
ASSESSING THE USE OF VOTING METHODS TO IMPROVE

BAYESIAN NETWORK STRUCTURE LEARNING

A Thesis
Presented to

The Academic Faculty

by

Khaldoon Abu-Hakmeh

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Chemical & Biomolecular Engineering

Georgia Institute of Technology
December 2012

ASSESSING THE USE OF VOTING METHODS TO IMPROVE

BAYESIAN NETWORK STRUCTURE LEARNING

Approved by:

Dr. Mark Styczynski, Advisor
School of Chemical & Biomolecular Engineering
Georgia Institute of Technology

Dr. Matthew Realff
School of Chemical & Biomolecular Engineering
Georgia Institute of Technology

Dr. Martha Grover
School of Chemical & Biomolecular Engineering
Georgia Institute of Technology

Date Approved: August 24, 2012

To my family, for their encouragement and support.

iv

ACKNOWLEDGEMENTS

 I wish to thank Dr. Mark Styczynski, Assistant Professor in Chemical &

Biomolecular Engineering, for his guidance in research and completing this thesis. I

would also like to thank my committee members, Dr. Matthew Realff and Dr. Martha

Grover for their helpful comments, feedback, and questions.

 I thank my colleagues in the Styczynski Group for the stimulating discussions and

friendship over the past two years.

 Finally, I thank my parents, Emad Abu-Hakmeh and Amal Ileiwat, my wife,

Sabrina Oukil, and brother and best friend, Ahmad Abu-Hakmeh, for their unyielding

love and support.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

SUMMARY ix

CHAPTER

1 Introduction 1

Probability 1

Bayesian Networks 3

2 Structure Inference 8

Constraint Based Methods 9

Search and Score 9

3 Software 12

Bayes Net Toolbox 12

Causal Explorer 13

4 Methodology 14

Committee 15

Performance metrics 21

5 Results 23

Small networks 23

Medium networks 25

Large networks 27

Very Large networks 42

 vi

6 Conclusions 44

Ensemble methods in network inference 44

Learning large-scale networks 45

7 Recommendations 46

Learning large networks 46

Improving algorithms and the committee 46

Applications in Learning Complex Systems 47

REFERENCES 48

 vii

LIST OF TABLES

Page

Table 1: Observational Data for the Sprinkler Network 5
Table 2: Number of Possible Directed Acyclic Graphs Compared to Number of Variables

 10
Table 3: Assumptions of Three-Phase Dependency Analysis 19

 viii

LIST OF FIGURES

Figure 1: A simple Bayesian network 3
Figure 2: A Bayesian network representing a sprinkler system 4
Figure 3: Comparison of a v-structure to a similar, but not equivalent set of edges 6
Figure 4: The Asia network 23
Figure 5: The insurance network 25
Figure 6: Sensitivity of algorithms learning Insurance network 26
Figure 7: Selectivity of algorithms learning Insurance network 27
Figure 8: Original schematic of ALARM monitoring network 27
Figure 9: Edit distance of ALARM network 29
Figure 10: Selectivity of ALARM network 29
Figure 11: Sensitivity of ALARM network 30
Figure 12: Selectivity for Mildew network 31
Figure 13: Sensitivity for Mildew network 32
Figure 14: Selectivity for Barley network learned from Causal Explorer supplementary

data 33
Figure 15: Sensitivity for algorithms learning Barley network learned from Causal

Explorer supplementary data 33
Figure 16: Selectivity of Hailfinder graph learned from sampled data 34
Figure 17: Sensitivity of Hailfinder graphs learned from sampled data 35
Figure 18: Selectivity of Reduced Hailfinder graphs 36
Figure 19: Sensitivity of Reduced Hailfinder graphs 38
Figure 20: Selectivity of Reduced Link graphs 38
Figure 21: Sensitivity of Reduced Link graphs 39
Figure 22: Selectivity of Curated Hailfinder graphs 40
Figure 23: Sensitivity of Curated Hailfinder graphs 41
Figure 24: Selectivity of Curated Andes graph 41
Figure 25: Sensitivity of Curated Andes graph 42
Figure 26: Selectivity of Andes graphs 43
Figure 27: Sensitivity of Andes graphs 43

 ix

SUMMARY

	

Structure inference in learning Bayesian networks remains an active interest in

machine learning due to the breadth of its applications across numerous disciplines. As

newer algorithms emerge to better handle the task of inferring network structures from

observational data, network and experiment sizes heavily impact the performance of

these algorithms. Specifically difficult is the task of accurately learning networks of large

size under a limited number of observations, as often encountered in biological

experiments. This study evaluates the performance of several leading structure learning

algorithms on large networks. The selected algorithms then serve as a committee, which

then votes on the final network structure. The result is a more selective final network,

containing few false positives, with compromised ability to detect all network features.

1

CHAPTER 1

INTRODUCTION

 Bayesian networks have become a recurrent tool for studying complex systems

due to their intuitive representation of relationships. Learning network structure is

particularly interesting in domains where complex interactions exist between variables.

Bayesian network structure learning has been successfully applied to address problems in

bioinformatics1, 2, decision support systems3, and information retrieval4 among others.

This study aims to address the use of Bayesian network structure learning to study large-

scale networks observed under small sample size. This is motivated by an attempt to

develop methods applicable datasets such as those found in bioinformatics, where data is

available for many variables, but insufficient to capture all relationships due to

experimental limitations. Since no single algorithm to date has proven consistent

performance in detecting true positives and avoiding false negatives, existing algorithms

are used to create an ensemble and vote on relationships learned in the data. A brief

discussion of basic probability and the theory behind the construction and learning of

Bayesian networks is helpful prior to presenting detailed methods and results used in this

study.

Probability

 The probability of an event occurring can be viewed as the limit of the relative

frequency of an event in an arbitrarily large number of random experiments or trials.

Probabilities of observing multiple events can be represented jointly. For example, the

probability of observing two events, A and B, is represented as P(A! B) . If events are

independent, then their joint probability is expressed as the product of each probability

 2

occurring. The probability of two independent events occurring together is represented by

P(A! B) = P(A)P(B) . Where events are not independent, the notion of conditional

probability becomes relevant. The conditional probability of an event A given that an

event B has occurred is given by

P(A | B) = P(A! B)
P(B)

.

It follows from the definition of joint probability that

P(A! B) = P(A | B)P(B) = P(B | A)P(A) .

