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SUMMARY 

 

 
Science policymakers and research evaluators are increasingly focusing on alternative 

methods of assessing the public investment in science and engineering research.  Over the course 

of the last 20 years, scientific and engineering research centers with ties to industry have become a 

permanent fixture of the academic research landscape.  Yet, much of the research on the careers 

patterns and productivity of researchers has focused on scientists rather than engineers, specific 

job changes rather than the career as a whole, and publication productivity measures rather than 

patent outcomes.   Moreover, much of the extant research on academic researchers has focused 

exclusively on the academic component of careers.  As universities increasingly take on roles than 

were once considered the responsibility of the private sector—such as securing patents—and build 

greater ties with industry, it is timely to reexamine the nature of the contemporary “academic” 

career. 

 In this research, I draw on scientific and technical human capital theory to situate the 

central research question.  Specifically, I examine the nature of the career pattern and publication 

and patent rates of scientists and engineers affiliated with federally-supported science and 

engineering research centers.  The research makes use of curriculum vita (CV) data collected 

through the Research Value Mapping Program headquartered at the School of Public Policy.  

Tobit, Poisson, and Neural Network models are used in analyzing the data.  In addition, I examine 

the career patterns of highly productive scholars and contrast those with less productive scholars.   

 The findings suggest that the ways in which academic productivity and career patterns 

have been conceived may be in need of revision, with a greater attention to diverse productivity 

outcomes and diverse career patterns.  Some of the interpretations of empirical findings in the 

literature may be misconceived.  Moreover, it may be the case that postdoctoral fellowship—a 

common component of government support for scientific and engineering research—may be 

associated with lower career productivity rates.   

This research contributes to our understanding of research careers with implications for 

policies that may affect the outputs of governmentally supported research.  Finally, the relatively 
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new method of collecting and analyzing CVs is discussed along with appropriate modeling 

techniques and the challenges posed by this method. 
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CHAPTER 1 

 
INTRODUCTION AND OVERVIEW 

 
 
 

Contributions to the scholarly knowledge base on the productivity of academic scientists 

and engineers have been considerable yet uneven in their conceptualization of the topic as a policy 

problem rather than a sociological issue, as a problem of career patterns rather than job 

promotions, and as problem situated in a scientific and technical social and human capital theory 

rather than one owed to a set of accumulating elite advantages.  In this research, I examine the 

career patterns and productivity of a significant component of the contemporary academic research 

environment—scientists and engineers affiliated with university research centers that are expected 

to have significant ties with industry.  This work is different than previous work in that careers are 

conceived of as a whole, both empirically and theoretically; both industrial and academic career 

experiences and outcomes are examined; and the methods used to collect and analyze the data 

are nearly untried and untested. 

Historically, studies of the careers of scientists grew out of questions as to why there 

seemed to be such a lopsided distribution of research productivity across the population of 

academic scientists.  As early as 1926, Alfred Lotka observed that the number of people producing 

“n” papers is k/n2, where k is some constant.1  In effect, a small minority of the population of 

scientists produces the vast share of published scientific work.  But what explains the fact that 

many researchers have few publications over the lifetime, while others produce as many as 600 or 

more?   For years, researchers in sociology, psychology, economics, and other disciplines have 

tried to explain why.  Sociologists tended seek answers to this question in the sociological 

structures or “stratification” of science and the accumulation of advantages that accrue to elite 

researchers.  Psychologists stressed innate factors, personality traits, and an inner sense of 

motivation.  Economists have tended to take approaches rooted in human capital theory such as 

                                                 
1 Price (1963) suggested that the square root of the population of scientists in any given field  
produce half of the scientific discoveries.   
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life cycle models.  Most of these productivity and career studies have focused on academic to 

academic job changes as opposed to intersectoral careers, science as opposed to engineering, 

and publications rather than patents2 as a productivity output indicator.  

The largest body of work is sociological in nature and focuses on explaining publication 

productivity as a function of accumulative advantages that researchers receive, beginning with their 

affiliation with prestigious institutions of scholarly research which enable them to gain advantages 

not typically allotted to researchers in less prestigious institutions.  Key variables have included the 

prestige of the doctoral department of researchers, their first job department, their current 

department, honorific awards, and peer judgments as to the quality of their work.  Most of these 

studies focus on a single or several disciplinary areas and a single job change rather than the 

career as a whole.  Researchers have also sought to explain productivity as a function of age and 

experience.  Yet, these studies are less relevant to the formation of science policies and the 

evaluation of research.   

The central question of this dissertation research is, “what effects do changes in jobs over 

the entire career have on productivity?”  The main hypothesis to be tested, the “diversity” 

hypothesis, is derived from human and social capital theory and asserts that intersectoral changes 

in jobs throughout the career will result in higher productivity due to access to new social networks 

and human capital.  Behind this assertion is the recognition that research is not an individually 

isolated phenomenon.  It is socially and organizationally influenced—research ideas and questions 

and the methods used to pursue them depend upon a multitude of skills, perspectives, and 

collaborative thinking. 

The main rival to the diversity hypothesis, the “homogeny” hypothesis, states that those 

who follow more “traditional” career paths will have higher productivity due mainly to differences in 

productivity incentives and disincentives across the three job sectors—academia, industry, and 

government.  For example, academia prizes publication productivity, whereas industry may, at 

times, prohibit the open sharing of ideas and research findings.   

                                                 
2 Incidentally, the largest body of work on patents tends to use the firm (or “assignee”) as the unit of 
analysis. 
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 Specifically, models of research productivity as measured in publication and patent rates 

of researchers are presented that include explanatory variables in several areas, including diversity 

of job experiences, grant awards, and early publication and mentoring opportunities.  In contrast to 

the existing body of literature, many of these variables can be affected by the policies of funding 

agencies. 

