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CHAPTER I

INTRODUCTION

Several statistical problems can be described as estimation problems, where the goal

is to learn a set of parameters, from some data, by maximizing a criterion. These

type of problems are typically encountered in a supervised learning setting, when

there is a need to relate an output (or many outputs) to multiple inputs. The rela-

tionship between these outputs and these inputs can be complex, and this complexity

can be attributed to the high dimensionality of the space containing the inputs and

the outputs; the existence of a structural prior knowledge within the inputs or the

outputs that if ignored may lead to inefficient estimates of the parameters; and the

presence of a non-trivial noise structure in the data. In many scientific fields a strong

preference is always granted to parsimonious models, simply because they are easier

to use and to explain. In the statistical context parsimonious supervised models can

be attained by inducing sparsity in the studied model. The first theme of the thesis is

the identification of meaningful relationships between a large number of inputs and a

large number of outputs through the use of sparsity inducing methods. The methods

proposed that fall under the first theme, will address the high dimensional nature of

this problem and the existence of prior structural knowledge in the data. To better

understand the challenges raised by these type of problems let’s provide some con-

crete examples.

Time series are data that are collected through time at a constant or non-constant

frequency. Due to improvements in data gathering methods and storage technologies,

it is now relatively easy to simultaneously keep track of a large number of times
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series. So clearly if we are interested in understanding how these time series affect

each other, we will have to handle the high dimensionality of the problem that comes

from the fact that sometimes there could be more time series than observations per

time series. Within the context of time series that are gathered at specific locations

in space, it seems natural to also exploit the prior structural knowledge intrinsic to

spatio temporal data. Indeed, events that are closer in time are likely to be more

influential on the present than events that are further in the past. Similarly from a

spatial perspective, time series observed at neighboring sites are likely to influence

each other more than time series collected at locations that are farther apart. Better

estimates are indeed obtained when the temporal nature of the data is taken into

consideration (e.g., see Song (2011)). High dimensional time series data that have

spatial characteristics are frequent, for example, in economics we can monitor jointly

economics indicator observed in different geographical areas. In meteorology, weather

related time series can be measured at discrete recording stations and the goal would

be to analyze how and if the meteorological time series measured influence each other.

Many statistical learning problems, with multiple inputs and multiple outputs

can be formulated as a multi-responses regression or a multi-category classification

problem. For example, in genetics using genetic expression data one can classify the

nature of the tumor of cancer patients. In these type of studies, the number of genes

profiled is typically much larger than the number of samples available for each genes,

since there is a limited number of cancer patients, and the main goal is to discrimi-

nate between different type of cancers by using the high-dimensional feature vectors

(genes profile). In multi-responses regression, the main interest is to identify a set of

shared features that influence the outputs. For example, in the analysis of quarterly

healthcare costs at the county or zipcode level in the state of North Carolina, we

are interested in identifying predictors that influence all the cost of all (or some) of
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the geographical areas. Within this context of multi-responses regression or multi-

category classification, challenges mentioned earlier were the presence of nonlinearities

between the inputs and the outputs and the existence of prior structural knowledge.

The structural knowledge that can be leveraged in this problem, is the fact that some

outputs are highly suceptible to share similar inputs. So a common sparsity pattern

can be observed across categories or across responses, but the methodology also needs

to be flexible to leave the possibility of having inputs that are not shared across all

the responses or categories.

The second theme of the thesis deals with a statistical problems where the re-

gression data are believed to belong to two or more distinct unobserved categories.

The complexity in the relationship between the predictor and the response lies in the

fact that in each category the relationship is different. These models are commonly

known as mixture-of-regression models and they have been extensively used in many

fields, such as biology, genetics, medicine, economics and engineering, among many

other fields. While parametric models such as finite mixture linear regression models

remain the most popular techniques in modeling data that exhibit mixture distribu-

tions, they are very often not flexible enough to model the nonlinear relationship that

exist between the response and predictors and they also assume that the distribution

of the noise falls in a known family. To account for these challenges exhibited by mod-

ern data, we propose a semiparametric mixture regression model that only assumes

the continuity of unknown regression functions and the symmetry of the distribution

of the noise.

In the remainder of this introduction we summarize the contributions made in

this thesis.

Chapter 2: one of the most commonly used methods for modeling multivariate time

series is the Vector Autoregressive Model (VAR). VAR is generally used to identify
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lead, lag and contemporaneous relationships describing Granger causality within and

between time series. In this chapter, we investigate VAR methodology for analyzing

data consisting of multi-layer time series which are spatially interdependent. When

modeling VAR relationships for such data, the dependence between time series is both

a curse and a blessing. The former because it requires modeling the between time se-

ries correlation or the contemporaneous relationships which may be challenging when

using likelihood-based methods. The latter because the spatial correlation structure

can be used to specify the lead-lag relationships within and between time series,

within and between layers. To address these challenges, we propose a `1\`2 regular-

ized likelihood estimation method. The lead, lag and contemporaneous relationships

are estimated using a new coordinate descent algorithm that exploits sparsity in the

VAR structure, accounts for the spatial dependence and models the error dependence.

We assess the performance of the proposed VAR model and compare it with existing

methods within a simulation study. We also apply the proposed methodology to a

large number of state-level US economic time series.

Chapter 3: in this chapter, we propose a new methodology to tackle the problem

of high-dimensional nonparametric learning in the multi-responses or multitask learn-

ing setting. We impose sparsity constraints that allow the recovery of the additive

functions that are the most influential accross tasks and responses. The methodology

instead of applying `∞ as proposed by Liu et al. (2008), applies a functional `1\`2

norm to each group of additive functions. Each group contains all the additive func-

tions associated with a specific predictor. We derive a novel thresholding condition

for the union support recovery in the nonparametric setting. We propose a sparse

backfitting based algorithm to solve for the additive functions. Through extensive

simulations, we show the superior performance of the methodology.

Chapter 4: Motivated by the analysis of a Positron Emission Tomography (PET)
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imaging data considered in Bowen et al. (2012), we introduce a semiparametric to-

pographical mixture model able to capture the characteristics of dichotomous shifted

response-type experiments. We propose a pointwise estimation procedure of the pro-

portion and location functions involved in our model. Our estimation procedure is

only based on the symmetry of the local noise and does not require any finite mo-

ments on the errors (e.g. Cauchy-type errors). We establish under mild conditions

minimax properties and asymptotic normality of our estimators. Moreover, Monte

Carlo simulations are conducted to examine their finite sample performance. Finally

a statistical analysis of the PET imaging data in Bowen et al. (2012) is illustrated

for the proposed method.

Chapter 5: In this chapter, we summarize the main contributions of this disser-

tation and discuss potential direction for future work.
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CHAPTER II

LARGE VECTOR AUTO REGRESSION FOR

MULTI-LAYER SPATIALLY CORRELATED TIME

SERIES

2.1 Introduction

Analyzing multivariate time series is a common statistical problem in several fields,

such as economics and environmental sciences. One of the most commonly used

methods for modeling multivariate time series is the Vector Autoregressive Model

(VAR) introduced by Sims (1980). Generally, VAR has been used to identify Granger

causal relationships between variables which vary over time. The primary focus is on

the lead and lag effects between time series but often contemporaneous relationships

provide additional information about how variables are related to each other over a

period of time. In this paper, we investigate VAR methodology for analyzing data

consisting of spatially interdependent multi-layer time series. Specific examples from

various fields are:

• Industrial Economics: multiple time-varying economic indicators such as state

level employment rates in the construction industry and the number of building per-

mits issued for new homes observed at the county or even the census tract level within

a state or nationally;

• Industrial Engineering: multiple turbines installed at different geographic loca-

tions for which time-varying wind speed and generated power are recorded;

• Environmental sciences: multiple measurements observed at different stations

as often generated by environmental and climatological studies.

In many of these examples, one layer corresponds to a different measurement or

6



indicator. Specifically, the observed time series data are

Y
[J ]
t,k = Y

t,s
[J]
k
, with k ∈ {1, . . . , KJ} and J ∈ {1, . . . , L}

where t is the time unit and L is the number of layers, typically small and in our

simulations and application its maximum value is 2. KJ represents the total number

of sites in the J th layer and s
[J ]
1 , . . . , s

[J ]
KJ

are the spatial units or locations for the time

series in the J th layer. They are recorded as coordinates (latitude and longitude) of

each spatial site and are used to map the pair (site number, layer), for example s
[1]
3

is the latitude and longitude of the 3rd site in layer 1. Each time series Y
[J ]
t,k can be

influenced by observations from

• Own lags: Y
[J ]
t−p,k for p = 1, . . . , P , where P is the maximum lag considered in

the study.

• Lags of neighboring time series within the same layer J , for example, observa-

tions of the time series Y
[J ]
t−p,k′ for p = 1, . . . , P located at a site s

[J ]
k′ such that site s

[J ]
k′

is close to s
[J ]
k .

• Lags of neighboring time series within layers other than layer J , for example,

observations of the time series Y
[J?]
t−p,k? in layer J? at site s

[J?]
k? , J 6= J? and s

[J?]
k? is close

to s
[J ]
k .

Therefore, each time series can be influenced by observations within its layer or outside

its layer. We assume that for each influential layer, the set of sites that affect a

targeted time series is most likely restricted to a close spatial neighborhood of the

site of observation of the targeted time series.

To better explain our methodology, we consider the example illustrated in Figure

1. Assume that we have two layers (L = 2); the crosses correspond to the sites of

time series in layer 1, the circles correspond to the sites of time series in layer 2, and

we are interested in predicting the time series at site 21 in layer 1 {Y [1]
t,21}. Based on

the proximity of their sites, time series {Y [1]
t,5 }, {Y

[1]
t,8 }, {Y

[1]
t,15} in layer 1 contribute to

within layer effects (relationships showed by solid lines in figure 1). The time series

7
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Figure 1: Illustration of spatial representation of time series data with two layers,
with targeted site(spatial site 21 in layer 1)

{Y [2]
t,12}, {Y

[2]
t,22} in layer 2 will be responsible for cross layer effects (dashed lines in

figure 1). The anticipated influence of {Y [2]
t,12} on the response time series {Y [1]

t,21} will

be more important than the influence of {Y [2]
t,22} on the same response time series,

because the coordinates s
[2]
12 of site 12 in layer 2 is closer to the coordinates s

[1]
21 of the

target site 21 in layer 1, than the coordinates s
[2]
22 of site 22 in layer 2 are.

In certain settings, the dynamics of a time series can be approximated by a linear

function of its own lags and the lags of influential time series. This reduces to a VAR

model with complex lead and lag relationships, which often results in a model with

a higher dimensionality than the number of observations. On the other hand, only a

small number of lead and lag relationships are expected to be significant. Employing

methods which account for this sparsity will allow estimation of a high dimensional

VAR model. In order to take advantage of the sparsity in the relationships within

and between time series, our method uses regularization penalties that are functions

of the lags of the time series within the same layer and from different layers. In

specifying the regularization penalties, we assume that closer information in time has

more relevance. When time series are spatially correlated, we also assume that closer

information in space has more relevance. Therefore, the relationships of one targeted

time series to other time series are increasingly penalized with higher temporal lags
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and at higher spatial distance.

The primary contribution of our paper is a method for identifying lead and lag

relationships between a large number of time series that also exhibit strong contem-

poraneous spatial dependence. Additionally, the method allows for estimating sparse

relationships within and between layers of time series. To the best of our knowledge,

this is the first and only approach that accounts simultaneously for the large dimen-

sionality of the problem, the temporal dependence among time series, the spatial

dependence present in the errors and the layer group effects. The second contribu-

tion is an efficient algorithm that can be used to solve the optimization problem in

regularized selection approaches for models similar to the one proposed in this paper.

The remainder of the paper is organized as follows. In Section 2.2, we review

the literature on model selection with a focus on VAR modeling and we motivate the

general approach introduced in this paper. In Section 2.3, we describe the spatial VAR

model applied to one layer followed by its extension to a multi-layer setting. Section

2.4 introduces the estimation procedure and explains the computational algorithms

used to fit the model. In Section 2.6, we analyze the relationship between state level

employment rates in the construction industry and the number of building permits

issued for new homes. We conclude with insights in the application of the proposed

methodology in Section 2.7. Extensive simulation studies are carried out and their

results are presented in web supplements. Additionally, some technical details are

also deferred to the Supplemental Material.

2.2 Background and Motivation

The analysis of multivariate time series, and particularly VAR, has been extensively

covered in the statistical, computer science and econometrics literature, but most

of the existing methods fail to jointly perform model selection and estimation in a

high dimensional setting, meaning when the number of time series is large relative

9



to the sample size. In the context of VAR, variable selection reveals statistically

significant relationships within and between time series. Variable selection is critical

because a large number of time series implies a large number of potential lead and

lag relationships.

One straightforward methodology consists in regressing each time series onto the

others separately resulting in multiple regressions, one for each time series. This

approach often produces inefficient coefficient estimates due to the large model di-

mensionality as compared to the sample size of each time series potentially leading

to poor forecasting due to overfitting. This challenging aspect has been highlighted

in other existing studies (Roecker, 1991; Breiman, 1995).

Alternatively, one could consider variable selection within a multivariate regression

model. Variable selection tools based on information criteria have been developed for

multivariate regression by Bedrick and Tsai (1994), Fujikoshi and Satoh (1997) among

others. Because of the high computational cost, these methods are not used to select

the best model among all possible subset structures. Instead, these methods rely on

greedy search algorithms, for example, top-down and bottom-up approaches, that are

highly unstable, path dependent and suboptimal (Krolzig and Hendry, 2001; Penm

and Terrell, 1984). An alternative approach to multivariate regression is to reduce

the dimensionality of the predictors - in the VAR context, the predictors consist of

lead and lag relationships between time series - using factor analysis. Related work

includes reduced-rank regression methods (Anderson, 1951; Izenman, 1975; Reinsel

and Velu, 1998) and the Factor Estimation and Selection (FES) proposed by Yuan

et. al (2007). For these methods, because the set of predictors is reduced to a few

important principal factors, the interpretation of the Granger causal relationships is

difficult. Some papers have proposed to use a bayesian approach for the estimation

of multivariate regression, for example Cripps et al. (2005) perform variable selection

and covariance selection in multivariate regression models.
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The emergence of regularized estimation methods such as the Lasso by Tibshi-

rani (1996) has led to the development of regularized sparse estimation schemes for

multivariate regression. For example, Turlach et al. (2005) perform model selection

using a L∞-regularization scheme applied to all the coefficients related to a predictor.

Obozinski et al. (2008) apply the L1\L2 regularization for union support recovery,

and Peng et al. (2010) introduce a L1\L2 penalization method for identification of

“master” predictors in a multivariate regression. In a more recent study, Rothman et

al. (2010) introduce joint estimation of the regression parameters and the covariance

of errors by L1 regularized log likelihood. But their approach does not apply to time

series data as it does not allow for modeling the serial correlation within time series.

Song and Bickel (2011) propose to impose lag-dependence in the regularization penal-

ties to estimate a large VAR model. While this method accounts for serial dependence

in the data, it doesn’t include the effects due to contemporaneous correlation present

in the errors. Davis et al. (2012) propose a 2-stage approach for estimating sparse

VAR (sVAR) models. Their method uses partial spectral coherence with BIC to se-

lect non-zero AR coefficients. But their methodology does not explicitly take into

consideration the spatial correlation in the errors.

Although the research studies discussed above are a leap from the more traditional

VAR modeling, they are still limited in their application. Particularly, they do not

simultaneously select lead, lag and contemporaneous relationships within and between

time series. The lead & lag relationship selection performance worsens when we do

not account for the spatial correlation in the errors. Moreover, existing approaches

do not readily extend to data observed for multiple measurements (e.g. humidity,

precipitation and temperature) often called layers (Huang et. al, 2010).

To address these limitations, we use a L1\L2− regularized likelihood method

to select the temporal lags and spatial sites that influence a targeted time series.

Specifically, L1 regularization is used for selecting individual time series effects while
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L2 regularization is used for selecting entire layers viewed as group effects similar to

the sparse group lasso introduced by Friedman et al. (2010). For example, if we are

interested in finding the effect of other layers on a time series at a targeted location,

the time lag- and spatial distance-weighted regularization associated with the L2

penalty will perform group selection between the layers. This regularization identifies

whether entire layers are not relevant, meaning that all time series in the layer will

have no effect on a targeted time series. Since group lasso doesn’t yield within group

sparsity, to identify the most influential neighborhood for the selected layers, we

therefore apply a temporal lag- and spatial distance-weighted L1− regularization.

This penalization approach allows for selection of parsimonious models resulting in

efficient parameter estimation and accuracy of time series prediction.

Moreover, to incorporate contemporaneous (spatial) dependence, we propose to

use a penalized log-likelihood scheme since it allows the estimation of the covariance

matrix of the errors. A similar idea is applied by Rothman et. al (2010) in the context

of multivariate regression. Within the multi-layer time series framework, we assume

that there is no cross-layer contemporaneous dependence. This assumption allows

us to use a divide-and-conquer algorithm to simultaneously solve L optimization

problems of smaller size, therefore, reducing the computational effort.

The estimation procedure of our model consists of alternatively solving for the

VAR coefficients and solving for the inverse covariance matrix of the errors. To esti-

mate the VAR coefficients, we solve the L1\L2- regularization likelihood by providing

an algorithm that uses block coordinate descent. To solve for the inverse covariance

matrix, we use a spatially weighted graphical lasso method as introduced by Friedman

et. al (2008). Details about the model and the estimation algorithm are provided in

the next two sections.
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2.3 The Model

2.3.1 The VAR model

The model of interest in this paper is the Vector Autoregressive model of order P

denoted V AR(P ). We assume there are K time series that are centered (no intercept),

Yt = B1Yt−1 + · · ·+BPYt−P + Vt (1)

with time observed on a regular grid where Yt = (Yt,1, · · · , Yt,K)
′

is a K × 1 vector

and Yt,k is the observation of the kth time series {Yt,k} at time t. Bp is a fixed

(K ×K) coefficient matrix for p = 1, . . . , P and Vt = (Vt,1, · · · , Vt,K)
′

is a (K × 1)

vector of error terms. We assume that the error terms Vt follow a multivariate normal

distribution N (0,Σ) and that they are independently and identically distributed. We

also assume that the VAR is stationary.

The equation in (1) can be expressed as a multivariate regression model


Y
′

T

...

Y
′

P


︸ ︷︷ ︸

Y∈R(T−P )×K

=


Y
′

T−1 · · · Y
′

T−P
... · · · ...

Y
′

P−1 · · · Y
′

0


︸ ︷︷ ︸

X∈R(T−P )×(PK)


B
′

1

...

B
′

P


︸ ︷︷ ︸

B∈R(PK)×K

+


V
′

T

...

V
′

P


︸ ︷︷ ︸

V∈R(T−P )×K

which is equivalent to

Y = XB + V (2)

A common method for the estimation of B is conditional maximum log-likelihood,

where the conditional variables are the lagged time series. The goal is to minimize

the negative log-likelihood Gaussian function.

g (Ω,B) = Tr

[
1

(T − P )
(Y− XB)

′
(Y− XB) Ω

]
− log (|Ω|) where Ω = Σ−1. (3)
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2.3.2 The spatial VAR with one layer

We now assume that each component of an observation at time t, Yt = (Yt,1, · · · , Yt,K)
′
,

corresponds to a response recorded at each of K different spatial units with coordi-

nates sk with k ∈ {1, · · · , K} and si ∈ R2. We use the notation Yt = (Yt,1 = Yt,s1 , · · · , Yt,K = Yt,sK )
′
,

where Yt,sk is the observation of the variable of interest at time t and at spatial unit

sk. In this setting, the precision matrix Σ−1of the error terms Vt = (Vt,s1 , · · · , Vt,sK )

has a certain degree of sparsity. In particular we assume that time series observed at

sites that are far from each other are more likely to have a null entry in the precision

matrix. Beyond this assumption, we do not make other structural assumptions such

as isotropy or parametric shape. The resulting one-layer VAR model becomes
Yt,1

...

Yt,K

 =


B

(1)
11 · · · B

(1)
1K

...
. . .

...

B
(1)
K1 · · · B

(1)
KK



Yt−1,1

...

Yt−1,K

+· · ·+


B

(P )
11 · · · B

(P )
1K

...
. . .

...

B
(P )
K1 · · · B

(P )
KK



Yt−P,1

...

Yt−P,K

+


Vt,1

...

Vt,K


(4)

For any p ∈ {1, · · · , P} and any k, k′ ∈ {1, · · · , K}, B(p)
kk′ measures the effect of the

observation Yt−p,k′ at the spatial location sk′ at a past time t− p on the observation

Yt,k at the location sk.

2.3.3 The spatial VAR with multiple layers

The model described in Section 2.3.2 can be generalized to a setting with more than

one layer. For instance, a typical geostatistical study involves the joint modeling of

two economic indicators, unemployment and house prices, across counties in the US.

In such a study, one might arbitrarily set employment rate to be the first layer and

the house prices the second layer. More generally, assume that there are L layers,

and that for each layer J ∈ {1, · · · , L}, observations are acquired at spatial units

{s[J ]
1 , · · · , s[J ]

KJ
} at discrete times t ∈ {0, · · · , T}. For the layer J , we have KJ time

series {Y [J ]

t,s
[J]
1

}, · · · , {Y [J ]

t,s
[J]
KJ

}. The observation spatial units are not necessarily the same
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across layers. Given that the notation in {Y [J ]

t,s
[J]
k

} involves many forms of indices, we

re-express all the time series under the form Y
[ind]
t where ind is an index unique to

each time series. In what follows, we use the set of indices DJ = (aJ , aJ + 1 · · · , bJ)

where aJ =
∑J−1

j=1 Kj + 1 and bJ =
∑J

j=1 Kj. The time series within the first layer

(J = 1) correspond to time series with indices in D1 = (1, · · · , K1) where a1 = 1 and

b1 = K1. The time series within the second layer (J = 2) correspond to time series

with indices in D2 = (K1 + 1, · · · , K1 +K2) where a2 = K1 + 1 and b2 = K1 + K2.

Generally, the vector of time series within the J th layer becomes
(
Y

[aJ ]
t , · · · , Y [bJ ]

t

)
.

The total number of time series in the model is M =
∑L

j=1 Kj. We apply the same

transformation to the indices associated with the sites, so that, we can interchangeably

use s
[J ]
1 and saJ to denote the site where the first time series Y

[aJ ]
t in layer J is observed.

When we consider multiple layers the coefficient matrix B in (2) becomes B =

[BD1., · · · ,BDL.] where BDJ . represents all the coefficients that affect the observa-

tions in layer J :

BDJ . =


B

(1)
aJ1 · · · B

(1)
aJM

· · · B
(P )
aJ1 · · · B

(P )
aJM

...
...

...
...

B
(1)
bJ1 · · · B

(1)
bJM

· · · B
(P )
bJ1 · · · B

(P )
bJM


T

∈ R(PM)×KJ (5)

For any column Bi. of B, if i ∈ {aJ , · · · , bJ} then Bi. is a column of the matrix

BDJ ..

Bi. =
(
B

(1)′

i. , · · · ,B(P )′

i.

)′
∈ R(PM)×1

B
(p)
i. is the sub-column of Bi. that contains the coefficients associated with lag order

p:

B
(p)
i. = (B

(p)
i1 , · · · , B

(p)
iK1︸ ︷︷ ︸

1st layer effect

, · · · , B
(p)
iaJ
, · · · , B(p)

ibJ︸ ︷︷ ︸
within layer effect

, · · · , , B(p)
iaL
, · · · , B(p)

ibL︸ ︷︷ ︸
Lth layer effect︸ ︷︷ ︸

Lag p effect

)
′

Next we introduce the estimation method used to estimate the VAR coefficients and

the covariance matrix of the errors. We also describe the algorithms used to obtain
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these estimates.

2.4 Estimation Algorithm

2.4.1 The methodology

In this section, we introduce the estimation method for one layer data followed by a

description of how it extends to multiple layer data.

2.4.1.1 One layer sparse estimation

Spatio-temporal data exhibit statistical features that can be exploited to improve the

efficiency of the model parameter estimates. Given the high-dimensional nature of

the estimation problem, we need to impose some sparsity inducing constraints on

the VAR coefficients B and potentially on the precision matrix Ω. As assumed in

Bańbura et. al (2010) and Song et. al (2011), more recent temporal lags should be

more predictive than the more distant lags. The second assumption, usually stated as

the First Law of Geography, is that the observations collected at more distant spatial

sites should be less influential on the observations collected at the site of interest.

Given these constraints and assuming that the precision matrix Ω is known Ω = Ω̃,

we solve the following optimization problem

B̂ = argmin
B∈R(PK)×K

[
g
(

Ω̃,B
)

+ λ1

P∑
p=1

K∑
i=1

K∑
k=1

pαeγ‖si−sk‖|B(p)
ik |

]
(6)

where λ1 is a penalty parameters and α, γ are lag and distance weight parameters

respectively that are always strictly positive. The optimization problem in (31) is

convex, since it is the sum of a convex objective function g(Ω̃,B) and of a convex

penalty. As in Song and Bickel (2011), we account for the lag effect by penalizing

more heavily the coefficients associated with observations that are more distant in

time. Additionally, we account for the spatial effect by using penalties weighted by

a function that depends on the distance function eγ‖si−sk‖, a similar idea is used in

Lozano et. al (2010). For example, if we consider the lagged p time series {Y [u]
t−p}
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and {Y [v]
t−p} influencing the targeted time series {Y [i]

t }, the penalty on the term B
[p]
iu

is higher than the penalty on the term B
[p]
iv if ‖si − su‖ > ‖si − sv‖. To account for

the lag and spatial effects we can use other penalty functions, for instance, f(p) =

(1 + log(p))α or f(p) = exp(p)α for lag functions, in place of pα. In this paper, we do

not suggest that the penalty functions we chose are optimal. Identifying the optimal

functions would considerably increase the number of tuning parameters.

2.4.1.2 Multi-layer sparse estimation

As presented in Section 2.3.3, the J th layer is identified by the index set

DJ = {aJ =
J−1∑
j=1

Kj + 1, · · · , bJ =
J∑
j=1

Kj}.