This result gives the definition of Bayes’ theorem:

P(A | B) = P(B | A)P(A)
P(B)

In the application of Bayes’ theorem, P(A|B) is the posterior probability of A given B, or

the degree of belief having accounted for B. P(B|A)/P(B) represents the support B

provides for A, and P(A) is the prior, or initial degree of belief in A. In cases where A and

B are independent, their conditional probabilities are equal to their respective prior

probabilities, P(A | B) = P(A) and P(B | A) = P(B) .

 Drawing from the definitions of conditional probability and independence,

conditional independence of two variables, A and B, can be written if they are

independent with respect to a third variable, C: P(A | B!C) = P(A |C) and

P(B | A!C) = P(B |C) . Conditional independence is an important characteristic in the

representation of Bayesian networks. For the example above, conditional independence

can be represented as I(A;B |C) and I(B;A |C) .1, 5, 6

 3

Bayesian Networks

Figure 1: A simple Bayesian network

Probability Representation

Bayesian networks are graphical models representing probabilistic relationships

among a set of variables. Bayesian networks are acyclic, such that no connected path of

edges returns to a node along the path. A graph G = !," is a Directed Acyclic Graph

consisting of variables belonging to the set ! = {Xi,...,Xn} connected by a set of edges,

E. When the network is discretely distributed, the graph is denoted as G,P , with P

encoding a discrete joint probability distribution of the variables. Random variables are

represented as nodes and are connected by directed arrows called edges indicating

conditional dependence. Nodes that are not connected by an edge are conditionally

independent of one another in this framework. Considering a specific node, A, all nodes

with edges directed towards A are called the parents of A. Conversely, all nodes accepting

edges originating from A are called children of A. The graph is called a Bayesian network

if it satisfies the Markov condition, which states a node is conditionally independent of its

non-descendants, given its parents.5-7

 4

For example, consider constructing a network representing the operation of a

sprinkler.5 If grass is observed to be wet, that implies one of two possible causes. Wet

grass can be a result of either rain or a sprinkler. The operation of the sprinkler or rainfall

is also related to whether or not the sky is cloudy. This description allows for

construction of a Bayesian network, representing the believed interactions between the

four variables considered. This Bayesian network is depicted in Figure 2. The four nodes

represent the variables. The edges represent the probabilistic relationships between the

variables. Further to the graphical representation of the network, there is a probability

distribution describing how the variables interact. In the case of the sprinkler network, a

discrete probability distribution is considered. Nodes in this example assume binary

values of either “True” if present or “False” if absent. The number of values that a node

can assume is called the Node Size.

Figure 2: A Bayesian network representing a sprinkler system

Bayesian networks can be used to perform inference given observational data. An

observation is defined as the state of all variables at a single point in time. Collecting

multiple observations illustrates the different states that nodes can assume. With

sufficient observational data, patterns between the variable’s values begin to emerge.

These patterns indicate potential relationships between the data. Table 1 contains data

from five observations of the sprinkler network from Figure 2. The values contained in

 5

the table are representative of the underlying probability distribution of the sprinkler

network.

Table 1: Observational Data for the Sprinkler Network
Observation\Variable Cloudy Sprinkler Rain Wet Grass

Observation 1 True False True True

Observation 2 False True False False

Observation 3 False False False False

Observation 4 False False False False

Observation 5 False False True True

In this case, all nodes additional to the sprinkler node itself are within the Markov

blanket of the sprinkler. For a given node, the Markov blanket is defined as the set of all

nodes that are parents, children, or the other parents of its children.5 Representing the

dependencies in the neighborhood of the variable of interest allows for complete analysis

of the system, in this case, the sprinkler. In our example, we might say that the

probability of it being cloudy is 0.5, the probability of it raining given that it is cloudy is

0.6, and the probability of it raining given that it is not cloudy is 0.05. We can similarly

define such “probability distributions” for each of the nodes, which when combined with

the topology of the graph provides a complete Bayesian network that can be used to

characterize and model the system.

Essential to the construction of Bayesian networks are concepts from probability

theory, conditional independence, and Bayes’ rule discussed above. Since Bayesian

networks represent probabilistic relationships, the probability of observing of a node

 6

(random variable) is conditioned on its parent nodes. The distribution of the entire

network can be represented as the product of the probabilities of all constituent nodes due

to the rules of independence in probability, given that all nodes are independent of their

non-descendants conditioned on their parents. The distribution of the network, can be

factored as follows:

P(!) = P(X1,...,Xn) = P
Xi"!
(Xi |$ai

G) ,

Where !ai
G is the set of all variables on which Xi is conditioned.

Conditional independence allows for a compact representation of each variable in

the factored distribution. In absence of the property, the storage of values for the set

would be exponential with the number of variables. The distribution would quickly

become computationally intractable.8, 9 The chain rule of probability and conditional

independence of variables therefore reduces the problem of constructing the distribution

over all variables to a much simpler problem. Learning the conditional probabilities of

each variable individually is an easier task. The resulting distribution can be expressed as

the product of the smaller probabilities.

Equivalence Classes

Figure 3: Comparison of a v-structure to a similar, but not equivalent set of edges10

 7

Two Bayesian network graphs are said to be equivalent if they encode the same

set of independencies.5, 11 For example, A! B!C , A! B"C , and A! B!C are

all equivalent structures. However, A! B"C is not considered equivalent to the three

structures above. To understand equivalence, consider the parameters required for each of

the models. For the first case, the required parameters are P(A), P(B|A) and P(C|B).

Similarly, the parameters required for the second case are P(A|B), P(B), and P(C|B). By

the earlier definition of conditional probability, these two cases are equivalent. The same

applies for the third case, where P(C), P(B|C), and P(A|B) are required. The final case,

where A! B"C , is represented by P(B|A,C), P(A), and P(C). Since P(B|A,C) cannot

be determined from the probabilities of the other structures, this structure is not

equivalent. The latter example is called a V-structure.12 For any two directed acyclic

graphs to be equivalent, they must share the same underlying undirected graph and V-

structures. Equivalence structures can be represented as partially directed graphs, where

V-structures are conserved, but edges where both A! B and A! B can exist are

represented by an undirected edge, A ! B .11

 8

CHAPTER 2

STRUCTURE LEARNING

 In studying complex systems, data is often available for variables, yet the nature

of interactions between them remains unclear. Knowledge of structure is essential to

understanding and characterizing emergent properties of systems. Problems in

classification and prediction can addressed when the underlying network structure is

known.13 Given observational data, structure learning of Bayesian networks is a problem

of selecting a probabilistic model to explain the data. While experts can construct

networks, the task becomes difficult when the domain is too large or complex. The

problem becomes more difficult if there are “hidden variables”, those whose

measurements are not taken or known when collecting the data. Machine learning

approaches are useful in addressing these problems.

