^BnACos(n-l)e- Cos(n+l)©yjc/2 d&« 0 

And performing the integration, we have 

-T f P /Sin(n-1 
©|(Bo+BS)J +|(B0-BS) Sin ej + 1/2 ̂ B ^ a . a 

1)© Sin(n+1)€A 

- n + 1 

<*? 

X" °« 

Now as shown in the development of equation (10), the J> Byj term above 
r 

vanishes for all n except n = 1# For this value of n, it has been 

demonstrated that the value of the expression * £ B-i TF" # 
SL 

Therefore £(Bo + BjjIT + 1/2 B^ITO* * 0. 
2 •* 

And thus B 0 + Bo + 1/2 % * 0. (37) 

An examination of equations (3k) and 0$) reveals that these 

equations may be used to find the shape of the base profile corresponding 

to a given velocity distribution or inversely, the velocity distribution 

corresponding to a given base profile shape* However, equation (3h) for 

the base profile shape becomes infinite for © • 0 and © * TT • that is, 

at the leading edge and at the trailing edge* We avoid this undesirable 

phenomena by utilizing the method of superposition and select a known 

profile as a base and thus compute the values of _-J2i and !zJL with 
dx Vo 

respect to this base profile* Addition of the values of Qzz and 
dx Vo 

calculated from equations Oh) and (35) with respect to the base profile 

to the known values of -?£ and — for this reference base profile yields 
dx Vo 

the desired values. Now the immense value of this method of obtaining 

the desired base profile shape and velocity distribution is the fact 

that by proper selection of the reference base profile so that it 

possesses the same slope characteristics as the actual profile under 
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consideration at the leading edge and trailing edge, and letting A yt 

represent the change in shape from the reference profile to the profile 

under consideration, we have from equation (3h) at the leading and 

trailing edges respectively: 

rxD 

ii 
dx <L d. X 
d A y t = 0 - B0 Got 0 + B^ Tan 0 + S* B Sin 
•rz "? "9 i\ 

*o 
dAy+, - 0 = B0 CotTf * B|J TanfT + < Bn Sin nlT 
dx 2 2 > 

Thus the coeff icients B0 and B0 must be iden t i ca l ly zero to 

sa t i s fy the above equations. Now l e t t i n g Av represent the change i n 

ve loc i ty from the reference prof i le to the prof i le under consideration, 

we may rewrite equations (3U) and (35) as follows: 

© o 

dAy+. = ^ B n Sin nO 
dx ( 

(U0) 
o& 

Av - — > B n Cos n© 
IS f\ 

and the coeff ic ients , which may be developed i n the i den t i ca l manner as 

shown i n equations (22a) and (22b), are 

Bn = 2 d A y t Sin nO dO 
TT dx 

JO 
or (UD 

/ n l r 
B n = - 2 lAv_ COS n© dO 

^Jvo 
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It is apparent from equation (37) that the coefficient B]_ must be 

aero since B 0 and BQ are both aero* Therefore -when it is desired to 

find a change in base profile shape corresponding to a given change in 

the velocity distribution, having established the condition that 

B 0 * BQ » B-L » 0, it is evident from equations (36) that the change in 

velocity distribution must be so chosen that the conditions 

< W ) 

and 

kL Cos 9 d© - 0 
Vo 

must be satisfied if the velocity distribution chosen is to correspond 

to a real base profile* 

Using equation (2;0) and (Ijl) the chordvdse velocity distribution 

corresponding to a given base profile or the base profile corresponding 

to a given velocity distribution may be found. The calculations will 

in general be very lengthy so that it is desirable to replace the 

expansions by integral expressions as was done in the development of 

the method of the mean camber line theory. Thus substitution of the 

expressions for the Fourier coefficients given by equations (ijl) into 

the equations (ItO) yields that at 0O: 

d Ayt© m -J. ( A Z ^ Cos n© Sin n©0 <*© 
dx •N (l|2a) 



/>Tf 

Avo m -2 [ dAyt ^ S i n ^ C o s ^ dQ 

Vo ^ dx > tr J dx 

Now 

Sin n©0 Cos nO - J P1111 n ( e + eo) - s ^ n(9 - ©0)j 

Sin n© Gos n©0 - - [sin n(© + ©0) + Sin n(© - ©0)1 

(U2b) 

and further, it is given in References (k) and (5) that 

/© ± 9o\ 
Cos (2n + 1)1—g—1 P l /e i ©0\ 

^ S i n n (© ± ©G) * J C o t \ 2 " 
2 Sin IT*) 

(Wc) 

©£> 

so that substitution of equations (l±2b) into equations (l*2a) gives 

t JTT 

dAytp m . 
dx ft-

0 

i r 

£ i £ " &^ n(e + &o) " Sin n(g " d°5 dG 

AVQ . -2 dAyt < 1 
Vo 1p J dx < 2 

o I 

[Sin n(8 + ©0) + Sin n(© - ©0j] d© 

and nor substituting equation (l|2c) into the above expressions 

f,rr 
dAyto 

s 

n y dx Sifcfe H-̂ ) - - ^ ] * 
P C O B ( W ^ Cos (2n+ l ){^£ 

Sin 
( ^ ) ~&9 

(baa) 
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and s imi lar ly : 

Av0 »fej^KH}***Fa-Vo 
0 

+ 1 dAyt \Gos(2n+l)\~2-^) Cos(2n+l) r ^ A 1 

"J * Lsu>(^ * ^ e V ] m »H^ 
In the limit the second integrals in the above relations become zero, 

as shown previously in the development of equations (2lja) and (2lib), 

and thus the equations may be written as: 

r 
dAyt, 

dx 2xr 
o 

M ¥ K-̂ ) - - M l * 
Av0 ^ ^ 

vo 2ir 

rfr CU2T) 

steK-T^—N^l dS 

For the occasions when the change in shape or velocity distri

bution is known as a relatively simple trigonometric function in 99 it 

is sometimes convenient to use the equations 

/3TT 

d A y t 0 - l 1 fry Sin Qp dQ 

dx Th J Vo Cos & - Cos ©o 
o m and 
IT 

Av 0 _ 1 dAy t Sin 9 d0 
V o 1fy ^ C o s e " C o s 6o 

o 

which are derived from equations (i|2f) in the iden t ica l manner as in 



the development of equations (2£a) and (2£b)« 

"When the change in shape or velocity distribution is known as a 

relatively simple function of x, then it may be convenient to use the 

equations 

dAytc 
"Ix 

Av 
Vo 

1 

tr 

Av/Vo -/xo(c - xo) dx 

(x - xo) /x(c - x) 

-1 

tr 

dAyt 
dx dx 

Jn X - Xo 

(WO 

•which are developed from equations (1*3) in the same way that equations 

(26) are derived from equations (25) as previously shown* 

Again utilizing the mathematical device 

/ 2f 

ot( • 2 jde - - [ f(2TN Q) Goty g °) 1 de 

where f(0) ~ and d. H respectively^ and f(2fT- ©) 
Vo dx 

..^y^ respectively, we have from equations (i;2f) 
to ^ 

2H- ^ " 

Av 
Vo 

and 

aAyt< 
dx 

Cot 
& * ! 

d9 -

£ • aj-fe ««T>*/4»"^ Li 
d9 

which may be written as follows: 



ho 

dA yto 

dx 

r2tr 

JL Az 
2TT Vo 

Al CotfLzM 
Vo U / 

d© 

defining £\ » fAv\ 

•*>U ^t-e (15) 

u ;d 

AVp 

Vo 

-1 P 
21h 

>/ 

dAyt 
dx 

Cot m de 

, . frtet] defining 

+ 9 

[dAytJ 
\ d x ff-e 

These integrals may be evaluated numerically by the method of Reference 

(li) "which is given in Appendix III. 



APPLICATION OF THE THEORY TO THE PROBLEM OF 

DETEKMITIIM} THE AIRFOIL CORRESPONDING 

TO A GIVEN VELOCITY DISTRIBUTION 

General Procedure 

The desired velocity distribution is selected and the corresponding 

velocity distribution over the base profile is found by averaging the 

upper and lower surface velocities at each chordwise station. It is to 

be noted that the shape of a two-dimensional body corresponding to the 

desired velocity distribution may not represent a real airfoil section 

which is both "closed" and "pointed" at the trailing edge. Thus the base 

profile corresponding to the desired velocity distribution will, in general, 

be modified slightly to conform to a real profile. After this adjustment, 

the base profile shape corresponding to the corrected base profile 

velocity distribution is calculated. It is important to note that any 

slight change to the original base profile in making the adjustment to a 

real profile necessitates corresponding changes in the original velocity 

distribution, and thus the desired velocity distribution will, in general, 

be modified slightly to conform to the adjusted base profile. Usually, 

these changes are small and will not affect the utility of either the 

velocity distribution or the airfoil% The chordwise pressure distribution 

is calculated from the adjusted upper and lower surface velocity distribu

tions. Then the chordwise pressure distribution for the airfoil with the 

thickness removed is determined and the mean camber line shape is 

calculated. Finally, the calculated mean camber line and base profile 

shapes are combined to give the airfoil section shape corresponding to the 
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modified velocity distribution* All the steps outlined above are 

presented in detail in the following pages. 

