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SUMMARY 

	
  

Structure inference in learning Bayesian networks remains an active interest in 

machine learning due to the breadth of its applications across numerous disciplines. As 

newer algorithms emerge to better handle the task of inferring network structures from 

observational data, network and experiment sizes heavily impact the performance of 

these algorithms. Specifically difficult is the task of accurately learning networks of large 

size under a limited number of observations, as often encountered in biological 

experiments. This study evaluates the performance of several leading structure learning 

algorithms on large networks. The selected algorithms then serve as a committee, which 

then votes on the final network structure. The result is a more selective final network, 

containing few false positives, with compromised ability to detect all network features.  
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CHAPTER 1 

INTRODUCTION 

 

 Bayesian networks have become a recurrent tool for studying complex systems 

due to their intuitive representation of relationships. Learning network structure is 

particularly interesting in domains where complex interactions exist between variables. 

Bayesian network structure learning has been successfully applied to address problems in 

bioinformatics1, 2, decision support systems3, and information retrieval4 among others. 

This study aims to address the use of Bayesian network structure learning to study large-

scale networks observed under small sample size. This is motivated by an attempt to 

develop methods applicable datasets such as those found in bioinformatics, where data is 

available for many variables, but insufficient to capture all relationships due to 

experimental limitations. Since no single algorithm to date has proven consistent 

performance in detecting true positives and avoiding false negatives, existing algorithms 

are used to create an ensemble and vote on relationships learned in the data. A brief 

discussion of basic probability and the theory behind the construction and learning of 

Bayesian networks is helpful prior to presenting detailed methods and results used in this 

study. 

Probability 

 The probability of an event occurring can be viewed as the limit of the relative 

frequency of an event in an arbitrarily large number of random experiments or trials. 

Probabilities of observing multiple events can be represented jointly. For example, the 

probability of observing two events, A and B, is represented as P(A! B) . If events are 

independent, then their joint probability is expressed as the product of each probability 
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occurring. The probability of two independent events occurring together is represented by 

P(A! B) = P(A)P(B) . Where events are not independent, the notion of conditional 

probability becomes relevant. The conditional probability of an event A given that an 

event B has occurred is given by  

P(A | B) = P(A! B)
P(B)

. 

It follows from the definition of joint probability that  

P(A! B) = P(A | B)P(B) = P(B | A)P(A) . 

This result gives the definition of Bayes’ theorem:  

P(A | B) = P(B | A)P(A)
P(B)

 

In the application of Bayes’ theorem, P(A|B) is the posterior probability of A given B, or 

the degree of belief having accounted for B. P(B|A)/P(B) represents the support B 

provides for A, and P(A) is the prior, or initial degree of belief in A. In cases where A and 

B are independent, their conditional probabilities are equal to their respective prior 

probabilities, P(A | B) = P(A)  and P(B | A) = P(B) .  

 Drawing from the definitions of conditional probability and independence, 

conditional independence of two variables, A and B, can be written if they are 

independent with respect to a third variable, C: P(A | B!C) = P(A |C)  and 

P(B | A!C) = P(B |C) . Conditional independence is an important characteristic in the 

representation of Bayesian networks. For the example above, conditional independence 

can be represented as I(A;B |C)  and I(B;A |C) .1, 5, 6 
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Bayesian Networks 

 
Figure 1: A simple Bayesian network 

Probability Representation 
 

Bayesian networks are graphical models representing probabilistic relationships 

among a set of variables. Bayesian networks are acyclic, such that no connected path of 

edges returns to a node along the path. A graph G = !,"  is a Directed Acyclic Graph 

consisting of variables belonging to the set ! = {Xi,...,Xn}  connected by a set of edges, 

E. When the network is discretely distributed, the graph is denoted as G,P , with P 

encoding a discrete joint probability distribution of the variables. Random variables are 

represented as nodes and are connected by directed arrows called edges indicating 

conditional dependence. Nodes that are not connected by an edge are conditionally 

independent of one another in this framework. Considering a specific node, A, all nodes 

with edges directed towards A are called the parents of A. Conversely, all nodes accepting 

edges originating from A are called children of A. The graph is called a Bayesian network 

if it satisfies the Markov condition, which states a node is conditionally independent of its 

non-descendants, given its parents.5-7  
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For example, consider constructing a network representing the operation of a 

sprinkler.5 If grass is observed to be wet, that implies one of two possible causes. Wet 

grass can be a result of either rain or a sprinkler. The operation of the sprinkler or rainfall 

is also related to whether or not the sky is cloudy. This description allows for 

construction of a Bayesian network, representing the believed interactions between the 

four variables considered. This Bayesian network is depicted in Figure 2. The four nodes 

represent the variables. The edges represent the probabilistic relationships between the 

variables. Further to the graphical representation of the network, there is a probability 

distribution describing how the variables interact. In the case of the sprinkler network, a 

discrete probability distribution is considered. Nodes in this example assume binary 

values of either “True” if present or “False” if absent. The number of values that a node 

can assume is called the Node Size.  

 
Figure 2: A Bayesian network representing a sprinkler system 

 
Bayesian networks can be used to perform inference given observational data. An 

observation is defined as the state of all variables at a single point in time. Collecting 

multiple observations illustrates the different states that nodes can assume. With 

sufficient observational data, patterns between the variable’s values begin to emerge. 

These patterns indicate potential relationships between the data. Table 1 contains data 

from five observations of the sprinkler network from Figure 2. The values contained in 
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the table are representative of the underlying probability distribution of the sprinkler 

network. 