 Learning Bayesian networks from data is an NP-hard problem.14, 15 There are two

prevalent approaches to learning Bayesian network structure. In the constraint-based

approach, data is subjected to conditional independence tests to determine the presence of

a relationship. The other predominant approach is a search-and-score technique, where

directed acyclic graphs are generated, scored on the probability of observing the network

given the data, then modified to improve the score. Learning the probability distributions

represented by edges in the network is called Parameter Learning. Learning the

parameters is a sub-problem of structure learning. However, the details of parameter

learning are beyond the scope of this study.

 9

Constraint Based Methods

 Learning Bayesian network structure by constraint-based methods begins a search

with a completely connected graph.16 Edges are removed according to statistical tests to

measure conditional independencies in the data. A drawback of the constraint-based

approach is a loss of statistical power due to repetitive independence tests. Independence

is determined by testing the association between two variables, given a set of

conditioning variables. Generally, these methods do not return a completely directed

graph. Instead, a partially directed graph, potentially equivalent to several Bayesian

networks, is the result. A prominent example of a constraint-based algorithm is the PC

algorithm, introduced in Chapter 4.

 An example of a statistical test used by constraint-based algorithms is the G2 test.9

G2 = 2 Sijk
abc ln

Sijk
abcSk

c

Sik
acSjk

bc
a,b,c
!

Shown above, the test measures the strength of association between two variables,

conditioned on a set of neighboring variables, where Sijk
abc represents the number of times

in the data Xi = a, Xj = b and Xk = c. G2 is asymptotically distributed as Χ2, returning a p-

value corresponding to the probability of falsely rejecting the null hypothesis.9

Search and Score

 A more popular approach than the constraint-based method is the search-and-

score. This approach considers the space of all directed acyclic graphs, returning the best,

or candidate set of graphs best fitting the data. However, searching the space of all DAGs

is impossible. For a network of n nodes, the number of possible graphs is super-

exponential in n.17

 10

G(n) = !1()k+1 n
k

"
#$

%
&'
2k (n!k)G(n ! k)

k=1

n

(

Table 2: Number of Possible Directed Acyclic Graphs Compared to Number of Variables16

Quickly, the number of graphs in the DAG space becomes too large to consider

exhaustively. Instead, algorithms resort to global or local search algorithms. Common

among search-and-score algorithms are mechanisms to determine the state or phase of the

search, mechanism to move between states in the search space, and a scoring function,

necessary for comparing states and determining which graph best fits the data.

For example, given two nodes A and B, three cases can be considered. No edge

exists, A can be a parent of B, or B can be a parent of A. Given a set of observations

described in Chapter 1, a scoring function is used to evaluate how well the structure

matches the data. Below, an example of how scoring functions are used is presented.

Scoring Functions

 The Bayesian Dirichlet scoring metric is one of many scoring functions used to

evaluate Bayesian network structure.18

BD(B |D) = P(B) (ri !1)!
(Nij + ri !1)!j=1

qi

" Nijk !
k=1

ri

"
i=1

l

"

 11

Where there are l variables are qi parent configurations of variable i. ri is the node size of

variable i, Nijk is the number of times variable i took on the value k with parent

configuration j, and Nij = Nijkk=1

ri! .10 By inspection, P(B) is the prior probability of

observing structure B. The remainder of the expression is the likelihood of observing the

structure of interest, given the available data.

 12

CHAPTER 3

SOFTWARE

 There is an abundance of software available for learning structure of Bayesian

networks from data.16 However, most are restricted in their capability to learn networks

with a large number of variables. Another issue is that authors of new algorithms present

their work as a separate software package. The use of different languages and notation

makes direct comparison of network structures learned by multiple algorithms a more

difficult task. For this study, packages are selected for the availability of multiple

structure learning algorithms. The Matlab language is also preferred due to ease of

numerical computations in pre and post-processing of data.

Bayes Net Toolbox

 The Bayes Net Toolbox (BNT) presented by Kevin Murphy is an open-source

Matlab package for directed graphical models.16 BNT contains tools for both structure

and parameter learning, along with algorithms for inference using Bayesian networks.

Additionally, BNT contains useful general functions in preparing and analyzing network

data and structure. In this study, the structure learning implementations in BNT were

abandoned early on; however, the toolbox is mentioned due to the useful functions

available for building, modifying, and sampling data from networks.

BNT Structure Learning Package

 The BNT Structure Learning Package (SLP) introduced by Philippe Leray adds

an entire suite of structure learning algorithms to interface with Bayes Net Toolbox, using

 13

the existing framework as a backbone for structure-specific learning.17 The algorithms,

while useful, are restricted similar to those found in BNT in their ability to infer larger

networks. Again, SLP is mentioned due to native functions used in this work to evaluate

algorithm performance.

Causal Explorer

 The Causal Explorer software is a structure learning toolkit for large-scale

network reconstruction presented by Aliferis et al.19 The package contains a group of

established structure learning algorithms in addition to several new algorithms presented

by the authors. The package is closed-source, but its Matlab implementation allows for

the algorithms to be called by non-native scripts. Causal Explorer’s set of algorithms can

also be used in conjunction with the useful functions available in BNT and SLP. For

these reasons, along with the ability to learn structure of large-scale networks, Causal

Explorer is the primary software used in this study.

 14

CHAPTER 4

METHODOLOGY

 As discussed in Chapter 3, there are many useful tools for Bayesian network

inference. Tools for learning network structure are more limited than those used for

inferring and updating probabilistic relationships, but are still adequately present in the

machine learning community. The choice of tools is complicated due to the limitations

and domain specificity of both the software packages and algorithms. Notably, structure

inference software capable of handling larger network sizes are a more recent

contribution to the field.9 Poor implementations of algorithms theoretically proven

capable of handling large structure learning render them computationally expensive, and

thus, fail to converge to a final structure. To form a robust method suited for learning

diverse networks, algorithms are carefully selected with the specific criteria of

convergence for networks ranging from tens to hundreds of nodes, with a similar number

of edges. The ability to converge given a small number of observations is also considered

when selecting the algorithms. While accurate performance is desired, it is not expected

under such rigid conditions.

 The result is a committee of four algorithms. Each algorithm is tasked with

independently learning the network structure fitting the same dataset for a group of well-

defined synthetic networks presented in Chapter 5. Following the structure-learning step,

the learned graphs are pre-processed, then new graphs are formed using ensemble

methods. Both the original graphs and those formed by the ensemble are assessed for

accuracy and reasonableness.

