THE EFFECTS OF MITRAL ANNULAR DYNAMICS, AND THE LACERATION OF THE ANTERIOR LEAFLET WITH TRANSCATHETER MITRAL VALVE REPLACEMENTS

A Dissertation<br>Presented to<br>The Academic Faculty

by

Thomas Floyd Easley

In Partial Fulfillment<br>of the Requirements for the Degree<br>Doctor of Philosophy in<br>Bioengineering

Georgia Institute of Technology
August 2019

# THE EFFECTS OF MITRAL ANNULAR DYNAMICS, AND THE 

 LACERATION OF THE ANTERIOR LEAFLET WITH TRANSCATHETER MITRAL VALVE REPLACEMENTSApproved by:

Dr. Ajit P. Yoganathan, Advisor School of Biomedical Engineering
Georgia Institute of Technology and Emory University

Dr. Cyrus K. Aidun
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Wei Sun
School of Biomedical Engineering
Georgia Institute of Technology and Emory University

Dr. Vinod H. Thourani
School of Medicine
Georgetown University

Dr. Joseph H. Gorman
School of Medicine
University of Pennsylvania

Dr. Vasilis Babaliaros
School of Medicine
Emory University

Dedicated to my parents, Mark and Lisa Easley

## ACKNOWLEDGEMENTS

To my friends and colleagues near and far: This thesis and my time at Georgia Tech would not have been as successful without you. You kept me sane and continued to show me there was light at the end of the tunnel. I am grateful for the MV group, both past and present for their partnerships and friendships. I would like to specifically thank Vrishank for his guidance, Milan for his ear, and Vahid for his time and effort.

To my undergraduate advisor, Dr. Scott Banks: I have you to thank for helping me get on this combined path of medicine and engineering. You shepherded me into different experiences when I showed desire, taught me to "enjoy" the learning from mistakes, and encouraged me to take the harder road with the higher reward.

To my committee, Drs. Cyrus Aidun, Vasilis Babaliaros, Joe Gorman, Wei Sun, and Vinod Thourani: You each helped shape my thesis work, providing me with clinical and engineering guidance and experience. For that I am extremely grateful and this work's impact it better for it.

To my advisor, Dr. Ajit Yoganathan: To say that our time together has been eventful would be an understatement. I have learned a lot from our tenure together, and I will carry that knowledge into my career and teachings.

## TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..... iv
TABLE OF CONTENTS ..... v
LIST OF TABLES ..... ix
LIST OF FIGURES ..... xii
LIST OF SYMBOLS AND ABBREVIATIONS ..... xxiii
SUMMARY ..... XXV
CHAPTER 1. Introduction ..... 1
CHAPTER 2. Background ..... 4
2.1 The Cardiovascular System and the Heart ..... 4
2.1.1 The Cardiovascular System ..... 4
2.1.2 The Heart ..... 5
2.2 The Mitral Valve ..... 7
2.2.1 The Mitral Leaflets ..... 9
2.2.2 The Mitral Annulus ..... 12
2.2.3 The Mitral Subvalvular Apparatus ..... 15
2.3 Mitral Valve Pathophysiology ..... 17
2.3.1 Mitral Valve Regurgitation ..... 17
2.3.2 Mitral Valve Stenosis ..... 19
2.4 Mitral Valve Surgical Corrections ..... 20
2.4.1 Surgical Repair ..... 20
2.4.2 Surgical Replacement ..... 23
2.4.3 Surgical Repair vs Replacement ..... 24
2.5 Mitral Valve Interventional Corrections ..... 24
2.5.1 Interventional Repair ..... 25
2.5.2 Interventional Replacement ..... 26
2.5.3 Interventional Repair vs Replacement ..... 27
2.6 Transcatheter Aortic Valves in the Mitral Valve ..... 28
2.7 Transcatheter Mitral Valve Complications ..... 32
2.7.1 Left Ventricular Outflow Tract Obstruction ..... 32
2.7.2 Thrombosis ..... 34
2.8 Percutaneous Laceration of Anterior Mitral Leaflet (LAMPOON) ..... 35
2.9 Mitral Valve In Vitro Modeling ..... 37
2.10 Significance ..... 39
CHAPTER 3. Objective and Specific Aims ..... 41
CHAPTER 4. Materials and Methods - Specific Aim 1 ..... 44
4.1 Materials ..... 44
4.1.1 Pulsatile Left Heat Simulator ..... 44
4.1.2 Annulus Plates ..... 46
4.1.3 Motors and Controllers ..... 48
4.1.4 Mitral Valves ..... 49
4.1.5 Echocardiography ..... 50
4.1.6 High-Speed Imaging ..... 51
4.1.7 Instrument Calibration ..... 51
4.2 Methods ..... 52
4.2.1 Experimental Conditions ..... 52
4.2.2 Experimental Protocol ..... 53
4.2.3 Data Analysis ..... 55
CHAPTER 5. Materials and Methods - Specific Aim 2 ..... 56
5.1 Materials ..... 56
5.1.1 Pulsatile Left Heart Simulator w/ Left Ventricular Phantom ..... 56
5.1.2 Left Ventricle Phantom ..... 58
5.1.3 Left Ventricle Insert ..... 59
5.1.4 Mitral Valve Leaflets ..... 60
5.1.5 Georgia Tech - Transcatheter Aortic Valve ..... 62
5.1.6 High-Speed Particle Imaging Velocimetry (HSPIV) ..... 63
5.1.7 Instrument Calibration ..... 66
5.2 Methods ..... 67
5.2.1 Experimental Conditions ..... 67
5.2.2 Experimental Protocol ..... 69
5.2.3 Data Processing and Analysis ..... 72
CHAPTER 6. Results and Discussion - Specific Aim 1 ..... 74
6.1 Specific Aim 1 Results ..... 74
6.2 Specific Aim 1 Discussion ..... 79
6.2.1 Clinical and Engineering Implications ..... 81
6.2.2 Limitations ..... 81
CHAPTER 7. Results and Discussion - Specific Aim 2 ..... 83
7.1 Specific Aim 2 Results ..... 83
7.1.1 Specific Aim 2A: LV Flow with LAMPOON ..... 83
7.1.2 Specific Aim 2B: Neo-Sinus Flow with LAMPOON ..... 108
7.2 Specific Aim 2 Discussion ..... 119
7.2.1 Specific Aim 2A: LV Flow with LAMPOON ..... 119
7.2.2 Specific Aim 2B: Neo-Sinus Flow with LAMPOON ..... 123
7.2.3 Clinical and Engineering Implications ..... 126
7.2.4 Limitations ..... 127
CHAPTER 8. Conclusions and Future Work ..... 130
8.1 Specific Aim 1 ..... 130
8.1.1 Conclusions ..... 130
8.1.2 Future Work ..... 130
8.2 Specific Aim 2 ..... 130
8.2.1 Conclusions ..... 131
8.2.2 Future Work ..... 131
CHAPTER 9. Funding and Other Support ..... 133
APPENDIX A. Assembly Guide - Dynamically Contracting Annulus Motor and
Controller 134
A. 1 Motor and Controller Wiring ..... 134
A. 2 H-Bridge Controller Settings ..... 140
A. 3 PID+ Controller Tuning ..... 141
A. 4 Input Waveform Data and Graphs ..... 143
APPENDIX B. Assembly Guide - Left Ventricle Box Chamber ..... 150
B. 1 Assembly LV Box Chamber ..... 150
B. 2 Assemble AV/Aorta and MV/Atrium and Deploy GT-TAV ..... 154
B. 3 Electrical Wiring ..... 160
B. 4 Add Fluid and Tune Phantom ..... 163
APPENDIX C. Manufacturing Guide - Georgia Tech Transcatheter Aortic Valve ..... 165
C. 1 Stent Manufacturing ..... 166
C. 2 Retaining Ring Manufacturing ..... 169
C. 3 Pericardium Fixation ..... 171
C. 4 Valve Assembly ..... 171
APPENDIX D. Experimental Protocol - High-Speed Particle Image Velocimetry 177
D. 1 Hardware Configuration ..... 177
D. 2 Data Collection - DaVis ..... 184
APPENDIX E. Processing Protocol - Specific Aim 2 ..... 193
E. 1 High-Speed Particle Image Velocimetry - DaVis ..... 193
E.1.1 HSPIV - DaVis 8.4 - Specific Aim 2A ..... 193
E.1.2 HSPIV - DaVis 10 - Specific Aim 2B ..... 197
E. 2 High-Speed Particle Image Velocimetry - MATLAB and Tecplot 360 ..... 203
APPENDIX F. Raw Data - Specific Aim 1 ..... 207
F. 1 Motor Tracking Raw Results ..... 207
F. 2 Echocardiography Tracking Raw Results ..... 217
F. 3 Bar Graph Raw Results ..... 218
F. 4 Strain Maps ..... 221
APPENDIX G. Raw Data - Specific Aim 2 ..... 231
G. 1 Specific Aim 2A - Peak Systolic LVOT Average Velocity ..... 231
G. 2 Specific Aim 2A - Maximum VSS ..... 232
G. 3 Specific Aim 2A - Maximum Principal RSS ..... 234
G. 4 Specific Aim 2A - Maximum TKE ..... 235
G. 5 Specific Aim 2B - Neo-Sinus Particle Tracking ..... 237
APPENDIX H. Drawings and Parts - Specific Aim 1 ..... 267
H. 1 Specific Aim 1 - Experiment A ..... 267
H. 2 Specific Aim 2 - Experiment B ..... 270
APPENDIX I. Drawings and Parts - Specific Aim 2 ..... 274
I. 1 Left Ventricle Box Chamber ..... 274
I. 2 Left Ventricle Aorto-Mitral Insert ..... 297
I. 3 Georgia Tech - Transcatheter Aortic Valve ..... 301
APPENDIX J. Labview Codes - Specific Aim 1 ..... 302
J. 1 Dynamically Contracting Annulus.vi ..... 302
APPENDIX K. MATLAB Codes - Specific Aim 1 ..... 307
K. 1 Datasnatch.m ..... 307
APPENDIX L. MATLAB Codes - Specific Aim 2 ..... 309
L. 1 BinAVG.m ..... 309
L. 2 ScalingData.m ..... 313
L. 3 PhaseAvgBinnedData.m ..... 315
L. 4 Extract_min_max_avg_vel_TFE.m ..... 317
L. 5 PIV_Renaming_v1.m ..... 319
L. 6 PIV_Organizing_final_v1.m ..... 320
L. 7 Master_PIV2_TFE_new.m ..... 322
L. 8 ParticleTrackingTecplotToExcelAndEPS_TFE.m ..... 327
L. 9 ParticleTrackingWashout.m ..... 330
APPENDIX M. Tecplot Codes - Specific Aim 2 ..... 332
M. 1 neo_mma.m ..... 332
M. 2 neo_vel.m ..... 333
M. 3 neo_fmech.m ..... 335
REFERENCES ..... 338

## LIST OF TABLES

Table 5-1. Specific Aim 2 Experimental Matrix ..... 68
Table 6-1. Resultant accuracy of measured motor displacements compared to their desired waveforms. ..... 75
Table 6-2. Measured mean $\pm$ SEM annular area of contractile states from 4-D echocardiography compared to the desired annular area. ..... 76
Table 7-1. Average and maximum velocities within the neo-sinus for the cycle- maximum velocity magnitudes. Helps quantify Figure 7-26. ..... 110
Table 7-2. Average and maximum velocities within the neo-sinus for the mid- systolic velocity fields. Helps quantify Figure 7-28. ..... 112
Table 7-3. Average and maximum velocities within the neo-sinus for the cycle- average velocity magnitudes. Helps quantify Figure 7-30. ..... 114
Table 7-4. Average and maximum velocities within the neo-sinus for the mid- systolic velocity fields. Helps quantify Figure 7-32. ..... 116
Table A-1. Wire numbering legend and description. ..... 135
Table A-2. Effects of increasing each respective gain value. ..... 142
Table A-3. Ziegler-Nicholas tuning method equations to calculate gain constants with ultimate gain and period of oscillation ..... 143
Table A-4. Healthy inputs for DCA code, scaled to max displacement of 0.5 cm . Note: the first column is time (ms), second is displacement (cm), and third through fifth are inputs for a spline fit function in LabVIEW over 856 ms cardiac cycle. ..... 145
Table A-5. Ischemic inputs for DCA code, scaled to max displacement of 0.2 cm . Note: the first column is time ( ms ), second is displacement ( cm ), and third through fifth are inputs for a spline fit function in LabVIEW over 856 ms cardiac cycle. ..... 146
Table A-6. Myxomatous inputs for DCA code, not scaled to any particular displacement. Note: the first column is time (ms), second is displacement (cm), and third through fifth are inputs for a spline fit function in LabVIEW over 856 ms cardiac cycle. ..... 147
Table F-1. $\quad$ Specific Aim 1 raw motor tracking results pertaining to Figure 4-1. ..... 207
Table F-2. Specific Aim 1 echocardiography tracking raw results pertaining to Figure 6-2. ..... 217
Table F-3. $\quad$ Specific Aim 1 Experiment A raw results pertaining to Figure 6-3. ..... 218
Table F-4. Specific Aim 1 Experiment B raw results pertaining to Figure 6-5. ..... 219
Table F-5. Specific Aim 1 Experiment A raw data pertaining to Figure 6-4 Healthy state. ..... 221
Table F-6. $\quad$ Specific Aim 1 Experiment A raw data pertaining to Figure 6-4 Diseased state. ..... 223
Table F-7. Specific Aim 1 Experiment B raw data pertaining to Figure 6-6 Healthy state ..... 225
Table F-8. Specific Aim 1 Experiment B raw data pertaining to Figure 6-6 Static-Min state ..... 227
Table F-9. Specific Aim 1 Experiment B raw data pertaining to Figure 6-6 Static-Max state. ..... 229
Table G-1. 50/50 Short AML peak systolic LVOT average velocity at all LAMPOON and CO conditions. ..... 231
Table G-2. 50/50 Long AML peak systolic LVOT average velocity at all LAMPOON and CO conditions. ..... 231
Table G-3. 80/20 Long AML peak systolic LVOT average velocity at all LAMPOON and CO conditions. ..... 231
Table G-4. Combined average of Long AML peak systolic LVOT average velocity at all LAMPOON and CO conditions. ..... 232
Table G-5. 50/50 Short AML maximum VSS and time it occurred at all LAMPOON and CO conditions. ..... 232
Table G-6. 50/50 Long AML maximum VSS and time it occurred at all LAMPOON and CO conditions. ..... 233
Table G-7. 80/20 Long AML maximum VSS and time it occurred at all LAMPOON and CO conditions. ..... 233
Table G-8. Combined average of all deployment and AML lengths maximum VSS and time it occurred at all LAMPOON and CO conditions. ..... 233
Table G-9. 50/50 Short AML maximum principal RSS and time it occurred at all LAMPOON and CO conditions. ..... 234
Table G-10. 50/50 Long AML maximum principal RSS and time it occurred at all LAMPOON and CO conditions ..... 234
Table G-11. 50/50 Short AML maximum principal RSS and time it occurred at all LAMPOON and CO conditions. ..... 234
Table G-12. Combined average of all deployment heights and AML lengths maximum principal RSS and time it occurred at all LAMPOON and CO conditions. ..... 235
Table G-13. 50/50 Long AML maximum TKE and time it occurred at all LAMPOON and CO conditions. ..... 235
Table G-14. 50/50 Long AML maximum TKE and time it occurred at all LAMPOON and CO conditions. ..... 236
Table G-15. 80/20 Long AML maximum TKE and time it occurred at all LAMPOON and CO conditions ..... 236
Table G-16. Combined average of all deployment heights and AML lengths maximum TKE and time it occurred at all LAMPOON and CO conditions. ..... 236
Table G-17. 80/20 Long AML neo-sinus particle tracking results for $2.5 \mathrm{~L} / \mathrm{min}$. ..... 237
Table G-18. 80/20 Long AML neo-sinus particle tracking results for $5.0 \mathrm{~L} / \mathrm{min}$. ..... 247
Table G-19. 80/20 Long AML neo-sinus particle tracking results for $6.5 \mathrm{~L} / \mathrm{min}$. ..... 256
Table H-1. List of parts to make dynamically contracting annulus (DCA) for the box left heart chamber. ..... 267
Table H-2. List of parts to make dynamically contracting annulus (DCA) for the cylindrical left heart chamber. ..... 271
Table I-1. List of parts to make left ventricle box chamber. ..... 274

## LIST OF FIGURES

Figure 2-1. Diagram of the circulatory system highlighting the systemic loop and capillary exchange between arteries and veins (modified from Iaizzo et al. ${ }^{20}$ ).5

Figure 2-2. Four chamber and four valve anatomical view of the heart (modified from medlineplus.com and Carpentier et al. ${ }^{21}$ ).6

Figure 2-3. Mitral valve open during diastolic filling and closed during systolic ejection of the left ventricle (modified from Carpentier et al. ${ }^{21}$ ).7

Figure 2-4. Detailed diagram of mitral valve leaflet, annular plane, and subvalvular apparatus (chordae tendineae and papillary muscles) (modified from Carpentier et al. ${ }^{21}$ ).9

Figure 2-5. Histological cross-section of mitral leaflet. ${ }^{23}$............................................ 11
Figure 2-6. Diagram illustrating the stress-strain relationship and fiber orientation of the mitral valve leaflets (modified from Toma et al. ${ }^{24}$ ).

Figure 2-7. Three dimensional representation of the mitral valve annulus (modified from Jolley et al. ${ }^{27}$ ).13
$\begin{array}{ll}\text { Figure 2-8. } & \begin{array}{l}\text { Normalized in vivo human measurements of annular motion } \\ \text { throughout the cardiac cycle (modified from Levack et al. }{ }^{25} \text { ).................. } 14\end{array}\end{array}$
Figure 2-9. Diagram showing variety of annular structure between patients (modified from Angelini et al. ${ }^{28}$ ).15

Figure 2-10. Diagram of chordae tendineae classification with papillary muscles: marginal, intermediary, and basal (modified from Carpentier et al. ${ }^{21}$ and Rabbah et al. ${ }^{23}$ ).15

Figure 2-11. Illustration of selected morphologies of papillary muscles and chordal insertions (modified from Carpentier et al. ${ }^{21}$ ).17

Figure 2-12. Illustrations of mitral regurgitation examples (modified from
Carpentier et al. ${ }^{21}$ ). ..... 18
Figure 2-13. Illustration of mitral stenosis examples (modified from Carpentier et al. ${ }^{21}$ ). ..... 20

$$
\begin{array}{ll}
\text { Figure 2-14. } & \text { Diagram of surgical mitral annuloplasty repair. (A) Suturing rigid } \\
\text { ring into a dilated annulus, (B) resulting downsized annulus with } \\
\text { proper leaflet coaptation (modified from Carpentier et al. }{ }^{21} \text { )................... } 22
\end{array}
$$

Figure 2-15. Surgical On-X mechanical heart valve (CryoLife, Atlanta, GA) and
Magna Mitral Ease bioprosthetic heart valve (Edwards Lifesciences,
Irvine, CA), and diagram of a bioprosthetic mitral valve replacement
being sutured into the mitral annulus. ..... 23

Figure 2-16. Overview of current transcatheter mitral valve repair (TMVr)
devices that have been CE marked (modified from Saccocci et al. ${ }^{53}$ ). ..... 26

Figure 2-17. Overview of current transcatheter mitral valve replacement
(TMVR) devices that have been implanted in humans (modified
from Saccocci et al. ${ }^{53}$ ). ..... 27
Figure 2-18. Graphical drawings of transcatheter mitral valve approaches. ${ }^{72}$ ..... 30
Figure 2-19. Example of mitral valve-in-valve deployment using a Sapien XT transcatheter aortic valve (Edwards Lifesciences, Irvine, California) and Carpentier surgical mitral valve (Edwards Lifesciences). ${ }^{73}$. ..... 31
Figure 2-20. Example of mitral valve-in-ring deployment using a Sapien XT transcatheter aortic valve (Edwards Lifesciences, Irvine, California) and semi-rigid Physio mitral annuloplasty ring (Edwards Lifesciences). ..... 32
Figure 2-21. Selected risks of LVOT obstruction from Blanke et al. ${ }^{14}$ (risk increases from green to red) ..... 34
Figure 2-22. Diagram of LAMPOON procedure from Babaliaros et al.: (A) TMV inserted displacing AML, (B) post-LAMPOON AML separation, (C-E) Guidewires inserted into LV via aorta, electrified to puncture AML and ensnared, then electrified and pulled to lacerate AML (modified from Babaliaros et al. ${ }^{19}$ ). ..... 36
Figure 2-23. Basic schematic of in vitro rigid chamber left heart model. ${ }^{90}$ ..... 37
Figure 2-24. Basic schematic of in vitro flexible chamber left heart model. ${ }^{90}$ ..... 39
Figure 4-1. Schematic of left heart simulator complete flow loop with cylindrical chamber for ovine valves ..... 44
Figure 4-2. Ovine left heart chamber ..... 46
Figure 4-3. Porcine left heart chamber. ..... 46

$$
\begin{aligned}
& \text { Figure 4-4. Simplified diagram of the ovine dynamically contracting annulus } \\
& \text { (DCA) setup with the ovine annulus plate centered between the wire } \\
& \text { attachments at the ends of the linear actuators. Cam levers are used } \\
& \text { to secure the steel wire imaged in green. .................................................. } 47
\end{aligned}
$$

Figure 4-5. Porcine dynamically contracting annulus (DCA) plate. (A) atrial
side. (B) ventricular side ..... 48

Figure 4-6. Ovine dynamically contracting annulus (DCA) plate. (A) atrial side.
(B) ventricular side ..... 48
Figure 4-7. Excision and mounting of the full mitral valve apparatus. ..... 50
Figure 4-8. Ovine mitral valve leaflet marked with tissue dye forstereophotogrammetry. 3x3 grid used for strain measurementshighlighted.54
Figure 5-1. Complete realistic left heart simulator (RLHS) flow loop. ..... 56
Figure 5-2. Complete LV box chamber assembly with LV phantom. ..... 57
Figure 5-3. Schematic of the LV phantom and dimensionality of the sphericity index (modified from Okafor ${ }^{103}$ ). ..... 59
Figure 5-4. 3-D printed LV insert with Long AML, $0 \%$ LAMPOON 3-D printed MV glued in place. ..... 60
Figure 5-5. 3-D printed, transparent MV leaflets modeling three LAMPOON geometries $(0 \%, 50 \%$, and $100 \%)$ with Short AML ..... 61
Figure 5-6. Models of three LAMPOON geometries ( $0 \%$, $50 \%$, and $100 \%$ ) withLong AML geometry and an image of $100 \%$ LAMPOON withporcine MV and SAPIEN 3 deployed at 80/20 ventricle/atrium ratio.The A2 scallop is lacerated allowing the AML to be pulled open bythe TAV stent frame and the AML chordae.62

Figure 5-7. Open 29 mm GT-TAV without retaining ring alongside closed 29 mm SAPIEN 3. The extra length at the bottom of the GT-TAV is for assembly purposes and is accounted for with regards to deployment height.63

Figure 5-8. Diagram showing anatomical orientation of the PIV image plane. The image plane is the LV central long-axis which slices down from the A2-P2 of the MV.65
Figure 5-9. Diagram of the U-tube viscometer used to measure viscosity of the water-glycerin solution. ..... 67

Figure 5-10. Raw camera image from SA2A showing SA2A (orange) and SA2B
(blue) regions of interest. SA2A focuses on the whole LV while
SA2B focuses on the MV neo-sinus. ..... 71
Figure 5-11. Raw camera image from SA2A with raw camera image from SA2B. The camera is moved closer between SA2A and SA2B to focus on the MV neo-sinus (outlined in green) while maximizing resolution. ..... 72
Figure 6-1. Comparison of desired and measured displacements of a single linear actuator starting with systole for plate type - waveform. ..... 74
Figure 6-2. Echocardiographic image showing annular contraction from diastole to systole (see Table 6-2 for results) ..... 75
Figure 6-3. (Experiment A) Anterior leaflet resultant mean $\pm$ SEM Green areal strain between annular contractile states: healthy and diseased. ..... 77
Figure 6-4. (Experiment A) Anterior leaflet resultant Green areal strain map between annular contractile states: healthy and diseased. ..... 78
Figure 6-5. (Experiment B) Anterior leaflet resultant mean $\pm$ SEM Green areal strain between annular states: healthy, static-min, and static-max. ..... 78
Figure 6-6. (Experiment B) Anterior leaflet resultant Green areal strain map between annular states: healthy, static-min, and static-max ..... 79
Figure 7-1. Diagram of Long AML raw image for better anatomical reference when looking at Specific Aim 2A PIV results. Orange is the PIV ROI and the AML and GT-TAV are masked out. ..... 83
Figure 7-2. Velocity fields with instantaneous streamlines at peak systole at 2.5 L/min at each condition. ..... 85
Figure 7-3. Velocity fields with instantaneous streamlines at peak systole at 5.0 L/min at each condition. ..... 86
Figure 7-4. Velocity fields with instantaneous streamlines at peak systole at 6.5 L/min at each condition. ..... 87
Figure 7-5. Average LVOT velocities at peak systole at each condition. ..... 88
Figure 7-6. Average LVOT velocities at peak systole averaged across both Long AML conditions (80/20 and 50/50 ventricular/atrial) ..... 89
Figure 7-7. Frames containing maximum VSS in the cardiac cycle at $2.5 \mathrm{~L} / \mathrm{min}$ for each condition ..... 90
Figure 7-8. Frames containing maximum VSS in the cardiac cycle at $5.0 \mathrm{~L} / \mathrm{min}$ for each condition ..... 91
Figure 7-9. Frames containing maximum VSS in the cardiac cycle at $6.5 \mathrm{~L} / \mathrm{min}$ for each condition ..... 92
Figure 7-10. Maximum VSS in the LV over the cardiac cycle at each condition. ..... 93
Figure 7-11. Maximum VSS in the LV over the cardiac cycle averaged across all AML and deployment conditions. ..... 94
Figure 7-12. Frames containing maximum principal RSS in the cardiac cycle at $2.5 \mathrm{~L} / \mathrm{min}$ for each condition. ..... 95
Figure 7-13. Frames containing maximum principal RSS in the cardiac cycle at 5.0 L/min for each condition. ..... 96
Figure 7-14. Frames containing maximum principal RSS in the cardiac cycle at 6.5 L/min for each condition ..... 97
Figure 7-15. Maximum principal RSS over the cardiac cycle at each condition. ..... 98
Figure 7-16. Maximum principal RSS over the cardiac cycle averaged across all AML and deployment conditions. ..... 99
Figure 7-17. Frames containing maximum TKE in the cardiac cycle at $2.5 \mathrm{~L} / \mathrm{min}$ for each condition. ..... 100
Figure 7-18. Frames containing maximum TKE in the cardiac cycle at $5.0 \mathrm{~L} / \mathrm{min}$ for each condition ..... 101
Figure 7-19. Frames containing maximum TKE in the cardiac cycle at $6.5 \mathrm{~L} / \mathrm{min}$ for each condition ..... 102
Figure 7-20. Maximum TKE over the cardiac cycle across at each condition. ..... 103
Figure 7-21. Maximum TKE over the cardiac cycle averaged across all AML and deployment conditions. ..... 104
Figure 7-22. Vorticity fields with instantaneous streamlines at mid-diastole at 2.5 $\mathrm{L} / \mathrm{min}$ at each condition. ..... 105
Figure 7-23. Vorticity fields with instantaneous streamlines at mid-diastole at 5.0 L/min at each condition. ..... 106
Figure 7-24. Vorticity fields with instantaneous streamlines at mid-diastole at 6.5 L/min at each condition. ..... 107

Figure 7-25. Diagram of Long AML raw image for better anatomical reference when looking at Specific Aim 2B PIV results. Blue is the PIV ROI, red is anterior mitral neo-sinus, and the AML and GT-TAV leaflet is masked out

Figure 7-26. Cycle-maximum velocity magnitudes in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs ( $2.5,5.0$, and $6.5 \mathrm{~L} / \mathrm{min}$ ).109

Figure 7-27. Average velocities within the neo-sinus for the cycle-maximum velocity magnitudes. Helps quantify Figure 7-26.

Figure 7-28. Mid-Systolic velocity fields in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs ( $2.5,5.0$, and $6.5 \mathrm{~L} / \mathrm{min}$ ).

Figure 7-29. Average velocities with the neo-sinus for the mid-systolic velocity fields. Helps quantify Figure 7-28.

Figure 7-30. Cycle-average velocity magnitudes in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs ( $2.5,5.0$, and $6.5 \mathrm{~L} / \mathrm{min}$ ).

Figure 7-31. Average velocities within the neo-sinus for the cycle-average velocity magnitudes. Helps quantify Figure 7-30.114

Figure 7-32. Mid-Diastolic velocity fields in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs $(2.5,5.0$, and $6.5 \mathrm{~L} / \mathrm{min})$.

Figure 7-33. Average velocities within the neo-sinus for the mid-systolic velocity fields. Helps quantify Figure 7-32.116

Figure 7-34. 20 particle pathlines in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs ( $2.5,5.0$, and $6.5 \mathrm{~L} / \mathrm{min}$ )

Figure 7-35. Particle washouts between LAMPOON conditions at different flow rates. Particles were seeded 200 ms into diastole.

Figure 7-36. Cross-sectional view of the LVOT between $0 \%$ and $100 \%$ LAMPOON. Red, dashed line is the cross-sectional cut of the LVOT and the orange, dashed line is the central, long-axis plane at which we imaged.

Figure 7-37. "Hellums' shear stress-exposure time threshold required to activate platelets, with some additional data." (Taken from Fraser et al.) ${ }^{116}$.. 122

$$
\begin{aligned}
& \text { Figure 7-38. Velocity contour of the neo-sinus with } 50 \% \text { LAMPOON with Long } \\
& \text { AML at 80/20 deployment highlighting the minimum point you may } \\
& \text { need to lacerate for washout benefits (leaflet edge) and the limiting } \\
& \text { point for washout (skirt line)............................................................... } 125
\end{aligned}
$$

Figure A-1. Wiring diagram for a single motor configuration. See for Table A-1 details ..... 134
Figure A-2. Single power supply wiring figure. See for Table A-1 details. ..... 137
Figure A-3. Single H-Bridge controller wiring figure. See for Table A-1 details. ..... 138
Figure A-4. Single motor wiring figure. See for Table A-1 details. ..... 139
Figure A-5. DAQ wiring figure. NI 6269 - Voltage Output; NI 9239 - Voltage Input. See for Table A-1 details ..... 140
Figure A-6. List of settings for the H -Bridge Controller ..... 141
Figure A-7. Average circumferential motion of the annulus over the cardiac cycle normalized to size at the beginning of diastole. Black $=$ Normal, Blue $=$ Ischemic, Red $=$ Myxomatous. ${ }^{25}$ ..... 144
Figure B-1. (A) Gasket on box chamber side; (B) gasket on inside; (C) LV disassembled, (D) LV phantom placed onto LV box. ..... 151
Figure B-2. Placement of LV insert into the aorto-mitral top plate. (A) laying down dental glue and (B) finished placement. ..... 152
Figure B-3. (A) Top placed over phantom; (B) Order of screwing MV side, from green to red; (C) Order of screwing AV side, from green to red ..... 153
Figure B-4. Set-up for leak test. ..... 154
Figure B-5. (A) Circular spacers placed into atrium; (B) Block spacer placed between atrium and MV/atrium plate; (C) MV/atrium plate screwed onto the block spacer and atrium. ..... 155
Figure B-6. (A) Showing the stent posts and aortic sinuses of the aorta chamber; (B) AV BHV in position; (C) spacers inserted; (D) dental glue applied and gasket covering it; (E) AV/aorta plate screwed down to aorta chamber ..... 157
Figure B-7. Insertion of catheter through AV from Aorta before assembly to chamber. ..... 158

$$
\begin{array}{ll}
\text { Figure B-8. (A) Showing orientation and direction to insert GT-TAV into the } \\
\text { LV insert; (B) Showing resultant deployment of GT-TAV with } \\
\text { deployment spacer pushed in behind it................................................. } 159
\end{array}
$$

Figure B-9. Assembly of AV/aorta and MV/atrium to the LV box. ..... 160
Figure B-10. Rear of pressure transducer conditioner/amplifier ..... 161
Figure B-11. (A) Notice the respective numbering on the BNC analog-out cords; (B) Analog-in channels on the cDAQ ..... 162
Figure B-12. (A) Flow probe conditioner/amplifier; (B) Analog-in channels on cDAQ . Orange $=$ flow probe inputs, Green $=$ connection between flow box and cDAQ. ..... 163
Figure B-13. Funnel goes above vertical tube to fill pump line. Air comes out of the tap (circled in yellow) at the top of the box. ..... 164
Figure C-1. Example of GT-TAV stent frame post laser cut. ..... 167
Figure C-2. Machined aluminum mandrels specified to the internal diameter of the GT-TAV and machined clamps specified to the external diameter of the GT-TAV. ..... 168
Figure C-3. Example of finished GT-TAV stent frame. ..... 169
Figure C-4. Example of GT-TAV retaining ring and the 3-D printed mold to make it. ..... 170
Figure C-5. Diagram of GT-TAV orientation. ..... 173
Figure C-6. Diagram of the back-stitch sewing technique ..... 173
Figure C-7. Image of GT-TAV leak test with a plastic tube full of water and a 29 mm GT-TAV plugging the bottom. Note: the valve shows good coaptation ..... 175
Figure C-8. Diagram of different varieties of finished GT-TAVs. ..... 176
Figure D-1. High-speed PIV hardware configuration ..... 178
Figure D-2. Rear of high-speed controller. ..... 180
Figure D-3. Rear of Phantom VEO 340L camera. ..... 181
Figure D-4. Primary view of high-speed scanner and laser. ..... 182
Figure D-5. Secondary view of high-speed scanner and laser system highlighting adjustable traverse system and laser sensor. ..... 183
Figure D-6. Starting window where you create a new project. ..... 185
Figure D-7. Project window for PIV where you access tasks such as recording, scaling/ calibration, and processing. ..... 186
Figure D-8. Recording window for PIV acquisition. ..... 187
Figure D-9. Record window zoomed in on Device Settings. ..... 188
Figure D-10. Recording window zoomed in on Intensity Calibration and Live Mode. ..... 189
Figure D-11. Manager tab in PCC 2.8 for resetting camera to factory defaults ..... 190
Figure D-12. Live tab in PCC 2.8 for opening and closing the camera shutter. ..... 191
Figure D-13. Recording window zoomed in on Intensity Calibration and Recording ..... 192
Figure E-1. Example of a Mask Out Image operation for Specific Aim 2A. Geometric and algorithmic masks were used. ..... 194
Figure E-2. Example of Subtract Time Filter operation for Specific Aim 2A. ..... 195
Figure E-3. Example of PIV Time-Series operation for Specific Aim 2A. ..... 196
Figure E-4. Example of Vector Postprocessing for Specific Aim 2A. ..... 197
Figure E-5. Example of Mask Out Image operation with only geometric mask for Specific Aim 2B. ..... 198
Figure E-6. Example of Mask Out Image operation with geometric and algorithmic masks for Specific Aim 2B ..... 199
Figure E-7. Example of Subtract Time Filter operation for Specific Aim 2B. ..... 200
Figure E-8. Example of PIV operation for Specific Aim 2B. ..... 202
Figure E-9. Example of Vector Post-processing operation for Specific Aim 2B ..... 203
Figure H-1. Drawing of the top plate of the dynamically contracting annulus (DCA) for the box left heart chamber. ..... 268
Figure H-2. Drawing of the bottom plate of the dynamically contracting annulus (DCA) for the box left heart chamber. ..... 269
Figure H-3. Motor block for attaching the wire via a cam lever. ..... 270
Figure H-4. Drawing of the top plate of the dynamically contracting annulus (DCA) for the cylinder left heart chamber. ..... 272
Figure H-5. Drawing of the bottom plate of the dynamically contracting annulus (DCA) for the cylinder left heart chamber ..... 273
Figure I-1. Part 1-a drawing. ..... 275
Figure I-2. Part 1-b drawing. ..... 276
Figure I-3. Part 1-c drawing. ..... 277
Figure I-4. Part 1-d drawing. ..... 278
Figure I-5. Part 2-a drawing. ..... 279
Figure I-6. Part 2-b drawing. ..... 280
Figure I-7. Part 2-c drawing. ..... 281
Figure I-8. Part 3-a drawing ..... 282
Figure I-9. Part 3-b drawing ..... 283
Figure I-10. Part 3-c drawing. ..... 284
Figure I-11. Part 4-a drawing. ..... 285
Figure I-12. Part 4-b drawing ..... 286
Figure I-13. Part 4-c drawing. ..... 287
Figure I-14. Part 5-a drawing. ..... 288
Figure I-15. Part 5-b drawing. ..... 289
Figure I-16. Part 5-2a drawing. ..... 290
Figure I-17. Part 5-2b drawing. ..... 291
Figure I-18. Part 6 drawing. ..... 292
Figure I-19. Part 7 drawing. ..... 293
Figure I-20. Part 8 drawing ..... 294
Figure I-21. Part 10 drawing ..... 295
Figure I-22. Part 11 drawing ..... 296
Figure I-23. LV Insert 1a drawing. ..... 298
Figure I-24. LV Insert 1b drawing. ..... 299
Figure I-25. LV Insert 2 drawing. ..... 300
Figure I-26. 29 mm GT-TAV stent frame drawing. ..... 301
Figure J-1. Initial State of DCA LabVIEW code ..... 303
Figure J-2. Run State of DCA LabVIEW code. ..... 304
Figure J-3. Blocks within the Run State of DCA LabVIEW code. ..... 305
Figure J-4. Save and Stop state of the DCA LabVIEW code. ..... 306

## LIST OF SYMBOLS AND ABBREVIATIONS

| AML | Anterior Mitral Leaflet |
| :---: | :---: |
| AS | Aortic Stenosis |
| AV | Aortic Valve |
| BHV | Bioprosthetic Heart Valve |
| HSPIV | High-Speed Particle Image Velocimetry |
| IMR | Ischemic Mitral Regurgitation |
| LA | Left Atrium |
| LV | Left Ventricle |
| LVOT | Left Ventricular Outflow Tract |
| LVOTO | Left Ventricular Outflow Tract Obstruction |
| MA | Mitral Annuloplasty |
| MR | Mitral Regurgitation |
| MS | Mitral Stenosis |
| MV | Mitral Valve |
| PM | Papillary Muscle |
| TAV | Transcatheter Aortic Valve |
| TAVR | Transcatheter Aortic Valve Replacement |
| TMV | Transcatheter Mitral Valve |
| TMVR | Transcatheter Mitral Valve Replacement |
| $\mu \mathrm{CT}$ | Micro-Computed Tomography |
| VIM | Valve-in-MAC |
| VIR | Valve-in-Ring |

VIV Valve-in-Valve

## SUMMARY

Restrictive annuloplasty rings are a standard mitral valve repair procedure for ischemic mitral regurgitation (MR), however there is a high incidence of recurrent MR. With this recurrent MR, there is a need to understand the restrictive effects from an annuloplasty on the MV leaflets. The first goal of this dissertation is to study the effects of annular dynamics on the mitral leaflets and its restriction. To accomplish this, an MV in vitro model with a dynamically contracting annulus will be designed and used to compare leaflet strain between varying contractile states. These, now, high-risk patients with failed MV repairs and replacements created a demand for percutaneous MV interventions. With no dedicated devices currently on the market, clinicians have resorted to placing transcatheter aortic valves (TAV) into mitral annular calcification (valve-in-MAC), failing mitral bioprosthetic valves (valve-in-valve), and failing mitral annuloplasty rings (valve-in-ring). Currently, there are no official clinical guidelines, and no quantitative engineering studies have been conducted to better understand performance and risks. Percutaneous laceration of the anterior mitral leaflet (LAMPOON) is a proposed proactive solution to the risk of left ventricular outflow tract (LVOT) obstruction. The second goal of this dissertation includes designing and performing in vitro experiments to evaluate and quantify benefits of LAMPOON on LVOT obstruction and thrombosis. These goals will provide insight into potential causes of recurrent MR with annuloplasty rings, and an indepth quantitative assessment of the benefits of LAMPOON with transcatheter mitral valve replacements. These will better inform procedural guidelines and medical device design, as well as provide further insight into MV biomechanics and advanced platforms for future

MV in vitro studies. In Specific Aim 1, a novel dynamically contracting annulus was developed for in vitro studies. It was subsequently found that healthy contraction provided lower strains on the anterior mitral leaflet (AML) than diseased contraction and static conditions. The findings suggested that maintaining annular dynamics during MV repair procedures could improve loading on the AML. In Specific Aim 2, a novel LAMPOON model was incorporated into a modified LV phantom for in vitro studies. Results found that LAMPOON can lower velocities in the LVOT, lower maximum VSS in the LV, and increase flow into the anterior neo-sinus during diastole. Combined, the findings suggested that LAMPOON could aid in preventing LVOT obstruction and reduce the risk of thrombosis in the anterior neo-sinus.

## CHAPTER 1. INTRODUCTION

The heart is the central part of the cardiovascular system, consisting of a left and right side acting as two pumps in series. Each side has two chambers (atrium and ventricle) and two valves. The smaller right side of the heart receives blood from the body into the right atrium with the right ventricle pumping it to the lungs for reoxygenation. The larger left side receives blood from the lungs into the left atrium and pumps to the body via the left ventricle. Between the left atrium and left ventricle there is a bi-leaflet valve known as the mitral valve. The mitral valve's purpose is to maintain unidirectional flow between the left atrium and ventricle and consists of four major components: annulus, leaflets, chordae tendineae, and papillary muscles. The mitral valve's complex structure allows it to operate under the highest loading in the heart, with any changes in its four major components leading to failure.

Two major endpoints of failure are mitral stenosis (MS) and regurgitation (MR). Stenosis is when the valve cannot completely open during filling (diastole), while regurgitation is when the valve cannot completely close during ejection (systole). Stenosis and regurgitation can be induced through primary/tissue and secondary/structural diseases. Stenosis is usually caused through valvular calcification, but the more prevalent regurgitation is caused by a host of primary and secondary diseases. Primary MR stems from tissue related conditions such as congenital, degenerative, or bacterial diseases creating suboptimal coaptation from changes in the valve itself. Secondary MR is created when the surrounding structures of the otherwise healthy valve are altered creating improper coaptation, e.g. ischemia or a myocardial infarction thinning the left ventricular
wall causing the papillary muscles and the annulus to dilate resulting in ischemic mitral regurgitation (IMR).

In order to correct these pathophysiologic conditions, clinicians have developed surgical and interventional, repair and replacement procedures. One surgical repair commonly done to correct mitral regurgitation is the insertion of a mitral annuloplasty ring. The annuloplasty ring attempts to addresses the issue of improper leaflet closure (coaptation) by restructuring the mitral annulus into a shape that would induce better coaptation. For IMR, this is typically done by downsizing the annulus into a smaller orifice using a rigid annuloplasty ring, thus bringing the leaflets closure together and keeping the annulus that new size and shape. Implantation of an annuloplasty ring restricts the motion of the mitral valve throughout the cardiac cycle, with stiffer rings imparting more severe restriction. Although this surgical repair is an effective treatment, studies have shown MR recurrence as high as $30 \%$ in patients with IMR within the first 6 months after operation. ${ }^{1,}$ ${ }^{2}$ Assessment of annular dynamics and its effect on the MV leaflets could help in further understanding the incidence of recurrent MR and long-term MV repair outcomes of the annuloplasty procedure.

A surgeon may also opt to replace the mitral valve with a bioprosthetic or mechanical valve. These replacement mitral valves are sutured into the annulus to take over the function of the diseased valve. These surgical repairs and replacements are initially done on low-risk patients, ${ }^{3}$ however, these procedures can result in recurrent MR or MS that need further treatment with patients that are likely now at high-risk for surgery. These patient groups created a pertinent demand for percutaneous MV interventions. With no dedicated devices currently on the market for transcatheter mitral valves, clinicians have
resorted to placing transcatheter aortic valves (TAV) into mitral annular calcification (valve-in-MAC),,${ }^{4-7}$ mitral bioprosthetic valves (valve-in-valve), ${ }^{7-9}$ and mitral annuloplasty rings (valve-in-ring) ${ }^{10-12}$

Left ventricular outflow tract (LVOT) obstruction and leaflet thrombosis are potential risks from transcatheter valve replacement in the MV. ${ }^{13-17}$ _ENREF_12 This is due to the anterior mitral leaflet (AML) being permanently displaced into the LVOT by the stent of the transcatheter valve. Additionally, the AML also covers the stent frame creating a neo-sinus between the AML and TAV leaflets in danger of flow stasis. One way to proactively relieve these risks is through prior surgical resection of the A2 scallop during placement of a surgical prosthetic MV. ${ }^{18}$ Another is through a new percutaneous laceration of the A2 scallop known as LAMPOON. ${ }^{19}$ Both the use of transcatheter prosthetic valves in the mitral position and the idea to relieve LVOT obstruction to at risk patients are developing areas. Assessment of how laceration of the AML affects the flow in the LV, LVOT, and neo-sinus with a transcatheter mitral valve could help in further understanding their effects and long-term outcomes.

The overall objectives of the present research were to develop new in vitro simulators to better understand the effects of annular dynamics on the AML as well as laceration of the AML with a transcatheter valve replacement on LV flow. Once developed, experiments were conducted to measure how annular contraction plays a role in AML strain and how AML laceration can affect the flow in the LV, LVOT, and neo-sinus with the transcatheter valve. The results from these experiments may help guide annuloplasty ring design and clinical procedure standards, as well as provide a better physiologic understanding of the mitral valve.

## CHAPTER 2. BACKGROUND

### 2.1 The Cardiovascular System and the Heart

### 2.1.1 The Cardiovascular System

The cardiovascular system is an organ system of the human body. It is designed to circulate blood throughout the body permitting transport of oxygen, hormones, blood cells, and nutrients. This helps maintain the body's homeostasis by providing nourishment, stabilizing temperature and pH , and fighting diseases. The cardiovascular system consists of the heart, blood vessels (arteries, capillaries, and veins), and blood. The heart pumps blood away from it through arteries which exchanges nutrients at capillaries and returns to the heart via veins (Figure 2-1). The blood is reoxygenated by the lungs (pulmonary loop) and sent to the rest of the body (systemic loop).


Figure 2-1. Diagram of the circulatory system highlighting the systemic loop and capillary exchange between arteries and veins (modified from Iaizzo et al. ${ }^{20}$ ).

### 2.1.2 The Heart

The heart is comprised of four chambers: the right atrium, right ventricle, left atrium, and left ventricle. The chambers are each separated by a valve: tricuspid valve (right atrium/ventricle), pulmonary valve (right ventricle/pulmonary artery), mitral valve (left atrium/ventricle), and aortic valve (left ventricle/aorta). The right and left side of the heart act as two pumps in series. The right side pumps to the lungs (pulmonary loop), returning to the left side, while the left side pumps to the body (systemic loop), returning to the right side (Figure 2-2).


Figure 2-2. Four chamber and four valve anatomical view of the heart (modified from medlineplus.com and Carpentier et al. ${ }^{21}$ ).

Each valve helps maintain unidirectional flow. The mitral valve opens during diastole to allow the left ventricle to fill with reoxygenated blood and closes during systole as the left ventricle ejects the blood to the body (Figure 2-3).


Figure 2-3. Mitral valve open during diastolic filling and closed during systolic ejection of the left ventricle (modified from Carpentier et al. ${ }^{21}$ ).

In order to pump blood to the whole body, the left ventricle is the largest chamber of the heart with the thickest muscular wall. This creates a powerful contraction resulting in the highest pressures in the heart. Thus, the mitral valve experiences the highest forces and is prone to the highest incidence of disease of any heart valve. ${ }^{20,22}$

### 2.2 The Mitral Valve

In order to experience the high systole pressure and open seamlessly during diastole, the mitral valve is comprised of a complex structure of annulus, leaflets, and subvalvular apparatus (chordae tendineae and papillary muscles)(Figure 2-4).


Figure 2-4. Detailed diagram of mitral valve leaflet, annular plane, and subvalvular apparatus (chordae tendineae and papillary muscles) (modified from Carpentier et al. ${ }^{21}$ ).

### 2.2.1 The Mitral Leaflets

The MV leaflets are the functioning valve mechanism that opens and closes to provide unidirectional flow between the left atrium and ventricle. The MV is a bicuspid valve consisting of two major leaflets: anterior and posterior (Figure 2-4). The anterior leaflet and posterior leaflet are similar in surface area, but different in size and shape. The surface area of the leaflets is roughly twice that of the orifice area providing redundancy for coaptation during closure. ${ }^{23}$ In a healthy valve, it is this coaptation that provides the seal between leaflets and prevents retrograde flow into the left atrium during systole (Mitral Valve Regurgitation).

The MV leaflets share the same free-edge and meet at two points known as commissures. They are attached at the base to the MV annulus (2.2.2) and supported by the subvalvular apparatus along the leaflet surface and edge (2.2.3). The leaflets themselves are made of four layers: atrialis, spongiosa, fibrosa, and ventricularis (in order from atrium to ventricle) (Figure 2-5). The atrialis and ventricularis encompass the leaflet with endothelial cells with the addition of collagen and elastin fibers for structure and elasticity. The fibrosa is the thickest layer of the leaflets and is comprised of densely organized collagen fibers (type I, II, and IV). With most of the collagen content in the leaflet, the fibrosa provides the majority of load-bearing support. The spongiosa is made up of elastin, glycosaminoglycans (GAGs), and proteoglycans and acts as a support layer that helps lubricate and distributes loading. ${ }^{23}$


Figure 2-5. Histological cross-section of mitral leaflet. ${ }^{23}$

These combinations of materials give the MV leaflets nonlinear, viscoelastic, anisotropic material properties. The major axis of alignment of leaflet collagen fibers are in the circumferential direction with cross-fiber directionality and heterogeneity changing as you move from the annulus and belly of the leaflet to the commissure and free edge (Figure 2-6).


Figure 2-6. Diagram illustrating the stress-strain relationship and fiber orientation of the mitral valve leaflets (modified from Toma et al. ${ }^{24}$ ).

### 2.2.2 The Mitral Annulus

The mitral annulus is a region of myocardium between the left atrium and ventricle from which the MV leaflets hinge. The annulus is generally described as having a saddle and Dshape (Figure 2-7) and changes size and shape throughout the cardiac cycle (Figure 2-8). ${ }^{25-}$ 27


Figure 2-7. Three dimensional representation of the mitral valve annulus (modified from Jolley et al. ${ }^{27}$ ).


Figure 2-8. Normalized in vivo human measurements of annular motion throughout the cardiac cycle (modified from Levack et al. ${ }^{25}$ ).

The annulus is not well defined and is simply viewed as the ring of tissue that the base of the leaflets attaches to. ${ }^{28}$ The material properties of the annulus vary greatly around the perimeter of the annulus and between hearts with different densities of collagen and elastin (Figure 2-9). ${ }^{29}$


Figure 2-9. Diagram showing variety of annular structure between patients (modified from Angelini et al. ${ }^{28}$ ).

### 2.2.3 The Mitral Subvalvular Apparatus

The mitral subvalvular apparatus consists of the chordae tendineae and the papillary muscles (PMs) (Figure 2-4). The chordae insert into both the MV leaflets and PMs and act as tensile pillars for the MV leaflet during systole and help control leaflet mobility throughout the cardiac cycle. There are three classification for chordae: marginal (primary), intermediary (secondary), and basal (tertiary) (Figure 2-10).


Figure 2-10. Diagram of chordae tendineae classification with papillary muscles: marginal, intermediary, and basal (modified from Carpentier et al. ${ }^{21}$ and Rabbah et al. ${ }^{23}$ ).

Marginal chordae insert into the leaflet free edge, the intermediary chordae insert into the belly of the leaflets, and the basal chordae insert closest to the annulus (furthest away from the apex of the heart). It is worth noting that the there are two larger and distinct intermediary chordae called strut chordae that insert into the belly of the anterior leaflet and carry the majority of the systolic loading. From a biomechanical standpoint, the chordae tendineae are primarily composed of collagen and elastin and show nonlinear viscoelastic behavior under tensile loading. ${ }^{23}$

There are two PMs to which both the anterior and posterior leaflet chordae insert into: anterolateral and posteromedial (Figure 2-10). The PMs are denoted as the anchor point of the chordae into the LV and are distinct myocardial appendages along the LV wall. Their primary role is to help stabilize loading between the chordae and leaflets. This is done through a combination of factors: LV wall motion, chordal insertion pattern, and the material property and structure of the PMs (myocardium) that acts as a foundation for the chordae (Figure 2-11). ${ }^{21,23}$


Figure 2-11. Illustration of selected morphologies of papillary muscles and chordal insertions (modified from Carpentier et al. ${ }^{21}$ ).

### 2.3 Mitral Valve Pathophysiology

The MV has been identified as the most common heart valve to experience hemodynamically significant disease in the United States of America. ${ }^{30}$ This section details the two forms of MV dysfunction: mitral regurgitation (MR) and mitral stenosis (MS).

### 2.3.1 Mitral Valve Regurgitation

In MV disease, poor valve geometry or degeneration, creates incomplete valve closure that results in MR (Figure 2-12). ${ }^{21}$ This regurgitation creates systolic back flow resulting in a fraction of the oxygenated blood in the ventricle getting returned to the left atrium, rather than being pumped to the body. This flow inefficiency also leads to an increased load on the lungs due to elevated atrial pressure during ventricular systole.


Figure 2-12. Illustrations of mitral regurgitation examples (modified from Carpentier et al. ${ }^{21}$ ).

There are two types of mitral regurgitation classifications: primary and secondary. Primary MR involves the valvular tissue whereas secondary MR involves the supporting structures, e.g. the ventricle. ${ }^{21}$ Common cases of primary MR are congenital malformations, inflammatory or degenerative diseases, bacterial endocarditis, and calcification. ${ }^{21}$ Common cases of secondary MR are myocardial infarction, dilated or hypertrophied cardiomyopathies, and endomyocardial fibrosis. ${ }^{21}$ Secondary MR lends
itself to in vitro and in vivo studies, because of the ability to manipulate MV geometry with a disease having healthy tissue. In contrast, it is hard to control for the differences in diseased tissue of primary MR as well as acquire the samples for experimental studies.

If left untreated, mitral regurgitation can lead to patient death. ${ }^{31}$ With at least moderate MR occurring at a frequency of $1.7 \%$ in US adult population, ${ }^{22}$ there is a demand for treatment. MR is most commonly treated with mitral valve repair (2.4.1, 2.5.1), but is also treated with mitral valve replacement (2.4.2, 2.5.2).

### 2.3.2 Mitral Valve Stenosis

In MV disease, valve dysfunction can prevent the valve from opening completely, resulting in mitral stenosis (MS). This stenosis creates an increased pressured gradient across the MV and leads to poor valve function and ventricular filling and elevated atrial pressure. A few causes include leaflet thickening (calcification, congenital, or degenerative), commissure fusion, and chordae thickening/fusion (Figure 2-13). ${ }^{21}$ If left untreated, mitral stenosis can lead to patient death. ${ }^{32,33}$ Although there is a smaller prevalence of only $0.1 \%$ in US adult population, ${ }^{22}$ it is still a surgically treated disease. MS is most commonly treated with a mitral valve replacement (2.4.2, 2.5.2), but can also be treated with mitral valve repair (2.4.1, 2.5.1).


Figure 2-13. Illustration of mitral stenosis examples (modified from Carpentier et al. ${ }^{21}$ ).

### 2.4 Mitral Valve Surgical Corrections

In order to help patients with mitral valve disease, clinicians and engineers began making medical devices for surgical treatments. These surgical treatments can be broken down to two major categories: repair or replacement. This section highlights common surgical MV repairs and replacements.

### 2.4.1 Surgical Repair

Mitral valve surgical repair typically encompasses any procedure that augments the native MV and requires the patient to be on a cardio-pulmonary bypass.

To help treat both primary and secondary MR, implantation of a mitral valve annuloplasty ring (MVAR) is a standard surgical repair. ${ }^{21,34,35}$ The MVAR is used to restore proper annular geometry and prevent any further changes. MVAR implantation is
typically undersized, bringing the leaflets closer together to improve MV leaflet coaptation and reduce MR (Figure 2-14). ${ }^{35}$ Additionally, clinicians can attempt to revascularize the left heart for secondary MR, or augment the MV with pseudo-chordae and leaflet resection/modification with primary and secondary MR. ${ }^{21,31,36-40}$ These are typically done in conjunction with an annuloplasty ring.

A


B


Figure 2-14. Diagram of surgical mitral annuloplasty repair. (A) Suturing rigid ring into a dilated annulus, (B) resulting downsized annulus with proper leaflet coaptation (modified from Carpentier et al. ${ }^{21}$ ).

Although this surgical repair has been proven to be effective, studies have shown MR recurrence as high as $30 \%$ in patients with ischemic MR..$^{1,2}$

### 2.4.2 Surgical Replacement

Surgical mitral valve replacements (SMVR) typically encompasses any procedure that replaces the native MV and requires the patient to be on a cardio-pulmonary bypass.

This replacement can either be a bioprosthetic or a mechanical valve (Figure 2-15). Bioprosthetic heart valves (BHV) are made of porcine or bovine pericardium and require less to no anticoagulation therapy, whereas mechanical heart valves (MHV) are made from an assortment of metal polymers and require varying degrees of anticoagulation therapies. BHVs typically have a shorter lifespan of $\sim 10$ years and MHVs a longer lifespan of $\sim 30$ years. ${ }^{41}$


Figure 2-15. Surgical On-X mechanical heart valve (CryoLife, Atlanta, GA) and Magna Mitral Ease bioprosthetic heart valve (Edwards Lifesciences, Irvine, CA), and diagram of a bioprosthetic mitral valve replacement being sutured into the mitral annulus.

The SMVR is sutured into the mitral annulus replacing the function of the native valve. The native valve can either be spared or resected at the surgeon's discretion.

Resection can encompass the entire MV leaflets and chordae tendineae or as little as the A2 scallop. ${ }^{18}$ Chordal sparing is typically done to maintain LV structure and increase ejection performance with SMVR. ${ }^{42}$

### 2.4.3 Surgical Repair vs Replacement

Mitral repair is the most recommended surgical approach for MR. ${ }^{43}$ Mick et al. ${ }^{43}$ states that "the well-accepted advantages of mitral valve repair consist of lower operative mortality, ${ }^{44-}$ ${ }^{48}$ improved preservation of left ventricular function, and greater freedoms from prosthetic valve-related complications such as thromboembolism, anticoagulant-related hemorrhage and endocarditis. ${ }^{45,} 46,49-52 \%$ However, patient anatomy and pathophysiology plays the largest role in deciding the optimal correction. ${ }^{43}$

### 2.5 Mitral Valve Interventional Corrections

Mitral valve intervention is a growing market with only one device, MitraClip repair (Abbott, Lake Bluff, IL), currently approved by the FDA for commercial use. This medical device area stems from the need for minimally invasive approaches for high-risk surgical patients with new or recurrent disease and the desire to treat all patients as minimally invasive as possible. This section details emerging therapies in both intervention mitral valve repairs and replacements.

### 2.5.1 Interventional Repair

Most MV interventional repair devices are for patients with MR and aim to recreate a similar surgical repair procedure, but with a minimally invasive approach. Three main anatomical targets of transcatheter mitral valve repairs (TMVr) are the mitral leaflets, mitral annulus, and chordal apparatus. Currently, the mitral leaflet approaches recreate the edge-to-edge repair clipping leaflet edges together, the mitral annulus approaches recreate an annuloplasty repair by adjusting the annular shape and size, and the chordal approaches recreate the insertion of a pseudo-chordae to fix leaflet motion. Patient indications and current approval statuses vary widely in this growing market; Figure 2-16 summarizes leading interventional MV repair therapies that have been CE marked for European use. ${ }^{53}$

| Anatomic Target | Device Name | Manufacturer | Description | Main indications | Strengths | Weakness |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mitral Leaflets | Mitraclip | Abbott Vascular, Abbott Park, IL | Edge-to-Edge technique | DMR and FMR | Minimal invasiveness | Lack of annuloplasty |
|  | Pascal | Edwards Lifesciences, Irvine, CA | Edge-to-Edge techinique | OMR and FMR | Longer paddles, independent grippers, advanced steerable system | Lack of annuloplasty |
| Chordal apparatus | NeoChord DS 1000 System | NeoChord Inc, Eden Prairie, MN | Off-pump TA artificial chordal implantation | Mono and multisegmental Posterior leaflet flail/prolapse | Solid surgical background | TA approach |
|  | TSD. 5 <br> Harpoon | Harpoon Medical, Baltimore, MD | Off-pump TA artificial chordal implantation | Mono segmental posterior leaflet prolapse | Solid surgical background | TA approach |
|  | Chordart | Coremedic AG, Biel, CH | TF chordal implantation (from leaflet to papillary muscle) | Chordal rupture and elongation | Mini invasiveness, strong surgical background | Demanding procedure |
| Mitral annulus | Carillon | Cardiac Dimension Inc, Kirkland, WI | Coronary sinus cinching (indirect annuloplasty) | FMR | Simplicity | Limited efficacy, unpredictable results |
|  | Cardioband | Edwards Lifesciences, Irvine, CA | Transcatheter surgical-like annuloplasty | FMR | Solid surgical background | Complexity, advanced imaging |
|  | Bident <br> Mitralign | Mitralign Inc, Tewksbury, MA | Annular plication (direct annuloplasty) | FMR | Simpler than other direct annuloplasty | Limited efficacy |

Figure 2-16. Overview of current transcatheter mitral valve repair (TMVr) devices that have been CE marked (modified from Saccocci et al. ${ }^{53}$ ).

### 2.5.2 Interventional Replacement

Stemming from the success of transcatheter aortic valve replacement (TAVR) as a minimally invasive alternative to surgical aortic valve replacement (SAVR), ${ }^{54-60}$ medical professionals have been exploring the possibilities of transcatheter mitral valve replacement (TMVR). ${ }^{53}$ These TMVs are dedicated devices for the MV and are designed to meet the complexity of the MV anatomy and physiology (2.2). Patient indications and
current approval statuses vary widely in this growing market; Figure 2-17 summarizes leading interventional MV replacement therapies that have been implanted in human. ${ }^{53}$


Figure 2-17. Overview of current transcatheter mitral valve replacement (TMVR) devices that have been implanted in humans (modified from Saccocci et al. ${ }^{53}$ ).

### 2.5.3 Interventional Repair vs Replacement

The MVs complex anatomy and physiology make for a challenging target to treat. Accessibility and ease-of-use limits the capabilities of a transcatheter approach for mitral repair in contrast to an open-heart surgery. This has restricted current TMVr designs to target single objectives (e.g. edge-to-edge clip) in as simple deployment as possible. These restricted designs have also led to the quicker development and implementation of TMVr. In contrast, a TMVR must replace the entire function of the MV without embolizing or migrating due to the high pressures of the LV and address the possibility of paravalvular MR due to the shape of the nonuniform, contracting annulus, among other issues. These design hurdles have led to a slower development and implementation of TMVRs.

As it currently stands, there are no FDA approved TMVR devices and only one FDA approved TMVr device (MitraClip). This is soon to change in the coming years with the more than just the examples of TMVr in Figure 2-16 and TMVR in Figure 2-17 in development and early clinical use. The MitraClip has shown that TMVr can provide good clinical outcomes for patients with MR and has a strong hold on the interventional MV market having been implanted in over 30,000 people. ${ }^{61-64}$ However, the Tendyne valve (Abbott, Lake Bluff, IL) and Intrepid valve (Medtronic, Minneapolis, MN) have shown encouraging results for TMVR and both have entered into pivotal randomized trials. ${ }^{65-67}$ At the end of the day, safety, efficacy, and patient outcomes/quality of life will have to be weighed between TMVr and TMVR, not just feasibility.

### 2.6 Transcatheter Aortic Valves in the Mitral Valve

Some patients who undergo MV repair or replacements have recurrent MR or MS over time. ${ }^{68-71}$ With these patients having already undergone open-heart surgery and are typically elderly with multiple comorbidities, they are often at high-risk for surgery. In response to this high-risk assessment, a non-surgical solution is necessary. However, some patients are not candidates for transcatheter repair and there are currently no dedicated transcatheter mitral valve replacements on the market.

Due to the need for a minimally invasive replacement solution for people these patients, clinicians have begun implanting transcatheter aortic valves (TAV), off-label, in mitral annular calcification (valve-in-MAC), ${ }^{4-7}$ mitral bioprosthetic valves (valve-invalve), ${ }^{7-9}$ and mitral annuloplasty rings (valve-in-ring). ${ }^{10-12}$ This can be viewed in Figure 2-18, Figure 2-19, and Figure 2-20.

a TMVR

c Valve-in-Valve

b Valve-in-Ring
Annuloplasty

d Valve-in-MAC
Mitral Annular


Figure 2-18. Graphical drawings of transcatheter mitral valve approaches. ${ }^{72}$


Figure 2-19. Example of mitral valve-in-valve deployment using a Sapien XT transcatheter aortic valve (Edwards Lifesciences, Irvine, California) and Carpentier surgical mitral valve (Edwards Lifesciences). ${ }^{73}$


Figure 2-20. Example of mitral valve-in-ring deployment using a Sapien XT transcatheter aortic valve (Edwards Lifesciences, Irvine, California) and semi-rigid Physio mitral annuloplasty ring (Edwards Lifesciences).

Normally, a TAV would not work in the mitral position, due to the dynamic contraction of the MV annulus and the inability to anchor the TAV in place. However, the MVAR, SMVR, and MAC provide rigid constructs to hold the transcatheter valve in position. Studies have shown successful use of the TAV in the MV; $;{ }^{74-76}$ however, it is currently not an indicated use of the TAV and companies are still developing dedicated TMVs to be used instead. It is important to note, that the SAPIEN family (Edwards Lifesciences, Irvine, CA) are the only TAVs currently being deployed into the MV due to their low-profile design.