Table 1: Observational Data for the Sprinkler Network 
Observation\Variable Cloudy Sprinkler Rain Wet Grass 

Observation 1 True False True True 

Observation 2 False True False False 

Observation 3 False False False False 

Observation 4 False False False False 

Observation 5 False False True True 

 

In this case, all nodes additional to the sprinkler node itself are within the Markov 

blanket of the sprinkler. For a given node, the Markov blanket is defined as the set of all 

nodes that are parents, children, or the other parents of its children.5 Representing the 

dependencies in the neighborhood of the variable of interest allows for complete analysis 

of the system, in this case, the sprinkler. In our example, we might say that the 

probability of it being cloudy is 0.5, the probability of it raining given that it is cloudy is 

0.6, and the probability of it raining given that it is not cloudy is 0.05. We can similarly 

define such “probability distributions” for each of the nodes, which when combined with 

the topology of the graph provides a complete Bayesian network that can be used to 

characterize and model the system. 

 

Essential to the construction of Bayesian networks are concepts from probability 

theory, conditional independence, and Bayes’ rule discussed above. Since Bayesian 

networks represent probabilistic relationships, the probability of observing of a node 
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(random variable) is conditioned on its parent nodes. The distribution of the entire 

network can be represented as the product of the probabilities of all constituent nodes due 

to the rules of independence in probability, given that all nodes are independent of their 

non-descendants conditioned on their parents. The distribution of the network, can be 

factored as follows: 

P(!) = P(X1,...,Xn ) = P
Xi"!
# (Xi |$ai

G ) ,  

Where !ai
G  is the set of all variables on which Xi is conditioned. 

Conditional independence allows for a compact representation of each variable in 

the factored distribution. In absence of the property, the storage of values for the set 

would be exponential with the number of variables. The distribution would quickly 

become computationally intractable.8, 9 The chain rule of probability and conditional 

independence of variables therefore reduces the problem of constructing the distribution 

over all variables to a much simpler problem. Learning the conditional probabilities of 

each variable individually is an easier task. The resulting distribution can be expressed as 

the product of the smaller probabilities.  

Equivalence Classes 

  

 
Figure 3: Comparison of a v-structure to a similar, but not equivalent set of edges10 
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Two Bayesian network graphs are said to be equivalent if they encode the same 

set of independencies.5, 11 For example, A! B!C , A! B"C , and A! B!C  are 

all equivalent structures. However, A! B"C  is not considered equivalent to the three 

structures above. To understand equivalence, consider the parameters required for each of 

the models. For the first case, the required parameters are P(A), P(B|A) and P(C|B). 

Similarly, the parameters required for the second case are P(A|B), P(B), and P(C|B). By 

the earlier definition of conditional probability, these two cases are equivalent. The same 

applies for the third case, where P(C), P(B|C), and P(A|B) are required. The final case, 

where A! B"C , is represented by P(B|A,C), P(A), and P(C). Since P(B|A,C) cannot 

be determined from the probabilities of the other structures, this structure is not 

equivalent. The latter example is called a V-structure.12 For any two directed acyclic 

graphs to be equivalent, they must share the same underlying undirected graph and V-

structures. Equivalence structures can be represented as partially directed graphs, where 

V-structures are conserved, but edges where both A! B  and A! B  can exist are 

represented by an undirected edge, A ! B .11 
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CHAPTER 2 

STRUCTURE LEARNING 

 

 In studying complex systems, data is often available for variables, yet the nature 

of interactions between them remains unclear. Knowledge of structure is essential to 

understanding and characterizing emergent properties of systems. Problems in 

classification and prediction can addressed when the underlying network structure is 

known.13 Given observational data, structure learning of Bayesian networks is a problem 

of selecting a probabilistic model to explain the data. While experts can construct 

networks, the task becomes difficult when the domain is too large or complex.  The 

problem becomes more difficult if there are “hidden variables”, those whose 

measurements are not taken or known when collecting the data. Machine learning 

approaches are useful in addressing these problems.  

 Learning Bayesian networks from data is an NP-hard problem.14, 15 There are two 

prevalent approaches to learning Bayesian network structure. In the constraint-based 

approach, data is subjected to conditional independence tests to determine the presence of 

a relationship. The other predominant approach is a search-and-score technique, where 

directed acyclic graphs are generated, scored on the probability of observing the network 

given the data, then modified to improve the score. Learning the probability distributions 

represented by edges in the network is called Parameter Learning. Learning the 

parameters is a sub-problem of structure learning. However, the details of parameter 

learning are beyond the scope of this study.  
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Constraint Based Methods 

 Learning Bayesian network structure by constraint-based methods begins a search 

with a completely connected graph.16 Edges are removed according to statistical tests to 

measure conditional independencies in the data. A drawback of the constraint-based 

approach is a loss of statistical power due to repetitive independence tests. Independence 

is determined by testing the association between two variables, given a set of 

conditioning variables. Generally, these methods do not return a completely directed 

graph. Instead, a partially directed graph, potentially equivalent to several Bayesian 

networks, is the result. A prominent example of a constraint-based algorithm is the PC 

algorithm, introduced in Chapter 4. 

 An example of a statistical test used by constraint-based algorithms is the G2 test.9 

G2 = 2 Sijk
abc ln

Sijk
abcSk

c

Sik
acSjk

bc
a,b,c
!