Let Bi. of B be the column of coefficients corresponding to the time series {Y [i]
t } in

layer J , meaning i ∈ DJ . The terms in column Bi. can be rearranged in the following

manner

Bi. = {BiD1 , · · · ,BiDl , · · · ,BiDL} (7)

Each set of coefficients BiDl in (7) represents the effect from time series in the lth

layer on the time series of interest {Y [i]
t }. For any layer l ∈ {1, · · · , L}

BiDl = (

B(1)

iDl︷ ︸︸ ︷
B

(1)
ial
, · · · , B(1)

ibl︸ ︷︷ ︸
1st lag effect

, · · · ,

B(P )

iDl︷ ︸︸ ︷
B

(P )
ial
, · · · , B(P )

ibl︸ ︷︷ ︸
P thlag effect︸ ︷︷ ︸

lth Layer effect

) (8)

The regularization scheme we propose for the estimation of the column Bi. is the

following

λ1

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |

︸ ︷︷ ︸
Within Layer Penalty

+ λ2

L∑
l=1
l 6=J

‖BiDl‖∆̃
[i]
l

︸ ︷︷ ︸
Between Layer Penalty

(9)
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with Bi. such that i ∈ DJ

‖BiDl‖∆̃
[i]
l

= Kl

[
B

(1)
iDl
· · · B

(P )
iDl

](
P⊗∆

[i]
l

)

B

(1)
iDl

...

B
(P )
iDl

 where

∆
[i]
l =


e2γ‖si−sal‖ · · · 0

...
. . .

...

0 · · · e2γ‖si−sbl‖

 and P =


(1)2α · · · 0

...
. . .

...

0 · · · P 2α


The first term in (9) is similar to the penalty in (31) for the one layer experiment.

This penalty captures the within layer sparsity effect. As explained in Section 2.4.1.1,

coefficients corresponding to the lead and lag effects for the time series closer in time

and space are less penalized. The second term in (9) uses the group lasso penalty

introduced by Yuan et. al (2006). We apply the group penalty to all the layers,

except to the J th layer that contains the coefficients BiDJ linked to the time series

{Y [i]
t } (with i ∈ DJ). By imposing the group sparsity scheme, we will select only the

layers that have lag effects on the response time series {Y [i]
t }. The J th layer, which

is not penalized by the group sparsity norm, is always selected, suggesting that we

assume that own layer effect is always present.

In (9), we introduce the norm applied to the vector of coefficients BiDl ; this norm

is used for specifying the between-layer penalty. The matrices ∆
[i]
l and P in (9) are

designed to account for three important statistical features of the data. First, the

term Kl quantifies the size of the group since it measures the number of observation

spatial units. Consequently, the model applies heavier penalties on layers with more

spatial units. Second, the lag and distance weights serve the same purpose as in the

one layer case described in (31). Third, a layer with a set of distant sites should be

penalized as a group higher than if the sites are nearby. This idea is conveyed through

the use of the weight matrix ∆̃
[i]
l .
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This penalization scheme induces group-wise and within-layer sparsity. The group-

wise penalty allows assessment of between-layer lead and lag relationships. The

within-layer penalty will select the influential spatial units within the layers which

have a lag influence on the variable of interest Y
[i]
t . If we assume that the precision

matrix is known, then the problem we solve is the following:

Min
B

g(Ω̃,B) + λ1

M∑
i=1

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |+ λ2

M∑
i=1

L∑
l=1
l:i/∈Dl

‖BiDl‖∆̃
[i]
l

 (10)

Equation (10) is obtained by applying the penalties in (9) to each of the ith

columns of the matrix B. The summation of the within layer penalty is over all layers

and over all spatial units within the layers. The between layer penalty is applied to

all the layers but not to the layer containing the targeted time series.

2.4.1.3 Estimation of the precision matrix with spatial structure

We assume that the spatial covariance matrix is block diagonal, i.e. we only have

within layer spatial dependence. Assuming that pairs of time series sampled from

distant sites within the same layer are independent, we model each layer covariance

using a distance weighted graphical lasso method. This idea was suggested by Fried-

man et al. (2008). We specify the amount of regularization to depend on the distance

between two targeted time series. If we assume that the regression coefficients are

known
(
B = B̃

)
the following optimization problem is solved for each layer J .

Ω̃J = argmin
ΩJ∈RKJ×KJ : ΩJ�0

g
(
B̃DJ .,ΩJ

)
+ λ3

bJ∑
i=aJ

∑
k 6=i

e‖si−sk‖|Ωik| (11)

With the submatrix, BDJ . = [BaJ ., · · · ,BbJ .] and ΩJ is the precision matrix as-

sociated with the J th layer.

The second alternative method one could consider for the estimation of the pre-

cision matrix is to use parametric spatial covariance function. This method could be
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used in cases where the precision matrix is not sparse.

2.4.1.4 Joint Estimation of the VAR coefficients and the precision matrix

To jointly estimate B and Ω in a multi-layer and spatial setting, we apply the idea

introduced by Rothman et al. (2011), which reduces to penalized likelihood estimation

including all regularization schemes introduced for estimation of the VAR coefficients

and the covariance matrix. If we have no cross-layer spatial dependence in the errors,

B and Ω are estimated by minimizing the L1/L2 regularized negative log-likelihood

function g. We can decompose the large optimization problem in L optimization

problems of smaller size. The J th layer optimization problem becomes(
B̃DJ ., Ω̃J

)
= argmin

ΩJ∈RKJ×KJ , ΩJ�0

BDJ .∈R(PM)×KJ

g (BDJ .,ΩJ)

+ λ1

bJ∑
i=aJ

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |+ λ2

bJ∑
i=aJ

L∑
l=1
l 6=J

‖BiDl‖∆̃
[i]
l

+ λ3

bJ∑
i=aJ

∑
k 6=i

e‖si−sk‖|Ωik|

(12)

The problem presented in (12) is not convex, but we can alternatively solve for

BDJ . with ΩJ fixed at Ω̃J as in (10), and solve for ΩJ with BDJ . as in (11). In the

next section, we introduce the algorithms for solving these two convex optimization

problems.

2.4.2 Computational algorithms

The algorithm for the estimation of the VAR coefficients borrows the idea from the

block cyclical coordinate descent applied to sparse group lasso in a technical report

by Friedman et al. (2010). The algorithm used for estimating the precision matrix is

a modified graphical lasso introduced by Friedman et al. (2008).
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2.4.2.1 Algorithm for the VAR coefficients

For any layer J ∈ {1, · · · , L}, we define YDJ ∈ R(T−P )×KJ the set of time series within

the J th layer. If we assume that the precision matrix is set at Ω̃J , we need to solve a

problem similar to problem (10):

min
BDJ .

Tr

[
1

T − P
(YDJ − XBDJ .)

′
(YDJ − XBDJ .) Ω̃J

]

+ λ1

bJ∑
i=aJ

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |+ λ2

bJ∑
i=aJ

L∑
l=1

l: i/∈Dl

‖BiDl‖∆̃
[i]
l

(13)

If we have just one layer the algorithm used is similar to the MRCE of Rothman

and Levina (2011). If we have more than one layer the algorithm used is inspired from

the sparse group lasso of Friedman et al. (2010). We visit each column of the matrix

BDJ , and apply a cyclical group coordinate descent procedure to all the coefficients

within each column BiDl associated with layers l such that l 6= J . Further, for all the

group of coefficients selected in the previous step, we again apply a cyclical coordinate

descent to identify the non-null coefficients within the selected groups. The details

and the derivations of the algorithm are presented in the supplemental material.

2.4.2.2 Algorithm for the joint estimation of the VAR Coefficients and the pre-
cision matrix

The algorithm used to solve problem (12) is the following:

For λ1 and λ2

• Set B̂(0) = 0 and use graphical lasso to solve L problems (11) Ω̃
(0)
J = Ω̃J

(
B̂

(0)
DJ .

)
• For each l ∈ 1, · · · , L compute B̂

(m+1)
Dl.

= B̂Dl.

(
Ω̃

(m)
l

)
by solving problem (10)

with algorithm for VAR coefficients.

• Compute Ω̃
(m+1)
J = Ω̃J

(
B̂

(m+1)
DJ .

)
by using graphical lasso to solve (11)

• If
∑

j,k

∣∣∣B̂(m+1) − B̂(m)
∣∣∣ < ε

∑
j,k

∣∣∣B̂Ridge
jk

∣∣∣ stop, otherwise start new loop

21



• B̂Ridge is the solution of the VAR obtained by using a ridge regression for each

time series.

2.4.2.3 Selection of tuning parameters

As for any regularization method, achieving a satisfactory performance in terms of

model selection and parameter estimation requires proper selection of the penalty

parameters λ = (λ1, λ2, λ3). Additionally in our method, we need to assess the im-

portance of the distance effects and the lag effects parameters, α and γ respectively.

For this, we employ a computationally efficient approach, we use the Bayesian Infor-

mation Criterion (BIC) introduced by Schwarz (1978) that minimizes

BIC = −2 logL
(
B̂λ,α,γ

)
+ log(T )df

where B̂λ,α,γ is the estimator associated with the tuning parameters λ, α and γ, L
(
B̂
)

is the maximum likelihood of the VAR model and df is the number of degrees of

freedom approximated by the number of non-zero estimated parameters. Zhou et al.

(2007) finds that if in a regression setting the rank of a design matrix is equal to the

number of predictors then the degrees of freedom of the lasso is well approximated

by the number of non null coefficients. The BIC criterion allows the determination

of the optimal lag for each layer.

The use of BIC for non-convex regularized likelihood is advocated by Bulhmann

and Van De Geer (2011) as a simple and computationally convenient method. How-

ever, there is no rigorous justification for the use of BIC in the context of regularized

non-convex likelihood to date.

For comparison purposes, we also analyze the performance of the lasso and a

modified lasso scheme that accounts for the distance between the sites. To select the

penalization parameters for these two methods, we use the rolling prediction scheme

used by Song and Bickel (2011) for consistency with the existing relevant papers.
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2.5 Simulations

2.5.1 Simulations setup

We assess the performance of the method using two simulation experiments. We

herein refer to our method as SMTSE (Sparse Multivariate Time Series Estimation).

In the first experiment, we assume that the time series are observed for one type

of measurement, i.e. one-layer data. In the second experiment, we generate time

series from two distinct layers. For each experiment, we evaluate the model selection

performance by assessing how well an estimation method captures the sparsity in the

lag relationships using metrics such as the True Positive Rate (TPR) and the True

Negative Rate (TNR). We measure the estimation performance using the Frobenius

norm of the difference matrix between the true VAR matrix and the estimated VAR

matrix. In the generative models described below for one and two layers, spatial

dependencies are generated by selection of nearest spatial neighbours. This nearest

neighbour dependency is not part of the VAR model described in Section 3 of the

paper.

One layer simulations. We generate the simulated set of time series as described

below:

1. Randomly generate K sites in a [0, 1] × [0, 1] square. We use a 2-dimensional

uniform distribution to create the site locations.

2. Generate the VAR coefficients

• Generate 1st own lag coefficient for each time series

∀i ∈ {1, · · · , K}, B[1]
ii ∼ Uniform(a, b).

• Randomly select the Ci closest neighbors to the site si of time series {Y [i]
t }

Ci ∼ Binomial(Tneighbors, Pneighbors) where Tneighbors is the maximum pos-

sible number of neighbors sites selected and Pneighbors is the probability

assigned to the binomial distribution.
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• Coefficients associated with the Ci closest sites of the targeted site si are

computed. We denote by Si the set that contains the index of the Ci

closest sites: ∀j ∈ Si, B[1]
ij = B

[1]
ii ∗exp (−δ‖si − sj‖). Note that δ is a term

used to accentuate the decrease of coefficients associated with time series

far from location si.

• Generate the coefficients associated with lags greater than 1:

∀i, j ∈ {1, · · · , K}2, B
[l]
ij = lηB

[1]
[ij],with l > 1 and η < 1,.

3. Set the error covariance matrix to: Σij = ρ‖si−sj‖.

4. Simulate K time series of length T from VAR model with VAR coefficients B

and error covariance matrix Σ.

Two-layer simulations. To generate the two-layer simulated data, we apply

a similar procedure as in the one-layer simulation experiment. Each layer consists

of 25 sites. We alternate simulations in which the two layers have an effect on each

other and simulations in which only layer one has an effect on layer two. Within-layer

effects are always present in all simulations. The covariance matrix for the two layers

experiment has a block diagonal structure, with each block defined by Σij = ρ‖si−sj‖

Simulation settings Throughout all simulations we set fixed the following pa-

rameters:

• The lower and the upper bounds for the own lag coefficients: a = −0.5 and

b = 0.5.

• The number of sites: K = 25.

• The maximum number of influential neighbors for each site: Tneighbors = 5.

• The probability for the generation of influential neighbors for each site: Pneighbors =

0.8.

• To reduce the computational cost, the temporal and spatial penalty tuning

parameters are set to α = 1 and γ = 1 for all settings.
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We vary other parameters including the number of true lags and the variance of

the errors. The different simulation settings are:

• Simulation Settings 1 & 2: Number of layers L = 1, lag order P = 2,

error covariance level ρ1 = 0.1 (simulation 1), ρ2 = 0.7 (simulation 2). The search

for the optimal regularization parameters is performed on the following grid λ1 =

{1, 10, 20, · · · , 100}, so λ1 varies by increments of 10, and λ3 ∈ {10−2, 10−1, 1, 10, 102}.

After finding the parameter (λ1, λ3) that minimize the BIC criterion, we perform a

second search on a refined grid around the previous minimum.

• Simulation Settings 3 & 4: Number of layers L = 2, lag order P = 1, error

covariance level ρ2 = 0.1 (simulation 3), ρ4 = 0.4 (simulation 4). For the two layers

experiments, the regularization parameters are searched in the following set of values,

(λ1, λ2) ∈ {1, 10, 20, · · · , 100}2, and λ3 ∈ {10−2, 10−1, 1, 10, 102}.

To test the performance of the SMTSE, for each simulation setup, we generate 50

different replications with time series of length T = 300. For each simulation setup,

we apply the estimation methods assuming 2, 3 or 4 lags for one-layer simulations

and 1, 2, 3 or 4 lags for two-layer simulations. We report the following metrics:

TP =
#[(i,j):B̂ij 6=0 and Bij 6=0]

#[(i,j):Bij 6=0]
, the true positive rate measuring the ability of a model

to capture non null VAR coefficients .

TN =
#[(i,j):B̂ij=0 and Bij=0]

#[(i,j):Bij=0]
, the true negative rate measuring the ability of a model

to identify null VAR coefficients.

FE =

√∑
i,j

(
Bij − B̂ij

)2

, the frobenius norm error measuring the estimation error

of the VAR coefficients.

2.5.2 Simulation results

Figures 1 and 2 summarize our findings. In Sub-figures 1(a) and 2(a), we report the

true positive rates of SMTSE, of the lasso and of the spatial lasso; in Sub-figures

1(b) and 2(b), we report the true negative rates; and in Sub-figures 1(c) and 2(c), we
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report the Frobenius norm. The dark curves are the results obtained for the simulation

settings 1 & 3, and the others are for the simulation settings 2 & 4 averaged over the

50 replications. Based on these simulations results, we find:

• SMTSE outperforms the lasso and the spatial lasso for strong and weak error

covariance.

• As we increase the number of lags, the true positive rates decrease for all the

methods.

• When the error covariance is weak (ρ = 0.1), the three methods have similar

performances in terms of identification of the non-null VAR coefficients. However,

when the level of the error covariance increases (ρ = 0.7), our method identifies the

non null zero coefficients with much higher accuracy.

• Our method is not significantly sensitive to an increase in the level of the error

covariance, this result validating that our estimation procedure improves the efficiency

of the VAR coefficients estimates. On the other hand, the Lasso and the Spatial Lasso

VAR coefficient estimates are extremely sensitive to the error covariance level since

they do not model the covariance structure of the noise.

• In the two-layer setting, whether the error covariance level is strong or weak,

our model performs even better (comparatively to Lasso and Spatial Lasso) than in

the one layer case. This is because the group penalty excludes many false positives.

• We also study the predictive performance of all the methods considered. For

each set of simulations, we use the generative models described above, this time each

time series has a length T = 350, and we leave 50 points for out-of-sample forecasting.

The h-step ahead forecast for time series {Y [i]
t } given all the information up to time

t (I(t)) is Ŷ
[i]
t+h|I(t). The h-step ahead root mean square error for each time series is

computed as

RMSE
(h)
i =

[
1

(50)

350−h∑
t=300−h

(
Ŷ

[i]
t+h|I(t) − Y

[i]
t+h

)2
] 1

2

.
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Figures 3 presents the box plots of the accuracy of the out-of-sample prediction mea-

sured the root mean squared errors (RMSEs) for the true model, the sparse multi-

variate time series estimation (SMTSE), the Lasso, the Spatial Lasso (SP LASSO)

and the Ordinary Least Squares (OLS). Under all the simulation settings, we observe

the SMTSE has a RMSE slightly lower than the RMSE of the Lasso and the RMSE

of the Spatial Lasso. The Ordinary Least Squares as expected overfits the model and

yields poor out-of-sample forecasts. In Section B of the supplemental material, we

report the forecasting performance of all these methods when the number of lags used

for estimation is larger than the true number of lags. The proposed method remains

competitive when compared to the Lasso and the Spatial Lasso, and the OLS RMSE

increases due to overfitting. In Table 1, we report the lag number selected by AIC

and BIC criteria under OLS and the lag number selected by our model in average

over the 50 replications. We find that the lag is accurately identified using BIC in

our method.

• Following the use of OLS + AIC and OLS + BIC introduced by Hsu et al.

(2008), we also fitted the simulated models with OLS (results not reported here); as

expected this method doesn’t introduce sparsity in the VAR coefficient matrices and

the Frobenius norm error is on average significantly higher than the values obtained

for the other three methods aforementioned. The true positive rate is 1, but the true

negative rate is 0.

Table 1: Average of the lag selected with OLS + AIC, OLS + BIC and SMTSE for
simulated VAR models over 50 replications of simulated data.

Simulation OLS + AIC OLS + BIC SMTSE
1 V AR(2), ρ = 0.1 2.00 1.08 2.06
2 V AR(2), ρ = 0.7 2.00 1.9 2.08
3 V AR(1), ρ = 0.1 1.00 1.00 1.00
4 V AR(1), ρ = 0.4 1.00 1.00 1.00
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Figure 3: Performance metrics for two layers experiment
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Figure 4: Prediction mean squared error for one and two layers experiment

2.6 Application

In the case study introduced in this section, we consider the time series of construc-

tion employment (thousands of persons), and the number of new private housing

units authorized by building permits in the United States. Both layers of time series
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are observed at the state level and on a monthly basis; they are seasonally adjusted.

These time series are collected using the Geographical Economic Data (GEOFRED)

of the Federal Reserve Bank of St. Louis. We first removed the time series of certain

states because of missing observations. Specifically, the states of Delaware, District

of Columbia, Hawaii, Maryland and Nebraska are not present in the employment

dataset, the states of South Dakota and Tennessee have 38 consecutive months (Jan-

uary 2008 to February 2011) with missing observations. The states of District of

Columbia and Hawaii are not present for the building permits time series. The ob-

servations for the two economic measurements span from April 1996 to March 2012;

we leave out data from April 2012 to April 2013 for out of sample forecasting. The

number of time points is T = 192 for a total of 93 time series.

Before applying the three estimation methods, we standardize all time series. To

find the optimal set of regularization parameters and the optimal lags, we perform an

extensive search over a grid based on the following values λ1, λ2 ∈ {0.1, 10, 20, · · · , 100},

λ3 ∈ {0.01, 0.1, 1, 10}; the lags considered for this analysis are P ∈ {1, 2, 3}. The val-

ues of λ1 and λ2 vary by increments of 10, while the parameter λ3 varies on a log-scale.

Additionally, we consider α ∈ {0.1, 1} to accomodate the possibility of a strong or

weak temporal decay effect and γ ∈ {0.1, 0.01}, to scale the spatial distances between

the states. The optimal tuning parameters are λ1 = 30, λ2 = 1, λ3 = 0.01 for the

employment layer, λ1 = 10, λ2 = 20, λ3 = 0.01 for the building permit layer , and for

both layers the temporal tuning parameter is α = 1 and the spatial tuning parameter

is γ = 0.01.

We herein refer to our method as SMTSE(Sparse Multivariate Time Series Esti-

mation).The results from the implementation of the SMTSE are presented in Figure

2(a). The horizontal axis of this figure represents the time series Yt, while the ver-

tical axis represents the lags. For instance, the first column contains the coefficients

affecting the employment rate in the state of Connecticut. The first horizontal black
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separation is the first lag effects of employment, the second horizontal black separa-

tion is the first lag effects of building permits. The left half (right half) of the matrix

contains the coefficients that influence the employment rates (building permits). The

vertical black line separates the employment time series from the building permit

time series. The states are grouped in 10 economic regions based on their proximity

to each other. The grey lines in the resulting coefficient matrix are used to delimit

the economic regions.

The SMTSE finds that only one lag is needed for describing the lead and lag

relationships among the employment time series, while it suggests a higher degree of

persistence for the building permit time series as three lags are selected using BIC.

This finding points to the fact that we can select a different number of lags for each

layers. This is possible because of the divide-and-conquer approach we adopt.

For our method, the significant VAR coefficients tend to gravitate within the

diagonal blocks of each economic region. In contrast, the Lasso (Figure 2(b)) tends

to introduce small but non-null AR coefficients for the time series within the two

layers. The spatial lasso (Figure 2(c)) is able to eliminate these small but non-null

coefficients. Our method and the spatial lasso provide sparser models than the lasso.

For the SMTSE, the own lag effects are positive for all time series. The own lag

coefficients for the employment time series are very high while for the building per-

mit time series, the coefficients are smaller although still significantly greater than 0.

Moreover, for the building permit time series, the own lag coefficients are slowly de-

creasing as the number of lags increases implying that these time series are persistent.

Additionally, our model uncovers the effects of the building permits on construction

employment suggesting that the number of building permits issued for new houses

is a leading indicator in the housing industry. Therefore, if the number of building

permits increases, it is plausible to expect a rise in the construction employment. Our

model also reveals the absence of feedback effect of the employment time series on
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the number of building permits issued.

The lasso and the spatial lasso are both unable to provide similar results. The lasso

introduces small and noisy estimates for some VAR coefficients and does not explicitly

capture the lack of effect of employment on the number of building permits issued.

The spatial lasso is able to remove the small and noisy VAR coefficients, but is not

able to identify that employment does not lead the building permits issued. The main

reason why our method properly identifies the relationships between these two layers

lies in the presence of the group penalties that uniformly remove all the coefficients

associated with a potential feedback effect from employment time series. In Figure

2(a), we see that the blocks of coefficients that capture the effect of employment on

building permit (on the right side of the black vertical line) are all null. But in Figures

2(b) and 2(c), we observe the presence of some coefficients of small magnitudes in

these blocks. The coefficient matrices for the lasso, spatial lasso with 1 and 2 lags are

presented in the supplemental material. They have a behavior similar to the their

counterparts with 3 lags. We also show the coefficient matrices of the OLS with 1 and

2 lags, some of the coefficients in these matrices are very large ( order of magnitude

of 40 for OLS with 2 lags ).

We also report the out-of-sample forecast performance of the three methods. The

h-step ahead forecast for time series {Y [i]
t } given all the information up to time t

(I(t)) is Ŷ
[i]
t+h|I(t). The h-step ahead root mean square error for each time series is

computed as

RMSE
(h)
i =

[
1

(50)

350−h∑
t=300−h

(
Ŷ

[i]
t+h|I(t) − Y

[i]
t+h

)2
] 1

2

.

The forecast period is from the month of April 2012 to April 2013. We use the RMSE

to measure the prediction performance. As seen in Figure 3, the OLS fitted with 2

lags has the worst out-of-sample forecast for all the lag levels, and the OLS with 1

lag has the second worst performance. This poor performance can be explained by

the fact that OLS commonly overfits. In contrast, the lasso generates out-of-sample
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forecasts that are less accurate than the forecasts resulting from the SMTSE; this is

probably due to the presence of a large number of spurious VAR coefficients. The

spatial lasso and the lasso have similar forecasting performance. These results imply

that simply incorporating spatial distances in the lasso penalty doesn’t improve the

predictions. But if we also account for the contemporaneous effects through the

estimation of the precision matrix, the prediction errors become significantly smaller

than the prediction errors associated with the other regularized methods and the

ordinary least squares. In Table 1(a), we report the number of non null coefficients in

each of the simulated models, we see that the SMTSE yields the second most sparse

model and is still able to outperform the other methods in terms of prediction. Table

1(b), shows some typical computational time needed to solve the SMTSE under a

very sparse (λ large) and very dense (λ small) settings with R, on a 1.80Ghz Intel

Xeon Linux computer.

Throughout other experiments not reported here, we found that if we increase the

sample size T , the OLS can produce predictions that are more accurate than all the

regularized methods including the SMTSE. This can be explained by the fact that

the L2 norm of the prediction error of regularized methods such as the lasso has an

upperbound that depends on the inverse of magnitude of the restricted eigenvalue

of the matrix XTX
n

. So the OLS prediction performance could be superior (despite

overfitting) to the lasso prediction performance if some compatibility conditions hold

for a small restricted eigenvalue (Bülhmann et al., 2011).

2.7 Conclusion

In this paper, we propose a L1/L2 penalized likelihood method for estimating large

sparse VAR models of time series, which are spatial interdependent. The methodol-

ogy explicitly accounts for sparsity, group sparsity and spatial contemporaneous cor-

relation among the time series. We also presented algorithms for solving the L1/L2
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Table 2: Number of non-null coefficients for fitted models and computational time
for algorithm under different values for the regularization parameters and with one
lag

(a) Number of non-null coefficients

Model number of non-null coefficients

SMTSE 317
LASSO 1 1845
LASSO 2 1284
LASSO 3 1663
SP LASSO 1 444
SP LASSO 2 289
SP LASSO 3 335
OLS 1 8649
OLS 2 17298

(b) Computational time

Models λ1 λ2 λ3 α γ Time (s)

1 1 1 1 0.1 0.01 49.63
2 1 1 1 1 0.01 48.79
3 1 1 1 0.1 0.1 07.60
4 1 1 1 1 0.1 07.56
5 100 100 10 0.1 0.01 06.41
6 100 100 10 1 0.01 06.20
7 100 100 10 1 0.1 06.17
8 100 100 10 0.1 0.1 06.15

constrained optimization problems obtained after penalizing the VAR coefficients and

the error precision matrix.

We performed extensive simulations to evaluate the performance of the proposed

method (SMTSE) in comparison with existing approaches. We found that the SMTSE

outperforms OLS, lasso and spatial lasso in recovering sparse VAR structures, in

estimating the VAR coefficients, and in forecasting future values of the time series

(especially, when the time series length is smaller than the number of time series).

Importantly, the identification of the sparse VAR structure improves when applying

lag and distance weighted penalties to the VAR coefficients, and by penalizing VAR

coefficients at the group (specified by layers) level and within groups.