Detailed Procedure 

In general, it is required that the airfoil corresponding to the 

desired velocity distribution be one having a specified thickness ratio. 

This requirement - together with the requirement that the desired 

velocity distribution correspond to that for a real airfoil section 

which is both closed and pointed at the trailing edge - complicates the 

problem since it is not apparent from the velocity distribution whether 

the requirements are fulfilled. By choosing the velocity distribution 

wisely these difficulties can largely be eliminated. Of particular 

value is reference to known velocity distributions over existing airfoils 

having similar thickness ratios and velocity distributions to those 

desired. 

Figure 1 defines the desired velocity distributions for upper 

and lower surfaces. (This is the theoretical velocity distribution for 

the KACA 66(2l£)-2l6 airfoil given in Reference (6). This same reference 

includes the ordinates for the airfoil.) Having thus defined the desired 

velocity distribution, it is further specified that the airfoil to be 

derived shall be of approximately 16 per cent thickness. Therefore, the 

calculated airfoil may be compared with the actual airfoil corresponding 

to the desired velocity distribution. 

It is necessary that existing airfoil data be examined and from 

these data to select an airfoil whose upper surface velocity distribution 

is very similar to the desired upper surface velocity distribution; and 

similarly, selection of a second airfoil whose lower surface velocity 



distribution is very similar to the desired lower surface velocity 

distribution. Figure 2 illustrates this procedure. The similar air

foils selected are the NACA 66^-021 upper surface velocity distribution 

for C-L = 0 and the NACA 66,1-012 lower surface velocity distribution for 

C-. =0. These airfoils and data are available in Reference (6). The 

reason for introducing these similar airfoils is to facilitate selection 

of a reference base profile from a table of Joukowski base profiles in 

Reference (1). Now the airfoil to be derived will obviously have a 

leading edge radius approximately midway between that for an NACA 

66i-021 and the NACA 66,1-012 airfoils. The leading edge radii for 

these two respectively are: 

r/c * .02550 

r/c c .00893 

and thus the average radius is r/c s .01722. Now using this average 

leading edge radius as a guide, we select a Joukowski base profile from 

Table II of Reference (1) that has a leading edge radius of approxi

mately the same magnitude. The Joukowski base profile for which 

t/c = 0.12 has nearly this radius (.01706) and is therefore used as the 

reference base profile. 

By computing the average of the desired upper and lower surface 

velocity distributions (Vu/V0)1 and 0^/VQ)., respectively, at various 

chordwise stations the base profile velocity distribution (VVVQ)-, is 

obtained. The subscript (1) is used to denote that these velocity 

distributions are a first trial and are subject to slight modifications. 

Figure 2 shows the base profile velocity distribution, (Vf/V0),. 
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The difference between the desired and the reference base profiles 

is found from 

m • ®t ® 
The values of (£v\ are found i n Table I for the usual values of x / c . 

Wi 
Values of 9 and Cos 9 corresponding to various values of x/c are con

veniently available i n Table V, Reference ( l ) . Values of ftEj * Cos 9 

are calculated as shown i n Table I . Then both r ~ ] and/AEN * Cos 9 are 
Vvo/i \Vo/i 

plotted as functions of 9 in Figure 3. 

It is now necessary to make some adjustments to the first choice 

velocity distributions. That is, Yfe employ the fact that - in order for 

the desired velocity distribution to represent a real airfoil Yrhich closes 

and has a sharp trailing edge - it is required that the relations 

p* 
$2 d9 = 0 
VQ 

L 

P 4£ Cos # d 9 = 0 
Vo 

be satisfied. These conditions are discussed elsewhere in this writing, 

(loc. cit. equations (U2)), and are not satisfied since a theoretical 

velocity distribution, not the true velocity distribution, for the NA.CA 

66(2l£)-2l6 airfoil was utilized as the desired distribution of velocity. 

Using a planimeter the area under the r^-\ curve is integrated 



from 0 toTt" and i t i s found tha t 

r^ 

J 

j g d » = -.0268 

Similarly, the area under the j«£) * Cos 9 curve i s integrated from 0 

to Tt~ with the r e s u l t t h a t 
>ir 

& \ x Cos 9 d 6- = -.0277 

Obviously, an adjustment of the curves is necessary. The second trial, 

designated l ~ \ and thus (»£) *Cos &, is an estimate based on inspec-
Vvo/2 \vo/2 

tion of the above results and the characteristics of the curves in 

Figure 3. Again the mechanical integrations are performed and we have 

f*" 
4Z d e- = .005200 

J v° 
•J 
0 

r* 
^ 1 * Cos 9 d 9 = .001532 

J"0 
0 

Hence, the conditions are nearly satisfied. In order to completely 

satisfy the conditions, it is strongly recommended that the method of 

final correction defined in Reference (l) be utilized. This eliminates 

the undesirable trial and error procedure otherwise necessary at this 

point. Therefore, according to Reference (l), the conditions may be 

satisfied completely by slightly translating and rotating the second trial 
of —- . Assuming that a small increment 

vo 
A ( § * ) - k1 + k 2(|-e) (6U) 
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be added to the d i s t r ibu t ion I — \ 

and 

UJt 
fa* 

J 

d e a t ^ 
Vo> 

•Ax*i 

^ 

A/kT\ COS 8 d 9 = 2 k2 J 

(65) 

then making 

and 

kn = = -222200 B _ # 0 0 l 6 6 

1> 

k2 = -,001g32 - ..000766 

the velocity distribution 

A.v 

v0 WJ, KJ 
(66) 

will completely satisfy the requirements. In Table I the values of 

A/4Z\ = -.00166 - .00766 f!T - e] 

are given and the final value of the difference velocity distribution 

^ is calculated using equation (66)• 
V0 

It is now possible to calculate the base profile ordinates. The 

procedure here is to calculate values of -—2± by numerical integration 
d x 

of equation (li5)j then by plotting 2i versus x/c and mechanically 
d x 

integrating find the values -=-=, which finally yield values of the base 
c 

profile ordinates y^ from 



li -- & + *i (67) 
c c c 

which corresponds to the base prof i le veloci ty d i s t r ibu t ion 

It = Is +
 AJ. . (68) 

The method of numerical integration of equation U$ is illustrated in 

Reference (1). For convenience, the method is given in Appendix III of 

this writing. Tables II and III present the complete calculation of 

d Ay+ 
. «H and are carefully explained in Appendix I. 

d AVJ. 
Now having obtained values of T &9 these values are plotted as 

a function of x/c as shown in Figure k* By mechanical integration with 

a planimeter the curve in Figure h is integrated to each desired value 

of x/c and thus the value of • ̂ t is obtained at the desired chordwise 
c 

stations. Having values of 8 • and corresponding values of ~ , the 
c c 

base prof i le ordinates are obtained from 

S = Z£ + Mi (67) 
C C C 

and these ordinates correspond to the base profile velocity distribu-

Vf 
tion, -«• which is found from 

*o 

!£ = i + £ (68) 
V0 V0 V0 

V-P 
Values of -*• are given in Table I. The base profile ordinates are 

o 
plotted in Figure $, 
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In this particular calculation the maximum thickness is approxi

mately 16 per cent of the chord as was desired. In the event that the 

calculated thickness t-. is different from the required thickness t?, 

then the ordinates and velocity distribution for the base profile of 

thickness tp can be obtained from the following: 

&\ - § (?\ 

©. - - % K« - (70) 
2 - u -o' 

Now at this stage in the calculation of the airfoil corresponding 

to the desired velocity distribution it is necessary to revise the 

desired velocity distribution so as to account for the changes made to 

the original base profile velocity distribution (-=•] to make that 

distribution represent a real profile. This, it is oelieved, is best 

accomplished graphically on the plot of the corrected base profile 

velocity distribution. The writer used a different method based on 

the following equations: 

I» = l£ + 5&4 
v0 v0 vf A0 

^ _ Vf Pb^t 
Vo *o Y fA0 

Correction of the original upper and lower surface velocity 

distributions was accomplished by specifying that the original upper 

surface velocity distribution (Vu/70)2 was not to be changed and thus 

(71) 
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all the correction was absorbed into the lower surface velocity distri

bution. Thus the basic pressure distribution P^A w as computed from 

to : V£ 4 VJf (71) 

since it is the only unknown involved. Hence the corrected lower surface 

velocity distribution was calculated from 

li - l! EbA (71) 

V0
 vo Vf/70 

Table IV presents results of these calculations. 