 

Shown above, the test measures the strength of association between two variables, 

conditioned on a set of neighboring variables, where Sijk
abc  represents the number of times 

in the data Xi = a, Xj = b and Xk = c. G2 is asymptotically distributed as Χ2, returning a p-

value corresponding to the probability of falsely rejecting the null hypothesis.9 

Search and Score 

 A more popular approach than the constraint-based method is the search-and-

score. This approach considers the space of all directed acyclic graphs, returning the best, 

or candidate set of graphs best fitting the data. However, searching the space of all DAGs 

is impossible. For a network of n nodes, the number of possible graphs is super-

exponential in n.17 
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G(n) = !1( )k+1 n
k

"
#$

%
&'
2k (n!k )G(n ! k)

k=1

n

(  

Table 2: Number of Possible Directed Acyclic Graphs Compared to Number of Variables16 

 
 

Quickly, the number of graphs in the DAG space becomes too large to consider 

exhaustively. Instead, algorithms resort to global or local search algorithms. Common 

among search-and-score algorithms are mechanisms to determine the state or phase of the 

search, mechanism to move between states in the search space, and a scoring function, 

necessary for comparing states and determining which graph best fits the data.  

For example, given two nodes A and B, three cases can be considered. No edge 

exists, A can be a parent of B, or B can be a parent of A. Given a set of observations 

described in Chapter 1, a scoring function is used to evaluate how well the structure 

matches the data. Below, an example of how scoring functions are used is presented. 

Scoring Functions 

 The Bayesian Dirichlet scoring metric is one of many scoring functions used to 

evaluate Bayesian network structure.18  

BD(B |D) = P(B) (ri !1)!
(Nij + ri !1)!j=1

qi

" Nijk !
k=1

ri

"
i=1

l

"  
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Where there are l variables are qi parent configurations of variable i. ri is the node size of 

variable i, Nijk is the number of times variable i took on the value k with parent 

configuration j, and Nij = Nijkk=1

ri! .10 By inspection, P(B) is the prior probability of 

observing structure B. The remainder of the expression is the likelihood of observing the 

structure of interest, given the available data.  
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CHAPTER 3 

SOFTWARE 

 

 There is an abundance of software available for learning structure of Bayesian 

networks from data.16 However, most are restricted in their capability to learn networks 

with a large number of variables. Another issue is that authors of new algorithms present 

their work as a separate software package. The use of different languages and notation 

makes direct comparison of network structures learned by multiple algorithms a more 

difficult task. For this study, packages are selected for the availability of multiple 

structure learning algorithms. The Matlab language is also preferred due to ease of 

numerical computations in pre and post-processing of data.  

Bayes Net Toolbox 

 The Bayes Net Toolbox (BNT) presented by Kevin Murphy is an open-source 

Matlab package for directed graphical models.16 BNT contains tools for both structure 

and parameter learning, along with algorithms for inference using Bayesian networks. 

Additionally, BNT contains useful general functions in preparing and analyzing network 

data and structure. In this study, the structure learning implementations in BNT were 

abandoned early on; however, the toolbox is mentioned due to the useful functions 

available for building, modifying, and sampling data from networks.  

BNT Structure Learning Package 

 The BNT Structure Learning Package (SLP) introduced by Philippe Leray adds 

an entire suite of structure learning algorithms to interface with Bayes Net Toolbox, using 
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the existing framework as a backbone for structure-specific learning.17 The algorithms, 

while useful, are restricted similar to those found in BNT in their ability to infer larger 

networks. Again, SLP is mentioned due to native functions used in this work to evaluate 

algorithm performance. 

Causal Explorer 

 The Causal Explorer software is a structure learning toolkit for large-scale 

network reconstruction presented by Aliferis et al.19 The package contains a group of 

established structure learning algorithms in addition to several new algorithms presented 

by the authors. The package is closed-source, but its Matlab implementation allows for 

the algorithms to be called by non-native scripts. Causal Explorer’s set of algorithms can 

also be used in conjunction with the useful functions available in BNT and SLP. For 

these reasons, along with the ability to learn structure of large-scale networks, Causal 

Explorer is the primary software used in this study. 
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CHAPTER 4 

METHODOLOGY 

 

 As discussed in Chapter 3, there are many useful tools for Bayesian network 

inference. Tools for learning network structure are more limited than those used for 

inferring and updating probabilistic relationships, but are still adequately present in the 

machine learning community. The choice of tools is complicated due to the limitations 

and domain specificity of both the software packages and algorithms. Notably, structure 

inference software capable of handling larger network sizes are a more recent 

contribution to the field.9 Poor implementations of algorithms theoretically proven 

capable of handling large structure learning render them computationally expensive, and 

thus, fail to converge to a final structure. To form a robust method suited for learning 

diverse networks, algorithms are carefully selected with the specific criteria of 

convergence for networks ranging from tens to hundreds of nodes, with a similar number 

of edges. The ability to converge given a small number of observations is also considered 

when selecting the algorithms. While accurate performance is desired, it is not expected 

under such rigid conditions.  

 The result is a committee of four algorithms. Each algorithm is tasked with 

independently learning the network structure fitting the same dataset for a group of well-

defined synthetic networks presented in Chapter 5. Following the structure-learning step, 

the learned graphs are pre-processed, then new graphs are formed using ensemble 

methods. Both the original graphs and those formed by the ensemble are assessed for 

accuracy and reasonableness. 
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Committee 

 Machine learning literature contains a number of ensemble methods, such as 

Bootstrap Aggregating (Bagging), which use voting to improve the performance of weak 

classifiers.20-22 In Bagging, smaller subsets are randomly sampled with replacement from 

a dataset. A classification algorithm is then used to train the model. Models learned from 

each subset of the data are combined to a final model by voting. The resulting model is an 

improvement from using the unstable algorithm to train the entirety of the dataset. To our 

knowledge, the only use of a voting committee to assist in learning Bayesian network 

structure is presented by Mwebaze and Quinn.23 Following these examples, we apply the 

use of a committee of algorithms to improve learning of Bayesian network structure. 