Theoretical properties justifying these results are not presented in this manuscript.

Wonyul et al. (2012) consider the joint estimation of a coefficient matrix B and of

a precision matrix Σ−1 in a multivariate regression problem. They use a doubly

penalized joint likelihood with penalties on entries of B and Σ−1. They show the

consistency and sparsitency properties of estimates obtained by alternatively solving

for B and Σ−1. These theoretical justification could be extended to demonstrate the

performance of the proposed method SMTSE.
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Figure 5: VAR matrix coefficients for employment and building permit time series
obtained through (a) SMTSE, (b) LASSO, and (c) Spatial LASSO

Furthermore, the applicability of our method is illustrated by analyzing the re-

lationship between construction employment rates and the number of new private

housing units authorized by building permit. The method yields an interpretable

model that matches economic intuition.

In both the simulation and application studies covered in this paper, the layers

are clearly delineated. One of the reviewers however suggested that the method could
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Figure 6: The h-step ahead forecast root mean square error (RMSE) for the Sparse
Multivariate Time Series Estimation (SMTSE) method, for Lasso fitted with 1 to 3
lags, Spatial Lasso fitted with 1 to 3 lags, and OLS fitted with 1 to 2 lags. Forecast
period T0 = April 2012 to T1 = April 2013. From left (1 step ahead RMSE) to right
(4 steps ahead RMSE).

be extended to applications with layers that are not necessarily clearly defined. The

first step could consist of the estimation of a graphical or cluster model to identify

the layers in the data.
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CHAPTER III

HIGH DIMENSIONAL MULTIVARIATE ADDITIVE

MODELS

3.1 Introduction

The recent improvements of Electronic Health Records (EHR) have lead to the avail-

ability of patients level data. These data contain information about a diverse set of

events. We are particularly interested in understanding what factors affect the cost

of healthcare. To achieve our goal, we use patients level claim data collected in the

state of Georgia from 2005 to 2009. Many problems associated with the analysis of

cost in healthcare have to deal with certain statistical challenges, that are not directly

addressed by existing methodologies. First, the number of possible factors explaining

the rising cost of healthcare is relatively large, so it could be useful to apply model

selection methods to isolate the most important factors. Second, to be able to make

inferences valid within a certain spatial and temporal scale, it is sometimes impor-

tant to aggregate the patient level data to zipcode or county level and to monthly or

quaterly frequency. The aggregations further reduce the sample size of the data and

increase the ratio of predictors to sample size and exacerbate the importance of using

model selection techniques. The third challenge associated with the statistical anal-

ysis of health care cost lies in the presence of nonlinear relationships between claim

data and meaningful predictors. In order to address these challenges, it is important

to design statistical models that are more complex than model commonly used in this

field, e.g: linear regression models. To simultaneously account for the 3 statistical

problems cited above, we design a new estimation and model selection method that

can be used in high dimensional settings.
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Estimation and model selection in a high dimensional setting is a common statis-

tical problem encountered in several fields, including biostatistics, genomics, imaging.

The Lasso introduced by Tibshirani et al. (1996) is one of the most popular method

for sparse high dimensional estimation and model selection in linear models. Even

though linear models are able to capture the most important effects, nonparametric

methods such as additive models can provide improvements, by detecting substan-

tial nonlinear effects. Additive models are nonlinear regression functions, where each

additive term is a smooth function depending on a single covariate.

In this nonparametric setting, the goal is to perform model selection on the addi-

tive terms while also controlling the smoothness of the selected additive components.

Lin et al. (2006), Meier (2008) and Ravikumar (2009) , each proposed different

methods to solve this problem. None of these approaches are designed to efficiently

estimate multi-task sparse additive models simply because they are designed to solve

problems with a univariate response. Some methodologies have been proposed to

nonparametric multivariate regressions. Liu et al. (2008) adapt the `∞ regularization

method of Turlach (2005), that can perform model selection in the parametric setting

to functional model selection. Foygel et al. (2013) proposes a nonparametric reduced

rank regression that generalizes reduced rank regression for linear models. Using

these methods could lead to selection errors, because once a predictor is selected for

a response, it appears as influential for other responses.

Obozinski et al. (2011), designed a parametric regularization method to perform

union support recovery for high dimensional multivariate regression. Their method

exploits a `1\`2-norm that can impose joint sparsity on a group of coefficients. Each

group is made of all the coefficients associated with the effect of one covariate on

all the responses. In this paper, we generalize this approach to additive regression

models. In our study, each group contains all the additive components associated

with a covariate. We use the Hilbert spaces `1\`2 norm, introduced by Yin et al.
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(2012); this norm can induce group sparsity among the additive components.

The contributions of our work include a necessary and sufficient condition for the

identification of covariates that are active in at least one of the regression problems,

a block coordinate descent algorithm that leads to a sparse backfitting procedure

applied to our multitask / multi-responses regression models, a set of extensive simu-

lations that show the superior performance of our methodology and two applications

that highlight how the method proposed can be used in different fields. In addition

to the analysis of medicaid coast in Georgia, we use the method on a gene microar-

ray dataset to identify biomarkers and to perform tumor classification on 83 cancer

patients.

3.2 Background

Let’s first introduce some notations, vectors and matrices are denoted by boldfaced

letters, hat are added for estimates. If X is a random variable with distribution

PX , and f is a function of x, its L2(PX) norm is ‖f‖2 =
∫
X f

2(x)dPX = E(f 2).

For a vector x = (x1, · · · , xn), the `2-norm is defined as ‖x‖2
n = 1

n

∑n
i=1 x

2
i . For a

random variable Xj with j ∈ {1, · · · , p}, Hj denotes the Hilbert subspace L2(PXj)

of PXj -measurable functions fj(xj) of the single scalar variable Xj with zero mean,

E[fj(Xj)] = 0. The inner product on Hj is < fj, gj >= E[fj(Xj)gj(Xj)], and the

associated norm is ‖fj‖ =
√

E[f 2
j (Xj)] < ∞. H = H1 ⊕ · · · ⊕ Hp denotes a Hilbert

space of functions of (x1, · · · , xp), that have an additive form m(x) =
∑p

j=1 fj(xj),

with fj ∈ Hj. We consider a K multitask (or multi-response) regression problem.

For each regression model, we have a response variable Y (k) and a random vector of

covariates X(k) =
(
X

(k)
1 , · · · , X(k)

p

)
, with k ∈ (1, · · · , K). For each model, we define

the set of smooth functions fj(Xj) =
(
f

(1)
j (X

(1)
j ), · · · , f (K)

j (X
(K)
j )

)
associated with

the covariates Xj =
(
X

(1)
j , · · · , X(K)

j

)
. To simplify our notations, ∀j ∈ {1, · · · , p}

and k ∈ {1, · · · , K} we will write the function f
(k)
j (X

(k)
j ) as f

(k)
j .
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In this section, we give a brief description of existing methods, used to tackle

high-dimensional nonparametric regression. These methodologies will be used as a

building block for our method. If we consider a random vector X = (X1, · · · , Xp) and

a random variable Y. A typical statistical problem is the nonparametric estimation

of of nonlinear regression models.

Y = m(X) + ε, where E(ε) = 0

The data available for this estimation problem are (xi, yi), where xi ∈ Rp and yi ∈ R,

with i ∈ {1, · · · , n}. The regression function is given as the posterior mean of the

response variable.

m(X) = m(X1, · · · , Xp) = E[Y |X1, · · · , Xp]

As presented in Yin et al. (2012), when p = 1, m(X) = PY , where P is a conditional

expectation operator P = E[.|X] used to orthogonally project Y onto a linear space

of all measurable functions of X. The function m at point x, is estimated using kernel

smoothers.

m̂(x) =
n∑
i=1

si(x)yi = s(x)Ty

where si(x) ∝ Kh(|xi − x|) and Kh is a kernel smoother. So for a response vector

y ∈ Rn, the estimated values are given by ŷ = Sy, where S is the smoother matrix

lj(xi) with i, j = 1, · · · , n. S is a natural estimator of P, that will be used in additive

models.

Hastie and Tibshirani (1986), proposed additive models as a class of nonlinear

regression models.

m(X1, · · · , Xp) = α +

p∑
j=1

fj(Xj)

, where fj are univariate additive components. We will assume without loss of gen-

erality that α = 0 and that E(fj(Xj)) = 0. To estimate m(X) in this setting, they
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solve the optmization problem below:

Min
f :fj∈Hj

L(f) =
1

2
E

(Y − p∑
j=1

fj(Xj)

)2


They propose to use a backfitting approach to estimate the smooth functions fj

fj = E

[(
Y −

∑
l 6=j

fl

)
|Xj

]
= Pj

(
Y −

∑
l 6=j

fl

)

. As stated earlier the natural estimator of Pj, is Sj, so the estimate of each smooth

function under this setting is f̂j ← Sj(Y −
∑

l 6=j fl). Ravikumar et al. (2009) extends

this model to the high-dimensional setting (p � n) and creates a method labelled

SpAM (Sparse Additive Models). They impose sparsity at the function level and thus

are able to perform model selection by finding the active additive components. They

solve the optimization problem:

Min
f :fj∈Hj

L(f) + λΩ(f),

with Ω(f) =
∑p

j=1 ‖fj‖. They use a sparse backfitting algorithm where at each step

the smooth function updates are given by:

fj =

[
1− λ

‖PjRj‖

]
+

PjRj,

where Rj = Y −
∑

l 6=j fl is a partial residual and the operator [.]+ = max(0, .). More

recently Yin et al. (2012) proposed the GroupSpAM, that adapts the group lasso to

the nonparametric setting. They penalize the additive components in a group manner.

For a partition G of {1, · · · , p}, they solve the following optimization problem:

Min
f :fj∈Hj

L(f) + λΩgroup(f),

where the penalty Ωgroup(f) is defined as

Ωgroup(f) =
∑
g∈G

√
dg‖fg‖ =

∑
g∈G

√
dg

√∑
j∈g

E
[
f 2
j (Xj)

]
,
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where fg is a set of functions in group g. In their paper they give a block coordinate

descent algorithm to update the group of additive functions.

We now introduce our methodology, and exploits the use of the `2\`1 functional

norm to identify in a multi-task or multivariate regression model, the covariates whose

functions are active for at least one of the responses.

3.3 L2\L1 joint functional sparsity

As stated in the background section, we consider a K multi-task (or a multivari-

ate) regression problem. For each regression problem, we have the following data

{(x(k)
i , y

(k)
i ), i = 1, · · · , p, k = 1, · · · , K}. we will assume that n1 = · · · = nK = n,

and that for each model the response variables Y (k) and the covariates X(k) are stan-

dardized. Each model has the form:

Y (k) = α(k) +

p∑
j=1

f
(k)
j (X

(k)
j ) (1)

As presented in the case with one response, we assume that ∀k ∈ {1, · · · , K}α(k) =

0 and that ∀k ∈ {1, · · · , K} and ∀j ∈ {1, · · · , p} E
[
f

(k)
j (X

(k)
j )
]

= 0. We will find

the set of functions fj =
(
f

(1)
j , · · · , f (K)

j

)
or f (k) =

(
f

(k)
1 , · · · , f (k)

p

)
, by solving the

optimization problem:

Min
f (1),··· ,f (K)

K∑
k=1

L(f (k)) + λΩ`2\`1(f) (2)

With f =
(
f (1), · · · , f (K)

)
and L(f (k)) = 1

2
E
[(
Y (k) −

∑p
j=1 f

(k)
j

)2
]

and

Ω`2\`1(f) =

p∑
j=1

√
K

√√√√ K∑
k=1

‖f (k)
j ‖2 =

p∑
j=1

√
K‖fj‖

The penalty Ω`2\`1(f) in (2), is an extension of the `2\`1-norm used for union support

recovery in the parametric setting to the nonparametric setting. It also generalizes

the SpAM of Ravikumar (2008), in the sense that if K = 1, we recover the problem

solved in SpAM.
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We define R
(k)
j = Y (k) −

∑
`6=j f

(k)
l , as the partial residual associated with the kth

task and the jth covariate X
(k)
j . If we consider that all the other covariate functionals

are held fixed, we can optimize over the set of functions fj =
(
f

(1)
j , · · · , f (K)

j

)
by

solving the optimization problem:

f̂
(1)
j , · · · , f̂ (K)

j = argmin
f

(1)
j ,··· ,f (K)

j

K∑
k=1

1

2
E
[(
R

(k)
j − f

(k)
j

)2
]

+ λ
√
K‖fj‖ (3)

Theorem 1: The stationary conditions of the optimization problem (2) with respect

to the set of functions fj associated with the covariates Xj, is such that:

∀k ∈ {1, · · · , K}

f
(k)
j − P

(k)
j R

(k)
j + λ

√
Ku

(k)
j = 0 (4)

Where

uj =


f

(k)
j

‖fj‖ if ‖fj‖ 6= 0 for k ∈ {1, · · · , K}

ej ∈ RK with‖ej‖2 ≤ 1 when ‖fj‖ = 0

The proof is given in the appendix.

Theorem 2: The covariates X
(k)
j are active through their additive functions f

(k)
j ,

for j = {1, · · · , p}, f (k)
j = 0 ∀k = {1, · · · , K} if and only if√√√√ K∑

k=1

E
[(
P

(k)
j R

(k)
j

)2
]
< λ
√
K (5)

We can now provide the algorithms needed to solve the optimization probem in

(3)

Algorithm 1: Soft-Thresholding operator Algo1λ[R̂
(1)
j , · · · , R̂(K)

j , S
(1)
j , · · · , S(K)

j ]

1. Input : Smoothing matrices S
(k)
j , estimated partial residuals R̂

(k)
j ,

for j fixed and k ∈ {1, · · · , K}, and the regularization parameter λ.
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2. Estimate P
(k)
j R

(k)
j = E

[
R

(k)
j |X

(k)
j

]
as P̂

(k)
j = S

(k)
j R̂

(k)
j ∀k ∈ {1, · · · , K}

3. Estimate wj =

√∑K
k=1 E

[(
P

(k)
j R

(k)
j

)2
]

as ŵj =
√∑K

k=1
1
n
‖P̂ (k)

j ‖2

4. calculate f̂j using f̂
(k)
j =

[
1− λ

√
K

ŵj

]
+
P̂

(k)
j

5. Center all the functions estimated in step 4.

f̂
(k)
j ← f̂

(k)
j − mean(f̂

(k)
j )

6. Output : estimated additive functions f̂j =
(
f̂

(1)
j , · · · , f̂ (K)

j

)

The sparse backfitting applied to solve the problem presented in (3)

Algorithm 2: L2\L1 Simultaneous Sparse Backfitting

1. Input :
(
x

(k)
i , y

(k)
i

)
with i = 1, · · · , n and k = 1, · · · , K and

regularization parameter λ

2. Initialize f̂
(k)
j = 0 and compute smoothers S

(k)
j for j = 1, · · · , p and

k = 1, · · · , K

3. Iterate until convergence, for each j = 1, ·, p

(a) For each k = 1, · · · , K compute the partial residuals:

R̂
(k)
j = Y (k) −

∑
l 6=j f̂

(k)
j

(b) Use the threshold algorithm to find estimates of

fj =
(
f

(1)
j , · · · , f (K)

j

)
f̂

(1)
j , · · · , f̂ (K)

j ← Algo1λ[R̂
(1)
j , · · · , R̂(K)

j , S
(1)
j , · · · , S(K)

j ]

4. Output : Functions f̂j for j = 1, · · · , p
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3.4 L2\L1 and L1 joint functional sparsity

Assuming that all the tasks share the exact same predictors is not a realistic assump-

tion in many applications. So we propose to induce sparsity within the groups of

predictors that appear to be relevant. This translates to the optimization problem

below:

Min
f (1),··· ,f (K)

K∑
k=1

L(f (k)) + (1− α)λΩ`2\`1(f) + αλΩ`1(f) (6)

where Ω`1(f) =
∑p

j=1

∑K
k=1 ‖f

(k)
j ‖.

Solving the optimization problem (6) is equivalent to solving the problem for covariate

index j while all the others covariates are held constant.

f̂
(1)
j , · · · , f̂ (K)

j = argmin
f

(1)
j ,··· ,f (K)

j

K∑
k=1

1

2
E
[(
R

(k)
j − f

(k)
j

)2
]

+ (1−α)λ
√
K‖fj‖+αλ

K∑
k=1

‖f (k)
j ‖

(7)

Theorem 3: The covariatesX
(k)
j with k ∈ {1, · · · , K} are inactive as a group through

their additive functions f
(k)
j , fj = 0 if and only if√√√√√ K∑

k=1

E

[(1− αλ

‖P (k)
j R

(k)
j ‖2

)
+

P
(k)
j R

(k)
j

]2
 < (1− α)λ

√
K (8)

The proof of this theorem is given in Appendix. An interesting observation can

be made about the condition in (8) and the condition introduced in (5). Our new

thresholding condition can be seen as a weighted mean of the norms of the pro-

jected partial residuals. So if for a covariate X
(k)
j , ‖P (k)

j R
(k)
j ‖2 < αλ, we obtain(

1− αλ

‖P (k)
j R

(k)
j ‖2

)
+

= 0 and the term P
(k)
j R

(k)
j doesn’t contribute to the group condi-

tion. So the main difference between our new condition (8) and the condition in (5),

lies in the fact that the new condition put an emphasis on the sparsity within the

groups.
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Theorem 4: For a given index j if the set of covariates X
(1)
j , · · · , X(K)

j is active

then a covariate X
(k)
j with k ∈ {1, · · · , K} is inactive through its additive function

f
(k)
j , f

(k)
j = 0 if and only if √

E
[(
P

(k)
j R

(k)
j

)2
]
≤ αλ (9)

The proof of theorem 4 is also given in Appendix. The condition simply states

that the additive function f
(k)
j = 0 if the functional norm of the partial residual

associated with the covariate X
(k)
j is less than the threshold αλ

Algorithm 3: Soft-Thresholding operator Algo3λ[R̂
(1)
j , · · · , R̂(K)

j , S
(1)
j , · · · , S(K)

j ]

1. Input : Smoothing matrices S
(k)
j , estimated partial residuals R̂

(k)
j ,

for j fixed and k ∈ {1, · · · , K}, and the regularization parameter λ.

2. Estimate P
(k)
j R

(k)
j = E

[
R

(k)
j |X

(k)
j

]
as P̂

(k)
j = S

(k)
j R̂

(k)
j ∀k ∈ {1, · · · , K}

3. Estimate ∀k ∈ {1, · · · , K} g(k)
j =

(
1− αλ

‖P (k)
j R

(k)
j ‖2

)
+

as ĝ
(k)
j =

(
1− αλ

‖P̂ (k)
j ‖2

)
+

4. Estimate hj =

√√√√∑K
k=1 E

[[(
1− αλ

‖P (k)
j R

(k)
j ‖2

)
+

P
(k)
j R

(k)
j

]2
]

as

ĥj =
√∑K

k=1
1
n
‖ĝ(k)

j P̂
(k)
j ‖2

5. If ĥj < (1− α)λ
√
K set f̂j = 0

6. Else

(a) For each k ∈ {1, · · · , K} if ‖P̂ (k)
j ‖ < αλ then f̂

(k)
j = 0

(b) Else update f̂
(k)
j (i+ 1) =

P̂
(k)
j

1+
(1−α)λ

√
K

‖f̂j(i)‖
+ αλ

‖f̂(k)
j

(i)‖

,

where i is the ith iteration

7. Center all the estimated functions f̂
(k)
j ← f̂

(k)
j − mean(f̂

(k)
j )

8. Output : estimated additive functions f̂j =
(
f̂

(1)
j , · · · , f̂ (K)

j

)
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3.5 Simulations

We now investigate the empirical properties of the methodologies proposed. We

simulate 100 datasets from a multivariate regression model with K = 4 responses,

p = 200 or 400 covariates. Each covariate Xj is generated as Xj =
Wj+tU

1+t
, with

j ∈ {1, · · · , p} and where W1, · · · ,Wp and U are i.i.d from Uniform(−2.5, 2.5). The

responses are then generated as Y (k) =
∑p

j=1 f
(k)
j (Xj) + ε(k) where ε ∼ N(0, σ2).

The additive functions we used are similar to the functions used in Yin et al. (2012)

and Meier et al. (2009). We create training, validation and test datasets of sizes

nvalidation/ntrain/ntest = (150/150/50). We use 10-fold cross validation on the vali-

dation datasets to find the optimal regularization parameters. We also compute the

Mean Squared Errors (MSE) for each responses by using the test datasets. The cor-

relation between the covariates X1, · · · , Xp increases as we increase the value of t. We

peform simulations for three possible values of t = {0, 1, 2}. The component functions

used in this simulation are:

We define z3 = x3+2.5
5

Additive functions of the first response Y (1)

f
(1)
1 (x1) = −5 sin(2x1) , f

(1)
2 (x2) = x2

2 + 1.5(x2 − 1)2

f
(1)
3 (x3) = 0.5 sin(2πz3) + cos(2πz3) + 1.5 sin2(2πz3) + 2 cos3(2πz3) + 2.5 sin3(2πz3)

Additive functions of the second response Y (2)

f
(2)
1 (x1) = x2

1, f
(2)
2 (x2) = x2, f

(2)
3 (x3) = 4 sin(2πz3)

2−sin(2πz3)

Additive functions of the third response Y (3)

f
(3)
1 (x1) = 2 sin(2πx1)

2−sin(2πx1)
, f

(3)
2 (x2) = 3 sin(exp(−0.5x2)), f

(3)
3 (x3) = −x3

Additive functions of the fourth response Y (4)

f
(4)
1 (x1) = exp(−x1), f

(4)
2 (x2) = −0.5φ(x2, 0.5, 0.8), f

(4)
3 (x3) = −x2

3

All the other additive components are f
(k)
j (Xj) = 0 for any j ∈ 4, · · · , p and k ∈

{1, · · · , 4}.
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Simulation setup 2: we also consider a second simulation setting in which we induce

within group sparsity by setting f
(1)
3 (x3) = f

(2)
1 (x1) = f

(3)
3 (x3) = f

(4)
2 (x2) = 0.

3.5.1 Simulation Results

In this section, we report the performance of the proposed algorithm on the second

simulation setting described.
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Figure 7: Precision, recall and MSE for GSMTSpAM (blue), GMTSpAM (red),
SpAM (orange), MTLASSO (green), LASSO (yellow)

Based on the box plots observed in Figure 8, we find that the fraction of retrieved

additive functions that are relevant (precision) is high for the GSMTSpAM and for

SpAM, and the method GMTSpAM has a low precision, because it cannot induce

within group sparsity. Note that the reduction in precision observe for the GMTSpAM

will also be present in the method proposed by Liu et al. (2009), since their method

do not account for within group sparsity. We also observe that the precision of
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Figure 8: Precision, recall and MSE for GSMTSpAM (blue), GMTSpAM (red),
SpAM (orange), MTLASSO (green), LASSO (yellow) for simulation setup 2

Table 3: Comparison of different methods on simulated data. Shown in 4th, 5th are
the mean and the standard deviation (in parenthesis) of precisions and recalls. The
size of the model and the MSE metrics are shown in the final 2 columns

p t method #f
(1)
1 #f

(2)
1 #f

(3)
1 #f

(4)
1 #f

(1)
2 #f

(2)
2 #f

(3)
2 #f

(4)
2 #f

(1)
3 #f

(2)
3 #f

(3)
3 #f

(4)
3 size (12)

200 0

GSMTSpAM 100 100 100 100 100 100 100 100 100 100 100 100 12.12 (0.89)
GMTSpAM 100 100 100 100 90 90 90 90 75 75 75 75 10.6 (2.37)

SpAM 95 95 28 93 94 65 5 24 55 92 78 7 7.26 (1.49)
MLasso 100 100 100 100 100 100 100 100 100 100 100 100 73.08 (55.16)
Lasso 25 14 100 100 43 100 16 100 50 100 100 11 53.82 (24.57)

200 2

GSMTSpAM 100 100 100 100 100 100 100 100 100 100 100 100 12.04 (0.4)
GMTSpAM 98 98 98 98 92 92 92 92 80 80 80 80 10.8 (2.31)

SpAM 94 90 38 92 93 67 12 18 59 92 91 12 7.58 (1.45)
MLasso 100 100 100 100 100 100 100 100 100 100 100 100 83.2 (61.07)
Lasso 33 8 100 100 39 100 17 100 59 100 100 8 54.75 (25.68)

400 0

GSMTSpAM 100 100 100 100 100 100 100 100 100 100 100 100 12.04 (0.4)
GMTSpAM 100 100 100 100 95 95 95 95 78 78 78 78 10.92 (2.12)

SpAM 98 90 38 95 96 69 8 16 57 89 88 7 7.51 (1.33)
MLasso 100 100 100 100 100 100 100 100 100 100 100 100 92.76 (76.20)
Lasso 24 11 100 100 43 100 12 100 55 100 100 6 71.83 (36.36)

400 0

GSMTSpAM 100 100 100 100 100 100 100 100 100 100 100 100 12.08 (0.56)
GMTSpAM 100 100 100 100 97 97 97 97 77 77 77 77 10.96 (1.94)

SpAM 96 87 38 93 96 63 14 30 61 84 90 11 7.63 (1.53)
MLasso 100 100 100 100 100 100 100 100 100 100 100 100 98.32 (78.31)
Lasso 21 7 100 100 47 100 18 100 45 100 100 5 63.82 (31.51)
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Table 4: Comparison of different methods on simulated data. Shown in 4th, 5th are
the mean and the standard deviation (in parenthesis) of precisions and recalls. The
size of the model and the MSE metrics are shown in the final 2 columns

p t method #f
(1)
1 #f

(2)
1 #f

(3)
1 #f

(4)
1 #f

(1)
2 #f

(2)
2 #f

(3)
2 #f

(4)
2 #f

(1)
3 #f

(2)
3 #f

(3)
3 #f

(4)
3 size (8)

200 0

GSMTSpAM 100 0 97 100 100 100 71 0 2 100 0 100 7.7 (0.50)
GMTSpAM 99 99 99 99 89 89 89 89 1 1 1 1 7.56 (1.38)

SpAM 96 0 87 94 96 73 53 0 0 95 0 8 6.03 (0.99)
MLasso 100 100 100 100 100 100 100 100 99 99 99 99 76.08 (47.55)
Lasso 36 6 100 100 45 100 12 7 2 100 5 6 41.64 (21.89)

200 2

GSMTSpAM 100 0 98 100 100 100 70 0 1 100 0 100 7.7 (0.50)
GMTSpAM 100 100 100 100 82 82 82 82 1 1 1 1 7.32(1.61)

SpAM 98 0 87 97 96 76 54 0 0 98 0 9 6.21 (1.21)
MLasso 100 100 100 100 100 100 100 100 100 100 100 100 82 (64.29)
Lasso 31 9 100 100 43 100 100 7 5 100 1 9 45.31 (22.43)

400 0

GSMTSpAM 100 0 97 100 100 100 78 0 1 100 0 100 7.77 (0.53)
GMTSpAM 99 99 99 99 85 85 85 85 2 2 2 2 7.44 (1.71)

SpAM 100 0 86 97 91 76 59 0 0 96 0 3 6.17(1.02)
MLasso 100 100 100 100 100 100 100 100 97 97 97 97 112.28 (92.59)
Lasso 28 5 100 100 45 1 8 5 0 100 0 7 51.94 (24.35)

400 0

GSMTSpAM 100 0 100 100 100 100 70 1 3 100 0 100 7.74 (0.50)
GMTSpAM 100 100 100 100 90 90 90 90 1 1 1 1 7.64 (1.28)

SpAM 93 0 92 92 94 73 53 0 0 92 0 4 5.99 (1.03)
MLasso 100 100 100 100 100 100 100 100 94 94 94 94 94.16 (73.11)
Lasso 24 6 100 100 52 100 6 3 2 100 1 3 52.95 (28.80)

MTLASSO and LASSO are low, suggesting the presence of many falsely selected

additive functions. The fraction of relevant instances that are retrieved (recall) is

also high for GSMTSpAM,while it is low for SpAM. Since the precision of SpAM

is high and its recall is low, we can conclude that SpAM is too conservative and it

fails to select some of the true additive functions, while GSTSpAM performs well

across metrics. MTLASSO has a high recall but this is simply due to the fact that

it selects variables that should not be included in the model. LASSO also tend

to have a lower recall than the recall of all the methods illustrated. Last but not

least, we also display a boxplot of the Mean Squared Error of the true additive

functions when compared to the fitted additive functions. The Mean Squared Error is

defined as MSE =
∑K
k=1

∑P
j=1

∑N
i=1

(
f

(k)
j (xkij)−f̂

(k)
j (xkij)

)2

NPK
, where the points xij are randomly

generated. We find that the GSMTSpAM yield predictions with smaller errors than

all the other methods studied, and naturally the GMTSpAM and SpAM perform

better than MTLASSO and LASSO since they account for the nonlinear relationships

between the responses and the predictors. In Figure 7 of the web appendix, we display
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boxplots of the precision, the recall and the mean squared error (MSE), in the absence

of within group sparsity (simulation settings 1). In such a settings the performance

of GSMTSpAM remain better than the results of all the studied methods. The

GMTSpAM has improved precision and recall, because predictors X1, X2, X3 and

X4 affect all the responses.