This approach differs from previous approaches in that it examines the pattern of 

researchers’ careers over time and the effect of job changes and other critical events to the rate of 

productivity over time.   It has its intellectual roots in a scientific and technical human capital (S&T 

human capital) theory (Bozeman, Dietz, and Gaughan, 2001) of knowledge generation that 

suggests that human and social capital building experiences over time affect the formation and 

pattern of scientific careers, and these opportunities intersect and act in synergistic ways to affect 

long-term productivity.   The theory implies that a diversity of job experiences will affect 

collaborative patterns and the exchange of human capital through the building of a wider variety of 

network ties and social capital.  This is similar to Granovetter’s (1973) notion that greater benefits 

accrue to those who are able to tap “weak ties” (e.g., a friend of friend) due to exploitation of 

human and social capital that is non-redundant with one’s one web of human and social capital 

endowments.  The S&T human capital model itself will not be tested in this dissertation research 

because of the complexity of operationalizing the two critical components: human capital and social 

capital.   However, the theory serves as a useful guide in exploring alternative and complementary 

approaches to the extant sociological, psychological, and economic literature.    

This dissertation research is also methodologically different than previous research that 

takes purely correlational approaches (such as ordinary least squares regression) to explain 

variation that is explained in given a “dependent variable.”   While approaches such as these 

constitute a major portion of the analyses in this research, it is not the only approach.  The logic of 

the S&T human capital model suggests that the career pattern itself (derived from curriculum vitae) 

is an equally appropriate unit of interest due to its broader landscape depiction of knowledge 

building over a lifetime.  And, while difficult to operationalize empirically, the theory does serve to 

inform thinking about the opportunities that one receives in working in diverse research settings—
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some of those opportunities are largely human capital in nature (i.e., cognitive knowledge, research 

craft knowledge, and other forms of tacit knowledge) or social capital in nature (i.e., the building of 

a more diverse collaborative network that permits human capital exchanges that are so vital to 

interdisciplinary research).   

The proposed analyses include descriptive statistics of job changes, a comparison of the 

career patterns of publication and patent productivity “stars,” Tobit models of publication and patent 

rates, and a Poisson model of patent counts.  In addition, a preliminary set of Neural Network 

models will be used to analyze career patterns and their effects on productivity. 

This research uses data from a US Department of Energy (DOE) and National Science 

Foundation (NSF) funded project called the Research Value Mapping (RVM) Program, which is 

headquartered at the Georgia Institute of Technology School of Public Policy.  The program is 

studying new social and economic approaches to the valuing of publicly funded research—

specifically as it is carried out in research centers.  The curriculum vitae (CVs) of 1,200 research 

scientists and engineers supported by DOE, the Department of Defense, and NSF research 

centers have been collected and coded.  In addition to the CV data, patent data were collected 

from the U.S. Patent and Trademark Office (USPTO) database.   

It is expected that there will be several useful contributions from this dissertation research.  

First, this research will examine academic scientists and engineers many of whom have had prior 

experience working in government and industry.  Traditionally, studies of scientific and technical 

careers have focused either on the industrial track or the academic track exclusively—one versus 

the other—as if careers were monotonic.  Studies of industrial careers have their historical roots in 

the discipline of management and have focused on the management of innovation and the 

management of technical personnel, usually engineers.  On the other hand, studies of academic 

researchers—having their roots in the sociology of science—have focused almost exclusively on 

the publication productivity of scientists (typically not engineers).  The extant literature has not 

generally recognized the important knowledge synergies that may result from the human and social 

capital formation derived from job changes of multiple types across the sectors of academia, 

industry, and government.   



5 

The scientists and engineers in this study are affiliated with academic research centers that 

were designed to have industrial ties—a now seemingly permanent policy fixture of government 

support for science and engineering research.  This provides an opportunity to test a model in an 

area where some form of commercial relevancy is expected and permits the examination of career 

factors that relate to academic, industrial, and governmental experiences.  As universities take on 

more of the characteristics of the private sector, when it comes to the management and diffusion of 

intellectual property, and as industry continues to invest more money in academic research (from 

3.8 percent of the total in 1980 to 6.9 percent in 2000 (NSB, 2002, Appendix 4-07)), this issue 

takes on greater policy relevance.  In fact, for many years, the National Science Foundation has 

been encouraging greater interaction between the industrial and academic sector through 

programs like the Engineering Research Centers (ERCs), the Industry-University Cooperative 

Research Centers (IUCRCs), and the Science and Technology Centers (STCs) (these are 

incidentally the programs from which researcher career records were drawn for this study).  And, 

more recently, the NSF has created a program called Grant Opportunities for Academic Liaison 

with Industry (GOALI) to encourage academic researchers to take sabbaticals in industrial research 

jobs and vice versa.  It is timely then, from a policy point of view, to examine the knowledge 

impacts that these (nontraditional) careers may have.   

Second, models of productivity and careers have not adequately addressed human and 

social capital factors, and there is growing recognition in science policy circles both in the U.S. 

(e.g., NAS, 1999) and Europe (e.g., Caracostas and Muldur, 1998) of the importance of these 

factors to international competitiveness and science policy in general.  As of yet, however, few 

empirical studies have effectively examined science and technology policy as a form of human 

resources and human capital policy problem as the two research communities have remained 

largely separate.  This research, although focusing on scientific careers, makes use of an 

interesting blend of variables related to research as well as to education and human resources.   

Third, the data sources and analyses used in this dissertation are unique: the collection 

and coding of CVs and statistical modeling that is appropriate to the nature of these data.  This 
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dissertation research will serve as a methodological “proof of concept” for this approach and 

includes a discussion of its limitations and advantages and disadvantages.    

Thus, I expect that this dissertation research will contribute to three broad areas of 

intellectual concern: (1) science policy (specifically research and development policy), (2) 

fundamental knowledge in the area of scientific careers and productivity, and (3) research 

evaluation techniques.    
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CHAPTER 2 

 
BASIS IN THE LITERATURE 

 
 
 
2.1 Industrial Careers and Management of Innovation 

 

Traditionally, studies of scientific and technical careers have taken a narrow view, focusing 

either on the industrial track or the academic track exclusively.  Studies of academic researchers 

(e.g., Keith and Babchuk, 1998)—having their roots in the sociology of science—have focused 

chiefly on the publication productivity of scientists and promotion in job rank. On the other hand, 

studies of industrial scientific and technical careers have their historic roots in the discipline of 

management and the management of innovation.  They tend to focus on engineers (Goldberg and 

Shenhav, 1984; Allen and Katz, 1992), on the dual career ladder (Shepard, 1958; Allen and Katz, 

1986; Gunz, 1980; 1989), on gatekeeping behavior (Turpin and Deville, 1995), innovation (Fusfeld, 

1986; Burns, 1994; Rosenberg and Nelson, 1994; Mowery, 1998), technological obsolescence 

(Dalton and Thompson, 1971; Pazy, 1990; Bartel and Sicherman 1993; McCormick, 1995), and the 

management of technical personnel (e.g., Turpin and Deville, 1995; Debackere, Buyens, and 

Vandenbossche, 1997; Bowden, 1997).   