 As described earlier, a committee of four algorithms is used to independently 

learn network structure. The Max-Min Hill-Climbing, Sparse Candidate, PC, and Three-

Phase Dependency Analysis algorithms are selected for the task. The application of each 

algorithm is discussed in more detail below.  

Algorithms 

PC 

 The PC algorithm is a commonly known prototypical constraint-based algorithm 

developed by Spirtes et al.7, 24 PC tests for conditional independence using statistical 

tests, and returns a partially directed graph, equivalent to several possible directed 

structures as discussed in Chapter 1. Initial development of PC was aimed for causal 

inference. It is useful for our application, where causality is not strictly considered, since 

the conditional independence tests theoretically return a low number of false positives. 

Since the implementation present in Bayes Net Toolbox was incapable of handling large 

networks, the version available in Causal Explorer was used instead.  
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 The number of edges learned by PC is sufficient to avoid a need to adjust 

parameters. Since the goal is to provide a large number of edges to be used by the 

ensemble, and the default parameters of PC achieve this end, they are used. PC takes 

observational data, node sizes, statistical test, and threshold as input. The result, 

mentioned earlier, is a partially directed acyclic graph. While the desired goal is to 

identify relationships between variables by locating edges, the representation of 

undirected edges in the adjacency matrix is problematic, where the adjacency matrix is a 

binary representation of the existence or non-existence of an edge in the graph. An 

undirected edge is presented as two entries in the adjacency matrix. The presence of 

double entries for a single relationship causes confusion in evaluating the performance by 

metrics discussed in Chapter 5. To address this problem, the resulting undirected graph is 

converted to a DAG if it admits extension. A partially directed graph is said to admit 

extension if it can be converted to a DAG containing the same V-structures and edge 

location.25, 26 In cases where extension to a DAG is not possible, one of the two entries in 

the adjacency matrix is deleted for undirected edges, and the edge is directed from the 

node with the lower arbitrary order towards the node with the higher arbitrary order. The 

order is used to identify a node’s position in the adjacency matrix. This method is 

arbitrarily chosen, and while it affects the apparent performance, further processing 

discussed later in this chapter addresses the issue of directionality. 

Sparse Candidate 

 The Sparse Candidate algorithm was developed by Friedman et al. as one of the 

first structure learning algorithms suited for large-network inference.8 Sparse Candidate 

is a hybrid algorithm that begins by identifying a candidate set of parents, whose size is 
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determined by the user, searching until an acceptable set is found. The algorithm uses a 

mutual information statistic to test dependence between a variable and its candidate 

parents. This is called the “restrict” step of the algorithm. Once a satisfactory parent set is 

determined for each variable, the algorithm proceeds to a maximization step. In this 

phase, network structures existing in the DAG space equivalent to the candidate sets are 

scored. The best scoring network is retuned as a directed graph. 

 The implementation of Sparse Candidate present in the Causal Explorer toolbox 

takes observational data, node sizes, test statistic, prior (probability value) type, and 

candidate parent set size as input, returning a DAG. Since the algorithm is used to test 

networks of varying size and connectivity, the parent size is selected to be sufficiently 

large for to accommodate all trials, without having to be adjusted. This is done at the 

expense of longer computational time. Of the remaining input parameters, the type of test 

statistic and prior type are shown to have the greatest effect on the number of edges 

learned. Therefore, they are varied in an algorithm to maximize the number of edges. 

Since the goal is to use the resulting DAG in an ensemble vote, the presence of extra 

edges is not considered problematic. The goal of maximizing edges is to improve the 

recall (or sensitivity) of the Sparse Candidate. 

Max-Min Hill-Climbing 

 The Max-Min Hill-Climbing algorithm (MMHC) was first described by 

Tsamardinos et al.9 MMHC is considered a hybrid method of the constraint-based and 

search-and-score approaches described in Chapter 3. A two-phase method is 

implemented, where an undirected skeleton is learned using constraint-based learning, 

followed by a scored search of the DAG space to orient edges directionally. MMHC is 
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similar to SC, without the constraint of parent count. The candidate set of parents 

determined by searching within a restricted space is replaced by the local variables 

sharing edges with the variable of interest. The argued benefit of this approach is a 

sounder identification of parents, without user constraints affecting algorithm 

performance. The constraint-based skeleton-learning step is similar to that employed by 

the PC algorithm, but using fewer statistical tests to optimize computational resources. 

 The implementation of MMHC presented in the Causal Explorer package takes 

several parameters as input, returning an adjacency matrix corresponding to a DAG. 

Parameters can be tuned to optimize performance provided the user has some prior or 

expert knowledge of the system of interest. For purposes of developing a robust 

approach, no knowledge of the system, (besides the number of nodes and edges described 

in Chapter 5) is assumed prior to learning the structure. Instead, parameters are 

“optimized” to maximize the number of edges learned. While this is obviously a potential 

increase in false positive and reduction of accuracy, the ensemble approach is relied upon 

to amend this issue. 