In table 4, we report the number of times each function is selected by each of

the methods studied and we also show the average size of the models. We see that

in the simulation settings 2, the additive functions set to zero are rarely selected by

GSMTSpAM and that on average the number of selected additive functions is close

to the size of the true model (8 additive functions in simulated settings 2). We clearly

see that SpAM is too conservative and select on average 6 additive functions, that

MTLASSO selects too many additive functions (model of size greater than 75), and

that LASSO selects too many additive functions and yet does not include all the

relevant additive functions.
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Figure 9: Regularization Path for the L2\L1 and L1 SpAM and SpAM

To further understand the benefits of GSMTSpAM over SpAM, we display in

Figure 17 of the web appendix, the full regularization path of the additive functions

simulated in settings 1. We are clearly able to see why GSMTSpAM outperforms

SpAM in the context of multi-responses regression. The regularization paths of the

SpAM associated with the different responses show that relevant additive functions

50



enter in the model at the same moment non-meaningful predictors enter in the model.

This explains why SpAM has a high precision but a low recall. The regularization

path of the GSMTSpAM shows that the relevant predictors enter in the model much

earlier than the other predictors.
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Figure 10: Estimated Additive Functions (solid blue) and true additive functions
(dashed red), for one simulation with 150 observations, p = 200 and t = 0

In Figure 10 , we display the simulated functions and the estimated functions

with a set of points that show the partial residuals obtained by extracting all the

additive functions except the function of interest. The method approximates well the

true additive functions.

3.6 Application

3.6.1 Gene Microarray Data of Cancer Patients

In this section, we apply our method on the children cancer data set introduced in

Khan et al. (2001). The method is used to classify the small round blue cell tumors

(SRBCTs) into 4 categories of cancers, Neuroblastoma (NB), Rhabdomyosarcoma
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(RMS), Non-Hodgkin Lymphoma (NHL), and the Ewing Family of Tumors (EWS).

The data set contains 83 patients, 63 are used for training and 20 are left for testing.

For each patient, the expression profile of 2308 genes are measured. This is a bench-

mark data set that has been used by several groups to compare their classification

method against pre existing methodologies. Most of these methods are designed to

select a set of important genes that can be informative in classifying tumor types.

The existing methodologies can all achieve 100% classification rate on this data set,

Khan et al. (2001) applied a neural network approach to find 96 important genes.

Tibshirani et al. (2002) developed a method called nearest shruken centroids and

were able to achieve a perfect classification rate with 43 genes. Zhang et al. (2008)

used a sup-norm support vector machine method to identify 53 genes. Liu et al.

(2009) achieved 100% prediction accuracy with only 20 predictors by using a new

method called Sparse Multivariate Additive Logistic Regression (SMALR). But when

they interpreted the biomarkers selected, they highlighted the fact that some genes

identified by their method were not among the genes selected by existing methods.

And this non-overlap was not explained in the paper. The Group sparse Multivariate

Additive Logistic Regression (GSMALR), we introduced in the paper can achieve

100% prediction accuracy with only 12 genes. Of all the genes selected only 1 gene

(810057) doesn’t appear in the genes selected by Zhang et al. (2008), and this is

due to the fact that they only select among the 100 genes with the highest relevance

measure, and only 2 genes do not appear in the genes selected by Tibshirani et al.

(2002), (gene 236282 and gene 383188). The gene 810057 is also not included in the

list of all genes selected by Liu et al. (2008). In Figure 11, we show a heat map

of the selected variables for the 63 patients used to train our model (Figure 11(a))

and the model proposed by Liu et al. (2009) (Figure 11(b)). The y-axis displays

the genes and the x-axis is associated with each patient, patients are grouped in 4

different categories, corresponding to different tumors. Both heat maps show four
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block structures associated with the four tumor categories. This suggest that the

genes selected provide enough information to properly classify the tumor of cancer

patients. We see that for our method less genes are needed to achieve the same rate

of classification and the model generated is still highly informative.
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(a) Genes selected by GSMALR

E
W

S
−

T
1

E
W

S
−

T
2

E
W

S
−

T
3

E
W

S
−

T
4

E
W

S
−

T
6

E
W

S
−

T
7

E
W

S
−

T
9

E
W

S
−

T
11

E
W

S
−

T
12

E
W

S
−

T
13

E
W

S
−

T
14

E
W

S
−

T
15

E
W

S
−

T
19

E
W

S
−

C
8

E
W

S
−

C
3

E
W

S
−

C
2

E
W

S
−

C
4

E
W

S
−

C
6

E
W

S
−

C
9

E
W

S
−

C
7

E
W

S
−

C
1

E
W

S
−

C
11

E
W

S
−

C
10

B
L−

C
5

B
L−

C
6

B
L−

C
7

B
L−

C
8

B
L−

C
1

B
L−

C
2

B
L−

C
3

B
L−

C
4

N
B

−
C

1
N

B
−

C
2

N
B

−
C

3
N

B
−

C
6

N
B

−
C

12
N

B
−

C
7

N
B

−
C

4
N

B
−

C
5

N
B

−
C

10
N

B
−

C
11

N
B

−
C

9
N

B
−

C
8

R
M

S
−

C
4

R
M

S
−

C
3

R
M

S
−

C
9

R
M

S
−

C
2

R
M

S
−

C
5

R
M

S
−

C
6

R
M

S
−

C
7

R
M

S
−

C
8

R
M

S
−

C
10

R
M

S
−

C
11

R
M

S
−

T
1

R
M

S
−

T
4

R
M

S
−

T
2

R
M

S
−

T
6

R
M

S
−

T
7

R
M

S
−

T
8

R
M

S
−

T
5

R
M

S
−

T
3

R
M

S
−

T
10

R
M

S
−

T
11

377461

1435862

770394

841620

134748

383188

486110

308231

377048

812105

325182

236282

701751

80649

814526

784224

796258

244618

296448

207274

(b) Genes selected by SMALR of Liu et al.

Figure 11: Genes Selected by the proposed method and the method of Liu (2009)

In Figure 12 (a), we display the average number of misclassified patients in the

training data when the cross validation scheme is performed, and Figure 12 (b)

shows the number of patients that are misclassified in the test data set. The points

in red represent these values for the optimal regularization parameters λ = 0.03 and

α = 0.02 that are selected by cross validation.
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Figure 12: Number of misclassified patients for cross validated training sample and
for test sample for values of α and λ

3.6.2 Application to Microarray Data from Arabidopsis Thaliana

In this application, we use a microarray dataset first used by (wille et al. 2004), to

better understand the biosynthesis of isoprenoid. Isoprenoid is a biological compo-

nent that plays an important role in some of the vital functions (e.g: photosynthesis

53



and respiration) of the plant Aribdopsis thaliana. We are interested in uncovering

the relationships between genes that belong to distinct genetic pathways. We use the

expression profiles of the associated genes to build the genetic networks that regu-

lates the control mechanism for the synthesis of isoprenoids. We will put an emphasis

on the determination of the crosstalks between two distinct isoprenoids pathways.

The isoprenoid pathways used in the analysis are the Mevalonate pathway and the

plastidial pathway. The expression level of the 21 genes in the Mevalonate pathway

(MVA) will be used as predictors and the expression level of the 18 genes in the Plas-

tidial pathway (MEP) will be the responses in our estimation model. Each predictor

and each response has 118 samples. All the variables are centered and standardized

to unit variance. Since we are interested in finding the regulatory network between

the pathways, we perform a stability selection analysis. We randomly select 100 ob-

servations out of the 118 available samples, and run the GSMTSpAM on the selected

subset. We repeat this procedure 100 times, in Figure (13), we display the relation-

ships that are present in at least 90 out of the 100 replications. Some of our results

corroborate the findings of Wille et al. (2004) and Lozano et al. (2012), we find for

instance that there are no connections that are emanating from genes GGPPS1mt,

3, 4, 8. We also find as in Wille et al. (2004), that there are cross-talk relationships

between genes AACT1 and HMGR1 in the MVA pathway and the genes DXR and

MECPS in the MEP pathway. Contrary to the results of Wille et al. (2004), we could

not identify cross-talks relationship arising from the genes AACT2, HMGS, HMGR2,

FPPS2 and MPDC1. Our methodology also uncovers some cross-talk relationships

not previously identified by the previous models, such as the multi-level lasso, this

could be explained by the fact that the multi-level lasso cannot capture nonlinear

relationships between predictors and responses. It would be interesting to investigate

if some of the cross-talk relationships identified between genes in the MVA and MEP

pathways have a valid biological interpretation. After establishing the performance of
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Figure 13: Associations identified between genes from Mevalonate isoprenoid path-
way and plastidial pathway using GSMTSpAM

the GSMTSpAM, we apply to the same dataset SpAM, MTSpAM, MTLASSO and

LASSO. In Figure (14),We find that the bootstrapped regulatory network will all the

possible cross-talk relationships and the bootstrapped graph with the relationships

appearing more than 90 times out of 100 are pretty similar when the GSMTSpAM is

applied, this suggests that our model is relatively stable. A similar statement cannot

be made about SpAM, we find that SpAM introduces a lot of spurious cross-talk

relationships and that a limited subset of them are selected more than 90 % of the

time.

We are also interested in assessing the predictive ability of our model, we achieve

this by providing forecasts for the 18 points that are left out of the training sam-

ple in each replication used for the stability selection. Figure (15), shows that the

GSMTSpAM performs better than SpAM, LASSO. The MTLASSO yields the best

forecast but it also yields an uninterpretable model has illustrated in Figure (16).

Note that the LASSO doesn’t select any cross-talk relationships more than 90 % of

the time.
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Figure 14: Associations identified between genes from Mevalonate isoprenoid path-
way and plastidial pathway by GSMTSpAM and SpAM
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Figure 16: Associations identified between genes from Mevalonate isoprenoid path-
way and plastidial pathway by MTLASSO and LASSO

3.6.3 County Level Cost Analysis in North Carolina

In this application, we are interested in identifying the factors that drive the cost of

healthcare in North Carolina counties from 2005 to 2009. The objective is also to eval-

uate the relationship between the systems outcome cost and the relevant determinant

of healths that will be identified through our additive model selection scheme. The

relationships between the systems outcome cost and these determinants of health,

may or may not vary throughout the years. To account for these potential variations,

we use as responses in our model the county level cost per medicaid eligible member

per month. This metric is simply computed by first summing all the medical claims

associated with medicaid eligible patients who reside within the county of interest.

After obtaining, the total claims issued for patients living within a county, we divide

this quantity by the total number of months of eligibility in the county to obtain the

county level cost per member per month. In our model, we will have 5 responses

and each response corresponds to the cost per member per month for all the counties

in a given year. Given that there are 100 counties in North Carolina, each response

will have 100 observations. We will now describe the major determinant of healths

that will be used as predictors to explain county level cost variation in the healthcare

delivering system.
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3.6.3.1 Data Description

The population considered for the analysis consists of patients between the age of 0

to 18 years who lived in the state of North Carolina during the period of 2005 to

2009. To explain the variations observed in the healthcare cost in North Carolina,

we use 40 predictors that are grouped in the following categories: demographics,

utilization, socio-economic environment, access to care (financial and geographical)

and health factors. The demographics variables consists of the percentage of claims

who are associated with white patients, non-white patients during the year of interest.

The demographics group also contains age related variables such as the percentage of

claims who are attributed to patients between the age of 0 and 5 years, between the

age of 6 and 14 years, and between the 15 and 18 years. Demographic measures have

been extensively used in the literature as a control factor to study the disparities in

financial and geographical access to care. The utilization measures included in our

analysis are the number of claims per member per months that are associated with

inpatient services, outpatient services, other services. Additionally, we also add the

number of claims per member per month that are issued after patients are consulted

by a physician, at a clinic or for dental services.

The second set of utilization measures used in our analysis are linked to the place

where the medical services where provided. These measures are the number of claims

per member per month associated with hospitalizations, visits to the medical prac-

titioner office, the emergency rooms, and outpatient hospital. Utilization measures

are included in the study since they are directly linked to the cost per member per

month. The following papers by Grupp-Phelan et al.(2001), Glynn et al. (2011) and

Harrison et al. (2012) have analyzed the relationships between utilization and cost

of healthcare systems, the general consensus is that higher utilization of the systems

lead to higher cost.

Some socio-economic factors, such as education, economic indicators, crime and
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family planning related metrics, have been reported to have an impact on health

outcomes. To account for education’s impact on health outcomes, we include the

county level illiteracy rates,which represents the percentage of the population age 16

and older that lacks basic literacy skills, the percentage of high school graduates or

higher and the percentage of Bachelor’s degree or higher. The economic factors are

the county level per capita income, the unemployment rate and the percentage of

household units with a mortgage with housing costs greater than 30% of income in a

given county. High housing costs and high unemployment rates can be associated with

poor health outcomes. Additionally, since employer-sponsored health insurance is the

most prevalent coverage, unemployment can reduce access to health care. We also

include crime related variables such as homicide rates, which represents the homicide

rate pre 100,000 in a given county and violent crime rates. Family related social

variables are the percent of family households with children that are headed by a

single parent (male or female householder with no spouse present) and the teen birth

rate measured as the number of births per 1000 female population aged 15 tgo 19.

There is evidence that teen pregnancy increases the risk of adverse health outcomes

for mothers, children and communities. Health factors are directly associated with

the cost of health care systems. To measure county level health conditions of the

population, we use the percentage of the population age (20 and older) that has a

BMI greater or equal to 30 kg\m2 (obesity rates), the diabetes rates, low birth weight

defined as the percent of live births for which the infant weighted less than 2500

grams. According to County Health Rankings and Roadmaps, low birth weight are a

good predictor of morbidity over the course of a life, and they may help lead to higher

utilization of the systems by affected patients. We also use a self reported indicator of

health, which the percent of adults reporting in a survey poor or fair health. Nutrition

related variables are also added, namely the limited access to healthy foods measured

as the percent of population who are low income and do not live close to a grocery
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store, and the percent of fast food restaurants within each counties.

The main goal of the study, is also to identify predictors that can be used to

intervene and recommend policies that will help reduce the cost per member per

month. The determinants of health that can be used for interventions are mainly

related to access. Access in our analysis can be interpreted as financial access or

geographical access. The proxies used to measure financial access in our analysis

are the county level poverty rates and the percent of adults who reported that they

could not see the doctor because of cost. The percent of children (under 19) without

insurance is also included since lack of health insurance is a barrier to accessing health

care. Financial access has been reported to also affect health outcomes ,Doran et al.

(2008), but we are interested here in understanding if it affects the cost of care at the

county level. The geographical access can be divided in 2 sub groups, availability and

accessibility to care. In Gentili et al. (2014), availability is measured as the average

travel time to care in each county, while accessibility is the average congestion level

in each county. We also add the standard deviation of travel time and congestion,

to capture the potential effect of disparities in access to care in the county on cost

of care. The first and second moments are computed by looking at travel time and

congestion level computed at the census tract level as described by Gentili et al.

(2014).

3.6.3.2 Results

We apply our model to identify the most important determinants of health and to

estimate the potential nonlinear relationships between the cost of care and the 40

predictors enumerated in the data description. To have a certain level of confidence

in the selected variables, we perform a stability selection analysis, that consists in

randomly selecting 90 out of the 100 counties as training data, we run the model with

regularization parameters in the range α ∈ {0.001, · · · , 0.1} and λ ∈ {10(−25), · · · , 1}.
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For each of the regularization parameters we have 50 values that are equally spaced.

For each combination of regularization parameters we fit the model and assess if a

predictor is selected, we repeat this procedure 100 times, and report the number

of times a predictor is selected. We find that utilization predictors are the most

important in driving the cost of care at the county level in North Carolina. In Figure

33 of the appendix, we show that the number of claims per member per month

associated with inpatient hospitalization, with miscellaneous services and outpatient

and inpatient services are the most influential predictors since they are selected 100

out of 100 times for almost all combinations of the regularization parameters. Other

utilization measures such as the preventable hospital stays, the number of claims per

member per month associated with dental services, services provided by the physician,

visits to the emergency rooms, to the health practitioner office are also meaningful

predictors of cost but they are not as influential as the aforementioned utilization

measures. For all the relevant utilization measures an increase in number of claims

per member per months leads to higher cost of care per member per months.

We do not find strong evidence suggesting that demographics are highly impactful

on the cost of care in North Carolina at the county level between 2005 and 2009.

Among the socio-economic factors, we find that the percent of housing with high

costs and the per capita income are the most important variables, they are however

less often included in the model than the most relevant utilization measures.

We find evidence that financial and geographical access influenced the cost of care

in North Carolina during the years 2005 to 2009. For financial access, we observe the

percent of uninsured children and the percent who reported not being able to see a

doctor because of cost influenced the cost of care. Figures 35 (u) - (y) in appendix

show that the cost of care increases marginally when these measures increase, this

increase is mostly noticeable in the lower quantile of the graphs, suggesting that

the effect on cost dissipates as the percent of uninsured children within a county
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increases (or as the percent of people who could not see the doctor because of cost).

For geographical access, we find that only traffic congestion seems to be related to

cost of care. In figures 35 (a) - (e) of the appendix, we see that an increase in

county level traffic congestion leads to a minor increase in cost of care. So an area

of intervention to reduce the cost of care, could be investment that can help reduce

congestion in counties of North Carolina.

We also perform a cross validation predictive scheme, to have a sense of the optimal

values of the parameters α and λ. In figure 36, we see that the values of the parameter

α with the best predictions are below 0.1. This suggests that the `1 penalty is more

strongly enforced than the group penalty. This implies that when a predictor affects

healthcare cost for one year, it is highly likely that it will affect the cost of care during

the other years. So we can conclude that in North Carolina from 2005 to 2009, the

relevant county level determinants of health did not change. Figure 17 shows the

full regularization paths for the norm of the additive functions associated with the

relevant predictors. For all the years, the utilization variables such as the number of

claims associated with other services, inpatient services, outpatient services, inpatient

hospitalizations are the first variables to enter in the model. Then the average county

level congestion, financial access variables and some health indicators then become

influential.

3.7 Concluding Remarks

In this chapter, we have presented a new methodology for variable selection when

dealing with multivariate additive nonparametric regression or classification. The

methodology introduces a new joint penalty, by combining a functional `2\`1 norm

with a functional `1 norm applied to additive terms in the multivariate additive

regression model. By deriving the subdifferentials of these penalties, we propose a

series of backfitting algorithms that can update each additive functions with a closed
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Figure 17: Regularization Paths associated with the cost of care for years 2005 to
2009 for α = 0.005

form solution. The performance of the algorithms were studied on a series of synthetic

data, on a benchmark dataset (gene microarray data of cancer patients) and for the

analysis of county level medical costs in the state of North Carolina.
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CHAPTER IV

NONPARAMETRIC REGRESSION FOR

TOPOGRAPHICAL MIXTURE MODELS WITH

SYMMETRIC ERRORS

4.1 Introduction

The model we propose to investigate in this paper is a semiparametric topographical

mixture model able to capture the characteristics of dichotomous shifted response-

type experiments such as the tumor data in Bowen et al. (2012, Fig. 4). Let suppose

that we visit at random the space Rd (d ≥ 1) by sampling a sequence of i.i.d. random

variables Xi, i = 1, ..., n, having common probability distribution function (p.d.f.)

` : Rd → R+. For each Xi we observe an output response Yi whose distribution

is a mixture model with probability parameters depending on the design Xi. For

simplicity, let us consider first a mixture of two nonlinear regression model:

Yi = W (Xi)(a(Xi) + ε̃1,i) + (1−W (Xi))(b(Xi) + ε̃2,i), (10)

where locations are a, b : Rd → R, the errors {ε̃1,i, ε̃2,i}i=1,...,n are supposed to be i.i.d

with zero-symmetric common p.d.f. f . The mixture in model (10) occurs according

to the random variable W (x) at point x, with probability π : Rd → (0, 1),

W (x) =

 1 with probability π(x),

0 with probability 1− π(x).

Moreover we assume that, conditionally on the Xi’s, the {ε̃1,i, ε̃2,i}i’s and the W (Xi)’s

are independent. Such a model is related to the class of Finite Mixtures of Regression

(FMR), see Grün and Leisch (2006) for a good overview. Briefly, statistical inference

for the class of parametric FMR model was first considered by Quandt and Ramsey
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(1978) who proposed a moment generating function based estimation method. An EM

estimating approach was proposed by De Veaux (1989) in the two-component case.

Variations of the latter approach were also considered in Jones and McLachlan (1992)

and Turner (2000). Hawkins et al. (2001) studied the estimation problem of the

number of components in the parametric FMR model using approaches derived from

the likelihood equation. In Hurn et al. (2003), the authors investigated a Bayesian

approach to estimate the regression coefficients and also proposed an extension of

the model in which the number of components is unknown. Zhu and Zhang (2004)

established the asymptotic theory for maximum likelihood estimators in parametric

FMR models. More recently, Städler et al. (2010) proposed an `1-penalized method

based on a Lasso-type estimator for a high-dimensional FMR model with d ≥ n. As an

alternative to parametric approaches to the estimation of a FMR model, some authors

suggested the use of more flexible semiparametric approaches. These approaches can

actually be classified into two groups: semiparametric FMR (SFMR) of type I and

type II. We say a mixture model is of type I when the mixture probability and location

parameters are euclidean, but the mixing distribution is non parametric, whereas a

model is of type II when, the other way around, the mixture probability and location

are non parametric but the mixing density is known or belongs to a parametric family.

The study of SFMR of type I comes from the seminal work of Hall and Zhou

(2003) in which d-variate semiparametric mixture models of random vectors with

independent components were considered. These authors proved in particular that,

for d ≥ 3, we can identify a two-component mixture model without parametrizing

the distributions of the component random vectors. To the best of our knowledge,

Leung and Qin (2006) were the first in estimating a FMR model semiparametrically

in that sense. In the two-component case, they studied the case where the compo-

nents are related by Anderson (1979)’s exponential tilt model. Hunter and Young
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(2012) studied the identifiability of an m-component type I SFMR model and numer-

ically investigated a Expectation-Maximization (EM) type algorithm for estimating

its parameters. Vandekerkhove (2013) proposed an M-estimation method for a two-

component semiparametric mixture of linear regressions with symmetric errors (type

I) in which one component is known. Bordes et al. (2013) revisited the same model by

establishing new moment-based identifiability results from which they derived explicit

√
n-convergent estimators.

The study of type II SFMR models started with Huang and Yao (2012) who

considered a semiparametric linear FMR model with Gaussian noise in which the

mixing proportions are possibly covariates-dependent . They established also the

asymptotic normality of their local maximum likelihood estimator and investigated

a modified EM-type algorithm. Huang et al. (2013) generalized the latter work to

nonlinear FMR with possibly covariates-dependent noises. Toshiya (2013) considered

a Gaussian FMR model where the joint distribution of the response and the covariate

(possibly functional) is itself modeled as a mixture. More recently Montuelle et

al. (2013) considered a penalized maximum likelihood approach for Gaussian FMR

models with logistic weights.

To improve the flexibility of our FMR model (10) and address the study of models

involving design-dependent noises, such as the radiotherapy application from Bowen

et al. (2012) displayed below, we will consider a slightly more general model:
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Figure 18: Display of the original PET-radiotherapy data from Bowen et al. (2012)
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Yi = W (Xi)(a(Xi) + ε1,i(Xi)) + (1−W (Xi))(b(Xi) + ε2,i(Xi)), (11)

such that, given {X = x}, the common p.d.f. of the εj,i(x), j = 1, 2, denoted fx, is

zero-symmetric. We will say that the above model is of type III, i.e. it combines

type I and type II properties. Indeed, no parametric assumption is made about the

mixing distribution of the errors nor about the mixing proportion and the location

parameters, which are possibly design dependent. Our model is still said semipara-

metric because, given {X = x}, the vector θ(x) = (π(x, )a(x), b(x)) will be viewed as

an Euclidean parameter to be estimated.