In general this method of correcting the original velocity distri

butions is satisfactory if a plot of the corrected distributions is made 

and compared with the desired distributions and it is determined that 

the changes in the V]/V0 distribution are not unsatisfactory. The 

importance of this procedure was not evident to the writer since it was 

assumed that the changes to the desired velocity distribution would be 

small. Usually this is true, but by the above method the lower surface 

distribution alone absorbs all the change, and it was later found that, 

in this case, the resulting corrected Vi/V0 distribution was not particu

larly desirable. This is apparent in Figure 6 where it is evident that 

the lower surface distribution is no longer laminar to the 6ofo chord 

station as was desired. The laminar flow is lost at about the 20$ chord 

station. 

It is to be noted, however, that the preceding method is very 

useful if it were important to maintain either the upper or lower surface 
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original velocity distributions, and as stated previously, it is also 

satisfactory if the resulting corrections to one surface are not 

undesirable. 

However, the graphical method by direct examination of the 

correc-bed base profile velocity distribution curve in conjunction with 

the desired distribution curves is satisfactory at all times and has 

the advantage that it is apparent whether or not the changes to the 

desired curves are satisfactory. 

Figure 6, therefore, is the new desired velocity distribution 

for which the airfoil vriJ.1 be derived. 

We now proceed to the calculation of the mean camber line 

ordinates. In this calculation the basic pressure distribution corres

ponding to zero profile thickness 0P b must be used. We have from 

equation (£U) of Reference (l) that 

< * " 5jfe ^ 
and hence by v i r tue of equation (71) t h i s d i s t r i bu t ion can be obtained 

d i rec t ly from 

V - 2 [ I a - I i \ (73) fo-Il 
Vo V0 

o^b 

Values of P^ and P^ are shown i n Table V. 

The problem i s therefore to determine the mean camber l i ne shape 

which wi l l promote the above basic pressure d i s t r i bu t ion . The procedure 
d yc, 

here i s to calcula te values of • & by numerical in tegra t ion of equation 
, d x 

(27); then by plotting versus x/c and mechanically integrating 

find the values iSb . The final step is to correct these values of — » 
c * c 



which are -with reference to the ideal angle of attack,oc ij to the 

regular coordinate system consisting of the x-y axes. 

The method of numerical integration of equation (27) has pre

viously been discussed. Figure 7 is the required plot of QPuA versus 9, 

8 yo, 
and Tables VI and VII present the complete calculation of — — B and are 

J 

oTx 

explained in detail in Appendix I. 

^coupon obtaining the values of Q, these values are plotted as a 

d x 

function of x/c as shown in Figure 8. By mechanical integration employ

ing a planimeter the curve in Figure 8 is integrated to each desired 

value of x/c and thus the value of y ^ is obtained at the desired 

chordsrise stations. Table V presents the values of y^. 

The mean camber line thus obtained is at the ideal angle of 

attack; that is, the ordinates obtained are referenced to the angle of 

attack for which the additional pressure distribution is zero; and 

hence, unless the ideal angle is zero, the trailing edge is either below 

or above the x/c axis. Ordinates of camber lines are generally specified 

with the extremities of the camber line on the x/c axis and designated 

by the usual symbol y_. 
c 

Now the ideal angle of attack is simply 

* • (?& „ -&") ._ . . 

and 

- a 0 X - 1 0 c "c ±m 

s-^ausrfi (75) 
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& = g * + c ^ (75) 
The above relations may be verified from an inspection of Figure C given 

elsewhere in this paper. The value of °C ± in this calculation is 

•00U2U radians s #25> • Values of the mean camber line ordinates are 

given in Table V, and Figure 9 is a plot of the mean camber line. 

Therefore, having both the values of the base profile ordinates, 

y+ 9 and the mean camber line ordinates, yc it is now possible to calcu-
c TST 
late the airfoil ordinates from the following relations: 

JEB = J L - Zt_ Sin 6 
c c c 1 

Zu = Zc + Zfc- Cos0 

(76) 
XT - x •+ y+ _ 
TT= — T^S ia jS 

.a s ? - ^ c o S p 

where 

The above r e l a t ions may be ver i f ied from an inspect ion of the following 

diagram, Figure F, where the camber l ine i s great ly exaggerated for 

c l a r i t y . 
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Figure F. 

Calculation of the final airfoil coordinates is presented in 

Table VIII, and the resulting airfoil is plotted in Figure 10, Also 

shown in Figure 10 is the plot of the MCA 66(2l£)-2l6 airfoil 

corresponding to the original desired velocity distribution. 



BXPERIMSKTAL APPARATUS, TESTS, AND RESULTS 

In order to test the validity of the theory, a suitable model of 

the derived airfoil was constructed for the purpose of obtaining the 

actual velocity distribution over the airfoil, and hence to compare the 

actual distribution with the desired distribution. 

Apparatus 

The model constructed was of laminated mahogany, with a 10 inch 

chord and a 30 inch span. Pressure orifices were situated at the 

desired chordwise locations on upper and lower surfaces. The tests 

were conducted in the small, low-speed wind tunnel at the Georgia 

Institute of Technology. Figure 12 illustrates both the configuration 

of the model and the installation of the model in the wind tunnel. 

Figure 13 is a study of the tunnel test section, and of the auxiliary 

apparatus. Pressures over the wing were observed on the alcohol 

manometer bank shown in Figure 13. The tunnel control panel and the 

alcohol manometer indicating velocity in the jet are also shown in 

Figure 13. 

Tests 

All of the tests were two dimensional and were conducted with the 

test section closed as shown in Figures 12 and 13. The indicated 

velocity was 80.5 mph corresponding to a true velocity of 83.6 mph and to 

a tunnel Reynolds Number of 579,000. These calculations are presented 

in detail in Appendix IV. This Reynolds Number must be corrected for the 

effects of tunnel turbulence by the relation 
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RKe = T F x R N 

where R Ne i s the effective Reynolds Number of the a i r f o i l , and T F i s 

the tunnel turbulence factor , Reference (7 ) . For th i s tunnel 

T F = 1.375 

and thus the effective Reynolds Number is 

RMe = 1*375 x 579,000 = 797,000 

The lift coefficient for the desired velocity distribution of 

Figure 1 is C-j_ = 0.21. The tests of the model were therefore conducted 

at C^ s 0.21 which corresponded to an indicated angle of attack oC r #33°« 

Table IX presents the test data and reduction of the data to the velocity 

distribution and is explained in detail in Appendix I. Figure 11 

presents the comparison of the tsst data with the desired velocity dis

tribution. In general, the agreement is satisfactory except for the 

region near the trailing edge. In this area the flow is highly turbulent 

and much of the airstream energy is lost to random rotational motion; 

thus the region is one of very unstable flow conditions. 
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DISCUSSION 

The method of obtaining the airfoil corresponding to a given 

velocity distribution as presented in Reference (l) and in this writing 

is the most direct procedure available to the aerodynamicist. In 

addition this method undoubtedly yields results of a degree of accuracy 

satisfactory to most engineerirg Yfork. Certainly, it presents a solution 

as accurate as any of the other existing methods, and has the decided 

advantage that it is much less tedious. 

There are, however, several things to be said concerning certain 

steps in the process. For example, the numerical integration calculations 

d(Ay+) d jofr. 
of ~ - and 2 involve measurements of the slopes of the curves 

a x d x 

of «£ and 2pE plotted as functions of 9 as shown in Figures 3 and 7« 

Accurate measurements of these slopes is a tedious and difficult task, 

particularly since in certain areas of these curves, between points from 

which they were plotted, the shape of the curve is not well defined and 

hence the slope is questionable. The writer found that the best method 

of measuring the slopes was by using a thin polished aluminum mirror and 

adjusting this mirror perpendicular to the curve. This establishes a 

line perpendicular to the desired slope. The measurements should be done 

twice, and preferably from opposite approaches to the points in question 

along the curve. 