 MMHC takes observational data, node sizes, statistical threshold, and prior type 

as input. Based on testing results, threshold value and prior type are found to have the 

most significant effect on the number of edges learned. They are therefore used in a 

maximization algorithm, in which MMHC is used to learn the structure of the associated 

dataset, and the parameter set maximizing the number of edges, and their corresponding 

graphs, are kept for use in the ensemble step. 

TPDA 
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 The Three Phase Dependency Analysis algorithm uses an information-theoretic 

approach to learning Bayesian network structure from data.27 The algorithm requires a 

polynomial number of conditional independence tests, reducing the number typical of 

constraint-based approaches. As indicated by the name, the algorithm operates in three 

phases. The algorithm begins by “Drafting” a network of edges for any nodes with a 

mutual information statistic above a set threshold. The graph then undergoes 

“Thickening” to add edges to connect areas of the graph where no relationship is found 

by the drafting step. Finally, “Thinning” removes redundant arcs between nodes if a path 

between them already exists. 

Table 3: Assumptions of Three-Phase Dependency Analysis27 

 

 TPDA takes as input observational data, node sizes, test statistic, and threshold, 

returning a partially directed graph. Since the number of edges learned by TPDA is 

typically large in comparison to MMHC and SCA, maximizing the number of learned 

edges is not a concern. The resulting partially directed graph is directed by the same 

arbitrary method described above for PC. Any issues in assessing the algorithm’s 

performance are resolved by the methods described in the discussion of directionality 

below. 

Ensemble approaches 

 As stated above, the objective of selecting a committee and maximizing the 

sensitivity of the constituent algorithms, specifically MMHC and SCA, was to ultimately 

improve the ability to identify true positive edges. To achieve this a voting method was 
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implemented. In this approach, each algorithm in the committee received an equal vote 

on whether each edge should be in the final graph. From the counted votes, four new 

graphs are made. The “union” graph contains all edges learned by the committee. This 

graph is presumed to be highly sensitive to detecting true positives, with compromised 

ability to avoid false positives. A “half” graph contains edges learned by two or more 

committee members. The expectation of the half graph is an improvement in selectivity 

from the union, but still too imprecise for confident use. The “majority” graph consists of 

edges appearing in three or more committee results, and the “intersection” contains only 

edges learned by all four algorithms. The latter two graphs are expected to display a 

higher precision than the others.  

 The hypothesis is that the committee graphs will demonstrate a distinct 

improvement from any single algorithm. To test the hypothesis, the committee graphs are 

evaluated using the same metrics as the individual algorithms, and compared in Chapter 

5. It is important to note that the graphs resulting from the voting method likely deviate 

from the DAG space. This concession is accepted, since the goal is to identify the 

position of true relationships in the data, but not specifically their causal nature. 

Directionality 

 The direction of edges and their inherent implications are a debated topic in the 

Bayesian network and probabilistic graphical model communities. As mentioned several 

times, DAGs are often assumed to have a causal interpretation.6, 24 Therefore, edges must 

be directed properly, and reversed edges are considered incorrect. The restriction of 

directionality and maintaining a proper DAG restricts the representation of graphs drawn 

by the committee. Therefore, the notion of true direction of edges is subsequently 

discarded. Instead, similar to the case of orienting partially directed graphs, all edges are 
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oriented in a manner such that edges are always represented by a parent node having a 

lower arbitrary ordering than its child node in the adjacency matrix. Since all algorithm 

and committee graphs are compared in an undirected form, directionality does not impact 

performance. 

Performance Metrics 

 To assess the performance of both the individual algorithms and the graphs 

generated by the committee several metrics were employed. The specific performance 

criteria were selected to compare the accuracy and completeness of structure learning. 

More traditional methods, such as network score comparisons, are ignored for two 

reasons. First, scores vastly differ between algorithms, with radical differences reported 

even when learned structures are very similar.17 Second, the decision to discard 

directionality removes the graphs from the DAG space, rendering scoring ineffective in 

this case. Instead, three methods are described in this section that assess the graphs solely 

on the ability to learn correct edges, since relationships between variables take 

precedence over how well the network fits the data according to some score.  

Editing Distance 

 The editing distance, also referred to as edit or Levenshtein distance, is a metric 

for measuring the differences between two strings or structures. In the case of graphs 

consisting of nodes and edges, the editing distance is the number of changes, in the form 

of addition, deletion, or reversal (for directed graphs) of edges needed to transform one 

structure into another. In this study, the editing distance is determined between a learned 

graph and the known network structure from which the data was generated.  

Selectivity 
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 Also called precision, is the ratio of correctly inferred edges to total edges present 

in an inferred model. The selectivity is calculated as shown below:  

Selectivity = TP
TP + FP

; TP = True positives, FP = False Positives 

False positives are defined as incorrect edges detected in the inferred network. 

Sensitivity 

 Also called recall, is the ratio of true edges learned to the total number of edges 

present in the true graph. Sensitivity is calculated as shown below: 

Sensitivity = TP
TP + FN

; FN = False Negatives 

False negatives are defined as edges in the known network that are not detected in the 

inferred network. 
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CHAPTER 5 

RESULTS 

 

 To assess the viability of the methods discussed in the previous chapter, structure 

learning is performed on observational datasets pooled from a number of expert-specified 

or synthetic networks native to the Bayes Net Toolbox and Structure Learning Package, 

the Causal Explorer supplementary data archive, or available from several on-line 

Bayesian network repositories.28-30 Networks obtained from the repositories are provided 

in a java-based format, and are subsequently converted to a Matlab-compatible 

representation using software written by Ken Shan.31 For each network 10 experimental 

datasets are taken for consistency, then used as the basis for inference. The metrics 

computed are the average of the performance across all learned networks. The specifics 

of each network are discussed in more detail below.    