 15

Committee

 Machine learning literature contains a number of ensemble methods, such as

Bootstrap Aggregating (Bagging), which use voting to improve the performance of weak

classifiers.20-22 In Bagging, smaller subsets are randomly sampled with replacement from

a dataset. A classification algorithm is then used to train the model. Models learned from

each subset of the data are combined to a final model by voting. The resulting model is an

improvement from using the unstable algorithm to train the entirety of the dataset. To our

knowledge, the only use of a voting committee to assist in learning Bayesian network

structure is presented by Mwebaze and Quinn.23 Following these examples, we apply the

use of a committee of algorithms to improve learning of Bayesian network structure.

 As described earlier, a committee of four algorithms is used to independently

learn network structure. The Max-Min Hill-Climbing, Sparse Candidate, PC, and Three-

Phase Dependency Analysis algorithms are selected for the task. The application of each

algorithm is discussed in more detail below.

Algorithms

PC

 The PC algorithm is a commonly known prototypical constraint-based algorithm

developed by Spirtes et al.7, 24 PC tests for conditional independence using statistical

tests, and returns a partially directed graph, equivalent to several possible directed

structures as discussed in Chapter 1. Initial development of PC was aimed for causal

inference. It is useful for our application, where causality is not strictly considered, since

the conditional independence tests theoretically return a low number of false positives.

Since the implementation present in Bayes Net Toolbox was incapable of handling large

networks, the version available in Causal Explorer was used instead.

 16

 The number of edges learned by PC is sufficient to avoid a need to adjust

parameters. Since the goal is to provide a large number of edges to be used by the

ensemble, and the default parameters of PC achieve this end, they are used. PC takes

observational data, node sizes, statistical test, and threshold as input. The result,

mentioned earlier, is a partially directed acyclic graph. While the desired goal is to

identify relationships between variables by locating edges, the representation of

undirected edges in the adjacency matrix is problematic, where the adjacency matrix is a

binary representation of the existence or non-existence of an edge in the graph. An

undirected edge is presented as two entries in the adjacency matrix. The presence of

double entries for a single relationship causes confusion in evaluating the performance by

metrics discussed in Chapter 5. To address this problem, the resulting undirected graph is

converted to a DAG if it admits extension. A partially directed graph is said to admit

extension if it can be converted to a DAG containing the same V-structures and edge

location.25, 26 In cases where extension to a DAG is not possible, one of the two entries in

the adjacency matrix is deleted for undirected edges, and the edge is directed from the

node with the lower arbitrary order towards the node with the higher arbitrary order. The

order is used to identify a node’s position in the adjacency matrix. This method is

arbitrarily chosen, and while it affects the apparent performance, further processing

discussed later in this chapter addresses the issue of directionality.

Sparse Candidate

 The Sparse Candidate algorithm was developed by Friedman et al. as one of the

first structure learning algorithms suited for large-network inference.8 Sparse Candidate

is a hybrid algorithm that begins by identifying a candidate set of parents, whose size is

 17

determined by the user, searching until an acceptable set is found. The algorithm uses a

mutual information statistic to test dependence between a variable and its candidate

parents. This is called the “restrict” step of the algorithm. Once a satisfactory parent set is

determined for each variable, the algorithm proceeds to a maximization step. In this

phase, network structures existing in the DAG space equivalent to the candidate sets are

scored. The best scoring network is retuned as a directed graph.

 The implementation of Sparse Candidate present in the Causal Explorer toolbox

takes observational data, node sizes, test statistic, prior (probability value) type, and

candidate parent set size as input, returning a DAG. Since the algorithm is used to test

networks of varying size and connectivity, the parent size is selected to be sufficiently

large for to accommodate all trials, without having to be adjusted. This is done at the

expense of longer computational time. Of the remaining input parameters, the type of test

statistic and prior type are shown to have the greatest effect on the number of edges

learned. Therefore, they are varied in an algorithm to maximize the number of edges.

Since the goal is to use the resulting DAG in an ensemble vote, the presence of extra

edges is not considered problematic. The goal of maximizing edges is to improve the

recall (or sensitivity) of the Sparse Candidate.

Max-Min Hill-Climbing

 The Max-Min Hill-Climbing algorithm (MMHC) was first described by

Tsamardinos et al.9 MMHC is considered a hybrid method of the constraint-based and

search-and-score approaches described in Chapter 3. A two-phase method is

implemented, where an undirected skeleton is learned using constraint-based learning,

followed by a scored search of the DAG space to orient edges directionally. MMHC is

 18

similar to SC, without the constraint of parent count. The candidate set of parents

determined by searching within a restricted space is replaced by the local variables

sharing edges with the variable of interest. The argued benefit of this approach is a

sounder identification of parents, without user constraints affecting algorithm

performance. The constraint-based skeleton-learning step is similar to that employed by

the PC algorithm, but using fewer statistical tests to optimize computational resources.

 The implementation of MMHC presented in the Causal Explorer package takes

several parameters as input, returning an adjacency matrix corresponding to a DAG.

Parameters can be tuned to optimize performance provided the user has some prior or

expert knowledge of the system of interest. For purposes of developing a robust

approach, no knowledge of the system, (besides the number of nodes and edges described

in Chapter 5) is assumed prior to learning the structure. Instead, parameters are

“optimized” to maximize the number of edges learned. While this is obviously a potential

increase in false positive and reduction of accuracy, the ensemble approach is relied upon

to amend this issue.

 MMHC takes observational data, node sizes, statistical threshold, and prior type

as input. Based on testing results, threshold value and prior type are found to have the

most significant effect on the number of edges learned. They are therefore used in a

maximization algorithm, in which MMHC is used to learn the structure of the associated

dataset, and the parameter set maximizing the number of edges, and their corresponding

graphs, are kept for use in the ensemble step.

TPDA

 19

 The Three Phase Dependency Analysis algorithm uses an information-theoretic

approach to learning Bayesian network structure from data.27 The algorithm requires a

polynomial number of conditional independence tests, reducing the number typical of

constraint-based approaches. As indicated by the name, the algorithm operates in three

phases. The algorithm begins by “Drafting” a network of edges for any nodes with a

mutual information statistic above a set threshold. The graph then undergoes

“Thickening” to add edges to connect areas of the graph where no relationship is found

by the drafting step. Finally, “Thinning” removes redundant arcs between nodes if a path

between them already exists.

Table 3: Assumptions of Three-Phase Dependency Analysis27

 TPDA takes as input observational data, node sizes, test statistic, and threshold,

returning a partially directed graph. Since the number of edges learned by TPDA is

typically large in comparison to MMHC and SCA, maximizing the number of learned

edges is not a concern. The resulting partially directed graph is directed by the same

arbitrary method described above for PC. Any issues in assessing the algorithm’s

performance are resolved by the methods described in the discussion of directionality

below.