These numerical integration calculations should, by all means, 

be made using a good computing machine. A slide rule should not be 

employed in any phase of the computation. 

Another point worthy of special consideration is the adjustment 

of the original velocity distribution in correcting it to a real velocity 



distribution. This has previously been discussed in detail. 

It should be noted that all curves required by this method should 

be plotted very accurately on large graph paper. It is now considered 

by the writer that all the graphs presented herein are much too small. 

These small curves are very destructive to high degrees of accuracy in 

evaluating the curves at particular points, and in addition make the 

mechanical integrations using a planimeter difficult and of questionable 

accuracy, 

And now in considering the comparison of the velocity distribution 

obtained from the experimental data with the desired velocity distribu

tion as shown in Figure 11, it is to be noted that this comparison does 

not define the degree of accuracy attainable by this method of finding 

the airfoil corresponding to a given velocity distribution. The particu

lar calculation presented in this writing, as discussed in the preceding 

paragraphs, could have been materially improved as regards accuracy in 

the actual process of calculation. In addition, the airfoil model 

constructed for testing is certainly subject to slight variations from 

the true surface defined by the computed ordinates. Moreover, the 

results of tests conducted in a small wind tunnel of low capacity are 

not as accurate as may be obtained from more expensive equipment. It 

is very strongly believed by the writer that a more precise calculation 

combined with a more perfect airfoil model and high-performance testing 

facilities would yield experimental data of extremely close agreement 

to the desired velocity distribution. 
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RESULTS 

The results of the calculation are essentially the ordinates of 

the derived airfoil. These are plotted in Figure 10 in comparison 

with the ordinates of the MCA 66(2l£)-2l6 airfoil. Now it will be 

recalled that the original desired velocity distribution as defined 

by Figure 1 is the theoretical distribution over this MCA configuration 

Let us, therefore, consider the reasons why the computed airfoil dos not 

exactly correspond to the NAGA 66(2l£)-2l6. 

First, it is to be noted that the plot of the difference velocity 

A ir 

—--. — obtained from the base profile corresponding to the desired 

"o 

velocity distribution and from the selected reference velocity distri

bution — did not satisfy the requirements that 

O 
Ay d 9 « 0 
Vn 

Av > Cos e d e - o 

J 
0 

V0 

That is, the base profile corresponding to the desired velocity distri

bution did not correspond to a real base profile having a closed and 

pointed trailing edge. Therefore, some adjustments were made to the 

base profile to correct it to a real profile. Had the desired velocity 

distribution been the true distribution of velocity over the NACA 66(2l£)-2l6 

airfoil, these adjustments would not have been necessary. The fact that 

the above requirements were not satisfied indicates that the theoretical 



distribution chosen as the desired velocity distribution is not the true 

distribution for the MCA 66(21?)-2l6 airfoil* 

Second, the adjustment to the original velocity distribution — 

made necessary by the changes to the original base profile — was not of 

a nature such that the general characteristics of the desired velocity 

distribution were completely retained. And thus the modified velocity 

distribution for which the corresponding airfoil was derived, no longer 

conformed exactly with the MCA 66(2l£)-2l6 velocity distribution. 

Therefore, the resulting computed airfoil does not correspond exactly 

with the NACA 66(2l£)-2l6 airfoil. 

Consider now the results obtained by the wind-tunnel tests con

ducted on the model of the derived airfoil. Figure 11 presents the 

comparison of the experimental velocity distribution and the desired 

distribution. The comparison over the aft section of the airfoil, parti

cularly with regard to the lower surface velocity distribution, is not 

as favorable as that over the forward portion of the model. The actual 

and the desired distributions agree favorably from the leading edge to 

approximately the 60% chord station. A discussion of the several reasons 

for the discrepancies in the curves has previously been given. In general, 

results of the wind-tunnel tests are satisfactory in that the actual 

velocity distribution is essentially in agreement with the desired 

distribution of velocity. 

The general good agreement of the theory, which neglects viscous 

effects, with the actual test results indicates that the effects of 

viscosity are small in this Reynolds Number range. Thus the analysis 

presented in Reference (l), although based on non-viscous fluid theory, 



which is never strictly justifiable, yields results of sufficient accuracy 

for practical engineering purposes* 
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CONCLUSIONS 

The investigation of the Allen airfoil theory presented in this 

thesis yields the following conclusions with regard to the method 

defined in Reference (l) of obtaining the airfoil corresponding to a 

given velocity distribution, 

1. The numerical computations involved in the method must be 

performed with precision. A computing machine is essential. 

2. All graphs necessary to the method must be on large sheets. 

Sizes 8 1/2" by 11" and 11" by 17" are generally unsatis

factory. 

3» The effects of viscosity are small in the usual Reynolds 

Number range. 

U. The Allen theory is direct, accurate, and comparatively 

rapid. 
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APPENDIX I 

TABLES 



TABLE I 

(1) (2) 

2 
X 

c l ) 
u 

0 0 

• 025 1.225 

.050 1.350 

.075 1.1+00 

.100 1.UU0 

.150 1.U80 

.200 1,520 

.300 1.560 

.Uoo 1.580 

.5oo 1.600 

.600 1.620 

.700 l.Uoo 

.800 1.130 

.900 .880 

1.000 .615 

CALCULATION OF BASE 

PROFILE ORDINATES 

(3) (W 

2 

[v\ (f^ 

H H 0 0 

.870 1.108 

1.000 1.162 

1.060 1.182 

1.100 1.200 

1.150 1.217 

1.190 1.232 

1.230 1.250 

1.260 1.258 

1.280 1.263 

1.300 1.272 

1.180 1.182 

1.000 1.063 

.800 .938 

.620 .781* 

(5) (6) 

n Vo 

0 0 

.932 2#0l*0 

1.000 2.162 

1.030 2.212 

1.050 2.250 

1.072 2.289 

1.090 2.322 

1.110 2.360 

1.122 2.380 

1.130 2.393 

1.11*0 2.1*12 

1.087 2.279 

1.000 2.063 

.89I* 1.832 

.781* 1.568 



(7) (8) (9) (10) (11) (12) 

('4 >. t\ • -• ^ 
0 0 0 0 1.0000 0 

1.020 1.1226 -.1026 .3176 .9500 -.097U 

1.081 1.19U6 -.1136 .1*510 .9000 -.1020 

1.106 1.2151 -.1091 .55UB .8500 -.0926 

1.125 1.2206 -.09*6 .6U35 .8000 -.0765 

1.1U5 1.215U -.070U .793* .7000 -.01x93 

1.161 1.2019 -.0li09 .9273 .6000 -.0256 

1.180 1.1668 .0132 1.1593 .Uooo .00528 

1.190 1.128U .0616 1.36914 .2000 .0123 

1.197 1.0896 .K)7i| 1.5708 0 0 

1.20U 1.0511 .±$29 1.7722 -.2000 -.0306 

1.139 1.0135 .1255 1.9823 -.Uooo -.0502 

1.032 .9769 .0551 2.21U3 -.6000 -.0330 

.916 .91*16 -.0256 2.U981 -.8000 .0205 

.78U .9072 -.1232 3.1U16 -1.0000 .1232 



(13) (120 (15) (16) (17) 

0 

.07U 

•080 

.073 

.060 

.03U 

.009 

.036 

.076 

•111* 

.153 

.126 

.055 

.030 

.135 

\&£\x cos e 

K)2 

T-e 

0 1.5708 

-.070U 1.2532 

- .0720 1.1198 

- .0620 1.0160 

-.0U80 .9273 

-•0238 .H9x 

-.005U .61*35 

.OlUi .1015 

.0152 .201U 

0 0 

- .0306 -.201U 

- .0502 -.10.15 

- .0330 ».6U35 

.02U0 - .9273 

.1350 -1.5708 

(-.000766) 
' $ 

-.00120U - .0028 

-.000960 - .0026 

- .000857 -.0021; 

- .000778 -.002U 

- .000711 - .0023 

- .00059^ - .0022 

-.000U93 - .0021 

- .000315 - .0019 

-.00015^2 - .0018 

0 - .0016 

.00015U2 -.001U 

.000315 - .0013 

.000U93 - . 0 0 1 1 

.000711 - .0009 

.00120U -.ooou 



(18) (19) (20) (21) (22) (23) 