In reality, however, many researchers change jobs between academia, industry, and 

government—sometimes changing sectors multiple times or working in multiple settings 

simultaneously.  In the market context, economists often label this flow of knowledge from one 

organization to another “knowledge spillovers” (Jaffe, 1989; Griliches, 1992; Jaffe et al., 1993).  In 

neoclassical economic thought, spillovers are considered to be inefficient to the operation of the 

market since creators of knowledge have difficulty capturing and containing its benefits.  Yet, from 

a knowledge generation viewpoint, they can be viewed as often efficacious.  The human and social 

capital that a researcher takes from one job to another (and perhaps from one job sector to 

another) may provide critical and ongoing knowledge inputs into new problems.  The flow of people 

from one organization to another (such as from industry to academia and vice versa) is arguably 
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key in the process of knowledge transfer, the diffusion of knowledge across organizations (Rogers, 

1995), and the creation and maintenance of diverse knowledge networks over the career.   

Yet there are few empirical studies that examine research ties between industrial and 

academic scientists and engineers.  Zucker, Darby, and Armstrong (1998) examined 

geographically localized knowledge spillovers that occurred when superstar biotechnology 

researchers were affiliated both with universities and with firms. Through coauthorship patterns, 

they examined several types of human and social capital bonds between academic superstar 

researchers and scientists in local biotechnology firms, including collaborations (where there is no 

formal link between the two) and affiliations (where the superstars took on formal positions within 

the firm).  What they found suggests this mixing of human and social capital may have very real 

economic returns.  Five articles coauthored between the academic superstars in conjunction with 

firm scientists corresponded to five more products in development, 3.5 more products on the 

market, and 860 more employees for the biotech firms.   

Landry, Traore, and Godin (1996)3 provides one of the few studies seeking to relate 

research collaborations in the industrial setting with academic productivity4.  They concluded that 

collaborative research in any form (between academic researchers and other academic 

researchers or between academic researchers and researchers in government and industry) “may 

indeed increase” the academic researcher’s productivity.  They also found, however, that 

collaboration between academic and industry personnel had “significantly more impact” on 

productivity on the part of the academic researcher than did collaborations with other academics or 

government personnel.   

 

                                                 
3 The findings of this study need to be approached with some caution since it is based on a survey 
questionnaire of academic researchers affiliated with universities only in Québec.  The survey also 
suffered from a very low response rate (17 percent). 
 
4 Landry et al., formed a broad index of productivity as their dependent variable including the usual 
published outputs and patents but also lectures for nonscientific audiences, new courses, 
memoranda of expert opinion, supervision of graduate students, and other job-related duties of 
professors. 
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2.2  Academic Careers and Productivity 

 

The lineage on academic research productivity begins principally in the 1950s with the 

notable work of Robert K. Merton (1957; 1961) to explain the social stratification of science as a 

sociological community, and with Anne Roe (1956; 1973) to explain the psychology of eminent 

scholars.  But, it was not until the late 1960s and 1970s that academic productivity research 

blossomed with the works of Price (1963), the Coles (1967; 1970; 1973; 1979), Diana Crane (1965; 

1969; 1970; 1972a), Paul Allison (Allison, and Stewart, 1974), and a host of others (Clemente, 

1973; Faia, 1975; Reskin, 1977; Reskin, 1978; Friedkin, 1978).  These scholars effectively set the 

agenda and the intellectual milieu for what was to follow.  Some of these scholars were more 

concerned with the reward and recognition system of science, some with social structure and 

stratification, some with the distribution of resources and support, and others with more internally 

driven, innately defined factors.  

Sociologists of science have long focused on scientific productivity in their studies of the 

sociological structures of science (Merton, 1961).  These studies dealt with how science is 

organized as a sociological entity, not about how scientists and engineers produce and make use 

of knowledge.  They had a profound and lasting effect on how careers in science are conceived of 

today.  Their inadvertent effect, however, was to mark “science” as a province of the academic 

enterprise within its cultural norms (Merton) governing the creation, recognition, and sharing of 

knowledge.  Industry, or industrial jobs within a largely academic career, was not considered in 

these studies.   

Much of the scholarly work on academic productivity reflects these norms by placing social 

factors in the background, favoring instead measures of institutional and personal prestige, for 

example (Cole and Cole, 1967; Cole, 1970; Crane, 1970; Reskin, 1977; Long, 1978; Long,  Allison, 

and McGinnis, 1979).  Most of these models are essentially elite models that posit that scientific 

capital accrues disproportionately to those born of elite institutions with access to early advantages.  

A review of seven of the main approaches to explaining academic productivity of scientists follows. 

2.2.1 Prestige Models   
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Prestige models are closely related to the accumulative advantage approach to explaining 

productivity (discussed in the next section).   Essentially, using this approach, researchers 

examined the effects of institutional prestige on academic productivity.  Among the first to do so 

was Crane (1965) who interviewed biologists, political scientists, and psychologists at three 

universities (a major private research university, a smaller university with some tradition of 

research, and a state university).  Graduates of major universities were more likely to be highly 

productive than graduates of the minor university.  She found that attendance at a major graduate 

school had more effect on later productivity than the current institutional location of the researcher, 

and that students of eminent sponsors were more likely to be highly productive later in their careers 

than other students. 

Following Crane, Bayer and Folger (1966), using citation data as a productivity qua quality 

measure, studied 467 biochemists who earned doctorates in 1957 and 1958 and found a low but 

positive correlation between the prestige of the doctoral institutions and citations to their work 

published in 1964.  