### 2.7 Transcatheter Mitral Valve Complications

### 2.7.1 Left Ventricular Outflow Tract Obstruction

A prominent concern with TMVR is the potential obstruction of the left ventricular outflow tract (LVOT) by the TAV and native anterior MV leaflet. Three factors related to TMVR

LVOT obstruction include: device protrusion, aorto-mitral angulation, and septal bulging (Figure 2-21). ${ }^{13,14}$ The TAV protrusion into the LV causes the anterior MV leaflet to be propped open into the LVOT causing obstruction. In addition, compounding with the deployment of the TAV into the MV and LV, the aorto-mitral angulation is a geometric concern that influences the amount of protrusion into the LVOT. The septal bulging can also create an LV that is predisposed to LVOT obstruction due to an already narrowed LVOT.


Figure 2-21. Selected risks of LVOT obstruction from Blanke et al. ${ }^{14}$ (risk increases from green to red).

### 2.7.2 Thrombosis

Thrombosis is the formation of a blood clot inside the circulatory system. Thrombosis is a problem for prosthetic heart valves, especially for those in the mitral position. ${ }^{15,77,78}$ Mechanical prosthetic MVs have a thrombosis prevalence of $0.3 \%$ to $1.3 \%$ in developed
countries and as high as $6.1 \%$ in undeveloped countries. ${ }^{77,78}$ In addition, bioprosthetic MVs with native MV leaflets intact have shown to have a thrombosis prevalence as high as $24 \% .^{22}$ Major factors contributing to thrombosis as outlined by Virchow's Triad are blood coagulability (blood cell damage), prosthetic heart valve surface interactions, and blood flow (stasis and turbulence). In this study we will be investigating thrombosis risk due to the changes in blood flow.

Thrombosis with TAVR has been observed ${ }^{79-82}$ with recent studies focusing on the flow stasis in a region known as the neo-sinus. ${ }^{83}$ The neo-sinus is the region between the native AV leaflets and the TAV leaflets and is formed by the native AV leaflets wrapping around the deployed TAV preventing flow through the open cells of the stent frame.

Additionally, the AML also covers the stent frame creating a neo-sinus in danger of flow stasis between the AML and TAV leaflets. Thrombosis in the mitral position and in TAVs have been independently observed. ${ }^{16,17,84-86}$ In addition, the major occurrence of thrombosis from patients that underwent a bioprosthetic MV replacement were from those with their native leaflets preserved ${ }^{22}$. It then stands to reason that a TAV in an MV with its native leaflets preserved, would be under similar risks. Overall, these factors need to be considered when performing transcatheter mitral valve replacement.

### 2.8 Percutaneous Laceration of Anterior Mitral Leaflet (LAMPOON)

In order to proactively prevent LVOT obstruction for TMVR caused by the AML, clinicians have begun intentionally lacerating the AML in a minimally invasive approach known as LAMPOON prior to transcatheter valve deployment (Figure 2-22). ${ }^{19,87,88}$


Figure 2-22. Diagram of LAMPOON procedure from Babaliaros et al.: (A) TMV inserted displacing AML, (B) post-LAMPOON AML separation, (C-E) Guidewires inserted into LV via aorta, electrified to puncture AML and ensnared, then electrified and pulled to lacerate AML (modified from Babaliaros et al. ${ }^{19}$ ).

Guided by fluoroscopy and echocardiography, LAMPOON first involves placing a guidewire at the A2 insertion of the AML and placing a second guidewire with a snare into the atrium via retrograde approach. The first guidewire is electrified to puncture and burn through the AML. The second guidewire the ensnares the first on the other side of the AML. Lastly, the first guidewire is electrified a second time and both wires pulled, burning
and lacerating the AML. This effectively creates a larger LVOT by allowing the TMVR stent frame and chordae to spread the AML apart post-LAMPOON. The LVOT is increased even more with open cell stent frame designs, as blood can now flow through the cells of the stent frame that were originally blocked by the AML.

### 2.9 Mitral Valve In Vitro Modeling

Mitral valve in vitro modeling is used to study the MV in a controlled environment with the ability to acquire metrics that are unable to be obtained in vivo. In current rigid in vitro models, the structural complexity of the excised MV is preserved and can be studied (Figure 2-23). ${ }^{89}$

## RIGID MODEL



Figure 2-23. Basic schematic of in vitro rigid chamber left heart model. ${ }^{90}$

However, these models rely on certain simplifications, one being that the MV is mounted to a static, rigid annulus (leaflet attachment to the myocardium). This simplification of the annulus is justified when looking to control factors that are separate from a study's interest, e.g. investigating chordal forces. However, in order to study, for example, how the motion of the MV annulus affects the biomechanics of the MV (e.g. MV leaflets), a more physiological model with dynamic contraction is needed.

In addition to the rigid wall in vitro model, our lab has developed a flexible wall in vitro model (Figure 2-24). ${ }^{90}$ In current flexible wall models, the LV is made of a deformable material that is able to change shape under pressure. This provides a more anatomic and contractile motion of the LV wall when compared to the rigid wall. This typically used when the interest of study involves LV flow in addition to the aortic or mitral valves. ${ }^{90-92}$

FLEXIBLE MODEL


Figure 2-24. Basic schematic of in vitro flexible chamber left heart model. ${ }^{90}$

### 2.10 Significance

There are currently no in vitro simulators that incorporate dynamic MV annular contraction. This simplification of MV motion provides a limitation for complete assessment of the MV and its annulus focused medical devices (e.g. annuloplasty ring) in an in vitro environment. Specific Aim 1 will provide an in vitro means of studying the effects of annular contraction to further understand valvular biomechanics. The new simulator could also help in advancing complex MR quantification techniques, computational simulations, and medical devices by providing a moving boundary condition and a means to exert force on MV devices in a left heart simulator. In addition, there are currently no
official guidelines for LAMPOON with TMVR (valve-in-ring, valve-in-valve, and valve-in-MAC) as TMVR is an off-label use of the TAV and LAMPOON is an investigational procedure. Clinicians are relying on personal experience/intuition and selected case reports when making decisions during TMVR and LAMPOON procedures. There have been no quantitative analyses on the performance and safety of TMVR or LAMPOON. Thus, information of this nature could help create new evidence-based guidelines and recommendations for LAMPOON procedures. The results from Specific Aims 2 will provide insights into the benefits of LAMPOON on LV flow and help create the first evidence-based guidelines for TMVR and LAMPOON procedures.

## CHAPTER 3. OBJECTIVE AND SPECIFIC AIMS

The mitral valve (MV) is an intricate anatomical structure that undergoes complex conformational changes due to its dynamic loading environment. The contractile motion of the annulus has been omitted from previous in vitro models due to the added level of complexity that was deemed unnecessary for the studies being pursued at the time. However, with the recent innovations in the MV space ${ }^{24,93,94}$ a dynamic annulus is necessary to fully understand the interactions between MV anatomy and repair or replacement options.

For patients at high-risk for surgical repair and replacement, transcatheter mitral valve replacement (TMVR) are now being performed. Cardiologists have begun implanting transcatheter aortic valves (TAVs) into mitral annular calcification (valve-inMAC), ${ }^{4-7}$ mitral bioprosthetic valves (valve-in-valve), ${ }^{7-9}$ and mitral annuloplasty rings (valve-in-ring) ${ }^{10-12}$ in order to correct recurrent mitral regurgitation (MR). With these being new, off-label procedure, no evidence-based deployment guidelines or recommendations exist outside isolated experiences reported in clinical case reports. ${ }^{95-97}$ Hence, in order to better guide and inform TMVR, there is a need for quantitative analysis of TMVR efficacy.

The complex geometries of the left ventricle (LV) and MV present significant challenges to TMVR. The most critical periprocedural decision is the TAV position within the MV. In order to maximize expansion of the device, it is generally preferred to implant the TAV further into the LV. However, if implanted too far into the LV, the native anterior mitral leaflet held open by the TAV, could obstruct systolic flow through the aortic valve (AV) via the left ventricular outflow tract (LVOT), thus resulting in a sub-aortic stenosis. ${ }^{13,}$

14, 98 In addition, the TAV implantation in the mitral position introduces a new structure into the MV and LV that can disrupt the natural flow of the LV. This can result in an increased risk of thrombosis as seen on the LV side of bioprosthetic valves in the mitral position. ${ }^{84}$ One way to proactively relieve these problems is through prior surgical resection of the A2 scallop of the anterior mitral leaflet (AML) during placement of a surgical prosthetic $\mathrm{MV}^{18}$ or through a new percutaneous laceration of the AML known as LAMPOON. ${ }^{19,28,29}$

The main objective for this study is to better understand the biomechanical challenges facing mitral valve repair and intervention replacement procedures. The central hypothesis for Specific Aim 1 is that healthy mitral valve (MV) annular contraction minimizes MV leaflet strain. To evaluate leaflet strain, leaflet marker tracking will be measured. The central hypothesis for Specific Aim 2 is that increasing AML laceration (LAMPOON) will positively impact AV and TMVR performance and safety. To evaluate TMVR performance, velocity fields of the LV will be acquired. The flow field of the LV and MV will be acquired to assess risk of left ventricular outflow tract (LVOT) obstruction and thrombosis.

Specific Aim 1: Assess the impact of healthy and pathophysiological dynamic MV annulus contraction on MV leaflet strain. Building on an existing in vitro left heart simulator ${ }^{99}$, a novel dynamically contracting annulus (DCA) will be used to compare how dynamic contraction impacts MV leaflet strain. This will be done by first comparing the healthy contraction with ischemic MV disease condition, and subsequently the healthy with
static-systolic and diastolic states. Leaflet strain will be measured via marker tracking from images acquired using stereophotogrammetry.

## Specific Aim 2: Evaluate how LAMPOON affects LVOT obstruction and the risk of

 TAV thrombosis as a function of TAV implantation heights, AML lengths, andLAMPOON lengths. A previously validated in vitro left heart phantom ${ }^{91}$ will be adapted to provide a more physiologic LVOT geometry for quantitative assessment of TMVR procedures. Rigid MV leaflets with different AML lengths and degrees of LAMPOON will be made for the LV phantom. With the newly modified LV phantom, the aortic transvalvular pressure gradient and LV velocity fields will be studied using pressure transducers and 2-D high-speed particle image velocimetry (HSPIV). Favorable performance will be defined as maximizing AV effective orifice area and minimizing flow obstruction and maximizing neo-sinus washout as seen and quantified by pressure transducers and HSPIV, respectively. In addition, flow in the entire LV will be captured to further study LAMPOON. From the flow velocities we will calculate viscous shear stress (VSS), principal Reynolds shear stress (pRSS), and turbulent kinetic energy (TKE). These metrics have shown to be indicators of flow stagnation and turbulence. Unfavorable results will be increased stagnation, VSS, pRSS, and TKE.

## CHAPTER 4. MATERIALS AND METHODS - SPECIFIC AIM 1

### 4.1 Materials

### 4.1.1 Pulsatile Left Heat Simulator

The pulsatile left heart simulator (LHS)(Figure 4-1) consists of a left heart chamber for studying the mitral valve, flow probes and pressure transducers to tune to and record left heart hemodynamics, a piston pump to drive fluid, and piping, a reservoir, and compliance/resistance devices to create a flow loop. ${ }^{100,101}$


Figure 4-1. Schematic of left heart simulator complete flow loop with cylindrical chamber for ovine valves.

The left heart chamber (Figure 4-2; Figure 4-3) is made of clear acrylic left atrium, ventricle, and aorta sections, an annulus plate (4.1.2) between the atrium and ventricle, and papillary muscle (PM) rods within the left ventricle. The annulus plate is used for mounting the excised MV (4.1.4) with the PM rods securing and positioning the valve's PMs within the left ventricle from the exterior of the left heart chamber. Lastly, a bi-leaflet mechanical valve is placed inside aorta section and used as the working aortic valve for the outlet flow. For SA1, two left heart chambers were used: 1) ovine (Figure 4-2) and 2) porcine (Figure $4-3)$. These separate chambers were used in order to accommodate the difference in size between ovine and porcine MVs.


Figure 4-2. Ovine left heart chamber.


Figure 4-3. Porcine left heart chamber.

### 4.1.2 Annulus Plates

A dynamically contracting MV annulus (DCA) was designed to fit within an existing modular left heart simulator (4.1.1) to maintain the current imaging capabilities. A spring was embedded within a Dacron cuff to which the MV annulus is sutured. A wire was fed through the center of the spring and attached to the piston heads of two linear actuators (Figure 4-4). The wire facilitated contraction of the annulus using the motors, while the spring provided an improved means for relaxation. Two different annulus plates were fabricated; a larger to better accommodate the size of porcine MVs (porcine DCA) (Figure $4-5$ ) and a smaller for ovine (ovine DCA) (Figure 4-6). Both annulus plates were designed in SolidWorks (Dassault Systemes; France) and 3-D printed (Proto Labs; Maple Plain, MN) using Accura Xtreme White as the material. See APPENDIX H for computer-aided design (CAD) drawings and materials used to assemble.


Figure 4-4. Simplified diagram of the ovine dynamically contracting annulus (DCA) setup with the ovine annulus plate centered between the wire attachments at the ends of the linear actuators. Cam levers are used to secure the steel wire imaged in green.


Figure 4-5. Porcine dynamically contracting annulus (DCA) plate. (A) atrial side. (B) ventricular side.


Figure 4-6. Ovine dynamically contracting annulus (DCA) plate. (A) atrial side. (B) ventricular side.

The linear actuators (HAD2-2, RobotZone; Winfield, KS) were displacement driven and controlled individually using a proportional-integral-derivative (PID) controller with the addition of a feed-forward loop written in LabVIEW (2015, National Instruments; Austin, TX). With the LabVIEW controller, H-bridge controllers (1015B, DeviceCraft; Fitchburg, MA) with power supplies (RS-100-12, Meanwell Power Supplies; Taiwan) provided voltage to the motors. The positions of the motors were measured using their built-in potentiometers. A full wiring diagram (A.1), controller settings (A.2), PID tuning methods (A.3), and input waveforms (A.4) can be found in APPENDIX A.

All displacement waveforms used for the motors were derived from the mean MV annular circumference data from prior human, in vivo 3-D echocardiography work on mitral annular dynamics. ${ }^{25}$ From the raw images from the paper, the figure data was extracted using a custom MATLAB code (APPENDIX K). This data was scaled to match the same mean percent areal change for the different annular area sizes of the DCAs. Tuning of the motors for accuracy and precision of the waveform tracking was done before MV experiments were performed. This was tested in LabVIEW (APPENDIX J) by comparing the actual position of the motors using their potentiometer to the desired position being output by the controller.

### 4.1.4 Mitral Valves

Healthy mitral valves were excised from fresh, never frozen ovine hearts (Superior Farms; Denver, CO) and porcine hearts (Holifield Farms; Atlanta, GA). The excision left both the valvular (annulus and leaflets) and subvalvular (chordae tendineae and papillary muscles) apparatuses preserved (Figure 4-7).


Figure 4-7. Excision and mounting of the full mitral valve apparatus.

Each valve was sized to their respective annulus plate suture cuff dimensions; the inter-trigonal distance and total annular perimeter of the annulus were primary measurements used in selection criteria. In addition, the chordal insertion points were a secondary criterion used in excluding mitral valves. It was necessary for the MV to have distinct grouping of chordal insertions into each papillary muscle with minimal spreading, and no primary chordal insertions into the wall of the ventricle.

### 4.1.5 Echocardiography

To image the MV in the LHS over the cardiac cycle, 4-D echocardiography via ie33 xMatrix ultrasound system and x7-2 probe (Philips Healthcare; Andover, MA) was used. The echocardiography was then assessed in QLAB (Philips Healthcare; Andover, MA) where the geometry of the MV was measured. Although not used for this study, DICOMs can be exported for 3-D segmentation.

### 4.1.6 High-Speed Imaging

To image the anterior mitral leaflet over the cardiac cycle, two high-speed A504k cameras (Basler Inc.; Exton, PA) and XCAP video acquisition software (EPIX, Inc.; Buffalo Grove, IL) were used. The cameras were placed as close as possible to the LHS, en face of the MV from the atrial side, and approximately $15^{\circ}$ apart. Additional lighting was used to illuminate the MV from the atrial side, and the aperture of the lenses were opened to the minimal amount that provided good visibility with the best possible focal depth.

### 4.1.7 Instrument Calibration

### 4.1.7.1 Flow Probe Calibration

A gain value of 1 was given to the channel of the electromagnetic flow probe (Carolina Medical Electronics; East Bend, NC). A reservoir with a controllable valve was attached upstream of the probe with an extended hose attached downstream to orderly flow into a large graduated cylinder. With LabVIEW running and reading the voltage from the flow probe, the reservoir valve was opened, and fluid poured into the graduate cylinder. Next, flow was cut off by closing the valve. In order to calculate the flow rate, the volume of fluid through the probe was measured with the graduated cylinder and the amount of time the valve was opened was measured with LabVIEW or a timer. This was repeated for multiple flow rates by the resistance of the reservoir valve. The time vs voltage plot was
exported from LabVIEW and the curve integrated to calculate the flow probe constant necessary to match the volume measure with the graduated cylinder.

### 4.1.7.2 Pressure Transducer Calibration

A gain value of 1 was given to the channel of the Deltran pressure transducer (Model\# DPT-100, Utah Medical Products; Midvale, UT). A Delta-Cal transducer calibration/verification device (Model\# 650-950, Utah Medical Products; Midvale, UT) was then attached to the transducer and flow valve opened to its channel. Before acquiring readings, the pinch valve was squeezed to equilibrate the transducer. With LabVIEW running and reading the voltage from the pressure transducer, the Delta-Cal was adjusted to varying pressure values ( -50 to 200 mmHg ), imposing those known pressure values onto the transducer. The pressure transducer voltage was recorded along with the corresponding pressure from the Delta-Cal to make a plot. The slope of the linear fit line (should be $\mathrm{R}^{2}=$ 0.99 ) for voltage vs pressure was used as the new gain value, so that the voltage from the transducer was scaled to match the pressure in LabVIEW.

### 4.2 Methods

### 4.2.1 Experimental Conditions

Changes in anterior leaflet strain between physiological and pathophysiological annulus conditions were investigated using the porcine DCA plate (Experiment A). Two states of
annular function were tested: 1) healthy and 2) diseased. To isolate the effects of the annular contraction on leaflet strain, only the annulus size/motion was changed between healthy and diseased states, and papillary muscles were left in-place. This consisted of increasing its diastolic area from $11.4 \mathrm{~cm}^{2}$ to $13.0 \mathrm{~cm}^{2}$ to simulate annular dilation and using a contractile waveform consistent with ischemic MR patients. The percent change of contraction from diastole to systole of averaged healthy and ischemic annular area data ${ }^{25}$ was used for scaling ( $-13.2 \pm 2.5 \%$ and $-5.4 \pm 1.9 \%$ change, respectively).

Changes in anterior leaflet strain between a rigid annuloplasty (static annulus) and a dynamic annulus were investigated using the ovine DCA plate (Experiment B). Three states of annular function were tested: 1) healthy contractile, 2) static-min, and 3) staticmax. The minimum and maximum static states were sized to be the systolic and diastolic annular area ( $4.5 \mathrm{~cm}^{2}$ and $5.5 \mathrm{~cm}^{2}$, respectively) of the healthy dynamic contraction used as the healthy state. Differing from the porcine study, 2-D annular area fraction change as defined by Levack et al. ${ }^{25}$ was used for scaling of the healthy contraction (-19.02 $\pm 4.94 \%$ change). This was done to simulate a healthy contraction for a worst-case comparison of differences due to changes made by a rigid annuloplasty. To isolate the effects of the annular contraction on leaflet strain, only the annular variables were changed between states and the papillary muscles remained stationary.

### 4.2.2 Experimental Protocol

Healthy mitral valves were excised from fresh ovine hearts and porcine hearts ( $\mathrm{N}=8$ for each). The valves were sized to match the healthy, diastolic annular area of their respective
annulus plate (4.1.4). During excision, the annuli and subvalvular structures (i.e. chordae tendineae and papillary muscles) were preserved. The MVs were then mounted into the left heart chamber by suturing the MV annulus to the annulus cuff and attaching the PMs to the PM positioning rods (Figure 4-2; Figure 4-3).

A marker grid was applied to the MV leaflets using tissue dye (Mark-It Tissue Marking Dye, Fisher Scientific; Hampton, NH). Stereophotogrammetry was used to track a $3 \times 3$ grid on the central A2 scallop (Figure 4-8) of the MV using two high-speed cameras at 250 Hz (4.1.6).

Figure 4-8. Ovine mitral valve leaflet marked with tissue dye for stereophotogrammetry. $\mathbf{3 x} 3$ grid used for strain measurements highlighted.

Before camera acquisition, the LHS was run for multiple cardiac cycles to remove any initial transients in the MV dynamics and flow due to start-up. A cube of known sidelength ( 1 cm ) was placed in the same field-of-view (FOV) of the cameras where, in the paired 2-D camera frames, the same 7 corners of the cube were in their FOV. Using those

7 corners and the known length and shape of the cube, we defined a 3-D coordinate system between the two cameras using direct linear transformation. 4-D echocardiography was used for measuring annular area and leaflet midline coaptation length (4.1.5).

Normal left heart pressures and flows (5 liters/min, 100 mmHg peak MV gradient, 70 beats $/ \mathrm{min}$, 35/65 systole/diastole ratio) were replicated within the simulator. A custom LabVIEW code was used to control the pulsatile pump (Vivitro Labs, Victoria, BC, CA), and record hemodynamics from a flow probe (4.1.7.1) and wall-tapped pressure transducers (4.1.7.2). The pressure transducers were placed in the left atrium and left ventricle with the flow probe placed within the inlet of the left atrium as shown in Figure 4-1.

### 4.2.3 Data Analysis

Green areal strain between peak systole and diastole for each state of annular function was computed over one cardiac cycle using a custom code written in MATLAB (R2016a, MathWorks, Natick, MA). In preliminary analysis, it was seen that there was minimal cycle to cycle variation in strain measurements, thus one was used to cut down on processing time. Midline leaflet coaptation for each state was measured with QLAB (Philips Healthcare, Andover, MA) using 4-D echocardiography. In addition, annular area change was measured with QLAB to ensure proper annular contraction for each experiment.

The Wilcoxon signed-ranked test was used for paired-group statistics using IBM SPSS Statistics (v24, IBM Corp., Armonk, NY).

## CHAPTER 5. MATERIALS AND METHODS - SPECIFIC AIM 2

### 5.1 Materials

### 5.1.1 Pulsatile Left Heart Simulator w/ Left Ventricular Phantom

Based on the extensively studied Georgia Tech left heart simulator, ${ }^{100,101}$ a novel and more comprehensive left ventricle simulator was designed by the Cardiovascular Fluid Mechanics Laboratory (Figure 5-1 and Figure 5-2). ${ }^{91,102,103}$


Figure 5-1. Complete realistic left heart simulator (RLHS) flow loop.


## Figure 5-2. Complete LV box chamber assembly with LV phantom.

This realistic left heart simulator (RLHS) was comprised of an LV phantom complete with bioprosthetic aortic and mitral valves. The silicone LV phantom (5.1.2) is compliance-matched (diastolic) to a healthy myocardium and is housed in an acrylic chamber. The pulsatile piston pump (PPP) controls the pressure within the acrylic housing causing expansion and contraction of the LV, resulting in flow through the simulator. The peripheral resistance and compliance were used to help maintain proper hemodynamics of the LV. Wall-tapped pressure transducers were placed in the left atrium, left ventricle, and aorta, while a catheter extension was placed in the LVOT. The flow probes were placed upstream of the MV and downstream of the AV to measure both MV and AV flow curves. A $36 \%$ glycerin, $64 \%$ water solution was used in the loop in order to match the dynamic viscosity of blood ( 3.5 cP ). LabVIEW was used to control the pulsatile piston pump as well as record and monitor the hemodynamics of the RLHS.

For the purposes of this study (CHAPTER 3) and future studies, the RLHS was redesigned to achieve a more anatomically correct LVOT and the ability to add MV leaflets inside the LV. This was done externally by moving the MV inlet and AV outlet as close together as possible within the LV box chamber, and then further accomplished internally with an LV insert (5.1.3). A 29 mm GT-TAV (5.1.5) was placed inside the MV leaflets (5.1.4), while a 23 mm PERIMOUNT BHV (Edwards Lifesciences; Irvine, CA) will be used as the AV. See APPENDIX B for a detailed assembly guide for the LV box chamber. See APPENDIX I for CAD drawings and materials used in making the LV box chamber.

### 5.1.2 Left Ventricle Phantom

The silicone LV phantom (Figure 5-3) used for this study was previously studied by Okafor et al. ${ }^{91,102}$ and cast by a third-party company (VenAir; Terrassa, Spain). The healthy LV phantom specifications used in this study were an aorto-mitral angle of $125^{\circ}$, a sphericity index of 0.598 (width of 40 mm ), stiffness of $1.169 \mathrm{mmHg} / \mathrm{mL}$, and shore A hardness of 23. The silicone phantom provided the optical clarity necessary for high-speed particle image velocimetry (HSPIV). Details behind the development and design of the LV phantom from patient data can be found in the thesis of Okafor. ${ }^{103}$


Figure 5-3. Schematic of the LV phantom and dimensionality of the sphericity index (modified from Okafor ${ }^{103}$ ).

### 5.1.3 Left Ventricle Insert

The LV insert (Figure 5-4) served three important purposes: 1) provided a modular attachment for different MV leaflet geometries, 2) moved the aorto-mitral plane further into the LV, putting the whole LV in FOV of the high-speed camera, and 3) created an even better LVOT geometry by bringing the AV outlet and MV inlet closer together.


Figure 5-4. 3-D printed LV insert with Long AML, $0 \%$ LAMPOON 3-D printed MV glued in place.

The LV insert was designed using SolidWorks and made to fit securely into the MV inlet of the LV box chamber. It was then 3-D printed using stereolithography (SLA) at a resolution of 0.010 in ., solid density, and ABS-P430 material. See APPENDIX I for CAD drawings used in the making of the LV insert.

### 5.1.4 Mitral Valve Leaflets

The transparent MV leaflets (Figure 5-5) were 3-D printed (CIDEAS, Crystal Lake, IL) using SLA at a resolution of 0.0040 in., solid density, and Accura ClearVue material. The MV leaflet geometry was acquired from micro-computed tomography ( $\mu \mathrm{CT}$ ) images of an excised porcine valve and exported as an .STL file for printing.


Figure 5-5. 3-D printed, transparent MV leaflets modeling three LAMPOON geometries $(\mathbf{0 \%}, \mathbf{5 0 \%}$, and $\mathbf{1 0 0 \%}$ ) with Short AML.

Prior to $\mu \mathrm{CT}$, a porcine MV was sized for a 29 mm SAPIEN 3 and excised keeping the native valvular anatomy intact. The excised valve was then mounted onto an annulus plate with a circular suture cuff sized to a 29 mm SAPIEN 3. During $\mu \mathrm{CT}$, a cylinder with the dimensions of a 29 mm SAPIEN 3 was inserted into the valve to provide the correct leaflet geometry for when we place a TAV inside the rigid, printed leaflets of the simulator (FIGURE XXX).

After $\mu \mathrm{CT}$, the valve and cylinder were segmented using 3D Slicer and the cylinder insert and annulus plate removed in SolidWorks. The chordae and papillary muscles were then removed in Geomagic Studio (3D Systems, Morrisville, NC) leaving just the MV
leaflets. The MV leaflet surface was then smoothed in Geomagic Studio/Design X for better optical clarity during printing. Next, simulated AML flail into the LVOT (Long AML) was done in SolidWorks and Geomagic Studio at the hinge point where the TAV stent frame ends and the leaflet would no longer be taut. The Long AML (XXX mm) was within the extreme of human lengths while the Short AMl (XXX mm) was in the norm of human lengths (XXX). Lastly, different size sections of the A2 scallop of the AML were cut away in SolidWorks to mimic the resultant geometry from different lengths of LAMPOON (Figure 5-6).


Figure 5-6. Models of three LAMPOON geometries ( $\mathbf{0 \%}$, $\mathbf{5 0 \%}$, and $\mathbf{1 0 0 \%}$ ) with Long AML geometry and an image of $100 \%$ LAMPOON with porcine MV and SAPIEN 3 deployed at 80/20 ventricle/atrium ratio. The A2 scallop is lacerated allowing the AML to be pulled open by the TAV stent frame and the AML chordae.

### 5.1.5 Georgia Tech - Transcatheter Aortic Valve

The TAV model used for this study was made in-house (GT-TAV) to replicate the geometry of a 29 mm SAPIEN 3 (Edwards Lifesciences, Irvine, CA) (Figure 5-7). The GTTAV has previously been validated for hemodynamic performance in the AV position. ${ }^{83}$ The stent frame is made of a clear acrylic sheet that has been laser cut to the SAPIEN 3 internal dimensions and the leaflets are made of bovine pericardium. This provided a
transparent stent frame for better optical access into the AML neo-sinus during high-speed particle image velocimetry (HSPIV). A complete manufacturing protocol of the GT-TAV can be found in APPENDIX C. Part drawings and CAD of the GT-TAV can be found in

## APPENDIX I.



Figure 5-7. Open 29 mm GT-TAV without retaining ring alongside closed 29 mm SAPIEN 3. The extra length at the bottom of the GT-TAV is for assembly purposes and is accounted for with regards to deployment height.

### 5.1.6 High-Speed Particle Imaging Velocimetry (HSPIV)

HSPIV was used to measure the 2-D, time-resolved velocity field of the LV and neo-sinus. A $2 \mathrm{~W}, 532 \mathrm{~nm}$ diode-pumped continuous wave solid-state laser (Shenzhen Optlaser, Shenzhen, China) emitting a 2 mm beam was used as the light source. The laser beam was converted to a high frequency pulsed laser sheet by using a scanning mirror (rotating mirror array) setup provided by LaVision (GmbH, Goettingen, Germany). This frequency was manually controlled and its sensor reading shown in DaVis (by LaVision). The flow was seeded with fluorescent polymeric rhodamine-B particles (Dantec Dynamics; Denmark) with a mean diameter of approximately $10 \mu \mathrm{~m}$. A CMOS camera (Phantom VEO 340L,

Vision Research; Wayne, NJ) was used to image the particles in the central long-axis plane of the LV (Figure 5-8).


Figure 5-8. Diagram showing anatomical orientation of the PIV image plane. The image plane is the LV central long-axis which slices down from the A2-P2 of the MV.

The particle size in the camera image ranged from 2 to 4 pixels. The camera was fitted with a macro lens system of focal length 60 mm and the aperture was set at $\mathrm{f} / 4$. To improve the signal-to-noise ratio of the acquired data, a high-pass lens filter (cut-off wavelength of 580 nm ) was used to minimize laser reflections from the sinus region. Detailed hardware configuration protocols can be found in APPENDIX D.

### 5.1.7 Instrument Calibration

### 5.1.7.1 Flow Probe Calibration

See Section 4.1.7.1.

### 5.1.7.2 Pressure Transducer Calibration

See Section 4.1.7.2.

### 5.1.7.3 Viscosity Tuning

A U-tube viscometer was used to measure the viscosity of the water/glycerin solution (Figure 5-9). This was done by drawing 6.8 mL of fluid to the top red line using a pipette. The amount of time it took to drain from the bulb to the bottom red line was then measured. The drainage time was then used to calculate the viscosity of the $36 \%$ glycerin, $64 \%$ water solution. For this study, a time of 480 seconds achieved a dynamic viscosity of 3.5 cP .


Figure 5-9. Diagram of the U-tube viscometer used to measure viscosity of the water-glycerin solution.

### 5.2 Methods

### 5.2.1 Experimental Conditions

For both Specific Aims 2A and 2B, three conditions were varied: 1) AML length, 2) LAMPOON length, and 3) TAV deployment height (Table 5-1).

Table 5-1. $\quad$ Specific Aim 2 Experimental Matrix

| Specific <br> Aim | AML Length | LAMPOON <br> Length (\%) | TAV <br> Deployment | Flow Rate (L/min) | Total <br> Experiments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SA2A | Short | $3(0,50,100)$ | 1 (50/50) | 3 (2.5, 5.0, 6.5) | 9 | 27 |
|  | Long | $3(0,50,100)$ | 2 (50/50, 80/20) | 3 (2.5, 5.0, 6.5) | 18 |  |
| SA2B | Long | $3(0,50,100)$ | 1 (80/20) | 3 (2.5, 5.0, 6.5) | 9 | 9 |

A Short AML and a Long AML were used to study how different sized AMLs, and by relation LVOTs, affect the flow in the LV (SA2A) and neo-sinus (SA2B). Each AML condition was given three different lengths of LAMPOON: $0 \%, 50 \%$, and $100 \%$ AML length. This was done in order to study the changing effects that an optimal LAMPOON (100\%) or suboptimal LAMPOON (50\%) would have on the flow in the LV (SA2A) and AML neo-sinus (SA2B) when compared to the intact AML (0\%).

For the Short AML condition, a 50/50 ventricular/atrial ratio deployment height was used, and for the Long AML condition, 50/50 and 80/20 deployment heights were used. The 50/50 condition was used to mimic a generic deployment of the TAV in a valve-in-ring or valve-in-MAC case. However, in order to get further expansion of the TAV to provide better hemodynamic performance, clinicians deploy the TAV further into the LV. The 80/20 condition was used to mimic the more optimal TAV deployment in conjunction with the worst-case AML length (Long AML condition). The 50/50 deployment provided a comparative variable between Short and Long AML conditions. For SA2A, a control condition with no MV leaflets and the GT-TAV placed upstream of the MV annular plane was also done to help better characterize native systole.

### 5.2.2 Experimental Protocol

The LV box chamber was assembled and GT-TAV (5.1.5) placed into the LV insert at its experimental deployment height condition. A different LV insert (5.1.3) was used inside the chamber for each AML length and LAMPOON condition (6 total). Once the LV box chamber was assembled, the RLHS was configured.

The RLHS was tuned and run for multiple cardiac cycles to remove any initial transients in the LV flow due to start-up. Normal left heart hemodynamics ( 100 mmHg peak MV gradient, 70 beats/min, 35/65 systole/diastole ratio) with varying cardiac output of $2.5,5.0$, and 6.5 liters/min were replicated within the simulator. A previously written custom LabVIEW code was used to trigger the HSPIV controller, control the pulsatile pump (Vivitro Labs, Victoria, BC, CA), and record hemodynamics from a flow probe (4.1.7.1) and pressure transducers (4.1.7.2).

Following the tuning of each cardiac output, HSPIV was performed (5.1.6). The high-speed laser was adjusted to $\approx 700 \mathrm{~Hz}$ for SA2A and $\approx 400 \mathrm{~Hz}$ for SA2B to optimize frame rate and light intensity in the regions of interest (ROI) (Figure 5-10). The camera was initially positioned and focused on the SA2A ROI (the LV). For each LAMPOON length and TAV deployment condition, SA2A HSPIV data was acquired in order of 2.5, 5.0, and 6.5 liters/min cardiac outputs. Immediately following SA2A data acquisition, the camera would be moved closer and focused on the SA2B ROI (the neo-sinus) to maximize image resolution (Figure 5-11). Using the same experimental condition as SA2A, SA2B HSPIV data was then acquired in order of 6.5, 5.0, and 2.5 liters/min cardiac output. For

SA2A and SA2B, images of 20 and 36 sequential cardiac cycles were acquired, respectively.


Figure 5-10. Raw camera image from SA2A showing SA2A (orange) and SA2B (blue) regions of interest. SA2A focuses on the whole LV while SA2B focuses on the MV neo-sinus.


Figure 5-11. Raw camera image from SA2A with raw camera image from SA2B. The camera is moved closer between SA2A and SA2B to focus on the MV neo-sinus (outlined in green) while maximizing resolution.

### 5.2.3 Data Processing and Analysis

DaVis 8.4 and 10 (LaVision) were used to process HSPIV data for SA2A and SA2B, respectively. In order of operation, a mask was made to isolate the ROI (LV for SA2A or neo-sinus for SA2B) from the raw images, a background subtraction filter was used to remove background noise from the masked images, sequential cross-correlation was used for velocity vector calculation, and vector post-processing was used to remove erroneous vectors and smooth the velocity field.

Once the velocity field was calculated in DaVis, custom MATLAB code was used to bin-average, phase-average, and calculate velocity magnitude. Viscous shear stress (VSS; Equation 5-1), principal Reynolds shear stress (pRSS; Equation 5-2), and turbulent kinetic energy (TKE; Equation 5-3) were subsequently calculated from the phase- averaged
velocity fields. Lastly, instantaneous streamlines and pathlines were calculated using Tecplot 360 (Tecplot, Bellevue, WA) and MATLAB was used to better articulate particle tracking in the LV and neo-sinus.

$$
\begin{gather*}
V S S=\mu\left(\frac{d u}{d y}+\frac{d v}{d x}\right)\left[\frac{N}{m^{2}}\right]  \tag{5-4}\\
\left.p R S S=\rho \sqrt{\left(\frac{u^{\prime} u^{\prime}}{}-\overline{v^{\prime} v^{\prime}}\right.} \frac{2}{2}\right)^{2}+\left(\overline{u^{\prime} v^{\prime}}\right)^{2} \tag{5-5}
\end{gather*}\left[\frac{N}{m^{2}}\right]
$$

For SA2B, the maximum and average velocity magnitudes experienced at each grid location over the cardiac cycle were computed in MATLAB as a means of identifying and comparing regions of flow stasis. Velocity fields during diastole and systole were then investigated to better understand the maximum and average velocity magnitudes. The average velocity as well as the maximum velocity within the neo-sinus was then computed for each velocity field: 1) cycle average 2 ) cycle maximum, 3) diastole, and 4) systole. Particle tracking was seeded at 200 ms into diastole to calculate washout of the neo-sinus during diastole.

Detailed DaVis, MATLAB, and Tecplot processing settings used for this study can be found in APPENDIX E. All MATLAB and Tecplot processing codes used for this study can be found in APPENDIX L and APPENDIX M, respectively.

## CHAPTER 6. RESULTS AND DISCUSSION - SPECIFIC AIM 1

### 6.1 Specific Aim 1 Results

Raw Specific Aim 1 results can be found in APPENDIX F.

Motor position showed strong agreement with the target waveforms (Figure 6-1; Table 6-1). In addition, tracking annular area showed similar agreement with the desired in vivo percent areal change (Figure 6-2; Table 6-2).


Figure 6-1. Comparison of desired and measured displacements of a single linear actuator starting with systole for plate type - waveform.

Table 6-1. Resultant accuracy of measured motor displacements compared to their desired waveforms.

| Plate Type Contractile | $\mathbf{R}^{\mathbf{2}}$ | RMSE $(\mu \mathrm{m})$ |
| :--- | :--- | :--- | ---: |
|  | Waveform |  |



Figure 6-2. Echocardiographic image showing annular contraction from diastole to systole (see Table 6-2 for results).

Table 6-2. Measured mean $\pm$ SEM annular area of contractile states from 4-D echocardiography compared to the desired annular area.

|  |  | Porcine |  |  |  |  |  | Ovine <br> Healthy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Healthy |  |  | Diseased |  |  |  |  |  |
|  |  | Diastole ( $\mathrm{cm}^{2}$ ) | Systole $\left(\mathrm{cm}^{2}\right)$ | Contraction $\qquad$ <br> (\%) | Diastole $\left(\mathrm{cm}^{2}\right)$ | Systole $\left(\mathrm{cm}^{2}\right)$ | Contraction $(\%)$ | Diastole ( $\mathrm{cm}^{2}$ ) | Systole $\left(\mathrm{cm}^{2}\right)$ | Contraction $\qquad$ <br> (\%) |
| Desired |  | 11.4 | 9.9 | -13.2 | 13.0 | 12.3 | -5.4 | 5.5 | 4.5 | -19.0 |
|  | Mean | 11.53 | 9.97 | -13.51 | 13.09 | 12.35 | -5.64 | 5.48 | 4.44 | -18.87 |
|  | SEM | 0.05 | 0.04 | 0.39 | 0.06 | 0.05 | 0.24 | 0.10 | 0.08 | 0.61 |

The mean $\pm$ standard error (SEM) anterior leaflet strain of the healthy and diseased states from Experiment A were $0.64 \pm 0.06$ and $0.70 \pm 0.06$, respectively (Figure 6-3; Figure 6-4). The healthy state significantly reduced leaflet strain when compared to the diseased state ( $\mathrm{p}<0.05$ ). There was no significant difference in coaptation length between the two states.

The mean $\pm$ SEM anterior leaflet strain of the healthy, static-min, and static-max states from Experiment B were $0.32 \pm 0.06,0.37 \pm 0.06$, and $0.41 \pm 0.05$, respectively (Figure 6-5; Figure 6-6). The healthy state significantly reduced leaflet strain versus both static states (each $\mathrm{p}<0.05$ ). There was no significant difference in anterior leaflet strain between static states, or coaptation length between the three states.


Figure 6-3. (Experiment A) Anterior leaflet resultant mean $\pm$ SEM Green areal strain between annular contractile states: healthy and diseased.


Figure 6-4. (Experiment A) Anterior leaflet resultant Green areal strain map between annular contractile states: healthy and diseased.


Figure 6-5. (Experiment B) Anterior leaflet resultant mean $\pm$ SEM Green areal strain between annular states: healthy, static-min, and static-max.


Figure 6-6. (Experiment B) Anterior leaflet resultant Green areal strain map between annular states: healthy, static-min, and static-max.

### 6.2 Specific Aim 1 Discussion

In pursuit of a mitral valve simulator that more completely represents the dynamic motion of the full valvular apparatus, this study demonstrated the successful operation of a dynamically contracting mitral annulus. Motor accuracy was shown to be in good agreement with the desired waveforms for both the porcine and the ovine annulus plates. It was confirmed that this translated to proper annulus area change during experiments using 4-D echocardiography. With the DCAs shown to reproduce the scaled in vivo geometries, it was necessary to show that the MV leaflet mechanics were also reproduced.

When investigating the reproduction of MV leaflet mechanics of the new simulator in Experiment A, it was seen that the diseased contractile state increased anterior leaflet strain compared to the healthy state. In our study, strain in the center of the A2 scallop was evaluated, as that is where the highest strains are seen. ${ }^{104}$ Previous porcine in vitro studies have seen comparable areal strain magnitudes ( $70-75 \%$ stretch) when only focusing on the
central A2 scallop and using stereophotogrammetry. ${ }^{105}$ Our results are also in agreement with previous in vivo and in vitro study trends that IMR increases anterior leaflet strain. ${ }^{101}$ It is noted that our results have a greater magnitude of strain compared to the in vivo measurements; this is believed to be primarily due to differences seen between in vivo and in vitro models, using porcine and ovine valves, and the selected area being measured on the leaflet. Previous review articles have highlighted the increased MV leaflet strains seen with porcine compared to ovine as well as in vivo compared to in vitro. ${ }^{23}$ Overall, our results highlight the ability of the simulator to not only reproduce in vivo MV annular dynamics, but also MV leaflet mechanics.

In Experiment B, it was also shown in vitro that simulated rigid annuloplasty increased mitral anterior leaflet strain compared to a healthy contraction. Previous in vivo animal studies have shown similar results where rigid true-sized annuloplasty rings increase anterior mitral leaflet strains. ${ }^{106}$ Our work specifically shows that sizing an annuloplasty ring to an MV's diastolic and systolic annular area leads to increased strain in the anterior leaflet. This implies that rigid annuloplasty rings, regardless of size, can lead to increased strain in the anterior leaflet. Additional in vivo animal studies have also reported that altering the MV geometry using restrictive annuloplasty rings alters strains in the MV anterior leaflet ${ }^{107}$. Amini, et al. ${ }^{107}$ postulates that this annular restriction may affect long-term leaflet durability due to changes in the leaflet's mechanobiological homeostasis. Clinical studies are needed to investigate if anterior leaflet strain is increased in patients with restrictive annuloplasty rings, and, if so, how it impacts repair failure.

Additionally, there was no significant difference seen in coaptation length between states of both experiments. This is believed to be predominantly due to the use of healthy

MVs and the annulus being the only variable changed between experiments. Previous studies have highlighted the effects of isolated annular dilation and papillary muscle (PM) displacement on decreasing leaflet coaptation. ${ }^{108,109}$ Their results show a much larger increase in annular area (greater than $75 \%$ ), not representative of the $14 \%$ increase from the in vivo human data used in this study, is needed to have a significant decrease in coaptation. In addition, they also show that PM displacement has an even larger effect on decreasing leaflet coaptation, of which was not changed in this study.

### 6.2.1 Clinical and Engineering Implications

The work of SA1 provides the first in vitro MV simulator with a dynamically contracting annulus. This new left heart simulator will serve as a platform for future studies in MV biomechanics and repair procedures as well as percutaneous replacement device testing. Additionally, this work suggests that striving to maintain the MV annular dynamics during MV repair procedures is beneficial to the loading of the anterior leaflet. It may then beneficial for future annuloplasty devices to have some component of flexibility rather than be completely rigid.

### 6.2.2 Limitations

The main limitation of this new annular design is that the annulus is flat and its contraction is limited to 2-D, planar motion derived from 2-D projections of 3-D geometry. Physiologically, the MV annulus has a 3-D contractile motion over the cardiac cycle,
changing between a saddle-shape and a more flat-shape. It has been previously shown that the saddle-shape of the MV does minimize leaflet strain; ${ }^{110}$ it could then be hypothesized that adding this 3-D shape to our study would have presented even greater differences between a saddle-shaped healthy state and the flatter-shaped diseased and annuloplasty states. However, for our study, it was deemed that having a 2-D, planar motion allowed for more use of data as contractile inputs (annular metrics commonly presented as 2-D, planar projections) as well as a simplification that allowed for more control over the experiment.

## CHAPTER 7. RESULTS AND DISCUSSION - SPECIFIC AIM 2

### 7.1 Specific Aim 2 Results

Raw Specific Aim 2 results for plots can be found in APPENDIX G.
7.1.1 Specific Aim 2A: LV Flow with LAMPOON


Figure 7-1. Diagram of Long AML raw image for better anatomical reference when looking at Specific Aim 2A PIV results. Orange is the PIV ROI and the AML and GT-TAV are masked out.

During peak systole, the average LVOT velocity measured was $0.46 \mathrm{~m} / \mathrm{s}$ occurring with $0 \%$ LAMPOON at $6.5 \mathrm{~L} / \mathrm{min}$. Holding cardiac output constant across conditions, the average LVOT velocity showed a decreasing trend as LAMPOON length increased for 80/20 and 50/50 Long AML conditions, but not for the 50/50 Short (Figure 7-2; Figure 7-3; Figure 7-4; Figure 7-5; Figure 7-6).

Maximum VSS measured over the cardiac cycle peaked at $1.4 \mathrm{~N} / \mathrm{m}^{2}$ occurring with $0 \%$ LAMPOON at $6.5 \mathrm{~L} / \mathrm{min}$. Holding cardiac output constant across conditions, the maximum VSS showed a decreasing trend as LAMPOON length increased for all deployment and AML lengths (Figure 7-7; Figure 7-8; Figure 7-9; Figure 7-10; Figure 7-11).

Maximum principal RSS measured over the cardiac cycle peaked at $71.2 \mathrm{~N} / \mathrm{m}^{2}$ occurring with $0 \%$ LAMPOON at $6.5 \mathrm{~L} / \mathrm{min}$. No trend was seen with maximum principal RSS between LAMPOON conditions (Figure 7-12; Figure 7-13; Figure 7-14; Figure 7-15; Figure 7-16).

Maximum TKE measured over the cardiac cycle peaked at $0.084 \mathrm{~m}^{2} / \mathrm{s}^{2}$ occurring with $0 \%$ LAMPOON at $6.5 \mathrm{~L} / \mathrm{min}$. No trend was seen with maximum TKE between LAMPOON conditions (Figure 7-17; Figure 7-18; Figure 7-19; Figure 7-20; Figure 7-21).

During mid-diastole, holding cardiac output constant across conditions, vorticity size and magnitude in the LV showed an increasing trend with increasing LAMPOON (Figure 7-22; Figure 7-23; Figure 7-24). The increased vorticity size and magnitude translated to increased flow into the LVOT and anterior side of the GT-TAV during middiastole.


Figure 7-2. Velocity fields with instantaneous streamlines at peak systole at 2.5 L/min at each condition.


Figure 7-3. Velocity fields with instantaneous streamlines at peak systole at 5.0 $\mathrm{L} / \mathrm{min}$ at each condition.


Figure 7-4. Velocity fields with instantaneous streamlines at peak systole at 6.5 $\mathrm{L} / \mathrm{min}$ at each condition.


Figure 7-5. Average LVOT velocities at peak systole at each condition.


Figure 7-6. Average LVOT velocities at peak systole averaged across both Long AML conditions (80/20 and 50/50 ventricular/atrial).


Figure 7-7. Frames containing maximum VSS in the cardiac cycle at $2.5 \mathrm{~L} / \mathrm{min}$ for each condition.


Figure 7-8. Frames containing maximum VSS in the cardiac cycle at $5.0 \mathrm{~L} / \mathrm{min}$ for each condition.


Figure 7-9. Frames containing maximum VSS in the cardiac cycle at $6.5 \mathrm{~L} / \mathrm{min}$ for each condition.


Figure 7-10. Maximum VSS in the $L V$ over the cardiac cycle at each condition.


Figure 7-11. Maximum VSS in the $\mathbf{L V}$ over the cardiac cycle averaged across all AML and deployment conditions.


Figure 7-12. Frames containing maximum principal RSS in the cardiac cycle at $\mathbf{2 . 5}$ $\mathrm{L} / \mathrm{min}$ for each condition.


Figure 7-13. Frames containing maximum principal RSS in the cardiac cycle at 5.0 $\mathrm{L} / \mathrm{min}$ for each condition.


Figure 7-14. Frames containing maximum principal RSS in the cardiac cycle at 6.5 $\mathrm{L} / \mathrm{min}$ for each condition.


Figure 7-15. Maximum principal RSS over the cardiac cycle at each condition.


Figure 7-16. Maximum principal RSS over the cardiac cycle averaged across all AML and deployment conditions.


Figure 7-17. Frames containing maximum TKE in the cardiac cycle at $2.5 \mathrm{~L} / \mathrm{min}$ for each condition.


Figure 7-18. Frames containing maximum TKE in the cardiac cycle at $5.0 \mathrm{~L} / \mathrm{min}$ for each condition.


Figure 7-19. Frames containing maximum TKE in the cardiac cycle at $6.5 \mathrm{~L} / \mathrm{min}$ for each condition.


Figure 7-20. Maximum TKE over the cardiac cycle across at each condition.


Figure 7-21. Maximum TKE over the cardiac cycle averaged across all AML and deployment conditions.


Figure 7-22. Vorticity fields with instantaneous streamlines at mid-diastole at $\mathbf{2 . 5}$ L/min at each condition.


Figure 7-23. Vorticity fields with instantaneous streamlines at mid-diastole at 5.0 $\mathrm{L} / \mathrm{min}$ at each condition.


Figure 7-24. Vorticity fields with instantaneous streamlines at mid-diastole at 6.5 $\mathrm{L} / \mathrm{min}$ at each condition.


Figure 7-25. Diagram of Long AML raw image for better anatomical reference when looking at Specific Aim 2B PIV results. Blue is the PIV ROI, red is anterior mitral neo-sinus, and the AML and GT-TAV leaflet is masked out.

All LAMPOON conditions at all cardiac outputs showed a maximum velocity magnitude of at least $0.1 \mathrm{~m} / \mathrm{s}$ in the neo-sinus over the cardiac cycle (Figure 7-26; Figure 7-27; Table 7-1). The majority of the maximum velocities in the neo-sinus were shown to have occurred during systole (Figure 7-28; Figure 7-29; Table 7-2). The 100\% LAMPOON condition showed a higher average velocity magnitude in the neo-sinus over the cardiac cycle compare to the $0 \%$ and $50 \%$ LAMPOON conditions (Figure 7-30; Figure 7-31; Table 7-3).

This was shown to be a result of the $100 \%$ LAMPOON condition having higher velocity
in the neo-sinus during diastole compared to the $0 \%$ and $50 \%$ LAMPOON conditions (Figure 7-32; Figure 7-33; Table 7-4). The $100 \%$ LAMPOON was subsequently shown to have better washout of the neo-sinus during diastole compared to the $0 \%$ and $50 \%$ LAMPOON conditions from particle tracking (Figure 7-34; Figure 7-35).


Figure 7-26. Cycle-maximum velocity magnitudes in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs (2.5, 5.0 , and $6.5 \mathrm{~L} / \mathrm{min}$ ).


Figure 7-27. Average velocities within the neo-sinus for the cycle-maximum velocity magnitudes. Helps quantify Figure 7-26.

Table 7-1. Average and maximum velocities within the neo-sinus for the cyclemaximum velocity magnitudes. Helps quantify Figure 7-26.

| Cardiac <br> Output <br> (L/min) | O\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ | 50\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ | 100\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.5 | 0.081 | 0.108 | 0.099 | 0.129 | 0.180 | 0.234 |
| 5.0 | 0.139 | 0.175 | 0.132 | 0.169 | 0.133 | 0.181 |
| 6.5 | 0.146 | 0.168 | 0.113 | 0.138 | 0.119 | 0.151 |



Figure 7-28. Mid-Systolic velocity fields in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs (2.5, 5.0, and $6.5 \mathrm{~L} / \mathrm{min}$ ).


Figure 7-29. Average velocities with the neo-sinus for the mid-systolic velocity fields. Helps quantify Figure 7-28.

Table 7-2. Average and maximum velocities within the neo-sinus for the midsystolic velocity fields. Helps quantify Figure 7-28.

| Cardiac | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Output } \\ & (\mathrm{L} / \mathrm{min}) \end{aligned}$ | Average $(\mathrm{m} / \mathrm{s})$ | Maximum ( $\mathrm{m} / \mathrm{s}$ ) | Average $(\mathrm{m} / \mathrm{s})$ | Maximum ( $\mathrm{m} / \mathrm{s}$ ) | Average $(\mathrm{m} / \mathrm{s})$ | $\begin{gathered} \text { Maximum } \\ (\mathrm{m} / \mathrm{s}) \\ \hline \end{gathered}$ |
| 2.5 | 0.077 | 0.108 | 0.097 | 0.129 | 0.099 | 0.118 |
| 5.0 | 0.130 | 0.175 | 0.127 | 0.169 | 0.096 | 0.130 |
| 6.5 | 0.121 | 0.146 | 0.107 | 0.134 | 0.086 | 0.127 |



Figure 7-30. Cycle-average velocity magnitudes in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs ( $2.5,5.0$, and $6.5 \mathrm{~L} / \mathrm{min}$ ).


Figure 7-31. Average velocities within the neo-sinus for the cycle-average velocity magnitudes. Helps quantify Figure 7-30.

Table 7-3. Average and maximum velocities within the neo-sinus for the cycleaverage velocity magnitudes. Helps quantify Figure 7-30.

| Cardiac <br> Output <br> $(\mathrm{L} / \mathrm{min})$ | O L LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ | 50\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ | 100\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 . 5}$ | 0.031 | 0.038 | 0.026 | 0.031 | 0.080 | 0.100 |
| $\mathbf{5 . 0}$ | 0.043 | 0.050 | 0.034 | 0.043 | 0.056 | 0.075 |
| $\mathbf{6 . 5}$ | 0.044 | 0.051 | 0.032 | 0.039 | 0.046 | 0.061 |



Figure 7-32. Mid-Diastolic velocity fields in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $100 \%$ ) at different cardiac outputs (2.5, 5.0, and $6.5 \mathrm{~L} / \mathrm{min}$ ).


Figure 7-33. Average velocities within the neo-sinus for the mid-systolic velocity fields. Helps quantify Figure 7-32.

Table 7-4. Average and maximum velocities within the neo-sinus for the midsystolic velocity fields. Helps quantify Figure 7-32.

| Cardiac <br> Output <br> (L/min) | O\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ |  | 50\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ | Maximum <br> $(\mathrm{m} / \mathrm{s})$ |  | 100\% LAMPOON <br> Average <br> $(\mathrm{m} / \mathrm{s})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 . 5}$ | 0.015 | 0.035 | 0.005 | 0.019 | 0.121 | 0.182 |  |
| $\mathbf{5 . 0}$ | 0.014 | 0.027 | 0.013 | 0.024 | 0.103 | 0.141 |  |
| $\mathbf{5 . 0}$ | 0.028 | 0.048 | 0.009 | 0.016 | 0.111 | 0.151 |  |



Figure 7-34. 20 particle pathlines in the neo-sinus (highlighted by red box) of different LAMPOON conditions ( 0,50 , and $\mathbf{1 0 0 \%}$ ) at different cardiac outputs (2.5, 5.0 , and $6.5 \mathrm{~L} / \mathrm{min}$ ).


Figure 7-35. Particle washouts between LAMPOON conditions at different flow rates. Particles were seeded 200 ms into diastole.

### 7.2 Specific Aim 2 Discussion

### 7.2.1 Specific Aim 2A: LV Flow with LAMPOON

Left ventricular outflow tract (LVOT) obstruction is a risk for patients with transcatheter mitral valve replacements (TMVR). ${ }^{13,14,111}$ This is primarily caused by current TMVs, offlabel TAVs or dedicated TMVs, extending into the LVOT once deployed and consequentially propping the anterior mitral leaflet (AML) into the LVOT. The main goal of the LAMPOON procedure is to proactively prevent this transcatheter valve induced LVOT obstruction by lacerating the AML prior to implantation. ${ }^{19,88,112,113}$ This laceration increases the size of the post-TMVR LVOT by allowing the AML to splay around the stent frame as the transcatheter valve expands with help from the chordae pulling the AML apart.

Specific Aim 2A investigated how differing degrees of LAMPOON with different AML lengths and TAV deployment heights would affect flow in the LV. While studying systolic flow, it was found that both deployment heights for the Long AML (80/20 and 50/50 ventricle/atrial) showed decreased systolic velocity magnitude in the LVOT with increased LAMPOON (Figure 7-5; Figure 7-6). This was due to LAMPOON creating a larger LVOT (a larger cross-sectional area) for systolic flow to go through. This decrease in LVOT velocity with LAMPOON could translate to a decrease in LVOT obstruction with an effective lower pressure gradient across the AV. The Short AML (50/50 ventricle/atrial) showed no clear differences in systolic velocity magnitude in the LVOT with increased LAMPOON. This was believed to be due to the already small length of the Short AML condition with no large changes in LVOT cross-sectional area, given the geometry of the

LV and Short AML. Overall the velocity magnitude in the LVOT during peak systole were low, even with the Long AML. This was believed to be due to the size of the LVOT still being large, and the resultant shape of the LVOT in our model resembling a horseshoe shape with $0 \%$ LAMPOON, allowing flow to go around the side AML and not just the central, A2 plane (Figure 7-36).


Figure 7-36. Cross-sectional view of the LVOT between $\mathbf{0 \%}$ and $100 \%$ LAMPOON. Red, dashed line is the cross-sectional cut of the LVOT and the orange, dashed line is the central, long-axis plane at which we imaged.

Going forward, this work suggests that when measuring the estimated LVOT size post-TMVR pre-operatively, other planes beside the central long-axis plane should be investigated for measurements and the entire shape of the LVOT be taken into consideration for LVOT obstruction.

Upon investigating the effects on flow in the LV with LAMPOON, it was found that the largest magnitudes of VSS, TKE, and pRSS occurred during diastole. The maximum VSS occurred during the start of the E-wave with the highest velocity inlet jet.

The maximum TKE and pRSS occurred after the E and A-waves and were predominantly found in the same region and time point with the same experiment and showed the same trends. The maximum VSS decreased with increased LAMPOON across all conditions (Figure 7-10; Figure 7-11), however the magnitudes themselves were small (high of $1 \mathrm{~N} / \mathrm{m}^{2}$ with $0 \%$ LAMPOON and $6.5 \mathrm{~L} / \mathrm{min}$ ). There were no distinguishable differences between pRSS and TKE at all cardiac output conditions (Figure 7-15; Figure 7-16; Figure 7-20; Figure 7-21). Throughout the LV, pRSS and TKE values were generally small with only intermittent cells of intensity due to the flow fluctuations in the LV after the E and A waves. It was found that Long AML, $0 \%$ LAMPOON at $6.5 \mathrm{~L} / \mathrm{min}$ reached pRSS of over $70 \mathrm{~N} / \mathrm{m}^{2}$; this was in range of platelet activation levels ( $32 \mathrm{~N} / \mathrm{m}^{2}$ at 70 ms and $170 \mathrm{~N} / \mathrm{m}^{2}$ at 7 ms exposure), ${ }^{114-116}$ but not near blood damage levels (400-800 $\mathrm{N} / \mathrm{m}^{2}$ at 1 ms exposure time-scale). ${ }^{117,118}$ The smaller time scales ( $1-7 \mathrm{~ms}$ ) were used as a conservative approach, because we looked at instantaneous shear rates, with our acquisition having 7 ms between frames, without any temporal tracking along pathlines. If we were to track shear stress exposure of platelets throughout the cardiac cycle, not the assumption of a single frame, we could look at lower shear stress thresholds for longer exposure time-scales (Figure 7-37). ${ }^{116}$ These lower thresholds could potentially show increased levels of platelet activations, however further studies are needed to confirm this.


Figure 7-37. "Hellums' shear stress-exposure time threshold required to activate platelets, with some additional data." (Taken from Fraser et al.) ${ }^{116}$

From these results, it is postulated that hemolysis may not be a factor in a valve-invalve, valve-in-MAC, or valve-in-ring with average LV geometry and normal flow waveforms, but platelet activation may occur. Our experiments used a symmetrically expanded TAV with an aligned deployment, the best case clinical scenario. Future studies should look to quantify how eccentricity and alignment in valve deployment (e.g., deployment into calcium deposits) and irregular flow waveforms (e.g. atrial fibrillation) could affect VSS, pRSS, and TKE in the LV, as no implantation is perfect and valve eccentricity has already been shown to increase these values in bicuspid AVs and TAVs. ${ }^{119,}$ 120

Upon investigating the effects on diastolic flow in the LV with LAMPOON, interestingly, it was also found that a larger vortical structure was produced with increasing LAMPOON for all conditions (Figure 7-22; Figure 7-23; Figure 7-24). In addition, the vortical core was able to move more apically into the LV with increased LAMPOON for all conditions. This larger vortical structure increased flow into the LVOT and the anterior side of the GT-TAV during mid-diastole. These mid-diastolic LV flow characteristics helped better explain our Specific Aim 2B findings.

Further clinical studies are needed to confirm these results. Additionally, further in vitro and clinical studies are needed to validate the postulations and hypotheses made from these results.

### 7.2.2 Specific Aim 2B: Neo-Sinus Flow with LAMPOON

Thrombosis has been seen clinically and subclinically with TAVR. ${ }^{81,121-124}$ This has led to recent investigations into the AV neo-sinus where the native AV leaflets wrap around the stent frame creating a cavity of flow stasis between the TAV leaflets and the native AV leaflets. ${ }^{83,125-127}$ With the implantation of TAVs in the MV, thrombosis has now been seen clinically and subclinically with mitral valve-in-ring, valve-in-valve, and valve-in-MAC. ${ }^{15}$, 16, 128-132 Previous studies had shown that resecting the AML during SMVR had a lower incidence of thrombosis than those with intact AML. ${ }^{84}$ In the same vein as with TAVR, it was hypothesized that an anterior mitral neo-sinus was formed between the TAV leaflets and the AML wrapped around the stent frame with TMVR, thus creating stagnation leading to thrombosis. Furthermore, like the surgical AML resection with SMVR, the use of

LAMPOON with TMVR could offer similar benefits with the potential to lower the risk of thrombosis with TMVR.

Specific Aim 2B studied how differing degrees of LAMPOON would affect the flow in the anterior mitral neo-sinus. All LAMPOON conditions at all cardiac outputs showed a maximum velocity magnitude of at least $0.1 \mathrm{~m} / \mathrm{s}$ in the neo-sinus over the cardiac cycle which would indicate adequate washout (Figure 7-27). The largest area of high velocities occurred during systole when the GT-TAV closed, and the fluid was pushed into the neo-sinus due to the LV ejection (Figure 7-29). 100\% LAMPOON showed higher average velocity in the neo-sinus (from the GT-TAV leaflet edge up to the skirt line) than $0 \%$ and $50 \%$ LAMPOON at all cardiac outputs (Figure 7-31). This was due to LAMPOON relieving stagnation in the neo-sinus during diastole when the GT-TAV was open (Figure 7-33).

This was further characterized through washout simulation via particle tracking from pathlines (Figure 7-34; Figure 7-35). When the region of the neo-sinus from the leaflet edge to the stent skirt was seeded during diastole (at 200 ms ), it was shown that $100 \%$ LAMPOON had complete washout within $\approx 50 \mathrm{~ms}$ while the $0 \%$ and $50 \%$ had to wait until systole for full washout. This systolic washout is most evident in the $0 \%$ and $50 \%$ LAMPOON conditions at $2.5 \mathrm{~L} / \mathrm{min}$ due to it being the lowest flow conditions.

Combining the post-TMVR findings of possible stress inducing platelet activation levels (from SA2A) with the AML creating flow stagnation in the neo-sinus during diastole (from SA2B) creates a plausible mechanism for TMVR thrombosis. In addition to its mitigation of LVOT obstruction, the benefit of LAMPOON to relieve anterior neo-sinus
stagnation, hindering that pathway of thrombosis, warrants further clinical consideration and discussion.

It was important to note that the laceration in the $50 \%$ LAMPOON condition did not reach the TAV leaflet edge, which could explain why there was little difference between $0 \%$ and $50 \%$ LAMPOON in the neo-sinus. It was postulated from these results that LAMPOON that reaches the TAV leaflet edge could provide increased stagnation relief compared to anything shorter, and that this relief would increase the closer the laceration got to the mitral annulus ( $100 \%$ LAMPOON). However, these results show limited stagnation relief below the skirt line of the TAV, and thus the benefits of LAMPOON for the neo-sinus may be limited to the skirt line (Figure 7-38).