Examples of design-point noise dependency.

i) (Topographical scaling) The most natural transformation is probably when con-

sidering a topographical scaling of the errors, with σ : Rd → R∗+, such that

εj,i(Xi) = σ(Xi)ε̃j,i, j = 1, 2, where the ε̃j,i’s are similar to those involved in

(10). The conditional p.d.f of the errors εj,i given {X = x} is defined by

fx(y) =
1

σ(x)
f

(
y

σ(x)

)
, y ∈ R. (12)

Indeed, if f is zero-symmetric then the errors’ distribution inherits trivially the

same symmetry property.

ii) (Zero-symmetric varying mixture) Another useful example could be the varying

mixing proportion mixture model of r zero-symmetric distributions. For k =

1, . . . , r, we consider proportion functions λk : Rd → (0, 1) with
∑r

k=1 λk(x) = 1

for all x ∈ Rd. The conditional p.d.f of the errors εj,i given {X = x} is defined

by

fx(y) =
r∑

k=1

λk(x)fk(y), y ∈ R,

where the fk functions are zero-symmetric p.d.f.’s.
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iii) (Antithetic location model) Consider a location function µ : Rd → R and f any

arbitrary p.d.f. The conditional p.d.f of the errors εj,i given {X = x} is defined

by

fx(y) =
1

2
f(y − µ(x)) +

1

2
f(−y + µ(x)), y ∈ R,

and also results into a zero-symmetric p.d.f.

Note that any combination of the above situations could be considered in model (11)

free from specifying any parametric family (provided the resulting zero-symmetry

hold). This last remark reveals, in our opinion, the main strength of our model in the

sense that it could prove to be a very flexible exploratory tool for the analysis of shifted

response-type experiments. Our paper is organized as follows. Section 2 is devoted

to identifiability results and a detailed description of our estimation method, while

Section 3 is concerned with its asymptotic properties. The finite-sample performance

of the proposed estimation method is studied for various scenarios through Monte

Carlo experiments in Section 4. In Section 5 we propose to analyze the Positron

Emission Tomography (PET) imaging data considered in Bowen et al. (2012). Finally

Section 6 is devoted to auxiliary results and main proofs.

4.2 Estimation method

Let us define the joint density of a couple (Yi,Xi), i = 1, . . . , n, designed from model

(11):

g(y,x) = [π(x)fx(y − a(x)) + (1− π(x))fx(y − b(x))]`(x), (y,x) ∈ Rd+1, (13)

while the conditional density of Y given {X = x} (denoted for simplicity Y/X = x)

is

gx(y) = g(y,x)/`(x) = π(x)fx(y − a(x)) + (1− π(x))fx(y − b(x)). (14)

68



We are interested in estimating the parameter θ0 = θ(x0) = (π(x0), a(x0), b(x0)) at

some fixed point x0 belonging to the interior of the support of ` (`(x0) > 0), denoted

supp(`). For simplicity and identifiability matters, we will suppose that θ0 belongs

to the interior of the parametric space Ξ = [p, P ] ×∆, where 0 < p ≤ P < 1 and ∆

denotes a compact set of R2\{(a, a) : a ∈ R}.

At fixed x0, we prove, following Bordes et al. (2006), that identifiability holds

up to label switching. Indeed, in [13] authors restricted the set of parameters to

[p, P ] × ∆, where 0 < p ≤ P < 1/2. Another way to avoid label switching is to

assume 0 < p ≤ P < 1 and a < b. In order to have global identifiability of our model,

we assume that at some fixed point x we have a(x) < b(x) and that functions a and

b are differentiable and transversal (i.e. at each crossing point x where a(x) = b(x)

gradients are different). The rest of this Section is dedicated to identifiability of the

model and the estimation procedure.

4.2.1 Mixture of regression models as an inverse problem

We see in formula (14), that the conditional density of Y given {X = x} can be viewed

as a mixture of the errors distribution fx given {X = x} with locations (a(x), b(x))

and mixing proportion π(x). Mixture of populations with different locations is a well

known inverse problem. Our inversion procedure is done in Fourier domain.

For any function g in L1 ∩ L2, let us define its Fourier transform by

g∗(u) =

∫
exp(iuy)g(y)dy for all u ∈ R.

Here, the estimation method is based on the Fourier transform of the conditional

density gx(y) of Y/X = x. If the p.d.f. fx belongs to L1∩L2 then so does gx. Denote

its Fourier transform by g∗x(u) for all u ∈ R. In our model, we observe that

g∗x(u) =
(
π(x)eiua(x) + (1− π(x))eiub(x)

)
f ∗x(u), u ∈ R.
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Let us denote, for all t = (π, a, b) in Ξ and u in R,

M(t, u) := πeiua + (1− π)eiub. (15)

Note that |M(t, u)| ≤ 1 for all (t, u) ∈ Ξ× R. Then, we have

g∗x(u) = M(θ(x), u)f ∗x(u).

We introduce for convenience ω := {ω(1), ω(2)} a permutation of set {1, 2}, i.e.

ω ∈ {id, s} where s(1) = 2 and s(2) = 1. For t = (π, a, b), we denote [t]ω :=

tIω=id + (1 − π, b, a)Iω=s the parameter affected by a permutation ω of the labels

(label 1 corresponding to location a and label 2 corresponding to location b). Let us

fix x0 ∈ supp(`) such that θ(x0) belongs to the interior of Ξ, denoted
◦
Ξ. Noticing

that the p.d.f. fx0 is zero-symmetric we therefore have that f ∗x0
(u) ∈ R, for all u ∈ R.

If t belongs to Ξ, we prove in the next theorem the picking property

=
(
g∗x0

(u)M̄(t, u)
)

= 0 for all u ∈ R, if and only if ∃ω ∈ {id, s} : t = [θ(x0)]ω,

where = : C → R denotes the imaginary part of a complex number and M̄ the

complex conjugate of M . This result allows us to build a contrast function for the

parameter t ∈ Ξ:

S(t) := Sx0(t) :=

∫
=
(
g∗x0

(u)M̄(t, u)
)2
`2(x0)w(u)du. (16)

The function w : Rd → R+ is a bounded p.d.f. which helps in computing the integral

via Monte-Carlo method and solves integrability issues. We stress the fact that using

`2 instead of ` comes from the fact that the contrast estimates a quadratic functional,

rather than an expected value.

Remark. The idea of using Fourier transform in order to solve the inverse mixture

problem was introduced in Butucea and Vandekerkhove (2014) for density models. In

the regression models we deal with the conditional density of Y/X = x0 and consider
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that it could possibly exist x0 ∈ supp(`) such that π(x0) = 1/2 and then M(θ(x0), u)

can be 0. This has a major incidence on the definition of the function S(t) where

M̄(t, u) appears at the numerator (contrarily to Butucea and Vandekerkhove, [13]

where M(t, u) appeared at the denominator). Moreover, smoothing of the informa-

tion that data bring at a fixed design point x0 changes dramatically the behavior of

the estimators as we shall see later on.

4.2.2 Local and global identifiability

We prove in the following theorem that our model is identifiable (up to a permutation

of the labels) and that S(t) defines a contrast on the parametric space Ξ.

Theorem 1 (Identifiability and contrast property) Consider model (11) provided with

fx(·) ∈ L2 for all x ∈ Rd. For a fixed point x0 in the interior of the support of `, we

assume that fx0(·) is zero-symmetric and that θ0 = θ(x0) is an interior point of Ξ.

Then we have the following properties:

i) The Euclidean parameter θ0 = (π(x0), a(x0), b(x0)) is identifiable up to a permu-

tation of the labels when the function fx0(·) is uniquely identified.

ii) The function S in (16) is a contrast function, i.e. for all t ∈ Ξ, S(t) ≥ 0 and

S(t) = 0 if and only if there exists ω ∈ {id, s} such that t = [θ0]ω.

Proof. i) The local (for fixed x0) identifiability of model (14) over Ξ and the set F of

zero-symmetric densities, i.e., using notations involved in (15), for all (t, t′) ∈ Ξ2 and

(f, f ′) ∈ F2,

M(t, u)f ∗(u) = M(t′, u)f ′∗(u)⇒ ∃ω ∈ {id, s} : t′ = tω and f = f ′,

is deduced from the proof of Theorem 2.1 in Bordes, Mottelet and Vandekerkhove

(2006). The main difference here is that we allow π to lie in (0, 1) whereas in Bordes
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et al. (2006) the proportion mixing parameter was constrained to belong to [0, 1/2).

This constraint was also an implicit lexicographical ordering to avoid multiple label-

permuted mixture representation. When revisiting step by step the proof of the latter

theorem, it appears that the condition π 6= 1/2 is essentially used to avoid spurious

model representation when the mixing proportion is allowed to be equal to zero (see

discussion of Case 1, top of p. 1223, and the counter-example, p. 1206, in Bordes

et al., 2006). When π > 0, the discussion of equation (37) in Bordes et al. (2006)

leads to two obvious solutions (π, a, b) = (π′, a′, b′) and (π, a, b) = (1 − π′, b′, a′). To

prove that possibly spurious solutions are non-admissible, it suffices to adapt the re-

parametrization in (38) of Bordes et al. (2006) to the cases (a−a′, b−b′) 6= (0, 0) and

(a− b′, b− a′) 6= (0, 0), which basically leads to consider (by symmetry) the following

conditions: for β1 = ππ′, β2 = π(1− π′), β3 = π′(1− π), β4 = (1− π)(1− π′),

• β3 + β4 = 0⇔ π = 1,

• β2 + β3 = 0 and β4 = 0⇔ π = 1 or π′ = 1,

• β3 = 0 and β4 − β2 = 0⇔ π′ = 0 and π = 1/2, or π = 1 and π′ = 1,

• β2 = 0 and β4 − β3 = 0⇔ π = 0 and π′ = 1/2, or π′ = 1 and π = 1.

Note that the above solutions are all non-admissible when (π, π′) ∈ (0, 1)2. From this

remark, we deduce that the Euclidean part of model (14) is also identifiable, up to

a permutation of the labels, over our parametric space Ξ (including π = 1/2). To

identify now the local noise distribution, we proceed similarly to Step 3 in Bordes et

al. (2006). Because for ω ∈ {id, s}

M(t, u)f ∗(u) = M(tω, u)f ′∗(u) = M(t, u)f ′∗(u), u ∈ R,

we have to consider the two following cases:

• π 6= 1/2. Since |M(t, u)| ≥ |1− 2π| > 0 we deduce f ∗x = f ′∗x and fx = f ′x.
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• π = 1/2. Here it is to be observed that, for t fixed in Ξ, M(t, u) = 0 occurs to

be null on a countable set of R. Indeed,

M(t, u) = 0⇔ au = bu+ π + 2kπ, k ∈ Z⇔ u ∈
{
π + 2kπ

a− b
, k ∈ Z

}
.

Nevertheless this behavior does not affect the identifiability of the noise distri-

bution since we can conclude that the real functions f ∗ and f ′∗ coincide over R

except on a countable set of isolated points which is equivalent, by a continuity

argument, to the equality over the whole real line.

This concludes the proof of i).

ii) The proof is similar to the proof of Proposition 1 in Butucea and Vandekerkhove

(2014), replacing f ∗(·) and g∗(·) by f ∗x0
(·) and g∗x0

(·), respectively, and noticing that

`(x0) is bounded away from zero.

Label switching and global identifiability. The label switching phenomenon relies on

the fact that the writing of the likelihood of a mixture model is invariant when per-

muting the label of its components. For example, when considering a k-component

mixture model, there exists up to k! mixture representations of the same distribu-

tion. To avoid these multiple representations (which obviously affects the estimation

methods and their interpretation) there exists many different approaches: i) in the

parametric case, Teicher (1963) suggest, for example, to create a lexical ordering on

the parametric space, ii) in the Bayesian case, some MCMC-based relabelling algo-

rithms are proposed, see Celeux et al. (2000), Stephens (2000) or Yao and Lindsay

(2009), iii) in the two-component semiparametric case, the mixture proportion af-

fected to the first component is constrained to be less than 1/2, see Bordes et al.

(2006). In our case, since we plan to estimate the conditional model (14) over a grid

of design-points, it would be precisely great to non restrict the proportion mixture
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function π(·) to be upper-bounded by 1/2 and also to be able to deal with intersect-

ing curve functions a(·) and b(·). To better understand these situations and propose

some practical implementations, we propose now to state, using arguments similar to

[37], the global identifiability of our model (13) when d = 1. For this purpose, let us

introduce the concept of transversality.

Definition 2 Let x ∈ R, and let a(x) and b(x) two continuously differentiable real

curve-functions. We say that a(x) and b(x) are transversal if (a(x)−b(x))2 +‖ȧ(x)−

ḃ(x)‖2 6= 0, for any x ∈ R, where ‖ · ‖ denotes the Euclidean norm.

The transversality condition imposed on two real curve-functions a(x) and b(x) im-

plies that if a(x) = b(x), then ȧ(x) 6= ḃ(x).

Proposition 1 Let us suppose that supp(`) is an interval of R and that π(x) ∈ (0, 1),

respectively a(x) and b(x), is a continuous function, respectively are both differentiable

real-functions. If a(x0) < b(x0) at some fixed point x0 in the interior of the supp(`)

and if a(x) and b(x) are transversal then our model (13) is globally identifiable over

supp(`).

Proof. Let us consider the subset of R

E = {xk : a(xk) = b(xk)} ,

where the parameter curves intersect . Since parameter curves are transversal, any

point in E is an isolated point. This implies that the set E ⊂ R has no finite accumu-

lation (limit) point and contains at most countably many points. Therefore, without

loss of generality, we assume that: xk < xk+1 and (xk,xk+1) ∩ E = ∅, k ∈ Z. As-

sume that the conditional model (14) admits another representation, i.e. there exist

functions (π′, a′, b′, f ′x) such that

gx(y) = π′(x)f ′x(y − a′(x)) + (1− π′(x))fx(y − b′(x)).
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We proved in i) of Theorem 1, that for any x /∈ E , model (14) is identifiable, it follows

that there exists a permutation ωx := {ωx(1), ωx(2)} of set {1, 2}, i.e. ωx ∈ {id, s}

where s(1) = 2 and s(2) = 1, depending on x such that: π′(x) = π(x), a′(x) = a(x), b′(x) = b(x) if ωx = id,

π′(x) = 1− π(x), a′(x) = b(x), b′(x) = a(x) if ωx = s.

( Since the parameter curves (a(x), b(x)) are continuous and do not intersect on any

interval (xk,xk+1) the permutation ω(x) must be constant on the latter interval.

In addition, for any xk ∈ E , consider a small interval (xk − ε,xk + ε) such that

(xk − ε,xk + ε) ∈ (xk−1,xk+1). Now, since the parameter curves are transversal,

they have different derivatives at xk, hence the permutation must be constant on the

neighborhood (xk−ε,xk+ε). Indeed, without lack of generality, suppose that ωx = id

for x ∈ (xk,xk + ε) and ωx = s for x ∈ (xk − ε,xk), then the functions a′ and b′ are

non-differentiable anymore since for example:

(ȧ′)+(xk) = ȧ(xk) 6= ḃ(xk) = (ȧ′)−(xk), (17)

where (ȧ′)+(xk) and (ȧ′)−(xk) denote respectively the right and left side derivative of

a′(·) at point xk. Therefore there exists a permutation ω independent of x ∈ supp(`)

such that  π′(x) = π(x), a′(x) = a(x), b′(x) = b(x) if ω = id,

π′(x) = 1− π(x), a′(x) = b(x), b′(x) = a(x) if ω = s,

which concludes the proof of the global identifiability. Rules under the thumb. The

proof of the above proposition inspires us two practical approaches to handle the label

switching problem and lack of identifiability at curve intersection points.

• Label switching. Let us consider, without loss of generality, two nearest neigh-

bors (x1,x2) over a grid of testing points. Suppose that a(x1) and b(x1) are iden-

tified well separated and (λ, α, β) is a minimizer of Sx2(·), i.e. Sx2(λ, α, β) = 0.
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Since no big jump is expected by moving from x1 to x2, a way to decide

which solution is more likely acceptable between t1 = (t1,i)1≤i≤3 = (λ, α, β)

and t2 = (t2,i)1≤i≤3 = (1− λ, β, α) could be to select the t with index r ∈ {1, 2}

satisfying

r = arg min
i∈{1,2}

{|ti,2 − a(x1)|+ |ti,3 − b(x1)|}. (18)

This approach allows actually to get a sort of prior ordering very similar to the

lexicographical ordering proposed by Teicher (1963).

• Crossing point. Let us consider, without loss of generality, three points (x1,x2,x3)

for which it is known that a(x1) < b(x1) and a(x3) > b(x3). If x1 and x3 are

close enough, we can suspect that x2 is in the neighborhood of a crossing point,

i.e. a(x2) ' b(x2) and decide to linearly interpolate between x1 and x3, which

for v = π, a or b leads to

v(x2) ' v(x3)− v(x1)

x3 − x1

(x2 − x1) + v(x1). (19)

Note that for v in Ck, k ≥ 1, we can use an interpolating polynomial of degree

k.

Remark. For mixture models with higher number of components, i.e.

Yi =
J∑
j=1

Wj(Xi)(γj(Xi) + εj,i(Xi)), i = 1, . . . , n,

where (W1(x), ...,WJ(x)) are distributed according to a J-components (J > 2) multi-

nomial distribution with parameters (π1(x), ..., πJ(x)), and noises (εj,i), j = 1, . . . , J ,

i.i.d. according to fx, we assume that there exists a compact set Ψ ⊂]0, 1[J−1×RJ of

parameters (π1(x), ..., πJ−1(x), γ1(x), ..., γJ(x)) where the model is identifiable. Note

that the 3-components mixture model has been studied closely in Bordes et al. (2006)

and Hunter et al. (2007) where sufficient identifiability conditions were given. The
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case where d > 3 is more involved for full description and it is still an open question.

Identifiability of a location mixture of probability densities was proven in Balabdaoui

and Butucea (2014) when the mixing density is a Pólya frequency function. In this

setup, if the conditional density of the errors is a symmetric Pólya frequency func-

tion, the estimation procedure described hereafter can be adapted over the parameter

space Ψ with analogous results.

4.2.3 Estimation procedure

In order to build an estimator of the contrast S(t) defined in (16), a local smoothing

has to be performed in order to extract the information that the random design

X1, ...,Xn brings to the knowledge of the conditional law of Y/X = x0. We use a

kernel smoothing approach, but local polynomials or wavelet methods could also be

employed. This smoothing is a major difference with respect to the density model

considered in Butucea and Vandekerkhove (2014) and all the rates will depend on the

smoothing parameter applied to the kernel function.

Estimation of θ(x0). We choose a kernel function K : Rd → R belonging to L1 and to

L4 and some bandwidth parameter h > 0 to be described later on. For x0 ∈ supp(`)

fixed, we denote

Zk(t, u, h) :=
(
eiuYkM̄(t, u)− e−iuYkM̄(t,−u)

)
Kh(Xk − x0)

=
(
eiuYkM(t,−u)− e−iuYkM(t, u)

)
Kh(Xk − x0)

= 2 · =(eiuYkM(t,−u))Kh(Xk − x0), (20)

where Kh(x) := h−dK (x/h). Indeed, M̄(t, u) = M(t,−u) for all t and u. The

empirical contrast of S(t) is defined by

Sn(t) = − 1

4n(n− 1)

n∑
j 6=k,j,k=1

∫
Zk(t, u, h)Zj(t, u, h)w(u)du, (21)

where w : R → R∗+ is a bounded p.d.f., having a finite moment of order 4, i.e.
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∫
u4w(u)du <∞. From this empirical contrast we then define the estimator

θ̂n = arg inf
t∈Θ

Sn(t), (22)

of θ0 = θ(x0) where the parametric space Θ is now constrained, for unicity of solution,

according to a prior knowledge provided by the rule (18). For simplicity we will

suppose that at the point of interest x0 we have a(x0) < b(x0), which translate into:

Θ = [p, P ]×∆ord, (23)

where 0 < p ≤ P < 1 and ∆ord denotes a compact set of {(a, b) ∈ R2 : a < b}. We

shall study successively the properties of Sn(t) as an estimator of S(t) and deduce

consistency and asymptotic normality of θ̂n as an estimator of θ0.

Estimation methodology for fx0 . For the estimation of the local noise density fx0

we suggest to consider the natural smoothed version of the plug-in density estimate

given in Butucea and Vandekerkhove (2013, Section 2.2), under the assumption that

π(x0) 6= 1/2.

Let us denote by ϕ(x, y) = `(x)fx(y). We plug θ̂n in the natural smoothed non-

parametric kernel estimator of ϕ(x, y) deduced from (15), whenever the unknown

parameter θ0 is required. For x0 fixed, we consider the Fourier transform of ϕ(x0, y):

ϕ∗x0
(u) = `(x0)f ∗x0

(u) = `(x0)g∗x0
(u)/M(θ0, u). Provided that π̂n 6= 1/2, which insures

|M(θ̂n, u)| ≥ |1− 2π̂n| 6= 0, we estimate by

ϕ∗x0,n
(u) =

1

n

n∑
k=1

Q∗(h1,nu)eiuYk

M(θ̂n, u)
Kh2,n(Xk − x0),

where Q is a univariate kernel (
∫
Q = 1 and Q ∈ L2) and (h1,n, h2,n) are bandwidth

parameters properly chosen. Note that G∗n(u) := Q∗(h1,nu)/M(θ̂n, u) is in L1 and L2

and has an inverse Fourier transform which we denote by Gn(u/h1,n)/h1,n. Therefore,
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the estimator of ϕ(x0, y) is

ϕn(x0, y) =
1

nh1,n

n∑
k=1

Gn

(
y − Yk
h1,n

)
Kh2,n(Xk − x0).

Finally the estimator of fx0 is obtained by considering

f̂x0(y) =
fn(y|x0)Ifn(y|x0)≥0∫

R fn(y|x0)Ifn(y|x0)≥0dy
, where fn(y|x0) =

ϕn(x0, y)

`n(x0)
. (24)

where `n(x0) = 1
n

∑n
k=1 Kh2,n(Xk − x0). The asymptotic properties of this local

density estimator are not established yet but we strongly guess that the bandwidth

conditions required to prove its convergence and classical convergence rate are similar

to those found in the conditional density estimation literature, see Brunel et al. (2010)

or Cohen and Le Pennec (2012).

4.3 Performance of the method

We give upper bounds for the mean squared error of Sn(t). We are interested in

consistency and asymptotic normality of θ̂n and this requires some small amount of

smoothness α > 1 for the functions π, a and b and for the p.d.f. of the errors. From

now on, ‖v‖ denotes the Euclidean norm of vector v.

We say that a function F is Hölder α-smooth if it belongs to the set of functions

L(α,M) with α = k + β > 0 (k ∈ N and β ∈ (0, 1]) and M > 0, such that F

has k bounded derivatives and, for all multi-index j = (j1, ..., jd) ∈ Nd with |j| :=

j1 + ...+ jd = k, we have

|F (j)(x)− F (j)(y)| ≤M‖x− y‖β, (x,y) ∈ Rd × Rd.

A1. We assume that the functions π, a, b, ` belong to L(α,M) with α, M > 0.

Remark. We may actually suppose that the functions appearing in our model have dif-

ferent smoothness parameters, but the rate will be governed by the smallest smooth-

ness parameter.
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An important consequence of this assumption is that the density ` is uniformly

bounded by some constant depending only on α and M , i.e. sup`∈L(α,M) ‖`‖∞ <∞.

A2. Assume that fx(·) ∈ L1 ∩ L2 for all x ∈ Rd. In addition, we require that there

exists a w-integrable function ϕ such that

|f ∗x(u)− f ∗x′(u)| ≤ ϕ(u)‖x− x′‖α, (x,x′) ∈ Rd × Rd, u ∈ R.

Remark. Note that for the scaling model (12), if f is the N (0, 1) p.d.f. and σ(·) is

bounded and Hölder α-smooth, we have:

|f ∗x(u)− f ∗x′(u)| ≤ u2

2
|σ2(x)− σ2(x′)| ≤ C

u2

2
‖x− x′‖α.

A3. We assume that the kernel K is such that
∫
|K| < ∞,

∫
K4 < ∞ and that it

satisfies also the moment condition∫
‖x‖α|K(x)|dx <∞.

A4. The weight function w is a p.d.f. such that∫
(u4 + ϕ(u))w(u)du <∞.

The following results will hold true under the additional assumption on the kernel

(see A3):
∫

xjK(x)dx = 0, for all j such that |j| ≤ k.

Proposition 2 For each t ∈ Θ and x0 ∈ supp(`) fixed, suppose θ0 ∈
◦
Θ and that

assumptions A1-A4 hold. Then, the empirical contrast function Sn(·) defined in

(21) satisfies

E
[
(Sn(t)− S(t))2] ≤ C1h

2α + C2
1

nhd
,

if h → 0 and nhd → ∞ as n → ∞, where constants C1, C2 depend on Θ, K, w, α

and M but are free from n, h, t and x0.

Theorem 3 (Consistency) Let suppose that assumptions of Proposition 2 hold.

The estimator θ̂n defined in (21-22) converges in probability to θ(x0) = θ0 if h → 0

and nhd →∞ as n→∞.

80



The following theorem establishes the asymptotic normality of the estimator θ̂n

of θ0. Recall that θ0 = θ(x0) belongs to Θ and that there exists L∗ > 0 such that

`(x0) ≥ L∗. We see that the local smoothing with bandwidth h > 0 deteriorates the

rate of convergence to
√
nhd instead of

√
n for the density model. In the asymptotic

variance we will use the following notation:

J̇(θ0, u) := =
(
−Ṁ(θ0, u)M̄(θ0, u)

)
f ∗x0

(u)`(x0), (25)

and

V (θ0, u1, u2) := 4 ·
∫
=
(
eiu1yM̄(θ0, u1)

)
· =
(
eiu2yM̄(θ0, u2)

)
gx0(y)dy, (26)

where the function M(·, ·) is defined in (15). Note that J̇(θ0, ·) is uniformly bounded

by some constant and that V is well defined for all (u1, u2) ∈ R×R and also uniformly

bounded by some constant.

Theorem 4 (Asymptotic normality) Suppose that assumptions of Proposition 2

hold. The estimator θ̂n of θ0 defined by (21-22), with h→ 0 such that nhd →∞ and

such that h2α+d = o(n−1), as n→∞, is asymptotically normally distributed:

√
nhd(θ̂n − θ0)→ N(0,S) in distribution,

where S = 1
4
I−1ΣI, with

I = −1

2

∫
J̇(θ0, u)J̇(θ0, u)>w(u)du,

and

Σ :=

∫ ∫
J̇(θ0, u1)J̇>(θ0, u2)V (θ0, u1, u2)w(u1)w(u2)du1du2,

for J̇ defined in (25) and V in (26).