Later, Reskin (1977) examined the careers of a random sample of 238 doctoral chemists 

who obtained their Ph.D.s between 1955 and 1961.  The caliber of the Ph.D. department exhibited 

a significant independent effect on the chemists’ productivity at the end of their first professional 

decade.  However, in contrast to Crane (1965), she found that beginning one’s academic career in 

a university was a far more important determinant of decade productivity.  Collaborating with one’s 

sponsor during graduate school led to increased early postdoctoral productivity, but any direct 

effect was lost by the end of the decade. 

Crane (1970) then examined the characteristics of faculty who joined the top 20 

departments in six disciplines between 1963 and 1966.  She found evidence that graduates of the 

highest ranking departments were much more likely to be hired by all the top 20 departments even 

after levels of productivity and citations were controlled thus giving credence to the prestige 

argument independent of productivity. 

Allison and Long (1987), in investigating job changes of scientists, found weak but 

significant effects of productivity on the prestige of the destination job in 274 job changes made 
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between 1961 and 1975 by academic physicists, chemists, mathematicians, and biologists. This 

contrasts with previous longitudinal studies that found no evidence of a relationship between 

research productivity and prestige of destination jobs.  Major determinants of prestige of destination 

job included prestige of prior job, and the prestige of doctoral department.  The number of articles 

published in the six years prior to the move had a lesser effect.  Thus Allison and Long (1987) did 

identify a link from productivity to prestige of destination job although the effect size was essentially 

low. 

Long, Allison, and McGinnis (1979) studied 239 male biochemists who earned their 

doctorates in 1957-58 and 1962-63.  They found no statistically significant relationship between 

predoctoral publications and citations and prestige of first job, but they did find a relationship 

between prestige of first job and doctoral department prestige, number of citations to the mentor’s 

work, and the selectivity of undergraduate institution.  When researchers who had had a 

postdoctoral position were entered into the model, no relationship was identified between the 

prestige of first job and prestige of the postdoctoral institution.  Although postdoctoral fellows had 

higher productivity, productivity still did not predict job prestige.    

Allison and Long (1990) examined 179 academic job changes (between 1961 and 1975) of 

chemists, biologists, mathematicians, and physicists and found that publication and citation rates 

increased following a move to a more prestigious department and decreased following a move to a 

less prestigious department. 

Long (1978) studied the effect of productivity on prestige of department for 134 male 

biochemists who had changed jobs and 47 who had not.  He found that productivity increased for 

those who had moved to more prestigious departments, but only a weak effect of prior productivity 

on the move to the more prestigious departments. 

Thus what can be gleaned from these early prestige studies is that institutional prestige—

be it departmental or university—probably does have an effect on the prestige of destination jobs.  

More importantly however for this research, the link between prestige and productivity seems weak 

at best and perhaps spurious due to the caliber of doctoral advisers and mentors, increased 

opportunities to work with highly productive scholars, and the relative visibility of prestigious 
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departments and those associated with them.  This last study cited, Long (1978), provides a clue to 

the effects of job changing on productivity.  Long found that productivity increased after a job 

change to a more prestigious institution, not before.  This suggests that one aspect of this 

research, that job changing may increase productivity, is worthy of investigation.  

 

2.2.2 Accumulative Advantage 
 

The “accumulative advantage” hypothesis was first introduced by Merton (1968).  With 

some convincing evidence, Merton and others (such as Cole and Cole, 1973; Allison & Stewart, 

1974; and Allison, Long, and Krauze 1982) hypothesized that a succession of accumulating 

advantages bestowed on an elite group of budding scholars could explain why they tended to be 

more productive than researchers residing at second-tier institutions with fewer opportunities, less 

visibility, and fewer resources.  Crane (1965), Bayer and Folger (1966), Reskin (1977), and Long, 

Allison, and McGinnis (1979) all found some positive relationship between the prestige of the 

doctoral department where the scientists had been educated and future productivity or job mobility.  

Other researchers (Cole and Cole, 1967; Cole, 1970; Long, 1978; Allison and Long, 1987; and 

Allison and Long, 1990) found the prestige of a previous academic job department to be positively 

related to the ability to move to more a prestigious job department and to subsequent productivity.  

A further refinement of this prestige argument was what became to be known as the 

“accumulative advantage” hypothesis.  Most of these studies dealt with the increased likelihood of 

citation to a researcher’s work due to the accumulation of advantages.   However, the hypothesis 

remains a plausible one in explaining publication productivity due to the increased resources and 

access to eminent scholars.  Cole and Cole (1967) studied the scientific output of 120 eminent 

physicists and asked 1,300 additional physicists if they were familiar with the work of the eminent 

scholars and the honorific awards they had received.  They found that the number of honorific 

awards, rank of the department, and percent of physicists familiar with the eminent scholars work 

correlated more highly with citation counts than with publication counts of the eminent scientists.  

 J. Cole (1970) studied 385 physicists who were highly cited in the Science Citation Index 

and found that scientists with high numbers of publications were more likely (51 percent) to cite 
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authors in departments of distinguished rank compared with scientists with low numbers of 

publications (27 percent cited authors from distinguished departments).  This is related to the so-

called Matthew Effect, coined by Merton (1968) to refer to the status-enhancement effects of 

recognition.  Derived from the Biblical phrase of the book of Matthew, "For unto every one that hath 

shall be given...but from him that hath not shall be taken away even that which he hath" (Matthew, 

25: 29), Merton posited that the more one’s work is cited, the more likely one’s future work will be 

cited simply due to prestige factors. 

Allison and Stewart (1974) used cross-sectional data to detect evidence for the 

accumulative advantage hypothesis.  They examined citation patterns for 1,947 biologists, 

mathematicians, chemists, and physicists obtained through a probability sample and found a strong 

(positive) relationship between career age and the number of citations.     

Allison, Long, and Krauze (1982) examined two sets of longitudinal data to test the 

accumulative advantages hypothesis: 239 chemists who earned their Ph.D.s between 1955 and 

1961 and 557 male biochemists who received doctorates in 1957 or 1958 and 1962 or 1963.  They 

found a strong tendency toward greater variation (and inequity) in publication counts among the 

scientists with increased professional age.  The scientists’ older publications were cited with less 

inequality (i.e., less variation in citation across scientists’ works) than their more recent work. 