Figure 7-38. Velocity contour of the neo-sinus with $\mathbf{5 0 \%}$ LAMPOON with Long AML at 80/20 deployment highlighting the minimum point you may need to lacerate for washout benefits (leaflet edge) and the limiting point for washout (skirt line).

From these results, it was hypothesized that $100 \%$ LAMPOON should still be preferred over a shorter length that still reaches the skirt line, because 100\% LAMPOON allows for increased splaying of the AML around the stent frame, thus creating a larger
opening into the neo-sinus in 3-D space. Additionally, complete chordal sparing AML resection would create an even larger opening into the neo-sinus than 100\% LAMPOON and could be the preferred method if percutaneously feasible. It was further hypothesized that LAMPOON will have minimal impact on the flow in the neo-sinus of a closed-cell TMV.

Further clinical studies are needed to confirm these results. Additionally, further in vitro and clinical studies are needed to validate the postulations and hypotheses made from these results.

No significant differences were found in the hemodynamics between LAMPOON conditions at the same cardiac outputs. This is believed to be mainly caused by the lack of a large LVOT obstruction from our experimental design (healthy size LV, average aortomitral angle, etc.). Additionally, the functioning AV was not directly in the aorto-mitral plane, positioned further upstream. The AML and LVOT were thus believed to be far enough away from the AV that there was plenty of distance for pressure recovery. The lack of a true LVOT obstruction and the AV being placed upstream allowed us to tune each experiment to the same hemodynamic conditions mitigating any changes we would have seen with an induced sub-aortic stenosis from obstruction.

### 7.2.3 Clinical and Engineering Implications

The work of Specific Aim 2 provides the first in vitro simulation of the LAMPOON procedure. This new experimentation platform will serve as a means for future fluid
mechanics studies involving the LV, LAMPOON, and TMVRs. Additionally, this work suggests that the LAMPOON procedure can be beneficial by increasing flow in the neosinus, increasing diastolic mixing in the LV, and decreasing velocity in the neo-LVOT. These findings could lead to the laceration of the AML with TMVR and the removal of the AML with SMVR becoming a standard of care, provided that it becomes easier to do with regards to TMVR. This also poses a question of whether future TMVR devices should incorporate open-cell or differently shaped stent frames in order to receive the full benefits of the LAMPOON or any leaflet resection procedure, as the relief through LAMPOON may only go as far as the closed enclosure of the transcatheter valve (e.g., sealing skirt, closed-cell stent, etc.).

### 7.2.4 Limitations

A limitation of Specific Aim 2 was the use of rigid mitral valve leaflets. This was necessary in order to make a transparent anatomically accurate model that could be seamlessly incorporated into the LV phantom. Although when a TAV is deployed into the MV, most of the MV leaflets are wrapped around the TAV stent frame and tethered by the chordae into a static state, the dynamics of the excess leaflet, i.e. the AML edge, is lost in the rigid model.

Another limitation was the use of the LV phantom previously made by Okafor. ${ }^{103}$ It was a patient-averaged model of a healthy LV with healthy geometry and stiffness. This was a good starting point for a controlled study looking at the general fluid mechanics of the LAMPOON procedure, however most patients currently receiving LAMPOON have
smaller than average LVs with atypical aorto-mitral angulations, hence the risk of LVOT obstruction and use of LAMPOON. It was believed that the use of a smaller LV and irregular aorto-mitral angulation would have helped to induce LVOT obstruction in the $0 \%$ LAMPOON condition and shown greater differences in the results.

A limitation with the particle tracking in Tecplot was that the pathlines and seeding were based solely on velocity field data in the ROI with no physical boundary conditions and no velocity data surrounding the ROI. This primarily means that we could not track particles that leave and reenter the ROI due to the small oscillations in the observed neosinus flow caused by the small undulations of the TAV leaflets during diastole. A better method would be to enforce a wall boundary condition at the AML and use a velocity field larger than the ROI with the ability to only seed the ROI. For the $0 \%$ and $50 \%$ LAMPOON cases it was believed that washout would have been even worse if we could have tracked a particle momentarily leaving and reentering the neo-sinus.

A final limitation was the power of the laser used for HSPIV. It's strength and the distance away from the ROI hindered the images' light intensity that limited the quality of the data. This was partially remedied by lowering the acquisition rate for SA2B, because the neo-sinus was furthest away from the laser, but at the cost of a larger time interval between frames. For both SA2A and SA2B, the posterior LV region close to the posterior leaflet had the least light intensity and the worst data.

An overall limitation was that 2-D PIV was used to characterize a 3-D flow field.
Neighboring planes within small distances ( $2-4 \mathrm{~mm}$ ) of the central plane were studied and showed only small differences in the flow field in that planar direction. However, both the
neo-sinus and the neo-LVOT are irregular 3-D shapes and the use of stereographic, plenoptic, or tomographic PIV would provide even better characterization of their flow regions.

## CHAPTER 8. CONCLUSIONS AND FUTURE WORK

## 8. $1 \quad$ Specific Aim 1

### 8.1.1 Conclusions

This work provides the first in vitro MV simulator with a dynamically contracting annulus. The linear actuators in combination with the annular plate designs provided MV annular contraction and reproduced the annulus area change of previous in vivo studies and MV leaflet mechanics of previous in vitro studies. It was found that ischemic contraction leads to increased AML strain compared to healthy contraction. Additionally, it was seen that a static annulus, mimicking restrictive annuloplasties that are sized to systolic and diastolic sizing increased AML strain. This work suggests that striving to maintain the MV annular dynamics during MV repair procedures is beneficial to the loading of the anterior leaflet.

### 8.1.2 Future Work

This new left heart simulator will serve as a platform for future studies in MV biomechanics and repair procedures as well as percutaneous replacement device testing. In particular, the addition of annular contraction with TMV deployment in an in vitro setting could provide a more robust comprehension of flow characteristics and paravalvular leak.

### 8.2 Specific Aim 2

### 8.2.1 Conclusions

In Specific Aim 2A, the results showed that LAMPOON decreased average LVOT velocity magnitude at peak systole, lowered VSS, and increased diastolic flow into the LVOT. SA2A also showed pRSS magnitudes close to platelet activation levels. This suggests that LAMPOON could help mitigate LVOT obstruction and that there could be a risk of platelet activation in the LV with TMVR.

In Specific Aim 2B, the results showed that $100 \%$ LAMPOON decreased stagnation in the neo-sinus during diastole and that all conditions had adequate neo-sinus flow during systole. This suggests that LAMPOON could lower the risk of thrombosis in the anterior MV neo-sinus. SA2B also leads to postulation that to have any neo-sinus benefits from LAMPOON the laceration must reach the transcatheter valve's leaflet edge (edge of the neo-sinus) at a minimum.

### 8.2.2 Future Work

Future work in this area could work on improving the current LV model by making new LV phantoms that are smaller with varying aorto-mitral angulations. Additionally, with advances in silicone 3-D printing or the use of a silicone mold/casting, a flexible and transparent MV leaflet model could replace the current rigid model. Future studies should focus on the effects of eccentricity and irregular flow waveforms on the shear stresses and neo-sinus washout as well as different length and different shaped AML cuts. The length in regard to confirming whether or not the TAV leaflet edge and the skirt line are indeed
the boundaries of neo-sinus relief, and the shape to more accurately detail the AML A2resection from SMVR for valve-in-valve. Lastly, given that we have time-resolved flow fields of the LV over the cardiac cycle, additional work should be made to investigate the shear exposure of platelets and blood cells over the cardiac cycle.

## CHAPTER 9. FUNDING AND OTHER SUPPORT

This work was primarily supported by a research grant awarded from the National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL119297). Specific Aim 2 was additionally supported by an American Heart Association Predoctoral Fellowship (17PRE33661066). Early work and education were supported by a research grant from the Food and Drug Administration (FDA-SOL-1119843).

Special thanks are given to Holifield Farms, Venair, and Proctor \& Gamble for their generosity. Holifield Farms donated fresh porcine hearts for use in Specific Aim 1, Venair donated silicone left ventricle phantoms used in Specific Aim 2, and Proctor \& Gamble donated glycerin that was used in Specific Aim 2.

## APPENDIX A. ASSEMBLY GUIDE - DYNAMICALLY CONTRACTING ANNULUS MOTOR AND CONTROLLER

## Summary

This assembly guide outlines how to connect all parts of the dynamically contracting annulus and contains a table of materials used.

## A. 1 Motor and Controller Wiring



Figure A-1. Wiring diagram for a single motor configuration. See for Table A-1 details.

Table A-1. Wire numbering legend and description.

| Item | Figure Legend | $\begin{gathered} \text { Item } \\ \text { Legend } \end{gathered}$ | $\underline{\text { Wire Color }}$ | Description |
| :---: | :---: | :---: | :---: | :---: |
| Power Supply (Figure A-2) | A | +V ADJ | Turn Screw | Used to adjust the voltage output of the power supply |
|  | 0 | L/N/Gnd | White/Black /Green | Computer cord taken apart; provides power from wall to power supply |
|  | 1 | -V | Black | Negative voltage between power supply (-V) and H-Bridge controller (Gnd) |
|  | 2 | +V | Red | Positive voltage between power supply (+V) and H-Bridge controller ( +V ) |
| H-Bridge Controller (Figure A-3) | 1 | Gnd (9) | Black | Negative voltage between power supply (-V) and H-Bridge controller (Gnd) |
|  | 2 | +V (8) | Red | Positive voltage between power supply (+V) and H-Bridge controller ( +V ) |
|  | 3 | M- (12) | Black | Negative voltage between H-Bridge controller (M-) and motor |
|  | 4 | M + (11) | Red | Positive voltage between H-Bridge controller (M+) and motor |
|  | 5 | Vset or Iset (1) | Blue | Voltage magnitude from DAQ NI9269 to H-Bridge controller used to control motor speed (voltage magnitude via M ) |
|  | 6 | F/R (2) | Orange | Binary voltage DAQ NI-9269 to HBridge controller used to control motor direction (voltage charge via M) |
|  | 7 | +5 v (5) | White | Voltage magnitude from H-Bridge to motor for motor potentiometer to normalize to (0-5 V) |


|  | 8 9 | Gnd (6) <br> Gnd (9) | Yellow <br> White | Ground from H-Bridge to motor for motor potentiometer to normalize to (0-5 V) and DAQ NI-9239 <br> Ground from H-Bridge to DAQ NI9269 |
| :---: | :---: | :---: | :---: | :---: |
| Motor (Figure A-4) | 3 | - | Black | Negative voltage between H-Bridge controller (M-) and motor |
|  | 4 | - | Red | Positive voltage between H-Bridge controller (M+) and motor |
|  | 7 | - | White | Voltage magnitude from H-Bridge to motor for motor potentiometer to normalize to (5 V max) |
|  | 8 | - | Yellow | Ground from H-Bridge to motor for motor potentiometer to normalize to ( 0 V min ) |
|  | 10 | - | Blue | Motor potentiometer voltage output to DAQ NI-9239 (0-5 V) |
| $\begin{aligned} & \hline \text { DAQ NI- } \\ & 9269 \\ & \text { (Figure } \\ & \text { A-5) } \end{aligned}$ | 5 | Ch0-0 | Blue | Voltage magnitude from DAQ NI9269 to H-Bridge controller used to control motor speed (voltage magnitude via M ) |
|  | 6 | Ch1-0 | Orange | Binary voltage from DAQ NI-9269 to H -Bridge controller used to control motor direction (voltage charge via M ) |
|  | 9 | $\begin{aligned} & \text { Ch0-1/ } \\ & \text { Ch1-1 } \end{aligned}$ | White | Ground from H-Bridge to DAQ NI9269 |
| $\begin{aligned} & \hline \text { DAQ NI- } \\ & 9239 \\ & \text { (Figure } \\ & \text { A-5) } \end{aligned}$ | 10 | Ch0-0 | Blue | Motor potentiometer voltage output to DAQ NI-9239 (0-5 V) |
|  | 8 | Ch0-1 | White | Ground from H-Bridge to DAQ NI- $9239$ |



Figure A-2. Single power supply wiring figure. See for Table A-1 details.


Figure A-3. Single H-Bridge controller wiring figure. See for Table A-1 details.


Figure A-4. Single motor wiring figure. See for Table A-1 details.


Figure A-5. DAQ wiring figure. NI 6269 - Voltage Output; NI 9239 - Voltage Input. See for Table A-1 details.

## A. 2 H-Bridge Controller Settings

H-Bridge Controller is the Device Craft 1015B-50V/30A with a Prolific PL2303HX-A serial board. Aside from changing default settings, it is most important to note that Mode 3 was used to operate in a $1-4 \mathrm{~V}$ Ain range with the $\mathrm{F} / \mathrm{R}$ line active (Figure A-6). This is so that any voltage below 1 V is stop and above 4 V is full speed (range $0-5 \mathrm{~V}$ ), and so you can control directionality.

```
且多 COM1 - PuTTY
?DCYO00001 DSC000000 SDYO00000 IS000001 IS2-00342 IMT000001 VS000048 TM000533 AI
0 0 0 0 0 0 ~ I L 0 0 1 0 2 3 ~ F R 0 0 0 6 6 4 ~ S F 0 0 1 0 2 3 ~ S R 0 0 1 0 2 3 ~ S P 0 0 1 0 2 3 ~ I C A 0 0 0 0 0 0 ~ E R R 0 0 0 0 0 0 ~
MDS000003 IDS000000 AUP003000 ADW003000 AST000767 OVS000120 UVS000030 OTM000180
IMX001023 MXD001024 MND-01023 IRM000000 IRO000000 IOF-00002 MIS000004 STE000003
/DCYO00000 DSC000000 SDY000000 IS000001 IS2-00342 IMT000001 VS000048 TM000534 AI
000000 IL001023 FR000664 SF001023 SR001023 SP001023 ICA000000 ERR000000
MDS000003 IDS000000 AUP003000 ADW003000 AST000767 OVS000120 UVS000030 OTM000180
IMX001023 MXD001024 MND-01023 IRM000000 IRO000000 IOF-00002 MIS000004 STE000003
?DCYO00000 DSC000000 SDY000000 IS000000 IS2-00341 IMT000000 VS000048 TM000535 AI
000000 IL001023 FR000664 SF001023 SR001023 SP001023 ICA000000 ERR000000
MDS000003 IDS000000 AUP003000 ADW003000 AST000767 OVS000120 UVS000030 OTM000180
IMX001023 MXD001024 MND-01023 IRM000000 IRO000000 IOF-00002 MIS000004 STE000003
```

Figure A-6. List of settings for the $\mathbf{H}$-Bridge Controller.

## A. 3 PID+ Controller Tuning

To help inform, a PID controller is a controller that uses a control loop feedback of the proportional, integral, and derivative terms of the system error (Equation Error! R eference source not found.).

$$
\begin{equation*}
u(t)=K_{p} e(t)+K_{i} \int_{0}^{t} e(\tau) d \tau+K_{d} \frac{d}{d t} e(t) \tag{A-7}
\end{equation*}
$$

The proportional term outputs a value that is proportional to (multiplied by) the current value and is used to correct the current error. However, the integral term outputs a value that is used to correct the offset of the system with the value being relative to the sum of the error over time. Furthermore, the derivative term outputs a value that is used to predict future error of the system by calculating the change of the error over time. Some effects of individually increasing the specified gain values can be seen in Table A-2.

Table A-2. Effects of increasing each respective gain value.

| Gain | Rise Time | Overshoot | Settling Time | Steady-State <br> Error |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{K}_{\mathrm{p}}$ | Decrease | Increase | - | Decrease |
| $\mathrm{K}_{\mathrm{i}}$ | Decrease | Increase | Increase | Decrease |
| $\mathrm{K}_{\mathrm{d}}$ | - | Decrease | Decrease | - |

For the motor/H-Bridge controller configuration in this thesis, manually tuning your PID gains by trial-and-error is reasonable given the system, however, that is not always the case and the Ziegler-Nichols tuning method can yield better results. The Ziegler-Nichols tuning method is a tuning method that utilizes the system's determined ultimate gain and the period of oscillation at the ultimate gain to calculate the proportional, integral, and derivative values for the controller using heuristic equations (Table A-3). Using only the proportional controller, the ultimate gain is found by tuning the proportional gain value and manually manipulating the system until its response creates an oscillation with a constant magnitude. The time between those oscillations is the period of oscillation used for calculation.

Table A-3. Ziegler-Nicholas tuning method equations to calculate gain constants with ultimate gain and period of oscillation.

| Control Type | Gain Values |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{K}_{\mathbf{p}}$ | $\mathbf{K}_{\mathbf{i}}$ | $\mathbf{K}_{\mathbf{d}}$ |
| P | $0.5 K_{u}$ | - | - |
| PI | $0.45 K_{u}$ | $\frac{1.2 K_{p}}{P_{u}}$ | - |
| PID | $0.6 K_{u}$ | $\frac{2 K_{p}}{P_{u}}$ | $\frac{K_{p} P_{u}}{8}$ |

Next, the resultant velocity versus voltage curve was used to determine the pulse width modulation (PWM) offset voltage. A linear best fit line was made for both directional velocities and the average y-intercept between both directions was used. Note: subtract 1 V from the y -intercept, due to that being the starting point of the PWM output voltage.

Also, a feed-forward controller is a controller that accounts for errors before they occur and affect the system, thus reducing the error without the slowness of a feedback loop. This was tuned last based on the resultant error left in the controller. Given the used motor/H-Bridge controller system, this was also easily tuned manually by trial-and-error.

## A. 4 Input Waveform Data and Graphs

The input waveforms were derived by Levack et al._ENREF_ $37^{25}$ human annulus circumferential data (Figure A-7). A matlab code was written to wrip the data from image based on the plot lines and axis scales (K.1).


Figure A-7. Average circumferential motion of the annulus over the cardiac cycle normalized to size at the beginning of diastole. Black = Normal, Blue = Ischemic, Red $=$ Myxomatous. ${ }^{25}$

The raw data was then scaled to a $35 / 65 \%$ systole/diastole cardiac cycle, scaled to the size of the annulus plates, and divided by two (using two motors) to be used as the displacement curve of the motors (Table A-4; Table A-5; Table A-6). These can be rescaled to match different sized plates. These displacement curves are used in LabVIEW (J.1) to tune the motors and get a tuned voltage output for each one.

Table A-4. Healthy inputs for DCA code, scaled to max displacement of 0.5 cm . Note: the first column is time ( ms ), second is displacement ( cm ), and third through fifth are inputs for a spline fit function in LabVIEW over 856 ms cardiac cycle.

| 0 | -0.23405 | 0 | 1 | 856 |
| :--- | :--- | :--- | :--- | :--- |
| 9.822951 | -0.25676 |  |  |  |
| 23.7388 | -0.28153 |  |  |  |
| 43.3847 | -0.31757 |  |  |  |
| 58.9377 | -0.34459 |  |  |  |
| 72.85355 | -0.36712 |  |  |  |
| 91.68087 | -0.39865 |  |  |  |
| 107.2339 | -0.42342 |  |  |  |
| 126.8798 | -0.45721 |  |  |  |
| 140.7956 | -0.48423 |  |  |  |
| 157.1672 | -0.5 |  |  |  |
| 173.5388 | -0.49324 |  |  |  |
| 187.4546 | -0.47973 |  |  |  |
| 208.7377 | -0.4482 |  |  |  |
| 224.2907 | -0.41892 |  |  |  |
| 238.2066 | -0.38288 |  |  |  |
| 253.7596 | -0.33784 |  |  |  |
| 267.6754 | -0.29955 |  |  |  |
| 285.6842 | -0.25676 |  |  |  |
| 299.6 | -0.23187 |  |  |  |
| 334.565 | -0.21396 |  |  |  |
| 371.0503 | -0.20721 |  |  |  |
| 401.4546 | -0.20045 |  |  |  |
| 427.2984 | -0.1982 |  |  |  |
| 462.2634 | -0.18018 |  |  |  |
| 491.1475 | -0.15766 |  |  |  |
| 520.0317 | -0.12613 |  |  |  |
| 542.835 | -0.09685 |  |  |  |
|  |  |  |  |  |


| 577.8 | -0.03411 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 617.3257 | -0.00225 |  |  |  |
| 647.7301 | 0 |  |  |  |
| 675.094 | -0.01351 |  |  |  |
| 707.0186 | -0.04054 |  |  |  |
| 738.9432 | -0.07432 |  |  |  |
| 770.8678 | -0.11712 |  |  |  |
| 802.7923 | -0.15991 |  |  |  |
| 856 | -0.23405 |  |  |  |

Table A-5. Ischemic inputs for DCA code, scaled to max displacement of $0.2 \mathbf{~ c m}$. Note: the first column is time (ms), second is displacement (cm), and third through fifth are inputs for a spline fit function in LabVIEW over $856 \mathbf{~ m s}$ cardiac cycle.

| 0 | -0.11574 | 0 | 1 | 856 |
| :--- | :--- | :--- | :--- | :--- |
| 5.123119 | -0.11863 |  |  |  |
| 23.1565 | -0.12972 |  |  |  |
| 40.37018 | -0.14082 |  |  |  |
| 58.40356 | -0.14822 |  |  |  |
| 75.61724 | -0.15931 |  |  |  |
| 92.83092 | -0.16671 |  |  |  |
| 110.0446 | -0.17781 |  |  |  |
| 128.078 | -0.1889 |  |  |  |
| 142.0129 | -0.1963 |  |  |  |
| 158.4068 | -0.2 |  |  |  |
| 177.2599 | -0.1963 |  |  |  |
| 191.1948 | -0.1889 |  |  |  |
| 209.2282 | -0.17226 |  |  |  |
| 226.4419 | -0.15376 |  |  |  |
| 242.8358 | -0.12972 |  |  |  |
| 258.4101 | -0.10753 |  |  |  |


| 275.6238 | -0.08719 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 299.6 | -0.06237 |  |  |  |
| 320.5316 | -0.0539 |  |  |  |
| 355.5445 | -0.04465 |  |  |  |
| 382.9458 | -0.0391 |  |  |  |
| 414.9141 | -0.0317 |  |  |  |
| 443.8378 | -0.02246 |  |  |  |
| 478.8506 | -0.01506 |  |  |  |
| 509.2966 | -0.00581 |  |  |  |
| 544.3094 | -0.00026 |  |  |  |
| 577.8 | 0 |  |  |  |
| 608.246 | -0.00951 |  |  |  |
| 640.2142 | -0.02246 |  |  |  |
| 672.1825 | -0.04095 |  |  |  |
| 704.1508 | -0.05575 |  |  |  |
| 737.6413 | -0.07239 |  |  |  |
| 772.6542 | -0.08164 |  |  |  |
| 804.6224 | -0.09458 |  |  |  |
| 856 | -0.11574 |  |  |  |

Table A-6. Myxomatous inputs for DCA code, not scaled to any particular displacement. Note: the first column is time (ms), second is displacement (cm), and third through fifth are inputs for a spline fit function in LabVIEW over $\mathbf{8 5 6} \mathbf{~ m s}$ cardiac cycle.

| 0 | -0.2737 | 0 | 1 | 856 |
| :--- | :--- | :--- | :--- | :--- |
| 7.5822 | -0.2860 |  |  |  |
| 25.6156 | -0.3058 |  |  |  |
| 42.8293 | -0.3217 |  |  |  |
| 59.2233 | -0.3317 |  |  |  |
| 76.4369 | -0.3436 |  |  |  |


| 93.6506 | -0.3674 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 110.0446 | -0.3932 |  |  |  |
| 124.7992 | -0.4230 |  |  |  |
| 133.8159 | -0.4647 |  |  |  |
| 141.1932 | -0.5025 |  |  |  |
| 147.7508 | -0.5462 |  |  |  |
| 156.7674 | -0.5799 |  |  |  |
| 168.2432 | -0.5998 |  |  |  |
| 182.1781 | -0.5839 |  |  |  |
| 196.9327 | -0.5422 |  |  |  |
| 208.4085 | -0.5045 |  |  |  |
| 218.2449 | -0.4588 |  |  |  |
| 225.6222 | -0.4250 |  |  |  |
| 235.4585 | -0.3813 |  |  |  |
| 243.6555 | -0.3396 |  |  |  |
| 251.8525 | -0.2999 |  |  |  |
| 260.8692 | -0.2582 |  |  |  |
| 269.8859 | -0.2125 |  |  |  |
| 278.9026 | -0.1708 |  |  |  |
| 288.7390 | -0.1251 |  |  |  |
| 299.6000 | -0.0778 |  |  |  |
| 320.5316 | -0.0457 |  |  |  |
| 347.9330 | -0.0139 |  |  |  |
| 382.9458 | -0.0020 |  |  |  |
| 413.3918 | 0 |  |  |  |
| 448.4047 | -0.0119 |  |  |  |
| 480.3729 | -0.0338 |  |  |  |
| 509.2966 | -0.0576 |  |  |  |
| 538.2202 | -0.0715 |  |  |  |
| 577.8000 | -0.0726 |  |  |  |
| 617.3798 | -0.1033 |  |  |  |


| 650.8703 | -0.1251 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 682.8386 | -0.1490 |  |  |  |
| 713.2845 | -0.1748 |  |  |  |
| 743.7305 | -0.1946 |  |  |  |
| 777.2211 | -0.2185 |  |  |  |
| 807.6670 | -0.2383 |  |  |  |
| 856 | -0.2737 |  |  |  |

# APPENDIX B. ASSEMBLY GUIDE - LEFT VENTRICLE BOX CHAMBER 

## Summary

This assembly guide details the step-by-step instructions for assembling the LV Box Chamber. Note: each change in LV insert or retrieval of the GT-TAV required complete disassembly and reassembly of the LV box chamber.

## B. 1 Assembly LV Box Chamber

This part involves mounting the left ventricle phantom (bag) into the box chamber that will pressurize the surrounding space causing it to contract and relax.

Step 1: Pick which left ventricle (LV) phantom you want to use. They vary in sphericity index and stiffness.

Step 2: Place gaskets on both sides of the LV phantom and place onto the LV box chamber (Figure B-1).


Figure B-1. (A) Gasket on box chamber side; (B) gasket on inside; (C) LV disassembled, (D) LV phantom placed onto LV box.

Step 3: Lay down a line of dental glue around the edges of the aorto-mitral top plate (Figure B-2A). Place the aorto-mitral LV insert into the top plate; smoothen the dental glue at the seam after compression, then trim off any excess for a good seal (Figure B-2B).


Figure B-2. Placement of LV insert into the aorto-mitral top plate. (A) laying down dental glue and (B) finished placement.

Step 4: Place the aorto-mitral top plate of the LV box over the LV phantom making sure that the ridge of the phantom fits in its groove (Figure B-3A). Be sure not to block the external wall tap for the pressure transducer with the black gasket. Once in place, screw (10-32's) the mitral valve (MV) side into place starting from the center hole and working your way towards the aorto-mitral septum (Figure B-3B). Next, screw the aortic valve (AV) side into place working from the septum down to the center hole (Figure B-3C). For both
side, with each order of screws, the plate will compress down and align the next set of holes.


Figure B-3. (A) Top placed over phantom; (B) Order of screwing MV side, from green to red; (C) Order of screwing AV side, from green to red.

Step 5: Perform the leak test by attaching AV/MV leak-plates and gaskets to the box. Screw into place using the $10-32$ screws with washers (Figure B-4). One creates a wall while the other is tapped. Add fluid to the LV phantom through the wall tap using a syringe until the LV begins to expand from built up pressure. Check for leaks. If leaking, reassemble, if not, continue to B.2.


Figure B-4. Set-up for leak test.

## B. 2 Assemble AV/Aorta and MV/Atrium and Deploy GT-TAV

This part involves mounting the aortic valve and mitral valve into place in their respective aorta and atrium chambers.

Step 1: Place circular spacers into the atrium for uniform internal diameter (Figure B-5A).

Step 2: Lay down a line of dental glue on both sides of the larger block spacer and sandwich between the atrium and the MV/atrium plate. Orientate the block and plate, so that the cut-
outs of the plate's flat-edge and the block face the aorto-mitral septum and the pressure tap of the atrium does not face opposite of it (Figure B-5B). Remove excess dental glue from inside and outside. The cut-outs prevent interference with the LV pressure port on the aorto-mitral top plate. If the atrium pressure tap faces opposite of the cut-out, it will face into the table when finished and thus unusable.

Step 3: Lastly, screw the MV/atrium plate into place with four 10-32 countersunk screws (Figure B-5C).


Figure B-5. (A) Circular spacers placed into atrium; (B) Block spacer placed between atrium and MV/atrium plate; (C) MV/atrium plate screwed onto the block spacer and atrium.

Step 4: Unlike the MV where you place the spacers first, first place the AV BHV into the aorta with the leaflets facing into the chamber. Make sure the commissure/stent-post is aligned with the slots in the chamber, so that the leaflets are also aligned with the sinuses.

You may need to loosen screws on the AV end of the chamber to make it easier to put in (Figure B-6A/B).

Step 5: Place spacers on top on the AV BHV to make a flush surface with the edge of the aorta chamber (Figure B-6C).

Step 6: Squeeze out dental glue onto a usable surface and mix together quickly. Spread dental glue over the face of the aorta chamber with the spacers. Be sure to get into the cracks between the spacers and the chamber to provide a proper seal. This needs to be done timely, so that the glue does not dry in the middle of it. Once finished applying dental glue, place the gasket on top of the face followed by the LV/aorta plate (Figure B-6D).

Step 7: Screw four 10-32 countersunk screws into place attaching the AV/aorta plate to the aorta chamber. Be sure to orient the plate with the flat edge facing the aorto/mitral septum and the round edge facing away (Figure B-6E).


Figure B-6. (A) Showing the stent posts and aortic sinuses of the aorta chamber; (B) AV BHV in position; (C) spacers inserted; (D) dental glue applied and gasket covering it; (E) AV/aorta plate screwed down to aorta chamber.

Step 8: Insert the pressure catheter down the aorta from the lure lock and through the AV, so that it will go directly into the LV when assembled (Figure B-7). It is much easier to do this now instead of while the system is running.


Figure B-7. Insertion of catheter through AV from Aorta before assembly to chamber.
**At this point B. 1 needs to be completed ${ }^{* *}$

Step 9: Take the GT-TAV and place it into the LV insert orientated such that a stent post is aligned with the P 2 of the MV, so that a cusp is aligned with the A 2 and the AML (Figure B-8A).

Step 10: Take the correct deployment height spacer for the experiment and push it in behind the GT-TAV until the spacer is flush with the LV insert (Figure B-8B). This ensures accurate and precise deployment of the GT-TAV between experiments and also prevents migration.


Figure B-8. (A) Showing orientation and direction to insert GT-TAV into the LV insert; (B) Showing resultant deployment of GT-TAV with deployment spacer pushed in behind it.

Step 11: Take remaining 10-32 screws with washers and attach AV/Aorta and MV/Atrium to the LV/Box with gaskets and/or dental glue between each plate and the LV chamber (Figure B-9).


Figure B-9. Assembly of AV/aorta and MV/atrium to the LV box.

## B. 3 Electrical Wiring

This part involves proper wiring/connections of the motor, pressure and flow probes, their respective power supplies and input boxes, and the cDAQ system.
**At this point B. 2 needs to be completed ${ }^{* *}$

Step 1: Attach pressure probes to wall taps. Take the other ends and plug them in the rear of the pressure probe box's individual conditioner/amplifier boards. For ease of use,
configure so that on the pressure probe box, Channel $1=\mathrm{LV}$ Box; Channel $2=\mathrm{LV}$ Chamber; Channel 3 = Aorta. (Figure B-10)


Figure B-10. Rear of pressure transducer conditioner/amplifier.

Step 2: Connect the BNC cables from the analog-out BNC splitter to the analog-in BNC cDAQ module (Figure B-11). For ease of use, connect the channels to their respective selves, i.e. 1-to-1, 2-to-2, etc. (BNC splitter has numbers on it corresponding to the probes).
**We currently use probes 5, 6, and 7 for channels 1, 2, and 3, respectively**


Figure B-11. (A) Notice the respective numbering on the BNC analog-out cords; (B) Analog-in channels on the cDAQ.

Step 3: Attach flow probes into the flow loop. One upstream of the MV, just before the atrium chamber, and the other downstream of the AV, just after the aorta chamber. Make sure the positive arrow on the probe is facing in the direction of the flow. If not, you can correct by multiplying by a negative one in LabVIEW.

Step 4: Plug flow probes into "flow box" (power supply and conditioner/amplifier). For ease of use, configure so that the MV inlet is in Channel 1 and AV out is in Channel 2. Connect BNC analog out channel from flow box to the BNC analog-in cDAQ module. For ease of use, configure so that the flow BNC input is in Channel 4 of the cDAQ module (Figure B-12).
**We currently use probe 207 for MV inlet and 208 for AV outlet**


Figure B-12. (A) Flow probe conditioner/amplifier; (B) Analog-in channels on cDAQ. Orange $=$ flow probe inputs, Green $=$ connection between flow box and cDAQ.

## B. 4 Add Fluid and Tune Phantom

Here you will add your fluid and tune the loop for pressure and flow.
**At this point B. 3 needs to be completed ${ }^{* *}$
**Make sure that the pressure transducers are on and that all pipes are closed off, so that there is no leaking**

Step 1: Add fluid to flow loop reservoir and check for leaks. If leaks, stop and reassemble, otherwise continue.

Step 2: Slowly add fluid to LV box using the funnel. Make sure the top wall top is open for air to escape the box. Once full blead the hose line to the pump of air using the tap on the pump's piston head. Top off the box and shut the valve on the pump/filling line (Figure B-13).


Figure B-13. Funnel goes above vertical tube to fill pump line. Air comes out of the tap (circled in yellow) at the top of the box.

Step 3: Run the flow loop. Once the LV phantom and box are full of liquid you can add/remove liquid to ensure proper contraction of the phantom.

# APPENDIX C. MANUFACTURING GUIDE - GEORGIA TECH TRANSCATHETER AORTIC VALVE 

**Parts of Appendix C were modified from Prem Midha ${ }^{125 * *}$

## Summary

This manufacturing guide details the step-by-step instructions for creating a clear GTTAVR valve. This includes material selection, tissue treatment, and suture technique. The current model is roughly based on the Edwards SAPIEN 3 design; however, this technique can be altered slightly to create models of other transcatheter heart valve designs.

## Parts Utilized

- $1 / 32$ " Acrylic Sheet: purchased from ZLazr
- Aluminum Rod: purchased from McMaster-Carr
- Bend-and-Stay 316L Stainless Steel Wire: purchased from McMaster-Carr
- Fresh Bovine Pericardium: purchased from Animal Technologies
- Glutaraldehyde Solution: purchased from VWR
- Phosphate Buffered Saline (PBS): purchased from VWR
- Stainless Steel Pins: purchased from McMaster-Carr
- Rubber Sheet: purchased from McMaster-Carr


## C. 1 Stent Manufacturing

This part involves fabrication of an acrylic stent pattern for the GT-TAVR.

Step 1: Design an appropriate stent pattern. Designing a stent pattern is the most critical step in the manufacturing of a GT-TAVR, as the relevance of your experiment relies on meaningful dimensions. There are many resources that will help guide this process including Mano Thubrikar's textbook "The Aortic Valve", ${ }^{133}$ manufacturer drawings of their leaflet patterns, and clinical data on aortic valve dimensions as published by many research groups. ${ }^{20,134-138}$ Ultimately, the design process is not something that can be prescribed in a protocol, but an example design is provided below. Be sure to account for your material thickness in the design.

Step 2: Once you have finalized a design, export the drawing as a *.ai file, with appropriate line coloring (red) and line thickness ( 0.001 pt or similar) for laser cutting. This drawing stores the vector paths of your design.

Step 3: Cut your designs into the thin acrylic sheet on a laser cutter. The resulting transparent stent should look similar to the Figure C-1 below.


Figure C-1. Example of GT-TAV stent frame post laser cut.

Step 4: The flat pattern will need to be rolled into a cylindrical shape. In order to facilitate this process, machine both an aluminum mandrel for the desired internal stent diameter as well as a clamp for the desired outer stent diameter (Figure C-2). Registration features can also be included to aid with aligning the acrylic material parallel to the curvature in the aluminum tools.


Figure C-2. Machined aluminum mandrels specified to the internal diameter of the GT-TAV and machined clamps specified to the external diameter of the GTTAV.

Step 5: While heating the oven to $180^{\circ} \mathrm{C}$, place the mandrel, O-clamp, and acrylic stents inside. The melting point of acrylic is $160^{\circ} \mathrm{C}$. Monitor the materials while heating to ensure that the acrylic does not fully melt. Overheating the materials slightly will ensure that the acrylic is very flexible for enough time to allow the aluminum tools to impart a consistent and continuous curve to the rolled acrylic stent. To avoid transference of other materials that may be on the bottom of the oven, place the acrylic stents on a clean metal surface.

Step 6: Once the oven has reached $180^{\circ} \mathrm{C}$, wearing insulated gloves, quickly remove the stent and aluminum tools from the oven. Carefully wrap the stent around the mandrel to achieve a cylindrical shape. Press the stent against the mandrel to ensure that a continuous curve is imparted to the acrylic. The acrylic should be easily malleable at this temperature.

Step 7: Once a general cylindrical shape is imparted to the acrylic (Figure C-3), it may be necessary to refine the shape further. In order to do so, place the acrylic within the O-Clamp
and reheat for a short period of time. The acrylic will expand and unfurl within the OClamp. Once this is observed, use the insulated gloves and aluminum mandrel to press the acrylic into the O-Clamp to refine the cylindrical shape. It may be necessary to repeat this process. It is also possible to use a heat gun to gently induce flexibility of the acrylic for spot corrections. It is important to ensure that the vertical edges of the acrylic that are joined together when made into a cylinder maintain the appropriate curvature of the cylinder.


Figure C-3. Example of finished GT-TAV stent frame.

## C. 2 Retaining Ring Manufacturing

This part details the procedure for fabrication of the retaining ring made of stainless steel wire that is used to model the fact that commercial valves are manufactured such that the leaflets are attached perpendicularly to the walls of the stent. In this model, the leaflets are
parallel to the walls of the stent. The retaining ring (Figure C-4) will be inserted into the valve to force the leaflets into the perpendicular configuration.

Step 1: 3-D print an appropriate mold that outlines the valve leaflet outline (Figure C-4).


Figure C-4. Example of GT-TAV retaining ring and the 3-D printed mold to make it.

Step 2: Cut a section of stainless steel wire longer than you will need.

Step 3: Using a flathead screwdriver and pliers, gently compress the wire into the mold one commissure at a time. Ensure that the retaining ring curvature is continuous and smooth.

Step 4: Trim the excess material and finish forming the retaining ring.

Step 5: Carefully remove the retaining ring from the mold, so as not to distort the shape.

## C. 3 Pericardium Fixation

This part details the procedure for fixing the pericardium used to make the valve leaflets. Many studies and manufacturer protocols have described pericardial tissue fixation techniques, ${ }^{139-142}$ but most fall within the same general bounds: $\sim 0.625 \%$ glutaraldehyde in phosphate buffered saline (PBS) under low pressure ( $\sim 4 \mathrm{mmHg}$ ) for approximately 36 hours. For storage, a $0.2 \%$ glutaraldehyde in PBS solution is used. ${ }^{142}$

Step 1: Create a large batch of $0.625 \%$ glutaraldehyde solution with PBS.

Step 2: Place a rubber sheet at the bottom of a deep, stainless steel tray. Cut large, flat sections from the fresh pericardial sack and pin the edges to the rubber sheet. Try to minimize any wrinkles or folds in the tissue during this step of the process.

Step 3: Pour approximately 2 inches of $0.625 \%$ glutaraldehyde solution on top to generate a 4 mmHg pressure head.

Step 4: Let sit in the refrigerator for 36 hours.

Step 5: After 36 hours, rinse the tissue serially in saline and store in $0.2 \%$ glutaraldehyde solution.

## C. 4 Valve Assembly

This part details the procedure for trimming, attaching, and suturing tissue to the acrylic stent to form the valve leaflets.
${ }^{* *}$ At this point C.1, C.2, and C. 3 need to be completed ${ }^{* *}$

Step 1: Trim out a uniform section of fixed pericardium. This section of pericardium should be a rectangle approximately 1 cm taller than the original unrolled acrylic stent height and 1 cm longer than the unrolled acrylic stent width. Trimming the section of pericardium may be easier if the tissue is dried slightly first, however, be cautious not to leave the tissue in this state for more than 5 minutes. Continually rehydrate the valve in saline or storage solution throughout the process of assembly.

Step 2: Insert the pericardium into the rolled stent. The tissue should be aligned such that the making sure to offset the tissue edge 0.25 cm from the bottom edge of the stent. The stent should be aligned like a crown, where the commissure posts point upward and are the top edge of the stent, while the continuous edge of the cylinder is the bottom (Figure C-5). The shorter edge of the pericardium should be aligned 0.25 cm offset from the break in the acrylic, creating a small overlap across the two unconnected edges of the cylindrical acrylic stent.


## Figure C-5. Diagram of GT-TAV orientation.

Step 3: Suture the pericardium to the stent with a back-stitch (Figure C-6). A back-stitch provides the best seal against leakage. Suturing should first start at the commissure near the seam of the acrylic, then continue across the arches. While suturing, care should be taken to ensure the pericardium tension is evenly distributed across the circumference of the stent. Rehydration of the pericardium consistently is an important factor in achieving an even distribution of tension.


Figure C-6. Diagram of the back-stitch sewing technique.

Step 4: Once the suture comes to the other side of the seam, the suture should continue downwards, binding both edges of the seam together with a running stitch. These stitches should be across two layers of pericardium, due to the original overlap.

Step 5: A back stitch suture should be used across the bottom of the stent to fix the pericardium in place. A knot should then be tied to hold the tension. This knot should be placed away from any delicate structures on the stent design.

Step 6: The tissue should then be trimmed to ensure both minimum overlap across the seam as well as 1 cm of coaptation of the valve leaflets. It may be helpful to first close the leaflets, insert the retention ring, and then trim the valve leaflets to achieve adequate coaptation.

Step 7: In order to test the adequate coaptation of the valves, a valve coaptation test should be conducted. The valve should first be placed in a clear plastic tube with a tight seal around the outside diameter of the plastic stent, then running water should be poured into the plastic tube (Figure C-7). If the valve demonstrates adequate coaptation, the running water will be occluded by the valve. Be sure to examine the center of the stent where the valves meet, as well as the stitches to ensure no leakage.


Figure C-7. Image of GT-TAV leak test with a plastic tube full of water and a 29 mm GT-TAV plugging the bottom. Note: the valve shows good coaptation.

Step 8: Use tissue-grade cyanoacrylate (super glue) to seal the knot of the stent.

Step 9: Insert a retaining ring over the leaflets. The final product should look similar Figure C-8. A very small amount of super glue may be necessary to fix the retaining ring to the top of the stent posts.


Figure C-8. Diagram of different varieties of finished GT-TAVs.

# APPENDIX D. EXPERIMENTAL PROTOCOL - HIGH-SPEED PARTICLE IMAGE VELOCIMETRY 

**Parts of Appendix D were modified from Prem Midha. ${ }^{125 * *}$

## Summary

This experimental protocol details the describes the high-speed particle image velocimetry (HSPIV) hardware configuration and data collection procedure.

## D. 1 Hardware Configuration



Figure D-1. High-speed PIV hardware configuration.

## High-Speed PIV Checklist:

1. DO NOT turn the laser on until scanner is on and the experimental set up is ready.
2. Turn the camera ON before launching the Davis application to ensure camera recognition.
3. The band-pass filter should be installed on the camera lens to filter undesirable frequencies of light.
4. The cap of the camera should be always closed unless acquiring data to minimize risk of sensor damage.
5. Turn the scanner on before turning on the laser. Failure to do so can results in damage to the mirror array and anything the reflected beam hits.
6. Use the vertical traverse to place the pulsed laser sheet at the desired plane within the flow chamber.
7. Focus the camera on the seeding particles within the plane of the laser sheet.
8. Choose a camera aperture setting in the range $2.8-4$.


Figure D-2. Rear of high-speed controller.

High-Speed Controller: The LabView program controlling the realistic left heart simulator sends its trigger (external trigger in) to the high-speed controller (HSC) at the desired time point during a cardiac cycle (e.g. start of diastole) (Figure D-2). The controller augments this trigger and commands the camera to acquire (to camera trigger) at a time (to camera f-sync) that is near the input trigger, but also corresponds to a laser pulse. This link is created through the scanner clock signal (scanner clock in). sends the starting trigger and the frequency of image acquisition to the camera.


Figure D-3. Rear of Phantom VEO 340L camera.

High-speed camera: The f-sync cable connects to the high-speed controller and provides the camera with the reference times when the laser is pulsing (scanner clock) (Figure D-3). The trigger from the HSC provides a TTL pulse which instructs the camera to begin acquisition. The Ethernet cable transfers data back to the PIV computer.


Figure D-4. Primary view of high-speed scanner and laser.

Scanner and Laser Source: The laser source emits a continuous wave laser beam which gets converted into a pulsed laser sheet via rotating mirror array (scanner) (Figure D-4). A portion of the reflected laser sheet hits mirror which again sends a portion of the signal back to an optical sensor which detects the laser pulse frequency. The frequency of laser pulse is adjusted by turning a potentiometer controlling the rotating mirror speed. The potentiometer is accessible from the top of the scanner and fits a small flathead screwdriver. This frequency is provided as the clock input to the high speed controller via the $\mathrm{cmd} / \mathrm{clock}$ terminal.


Figure D-5. Secondary view of high-speed scanner and laser system highlighting adjustable traverse system and laser sensor.

Scanner Accessories: The vertical traverse allows for easy adjustment of the z-position of the laser sheet within the flow chamber. The scanner and laser source are mounted to a single plate, which is adjusted by this traverse. The laser power supply has no failsafe and must not be turned on until the scanner is turned on or the laser will damage the mirror array. The high frequency spinning of the array prevents damage.

## D. 2 Data Collection - DaVis

**Make sure the camera is plugged into the high-speed controller on the DaVis computer and turned on**
**Make sure the trigger is plugged into the high-speed controller on the DaVis computer and a signal is coming from the LabView computer**

Step 1: From the starting window, create a new PIV project (Figure D-6). After selecting a MyProjects folder by right-clicking a desired folder from file tree, click the New+ $\boldsymbol{\rightarrow}$ Project name: Specify: "user defined" $\rightarrow$ Type of project: PIV $\rightarrow$ Ok. After clicking okay, the project should open to the next window.


Figure D-6. Starting window where you create a new project.

Step 2: In the new Project window (Figure D-7), click Recording to open recording window (Figure D-8).


Figure D-7. Project window for PIV where you access tasks such as recording, scaling/ calibration, and processing.


Figure D-8. Recording window for PIV acquisition.
**Make sure the laser sensor is plugged into the high-speed controller on the DaVis computer with the laser and scanner turned on**

Step 3: From recording window, configure Device Settings tab under the Devices $\boldsymbol{\rightarrow}$ HighSpeed Recording $\rightarrow$ Timing (Figure D-9). You should see a current image rate signal to the right if the laser if correctly hitting the laser sensor. If it is not, adjust the laser. Set Time based>>Mode: to external image clock and click the refresh button next to Time
based>>Image rate: to sync with current image rate. Next set Image range and trigger>>Images: to "user defined" and Image range and trigger>>Source: to 'Trigger' input.


Figure D-9. Record window zoomed in on Device Settings.

Step 4: In the Window Manager $\boldsymbol{\rightarrow} \boldsymbol{L}$ Live Mode section, click on the continuous grab icon to get the live camera view and adjust the image exposure and focus (Figure D-10).


Figure D-10. Recording window zoomed in on Intensity Calibration and Live Mode.

Step 5: To fix any noise patterns in the image you must do an intensity calibration. This step must be performed each time you start the system or any time you change the area of interest.

While leaving DaVis open, go to PSS 2.8 to restore camera to factor defaults by selecting Manager Tab (top right corner) $\boldsymbol{\rightarrow}$ Phantom Nucleus (bottom right corner) $\boldsymbol{\rightarrow}$

Restore Settings $\boldsymbol{\rightarrow}$ Reload factory Settings $\boldsymbol{\rightarrow}$ Ok (Figure D-11). Note: make sure to select the correct camera ID.


Figure D-11. Manager tab in PCC 2.8 for resetting camera to factory defaults.

Next, close the camera shutter to provide a black image for intensity calibration. Do this by selecting Live tab (top right corner) $\rightarrow$ Cine Settings $\rightarrow$ Close Shutter (Figure

D-12). Note: make sure to select the correct camera ID. An icon will appear saying the shutter is closed with a new button to open it (don't click this yet).


Figure D-12. Live tab in PCC 2.8 for opening and closing the camera shutter.

Lastly, go back to DaVis and click the Intensity Calibration button and then max out the Exposure (Figure D-10). Once the intensity calibration is done you can click the Open Shutter button in PCC to proceed with image acquisition (Figure D-12).

Step 6: Acquire HSPIV images. To acquire the images, go to Window Manager $\rightarrow$ Recording tab and click the Record Icon (Figure D-13). The file name can be left default to capture the information displayed below and modified later if needed.


Figure D-13. Recording window zoomed in on Intensity Calibration and Recording.

Upon completion of the recording, check the images by scrolling through the acquired sequence. If satisfied save the images to the computer; specify the acquisition name via Recording $\rightarrow$ Storage $\rightarrow$ Name: $\rightarrow$ Specify $\rightarrow$ "user defined" and then click the Save Icon in the Window Manager (Figure D-13).

## APPENDIX E. PROCESSING PROTOCOL - SPECIFIC AIM 2

## E. 1 High-Speed Particle Image Velocimetry - DaVis

## E.1.1 HSPIV - DaVis 8.4 - Specific Aim 2A

Step 1: Mask Out Image (Figure E-1). This operation was used to mask out areas outside the ROI and solid objects inside the ROI (e.g. the AML or GT-TAV) from the raw image. The geometric mask was used for the AML, GT-TAV, aorto-mitral plane, and give a boundary for the maximum LV size in the $6.5 \mathrm{~L} / \mathrm{min}$ condition. The algorithmic mask was used to account for the moving LV wall throughout the cardiac cycle. Variables for the algorithmic mask were slightly changed between experiments (mainly the final "below threshold" parameter).


Figure E-1. Example of a Mask Out Image operation for Specific Aim 2A. Geometric and algorithmic masks were used.

Step 2: Subtract Time Filter (Figure E-2). This operation was used to subtract background noise from the masked images. For SA2A, a minimum intensity subtraction with a symmetric filter length of 5 images was used.


Figure E-2. Example of Subtract Time Filter operation for Specific Aim 2A.

Step 3: PIV Time-Series (Figure E-3). This operation encompasses the calculation of velocity fields via cross-correlation from the masked and filtered images. Details include:

- The previous result as a reference shift for the Time series cross-correlation
- Sequential cross-correlation with a data source of $0+1,1+2,2+3 \ldots$ as a vector calculation parameter with a multi-pass interrogation window of decreasing size and variable shape ( $64 \times 64 /$ square to $32 \times 32 /$ circle) with $50 \%$ overlap and 2 passes for each size. A high accuracy mode was also used for the final pass
- Default values were used for Multi-pass options and Multi-pass postprocessing.
- Image preprocessing, Define mask, and Vector postprocessing were not used.


Figure E-3. Example of PIV Time-Series operation for Specific Aim 2A.

Step 4: Vector Post-processing (Figure E-4). This operation was used to remove erroneous vectors and smooth the field. Details include:

- Deleting a vector if its peak ration $\mathrm{Q}<1.3$
- $2 x$ Median filter: strongly remove \& iteratively replace (if average differs by 2 and but less than 3 standard deviations from neighboring group, respectively)
- Removing groups with $<5$ vectors
- 1 x Smoothing by a $3 \times 3$ grid
- Note: no interpolation or extrapolation was done.


Figure E-4. Example of Vector Postprocessing for Specific Aim 2A.

## E.1.2 HSPIV - DaVis 10 - Specific Aim 2B

Step 1: Mask Out Image (). This operation was used to mask out areas outside the ROI and solid objects inside the ROI (e.g. the AML or GT-TAV) from the raw image. The geometric mask was used for the AML, GT-TAV, aorto-mitral plane, and give a boundary for the
maximum opening of the GT-TAV leaflet size in the $6.5 \mathrm{~L} / \mathrm{min}$ condition. For the $0 \%$
LAMPOON condition, the algorithmic mask was used to account for the moving GT-TAV leaflet throughout the cardiac cycle instead of the static geometric mask at the maximum opening.


Figure E-5. Example of Mask Out Image operation with only geometric mask for Specific Aim 2B.


Figure E-6. Example of Mask Out Image operation with geometric and algorithmic masks for Specific Aim 2B.

Step 2: Subtract Time Filter (Figure E-7). This operation was used to subtract background noise from the masked images. For SA2B, a minimum intensity subtraction with a symmetric filter length of 5 images was used for $0 \%$ and $100 \%$ LAMPOON, and a filter length of 7 images was used for $50 \%$ LAMPOON.

Processing list


Figure E-7. Example of Subtract Time Filter operation for Specific Aim 2B.

Step 3: PIV (Particle Image Velocimetry) (Figure E-8). This operation encompasses the calculation of velocity fields via cross-correlation from the masked and filtered images. Details include:

- Use of GPU for the Method: cross-correlation for time resolved 2D-PIV (2D2C).
- Vector calculation was used with a multi-pass interrogation window of decreasing size and variable shape ( $64 \times 64 /$ square to $32 \times 32 /$ square to $16 \times 16 /$ circle) with $50 \%$ overlap for each, and 3 passes for $64 \times 64$ and $32 \times 32$ and 5 passes for $16 \times 16$.
- Default values were used for Multi-pass postprocessing.
- Image pre-processing and define mask in Main Settings as well as Vector postprocessing were not used.

Processing list


## Processing list



## Processing list

| Operationlist $\uparrow \downarrow$ 家 | Enable advanced settings ${ }_{\text {a }}$ |
| :---: | :---: |
|  | Delete vector if $\square$ <br> correlaton value $\square$ Medan fiter $\square$ Universel outlier detection $\qquad$ <br> Remove if residual > <br> 2.0 <br> Fiter region: <br> $5 \times 5$ <br> Reinsertifresidual < $\square$ 3.0 Mrimum number of vectors: $\square$ |

Figure E-8. Example of PIV operation for Specific Aim 2B.

Step 4: Vector Post-processing (Figure E-9). This operation was used to remove low sample groups ( $<5$ vectors) and smooth the field ( 1 x smooth 3 x 3 ). Less is done here than in SA2A, because the use of the GPU produces already corrected results for crosscorrelation.

Processing list


Figure E-9. Example of Vector Post-processing operation for Specific Aim 2B.

## E. 2 High-Speed Particle Image Velocimetry - MATLAB and Tecplot 360

Step 1: Bin-Average (BinAVG.m). This MATLAB code averaged neighboring frames into one, knowing to start at the beginning of each cycle. For the purposes of this study, the binsize was between 3-5 frames depending on the acquisition frame rate. This resulted in a time of $7-8 \mathrm{~ms}$ between bin-averaged frames. Note: it is important to use the correct number of frames per cycle for the acquisition rate used for each condition ( $399 \mathrm{~Hz} \approx 342$ frames and $401 \mathrm{~Hz} \approx 343$ frames at 856 ms a cycle); if you do not, the beginning of each
subsequent cycle used for calculations will be displaced by the error, thus affecting the results. This code exported $\mathrm{x}(\mathrm{m}), \mathrm{y}(\mathrm{m}), \mathrm{u}(\mathrm{m} / \mathrm{s}), \mathrm{v}(\mathrm{m} / \mathrm{s})$.

Step 2: Scale (ScalingData.m). The Scaling operator in DaVis assumed the camera is perpendicular to the flow and scaled both the x and y direction equally. This MATLAB code scaled the resultant data by an x and y component to calibrate for a non-perpendicular single camera. These calibration constants needed to be calculated by measuring pixel distances and the $\mathrm{x} / \mathrm{y}$ distances in DaVis used for calculations with the known $\mathrm{x} / \mathrm{y}$ distances. This code exported $\mathrm{x}(\mathrm{m}), \mathrm{y}(\mathrm{m}), \mathrm{u}(\mathrm{m} / \mathrm{s}), \mathrm{v}(\mathrm{m} / \mathrm{s})$.

Step 3: Reorganize Bin-Averaged or Scaled data (PIV_Organizing_final_v1.m). In order for the following fluid mechanics calculations code to work, the frames of each time point in all cycles had to be filed together. This MATLAB code copies and reorganizes the sequentially acquired data into folders with all cycle frames at each time point, i.e. there were the same number of folders as bin-averaged time points in a cycle and each folder contained the same number of files as cycles. This code exported $x(m), y(m), u(m / s), v$ (m/s).

Step 4: Calculating Velocity Magnitude, VSS, pRSS, and TKE (Master_PIV2_TFE_new.m). This MATLAB code calculates the velocity magnitude, viscous shear stress, Reynolds shear stress, and turbulent kinetic energy from the
reorganized file structure of the bin-averaged or scaled data. This code exported $x(m), y$ $(\mathrm{m}), \mathrm{z}(\mathrm{m}), \mathrm{u}(\mathrm{m} / \mathrm{s}), \mathrm{v}(\mathrm{m} / \mathrm{s})$, vel_mag (m/s), du/dx $\left(\mathrm{s}^{-1}\right)$, du/dy $\left(\mathrm{s}^{-1}\right), \mathrm{dv} / \mathrm{dx}\left(\mathrm{s}^{-1}\right), \mathrm{dv} / \mathrm{dy}\left(\mathrm{s}^{-1}\right)$, $\omega_{z}\left(\mathrm{~s}^{-1}\right), \operatorname{VSS}\left(\mathrm{N} / \mathrm{m}^{2}\right), \rho u^{\prime} u^{\prime}\left(\mathrm{N} / \mathrm{m}^{2}\right), \rho v^{\prime} v^{\prime}\left(\mathrm{N} / \mathrm{m}^{2}\right), \rho u^{\prime} v^{\prime}\left(\mathrm{N} / \mathrm{m}^{2}\right)$, TKE $\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right), \operatorname{pRSS}\left(\mathrm{N} / \mathrm{m}^{2}\right)$.

Step 5: Phase-Averaging (PhaseAvgBinnedData.m). The images were acquired sequentially over multiple cardiac cycles. This MATLAB code averaged each time point in the bin-averaged or scaled data over all cycles. Although this was already done in Step 4, the file sizes are much smaller (only velocity) and formatted for Step 6. This code exported $\mathrm{x}(\mathrm{m}), \mathrm{y}(\mathrm{m}), \mathrm{u}(\mathrm{m} / \mathrm{s}), \mathrm{v}(\mathrm{m} / \mathrm{s})$.

Step 6: Calculate Minimum, Maximum, and Average Velocity (Extract_min_max_avg_vel_TFE.m). This MATLAB code calculated the minimum, maximum, and average velocity magnitude and time at which they occured of each spatial location over the cardiac cycle. This code exported min_vel (m/s), min_time (ms), max_vel ( $\mathrm{m} / \mathrm{s}$ ), max_time (ms), avg_vel (m/s).

Step 7: Reorganizing Phase-Average (PIV_Renaming_v1.m). This MATLAB code copied and renamed the phase-averaged data files to start at whatever time-point in the cycle desired. For this study the data was made to start at 200 ms . This was done in order to start the particle seeding and pathline calculation in Tecplot at the time of interest.

Step 8: Export Pathlines. In Tecplot, ask to make 350 streamlines, calculate pathlines at a minimum of 0.001 s time steps with no particle mass, and export the resultant data as a space delimited .txt file with X and Y positions for only the particles.

Step 9: Calculate Particle Tracking (ParticleTrackingTecplotToExcelAndEPS_TFE.m). This MATLAB code took the resultant pathlines from Tecplot and made a particle tracking video as an *.avi and exported an *.xls spreadsheet of the particles for residency time calculations.

Step 10: Calculate Residency Time (ParticleTrackingWashout.m). This MATLAB code took the *.xls of the particle pathlines and calculated the residency time over the cardiac cycle.