4 l • 4lcose l£ LIi 5c a 
Vo Vo Vo c c c 

0 * 0 0 0 0 0 

- .0766 - .0728 1.01*60 - .00075 .02786 .02711 

-.0821* -.0710- 1.1122 - .00132 .03795 .03663 

-.075U -.061*0 1.1397 -.0001*9 .01*1*70 .010*21 

- .0623 -.OU98 1.1583 .00080 .OU959 .05039 

- .0362 -.0251* 1.1792 .001*28 .05587 .06015 

- . 0 1 1 1 - .0067 1.1908 .00861* .05902 .06766 

.0310. .0136 1.2009 .01818 .05936 .0775U 

•07U2 .011*8 1.20U6 .02700 .051*52 .08152 

.H2U 0 1.2020 .03339 .01*61*9 .07988 

.1515 - .03030 1.2026 .031*82 .036U9 .07131 

.121*2 -.01*96 1.1377 .02860 .02562 .051+22 

.051*0 -.0321* 1.0309 .01639 .011*91 .03130 

- .0309 .021*8 .9107 .00171 .00559 .00733 

-.1351* .135k .7718 0 0 0 

# The value of Av is arbitrarily made 0 at 0 = 0. 

75 



TABLE II 

Av 
VALUES OF y~ FOR VALUES OF 6 

FROM 0 TO 21T% IN g j INCREMENTS 

OF e 

- — & , . • d i . , 
Av 
Vo 

e Av 
Vo 

0 l l tr 
10 

-.111 

-.076 12 tr 
10 

-.036 

-.065 13 <r 
10 

.056 

-.009 H i * 
10 

.139 

.052 15 tr 
10 .113 

.113 16TT 
10 

.052 

.139 17 <r 
10 

-.009 

.056 18fr 
10 

-.065 

-.036 19 f?- - .076 
10 

- .111 2 tr 0 

-.135 



e 
Radians 

TABLE III 

a^yt 
NUMERICAL INTEGRATION CALCULATION OF d ~ 

d A y t 

d x 

FOR THE BASE PROFILE, 'WHERE 

,2TT 

(1) (2) 

- I s"fc^ d 9 

(3) (4) (5) 

e 
Radians 

AT 
Vo 

d*I 
Vo 

d e 

(6) 

(ao) 
Vo 

d e 

69 

(7) 

Ml 

Tf 

10 

2ff 
10 

3jr 
10 

4rr 
10 

5rr 
10 

6jT 
10 

II 
10 

1_ 
10 

£TT 

10 

If 

.0244 .314 -.076 -.1644 -.01644 -.065 

.0955 .628 -.065 .1578 .01578 -.009 

.2061 .941 -.009 .1880 .01880 .052 

.2455 1,256 .052 .1868 .01868 .113 

.5000 1.570 

.6545 

IH .7939 

.9045 

.9756 

1.0000 

1.888 

2.200 

2.515 

2.830 

3.142 

.113 

.139 

.056 

•.036 

•.111 

.135 

.1952 

- .3231 

- .2836 

- .2820 

- . 1321 

- .0358 

.01952 

- .01231 

- .02836 

- .02820 

.139 

.056 

.036 

- . 1 1 1 

- .01321 - . 135 

-0 .111 



(8) (9) (10) (11) (12) (13) 

m> *m w • •* * A 

0 - . 065 - .022575 - .009 .076 - . 0 8 5 

- .076 .067 .023269 .052 0 .052 

- . 065 .117 .040634 .113 - .076 .189 

- .009 .122 .042371 .339 - . 0 6 5 .204 

.052 .087 .030215 .056 - .009 .065 

.113 - .057 -.019796 - .036 .052 - .088 

.139 - . 175 - .060778 - . 1 1 1 .113 - . 2 2 4 

.056 - .167 - .057999 .135 .139 - . 274 

- .036 - .099 -.034522 - . 1 1 1 .056 - .167 

-0 .111 0 0 - .036 - .036 0 
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(14) (15) (16) (17) (18) 

.065 -.013 -.012948 

.076 .037 .003685 

C .139 .013844 

-.076 .132 .013147 

-.065 .029 .002888 

-.009 -.102 -.010159 

.052 -.187 -.018665 

.113 -.224 -.022310 

.139 -.175 -.017430 

.056 0 0 

-.013362 .052 

.008174 .113 

.029711 .139 

.032069 .056 

.010218 -.036 

-.013834 -.111 

-.035213 -.135 

-.043136 -.111 

-.026252 -.036 

0 .056 



(19) (20) (21) 

(M (M . 
Wo/_4 Wo/4 

M 
4 \Vo/_4 

(22) 

a j ft 
WoU 

(25) (24) 

\ V o j J (vo) 5 Wo) 
— u 

.113 .009 .104 .007186 .139 -.052 

.139 .065 .074 .005113 .056 .009 

.056 .076 -.020 .001382 -.036 .065 

.036 0 -.036 -.002488 -.111 .076 

.111 -.076 -.035 -.002419 -.135 C 

.135 -.065 -.070 -.004865 -.111 -.076 

.111 -.009 -.102 -.007048 -.036 -.065 

.036 .052 -.088 -.006081 .056 -.009 

.056 .113 -.057 -.003939 .139 .052 

.139 .139 0 0 .113 .113 

file:///VojJ


(25) (26) 

f l̂ -&) asfê  -m 1 
M 5 IW.5

 5Lf5J5 lvo).J 

(27) 

ea 
(28) (29) 

fcL (*>„-& 

. 1 9 1 

.047 

• a o i 

•187 

. .135 

• .035 

.029 

. 0 6 5 

.087 

0 

.009607 

.002364 

- .005080 

- . 0 0 9 4 0 6 

- . 0 0 6 8 1 1 

- • 0 0 1 7 6 1 

.001458 

.003270 

.004376 

0 

, 056 

.036 

• .111 

-.135 

• .111 

•.036 

. 056 

.139 

. 113 

.052 

- .113 

•.052 

.009 

. 0 6 5 

. 076 

D 

•.076 

• .065 

•.009 

.052 

.169 

.016 

- . 1 2 0 

- . 2 0 0 

- . 1 3 7 

- . 0 3 6 

1 •ZO 
• x u w 

. 2 0 4 

.122 

0 



(30) (31) (32) (33) (34) 

•006185 -.036 -.139 .103 .002894 

.000586 -.111 -.113 .002 .000056 

-.004392 -.135 -.052 -.083 -.002330 

-.007335 -.111 .009 -.120 -.003372 

-.006844 -.036 .065 -.101 -.002838 

-.001318 .056 .076 -.020 -.005620 

.004831 .139 0 .139 .003906 

.007466 .113 -.076 .189 .005311 

.004465 .052 -.065 .117 .003288 

0 -.009 -.009 Q 0 
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(35) (36) (37) (38) (39) 

Vw)8 Vw. 8 V^)aW.3 ^Ps'W-J VK), 

.111 -.056 -.055 -.000897 -.135 

,135 -.139 .004 .000059 -.111 

.111 -.113 .002 .000033 -.036 

.036 -.052 .088 .001434 .056 

.056 .009 .047 .000766 .139 

.139 .065 .074 .001206 .113 

.113 

.052 

,076 

0 

.037 

.052 

.000603 

.000848 

.052 

-.009 

.009 -.076 .067 .001092 -.065 

.065 -.065 6 0 -.076 



(40) 

to 

(41) (42) 

-9 

• 036 

.056 

• 139 

.113 

.052 

.009 

.065 

.076 

0 

.076 

(vo) " kfl) *4/°)o~ W.c 

.171 -.001371 

.055 -.000440 

.103 .000824 

.169 .001352 

.191 .001528 

.104 .000832 

.013 -.000104 

.085 -.000680 

,065 -.000520 

0 D 

he value of dAy^ Z 0 ai 

(43) 

d&Yt 
d x 

0 * 

••04172 

.05865 

.09343 

.08645 

.04622 

-.06762 

-.13937 

-.14151 

-.08265 

0 

dx 
by inspection of equation (IjO). 