Ensemble approaches

 As stated above, the objective of selecting a committee and maximizing the

sensitivity of the constituent algorithms, specifically MMHC and SCA, was to ultimately

improve the ability to identify true positive edges. To achieve this a voting method was

 20

implemented. In this approach, each algorithm in the committee received an equal vote

on whether each edge should be in the final graph. From the counted votes, four new

graphs are made. The “union” graph contains all edges learned by the committee. This

graph is presumed to be highly sensitive to detecting true positives, with compromised

ability to avoid false positives. A “half” graph contains edges learned by two or more

committee members. The expectation of the half graph is an improvement in selectivity

from the union, but still too imprecise for confident use. The “majority” graph consists of

edges appearing in three or more committee results, and the “intersection” contains only

edges learned by all four algorithms. The latter two graphs are expected to display a

higher precision than the others.

 The hypothesis is that the committee graphs will demonstrate a distinct

improvement from any single algorithm. To test the hypothesis, the committee graphs are

evaluated using the same metrics as the individual algorithms, and compared in Chapter

5. It is important to note that the graphs resulting from the voting method likely deviate

from the DAG space. This concession is accepted, since the goal is to identify the

position of true relationships in the data, but not specifically their causal nature.

Directionality

 The direction of edges and their inherent implications are a debated topic in the

Bayesian network and probabilistic graphical model communities. As mentioned several

times, DAGs are often assumed to have a causal interpretation.6, 24 Therefore, edges must

be directed properly, and reversed edges are considered incorrect. The restriction of

directionality and maintaining a proper DAG restricts the representation of graphs drawn

by the committee. Therefore, the notion of true direction of edges is subsequently

discarded. Instead, similar to the case of orienting partially directed graphs, all edges are

 21

oriented in a manner such that edges are always represented by a parent node having a

lower arbitrary ordering than its child node in the adjacency matrix. Since all algorithm

and committee graphs are compared in an undirected form, directionality does not impact

performance.

Performance Metrics

 To assess the performance of both the individual algorithms and the graphs

generated by the committee several metrics were employed. The specific performance

criteria were selected to compare the accuracy and completeness of structure learning.

More traditional methods, such as network score comparisons, are ignored for two

reasons. First, scores vastly differ between algorithms, with radical differences reported

even when learned structures are very similar.17 Second, the decision to discard

directionality removes the graphs from the DAG space, rendering scoring ineffective in

this case. Instead, three methods are described in this section that assess the graphs solely

on the ability to learn correct edges, since relationships between variables take

precedence over how well the network fits the data according to some score.

Editing Distance

 The editing distance, also referred to as edit or Levenshtein distance, is a metric

for measuring the differences between two strings or structures. In the case of graphs

consisting of nodes and edges, the editing distance is the number of changes, in the form

of addition, deletion, or reversal (for directed graphs) of edges needed to transform one

structure into another. In this study, the editing distance is determined between a learned

graph and the known network structure from which the data was generated.

Selectivity

 22

 Also called precision, is the ratio of correctly inferred edges to total edges present

in an inferred model. The selectivity is calculated as shown below:

Selectivity = TP
TP + FP

; TP = True positives, FP = False Positives

False positives are defined as incorrect edges detected in the inferred network.

Sensitivity

 Also called recall, is the ratio of true edges learned to the total number of edges

present in the true graph. Sensitivity is calculated as shown below:

Sensitivity = TP
TP + FN

; FN = False Negatives

False negatives are defined as edges in the known network that are not detected in the

inferred network.

 23

CHAPTER 5

RESULTS

 To assess the viability of the methods discussed in the previous chapter, structure

learning is performed on observational datasets pooled from a number of expert-specified

or synthetic networks native to the Bayes Net Toolbox and Structure Learning Package,

the Causal Explorer supplementary data archive, or available from several on-line

Bayesian network repositories.28-30 Networks obtained from the repositories are provided

in a java-based format, and are subsequently converted to a Matlab-compatible

representation using software written by Ken Shan.31 For each network 10 experimental

datasets are taken for consistency, then used as the basis for inference. The metrics

computed are the average of the performance across all learned networks. The specifics

of each network are discussed in more detail below.

Small Networks

Asia

Figure 4: The Asia network10

 24

 The Asia network introduced by Lauritzen and Spiegelhalter is a small, fictional

network depicting related variables in a medical diagnosis.32 The network contains 8

nodes and 8 edges, with all nodes being binary. This network is not learned by the

committee approach, since its size lies well below the range targeted by the committee.

Instead, the small network size is used to emphasize that the performance of structure

learning algorithms is lacking, even when presented the task of learning a small structure.

In earlier work, Leray and Francois show only the Greedy Equivalence Search algorithm

accurately reproduces the Asia network, requiring greater than 5000 observations.17 The

sub-optimal performance of structure learning algorithms on small networks, especially

at a small number of observations, suggests that an alternative approach must be used to

accurately and confidently learn structure in larger networks, which in turn motivates the

use of a committee of algorithms.

 25

Medium Networks

Insurance

Figure 5: The insurance network

 Prior to applying the committee to large-scale networks, the concept was first

implemented on a network of moderate size to confirm its validity and offer insight

towards necessary adjustments before proceeding to larger structures. The insurance

network, consisting of 27 nodes and 52 edges, was used for this task. Nodes can take on

either two or three values. The committee is tasked with learning the structure for 10

datasets each at 50, 100, and 250 observations. These sample sizes are sufficiently small

to fall below the optimal range of any single algorithm, and therefore expected to elicit a

meaningful contribution from the committee. Figure 6 and Figure 7 show the

performance of the committee on learning the direction independent insurance network.

 26

The results show that the intersection and majority graphs exhibit excellent selectivity,

but are slower to recover edges. At 250 observations, only half of the edges from the

Insurance graph are present in the intersection graph. The PC algorithm, while exhibiting

the best recall of edges, has the lowest selectivity of any algorithm. Claims in the

literature suggest that PC is sub-optimal for learning with small sample sizes.9, 24 This

helps to explain the poor performance illustrated throughout the study by PC, despite

promising performance with excellent selectivity in earlier trials in BNT.