## APPENDIX F. RAW DATA - SPECIFIC AIM 1

## F. 1 Motor Tracking Raw Results

Table F-1. $\quad$ Specific Aim 1 raw motor tracking results pertaining to Figure 4-1.

| Porcine - Healthy |  |  | Porcine - Diseased |  |  | Ovine - Healthy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Desired | Measured | Time | Desired | Measured | Time | Desired | Measured |
| 0 | -0.23241 | -0.241776 | 0 | -0.11519 | -0.111481 | 0 | -0.21232 | -0.206626 |
| 2.002 | -0.23524 | -0.243172 | 2.001 | -0.11598 | -0.111494 | 2.001 | -0.21885 | -0.207307 |
| 5.004 | -0.24251 | -0.247498 | 4.003 | -0.11678 | -0.112685 | 4.003 | -0.22517 | -0.210612 |
| 7.005 | -0.24725 | -0.250247 | 6.005 | -0.1179 | -0.113388 | 6.004 | -0.23108 | -0.212353 |
| 9.007 | -0.25184 | -0.255375 | 8.018 | -0.11903 | -0.114497 | 9.005 | -0.23871 | -0.213803 |
| 11.008 | -0.25622 | -0.25739 | 10.019 | -0.12017 | -0.116762 | 11.008 | -0.24269 | -0.216868 |
| 13.01 | -0.26033 | -0.261027 | 12.02 | -0.12132 | -0.116892 | 14.01 | -0.24705 | -0.220158 |
| 15.011 | -0.26418 | -0.264505 | 14.022 | -0.12248 | -0.118128 | 16.011 | -0.24908 | -0.226213 |
| 17.012 | -0.26783 | -0.268008 | 16.022 | -0.12367 | -0.12023 | 18.012 | -0.25055 | -0.226932 |
| 19.014 | -0.27132 | -0.273078 | 18.013 | -0.12488 | -0.121929 | 20.014 | -0.25161 | -0.230622 |
| 21.015 | -0.27472 | -0.277618 | 20.014 | -0.12611 | -0.121995 | 23.006 | -0.2527 | -0.232177 |
| 23.017 | -0.27808 | -0.279403 | 22.027 | -0.12737 | -0.123218 | 25.008 | -0.25329 | -0.235245 |
| 25.018 | -0.28146 | -0.282442 | 24.017 | -0.12866 | -0.124497 | 27.009 | -0.25393 | -0.240112 |
| 27.02 | -0.28491 | -0.286493 | 26.019 | -0.12998 | -0.126954 | 29.01 | -0.25475 | -0.241476 |
| 29.021 | -0.28844 | -0.28969 | 28.02 | -0.13134 | -0.127492 | 31.024 | -0.25588 | -0.246445 |
| 31.022 | -0.29205 | -0.29441 | 30.021 | -0.13273 | -0.129847 | 33.026 | -0.25746 | -0.250114 |
| 33.024 | -0.29571 | -0.29769 | 32.023 | -0.13413 | -0.130281 | 36.028 | -0.26087 | -0.253105 |
| 35.025 | -0.29942 | -0.303919 | 34.024 | -0.13552 | -0.129982 | 39.03 | -0.26535 | -0.256478 |
| 37.027 | -0.30315 | -0.305959 | 36.025 | -0.13688 | -0.131059 | 42.032 | -0.27049 | -0.260543 |
| 39.028 | -0.30689 | -0.309264 | 38.027 | -0.1382 | -0.132626 | 44.033 | -0.27409 | -0.264487 |
| 41.03 | -0.31064 | -0.312876 | 40.04 | -0.13945 | -0.134197 | 46.035 | -0.2777 | -0.267993 |
| 43.031 | -0.31436 | -0.316273 | 42.042 | -0.14061 | -0.13395 | 48.036 | -0.28121 | -0.272037 |
| 45.032 | -0.31805 | -0.321787 | 44.044 | -0.14167 | -0.136229 | 50.038 | -0.28449 | -0.274865 |
| 47.034 | -0.3217 | -0.325896 | 46.044 | -0.14262 | -0.137851 | 52.039 | -0.28754 | -0.275988 |
| 49.035 | -0.3253 | -0.327342 | 48.034 | -0.14346 | -0.138322 | 54.04 | -0.29035 | -0.278247 |
| 51.037 | -0.32885 | -0.330972 | 51.046 | -0.1446 | -0.139248 | 56.042 | -0.29294 | -0.280704 |
| 53.038 | -0.33235 | -0.335185 | 53.047 | -0.14532 | -0.14011 | 58.043 | -0.2953 | -0.282595 |
| 55.039 | -0.3358 | -0.339146 | 55.049 | -0.14604 | -0.142697 | 60.045 | -0.29746 | -0.288553 |
| 57.041 | -0.33921 | -0.344553 | 57.05 | -0.1468 | -0.143558 | 62.046 | -0.29942 | -0.289562 |
| 59.042 | -0.34257 | -0.348395 | 59.051 | -0.14762 | -0.145731 | 64.045 | -0.30119 | -0.292867 |
| 61.044 | -0.34589 | -0.350506 | 61.053 | -0.14854 | -0.149594 | 66.046 | -0.30277 | -0.295147 |


| 63.045 | -0.34916 | -0.353957 | 63.054 | -0.14958 | -0.150287 | 68.047 | -0.30419 | -0.298198 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65.047 | -0.3524 | -0.356882 | 66.057 | -0.15139 | -0.150361 | 70.049 | -0.30549 | -0.302402 |
| 67.049 | -0.35562 | -0.36047 | 68.058 | -0.15271 | -0.152705 | 72.05 | -0.30671 | -0.304907 |
| 69.063 | -0.35883 | -0.364952 | 70.059 | -0.15408 | -0.153177 | 74.052 | -0.3079 | -0.308631 |
| 71.063 | -0.36205 | -0.368109 | 72.061 | -0.15547 | -0.153833 | 76.053 | -0.30912 | -0.315772 |
| 73.052 | -0.36528 | -0.37407 | 74.062 | -0.15685 | -0.154563 | 78.055 | -0.3104 | -0.315287 |
| 75.053 | -0.36855 | -0.381448 | 76.064 | -0.15818 | -0.154745 | 80.056 | -0.31179 | -0.317569 |
| 77.055 | -0.37185 | -0.385153 | 78.065 | -0.15942 | -0.158601 | 82.057 | -0.31334 | -0.320673 |
| 79.056 | -0.37519 | -0.389089 | 80.066 | -0.16056 | -0.158214 | 85.06 | -0.31607 | -0.323056 |
| 81.058 | -0.37856 | -0.390647 | 82.068 | -0.16156 | -0.158582 | 87.061 | -0.31821 | -0.325904 |
| 83.059 | -0.38193 | -0.394696 | 84.07 | -0.16246 | -0.161042 | 89.063 | -0.3206 | -0.331089 |
| 85.06 | -0.38532 | -0.398079 | 86.061 | -0.16329 | -0.161763 | 92.065 | -0.32459 | -0.333653 |
| 87.062 | -0.3887 | -0.402027 | 88.062 | -0.16407 | -0.163839 | 94.066 | -0.32747 | -0.337338 |
| 89.063 | -0.39206 | -0.407488 | 90.076 | -0.16483 | -0.164533 | 96.068 | -0.33048 | -0.338646 |
| 91.065 | -0.39541 | -0.410366 | 92.077 | -0.16561 | -0.166371 | 99.07 | -0.3352 | -0.341556 |
| 93.066 | -0.39872 | -0.414967 | 94.079 | -0.16644 | -0.168371 | 102.072 | -0.34006 | -0.34531 |
| 95.068 | -0.40199 | -0.416464 | 96.078 | -0.16734 | -0.169781 | 104.073 | -0.34332 | -0.345722 |
| 97.069 | -0.40523 | -0.419921 | 98.079 | -0.16836 | -0.170515 | 106.078 | -0.34655 | -0.347172 |
| 99.084 | -0.40843 | -0.423058 | 101.081 | -0.17007 | -0.171835 | 108.079 | -0.34965 | -0.348762 |
| 101.071 | -0.41161 | -0.429221 | 103.083 | -0.17132 | -0.173326 | 110.077 | -0.35255 | -0.351618 |
| 103.073 | -0.41478 | -0.432961 | 106.085 | -0.1733 | -0.175525 | 112.079 | -0.35515 | -0.351442 |
| 105.075 | -0.41793 | -0.435756 | 108.086 | -0.17468 | -0.176342 | 114.08 | -0.35737 | -0.35399 |
| 107.076 | -0.42109 | -0.438223 | 110.087 | -0.17606 | -0.178927 | 116.084 | -0.35912 | -0.357615 |
| 109.077 | -0.42424 | -0.442948 | 112.089 | -0.17745 | -0.180116 | 118.086 | -0.36031 | -0.359946 |
| 111.079 | -0.42742 | -0.445964 | 114.094 | -0.17882 | -0.181868 | 120.084 | -0.36099 | -0.359334 |
| 113.08 | -0.43061 | -0.451104 | 116.092 | -0.18015 | -0.183457 | 122.086 | -0.36125 | -0.360275 |
| 115.082 | -0.43385 | -0.456578 | 118.093 | -0.18144 | -0.183599 | 124.087 | -0.36119 | -0.361084 |
| 117.083 | -0.43713 | -0.459515 | 120.085 | -0.18271 | -0.185278 | 126.091 | -0.3609 | -0.363879 |
| 119.085 | -0.44048 | -0.461427 | 122.086 | -0.18395 | -0.185592 | 129.093 | -0.36028 | -0.363525 |
| 121.086 | -0.44391 | -0.464466 | 124.088 | -0.18517 | -0.188505 | 131.095 | -0.35988 | -0.364276 |
| 124.088 | -0.44922 | -0.468751 | 127.089 | -0.18696 | -0.19023 | 133.097 | -0.35961 | -0.36575 |
| 127.102 | -0.45477 | -0.471342 | 129.091 | -0.18814 | -0.190736 | 135.097 | -0.35957 | -0.365687 |
| 129.092 | -0.45863 | -0.477297 | 131.092 | -0.18931 | -0.192131 | 137.1 | -0.35982 | -0.365082 |
| 131.093 | -0.46262 | -0.477821 | 133.094 | -0.19048 | -0.195234 | 139.1 | -0.36031 | -0.365523 |
| 133.095 | -0.46667 | -0.483439 | 135.095 | -0.19165 | -0.195053 | 141.102 | -0.36094 | -0.366236 |
| 135.096 | -0.47074 | -0.484875 | 137.097 | -0.19279 | -0.194295 | 143.103 | -0.36161 | -0.365886 |
| 137.097 | -0.47474 | -0.489148 | 139.098 | -0.1939 | -0.195974 | 145.105 | -0.36225 | -0.364888 |
| 139.098 | -0.47863 | -0.491948 | 141.099 | -0.19496 | -0.196773 | 148.107 | -0.36293 | -0.365452 |
| 141.1 | -0.48232 | -0.494779 | 143.113 | -0.19597 | -0.196844 | 150.096 | -0.36306 | -0.365237 |
| 143.101 | -0.48576 | -0.497317 | 145.117 | -0.1969 | -0.197734 | 152.107 | -0.36283 | -0.365819 |
| 145.103 | -0.4889 | -0.498696 | 148.117 | -0.19814 | -0.197528 | 155.099 | -0.36178 | -0.364749 |


| 147.104 | -0.49172 | -0.499003 | 150.117 | -0.19884 | -0.19913 | 157.102 | -0.3607 | -0.363265 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 149.106 | -0.4942 | -0.501814 | 152.119 | -0.19946 | -0.196829 | 159.102 | -0.35936 | -0.367663 |
| 151.107 | -0.49633 | -0.502955 | 155.119 | -0.20019 | -0.198974 | 161.103 | -0.35784 | -0.365266 |
| 153.108 | -0.4981 | -0.502847 | 157.122 | -0.20056 | -0.198432 | 163.105 | -0.35617 | -0.362497 |
| 155.11 | -0.49951 | -0.50631 | 159.124 | -0.20082 | -0.198798 | 165.106 | -0.35443 | -0.362053 |
| 157.111 | -0.50053 | -0.504871 | 161.126 | -0.20099 | -0.198948 | 167.108 | -0.35265 | -0.359267 |
| 159.113 | -0.50116 | -0.506037 | 163.127 | -0.20105 | -0.199525 | 170.11 | -0.35006 | -0.356911 |
| 161.114 | -0.50138 | -0.506 | 166.117 | -0.20094 | -0.198615 | 172.111 | -0.34839 | -0.356223 |
| 163.115 | -0.50124 | -0.505409 | 168.13 | -0.20075 | -0.198304 | 174.112 | -0.34674 | -0.354252 |
| 165.117 | -0.50077 | -0.507661 | 170.132 | -0.20046 | -0.198699 | 177.116 | -0.34426 | -0.352547 |
| 167.118 | -0.5 | -0.506722 | 172.133 | -0.20009 | -0.198164 | 179.116 | -0.34258 | -0.350678 |
| 169.12 | -0.49899 | -0.50659 | 174.134 | -0.19963 | -0.198824 | 181.117 | -0.34085 | -0.347565 |
| 171.121 | -0.49777 | -0.506189 | 177.125 | -0.1988 | -0.1981 | 183.12 | -0.33905 | -0.344273 |
| 173.123 | -0.49638 | -0.507638 | 179.126 | -0.19815 | -0.197457 | 185.12 | -0.33715 | -0.34205 |
| 175.124 | -0.49486 | -0.507328 | 181.128 | -0.19744 | -0.199224 | 187.122 | -0.33515 | -0.338357 |
| 177.126 | -0.49325 | -0.506451 | 183.129 | -0.19666 | -0.198048 | 189.124 | -0.33302 | -0.333852 |
| 179.139 | -0.49156 | -0.506006 | 185.131 | -0.19581 | -0.195674 | 191.124 | -0.33076 | -0.334361 |
| 181.131 | -0.48977 | -0.501911 | 187.132 | -0.19487 | -0.195269 | 193.126 | -0.32836 | -0.330549 |
| 183.13 | -0.48787 | -0.502778 | 189.133 | -0.19385 | -0.19352 | 195.127 | -0.32581 | -0.327176 |
| 185.143 | -0.48586 | -0.500992 | 191.135 | -0.19271 | -0.191209 | 197.13 | -0.3231 | -0.327292 |
| 187.145 | -0.48373 | -0.499452 | 193.136 | -0.19146 | -0.189625 | 199.13 | -0.32023 | -0.320504 |
| 190.144 | -0.48027 | -0.496464 | 195.137 | -0.19008 | -0.189448 | 201.132 | -0.31718 | -0.319185 |
| 192.146 | -0.47778 | -0.495579 | 197.139 | -0.18857 | -0.186701 | 203.133 | -0.31395 | -0.314956 |
| 194.147 | -0.47516 | -0.488048 | 199.14 | -0.18694 | -0.18564 | 205.135 | -0.31057 | -0.308833 |
| 196.148 | -0.47241 | -0.493279 | 201.142 | -0.18519 | -0.18204 | 207.148 | -0.30706 | -0.306503 |
| 198.15 | -0.46955 | -0.487975 | 203.143 | -0.18336 | -0.180777 | 210.151 | -0.30162 | -0.303098 |
| 200.152 | -0.46658 | -0.48499 | 205.145 | -0.18146 | -0.180554 | 212.152 | -0.29792 | -0.299089 |
| 202.153 | -0.46353 | -0.48081 | 207.146 | -0.17951 | -0.177867 | 214.153 | -0.2942 | -0.292527 |
| 204.154 | -0.4604 | -0.477441 | 209.147 | -0.17753 | -0.174648 | 216.155 | -0.29047 | -0.288622 |
| 206.156 | -0.45719 | -0.476168 | 211.149 | -0.17553 | -0.175632 | 218.156 | -0.28678 | -0.284666 |
| 208.157 | -0.45393 | -0.468612 | 213.15 | -0.17353 | -0.170871 | 220.157 | -0.28312 | -0.277593 |
| 210.159 | -0.45062 | -0.466439 | 215.152 | -0.17154 | -0.168969 | 222.156 | -0.27949 | -0.274944 |
| 212.16 | -0.44727 | -0.459676 | 217.153 | -0.16956 | -0.167954 | 225.159 | -0.27401 | -0.267681 |
| 214.161 | -0.44387 | -0.45645 | 219.155 | -0.16756 | -0.165514 | 228.164 | -0.26843 | -0.265775 |
| 216.162 | -0.44039 | -0.454421 | 221.156 | -0.16553 | -0.162897 | 230.164 | -0.26461 | -0.26039 |
| 218.165 | -0.4368 | -0.450137 | 223.157 | -0.16344 | -0.160728 | 232.166 | -0.26067 | -0.253269 |
| 220.165 | -0.43307 | -0.446916 | 225.159 | -0.16127 | -0.156898 | 234.168 | -0.25659 | -0.250257 |
| 222.167 | -0.42918 | -0.441246 | 228.161 | -0.15782 | -0.153737 | 236.169 | -0.25234 | -0.247925 |
| 224.169 | -0.42508 | -0.431828 | 230.162 | -0.15537 | -0.150937 | 239.171 | -0.24561 | -0.243052 |
| 226.169 | -0.42076 | -0.426536 | 232.164 | -0.15277 | -0.147073 | 241.172 | -0.24091 | -0.238307 |
| 228.171 | -0.41619 | -0.426153 | 234.165 | -0.15003 | -0.144537 | 243.173 | -0.23612 | -0.233894 |


| 230.172 | -0.41137 | -0.421324 | 236.167 | -0.14718 | -0.141004 | 245.175 | -0.23132 | -0.229089 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 232.175 | -0.40635 | -0.415724 | 238.168 | -0.14424 | -0.138577 | 247.177 | -0.22658 | -0.219842 |
| 234.175 | -0.40114 | -0.410355 | 240.169 | -0.14124 | -0.135543 | 249.179 | -0.22198 | -0.215934 |
| 236.177 | -0.39577 | -0.400624 | 242.171 | -0.13818 | -0.133161 | 251.177 | -0.2176 | -0.216576 |
| 238.178 | -0.39027 | -0.398005 | 244.172 | -0.13511 | -0.128274 | 253.178 | -0.2135 | -0.213854 |
| 240.18 | -0.38466 | -0.390468 | 246.174 | -0.13204 | -0.127056 | 255.182 | -0.20966 | -0.209121 |
| 242.181 | -0.37896 | -0.387012 | 248.175 | -0.12899 | -0.124348 | 257.184 | -0.20605 | -0.201731 |
| 244.182 | -0.37321 | -0.381559 | 250.176 | -0.12598 | -0.121393 | 259.186 | -0.20262 | -0.19988 |
| 246.184 | -0.36741 | -0.37571 | 252.178 | -0.12301 | -0.118754 | 261.187 | -0.19934 | -0.190574 |
| 248.185 | -0.36158 | -0.364714 | 254.179 | -0.1201 | -0.114582 | 264.189 | -0.19461 | -0.191812 |
| 250.186 | -0.35574 | -0.361308 | 256.181 | -0.11724 | -0.113174 | 266.19 | -0.19153 | -0.188278 |
| 253.179 | -0.347 | -0.357794 | 258.182 | -0.11445 | -0.110598 | 268.192 | -0.18844 | -0.185429 |
| 255.191 | -0.34121 | -0.352795 | 260.183 | -0.11174 | -0.107727 | 270.19 | -0.18532 | -0.182107 |
| 257.191 | -0.33548 | -0.347003 | 262.185 | -0.1091 | -0.104872 | 272.192 | -0.18214 | -0.176397 |
| 259.193 | -0.3298 | -0.337144 | 264.186 | -0.10655 | -0.102558 | 274.195 | -0.17893 | -0.173529 |
| 262.185 | -0.32141 | -0.33126 | 267.188 | -0.10286 | -0.100226 | 276.194 | -0.17577 | -0.172439 |
| 264.187 | -0.31591 | -0.326187 | 269.19 | -0.10048 | -0.096866 | 279.197 | -0.17126 | -0.170135 |
| 266.188 | -0.31049 | -0.327048 | 271.191 | -0.09814 | -0.092131 | 281.199 | -0.16851 | -0.166835 |
| 268.19 | -0.30515 | -0.319841 | 273.193 | -0.09583 | -0.092937 | 283.202 | -0.16604 | -0.160793 |
| 270.192 | -0.29989 | -0.314421 | 275.194 | -0.09353 | -0.089831 | 285.201 | -0.16391 | -0.158111 |
| 272.192 | -0.29473 | -0.308989 | 277.195 | -0.09124 | -0.088101 | 287.202 | -0.16219 | -0.158153 |
| 274.194 | -0.28967 | -0.300458 | 279.197 | -0.08895 | -0.085012 | 289.203 | -0.16087 | -0.156052 |
| 276.195 | -0.28471 | -0.294966 | 281.198 | -0.08663 | -0.083672 | 291.205 | -0.15987 | -0.15423 |
| 278.197 | -0.27985 | -0.291143 | 283.2 | -0.08429 | -0.076535 | 293.207 | -0.15912 | -0.153156 |
| 280.198 | -0.2751 | -0.286252 | 285.201 | -0.08196 | -0.075952 | 295.208 | -0.15855 | -0.150189 |
| 282.2 | -0.27046 | -0.28157 | 287.203 | -0.07964 | -0.07735 | 297.21 | -0.15809 | -0.147718 |
| 284.201 | -0.26595 | -0.273925 | 289.204 | -0.07736 | -0.074353 | 299.21 | -0.15766 | -0.146258 |
| 286.203 | -0.26155 | -0.270658 | 291.205 | -0.07514 | -0.070698 | 301.212 | -0.1572 | -0.143842 |
| 288.216 | -0.25728 | -0.264096 | 293.206 | -0.07298 | -0.06864 | 303.213 | -0.15669 | -0.143411 |
| 290.205 | -0.25315 | -0.259253 | 295.208 | -0.07091 | -0.067308 | 305.215 | -0.15613 | -0.142096 |
| 292.207 | -0.24917 | -0.252746 | 297.21 | -0.06895 | -0.065972 | 307.216 | -0.15555 | -0.140042 |
| 294.208 | -0.24538 | -0.251941 | 299.211 | -0.0671 | -0.063373 | 309.218 | -0.15493 | -0.140566 |
| 296.209 | -0.24179 | -0.248529 | 301.213 | -0.0654 | -0.061593 | 311.219 | -0.15431 | -0.138993 |
| 298.211 | -0.23844 | -0.246498 | 303.214 | -0.06385 | -0.061255 | 313.22 | -0.15367 | -0.138647 |
| 300.225 | -0.23534 | -0.242253 | 305.228 | -0.06246 | -0.060146 | 316.223 | -0.15273 | -0.137055 |
| 302.213 | -0.23252 | -0.238103 | 307.217 | -0.06125 | -0.058684 | 318.224 | -0.15213 | -0.13634 |
| 304.215 | -0.22999 | -0.232848 | 309.218 | -0.06018 | -0.056556 | 320.226 | -0.15154 | -0.135887 |
| 306.229 | -0.22775 | -0.230662 | 311.219 | -0.05924 | -0.055794 | 322.227 | -0.151 | -0.134315 |
| 308.23 | -0.22576 | -0.228562 | 313.221 | -0.05841 | -0.055078 | 324.228 | -0.15049 | -0.133841 |
| 310.231 | -0.22402 | -0.226478 | 315.223 | -0.05768 | -0.053546 | 326.23 | -0.15004 | -0.133479 |
| 312.233 | -0.2225 | -0.224615 | 317.224 | -0.05702 | -0.051979 | 328.231 | -0.14963 | -0.132638 |


| 314.234 | -0.22118 | -0.219799 | 319.225 | -0.05643 | -0.050906 | 330.235 | -0.14926 | -0.132122 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 316.235 | -0.22006 | -0.218474 | 321.228 | -0.05587 | -0.049633 | 332.237 | -0.14894 | -0.132698 |
| 318.242 | -0.21911 | -0.217692 | 323.228 | -0.05534 | -0.049445 | 334.236 | -0.14865 | -0.131338 |
| 320.244 | -0.2183 | -0.215118 | 325.229 | -0.05481 | -0.04909 | 337.239 | -0.14829 | -0.13076 |
| 322.243 | -0.21764 | -0.21318 | 327.231 | -0.05428 | -0.047777 | 340.241 | -0.14799 | -0.130753 |
| 324.244 | -0.21709 | -0.212319 | 329.232 | -0.05374 | -0.047173 | 342.241 | -0.14783 | -0.130606 |
| 326.246 | -0.21664 | -0.210351 | 331.234 | -0.0532 | -0.045643 | 344.243 | -0.14769 | -0.130035 |
| 328.247 | -0.21626 | -0.208186 | 333.235 | -0.05265 | -0.045521 | 346.244 | -0.14757 | -0.129951 |
| 330.244 | -0.21595 | -0.205038 | 335.249 | -0.05211 | -0.043865 | 348.245 | -0.14747 | -0.129857 |
| 333.245 | -0.21557 | -0.204401 | 337.25 | -0.05156 | -0.043982 | 350.247 | -0.14739 | -0.130472 |
| 335.247 | -0.21534 | -0.203114 | 340.253 | -0.05074 | -0.043484 | 353.249 | -0.14728 | -0.12965 |
| 337.249 | -0.2151 | -0.203193 | 342.253 | -0.05019 | -0.042415 | 355.25 | -0.14723 | -0.130216 |
| 339.249 | -0.21486 | -0.200745 | 344.255 | -0.04965 | -0.041677 | 357.252 | -0.14718 | -0.130076 |
| 342.242 | -0.21446 | -0.199863 | 346.254 | -0.04911 | -0.040433 | 359.253 | -0.14713 | -0.129721 |
| 344.253 | -0.21418 | -0.198237 | 348.255 | -0.04858 | -0.040353 | 361.255 | -0.14708 | -0.130426 |
| 346.254 | -0.21388 | -0.197241 | 350.247 | -0.04805 | -0.039799 | 363.256 | -0.14701 | -0.129933 |
| 348.256 | -0.21357 | -0.196406 | 352.258 | -0.04754 | -0.039396 | 365.257 | -0.14694 | -0.130397 |
| 350.257 | -0.21324 | -0.195521 | 354.259 | -0.04703 | -0.038733 | 367.258 | -0.14684 | -0.129569 |
| 352.258 | -0.2129 | -0.194457 | 356.252 | -0.04654 | -0.038676 | 369.26 | -0.14673 | -0.130201 |
| 354.26 | -0.21254 | -0.193774 | 358.253 | -0.04605 | -0.038491 | 371.262 | -0.14658 | -0.129883 |
| 356.261 | -0.21217 | -0.192251 | 360.254 | -0.04558 | -0.037634 | 373.263 | -0.14641 | -0.129866 |
| 358.263 | -0.21178 | -0.191768 | 362.255 | -0.04513 | -0.037659 | 375.255 | -0.14619 | -0.129916 |
| 360.265 | -0.21138 | -0.190681 | 364.257 | -0.04469 | -0.037553 | 377.266 | -0.14594 | -0.129849 |
| 362.265 | -0.21097 | -0.19034 | 366.258 | -0.04426 | -0.036068 | 379.268 | -0.14563 | -0.129371 |
| 364.267 | -0.21054 | -0.189311 | 368.26 | -0.04383 | -0.036594 | 381.268 | -0.14528 | -0.128797 |
| 366.268 | -0.21009 | -0.188902 | 370.261 | -0.04342 | -0.035337 | 383.27 | -0.14487 | -0.129883 |
| 368.27 | -0.20963 | -0.188414 | 372.263 | -0.04302 | -0.035825 | 385.274 | -0.1444 | -0.12872 |
| 370.271 | -0.20915 | -0.187983 | 374.264 | -0.04262 | -0.034913 | 387.275 | -0.14386 | -0.127763 |
| 372.273 | -0.20866 | -0.187126 | 376.265 | -0.04223 | -0.035055 | 389.277 | -0.14326 | -0.127905 |
| 374.264 | -0.20816 | -0.187174 | 378.267 | -0.04185 | -0.034495 | 391.278 | -0.14259 | -0.128454 |
| 376.276 | -0.20764 | -0.186061 | 380.268 | -0.04147 | -0.034408 | 393.28 | -0.14186 | -0.127473 |
| 378.277 | -0.20711 | -0.18504 | 382.27 | -0.04108 | -0.033605 | 395.281 | -0.14108 | -0.127612 |
| 380.278 | -0.20658 | -0.185591 | 384.271 | -0.0407 | -0.033472 | 397.28 | -0.14026 | -0.126486 |
| 382.28 | -0.20605 | -0.184927 | 386.273 | -0.04032 | -0.033678 | 399.282 | -0.1394 | -0.126265 |
| 384.281 | -0.20553 | -0.184889 | 388.274 | -0.03994 | -0.03347 | 401.283 | -0.13851 | -0.125413 |
| 386.283 | -0.20501 | -0.18447 | 390.275 | -0.03955 | -0.033504 | 403.284 | -0.1376 | -0.128402 |
| 388.284 | -0.20451 | -0.184539 | 392.277 | -0.03916 | -0.032985 | 405.276 | -0.13666 | -0.122584 |
| 390.285 | -0.20403 | -0.184151 | 394.278 | -0.03877 | -0.032429 | 407.277 | -0.13572 | -0.12377 |
| 392.287 | -0.20358 | -0.18436 | 396.279 | -0.03836 | -0.032772 | 409.278 | -0.13478 | -0.12365 |
| 394.289 | -0.20315 | -0.183725 | 398.281 | -0.03795 | -0.032875 | 411.28 | -0.13384 | -0.124021 |
| 396.28 | -0.20275 | -0.184065 | 400.282 | -0.03752 | -0.031221 | 413.281 | -0.1329 | -0.123334 |


| 398.281 | -0.20239 | -0.183514 | 402.283 | -0.03709 | -0.032048 | 415.295 | -0.13198 | -0.121873 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 400.283 | -0.20208 | -0.183781 | 404.285 | -0.03664 | -0.031371 | 417.297 | -0.13105 | -0.12164 |
| 403.285 | -0.20169 | -0.183771 | 406.287 | -0.03618 | -0.031554 | 419.298 | -0.13013 | -0.120448 |
| 405.286 | -0.2015 | -0.183513 | 408.288 | -0.0357 | -0.030791 | 421.287 | -0.1292 | -0.119981 |
| 407.288 | -0.20135 | -0.183468 | 410.29 | -0.0352 | -0.02912 | 423.288 | -0.12826 | -0.119497 |
| 409.289 | -0.20123 | -0.182529 | 412.29 | -0.03469 | -0.031138 | 425.29 | -0.12731 | -0.11874 |
| 411.29 | -0.20114 | -0.182989 | 414.292 | -0.03415 | -0.029918 | 427.291 | -0.12633 | -0.115269 |
| 413.292 | -0.20106 | -0.182258 | 416.294 | -0.0336 | -0.029534 | 429.293 | -0.12533 | -0.116051 |
| 415.293 | -0.20098 | -0.182792 | 418.295 | -0.03302 | -0.028953 | 432.307 | -0.12377 | -0.115449 |
| 417.295 | -0.20089 | -0.182392 | 420.296 | -0.03241 | -0.028582 | 434.308 | -0.12269 | -0.114021 |
| 419.296 | -0.20078 | -0.182483 | 422.298 | -0.03179 | -0.028979 | 436.312 | -0.12156 | -0.11241 |
| 421.298 | -0.20063 | -0.181506 | 424.3 | -0.03114 | -0.027504 | 438.313 | -0.12039 | -0.110859 |
| 423.299 | -0.20043 | -0.181973 | 426.301 | -0.03048 | -0.027462 | 441.316 | -0.11853 | -0.108927 |
| 425.3 | -0.20018 | -0.181099 | 428.302 | -0.02981 | -0.027795 | 444.315 | -0.11654 | -0.106348 |
| 427.302 | -0.19986 | -0.180714 | 430.303 | -0.02913 | -0.027278 | 446.32 | -0.11514 | -0.105331 |
| 429.303 | -0.19946 | -0.180363 | 432.305 | -0.02845 | -0.026936 | 448.318 | -0.11368 | -0.104788 |
| 431.305 | -0.19896 | -0.180882 | 434.306 | -0.02778 | -0.026979 | 450.322 | -0.11218 | -0.102318 |
| 433.306 | -0.19838 | -0.17994 | 436.308 | -0.02711 | -0.027054 | 452.321 | -0.11062 | -0.101183 |
| 435.307 | -0.19772 | -0.179982 | 438.309 | -0.02645 | -0.026165 | 454.323 | -0.10902 | -0.0998 |
| 437.309 | -0.19697 | -0.179407 | 440.31 | -0.0258 | -0.025753 | 457.327 | -0.10655 | -0.098769 |
| 439.323 | -0.19615 | -0.179227 | 442.312 | -0.02517 | -0.025728 | 460.328 | -0.10401 | -0.097498 |
| 441.325 | -0.19526 | -0.17772 | 444.313 | -0.02457 | -0.025773 | 462.331 | -0.10228 | -0.096903 |
| 443.325 | -0.19431 | -0.17793 | 446.315 | -0.024 | -0.024926 | 464.333 | -0.10052 | -0.095127 |
| 445.325 | -0.19329 | -0.177352 | 448.316 | -0.02345 | -0.02493 | 466.328 | -0.09874 | -0.093508 |
| 447.326 | -0.19222 | -0.177281 | 450.318 | -0.02294 | -0.024938 | 468.334 | -0.09695 | -0.091997 |
| 450.328 | -0.19052 | -0.173178 | 452.319 | -0.02247 | -0.024598 | 470.332 | -0.09514 | -0.090019 |
| 452.329 | -0.18933 | -0.17454 | 454.332 | -0.02201 | -0.024911 | 473.324 | -0.09242 | -0.087424 |
| 454.331 | -0.18811 | -0.174021 | 456.334 | -0.02159 | -0.024132 | 475.337 | -0.0906 | -0.086103 |
| 457.332 | -0.1862 | -0.173366 | 459.337 | -0.02098 | -0.024143 | 477.34 | -0.08878 | -0.084364 |
| 459.324 | -0.1849 | -0.173272 | 462.326 | -0.0204 | -0.023532 | 479.328 | -0.08697 | -0.083866 |
| 461.326 | -0.18357 | -0.171639 | 464.337 | -0.02003 | -0.023145 | 481.344 | -0.08515 | -0.08141 |
| 463.327 | -0.18223 | -0.170068 | 466.339 | -0.01965 | -0.023195 | 483.342 | -0.08332 | -0.079983 |
| 465.328 | -0.18087 | -0.169045 | 468.34 | -0.01928 | -0.022989 | 485.346 | -0.08148 | -0.077178 |
| 467.33 | -0.1795 | -0.165721 | 471.342 | -0.01871 | -0.023191 | 487.345 | -0.07964 | -0.07595 |
| 469.348 | -0.17812 | -0.167671 | 473.344 | -0.01832 | -0.022333 | 490.346 | -0.07683 | -0.074182 |
| 471.349 | -0.17672 | -0.166898 | 475.346 | -0.01791 | -0.022433 | 492.349 | -0.07494 | -0.072557 |
| 473.347 | -0.1753 | -0.165509 | 478.347 | -0.01727 | -0.02148 | 494.349 | -0.07302 | -0.070257 |
| 475.348 | -0.17385 | -0.163835 | 480.349 | -0.01681 | -0.022042 | 497.352 | -0.0701 | -0.067241 |
| 477.349 | -0.17237 | -0.162628 | 482.351 | -0.01632 | -0.020263 | 500.353 | -0.06711 | -0.065418 |
| 479.35 | -0.17085 | -0.164156 | 485.343 | -0.01552 | -0.020411 | 503.354 | -0.06403 | -0.064066 |
| 481.351 | -0.1693 | -0.159975 | 487.354 | -0.01495 | -0.019554 | 506.347 | -0.06087 | -0.059947 |


| 483.351 | -0.16771 | -0.158763 | 489.355 | -0.01436 | -0.019754 | 508.348 | -0.0587 | -0.058591 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 485.353 | -0.16607 | -0.157641 | 491.357 | -0.01375 | -0.018314 | 510.349 | -0.0565 | -0.057059 |
| 487.354 | -0.16438 | -0.156597 | 493.358 | -0.01312 | -0.018968 | 513.352 | -0.05312 | -0.054393 |
| 489.355 | -0.16264 | -0.153583 | 495.359 | -0.01248 | -0.018523 | 514.365 | -0.05199 | -0.055075 |
| 491.357 | -0.16085 | -0.152787 | 497.36 | -0.01183 | -0.017864 | 517.354 | -0.04857 | -0.051384 |
| 493.359 | -0.15899 | -0.151213 | 499.353 | -0.01118 | -0.016443 | 518.369 | -0.04743 | -0.047652 |
| 495.36 | -0.15707 | -0.150042 | 501.355 | -0.01053 | -0.016187 | 520.369 | -0.04515 | -0.046547 |
| 497.361 | -0.15509 | -0.148389 | 503.367 | -0.00989 | -0.015923 | 522.371 | -0.04289 | -0.042585 |
| 500.363 | -0.15201 | -0.145767 | 505.357 | -0.00926 | -0.015433 | 524.372 | -0.04066 | -0.042765 |
| 502.365 | -0.1499 | -0.142451 | 507.359 | -0.00864 | -0.015225 | 526.371 | -0.03847 | -0.04093 |
| 505.357 | -0.14666 | -0.14234 | 509.369 | -0.00805 | -0.014496 | 528.373 | -0.03632 | -0.038607 |
| 507.368 | -0.14446 | -0.141129 | 511.37 | -0.00747 | -0.014804 | 530.373 | -0.03423 | -0.036429 |
| 509.37 | -0.14223 | -0.137913 | 513.362 | -0.00693 | -0.013799 | 533.366 | -0.03122 | -0.034261 |
| 512.372 | -0.13883 | -0.136799 | 515.363 | -0.00642 | -0.013635 | 535.367 | -0.02932 | -0.033731 |
| 514.373 | -0.13655 | -0.134514 | 517.365 | -0.00594 | -0.013598 | 537.379 | -0.02751 | -0.031861 |
| 516.374 | -0.13425 | -0.129948 | 519.367 | -0.00549 | -0.0128 | 539.38 | -0.0258 | -0.030035 |
| 518.376 | -0.13195 | -0.130433 | 521.367 | -0.00507 | -0.012998 | 541.381 | -0.0242 | -0.028216 |
| 520.367 | -0.12965 | -0.129289 | 523.369 | -0.00468 | -0.01225 | 543.383 | -0.02268 | -0.025381 |
| 522.369 | -0.12735 | -0.126684 | 525.371 | -0.00431 | -0.012065 | 545.385 | -0.02125 | -0.023868 |
| 524.37 | -0.12506 | -0.1225 | 527.372 | -0.00397 | -0.011659 | 547.388 | -0.0199 | -0.022965 |
| 526.372 | -0.12276 | -0.119652 | 529.373 | -0.00365 | -0.011297 | 549.39 | -0.01863 | -0.021227 |
| 528.373 | -0.12045 | -0.116961 | 531.374 | -0.00335 | -0.010602 | 551.389 | -0.01742 | -0.019564 |
| 530.374 | -0.11809 | -0.116448 | 533.376 | -0.00306 | -0.010874 | 553.393 | -0.01628 | -0.018623 |
| 532.376 | -0.11569 | -0.11339 | 535.378 | -0.0028 | -0.010262 | 556.395 | -0.01468 | -0.016126 |
| 534.377 | -0.11322 | -0.111076 | 537.379 | -0.00254 | -0.010479 | 558.396 | -0.01367 | -0.012574 |
| 536.379 | -0.11067 | -0.107856 | 539.38 | -0.0023 | -0.009842 | 560.397 | -0.01271 | -0.013655 |
| 538.38 | -0.10802 | -0.103383 | 541.382 | -0.00208 | -0.01026 | 562.399 | -0.01178 | -0.012763 |
| 540.382 | -0.10526 | -0.101043 | 543.383 | -0.00185 | -0.00929 | 564.4 | -0.01089 | -0.011099 |
| 542.383 | -0.10238 | -0.099186 | 545.386 | -0.00164 | -0.009072 | 566.399 | -0.01002 | -0.010257 |
| 544.384 | -0.09935 | -0.095833 | 547.386 | -0.00144 | -0.009174 | 568.403 | -0.00916 | -0.007699 |
| 546.386 | -0.09616 | -0.093187 | 549.388 | -0.00123 | -0.006039 | 570.392 | -0.00833 | -0.006936 |
| 548.387 | -0.09283 | -0.087337 | 551.389 | -0.00103 | -0.008668 | 572.393 | -0.00751 | -0.006163 |
| 550.389 | -0.08936 | -0.082843 | 553.39 | -0.00084 | -0.009176 | 574.395 | -0.00672 | -0.004385 |
| 552.39 | -0.08578 | -0.08356 | 555.392 | -0.00066 | -0.009488 | 576.396 | -0.00595 | -0.004223 |
| 554.391 | -0.08211 | -0.078157 | 557.393 | -0.0005 | -0.009572 | 578.398 | -0.0052 | -0.00279 |
| 556.393 | -0.07836 | -0.072929 | 559.407 | -0.00035 | -0.008082 | 580.412 | -0.00449 | -0.002796 |
| 558.394 | -0.07457 | -0.069918 | 562.409 | -0.00017 | -0.009177 | 582.413 | -0.00382 | -0.000339 |
| 560.395 | -0.07074 | -0.068816 | 564.41 | -8.1E-05 | -0.009086 | 584.402 | -0.00319 | -0.000433 |
| 562.397 | -0.06689 | -0.066089 | 566.399 | -2.3E-05 | -0.008966 | 586.403 | -0.0026 | 0.001425 |
| 564.399 | -0.06306 | -0.062628 | 568.411 | 0 | -0.009188 | 588.405 | -0.00207 | -0.000387 |
| 566.4 | -0.05925 | -0.05804 | 570.402 | -1.3E-05 | -0.00907 | 590.406 | -0.00158 | 0.000277 |


| 568.401 | -0.05549 | -0.055779 | 572.404 | -6.7E-05 | -0.008824 | 592.408 | -0.00116 | 0.001965 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 570.402 | -0.05179 | -0.050352 | 574.405 | -0.00017 | -0.009327 | 594.409 | -0.00079 | 0.001974 |
| 572.404 | -0.04818 | -0.048331 | 576.407 | -0.00031 | -0.008887 | 596.41 | -0.00049 | 0.002704 |
| 574.405 | -0.04467 | -0.044352 | 578.408 | -0.00051 | -0.009236 | 598.412 | -0.00025 | 0.002573 |
| 576.407 | -0.0413 | -0.041118 | 580.409 | -0.00076 | -0.008685 | 600.413 | -9.1E-05 | 0.002556 |
| 578.408 | -0.03806 | -0.040029 | 582.411 | -0.00107 | -0.008784 | 602.427 | -6E-06 | 0.003072 |
| 580.41 | -0.035 | -0.03827 | 584.412 | -0.00144 | -0.009223 | 604.429 | 0 | 0.002905 |
| 582.411 | -0.03211 | -0.035063 | 587.414 | -0.0021 | -0.009149 | 606.43 | -6.9E-05 | 0.003046 |
| 584.412 | -0.0294 | -0.032917 | 589.416 | -0.00261 | -0.008554 | 608.431 | -0.00021 | 0.002938 |
| 586.414 | -0.02686 | -0.028637 | 591.417 | -0.00316 | -0.008148 | 610.43 | -0.00041 | 0.003037 |
| 588.415 | -0.02448 | -0.027432 | 593.418 | -0.00374 | -0.009248 | 612.421 | -0.00068 | 0.002864 |
| 590.417 | -0.02225 | -0.025664 | 595.42 | -0.00437 | -0.008842 | 614.423 | -0.001 | 0.00324 |
| 592.418 | -0.02018 | -0.023467 | 597.421 | -0.00502 | -0.009352 | 616.424 | -0.00136 | 0.002604 |
| 594.42 | -0.01825 | -0.021296 | 599.423 | -0.0057 | -0.00884 | 618.426 | -0.00178 | 0.002704 |
| 596.421 | -0.01646 | -0.019493 | 601.424 | -0.00641 | -0.008825 | 620.427 | -0.00223 | 0.003199 |
| 599.423 | -0.01401 | -0.018382 | 603.426 | -0.00713 | -0.009563 | 622.429 | -0.00271 | 0.002677 |
| 601.425 | -0.01253 | -0.013985 | 605.428 | -0.00786 | -0.008919 | 624.431 | -0.00322 | 0.002626 |
| 603.426 | -0.01117 | -0.014621 | 607.428 | -0.0086 | -0.009563 | 626.432 | -0.00375 | 0.002893 |
| 605.427 | -0.00991 | -0.013066 | 609.43 | -0.00935 | -0.010414 | 629.446 | -0.00458 | 0.003235 |
| 607.429 | -0.00875 | -0.010631 | 611.431 | -0.01009 | -0.010419 | 631.447 | -0.00514 | 0.003015 |
| 609.43 | -0.00769 | -0.009077 | 613.433 | -0.01083 | -0.010801 | 633.449 | -0.00571 | 0.0033 |
| 611.432 | -0.00671 | -0.00826 | 615.434 | -0.01156 | -0.012252 | 635.45 | -0.00628 | 0.001805 |
| 613.433 | -0.00582 | -0.006811 | 617.436 | -0.01228 | -0.0124 | 637.452 | -0.00685 | 0.001888 |
| 615.434 | -0.005 | -0.006121 | 619.437 | -0.01301 | -0.012841 | 639.453 | -0.00743 | 0.001708 |
| 617.437 | -0.00424 | -0.005305 | 621.438 | -0.01374 | -0.012989 | 641.455 | -0.00803 | 7.3E-05 |
| 619.45 | -0.00355 | -0.003625 | 623.441 | -0.01447 | -0.014148 | 643.456 | -0.00865 | -0.00066 |
| 622.452 | -0.00262 | -0.002871 | 625.442 | -0.01522 | -0.014571 | 645.457 | -0.0093 | -0.001839 |
| 624.453 | -0.00206 | -0.001396 | 627.454 | -0.01597 | -0.015219 | 647.459 | -0.00998 | -0.003073 |
| 627.443 | -0.00135 | -0.000771 | 630.457 | -0.01714 | -0.016001 | 649.458 | -0.01071 | -0.003627 |
| 629.444 | -0.00095 | -0.00039 | 633.447 | -0.01835 | -0.016461 | 651.459 | -0.01148 | -0.00444 |
| 631.446 | -0.00062 | 9.6E-05 | 635.448 | -0.01919 | -0.017855 | 653.461 | -0.01231 | -0.006065 |
| 633.447 | -0.00035 | 0.001686 | 637.45 | -0.02006 | -0.018704 | 655.462 | -0.0132 | -0.007305 |
| 635.449 | -0.00016 | 0.002602 | 639.451 | -0.02096 | -0.020292 | 657.464 | -0.01465 | -0.010115 |
| 637.45 | -4.2E-05 | 0.001337 | 641.452 | -0.0219 | -0.02103 | 659.465 | -0.01571 | -0.010424 |
| 639.451 | 0 | 0.001897 | 643.454 | -0.02288 | -0.021716 | 661.466 | -0.01685 | -0.011644 |
| 641.453 | -3.7E-05 | 0.002292 | 645.456 | -0.0239 | -0.022478 | 663.467 | -0.01808 | -0.012607 |
| 643.454 | -0.00016 | 0.002585 | 647.457 | -0.02497 | -0.023556 | 665.469 | -0.01941 | -0.014006 |
| 645.456 | -0.00036 | 0.002642 | 649.458 | -0.02607 | -0.024094 | 667.47 | -0.02082 | -0.016697 |
| 647.457 | -0.00065 | 0.002282 | 651.459 | -0.0272 | -0.024958 | 669.472 | -0.02233 | -0.017551 |
| 649.459 | -0.00103 | 0.002668 | 653.461 | -0.02836 | -0.027149 | 671.473 | -0.02392 | -0.019062 |
| 651.46 | -0.0015 | 0.002639 | 655.463 | -0.02954 | -0.027953 | 673.475 | -0.02558 | -0.020048 |


| 653.461 | -0.00206 | 0.002516 | 657.464 | -0.03074 | -0.028433 | 675.476 | -0.0273 | -0.022212 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 655.462 | -0.00271 | 0.002711 | 659.465 | -0.03195 | -0.02989 | 677.478 | -0.02907 | -0.024684 |
| 657.464 | -0.00344 | 0.002911 | 661.466 | -0.03316 | -0.030373 | 679.479 | -0.03088 | -0.026696 |
| 659.466 | -0.00426 | 0.002162 | 663.468 | -0.03438 | -0.03128 | 681.481 | -0.03272 | -0.028187 |
| 661.467 | -0.00515 | 0.002713 | 665.471 | -0.03559 | -0.033081 | 683.472 | -0.03458 | -0.031158 |
| 663.468 | -0.00611 | 0.002446 | 667.471 | -0.03678 | -0.033653 | 685.483 | -0.03645 | -0.031843 |
| 665.47 | -0.00715 | 0.002357 | 669.472 | -0.03796 | -0.0345 | 687.475 | -0.03832 | -0.032906 |
| 667.471 | -0.00825 | 0.00229 | 671.474 | -0.03912 | -0.03504 | 689.476 | -0.04019 | -0.034702 |
| 669.472 | -0.00941 | 0.001087 | 673.475 | -0.04026 | -0.036601 | 691.477 | -0.04204 | -0.036568 |
| 671.474 | -0.01064 | -4.1E-05 | 675.476 | -0.04136 | -0.03688 | 693.479 | -0.04385 | -0.037867 |
| 673.475 | -0.01192 | -0.000972 | 677.478 | -0.04242 | -0.038761 | 695.48 | -0.04563 | -0.039231 |
| 675.477 | -0.01325 | -0.002291 | 679.479 | -0.04344 | -0.039642 | 697.482 | -0.04737 | -0.042341 |
| 677.478 | -0.01464 | -0.003766 | 681.48 | -0.04443 | -0.039732 | 699.483 | -0.04908 | -0.042227 |
| 679.48 | -0.01607 | -0.005653 | 683.482 | -0.04539 | -0.040342 | 701.497 | -0.05075 | -0.045243 |
| 681.481 | -0.01754 | -0.006085 | 685.485 | -0.04633 | -0.04157 | 703.498 | -0.05238 | -0.046176 |
| 683.482 | -0.01906 | -0.007077 | 687.485 | -0.04724 | -0.04183 | 705.5 | -0.05399 | -0.048796 |
| 685.484 | -0.02061 | -0.008931 | 689.486 | -0.04814 | -0.042682 | 707.501 | -0.05557 | -0.050457 |
| 687.485 | -0.02221 | -0.009858 | 691.488 | -0.04903 | -0.044468 | 709.503 | -0.05713 | -0.052185 |
| 689.487 | -0.02384 | -0.011022 | 693.489 | -0.0499 | -0.045079 | 711.504 | -0.05867 | -0.054822 |
| 691.488 | -0.0255 | -0.013263 | 695.491 | -0.05078 | -0.045624 | 713.505 | -0.06019 | -0.05657 |
| 693.489 | -0.0272 | -0.014135 | 697.491 | -0.05166 | -0.046636 | 715.507 | -0.06169 | -0.056414 |
| 695.491 | -0.02893 | -0.015653 | 699.493 | -0.05254 | -0.048198 | 717.506 | -0.06318 | -0.058715 |
| 697.492 | -0.03068 | -0.017674 | 701.494 | -0.05343 | -0.04857 | 719.507 | -0.06466 | -0.060901 |
| 699.494 | -0.03247 | -0.019152 | 703.496 | -0.05434 | -0.048873 | 721.508 | -0.06613 | -0.065282 |
| 701.495 | -0.03427 | -0.020464 | 705.498 | -0.05527 | -0.049681 | 723.51 | -0.0676 | -0.065025 |
| 703.497 | -0.03611 | -0.023771 | 707.499 | -0.05622 | -0.051886 | 725.511 | -0.06907 | -0.066799 |
| 705.498 | -0.03796 | -0.02499 | 709.501 | -0.05721 | -0.052451 | 727.512 | -0.07054 | -0.068535 |
| 707.499 | -0.03983 | -0.027269 | 711.502 | -0.05822 | -0.053842 | 729.514 | -0.07201 | -0.070301 |
| 709.501 | -0.04171 | -0.028171 | 713.503 | -0.05925 | -0.055786 | 732.516 | -0.07423 | -0.073967 |
| 711.503 | -0.04362 | -0.030443 | 715.504 | -0.0603 | -0.055281 | 734.518 | -0.07573 | -0.074568 |
| 713.505 | -0.04554 | -0.03269 | 717.506 | -0.06137 | -0.056038 | 736.522 | -0.07725 | -0.076209 |
| 715.506 | -0.04748 | -0.034938 | 719.507 | -0.06244 | -0.056943 | 738.52 | -0.07878 | -0.078266 |
| 718.52 | -0.05043 | -0.037427 | 721.509 | -0.06352 | -0.058395 | 740.523 | -0.08035 | -0.079677 |
| 721.51 | -0.05344 | -0.038599 | 723.51 | -0.06459 | -0.060564 | 742.524 | -0.08194 | -0.083108 |
| 723.51 | -0.05548 | -0.040364 | 725.512 | -0.06565 | -0.061722 | 744.525 | -0.08358 | -0.085137 |
| 725.512 | -0.05755 | -0.042417 | 727.513 | -0.0667 | -0.061439 | 746.526 | -0.08525 | -0.088589 |
| 727.514 | -0.05966 | -0.044432 | 729.514 | -0.06773 | -0.062012 | 748.528 | -0.08696 | -0.090725 |
| 729.515 | -0.06181 | -0.047227 | 731.516 | -0.06873 | -0.063327 | 750.529 | -0.08873 | -0.091397 |
| 731.516 | -0.06399 | -0.04847 | 733.517 | -0.06971 | -0.064032 | 752.53 | -0.09055 | -0.093457 |
| 733.518 | -0.06622 | -0.051542 | 735.519 | -0.07064 | -0.06514 | 754.532 | -0.09243 | -0.095041 |
| 735.519 | -0.06849 | -0.053038 | 737.52 | -0.07154 | -0.066065 | 756.538 | -0.09437 | -0.097699 |


| 737.52 | -0.07081 | -0.055801 | 739.522 | -0.07239 | -0.066565 | 758.534 | -0.09637 | -0.10093 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 739.522 | -0.07317 | -0.060049 | 741.523 | -0.07319 | -0.067115 | 761.536 | -0.09952 | -0.102941 |
| 741.523 | -0.07558 | -0.061887 | 743.524 | -0.07393 | -0.068825 | 763.538 | -0.10171 | -0.106877 |
| 743.525 | -0.07805 | -0.065566 | 745.526 | -0.07461 | -0.068715 | 765.54 | -0.10397 | -0.108219 |
| 745.526 | -0.08057 | -0.066543 | 747.527 | -0.07525 | -0.069725 | 767.541 | -0.10629 | -0.11197 |
| 747.527 | -0.08313 | -0.068935 | 749.529 | -0.07584 | -0.070419 | 769.542 | -0.10866 | -0.112247 |
| 749.529 | -0.08573 | -0.071883 | 751.529 | -0.07639 | -0.07151 | 771.544 | -0.11106 | -0.115014 |
| 751.53 | -0.08836 | -0.076334 | 753.532 | -0.07691 | -0.071866 | 773.546 | -0.1135 | -0.117759 |
| 753.532 | -0.09103 | -0.078315 | 755.533 | -0.07741 | -0.072172 | 776.538 | -0.11718 | -0.1219 |
| 755.533 | -0.09373 | -0.080935 | 757.534 | -0.07788 | -0.072649 | 779.549 | -0.12088 | -0.124083 |
| 757.535 | -0.09644 | -0.085226 | 759.536 | -0.07834 | -0.074058 | 781.551 | -0.12333 | -0.125762 |
| 759.536 | -0.09918 | -0.088262 | 761.537 | -0.07879 | -0.074018 | 783.542 | -0.12577 | -0.127871 |
| 761.537 | -0.10193 | -0.089852 | 763.539 | -0.07924 | -0.074357 | 785.544 | -0.12818 | -0.131645 |
| 763.539 | -0.10469 | -0.092944 | 765.54 | -0.07969 | -0.075513 | 787.545 | -0.13055 | -0.133697 |
| 765.54 | -0.10746 | -0.096235 | 767.541 | -0.08015 | -0.076299 | 789.546 | -0.13287 | -0.13557 |
| 767.542 | -0.11022 | -0.100132 | 769.543 | -0.08063 | -0.076579 | 791.548 | -0.13513 | -0.138102 |
| 769.543 | -0.11299 | -0.101475 | 771.544 | -0.08112 | -0.077305 | 793.562 | -0.13734 | -0.141827 |
| 771.545 | -0.11574 | -0.104325 | 773.545 | -0.08164 | -0.078173 | 795.563 | -0.13948 | -0.143167 |
| 773.546 | -0.11849 | -0.10734 | 775.547 | -0.08219 | -0.077736 | 797.564 | -0.14156 | -0.145424 |
| 775.547 | -0.12122 | -0.110585 | 777.549 | -0.08278 | -0.079641 | 800.567 | -0.14459 | -0.146875 |
| 777.549 | -0.12393 | -0.112601 | 779.55 | -0.08341 | -0.079754 | 802.569 | -0.14655 | -0.148594 |
| 779.55 | -0.12664 | -0.116218 | 781.551 | -0.08408 | -0.081413 | 804.57 | -0.14846 | -0.1508 |
| 781.552 | -0.12933 | -0.120645 | 783.552 | -0.08479 | -0.080627 | 806.571 | -0.15033 | -0.154118 |
| 783.553 | -0.13201 | -0.121891 | 785.555 | -0.08553 | -0.082419 | 808.573 | -0.15216 | -0.154911 |
| 785.554 | -0.13468 | -0.125461 | 787.555 | -0.08629 | -0.083139 | 810.575 | -0.15396 | -0.157001 |
| 787.556 | -0.13735 | -0.128376 | 789.557 | -0.08709 | -0.083426 | 812.576 | -0.15572 | -0.158236 |
| 789.557 | -0.14002 | -0.131777 | 791.558 | -0.0879 | -0.083995 | 814.576 | -0.15746 | -0.160226 |
| 791.558 | -0.14268 | -0.136308 | 793.559 | -0.08874 | -0.085149 | 817.579 | -0.16002 | -0.163129 |
| 793.56 | -0.14534 | -0.139442 | 795.561 | -0.08959 | -0.086704 | 819.578 | -0.1617 | -0.165207 |
| 795.566 | -0.148 | -0.142963 | 797.562 | -0.09046 | -0.086864 | 821.579 | -0.16336 | -0.165063 |
| 797.563 | -0.15067 | -0.148191 | 799.564 | -0.09134 | -0.08875 | 823.583 | -0.16502 | -0.168382 |
| 799.564 | -0.15333 | -0.151356 | 801.565 | -0.09223 | -0.089373 | 825.582 | -0.16666 | -0.169783 |
| 802.566 | -0.15735 | -0.154118 | 803.567 | -0.09312 | -0.089277 | 827.584 | -0.16829 | -0.170556 |
| 804.568 | -0.16003 | -0.158483 | 805.569 | -0.09401 | -0.090464 | 829.584 | -0.16992 | -0.175786 |
| 806.569 | -0.16273 | -0.159986 | 807.569 | -0.0949 | -0.091431 | 832.587 | -0.17235 | -0.177221 |
| 808.571 | -0.16543 | -0.163205 | 809.571 | -0.09579 | -0.092282 | 835.589 | -0.17476 | -0.179767 |
| 810.572 | -0.16815 | -0.166559 | 811.572 | -0.09667 | -0.092955 | 837.593 | -0.17636 | -0.182689 |
| 812.573 | -0.17087 | -0.169078 | 813.574 | -0.09754 | -0.092866 | 839.595 | -0.17796 | -0.183899 |
| 814.592 | -0.17361 | -0.174804 | 815.575 | -0.09841 | -0.094354 | 841.596 | -0.17955 | -0.186209 |
| 816.593 | -0.17635 | -0.177681 | 817.576 | -0.09927 | -0.095384 | 843.597 | -0.18114 | -0.187579 |
| 818.595 | -0.1791 | -0.179262 | 819.578 | -0.10012 | -0.096159 | 845.599 | -0.18273 | -0.191317 |


| 820.592 | -0.18186 | -0.182727 | 821.579 | -0.10097 | -0.097277 | 848.598 | -0.1851 | -0.194912 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 822.593 | -0.18463 | -0.188477 | 823.581 | -0.10182 | -0.097535 | 850.6 | -0.18668 | -0.197266 |
| 824.591 | -0.1874 | -0.190559 | 825.583 | -0.10265 | -0.098393 | 853.601 | -0.18905 | -0.200139 |
| 826.594 | -0.19018 | -0.193977 | 827.584 | -0.10349 | -0.098732 |  |  |  |
| 828.594 | -0.19297 | -0.195232 | 829.585 | -0.10432 | -0.099842 |  |  |  |
| 830.596 | -0.19576 | -0.199223 | 831.587 | -0.10514 | -0.101028 |  |  |  |
| 832.597 | -0.19855 | -0.202033 | 833.588 | -0.10596 | -0.102002 |  |  |  |
| 834.599 | -0.20136 | -0.206473 | 835.589 | -0.10678 | -0.101785 |  |  |  |
| 836.6 | -0.20416 | -0.208587 | 837.602 | -0.10759 | -0.103478 |  |  |  |
| 838.601 | -0.20698 | -0.213308 | 840.593 | -0.1088 | -0.103396 |  |  |  |
| 840.604 | -0.20979 | -0.215972 | 842.594 | -0.10961 | -0.105428 |  |  |  |
| 843.605 | -0.21402 | -0.221286 | 844.596 | -0.11041 | -0.105343 |  |  |  |
| 845.607 | -0.21685 | -0.223783 | 845.597 | -0.11081 | -0.107642 |  |  |  |
| 847.608 | -0.21967 | -0.226645 | 847.598 | -0.11161 | -0.107751 |  |  |  |
| 850.6 | -0.22392 | -0.230057 | 849.599 | -0.11241 | -0.1072 |  |  |  |
| 852.602 | -0.22675 | -0.23266 | 851.665 | -0.1132 | -0.109305 |  |  |  |
| 854.603 | -0.22958 | -0.237216 | 854.681 | -0.1144 | -0.110488 |  |  |  |
| 856.604 | -0.23241 | -0.243077 | 856.682 | -0.11519 | -0.110584 |  |  |  |

## F． 2 Echocardiography Tracking Raw Results

Table F－2．Specific Aim 1 echocardiography tracking raw results pertaining to
Figure 6－2．

| $\begin{aligned} & \nabla \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 8 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & \nabla \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & \nabla \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$ |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ت | $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}}$ | $\stackrel{\square}{\stackrel{\rightharpoonup}{\circ}}$ | ت | $\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \text { N } \end{aligned}$ | $\stackrel{ت}{\sigma}$ | $\stackrel{F}{\square}$ | $\stackrel{F}{\ddot{G}}$ | $\overbrace{\substack{0 \\ 0}}^{\substack{0 \\ 0}}$ | $\begin{aligned} & \frac{\pi}{\mathscr{B}} \\ & \frac{\pi}{E} \end{aligned}$ |
| e | $\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$ | $\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & 8 \\ & \hline 8 \end{aligned}$ | e | $\stackrel{O}{i}$ | $\stackrel{O}{i}$ | $\begin{aligned} & 0 \\ & \text { o } \end{aligned}$ | 骨苞 |  |
| $\begin{aligned} & \stackrel{1}{+} \\ & \stackrel{\text { O}}{0} \end{aligned}$ | $\begin{aligned} & \dot{1} \\ & \dot{0} \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{1}{N} \end{aligned}$ | $$ | $\begin{aligned} & \dot{U} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ | $\begin{aligned} & \dot{\omega} \\ & \dot{\sim} \end{aligned}$ | $\begin{aligned} & 1 \\ & \vdots \\ & 0 \\ & \hline 8 \end{aligned}$ | $\frac{\vdots}{\ddagger}$ | 第 |  |


| $\begin{aligned} & \stackrel{u}{0} \\ & \underset{\sigma}{2} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \dot{\circ} \end{aligned}$ | $\begin{aligned} & \bar{N} \\ & \hat{o} \end{aligned}$ | $\begin{aligned} & \bar{N} \\ & \stackrel{0}{9} \end{aligned}$ | $\begin{aligned} & \text { u} \\ & \tilde{O} \end{aligned}$ | $\underset{\sim}{u}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{v} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{N}{u}_{\omega}^{N}$ | $\begin{aligned} & N \\ & \dot{U} \end{aligned}$ | $\stackrel{N}{\omega}$ | $\stackrel{N}{N}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{2} \end{aligned}$ | $$ | $\begin{aligned} & N \\ & N \\ & i \end{aligned}$ | $\begin{aligned} & \bar{N} \\ & \text { in } \end{aligned}$ |  |  |
| $\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$ | $\stackrel{t}{i}$ | $\stackrel{+}{\infty}$ | $\begin{aligned} & \dot{y} \\ & \hline \end{aligned}$ | $\begin{aligned} & \dot{1} \\ & \dot{\infty} \end{aligned}$ | $\dot{6}$ | $\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \end{aligned}$ |  |  |
|  | $\begin{aligned} & \underset{O}{0} \\ & \text { B } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & B \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\overparen{B}} \\ & \underset{\sim}{0} \end{aligned}$ |  | $\begin{aligned} & \forall \\ & \overparen{B} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { V } \\ & \text { ? } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$ |  | O |
| $\begin{aligned} & u \\ & \dot{8} \end{aligned}$ | $u_{0}^{u}$ | u | $\begin{aligned} & u \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \text { u } \\ & \end{aligned}$ | $\stackrel{+}{\circ}$ | $\begin{aligned} & u \\ & \text { i } \end{aligned}$ | $\begin{aligned} & \text { u } \\ & \dot{\sim} \end{aligned}$ |  | 苞 |
| $\stackrel{r}{8}$ | $\stackrel{+}{i}$ | $\begin{aligned} & \stackrel{+}{+} \end{aligned}$ | $\stackrel{\rightharpoonup}{i}$ | $\stackrel{r}{i}$ | $$ | $\stackrel{+}{\stackrel{\rightharpoonup}{t}}$ | $\stackrel{\stackrel{u}{u}}{\square}$ |  |  |
| $$ | $\begin{aligned} & \text { b } \\ & \text { to } \end{aligned}$ | $\begin{aligned} & \stackrel{1}{\lambda} \\ & \underset{\sigma}{2} \end{aligned}$ | $\begin{aligned} & \dot{v} \\ & \dot{u} \end{aligned}$ |  | $\begin{aligned} & \dot{1} \\ & \stackrel{0}{2} \end{aligned}$ | $\begin{aligned} & \dot{\prime} \\ & \dot{\infty} \\ & \dot{O} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \dot{\infty} \end{aligned}$ |  |  |

## F． 3 Bar Graph Raw Results

Table F－3．$\quad$ Specific Aim 1 Experiment A raw results pertaining to Figure 6－3．

| $\infty$ | $\checkmark$ | $\bigcirc$ | $u$ | ＋ | $\omega$ | N | － | そ | Con |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & \dot{\infty} \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \text { ó } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \frac{8}{8} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{2}{5} \\ & + \end{aligned}$ | $\begin{aligned} & 0 \\ & i \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \text { in } \\ & \text { + } \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{i} \\ & \substack{\infty \\ \hline} \end{aligned}$ |  | て |


| $\begin{aligned} & \circ \\ & \dot{A} \\ & \pm \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{y}{A} \\ & \underset{O}{\prime} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { ou } \\ & \text { ob } \end{aligned}$ | $\begin{aligned} & 0 \\ & \mathbf{U}_{0}^{\infty} \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \infty \\ & + \\ & t \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{2}{3} \\ & \underset{y}{2} \end{aligned}$ | $$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{O}{\circ}$ | $\underset{\substack{\circ \\ \underset{\sim}{\infty} \\ \hline \\ \hline}}{ }$ | $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\underset{\sim}{\sim}}$ | $\begin{aligned} & 0 \\ & 0.8 \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{\circ}{2} \\ & \infty \\ & + \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{N}{N} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \underset{\sim}{O} \\ & \underset{\sim}{n} \end{aligned}$ |  | $\begin{aligned} & \mathscr{\#} \\ & \tilde{\tilde{0}} \\ & \ddot{\ddot{0}} \end{aligned}$ |
| $\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 0 \\ & N \\ & N \\ & \infty \\ & \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { O} \\ & \text { H} \end{aligned}$ | $\begin{aligned} & 0 \\ & i \\ & + \\ & + \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { O} \\ & \text { Ko } \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$ | ${\underset{U}{U}}_{\substack{0}}^{0}$ | $\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \stackrel{0}{3} . \end{aligned}$ | 0 0 0 0 0 0 0 0 |
| $\begin{aligned} & \stackrel{+}{\infty} \\ & \dot{\infty} \\ & \infty \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { y } \\ & \text { O } \end{aligned}$ | $\begin{aligned} & 0 \\ & i \\ & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & i \\ & i \\ & i \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$ | $\stackrel{U}{U}_{\substack{0 \\ \text { On } \\ \hline}}$ | $\begin{aligned} & \text { i } \\ & \text { I } \\ & \text { In } \end{aligned}$ |  | 3 |
| $\begin{aligned} & 0 \\ & i \\ & i \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{\infty}{\infty} \\ & \underset{\omega}{\omega} \end{aligned}$ | $$ | 0 <br> $\stackrel{\rightharpoonup}{2}$ <br>  | $\underset{\sim}{0}$ | $\begin{aligned} & 0 \\ & \dot{\infty} \\ & \underset{y}{1} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\perp}{N} \\ & \underset{\infty}{\infty} \end{aligned}$ | $\begin{aligned} & \stackrel{\sim}{0} \\ & \underset{\sim}{ \pm} \\ & \hline \end{aligned}$ |  | EV |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $$ | $\underset{\underset{\sim}{\leftrightarrows}}{\underset{\sim}{\leftrightarrows}}$ | $\begin{aligned} & 0 \\ & \text { o } \\ & \text { 心 } \end{aligned}$ | $\begin{aligned} & \circ \\ & \dot{\circ} \\ & \dot{\$} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { i } \\ & \text { ث } \\ & \text {. } \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{0} \\ & 0 \\ & 0 \end{aligned}$ |  | 2 |
| $\begin{aligned} & 0 \\ & \stackrel{0}{e} \\ & \underset{\omega}{\omega} \end{aligned}$ | $\stackrel{\rightharpoonup}{\mathbf{0}}$ | $\begin{aligned} & \stackrel{5}{8} \\ & \text { + } \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\sim}{0} \\ & \sim_{u}^{\prime} \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { i } \\ & \dot{0} \\ & \text { in } \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{y} \\ & \text { A } \\ & \text { a } \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { y } \\ & \text { O } \end{aligned}$ |  | E |
| $\stackrel{\omega}{i}_{\omega}$ | $\stackrel{N}{\infty}$ | $\underset{\sim}{\rightleftharpoons}$ | $\underset{+}{\stackrel{\rightharpoonup}{+}}$ | $\stackrel{F}{6}$ | in | I | $\stackrel{F}{i}$ | 苞 | $\begin{aligned} & 2 \\ & \text { O. } \\ & \text { \#n } \\ & \end{aligned}$ |
| $\stackrel{\text { N }}{N}$ | $\stackrel{\rightharpoonup}{i}$ | $\underset{i r}{*}$ | $\stackrel{\omega}{\omega}$ | $\stackrel{\rightharpoonup}{i}$ | $0$ | $\stackrel{I}{i n}$ | $\stackrel{\rightharpoonup}{0}$ |  |  |