The above results show that our estimator of θ0 behaves like any nonparametric

pointwise estimator. This is indeed the case and we provide in the next theorem the

best achievable convergence rates uniformly over the large set of functions involved

in our model, see assumptions A1-A2.
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Theorem 5 (Minimax rates) Suppose A1-A4 and consider x0 ∈ supp(`) fixed

such that `(x0) ≥ L∗ > 0 for all ` ∈ L(α,M) and θ0 = θ(x0) ∈
◦
Θ \{1/2}. The

estimator θ̂n of θ0 defined by (21-22), with h � n−1/(2α+d), as n→∞, is such that

supE[‖θ̂n − θ0‖2] ≤ Cn−
2α

2α+d ,

where the supremum is taken over all the functions π, a, b, ` and f ∗ checking assump-

tions A1-A2. Moreover,

inf
Tn

supE[‖Tn − θ0‖2] ≥ cn−
2α

2α+d ,

where C, c > 0 depend only on α,M,Θ, K and w, and the infimum is taken over the

set of all the estimators Tn (measurable function of the observations (X1, . . . , Xn)) of

θ0.

Proof hints. Throughout the proofs of the previous results we learn that the estimator

θ̂n of θ0, behaves asymptotically as Ṡn(θ0) which is a U -statistic with a dominant term

whose bias is of order h2α and whose variance is smaller than C2(nhd)−1. The bias-

variance compromise will produce an optimal choice of the bandwidth h of order

n−1/(2α+d) and a rate n−
2α

2α+d . It is the optimal rate for estimating a Hölder α-smooth

regression function at a fixed point and the optimality results in the previous theorem

are a consequence of the general nonparametric problem, see Stone (1977), Ibragimov

and Has’minski (1981) and Tsybakov (2009).

4.4 Practical behaviour

4.4.1 Algorithm

We describe below the initialization scheme and the optimization method used to de-

termine the estimates of the locations a(xk), b(xk) and the weight functions π(xk) for

a fixed sequence of testing points {xk, k = 1, . . . , K}. To simply differentiate these

testing points from the design data points we will allocate specifically the index k for

82



the numbering of the testing points and the index i for the numbering of the dataset

points, i.e. {(xi, yi), i = 1, . . . , n}.

Initialization

1. For each design data point xi, i = 1, . . . , n, fit a kernel regression smoothing

m̄(xi) with local bandwidth h̄xi . The R package lokerns, see Herrmann (2013),

can be used.

2. Classify each data point (xi, yi), i = 1, . . . , n according to: if yi > m̄(xi) classify

(xi, yi) in group 1 associated with location a(·), otherwise classify it in group 2

associated with b(·).

3. For each xk, k = 1, . . . , K, obtain initial value ā(xk), respectively b̄(xk), by

fitting a kernel regression smoothing based on the observations (xi, yi) , i =

1, . . . , n, previously classified in group 1 with local bandwidth h̄1,xk , respectively

in group 2 with local bandwidth h̄2,xk .

4. Compute the local bandwidth hxk = min(h̄1,xk , h̄2,xk).

5. Fix an arbitrary single value π̄ for all the π(xk)’s.

Estimation

1. Generate one w-distributed i.i.d sample (Ur), r = 1, . . . , N dedicated to the

pointwize Monte Carlo estimation of Sn(t) defined by:

SMC
n (t) = − 1

4n(n− 1)N

n∑
j 6=k,j,k=1

N∑
r=1

Zk(t, Ur, h)Zj(t, Ur, h).

In the Sections 4.2 and 5, we will consider N = n and w the p.d.f. corresponding

to the mixture 0.1 · N (0, 1) + 0.9 · U[−2,2].
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2. Compute the minimizer θ̂(xk) = (π̂(xk), â(xk), b̂(xk)) of SMC
n (·) evaluated at

each point x0 = xk, by using the starting values (π̄, ā(xk), b̄(xk)) and the local

bandwidth hxk .

In our simulations, the above minimization will be deliberately done over a non-

constrained space, i.e. generically θ(·) ∈ [0.05, 0.95]× [A,B]2, with A < B. Our goal

is to analyze experimentally if a performant initialization procedure is able to prevent

from spurious phenomenons like the label switching or component merging occurring

when π(x0) is close to 0.5. This kind of information is actually very relevant to

interpret correctly some cross-over effects as the one we will observe in Fig. 6 (a). Note

that other initialization methods can be figured out. We can for instance use, similarly

to Huang et al. (2013), a mixture of polynomial regressions with constant proportions

and variances to pick initial values ā(x) and b̄(x), or the R package flexmix, see Gruen

et al. (2013), that implements a general framework for finite mixture of regression

models based on EM-type algorithms (we selected this latter approach for the analysis

of radiotherapy application in Section 5).

4.4.2 Simulations

In this section, we propose to measure the performances of our estimator θ̂n(·) over

a testing sequence {xk = k/K}, k = 1, . . . , K = 20. Given that in the simulation

setting the true function θ(·) is known, we can compute, similarly to Huang et al.

(2013), the Root Average Squared Errors (RASE) of our estimator. To this end we

generate M = 100 datasets (X
[z]
i , Y

[z]
i )1≤i≤n, z = 1, . . . ,M of sizes n= 400, 800, 1200,

for each of the scenario described below and, for each scalar parameter s = a, b, π,

denote by RASE
[z]
s the RASE performance associated to the z-th dataset, defined

by RASE
[z]
s = (1/K

∑K
k=1R

[z]
s (k))1/2, where R

[z]
s (k) =

(
ŝ[z](xk)− s(xk)

)2
, and the

empirical RASE by

RASEs =
1

M

M∑
z=1

RASE [z]
s . (27)
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Let us also define the empirical squared deviation at point xk by νk = 1
M

∑M
z=1R

[z]
s (k),

and empirical variance of the squared deviation at xk by σ2
s(k) = 1

M−1

∑M
z=1

(
R

[z]
s (k)− νk

)2

.

From these quantities we deduce the averaged variance of the squared deviations de-

fined by

σ2
s =

1

K

K∑
k=1

σ2
s(k). (28)

In all the simulation setups, we use the same mixing proportion function π(·):

π(x) =
sin(3πx)− 1

15
+ 0.4, x ∈ [0, 1].

Gaussian setup (G). The errors εj,i(x)’s are distributed according to a Gaussian

topographical scaling model corresponding to (12), i.e. f is the N (0, 1) p.d.f. when

the location and scaling functions are

a(x) = 4− 2 sin(2πx), b(x) = 1.5 cos(3πx)− 3, σ(x) = 0.9 exp(x), x ∈ [0, 1].

Student setup (T). The errors εj,i(x)’s are distributed according to a Student dis-

tribution with continuous degrees of freedom function denoted df(x). The locations

and degrees of freedom functions are

a(x) = 3− 2 sin(2πx), b(x) = 1.5 cos(3πx)− 2, df(x) = −5x+ 8, x ∈ [0, 1].

Laplace setup (L). The errors εj,i(x)’s are distributed according to a Laplace dis-

tribution with scaling function ν(x). The locations and scaling functions are

a(x) = 5− 3 sin(2πx), b(x) = 2 cos(3πx)− 4, ν(x) = x + 1, x ∈ [0, 1].

The selected bandwidths, whose mean and standard deviation are reported in Table

4, are obtained at the initialization step and are extracted from the function lokerns

of the R-library lokern. This function calculates an estimator of the regression func-

tion with an automatically chosen local plugin bandwidth function. The automati-

cally chosen bandwidths are calculated by finding the bandwidths that minimize the
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asymptotically optimal mean squared error. To estimate the variance component

in the mean squared error this method estimates a functional of a smooth variance

function for our heteroscedastic errors.

Comments on Tables 1-3. We report for the simulation setups (G), (T) and (L)

the quantities RASEs defined in (27), and between parenthesis σ2
s defined in (28),

for s = π, a, b. In these tables, we label our method as NMR-SE (Nonparametric

Mixture of Regression with Symmetric Errors). To illustrate the contribution of our

method, we compare our results with the RASE obtained by using the local EM-type

algorithm proposed by Huang et al. (2013) for Nonparametric Mixture of Regression

models with Gaussian noises (method labeled for simplicity NMRG). When the errors

of the simulated model are Gaussian, the NMRG estimation should outperform our

method, since the NMRG method assumes correctly that the errors are normally

distributed, while our method does not make any parametric assumption on the

distribution of the errors. When the sample size n = 400, the NMRG is more precise

than our method, since the RASEs’s and σ2
s ’s are both smaller for the NMRG . When

we increase the sample size of the simulated datasets to n = 800, 1200, our method

becomes more competitive and yields RASEs’s and σ2
s ’s that are lower than those

obtained by NMRG . This surprising behavior is probably due to the fact that in

model (11) we impose the equality in law of the noises up to a shift parameter, when

in the NMRG approach possibly different variances are fitted to each kind of noise,

increasing by the way drastically the degrees of freedom of the model to be addressed.

In Tables 2 and 3 we observe that our method has globally smaller RASEs’s and

σ2
s ’s. This result is not surprising, given that in the estimation methodology of Huang

et al. (2013), the distribution of the noise are then completely misspecified under the

simulation setups (T) and (L). Note however, that when the sample size is small

n = 400, the NMRG displays better results, which can be explained by the fact that

when we generate small size datasets, the points that are supposed to be in the tails
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Table 5: Mean and Standard Deviation of RASEs for data with Gaussian Errors

Sample size Method raseπ rasea raseb

n = 400
NMRG 0.011 (0.015) 0.579 (1.064) 0.228 (0.374)
NMR-SE 0.007 (0.011) 1.031 (2.061) 0.293 (0.581)

n = 800
NMRG 0.010 (0.013) 0.505 (0.986) 0.219 (0.401)
NMR-SE 0.003 (0.005) 0.492 (0.998) 0.150 (0.269)

n = 1200
NMRG 0.009 (0.012) 0.474 (0.892) 0.215 (0.401)
NMR-SE 0.002 (0.003) 0.311 (0.572) 0.123 (0.264)

of the non-normal distributions are less likely to appear in the dataset. So in that

case it can be reasonable to assume that the Gaussian distribution approximates the

errors distribution well.

Table 6: Mean and Standard Deviation of RASEs for data with Student Errors

Sample size Method raseπ rasea raseb

n = 400
NMRG 0.013 (0.018) 0.330 (0.557) 0.135 (0.196)
NMR-SE 0.010 (0.016) 0.454 (0.932) 0.217 (0.473)

n = 800
NMRG 0.011 (0.014) 0.276 (0.530) 0.101 (0.156)
NMR-SE 0.004 (0.007) 0.192(0.374) 0.175 (0.561)

n = 1200
NMRG 0.010 (0.014) 0.216 (0.433) 0.111 (0.165)
NMR-SE 0.003 (0.005) 0.127 (0.255) 0.053 (0.096)

Table 7: Mean and Standard Deviation of RASEs for data with Laplacian Errors

Sample size Method raseπ rasea raseb

n = 400
NMRG 0.011 (0.014) 0.815 (1.527) 0.323 (0.493)
NMR-SE 0.007 (0.001) 1.242 (2.420) 0.376 (0.714)

n = 800
NMRG 0.010 (0.013) 0.659 (0.192) 0.283 (0.428)
NMR-SE 0.003 (0.005) 0.489 (0.870) 0.191 (0.398)

n = 1200
NMRG 0.009 (0.012) 0.592 (1.072) 0.236 (0.346)
NMR-SE 0.002 (0.003) 0.308 (0.566) 0.127 (0.2548)

Comments on Figures 1-6. To illustrate the sensitivity of our method and compare

it graphically to the NMRG approach we plot in Fig. 1 different samples coming

from the setups (G), (T), and (L) for n = 1200, and in blue lines the corresponding
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Table 8: Mean and standard deviation of the lokerns-selected Bandwidth.

Sample size Gauss Student Laplace
n = 400 0.0915 (0.0185) 0.0812 (0.0147) 0.0877(0.0220)
n = 800 0.0860(0.0099) 0.0780 (0.0091) 0.0823 (0.0151)
n = 1200 0.0813 (0.0072) 0.0743 (0.0061) 0.0791 (0.0122)

true location functions a(·) and b(·). In Fig. 2, respectively Fig. 3, we plot in grey

the M = 200 segment-line interpolation curves obtained by connecting the points

(xk, ŝ
[z](xk)), k = 1, . . . , K where s(·) = a(·), b(·) for the NMRG method, respectively

our NMR-SE method. In Fig. 4 and 5 we do the same for s(·) = π(·). In Fig. 2-5

the dashed red lines represent the mean curves obtained by connecting the points

(xk, s̄(xk)), k = 1, . . . , K with s̄(xk) = 1/M
∑M

z=1 ŝ
[z](xk) and s(·) = a(·), b(·) and

π(·). Let us observe first that the good behavior of the NMR-SE method is confirmed

by the small variability of the curves in Fig. 3 and 5 compared to those in Fig.

2 and 4 corresponding to the NMRG method. Secondly it is important to notice

that sometimes, since we did not constrained our method to have π ∈ [p, P ] with

0 < p < P < 1/2 , we run into some spurious estimation due to label switching or

component merging phenomenon.
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Figure 19: Examples of simulated datasets with different distribution errors
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Figure 20: Mean Curves estimated with NMRG
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Figure 21: Mean Curves estimated with NMR-SE
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Figure 22: Mixing proportions estimated with NMRG

4.5 Application in radiotherapy

In this section, we implement the proposed methodology to a dataset obtained from

applying Positron Emission Radiotherapy (PET) to a canine patient with locally ad-

vanced Sinonasal Neoplasia. These data were provided by Bowen et al. (2012, Fig.
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Figure 23: Mixing proportions curves estimated with NMR-SE

4) who used them to quantify the associations between pre-radiotherapy and post-

radiotherapy PETparameters via spatially resolved mixture of linear regressions. In-

tensity Modulated Radiotherapy is an advanced radiotherapy method that uses com-

puter controlled device to deliver radiation of varying intensities to tumor or smaller

areas within the tumor. There is evidence showing that the tumor is not homoge-

neous in its response to the radiation, and that some regions are more resistant than

others. Functional imaging techniques (such as Positron Emission Tomography) can

be used to identify the radiotherapy resistant regions within the tumor. For instance,

an uptake in PET imaging of follow-up 2-deoxy-2-[18F]fluoro-D-glucose (FDG) is em-

pirically linked to a local recurrence of the disease. Bowen et al. (2012), use this

approach to construct a prescription function that maps the image intensity values

into a local radiation dose that will maximize the probability of a desired clinical

outcome. In their manuscript they validate the use of molecular imaging based pre-

scription function against clinical outcome by establishing an association between

imaging biomarkers (PET imaging pre-radiotherapy) and regional imaging response

to known dosage of therapy (PET imaging post-radiotherapy). The regional imag-

ing response captures the change in imaging signal over an individual image volume

element (called a voxel). In our model of interest (11), the pre-radiotherapy PET

imaging intensities correspond to the input Xi’s, and the post-radiotherapy PET
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imaging levels are the outputs Yi’s. For many patients, the empirical link between

post-treatment PET of FDG (regional imaging response) and pre-treatment PET of

FDG (imaging biomarker at baseline) is well captured by a mixture regression model

with two components. For a set of voxels with similar pre-treatment PET intensi-

ties, the nature of the response to the radiotherapy leads to two groups of voxels.

The first group corresponds to voxels that respond well to the radiotherapy, and the

second group contains the non-responding voxels. In our model of interest (11), the

non-responding voxel group corresponds to the case where W (Xi) = 1. The location

parameters of each group appears to change as the pre-radiotherapy imaging inten-

sity Xi varies. These changes in location are captured in our model by the location

functions a(·) or b(·), where a(·), respectively b(·), is the component mean function

for the completely responding (CR), respectively non-responding (NR), voxel. Addi-

tionally, the proportion of voxels π(Xi) that respond well to treatment depends on

the pre-treatment level of the PET, so the mixture model should also account for a

mixing proportion that depends on the input Xi. For a given input x, we assume that

the intensity level of the completely responding and the non-responding voxel have

approximately the same p.d.f. fx up to a shift parameter, with the topographical

scaling structure (12) presented in the Introduction. The variance of the distribution

also changes with the level of the covariate (pre-treatment PET FDG). In many cases

the variance increases as the intensity of a voxel’s PET pre-radiotherapy increases,

this is simply due to the fact the responding voxels will have a low post-treatment

PET intensity, while the non-responding voxels will not. The aforementioned topo-

graphical scaling property, will allow to model this behavior. To obtain initial values

for the location curves a(·) and b(·), we first use the R package flexmix, see Gruen et.

al (2013), which allows us to fit defined parametric functions to the mixture. For the

mixing proportion function we set a fixed constant value π̄(x) = 0.4. The bandwidths

are computed according to the methodology described in Section 4.1, except that the

91



groups are now determined as an output of the flexmix package. The behavior of

the local bandwidths selected by the flexmix package is displayed in Fig. 8.

We propose to apply the NMRG and NMR-SE to this dataset. In figure 6(a),

we show the PET image response to radiotherapy at 3 months, measured by FDG

PET uptake, versus the pre-treatment FDG PET uptake. We also display component

means obtained by fitting the NMRG and the NMR-SE. For both methods, we observe

that the location functions b(x) corresponding to the completely responding voxels,

show little variation across the range of values of pre-treatment FDG PET. NMRG

and NMR-SE yield fitted means b(x) that are pretty similar to each other.

The fitted location functions a(x) are associated with the non-responding vox-

els. For both methods, the estimated component means a(x) increase with the pre-

treatment FDG PET uptake. A significant difference between NMR-SE and NMRG

lies in the fact that the estimated location function a(x) of NMR-SE is slightly greater

than the estimated location function obtained with NMRG. This implies that more

voxels will be attributed to the non-responding group when we use NMRG instead

of NMR-SE. This is confirmed by the figure (6b), where we display the mixing pro-

portions π(x) for each method. As expected, we see that the NMRG yields mixing

proportions of non-responding voxels that are larger than the mixing proportions

obtained by using our method. The NMRG mixing proportions lies between (40%

and 70 %), while the NMR-SE mixing proportions is between (18% and 60%). The

NMR-SE mixing proportion of non-responding voxels is less than 40% for this patient

when pre-treatment FDG PET uptake is between 2.75 SUV and 6.875 SUV. We can

conclude based on the results from our method that the current radiation dose could

be appropriate for patients that exhibit pre-treatment FDG PET uptake close to the

range aforementioned. On the other hand, NMRG doesn’t present a wide range of

pre-treatment FDG uptake where the non-responding mixing proportion is less than

50%. We see in addition in Fig. 9 that the conditional distributions, obtained from
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formula (24) with h1,n = h2,n = 0.2, are about zero-symmetric with reasonably small

trimming effect due to Ifn(y|x0)≥0 in (24) (tiny wave effect on both sides of the main

mode). This is a good model validation tool since we are actually able to recover,

after local Fourier inversion, the basic symmetry assumption technically made on the

distributions of the errors; see for quality comparison other existing (nonconditional)

semiparametric inversion density estimates performed on real datasets: Fig. 1-2 (a)

in Bordes et al. (2006), Fig. 3 in Butucea and Vandekerkhove (2014), Fig. 5 in

Vandekerkhove (2013), or Fig. 2-3 in Bordes et al. (2013).
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CHAPTER V

CONCLUSION

The main topic of this thesis is the analysis of various estimation and model selection

methods that can be applied to supervised learning models. The first theme of the

thesis dealt with structured sparsity studied from a statistical, algorithmic and ap-

plied perspective. The second topic of the thesis is related to nonparametric mixture

regression models. We have introduced these problems by describing applications

justifying the relevance and usefulness of the models proposed in this thesis.

Our first contribution lies in the use of structured sparsity inducing norms in the

context of multivariate time series. We have explained how to leverage prior spatio-

temporal information to design sparsity promoting norms that can generate zeros

or non-zeros patterns that are optimal from a prediction perspective and that lead

to interpretable spatio temporal models. We have proposed an efficient and intu-

itive algorithm that is based on soft-thresholding of autoregressive parameters and

that is also built upon block-coordinate descent procedures. The methodology is ap-

plied to a synthetic dataset and is compared to other state of the art regularization

methods. To show the usefulness of the proposed method, we forecast a set of state

level economic time series using the model selected by optimization algorithm. The

VAR time series model obtained matches common economic intuition, since we find

that states that are located close to each other tend to influence each other more often.

In the third chapter, we present a functional sparsity inducing methodology that
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is suited to fit high dimensional additive multivariate regression or classification mod-

els. In this chapter, we also exploits structured sparsity that is implied by the prior

information available through group of predictors. Our contribution lies in the ability

to select additive functions that are relevant for all responses or categories, but more

importantly the optimization model is flexible enough such that an additive function

can be selected for a response (or a category) and not be selected for others. To the

best of our knowledge, this is the first paper that jointly account for nonlinearities

in a multivariate regression (or classification) context and can induce within group

sparsity. A new functional block coordinate descent algorithm is developed by us-

ing a pertubation of a functional of the objective function and deriving functional

subdifferentials of the lagragian constraints present in the optimization problem. By

applying the methodology to a benchmark cancer data set, we are able to perfectly

classify all the patients to all the cancer categories by using only 12 out of 2308 genes.

The state of the art methodology achieve 100% classification rate using at least 20

genes. We also use the model to understand the determinant of health that drive the

county level cost of care in North Carolina from 2005 to 2009.

In the final chapter of this thesis, we introduced a semiparametric topographical

mixture model that can be applied to characterize nonparametric mixture regression

models where the response is dichotomous. The nonparametric nature of the mixture

regression model is due to the fact that the locations and proportion functions are

nonlinear and depend on a predictor and the density function associated with the

errors of the model are only known to be symmetric. We proposed a pointwise

contrast based estimation procedure of the proportion and locations functions that

rely only on the symmetry of the local noise. A important contribution of the method

lies in the fact that it does not impose constraints of finiteness on the moments of the

errors. We also studied the asymptotic properties of the estimator by establishing
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under mild conditions its minimax properties and its asymptotic normality. We then

compared the method to state of the art parametric methods on simulated data and

on a Positron Emission Tomography image that can be used for modulating the

intensity of radiotherapy treatments of tumors in canine patients.

In this thesis, we have limited our application of sparsity inducing norms to su-

pervised learning problems. These methods have also been applied to unsupervised

learning problems, for example clustering. We are currently exploring ways to in-

corporate to semi-supervised learning problems where the data are collected in a

spatio-temporal setting. The main idea will be to create sparsity promoting norms

that can be used to penalize a maximization likelihood function but they could also be

used to create subsets of geographical clusters within which the predictions can be re-

fined and more accurate. By using fusion penalties, we will be able to simultaneously

improve predictions and form prediction driven geographical clusters.
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APPENDIX A

SUPPLEMENT TO LARGE VECTOR

AUTOREGRESSION FOR SPATIALLY CORRELATED

TIME SERIES

A.1 Additional prediction results for the simulation Study

We show additional root mean squared errors (RMSEs) for the simulated models

described in section 2.5.1 . For instance, under the simulation setup, we had ρ = 0.1

and the number of lags P = 2 . We presented the results of the prediction performance

for simulated models with 2 lags in section 2.5.2. In Figures 27, 28, 29, we show

the results when the number of lags used to fit the models is greater than the true

number of lags. Under all the simulation settings, the ordinary least squares (OLS)

has the worst performance. More importantly as we increase the number of lags,

the performance of the OLS worsens because of overfitting. On the other hand,

the SMTSE performance is slightly better than the performance of other regularized

methods considered in these simulations.
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Figure 27: RMSE for one layer simulations under settings 1 and 2.

98



We also show similar results for the two layers experiments, presented under sim-

ulation settings 3 and 4.
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(c) Setting 3 with 4 lags

Figure 28: RMSE for two layer simulations under setting 3.
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(b) Setting 4 with 3 lags
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Figure 29: RMSE for two layer simulations under setting 3.

A.2 VAR matrices of case study

In Figures 30 and 31, we present the plots of the VAR coefficient matrices for the

lasso, the spatial lasso and the OLS with 1 and 2 lags.

• The OLS VAR coefficient matrices are dense and lead to models that are not

interpretable.

• The lasso selects many non null coefficients with small magnitude and it is

unable to provide sparse models. The model resulting from the lasso is not highly

interpretable for all the time series. For instance, the lasso is unable to identify the
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fact that the employment time series shouldn’t affect the number of building permit

issued.

• The spatial lasso fitted with one lag yields a model with higher sparsity than the

lasso with one lag. The model is also able to capture the spatial effects, since most

of the influential coefficients are around the diagonals of the matrices. The spatial

lasso with two lags exhibit similar properties and it also captures partially the lack

of effect of employment on the number of building permits.
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(c) OLS with 1 lag

Figure 30: VAR matrix coefficients for employment and building permit time series

A.3 Algorithm for the VAR coefficients

For any layer J ∈ {1, · · · , L}, we define YDI ∈ R(T−P )×KJ the set of time series within

the J th layer. If we assume that the precision matrix is set at Ω̃J , we need to solve a

problem below.

min
BDJ .

Tr

[
1

T − P
(YDJ − XBDI .)

′
(YDJ − XBDI .) Ω̃J

]
+

λ1

bJ∑
i=aJ

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |+ λ2

bJ∑
i=aJ

L∑
l=1

l: i/∈Dl

‖BiDl‖∆̃
[i]
l

(1)

Let S = X′X andH [J ] = X′YDJΩJ , For convenience we writeBri = B
(p)
ij where (r =

(p− 1)M + j). For each layer we define the sets Al = {al, · · · , bl, · · · , (P − 1)M +

al, · · · , (P − 1)M + bl}. For any value r ∈ {1, · · · ,M} we can recover p and j by

p = b r
M
c+ 1 and j = (r mod M) + 1, If j ∈ Dl then r ∈ Al.

100
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Figure 31: VAR matrix coefficients for employment and building permit time series

In the following we just write H [J ] as H and we assume that for the column of

interest B.i. is in the layer J

Algorithm 1:

At the nth iteration, we do the following.