Figure 6: Sensitivity of algorithms learning Insurance network

 27

Figure 7: Selectivity of algorithms learning Insurance network

Large Networks

Full networks

Alarm

Figure 8: Original schematic of ALARM monitoring network33

 28

 The ALARM monitoring network is an expert medical network used to monitor

intensive care patients, as described by Beinlich et al.33 ALARM consists of 37 nodes and

46 edges, with node sizes ranging from 2-5. The network is commonly used as a

benchmark to test new algorithms, so it is a good initial attempt for the committee before

tackling more complex networks. The committee learned this network at four different

sample sizes, with the results of all four metrics shown here.

 From the editing distance plot (Figure 9), the most obvious conclusion is that the

PC algorithm performs extremely poorly at lower sample size, but begins to approach the

performance of the other algorithms as the sample increases. Figure 10 shows the

selectivity of the intersection and majority graphs to be high, with the Sparse Candidate

and MMHC also performing reasonably well. Both PC and TPDA show a rapid increase

in selectivity as the sample size rises to 500. All graphs, including the intersection, show

a sensitivity above 65% at 100 observations or greater. Figure 11 shows the graph of

sensitivity. The performance of the committee in learning the ALARM network is

promising.

 29

Figure 9: Edit distance of ALARM network

Figure 10: Selectivity of ALARM network

 30

Figure 11: Sensitivity of ALARM network

Mildew

 The Mildew network is another network of size similar to ALARM, with 35

nodes and 46 edges.34 Node sizes range from 3-100 in this network. Due to the limited

number of observations relative to the number of values a node can assume, the

performance of the algorithms in learning this network is negatively impacted. A more

detailed discussion of the impact of node size on learning network structure is presented

below, in the discussion of Reduced Networks. No data is shown for 500 observations

since the algorithms did not converge. No intersection graph exists for the 50

observations case, since TPDA failed to learn any edges from the data. Figure 12

confirms the hypothesis that, even when structure learning is extremely poor, the

intersection graph remains the most selective. The performance remains disappointing, as

the sensitivity (Figure 13) remains under 20% up to 250 observations. Even MMHC and

 31

Sparse Candidate, who illustrate selectivity around 80% only show sensitivity at 40% in

this case. This raises an interesting question of how to choose a model to accept. In this

case, the preferable choice is an individual algorithm. However, in a real experiment, a

lack of domain knowledge and inconsistent performance of the single-algorithms

exhibited across different networks raises concerns as to the efficacy of this approach.

The overall recommendation is to avoid temptation to use single-algorithm methods,

since they cannot be verified to perform well across a range of tested networks.

Figure 12: Selectivity for Mildew network

 32

Figure 13: Sensitivity for Mildew network

Barley

 Another example of comparable size is the Barley network. The network consists

of 48 nodes, 84 edges.35 In this case, performance is extremely poor. At best, the selective

majority and intersection methods have sensitivity below 40% at 250 observations. The

poor performance is thought to be an artifact of two phenomena: first, the Barley network

contains node sizes ranging from 2-67 (discussed in the Reduced Network example), and

second, the number of edges is close to twice that of nodes, meaning the network is

denser than the others studied. Some algorithms have difficulty learning domains where

dense hubs exist. The effect of edge density cannot be ignored, since both MMHC and

Sparse Candidate are presented to be optimal at learning sparse domains.

 33

Figure 14: Selectivity for Barley network learned from Causal Explorer supplementary data

Figure 15: Sensitivity for algorithms learning Barley network learned from Causal Explorer

supplementary data

Hailfinder

 34

 The Hailfinder network used to forecast severe weather is another example of a

domain where large node sizes are suspected of having an effect on algorithm

performance.36 The network has 56 nodes, 66 edges, and node sizes ranging from 2-11.

The selectivity and sensitivity plots are shown in Figure 16 and Figure 17, respectively.

In this case, the selectivity of the intersection graph is near 80%, but its sensitivity

remains between 20-40% for all trials. The majority graph exhibits both selectivity and

sensitivity at or above 60% for 250 observations, suggesting that committee approaches

can perform at a reasonable level. In the next section, a solution to the suspected node-

size problem is presented.

Figure 16: Selectivity of Hailfinder graph learned from sampled data

 35

Figure 17: Sensitivity of Hailfinder graphs learned from sampled data

Reduced networks

 Poor performance in learning several large-scale networks and the interest of

learning sub-networks from very large domains pose an interesting problem. A first

attempt to address this issue is implemented by producing “reduced networks”. Reduced

networks are generated by eliminating excessive or problematic nodes, along with any

associated edges in the model graph and entries in the observational data matrix. The

resulting reduced data is then learned by the committee of algorithms; inferred models

are assessed relative to a similarly reduced known graph, and compared to the

performance metrics of the same network prior to reduction. This heuristic is naïve, as it

does not consider the ramifications of removing certain nodes and edges from the

network and their corresponding observations. However, if problematic nodes exist in

 36

real datasets, this approach is the only way to eliminate them. Also, large-scale networks

tend to be sparse, and therefore, eliminating nodes by this method is unlikely to have a

dramatic effect on learning their structure.

Figure 18: Selectivity of Reduced Hailfinder graphs

 This study considered two types of reduced network. The first type is generated

from the large Hailfinder and Barley networks by restricting the node sizes to four and

ten respectively. The reduced Hailfinder network is a significantly smaller network,

shrinking from 56 to 40 nodes. The reduced Barley graph only drops from 48 to 45

nodes. While a node size of 10 is not desirable for this approach, most nodes in the

Barley network are of similar value, so restricting below that will drastically impact the

size of the reduced network. The rationale behind eliminating nodes capable of taking on

a large number of states is tied to the restricted nature of this study. The goal is to

characterize algorithm performance under small observations. In a small number of

 37

observations, the network is less likely to exhibit a range of states sufficient for accurate

learning. The presence of larger nodes only compounds this issue; for example, a certain

node in the original Barley network can take on 67 values. A node of this type cannot be

adequately observed within a small sample size so as to have edges accurately inferred,

and is therefore removed in this modification.

In addition to removing problematic nodes from networks, the reduction method

was also used to generate a “reduced link37” sub-network from massive networks. This

network is a 40-node sub-network taken from the original Link network (an extremely

large network consisting of 724 nodes and 1125 edges). The motivation to create these

sub-networks is twofold: first, they provide more suitable-sized networks on which

structure learning algorithms can be tested, and second, they allow for learning the edges

among a small subset of the data. While this deviates from the original application of

reduced networks, it offers a solution to learn sub-spaces when networks are too large to

infer fully. The performance of the reduced link network is shown in Figure 20 and

Figure 21. Again, the majority and intersection graphs are most selective, but remain

under 60% sensitive.