Table F－4．$\quad$ Specific Aim 1 Experiment B raw results pertaining to Figure 6－5．

| $\infty$ | $\checkmark$ | の | $\cdots$ | $A$ | $\omega$ | $N$ | $\sim$ |  | $\underset{\sim}{\sim}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| LEES 0 | $8661^{\circ} 0$ | 0002＇0 | ¢\＆LL＇0 | 6 SOL 0 | ¢ $\angle 800^{\circ}$ | 0¢0г 0 | Lt8E＊0 | $018 \varepsilon^{\circ} 0$ | ＋0t¢ 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66Sz＇0 | 0¢0\％${ }^{\circ}$ | $9865^{\circ} 0$ | tLSO\％ | 62S0\％ | $88800^{\circ}$ | $6290{ }^{\circ}$ | 29L10 | $0 \downarrow$ ¢z．0 | 80LI＇0 |
| 8EE¢50 | 6¢ $20 \cdot 0$ | LIter0 | 91500－ | ILEI 0 | 82010 | £sçio | $9 \downarrow 6 \mathrm{C}^{\circ}$ | 819ヶ＊ | £9tで0 |
| 9LIC＇0 | LZ6で0 | $901 \varepsilon^{\circ} 0$ | z0020 | ちてLO 0 | ZS800 | LEIL＇0 | ¢S0t＇0 | 69St．0 | ¢¢9\％0 |
| S80E0 | E9st\％ | 08Lİ0 | IES000 | ELOT0 | siso 0 | 6LOr\％ | 00Lで0 | S8920 | S9810 |
| 6¢9ヶ＊ 0 | ¢¢z0＊0－ | $6+90^{\circ} 0$ | 0090 $0^{-}$ | tter 0 | IL910 | \＆z9「00 | tt8 $\mathrm{l}^{\circ} 0$ | ¢¢8\％ 0 | LャてI「0 |
| $688 L^{\circ} 0$ | $96 \pm \varepsilon^{\circ} 0$ | 29050 | ttStio | I8E10 | LE600 | LIOI\％ | $9 ¢ \angle S^{\circ} 0$ | ELE9 0 | $85 ¢ 50$ |
| tS08．0 | カャ0t＊ 0 | 29tを0 | 2E6800 | $9860^{\circ} 0$ | 66E1 0 | £เદ1．0 | tos9＊0 | 90Sc． 0 | t6LS 0 |
| Кчгеән |  |  | кчггән |  | u！¢－כִpls | Кчгеән |  | u！w－otpes | Кчгвән |
| numxen | unயبu！ |  |  | иоп̣！erad prepueis |  |  | บеәN |  |  |


| $\begin{aligned} & 0 \\ & \dot{0} \\ & \text { o } \\ & \text { in } \end{aligned}$ | $\stackrel{i}{U}_{\stackrel{\rightharpoonup}{\sim}}^{\sim}$ | $$ | $\begin{aligned} & 0 \\ & \dot{2} \\ & \dot{3} \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{N} \\ & + \\ & \underset{i}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{0} \\ & \stackrel{+}{8} \end{aligned}$ | $\begin{aligned} & 0 \\ & \substack{\infty \\ N \\ N} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { o } \\ & \dot{0} \\ & \text { i } \end{aligned}$ | $\begin{aligned} & 0 \\ & i \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \text { iö } \\ & \text { i } \end{aligned}$ | $\stackrel{i}{U}_{\substack{0 \\ \hline 0}}$ | $\begin{aligned} & o \\ & \dot{+} \\ & \underset{\sim}{o} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { Nut } \end{aligned}$ |  |  |
| in | ir | $\stackrel{+}{0}$ | $\stackrel{+}{f}$ | $\stackrel{\rightharpoonup}{0}$ | $\underset{\sim}{w}$ | $\stackrel{\rightharpoonup}{0}$ | $\stackrel{\rightharpoonup}{i}$ | $\stackrel{\text { T }}{\substack{\text { ¢ }}}$ |  |
| $\stackrel{+}{\infty}$ | $u$ | $\pm$ | $\stackrel{+}{i}$ | $\stackrel{+}{\infty}$ | $\underset{\infty}{\omega}$ | $\stackrel{\rightharpoonup}{\sigma}$ | $\stackrel{r}{+}$ |  |  |
| $\stackrel{+}{\perp}$ | $\underset{N}{u}$ | $\stackrel{r}{\alpha}$ | $\stackrel{B}{i r}$ | $\stackrel{\rightharpoonup}{i}$ | $\stackrel{u}{i}_{i}$ | $\pm$ | $\pm$ |  |  |

## F. 4 Strain Maps

Table F-5. $\quad$ Specific Aim 1 Experiment A raw data pertaining to Figure 6-4 Healthy state.

| $\bigcirc$ | $\infty$ | $\checkmark$ | の | $u$ | $+$ | $\omega$ | N | - | 7 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { O} \end{aligned}$ | $\begin{aligned} & u \\ & 0 \\ & \text { U } \\ & \text { N } \\ & \underset{\sim}{u} \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{\sim} \\ & \underset{\omega}{6} \end{aligned}$ |  | $u$ <br>  <br>  <br> U | $\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{\rightharpoonup}{O} \end{aligned}$ | N <br>  <br>  <br>  | $\begin{aligned} & u \\ & \underset{\sim}{\infty} \\ & \pm \\ & \hline \end{aligned}$ | 층 |
| $$ |  |  | $\begin{aligned} & \stackrel{7}{6} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & \text { F } \\ & \stackrel{\text { Un }}{+} \\ & + \end{aligned}$ | $\begin{aligned} & \text { ت } \\ & \text { ion } \\ & \text { H } \end{aligned}$ | $\stackrel{\rightharpoonup}{u}$ 0 0 $u$ $u$ | $\begin{aligned} & \stackrel{\omega}{0} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\sim}{2} \end{aligned}$ |  | $\zeta$ |


| ESZI80＊0 | 6606IE＊0 | 8ZLZ80＊0 | てL9L67＊ 0 | ¢¢990t＊0 | 90SLEİ0 | L8880¢ 0 | $680 \varepsilon 67^{\circ} \mathrm{L}$ | IE008．01 | †て9\＆$\dagger 8^{\circ} \mathrm{S}$ | 8S¢9 $0^{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $860 \angle 60^{\circ} 0$ | ャعとโ9 \％ 0 | ESI860 ${ }^{\circ}$ | ¢sZLLS 0 | L8ILIC＊0 | LZ97tİ0 | 818I6C＊0 | 88StS8．9 | sz09sc 6 | SL88ZL＇8 | L8E19 ${ }^{-1}$ |
| L90t60＊0 | ZSZ9LE＊0 | †I801＊0 | 79t¢ 1900 | 208S85＊0 | ャE9てI「0 | 9Z6LE9＊0 | SLZtEZ ${ }^{\text {c }}$ | E999¢0 6 | LIZIE＊II | $66 \pm 20 \cdot{ }^{-}$ |
| ZLt8¢0＊0 | L9L0tE 0 | LLOZ80＇0 | 69ZL6C＊0 | IL9EZS．0 | 6950［ ${ }^{\circ} 0$ | †ZLLE8S 0 | ILLEOZ 2 | ¢69LS．EI | L88¢．9 | 68をてが「－ |
| L8tて8000 | 6ttolč0 | t0\＆t60．0 | LSS6E9＊0 | Izoscs ${ }^{\circ}$ | 9\＆LIEİ0 | LI6IE9＊0 | LLLL＇9 | IZSEL ZI | EILESI＊6 | 8S068 ${ }^{\text {［ }}$ |
| 16S16000 | †てLLLE＊0 | $866660{ }^{\circ}$ | Lt0629＊0 | tSt89S＊0 | くもて6Zİ0 | L68IE900 | S L088E ${ }^{\circ}$ | 880\＆S＇ZI | 9Z0LS ${ }^{\text {II }}$ | 8ZLLİE－ |
| 29¢880＊0 | てIt69と＊0 | LEsEI＇0 | tS9E6¢ 0 | Lt009 ${ }^{\circ} 0$ | ¢てItI「0 | LI6tS9 0 | ¢EEL66．9 | ¢ 2976.91 | ZL889 | Z00tS ${ }^{\text {－}}{ }^{-}$ |
| $680080{ }^{\circ} 0$ | ¢66868＊0 | 829tII 0 | ZS90ZL＇0 | ¢EtzS9＊0 | ZSLIEİ0 | とZ9をZZL゚0 | ¢ZZ88E＊9 | ¢LヵてI「9I | sz0tsz＇6 | $\dagger$ ¢ちてS＇て－ |
| LItSoİ0 | LE0IEt＊0 | ちてEセとİ0 | †てち09L．0 | ［L9L9＊0 | 8ZS9S［＊0 | 6E8ZLL＇0 | 66101I＇S | S6SL＇SI | E60LS ${ }^{\text {II }}$ | $8009 L^{\circ} \varepsilon^{-}$ |
| ๑．！ 1 ！suruiv | ［巴อ．IV ！suruiv | งu！！${ }^{\text {d }}$ <br> U！ <br> иәәџ |  | ［е！pey นәә．Ю | $\begin{gathered} \text { 〇!! } \\ \text { uәə.! } \end{gathered}$ | ［ P ．IV นәว๖Ю | IZ | L $\lambda$ | IX | 0Z |


| $\circ$ <br> $\stackrel{\circ}{\circ}$ <br> $\stackrel{3}{4}$ <br> 0 | 0 <br> $N$ <br> $N$ <br> 0 <br>  | $\begin{aligned} & 0 \\ & \text { N } \\ & \text { to } \\ & \text { Wh } \end{aligned}$ | 0 <br> $N$ <br>  <br>  | ì U N | $\begin{aligned} & 0 \\ & \text { N } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 讠_{u} \\ & \sim_{0} \\ & 0 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & \stackrel{\sim}{\sim} \\ & \underset{\infty}{*} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hat{U}_{1} \\ & \text { 人} \\ & \text { O} \end{aligned}$ |  | 0 U U N A | $\begin{aligned} & \dot{0} \\ & \dot{\sim} \\ & \infty \\ & \infty \\ & \pm \end{aligned}$ | $\begin{aligned} & \stackrel{0}{\sim} \\ & \underset{\alpha}{\infty} \\ & +\infty \\ & + \end{aligned}$ | $\begin{aligned} & 0 \\ & i_{0} \\ & \text { un } \\ & \text { un } \end{aligned}$ | $\begin{aligned} & 0 \\ & i \\ & \infty \\ & \stackrel{\infty}{0} \\ & 8 \end{aligned}$ |  |  |
| $\circ$ $\stackrel{0}{7}$ $\stackrel{1}{2}$ 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { O} \end{aligned}$ | $\circ$ 0 0 0 0 $\infty$ $\infty$ | $\begin{aligned} & 0.0 \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\circ}{心} \end{aligned}$ | O－ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{\omega}{N} \end{aligned}$ |  |  |  |  |
|  | の | $u$ | $n$ | $\pm$ | $\omega$ | N | N | － |  |
|  | $\bigcirc$ | $\bigcirc$ | $\infty$ | $u$ | $\bigcirc$ | $\omega$ | ur | N |  |
|  | $\infty$ | $\infty$ | $\checkmark$ | $\checkmark$ | u | u | ＋ | ＋ |  |

Table F－6．$\quad$ Specific Aim 1 Experiment A raw data pertaining to Figure 6－4 Diseased state．

| $\bigcirc$ | $\infty$ | $\checkmark$ | a | $u$ | ＋ | $\omega$ | N | － | $Z$ 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & \dot{2} \\ & -1 \\ & \dot{d} \end{aligned}$ | $\omega$ 0 0 0 0 0 | u U U U U | $\begin{aligned} & 0 \\ & \dot{\sim} \\ & \underset{\omega}{\infty} \end{aligned}$ |  | $\begin{aligned} & \text { u } \\ & \text { N } \\ & \text { N } \\ & \text { U } \\ & 0 \end{aligned}$ | $$ |  | $\begin{aligned} & \text { u } \\ & -N \\ & \infty \\ & \pm \end{aligned}$ | $\underset{0}{*}$ |
| $$ | $\begin{aligned} & \stackrel{0}{+} \\ & \stackrel{0}{\infty} \\ & \stackrel{+}{\infty} \\ & \underset{\infty}{+} \end{aligned}$ | $$ |  | $\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{+}{+} \\ & + \end{aligned}$ |  | $\begin{aligned} & F \\ & \dot{\sim} \\ & 0 \\ & 0 \\ & \text { ut } \end{aligned}$ | $\begin{aligned} & \cdots \\ & \underset{\sim}{N} \\ & \underset{\sim}{0} \end{aligned}$ |  | $\checkmark$ |
| $\begin{aligned} & \dot{b} \\ & \underset{\sim}{u} \\ & \dot{\infty} \end{aligned}$ | $\begin{aligned} & \stackrel{1}{2} \\ & \vdots \\ & \vdots \\ & \dot{\sim} \end{aligned}$ | $$ |  | $\begin{aligned} & \dot{1} \\ & \stackrel{-}{\circ} \\ & \underset{\sim}{\circ} \\ & \hline \infty \end{aligned}$ |  | $\begin{aligned} & \dot{1} \\ & \dot{\sim} \\ & \stackrel{\rightharpoonup}{8} \\ & \text { N} \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { Ä } \\ & \text { I } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & \dot{u} \\ & \ddot{0} \\ & \text { ò } \\ & \infty \end{aligned}$ | N |
| a $\stackrel{\sim}{0}$ 0 $\infty$ $\infty$ 0 | $\begin{aligned} & \circ \\ & \underset{y}{+} \\ & \underset{\omega}{t} \end{aligned}$ | ت O ث 0 | $\begin{aligned} & \text { N. } \\ & \stackrel{\text { O}}{0} \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { N } \\ & \underset{\sim}{7} \end{aligned}$ | $F$ <br>  <br>  | $N$ $へ$ $u$ $u$ $u$ $u$ | $\begin{aligned} & 0 \\ & \text { ưn }_{\text {un }} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{+}{J} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$ | $\underset{\sim}{\star}$ |


| 89LILで0 | 90てZっで0 | E0IZ80＊0 | Z8ItLE＊0 | $6 Z \downarrow$ S0I．0 | 610E9＊0 | E998IS＊0 | t68291．0 | ZL9てt9＊0 | 9L6I6で8 | ¢¢I69＊0I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8 t S 8 て ゙ 0$ | て8t19で0 | 298201＊0 | EL680t 0 | 86I0Zİ0 | 6S906900 | S86629 0 | 28919100 | LLIOILO | ¢z09EL＊ | 880Lてt＊ 6 |
| L6t9Lで0 | 6L9192＊0 | t9LてII「0 | 896t0t＊ 0 | 七LtE\＆I．0 | 996Lt9 0 | 6Z8ZI9＊0 | ZLLLSİ0 | tt0I0L＊0 | ¢ZZII「9 | EILL00\％ 6 |
| カ96てLで0 | I I9でで＊ | ILL69000 | 69089 ${ }^{\circ} 0$ | IE6680 0 | 680St9 0 | 970 Sts 0 | 6I982İ0 | ¢¢6SE900 | †87660＊8 | Stsz9＊EI |
| 90LS8で0 | 88Z9¢7．0 | ¢St $880^{\circ} 0$ | 681668．0 | IL6S0I 0 | 8SE66900 | $6 \pm S ¢ 090$ | \＆8z8tI 0 | 902969＊0 | 8ELOt $L^{\circ} \mathrm{L}$ | 七6I8L＇ZI |
| 9L088で0 | 816t97＊ | 90IE0I\％ 0 | StてIt＊ 0 | E0z91I0 | LIZ00L＊ | 七66E\＆9 0 | LI60Sİ0 | 9tLEILO0 | ¢วZE80＊9 | L8IEs＇zI |
| てSIELで0 | L6E8tて＊0 | 786260＊0 | ¢ $\angle £ 98 \varepsilon^{\circ} 0$ | セEZI．0 | 8ZL8t9 0 | t0¢¢65 0 | L660tI 0 | 88E689＊0 | S8ztS $L^{\circ} \mathrm{L}$ | 8\＆IE0＊LI |
| 七LES8で0 | カIZ9¢で0 | IS9L8000 | $t ¢ Z 00 t^{*} 0$ | LLOLIIO | 6090IL＇0 | LOL†E9＊0 | ¢99EI 0 | ¢69EIL＊0 | $8 E \varepsilon 610{ }^{\circ} \mathrm{L}$ | 66SLI 91 |
| LLてt6で0 | E9LL9で0 | 68101I0 | ヤL9Lてヤ＊ 0 | 9¢IIEİ0 | 86LZtL＇0 | 897859＊0 | E8L8Sİ0 | ¢てLt9 ${ }^{\text {co }} 0$ | EIt $669^{\circ} \mathrm{S}$ | $\mathcal{E} \subset \mathcal{E} 8^{\circ} \mathrm{SI}$ |
| งu！${ }^{\text {d }}$ <br> xen ！suruitV | ［е！̣е．． ！suruiv | ग！！ ！suruiv | ［Pכ．IV IsuruIV |  |  | $\begin{aligned} & \text { [е!pey } \\ & \text { uәәI } \end{aligned}$ | $\begin{gathered} \text { Ј!! } \\ \text { uәә.! } \end{gathered}$ | $\begin{aligned} & \text { [еә.IV } \\ & \text { uәə., } \end{aligned}$ | IZ | L $\lambda$ |


|  | 0 <br> 0 <br> $\infty$ <br> $\infty$ <br> 0 <br> 0 <br> 0 | 0 - 0 0 0 | 0 0 4 7 1 | $$ | $\circ$ <br> 0 <br> 0 <br> 0 <br>  |  | $\begin{aligned} & \text { O} \\ & \underset{\sim}{3} \\ & \underset{\sim}{0} \end{aligned}$ | 0 $\stackrel{\circ}{\circ}$ $\mathbf{U}_{1}^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | の | $u$ | $u$ | ＋ | $\omega$ | N | N | － |  |
|  | $\bigcirc$ | の | $\infty$ | $u$ | の | $\omega$ | $u$ | N |  |
|  | $\infty$ | $\infty$ | $\checkmark$ | $\checkmark$ | $u$ | $u$ | ＋ | ＋ |  |

Table F－7．$\quad$ Specific Aim 1 Experiment B raw data pertaining to Figure 6－6 Healthy state．

| $\bigcirc$ | $\infty$ | $\checkmark$ | a | $u$ | $\pm$ | $\omega$ | N | － | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \dot{b} \\ & \dot{0} \\ & 0 \\ & 0 \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \text { io } \end{aligned}$ | $\begin{aligned} & N \\ & \sim_{U}^{u} \\ & 0 \\ & 0 \\ & \underset{\sim}{u} \end{aligned}$ | $\begin{aligned} & \text { ou } \\ & \text { ion } \\ & \text { Wu } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$ | $$ |  | $\begin{aligned} & \text { - } \\ & \text { ù } \\ & \text { t } \\ & 0 \end{aligned}$ |  | $\underset{0}{ }$ |
| $\begin{aligned} & \omega \\ & u_{1} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline N \\ & 0 \\ & N \\ & N \\ & + \end{aligned}$ |  | $\begin{aligned} & \text { u } \\ & \text { in } \\ & \text { N } \\ & \text { Nun } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \hat{\alpha} \\ & \dot{\infty} \\ & \dot{\omega} \end{aligned}$ |  | N O U un | $\begin{aligned} & \text { a } \\ & \text { in } \\ & \text { un } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 10 \\ & \infty \\ & +\infty \\ & \infty \\ & \hline 8 \end{aligned}$ | $\bigcirc$ |
| $\begin{aligned} & \dot{1} \\ & \dot{a} \\ & \text { ô } \end{aligned}$ | $$ | $\begin{aligned} & \text { o } \\ & \underset{\sim}{o} \\ & \stackrel{\sim}{0} \end{aligned}$ | $$ | $\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & 0_{0}^{\prime} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & \dot{6} \\ & \stackrel{\rightharpoonup}{\hat{\alpha}} \\ & \stackrel{\circ}{+} \end{aligned}$ | $\begin{aligned} & \dot{\infty} \\ & i n \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \text { b } \\ & \text { ón } \\ & \text { t } \end{aligned}$ | $\begin{aligned} & \dot{b} \\ & \dot{u} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$ | N |
| $\begin{aligned} & N \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ | + $\infty$ $\infty$ 0 0 U | $\begin{aligned} & \dot{a} \\ & \hat{\alpha} \\ & \underset{\infty}{\infty} \end{aligned}$ | $$ | $\begin{aligned} & u \\ & \underset{\sim}{u} \\ & \underset{\sim}{U} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \text { ה̀ } \\ & \text { iób } \end{aligned}$ | $\omega$ 0 0 0 $\infty$ + + + | $\begin{aligned} & u \\ & u \\ & \infty \\ & \underset{u}{\infty} \\ & u \end{aligned}$ |  | $\underset{\sim}{\star}$ |
| $\begin{aligned} & \stackrel{+}{\underset{A}{\mid}} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & w \\ & \stackrel{+}{+} \\ & \stackrel{\rightharpoonup}{2} \\ & .0 .0 \end{aligned}$ | $\begin{aligned} & N \\ & \infty \\ & + \\ & N \\ & \infty \\ & \hline \end{aligned}$ | $\begin{aligned} & \dot{\sim} \\ & \dot{+} \\ & \underbrace{\infty}_{\infty} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { un } \\ & \text { in } \\ & 0 \\ & 0 \\ & \text { ou } \end{aligned}$ | 0 <br> 0 <br> 0 <br>  <br> 0 | $\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$ | $\infty$ 0 0 0 0 0 | $\begin{aligned} & \text { N } \\ & \text { i̛ } \\ & 0 \\ & \text { U } \\ & \text { un } \end{aligned}$ | $\checkmark$ |
| $\begin{aligned} & N \\ & \omega_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{-}{y} \\ & \text { t } \\ & \underset{\sim}{+} \end{aligned}$ | 0 <br> $i$ <br> $\infty$ <br>  <br>  | $\begin{aligned} & \text { 후 } \\ & \text { ㅇ } \\ & \text { to } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{+}{\theta} \\ & \vdots \end{aligned}$ | $$ | $\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { N } \\ & \text { t } \\ & \hat{o} \end{aligned}$ | $\begin{aligned} & \text { i } \\ & \text { N } \\ & \text { A } \\ & \text { N } \end{aligned}$ | N |


|  |  | $66900^{-}$ | 8SL691＊0 | IZZ6E0＊0 | £ ¢8ะ¢0＊0 | tャLOtI 0 | LZ820＊0－ | L00t8 ${ }^{\circ} 0$ | $6 \pm$ CLSI「0 | 62796000 | ¢LOSOZ＇0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 9 | $8 て も$ 20＊0－ | t9S8LI 0 | Ez0Ls0＊0 | 26¢6800 | 9とIS8100 | 6Itて00＊0 | LS9E0E＊0 | 86L6¢1．0 | 8\＆8Eと［00 | 68¢z9z＊ 0 |
| 9 | $\bigcirc$ | 88S00 $0^{-}$ | $6 \pm$ SLLI 0 | 999LS0＊0 | 6E8S0100 | 89St6 ${ }^{\circ} 0$ | 8E9020＊0 | E9SI0E＊0 | と9ItI．0 | L8S6SI＊0 | Lヤ88で0 |
| 8 | $\bigcirc$ | $6 \pm \& \dagger 00^{-}$ | $6 E t 00 z^{\circ} 0$ | Z860E1 0 | 808020＊0 | 99¢86 ${ }^{\circ} 0$ | عZ0I0＊0－ | ZStILE＊0 | LZ9682＊0 | 28L6t0＊0 | 890L6で0 |
| $\bigcirc$ | t | ZZIL0＊0－ | $696+6{ }^{\circ} 0$ | ¢0ZEII「0 | t9¢E9000 | LOZLIZ＊0 | 86L810＊0 | L6LOSE 0 | 8L90¢で0 | ZSZL60＊0 | IZ9LIE＊0 |
| 9 | $\varepsilon$ | 8S $100^{\circ} 0^{-}$ | L88881 ${ }^{\circ} 0$ | ZLZE60＊0 | St9980＊0 | I98tIで0 | 9†E8I0＊0 | 69SカEど0 | てもていで0 | ES69II「0 | ZL690E＊0 |
| $\mathcal{E}$ | $\tau$ | 6LIE0＊0－ | LSOEZ 0 | LZEtLI「0 | $\varepsilon L \varepsilon I 000$ | L\＆Itカで0 | †てZI0＊0－ | 2LILSt＊ 0 | EL90LE＊ | 8692t0＊0 | ¢10t9E．0 |
| S | 乙 | E6IEI0＊0 | †て6とでで0 | EZEt8100 | ISttto 0 | 6S6ILで0 | 9S80t0＊0 | Z090Et＊ 0 | ¢09¢E．0 | LZ8080＊0 | $6060 t^{\circ} 0$ |
| $\tau$ | I | ¢91670＊0 | 19t0zで0 | 909ELİ0 | LL8t80＇0 | IZtS6で0 | ZIEZLO＊0 | も606It゚0 | $6 \pm 0 \pm \varepsilon \varepsilon^{\circ} 0$ | 69tLII「0 | ZZ96Et＊ 0 |
| $\begin{gathered} \text { Кџ! } \Lambda \\ \text { !ุэчиоך } \end{gathered}$ |  |  | $\begin{gathered} \text { งu!!! } \\ \text { xe_N } \\ \text { !suewiv } \end{gathered}$ | ［е！ ！su®uIV | 0．！ 1 O ！suewiv | ［Pอ．IV ！su®ulV |  | $\begin{gathered} \text { эu!̣! } \\ \text { xew } \\ \text { uәә. } \end{gathered}$ | $\begin{aligned} & \text { Iе!реу } \\ & \text { иәә. } \end{aligned}$ | $\begin{gathered} \text { Ј!う } \\ \text { uәә.! } \end{gathered}$ | $\begin{aligned} & \text { [еә.IV } \\ & \text { uәə., } \end{aligned}$ |


|  | $\infty$ | $\infty$ | $\nu$ | $\nu$ | $u$ | $u$ | + | + |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table F－8．$\quad$ Specific Aim 1 Experiment B raw data pertaining to Figure 6－6 Static－ Min state．

| $\bigcirc$ | $\infty$ | $\checkmark$ | a | $u$ | ＋ | $\omega$ | N | － | 录 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \dot{0} \\ & \dot{0} \\ & 0 \\ & 0 \\ & \infty \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \text { Not } \\ & \text { O} \\ & \text { N } \end{aligned}$ |  | $\begin{aligned} & \text { b } \\ & \text { ì } \\ & \text { OU } \end{aligned}$ |  | $\begin{aligned} & N \\ & \underset{\sim}{A} \\ & \underset{\sim}{U} \\ & \underset{U}{\prime} \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \text { u } \\ & \stackrel{+}{8} \\ & \text { on } \end{aligned}$ | $\begin{aligned} & \stackrel{-}{U} \\ & \underset{0}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ | $\begin{aligned} & w \\ & \stackrel{N}{N} \\ & \stackrel{\rightharpoonup}{t} \\ & \hline \end{aligned}$ | x |
| $\begin{aligned} & w \\ & \dot{\sim} \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & N \\ & 0 \\ & 0 \\ & N \\ & N \\ & \hline \end{aligned}$ |  | $\begin{aligned} & u \\ & 0 \\ & 0 \\ & N \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{0} \\ & \dot{\infty} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \stackrel{3}{u} \\ & \underset{v}{2} \end{aligned}$ | N ô U | $\begin{aligned} & \text { ò } \\ & \dot{u} \\ & \underset{\sim}{u} \end{aligned}$ | $\begin{aligned} & 4 \\ & \infty \\ & +\infty \\ & +\infty \\ & \stackrel{\infty}{8} \end{aligned}$ | $\bigcirc$ |
| $\begin{aligned} & 1 \\ & \dot{1} \\ & \text { ô } \\ & \text { on } \end{aligned}$ | $\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{4} \end{aligned}$ | $\begin{aligned} & \infty \\ & \underset{0}{0} \\ & \stackrel{\text { Uu}}{0} \end{aligned}$ | $\begin{aligned} & \infty \\ & \dot{N} \\ & \text { N } \\ & \infty \\ & \infty \end{aligned}$ |  | $\begin{aligned} & \dot{b} \\ & \stackrel{+}{2} \\ & \stackrel{+}{\circ} \\ & + \end{aligned}$ |  | $\begin{aligned} & \text { b } \\ & \text { on } \\ & \text { t } \end{aligned}$ | $\begin{aligned} & \dot{b} \\ & \dot{u} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$ | N |
| $N$ <br> 0 <br>  <br>  <br> 0 | $\begin{gathered} \stackrel{+}{\sigma} \\ \underset{\sim}{u} \end{gathered}$ |  |  | 4 0 0 苟 | $\begin{aligned} & a \\ & i \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & w \\ & \underset{y}{0} \\ & 0 \\ & \underset{0}{0} \end{aligned}$ |  | $\begin{aligned} & \text { a } \\ & \underset{\sim}{0} \\ & 0 \\ & \infty \\ & \infty \end{aligned}$ | $\underset{\sim}{\star}$ |
| $\begin{aligned} & \omega \\ & \dot{\circ} \\ & \text { + } \\ & \text { a } \end{aligned}$ | $\begin{aligned} & \omega \\ & \text { io } \\ & \stackrel{0}{2} \\ & \underset{\omega}{\infty} \end{aligned}$ | $\begin{aligned} & N \\ & \hat{a} \\ & \hat{O} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { a } \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{4} \\ & 0 \end{aligned}$ | $\begin{aligned} & u \\ & \dot{\omega} \\ & \underset{\sim}{\omega} \\ & \underset{\omega}{\omega} \end{aligned}$ | $\begin{aligned} & \stackrel{+}{0} \\ & \hat{0} \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}$ | $\begin{aligned} & \infty \\ & \ddot{n}_{1} \\ & \underset{0}{0} \\ & \text { u} \end{aligned}$ | $\begin{aligned} & \checkmark \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\prime} \end{aligned}$ | $\begin{aligned} & \cdots \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \infty \\ & + \end{aligned}$ | $\checkmark$ |
| $\begin{aligned} & N \\ & \stackrel{\sim}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{-}{y} \\ & N \\ & \infty \\ & \infty \end{aligned}$ | $\begin{aligned} & \stackrel{+}{+} \\ & \stackrel{+}{\underset{N}{N}} \\ & \text { N } \end{aligned}$ | $\begin{aligned} & -\stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ | $\begin{aligned} & - \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{8} \\ & \hline 0 \end{aligned}$ | $\circ$ $\stackrel{O}{\infty}$ $\underset{\sim}{\sim}$ + + | - $\stackrel{-}{8}$ $\frac{8}{6}$ | 0 $\dot{0}$ $\stackrel{0}{\circ}$ + $\infty$ | $\begin{aligned} & \text { b } \\ & \text { in } \\ & \text { or } \\ & \text { then } \end{aligned}$ | N |
| $\begin{aligned} & 0 \\ & \text { o } \\ & \text { ou } \\ & \text { on } \end{aligned}$ |  | $\begin{aligned} & \circ \\ & \dot{+} \\ & \text { o } \\ & \text { 令 } \end{aligned}$ |  | $\begin{aligned} & 0 \\ & \dot{0} \\ & \stackrel{+}{\circ} \\ & + \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{\sim}{U} \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { i } \\ & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\otimes}{0} \\ & \stackrel{0}{0} \end{aligned}$ |
| － | $\begin{aligned} & 0 \\ & \underset{u}{u} \\ & \underset{0}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & 0 \end{aligned}$ | 0 0. 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \underset{3}{\circ} \\ & \text { H } \\ & + \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{O}{\circ} \\ & \stackrel{\rightharpoonup}{A} \\ & +\infty \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\sim}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{A} \\ & \underset{\sigma}{2} \end{aligned}$ | $\underset{O}{\circ}$ |


| 0 $\stackrel{3}{3}$ 3 | $\begin{aligned} & 0 \\ & \text { N } \\ & \text { o } \\ & \text { N } \end{aligned}$ |  | $\begin{aligned} & 0 \\ & \underset{\sim}{\omega} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$ | $$ |  | $$ | 0 <br>  <br>  | $\begin{aligned} & \text { O} \\ & \underset{N}{0} \\ & \text { N } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 N N U U | 0 $\underset{\sim}{\omega}$ $\underset{\sim}{u}$ $\underset{\sim}{u}$ | $$ | $\begin{aligned} & \stackrel{\bullet}{ \pm} \\ & \underset{\sim}{ \pm} \\ & \underset{\sim}{f} \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{y}{0} \\ & \text { a } \\ & \text { a } \end{aligned}$ |  | $\begin{aligned} & \stackrel{0}{+} \\ & \stackrel{\rightharpoonup}{\Delta} \\ & \stackrel{\infty}{\infty} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { i } \\ & \text { ò } \\ & \text { 人 } \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { 寺 } \\ & \text { ה } \end{aligned}$ |  |
| $\begin{aligned} & 1 \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{0}{0} \\ & \underset{\sim}{+} \end{aligned}$ | 0 <br> 0 <br> 0 <br>  <br>  | 0 0 0 0 0 0 $\infty$ $\infty$ | $\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sim}{心} \end{aligned}$ | 0 0 0 0 0 $N$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\leftrightarrow}{\infty} \\ & \infty \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{N}{N} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & \text { I } \end{aligned}$ | 苞家苞 |
| 0 <br>  <br>  <br> N | $\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { un } \\ & \text { o } \end{aligned}$ | 0 i A A O | $\begin{aligned} & \stackrel{\sim}{u} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}$ |  | 0 <br> N <br> $\stackrel{0}{0}$ <br>  |  | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{N}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{0}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\infty}{\infty} \end{aligned}$ |  |
| 0 0 0 0 $\infty$ $\infty$ | 0 0 0 0 0 0 |  | 0 0 0 8 8 0 | 0 0 0 0 4 $\pm$ | $$ | $\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & 0 \end{aligned}$ | 0 <br> $\stackrel{0}{3}$ <br> $\underset{\sim}{心}$ | $\begin{aligned} & 0 \\ & 0 \\ & \underset{3}{0} \\ & \underset{\sim}{\infty} \end{aligned}$ | O苞 |
| $\circ$ <br> 0 <br> 0 <br> $\infty$ <br> $\infty$ <br>  | 0 0 0 0 0 4 |  | $\begin{aligned} & \stackrel{O}{ \pm} \\ & \underset{\sim}{N} \\ & \underset{\sim}{\circ} \end{aligned}$ | $\begin{aligned} & \stackrel{O}{\sim} \\ & \underset{U}{N} \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{N}{0} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 . \\ & 0.0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{U}{0} \\ & 8 \\ & \text { N } \end{aligned}$ |  |
| $\begin{aligned} & 0 \\ & \dot{\infty} \\ & 0 \\ & 0 \\ & \infty \\ & + \end{aligned}$ | $\begin{aligned} & \stackrel{0}{\theta} \\ & \stackrel{\infty}{\omega} \\ & \underset{\alpha}{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{u} \\ & \text { an } \end{aligned}$ | $\begin{aligned} & \stackrel{O}{0} \\ & \underset{\sim}{N} \\ & \text { N } \end{aligned}$ | 0 <br> $\underset{\sim}{0}$ <br>  | $$ | $\begin{aligned} & \text { o } \\ & \text { N } \\ & \text { O } \\ & = \end{aligned}$ | 0 N N 0 $\infty$ | $$ | 若•苍茳 |
|  | 0 0 0 8 8 0 |  | $\begin{aligned} & 1 \\ & \hline 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$ | 0 8 $\stackrel{8}{1}$ $\dot{\sim}$ | 0 0 0 O N | $\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$ |  |
|  | の | $u$ | $u$ | ＋ | $\omega$ | N | N | － |  |
|  | $\bigcirc$ | $\bigcirc$ | $\infty$ | $u$ | $\bigcirc$ | $\omega$ | $u$ | N |  |
|  | $\infty$ | $\infty$ | $\checkmark$ | $\checkmark$ | $u$ | $u$ | ＋ | ＋ |  |

Table F－9．Specific Aim 1 Experiment B raw data pertaining to Figure 6－6 Static－ Max state．

| ¢\＆68¢で0 | ¢LE8Zİ0 | t8189E．0 | と9tIZ8て | 6S6970＊$\dagger$ | 8t806tて | I609L＊${ }^{\text {L }}$ | $688985^{\circ} \mathrm{E}$ | 89658＊0－ | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon \varepsilon 8 t ¢ \% 00$ | くカャてと「「0 | L9629E＊ | \＆996EI＇Z | 七¢8E81＊${ }^{\circ}$ | 6L8てがt | $\varepsilon ¢ \dagger て ゙ 8-$ | tてZ998 ${ }^{\text {² }}$ | 296678．0 | 8 |
| Z9ZS9200 | 95EZLİ0 | £68ZEt＊0 | IEt0E0＊I | $\downarrow$ セ8009 ${ }^{\circ}$ | LOI $8^{\circ} \mathrm{S}$ | ¢E60L＊${ }^{-}$ | 9 9とをとえどて | ナLEOSE＇Z | $L$ |
| ¢00\＆¢E．0 | $\varepsilon L \downarrow S 80 \cdot 0$ | ZI880t＊ 0 | 6ヤ889でて | 6Lで9 | $8 \varepsilon L Z \downarrow て ゙ ¢$ | I88てt＊${ }^{-}$ | Iszz9Es | LEL9で0－ | 9 |
| カ6S0zE．0 | 868S0100 | IZLL6E＊ | Izzosc ${ }^{\text {I }}$ | 6L080 ${ }^{\text {¢ }}$ S | StEIE6＊ | 76¢08 ${ }^{-}$ | \＆98E99 ${ }^{\circ} \mathrm{t}$ | 6IStIE゙I | S |
| ¢\＆L¢6で0 | IE\＆96000 | ES8z9E＊ | 909 L6C\％ 0 | $60 t 966^{\circ} \mathrm{t}$ | ع98tcE 9 | t899t＊${ }^{-}$ | SIL6II＇t | StてItL | t |
| 60786E＊0 | †80890＊0 | 688IEt＊0 | IEI89S＇${ }^{\text {I }}$ | 8E9964＊8 | Z2I66L＊ | tS915＊8－ | S669でL | $900 \downarrow$ ¢ ${ }^{\circ} 0$ | $\varepsilon$ |
| L86E6E 0 | LZ00II 0 | $90885^{\circ} 0$ | 88S88 ${ }^{\circ} 0$ | EISES6＊ | 6LSE9て＇S | $9 \pm$ S01＊${ }^{-}$ | EZLSIS＊9 | 80t6s L＇I | $\tau$ |
| 29LI8E0 | てE0LIİ0 | t68L9t＊ 0 | LI8000－ | 888S02＊L | 88Z0¢L＇9 | ¢0ヤE9 ${ }^{-}$ | $6018 t 8^{\circ} \mathrm{S}$ | $6 t$ I9Iでを | I |
| $\begin{aligned} & \text { [ए!реч } \\ & \text { иәә., } \end{aligned}$ |  | $\begin{aligned} & \text { [еә.IУ } \\ & \text { uәә.ŋ } \end{aligned}$ | IZ | L $\lambda$ | IX | 0Z | 0X | 0X | ${ }^{\text {apon }}$ |


| $\circ$ <br> $\stackrel{\sim}{H}$ <br>  <br>  <br>  |  |  | $\circ$ ́ㅓ́ － + |  | $\begin{aligned} & 0 \\ & \dot{\sim} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \end{aligned}$ |  | $\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & \text { O } \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { i } \\ & \text { U } \\ & \text { U } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & 0 \\ & \text { O } \\ & \text { N } \\ & \dot{0} \end{aligned}$ |  |  | $\begin{aligned} & 0 \\ & 0 \\ & t \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{2} \\ & \hat{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{\sim} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{+} \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{0}{0} \\ & \underset{0}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{+}{\infty} \\ & + \end{aligned}$ | 莫家高 |
| 0 $\underset{\sim}{0}$ 0 0 0 $\infty$ | $$ | $\begin{aligned} & \stackrel{i}{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\omega} \end{aligned}$ | 0 <br> ì <br>  <br>  |  | $$ | $\begin{aligned} & \text { O} \\ & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{u} \\ & \underset{\sim}{o} \\ & 0 \end{aligned}$ | 0 0 0 0 N N |  |
| $\begin{aligned} & 0 \\ & \dot{\circ} \\ & + \\ & \hat{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{\circ}{2} \\ & \stackrel{2}{2} \end{aligned}$ | $\circ$ 0 0 0 2 | 0 0 0 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & \stackrel{2}{0} \\ & \vdots \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 . \\ & \text { O } \\ & \text { on } \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { O} \\ & \text { ob } \\ & \text { oi } \end{aligned}$ | $\circ$ $\stackrel{8}{8}$ oे $\stackrel{2}{1}$ | O |
| $\begin{aligned} & 0 \\ & \underset{\sim}{\omega} \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \pm \end{aligned}$ |  | $\begin{aligned} & 0 \\ & \underset{7}{2} \\ & \text { Nu0 } \\ & \end{aligned}$ | $\begin{aligned} & \circ \\ & \dot{-} \\ & \circ \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{0}{+} \\ & \stackrel{+}{\infty} \\ & \stackrel{+}{\infty} \\ & \infty \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \frac{2}{3} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & 0 \\ & 0 . \\ & + \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$ |  |
| $\circ$ $\stackrel{\circ}{\circ}$ 항 a | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{0} \\ & \text { t } \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$ | $$ | $\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { 岕 } \end{aligned}$ | $\begin{aligned} & \text { i} \\ & \text { + } \\ & \text { + } \end{aligned}$ |  | $\begin{aligned} & \text { O} \\ & \underset{\sim}{u} \\ & \text { O } \end{aligned}$ |  |
| O | 안 <br> $\stackrel{\rightharpoonup}{+}$ <br> $\stackrel{\rightharpoonup}{\theta}$ <br> 0 | $\begin{aligned} & \text { o } \\ & \text { O} \\ & \text { - } \\ & \text { o } \end{aligned}$ | 0 0 $\stackrel{0}{0}$ 0 $\infty$ + | $\begin{aligned} & 0 \\ & 0 \\ & \text { N } \\ & \text { N } \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$ | $$ | 0 <br> 0 <br>  <br>  |  |
|  | の | $u$ | $u$ | $+$ | $\omega$ | N | N | － |  |
|  | $\bigcirc$ | の | $\infty$ | $u$ | の | $\omega$ | $u$ | N |  |
|  | $\infty$ | $\infty$ | $\checkmark$ | $\checkmark$ | $u$ | $u$ | $\pm$ | ＋ |  |

## APPENDIX G. RAW DATA - SPECIFIC AIM 2

## G. 1 Specific Aim 2A - Peak Systolic LVOT Average Velocity

Table G-1. $\quad$ 50/50 Short AML peak systolic LVOT average velocity at all LAMPOON and CO conditions.

|  | 50/50 Short AML |  |  |
| :---: | :---: | :---: | :---: |
| diac | $\begin{gathered} \underline{0 \%} \\ \text { LAMPOON } \\ \hline \end{gathered}$ | $\begin{gathered} 50 \% \\ \text { LAMPOON } \\ \hline \end{gathered}$ | $\begin{gathered} 100 \% \\ \text { LAMPOON } \\ \hline \end{gathered}$ |
| Output <br> (L/min) | Velocity $(\mathrm{m} / \mathrm{s})$ | Velocity $(\mathrm{m} / \mathrm{s})$ | Velocity $(\mathrm{m} / \mathrm{s})$ |
| 2.5 | 0.273 | 0.247 | 0.262 |
| 5.0 | 0.394 | 0.406 | 0.364 |
| 6.5 | 0.462 | 0.473 |  |
| Average | 0.334 | 0.327 | 0.313 |

Table G-2. 50/50 Long AML peak systolic LVOT average velocity at all LAMPOON and CO conditions.

|  | 50/50 Long AML |  |  |
| :---: | :---: | :---: | :---: |
| Cardiac | $\underset{\text { LAMPOON }}{\underline{0 \%}}$ | $\begin{gathered} \text { 50\% } \\ \text { LAMPOON } \end{gathered}$ | $\begin{aligned} & \text { 100\% } \\ & \text { LAMPOON } \end{aligned}$ |
| Output <br> (L/min) | Velocity ( $\mathrm{m} / \mathrm{s}$ ) | Velocity $(\mathrm{m} / \mathrm{s})$ | Velocity $(\mathrm{m} / \mathrm{s})$ |
| 2.5 | 0.257 | 0.223 | 0.208 |
| 5.0 | 0.441 | 0.375 | 0.367 |
| 6.5 | 0.458 | 0.423 | 0.395 |
| Average | 0.385 | 0.340 | 0.323 |

Table G-3. $\quad 80 / 20$ Long AML peak systolic LVOT average velocity at all LAMPOON and CO conditions.
$\square$

| Cardiac | $\begin{gathered} \text { O\% } \\ \text { LAMPOON } \end{gathered}$ | $\begin{gathered} 50 \% \\ \text { LAMPOON } \end{gathered}$ | $\frac{100 \%}{\text { LAMPOON }}$ |
| :---: | :---: | :---: | :---: |
| Output (L/min) | Velocity $(\mathrm{m} / \mathrm{s})$ | Velocity $(\mathrm{m} / \mathrm{s})$ | Velocity $(\mathrm{m} / \mathrm{s})$ |
| 2.5 | 0.298 | 0.268 | 0.245 |
| 5.0 | 0.398 | 0.371 | 0.342 |
| 6.5 | 0.409 | 0.409 | 0.380 |
| Average | 0.368 | 0.349 | 0.322 |

Table G-4. Combined average of Long AML peak systolic LVOT average velocity at all LAMPOON and CO conditions.

|  | Combined Averaged - Long AML |  |  |
| :---: | :---: | :---: | :---: |
| Cardiac | $\begin{gathered} \underline{0 \%} \\ \text { LAMPOON } \end{gathered}$ | $\begin{gathered} \text { 50\% } \\ \text { LAMPOON } \end{gathered}$ | $\begin{aligned} & \text { 100\% } \\ & \text { LAMPOON } \end{aligned}$ |
| Output <br> (L/min) | Velocity (m/s) | Velocity $(\mathrm{m} / \mathrm{s})$ | Velocity $(\mathrm{m} / \mathrm{s})$ |
| 2.5 | 0.278 | 0.246 | 0.227 |
| 5.0 | 0.420 | 0.373 | 0.355 |
| 6.5 | 0.434 | 0.416 | 0.388 |
| Average | 0.362 | 0.339 | 0.320 |

## G. 2 Specific Aim 2A - Maximum VSS

Table G-5. 50/50 Short AML maximum VSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output ( $\mathrm{L} / \mathrm{min}$ ) | 50/50 Short AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge}\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) |
| 2.5 | 0.723 | 139 | 0.728 | 149 | 0.568 | 193 |
| 5.0 | 1.002 | 439 | 1.135 | 99 | 0.734 | 149 |
| 6.5 | 1.393 | 445 | 1.014 | 122 |  |  |
| Average | 0.862 | 289 | 0.931 | 124 | 0.651 | 171 |

Table G-6. 50/50 Long AML maximum VSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | 50/50 Long AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) |
| 2.5 | 0.544 | 121 | 0.452 | 144 | 0.446 | 173 |
| 5.0 | 1.154 | 107 | 0.903 | 115 | 0.633 | 115 |
| 6.5 | 1.381 | 107 | 1.182 | 94 | 0.655 | 129 |
| Average | 1.026 | 112 | 0.845 | 117 | 0.578 | 139 |

Table G-7. 80/20 Long AML maximum VSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac <br> Output <br> (L/min) | 80/20 Long AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LA | OON | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) |
| 2.5 | 0.593 | 143 | 0.422 | 121 | 0.414 | 165 |
| 5.0 | 1.065 | 107 | 0.853 | 121 | 0.720 | 137 |
| 6.5 | 1.071 | 128 | 0.801 | 128 | 0.880 | 108 |
| Average | 0.910 | 126 | 0.692 | 123 | 0.671 | 137 |

Table G-8. Combined average of all deployment and AML lengths maximum VSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | Combined Average - ALL |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { VSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) |
| 2.5 | 0.620 | 134 | 0.534 | 138 | 0.476 | 177 |
| 5.0 | 1.074 | 218 | 0.963 | 112 | 0.696 | 134 |
| 6.5 | 1.281 | 227 | 0.999 | 114 | 0.768 | 119 |
| Average | 0.933 | 176 | 0.823 | 122 | 0.633 | 149 |

## G. 3 Specific Aim 2A - Maximum Principal RSS

Table G-9. 50/50 Short AML maximum principal RSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | 50/50 Short AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) |
| 2.5 | 14.15 | 250 | 5.87 | 342 | 7.25 | 298 |
| 5.0 | 31.36 | 183 | 18.42 | 282 | 14.41 | 254 |
| 6.5 | 23.96 | 233 | 25.62 | 226 |  |  |
| Average | 22.757 | 217 | 12.147 | 312 | 10.829 | 276 |

Table G-10. 50/50 Long AML maximum principal RSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | 50/50 Long AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \\ \hline \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \\ \hline \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \\ \hline \end{gathered}$ | Time (ms) |
| 2.5 | 8.39 | 250 | 8.32 | 266 | 6.10 | 288 |
| 5.0 | 24.73 | 200 | 20.05 | 173 | 20.02 | 180 |
| 6.5 | 39.33 | 171 | 23.13 | 180 | 32.89 | 180 |
| Average | 24.151 | 207 | 17.166 | 206 | 19.671 | 216 |

Table G-11. 50/50 Short AML maximum principal RSS and time it occurred at all LAMPOON and CO conditions.

|  | 80/20 Long AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cardiac | O\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
| Output <br> (L/min) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(N / m^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) |


| $\mathbf{2 . 5}$ | 5.27 | 228 | 5.62 | 221 | 12.85 | 180 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5.0 | 21.80 | 200 | 24.83 | 193 | 41.69 | 144 |
| 6.5 | 71.20 | 157 | 20.85 | 178 | 41.46 | 122 |
| Average | 32.757 | 195 | 17.100 | 197 | 32.000 | 149 |

Table G-12. Combined average of all deployment heights and AML lengths maximum principal RSS and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | Combined Average - ALL |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \\ \hline \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { pRSS } \\ \left(\mathrm{N} / \mathrm{m}^{\wedge} 2\right) \\ \hline \end{gathered}$ | Time (ms) |
| 2.5 | 9.270 | 243 | 6.603 | 276 | 8.733 | 255 |
| 5.0 | 25.964 | 194 | 21.102 | 216 | 25.373 | 193 |
| 6.5 | 44.832 | 187 | 23.200 | 195 | 37.176 | 151 |
| Average | 26.555 | 206 | 15.471 | 238 | 20.833 | 214 |

## G. 4 Specific Aim 2A - Maximum TKE

Table G-13. 50/50 Long AML maximum TKE and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | 50/50 Short AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time (ms) |
| 2.5 | 0.0391 | 245 | 0.0065 | 282 | 0.0073 | 160 |
| 5.0 | 0.0340 | 189 | 0.0190 | 276 | 0.0191 | 226 |
| 6.5 | 0.0296 | 233 | 0.0296 | 226 |  |  |
| Average | 0.037 | 217 | 0.013 | 279 | 0.013 | 193 |

Table G-14. 50/50 Long AML maximum TKE and time it occurred at all LAMPOON and CO conditions.

| Cardiac <br> Output <br> (L/min) | 50/50 Long AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{aligned} & \text { Value } \\ & \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{aligned}$ | Time (ms) | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{aligned} & \text { Value } \\ & \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{aligned}$ | Time (ms) |
| 2.5 | 0.0091 | 250 | 0.0102 | 259 | 0.0076 | 288 |
| 5.0 | 0.0257 | 200 | 0.0201 | 173 | 0.0210 | 180 |
| 6.5 | 0.0425 | 178 | 0.0279 | 173 | 0.0328 | 180 |
| Average | 0.026 | 209 | 0.019 | 201 | 0.020 | 216 |

Table G-15. 80/20 Long AML maximum TKE and time it occurred at all LAMPOON and CO conditions.

| Cardiac <br> Output <br> (L/min) | 80/20 Long AML |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | O\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | $\begin{aligned} & \text { Time } \\ & \text { (ms) } \end{aligned}$ | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time } \\ & \text { (ms) } \end{aligned}$ | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time } \\ & \text { (ms) } \end{aligned}$ |
| 2.5 | 0.0068 | 214 | 0.0078 | 207 | 0.0175 | 187 |
| 5.0 | 0.0239 | 200 | 0.0248 | 193 | 0.0404 | 151 |
| 6.5 | 0.0834 | 164 | 0.0284 | 207 | 0.0421 | 122 |
| Average | 0.038 | 193 | 0.020 | 202 | 0.033 | 153 |

Table G-16. Combined average of all deployment heights and AML lengths maximum TKE and time it occurred at all LAMPOON and CO conditions.

| Cardiac Output (L/min) | Combined Average - ALL |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0\% LAMPOON |  | 50\% LAMPOON |  | 100\% LAMPOON |  |
|  | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time (ms) | $\begin{gathered} \text { Value } \\ \left(m^{\wedge} 2 / s^{\wedge} 2\right) \end{gathered}$ | Time <br> (ms) |
| 2.5 | 0.018 | 236 | 0.008 | 249 | 0.011 | 212 |
| 5.0 | 0.028 | 196 | 0.021 | 214 | 0.027 | 186 |
| 6.5 | 0.052 | 192 | 0.029 | 202 | 0.037 | 151 |
| Average | 0.033 | 206 | 0.017 | 228 | 0.022 | 187 |

## G. 5 Specific Aim 2B - Neo-Sinus Particle Tracking

Table G-17. 80/20 Long AML neo-sinus particle tracking results for $2.5 \mathrm{~L} / \mathrm{min}$.

| O\% LAMPOON |  |  | 50\% LAMPOON |  |  | 100\% LAMPOON |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time (s) | Cycle <br> (\#) | Particle Density <br> (\%) | Time (s) | Cycle <br> (\#) | Particle Density (\%) | Time (s) | Cycle <br> (\#) | Particle Density (\%) |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0.001 | 0.00117 | 1 | 0.001 | 0.00117 | 1 | 0.001 | 0.00117 | 1 |
| 0.002 | 0.00234 | 1 | 0.002 | 0.00234 | 1 | 0.002 | 0.00234 | 1 |
| 0.003 | 0.00350 | 1 | 0.003 | 0.00350 | 1 | 0.003 | 0.00350 | 0.99143 |
| 0.004 | 0.00467 | 0.98551 | 0.004 | 0.00467 | 1 | 0.004 | 0.00467 | 0.98000 |
| 0.005 | 0.00584 | 0.94928 | 0.005 | 0.00584 | 1 | 0.005 | 0.00584 | 0.94857 |
| 0.006 | 0.00701 | 0.94928 | 0.006 | 0.00701 | 1 | 0.006 | 0.00701 | 0.93714 |
| 0.007 | 0.00818 | 0.94928 | 0.007 | 0.00818 | 1 | 0.007 | 0.00818 | 0.91714 |
| 0.008 | 0.00935 | 0.94928 | 0.008 | 0.00935 | 0.99578 | 0.008 | 0.00935 | 0.89143 |
| 0.009 | 0.01051 | 0.94928 | 0.009 | 0.01051 | 0.99578 | 0.009 | 0.01051 | 0.87714 |
| 0.01 | 0.01168 | 0.93478 | 0.01 | 0.01168 | 0.99156 | 0.01 | 0.01168 | 0.85429 |
| 0.011 | 0.01285 | 0.91304 | 0.011 | 0.01285 | 0.98312 | 0.011 | 0.01285 | 0.82857 |
| 0.012 | 0.01402 | 0.89855 | 0.012 | 0.01402 | 0.97468 | 0.012 | 0.01402 | 0.80286 |
| 0.013 | 0.01519 | 0.89855 | 0.013 | 0.01519 | 0.95781 | 0.013 | 0.01519 | 0.78857 |
| 0.014 | 0.01636 | 0.89855 | 0.014 | 0.01636 | 0.94937 | 0.014 | 0.01636 | 0.74286 |
| 0.015 | 0.01752 | 0.89855 | 0.015 | 0.01752 | 0.94937 | 0.015 | 0.01752 | 0.71143 |
| 0.016 | 0.01869 | 0.89130 | 0.016 | 0.01869 | 0.94515 | 0.016 | 0.01869 | 0.68286 |
| 0.017 | 0.01986 | 0.86232 | 0.017 | 0.01986 | 0.94515 | 0.017 | 0.01986 | 0.64857 |
| 0.018 | 0.02103 | 0.84783 | 0.018 | 0.02103 | 0.94093 | 0.018 | 0.02103 | 0.61714 |
| 0.019 | 0.02220 | 0.84783 | 0.019 | 0.02220 | 0.93671 | 0.019 | 0.02220 | 0.59143 |
| 0.02 | 0.02336 | 0.84783 | 0.02 | 0.02336 | 0.93671 | 0.02 | 0.02336 | 0.56286 |
| 0.021 | 0.02453 | 0.84783 | 0.021 | 0.02453 | 0.93671 | 0.021 | 0.02453 | 0.52571 |
| 0.022 | 0.02570 | 0.83333 | 0.022 | 0.02570 | 0.93671 | 0.022 | 0.02570 | 0.49714 |
| 0.023 | 0.02687 | 0.81159 | 0.023 | 0.02687 | 0.93671 | 0.023 | 0.02687 | 0.45714 |
| 0.024 | 0.02804 | 0.79710 | 0.024 | 0.02804 | 0.92827 | 0.024 | 0.02804 | 0.42571 |
| 0.025 | 0.02921 | 0.79710 | 0.025 | 0.02921 | 0.91561 | 0.025 | 0.02921 | 0.41429 |
| 0.026 | 0.03037 | 0.79710 | 0.026 | 0.03037 | 0.91561 | 0.026 | 0.03037 | 0.38857 |
| 0.027 | 0.03154 | 0.79710 | 0.027 | 0.03154 | 0.91139 | 0.027 | 0.03154 | 0.36571 |
| 0.028 | 0.03271 | 0.78986 | 0.028 | 0.03271 | 0.90717 | 0.028 | 0.03271 | 0.32000 |
| 0.029 | 0.03388 | 0.77536 | 0.029 | 0.03388 | 0.90295 | 0.029 | 0.03388 | 0.29429 |
| 0.03 | 0.03505 | 0.76087 | 0.03 | 0.03505 | 0.90295 | 0.03 | 0.03505 | 0.26286 |
| 0.031 | 0.03621 | 0.75362 | 0.031 | 0.03621 | 0.90295 | 0.031 | 0.03621 | 0.22571 |
| 0.032 | 0.03738 | 0.74638 | 0.032 | 0.03738 | 0.90295 | 0.032 | 0.03738 | 0.20571 |


| 0.033 | 0.03855 | 0.74638 | 0.033 | 0.03855 | 0.90295 | 0.033 | 0.03855 | 0.18571 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.034 | 0.03972 | 0.74638 | 0.034 | 0.03972 | 0.89873 | 0.034 | 0.03972 | 0.14857 |
| 0.035 | 0.04089 | 0.74638 | 0.035 | 0.04089 | 0.88608 | 0.035 | 0.04089 | 0.13143 |
| 0.036 | 0.04206 | 0.72464 | 0.036 | 0.04206 | 0.88186 | 0.036 | 0.04206 | 0.11429 |
| 0.037 | 0.04322 | 0.71014 | 0.037 | 0.04322 | 0.87764 | 0.037 | 0.04322 | 0.10571 |
| 0.038 | 0.04439 | 0.70290 | 0.038 | 0.04439 | 0.87764 | 0.038 | 0.04439 | 0.10000 |
| 0.039 | 0.04556 | 0.70290 | 0.039 | 0.04556 | 0.87764 | 0.039 | 0.04556 | 0.08857 |
| 0.04 | 0.04673 | 0.70290 | 0.04 | 0.04673 | 0.87342 | 0.04 | 0.04673 | 0.07714 |
| 0.041 | 0.04790 | 0.69565 | 0.041 | 0.04790 | 0.87342 | 0.041 | 0.04790 | 0.07143 |
| 0.042 | 0.04907 | 0.69565 | 0.042 | 0.04907 | 0.87342 | 0.042 | 0.04907 | 0.06286 |
| 0.043 | 0.05023 | 0.69565 | 0.043 | 0.05023 | 0.86920 | 0.043 | 0.05023 | 0.05714 |
| 0.044 | 0.05140 | 0.68116 | 0.044 | 0.05140 | 0.86498 | 0.044 | 0.05140 | 0.05429 |
| 0.045 | 0.05257 | 0.66667 | 0.045 | 0.05257 | 0.86076 | 0.045 | 0.05257 | 0.04857 |
| 0.046 | 0.05374 | 0.65942 | 0.046 | 0.05374 | 0.85232 | 0.046 | 0.05374 | 0.04571 |
| 0.047 | 0.05491 | 0.65942 | 0.047 | 0.05491 | 0.85232 | 0.047 | 0.05491 | 0.04286 |
| 0.048 | 0.05607 | 0.65942 | 0.048 | 0.05607 | 0.84810 | 0.048 | 0.05607 | 0.03143 |
| 0.049 | 0.05724 | 0.65217 | 0.049 | 0.05724 | 0.84810 | 0.049 | 0.05724 | 0.02857 |
| 0.05 | 0.05841 | 0.65217 | 0.05 | 0.05841 | 0.84810 | 0.05 | 0.05841 | 0.02000 |
| 0.051 | 0.05958 | 0.65217 | 0.051 | 0.05958 | 0.84810 | 0.051 | 0.05958 | 0.01429 |
| 0.052 | 0.06075 | 0.65217 | 0.052 | 0.06075 | 0.84388 | 0.052 | 0.06075 | 0.01429 |
| 0.053 | 0.06192 | 0.64493 | 0.053 | 0.06192 | 0.84388 | 0.053 | 0.06192 | 0.00857 |
| 0.054 | 0.06308 | 0.63768 | 0.054 | 0.06308 | 0.84388 | 0.054 | 0.06308 | 0.00571 |
| 0.055 | 0.06425 | 0.62319 | 0.055 | 0.06425 | 0.84388 | 0.055 | 0.06425 | 0.00286 |
| 0.056 | 0.06542 | 0.61594 | 0.056 | 0.06542 | 0.84388 | 0.056 | 0.06542 | 0.00286 |
| 0.057 | 0.06659 | 0.61594 | 0.057 | 0.06659 | 0.84388 |  |  |  |
| 0.058 | 0.06776 | 0.60870 | 0.058 | 0.06776 | 0.83966 |  |  |  |
| 0.059 | 0.06893 | 0.60870 | 0.059 | 0.06893 | 0.83966 |  |  |  |
| 0.06 | 0.07009 | 0.60870 | 0.06 | 0.07009 | 0.83966 |  |  |  |
| 0.061 | 0.07126 | 0.60870 | 0.061 | 0.07126 | 0.83966 |  |  |  |
| 0.062 | 0.07243 | 0.60870 | 0.062 | 0.07243 | 0.83544 |  |  |  |
| 0.063 | 0.07360 | 0.60145 | 0.063 | 0.07360 | 0.83122 |  |  |  |
| 0.064 | 0.07477 | 0.60145 | 0.064 | 0.07477 | 0.82278 |  |  |  |
| 0.065 | 0.07593 | 0.60145 | 0.065 | 0.07593 | 0.82278 |  |  |  |
| 0.066 | 0.07710 | 0.60145 | 0.066 | 0.07710 | 0.82278 |  |  |  |
| 0.067 | 0.07827 | 0.60145 | 0.067 | 0.07827 | 0.82278 |  |  |  |
| 0.068 | 0.07944 | 0.60145 | 0.068 | 0.07944 | 0.82278 |  |  |  |
| 0.069 | 0.08061 | 0.59420 | 0.069 | 0.08061 | 0.82278 |  |  |  |
| 0.07 | 0.08178 | 0.59420 | 0.07 | 0.08178 | 0.82278 |  |  |  |
| 0.071 | 0.08294 | 0.59420 | 0.071 | 0.08294 | 0.81857 |  |  |  |
| 0.072 | 0.08411 | 0.57971 | 0.072 | 0.08411 | 0.81857 |  |  |  |
| 0.073 | 0.08528 | 0.57971 | 0.073 | 0.08528 | 0.81857 |  |  |  |