TABLE IV 

FINAL ADJUSTMENT OF THE DESIBED 

VELOCITY DISTRIBUTIOIT, AHD CALCULATION 

OF THE BASIC PRESSURE DISTRIBUTION 

(1) (2) (3) ( « (5) 

X v-u _ Vf Pb VU n 
c Vo Vo h VfAo Vo 

0 0 0 0 0 

•025 .062 .06S$ .062 .?8'40 

.050 .050 .0556 .050 1.0622 

.075 .01*2 .01*78 .01*2 1.0977 

.100 .01*2 .0^86 .0U2 1.1163 

.150 .038 .Qhhl .038 1.11*12 

.200 .01*1 .OkBl •oia 1.11*98 

.300 .Oh9 .0567 .01*9 1.1519 

.Uoo .053 .0639 .053 1.1516 

.500 .061 .0733 .061 1.11*10 

.600 .069 .0830 .069 1.1336 

.700 .ohk .0500 .01*2* 1.0937 

.800 .032 .0330 .032 .9989 

.900 .027 .021$ .027 .8831* 

1.000 0 C 0 .7718 



TABLE V 

CALCULATION OF MEM? CALIBER 

LUTE ORDINATES 

(1) (2) (3) U+) (5) 

:: 

G Vo Yo 
opb 

oPb 

k 
e 

0 C 0 0 

.025 .I2J4O .21+80 .0620 .3176 

.050 .0998 .1996 .01+99 .1*510 

.075 .082+3 .1686 .01+22 .55-Us 

.100 .0837 .1671* .0U19 .6U35 

.150 .0758 .1516 .0379 .7951+ 

.200 .0822 .±6hh .0101 .9273 

.300 .0981 .1962 .01+91 1.1593 

.UOO .1061; .2128 .0532 1.369U 

.500 .1220 .2hh0 .0610 1.5708 

.'500 .1361* .2728 .0682 1.7722 

.700 .0880 .1760 .ohko 1.9823 

.300 .061+0 .1280 .0320 2.211+3 

.900 .0550 .1100 .0275 2.1+981 

1.000 0 0 0 3.II4I6 



(6) 

!£ 
Vo 

1.01*60 

1.1122 

1.1397 

1.1583 

1.1792 

1.1908 

1.2009 

1.201*6 

1.2020 

1.2026 

1.1377 

1.0309 

.9107 

.7718 

(7) 

?b 

.2620 

.2221; 

.1910 

.191*2 

.1790 

.1950 

.2350 

.2580 

.2932 

.3320 

.2000 

.1320 

.0995 

o 

(8) 

**£ 
c 

.00178 

.00288 

.00390 

.001+66 

.00600 

.00736 

.00980 

.0111*8 

.01216 

.01161* 

.0081*6 

.00321* 

.00052 

-•001*21; 

(9) 

^a 
c 

.00011 

.00021 

.00032 

.0001*2 

.00069 

.00085 

.00127 

.00170 

.00212 

.00255 

.00297 

.00339 

.00382 

.001+21* 

(10) 

7c 
c 

.00189 

.00309 

.001*22 

.00508 

.00669 

.00821 

.01107 

.01318 

.011*28 

.011*19 

.0111*3 

.00663 

.00l*3U 

0 
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TABLE VI 

p, 
VALUES OF — FOR VALUES OF 9 

h 
FROM 0 TO 2W 9 IN ̂  INCHaMEMTS 

OF 9 

( - ) Defining 

oPb 
h 

.0620 

.Oi;17 

.02*16 

•0510 

•0610 

•058U 

.0326 

.0268 

.0113 2 IT 

0 

- ( ! 

-

h X- 9 

~ o^b 

k 
nir 

10 -•0113 

12 vr 
10 

- .0268 

13 TT 
10 

- .0326 

lhv 
10 

- . 0581 

I 5 i r 
10 

- .0610 

16 IT 
10 

- .0510 

17jr 
10 

-•0I4I6 

istr 
10 

-.010.7 

19JT 
10 

- .0620 
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TABLE VII 

NULiERICAL INTEGRATION CALCULATION OF ^ 
d x 

d x 

FOR 1EAN CAMBER LINE, TflHERE 
/"27T 

'e - eo1 

( l ) 

e 
Radians 

X 
10 

£lL 
10 

3JL 

10 

l*jr 
10 

(2) 

x 
G 

(3) 

e 
Radians 

2"W Jo ** 

ft) 

2p> Cot (^ ) d e 

(5) 

10 

6 i r 
10 

7tr 
10 

sir 
10 

9tr 
10 

.0955 

.2061 

A Ht) 

*9hl .Ola6 

±2L .31*55 1.256 .0510 

£21 .5000 1,570 .0610 

.01*27 

.0182 

.01*03 

(6) 

d d J 

0 0 0 0 0 

.02iUi .312* .0620 - .0750 - .00750 

.628 .01*17 -.OOUli -.0001*2; 

.001*27 

.00182 

.002*03 

.652*5 1.S88 .0582* - . 1053 - .01053 

,7939 2.200 .0326 - .0325 - .00325 

90U5 2.515 .0268 - . 0285 - .00285 

9756 2.830 .0113 - . 0625 - .00625 

(7) 

ra, 
.062 

.02*17 

.02*16 

.0510 

.0610 

.0581* 

.0326 

.0268 

.0113 

0 

tr 1.0000 3-11*2 0 -.0113 
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(8) (9) (10) (11) (12) 

®, if),-©., -J '©,-fflJ it), 
^ 2 

(t)2 
- .0620 .122*0 .01+3065 .010.7 - .0417 

c .0107 .014482 .0416 - .0620 

•0620 -.0201; - .007085 •0510 0 

.OI4I7 .0093 .003230 .0610 .0620 

.010.6 .0191; .006738 .0581; .0107 

•0510 •007U .002570 .0326 .0106 

.0610 -.0281* - .009863 .0268 .0510 

.058U - .0316 - .010975 .0113 .0610 

.0326 - .0213 - .007397 0 •0581; 

.0268 - .0268 - .009308 - .0113 .0326 

.0113 - . 0226 ~.00?8lt9 - .0268 .0268 
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(13) (Hi) (15) (16) (17) 

/o p b\ fcPb\ 7o?b\ foPb\ J (0?b\ 

Ui3 
©, ( % < % 

.083U *013110 .0iO6 - .0106 .0832 

.1036 .016286 .0510 -.01O7 .0927 

•0510 ,008017 .0610 - .0620 .1230 

- .0010 -.000157 .0581; 0 .0581; 

.0167 .002625 .0326 .0620 -.029U 

- .0090 -.000105 .0268 .0iO7 -.011*9 

- .0242 -.003801; .0113 .0106 - .0303 

-.01*97 -.007813 u .0510 - .0510 

-.058U -.009180 - .0113 .0610 - .0723 

~.oU39 -.006901 - .0268 .058U - .0852 

- .0536 -.0081*26 - . 0326 •0326 - .0652 



8U 

(18) (19) (20) (21) (22) 

C.'j [©,-©J ®t ®. svet -VoFb\ /o*t>\ 

U/^UJL 
.008287 .0510 - .0510 .1020 .0070U8 

.009233 .0610 -.OI4I6 .1026 .007090 

.012251 .0581* -.010.7 .1001 .006917 

.005817 .0326 - .0620 .091*6 .006537 

- .002928 .0268 0 .0268 .001852 

~.00ll |3l | .0113 .0620 - .0507 - .003503 

- .003018 . .0)417 -.010.7 - .002881 

- .005080 - .0113 .020.6 - .0529 - .003655 

- .007201 - .0268 .0510 - .0778 - .005376 

-.0081+86 - . 0326 .0610 - . 0936 -.0061*68 

-.oo6h9h - .058 l | .0581* - . 1168 - .008071 



(23) (210 (25) (26) 

©5 {% 
(6Pb\ /oPb\ ©5-e) 

.0610 -.0610 .1220 .006137 

.0581+ -.0510 M9h .005503 

.0326 -.ola.6 .07U2 .003732 

.0268 -.010.7 .0685 .0031^6 

.0113 -.0620 .0733 .003687 

0 0 : 

-.0113 .0620 -.0733 -.003687 

-.0268 .0)_a7 -.0685 -.00314+6 

-.0326 .010.6 -.071+2 -.003732 

-.0581; .0510 -.109U -.005503 

-.0610 .0610 -.1220 -.006137 



(28) (29) (30) (3D (32) 

(fL fbPb\ /oPb\ foPb\ (o^b\ ©7 Ifl 
-.058U .1168 .OOU275 .0326 - .0326 

- .0610 .0936 .003U26 .0268 - .0581; 

- .0510 .0778 .0028^7 .0113 - .0610 

-.oia6 .0529 .001936 0 - .0510 

-f0JO.7 .010.7 .001526 - .0113 -.OI4I6 

- .0620 .0507 .001856 - .0268 -.OI4I7 

0 - .0268 - .000981 - .0326 - .0620 

.0620 -.09U6 -.003U62 -.058U '.; 

.oia7 - . 1 0 0 1 -.00366U - .0610 .0620 

.01*16 - .1026 - .003755 - .0510 .oia? 