 38

Figure 19: Sensitivity of Reduced Hailfinder graphs

Figure 20: Selectivity of Reduced Link graphs

 39

Figure 21: Sensitivity of Reduced Link graphs

Curated Networks

 Drawing from the same motivation as the “reduced network” approach, another

size reduction method was employed. This method, called the “curated” approach,

attempts to more accurately depict network behavior when nodes and edges are

eliminated. In this case, instead of simply deleting entries from the observational data

table, the network Conditional Probability Distributions are changed where edges

previously affecting a node are absent. For cases of simplicity, any replaced values are

assumed to be of uniform probability for any state the variable can assume. Data was then

re-sampled from the new network, and the committee was reassigned to learn the data.

The performance on the curated network shown in Figure 22 and Figure 23 is both more

selective and more sensitive than that expressed in the “reduced” example. Further, to

bolster the argument that node sizes play an effect in structure learning performance, the

results are compared to the graphs learned from data sampled for the original network.

The sensitivity of the intersection graph is observed to jump from under 40% in the

 40

previous instance at 250 observations to slightly under 55% for the curated case, while

maintaining selectivity above 80%.

Figure 22: Selectivity of Curated Hailfinder graphs

Also presented in Figure 24 and Figure 25 are results from learning graphs of a

curated and re-sampled sub-network of the Andes network (described below).38 The

performance of the intersection graph is notably exceptional, with sensitivity just under

60% at 100 observations, and selectivity above 80%.

 41

Figure 23: Sensitivity of Curated Hailfinder graphs

Figure 24: Selectivity of Curated Andes graph

 42

Figure 25: Sensitivity of Curated Andes graph

Very Large Networks

 The ultimate goal of the committee-based approach to structure learning was to

improve performance on very large networks, with hundreds of variables. The result was

not realized however, due to the inability of the algorithms to all converge in these cases.

While MMHC and Sparse Candidate have been developed specifically for the task of

large-network discovery, the goal was to improve their accuracy by the use of the voting

approach presented in this work. After two weeks of simulation, only the 50-observation

instance of the Andes network, consisting of 223 nodes and 338 edges, using default

parameters for all algorithms managed to converge. The results are presented in Figure

31and Figure 32. In this case, only MMHC and PC converged, rendering the committee

unusable. Conclusions regarding the use of these methods and suggestions for future

improvements are discussed in the coming chapters.

 43

Figure 26: Selectivity of Andes graphs

Figure 27: Sensitivity of Andes graphs

 44

CHAPTER 6

CONCLUSIONS

Ensemble Methods in Network Inference

 This work illustrates the use of ensemble approaches to infer network structure

where use of a single algorithm is unreliable. The improved selectivity is undoubtedly

shown for all tested networks. Sacrifices of sensitivity are non-negligible, however. Any

three or four vote network learned by a committee is therefore likely to be missing more

than half of its edges. The edges present in the inferred model can however be accepted

with a strong degree of confidence. This voted approach improves the selectivity of the

algorithms for all observation sizes studied. However, in some cases the performance

significantly improves between 50 and 100 observations. Due to this inconsistency,

learning network structure below 100 observations is not recommended.

 With the exception of MMHC and Sparse Candidate for some networks, the

selectivity of the majority and intersection graphs greatly outperforms the individual

algorithms. Even when the selectivity of the algorithms approaches that of the committee

graphs, the latter are still more selective. With respect to sensitivity, the committee

performance is lower than that of any individual algorithm. The use of the committee is

still recommended, however, as the PC and TPDA algorithms often exhibit high

sensitivity with poor selectivity.

 45

Learning Large-Scale Networks

 The task of learning large-scale networks remains a difficult task. State-of-the-art

algorithms designed specifically for this function, such as MMHC and Sparse Candidate,

begin to exhibit long computational times, and in some cases fail to converge. While

reasonable conclusions regarding the use of a voting committee can be drawn for

networks of approximately 40-60 nodes, it is difficult to properly assess the contribution

of a committee for networks of hundreds of variables, when there are so few algorithms

capable of learning such large networks, and even these struggle to do so efficiently.

Forming a reliable committee for learning such large networks is a prerequisite for

further analysis.

 46

CHAPTER 7

RECOMMENDATIONS

Learning Large Networks

 At this time, committee approaches are not recommended for learning massive

networks. This is not due to any flaws in the concept of ensemble learning. Rather,

problems arise due to the lack of suitable algorithms to form the ensemble. Current

effective algorithms, like MMHC and Sparse Candidate, are too similar in their

underlying theory, and are therefore subject to the same biases and potential errors. The

authors describe MMHC as a specific instantiation of Sparse Candidate. Until newer and

more diverse algorithms capable of large-scale network discovery are developed,

ensemble approaches should be avoided.

 Following from the discussion of the curated Andes and reduced Link networks in

Chapter 5, more study towards learning sub-networks is recommended. Since partitioning

a network at random is likely to miss network-wide interactions, an approach randomly

selecting sub-networks, learning their structure, and averaging the resulting models for a

large number of trials is one potential solution. The task of learning these sub-networks is

less computationally expensive than attempting to learn the structure of massive

networks, especially when convergence is not guaranteed.

Improving Algorithms and the Committee

 Further work in the area of Bayesian Structure learning should focus on

improving algorithms for learning large networks. Leading algorithms such as MMHC

and Sparse Candidate were developed for applications in studying gene regulatory

networks, which tend to be mostly sparse. The algorithms have difficulty learning

domains where dense hubs exist. Improvement in the area would provide a more robust

 47

tool, applicable across multiple domains. One potentially promising example is the

Empirical Light Mutual Min (ELMM) algorithm, which is designed for learning denser

networks than MMHC and Sparse Candidate can learn.39 ELMM learns conditional

independence graphs, instead of DAGs, which are more interesting in the context of this

study, since the notion of directionality and network scoring are ignored be the

committee. Another method to consider is the local committee-based method proposed by

Mwebaze and Quinn, which uses a set of algorithms to vote on each edge during the

inference process, rather than after each algorithm completely learns the network as done

in this work.23

 The PC algorithm notably breaks down for very large networks, and exhibits poor

performance throughout the study due to the small number of observations. Both of these

factors suggest PC should not be used in large-scale network discovery, or a voting

committee.

Applications in Learning Complex Systems

 The use of voting approaches, provided systems of interest are of reasonable size,

can greatly assist in the study of complex systems interactions. Recommendations are

made for the use of voting applied on systems under 100 variables in size. Despite the

earlier suggestion to replace the PC algorithm, for these cases, it should be kept, as it is

by far the most sensitive algorithm available for a small number of observations, and the

committee easily handles the high number of false positives.

 48

REFERENCES

1. Friedman, N., Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to
analyze expression data. Journal of Computational Biology 7, 601-620 (2000).