| 0.074 | 0.08645 | 0.57246 | 0.074 | 0.08645 | 0.81857 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.075 | 0.08762 | 0.57246 | 0.075 | 0.08762 | 0.81435 |  |  |  |
| 0.076 | 0.08879 | 0.57246 | 0.076 | 0.08879 | 0.80169 |  |  |  |
| 0.077 | 0.08995 | 0.56522 | 0.077 | 0.08995 | 0.79747 |  |  |  |
| 0.078 | 0.09112 | 0.56522 | 0.078 | 0.09112 | 0.79747 |  |  |  |
| 0.079 | 0.09229 | 0.56522 | 0.079 | 0.09229 | 0.78903 |  |  |  |
| 0.08 | 0.09346 | 0.55797 | 0.08 | 0.09346 | 0.78059 |  |  |  |
| 0.081 | 0.09463 | 0.55797 | 0.081 | 0.09463 | 0.78059 |  |  |  |
| 0.082 | 0.09579 | 0.55797 | 0.082 | 0.09579 | 0.77637 |  |  |  |
| 0.083 | 0.09696 | 0.55797 | 0.083 | 0.09696 | 0.77215 |  |  |  |
| 0.084 | 0.09813 | 0.55797 | 0.084 | 0.09813 | 0.77215 |  |  |  |
| 0.085 | 0.09930 | 0.55797 | 0.085 | 0.09930 | 0.76371 |  |  |  |
| 0.086 | 0.10047 | 0.55072 | 0.086 | 0.10047 | 0.75949 |  |  |  |
| 0.087 | 0.10164 | 0.55072 | 0.087 | 0.10164 | 0.75949 |  |  |  |
| 0.088 | 0.10280 | 0.54348 | 0.088 | 0.10280 | 0.75527 |  |  |  |
| 0.089 | 0.10397 | 0.54348 | 0.089 | 0.10397 | 0.75527 |  |  |  |
| 0.09 | 0.10514 | 0.54348 | 0.09 | 0.10514 | 0.75527 |  |  |  |
| 0.091 | 0.10631 | 0.54348 | 0.091 | 0.10631 | 0.75527 |  |  |  |
| 0.092 | 0.10748 | 0.54348 | 0.092 | 0.10748 | 0.75527 |  |  |  |
| 0.093 | 0.10864 | 0.52899 | 0.093 | 0.10864 | 0.75527 |  |  |  |
| 0.094 | 0.10981 | 0.52899 | 0.094 | 0.10981 | 0.75105 |  |  |  |
| 0.095 | 0.11098 | 0.52899 | 0.095 | 0.11098 | 0.74262 |  |  |  |
| 0.096 | 0.11215 | 0.52899 | 0.096 | 0.11215 | 0.74262 |  |  |  |
| 0.097 | 0.11332 | 0.52174 | 0.097 | 0.11332 | 0.73418 |  |  |  |
| 0.098 | 0.11449 | 0.52174 | 0.098 | 0.11449 | 0.72574 |  |  |  |
| 0.099 | 0.11565 | 0.52174 | 0.099 | 0.11565 | 0.72152 |  |  |  |
| 0.1 | 0.11682 | 0.52174 | 0.1 | 0.11682 | 0.71730 |  |  |  |
| 0.101 | 0.11799 | 0.52174 | 0.101 | 0.11799 | 0.71308 |  |  |  |
| 0.102 | 0.11916 | 0.52174 | 0.102 | 0.11916 | 0.71308 |  |  |  |
| 0.103 | 0.12033 | 0.52174 | 0.103 | 0.12033 | 0.70886 |  |  |  |
| 0.104 | 0.12150 | 0.51449 | 0.104 | 0.12150 | 0.70042 |  |  |  |
| 0.105 | 0.12266 | 0.51449 | 0.105 | 0.12266 | 0.70042 |  |  |  |
| 0.106 | 0.12383 | 0.51449 | 0.106 | 0.12383 | 0.69620 |  |  |  |
| 0.107 | 0.12500 | 0.51449 | 0.107 | 0.12500 | 0.69198 |  |  |  |
| 0.108 | 0.12617 | 0.51449 | 0.108 | 0.12617 | 0.69198 |  |  |  |
| 0.109 | 0.12734 | 0.51449 | 0.109 | 0.12734 | 0.68776 |  |  |  |
| 0.11 | 0.12850 | 0.51449 | 0.11 | 0.12850 | 0.68354 |  |  |  |
| 0.111 | 0.12967 | 0.51449 | 0.111 | 0.12967 | 0.68354 |  |  |  |
| 0.112 | 0.13084 | 0.51449 | 0.112 | 0.13084 | 0.67932 |  |  |  |
| 0.113 | 0.13201 | 0.51449 | 0.113 | 0.13201 | 0.67932 |  |  |  |
| 0.114 | 0.13318 | 0.51449 | 0.114 | 0.13318 | 0.67932 |  |  |  |


| 0.115 | 0.13435 | 0.51449 | 0.115 | 0.13435 | 0.67932 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.116 | 0.13551 | 0.51449 | 0.116 | 0.13551 | 0.67932 |  |  |  |
| 0.117 | 0.13668 | 0.51449 | 0.117 | 0.13668 | 0.67511 |  |  |  |
| 0.118 | 0.13785 | 0.51449 | 0.118 | 0.13785 | 0.67089 |  |  |  |
| 0.119 | 0.13902 | 0.51449 | 0.119 | 0.13902 | 0.66245 |  |  |  |
| 0.12 | 0.14019 | 0.51449 | 0.12 | 0.14019 | 0.65823 |  |  |  |
| 0.121 | 0.14136 | 0.51449 | 0.121 | 0.14136 | 0.64557 |  |  |  |
| 0.122 | 0.14252 | 0.51449 | 0.122 | 0.14252 | 0.64557 |  |  |  |
| 0.123 | 0.14369 | 0.51449 | 0.123 | 0.14369 | 0.64557 |  |  |  |
| 0.124 | 0.14486 | 0.51449 | 0.124 | 0.14486 | 0.63713 |  |  |  |
| 0.125 | 0.14603 | 0.51449 | 0.125 | 0.14603 | 0.63291 |  |  |  |
| 0.126 | 0.14720 | 0.51449 | 0.126 | 0.14720 | 0.62869 |  |  |  |
| 0.127 | 0.14836 | 0.51449 | 0.127 | 0.14836 | 0.62447 |  |  |  |
| 0.128 | 0.14953 | 0.51449 | 0.128 | 0.14953 | 0.62025 |  |  |  |
| 0.129 | 0.15070 | 0.51449 | 0.129 | 0.15070 | 0.61603 |  |  |  |
| 0.13 | 0.15187 | 0.51449 | 0.13 | 0.15187 | 0.61603 |  |  |  |
| 0.131 | 0.15304 | 0.51449 | 0.131 | 0.15304 | 0.60759 |  |  |  |
| 0.132 | 0.15421 | 0.51449 | 0.132 | 0.15421 | 0.60338 |  |  |  |
| 0.133 | 0.15537 | 0.51449 | 0.133 | 0.15537 | 0.60338 |  |  |  |
| 0.134 | 0.15654 | 0.51449 | 0.134 | 0.15654 | 0.60338 |  |  |  |
| 0.135 | 0.15771 | 0.51449 | 0.135 | 0.15771 | 0.60338 |  |  |  |
| 0.136 | 0.15888 | 0.51449 | 0.136 | 0.15888 | 0.60338 |  |  |  |
| 0.137 | 0.16005 | 0.51449 | 0.137 | 0.16005 | 0.60338 |  |  |  |
| 0.138 | 0.16121 | 0.51449 | 0.138 | 0.16121 | 0.60338 |  |  |  |
| 0.139 | 0.16238 | 0.51449 | 0.139 | 0.16238 | 0.59916 |  |  |  |
| 0.14 | 0.16355 | 0.51449 | 0.14 | 0.16355 | 0.59916 |  |  |  |
| 0.141 | 0.16472 | 0.51449 | 0.141 | 0.16472 | 0.59916 |  |  |  |
| 0.142 | 0.16589 | 0.51449 | 0.142 | 0.16589 | 0.59916 |  |  |  |
| 0.143 | 0.16706 | 0.51449 | 0.143 | 0.16706 | 0.59916 |  |  |  |
| 0.144 | 0.16822 | 0.51449 | 0.144 | 0.16822 | 0.59916 |  |  |  |
| 0.145 | 0.16939 | 0.51449 | 0.145 | 0.16939 | 0.59916 |  |  |  |
| 0.146 | 0.17056 | 0.51449 | 0.146 | 0.17056 | 0.59916 |  |  |  |
| 0.147 | 0.17173 | 0.51449 | 0.147 | 0.17173 | 0.59916 |  |  |  |
| 0.148 | 0.17290 | 0.51449 | 0.148 | 0.17290 | 0.59494 |  |  |  |
| 0.149 | 0.17407 | 0.51449 | 0.149 | 0.17407 | 0.59072 |  |  |  |
| 0.15 | 0.17523 | 0.51449 | 0.15 | 0.17523 | 0.58228 |  |  |  |
| 0.151 | 0.17640 | 0.51449 | 0.151 | 0.17640 | 0.58228 |  |  |  |
| 0.152 | 0.17757 | 0.51449 | 0.152 | 0.17757 | 0.58228 |  |  |  |
| 0.153 | 0.17874 | 0.51449 | 0.153 | 0.17874 | 0.57384 |  |  |  |
| 0.154 | 0.17991 | 0.51449 | 0.154 | 0.17991 | 0.57384 |  |  |  |
| 0.155 | 0.18107 | 0.51449 | 0.155 | 0.18107 | 0.57384 |  |  |  |


| 0.156 | 0.18224 | 0.51449 | 0.156 | 0.18224 | 0.57384 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.157 | 0.18341 | 0.51449 | 0.157 | 0.18341 | 0.56962 |  |  |  |
| 0.158 | 0.18458 | 0.51449 | 0.158 | 0.18458 | 0.56540 |  |  |  |
| 0.159 | 0.18575 | 0.51449 | 0.159 | 0.18575 | 0.56540 |  |  |  |
| 0.16 | 0.18692 | 0.51449 | 0.16 | 0.18692 | 0.56540 |  |  |  |
| 0.161 | 0.18808 | 0.51449 | 0.161 | 0.18808 | 0.56540 |  |  |  |
| 0.162 | 0.18925 | 0.51449 | 0.162 | 0.18925 | 0.56540 |  |  |  |
| 0.163 | 0.19042 | 0.51449 | 0.163 | 0.19042 | 0.56540 |  |  |  |
| 0.164 | 0.19159 | 0.51449 | 0.164 | 0.19159 | 0.56540 |  |  |  |
| 0.165 | 0.19276 | 0.51449 | 0.165 | 0.19276 | 0.56540 |  |  |  |
| 0.166 | 0.19393 | 0.51449 | 0.166 | 0.19393 | 0.56540 |  |  |  |
| 0.167 | 0.19509 | 0.51449 | 0.167 | 0.19509 | 0.56540 |  |  |  |
| 0.168 | 0.19626 | 0.51449 | 0.168 | 0.19626 | 0.56540 |  |  |  |
| 0.169 | 0.19743 | 0.51449 | 0.169 | 0.19743 | 0.56540 |  |  |  |
| 0.17 | 0.19860 | 0.51449 | 0.17 | 0.19860 | 0.56540 |  |  |  |
| 0.171 | 0.19977 | 0.51449 | 0.171 | 0.19977 | 0.56540 |  |  |  |
| 0.172 | 0.20093 | 0.51449 | 0.172 | 0.20093 | 0.56540 |  |  |  |
| 0.173 | 0.20210 | 0.51449 | 0.173 | 0.20210 | 0.56540 |  |  |  |
| 0.174 | 0.20327 | 0.51449 | 0.174 | 0.20327 | 0.56540 |  |  |  |
| 0.175 | 0.20444 | 0.51449 | 0.175 | 0.20444 | 0.56540 |  |  |  |
| 0.176 | 0.20561 | 0.51449 | 0.176 | 0.20561 | 0.56540 |  |  |  |
| 0.177 | 0.20678 | 0.51449 | 0.177 | 0.20678 | 0.56540 |  |  |  |
| 0.178 | 0.20794 | 0.51449 | 0.178 | 0.20794 | 0.56540 |  |  |  |
| 0.179 | 0.20911 | 0.51449 | 0.179 | 0.20911 | 0.56118 |  |  |  |
| 0.18 | 0.21028 | 0.51449 | 0.18 | 0.21028 | 0.56118 |  |  |  |
| 0.181 | 0.21145 | 0.51449 | 0.181 | 0.21145 | 0.56118 |  |  |  |
| 0.182 | 0.21262 | 0.51449 | 0.182 | 0.21262 | 0.56118 |  |  |  |
| 0.183 | 0.21379 | 0.51449 | 0.183 | 0.21379 | 0.56118 |  |  |  |
| 0.184 | 0.21495 | 0.51449 | 0.184 | 0.21495 | 0.56118 |  |  |  |
| 0.185 | 0.21612 | 0.51449 | 0.185 | 0.21612 | 0.56118 |  |  |  |
| 0.186 | 0.21729 | 0.51449 | 0.186 | 0.21729 | 0.56118 |  |  |  |
| 0.187 | 0.21846 | 0.51449 | 0.187 | 0.21846 | 0.56118 |  |  |  |
| 0.188 | 0.21963 | 0.51449 | 0.188 | 0.21963 | 0.56118 |  |  |  |
| 0.189 | 0.22079 | 0.51449 | 0.189 | 0.22079 | 0.56118 |  |  |  |
| 0.19 | 0.22196 | 0.51449 | 0.19 | 0.22196 | 0.56118 |  |  |  |
| 0.191 | 0.22313 | 0.51449 | 0.191 | 0.22313 | 0.56118 |  |  |  |
| 0.192 | 0.22430 | 0.51449 | 0.192 | 0.22430 | 0.56118 |  |  |  |
| 0.193 | 0.22547 | 0.51449 | 0.193 | 0.22547 | 0.56118 |  |  |  |
| 0.194 | 0.22664 | 0.51449 | 0.194 | 0.22664 | 0.56118 |  |  |  |
| 0.195 | 0.22780 | 0.51449 | 0.195 | 0.22780 | 0.56118 |  |  |  |
| 0.196 | 0.22897 | 0.51449 | 0.196 | 0.22897 | 0.56118 |  |  |  |


| 0.197 | 0.23014 | 0.51449 | 0.197 | 0.23014 | 0.56118 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.198 | 0.23131 | 0.51449 | 0.198 | 0.23131 | 0.56118 |  |  |  |
| 0.199 | 0.23248 | 0.51449 | 0.199 | 0.23248 | 0.56118 |  |  |  |
| 0.2 | 0.23364 | 0.51449 | 0.2 | 0.23364 | 0.56118 |  |  |  |
| 0.201 | 0.23481 | 0.51449 | 0.201 | 0.23481 | 0.56118 |  |  |  |
| 0.202 | 0.23598 | 0.51449 | 0.202 | 0.23598 | 0.56118 |  |  |  |
| 0.203 | 0.23715 | 0.51449 | 0.203 | 0.23715 | 0.56118 |  |  |  |
| 0.204 | 0.23832 | 0.51449 | 0.204 | 0.23832 | 0.56118 |  |  |  |
| 0.205 | 0.23949 | 0.51449 | 0.205 | 0.23949 | 0.56118 |  |  |  |
| 0.206 | 0.24065 | 0.51449 | 0.206 | 0.24065 | 0.56118 |  |  |  |
| 0.207 | 0.24182 | 0.51449 | 0.207 | 0.24182 | 0.56118 |  |  |  |
| 0.208 | 0.24299 | 0.51449 | 0.208 | 0.24299 | 0.56118 |  |  |  |
| 0.209 | 0.24416 | 0.51449 | 0.209 | 0.24416 | 0.56118 |  |  |  |
| 0.21 | 0.24533 | 0.51449 | 0.21 | 0.24533 | 0.56118 |  |  |  |
| 0.211 | 0.24650 | 0.51449 | 0.211 | 0.24650 | 0.56118 |  |  |  |
| 0.212 | 0.24766 | 0.51449 | 0.212 | 0.24766 | 0.56118 |  |  |  |
| 0.213 | 0.24883 | 0.51449 | 0.213 | 0.24883 | 0.56118 |  |  |  |
| 0.214 | 0.25000 | 0.51449 | 0.214 | 0.25000 | 0.56118 |  |  |  |
| 0.215 | 0.25117 | 0.51449 | 0.215 | 0.25117 | 0.56118 |  |  |  |
| 0.216 | 0.25234 | 0.51449 | 0.216 | 0.25234 | 0.56118 |  |  |  |
| 0.217 | 0.25350 | 0.51449 | 0.217 | 0.25350 | 0.56118 |  |  |  |
| 0.218 | 0.25467 | 0.51449 | 0.218 | 0.25467 | 0.56118 |  |  |  |
| 0.219 | 0.25584 | 0.51449 | 0.219 | 0.25584 | 0.56118 |  |  |  |
| 0.22 | 0.25701 | 0.51449 | 0.22 | 0.25701 | 0.56118 |  |  |  |
| 0.221 | 0.25818 | 0.51449 | 0.221 | 0.25818 | 0.56118 |  |  |  |
| 0.222 | 0.25935 | 0.51449 | 0.222 | 0.25935 | 0.56118 |  |  |  |
| 0.223 | 0.26051 | 0.51449 | 0.223 | 0.26051 | 0.56118 |  |  |  |
| 0.224 | 0.26168 | 0.51449 | 0.224 | 0.26168 | 0.56118 |  |  |  |
| 0.225 | 0.26285 | 0.51449 | 0.225 | 0.26285 | 0.56118 |  |  |  |
| 0.226 | 0.26402 | 0.51449 | 0.226 | 0.26402 | 0.56118 |  |  |  |
| 0.227 | 0.26519 | 0.51449 | 0.227 | 0.26519 | 0.56118 |  |  |  |
| 0.228 | 0.26636 | 0.51449 | 0.228 | 0.26636 | 0.56118 |  |  |  |
| 0.229 | 0.26752 | 0.51449 | 0.229 | 0.26752 | 0.56118 |  |  |  |
| 0.23 | 0.26869 | 0.51449 | 0.23 | 0.26869 | 0.56118 |  |  |  |
| 0.231 | 0.26986 | 0.51449 | 0.231 | 0.26986 | 0.56118 |  |  |  |
| 0.232 | 0.27103 | 0.51449 | 0.232 | 0.27103 | 0.56118 |  |  |  |
| 0.233 | 0.27220 | 0.51449 | 0.233 | 0.27220 | 0.56118 |  |  |  |
| 0.234 | 0.27336 | 0.51449 | 0.234 | 0.27336 | 0.56118 |  |  |  |
| 0.235 | 0.27453 | 0.51449 | 0.235 | 0.27453 | 0.56118 |  |  |  |
| 0.236 | 0.27570 | 0.51449 | 0.236 | 0.27570 | 0.56118 |  |  |  |
| 0.237 | 0.27687 | 0.51449 | 0.237 | 0.27687 | 0.56118 |  |  |  |


| 0.238 | 0.27804 | 0.51449 | 0.238 | 0.27804 | 0.56118 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.239 | 0.27921 | 0.51449 | 0.239 | 0.27921 | 0.56118 |  |  |  |
| 0.24 | 0.28037 | 0.51449 | 0.24 | 0.28037 | 0.56118 |  |  |  |
| 0.241 | 0.28154 | 0.51449 | 0.241 | 0.28154 | 0.56118 |  |  |  |
| 0.242 | 0.28271 | 0.51449 | 0.242 | 0.28271 | 0.56118 |  |  |  |
| 0.243 | 0.28388 | 0.51449 | 0.243 | 0.28388 | 0.56118 |  |  |  |
| 0.244 | 0.28505 | 0.51449 | 0.244 | 0.28505 | 0.56118 |  |  |  |
| 0.245 | 0.28621 | 0.51449 | 0.245 | 0.28621 | 0.56118 |  |  |  |
| 0.246 | 0.28738 | 0.51449 | 0.246 | 0.28738 | 0.56118 |  |  |  |
| 0.247 | 0.28855 | 0.51449 | 0.247 | 0.28855 | 0.56118 |  |  |  |
| 0.248 | 0.28972 | 0.51449 | 0.248 | 0.28972 | 0.56118 |  |  |  |
| 0.249 | 0.29089 | 0.51449 | 0.249 | 0.29089 | 0.56118 |  |  |  |
| 0.25 | 0.29206 | 0.51449 | 0.25 | 0.29206 | 0.56118 |  |  |  |
| 0.251 | 0.29322 | 0.51449 | 0.251 | 0.29322 | 0.56118 |  |  |  |
| 0.252 | 0.29439 | 0.51449 | 0.252 | 0.29439 | 0.56118 |  |  |  |
| 0.253 | 0.29556 | 0.51449 | 0.253 | 0.29556 | 0.56118 |  |  |  |
| 0.254 | 0.29673 | 0.51449 | 0.254 | 0.29673 | 0.56118 |  |  |  |
| 0.255 | 0.29790 | 0.51449 | 0.255 | 0.29790 | 0.56118 |  |  |  |
| 0.256 | 0.29907 | 0.51449 | 0.256 | 0.29907 | 0.55696 |  |  |  |
| 0.257 | 0.30023 | 0.51449 | 0.257 | 0.30023 | 0.55696 |  |  |  |
| 0.258 | 0.30140 | 0.51449 | 0.258 | 0.30140 | 0.55696 |  |  |  |
| 0.259 | 0.30257 | 0.51449 | 0.259 | 0.30257 | 0.55274 |  |  |  |
| 0.26 | 0.30374 | 0.51449 | 0.26 | 0.30374 | 0.54852 |  |  |  |
| 0.261 | 0.30491 | 0.51449 | 0.261 | 0.30491 | 0.54852 |  |  |  |
| 0.262 | 0.30607 | 0.51449 | 0.262 | 0.30607 | 0.54852 |  |  |  |
| 0.263 | 0.30724 | 0.51449 | 0.263 | 0.30724 | 0.54852 |  |  |  |
| 0.264 | 0.30841 | 0.51449 | 0.264 | 0.30841 | 0.54852 |  |  |  |
| 0.265 | 0.30958 | 0.51449 | 0.265 | 0.30958 | 0.54852 |  |  |  |
| 0.266 | 0.31075 | 0.51449 | 0.266 | 0.31075 | 0.54852 |  |  |  |
| 0.267 | 0.31192 | 0.51449 | 0.267 | 0.31192 | 0.54852 |  |  |  |
| 0.268 | 0.31308 | 0.51449 | 0.268 | 0.31308 | 0.54852 |  |  |  |
| 0.269 | 0.31425 | 0.51449 | 0.269 | 0.31425 | 0.54852 |  |  |  |
| 0.27 | 0.31542 | 0.51449 | 0.27 | 0.31542 | 0.54852 |  |  |  |
| 0.271 | 0.31659 | 0.51449 | 0.271 | 0.31659 | 0.54852 |  |  |  |
| 0.272 | 0.31776 | 0.51449 | 0.272 | 0.31776 | 0.54852 |  |  |  |
| 0.273 | 0.31893 | 0.51449 | 0.273 | 0.31893 | 0.54430 |  |  |  |
| 0.274 | 0.32009 | 0.51449 | 0.274 | 0.32009 | 0.54430 |  |  |  |
| 0.275 | 0.32126 | 0.51449 | 0.275 | 0.32126 | 0.54430 |  |  |  |
| 0.276 | 0.32243 | 0.51449 | 0.276 | 0.32243 | 0.54008 |  |  |  |
| 0.277 | 0.32360 | 0.51449 | 0.277 | 0.32360 | 0.54008 |  |  |  |
| 0.278 | 0.32477 | 0.51449 | 0.278 | 0.32477 | 0.54008 |  |  |  |
|  |  |  |  |  |  |  |  |  |


| 0.279 | 0.32593 | 0.51449 | 0.279 | 0.32593 | 0.54008 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.28 | 0.32710 | 0.51449 | 0.28 | 0.32710 | 0.54008 |  |  |  |
| 0.281 | 0.32827 | 0.51449 | 0.281 | 0.32827 | 0.54008 |  |  |  |
| 0.282 | 0.32944 | 0.51449 | 0.282 | 0.32944 | 0.53586 |  |  |  |
| 0.283 | 0.33061 | 0.51449 | 0.283 | 0.33061 | 0.53586 |  |  |  |
| 0.284 | 0.33178 | 0.51449 | 0.284 | 0.33178 | 0.53586 |  |  |  |
| 0.285 | 0.33294 | 0.51449 | 0.285 | 0.33294 | 0.53586 |  |  |  |
| 0.286 | 0.33411 | 0.51449 | 0.286 | 0.33411 | 0.53586 |  |  |  |
| 0.287 | 0.33528 | 0.51449 | 0.287 | 0.33528 | 0.53586 |  |  |  |
| 0.288 | 0.33645 | 0.51449 | 0.288 | 0.33645 | 0.53165 |  |  |  |
| 0.289 | 0.33762 | 0.51449 | 0.289 | 0.33762 | 0.53165 |  |  |  |
| 0.29 | 0.33879 | 0.51449 | 0.29 | 0.33879 | 0.52743 |  |  |  |
| 0.291 | 0.33995 | 0.51449 | 0.291 | 0.33995 | 0.52321 |  |  |  |
| 0.292 | 0.34112 | 0.51449 | 0.292 | 0.34112 | 0.52321 |  |  |  |
| 0.293 | 0.34229 | 0.51449 | 0.293 | 0.34229 | 0.52321 |  |  |  |
| 0.294 | 0.34346 | 0.51449 | 0.294 | 0.34346 | 0.52321 |  |  |  |
| 0.295 | 0.34463 | 0.51449 | 0.295 | 0.34463 | 0.52321 |  |  |  |
| 0.296 | 0.34579 | 0.51449 | 0.296 | 0.34579 | 0.51899 |  |  |  |
| 0.297 | 0.34696 | 0.51449 | 0.297 | 0.34696 | 0.51899 |  |  |  |
| 0.298 | 0.34813 | 0.51449 | 0.298 | 0.34813 | 0.51899 |  |  |  |
| 0.299 | 0.34930 | 0.51449 | 0.299 | 0.34930 | 0.51477 |  |  |  |
| 0.3 | 0.35047 | 0.51449 | 0.3 | 0.35047 | 0.51055 |  |  |  |
| 0.301 | 0.35164 | 0.51449 | 0.301 | 0.35164 | 0.51055 |  |  |  |
| 0.302 | 0.35280 | 0.51449 | 0.302 | 0.35280 | 0.51055 |  |  |  |
| 0.303 | 0.35397 | 0.51449 | 0.303 | 0.35397 | 0.51055 |  |  |  |
| 0.304 | 0.35514 | 0.51449 | 0.304 | 0.35514 | 0.51055 |  |  |  |
| 0.305 | 0.35631 | 0.51449 | 0.305 | 0.35631 | 0.51055 |  |  |  |
| 0.306 | 0.35748 | 0.51449 | 0.306 | 0.35748 | 0.50633 |  |  |  |
| 0.307 | 0.35864 | 0.51449 | 0.307 | 0.35864 | 0.50633 |  |  |  |
| 0.308 | 0.35981 | 0.51449 | 0.308 | 0.35981 | 0.50633 |  |  |  |
| 0.309 | 0.36098 | 0.51449 | 0.309 | 0.36098 | 0.50633 |  |  |  |
| 0.31 | 0.36215 | 0.51449 | 0.31 | 0.36215 | 0.50211 |  |  |  |
| 0.311 | 0.36332 | 0.51449 | 0.311 | 0.36332 | 0.50211 |  |  |  |
| 0.312 | 0.36449 | 0.51449 | 0.312 | 0.36449 | 0.50211 |  |  |  |
| 0.313 | 0.36565 | 0.51449 | 0.313 | 0.36565 | 0.50211 |  |  |  |
| 0.314 | 0.36682 | 0.51449 | 0.314 | 0.36682 | 0.50211 |  |  |  |
| 0.315 | 0.36799 | 0.51449 | 0.315 | 0.36799 | 0.50211 |  |  |  |
| 0.316 | 0.36916 | 0.51449 | 0.316 | 0.36916 | 0.50211 |  |  |  |
| 0.317 | 0.37033 | 0.51449 | 0.317 | 0.37033 | 0.50211 |  |  |  |
| 0.318 | 0.37150 | 0.51449 | 0.318 | 0.37150 | 0.50211 |  |  |  |
| 0.319 | 0.37266 | 0.51449 | 0.319 | 0.37266 | 0.50211 |  |  |  |


| 0.32 | 0.37383 | 0.51449 | 0.32 | 0.37383 | 0.50211 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.321 | 0.37500 | 0.51449 | 0.321 | 0.37500 | 0.50211 |  |  |  |
| 0.322 | 0.37617 | 0.51449 | 0.322 | 0.37617 | 0.50211 |  |  |  |
| 0.323 | 0.37734 | 0.51449 | 0.323 | 0.37734 | 0.50211 |  |  |  |
| 0.324 | 0.37850 | 0.51449 | 0.324 | 0.37850 | 0.50211 |  |  |  |
| 0.325 | 0.37967 | 0.51449 | 0.325 | 0.37967 | 0.50211 |  |  |  |
| 0.326 | 0.38084 | 0.51449 | 0.326 | 0.38084 | 0.50211 |  |  |  |
| 0.327 | 0.38201 | 0.51449 | 0.327 | 0.38201 | 0.50211 |  |  |  |
| 0.328 | 0.38318 | 0.51449 | 0.328 | 0.38318 | 0.50211 |  |  |  |
| 0.329 | 0.38435 | 0.51449 | 0.329 | 0.38435 | 0.49789 |  |  |  |
| 0.33 | 0.38551 | 0.51449 | 0.33 | 0.38551 | 0.49789 |  |  |  |
| 0.331 | 0.38668 | 0.51449 | 0.331 | 0.38668 | 0.49789 |  |  |  |
| 0.332 | 0.38785 | 0.51449 | 0.332 | 0.38785 | 0.49789 |  |  |  |
| 0.333 | 0.38902 | 0.51449 | 0.333 | 0.38902 | 0.49789 |  |  |  |
| 0.334 | 0.39019 | 0.51449 | 0.334 | 0.39019 | 0.49789 |  |  |  |
| 0.335 | 0.39136 | 0.51449 | 0.335 | 0.39136 | 0.49789 |  |  |  |
| 0.336 | 0.39252 | 0.51449 | 0.336 | 0.39252 | 0.49789 |  |  |  |
| 0.337 | 0.39369 | 0.51449 | 0.337 | 0.39369 | 0.49789 |  |  |  |
| 0.338 | 0.39486 | 0.51449 | 0.338 | 0.39486 | 0.49367 |  |  |  |
| 0.339 | 0.39603 | 0.51449 | 0.339 | 0.39603 | 0.49367 |  |  |  |
| 0.34 | 0.39720 | 0.51449 | 0.34 | 0.39720 | 0.49367 |  |  |  |
| 0.341 | 0.39836 | 0.51449 | 0.341 | 0.39836 | 0.49367 |  |  |  |
| 0.342 | 0.39953 | 0.51449 | 0.342 | 0.39953 | 0.49367 |  |  |  |
| 0.343 | 0.40070 | 0.51449 | 0.343 | 0.40070 | 0.49367 |  |  |  |
| 0.344 | 0.40187 | 0.51449 | 0.344 | 0.40187 | 0.49367 |  |  |  |
| 0.345 | 0.40304 | 0.51449 | 0.345 | 0.40304 | 0.49367 |  |  |  |
| 0.346 | 0.40421 | 0.51449 | 0.346 | 0.40421 | 0.49367 |  |  |  |
| 0.347 | 0.40537 | 0.51449 | 0.347 | 0.40537 | 0.49367 |  |  |  |
| 0.348 | 0.40654 | 0.51449 | 0.348 | 0.40654 | 0.49367 |  |  |  |
| 0.349 | 0.40771 | 0.51449 | 0.349 | 0.40771 | 0.49367 |  |  |  |
| 0.35 | 0.40888 | 0.51449 | 0.35 | 0.40888 | 0.49367 |  |  |  |
| 0.351 | 0.41005 | 0.51449 | 0.351 | 0.41005 | 0.49367 |  |  |  |
| 0.352 | 0.41121 | 0.51449 | 0.352 | 0.41121 | 0.49367 |  |  |  |
| 0.353 | 0.41238 | 0.49275 | 0.353 | 0.41238 | 0.48945 |  |  |  |
| 0.354 | 0.41355 | 0.47826 | 0.354 | 0.41355 | 0.48523 |  |  |  |
| 0.355 | 0.41472 | 0.47101 | 0.355 | 0.41472 | 0.48523 |  |  |  |
| 0.356 | 0.41589 | 0.45652 | 0.356 | 0.41589 | 0.48523 |  |  |  |
| 0.357 | 0.41706 | 0.44203 | 0.357 | 0.41706 | 0.48101 |  |  |  |
| 0.358 | 0.41822 | 0.42754 | 0.358 | 0.41822 | 0.47257 |  |  |  |
| 0.359 | 0.41939 | 0.42029 | 0.359 | 0.41939 | 0.46414 |  |  |  |
| 0.36 | 0.42056 | 0.39130 | 0.36 | 0.42056 | 0.41350 |  |  |  |


| 0.361 | 0.42173 | 0.37681 | 0.361 | 0.42173 | 0.35021 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.362 | 0.42290 | 0.36957 | 0.362 | 0.42290 | 0.30380 |  |  |  |
| 0.363 | 0.42407 | 0.33333 | 0.363 | 0.42407 | 0.26160 |  |  |  |
| 0.364 | 0.42523 | 0.31884 | 0.364 | 0.42523 | 0.25316 |  |  |  |
| 0.365 | 0.42640 | 0.31884 | 0.365 | 0.42640 | 0.22363 |  |  |  |
| 0.366 | 0.42757 | 0.31884 | 0.366 | 0.42757 | 0.19409 |  |  |  |
| 0.367 | 0.42874 | 0.31159 | 0.367 | 0.42874 | 0.18143 |  |  |  |
| 0.368 | 0.42991 | 0.28261 | 0.368 | 0.42991 | 0.14346 |  |  |  |
| 0.369 | 0.43107 | 0.27536 | 0.369 | 0.43107 | 0.12658 |  |  |  |
| 0.37 | 0.43224 | 0.27536 | 0.37 | 0.43224 | 0.09283 |  |  |  |
| 0.371 | 0.43341 | 0.26812 | 0.371 | 0.43341 | 0.06329 |  |  |  |
| 0.372 | 0.43458 | 0.26812 | 0.372 | 0.43458 | 0.03376 |  |  |  |
| 0.373 | 0.43575 | 0.26812 | 0.373 | 0.43575 | 0.01688 |  |  |  |
| 0.374 | 0.43692 | 0.26812 |  |  |  |  |  |  |
| 0.375 | 0.43808 | 0.26087 |  |  |  |  |  |  |
| 0.376 | 0.43925 | 0.26087 |  |  |  |  |  |  |
| 0.377 | 0.44042 | 0.25362 |  |  |  |  |  |  |
| 0.378 | 0.44159 | 0.24638 |  |  |  |  |  |  |
| 0.379 | 0.44276 | 0.24638 |  |  |  |  |  |  |
| 0.38 | 0.44393 | 0.21739 |  |  |  |  |  |  |
| 0.381 | 0.44509 | 0.21739 |  |  |  |  |  |  |
| 0.382 | 0.44626 | 0.21739 |  |  |  |  |  |  |
| 0.383 | 0.44743 | 0.21739 |  |  |  |  |  |  |
| 0.384 | 0.44860 | 0.19565 |  |  |  |  |  |  |
| 0.385 | 0.44977 | 0.18841 |  |  |  |  |  |  |
| 0.386 | 0.45093 | 0.17391 |  |  |  |  |  |  |
| 0.387 | 0.45210 | 0.16667 |  |  |  |  |  |  |
| 0.388 | 0.45327 | 0.14493 |  |  |  |  |  |  |
| 0.389 | 0.45444 | 0.14493 |  |  |  |  |  |  |
| 0.39 | 0.45561 | 0.13768 |  |  |  |  |  |  |
| 0.391 | 0.45678 | 0.13043 |  |  |  |  |  |  |
| 0.392 | 0.45794 | 0.10145 |  |  |  |  |  |  |
| 0.393 | 0.45911 | 0.09420 |  |  |  |  |  |  |
| 0.394 | 0.46028 | 0.08696 |  |  |  |  |  |  |
| 0.395 | 0.46145 | 0.05072 |  |  |  |  |  |  |
| 0.396 | 0.46262 | 0.05072 |  |  |  |  |  |  |
| 0.397 | 0.46379 | 0.03623 |  |  |  |  |  |  |
| 0.398 | 0.46495 | 0.00725 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Table G-18. $\quad$ 80/20 Long AML neo-sinus particle tracking results for $5.0 \mathrm{~L} / \mathrm{min}$.

| 0\% LAMPOON |  |  | 50\% LAMPOON |  |  | 100\% LAMPOON |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time (s) | Cycle <br> (\#) | Particle Density (\%) | Time (s) | Cycle <br> (\#) | Particle Density (\%) | Time (s) | Cycle <br> (\#) | Particle Density <br> (\%) |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0.001 | 0.00117 | 1 | 0.001 | 0.00117 | 1 | 0.001 | 0.00117 | 0.99714 |
| 0.002 | 0.00234 | 1 | 0.002 | 0.00234 | 1 | 0.002 | 0.00234 | 0.99714 |
| 0.003 | 0.00350 | 1 | 0.003 | 0.00350 | 1 | 0.003 | 0.00350 | 0.98000 |
| 0.004 | 0.00467 | 1 | 0.004 | 0.00467 | 1 | 0.004 | 0.00467 | 0.96000 |
| 0.005 | 0.00584 | 1 | 0.005 | 0.00584 | 1 | 0.005 | 0.00584 | 0.91429 |
| 0.006 | 0.00701 | 0.99275 | 0.006 | 0.00701 | 1 | 0.006 | 0.00701 | 0.88286 |
| 0.007 | 0.00818 | 0.97101 | 0.007 | 0.00818 | 0.99578 | 0.007 | 0.00818 | 0.86857 |
| 0.008 | 0.00935 | 0.96377 | 0.008 | 0.00935 | 0.96624 | 0.008 | 0.00935 | 0.83714 |
| 0.009 | 0.01051 | 0.96377 | 0.009 | 0.01051 | 0.95359 | 0.009 | 0.01051 | 0.81714 |
| 0.01 | 0.01168 | 0.95652 | 0.01 | 0.01168 | 0.95359 | 0.01 | 0.01168 | 0.78571 |
| 0.011 | 0.01285 | 0.93478 | 0.011 | 0.01285 | 0.94515 | 0.011 | 0.01285 | 0.76286 |
| 0.012 | 0.01402 | 0.91304 | 0.012 | 0.01402 | 0.91983 | 0.012 | 0.01402 | 0.72286 |
| 0.013 | 0.01519 | 0.91304 | 0.013 | 0.01519 | 0.91561 | 0.013 | 0.01519 | 0.66857 |
| 0.014 | 0.01636 | 0.87681 | 0.014 | 0.01636 | 0.91139 | 0.014 | 0.01636 | 0.63143 |
| 0.015 | 0.01752 | 0.86232 | 0.015 | 0.01752 | 0.90717 | 0.015 | 0.01752 | 0.58000 |
| 0.016 | 0.01869 | 0.86232 | 0.016 | 0.01869 | 0.90295 | 0.016 | 0.01869 | 0.55143 |
| 0.017 | 0.01986 | 0.86232 | 0.017 | 0.01986 | 0.90295 | 0.017 | 0.01986 | 0.51714 |
| 0.018 | 0.02103 | 0.86232 | 0.018 | 0.02103 | 0.90295 | 0.018 | 0.02103 | 0.48857 |
| 0.019 | 0.02220 | 0.86232 | 0.019 | 0.02220 | 0.89030 | 0.019 | 0.02220 | 0.46571 |
| 0.02 | 0.02336 | 0.86232 | 0.02 | 0.02336 | 0.89030 | 0.02 | 0.02336 | 0.44000 |
| 0.021 | 0.02453 | 0.85507 | 0.021 | 0.02453 | 0.89030 | 0.021 | 0.02453 | 0.40571 |
| 0.022 | 0.02570 | 0.85507 | 0.022 | 0.02570 | 0.88186 | 0.022 | 0.02570 | 0.37143 |
| 0.023 | 0.02687 | 0.85507 | 0.023 | 0.02687 | 0.86920 | 0.023 | 0.02687 | 0.34286 |
| 0.024 | 0.02804 | 0.85507 | 0.024 | 0.02804 | 0.86498 | 0.024 | 0.02804 | 0.31429 |
| 0.025 | 0.02921 | 0.84783 | 0.025 | 0.02921 | 0.85654 | 0.025 | 0.02921 | 0.29429 |
| 0.026 | 0.03037 | 0.84058 | 0.026 | 0.03037 | 0.85232 | 0.026 | 0.03037 | 0.27429 |
| 0.027 | 0.03154 | 0.84058 | 0.027 | 0.03154 | 0.84810 | 0.027 | 0.03154 | 0.26000 |
| 0.028 | 0.03271 | 0.82609 | 0.028 | 0.03271 | 0.84388 | 0.028 | 0.03271 | 0.24286 |
| 0.029 | 0.03388 | 0.82609 | 0.029 | 0.03388 | 0.83966 | 0.029 | 0.03388 | 0.22571 |
| 0.03 | 0.03505 | 0.82609 | 0.03 | 0.03505 | 0.83544 | 0.03 | 0.03505 | 0.21714 |
| 0.031 | 0.03621 | 0.81159 | 0.031 | 0.03621 | 0.83544 | 0.031 | 0.03621 | 0.19714 |
| 0.032 | 0.03738 | 0.81159 | 0.032 | 0.03738 | 0.83544 | 0.032 | 0.03738 | 0.17714 |


| 0.033 | 0.03855 | 0.81159 | 0.033 | 0.03855 | 0.83122 | 0.033 | 0.03855 | 0.16286 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.034 | 0.03972 | 0.81159 | 0.034 | 0.03972 | 0.83122 | 0.034 | 0.03972 | 0.15143 |
| 0.035 | 0.04089 | 0.80435 | 0.035 | 0.04089 | 0.82700 | 0.035 | 0.04089 | 0.13429 |
| 0.036 | 0.04206 | 0.80435 | 0.036 | 0.04206 | 0.82278 | 0.036 | 0.04206 | 0.12000 |
| 0.037 | 0.04322 | 0.80435 | 0.037 | 0.04322 | 0.82278 | 0.037 | 0.04322 | 0.11429 |
| 0.038 | 0.04439 | 0.79710 | 0.038 | 0.04439 | 0.82278 | 0.038 | 0.04439 | 0.10286 |
| 0.039 | 0.04556 | 0.78986 | 0.039 | 0.04556 | 0.81857 | 0.039 | 0.04556 | 0.09714 |
| 0.04 | 0.04673 | 0.78986 | 0.04 | 0.04673 | 0.81013 | 0.04 | 0.04673 | 0.08571 |
| 0.041 | 0.04790 | 0.78986 | 0.041 | 0.04790 | 0.80591 | 0.041 | 0.04790 | 0.07143 |
| 0.042 | 0.04907 | 0.78261 | 0.042 | 0.04907 | 0.80169 | 0.042 | 0.04907 | 0.06571 |
| 0.043 | 0.05023 | 0.77536 | 0.043 | 0.05023 | 0.80169 | 0.043 | 0.05023 | 0.06286 |
| 0.044 | 0.05140 | 0.77536 | 0.044 | 0.05140 | 0.79747 | 0.044 | 0.05140 | 0.05429 |
| 0.045 | 0.05257 | 0.76812 | 0.045 | 0.05257 | 0.79747 | 0.045 | 0.05257 | 0.04571 |
| 0.046 | 0.05374 | 0.76812 | 0.046 | 0.05374 | 0.79747 | 0.046 | 0.05374 | 0.04286 |
| 0.047 | 0.05491 | 0.76087 | 0.047 | 0.05491 | 0.78903 | 0.047 | 0.05491 | 0.04000 |
| 0.048 | 0.05607 | 0.76087 | 0.048 | 0.05607 | 0.78903 | 0.048 | 0.05607 | 0.03429 |
| 0.049 | 0.05724 | 0.75362 | 0.049 | 0.05724 | 0.78903 | 0.049 | 0.05724 | 0.03143 |
| 0.05 | 0.05841 | 0.74638 | 0.05 | 0.05841 | 0.78903 | 0.05 | 0.05841 | 0.02857 |
| 0.051 | 0.05958 | 0.74638 | 0.051 | 0.05958 | 0.78481 | 0.051 | 0.05958 | 0.02000 |
| 0.052 | 0.06075 | 0.73913 | 0.052 | 0.06075 | 0.78059 | 0.052 | 0.06075 | 0.01714 |
| 0.053 | 0.06192 | 0.72464 | 0.053 | 0.06192 | 0.77215 | 0.053 | 0.06192 | 0.01429 |
| 0.054 | 0.06308 | 0.71014 | 0.054 | 0.06308 | 0.76371 | 0.054 | 0.06308 | 0.00857 |
| 0.055 | 0.06425 | 0.70290 | 0.055 | 0.06425 | 0.75527 | 0.055 | 0.06425 | 0.00571 |
| 0.056 | 0.06542 | 0.70290 | 0.056 | 0.06542 | 0.75105 | 0.056 | 0.06542 | 0.00286 |
| 0.057 | 0.06659 | 0.70290 | 0.057 | 0.06659 | 0.74684 | 0.057 | 0.06659 | 0.00286 |
| 0.058 | 0.06776 | 0.70290 | 0.058 | 0.06776 | 0.73418 |  |  |  |
| 0.059 | 0.06893 | 0.70290 | 0.059 | 0.06893 | 0.73418 |  |  |  |
| 0.06 | 0.07009 | 0.70290 | 0.06 | 0.07009 | 0.73418 |  |  |  |
| 0.061 | 0.07126 | 0.70290 | 0.061 | 0.07126 | 0.72574 |  |  |  |
| 0.062 | 0.07243 | 0.70290 | 0.062 | 0.07243 | 0.72574 |  |  |  |
| 0.063 | 0.07360 | 0.70290 | 0.063 | 0.07360 | 0.72574 |  |  |  |
| 0.064 | 0.07477 | 0.70290 | 0.064 | 0.07477 | 0.72574 |  |  |  |
| 0.065 | 0.07593 | 0.69565 | 0.065 | 0.07593 | 0.71308 |  |  |  |
| 0.066 | 0.07710 | 0.69565 | 0.066 | 0.07710 | 0.71308 |  |  |  |
| 0.067 | 0.07827 | 0.69565 | 0.067 | 0.07827 | 0.71308 |  |  |  |
| 0.068 | 0.07944 | 0.69565 | 0.068 | 0.07944 | 0.70886 |  |  |  |
| 0.069 | 0.08061 | 0.68841 | 0.069 | 0.08061 | 0.70464 |  |  |  |
| 0.07 | 0.08178 | 0.68841 | 0.07 | 0.08178 | 0.70464 |  |  |  |
| 0.071 | 0.08294 | 0.68841 | 0.071 | 0.08294 | 0.70464 |  |  |  |
| 0.072 | 0.08411 | 0.68841 | 0.072 | 0.08411 | 0.70042 |  |  |  |
| 0.073 | 0.08528 | 0.68841 | 0.073 | 0.08528 | 0.69198 |  |  |  |


| 0.074 | 0.08645 | 0.68841 | 0.074 | 0.08645 | 0.69198 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.075 | 0.08762 | 0.68841 | 0.075 | 0.08762 | 0.68354 |  |  |  |
| 0.076 | 0.08879 | 0.68841 | 0.076 | 0.08879 | 0.67932 |  |  |  |
| 0.077 | 0.08995 | 0.68841 | 0.077 | 0.08995 | 0.67932 |  |  |  |
| 0.078 | 0.09112 | 0.68841 | 0.078 | 0.09112 | 0.67511 |  |  |  |
| 0.079 | 0.09229 | 0.68841 | 0.079 | 0.09229 | 0.67511 |  |  |  |
| 0.08 | 0.09346 | 0.68841 | 0.08 | 0.09346 | 0.66667 |  |  |  |
| 0.081 | 0.09463 | 0.68841 | 0.081 | 0.09463 | 0.66245 |  |  |  |
| 0.082 | 0.09579 | 0.68841 | 0.082 | 0.09579 | 0.65823 |  |  |  |
| 0.083 | 0.09696 | 0.68841 | 0.083 | 0.09696 | 0.64979 |  |  |  |
| 0.084 | 0.09813 | 0.68841 | 0.084 | 0.09813 | 0.63713 |  |  |  |
| 0.085 | 0.09930 | 0.68841 | 0.085 | 0.09930 | 0.63713 |  |  |  |
| 0.086 | 0.10047 | 0.68841 | 0.086 | 0.10047 | 0.63291 |  |  |  |
| 0.087 | 0.10164 | 0.68841 | 0.087 | 0.10164 | 0.61603 |  |  |  |
| 0.088 | 0.10280 | 0.68841 | 0.088 | 0.10280 | 0.61181 |  |  |  |
| 0.089 | 0.10397 | 0.68841 | 0.089 | 0.10397 | 0.60338 |  |  |  |
| 0.09 | 0.10514 | 0.68841 | 0.09 | 0.10514 | 0.60338 |  |  |  |
| 0.091 | 0.10631 | 0.68841 | 0.091 | 0.10631 | 0.59916 |  |  |  |
| 0.092 | 0.10748 | 0.68841 | 0.092 | 0.10748 | 0.59072 |  |  |  |
| 0.093 | 0.10864 | 0.68841 | 0.093 | 0.10864 | 0.59072 |  |  |  |
| 0.094 | 0.10981 | 0.68841 | 0.094 | 0.10981 | 0.58650 |  |  |  |
| 0.095 | 0.11098 | 0.68841 | 0.095 | 0.11098 | 0.57806 |  |  |  |
| 0.096 | 0.11215 | 0.68841 | 0.096 | 0.11215 | 0.56540 |  |  |  |
| 0.097 | 0.11332 | 0.68841 | 0.097 | 0.11332 | 0.55274 |  |  |  |
| 0.098 | 0.11449 | 0.68841 | 0.098 | 0.11449 | 0.54852 |  |  |  |
| 0.099 | 0.11565 | 0.68841 | 0.099 | 0.11565 | 0.54008 |  |  |  |
| 0.1 | 0.11682 | 0.68841 | 0.1 | 0.11682 | 0.53586 |  |  |  |
| 0.101 | 0.11799 | 0.68841 | 0.101 | 0.11799 | 0.52321 |  |  |  |
| 0.102 | 0.11916 | 0.68841 | 0.102 | 0.11916 | 0.51899 |  |  |  |
| 0.103 | 0.12033 | 0.68841 | 0.103 | 0.12033 | 0.51055 |  |  |  |
| 0.104 | 0.12150 | 0.68841 | 0.104 | 0.12150 | 0.50633 |  |  |  |
| 0.105 | 0.12266 | 0.68841 | 0.105 | 0.12266 | 0.50633 |  |  |  |
| 0.106 | 0.12383 | 0.68116 | 0.106 | 0.12383 | 0.50633 |  |  |  |
| 0.107 | 0.12500 | 0.68116 | 0.107 | 0.12500 | 0.50211 |  |  |  |
| 0.108 | 0.12617 | 0.68116 | 0.108 | 0.12617 | 0.49367 |  |  |  |
| 0.109 | 0.12734 | 0.68116 | 0.109 | 0.12734 | 0.48523 |  |  |  |
| 0.11 | 0.12850 | 0.68116 | 0.11 | 0.12850 | 0.48523 |  |  |  |
| 0.111 | 0.12967 | 0.68116 | 0.111 | 0.12967 | 0.48101 |  |  |  |
| 0.112 | 0.13084 | 0.68116 | 0.112 | 0.13084 | 0.48101 |  |  |  |
| 0.113 | 0.13201 | 0.68116 | 0.113 | 0.13201 | 0.47679 |  |  |  |
| 0.114 | 0.13318 | 0.68116 | 0.114 | 0.13318 | 0.47679 |  |  |  |


| 0.115 | 0.13435 | 0.68116 | 0.115 | 0.13435 | 0.47679 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.116 | 0.13551 | 0.68116 | 0.116 | 0.13551 | 0.47257 |  |  |  |
| 0.117 | 0.13668 | 0.68116 | 0.117 | 0.13668 | 0.47257 |  |  |  |
| 0.118 | 0.13785 | 0.68116 | 0.118 | 0.13785 | 0.46835 |  |  |  |
| 0.119 | 0.13902 | 0.68116 | 0.119 | 0.13902 | 0.46835 |  |  |  |
| 0.12 | 0.14019 | 0.68116 | 0.12 | 0.14019 | 0.46414 |  |  |  |
| 0.121 | 0.14136 | 0.68116 | 0.121 | 0.14136 | 0.46414 |  |  |  |
| 0.122 | 0.14252 | 0.68116 | 0.122 | 0.14252 | 0.45992 |  |  |  |
| 0.123 | 0.14369 | 0.67391 | 0.123 | 0.14369 | 0.45570 |  |  |  |
| 0.124 | 0.14486 | 0.67391 | 0.124 | 0.14486 | 0.45148 |  |  |  |
| 0.125 | 0.14603 | 0.67391 | 0.125 | 0.14603 | 0.44304 |  |  |  |
| 0.126 | 0.14720 | 0.67391 | 0.126 | 0.14720 | 0.43038 |  |  |  |
| 0.127 | 0.14836 | 0.67391 | 0.127 | 0.14836 | 0.42616 |  |  |  |
| 0.128 | 0.14953 | 0.67391 | 0.128 | 0.14953 | 0.42616 |  |  |  |
| 0.129 | 0.15070 | 0.66667 | 0.129 | 0.15070 | 0.42616 |  |  |  |
| 0.13 | 0.15187 | 0.66667 | 0.13 | 0.15187 | 0.42616 |  |  |  |
| 0.131 | 0.15304 | 0.66667 | 0.131 | 0.15304 | 0.42194 |  |  |  |
| 0.132 | 0.15421 | 0.66667 | 0.132 | 0.15421 | 0.42194 |  |  |  |
| 0.133 | 0.15537 | 0.66667 | 0.133 | 0.15537 | 0.42194 |  |  |  |
| 0.134 | 0.15654 | 0.65942 | 0.134 | 0.15654 | 0.42194 |  |  |  |
| 0.135 | 0.15771 | 0.65942 | 0.135 | 0.15771 | 0.42194 |  |  |  |
| 0.136 | 0.15888 | 0.65942 | 0.136 | 0.15888 | 0.42194 |  |  |  |
| 0.137 | 0.16005 | 0.65942 | 0.137 | 0.16005 | 0.42194 |  |  |  |
| 0.138 | 0.16121 | 0.65942 | 0.138 | 0.16121 | 0.42194 |  |  |  |
| 0.139 | 0.16238 | 0.65942 | 0.139 | 0.16238 | 0.42194 |  |  |  |
| 0.14 | 0.16355 | 0.65942 | 0.14 | 0.16355 | 0.41772 |  |  |  |
| 0.141 | 0.16472 | 0.65942 | 0.141 | 0.16472 | 0.40928 |  |  |  |
| 0.142 | 0.16589 | 0.65942 | 0.142 | 0.16589 | 0.40928 |  |  |  |
| 0.143 | 0.16706 | 0.65217 | 0.143 | 0.16706 | 0.40084 |  |  |  |
| 0.144 | 0.16822 | 0.65217 | 0.144 | 0.16822 | 0.39662 |  |  |  |
| 0.145 | 0.16939 | 0.65217 | 0.145 | 0.16939 | 0.39662 |  |  |  |
| 0.146 | 0.17056 | 0.65217 | 0.146 | 0.17056 | 0.39662 |  |  |  |
| 0.147 | 0.17173 | 0.65217 | 0.147 | 0.17173 | 0.39241 |  |  |  |
| 0.148 | 0.17290 | 0.65217 | 0.148 | 0.17290 | 0.39241 |  |  |  |
| 0.149 | 0.17407 | 0.65217 | 0.149 | 0.17407 | 0.38819 |  |  |  |
| 0.15 | 0.17523 | 0.65217 | 0.15 | 0.17523 | 0.38819 |  |  |  |
| 0.151 | 0.17640 | 0.65217 | 0.151 | 0.17640 | 0.37975 |  |  |  |
| 0.152 | 0.17757 | 0.64493 | 0.152 | 0.17757 | 0.37131 |  |  |  |
| 0.153 | 0.17874 | 0.64493 | 0.153 | 0.17874 | 0.37131 |  |  |  |
| 0.154 | 0.17991 | 0.64493 | 0.154 | 0.17991 | 0.37131 |  |  |  |
| 0.155 | 0.18107 | 0.63768 | 0.155 | 0.18107 | 0.37131 |  |  |  |


| 0.156 | 0.18224 | 0.63768 | 0.156 | 0.18224 | 0.35443 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.157 | 0.18341 | 0.63768 | 0.157 | 0.18341 | 0.35443 |  |  |  |
| 0.158 | 0.18458 | 0.63043 | 0.158 | 0.18458 | 0.35443 |  |  |  |
| 0.159 | 0.18575 | 0.63043 | 0.159 | 0.18575 | 0.35443 |  |  |  |
| 0.16 | 0.18692 | 0.63043 | 0.16 | 0.18692 | 0.35443 |  |  |  |
| 0.161 | 0.18808 | 0.62319 | 0.161 | 0.18808 | 0.35443 |  |  |  |
| 0.162 | 0.18925 | 0.62319 | 0.162 | 0.18925 | 0.35443 |  |  |  |
| 0.163 | 0.19042 | 0.62319 | 0.163 | 0.19042 | 0.35443 |  |  |  |
| 0.164 | 0.19159 | 0.62319 | 0.164 | 0.19159 | 0.35443 |  |  |  |
| 0.165 | 0.19276 | 0.61594 | 0.165 | 0.19276 | 0.35443 |  |  |  |
| 0.166 | 0.19393 | 0.61594 | 0.166 | 0.19393 | 0.35443 |  |  |  |
| 0.167 | 0.19509 | 0.60870 | 0.167 | 0.19509 | 0.35021 |  |  |  |
| 0.168 | 0.19626 | 0.60870 | 0.168 | 0.19626 | 0.35021 |  |  |  |
| 0.169 | 0.19743 | 0.60870 | 0.169 | 0.19743 | 0.35021 |  |  |  |
| 0.17 | 0.19860 | 0.60870 | 0.17 | 0.19860 | 0.35021 |  |  |  |
| 0.171 | 0.19977 | 0.60870 | 0.171 | 0.19977 | 0.34599 |  |  |  |
| 0.172 | 0.20093 | 0.60870 | 0.172 | 0.20093 | 0.34599 |  |  |  |
| 0.173 | 0.20210 | 0.60870 | 0.173 | 0.20210 | 0.34599 |  |  |  |
| 0.174 | 0.20327 | 0.60870 | 0.174 | 0.20327 | 0.34599 |  |  |  |
| 0.175 | 0.20444 | 0.60870 | 0.175 | 0.20444 | 0.34599 |  |  |  |
| 0.176 | 0.20561 | 0.60870 | 0.176 | 0.20561 | 0.34599 |  |  |  |
| 0.177 | 0.20678 | 0.60870 | 0.177 | 0.20678 | 0.34599 |  |  |  |
| 0.178 | 0.20794 | 0.60870 | 0.178 | 0.20794 | 0.34177 |  |  |  |
| 0.179 | 0.20911 | 0.60870 | 0.179 | 0.20911 | 0.34177 |  |  |  |
| 0.18 | 0.21028 | 0.60145 | 0.18 | 0.21028 | 0.34177 |  |  |  |
| 0.181 | 0.21145 | 0.60145 | 0.181 | 0.21145 | 0.34177 |  |  |  |
| 0.182 | 0.21262 | 0.60145 | 0.182 | 0.21262 | 0.34177 |  |  |  |
| 0.183 | 0.21379 | 0.60145 | 0.183 | 0.21379 | 0.34177 |  |  |  |
| 0.184 | 0.21495 | 0.60145 | 0.184 | 0.21495 | 0.33755 |  |  |  |
| 0.185 | 0.21612 | 0.60145 | 0.185 | 0.21612 | 0.33755 |  |  |  |
| 0.186 | 0.21729 | 0.60145 | 0.186 | 0.21729 | 0.33755 |  |  |  |
| 0.187 | 0.21846 | 0.60145 | 0.187 | 0.21846 | 0.33755 |  |  |  |
| 0.188 | 0.21963 | 0.59420 | 0.188 | 0.21963 | 0.33755 |  |  |  |
| 0.189 | 0.22079 | 0.59420 | 0.189 | 0.22079 | 0.33755 |  |  |  |
| 0.19 | 0.22196 | 0.59420 | 0.19 | 0.22196 | 0.33333 |  |  |  |
| 0.191 | 0.22313 | 0.59420 | 0.191 | 0.22313 | 0.33333 |  |  |  |
| 0.192 | 0.22430 | 0.59420 | 0.192 | 0.22430 | 0.33333 |  |  |  |
| 0.193 | 0.22547 | 0.59420 | 0.193 | 0.22547 | 0.33333 |  |  |  |
| 0.194 | 0.22664 | 0.58696 | 0.194 | 0.22664 | 0.33333 |  |  |  |
| 0.195 | 0.22780 | 0.58696 | 0.195 | 0.22780 | 0.33333 |  |  |  |
| 0.196 | 0.22897 | 0.58696 | 0.196 | 0.22897 | 0.33333 |  |  |  |


| 0.197 | 0.23014 | 0.56522 | 0.197 | 0.23014 | 0.33333 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.198 | 0.23131 | 0.56522 | 0.198 | 0.23131 | 0.33333 |  |  |  |
| 0.199 | 0.23248 | 0.55797 | 0.199 | 0.23248 | 0.33333 |  |  |  |
| 0.2 | 0.23364 | 0.55072 | 0.2 | 0.23364 | 0.33333 |  |  |  |
| 0.201 | 0.23481 | 0.54348 | 0.201 | 0.23481 | 0.33333 |  |  |  |
| 0.202 | 0.23598 | 0.52899 | 0.202 | 0.23598 | 0.33333 |  |  |  |
| 0.203 | 0.23715 | 0.51449 | 0.203 | 0.23715 | 0.33333 |  |  |  |
| 0.204 | 0.23832 | 0.50000 | 0.204 | 0.23832 | 0.33333 |  |  |  |
| 0.205 | 0.23949 | 0.50000 | 0.205 | 0.23949 | 0.33333 |  |  |  |
| 0.206 | 0.24065 | 0.49275 | 0.206 | 0.24065 | 0.33333 |  |  |  |
| 0.207 | 0.24182 | 0.47101 | 0.207 | 0.24182 | 0.33333 |  |  |  |
| 0.208 | 0.24299 | 0.44928 | 0.208 | 0.24299 | 0.33333 |  |  |  |
| 0.209 | 0.24416 | 0.44928 | 0.209 | 0.24416 | 0.33333 |  |  |  |
| 0.21 | 0.24533 | 0.44203 | 0.21 | 0.24533 | 0.33333 |  |  |  |
| 0.211 | 0.24650 | 0.43478 | 0.211 | 0.24650 | 0.33333 |  |  |  |
| 0.212 | 0.24766 | 0.43478 | 0.212 | 0.24766 | 0.33333 |  |  |  |
| 0.213 | 0.24883 | 0.42754 | 0.213 | 0.24883 | 0.33333 |  |  |  |
| 0.214 | 0.25000 | 0.42754 | 0.214 | 0.25000 | 0.33333 |  |  |  |
| 0.215 | 0.25117 | 0.42754 | 0.215 | 0.25117 | 0.33333 |  |  |  |
| 0.216 | 0.25234 | 0.42754 | 0.216 | 0.25234 | 0.33333 |  |  |  |
| 0.217 | 0.25350 | 0.42754 | 0.217 | 0.25350 | 0.33333 |  |  |  |
| 0.218 | 0.25467 | 0.42029 | 0.218 | 0.25467 | 0.33333 |  |  |  |
| 0.219 | 0.25584 | 0.39855 | 0.219 | 0.25584 | 0.33333 |  |  |  |
| 0.22 | 0.25701 | 0.39855 | 0.22 | 0.25701 | 0.33333 |  |  |  |
| 0.221 | 0.25818 | 0.39130 | 0.221 | 0.25818 | 0.33333 |  |  |  |
| 0.222 | 0.25935 | 0.38406 | 0.222 | 0.25935 | 0.33333 |  |  |  |
| 0.223 | 0.26051 | 0.38406 | 0.223 | 0.26051 | 0.33333 |  |  |  |
| 0.224 | 0.26168 | 0.37681 | 0.224 | 0.26168 | 0.33333 |  |  |  |
| 0.225 | 0.26285 | 0.37681 | 0.225 | 0.26285 | 0.33333 |  |  |  |
| 0.226 | 0.26402 | 0.36957 | 0.226 | 0.26402 | 0.33333 |  |  |  |
| 0.227 | 0.26519 | 0.36957 | 0.227 | 0.26519 | 0.33333 |  |  |  |
| 0.228 | 0.26636 | 0.36957 | 0.228 | 0.26636 | 0.33333 |  |  |  |
| 0.229 | 0.26752 | 0.36957 | 0.229 | 0.26752 | 0.33333 |  |  |  |
| 0.23 | 0.26869 | 0.36957 | 0.23 | 0.26869 | 0.33333 |  |  |  |
| 0.231 | 0.26986 | 0.36957 | 0.231 | 0.26986 | 0.33333 |  |  |  |
| 0.232 | 0.27103 | 0.36957 | 0.232 | 0.27103 | 0.33333 |  |  |  |
| 0.233 | 0.27220 | 0.36957 | 0.233 | 0.27220 | 0.33333 |  |  |  |
| 0.234 | 0.27336 | 0.36957 | 0.234 | 0.27336 | 0.33333 |  |  |  |
| 0.235 | 0.27453 | 0.36957 | 0.235 | 0.27453 | 0.33333 |  |  |  |
| 0.236 | 0.27570 | 0.36957 | 0.236 | 0.27570 | 0.33333 |  |  |  |
| 0.237 | 0.27687 | 0.36957 | 0.237 | 0.27687 | 0.33333 |  |  |  |