• Set the estimate B̂
(n)
DI .
⇐ B̂

(n−1)
DI .
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• For each column Bi. of BDI . {

– For each layer l ∈ {1, · · · , L} {

∗ Test if we only have one layer (L = 1){

· For each r ∈ Al {

Compute Uri =
∑PM

q=1

∑KJ
m=1 SrqB̂

(n)
qmΩ̃mi

Update B
(n)
ri with the minimizer of the function (1)

along this coordinate direction as in Rothman et. al (2010)

B̂
(n)
ri ⇐ sign

(
B̂

(n)
ri +

Hri − Uri
SrrΩ̃ii

)(∣∣∣∣B̂(n)
ri +

Hri − Uri
SrrΩ̃ii

∣∣∣∣− λ1pαe
‖si−sj‖

SrrΩ̃ii

)
+

(2)

with (x)+ = max(0, x)

}

}

∗ Else {

· For each r ∈ Al {

Compute Uri =
∑PM

q=1

∑KJ
m=1 SrqB̂

(n)
qmΩ̃mi

Compute

ari =

[
−Uri +Hri +

∑
k∈Al

SrkB̂
(n)
ki Ω̃ii

]

Compute

t̂r =


ari

λ1pαe
γ‖si−sj‖

if | ari
λ1pαe

γ‖si−sj‖
| ≤ 1,

sign
(

ari
λ1pαe

γ‖si−sj‖

)
if | ari

λ1pαe
γ‖si−sj‖

| > 1

}

· Compute Q(t̂)

Q(t̂) =
1

λ2
2Kl

∑
r∈Al

(
ari

pαeγ‖si−sj‖
− λ1t̂r

)2
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· If Q(t̂) ≤ 1 set B̂
(n)
iDl
⇐ 0

· Else if (Q > 1) {

For each r ∈ Al {

Compute Cri = Hri − Uri + SrrB
(n)
ri Ω̃ii

If |Cri| ≤ λ1p
αe‖si−sj‖ set B̂

(n)
ri ⇐ 0

Else If |Cri| > λ1p
αe‖si−sj‖ {

B̂
(n)
ri ⇐ argmin

Z∈R
Θ1 ∗ Z2 + Θ2 ∗ Z + λ1Θ3 ∗ |Z|+ λ2

√
Kl
(
Θ4 + Θ5 ∗ Z2

) 1
2

Where

Θ1 = SrrΩ̃ii

Θ2 = 2 ∗
(
Uri −Hri − SrrBriΩ̃ii

)
= −2Cri

Θ3 = pαeγ‖si−sj‖ where p = b r
M
c+ 1, p is the current lag

Θ4 =
(
‖BiDl‖2

∆̃
[i]
l

− p2αe2γ‖si−sj‖(Bri)
2
)

Θ5 = p2αe2γ‖si−sj‖

}

}

}

}

}

}

• If
∑

j,k

∣∣∣B̂(n)
jk − B̂

(n−1)
jk

∣∣∣ < ε
∑

j,k

∣∣∣B̂Ridge
jk

∣∣∣ stop, otherwise start new loop
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A.4 Derivation of the algorithm for the one layer model

For a one layer model with a fixed covariance matrix Ω̃, we try to minimize the

objective function f(B, Ω̃).

f(B, Ω̃) = Tr
[
(Y −XB)T (Y −XB)Ω̃

]
+ λ1 (T − P )

M∑
i=1

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |

Let S = XTX and H = XTY Ω̃. We also use B
(p)
ij = Bri with j = (r mod M) + 1

and p = b r
M
c+ 1. We also define Uri =

∑PM
q=1

∑M
m=1 SrqBqmΩ̃mi.

Since we have an l1-norm we need to derive the directional derivatives associated with

each parameter in the VAR model.

∂f(B, Ω̃)

∂B+
ri

= Uri −Hri + λ1 ∗ (T − P ) ∗ pα ∗ e−γ‖si−sj‖ if Bri > 0

∂f(B, Ω̃)

∂B−ri
= Uri −Hri − λ1 ∗ (T − P ) ∗ pα ∗ e−γ‖si−sj‖ if Bri < 0

If we define the current estimate as B
(n)
ri . B

(n+1)
ri is a optimal if and only if,

the directional derivatives ∂f(B,Ω̃)
∂Bri

≥ 0 in all directions. To update the directional

derivatives we can use the formula below.

If the solution is such that Bri < 0

∂f(B, Ω̃)

∂B+
ri

= SrrB
(n+1)
ri Ω̃ii − SrrB(n)

ri Ω̃ii + Uri −Hri − λ1 ∗ (T − P ) ∗ pα ∗ e−γ‖si−sj‖

∂f(B,Ω̃)

∂B+
ri

> 0 if and only if B
(n+1)
ri > B̂?

ri + λ1∗(T−P )∗pα∗eγ‖si−sj‖

SrrΩ̃ii

where B̂?
ri = B

(n)
ri + Hri−Uri

SrrΩ̃ii

If B̂?
ri + λ1∗(T−P )∗pα∗eγ‖si−sj‖

SrrΩ̃ii
< 0 ,we update the Bri by using :

B̂
(n+1)
ri = B̂?

ri + λ1∗(T−P )∗pα∗eγ‖si−sj‖

SrrΩ̃ii
.
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If B̂?
ri + λ1∗(T−P )∗pα∗eγ‖si−sj‖

SrrΩ̃ii
≥ 0 the only solution that satisfies the constraint

Bri < 0 is B̂
(n+1)
ri = 0.

So we have that

B̂
(n+1)
ri = min

[
0, B̂?

ri +
λ1 ∗ (T − P ) ∗ pα ∗ eγ‖si−sj‖

SrrΩ̃ii

]
= Sign

(
B̂?
ri

)
max

[
0, |B̂?

ri| −
λ1 ∗ (T − P ) ∗ pα ∗ eγ‖si−sj‖

SrrΩ̃ii

]

If the solution is such that Bri < 0 we use a similar reasoning to show that

B̂
(n+1)
ri = min

[
0, B̂?

ri −
λ1 ∗ (T − P ) ∗ pα ∗ eγ‖si−sj‖

SrrΩ̃ii

]
= Sign

(
B̂?
ri

)
max

[
0, |B̂?

ri| −
λ1 ∗ (T − P ) ∗ pα ∗ eγ‖si−sj‖

SrrΩ̃ii

]

So we showed that to update each coefficient in the VAR matrix, we can simply

use cyclical coordinate descent B̂
(n+1)
ri = Sign

(
B̂?
ri

)(
|B̂?

ri| −
λ1∗(T−P )∗pα∗eγ‖si−sj‖

SrrΩ̃ii

)
+
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A.5 Derivation of the algorithm for multiple layers model

In a multi-layer setting, with a block diagonal error covariance matrix. If we focus

on layer J ∈ {1, · · · , L}, we want to solve the following problem.

min
BDJ .

f
(
BDJ ., Ω̃J

)
= Tr

[
(YDJ − XBDJ .)

′
(YDJ − XBDJ .) Ω̃J

]
+

λ1 (T − P )

bJ∑
i=aJ

P∑
p=1

M∑
k=1

pαeγ‖si−sk‖|B(p)
ik |+ λ2 (T − P )

√
(KJ)

bJ∑
i=aJ

L∑
l=1

l: i/∈Dl

‖BiDl‖∆̃
[i]
l

If we focus on layer l ∈ {1, · · · , L} and on column i then The subgradient equations

are given by:

∂f
(
BDJ ., Ω̃J

)
∂Bri

= Uri −Hri + λ1 (T − P ) pαeγ‖si−sj‖tr + λ2 (T − P ) (KJ)
1
2 gr

As in supplement A, each equation above corresponds to a VAR coefficient B
(p)
ij = Bri.

Where r is such that j = (rmodM) + 1, p = b r
M
c + 1 and j ∈ (al, · · · , bl) with al

and bl are defined in subsection 2.3 of the manuscript .

We also have that r ∈ Al = {al, · · · , bl, · · · , (P − 1)M + al, · · · , (P − 1)M + bl} g is

the vector that contains all the (gr) values.

gr =
p2αe2γ‖si−sj‖B

(p)
ij

‖BiDl‖∆̃[i]
l

if ‖BiDl‖∆̃
[i]
l
6= 0

‖gW− 1
2‖ ≤ 1 if ‖BiDl‖∆̃

[i]
l

= 0

where W = IP ⊗


e2γ‖si−s

[l]
1 ‖ · · · 0

...
. . .

...

0 · · · e
2γ‖si−s

[l]
Kl
‖

 and

W− 1
2 = IP ⊗


1

eγ‖si−s
[l]
1 ‖
· · · 0

...
. . .

...

0 · · · 1

e
γ‖si−s

[l]
Kl
‖
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Additionally, we have that:

tr = sign (Bri) if Bri 6= 0

tr ∈ [−1, 1] if Bri = 0

A necessary and sufficient conditions for B.iDl = 0 is that ∀r ∈ Al:

Uri −Hri −
∑
k∈Al

SrkBkiΩ̃ii + λ1 (T − P ) pαeγ‖si−sj‖tr + λ2 (T − P ) (KJ)
1
2 gr = 0

has a solution with ‖gW− 1
2‖ ≤ 1 and tr ∈ [−1, 1].

We define ari = [−Uri +Hri +
∑

k∈Al SrkBkiΩ̃ii], this implies that if the necessary

and sufficient condition is satisfied.

∀r ∈ Al, ari = λ1 (T − P ) pαeγ‖si−s
[l]
j ‖tr + λ2 (T − P ) pαeγ‖si−s

[l]
j ‖2(KJ)

1
2 gr

We can solve the system of equations resulting from the necessary and sufficient

conditions by minimizing.

Q(t) = ‖gW‖2 =
1

λ2
2Kl

Kl∑
j=1

P∑
p=1

[
ari

(T − P ) pαeγ‖si−s
[l]
j ‖2
− λ1tr

]2

.

We note that the minimum is J(t) = 0, it implies that:

∂Q(t)

∂tr
= −2

λ1

λ2
2Kl

Kl∑
j=1

P∑
p=1

[
ari

(T − P ) pαeγ‖si−s
[l]
j ‖2
− λ1tr

]

∂Q(t)

∂tr
= 0 if tr =

ari

λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2

But we need to have tr ∈ [−1, 1]. So if

∣∣∣∣ ari

λ1(T−P )pαe
γ‖si−s

[l]
j
‖2

∣∣∣∣ < 1 then

tr = ari

λ1(T−P )pαe
γ‖si−s

[l]
j
‖2

.
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On the other end,

if ari

λ1(T−P )pαe
γ‖si−s

[l]
j
‖2
> 1, then tr = 1 , and

if ari

λ1(T−P )pαe
γ‖si−s

[l]
j
‖2
< −1 then tr = −1. So we have that:

t̂r =


ari

λ1(T−P )pαeγ‖si−sj‖2
if | ari

λ1(T−P )pαeγ‖si−sj‖2
| ≤ 1,

sign
(

ari
λ1(T−P )pαeγ‖si−sj‖2

)
if | ari

λ1(T−P )pαeγ‖si−sj‖2
| > 1

Now that min J (t) is found at t̂, we compute Q
(
t̂
)
. If Q

(
t̂
)
< 1 then the neces-

sary and sufficient conditions stated above is satisfied with Q
(
t̂
)

= ‖gW‖2 < 1, this

implies that BiDl = 0.

If Q
(
t̂
)
> 1, then some coefficients Bri 6= 0 in BiDl . We have to solve for each

coefficients Bri with r ∈ Al.

If Bri ≥ 0

∂f(B,Ω̃l)
∂Bri

= Uri−Hri +λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2 +λ2 (T − P ) p2αe2γ‖si−s

[l]
j ‖2Kl

Bri
‖BiDl‖2

To update the partial derivative with respect to the Bri coordinate, we use the

formula below.

∂f
(
B, Ω̃l

)
∂Bri

=Uri + SrrB̂
(n+1)
ri Ω̃ii − SrrB̂(n)

ri Ω̃ii −Hri + λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2+

λ2 (T − P ) p2αe2γ‖si−s
[l]
j ‖2Kl

‖B.iDl‖2

B̂
(n+1)
ri

Cri = Hri − Uri − SrrB̂(n)
ri Ω̃ii

B̂
(n)
ri = 0 and

∂f(B,Ω̃l)
∂Bri

> 0 if and only if Cri < λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2 .

The same reasoning can be applied to the case where Bri ≤ 0.

This leads to B̂
(n)
ri = 0 and

∂f(B,Ω̃l)
∂Bri

> 0 if and only if Cri > −λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2 .

108



So if |Cri| < λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2 we set B̂

(n+1)
ri = 0.

if |Cri| > λ1 (T − P ) pαeγ‖si−s
[l]
j ‖2 , we need to minimize the one dimensional func-

tion given by.
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APPENDIX B

SUPPLEMENT TO HIGH DIMENSIONAL ADDITIVE

MODELS

B.1 Connection to Group Lasso

As suggested by Meier et al. (2009), each function f
(k)
j can be expressed in cubic

B-spline basis with a reasonable number of basis functions.

f
(k)
j (x) =

Q∑
q=1

β
(k)
j,q b

(k)
j,q (x)

where j ∈ {1, · · · , p}, k ∈ {1, · · · , K} and Q is the number of basis functions. b
(k)
j,q :

R ← R is a B-spline basis function used for the jth additive function and the kth

response. And where β
(k)
j =

(
β

(k)
j,1 , · · · , β

(k)
j,Q

)
is a vector of coefficients that uniquely

represents f
(k)
j . We also define the design matrix B

(k)
j as the n × Q design matrix

of B-spline basis of the jth predictor for the kth response. The (i, q) entry in the

design matrix is given by B
(k)
j,iq = b

(k)
j,q (x

(k)
ij ), with i ∈ {1, · · · , n}. For each task k, we

define the matrix B(k) =
[
B

(k)
1 , · · · ,B(k)

p

]
. The vector of all the responses is given

by Ỹ = vec(Y) and the matrix B =


B(1)

. . .

B(k)

 of dimension nK × KQP. So

the optimization problem is formulated as:

‖Ỹ −Bβ‖2 + λ1

p∑
j=1

√
βTj Mjβj (29)

Where βj =
(
β

(1)
j · · · ,β

(K)
j

)
∈ RKQ and β =

(
β(1), · · · ,β(K)

)T
∈ RpKQ. For any

task k, the vector of coefficients associated with the additive functions f (k) is β(k) =
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(
β

(k)
1 , · · · , β(k)

p

)
. The matrix Mj =


M

(1)
j

. . .

M
(K)
j

 is used to impose group

sparsity on the coefficients associated with functions fj and to ensure the smoothness

of these functions. Each matrix M
(k)
j = B

(k)
j

T
B

(k)
j + λ2Θ

(k)
j , where the Q × Q

matrix Θ
(k)
j contains the inner products of the second derivative of the B-spline basis

functions

Θ
(k)
j,mn =

∫
b

(k)
j,n

′′

(x)b
(k)
j,n

′′

(x)dx

with m,n ∈ {1, · · · , Q}. The matrix M
(k)
j can be decomposed to obtain the matrix

∆
(k)
j M

(k)
j = ∆

(k)
j

T
∆

(k)
j . The coefficients βj can then be transformed to β̃j = ∆jβj,

where

∆j =


∆

(1)
j

. . .

∆
(K)
j

. We also define ∆(k) =


∆

(k)
1

. . .

∆(k)
p

 and ∆ =


∆(1)

. . .

∆(K)

. Using the matrices above, we have that β̃ = ∆β and B̃ =

B∆−1. The optimization problem in (29) can the be reformulated as a group lasso.

‖Ỹ − B̃β̃‖2 + λ1

p∑
j=1

‖β̃j‖2 (30)

B.2 Proof of Theorem 1

The concept in this proof are inspired from the method used by Yin et al. (2012).

We consider the loss function associated with the functionals fj,

L(fj) =
1

2
E

[
K∑
k=1

(
R

(k)
j − f

(k)
j (X

(k)
j )
)2
]

We also define a perfubation µj =
(
µ

(1)
j , · · · , µ(K)

j

)
where ∀k = (1, · · · , K), µ

(k)
j ∈ Hj

L(fj + εµj) =
1

2
E

[
K∑
k=1

(
R

(k)
j − f

(k)
j (X

(k)
j )− εµ(k)

j (X
(k)
j )
)2
]
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The approximation of the first order approximation is given by:

L(fj + εµj)− L(fj) ≈ εE

[
K∑
k=1

µ
(k)
j (X

(k)
j )

(
f

(k)
j (X

(k)
j )−R(k)

j

)]

=
K∑
k=1

E
[
µ

(k)
j (X

(k)
j )

(
f

(k)
j (X

(k)
j )−R(k)

j

)]
= ε

K∑
k=1

E
[
E
[
µ

(k)
j (X

(k)
j )

(
f

(k)
j (X

(k)
j )−R(k)

j

)
|X(k)

j

]]
= ε

K∑
k=1

E
[(
f

(k)
j (X

(k)
j )− P (k)

j R
(k)
j

)
µ

(k)
j (X

(k)
j )
]

= ε
K∑
k=1

〈
µ

(k)
j (X

(k)
j ),

(
f

(k)
j (X

(k)
j )− P (k)

j R
(k)
j

)〉
The gradient of L(fj) is then:

5L(fj) =
[
f

(k)
j − P

(k)
j R

(k)
j

]
j=1,··· ,p

This leads to the stationary condition presented in theorem 1

f
(k)
j − P

(k)
j R

(k)
j + λ

√
Ku

(k)
j = 0

B.3 Proof of Theorem 2

Proof. We will first show that the condition above is necessary.

if ∀k ∈ {1, · · · , K} f (k)
j = 0, then the stationary condition (3) becomes P

(k)
j R

(k)
j =

λ
√
Ku

(k)
j √√√√ K∑

k=1

E
[(
P

(k)
j R

(k)
j

)2
]

= λ
√
K

√√√√ K∑
k=1

E
[
(u

(k)
j )2

]
= λ

√
K‖ej‖2

≤ λ
√
K

We now prove that the condition is sufficient. if ∃k ∈ {1, · · · , K} such that f
(k)
j 6= 0

the stationary condition (3) becomes

f
(k)
j − P

(k)
j R

(k)
j + λ

√
K
f

(k)
j

‖fj‖
= 0, ∀k ∈ {1, · · · , K}
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We define the vector of conditional expectation operators Hj and the vector of partial

residuals Rj

Hj =


P

(1)
j

...

P
(K)
j

 and Rj =


R

(1)
j

...

R
(K)
j

 , IK is an identity matrix of size K

So for covariates Xj =
(
X

(1)
j , · · · , X(K)

j

)
, we have

HjRj = fj + λ
√
K

fj
‖fj‖

So this implies that

‖HjRj‖2 =
K∑
k=1

E
[(
P

(k)
j R

(k)
j

)2
]

=

∣∣∣∣∣
∣∣∣∣∣
(

IK +
λ
√
K

‖fj‖

)
fj

∣∣∣∣∣
∣∣∣∣∣
2

= ‖fj‖2 + λ2K + λ
√
K‖fj‖

since ∃k, such that f
(k)
j 6= 0 we know that ‖fj‖ > 0, so this implies that

K∑
k=1

E
[(
P

(k)
j R

(k)
j

)2
]
≥ λ
√
K

We now derive some steps that will be needed to update the estimated additive

components f
(k)
j . For each set of covariates Xj, we define wj

such that w2
j =

∑K
k=1 E

[(
P

(k)
j R

(k)
j

)2
]
, which implies that wj = ‖fj‖+ λ

√
K.

If ∃k ∈ {1, · · · , K} such that f
(k)
j 6= 0 then

f
(k)
j =

‖fj‖
‖fj‖+ λ

√
K
P

(k)
j R

(k)
j

=

[
1− λ

√
K

wj

]
P

(k)
j R

(k)
j

if ∀k ∈ {1, · · · , K}, f (k)
j = 0 then wj = λ

√
K So the additive components are updated

as follows

f
(k)
j =

[
1− λ

√
K

wj

]
+

P
(k)
j R

(k)
j (31)
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B.4 Proof of Theorem 3

The stationary condition for the problem introduced in (6)

f
(k)
j − P

(k)
j R

(k)
j + (1− α)λ

√
Ku

(k)
j + αλv

(k)
j = 0

Where

uj =


f

(k)
j

‖fj‖ if ‖fj‖ 6= 0 for k ∈ {1, · · · , K}

ej ∈ HK
j with‖ej‖2 ≤ 1 when ‖fj‖ = 0

and

v
(k)
j =


f

(k)
j

‖f (k)
j ‖

if ‖f (k)
j ‖ 6= 0 for k ∈ {1, · · · , K}

o
(k)
j ∈ Hj with‖o(k)

j ‖ ≤ 1 if ‖f (k)
j ‖ = 0

So for each k ∈ {1, · · · , K}

u
(k)
j =

1

(1− α)λ
√
K

[
P

(k)
j R

(k)
j − αλv

(k)
j

]
If fj = 0 then ‖ej‖ ≤ 1

J(vj) = ‖uj‖2 =
1

(1− α)2λ2K

K∑
k=1

E
[(
P

(k)
j R

(k)
j − αλv

(k)
j

)2
]

Solving the systems of equation given by the stationary conditions is equivalent to

minimizing the norm of the set of functions ‖uj‖. If we take the functional derivative

of ‖uj‖2 with respect to vj, we get:

∂J(vj) ∝
1

(1− α)2λ2

K∑
k=1

E
[(
P

(k)
j R

(k)
j − αλv

(k)
j

)
η

(k)
j

]
where ∂v

(k)
j = η

(k)
j

if f
(k)
j = 0 then ‖v(k)

j ‖ ≤ 1, if ‖P (k)
j R

(k)
j ‖ ≤ αλ then the minimum of J(vj) is reached

for v
(k)
j =

P
(k)
j R

(k)
j

αλ

If ‖P (k)
j R

(k)
j ‖ ≥ αλ then the minimum is reached for v

(k)
j =

P
(k)
j R

(k)
j

‖P (k)
j R

(k)
j ‖

since ‖v(k)
j ‖ has

to be less or equal to 1.
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So we obtain that:

v
(k)
j =


P

(k)
j R

(k)
j

αλ
if ‖P (k)

j R
(k)
j ‖ ≤ αλ for k ∈ {1, · · · , K}

P
(k)
j R

(k)
j

‖P (k)
j R

(k)
j ‖

if ‖P (k)
j R

(k)
j ‖ ≥ αλ

If we plug v
(k)
j in the expression of u

(k)
j , we find

u
(k)
j =

1

(1− α)λ
√
K

[
1− αλ

‖P (k)
j R

(k)
j ‖

]
+

P
(k)
j R

(k)
j

We have that fj = 0 if and only if

‖uj‖ ≤ 1√√√√√ K∑
k=1

E

[(1− αλ

‖P (k)
j R

(k)
j ‖

)
+

P
(k)
j R

(k)
j

]2
 ≤ (1− α)λ

√
K

B.5 Proof of Theorem 4

If fj 6= 0 then ∃k ∈ {1, · · · , K} such that f
(k)
j 6= 0 and the stationary condition

associated with the functions fj are

P
(k)
j R

(k)
j + (1− α)λ

√
K
f

(k)
j

‖fj‖
+ αλv

(k)
j = 0

if f
(k)
j = 0 then ‖P (k)

j R
(k)
j ‖ ≤ αλ

Now we prove that if ‖P (k)
j R

(k)
j ‖ ≤ αλ then f

(k)
j = 0.

If ∃k ∈ 1, · · · , K such that f
(k)
j 6= 0 then

P
(k)
j R

(k)
j = f

(k)
j + λ(1− α)

√
K
f

(k)
j

‖fj‖
+ αλ

f
(k)
j

‖f (k)
j ‖

‖P (k)
j R

(k)
j ‖2 =

(
1 +

αλ

‖f (k)
j ‖

+
(1− α)λ

√
K

‖fj‖

)2

‖f (k)
j ‖2

‖P (k)
j R

(k)
j ‖ ≥ αλ
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Figure 32: Stability Selection Plots for the Predictors Used in Medicaid Cost Anal-
ysis
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Figure 33: Stability Selection Plots for the Predictors Used in Medicaid Cost Anal-
ysis (Continued)
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(u) Couldn’t see
doctor 2005
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Figure 34: Plots of some determinant of healths against the charges and the esti-
mated additive functions
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(b) Congestion
2006
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(c) Congestion
2007
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(d) Congestion
2008
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Figure 35: Plots of some determinant of healths against the charges and the esti-
mated additive functions (Continued)
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Figure 36: Cross validation error for Medical Cost Prediction for 2005 to 2009
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APPENDIX C

SUPPLEMENT TO SEMIPARAMETRIC

TOPOGRAPHICAL MIXTURE MODELS WITH

SYMMETRIC ERRORS

Let us denote by ‖ · ‖ the Euclidean norm of a vector and by ‖ · ‖2 the Frobenius

norm of any squared matrix. Recall the definition of Zk in (20) and let J(t, u, h) :=

E[Z1(t, u, h)]. Let Żk and J̇ denote respectively the gradient of Zk and J with respect

to their first argument t.

Lemma 1 Under assumption A1 we have:

i) For all (u, h) ∈ R× R∗+ and any k = 1, ..., n,

sup
t∈Θ
|Zk(t, u, h)| ≤ 2‖K‖∞

hd
, sup

t∈Θ
|J(t, u, h)| ≤ 2‖`‖∞ ·

∫
|K|.

ii) For all (u, h) ∈ R× R∗+ and any k = 1, ..., n,

sup
t∈Θ
‖Żk(t, u, h)‖ ≤ 4(1 + |u|)‖K‖∞

hd
, sup

t∈Θ
‖J̇(t, u, h)‖ ≤ 4(1 + |u|)‖`‖∞ ·

∫
|K|.

iii) For all (u, h) ∈ R× R∗+ and any k = 1, ..., n,

sup
t∈Θ
‖Z̈k(t, u, h)‖2 ≤ C(1 + |u|+ u2)

‖K‖∞
hd

,

sup
t∈Θ
‖J̈k(t, u, h)‖2 ≤ C(1 + |u|+ u2)‖`‖∞ ·

∫
|K|,

for some constant C > 0.

Proof of Lemma 1. i) It is easy to see, from |M(t, u)| ≤ 1, that

|Zk(t, u, h)| ≤ 2|Kh(Xk − x0)| ≤ 2
‖K‖∞
hd

,
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and that

|J(t, u, h)| ≤ 2

∣∣∣∣∫ = (g∗x(u)M̄(t, u)
)
Kh(x− x0)`(x)dx)

∣∣∣∣ ≤ 2‖`‖∞.
∫
|K|.

ii) We note that

Żk(t, u, h) =

e
iuYk


e−iuα − e−iuβ

−iuπe−iuα

−iu(1− π)e−iuβ



−e−iuYk


eiuα − eiuβ

iuπeiuα

iu(1− π)eiuβ


Kh(Xk − x0),

and that

E[Żk(t, u, h)] = J̇k(t, u, h) =

∫
gx

∗(u)


e−iuα − e−iuβ

−iuπe−iuα

−iu(1− π)e−iuβ



−gx∗(−u)


eiuα − eiuβ

iuπeiuα

iu(1− π)eiuβ


Kh(x− x0)`(x)dx.