.0510 - .1020 - .003733 -.OJ4I6 .010..6 



(33) (3W (35) (36) 

/0Pb\ /yPb\ [©,-©.,] (x)8 (tl 
.0652 .001832 .0268 -.0268 

.0852 .00239U .0113 -.0326 

.0723 .002032 ; -.0581; 

.0510 .001103 -.0113 -.0610 

.0303 .000851 -.0268 -.0510 

.01U9 .OOOijlp -.0326 -•OI4I6 

.029k .000826 -.0581; -.OI4I7 

-.058U -.OOI6I4I -.0610 -.0620 

-.1230 -.O03U56 -.0510 C 

-.0927 -.002605 -.OI4I6 .0620 

-.0832 -.002338 -•oia7 .0JA7 



88 

(38) (39) CijD) (41) 

( # . - $ . -I ®, ®„ ®,-ft 
.000874 .0113 -.0113 .0226 

.000716 C -.0268 .0268 

.000952 -.0113 -.0326 .0213 

.000810 -.0268 -.0581; .0316 

.000394 -.0326 -.0610 .0281; 

,000147 -.0584 -.0510 -.0074 

-.000272 -.0610 -.OI4I6 -.0194 

.000016 -.0510 -.OI4I7 -.0093 

-.000831 -.01416 -.0620 .0204 

-.001689 -.0417 0 -.0417 

-.001359 -.0620 .0620 -.1240 
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(U2) (1+3) 

fxvaj d^CL 

b 

d x 
.000181 .081*81 

.000211; .0518U 

.000170 .029U0 

.000253 .02757 

.000227 .01679 

-.000059 .00256 

-.000155 -.Q3k3o 

-.000071; -.03938 

.000163 -.Oii353 

-.000331; -.05130 

-.000992 -.oli5Uo 



TABLE VIII 
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CALCULATION OF AIRFOIL ORDIKATES 

(1) (2) (3) (4) (5) (6) (7) 

X 

c 

7C 

a % 
d x 

d 7 c 

d x 
fi 

Radians 
S i n S Cos S 

7 t 

c 

C .0850 .0892 .0892 .0892 .99<& , 

.025 .0518 .0560 .0560 .0560 .9984 .0271 

.050 .Oiilij. .0166 .0456 .0456 .9990 .0366 

.075 .0343 .0385 .0385 .0385 .9993 .01^2 

.100 .0290 .0332 .0332 .0332 .9995 .0504 

.150 .0280 .0322 .0322 .0322 1.0000 .0602 

.200 .0271* .0316 .0316 .0316 1.0000 .0677 

.300 .0208 .0250 .0250 .0250 1.0000 .0775 

.4oo .0120 .0162 .0162 .0162 1.0000 .0815 

.500 .0026 .0068 .0068 .0068 1.0000 .0799 

.600 - .0200 - .0158 - .0158 - .0158 1.0000 .0713 

.700 - .0376 - .0334 -.033U - .0334 1.0000 .0542 

.800 - .0396 -.035U - .0354 - .0354 1.0000 .0313 

.900 -•01431 - .0389 - .0389 - .0389 1.0000 .0073 

1.000 -.02*50 -.okos - . 0408 - .0408 1.0000 0 



(s) (9) (10) (11) (12) (13) (lU) 

T t S i n f t 

c c c 
5i 
c 

1\ 
c 

x l 

c 
3 1 
c 

0 0 0 C 0 0 ' 

.0015 .0271 .0019 .0235 .0290 .0265 - .0252 

.0017 .0366 .0031 .01+83 .0397 .0517 -.033$ 

.0017 .Ohh2 .001+2 .0733 .01+81+ .0767 -.01+00 

.0017 .0501+ .0051 .0983 .0555 .1017 -.01+53 

.0019 .0601 .0067 .11+81 .0668 .1519 -.053U 

.0021 .0677 .0082 .1979 .0759 .2021 - . 0595 

.0019 .0775 .0111 .2981 .0886 .3019 -.0661+ 

.0013 .0815 .0132 .3987 .09^7 .1+013 - .0683 

.0005 .0799 .011+3 .h99$ .09U2 .5005 - . 0656 

.oou •0713 .Qll+2 .5989 .0855 ,6011 - .0571 

.0018 .05U2 .0111+ .6982 .0656 .7018 -.01+28 

.0011 .0313 .0066 .7989 .0379 .8011 -.021+7 

.0003 .0073 «0Qh3 .8997 .0116 .9003 - .0030 

. ' 0 1.0000 C 1.0000 <: 
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TABLE DC 

EXPERIMENTAL DATA AND DETEEMIHATIOK OF TrIE ACTUAL VELOCITY 

DISTRIBUTION FOR MODEL OF CALCULATED AIRFOIL TESTED IN THE 

LOW-SPEED V/IKD-TIMEL AT THE GEORGIA INSTITUTE OF TECHNOLOGY 

(1) (2) (3) (h) (5) 

Pu APU APU V* 

c Centimeters Centimeters ~s 
of Alcohol of Alcohol 4 V° 

0 —7*1*3 10.00 .996 .OQJi 

.025 3*93 -1.36 - .136 1.136 

.050 $mh$ -2.92 - .291 1.291 

.075 5.31; -3.27 - .326 1.326 

.100 6.1*8 -3.91 -.390 1.390 

.150 6.96 -k.39 -.U37 l.ii37 

.200 8 . U -$.$k -.552 1.552 

.300 8.57 -6.00 -.597 1.597 

.hoo 0.89 -6.32 -.630 1.630 

.500 8.85 -6.28 - .626 1.626 

.600 7.91 -5.3U -.532 1.532 

.650 7.06 -Ii.i+9 -.Mtf l . W ? 

.700 5.66 -2.99 - .298 1.298 

.800 2.91 - .31* -.03k 1.031; 

.900 l. l tf 1.08 .108 .892 

1.000 .096 2.1*7 .2U6 .75U 



(6) (7) (8) (9) 

P i 
Centijneters 
of Alcohol 

A P i 
Cent imeters 
of Alcohol 

A P i 

q 

3 
V l 

YS 

-7.U3 10.00 .996 •ool-

2.27 .30 .030 .970 

3.69 - 1 . 1 2 - . 112 1.112 

U.20 - 1 . 6 3 - . 1 6 2 1.162 

k.$6 - 1 . 9 9 - . 1 9 0 1.198 

$.66 - 3 . 0 9 - . 3 0 8 1.308 

6.02 -3.15 ~.3hk 1.314* 

5.70 -3 .13 - . 3 1 2 1.312 

5.92 -3.3$ -.331+ 1.3314 

5.7U -3 .17 - . 3 1 6 1.316 

5-22 - 2 . 6 5 - .26! ; 1.2614 

J-U38 - 1 . 8 1 - ,180 1.180 

3.U2 - .85 - . 0 8 5 1.085 

2 .01 .56 .056 *9hh 

.096 2.2*7 . 2W .751; 
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EXPLANATION OF TABLES 

TABLE I 

Column Remarks 

(1) Chordwise station 

(2) Desired upper surface velocity distribution, Figure 1 

(3) Desired lower surface velocity distribution, Figure 1 

(i*) Vfi) 

(5) V<3) 

(6) (W + (5) 

(7) (6) Base profile velocity distribution, 1st choice, Figure 2 
T 

(8) Reference base profile velocity distribution, Reference (l) 

(9) (7) - (8), Figure 3, uncorrected *v 
^o~ 

(10) 0 

(11) Cos 0 

(12) (9)(U) 

(13) First adjustment of Ay , Figure 3 
Vo 

(1U) (13)(11) 

(l£) ^/2 - (10) Reference (l). Method for final correction to _Av 
Vo 

(16) -.000766 x ( l£ ) , Reference (1) .Method for f i na l correct ion to Av 
Vo 

(17) AMVV , -.00166 + (16), « " • " » " " « 

(18) (13) + (17), Corrected Av • Figure 3 * 

"To" 
(19) (18)(11) 

(20) (8) * (18) 

(21) Mechanical integration of Figure h 



(22) Ordinates for reference base profile, Reference (1) 

(23) (21) - (22), Ordinates of base profile 

# It is to be noted that the value of -Av/Vo 

is arbitrarily made 0 at 0- r 0, 
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TABLE II 

Column 

9 

Remarks 

The values of Av are taken from Figure 3. The values 
Vo" 

of Av for values of 9 greater than if are obtained 
W 

from the definition /AVN = /AV\ 

\Vo7tr^o vvojtr- o 

TABLE I I I 

Column 

CD 

(2) 

(3) 

(W 

(5) 

(6) 

(7) 

(6) 

(9) 

(10) 

(11)-»(U2) 

(10) 

Remarks 

Q 

Chordgd.se s t a t ion 

0 

Table I I 

Slope as measured from Figure 3 

a0(£), "where â , - .1000 

Ay at Q0 + nTt , where n = 1$ Table II• Ifote: The value 
Vo 10 
of dAyt/dx = zero at 0 0 = 0 by inspection of Equation (lj.0). 