2. Correa, E. & Goodacre, R. A genetic algorithm-Bayesian network approach for
the analysis of metabolomics and spectroscopic data: application to the rapid
identification of Bacillus spores and classification of Bacillus species. Bmc
Bioinformatics 12 (2011).

3. Diez, F.J., Mira, J., Iturralde, E. & Zubillaga, S. DIAVAL, a Bayesian expert
system for echocardiography. Artificial Intelligence in Medicine 10, 59-73 (1997).

4. de Campos, L.M., Fernandez-Luna, J.M. & Huete, J.F. Bayesian networks and
information retrieval: an introduction to the special issue. Information Processing
& Management 40, 727-733 (2004).

5. Pearl, J. Probabilistic reasoning in intelligent systems. (Morgan Kaufmann, San
Mateo, CA; 1988).

6. Pearl, J. Causality, models, reasoning, and inference. (Cambridge University
Press, 2000).

7. Spirtes, P., Glymor, C. & Scheines, R. Causation, Prediction, and Search, Edn. 2.
(MIT Press, 2000).

8. Friedman, N., Nachman, I. & Peer, D. Learning Bayesian network structure from
massive datasets: The "sparse candidate" algorithm. Uncertainty in Artificial
Intelligence, Proceedings, 206-215 (1999).

9. Tsamardinos, I., Brown, L.E. & Aliferis, C.F. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning 65, 31-78
(2006).

10. Daly, R., Shen, Q. & Aitken, S. Learning Bayesian networks: approaches and
issues. Knowledge Engineering Review 26, 99-157 (2011).

11. Pearl, J. & Verma, T.S. A theory of inferred causation. Principles of Knowledge
Representation and Reasoning: Proc. Second International Conference, 441-452
(1991).

12. Verma, T.S. & Pearl, J. Equivalence and Synthesis of Causal Models. Uncertainty
in Artificial Intelligence 6, 255-268 (1991).

13. Cheng, J. & Griener, R. Learning Bayesian Belief Network Classifiers:
Algorithms and System. Canadian Conference on AI, 141-151 (2001).

14. Chickering, D.M. Learning Bayesian Networks is NP-Complete, in Learning from
Data: Artificial Intelligence and Statistics V. (ed. D.F.a.H.J. Lenz) 121-130
(Springer-Verlag, 1996).

15. Chickering, D.W., Heckerman, D. & Meek, C. Large-Sample Learning of
Bayesian Networks is NP-Hard. Journal of Machine Learning Research 5, 1287-
1330 (2004).

16. Murphy, K. The Bayes Net Toolbox for Matlab. Computing Science and Statistics
33 (2001).

17. Leray, P. & Francois, O. BNT Structure Learning Package: Documentation and
Experiments. (2004).

 49

18. Heckerman, D. A tutorial on learning with Bayesian networks. Learning in
Graphical Models 89, 301-354 (1998).

19. Aliferis, C.F., Tsamardinos, I., Statnikov, A.R. & Brown, L.E. Causal explorer: A
causal probabilistic network learning toolkit for biomedical discovery.
Metmbs'03: Proceedings of the International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences, 371-376 (2003).

20. Breiman, L. Bagging Predictors. Machine Learning 24, 123-140 (1996).
21. Maclin, R. & Opitz, D. in The Fourteenth National Conference on Artificial

Intelligence (AAAI Press, Providence, Rhode Island; 1997).
22. Quinlan, J.R. Bagging, boosting, and C4.5. Proceedings of the Thirteenth

National Conference on Artificial Intelligence and the Eighth Innovative
Applications of Artificial Intelligence Conference, Vols 1 and 2, 725-730 (1996).

23. Mwebaze, E. & Quinn, J. Fast Committee-Based Structure Learning. JMLR
Workshop and Conference Proceedings 6, 203-214 (2008).

24. Spirtes, P., Glymor, C. & Scheines, R. Causality, Prediction, and Search, Vol. 81,
Edn. 1. (Springer, 1993).

25. Dor, D. & Tarsi, M. A simple algorithm to construct a consistent extension of a
partially oriented graph. Technical Report R-185 (1992).

26. Verma, T.S. A linear-time algorithm for finding a consistent expansion of a
partially oriented graph. Technical Report R-180 (1992).

27. Cheng, J., Greiner, R., Kelly, J., Bell, D. & Liu, W.R. Learning Bayesian
networks from data: An information-theory based approach. Artif. Intell. 137, 43-
90 (2002).

28. Elidan, G. Bayesian Network Repository.
http://www.cs.huji.ac.il/site/labs/compbio/Repository/ (2001).

29. Scutari, M. Bayesian Network Repository. http://www.bnlearn.com/bnrepository/
(2010).

30. Tsamardinos, I., Brown, L.E. & Aliferis, C.F. Supplemental Appendices.
http://www.dsl-lab.org/supplements/mmhc_paper/mmhc_index.html (2007).

31. Shan, K. bif2bnt: BIF-BNT converter.
http://www.digitas.harvard.edu/~ken/bif2bnt/ (2000).

32. Lauritzen, S.L. & Spiegelhalter, D.J. Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Systems. Journal of the
Royal Statistical Society: : Series B (Statistical Methodology) 50, 157-224 (1988).

33. Beinlich, I.A., Suermondt, H.J., Chavez, R.M. & Cooper, G.F. The ALARM
Monitoring System: A Case Study with Two Probabilistic Inference Techniques
for Belief Networks. 2nd European Conference of Artificial Intelligence in
Medicine, 247-256 (1989).

34. Jensen, A.L. A probabilistic model based decision support system for mildew
management in winter wheat. Dina Research Report 39 (1995).

35. Kiristensen, K. & Rasmussen, I.A. Production of beer from Danish malting barley
grown without the use of pesticides.

36. Abramson, B., Brown, J., Edwards, W., Murphy, A. & Winkler, R.L. Hailfinder:
A Bayesian system for forecasting severe weather. International Journal of
Forecasting 12, 57-71 (1996).

 50

37. Jensen, C.S. & Kong, A. Blocking Gibbs Sampling for Linkage Analysis in Large
Pedigrees with Many Loops. The American Journal of Human Genetics 65, 885-
901 (1999).

38. Conati, C., Gertner, A.S., VanLehn, K. & Druzdzel, M.J. in 6th International
Conference on User Modeling 231-242 (Springer-Verlag, 1997).

39. Mahdi, R. et al. Empirical Bayes conditional independence graphs for regulatory
network recovery. Bioinformatics 28, 2029-2036 (2012).