In sum, there does appear to be something to the notion of the Matthew Effect in the 

citation to an eminent scholar’s work.   Like the prestige models, however, the accumulative 

advantages argument places emphasis on the prestige and structural advantages of being located 

at a highly visible department to explain the productivity increase.  Equally plausible, however, is 

that the collaborative patterns and the exchange of social and human capital opportunities (even 

considering lower teaching course loads and more travel money) that allows these researchers to 

be productive. 

2.2.3 Social Network Models 
 

Some of the earliest work recognizing the importance of the social network to science and 

scientists was performed by Derek de Solla Price (1963) and Diana Crane (1968b;  1972b) on the 

concept of invisible colleges of scientists—roughly what Rogers and Bozeman (Rogers and 
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Bozeman, 2001; Bozeman and Rogers, 2002) call knowledge value collectives.  Invisible colleges 

(Price, 1963; Crane,  1968b, 1972b; Carley, Hummon, and Harty, 1993; Hummon and Carley, 

1993; Persson and Beckmann, 1995) are built on interpersonal relationships that facilitate various 

forms of collaboration (Katz and Martin, 1997) and communication among groups of scientists and 

permit them to exchange ideas and keep tabs on research within their own or adjacent fields.  

Invisible colleges depart conceptually from knowledge value collectives or other social network 

theories, in that they represent the “in-group” or prestige or power group within the field—the very 

core that those on the outside seek to emulate and who are enormously productive (Price and 

Beaver, 1966; Faust, 1997).  The invisible colleges and the venues in which they operate—

conferences, institutes, working groups, electronic communications—constitute both social inputs 

and outputs for individual scientists as well as science as a whole.  This line of research recognizes 

that intellectual and scientific development occurs before, during, and after publication, and 

stresses that the all three are critical links in the knowledge chain (Merton, 1957b; Price, 1963).   

 Because of logistical complexities, empirical work on invisible colleges is rare, with few 

exceptions of note.  Diana Crane (Crane, 1968; Crane, 1972) examined the communication 

patterns of rural sociologists in the diffusion of agricultural innovation.  She traced direct and 

indirect ties in determining that a small group of productive scientists are directly interconnected 

with one another and attract an outer ring of less (or otherwise) productive scientists into indirect 

communication and influence.  Mullins (1968) concludes from his comparison of communication 

ties among scientists that disciplinary orientation has obvious importance, but that scientists often 

communicate informally with scientists from other fields as well.  Crane (1968b) suggests such 

influences are cultivated by scientists who wish to maintain exposure to new ideas in other areas of 

science.  She found that scientists, in identifying others that influence their work, are just as likely to 

select scientists outside their disciplinary borders as within.  

For Bozeman (Bozeman, Dietz, and Gaughan, 2001), scientific and technical human 

capital is embedded in social and professional networks or technological communities (Rappa and 

Debackere, 1992; Debackere and Rappa, 1994; Liyanage, 1995) of creators and users of 

knowledge called “knowledge value collectives.”  These networks integrate and shape scientific 
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careers.  They provide knowledge of scientists’ and engineers’ work activities, serve as resources 

for job opportunities and job mobility, and reveal possible applications for scientific and technical 

work products.   Bozeman and Rogers define a knowledge value collective as a set of individuals 

connected by their uses of a body of scientific and technical knowledge5.  It is a loosely coupled 

group of knowledge producers and users (e.g. scientists, manufacturers, lab technicians, students) 

pursuing a unifying knowledge goal (e.g. understanding the physical properties of superconducting 

materials) but to diverse ends (e.g. curiosity, application, product development, skills development) 

through the use and transformation of knowledge.   

Despite the difficulties posed by social networks as a research method, what is most 

interesting about them for this research project, is that they place the productivity of individuals in 

relation to the productivity of the larger community of scientists working on similar problems.  Due 

to the difficulty in operationalizing knowledge value collectives or social networks, this research 

focuses on federally funded centers as a proxy for at least one form (albeit an organizationally or 

interorganizationally delimited one) of social network.  

What scholars like Price and Crane did not explore, however, is the nature and functioning 

of those links themselves.  Best known for their consideration of this topic are Mark Granovetter 

(1973) and Ronald Burt (1992; 1997a; 1997b).  Granovetter was interested in explaining how 

people get jobs through social networks and observed that they more often got them through 

distant social relations rather than proximate.  He argued that “weak ties” (e.g., friend of a friend) 

represent social resources not available through stronger ties (e.g., family).  People who have 

strong ties tend to share mutual friends and professional contacts; people with weak ties tend not 

to (Granovetter, 1973; Constant, Sproull, and Kiesler, 1996).   

 

2.2.4 Innate Motivation 
 

                                                 
5 For detailed treatment of the knowledge value collective and related concepts see Rogers and 
Bozeman (2001) and Bozeman and Rogers (2002). 
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From the realm of psychology, as early as the 1950s, Ann Roe (1953; 1956) was 

investigating the psychological characteristics of eminent scientists.  She formulated a dizzying set 

of propositions concerning the personality traits of, for example, theoretical versus experimental 

physicists (all men).  Roe (1953) consistently found that the eminent scientists she studied had an 

intense devotion to their work.  Building on this work, Cole and Cole (1973) proposed the concept 

of the “sacred spark”—a largely intrinsically based argument of what motivates productive 

researchers.  The Coles observed that many of the most productive scholars were driven by their 

own interest in the phenomena they studied and by the love of conducting research.  However, and 

Bayer and Folger (1966) later noted, “…measures of intellectual ability or personality nearly always 

show very low correlations with productivity…It could be argued that adequate measures of 

scientific ability have not yet been developed, but this remains to be demonstrated” (p. 388).  

Through an early use of the Science Citation Index, they found that citation counts had a low but 

positive correlation with ratings of the quality of biochemists’ graduate education, but no relation to 

measured I.Q. score. 

 

2.2.5 Life Cycle and Life Course 
 

Despite some good attempts, the extant literature has not managed to fully capture the 

dynamic nature of these career flows over time and across research contexts.  Careers are 

inherently dynamic—evolving and intersecting in planned and unplanned ways, but traditional 

research evaluation models often view them as static or, at best, additive and cumulative over time.     