Small Networks 

Asia 

 
Figure 4: The Asia network10 
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 The Asia network introduced by Lauritzen and Spiegelhalter is a small, fictional 

network depicting related variables in a medical diagnosis.32 The network contains 8 

nodes and 8 edges, with all nodes being binary. This network is not learned by the 

committee approach, since its size lies well below the range targeted by the committee. 

Instead, the small network size is used to emphasize that the performance of structure 

learning algorithms is lacking, even when presented the task of learning a small structure. 

In earlier work, Leray and Francois show only the Greedy Equivalence Search algorithm 

accurately reproduces the Asia network, requiring greater than 5000 observations.17 The 

sub-optimal performance of structure learning algorithms on small networks, especially 

at a small number of observations, suggests that an alternative approach must be used to 

accurately and confidently learn structure in larger networks, which in turn motivates the 

use of a committee of algorithms. 
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Medium Networks 

Insurance 

 

Figure 5: The insurance network 

 Prior to applying the committee to large-scale networks, the concept was first 

implemented on a network of moderate size to confirm its validity and offer insight 

towards necessary adjustments before proceeding to larger structures. The insurance 

network, consisting of 27 nodes and 52 edges, was used for this task. Nodes can take on 

either two or three values. The committee is tasked with learning the structure for 10 

datasets each at 50, 100, and 250 observations. These sample sizes are sufficiently small 

to fall below the optimal range of any single algorithm, and therefore expected to elicit a 

meaningful contribution from the committee. Figure 6 and Figure 7 show the 

performance of the committee on learning the direction independent insurance network. 
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The results show that the intersection and majority graphs exhibit excellent selectivity, 

but are slower to recover edges. At 250 observations, only half of the edges from the 

Insurance graph are present in the intersection graph. The PC algorithm, while exhibiting 

the best recall of edges, has the lowest selectivity of any algorithm. Claims in the 

literature suggest that PC is sub-optimal for learning with small sample sizes.9, 24 This 

helps to explain the poor performance illustrated throughout the study by PC, despite 

promising performance with excellent selectivity in earlier trials in BNT.  

 
Figure 6: Sensitivity of algorithms learning Insurance network 
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Figure 7: Selectivity of algorithms learning Insurance network 

Large Networks 

Full networks 

Alarm 

 

Figure 8: Original schematic of ALARM monitoring network33 
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 The ALARM monitoring network is an expert medical network used to monitor 

intensive care patients, as described by Beinlich et al.33 ALARM consists of 37 nodes and 

46 edges, with node sizes ranging from 2-5. The network is commonly used as a 

benchmark to test new algorithms, so it is a good initial attempt for the committee before 

tackling more complex networks. The committee learned this network at four different 

sample sizes, with the results of all four metrics shown here. 

 From the editing distance plot (Figure 9), the most obvious conclusion is that the 

PC algorithm performs extremely poorly at lower sample size, but begins to approach the 

performance of the other algorithms as the sample increases. Figure 10 shows the 

selectivity of the intersection and majority graphs to be high, with the Sparse Candidate 

and MMHC also performing reasonably well. Both PC and TPDA show a rapid increase 

in selectivity as the sample size rises to 500. All graphs, including the intersection, show 

a sensitivity above 65% at 100 observations or greater. Figure 11 shows the graph of 

sensitivity. The performance of the committee in learning the ALARM network is 

promising.  
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Figure 9: Edit distance of ALARM network 

 
Figure 10: Selectivity of ALARM network 
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Figure 11: Sensitivity of ALARM network 

 

Mildew 

 The Mildew network is another network of size similar to ALARM, with 35 

nodes and 46 edges.34 Node sizes range from 3-100 in this network. Due to the limited 

number of observations relative to the number of values a node can assume, the 

performance of the algorithms in learning this network is negatively impacted. A more 

detailed discussion of the impact of node size on learning network structure is presented 

below, in the discussion of Reduced Networks. No data is shown for 500 observations 

since the algorithms did not converge. No intersection graph exists for the 50 

observations case, since TPDA failed to learn any edges from the data. Figure 12 

confirms the hypothesis that, even when structure learning is extremely poor, the 

intersection graph remains the most selective. The performance remains disappointing, as 

the sensitivity (Figure 13) remains under 20% up to 250 observations. Even MMHC and 
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Sparse Candidate, who illustrate selectivity around 80% only show sensitivity at 40% in 

this case. This raises an interesting question of how to choose a model to accept. In this 

case, the preferable choice is an individual algorithm. However, in a real experiment, a 

lack of domain knowledge and inconsistent performance of the single-algorithms 

exhibited across different networks raises concerns as to the efficacy of this approach. 

The overall recommendation is to avoid temptation to use single-algorithm methods, 

since they cannot be verified to perform well across a range of tested networks.  