| 0.238 | 0.27804 | 0.36957 | 0.238 | 0.27804 | 0.33333 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.239 | 0.27921 | 0.36957 | 0.239 | 0.27921 | 0.33333 |  |  |  |
| 0.24 | 0.28037 | 0.36957 | 0.24 | 0.28037 | 0.33333 |  |  |  |
| 0.241 | 0.28154 | 0.36957 | 0.241 | 0.28154 | 0.33333 |  |  |  |
| 0.242 | 0.28271 | 0.36957 | 0.242 | 0.28271 | 0.33333 |  |  |  |
| 0.243 | 0.28388 | 0.36957 | 0.243 | 0.28388 | 0.33333 |  |  |  |
| 0.244 | 0.28505 | 0.36957 | 0.244 | 0.28505 | 0.33333 |  |  |  |
| 0.245 | 0.28621 | 0.36957 | 0.245 | 0.28621 | 0.33333 |  |  |  |
| 0.246 | 0.28738 | 0.36957 | 0.246 | 0.28738 | 0.33333 |  |  |  |
| 0.247 | 0.28855 | 0.36957 | 0.247 | 0.28855 | 0.33333 |  |  |  |
| 0.248 | 0.28972 | 0.36957 | 0.248 | 0.28972 | 0.33333 |  |  |  |
| 0.249 | 0.29089 | 0.36957 | 0.249 | 0.29089 | 0.33333 |  |  |  |
| 0.25 | 0.29206 | 0.36957 | 0.25 | 0.29206 | 0.33333 |  |  |  |
| 0.251 | 0.29322 | 0.36957 | 0.251 | 0.29322 | 0.33333 |  |  |  |
| 0.252 | 0.29439 | 0.36957 | 0.252 | 0.29439 | 0.33333 |  |  |  |
| 0.253 | 0.29556 | 0.36957 | 0.253 | 0.29556 | 0.33333 |  |  |  |
| 0.254 | 0.29673 | 0.36957 | 0.254 | 0.29673 | 0.33333 |  |  |  |
| 0.255 | 0.29790 | 0.36957 | 0.255 | 0.29790 | 0.33333 |  |  |  |
| 0.256 | 0.29907 | 0.36957 | 0.256 | 0.29907 | 0.33333 |  |  |  |
| 0.257 | 0.30023 | 0.36957 | 0.257 | 0.30023 | 0.33333 |  |  |  |
| 0.258 | 0.30140 | 0.36957 | 0.258 | 0.30140 | 0.33333 |  |  |  |
| 0.259 | 0.30257 | 0.35507 | 0.259 | 0.30257 | 0.33333 |  |  |  |
| 0.26 | 0.30374 | 0.35507 | 0.26 | 0.30374 | 0.33333 |  |  |  |
| 0.261 | 0.30491 | 0.33333 | 0.261 | 0.30491 | 0.33333 |  |  |  |
| 0.262 | 0.30607 | 0.32609 | 0.262 | 0.30607 | 0.33333 |  |  |  |
| 0.263 | 0.30724 | 0.32609 | 0.263 | 0.30724 | 0.33333 |  |  |  |
| 0.264 | 0.30841 | 0.31884 | 0.264 | 0.30841 | 0.32911 |  |  |  |
| 0.265 | 0.30958 | 0.30435 | 0.265 | 0.30958 | 0.32911 |  |  |  |
| 0.266 | 0.31075 | 0.28986 | 0.266 | 0.31075 | 0.32911 |  |  |  |
| 0.267 | 0.31192 | 0.28261 | 0.267 | 0.31192 | 0.32911 |  |  |  |
| 0.268 | 0.31308 | 0.25362 | 0.268 | 0.31308 | 0.32911 |  |  |  |
| 0.269 | 0.31425 | 0.24638 | 0.269 | 0.31425 | 0.32489 |  |  |  |
| 0.27 | 0.31542 | 0.23913 | 0.27 | 0.31542 | 0.32489 |  |  |  |
| 0.271 | 0.31659 | 0.23913 | 0.271 | 0.31659 | 0.32489 |  |  |  |
| 0.272 | 0.31776 | 0.23188 | 0.272 | 0.31776 | 0.32489 |  |  |  |
| 0.273 | 0.31893 | 0.21739 | 0.273 | 0.31893 | 0.32489 |  |  |  |
| 0.274 | 0.32009 | 0.21014 | 0.274 | 0.32009 | 0.32068 |  |  |  |
| 0.275 | 0.32126 | 0.19565 | 0.275 | 0.32126 | 0.31646 |  |  |  |
| 0.276 | 0.32243 | 0.18841 | 0.276 | 0.32243 | 0.31224 |  |  |  |
| 0.277 | 0.32360 | 0.17391 | 0.277 | 0.32360 | 0.31224 |  |  |  |
| 0.278 | 0.32477 | 0.17391 | 0.278 | 0.32477 | 0.30802 |  |  |  |


| 0.279 | 0.32593 | 0.16667 | 0.279 | 0.32593 | 0.30802 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.28 | 0.32710 | 0.15942 | 0.28 | 0.32710 | 0.30802 |  |  |  |
| 0.281 | 0.32827 | 0.15942 | 0.281 | 0.32827 | 0.29958 |  |  |  |
| 0.282 | 0.32944 | 0.15217 | 0.282 | 0.32944 | 0.28270 |  |  |  |
| 0.283 | 0.33061 | 0.14493 | 0.283 | 0.33061 | 0.27848 |  |  |  |
| 0.284 | 0.33178 | 0.13043 | 0.284 | 0.33178 | 0.27848 |  |  |  |
| 0.285 | 0.33294 | 0.12319 | 0.285 | 0.33294 | 0.27848 |  |  |  |
| 0.286 | 0.33411 | 0.12319 | 0.286 | 0.33411 | 0.27004 |  |  |  |
| 0.287 | 0.33528 | 0.12319 | 0.287 | 0.33528 | 0.27004 |  |  |  |
| 0.288 | 0.33645 | 0.12319 | 0.288 | 0.33645 | 0.27004 |  |  |  |
| 0.289 | 0.33762 | 0.12319 | 0.289 | 0.33762 | 0.26160 |  |  |  |
| 0.29 | 0.33879 | 0.12319 | 0.29 | 0.33879 | 0.25738 |  |  |  |
| 0.291 | 0.33995 | 0.12319 | 0.291 | 0.33995 | 0.25738 |  |  |  |
| 0.292 | 0.34112 | 0.12319 | 0.292 | 0.34112 | 0.25738 |  |  |  |
| 0.293 | 0.34229 | 0.12319 | 0.293 | 0.34229 | 0.25316 |  |  |  |
| 0.294 | 0.34346 | 0.12319 | 0.294 | 0.34346 | 0.25316 |  |  |  |
| 0.295 | 0.34463 | 0.12319 | 0.295 | 0.34463 | 0.25316 |  |  |  |
| 0.296 | 0.34579 | 0.11594 | 0.296 | 0.34579 | 0.25316 |  |  |  |
| 0.297 | 0.34696 | 0.11594 | 0.297 | 0.34696 | 0.25316 |  |  |  |
| 0.298 | 0.34813 | 0.11594 | 0.298 | 0.34813 | 0.25316 |  |  |  |
| 0.299 | 0.34930 | 0.09420 | 0.299 | 0.34930 | 0.25316 |  |  |  |
| 0.3 | 0.35047 | 0.08696 | 0.3 | 0.35047 | 0.25316 |  |  |  |
| 0.301 | 0.35164 | 0.08696 | 0.301 | 0.35164 | 0.24895 |  |  |  |
| 0.302 | 0.35280 | 0.08696 | 0.302 | 0.35280 | 0.24473 |  |  |  |
| 0.303 | 0.35397 | 0.08696 | 0.303 | 0.35397 | 0.24473 |  |  |  |
| 0.304 | 0.35514 | 0.08696 | 0.304 | 0.35514 | 0.24051 |  |  |  |
| 0.305 | 0.35631 | 0.08696 | 0.305 | 0.35631 | 0.24051 |  |  |  |
| 0.306 | 0.35748 | 0.08696 | 0.306 | 0.35748 | 0.24051 |  |  |  |
| 0.307 | 0.35864 | 0.08696 | 0.307 | 0.35864 | 0.22785 |  |  |  |
| 0.308 | 0.35981 | 0.08696 | 0.308 | 0.35981 | 0.22785 |  |  |  |
| 0.309 | 0.36098 | 0.08696 | 0.309 | 0.36098 | 0.22785 |  |  |  |
| 0.31 | 0.36215 | 0.07971 | 0.31 | 0.36215 | 0.22785 |  |  |  |
| 0.311 | 0.36332 | 0.07246 | 0.311 | 0.36332 | 0.22785 |  |  |  |
| 0.312 | 0.36449 | 0.06522 | 0.312 | 0.36449 | 0.22785 |  |  |  |
| 0.313 | 0.36565 | 0.05797 | 0.313 | 0.36565 | 0.22785 |  |  |  |
| 0.314 | 0.36682 | 0.05072 | 0.314 | 0.36682 | 0.22785 |  |  |  |
| 0.315 | 0.36799 | 0.05072 | 0.315 | 0.36799 | 0.22363 |  |  |  |
| 0.316 | 0.36916 | 0.05072 | 0.316 | 0.36916 | 0.21941 |  |  |  |
| 0.317 | 0.37033 | 0.04348 | 0.317 | 0.37033 | 0.21941 |  |  |  |
| 0.318 | 0.37150 | 0.04348 | 0.318 | 0.37150 | 0.21097 |  |  |  |
| 0.319 | 0.37266 | 0.04348 | 0.319 | 0.37266 | 0.21097 |  |  |  |


| 0.32 | 0.37383 | 0.02174 | 0.32 | 0.37383 | 0.21097 |  |  |  |
| ---: | :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 0.321 | 0.37500 | 0.02174 | 0.321 | 0.37500 | 0.21097 |  |  |  |
| 0.322 | 0.37617 | 0.02174 | 0.322 | 0.37617 | 0.21097 |  |  |  |
| 0.323 | 0.37734 | 0.02174 | 0.323 | 0.37734 | 0.20675 |  |  |  |
| 0.324 | 0.37850 | 0.01449 | 0.324 | 0.37850 | 0.20675 |  |  |  |
| 0.325 | 0.37967 | 0.01449 | 0.325 | 0.37967 | 0.20675 |  |  |  |
| 0.326 | 0.38084 | 0.00725 | 0.326 | 0.38084 | 0.20675 |  |  |  |
| 0.327 | 0.38201 | 0.00725 | 0.327 | 0.38201 | 0.20675 |  |  |  |
| 0.328 | 0.38318 | 0.00725 | 0.328 | 0.38318 | 0.20675 |  |  |  |
| 0.329 | 0.38435 | 0.00725 | 0.329 | 0.38435 | 0.20253 |  |  |  |
|  |  |  | 0.33 | 0.38551 | 0.19409 |  |  |  |
|  |  |  | 0.331 | 0.38668 | 0.18987 |  |  |  |
|  |  |  | 0.332 | 0.38785 | 0.18987 |  |  |  |
|  |  |  | 0.333 | 0.38902 | 0.18987 |  |  |  |
|  |  |  | 0.334 | 0.39019 | 0.18987 |  |  |  |
|  |  |  | 0.335 | 0.39136 | 0.18987 |  |  |  |
|  |  |  | 0.336 | 0.39252 | 0.18565 |  |  |  |
|  |  |  | 0.337 | 0.39369 | 0.17722 |  |  |  |
|  |  |  | 0.338 | 0.39486 | 0.17722 |  |  |  |
|  |  |  | 0.339 | 0.39603 | 0.17300 |  |  |  |
|  |  |  | 0.34 | 0.39720 | 0.16456 |  |  |  |
|  |  |  |  | 0.341 | 0.39836 | 0.16034 |  |  |
|  |  |  |  | 0.342 | 0.39953 | 0.16034 |  |  |
|  |  |  | 0.343 | 0.40070 | 0.15190 |  |  |  |
|  |  |  |  | 0.42056 | 0.03797 |  |  |  |
|  |  |  |  | 0.344 | 0.40187 | 0.14768 |  |  |
|  |  |  | 0.345 | 0.40304 | 0.14346 |  |  |  |
|  |  |  | 0.346 | 0.40421 | 0.14346 |  |  |  |
|  |  |  | 0.347 | 0.40537 | 0.13924 |  |  |  |
|  |  |  | 0.348 | 0.40654 | 0.13502 |  |  |  |
|  |  |  |  | 0.349 | 0.40771 | 0.12658 |  |  |
|  | 0.31005 | 0.09283 |  |  |  |  |  |  |
|  |  |  |  | 0.41121 | 0.08439 |  |  |  |
|  |  |  |  | 0.354 | 0.41238 | 0.41355 | 0.07595 |  |


|  |  |  | 0.361 | 0.42173 | 0.02532 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 0.362 | 0.42290 | 0.01688 |  |  |  |
|  |  |  | 0.363 | 0.42407 | 0.00844 |  |  |  |
|  |  |  | 0.364 | 0.42523 | 0.00422 |  |  |  |
|  |  |  | 0.365 | 0.42640 | 0.00422 |  |  |  |

Table G-19. 80/20 Long AML neo-sinus particle tracking results for $6.5 \mathrm{~L} / \mathrm{min}$.

| $0 \%$ LAMPOON |  | $50 \%$ LAMPOON |  |  | $100 \%$ LAMPOON |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Time <br> (s) | Cycle <br> $(\#)$ | Particle <br> Density <br> $(\%)$ | Time <br> (s) | Cycle <br> $(\#)$ | Particle <br> Density <br> $(\%)$ | Time <br> $(\mathrm{s})$ | Cycle <br> $(\#)$ | Particle <br> Density <br> $(\%)$ |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0.001 | 0.00117 | 1 | 0.001 | 0.00117 | 1 | 0.001 | 0.00117 | 1 |
| 0.002 | 0.00234 | 1 | 0.002 | 0.00234 | 1 | 0.002 | 0.00234 | 1 |
| 0.003 | 0.00350 | 1 | 0.003 | 0.00350 | 1 | 0.003 | 0.00350 | 0.97429 |
| 0.004 | 0.00467 | 1 | 0.004 | 0.00467 | 1 | 0.004 | 0.00467 | 0.95429 |
| 0.005 | 0.00584 | 0.97101 | 0.005 | 0.00584 | 1 | 0.005 | 0.00584 | 0.92571 |
| 0.006 | 0.00701 | 0.95652 | 0.006 | 0.00701 | 1 | 0.006 | 0.00701 | 0.90857 |
| 0.007 | 0.00818 | 0.94928 | 0.007 | 0.00818 | 0.99578 | 0.007 | 0.00818 | 0.88857 |
| 0.008 | 0.00935 | 0.94203 | 0.008 | 0.00935 | 0.97890 | 0.008 | 0.00935 | 0.84000 |
| 0.009 | 0.01051 | 0.93478 | 0.009 | 0.01051 | 0.96624 | 0.009 | 0.01051 | 0.82000 |
| 0.01 | 0.01168 | 0.93478 | 0.01 | 0.01168 | 0.95781 | 0.01 | 0.01168 | 0.78571 |
| 0.011 | 0.01285 | 0.92754 | 0.011 | 0.01285 | 0.94937 | 0.011 | 0.01285 | 0.74000 |
| 0.012 | 0.01402 | 0.92029 | 0.012 | 0.01402 | 0.93671 | 0.012 | 0.01402 | 0.72000 |
| 0.013 | 0.01519 | 0.91304 | 0.013 | 0.01519 | 0.92827 | 0.013 | 0.01519 | 0.68571 |
| 0.014 | 0.01636 | 0.89855 | 0.014 | 0.01636 | 0.91983 | 0.014 | 0.01636 | 0.63429 |
| 0.015 | 0.01752 | 0.89130 | 0.015 | 0.01752 | 0.91139 | 0.015 | 0.01752 | 0.60000 |
| 0.016 | 0.01869 | 0.89130 | 0.016 | 0.01869 | 0.90717 | 0.016 | 0.01869 | 0.57714 |
| 0.017 | 0.01986 | 0.89130 | 0.017 | 0.01986 | 0.90295 | 0.017 | 0.01986 | 0.53429 |
| 0.018 | 0.02103 | 0.88406 | 0.018 | 0.02103 | 0.89873 | 0.018 | 0.02103 | 0.48571 |
| 0.019 | 0.02220 | 0.87681 | 0.019 | 0.02220 | 0.88608 | 0.019 | 0.02220 | 0.45714 |
| 0.02 | 0.02336 | 0.87681 | 0.02 | 0.02336 | 0.87342 | 0.02 | 0.02336 | 0.40857 |
| 0.021 | 0.02453 | 0.87681 | 0.021 | 0.02453 | 0.87342 | 0.021 | 0.02453 | 0.35429 |
| 0.022 | 0.02570 | 0.86957 | 0.022 | 0.02570 | 0.86920 | 0.022 | 0.02570 | 0.31429 |
| 0.023 | 0.02687 | 0.86232 | 0.023 | 0.02687 | 0.85232 | 0.023 | 0.02687 | 0.26857 |


| 0.024 | 0.02804 | 0.86232 | 0.024 | 0.02804 | 0.85232 | 0.024 | 0.02804 | 0.22286 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.025 | 0.02921 | 0.85507 | 0.025 | 0.02921 | 0.84810 | 0.025 | 0.02921 | 0.19429 |
| 0.026 | 0.03037 | 0.84783 | 0.026 | 0.03037 | 0.84810 | 0.026 | 0.03037 | 0.15429 |
| 0.027 | 0.03154 | 0.84058 | 0.027 | 0.03154 | 0.83966 | 0.027 | 0.03154 | 0.11714 |
| 0.028 | 0.03271 | 0.83333 | 0.028 | 0.03271 | 0.83966 | 0.028 | 0.03271 | 0.09714 |
| 0.029 | 0.03388 | 0.82609 | 0.029 | 0.03388 | 0.83966 | 0.029 | 0.03388 | 0.07143 |
| 0.03 | 0.03505 | 0.82609 | 0.03 | 0.03505 | 0.83544 | 0.03 | 0.03505 | 0.06286 |
| 0.031 | 0.03621 | 0.81159 | 0.031 | 0.03621 | 0.82700 | 0.031 | 0.03621 | 0.05143 |
| 0.032 | 0.03738 | 0.81159 | 0.032 | 0.03738 | 0.82278 | 0.032 | 0.03738 | 0.03429 |
| 0.033 | 0.03855 | 0.81159 | 0.033 | 0.03855 | 0.80591 | 0.033 | 0.03855 | 0.03429 |
| 0.034 | 0.03972 | 0.81159 | 0.034 | 0.03972 | 0.80591 | 0.034 | 0.03972 | 0.02571 |
| 0.035 | 0.04089 | 0.79710 | 0.035 | 0.04089 | 0.80169 | 0.035 | 0.04089 | 0.01714 |
| 0.036 | 0.04206 | 0.79710 | 0.036 | 0.04206 | 0.80169 | 0.036 | 0.04206 | 0.01429 |
| 0.037 | 0.04322 | 0.79710 | 0.037 | 0.04322 | 0.79325 | 0.037 | 0.04322 | 0.01143 |
| 0.038 | 0.04439 | 0.79710 | 0.038 | 0.04439 | 0.78481 | 0.038 | 0.04439 | 0.01143 |
| 0.039 | 0.04556 | 0.79710 | 0.039 | 0.04556 | 0.77637 | 0.039 | 0.04556 | 0.00571 |
| 0.04 | 0.04673 | 0.77536 | 0.04 | 0.04673 | 0.76793 | 0.04 | 0.04673 | 0.00286 |
| 0.041 | 0.04790 | 0.76087 | 0.041 | 0.04790 | 0.75949 | 0.041 | 0.04790 | 0.00286 |
| 0.042 | 0.04907 | 0.75362 | 0.042 | 0.04907 | 0.75949 | 0.042 | 0.04907 | 0.00286 |
| 0.043 | 0.05023 | 0.75362 | 0.043 | 0.05023 | 0.75527 |  |  |  |
| 0.044 | 0.05140 | 0.74638 | 0.044 | 0.05140 | 0.75105 |  |  |  |
| 0.045 | 0.05257 | 0.74638 | 0.045 | 0.05257 | 0.75105 |  |  |  |
| 0.046 | 0.05374 | 0.74638 | 0.046 | 0.05374 | 0.75105 |  |  |  |
| 0.047 | 0.05491 | 0.74638 | 0.047 | 0.05491 | 0.75105 |  |  |  |
| 0.048 | 0.05607 | 0.73913 | 0.048 | 0.05607 | 0.74684 |  |  |  |
| 0.049 | 0.05724 | 0.73188 | 0.049 | 0.05724 | 0.74684 |  |  |  |
| 0.05 | 0.05841 | 0.73188 | 0.05 | 0.05841 | 0.74684 |  |  |  |
| 0.051 | 0.05958 | 0.73188 | 0.051 | 0.05958 | 0.74684 |  |  |  |
| 0.052 | 0.06075 | 0.73188 | 0.052 | 0.06075 | 0.73840 |  |  |  |
| 0.053 | 0.06192 | 0.73188 | 0.053 | 0.06192 | 0.72996 |  |  |  |
| 0.054 | 0.06308 | 0.72464 | 0.054 | 0.06308 | 0.72574 |  |  |  |
| 0.055 | 0.06425 | 0.71739 | 0.055 | 0.06425 | 0.72152 |  |  |  |
| 0.056 | 0.06542 | 0.71014 | 0.056 | 0.06542 | 0.72152 |  |  |  |
| 0.057 | 0.06659 | 0.71014 | 0.057 | 0.06659 | 0.71308 |  |  |  |
| 0.058 | 0.06776 | 0.71014 | 0.058 | 0.06776 | 0.71308 |  |  |  |
| 0.059 | 0.06893 | 0.71014 | 0.059 | 0.06893 | 0.71308 |  |  |  |
| 0.06 | 0.07009 | 0.71014 | 0.06 | 0.07009 | 0.71308 |  |  |  |
| 0.061 | 0.07126 | 0.69565 | 0.061 | 0.07126 | 0.70886 |  |  |  |
| 0.062 | 0.07243 | 0.68841 | 0.062 | 0.07243 | 0.70886 |  |  |  |
| 0.063 | 0.07360 | 0.68841 | 0.063 | 0.07360 | 0.70464 |  |  |  |
| 0.064 | 0.07477 | 0.68841 | 0.064 | 0.07477 | 0.70042 |  |  |  |


| 0.065 | 0.07593 | 0.67391 | 0.065 | 0.07593 | 0.69620 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.066 | 0.07710 | 0.65942 | 0.066 | 0.07710 | 0.68776 |  |  |  |
| 0.067 | 0.07827 | 0.65942 | 0.067 | 0.07827 | 0.68354 |  |  |  |
| 0.068 | 0.07944 | 0.65942 | 0.068 | 0.07944 | 0.68354 |  |  |  |
| 0.069 | 0.08061 | 0.64493 | 0.069 | 0.08061 | 0.67932 |  |  |  |
| 0.07 | 0.08178 | 0.63768 | 0.07 | 0.08178 | 0.67932 |  |  |  |
| 0.071 | 0.08294 | 0.63043 | 0.071 | 0.08294 | 0.67932 |  |  |  |
| 0.072 | 0.08411 | 0.63043 | 0.072 | 0.08411 | 0.67089 |  |  |  |
| 0.073 | 0.08528 | 0.62319 | 0.073 | 0.08528 | 0.67089 |  |  |  |
| 0.074 | 0.08645 | 0.60870 | 0.074 | 0.08645 | 0.66245 |  |  |  |
| 0.075 | 0.08762 | 0.58696 | 0.075 | 0.08762 | 0.64979 |  |  |  |
| 0.076 | 0.08879 | 0.57971 | 0.076 | 0.08879 | 0.64557 |  |  |  |
| 0.077 | 0.08995 | 0.57246 | 0.077 | 0.08995 | 0.64557 |  |  |  |
| 0.078 | 0.09112 | 0.55072 | 0.078 | 0.09112 | 0.64135 |  |  |  |
| 0.079 | 0.09229 | 0.53623 | 0.079 | 0.09229 | 0.63713 |  |  |  |
| 0.08 | 0.09346 | 0.52174 | 0.08 | 0.09346 | 0.63713 |  |  |  |
| 0.081 | 0.09463 | 0.50000 | 0.081 | 0.09463 | 0.63291 |  |  |  |
| 0.082 | 0.09579 | 0.50000 | 0.082 | 0.09579 | 0.63291 |  |  |  |
| 0.083 | 0.09696 | 0.47101 | 0.083 | 0.09696 | 0.63291 |  |  |  |
| 0.084 | 0.09813 | 0.45652 | 0.084 | 0.09813 | 0.62869 |  |  |  |
| 0.085 | 0.09930 | 0.45652 | 0.085 | 0.09930 | 0.62869 |  |  |  |
| 0.086 | 0.10047 | 0.42029 | 0.086 | 0.10047 | 0.62869 |  |  |  |
| 0.087 | 0.10164 | 0.41304 | 0.087 | 0.10164 | 0.62447 |  |  |  |
| 0.088 | 0.10280 | 0.39855 | 0.088 | 0.10280 | 0.62447 |  |  |  |
| 0.089 | 0.10397 | 0.37681 | 0.089 | 0.10397 | 0.62447 |  |  |  |
| 0.09 | 0.10514 | 0.35507 | 0.09 | 0.10514 | 0.62447 |  |  |  |
| 0.091 | 0.10631 | 0.34783 | 0.091 | 0.10631 | 0.62025 |  |  |  |
| 0.092 | 0.10748 | 0.32609 | 0.092 | 0.10748 | 0.61603 |  |  |  |
| 0.093 | 0.10864 | 0.31159 | 0.093 | 0.10864 | 0.61181 |  |  |  |
| 0.094 | 0.10981 | 0.29710 | 0.094 | 0.10981 | 0.61181 |  |  |  |
| 0.095 | 0.11098 | 0.28986 | 0.095 | 0.11098 | 0.59072 |  |  |  |
| 0.096 | 0.11215 | 0.28986 | 0.096 | 0.11215 | 0.57384 |  |  |  |
| 0.097 | 0.11332 | 0.27536 | 0.097 | 0.11332 | 0.56962 |  |  |  |
| 0.098 | 0.11449 | 0.26087 | 0.098 | 0.11449 | 0.56540 |  |  |  |
| 0.099 | 0.11565 | 0.26087 | 0.099 | 0.11565 | 0.56118 |  |  |  |
| 0.1 | 0.11682 | 0.25362 | 0.1 | 0.11682 | 0.56118 |  |  |  |
| 0.101 | 0.11799 | 0.23913 | 0.101 | 0.11799 | 0.55696 |  |  |  |
| 0.102 | 0.11916 | 0.23913 | 0.102 | 0.11916 | 0.55696 |  |  |  |
| 0.103 | 0.12033 | 0.23913 | 0.103 | 0.12033 | 0.55696 |  |  |  |
| 0.104 | 0.12150 | 0.23188 | 0.104 | 0.12150 | 0.55696 |  |  |  |
| 0.105 | 0.12266 | 0.22464 | 0.105 | 0.12266 | 0.55696 |  |  |  |


| 0.106 | 0.12383 | 0.22464 | 0.106 | 0.12383 | 0.55696 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.107 | 0.12500 | 0.21739 | 0.107 | 0.12500 | 0.55274 |  |  |  |
| 0.108 | 0.12617 | 0.21739 | 0.108 | 0.12617 | 0.54852 |  |  |  |
| 0.109 | 0.12734 | 0.21739 | 0.109 | 0.12734 | 0.54852 |  |  |  |
| 0.11 | 0.12850 | 0.21739 | 0.11 | 0.12850 | 0.54430 |  |  |  |
| 0.111 | 0.12967 | 0.21014 | 0.111 | 0.12967 | 0.53165 |  |  |  |
| 0.112 | 0.13084 | 0.19565 | 0.112 | 0.13084 | 0.53165 |  |  |  |
| 0.113 | 0.13201 | 0.19565 | 0.113 | 0.13201 | 0.52321 |  |  |  |
| 0.114 | 0.13318 | 0.19565 | 0.114 | 0.13318 | 0.52321 |  |  |  |
| 0.115 | 0.13435 | 0.18841 | 0.115 | 0.13435 | 0.51477 |  |  |  |
| 0.116 | 0.13551 | 0.18116 | 0.116 | 0.13551 | 0.51055 |  |  |  |
| 0.117 | 0.13668 | 0.18116 | 0.117 | 0.13668 | 0.51055 |  |  |  |
| 0.118 | 0.13785 | 0.18116 | 0.118 | 0.13785 | 0.51055 |  |  |  |
| 0.119 | 0.13902 | 0.18116 | 0.119 | 0.13902 | 0.51055 |  |  |  |
| 0.12 | 0.14019 | 0.18116 | 0.12 | 0.14019 | 0.51055 |  |  |  |
| 0.121 | 0.14136 | 0.18116 | 0.121 | 0.14136 | 0.50633 |  |  |  |
| 0.122 | 0.14252 | 0.17391 | 0.122 | 0.14252 | 0.50633 |  |  |  |
| 0.123 | 0.14369 | 0.17391 | 0.123 | 0.14369 | 0.50211 |  |  |  |
| 0.124 | 0.14486 | 0.16667 | 0.124 | 0.14486 | 0.49789 |  |  |  |
| 0.125 | 0.14603 | 0.15942 | 0.125 | 0.14603 | 0.49367 |  |  |  |
| 0.126 | 0.14720 | 0.15942 | 0.126 | 0.14720 | 0.49367 |  |  |  |
| 0.127 | 0.14836 | 0.15217 | 0.127 | 0.14836 | 0.48945 |  |  |  |
| 0.128 | 0.14953 | 0.15217 | 0.128 | 0.14953 | 0.48523 |  |  |  |
| 0.129 | 0.15070 | 0.13768 | 0.129 | 0.15070 | 0.48523 |  |  |  |
| 0.13 | 0.15187 | 0.13043 | 0.13 | 0.15187 | 0.47257 |  |  |  |
| 0.131 | 0.15304 | 0.13043 | 0.131 | 0.15304 | 0.47257 |  |  |  |
| 0.132 | 0.15421 | 0.13043 | 0.132 | 0.15421 | 0.46835 |  |  |  |
| 0.133 | 0.15537 | 0.13043 | 0.133 | 0.15537 | 0.46414 |  |  |  |
| 0.134 | 0.15654 | 0.12319 | 0.134 | 0.15654 | 0.46414 |  |  |  |
| 0.135 | 0.15771 | 0.12319 | 0.135 | 0.15771 | 0.45992 |  |  |  |
| 0.136 | 0.15888 | 0.12319 | 0.136 | 0.15888 | 0.45992 |  |  |  |
| 0.137 | 0.16005 | 0.12319 | 0.137 | 0.16005 | 0.45992 |  |  |  |
| 0.138 | 0.16121 | 0.12319 | 0.138 | 0.16121 | 0.45992 |  |  |  |
| 0.139 | 0.16238 | 0.12319 | 0.139 | 0.16238 | 0.45570 |  |  |  |
| 0.14 | 0.16355 | 0.12319 | 0.14 | 0.16355 | 0.45148 |  |  |  |
| 0.141 | 0.16472 | 0.12319 | 0.141 | 0.16472 | 0.45148 |  |  |  |
| 0.142 | 0.16589 | 0.12319 | 0.142 | 0.16589 | 0.45148 |  |  |  |
| 0.143 | 0.16706 | 0.12319 | 0.143 | 0.16706 | 0.44304 |  |  |  |
| 0.144 | 0.16822 | 0.12319 | 0.144 | 0.16822 | 0.44304 |  |  |  |
| 0.145 | 0.16939 | 0.12319 | 0.145 | 0.16939 | 0.43460 |  |  |  |
| 0.146 | 0.17056 | 0.11594 | 0.146 | 0.17056 | 0.41772 |  |  |  |


| 0.147 | 0.17173 | 0.11594 | 0.147 | 0.17173 | 0.39241 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.148 | 0.17290 | 0.10145 | 0.148 | 0.17290 | 0.38397 |  |  |  |
| 0.149 | 0.17407 | 0.09420 | 0.149 | 0.17407 | 0.38397 |  |  |  |
| 0.15 | 0.17523 | 0.09420 | 0.15 | 0.17523 | 0.37975 |  |  |  |
| 0.151 | 0.17640 | 0.09420 | 0.151 | 0.17640 | 0.37553 |  |  |  |
| 0.152 | 0.17757 | 0.09420 | 0.152 | 0.17757 | 0.37553 |  |  |  |
| 0.153 | 0.17874 | 0.09420 | 0.153 | 0.17874 | 0.37553 |  |  |  |
| 0.154 | 0.17991 | 0.09420 | 0.154 | 0.17991 | 0.37553 |  |  |  |
| 0.155 | 0.18107 | 0.09420 | 0.155 | 0.18107 | 0.37553 |  |  |  |
| 0.156 | 0.18224 | 0.08696 | 0.156 | 0.18224 | 0.37553 |  |  |  |
| 0.157 | 0.18341 | 0.08696 | 0.157 | 0.18341 | 0.37131 |  |  |  |
| 0.158 | 0.18458 | 0.08696 | 0.158 | 0.18458 | 0.37131 |  |  |  |
| 0.159 | 0.18575 | 0.08696 | 0.159 | 0.18575 | 0.37131 |  |  |  |
| 0.16 | 0.18692 | 0.08696 | 0.16 | 0.18692 | 0.36709 |  |  |  |
| 0.161 | 0.18808 | 0.08696 | 0.161 | 0.18808 | 0.36287 |  |  |  |
| 0.162 | 0.18925 | 0.08696 | 0.162 | 0.18925 | 0.36287 |  |  |  |
| 0.163 | 0.19042 | 0.08696 | 0.163 | 0.19042 | 0.36287 |  |  |  |
| 0.164 | 0.19159 | 0.08696 | 0.164 | 0.19159 | 0.35865 |  |  |  |
| 0.165 | 0.19276 | 0.08696 | 0.165 | 0.19276 | 0.35865 |  |  |  |
| 0.166 | 0.19393 | 0.07971 | 0.166 | 0.19393 | 0.35865 |  |  |  |
| 0.167 | 0.19509 | 0.07971 | 0.167 | 0.19509 | 0.35021 |  |  |  |
| 0.168 | 0.19626 | 0.07971 | 0.168 | 0.19626 | 0.34599 |  |  |  |
| 0.169 | 0.19743 | 0.07971 | 0.169 | 0.19743 | 0.34599 |  |  |  |
| 0.17 | 0.19860 | 0.07971 | 0.17 | 0.19860 | 0.34177 |  |  |  |
| 0.171 | 0.19977 | 0.07971 | 0.171 | 0.19977 | 0.33333 |  |  |  |
| 0.172 | 0.20093 | 0.07971 | 0.172 | 0.20093 | 0.33333 |  |  |  |
| 0.173 | 0.20210 | 0.07971 | 0.173 | 0.20210 | 0.32489 |  |  |  |
| 0.174 | 0.20327 | 0.07971 | 0.174 | 0.20327 | 0.32068 |  |  |  |
| 0.175 | 0.20444 | 0.07971 | 0.175 | 0.20444 | 0.31224 |  |  |  |
| 0.176 | 0.20561 | 0.07971 | 0.176 | 0.20561 | 0.31224 |  |  |  |
| 0.177 | 0.20678 | 0.07971 | 0.177 | 0.20678 | 0.31224 |  |  |  |
| 0.178 | 0.20794 | 0.07246 | 0.178 | 0.20794 | 0.31224 |  |  |  |
| 0.179 | 0.20911 | 0.07246 | 0.179 | 0.20911 | 0.30802 |  |  |  |
| 0.18 | 0.21028 | 0.07246 | 0.18 | 0.21028 | 0.30802 |  |  |  |
| 0.181 | 0.21145 | 0.07246 | 0.181 | 0.21145 | 0.30802 |  |  |  |
| 0.182 | 0.21262 | 0.07246 | 0.182 | 0.21262 | 0.30802 |  |  |  |
| 0.183 | 0.21379 | 0.07246 | 0.183 | 0.21379 | 0.30380 |  |  |  |
| 0.184 | 0.21495 | 0.07246 | 0.184 | 0.21495 | 0.30380 |  |  |  |
| 0.185 | 0.21612 | 0.07246 | 0.185 | 0.21612 | 0.29958 |  |  |  |
| 0.186 | 0.21729 | 0.06522 | 0.186 | 0.21729 | 0.29536 |  |  |  |
| 0.187 | 0.21846 | 0.06522 | 0.187 | 0.21846 | 0.29536 |  |  |  |


| 0.188 | 0.21963 | 0.06522 | 0.188 | 0.21963 | 0.29536 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 0.189 | 0.22079 | 0.05797 | 0.189 | 0.22079 | 0.29536 |  |  |  |
| 0.19 | 0.22196 | 0.05072 | 0.19 | 0.22196 | 0.29536 |  |  |  |
| 0.191 | 0.22313 | 0.05072 | 0.191 | 0.22313 | 0.29114 |  |  |  |
| 0.192 | 0.22430 | 0.05072 | 0.192 | 0.22430 | 0.28692 |  |  |  |
| 0.193 | 0.22547 | 0.05072 | 0.193 | 0.22547 | 0.28692 |  |  |  |
| 0.194 | 0.22664 | 0.03623 | 0.194 | 0.22664 | 0.28270 |  |  |  |
| 0.195 | 0.22780 | 0.03623 | 0.195 | 0.22780 | 0.27004 |  |  |  |
| 0.196 | 0.22897 | 0.03623 | 0.196 | 0.22897 | 0.26582 |  |  |  |
| 0.197 | 0.23014 | 0.03623 | 0.197 | 0.23014 | 0.26582 |  |  |  |
| 0.198 | 0.23131 | 0.03623 | 0.198 | 0.23131 | 0.26582 |  |  |  |
| 0.199 | 0.23248 | 0.03623 | 0.199 | 0.23248 | 0.26582 |  |  |  |
| 0.2 | 0.23364 | 0.03623 | 0.2 | 0.23364 | 0.26160 |  |  |  |
| 0.201 | 0.23481 | 0.03623 | 0.201 | 0.23481 | 0.26160 |  |  |  |
| 0.202 | 0.23598 | 0.03623 | 0.202 | 0.23598 | 0.26160 |  |  |  |
| 0.203 | 0.23715 | 0.03623 | 0.203 | 0.23715 | 0.25738 |  |  |  |
| 0.204 | 0.23832 | 0.03623 | 0.204 | 0.23832 | 0.25738 |  |  |  |
| 0.205 | 0.23949 | 0.02899 | 0.205 | 0.23949 | 0.25738 |  |  |  |
| 0.206 | 0.24065 | 0.01449 | 0.206 | 0.24065 | 0.25738 |  |  |  |
| 0.207 | 0.24182 | 0.01449 | 0.207 | 0.24182 | 0.25738 |  |  |  |
| 0.208 | 0.24299 | 0.01449 | 0.208 | 0.24299 | 0.25738 |  |  |  |
| 0.209 | 0.24416 | 0.01449 | 0.209 | 0.24416 | 0.25316 |  |  |  |
| 0.21 | 0.24533 | 0.01449 | 0.21 | 0.24533 | 0.25316 |  |  |  |
| 0.211 | 0.24650 | 0.01449 | 0.211 | 0.24650 | 0.25316 |  |  |  |
| 0.212 | 0.24766 | 0.01449 | 0.212 | 0.24766 | 0.25316 |  |  |  |
| 0.213 | 0.24883 | 0.01449 | 0.213 | 0.24883 | 0.25316 |  |  |  |
| 0.214 | 0.25000 | 0.01449 | 0.214 | 0.25000 | 0.25316 |  |  |  |
| 0.215 | 0.25117 | 0.01449 | 0.215 | 0.25117 | 0.25316 |  |  |  |
| 0.216 | 0.25234 | 0.01449 | 0.216 | 0.25234 | 0.25316 |  |  |  |
| 0.217 | 0.25350 | 0.01449 | 0.217 | 0.25350 | 0.25316 |  |  |  |
| 0.218 | 0.25467 | 0.01449 | 0.218 | 0.25467 | 0.25316 |  |  |  |
| 0.219 | 0.25584 | 0.01449 | 0.219 | 0.25584 | 0.25316 |  |  |  |
| 0.22 | 0.25701 | 0.00725 | 0.22 | 0.25701 | 0.25316 |  |  |  |
| 0.221 | 0.25818 | 0.00725 | 0.221 | 0.25818 | 0.25316 |  |  |  |
| 0.222 | 0.25935 | 0.00725 | 0.222 | 0.25935 | 0.25316 |  |  |  |
|  |  |  | 0.223 | 0.26051 | 0.25316 |  |  |  |
|  |  |  | 0.224 | 0.26168 | 0.25316 |  |  |  |
|  |  |  | 0.225 | 0.26285 | 0.25316 |  |  |  |
|  |  |  | 0.226 | 0.26402 | 0.25316 |  |  |  |
|  | 0.227 | 0.26519 | 0.25316 |  |  |  |  |  |
|  | 0.228 | 0.26636 | 0.25316 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


|  |  |  | 0.229 | 0.26752 | 0.25316 |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
|  |  |  | 0.23 | 0.26869 | 0.25316 |  |  |  |
|  |  |  | 0.231 | 0.26986 | 0.25316 |  |  |  |
|  |  |  | 0.232 | 0.27103 | 0.25316 |  |  |  |
|  |  |  | 0.233 | 0.27220 | 0.25316 |  |  |  |
|  |  |  | 0.234 | 0.27336 | 0.25316 |  |  |  |
|  |  |  | 0.235 | 0.27453 | 0.25316 |  |  |  |
|  |  |  | 0.236 | 0.27570 | 0.25316 |  |  |  |
|  |  |  | 0.237 | 0.27687 | 0.25316 |  |  |  |
|  |  |  | 0.238 | 0.27804 | 0.25316 |  |  |  |
|  |  |  | 0.239 | 0.27921 | 0.25316 |  |  |  |
|  |  |  | 0.24 | 0.28037 | 0.25316 |  |  |  |
|  |  |  | 0.241 | 0.28154 | 0.25316 |  |  |  |
|  |  |  | 0.242 | 0.28271 | 0.25316 |  |  |  |
|  |  |  | 0.243 | 0.28388 | 0.25316 |  |  |  |
|  |  |  | 0.244 | 0.28505 | 0.25316 |  |  |  |
|  |  |  | 0.245 | 0.28621 | 0.25316 |  |  |  |
|  |  |  | 0.246 | 0.28738 | 0.25316 |  |  |  |
|  |  |  | 0.247 | 0.28855 | 0.25316 |  |  |  |
|  |  |  | 0.248 | 0.28972 | 0.25316 |  |  |  |
|  |  |  | 0.249 | 0.29089 | 0.25316 |  |  |  |
|  |  |  | 0.25 | 0.29206 | 0.25316 |  |  |  |
|  |  |  | 0.31425 | 0.25316 |  |  |  |  |
|  |  |  |  | 0.251 | 0.29322 | 0.25316 |  |  |
|  |  |  |  | 0.252 | 0.29439 | 0.25316 |  |  |
|  |  |  | 0.267 | 0.31192 | 0.25316 |  |  |  |
|  |  |  | 0.261 | 0.30374 | 0.30491 | 0.25316 |  |  |
|  |  |  | 0.262 | 0.30607 | 0.25316 |  |  |  |
|  |  |  | 0.263 | 0.30724 | 0.25316 |  |  |  |
|  |  |  | 0.264 | 0.30841 | 0.25316 |  |  |  |
|  |  |  | 0.265 | 0.30958 | 0.25316 |  |  |  |
|  |  |  | 0.254 | 0.2556 | 0.25316 |  |  |  |
|  |  |  | 0.256 | 0.2573 | 0.25316 |  |  |  |
|  |  |  | 0.2990 | 0.30023 | 0.25316 |  |  |  |
|  |  |  |  | 0.30140 | 0.25316 |  |  |  |
|  |  |  |  | 0.259 | 0.3027 | 0.25316 |  |  |




|  |  | 0.352 | 0.41121 | 0.21097 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.353 | 0.41238 | 0.21097 |  |  |  |
|  |  | 0.354 | 0.41355 | 0.21097 |  |  |  |
|  |  | 0.355 | 0.41472 | 0.20675 |  |  |  |
|  |  | 0.356 | 0.41589 | 0.20675 |  |  |  |
|  |  | 0.357 | 0.41706 | 0.20675 |  |  |  |
|  |  | 0.358 | 0.41822 | 0.19409 |  |  |  |
|  |  | 0.359 | 0.41939 | 0.18565 |  |  |  |
|  |  | 0.36 | 0.42056 | 0.18143 |  |  |  |
|  |  | 0.361 | 0.42173 | 0.17722 |  |  |  |
|  |  | 0.362 | 0.42290 | 0.17300 |  |  |  |
|  |  | 0.363 | 0.42407 | 0.16456 |  |  |  |
|  |  | 0.364 | 0.42523 | 0.16456 |  |  |  |
|  |  | 0.365 | 0.42640 | 0.16034 |  |  |  |
|  |  | 0.366 | 0.42757 | 0.16034 |  |  |  |
|  |  | 0.367 | 0.42874 | 0.14768 |  |  |  |
|  |  | 0.368 | 0.42991 | 0.13080 |  |  |  |
|  |  | 0.369 | 0.43107 | 0.10970 |  |  |  |
|  |  | 0.37 | 0.43224 | 0.10127 |  |  |  |
|  |  | 0.371 | 0.43341 | 0.09283 |  |  |  |
|  |  | 0.372 | 0.43458 | 0.08017 |  |  |  |
|  |  | 0.373 | 0.43575 | 0.05907 |  |  |  |
|  |  | 0.374 | 0.43692 | 0.05063 |  |  |  |
|  |  | 0.375 | 0.43808 | 0.05063 |  |  |  |
|  |  | 0.376 | 0.43925 | 0.05063 |  |  |  |
|  |  | 0.377 | 0.44042 | 0.05063 |  |  |  |
|  |  | 0.378 | 0.44159 | 0.05063 |  |  |  |
|  |  | 0.379 | 0.44276 | 0.04219 |  |  |  |
|  |  | 0.38 | 0.44393 | 0.04219 |  |  |  |
|  |  | 0.381 | 0.44509 | 0.04219 |  |  |  |
|  |  | 0.382 | 0.44626 | 0.03376 |  |  |  |
|  |  | 0.383 | 0.44743 | 0.02954 |  |  |  |
|  |  | 0.384 | 0.44860 | 0.02954 |  |  |  |
|  |  | 0.385 | 0.44977 | 0.02110 |  |  |  |
|  |  | 0.386 | 0.45093 | 0.02110 |  |  |  |
|  |  | 0.387 | 0.45210 | 0.01688 |  |  |  |
|  |  | 0.388 | 0.45327 | 0.01688 |  |  |  |
|  |  | 0.389 | 0.45444 | 0.01266 |  |  |  |
|  |  | 0.39 | 0.45561 | 0.00844 |  |  |  |
|  |  | 0.391 | 0.45678 | 0.00422 |  |  |  |
|  |  | 0.392 | 0.45794 | 0.00422 |  |  |  |

## APPENDIX H. DRAWINGS AND PARTS - SPECIFIC AIM 1

## H. 1 Specific Aim 1 - Experiment A

Table H-1. List of parts to make dynamically contracting annulus (DCA) for the box left heart chamber.

| Item | Vendor | Item\# | Description |
| :--- | :--- | :--- | :--- |
| Wire | McMaster | 3461 T63 | Used for the contraction; <br> embedded in the annulus cuff |
| Cam Lever | McMaster | 5720 K 17 | Used to hold wires in place <br> on motors |
| Spring | McMaster | 9663 K 16 | Embedded in the annulus cuff <br> to provide relaxation |
| Screws | McMaster | 99477 A 620 | Secures top plate onto bottom <br> plate of DCA |
| Nylon | McMaster |  | Shell of annulus cuff |
| Silicone |  | Fills the annulus cuff for <br> suturing |  |



Figure H-1. Drawing of the top plate of the dynamically contracting annulus (DCA) for the box left heart chamber.


Figure H-2. Drawing of the bottom plate of the dynamically contracting annulus (DCA) for the box left heart chamber.


Figure H-3. Motor block for attaching the wire via a cam lever.

## H. 2 Specific Aim 2 - Experiment B

Table H-2. List of parts to make dynamically contracting annulus (DCA) for the cylindrical left heart chamber.

| Item | Vendor | Item\# | Description |
| :--- | :--- | :--- | :--- |
| Screws | McMaster | 92185 A992 | Secures top plate onto bottom <br> plate of DCA |
| Gasket | McMaster | 4061 T14 | Put between top and bottom <br> plates to increase seal |
| Spring | McMaster | 9663 K16 | Embedded in the annulus cuff to <br> provide relaxation |
| Nylon | McMaster |  | Shell of annulus cuff |
| Silicone | Fills the annulus cuff for suturing |  |  |



Figure H-4. Drawing of the top plate of the dynamically contracting annulus (DCA) for the cylinder left heart chamber.


Figure H-5. Drawing of the bottom plate of the dynamically contracting annulus (DCA) for the cylinder left heart chamber.

## APPENDIX I. DRAWINGS AND PARTS - SPECIFIC AIM 2

## I. 1 Left Ventricle Box Chamber

Table I-1. List of parts to make left ventricle box chamber.

| Item | Vendor | Item\# | Description |
| :--- | :--- | :--- | :--- |
| Acrylic | McMaster | 8560K361 | Chamber material: LV Box Parts |
|  |  | 8560K359 | 1 and 2; Parts 10 and 11; Parts 5, |
|  |  | 8560 K 363 | 5-2, 6, 7, and 8; Parts 3 and 4, |
|  |  | 8560K321 | respectively |
| Tap Inserts | McMaster | 99362A700 | Brass tap inserts for acylic |
|  |  | 99362A600 | assembly |
| Screws | McMaster | 93465A540 | Brass screws for assembly |
|  |  | 93465A541 |  |
|  |  | 93465A324 |  |
|  |  | 97595A236 |  |



Figure I-1. Part 1-a drawing.


Figure I-2. Part 1-b drawing.


Figure I-3. Part 1-c drawing.


Figure I-4. Part 1-d drawing.


Figure I-5. Part 2-a drawing.


Figure I-6. Part 2-b drawing.


Figure I-7. Part 2-c drawing.


Figure I-8. Part 3-a drawing.


Figure I-9. Part 3-b drawing.


Figure I-10. Part 3-c drawing.


Figure I-11. Part 4-a drawing.


Figure I-12. Part 4-b drawing.


Figure I-13. Part 4-c drawing.


Figure I-14. Part 5-a drawing.


Figure I-15. Part 5-b drawing.


Figure I-16. Part 5-2a drawing.


Figure I-17. Part 5-2b drawing.


Figure I-18. Part 6 drawing.


Figure I-19. Part 7 drawing.


Figure I-20. Part 8 drawing.


Figure I-21. Part 10 drawing.


Figure I-22. Part 11 drawing.

## I. 2 Left Ventricle Aorto-Mitral Insert



Figure I-23. LV Insert 1a drawing.


Figure I-24. LV Insert 1b drawing.


Figure I-25. LV Insert 2 drawing.

## I. 3 Georgia Tech - Transcatheter Aortic Valve



Figure I-26. 29 mm GT-TAV stent frame drawing.

## APPENDIX J. LABVIEW CODES - SPECIFIC AIM 1

## J. 1 Dynamically Contracting Annulus.vi



Figure J-1. Initial State of DCA LabVIEW code.


Figure J-2. Run State of DCA LabVIEW code.


Figure J-3. Blocks within the Run State of DCA LabVIEW code.


Figure J-4. Save and Stop state of the DCA LabVIEW code.

## APPENDIX K. MATLAB CODES - SPECIFIC AIM 1

## K. 1 Datasnatch.m

```
function datasnatch
clc
clear all
close all
%Read in the file in gray scale with pixel information
img = imread('W:\Work\Work - Graduate\Work - Contracting Annulus\Input
Graphs\Gorman\Annular Area.PNG');
info = imfinfo('W:\Work\Work - Graduate\Work - Contracting
Annulus\Input Graphs\Gorman\Annular Area.PNG');
figure(1)
imshow(img);
hold on
grid on
%Input image axis' scale difference
X = 100; %X-scale difference
Y = 0.30; %Y-scale difference
%Input points of interest from image using mouse
%MATLAB reads (0,0) as the top left corner for pixels
%Click Order: xmin, xmax, ymax, ymin
[xl,y1] = ginput(2) %Inputting x-scale
[x2,y2] = ginput(2) %Inputting y-scale
a = 0; %Graph value for x1(1)
b = 0.9; %Graph value for y2(1)
c = xl(1) %x-axis pixel offset
d = y2(1) %y-axis pixel offset
x = X/(xl(2)-xl(1)) %cycle/pixel
y = Y/(y2(2)-y2(1)) % (cm/s)/pixel
[Px,Py] = ginput(); %Inputting graph data points
Dx = (Px*x)-(C*x) +a;
Dy = (d*y)-(Py*y) +b+Y;
Data = [Dx,Dy]; %Snatched data
n = size(Dx)
xx = Dx(1):((Dx(n)-Dx(1))/40):Dx(n);
yy = spline(Dx,Dy,xx);
%M = mean(yy)
hold on
plot(Px,Py)
figure
plot(Dx,Dy,'O',xx,yy)
%Export data array "Data" to excel spreadsheet
filename = 'ischemic area.xlsx';
xlswrite(filename,Data,'Raw Data','B2')
warning('off','MATLAB:xlswrite:Addsheet')
```

hold on

## APPENDIX L. MATLAB CODES - SPECIFIC AIM 2

## L. 1 BinAVG.m

```
% This code bins each cardiac cycle into 5-frame bins
% Updated by Thomas Easley on 2018/12/03 to bin average data for 20
% continuos cycles rather than 5 cycles of 4 cycles, 3 times
close all
clc
% File containing list of input files for processing
infile = 'input.txt';
fid_inp = fopen(infile,'r');
TrueImagesPerCycle = 602;
NumCyclesAcquired = 20;
BinWidth = 5;
ImagesPerCycle = floor(TrueImagesPerCycle/BinWidth)*BinWidth;
CardiacCycleLength = 0.856;
TimeStep = CardiacCycleLength/(ImagesPerCycle/BinWidth);
while ~feof(fid_inp)
    folder0 = fgetl(fid_inp);
% folder1 = fgetl(fi\overline{d_inp);}
% folder2 = fgetl(fid_inp);
% folder3 = fgetl(fid_inp);
    cd(folder0)
    %%% Seperate 20 cycles individually. Since one cycle is 600 frames,
    %%% cycle 1= the first 600 vc7 files, the cycle two is the next and
so
    %%% forth
    VelField1 = loadvec(sprintf('B[%d:%d]*.vc7', 1, ImagesPerCycle));
    VelField2 = loadvec(sprintf('B[%d:%d]*.vc7',
(TrueImagesPerCycle+1), TrueImagesPerCycle+ImagesPerCycle));
    VelField3 = loadvec(sprintf('B[%d:%d]*.vc7',
(2*TrueImagesPerCycle+1), (2*TrueImagesPerCycle)+ImagesPerCycle));
    VelField4 = loadvec(sprintf('B[%d:%d]*.vc7',
(3*TrueImagesPerCycle+1), (3*TrueImagesPerCycle)+ImagesPerCycle));
    VelField5 = loadvec(sprintf('B[%d:%d]*.vc7',
(4*TrueImagesPerCycle+1), (4*TrueImagesPerCycle)+ImagesPerCycle));
    VelField6 = loadvec(sprintf('B[%d:%d]*.vc7',
(5*TrueImagesPerCycle+1), (5*TrueImagesPerCycle)+ImagesPerCycle));
    VelField7 = loadvec(sprintf('B[%d:%d]*.vc7',
(6*TrueImagesPerCycle+1), (6*TrueImagesPerCycle)+ImagesPerCycle));
    VelField8 = loadvec(sprintf('B[%d:%d]*.vc7',
(7*TrueImagesPerCycle+1), (7*TrueImagesPerCycle)+ImagesPerCycle));
```

```
        VelField9 = loadvec(sprintf('B[%d:%d]*.vc7',
(8*TrueImagesPerCycle+1), (8*TrueImagesPerCycle)+ImagesPerCycle));
        VelField10 = loadvec(sprintf('B[%d:%d]*.vc7',
(9*TrueImagesPerCycle+1), (9*TrueImagesPerCycle)+ImagesPerCycle));
        VelField11 = loadvec(sprintf('B[%d:%d]*.vc7',
(10*TrueImagesPerCycle+1), (10*TrueImagesPerCycle)+ImagesPerCycle));
        VelField12 = loadvec(sprintf('B[%d:%d]*.vc7',
(11*TrueImagesPerCycle+1), (11*TrueImagesPerCycle)+ImagesPerCycle));
        VelField13 = loadvec(sprintf('B[%d:%d]*.vc7',
(12*TrueImagesPerCycle+1), (12*TrueImagesPerCycle)+ImagesPerCycle));
        VelField14 = loadvec(sprintf('B[%d:%d]*.vc7',
(13*TrueImagesPerCycle+1), (13*TrueImagesPerCycle)+ImagesPerCycle));
        VelField15 = loadvec(sprintf('B[%d:%d]*.vc7',
(14*TrueImagesPerCycle+1), (14*TrueImagesPerCycle)+ImagesPerCycle));
        VelField16 = loadvec(sprintf('B[%d:%d]*.vc7',
(15*TrueImagesPerCycle+1), (15*TrueImagesPerCycle)+ImagesPerCycle));
        VelField17 = loadvec(sprintf('B[%d:%d]*.vc7',
(16*TrueImagesPerCycle+1), (16*TrueImagesPerCycle)+ImagesPerCycle));
        VelField18 = loadvec(sprintf('B[%d:%d]*.vc7',
(17*TrueImagesPerCycle+1), (17*TrueImagesPerCycle)+ImagesPerCycle));
        VelField19 = loadvec(sprintf('B[%d:%d]*.vc7',
(18*TrueImagesPerCycle+1), (18*TrueImagesPerCycle)+ImagesPerCycle));
        VelField20 = loadvec(sprintf('B[%d:%d]*.vc7',
(19*TrueImagesPerCycle+1), (19*TrueImagesPerCycle)+ImagesPerCycle));
% cd(folder2)
% VelField4 = loadvec(sprintf('B[%d:%d]*.vc7', 1, ImagesPerCycle));
% VelField5 = loadvec(sprintf('B[%d:%d]*.vc7',
(TrueImagesPerCycle+1), TrueImagesPerCycle+ImagesPerCycle));
% VelField6 = loadvec(sprintf('B[%d:%d]*.vc7',
(2*TrueImagesPerCycle+1), (2*TrueImagesPerCycle)+ImagesPerCycle));
%
% cd(folder3)
% VelField7 = loadvec(sprintf('B[%d:%d]*.vc7', 1, ImagesPerCycle));
% VelField8 = loadvec(sprintf('B[%d:%d]*.vc7',
(TrueImagesPerCycle+1), TrueImagesPerCycle+ImagesPerCycle));
% VelField9 = loadvec(sprintf('B[%d:%d]*.vc7',
(2*TrueImagesPerCycle+1), (2*TrueImagesPerCycle)+ImagesPerCycle));
% VelField1 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder1, 1,
ImagesPerCycle));
% VelField2 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder1,
(TrueImagesPerCycle+1), TrueImagesPerCycle+ImagesPerCycle));
% VelField3 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder1,
(2*TrueImagesPerCycle+1), (2*TrueImagesPerCycle)+ImagesPerCycle));
% VelField4 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder2, 1,
ImagesPerCycle));
% VelField5 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder2,
(TrueImagesPerCycle+1), TrueImagesPerCycle+ImagesPerCycle));
% VelField6 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder2,
(2*TrueImagesPerCycle+1), (2*TrueImagesPerCycle)+ImagesPerCycle));
% VelField7 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder3, 1,
ImagesPerCycle));
% VelField8 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder3,
(TrueImagesPerCycle+1), TrueImagesPerCycle+ImagesPerCycle));
```

```
% VelField9 = loadvec(sprintf('%s/B[%d:%d]*.vc7',folder3,
(2*TrueImagesPerCycle+1), (2*TrueImagesPerCycle)+ImagesPerCycle));
%
    NumBins = length(VelField1)/BinWidth;
    NumBins20 = length(VelField20)/BinWidth;
    %Initializing BinAvg Fields
    BinAvg1 = VelField1(1:NumBins);
    BinAvg2 = VelField2(1:NumBins);
    BinAvg3 = VelField3(1:NumBins);
    BinAvg4 = VelField4(1:NumBins);
    BinAvg5 = VelField5(1:NumBins);
    BinAvg6 = VelField6(1:NumBins);
    BinAvg7 = VelField7(1:NumBins);
    BinAvg8 = VelField8(1:NumBins);
    BinAvg9 = VelField9(1:NumBins);
    BinAvg10 = VelField10(1:NumBins);
    BinAvg11 = VelField11(1:NumBins);
    BinAvg12 = VelField12(1:NumBins);
    BinAvg13 = VelField13(1:NumBins);
    BinAvg14 = VelField14(1:NumBins);
    BinAvg15 = VelField15(1:NumBins);
    BinAvg16 = VelField16(1:NumBins);
    BinAvg17 = VelField17(1:NumBins);
    BinAvg18 = VelField18(1:NumBins);
    BinAvg19 = VelField19(1:NumBins);
    BinAvg20 = VelField20(1:NumBins);
    %Initializing PhaseAvg matrix
    for i = 1:NumBins
        BinAvg1(i) = averf(VelField1(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg2(i) = averf(VelField2(((BinWidth*i-(BinWidth-
1)) :(BinWidth*i))));
        BinAvg3(i) = averf(VelField3(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg4(i) = averf(VelField4(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg5(i) = averf(VelField5(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg6(i) = averf(VelField6(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg7(i) = averf(VelField7(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg8(i) = averf(VelField8(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg9(i) = averf(VelField9(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg10(i) = averf(VelField10(((BinWidth*i-(BinWidth-
1)) :(BinWidth*i))));
        BinAvg11(i) = averf(VelField11(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
        BinAvg12(i) = averf(VelField12(((BinWidth*i-(BinWidth-
1)):(BinWidth*i))));
```

BinAvg13(i) = averf(VelField13(((BinWidth*i-(BinWidth1)) : (BinWidth*i))));

BinAvg14(i) = averf(VelField14(((BinWidth*i-(BinWidth-
1)) : (BinWidth*i))) );

BinAvg15(i) = averf(VelField15(((BinWidth*i-(BinWidth-
1)) : (BinWidth*i))));

BinAvg16(i) = averf(VelField16(((BinWidth*i-(BinWidth-
1)) : (BinWidth*i))) );

BinAvg17(i) = averf(VelField17(((BinWidth*i-(BinWidth-
1)) : (BinWidth*i))));

BinAvg18(i) = averf(VelField18(((BinWidth*i-(BinWidth-
1)) : (BinWidth*i))));

BinAvg19(i) = averf(VelField19(((BinWidth*i-(BinWidth-
1)) : (BinWidth*i))));

BinAvg20(i) = averf(VelField20(((BinWidth*i-(BinWidth1)) :(BinWidth*i))));
end

TotBinAvg = [BinAvg1, BinAvg2, BinAvg3, BinAvg4, BinAvg5, BinAvg6, BinAvg7, BinAvg8, BinAvg9, BinAvg10, BinAvg11, BinAvg12, BinAvg13, BinAvg14, BinAvg15, BinAvg16, BinAvg17, BinAvg18, BinAvg19, BinAvg20];

```
    [m,n] = size(TotBinAvg(1).vx);
    sz = m*n;
    DatExportX = zeros(sz,1);
    DatExportY = zeros(sz,1);
    DatExportVX = zeros(sz,1);
    DatExportVY = zeros(sz,1);
    %% EXPORT BIN AVERAGED DATA TO DAT
    h = waitbar(0);
    tic
    for t = 1:length(TotBinAvg)
        counter = 1;
        for j = 1:n
            for i = 1:m
                DatExportX(counter) = TotBinAvg(t).x(i);
                DatExportY(counter) = TotBinAvg(t).y(j);
                DatExportVX(counter) = TotBinAvg(t).vx(i,j);
                DatExportVY(counter) = TotBinAvg(t).vy(i,j);
                counter = counter + 1;
            end
    end
    %Export DatExport from (t*NumBins-NumBins+1):(t*NumBins)
    if isempty(dir(sprintf('%s/BinAVG',folder0))) %if the
directory doesn't exist, make it
            mkdir(sprintf('%s/BinAVG',folder0));
        end
```

```
    fid2 = fopen(sprintf('%s/BinAVG\\T=%04d.dat',folder0,t),'w');
    fprintf(fid2,'%s %s %s\n','TITLE = "T =
',sprintf('%04d',t),'"');
        fprintf(fid2,'%s\n','VARIABLES = "X (m)", "Y (m)", "U (m/s)",
"V (m/s)"');
        fprintf(fid2,'%s %s %s %d %s %d\n','ZONE T="T =
    ',sprintf('%04d',t),'", I=',m, 'J=',n);
        tot = m*n;
        for l = 1:tot
            fprintf(fid2,'%8.6f %8.6f %8.6f
%8.6f\n',DatExportX(l)/1000,DatExportY(l)/1000,DatExportVX(l),DatExport
VY(l));
            end
            fclose(fid2);
            progress = (t/(length(TotBinAvg)));
            time_elapsed = toc;
            time_remaining = (1-progress)*(time_elapsed/progress)/60;
            wait\overline{b}ar(progress, h,['Time Remaining}: ','
num2str(time_remaining),'min'], 'Name', num2str(progress*100));
    end
    close(h);
end
fclose(fid_inp);
```


## L. 2 ScalingData.m

```
%% Copies and organizes files: orders them by frame and puts all cycles
togethers
close all
clear
clc
%%
datafolder =
'I:\Data\SA2B\HSPIV\FLAIL8020\20181207_Flail8020_50Per_Neo\6.5_700hz\Ma
skOutImage_01\SubOverTimeMin_sL=5\TR_PIV_MPd(5x1\overline{6x16_50%ov_Img\overline{Corr})_GPU}
\PostProc\BinAVG_703Hz'...
    ; %folder containing PIV
data
outputfolder = '%s/Scaled'; %folder containing
output folders
outputfolderroot = 'Scaled'; %folder containing
output data
inroot = 'T='; %input filename prefix
outroot = 'Ts='; %output filename prefix
numformat = '%04d'; %total digits in
numbering
fileextension = '.dat'; %file type
firstf = 1; %first file number
lastf = 2400;
    %last file number
```

```
incrementf = 1; %increments between
files
%xfactor = 0.9541985; %0x-axis
scaling factor
%yfactor = 1.0087719; %0y-axis
scaling factor
xfactor = 0.7668712; %50x-axis
scaling factor
yfactor = 0.858209; %50y-axis
scaling factor
%xfactor = 0.8081897; %100x-axis
scaling factor
%yfactor = 1.124031; %100y-axis
scaling factor
%%
cd(datafolder)
myfolder = sprintf(outputfolder,datafolder);
if isempty(dir(myfolder)) %if the directory doesn't exist, make
it
    mkdir(myfolder);
end
NumHeaderLines = 3; %number of headerlines
to skip
NumCols = 4;
initialize = 1;
lengthf = (lastf-firstf+1)/incrementf;
h = waitbar(0);
    tic
for FileNum = firstf:incrementf:lastf
    u = sprintf(numformat,FileNum);
    infilenumformat = strcat(inroot,u,fileextension);
    outfilenumformat =
strcat(outputfolderroot,'\\',outroot,u,fileextension);
    %open .dat file
    fid = fopen(infilenumformat,'r');
    InputText = textscan(fid,'%s',NumHeaderLines,'delimiter','\n');
    if initialize == 1;
            temp = InputText{1};
            RowThree = temp(3);
            SplitRow = strsplit(RowThree{1});
            m = str2num(SplitRow{7});
            n = str2num(SplitRow{9});
            DataLength = m*n;
            RawData = zeros(DataLength,NumCols);
            ScaledData = zeros(DataLength,NumCols);
            initialize = 0;
    end
    %Create format string based on parameter
```

```
    FormatString = repmat('%f',1,NumCols);
    %Read Original Data
    RawData(:,:) =
cell2mat(textscan(fid,FormatString,'delimiter',','));
    fclose(fid);
    %Scaled Data
    ScaledData(:,1) = RawData(:,1)*xfactor; %X
    ScaledData(:,2) = RawData(:,2)*yfactor; %Y
    ScaledData(:,3) = RawData(:,3)*xfactor; %VX
    ScaledData(:,4) = RawData(:,4)*yfactor; %VY
    %EXPORT TO DAT
    DatExportX = ScaledData(:,1);
    DatExportY = ScaledData(:,2);
    DatExportVX = ScaledData(:,3);
    DatExportVY = ScaledData(:,4);
    fid2 = fopen(outfilenumformat,'w');
    fprintf(fid2,'%s %s %s\n','TITLE = "T =
',sprintf('%04d',FileNum),'"');
    fprintf(fid2,'%s\n','VARIABLES = "X (m)", "Y (m)", "U (m/s)", "V
(m/s)"');
    fprintf(fid2,'%s %s %s %d %s %d\n','ZONE T="T =
',sprintf('%04d',FileNum),'", I=',m, 'J=',n);
    for L = 1:DataLength
        fprintf(fid2,'%8.6f %8.6f %8.6f
%8.6f\n',DatExportX(L),DatExportY(L),DatExportVX(L),DatExportVY(L));
    end
    fclose(fid2);
    %progress bar
    progress = (FileNum/lengthf);
    time_elapsed = toc;
    time_remaining = (1-progress)*(time_elapsed/progress)/60;
    waitbar(progress, h, ['Time Remaining: ',
num2str(time_remaining),'min'], 'Name', num2str(progress*100));
end
close(h);
toc
```