Life cycle models attempt to address this problem by viewing the careers of scientists as a 

longitudinal function of the individual’s skill levels and his or her incentives to act productively 

(Diamond, 1984; 1986).  The concept originated in human capital theory from an economics 

tradition (Becker, 1964), which sought to relate investments in human beings (education, training, 

job and life experiences, and personal health) to an individual’s earnings trajectory.  As the 

argument goes, at earlier stages of career building, productivity incentives are strong while skills 

are growing.  At the early to middle stages, both incentives and skills are strong as productivity 
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peaks.  And at middle to later stages, both wane, as does productivity (Levin and Stephan, 1991; 

Stephan and Levin, 1997; Simonton, 1997).   

Clemente (1973) investigated the productivity of 2,205 Ph.D. sociologists who were 

members of the American Sociological Association in 1970 and found a negative correlation 

between age at first publication and later productivity, a weak negative relationship between age at 

Ph.D. and productivity, and a positive relationship between publication activity before receipt of the 

Ph.D. and subsequent productivity.  

After Clemente’s work, age6 of the researcher came to dominate the work on productivity 

as exemplified by Diamond (1983; 1986), Simonton (1990; 1992), and Stephan and Levin (Levin 

and Stephan, 1989; Levin and  Stephan, 1991; Stephan and Levin, 1997a).  Cole (1979), through 

an examination of cross-sectional data, found a slight downward curvilinear relationship between 

age and publication output for 610 researchers in six fields of science.  However, he also found, 

using data on 497 mathematicians who earned doctorates between 1947 and 1950, no drop off in 

productivity after 25 years.  In fact, he found that the later work was more heavily cited than earlier 

work. 

Bayer and Smart (1991) studied the career coauthorship patterns of 150 male chemists 

who received their Ph.D.s in 1960-62.  They found that the proportion of single-authored papers 

regularly declines over the career, as does the proportion of dual-authored papers.  Non-first-

named authorship roles are frequent in the first two years of the post Ph.D. career, drop 

substantially after two years, and then increase substantially over the rest of the career.  Multi-

authored works dramatically increases over time, exceeding one-half of all papers for the most 

recent six-year career period.   

Levin and Stephan (1996), who used longitudinal data from the Survey of Doctorate 

Recipients, found evidence in five of six scientific fields that scientists become less productive as 

they age.  They conclude that research activity over the life cycle appears to be investment 

                                                 
6 There is much debate about the relationship between age and research productivity.  Some 
(Stephan and Levin, 1997) have observed a quadratic or logarithmic shape where productivity 
peaks in early to mid career.  Others (Hunter and Kuh, 1987) refer to a “saddle shape” where 
productivity peaks twice.  Still others suggest productivity can best be represented by a higher 
order polynomial (Simonton, 1990; 1992; 1997) with multiple productivity peaks.   
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motivated.  Although there is plenty of empirical evidence to support this notion of diminishing 

marginal rates of productivity, there is some evidence to the contrary (Hunter and Kuh, 1987; 

Simonton, 1990; 1992; 1997) and such models have failed to explain much variation in productivity 

(Stephan, 1996).  Moreover, as Stephan and Levin (1997) have pointed out, many of these life 

cycle models lack sufficient attention to the research process and the institutional setting of the 

process—something, incidentally, more akin to the concept of scientific and technical human 

capital.  

Life course models can be thought of as an enhancement or conceptual expansion of life 

cycle models.  The most important contribution of life course theories to the understanding of the 

scientific careers is the notion that human lives are linked or interdependent with other each other, 

and—not just statically—but dynamically over time.  Merton ([1965] 1993) recognized this in titling 

his book, On The Shoulders of Giants, in which he illustrates how Newton made his intellectual 

advances using the contributions of his scientific peers and forefathers.  Elaborated by Elder and 

Pavalko (1993) and Elder (1994), the life course paradigm views individual lives as affected by the 

historical period in which events occur, the developmental timing and sequence of events, and the 

involvement of the individual in relevant social relationships.  Elder refers to the concept of human 

agency—which, as applied to science, can be thought of as the unique set of abilities that each 

scientist uses to translate his or her training and skills into scientific outputs.  In a sense, human 

agency is a recognition that individuals vary in the predispositions (both strengths and 

weaknesses) they bring to the construction of a life course.   

 

 
 

 
2.2.6 Education and Human Resources 

 

Researchers have also called attention to the role of early career collaboration and 

mentoring as spurs to longer-term scientific productivity.  Long and McGinnis (1985) found that 

predoctoral collaboration with mentors had significant and lasting effects on the careers of 

biochemists.  The productivity of the mentor was positively and strongly related to the biochemists’ 



19 

own publication productivity six years later.  For students who had not collaborated with their 

mentor, there was no relationship.  Similarly, Reskin (1977), studying chemists who obtained their 

Ph.D. in the late 1950s, found graduates from higher “caliber” departments were more likely to 

have collaborated with their doctoral mentor and showed higher productivity after their first 

postdoctoral decade than graduates from lesser-prestige departments.   

Zuckerman (1977) revealed that Nobel Prize winners viewed their doctoral apprenticeship 

as crucial to their later success.  Specifically, the laureates pointed to its role in building broad skills 

such as knowledge of proper standards of achievement, tastes in choice of research problems, and 

confidence in their work and abilities. 

Hunter and Kuh (1987), in summarizing the literature, suggest that socialization in a 

research environment is central to future productivity.  The development of quality peer relations, 

the existence of a network of productive role models, the formation of a research orientation, 

experience as a graduate research assistant, and influence of team-based research learning 

activities all contribute positively to future career productivity.   

 

2.2.7 Integrative Approaches 
 

Stephan and Levin (1992) attempted to integrate the work of several research traditions by 

pointing to a utility-based view of scientific productivity where scientists pursue the extrinsic 

rewards of recognition and prestige among peers but also the intrinsic rewards of puzzle solving.  

They proposed three major motivators to productivity that interact with age over scientists’ careers: 

the puzzle (intrinsic pleasure), the ribbon (recognition), and the gold (rewards).  They argued that 

three broad areas constitute something of a self-governing incentive system for scientists to 

behave in socially beneficial ways.  Scientists continue investing in their own productivity until a 

point in the life course where further investments are unlikely to show “profitable” returns. 