 

Figure 12: Selectivity for Mildew network 
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Figure 13: Sensitivity for Mildew network 

 

Barley 

 Another example of comparable size is the Barley network. The network consists 

of 48 nodes, 84 edges.35 In this case, performance is extremely poor. At best, the selective 

majority and intersection methods have sensitivity below 40% at 250 observations. The 

poor performance is thought to be an artifact of two phenomena: first, the Barley network 

contains node sizes ranging from 2-67 (discussed in the Reduced Network example), and 

second, the number of edges is close to twice that of nodes, meaning the network is 

denser than the others studied. Some algorithms have difficulty learning domains where 

dense hubs exist. The effect of edge density cannot be ignored, since both MMHC and 

Sparse Candidate are presented to be optimal at learning sparse domains.  
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Figure 14: Selectivity for Barley network learned from Causal Explorer supplementary data 

 
Figure 15: Sensitivity for algorithms learning Barley network learned from Causal Explorer 

supplementary data 
 

Hailfinder 
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 The Hailfinder network used to forecast severe weather is another example of a 

domain where large node sizes are suspected of having an effect on algorithm 

performance.36 The network has 56 nodes, 66 edges, and node sizes ranging from 2-11. 

The selectivity and sensitivity plots are shown in Figure 16 and Figure 17, respectively. 

In this case, the selectivity of the intersection graph is near 80%, but its sensitivity 

remains between 20-40% for all trials. The majority graph exhibits both selectivity and 

sensitivity at or above 60% for 250 observations, suggesting that committee approaches 

can perform at a reasonable level. In the next section, a solution to the suspected node-

size problem is presented. 

 
Figure 16: Selectivity of Hailfinder graph learned from sampled data 
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Figure 17: Sensitivity of Hailfinder graphs learned from sampled data 

 

Reduced networks 

 Poor performance in learning several large-scale networks and the interest of 

learning sub-networks from very large domains pose an interesting problem. A first 

attempt to address this issue is implemented by producing “reduced networks”. Reduced 

networks are generated by eliminating excessive or problematic nodes, along with any 

associated edges in the model graph and entries in the observational data matrix. The 

resulting reduced data is then learned by the committee of algorithms; inferred models 

are assessed relative to a similarly reduced known graph, and compared to the 

performance metrics of the same network prior to reduction. This heuristic is naïve, as it 

does not consider the ramifications of removing certain nodes and edges from the 

network and their corresponding observations. However, if problematic nodes exist in 
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real datasets, this approach is the only way to eliminate them. Also, large-scale networks 

tend to be sparse, and therefore, eliminating nodes by this method is unlikely to have a 

dramatic effect on learning their structure. 

 
Figure 18: Selectivity of Reduced Hailfinder graphs 

 This study considered two types of reduced network. The first type is generated 

from the large Hailfinder and Barley networks by restricting the node sizes to four and 

ten respectively. The reduced Hailfinder network is a significantly smaller network, 

shrinking from 56 to 40 nodes. The reduced Barley graph only drops from 48 to 45 

nodes. While a node size of 10 is not desirable for this approach, most nodes in the 

Barley network are of similar value, so restricting below that will drastically impact the 

size of the reduced network. The rationale behind eliminating nodes capable of taking on 

a large number of states is tied to the restricted nature of this study. The goal is to 

characterize algorithm performance under small observations. In a small number of 
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observations, the network is less likely to exhibit a range of states sufficient for accurate 

learning. The presence of larger nodes only compounds this issue; for example, a certain 

node in the original Barley network can take on 67 values. A node of this type cannot be 

adequately observed within a small sample size so as to have edges accurately inferred, 

and is therefore removed in this modification.  

In addition to removing problematic nodes from networks, the reduction method 

was also used to generate a “reduced link37” sub-network from massive networks. This 

network is a 40-node sub-network taken from the original Link network (an extremely 

large network consisting of 724 nodes and 1125 edges). The motivation to create these 

sub-networks is twofold: first, they provide more suitable-sized networks on which 

structure learning algorithms can be tested, and second, they allow for learning the edges 

among a small subset of the data. While this deviates from the original application of 

reduced networks, it offers a solution to learn sub-spaces when networks are too large to 

infer fully. The performance of the reduced link network is shown in Figure 20 and 

Figure 21. Again, the majority and intersection graphs are most selective, but remain 

under 60% sensitive. 
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Figure 19: Sensitivity of Reduced Hailfinder graphs 

 
Figure 20: Selectivity of Reduced Link graphs 
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Figure 21: Sensitivity of Reduced Link graphs 

 
Curated Networks 

 Drawing from the same motivation as the “reduced network” approach, another 

size reduction method was employed. This method, called the “curated” approach, 

attempts to more accurately depict network behavior when nodes and edges are 

eliminated. In this case, instead of simply deleting entries from the observational data 

table, the network Conditional Probability Distributions are changed where edges 

previously affecting a node are absent. For cases of simplicity, any replaced values are 

assumed to be of uniform probability for any state the variable can assume. Data was then 

re-sampled from the new network, and the committee was reassigned to learn the data. 

The performance on the curated network shown in Figure 22 and Figure 23 is both more 

selective and more sensitive than that expressed in the “reduced” example. Further, to 

bolster the argument that node sizes play an effect in structure learning performance, the 

results are compared to the graphs learned from data sampled for the original network. 

The sensitivity of the intersection graph is observed to jump from under 40% in the 



 40 

previous instance at 250 observations to slightly under 55% for the curated case, while 

maintaining selectivity above 80%. 