## L. 3 PhaseAvgBinnedData.m

```
%% Input files for this script must be bin averaged .dat files
%% clear workspace
clear
clc
```

```
%% input parameters
NumCycles = 20;
TotalBins = 2400;
%% Read Bin Averaged Data
NumBins = TotalBins/NumCycles;
NumHeaderLines = 3;
NumCols = 4;
initialize = 1;
for FileNum = 1:TotalBins
    fid = fopen(strcat('Ts=',sprintf('%04d',FileNum),'.dat'),'r');
    InputText = textscan(fid,'%s',NumHeaderLines,'delimiter','\n');
    if initialize == 1;
        temp = InputText{1};
        RowThree = temp(3);
        SplitRow = strsplit(RowThree{1});
        m = str2num(SplitRow{7});
        n = str2num(SplitRow{9});
        DataLength = m*n;
        BinnedData = zeros(DataLength, 4, TotalBins);
        PhaseAvgData = zeros(DataLength,4, NumBins);
        initialize = 0;
    end
    % Create format string based on parameter
    FormatString = repmat('%f',1,NumCols);
    % Read data block
    BinnedData(:,:,FileNum) =
cell2mat(textscan(fid,FormatString,'delimiter',','));
    % Close the file
    fclose(fid);
end
%% Phase Average Binned Data
for count = 1:NumBins
    for cycle = 1:NumCycles
            PhaseAvgData(:,:,count) = PhaseAvgData(:,:,count) +
BinnedData(:,:,(NumBins*(cycle-1))+count);
    end
end
PhaseAvgData(:,:,:) = PhaseAvgData(:,:,:)/NumCycles;
%% EXPORT TO DAT
DatExportX = zeros(DataLength);
DatExportY = zeros(DataLength);
DatExportVX = zeros(DataLength);
DatExportVY = zeros(DataLength);
```

```
for t = 1:NumBins
    DatExportX = PhaseAvgData(:,1,t);
    DatExportY = PhaseAvgData(:,2,t);
    DatExportVX = PhaseAvgData(:,3,t);
    DatExportVY = PhaseAvgData(:,4,t);
    if isempty(dir(sprintf('%s/BinPhaseAVG',pwd)))
        mkdir(sprintf('%s/BinPhaseAVG',pwd));
    end
    fid2 = fopen(sprintf('BinPhaseAVG\\T=%04d.dat',t),'w');
    fprintf(fid2,'%s %s %s\n','TITLE = "T = ',sprintf('%04d',t),'"');
    fprintf(fid2,'%s\n','VARIABLES = "X (m)", "Y (m)", "U (m/s)", "V
(m/s)"');
    fprintf(fid2,'%s %s %s %d %s %d\n','ZONE T="T =
',sprintf('%04d',t),'", I=',m, 'J=',n);
    tot = m*n;
    for l = 1:tot
        fprintf(fid2,'%8.6f %8.6f %8.6f
%8.6f\n',DatExportX(l),DatExportY(l),DatExportVX(l),DatExportVY(l));
    end
    fclose(fid2);
end
% Notify Me When Done By Playing Song
%load handel;
%player = audioplayer(y, Fs);
%play(player);
```


## L. 4 Extract_min_max_avg_vel_TFE.m

```
clear
close all
```

```
%**************CHANGE FILE PATH FOR EACH EXPERIMENT!*******************
%
file path='I:\Data\SA2B\HSPIV\FLAIL8020\20181207 Flail8020 50Per Neo\6.
5 7000hz\MaskOutImage 01\SubOverTimeMin sL=5\TR PIV MPd(5\times1/6\times16 50%ov Im
gCorr)_GPU\PostProc\BinAVG_703Hz\Scaled\BinPhaseAVG';
znam = '8020F_neo_0Per_6.5minmaxavg';
timepoints = 120;
sz = [112 118 timepoints]; %get from dat file header
%
%***************************************************************************
listing = dir(file_path);
filenames = {listing.name};
dat1 = [];
```

```
for i = 3:length(filenames) %loop through all time points
    file_1 = char(cellstr(filenames(i)));
    file-}= sprintf('%s\\%s',file_path,file_1)
    fidl = fopen(file,'r');
    head = fgetl(fid1);
    fgetl(fidl);
    tem = fgetl(fid1);
    sz2 = sscanf(tem,['ZONE T="Frame 0', I=','%d',', J=','%d'],[1
Inf]);
    dat1(:,:,i-2) = fscanf(fid1,'%f %f %f %f\n',[4 inf]);
    fclose(fid1);
```

end
vel_mag $=\operatorname{sqrt}(\operatorname{dat1}(3,:,:) . \wedge 2+\operatorname{dat} 1(4,:,:) . \wedge 2) ;$
vel $=$ reshape(vel_mag,sz(1)*sz(2),1,sz(3));
tpts $=0:((1 /$ timepoints $) * 0.856): 0.856$;
\% Initialize minimum array
minim $=$ ones(sz(1)*sz(2),1)*1000;
maxim $=$ zeros(sz(1)*sz(2),1);
min_ind $=$ zeros(sz(1)*sz(2),1);
max_ind $=$ zeros(sz(1)*sz(2),1);
add $=$ zeros(sz(1)*sz(2),1);
for i = 1:(timepoints)
minim $=$ min(minim, vel(:, :,i));
min_ind =
plus(times(tpts(i), ge(minim, vel(:, : i))), times(min_ind,lt(minim, vel(:, :
,i)) ) ;
maxim $=$ max (maxim, vel(:,:,i));
max_ind =
plus(times(tpts(i), le(maxim, vel(:, : i))), times (max_ind,gt(maxim, vel(:, :
,i)) ) ;
add $=$ plus(add,vel(:,:,i));
end
avg = add/timepoints;
\% Write out minimum and maximum fields
fid2 $=$ fopen(strcat(file_path,'\',znam,'.dat'),'w');
fprintf(fid2,'\%s\n',strcat('TITLE = "',znam,'"'));
fprintf(fid2,'\%s\n','VARIABLES $=" X(m) ", ~ " Y(m) ", ~ " M i n(m / s) ", ~ " M i n$
$\operatorname{Time}(\mathrm{ms}) ", ~ " M a x(\mathrm{~m} / \mathrm{s}) ", ~ " M a x \operatorname{Time}(\mathrm{~ms}) ", ~ " A v e r a g e ~(\mathrm{~m} / \mathrm{s})$ "');
fprintf(fid2,'\%s \%s \%s \%d \%s \%d\n','ZONE $T={ }^{\prime} ', z n a m, ' \quad ", ~ I=', s z(1)$,
'J=',sz(2));
for $j=1: s z(1) * s z(2)$
fprintf(fid2, $\% 8.4 f \% 8.4 f \% 8.4 f \% 8.4 f \% 8.4 f \% 8.4 f$
\%8.4f\n', dat1 $(1, j)$, dat1 $(2, j), \operatorname{minim}(j), \min \_i n d(j), \operatorname{maxim}(j), m a x \_i n d(j)$, av
g(j));
end
fclose(fid2);
clear all
close all

## L. 5 PIV_Renaming_v1.m

```
%% Copies and organizes files: orders them by frame and puts all cycles
togethers
close all
clear
clc
%%
datafolder = 'Z:\Work\Work - Graduate\Work - SA2\SA2b
Processed\Flail8020rescaled\50Per\6.5L_2\Cycle Averaged'...
    ; % %folder containing PIV
data
outputfolder = '%s/Reordered_200ms'; %folder containing
output folders
inroot = 'T='; %input filename prefix
outroot = 'T='; %output filename prefix
numformat = '%04d'; %total digits in
numbering
fileextension = '.dat'; %file type
firstf = 1; %number of old first
file
lastf = 120; %number of old last
file
incrementf = 1; %increments between
files
firstfin = 29; %start number of old
file
firstfout = 1; %start number of new
first file
%%
cd(datafolder)
myfolder = sprintf(outputfolder,datafolder);
if isempty(dir(myfolder)) %if the directory doesn't exist, make
it
    mkdir(myfolder);
end
length = ((lastf-firstf)+1)/incrementf;
h = waitbar(O);
    tic
for m = firstf:incrementf:lastf
    if m >= firstfin
            k = (m-firstfin)+1;
    elseif m < firstfin
```

```
        k = (m-firstfin)+1+lastf;
    end
    t = sprintf(numformat,m); %input file number
    u = sprintf(numformat,k);
    infilenumformat = strcat(inroot,t,fileextension);
    outfilenumformat =
strcat(outputfolder,'\\',outroot,u,fileextension);
    copyfile(infilenumformat, sprintf(outfilenumformat,datafolder));
%copies and renames file
    %progress bar
    progress = (m/length);
    time_elapsed = toc;
    time remaining = (1-progress)*(time elapsed/progress)/60;
    wait\overline{b}ar(progress, h, ['Time Remaining: ',
num2str(time_remaining),'min'], 'Name', num2str(progress*100));
end
close(h);
```


## L. 6 PIV_Organizing_final_v1.m

```
%% Copies and organizes files: orders them by frame and puts all cycles
togethers
close all
clc
%%
datafolder =
'I:\Data\SA2A\HSPIV\FLAIL8020\20190206_Flail8020_0Per\5\MaskOutImage\Su
bOverTimeMin_sL=5\TR_SeqPIV_MP (2x32x32_50%ov)\PostProc\BinAVG_702Hz'...
    ;
data
outputfolder = '%s/Frames'; %folder containing
output folders
outputfolderroot = 'Frame'; %folder containing
output data
inroot = 'T='; %input filename prefix
outroot = 'Tr='; %output filename prefix
numformat = '%04d'; %total digits in
numbering
fileextension = '.dat'; %file type
firstf = 1; %first frame number of
cycle
lastf = 120; %last frame number of
cycle
incrementf = 1; %increments between
frames
lengthc = 120; %number of frames in a
cycle
firstc = 1; %first cycle number
```

```
lastc = 20; %last cycle number
incrementc = 1; %increments between
cycles
cyclelength = 856; %(ms) length of cardiac
cycle
PIVoutfolder = 'Frames'; %for syntax in PIV file
(same as outputfolder)
PIVfilename = 'PIVinput.txt'; %list of folders used
for PIV processing
deltatfilename = 'dtinput.txt'; %list of timepoints for
PIV processing
%%
dt = cyclelength/lengthc;
cd(datafolder)
myfolder = sprintf(outputfolder,datafolder);
if isempty(dir(myfolder)) %if the directory doesn't exist, make
it
    mkdir(myfolder);
end
FileArray = strings(lengthc,1);
FileArray2 = zeros(1,lengthc);
dirfilename = strcat(outputfolder,'\\',PIVfilename);
dtfilename = strcat(outputfolder,'\\',deltatfilename);
h = waitbar(0);
    tic
for m = firstf:incrementf:lastf
    %make folder for frame m
    s = sprintf(numformat,m); %folder number
    outputfolders = strcat(outputfolder,'\\',outputfolderroot,s);
    if isempty(dir(sprintf(outputfolders,datafolder))) %if the
directory doesn't exist, make it
            mkdir(sprintf(outputfolders,datafolder));
    end
    %copy files to folder and renames to cycle n
    for n = firstc:incrementc:lastc
            k = (n-1)*lengthc+m;
            t = sprintf(numformat,k); %input file number
            u = sprintf(numformat,n);
            infilenumformat = strcat(inroot,t,fileextension);
            outfilenumformat =
strcat(outputfolders,'\\',outroot,u,fileextension);
            copyfile(infilenumformat,sprintf(outfilenumformat,datafolder));
%copies and renames file
    end
    %Export folder names to .txt file
    diroutfolder = strcat(PIVoutfolder,'\',outputfolderroot,s);
    FileArray(m,l) = string(strcat(datafolder,'\',diroutfolder));
    fid2 = fopen(sprintf(dirfilename,datafolder),'w');
    fprintf(fid2,'%s\n',FileArray(:));
    fclose(fid2);
```

```
    %Export dt to .txt file
    diroutfolder = strcat(PIVoutfolder,'\',outputfolderroot,s);
    FileArray2(1,m) = dt*(m-1);
    fid3 = fopen(sprintf(dtfilename,datafolder),'w');
    fprintf(fid3,'%8.6f ',FileArray2(:));
    fclose(fid3);
    %progress bar
    progress = (m/lengthc);
    time elapsed = toc;
    time_remaining = (1-progress)*(time_elapsed/progress)/60;
    wait\overline{b}ar(progress, h, ['Time Remaining}: ',
num2str(time_remaining),'min'], 'Name', num2str(progress*100));
end
close(h);
```


## L. 7 Master_PIV2_TFE_new.m

```
clear all
clc
tic
cd
'I:\Data\SA2A\HSPIV\Control\Thomas_LAMPOON_control_20180905\6.51pm_cont
rol_1\MaskOutImage\SubOverTimeMin_sL=5\TR_\_SeqPIV_MP(2x32x32_50%ov)\Post
Proc\BinAVG_904Hz'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
% MASTER PROGRAM FOR PIV PROCESSING
% CURRENT AS OF 06/02/2019
% ASSUME NUMBER OF FILES IS NFILE
% THIS PROGRAM CREATES TWO FILES:
% 1. B00001-NFILE.DAT
% 2. MEAN FILES CREATING FROM THE AVERAGING PROGRAM
% THE INPUT FILE FOR THIS PROGRAM IS input.txt
% input.txt - List of data folders, exported from Davis
% THIS PROGRAM ASSUMES THAT THE DATAFILES ARE STORED AS B*****.DAT,
WHERE
% ***** RANGES FROM 1-NFILE.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%으ᄋ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
flow = 6.5; %lpm
plane = 'c';
% Time points of data acquisitions
dt =
    'I:\Data\SA2A\HSPIV\Control\Thomas_LAMPOON_control_20180905\6.51pm_cont
    rol_1\MaskOutImage\SubOverTimeMin_sL=5\TR_SeqPIV_MP(2x32x32_50%ov)\Post
    Proc\BinAVG_904Hz\Frames\dtinput.txt';
    % % % % create input file
```

```
% fidi = fopen('F:\BSCI_23mm_dat files\plan_a_5lpm -
Copy/input.txt','w');
% for i=1:length(tp)
% fprintf(fidi,'F:\BSCI_23mm_dat files\plan_a_5lpm -
Copy/T1=%d/\n',tp(i));
% end
% % % File containing the list of data directories
inpf=
'I:\Data\SA2A\HSPIV\Control\Thomas_LAMPOON_control_20180905\6.5lpm_cont
rol_1\MaskOutImage\SubOverTimeMin_sL=5\TR__SeqPIV_MP(2x32x32_50%ov)\Post
Proc\BinAVG_904Hz\Frames\PIVinput.txt';
% Directory for writing the output files
outdir =
['I:\Data\SA2A\HSPIV\Control\Thomas_LAMPOON_control_20180905\6.51pm_con
trol_1\MaskOutImage\SubOverTimeMin__sL=5\TR_SeqPIV_MP (2x32x32_50%ov)\Pos
tProc\BinAVG_904Hz\Frames\' num2strr(flow) 'lpm_' plane '/'];
% Number of data files
nfile = 16;
% Size of data array in one file
sz = [96 70];
% Density of solution in kg/m3
rho = 1091;
% Kinematic viscosity in m2/s
nu = 3.5E-6;
% z-location of plane of interest;
% For BAV, z=5.0 for pl1, z=0.0 for pl2 and z=2.5 for pl3
% For Normal, z=2.5 for pl1, z=0.0 for pl2 and z=5.0 for pl3
z = 0.0;
% Flag for coordinates
% Flag = 1, write out coordinates, use only for pl2 of all datasets
% Flag = 2, read coordinates
flag = 1;
% Path of coordinates file
coordfile = strcat(outdir,'coordfile.dat');
% Length of string for output files
lencur = 6;
% flag_del = 1 deletes the file named B00001-NFILE.DAT.
% Any other value keeps the file in the folder
flag_del = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
% Total number of elements
tot = sz(1)*sz(2);
% Open the file containing the list of dt value
fid0 = fopen(dt,'r');
tp = cell2mat(textscan(fid0,'%f','Delimiter',''));
tp = tp.';
fclose(fid0);
% Open the file containing the list of data directories
fidl = fopen(inpf,'r');
dirs = textscan(fid1,'%s','Delimiter','\n');
dirs = dirs{1};
fclose(fidl);
```

```
% Create file for writing time points of measurements
A = exist(strcat(outdir,'Mean'));
if (A~=7)
    mkdir(outdir,'Mean');
end
outf = strcat(outdir,'Mean/tpts.txt');
fid5 = fopen(outf,'w');
h = waitbar(0);
    tic
lengthc = size(dirs,1);
% Scan through the list of directories
for i=1:size(dirs,1)
    curr = char(dirs(i));
    mean_term = zeros(8,tot);
    if (nfile>99)
        nfile_nam = num2str(nfile,'%3d');
    else if (nfile>9)
                nfile_nam = num2str(nfile,'%2d');
            else
                        nfile_nam = num2str(nfile,'%1d');
            end
        end
% Create the output file name for writing
    outf = strcat(curr,'_Tr=0001-',nfile_nam,'.dat');
    fid3 = fopen(outf,'w');
    fprintf('%s%s\n','Writing file: ',outf);
    for l=1:nfile
        fprintf('%s%s\n','Processing file:
',strcat(curr,'\Tr=',sprintf('%04d\n',l),'.dat'));
% CREATE FILENAME
        fnam = strcat(curr,'\Tr=',sprintf('%04d\n',l),'.dat');
% OPEN FILE
        fid2 = fopen(fnam,'r');
% READ HEADER
        head = fgetl(fid2);
        fgetl(fid2);
        tem = fgetl(fid2);
        %sz = sscanf(tem,['ZONE T="T= 0001", I=','%d','J=','%d'],[1
Inf]);
% READ DATA
    dat = fscanf(fid2,'%f %f %f %f\n',[4 inf]);
        fclose(fid2);
% VELOCITY MAGNITUDE
            vel_mag = sqrt(dat(3,:).^2+dat(4,:).^2);
% RESHAPING DATA
        X = reshape(dat(1,:),sz(1),sz(2));
        Y = reshape(dat(2,:),sz(1),sz(2));
        U = reshape(dat(3,:),sz(1),sz(2));
        V = reshape(dat(4,:),sz(1),sz(2));
% VECTOR SPACING
```

```
        dx = (X (2,1)-X(1,1));
        dy = (Y(1,1)-Y(1,2));
        dUdx = zeros(sz(1),sz(2));
        dUdy = zeros(sz(1),sz(2));
        dVdx = zeros(sz(1),sz(2));
        dVdy = zeros(sz(1),sz(2));
        tau_sumxy = zeros(sz(1),sz(2));
% CALCULATING GRADIENTS AND WALL-NORMAL GRADIENTS
        for j=2:sz(1)-1
            for k=2:sz(2)-1
                dUdx(j,k) = (U(j+1,k)-U(j-1,k))/(X(j+1,k)-X(j-1,k));
                dUdy(j,k) = (U(j,k+1)-U(j,k-1))/(Y(j,k+1)-Y(j,k-1));
                    dVdx(j,k) = (V (j+1,k)-V(j-1,k))/(X(j+1,k)-X(j-1,k));
                    dVdy(j,k) = (V (j,k+1)-V(j,k-1))/(Y(j,k+1)-Y(j,k-1));
                tau_sumxy(j,k) = dUdy(j,k)+dVdx(j,k);
            end
        end
    dUdx = reshape(dUdx,1,tot);
    dUdy = reshape(dUdy,1,tot);
    dVdx = reshape(dVdx,1,tot);
    dVdy = reshape(dVdy,1,tot);
    tau_sumxy = reshape(tau_sumxy,1,tot);
% If it is the first file, write the common header, else only write
zone
% header
    if (l==1)
                fprintf(fid3,'%s\n',head);
                fprintf(fid3,'%s\n','VARIABLES = "X (m)", "Y (m)", "U
(m/s)", "V (m/s)", "Vel (m/s)", "dUdX", "dUdY", "dVdX", "dVdY",
"dUdy+dVdx"');
            end
            fprintf(fid3,'%s%s%s%d%s%d%s\n','ZONE
T="',strcat('B',sprintf('%05d\n',i),'.dat'),'", I=',sz(1),'
J=',sz(2),',DATAPACKING=POINT');
            for j=1:tot
            fprintf(fid3,'%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f
%8.4f %8.4f
%8.4f\n',dat (1,j),dat (2,j),dat (3,j),dat (4,j),vel_mag(j),dUdx(j),dUdy(j)
,dVdx(j),dVdy(j),tau_sumxy(j));
            end
% Calculate mean quantities for the N files
            mean_term(1,:) = mean_term(1,:) + dat(3,:)/double(nfile);
            mean_term(2,:) = mean_term(2,:) + dat(4,:)/double(nfile);
            mean_term(3,:) = mean_term(3,:) + vel_mag/double(nfile);
            mean_term(4,:) = mean_term(4,:) + dUdx/double(nfile);
            mean_term(5,:) = mean_term(5,:) + dUdy/double(nfile);
            mean_term(6,:) = mean_term(6,:) + dVdx/double(nfile);
            mean_term(7,:) = mean_term(7,:) + dVdy/double(nfile);
            mean term(8,:) = mean term(8,:) + tau sumxy/double(nfile);
        end
% Conversion of units from m/s/mm to 1/s
% for j=4:8
```

```
% mean_term(j,:) = mean_term(j,:)*1000;
% end
    fclose(fid3);
% Open the newly created file for further calculations
    fid3 = fopen(outf,'r');
    fprintf('%s%s\n','Reading file for mean calculations: ',outf);
% READ HEADER
    for l=1:2
        head = fgetl(fid3);
    end
    uu = zeros(1,tot);
    vv = zeros(1,tot);
    uv = zeros(1,tot);
    TKE = zeros(1,tot);
    pRSS = zeros(1,tot);
    VSS = zeros(1,tot);
% Calculation of quantities
    for l=1:nfile
        head = fgetl(fid3);
        dat = fscanf(fid3,'%f %f %f %f %f %f %f %f %f %f\n',[10,tot]);
        for j=1:tot
            uu(1,j) = uu(1,j) + (dat(3,j)-
mean_term(1,j))^2/double(nfile);
            vv(1,j) = vv(1,j) + (dat(4,j)-
mean_term(2,j))^2/double(nfile);
            uv(1,j) = uv(1,j) + (dat(4,j)-mean_term(2,j))*(dat(3,j)-
mean_term(1,j))/double(nfile);
        end
    end
% Calculation of TKE, Principle RSS, and VSS scalar shear components
    for j=1:tot
        TKE(1,j) = 0.5*(uu(1,j)+vv(1,j));
        pRSS(1,j) = rho*sqrt(((uu(1,j)-vv(1,j))/2)^2+(uv(1,j))^2);
        VSS(1,j) = nu*rho*mean_term(8,j);
    end
    fclose(fid3);
% Read or write coordinates file depending on flag
    if (flag==1)
        fid4 = fopen(coordfile,'w');
        for j=1:tot
            fprintf(fid4,'%8.4f %8.4f\n',dat(1,j),dat(2,j));
        end
        flag = 2;
        fclose(fid4);
    else
        fid4 = fopen(coordfile,'r');
        tem = fscanf(fid4,'%f %f\n',[1 inf]);
        fclose(fid4);
        dat(1,:) = tem(1:2:tot*2);
        dat(2,:) = tem(2:2:tot*2);
    end
```

```
% Write results of mean calculations
        slash = find(curr=='\');
        fnam = strcat(outdir,'Mean/T= ',sprintf('%f',tp(i)),'.dat');
        fid6 = fopen(fnam,'w');
        fprintf(fid5,'%s%s%s\n','T=',sprintf('%f',tp(i)),'.dat');
        fprintf('%s%s\n','Writing file: ',fnam);
    fprintf(fid6,'%s %s %s\n','TITLE = "T =
',sprintf('%f',tp(i)),'ms'');
    fprintf(fid6,'%s\n','VARIABLES = "X (m)", "Y (m)", "Z (m)", "U
(m/s)", "V (m/s)", "Vel (m/s)", "dU/dx (s<sup>-1</sup>)", "dU/dy
(s<sup>-1</sup>)", "dV/dx (s<sup>-1</sup>)", "dV/dy (s<sup>-1</sup>)",
"<b><greek>w</greek><sub>z</sub> (s<sup>-1</sup>)</b>",
"<greek>r</greek>u\''u\'' (N/m<sup>2</sup>)", "<greek>r</greek>v\''v\''
(N/m<sup>2</sup>)", "<greek>r</greek>u\''v\'' (N/m<sup>2</sup>)", "TKE
(m<sup>2</sup>/s<sup>2</sup>)", "RSS (N/m<sup>2</sup>)", "VSS
(N/m<sup>2</sup>)"');
    fprintf(fid6,'%s %s %s %d %s %d\n','ZONE T=" T =
',sprintf('%f',tp(i)),'ms", I=',sz(1), 'J=',sz(2));
    for j=1:tot
            fprintf(fid6,'%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f
%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f
%8.4f\n',dat (1,j),dat (2,j),z,mean_term(1,j),mean_term(2,j),mean_term(3,
j),mean_term (4,j),mean_term ( 5,j),mean_term(6,j),mean_term(7,j),mean_ter
m(8,j),uu(1,j),vv(1,j),uv(1,j),TKE (1,j),pRSS (1,j),VSS (1, j));
    end
    fclose(fid6);
    if (flag_del==1)
        delete(outf);
    end
    %progress bar
    progress = (i/lengthc);
    time_elapsed = toc;
    time_remaining = (1-progress)*(time_elapsed/progress)/60;
    waitbar(progress, h, ['Time Remaining: ',
num2str(time remaining),'min'], 'Name', num2str(progress*100));
end
close(h);
fclose(fid5);
toc
```


## L. 8 ParticleTrackingTecplotToExcelAndEPS_TFE.m

```
% clear stuff
clear
clc
% Input your file name WITHOUT FILE EXTENSION!
%[filename, pathname] = uigetfile({'*.txt*'},'Select Particle Path Text
File');
filename = '8020F_0Per_6.5pt_aa';
```

```
pathname = 'Z:\Work\Work - Graduate\Work - SA2\SA2a
Processed\Flail8020\0Per\6.5L\Cycle Averaged';
chdir(pathname);
%neo sinus axes
%user_axis = [-.011,.011,-.01,.01]; %0Per_neo 8020F
%user_axis = [-.01,.012,-.01,.01]; %50Per_neo 8020F
%user_axis = [-.017,.005,-.012,.008]; %100
%LV a\overline{xes}
user_axis = [-.07,.03,-.05,.03]; %0Per 8020F
%user_axis = [-.01,.012,-.01,.01]; %50Per 8020F
%user_axis = [-.075,.025,-.055,.025]; %100Per 8020F
% Open text file
fid = fopen(strcat(filename,'.txt'),'r');
% Number of Header Lines
NumHeaderLines = 1;
%Read strings delimited by a carriage return
InputText = textscan(fid,'%s',NumHeaderLines,'delimiter','\n');
FileHeader = InputText{1};
%disp(FileHeader);
% Number of INTERNAL Header Lines
NumInternalHeaderLines = 1;
% Initialize block index
NumParticles = 1;
% Number of Columns of Data (X,Y,Z,etc)
NumCols = 2;
% For each block:
while (~feof(fid))
    % Display block number
    % disp(cellstr(['Particle ' num2str(NumParticles)]));
    % Read header lines
    InputText =
textscan(fid,'%s',NumInternalHeaderLines,'delimiter','\n');
    HeaderLines{NumParticles,1} = InputText{1};
    % disp(HeaderLines{NumParticles});
    % Create format string based on parameter
    FormatString = repmat('%f',1,NumCols);
    % Read data block
    InputText = textscan(fid,FormatString,'delimiter',',');
    % Convert to numerical array from cell
    ParticlePaths{NumParticles,1} = cell2mat(InputText);
```

```
    % Size of table
    [NumRows,NumCols] = size(ParticlePaths{NumParticles});
    % disp(cellstr(['Table data size: ' num2str(NumRows) ' x '
num2str(NumCols)]));
    % New line
    % disp('*****');
    % Increment block index
    NumParticles = NumParticles+1;
end
NumParticles = NumParticles - 1;
% Close the file
fclose(fid);
for i=1:NumParticles
% LPP = length(ParticlePaths{i});
% for j=1:LPP
% if ParticlePaths{i}(j,1) == ParticlePaths{i}(LPP,1)
% if ParticlePaths{i}(j,2) == ParticlePaths{i}(LPP, 2)
% ParticlePaths{i}(j:end,:) = [];
% %break
% end
% end
% end
    r = length(ParticlePaths{i}(:,1));
    FormatForExcel(1:r,2*i-1:2*i) = [ParticlePaths{i}(:,1),
ParticlePaths{i}(:,2)];
end
FormatForExcel(FormatForExcel == 0) = NaN;
csvwrite(strcat(filename,'.cSv'),FormatForExcel);
%%
% Make directory for video frames
% if isempty(dir(sprintf('ParticleTrackingFrames')))
% mkdir(sprintf('ParticleTrackingFrames'));
% end
v = VideoWriter(strcat(filename,'_particle_tracking.avi'));
v.FrameRate = 10;
v.Quality = 100;
open(v);
[m,n] = size(FormatForExcel);
h = waitbar(0);
tic
for t=1:10:m
    name = sprintf('ParticleTrackingFrames\\t=%04i',t);
    figure('Visible','off')
    for i=1:NumParticles
```

```
        plot(FormatForExcel(t,2*i-1),FormatForExcel(t,2*i),'.r');
        axis(user axis)
        hold on
    end
    hold off
    F = getframe;
    writeVideo(v,F);
    %print(name,'-deps'); % writes EPS file
    close;
    clc;
    progress = (t/m);
    time_elapsed = toc;
    time_remaining = (1-progress)*(time_elapsed/progress)/60;
    waitbar(progress, h, ['Time Remaining: ',
num2str(time_remaining),'min'], 'Name', num2str(progress*100));
end
close(h);
close(v);
%%
%Clear Workspace except for Particle Paths (not necessary)
clear ans fid FileHeader FormatString HeaderLines InputText ...
    NumHeaderLines NumInternalHeaderLines NumRows NumCols ...
    i r FormatForExcel;
```


## L. 9 ParticleTrackingWashout.m

```
%%[filename, pathname] = uigetfile({'*.cSv*'},'Select Particle Path
Text File');
%%^had to comment out for Word
chdir(pathname);
A = importdata(filename);
[len, num] = size(A);
WashoutCurve = zeros(len,1);
for i = 1:2:num
    Var = A(:,i);
    Var(isnan(Var(:,1)),:)=[];
    Var(:)=1;
    dim = numel(Var);
    WashoutCurve(1:dim) = WashoutCurve(1:dim) + Var;
end
WashoutCurve = WashoutCurve/max(WashoutCurve);
Time = [0:0.001:(numel(WashoutCurve)-1)*0.001]';
CardiacCycles = Time/0.856;
```

```
plot(CardiacCycles,WashoutCurve);
data = [Time CardiacCycles WashoutCurve];
header = {'Time(s)','Cardiac Cycles', 'Particles Remaining (%)'};
Output = [header;num2cell(data)];
xlswrite(strcat(filename,'.xlsx'),data);
```


## APPENDIX M. TECPLOT CODES - SPECIFIC AIM 2

## M. 1 neo_mma.m

```
#!MC 1410
$!FieldLayers ShowShade = No
$!FieldLayers ShowContour = Yes
$!ContourLevels New
    ContourGroup = 1
    RawData
1 4
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
$!SetContourVar
    Var = 5
    ContourGroup = 2
    LevelInitMode = ResetToNice
$!ContourLevels New
    ContourGroup = 2
    RawData
1 4
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
$!SetContourVar
    Var = 7
    ContourGroup = 3
    LevelInitMode = ResetToNice
$!ContourLevels New
```

```
    ContourGroup = 3
    RawData
1 4
0
0.02
0 . 0 4
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
$!GlobalContour 3 ColorMapName = 'Small Rainbow'
$!GlobalContour 3 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 3 ColorMapFilter{ContinuousColor{CMax =
0.26000000000000001}}
$!GlobalContour 2 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 2 ColorMapFilter{ContinuousColor{CMax =
0.26000000000000001}}
$!GlobalContour 1 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 1 ColorMapFilter{ContinuousColor{CMax =
0.26000000000000001}}
$!GlobalContour 1 ColorMapName = 'Small Rainbow'
$!GlobalContour 2 ColorMapName = 'Small Rainbow'
$!Blanking Value{Constraint 1 {VarA = 7}}
$!Blanking Value{Constraint 1 {Include = Yes}}
$!Blanking Value{Include = Yes}
$!Blanking Value{Constraint 2 {VarA = 1}}
$!Blanking Value{Constraint 2 {VarA = 2}}
$!Blanking Value{Constraint 2 {RelOp = GreaterThanOrEqual}}
$!Blanking Value{Constraint 2 {ValueCutoff = 0.0050000000000000001}}
$!Blanking Value{Constraint 2 {Include = Yes}}
$!TwoDAxis YDetail{RangeMin = -0.01}
$!TwoDAxis YDetail{RangeMax = 0.01}
$!FrameLayout ShowBorder = No
$!FieldMap [1] Contour{FloodColoring = Group3}
$!RedrawAll
```


## M. 2 neo_vel.m

```
#!MC 1410
$!FieldLayers ShowShade = No
$!GlobalRGB RedChannelVar = 3
$!GlobalRGB GreenChannelVar = 3
$!GlobalRGB BlueChannelVar = 3
$!SetContourVar
    Var = 3
    ContourGroup = 1
```

```
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 4
    ContourGroup = 2
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 3
    ContourGroup = 3
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 3
    ContourGroup = 4
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 3
    ContourGroup = 5
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 3
    ContourGroup = 6
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 3
    ContourGroup = 7
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 3
    ContourGroup = 8
    LevelInitMode = ResetToNice
$!FieldLayers ShowContour = Yes
$!ExtendedCommand
    CommandProcessorID = 'CFDAnalyzer4'
    Command = 'SetFieldVariables ConvectionVarsAreMomentum=\'F\' UVar=3
VVar=4 WVar=0 ID1=\'NotUsed\' Variable1=0 ID2=\'NotUsed\' Variable2=0'
$!ExtendedCommand
    CommandProcessorID = 'CFDAnalyzer4'
    Command = 'Calculate Function=\'VELOCITYMAG\' Normalization=\'None\'
ValueLocation=\'Nodal\' CalculateOnDemand=\'T\'
UseMorePointsForFEGradientCalculations=\'F\''
$!SetContourVar
            Var = 5
            ContourGroup = 1
            LevelInitMode = ResetToNice
$!ContourLevels New
            ContourGroup = 1
            RawData
14
0
0.02
0.04
0.06
0.08
0 . 1
0.12
0.14
0.16
0.18
```

```
0.2
0.22
0.24
0.26
$!GlobalContour 1 ColorMapName = 'Small Rainbow'
$!GlobalContour 1 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 1 ColorMapFilter{ContinuousColor{CMin = 0}}
$!GlobalContour 1 ColorMapFilter{ContinuousColor{CMax =
0.260000000000000001}}
$!RedrawAll
$!Blanking Value{Constraint 2 {Include = Yes}}
$!Blanking Value{Constraint 2 {VarA = 5}}
$!Blanking Value{Include = Yes}
$!Blanking Value{Constraint 1 {VarA = 1}}
$!Blanking Value{Constraint 1 {VarA = 2}}
$!Blanking Value{Constraint 1 {RelOp = GreaterThanOrEqual}}
$!Blanking Value{Constraint 1 {ValueCutoff = 0.0050000000000000001}}
$!Blanking Value{Constraint 1 {Include = Yes}}
$!TwoDAxis YDetail{RangeMin = -0.01}
$!TwoDAxis YDetail{RangeMax = 0.01}
$!FrameLayout ShowBorder = No
$!RedrawAll
```


## M. 3 neo_fmech.m

```
#!MC 1410
$!FieldLayers ShowShade = No
$!GlobalRGB RedChannelVar = 17
$!GlobalRGB GreenChannelVar = 3
$!GlobalRGB BlueChannelVar = 3
$!SetContourVar
    Var = 3
    ContourGroup = 1
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 4
    ContourGroup = 2
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 5
    ContourGroup = 3
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 6
    ContourGroup = 4
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 7
    ContourGroup = 5
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 8
    ContourGroup = 6
```

```
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 9
    ContourGroup = 7
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 10
    ContourGroup = 8
    LevelInitMode = ResetToNice
$!FieldLayers ShowContour = Yes
$!SetContourVar
    Var = 6
    ContourGroup = 1
    LevelInitMode = ResetToNice
$!ContourLevels New
    ContourGroup = 1
    RawData
14
0
0.02
0.04
0 . 0 6
0.08
0.1
0.12
0.14
0 . 1 6
0.18
0.2
0.22
0.24
0.26
$!GlobalContour 1 ColorMapName = 'Small Rainbow'
$!GlobalContour 1 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 1 ColorMapFilter{ContinuousColor{CMax =
0.259999999999999995}}
$!GlobalContour 2 ColorMapName = 'Small Rainbow'
$!GlobalContour 2 ColorMapFilter{ColorMapDistribution = Continuous}
$!SetContourVar
    Var = 12
    ContourGroup = 2
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 17
    ContourGroup = 3
    LevelInitMode = ResetToNice
$!SetContourVar
    Var = 16
    ContourGroup = 4
    LevelInitMode = ResetToNice
$!GlobalContour 3 ColorMapName = 'Small Rainbow'
$!GlobalContour 3 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 4 ColorMapName = 'Small Rainbow'
$!GlobalContour 4 ColorMapFilter{ColorMapDistribution = Continuous}
$!GlobalContour 2 ColorMapFilter{ContinuousColor{CMin = -2}}
$!GlobalContour 2 ColorMapFilter{ContinuousColor{CMax = 3.5}}
$!GlobalContour 3 ColorMapFilter{ContinuousColor{CMin = 1}}
```

```
$!GlobalContour 3 ColorMapFilter{ContinuousColor{CMax = 13}}
$!GlobalContour 4 ColorMapFilter{ContinuousColor{CMin = 2}}
$!GlobalContour 4 ColorMapFilter{ContinuousColor{CMax = 26}}
$!TwoDAxis YDetail{RangeMin = -0.01}
$!TwoDAxis YDetail{RangeMax = 0.01}
$!Blanking Value{Constraint 1 {VarA = 2}}
$!Blanking Value{Constraint 1 {RelOp = GreaterThanOrEqual}}
$!Blanking Value{Constraint 1 {ValueCutoff = 0.0050000000000000001}}
$!Blanking Value{Constraint 1 {Include = Yes}}
$!Blanking Value{Include = Yes}
$!Blanking Value{Constraint 2 {VarA = 1}}
$!Blanking Value{Constraint 2 {VarA = 6}}
$!Blanking Value{Constraint 2 {Include = Yes}}
$!Blanking Value{Constraint 3 {VarA = 1}}
$!RedrawAll
```


## REFERENCES

1. McGee, E.C., et al., Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J Thorac Cardiovasc Surg, 2004. 128(6): p. 916-24.
2. Flameng, W., P. Herijgers, and K. Bogaerts, Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation, 2003. 107(12): p. 1609-13.
3. Acker, M.A., et al., Mitral-Valve Repair versus Replacement for Severe Ischemic Mitral Regurgitation. New England Journal of Medicine, 2014. 370(1): p. 23-32.
4. Himbert, D., et al., Transcatheter valve replacement in patients with severe mitral valve disease and annular calcification. J Am Coll Cardiol, 2014. 64(23): p. 25578.
5. Nielsen, N.E., J. Baranowski, and H.C. Ahn, Transvenous Implantation of a Stent Valve for Calcified Native Mitral Stenosis. Ann Thorac Surg, 2015. 100(1): p. e213.
6. Guerrero, M., et al., 1-Year Outcomes of Transcatheter Mitral Valve Replacement in Patients With Severe Mitral Annular Calcification. J Am Coll Cardiol, 2018. 71(17): p. 1841-1853.
7. Piazza, N., M. Pighi, and G. Martucci, Transcatheter Aortic Valves for Failing Surgical Mitral Prostheses and Mitral Annular Calcification: Good From Far But Far From Good? JACC Cardiovasc Interv, 2017. 10(19): p. 1943-1945.
8. Webb, J.G., et al., Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation, 2010. 121(16): p. 1848-57.
9. Guerrero, M., et al., Transseptal transcatheter mitral valve-in-valve: A step by step guide from preprocedural planning to postprocedural care. Catheter Cardiovasc Interv, 2018. 92(3): p. E185-E196.
10. de Weger, A., et al., First-in-man implantation of a trans-catheter aortic valve in a mitral annuloplasty ring: novel treatment modality for failed mitral valve repair. Eur J Cardiothorac Surg, 2011. 39(6): p. 1054-6.
11. Descoutures, F., et al., Transcatheter valve-in-ring implantation after failure of surgical mitral repair. Eur J Cardiothorac Surg, 2013. 44(1): p. e8-15.
12. Pfeiffer, S., et al., Transapical transcatheter valve-in-ring implantation following mitral annuloplasty. J Card Surg, 2017. 32(7): p. 407-409.
13. Wang, D.D., et al., Predicting LVOT Obstruction After TMVR. JACC Cardiovasc Imaging, 2016. 9(11): p. 1349-1352.
14. Blanke, P., et al., Predicting LVOT Obstruction in Transcatheter Mitral Valve Implantation: Concept of the Neo-LVOT. JACC Cardiovasc Imaging, 2017. 10(4): p. 482-485.
15. Akhras, N., et al., Thrombolytic Therapy as the Management of Mitral Transcatheter Valve-in-Valve Implantation Early Thrombosis. Heart, Lung and Circulation, 2015.
16. Beneduce, A., et al., Subclinical Leaflet Thrombosis After Transcatheter Mitral Valve-in-Ring Implantation. JACC Cardiovasc Interv, 2018. 11(13): p. e105-e106.
17. Khan, J.M. and R.J. Lederman, Unnatural milieu: Thrombus after transcatheter mitral valve replacement. Catheter Cardiovasc Interv, 2017. 90(2): p. 329-330.
18. David, T.E., Ischemic Mitral Regurgitation: Chordal-Sparing Mitral Valve Replacement. Operative Techniques in Thoracic and Cardiovascular Surgery, 2012. 17(3): p. 194-203.
19. Babaliaros, V.C., et al., Intentional Percutaneous Laceration of the Anterior Mitral Leaflet to Prevent Outflow Obstruction During Transcatheter Mitral Valve Replacement: First-in-Human Experience. JACC Cardiovasc Interv, 2017. 10(8): p. 798-809.
20. Iaizzo, P.A., Handbook of cardiac anatomy, physiology, and devices. 2009: Springer Science \& Business Media.
21. Carpentier, A., D.H. Adams, and F. Filsoufi, Carpentier's reconstructive valve surgery. 2011: Elsevier Health Sciences.
22. Benjamin, E.J., et al., Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019. 0(0): p. CIR0000000000000659.
23. Rabbah, J.P., et al., Mechanics of healthy and functionally diseased mitral valves: a critical review. J Biomech Eng, 2013. 135(2): p. 021007.
24. Toma, M., et al., Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Annals of biomedical engineering, 2016. 44(4): p. 942-953.
25. Levack, M.M., et al., Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection. Circulation, 2012. 126(11 Suppl 1): p. S183-8.
26. Rausch, M.K., et al., Characterization of mitral valve annular dynamics in the beating heart. Ann Biomed Eng, 2011. 39(6): p. 1690-702.
27. Jolley, M.A., et al., Three-Dimensional Mitral Valve Morphology and Age-Related Trends in Children and Young Adults with Structurally Normal Hearts Using Transthoracic Echocardiography. Journal of the American Society of Echocardiography, 2017. 30(6): p. 561-571.
28. Angelini, A., et al., A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. British Heart Journal, 1988. 59(6): p. 712.
29. Stephens, E.H., et al., Cellular and Extracellular Matrix Basis for Heterogeneity in Mitral Annular Contraction. Cardiovascular Engineering and Technology, 2015. 6(2): p. 151-159.
30. Nkomo, V.T., et al., Burden of valvular heart diseases: a population-based study. The Lancet, 2006. 368(9540): p. 1005-1011.
31. Borger, M.A., et al., Chronic ischemic mitral regurgitation: repair, replace or rethink? The Annals of thoracic surgery, 2006. 81(3): p. 1153-1161.
32. Pasca, I., et al., Survival in Patients with Degenerative Mitral Stenosis: Results from a Large Retrospective Cohort Study. Journal of the American Society of Echocardiography, 2016. 29(5): p. 461-469.
33. Fox Caroline, S., et al., Mitral Annular Calcification Predicts Cardiovascular Morbidity and Mortality. Circulation, 2003. 107(11): p. 1492-1496.
34. Adams, D.H., R. Rosenhek, and V. Falk, Degenerative mitral valve regurgitation: best practice revolution. European heart journal, 2010. 31(16): p. 1958-1966.
35. Braun, J., et al., Restrictive mitral annuloplasty cures ischemic mitral regurgitation and heart failure. Ann Thorac Surg, 2008. 85(2): p. 430-6; discussion 436-7.
36. Flameng, W., et al., Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency. The Journal of thoracic and cardiovascular surgery, 2008. 135(2): p. 274-282.
37. Gillinov, A. and D. Cosgrove, Mitral valve repair for degenerative disease. The Journal of heart valve disease, 2002. 11: p. S15-20.
38. Kron, I.L., G.R. Green, and J.T. Cope, Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. The Annals of thoracic surgery, 2002. 74(2): p. 600-601.
39. Salvador, L., et al., A 20-year experience with mitral valve repair with artificial chordae in 608 patients. The Journal of Thoracic and Cardiovascular Surgery, 2008. 135(6): p. 1280-1287. e1.
40. Braun, J. and R.J. Klautz, Mitral valve surgery in low ejection fraction, severe ischemic mitral regurgitation patients: should we repair them all? Current opinion in cardiology, 2012. 27(2): p. 111-117.
41. Harris, C., B. Croce, and C. Cao, Tissue and mechanical heart valves. Annals of cardiothoracic surgery, 2015. 4(4): p. 399-399.
42. Yun Kwok, L., et al., Randomized Trial of Partial Versus Complete Chordal Preservation Methods of Mitral Valve Replacement. Circulation, 1999. 100(suppl_2): p. II-90-Ii-94.
43. Mick, S.L., S. Keshavamurthy, and A.M. Gillinov, Mitral valve repair versus replacement. Annals of cardiothoracic surgery, 2015. 4(3): p. 230-237.
44. Gammie, J.S., et al., Trends in Mitral Valve Surgery in the United States: Results From The Society of Thoracic Surgeons Adult Cardiac Database. The Annals of Thoracic Surgery, 2009. 87(5): p. 1431-1439.
45. Enriquez-Sarano, M., et al., Valve Repair Improves the Outcome of Surgery for Mitral Regurgitation. Circulation, 1995. 91(4): p. 1022-1028.
46. Gillinov, A.M., et al., Valve repair versus valve replacement for degenerative mitral valve disease. The Journal of Thoracic and Cardiovascular Surgery, 2008. 135(4): p. 885-893.e2.
47. Suri, R.M., et al., Survival Advantage and Improved Durability of Mitral Repair for Leaflet Prolapse Subsets in the Current Era. The Annals of Thoracic Surgery, 2006. 82(3): p. 819-826.
48. Zhou, Y.X., et al., Long-Term Outcomes following Repair or Replacement in Degenerative Mitral Valve Disease. Thorac cardiovasc Surg, 2010. 58(07): p. 415421.
49. LaPar, D.J., et al., Does Urgent or Emergent Status Influence Choice in Mitral Valve Operations? An Analysis of Outcomes From the Virginia Cardiac Surgery Quality Initiative. The Annals of Thoracic Surgery, 2010. 90(1): p. 153-160.
50. Daneshmand, M.A., et al., Mitral Valve Repair for Degenerative Disease: A 20Year Experience. The Annals of Thoracic Surgery, 2009. 88(6): p. 1828-1837.
51. Akins, C.W., et al., Mitral valve reconstruction versus replacement for degenerative or ischemic mitral regurgitation. The Annals of Thoracic Surgery, 1994. 58(3): p. 668-676.
52. Habib, G., F. Thuny, and J.-F. Avierinos, Prosthetic Valve Endocarditis: Current Approach and Therapeutic Options. Progress in Cardiovascular Diseases, 2008. 50(4): p. 274-281.
53. Saccocci, M., M. Taramasso, and F. Maisano, Mitral Valve Interventions in Structural Heart Disease. Curr Cardiol Rep, 2018. 20(6): p. 49.
54. Leon, M.B., et al., Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery. New England Journal of Medicine, 2010. 363(17): p. 1597-1607.
55. Smith, C.R., et al., Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. New England Journal of Medicine, 2011. 364(23): p. 21872198.
56. Adams, D.H., et al., Transcatheter Aortic-Valve Replacement with a SelfExpanding Prosthesis. New England Journal of Medicine, 2014. 370(19): p. 17901798.
57. Leon, M.B., et al., Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. New England Journal of Medicine, 2016. 374(17): p. 1609-1620.
58. Reardon, M.J., et al., Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. New England Journal of Medicine, 2017. 376(14): p. 1321-1331.
59. Mack, M.J., et al., Transcatheter Aortic-Valve Replacement with a BalloonExpandable Valve in Low-Risk Patients. New England Journal of Medicine, 2019. 380(18): p. 1695-1705.
60. Popma, J.J., et al., Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. New England Journal of Medicine, 2019. 380(18): p. 1706-1715.
61. Arnold, S.V., et al., Health Status After Transcatheter Mitral-Valve Repair in Heart Failure and Secondary Mitral Regurgitation. Journal of the American College of Cardiology, 2019. 73(17): p. 2123.
62. Stone, G.W., et al., Transcatheter Mitral-Valve Repair in Patients with Heart Failure. New England Journal of Medicine, 2018. 379(24): p. 2307-2318.
63. Nishimura, R.A. and R.O. Bonow, Percutaneous Repair of Secondary Mitral Regurgitation - A Tale of Two Trials. New England Journal of Medicine, 2018. 379(24): p. 2374-2376.
64. Iung, B. and D. Messika-Zeitoun, Transcatheter Mitral Valve Repair in Secondary MR. Journal of the American College of Cardiology, 2019. 73(17): p. 2133.
65. Beller, J.P., et al., Early clinical results with the Tendyne transcatheter mitral valve replacement system. Annals of Cardiothoracic Surgery, 2018. 7(6): p. 776-779.
66. Sorajja, P., et al., Initial Feasibility Study of a New Transcatheter Mitral Prosthesis. Journal of the American College of Cardiology, 2019. 73(11): p. 1250.
67. Sorajja, P. and V. Bapat, Early experience with the Intrepid system for transcatheter mitral valve replacement. Annals of Cardiothoracic Surgery, 2018. 7(6): p. 792-798.
68. Anyanwu, A.C. and D.H. Adams, Why Do Mitral Valve Repairs Fail? Journal of the American Society of Echocardiography, 2009. 22(11): p. 1265-1268.
69. Suri, R.M., et al., Effect of Recurrent Mitral Regurgitation Following Degenerative Mitral Valve Repair. Journal of the American College of Cardiology, 2016. 67(5): p. 488.
70. Suri, R.M., et al., Recurrent mitral regurgitation after repair: Should the mitral valve be re-repaired? The Journal of Thoracic and Cardiovascular Surgery, 2006. 132(6): p. 1390-1397.
71. Potter, D.D., et al., Risk of repeat mitral valve replacement for failed mitral valve prostheses. The Annals of thoracic surgery, 2004. 78(1): p. 67-72.
72. Kohli, K., et al., Transcatheter Mitral Valve Planning and the Neo-LVOT: Utilization of Virtual Simulation Models and 3D Printing. Current Treatment Options in Cardiovascular Medicine, 2018. 20(12): p. 99.
73. Seiffert, M., et al., Transcatheter mitral valve-in-valve implantation in patients with degenerated bioprostheses. JACC Cardiovasc Interv, 2012. 5(3): p. 341-9.
74. Takagi, H., et al., A meta-analysis of valve-in-valve and valve-in-ring transcatheter mitral valve implantation. Journal of Interventional Cardiology, 2018. 31(6): p. 899-906.
75. Long, A. and P. Mahoney, Transcatheter Mitral Valve-in-Valve and Valve-in-Ring Replacement in High-Risk Surgical Patients: Feasibility, Safety, and Longitudinal Outcomes in a Single-Center Experience. J Invasive Cardiol, 2018. 30(9): p. 324328.
76. Ando, T., et al., A systematic review of reported cases of combined transcatheter aortic and mitral valve interventions. Catheter Cardiovasc Interv, 2018. 91(1): p. 124-134.
77. Nishimura, R.A., et al., 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg, 2014. 148(1): p. e1-e132.
78. Nishimura, R.A., et al., 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2017. 135(25): p. e1159-e1195.
79. Mack, M.J., P.S. Douglas, and D.R. Holmes, Shedding More Light on Valve Thrombosis After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol, 2016. 67(6): p. 656-658.
80. Franzone, A., et al., Transcatheter aortic valve thrombosis: incidence, clinical presentation and long-term outcomes. Eur Heart J Cardiovasc Imaging, 2018. 19(4): p. 398-404.
81. Basra, S.S., et al., Clinical Leaflet Thrombosis in Transcatheter and Surgical Bioprosthetic Aortic Valves by Four-Dimensional Computed Tomography. The Annals of Thoracic Surgery, 2018. 106(6): p. 1716-1725.
82. De Backer, O., L. Søndergaard, and L. Rosseel, Clinical valve thrombosis and subclinical leaflet thrombosis in transcatheter aortic heart valves: clinical manifestations, diagnosis, and treatment. Precision Clinical Medicine, 2018. 1(3): p. 111-117.
83. Midha Prem, A., et al., The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus. Circulation, 2017. 136(17): p. 1598-1609.
84. Butnaru, A., et al., Diagnosis and treatment of early bioprosthetic malfunction in the mitral valve position due to thrombus formation. Am J Cardiol, 2013. 112(9): p. 1439-44.
85. Jonveaux, M., et al., Acute haemolysis after transcatheter mitral valve implantation. European Heart Journal, 2018. 40(5): p. 488-490.
86. Frigy, A., et al., A CASE OF "BENIGN", RECURRENT, BIOPROSTHETIC MITRAL VALVE THROMBOSIS. Acta Medica Transilvanica, 2017. 22(4): p. 2728.
87. Khan, J.M., et al., Intentional Laceration of the Anterior Mitral Valve Leaflet to Prevent Left Ventricular Outflow Tract Obstruction During Transcatheter

Mitral Valve Replacement: Pre-Clinical Findings. JACC: Cardiovascular Interventions, 2016. 9(17): p. 1835-1843.
88. Khan, J.M., et al., LAMPOON to Facilitate Tendyne Transcatheter Mitral Valve Replacement. JACC. Cardiovascular interventions, 2018. 11(19): p. 2014-2017.
89. Siefert, A.W. and R.L. Siskey, Bench Models for Assessing the Mechanics of Mitral Valve Repair and Percutaneous Surgery. Cardiovasc Eng Technol, 2015. 6(2): p. 193-207.
90. Jensen, M.O., et al., Measurement Technologies for Heart Valve Function, in Advances in Heart Valve Biomechanics: Valvular Physiology, Mechanobiology, and Bioengineering, M.S. Sacks and J. Liao, Editors. 2018, Springer International Publishing: Cham. p. 115-149.
91. Okafor, I.U., et al., Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J Cardiovasc Magn Reson, 2015. 17(1): p. 51.
92. Easley, T., et al., The Effects of Anterior Mitral Leaflet Resection on Left Ventricular Flow with Transcatheter Mitral Valves: An In Vitro Study. Journal of the American College of Cardiology, 2019. 73(9 Supplement 1): p. 1125.
93. Guerrero, M., A.B. Greenbaum, and W. O'Neill, Early Experience with Transcatheter Mitral Valve Replacement. Cardiac Interventions Today, 2015.
94. Schmidt, F.P., et al., Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification. Int J Cardiovasc Imaging, 2014. 30(8): p. 1501-8.
95. Dvir, D., et al., TCT-92 Transcatheter Mitral Valve-in-Valve/Valve-in-Ring Implantations for Degenerative Post Surgical Valves: Results from the Global Valve-in-Valve Registry. Journal of the American College of Cardiology, 2013. 62(18_S1): p. B30-B30.
96. Attizzani, G.F., C. Cheung Tam, and A. Markowitz, Transcatheter mitral valve-inring implantation in prohibitive surgical risk patients: Single center initial experience in the United States. Catheter Cardiovasc Interv, 2016. 88(7): p. E233E238.
97. Ghosh-Dastidar, M. and V. Bapat, Transcatheter Valve Implantation in Mitral Annular Calcification During Open Surgery: Extended Collar Technique. Ann Thorac Surg, 2017. 104(3): p. e303-e305.
98. Bapat, V., et al., Factors influencing left ventricular outflow tract obstruction following a mitral valve-in-valve or valve-in-ring procedure, part 1. Catheter Cardiovasc Interv, 2015. 86(4): p. 747-60.
99. Rabbah, J.P., N. Saikrishnan, and A.P. Yoganathan, A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng, 2013. 41(2): p. 305-15.
100. Bloodworth, C.H.t., et al., Ex Vivo Methods for Informing Computational Models of the Mitral Valve. Ann Biomed Eng, 2017. 45(2): p. 496-507.
101. Siefert, A.W., et al., In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann Thorac Surg, 2013. 95(3): p. 825-30.
102. Okafor, I., et al., Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling. Annals of Biomedical Engineering, 2017. 45(5): p. 1305-1314.
103. Okafor, I.U., Parametric evaluation of the effect of aortic regurgitation on ventricular performance, in School of Chemical and Biomolecular Engineering. 2016, Georgia Institute of Technology: Georgia Tech Theses and Dissertations.
104. Rausch, M.K., et al., In vivo dynamic strains of the ovine anterior mitral valve leaflet. J Biomech, 2011. 44(6): p. 1149-57.
105. Sacks, M.S., et al., Surface strains in the anterior leaflet of the functioning mitral valve. Ann Biomed Eng, 2002. 30(10): p. 1281-90.
106. Bothe, W., et al., Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation, 2011. 124(11 Suppl): p. S8196.
107. Amini, R., et al., On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng, 2012. 40(7): p. 1455-67.
108. He, S.Q., et al., Mitral valve compensation for annular dilatation: In vitro study into the mechanisms of functional mitral regurgitation with an adjustable annulus model. Journal of Heart Valve Disease, 1999. 8(3): p. 294-302.
109. Rabbah, J.P., et al., Effects of targeted papillary muscle relocation on mitral leaflet tenting and coaptation. Ann Thorac Surg, 2013. 95(2): p. 621-8.
110. Jimenez, J.H., et al., A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J Thorac Cardiovasc Surg, 2007. 134(6): p. 1562-8.
111. Hanson, R., et al., Identifying Patients at Risk for LVOT Obstruction in Mitral Valve-in-Valve Implantation. JACC: Cardiovascular Imaging, 2016.
112. Kamioka, N., et al., LAMPOON transseptal mitral valve in ring. Annals of cardiothoracic surgery, 2018. 7(6): p. 834-836.
113. Khan, J.M., et al., Anterior Leaflet Laceration to Prevent Ventricular Outflow Tract Obstruction During Transcatheter Mitral Valve Replacement. Journal of the American College of Cardiology, 2019. 73(20): p. 2521.
114. Wurzinger, L.J., et al., Platelet and Coagulation Parameters Following Millisecond Exposure to Laminar Shear Stress. Thromb Haemost, 1985. 53(02): p. 381-386.
115. Sakariassen, K.S., et al., Shear-induced platelet activation and platelet microparticle formation in native human blood. Thrombosis Research, 1998. 92(6): p. S33-S41.
116. Fraser, K.H., et al., A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. Journal of biomechanical engineering, 2012. 134(8): p. 081002081002.
117. Lu, P.C., H.C. Lai, and J.S. Liu, A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. Journal of Biomechanics, 2001. 34(10): p. 1361-1364.
118. Sallam, A.M. and N.H. Hwang, Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology, 1984. 21(6): p. 783-797.
119. Gunning, P.S., et al., An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann Biomed Eng, 2014. 42(6): p. 1195-206.
120. Saikrishnan, N., et al., In Vitro Characterization of Bicuspid Aortic Valve Hemodynamics Using Particle Image Velocimetry. Annals of Biomedical Engineering, 2012. 40(8): p. 1760-1775.
121. Chakravarty, T., et al., Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet, 2017. 389(10087): p. 2383-2392.
122. Makkar, R.R., et al., Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. New England Journal of Medicine, 2015. 373(21): p. 2015-2024.
123. De Marchena, E., et al., Thrombus Formation Following Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2015. 8(5): p. 728.
124. Hafiz, A.M., et al., Clinical or Symptomatic Leaflet Thrombosis Following Transcatheter Aortic Valve Replacement: Insights from the U.S. FDA MAUDE Database. Structural Heart, 2017. 1(5-6): p. 256-264.
125. Midha, P.A., A parametric investigation of transcatheter aortic valve replacement performance, in Mechanical Engineeirng. 2017, Georgia Institute of Technology: Georgia Institute of Technology.
126. Raghav, V., et al., Three-dimensional extent of flow stagnation in transcatheter heart valves. Journal of The Royal Society Interface, 2019. 16(154): p. 20190063.
127. Midha Prem, A., et al., Abstract 19038: Neo-Sinus Washout is Faster in SupraAnnular Transcatheter Heart Valves. Circulation, 2017. 136(suppl_1): p. A19038A19038.
128. Capretti, G., et al., Valve Thrombosis After Transcatheter Mitral Valve Replacement. Journal of the American College of Cardiology, 2016. 68(16): p. 1814.
129. Quick, S., et al., First Bioprosthesis Thrombosis After Transcatheter Mitral Valve-in-Valve Implantation: Diagnosis and Treatment. Journal of the American College of Cardiology, 2014. 63(18): p. e49.
130. Núñez, J.C., et al., Repeat Fibrinolysis to Treat Thrombotic Dysfunction of a Mitral Valve-in-valve Prosthesis. Revista Española de Cardiología (English Edition), 2018. 71(02): p. 117-118.
131. Eng, M.H., et al., Thrombotic valvular dysfunction with transcatheter mitral interventions for postsurgical failures. Catheter Cardiovasc Interv, 2017. 90(2): p. 321-328.
132. Roosen, J., et al., Low-Dose and Slow-Infusion Thrombolysis for Prosthetic Valve Thrombosis After a Transcatheter Valve in the Mitral Position. JACC Cardiovasc Interv, 2017. 10(7): p. 738-739.
133. Thubrikar, M.J., The Aortic Valve. 1989: CRC Press.
134. Jatene, M.B., et al., Aortic valve assessment. Anatomical study of 100 healthy human hearts. Arquivos Brasileiros de Cardiologia, 1999. 73: p. 81-86.
135. Swanson W, M. and E. Clark Richard, Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure. Circulation Research, 1974. 35(6): p. 871-882.
136. Sim, E.K.W., et al., Comparison of human and porcine aortic valves. Clinical Anatomy, 2003. 16(3): p. 193-196.
137. Sands, M.P., et al., An Anatomical Comparison of Human, Pig, Calf, and Sheep Aortic Valves. The Annals of Thoracic Surgery, 1969. 8(5): p. 407-414.
138. Thubrikar, M.J., et al., Aortic root dilatation may alter the dimensions of the valve leaflets. European Journal of Cardio-Thoracic Surgery, 2005. 28(6): p. 850-855.
139. Bonhoeffer, P., et al., Transcatheter Implantation of a Bovine Valve in Pulmonary Position. Circulation, 2000. 102(7): p. 813-816.
140. Duncan, A.C. and D. Boughner, Effect of dynamic glutaraldehyde fixation on the viscoelastic properties of bovine pericardial tissue. Biomaterials, 1998. 19(7): p. 777-783.
141. Aguiari, P., et al., Mechanical testing of pericardium for manufacturing prosthetic heart valves. Interactive CardioVascular and Thoracic Surgery, 2015. 22(1): p. 7284.
142. Vyavahare, N., et al., Prevention of Bioprosthetic Heart Valve Calcification by Ethanol Preincubation. Circulation, 1997. 95(2): p. 479-488.