Most recently, there has been growing recognition in policy circles of a need to place more 

research emphasis on the socially-embedded nature of knowledge production (e.g.,  Callon, et al., 

1991; Callon and Law, 1989; Callon, 1992; Courtial, Chlik, and Callon, 1994; Kostoff, 1994; Kostoff, 

Averch, and Chubin, 1994; Cozzens, et al., 1994; Sarewitz, 1996).  In fact, as knowledge and 
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information become more central to the functioning of the economy, they become more central to 

societal and social well-being and, thus, to policy.   It could be argued that policymakers, in 

awarding grants for scientific research projects, should liken the process to putting bulbs in the 

ground—bulbs that grow scientific capacity over the long term even if they do not outwardly flourish 

in the immediate term.  By favoring capacity—in the form principally of the generation of human 

and social capital—policymakers could be emphasizing policy-relevant variables that encompass 

not just knowledge outputs, economic outputs, or social outputs, but all three (Dietz, 2000).  

Arguably, then, public R&D evaluation should center not wholly on economic value or even 

improvements in state-of-the-art, but on the growth of capacity and S&T human capital (Bozeman 

and Rogers, 2002).   

 The S&T human capital approach to scientific productivity builds most prominently on the 

intellectual tradition of Crane’s social network approach and others in the collaborative view of 

scientific productivity over the life course and Elder’s work on life course theory.  The S&T human 

capital perspective puts more weight on the human and social assets or endowments that 

scientists bring to their work than do previous models.  Some are obvious like the formal assets, 

such as educational credentials and grant awards, that scientists and engineers accumulate.  Other 

assets are more subtle, less formal, but perhaps even more important.  Each scientist and engineer 

can be thought of as a unique embodiment of “S&T human capital”—a walking set of knowledge, 

skills, technical know-how and, just as important, a set of sustained network communications, often 

dense in pattern and international in scope (Dietz, et al., 2000).  In previous work (Bozeman and 

Rogers, 2000; Dietz, 2000; Bozeman, Dietz, and Gaughan, 2001), we outlined an S&T human 

capital model as an alternative model for research evaluation, originating in response to the 

limitations of traditional economic, peer assessment, and case study approaches.  S&T human 

capital includes not only the researcher’s human capital but also the social capital he or she draws 

upon in creating knowledge and interacting in various social and professional contexts.  It includes 

not just the educational credentials normally recognized in traditional human capital models (Mincer 

1958; Becker, 1962; Schultz, 1963; Schultz, 1971; Coleman, 1993; Sweetland, 1996; Mincer 1997) 

but the researchers’ tacit knowledge (Polanyi, 1967; Polanyi, 1969), craft knowledge, and know-
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how.  And, essential to the effective exploitation of all of these human capital endowments is the 

social capital (Bourdieu, 1986; Bourdieu and Wacquant, 1992; Coleman, 1988; Coleman, 1990; 

Nordhaug, 1993; Putnam, 1993; Spagnolo, 1999) that scientists continually exercise in engaging 

their interests.  These endowments not only make the study of scientists’ and engineers’ career 

trajectories more difficult than other professionals (e.g., less amenable to standard labor models) 

but more nuanced and more challenging.  The movement of, and constant reshaping of S&T 

human capital is, arguably, a vital element of scientific discovery, technological innovation, and 

even economic development.  As of yet, few studies have attempted to apply the concept of social 

capital to scientific research, some exceptions being Walker, Kogut, and Shan (1997); Gabbay and 

Zuckerman (1998); Nahapiet and Ghoshal (1998); Tsai and Ghoshal (1998); Bozeman, Dietz, and 

Gaughan (2001); and Dietz (2000).    

  

2.3 Limitations of the Literature 

 

 Most of the literature on academic productivity stems from the 1960s and 1970s with less 

work in the 1980s and 1990s.  Many of these studies tended to focus on a small number of, usually 

male, researchers and/or a small number of institutions.  Moreover, studies with titles containing 

the word “career” are often about one job change—the first job after the doctorate, a change from a 

current position to the next, or a move to a higher job stature or status—and it effects on 

productivity.  Few studies examine engineers, the effect of the proportion of one’s career working in 

academia versus industry and government jobs, and patents as a productivity indicator.   

 Most often studies of patents and patenting involve cross-national comparisons (NSB, 

2000; Radosevic and Auriol, 1999; Narin and Olivastro, 1998; Narin, Hamilton, and Olivastro, 1997; 

Graves and Langowitz, 1996), examinations of firm level behaviors (Klette and Griliches, 2000; 

Patel and Vega, 1999; Narin, 1995; Griliches, 1989; NSF, 1978), and are used in various studies of 

innovation and technological change (Kayl, 1999; Narin and Breitzman, 1995; Griliches, 1984; 

Pavitt, 1983, Schmookler, 1966).   
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 In all, because of the limited choice of variables in the research (chiefly of interest to 

sociologists) and the inability to explain much variation in productivity, the utility of the body of 

literature remains of questionable value to policymakers.  Thus, it may be that the way the problem 

has been framed has limited scholarly thinking about the links between productivity and human 

resources capacity building—something increasingly linked to science policy, economic 

development, and national innovation policies (Branscomb and Keller, 1998; Nelson, 1993; Nelson 

and Winter, 1982).   

 This, in turn, affects how problems and issues in science policy are conceived and the 

mental suppositions that inform research evaluation.  The approach embodied in this study is 

different in this respect.  To study the careers of scientists and engineers is to study how academia, 

industry, and government are often braided together through the knowledge embodied in one 

person over the life course.   