Av at ©o + ajf , where n = -1; Table II. Note: The value 
To* 10 
of dAjrt/dx Z zero at 00 s 0 by inspection of Equation (1+0). 

(7) - (8) 

a-^9), where a! = .3U73 

Similar to (7)-* (11), n = 2,-2, 9,-9 

(6) + (10) + (1U) 4 (18) 4 (22) * (26) 4 (30) 4 (3U) 4 

(38) + (U2) 

Chordgd.se
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TABLE IV 

Column 

CD 

(2) 

(3) 

(it) 

(5) 

Remarks 

Chordsri.se s t a t i o n 

|(U) - (20 j , Table I 

[20) , Table l ] x (2) 

(3) f [(20), Table ^ 

I 2 0 ) , Table l\ - (U) 

TABLE V 

Column 

CD 

(2) 

(3) 

(W 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Remarks 

Chordvri.se s t a t ion 

| U ) , Table i] - ^5 ) , Table IVJ 

2(2) , Basic pressure d i s t r ibu t ion , zero prof i le thickness 

(3)A 

9 

^20) , Table J 

(3)(6), Basic pressure distribution 

Mean camber line ordinates, uncorrected for <»Ci, obtained 

by mechanical integration of Figure 8 

(aCi)(l), where ô i = .00U2lj. radians 

(8)4-(9), Corrected mean camber line ordinates 

Chordsri.se
Chordvri.se


TABLE VT 

Column 
, , opb 
(1) The values of ~r~ are taken from Figure 7. The values of 

£_£ for values of G greater than IT are obtained from the 
h 

= - (°2^ 
e v h Ar _ 9 vJtr + 

TABLE VII 

Column Remarks 

(i) e 

(2) Chordwise station 

(3) 9 

(h) Table VI 

(5) Slope as measured from Figure 7 

(6) a0 {$)? where a0 • ,1000 

(7) ^ at 9,+ — inhere n = 1, Table VI 

(8) c A at eo+ £3L where n = -1, Table VI 
h 10 

(9) (7) - (8) 

(10) a! (9) where a i - .31+73 

(11)-*(1;2) Similar to (?) - * (11), n = 23 - 2 , . . . . 9, -9 -

(1+3) (6) + (10) + (1U) + (18) • (22) * (26) + (30) + (3h) + 

(38) +' (U2) 



TASLE VII I 

Column Remarks 

a) Ghordwise station 

(2) Figure 8 

(3) (2) +o^i, ushers o & = •00̂ 21+ 

(h) Tan"1 (3)j For snail angles tangent^ 

(5) Sin (k), For small angles, the sine(3 

(6) Cos (k) 

(7) (23), Table I 

(8) (7X5) 

(9) (7)(6) 

(10) (10), Table V 

(ID (1) - (8) 

(12) (9) + (10) 

(13) (1) + (8) 

aw (10) - (9) 
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TABLE IX 

Column Remarks 

(1) Chordwise station 

(2) Experimental data, wind tunnel 

(3) Static T̂ ressure in tunnel test section - (2), where p s 

2o7 centimeters of alcohol 

(h) (3) 7 <l, where q = 10.03 centimeters of alcohol 

(<) 1.000 - Ik) 

(6) Experimental data, wind tunnel 

(7) Static pressure in tunnel test section - (6) 

(8) (7) T q, where q = 10.03 centimeters of alcohol 

(?) 1.000 - (8) 
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APPENDIX I I 

FIGURES 
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FIGURE 13. TUNNEL TEST SECTION, CONTROL PANEL, AND MANOMETERS 
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METHOD OF NUMERICAL INTEGRATION 

A numerical evaluation of the integral E • ̂ rr 
J 

Cot fe&j d0 

is given in the appendix of Reference (h)• A "20-point" solution is 

E » a~ (%\ + a l ( F l - F - l } + a2<F2 - ^ + * • • + *9{F9 - V *o 

where F-L is the value of F at Qgf^E and Fn i s the value of F at &Q 4 GjK 

Values of n are: n • 1, - 1 , 2, -2, 3, -3 , . . . 9, -9. 

( ^ i s the value of ^£ at e r e , and the coefficients are: 
\d% de ° 

aQ = 0.1000, a1 = 0.3U73, a2 = 0.1572, a r 0.0996, a, = 0.0691, 

a5 = 0.0503, a^ = 0.0366, a7 - 0.0281, ag = O.OI63, a^ = 0.0080. 

dAy+ 5 rr 
The value of ——* for 9, B r r - given in Table III in the calculation 

dx ° 10 

of the base profile ordinates, for example, is obtained in the following 

cyclic form: 

dAy t 

= 0.1000(.1952) +-0.3u73(.139 - .052) +-0.1572(.056 - .009) 
dx 

•V 0.0996(-.036 - .065) + 0.0691(-.lll - .076) + 0.0503(-.135 - 0) 

+0.0366(-.lll - .076) 4- 0.028l(-.036 - .065) + 0.0l63(.056 - .009) 

40.0080(.139 - .052) = O.Oii622 

E 

A more accurate "UO-point" solution is 

= MdS] + b l ( F l " F-l> + M F 2 " F-2> +"• • • +-bl9(Fl9 " F-19) w n e r e 

now FT is the value of F at e + J and F„ is the value of F at 6n +-~?~. 
1 0 20' n ° 20 

The values of n are: n - 1, - 1 , 2, -2, 3, "3, . . . 19, -19. 



/0E\ is the value of -»±- at $ = 6,., aid the coefficients are given by: 

V*eJo de ° 

bQ = 0.05000, b 1 - 0.3U906, b 2 • 0.16129, b3 - O.lOSlU, b^ - 0.07735, 

b^ a 0.060^7, b 6 a O.OU918, by a O.OU087, b 8 = 0.031M, bQ a 0.02929, 

b10 = °'02$°3> b n = 0.02139, b 1 2 = 0.01819, b 1 3 » 0.01^32, 

hlk " 0«01273, b-^ «s 0.01036, b l 6 =« O.OO8H4, b 1 ? » 0.00599, 

b-^ = 0.00395, b 1 9 » 0.00197. 

The "UO-point" solution need be employed only when the function F 

changes more or less abruptly ivith x/c. 
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CALCULATION OF REYNOLDS NUMBER OF 

AIRFOIL MODEL IN WIND TUNNEL TEST 

1. Atmospheric conditions: T s 81t°F.$ p = 28.90 inches of mercury 

2. Static pressure in test section =2.57 centimeters of alcohol when 

the dynamic pressure q z 10.03 centimeters of alcohol. Specific 

gravity of alcohol - .808. 

o 
3 . Determination of q i n un i t s ^ / f t 

q - 10+03 cm, alcohol f t («8o8)(62,lQ# = 16.58 ^ / f t 2 

30.5 cm. ft? alcohol 

U. Calculation of corrected density 

,0)(to/t) z .002378 /28>90\/^20\ = .002195 slugs/ft3 p=^0(p/Pc 

5« Calculation of indicated and true velocities 

i V± = 2g z 2(l6.g8)#=ftIt - 13,9UO ft2/sec2 

p ft* #002378#sec
2 

V± = 118 ft/sec = 80.5 mph. 

vt = vi^~;4 = Z L . = 118 = 122.6 ft/sec = 83.6mph 

(Ex* >a 
Uw v . . 

002195 
,002378 

6. Determination of corrected v i scos i ty 

^ = (3U0.8 4- 0.5U8 *°F)-10~9 from Reference (7) 

^U = (3U0.8 4-0.5U8x8U)-10"^ = 386.9 10"9 ^ t s e c / f t 2 

7. Calculation of Wind Tunnel Reynolds Number 

R.N. = j^V c = .002195^sec2 122,6 M (ft2) 10/12 f t z 579,000 

^ ft2* (^-sec^ 386.9 [sec] 10~9 

8. Determination of Effective Reynolds Number 

&.N.e z Turbulence Factor xTunnel Reynolds Number; -where T.F. = 1.375 

R.N.e = 1.375X579,000 a 797,000 