 
Figure 22: Selectivity of Curated Hailfinder graphs 

 

Also presented in Figure 24 and Figure 25 are results from learning graphs of a 

curated and re-sampled sub-network of the Andes network (described below).38 The 

performance of the intersection graph is notably exceptional, with sensitivity just under 

60% at 100 observations, and selectivity above 80%. 
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Figure 23: Sensitivity of Curated Hailfinder graphs 

   

 

 
Figure 24: Selectivity of Curated Andes graph 
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Figure 25: Sensitivity of Curated Andes graph 

 

Very Large Networks 

 The ultimate goal of the committee-based approach to structure learning was to 

improve performance on very large networks, with hundreds of variables. The result was 

not realized however, due to the inability of the algorithms to all converge in these cases. 

While MMHC and Sparse Candidate have been developed specifically for the task of 

large-network discovery, the goal was to improve their accuracy by the use of the voting 

approach presented in this work. After two weeks of simulation, only the 50-observation 

instance of the Andes network, consisting of 223 nodes and 338 edges, using default 

parameters for all algorithms managed to converge. The results are presented in Figure 

31and Figure 32. In this case, only MMHC and PC converged, rendering the committee 

unusable. Conclusions regarding the use of these methods and suggestions for future 

improvements are discussed in the coming chapters. 
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Figure 26: Selectivity of Andes graphs 

 

 
Figure 27: Sensitivity of Andes graphs 
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CHAPTER 6 

CONCLUSIONS 

 

Ensemble Methods in Network Inference 

 This work illustrates the use of ensemble approaches to infer network structure 

where use of a single algorithm is unreliable. The improved selectivity is undoubtedly 

shown for all tested networks. Sacrifices of sensitivity are non-negligible, however. Any 

three or four vote network learned by a committee is therefore likely to be missing more 

than half of its edges. The edges present in the inferred model can however be accepted 

with a strong degree of confidence. This voted approach improves the selectivity of the 

algorithms for all observation sizes studied. However, in some cases the performance 

significantly improves between 50 and 100 observations. Due to this inconsistency, 

learning network structure below 100 observations is not recommended.  

 With the exception of MMHC and Sparse Candidate for some networks, the 

selectivity of the majority and intersection graphs greatly outperforms the individual 

algorithms. Even when the selectivity of the algorithms approaches that of the committee 

graphs, the latter are still more selective. With respect to sensitivity, the committee 

performance is lower than that of any individual algorithm. The use of the committee is 

still recommended, however, as the PC and TPDA algorithms often exhibit high 

sensitivity with poor selectivity.  
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Learning Large-Scale Networks 

 The task of learning large-scale networks remains a difficult task. State-of-the-art 

algorithms designed specifically for this function, such as MMHC and Sparse Candidate, 

begin to exhibit long computational times, and in some cases fail to converge. While 

reasonable conclusions regarding the use of a voting committee can be drawn for 

networks of approximately 40-60 nodes, it is difficult to properly assess the contribution 

of a committee for networks of hundreds of variables, when there are so few algorithms 

capable of learning such large networks, and even these struggle to do so efficiently. 

Forming a reliable committee for learning such large networks is a prerequisite for 

further analysis.  

  

 



 46 

CHAPTER 7 

RECOMMENDATIONS 

 

Learning Large Networks 

 At this time, committee approaches are not recommended for learning massive 

networks. This is not due to any flaws in the concept of ensemble learning. Rather, 

problems arise due to the lack of suitable algorithms to form the ensemble. Current 

effective algorithms, like MMHC and Sparse Candidate, are too similar in their 

underlying theory, and are therefore subject to the same biases and potential errors. The 

authors describe MMHC as a specific instantiation of Sparse Candidate. Until newer and 

more diverse algorithms capable of large-scale network discovery are developed, 

ensemble approaches should be avoided. 

 Following from the discussion of the curated Andes and reduced Link networks in 

Chapter 5, more study towards learning sub-networks is recommended. Since partitioning 

a network at random is likely to miss network-wide interactions, an approach randomly 

selecting sub-networks, learning their structure, and averaging the resulting models for a 

large number of trials is one potential solution. The task of learning these sub-networks is 

less computationally expensive than attempting to learn the structure of massive 

networks, especially when convergence is not guaranteed.  

Improving Algorithms and the Committee 

 Further work in the area of Bayesian Structure learning should focus on 

improving algorithms for learning large networks. Leading algorithms such as MMHC 

and Sparse Candidate were developed for applications in studying gene regulatory 

networks, which tend to be mostly sparse. The algorithms have difficulty learning 

domains where dense hubs exist. Improvement in the area would provide a more robust 



 47 

tool, applicable across multiple domains. One potentially promising example is the 

Empirical Light Mutual Min (ELMM) algorithm, which is designed for learning denser 

networks than MMHC and Sparse Candidate can learn.39 ELMM learns conditional 

independence graphs, instead of DAGs, which are more interesting in the context of this 

study, since the notion of directionality and network scoring are ignored be the 

committee. Another method to consider is the local committee-based method proposed by 

Mwebaze and Quinn, which uses a set of algorithms to vote on each edge during the 

inference process, rather than after each algorithm completely learns the network as done 

in this work.23 

 The PC algorithm notably breaks down for very large networks, and exhibits poor 

performance throughout the study due to the small number of observations. Both of these 

factors suggest PC should not be used in large-scale network discovery, or a voting 

committee.  

Applications in Learning Complex Systems 

 The use of voting approaches, provided systems of interest are of reasonable size, 

can greatly assist in the study of complex systems interactions. Recommendations are 

made for the use of voting applied on systems under 100 variables in size. Despite the 

earlier suggestion to replace the PC algorithm, for these cases, it should be kept, as it is 

by far the most sensitive algorithm available for a small number of observations, and the 

committee easily handles the high number of false positives.  
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