We thus have

‖Żk(t, u, h)‖ =
∥∥∥eiuYkṀ(t,−u)− e−iuYkṀ(t, u)

∥∥∥Kh(Xk − x0)

≤
(
2
(
22 + P 2u2 + (1− p)2u2

))1/2
Kh(Xk − x0)

≤ 4(1 + |u|)‖K‖∞
hd

,

and

‖J̇k(t, u, h)‖ =

∫ ∥∥∥g∗x(u)Ṁ(t,−u)− g∗x(−u)Ṁ(t, u)
∥∥∥ |Kh(x− x0)`(x)|dx

≤
(
2
(
22 + P 2u2 + (1− p)2u2

))1/2
∫
|Kh(x− x0)`(x)|dx

≤ 4(1 + |u|)‖`‖∞.
∫
|K|.
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iii) Formula of M̈(t, u) being tedious, we shortly write that

Z̈k(t, u, h) =
{
eiuYkM̈(t,−u)− e−iuYkM̈(t, u)

}
Kh(Xk − x0),

and deduce our bound from the above expression using arguments similar to i) and

ii).

Lemma 2 i) For all (t, t′) ∈ Θ2, there exists a constant C1 > 0 such that

|Sn(t)− Sn(t′)| ≤ C1‖t− t′‖
n∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
.

ii) For all (t, t′) ∈ Θ2, there exists a constant C2 > 0 such that

‖S̈n(t)− S̈n(t′)‖2 ≤ C2‖t− t′‖
n∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
.

iii) There exists some constants C1, C2 > 0 depending on Θ, α, M,K such that

E

( n∑
j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
− `2(x0)

)2
 ≤ C1h

2α +
C2

nhd
,

as h→ 0 and nhd →∞.

Proof. i) By a first order Taylor expansion we have

Sn(t)− Sn(t′) = − 1

2n(n− 1)

∫
(t− t′)>

n∑
j 6=k,j,k=1

Żk(tu, u, h)Zj(tu, u, h)w(u)du,

where for all u ∈ R, tu lies in the line segment with extremities t and t′. Therefore,

according to calculations made in the proofs of Lemma 1 i) and ii), we obtain

|Sn(t)− Sn(t′)| ≤ ‖t− t′‖
∫
R

4(1 + |u|)w(u)du

∣∣∣∣∣
n∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)

∣∣∣∣∣ ,
which ends the proof of i) by using assumption A4.

ii) Let recall first that

S̈n(t) =
−1

2n(n− 1)

∑
k 6=j

∫ [
Z̈k(t, u, h)Zj(t, u, h) + Żk(t, u, h)Żj(t, u)>

]
w(u)du.
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We shall bound from above as follows

‖S̈n(t, u)− S̈n(t′, u)‖2 ≤ 1

2n(n− 1)

∑
k 6=j

{∥∥∥∥∫ (Z̈k(t, u, h)− Z̈k(t′, u, h))Zj(t, u)w(u)du

∥∥∥∥
2

+

∥∥∥∥∫ Z̈k(t
′, u, h)(Zj(t, u, h)− Zj(t′, u, h))w(u)du

∥∥∥∥
2

+

∥∥∥∥∫ Żk(t, u, h)(Żj(t, u, h)− Żj(t′, u, h))>w(u)du

∥∥∥∥
2

+

∥∥∥∥∫ (Żk(t, u, h)− Żk(t′, u, h))Żj(t
′, u, h)>w(u)du

∥∥∥∥
2

}
.

For each term in the previous sum, we use Taylor expansion and upper-bounds similar

to those developed in the proof of Lemma 1, and get∥∥∥S̈n(t, u)− S̈n(t′, u)
∥∥∥

2

≤ ‖t− t′‖C
∫

(1 + |u|+ u2 + |u|3)w(u)du

∣∣∣∣∣
n∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)

∣∣∣∣∣ ,
for some constant C > 0, which finishes the proof by using assumption A4.

iii) The proof is a consequence of Proposition 2 hereafter.

Proof of Proposition 2. We shall bound from above the mean square error by the

usual decomposition into squared bias plus variance.

Note that

E[Sn(t)] = −1

4

∫
(E[Z1(t, u, h)])2w(u)du

as (Yi,Xi), i = 1, ..., n are independent. Moreover,

E[Z1(t, u, h)] =

∫ ∫ (
eiuyM(t,−u)− e−iuyM(t, u)

)
Kh(x− x0)g(y,x)dydx

=

∫ (∫ (
eiuyM(t,−u)− e−iuyM(t, u)

)
gx(y)dy

)
`(x)Kh(x− x0)dx

=

∫
(g∗x(u)M(t,−u)− g∗x(−u)M(t, u)) `(x)Kh(x− x0)dx.

Let us denote by L(x, t, u) := g∗x(u)M(t,−u)− g∗x(−u)M(t, u), which is further equal

to

L(x, t, u) = 2i · = (g∗x(u)M(t,−u)) = 2i · = (M(θ(x), u)M(t,−u)) f ∗x(u).
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We can write E[Z1(t, u, h)] = [(L(·, t, u)`) ?Kh](x0), where ? denotes the convolution

product. The bias of Sn(t) is bounded from above as follows:

|E[Sn(t)]− S(t)| =
1

4

∣∣∣∣∫ ([(L(·, t, u)`) ? Kh]
2(x0)− L2(x0, t, u)`2(x0)

)
w(u)du

∣∣∣∣
≤ 1

4

∫
|[(L(·, t, u)`) ? Kh](x0)− L(x0, t, u)`(x0)|

· |[(L(·, t, u)`) ? Kh](x0) + L(x0, t, u)`(x0)|w(u)du.

Now

|L(x0, t, u)`(x0)| ≤ 2‖`‖∞ ≤ 2C,

as ‖`‖∞ is further bounded by a constant C = C(α,M) depending only on α, M > 0,

uniformly over ` ∈ L(α,M) (see remark following condition A1). We also have

E[Z1(t, u, h)] = |[(L(·, t, u)`) ? Kh](x0)| ≤
∫
|L(x, t, u)|l(x)|K|h(x− x0)dx

≤ 2C

∫
|K|. (32)

Moreover, for all u ∈ R,

|[(L(·, t, u)`) ? Kh](x0)− L(x0, t, u)`(x0)|

≤
∫
|L(x + x0, t, u)`(x + x0)− L(x0, t, u)`(x0)| · |K|h(x)dx

≤ c(|u|+ ϕ(u))

∫
‖x‖α · |K|h(x)dx ≤ c · hα(|u|+ ϕ(u))

∫
‖x‖α · |K|(x)dx,

under our assumptions A1-A4. Indeed, that implies that L(·, t, u)`(·) is Hölder α-

smooth for all (t, u) ∈ Θ×R, with some constant c > 0, see Lemma 3. Therefore we

get

|E[Sn(t)]− S(t)| ≤ 2C(1 +

∫
|K|) c

(∫
‖x‖α · |K|(x)dx

)
·
(∫
|u|w(u)du

)
· hα.
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Similarly to Sn(t) variance decomposition, we write

Sn(t)− E[Sn(t)]

=
−1

4n(n− 1)

∑
j 6=k

(∫
(Zj(t, u, h)Zk(t, u, h)− E2[Z1(t, u, h)])w(u)du

)
=
−1

2n

∑
j

∫
(Zj(t, u, h)− E[Z1(t, u, h)])E[Z1(t, u, h)]w(u)du

+
−1

4n(n− 1)

∑
j 6=k

(∫
(Zj(t, u, h)− E[Z1(t, u, h)])(Zk(t, u, h)− E[Z1(t, u, h)])w(u)du

)
= T1 + T2, say.

Terms in T1 and T2 are uncorrelated and thus V ar(Sn(t)) = V ar(T1) + V ar(T2).

On the one hand,

V ar(T1) =
1

4n
V ar

(∫
(Z1(t, u, h)− E[Z1(t, u, h)])E[Z1(t, u, h)]w(u)du

)
=

1

4n
E

[∣∣∣∣∫ (Z1(t, u, h)− E[Z1(t, u, h)])E[Z1(t, u, h)]w(u)du

∣∣∣∣2
]

≤ 1

4n
E

[∫
|Z1(t, u, h)− E[Z1(t, u, h)]|2w(u)du

] ∫
|E[Z1(t, u, h)]|2w(u)du,

according to Cauchy-Schwarz inequality. Now we use (32) and obtain

V ar(T2) ≤ 1

4n

(
2C

∫
|K|
)2 ∫

E[|Z1(t, u, h)|2]w(u)du.

We have,

E[|Z1(t, u, h)|2] = E
[
E
[∣∣2i · = (eiuYM(t,−u)

)∣∣2∣∣∣X] (Kh(X− x0))2
]

= 4E
[
|= (g∗X(u)M(t,−u))|2 (Kh(X− x0))2

]
≤ 4

∫
1

h2d
K2

(
x− x0

h

)
`(x)dx

≤ 4C

∫
K2

hd
.

Therefore,

V ar(T1) ≤ 4C3 (
∫
|K|)2

∫
K2

nhd
, (33)
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for all t ∈ Θ, h > 0.

On the other hand,

V ar(T2) =
1

16n(n− 1)
E

[∣∣∣∣∫ (Z1(t, u, h)− E[Z1(t, u, h)])(Z2(t, u, h)− E[Z2(t, u, h)])w(u)du

∣∣∣∣2
]

≤
1

16n(n− 1)
E

[∫
|Z1(t, u, h)− E[Z1(t, u, h)]|2|Z2(t, u, h)− E[Z2(t, u, h)]|2w(u)du

]
≤

1

16n(n− 1)

∫
E2[|Z1(t, u, h)|2]w(u)du ≤

1

16n(n− 1)

(
2C
∫
K2

hd

)2

=
C2(

∫
K2)2

4n(n− 1)h2d
,

which is clearly a o((nhd)−1) and concludes the proof.

Lemma 3 (Smoothness of L(x, t, u)`(x)) Assume A1-A4. There exists a constant

C > 0, such that for all (x,x′) ∈ Rd × Rd and all (t, u) ∈ Θ× R:

|L(x, t, u)`(x)− L(x′, t, u)`(x′)| ≤ C(|u|+ ϕ(u))‖x− x′‖α.

Proof. For t = (π, a, b) ∈ Θ, and (x, u) ∈ Rd × R we write

L(x, t, u)`(x) = f ∗x(u)`(x)T (x, t, u), and T (x, t, u) :=
4∑
i=1

Ti(x, t, u)

where

T1(x, t, u) = π(x)π sin[u(a(x)− a)],

T2(x, t, u) = π(x)(1− π) sin[u(a(x)− b)],

T3(x, t, u) = (1− π(x))π sin[u(b(x)− a)],

T4(x, t, u) = (1− π(x))(1− π) sin[u(b(x)− b)].

For all (x,x′) ∈ Rd × Rd we have

|L(x, t, u)`(x)− L(x′, t, u)`(x′)|

≤ 2|f ∗x(u)`(x)||T (x, t, u)− T (x′, t, u)|+ 2|T (x′, t, u)||f ∗x(u)`(x)− f ∗x′(u)`(x′)|

≤ 2‖`‖∞|T (x, t, u)− T (x′, t, u)|+ 2|f ∗x(u)`(x)− f ∗x′(u)`(x′)|.
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Let us now show the α-smooth Hölder property of T1, the proof for the other Ti’s

being completely similar. For all (x,x′) ∈ Rd × Rd

|T1(x, t, u)− T1(x′, t, u)| ≤ | sin[u(a(x)− a)]− sin[u(a(x′)− a)]|+ |π(x)− π(x′)|

≤ |u||(a(x)− a(x′)]|+ |π(x)− π(x′)|

≤ M |u|‖x− x′‖α +M‖x− x′‖α.

On the other hand we have

|f ∗x(u)`(x)− f ∗x′`(x′)| ≤ |`(x)− `(x′)|+ ‖`‖∞|f ∗x(u)− f ∗x′(u)|,

≤ (M + ‖`‖∞ϕ(u))‖x− x′‖α,

which concludes the proof.

Proof of Theorem 3. Our method is based on a consistency proof for mininum

contrast estimators by Dacunha-Castelle and Duflo (1993, pp.94–96). Let us consider

a countable dense set D in Θ, then inft∈Θ Sn(t) = inft∈D Sn(t), is a measurable random

variable. We define in addition the random variable

W (n, ξ) = sup
{
|Sn(t)− Sn(t′)|; (t, t′) ∈ D2, ‖t− t′‖ ≤ ξ

}
,

and recall that S(θ0) = 0. Let us consider a non-empty open ball B∗ centered on

θ0 such that S is bounded from below by a positive real number 2ε on Θ\B∗. Let

us consider a sequence (ξp)p≥1 decreasing to zero, and take p such that there exists

a covering of Θ\B∗ by a finite number κ of balls (Bi)1≤i≤κ with centers ti ∈ Θ,

i = 1, . . . , κ, and radius less than ξp. Then, for all t ∈ Bi, we have

Sn(t) ≥ Sn(ti)− |Sn(t)− Sn(ti)| ≥ Sn(ti)− sup
t∈Bi
|Sn(t)− Sn(ti)|,

which leads to

inf
t∈Θ\B∗

Sn(t) ≥ inf
1≤i≤κ

Sn(ti)−W (n, ξp).
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As a consequence we have the following events inclusions{
θ̂n /∈ B∗

}
⊆

{
inf

t∈Θ\B∗
Sn(t) < inf

t∈B∗
Sn(t) < Sn(θ0)

}
⊆

{
inf

1≤i≤κ
Sn(ti)−W (n, ξp) < Sn(θ0)

}
⊆ {W (n, ξp) > ε} ∪

{
inf

1≤i≤κ
(Sn(ti)− Sn(θ0)) ≤ ε

}
.

In addition we have

P

(
inf

1≤i≤κ
(Sn(ti)− Sn(θ0)) ≤ ε

)
≤ 1−

κ∏
i=1

(1− [P (|Sn(ti)− S(ti)| ≥ ε) + P (|Sn(θ0)− S(θ0)| ≥ ε)]),

where, according to Proposition 2, the last two terms in the right hand side of the

above inequality vanish to zero if hdn → ∞ and h → 0 as n → ∞. To conclude we

use Lemma 2 and notice that, for all (t, t′) ∈ Θ2, we have

|Sn(t)− Sn(t′)|

≤ C‖t− t′‖
n(n− 1)

∣∣∣∣∣
n∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

∣∣∣∣∣
≤ C‖t− t′‖`2(x0) + C‖t− t′‖

∣∣∣∣∣
n∑

j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
− `2(x0)

∣∣∣∣∣ .(34)

We deduce from above that

P (W (n, ξp) > ε) ≤ P
(
Cξp`

2(x0) >
ε

2

)
+

(
2Cξp
ε

)2

E

 n∑
j 6=k,j,k=1

Kh(Xk − x0)Kh(Xj − x0)

n(n− 1)
− `2(x0)

2 ,
where the last term in the right hand side is of order (nhd)−1 +h2α and tends to 0 by

our assumption on h. Since for p sufficiently large we have Cξp`
2(x0) < ε/2 and thus

P (Cξp`
2(x0) > ε/2) = 0, this concludes the proof of the consistency in probability of

θ̂n when nhd →∞ and h→ 0 as n→∞.

Proof of Theorem 4. By a Taylor expansion of Ṡn around θ0, we have

0 = Ṡn(θ̂n) = Ṡn(θ0) + S̈n(θ̄n)(θ̂n − θ0),
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where θ̄n lies in the line segment with extremities θ̂n and θ0.

Let us study the behaviour of

Ṡn(θ0) =
−1

2n(n− 1)

∑
j 6=k

∫
Żk(θ0, u, h)Zj(θ0, u, h)w(u)du,

where Żk denotes the gradient of Zk with respect to the first argument. Recall that

θ0 = θ(x0) = (π(x0), a(x0), b(x0)) and therefore

J(t, u, h) = E[Z1(t, u, h)] = 2i

∫
= (M(θ(x), u)M(t,−u)) f ∗x(u)`(x)Kh(x− x0)dx,

satisfies J(θ0, u, h) → 0 as h → 0. Indeed, the last integral may be equal to 0 if the

set {x : θ(x) = θ(x0)} has Lebesgue measure 0, or tends (by uniform continuity in x

of the integrand) to

2i= (M(θ(x0), u)M(θ(x0),−u)) f ∗x0
(u)`(x0) = 0.

Moreover,

Żk(t, u, h) = =
(
Ṁ(t,−u)eiuYk

)
Kh(Xk − x0).

Denote J̇(t, u, h) = E[Żk(t, u, h)] and observe that

J̇(t, u, h) =

∫
=
(
Ṁ(t,−u)M(θ(x), u)f ∗x(u)

)
Kh(x− x0)`(x)dx.

Then, we decompose Ṡn(θ0) as follows

Ṡn(θ0)

=
−1

2n(n− 1)

∑
j 6=k

∫ (
Żk(θ0, u, h)− J̇(θ0, u, h)

)
(Zj(θ0, u, h)− E[Zj(θ0, u, h)])w(u)du

− 1

2n

n∑
j=1

∫
J̇(θ0, u, h)(Zj(θ0, u, h)− E[Zj(θ0, u, h)])w(u)du

:= −1

2
(An(h) +Bn(h)), (35)

where terms in An(h) and Bn(h) are uncorrelated. On the one hand, we use a mul-

tivariate Central Limit Theorem for independent random variables taking values in a
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Hilbert space, following Kandelaki and Sozanov (1964) or Gikhman and Skorokhod

(2004, Theorem 4, page 396). This will give us the limit behavior of the term

Bn(h) =
1

n

n∑
j=1

Uj(h), Uj(h) :=

∫
J̇(θ0, u, h)(Zj(θ0, u, h)− E[Zj(θ0, u, h)])w(u)du.

The random variables Uj(h), j = 1, ..., n are independent, centered, but their common

law depend on n via h. Our goal is to show that

nhdV ar(Bn(h)) =
n∑
j=1

V ar

(√
hd

n
Uj(h)

)
→ Σ, as n→∞ (36)

and that

n∑
j=1

E

∥∥∥∥∥
√
hd

n
Uj(h)

∥∥∥∥∥
4
 =

h2d

n
E[‖U1(h)‖4]→ 0, as n→∞. (37)

Indeed, (37) implies the Lindeberg’s condition in Kandelaki and Sozanov (1964):

n∑
j=1

E

∥∥∥∥∥
√
hd

n
Uj(h)

∣∣∣∣∣
2

· I∥∥∥√hd/nUj(h)
∥∥∥≥ε
→ 0, as n→∞, for any ε > 0.

On the other hand, we prove that

√
nhdAn(h)→ 0, in probability, as n→∞, (38)

stating that
√
nhdAn(h) negligible term and that, as a consequence, the limiting be-

havior of
√
nhdṠn(θ0) is only driven by

√
nhdBn(h). This will end the proof of the

theorem.

Let us prove (36) and (37). Note that nhdV ar(Bn(h)) = hdV ar(U1(h)) and that

V ar(U1(h))

=

∫ ∫
J̇(θ0, u1, h)J̇>(θ0, u2, h)Cov(Z1(θ0, u1, h), Z1(θ0, u2, h))w(u1)w(u2)du1du2.

Similarly to Proposition 2, by uniform continuity in x of the integrand in J̇ , we get

lim
h→0

J̇(θ0, u, h) := J̇(θ0, u).
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See that ‖J̇(θ0, u)‖ ≤ 2(1 + |u|)‖`‖∞ and that the latter upper bound is integrable

with respect to the measure w(u)du by assumption on w. It remains to study:

Cov(Z1(θ0, u1, h), Z1(θ0, u2, h))

= E [Z1(θ0, u1, h)Z1(θ0, u2, h)]− E [Z1(θ0, u1, h)]E [Z1(θ0, u2, h)] .

From (32) we deduce that

hd|E [Z1(θ0, u1, h)]E [Z1(θ0, u2, h)] | ≤ hd
(

2C

∫
|K|
)2

→ 0,

when h→ 0 as n→∞. We also have

hdE [Z1(θ0, u1, h)Z1(θ0, u2, h)]

= 4 ·
∫ ∫

=
(
eiu1yM(θ0,−u1)

)
=
(
eiu2yM(θ0,−u2)

) 1

hd
K2(

x− x0

h
)g(y,x)dydx

= 4 ·
∫
=
(
eiu1yM(θ0,−u1)

)
· =
(
eiu2yM(θ0,−u2)

)
g(y,x0)dy(

∫
K2)(1 + o(1))

= 4 ·
∫
=
(
eiu1yM(θ0,−u1)

)
· =
(
eiu2yM(θ0,−u2)

)
gx0(y)dy · `(x0)(

∫
K2)(1 + o(1)),

as h→ 0. See also that we can write

V (θ0, u1, u2) :=

∫ (
eiu1yM(θ0,−u1)− e−iu1yM(θ0, u1)

)
·
(
eiu2yM(θ0,−u2)− e−iu2yM(θ0, u2)

)
gx0(y)dy

= M(θ0, u1 + u2)M(θ0,−u1)M(θ0,−u2)f ∗x0
(u1 + u2)

−M(θ0, u1 − u2)M(θ0,−u1)M(θ0, u2)f ∗x0
(u1 − u2)

−M(θ0,−u1 + u2)M(θ0, u1)M(θ0,−u2)f ∗x0
(−u1 + u2)

+M(θ0,−u1 − u2)M(θ0, u1)M(θ0, u2)f ∗x0
(−u1 − u2)

and this is a bounded function with respect to u1 and u2. Therefore

hdV ar(U1(h))→
∫ ∫

J̇(θ0, u1)J̇>(θ0, u2)V (θ0, u1, u2)w(u1)w(u2)du1du2 =: Σ,

as h→ 0. This proves (36).
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Now, denote by v(k) the k-th coordinate of a vector v and use Jensen inequality

to see that

E[‖U1(h)‖4] ≤ 3
(
E[(U

(1)
1 (h))4] + E[(U

(2)
1 (h))4] + E[(U

(3)
1 (h))4]

)
≤ 3

3∑
k=1

E

[(∫
J̇ (k)(θ0, u, h)(Z1(θ0, u, h)− E[Z1(θ0, u, h)])w(u)du

)4
]

≤ 3
3∑

k=1

∫
|J̇ (k)(θ0, u, h)|4E

[
|Z1(θ0, u, h)|4

]
w(u)du.

We have |J̇ (k)(θ0, u, h)| ≤ 4(1 + |u|)(
∫
|K|)‖`‖∞ by Lemma 1 and

E
[
|Z1(θ0, u, h)|4

]
=

∫ ∫
4
∣∣= (eiuyM(θ0,−u)

)∣∣4 1

h4d
K4

(
x− x0

h

)
g(y,x)dydx

≤ 4

h3d

∫
1

hd
K4

(
x− x0

h

)
`(x)dx

≤ O(1)

h3d

(∫
K4

)
‖`‖∞,

as h→ 0. Therefore,

h2d

n
E[‖U1(h)‖4] ≤ O(1)

nhd

∫
|K| ·

∫
K4 ·

∫
(1 + |u|)4w(u)du = o(1),

as n→∞ and h→ 0 such that nhd →∞. This proves (37).

To prove (38), we notice that An(h) defined in (35) can be treated similarly to T1 in

(33). By this remark, we easily prove that V ar(An) = o
(
(nhd)−1

)
which insure the

wanted result.

Let us prove that

S̈n(θn)−→I(θ0), in probability, as n→∞,

where I = I(θ0) = −1
2

∫
J̇(θ0, u)J̇>(θ0, u)w(u)du, and J̇(θ0, u) is defined in (25). We

start by writing the triangular inequality

‖S̈n(θn)− I‖ ≤ ‖S̈n(θn)− S̈n(θ0)‖+ ‖S̈n(θ0)− E(S̈n(θ0))‖+ ‖E(S̈n(θ0))− I‖.
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Then using upper bounds similar to (34) slighly adapted to S̈n instead of Sn and the

convergence in probability of θ̂n towards θ0 established in Theorem 3, we have that

‖S̈n(θn)− S̈n(θ0)‖ → 0 in probability as n→∞. By writting

E(S̈n(θ0)) = −1

2

∫ (
J̈(θ0, u, h)J(θ0, u, h) + J̇(θ0, u, h)J̇(θ0, u, h)>

)
w(u)du

and noticing, according to Bochner’s Lemma, that J(θ0, u, h)→ 0 and J̇(θ0, u, h)→

J̇(θ0, u) as h → 0, we have, according to the Lebesgue’s theorem, that E[S̈n(θ0)]

tends to I as h → 0. Finally we decompose −2n(n − 1)(S̈n(θ0) − E[S̈n(θ0)]) =∑3
l=1(D1,l +D2,l) where

D1,1 =
∑
k 6=j

∫
(Z̈k(θ0, u, h)− J̈(θ0, u, h))(Zj(θ, u, h)− J(θ0, u, h))w(u)du

D1,2 = (n− 1)
∑
k

∫
(Z̈k(θ0, u, h)− J̈(θ0, u, h))J(θ0, u, h)w(u)du

D1,3 = (n− 1)
∑
j

∫
J̈(θ0, u, h)(Zj(θ, u, h)− J(θ0, u, h))w(u)du,

and

D2,1 =
∑
k 6=j

∫
(Żk(θ0, u, h)− J̇(θ0, u, h))(Żj(θ, u, h)− J̇(θ0, u, h))>w(u)du

D2,2 = (n− 1)
∑
k

∫
(Żk(θ0, u, h)− J̇(θ0, u, h))J(θ0, u, h)>w(u)du

D2,3 = (n− 1)
∑
j

∫
J̇(θ0, u, h)(Zj(θ, u, h)− J(θ0, u, h))>w(u)du.

Noticing that terms Di,3, i = 1, 2, respectively Di,j,, i = 1, 2 and j = 2, 3, can be

treated as T1 respectively T2 in the proof of Proposition 2, we obtain

V ar
(
S̈n(θ0)

)
= O

(
1

nhd

)
,

which concludes the proof.

133



REFERENCES

[1] Anderson, J. A. (1979). Multivariate logistic compounds. Biometrika, 17–26.

[2] Anderson, T. (1951). Estimating linear restrictions on regression coefficients for
multivariate normal distributions. The Annals of Mathematical Statistics, 22:
327-351.

[3] Balabdaoui, F. and Butucea, C. (2014) On location mixtures with Pólya fre-
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