The life course model, with all of its subtleties about the sequencing and timing of career 

events, seems to be more in line with the notion of scientific and technical human capital.  And, 

thus, there are several important implications of scientific and technical human capital theory for 

the study of careers that span academia, industry and government.  First, scientists, engineers, 

and technologists certainly do not exist in splendid isolation.  They take part in various social 

institutions and organizations and much of their work is performed in that context.  It does not make 

sense to reduce their capacity to create and use knowledge to one or two jobs or to the prestige of 

the organizations of which they are a part.  Nor does it make sense to separate individual actors in 

the technical enterprise from their individual abilities and knowledge.  Second, collaboration across 

organizational contexts (or the movement of personnel from one context to another) is a primary 

setting for the formation of fresh human capital through the interaction of its members and by the 

mutual tapping and flow of knowledge between them.  Third, human lives are historical, ongoing, 

and linked.  The paths and intersections of the lives of researchers affect their thinking, knowledge, 

and craft.  The paths they choose have implications for the careers they build and for the scientific 

and technical human capital they create.   
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This is where S&T human capital theory is distinct from the accumulative advantages 

hypothesis, for example.  S&T human capital puts more theoretical weight on the interpersonal 

social and human capital exchanges among researchers, as opposed to the accumulative 

advantages school of thought, which places more importance on a succession of job- and 

organization-related factors and prestige factors that promote or impede career attainment.  

Finally, scientific and technical human capital facilitates the creation of greater capacity to 

generate knowledge and the diffusion of that knowledge among a wider community.  It is in this 

way that study of careers can be viewed as one alternative to traditional models for the valuation of 

scientific investments.   

 

2.4 Implications of the Literature for this Research 

 

 Taken as a whole, the extant literature suggests several factors that may be fertile ground 

for this study.  Most of the studies on prestige and accumulative advantages suggest that 

productivity does not (or only weakly) predict the prestige of the next job department.  Yet, when 

moving to a more prestigious (from a less prestigious) department, subsequent productivity does 

seem to increase.  However, many of these studies use sampling frameworks that are tied to 

specific points in time, specific departments and institutions, or membership in specific disciplinary 

departments, making it difficult to duplicate on the scale and breadth of this study (which includes 

5,490 specific job changes, starting in 1943).  The RVM dataset is more diverse in terms of the 

scientists and engineering fields represented and the breadth of career length and institutional 

affiliation.  Nevertheless, it does seem wise to make some attempt to control for institutional 

prestige.  For example, research and development resource rich versus poor academic 

environments in which the scientist or engineer completed his or her doctoral education can be 

controlled as a way of examining the accumulative advantages hypothesis in the literature.  

 The social network approaches suggest that pattern and shape of social networks may be 

related to productivity and citation rates of scientists, but it is not clear if the network affects the 

productivity or the productivity affects the network membership.  Unfortunately, social networks are 
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known to be difficult to operationalize due to their exponentially increasing complexity as one maps 

out from ego and the difficulty in determining just where a network begins and ends.  Nonetheless, 

the logic of the social network can at least be embodied through an examination of which of the 

centers included in this study are associated with relatively higher or lower levels of productivity.   

 Life cycle and life course approaches provide an important intellectual foundation at 

looking at careers as a whole over time. The life cycle and life course literature suggest that age 

affects productivity but this is in some dispute in terms of the nature of the relationship—most 

suggesting productivity is on the increase at early career ages and on the decrease in late career 

ages but it remains unclear what happens in the middle.  Unfortunately, year of birth was recorded 

on only 34 percent of the CVs analyzed and it may be that this is correlated with those who got 

their doctorates in earlier decades when the practice of including personal information on the CV 

was more typical.  Since productivity for the entire career will be examined for this dissertation, age 

becomes less important, especially if age-cohort effects are controlled for and productivity is 

examined as a rate (adjusted by career length). 

 The education and human resources approaches primarily suggest that working with 

strong and productive mentors, in a research-rich environment, and predoctoral publications will 

affect later productivity.  This can be tested to some extent through examining the effects of 

predoctoral publications and postdoctoral research positions. 

 Finally, the integrative approaches give rise to much of the logic of this dissertation, 

including the central hypothesis that diverse job experiences allow for unique arrays of social 

capital ties and human capital endowments that yield higher productivity.  This is not to say that 

prestige, accumulative advantages, social network, and life course approaches are incorrect.  But it 

may mean that they account for only part of the picture.  And, thus, it may be worthwhile to 

examine career sequences as complementary or additive to the effects found in the previous 

literature.    
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CHAPTER 3 

 
DATA COLLECTION AND DESCRIPTION 

 

 

3.1 Data Collection Procedures 

  

3.1.1 Data Sources 
 

 This study makes use of a collection and coding of curriculum vitae (CVs) of scientists and 

engineers and an analysis of patent data from the US Patent and Trademark Office.  Research 

associates who were part of the RVM program collected CVs from researchers affiliated with 90 

NSF research centers, 2 DOE facilities, and two centers funded by the Department of Defense.  

We collected CVs from a total of 3,604 research scientists and engineers and graduate students 

working in these centers between January and October 2000.  Each respondent received up to four 

email requests for his or her CV, which also contained a brief description of the study and 

assurances that the data would not be disclosed to third parties.  320 were dropped from the 

sample when correct email addresses could not be located.  A total of 1,200 CVs were collected for 

an overall response rate of 36.5 percent 7 (see Table 1 for response rates by center).  Because this 

study focuses on the careers of scientists and engineers only, CVs from undergraduate and 

graduate students and administrative support staff were deleted.  The final number of CVs coded 

and analyzed for this study was 956. 

 Undergraduate, master's, and doctoral degree research assistants, who were supervised 

by two senior doctoral students, coded the CVs.  Coders were introduced and trained one full day 

                                                 
7 CVs were requested from scientists and engineers, students, and administrative support staff.  
The CVs from the latter two groups were not used in this study.  Because it is difficult to determine 
what proportion of CVs requested were from students and administrative support staff, it is believed 
that the overall response rate for scientists and engineers exceeds 36.5 percent.  Students and 
administrative support staff were less likely to believe that the email request was genuinely 
targeted at them.  In addition, a number of responses from students were received stating that they 
did not have a CV. 
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in a web-based data entry form.  When coders had technical questions they were directed to 

inquire to one of the doctoral student supervisors.  The doctoral students kept a log of all coding 

problems and answers to frequently asked coding questions.  The doctoral student supervisors 

extensively checked the data as they were being input into the system.    

 

3.1.2 Pretest, Coding Procedures, and Intercoder Reliability Rates  
 

 Between October 1999 and February 2000, we conducted a pilot study in order to prepare 

for the NSF and DOE centers data collection.  This pilot study included principal investigators from 

the NSF Biotechnology program, a collection of CVs from industry professionals working in 

biotechnology-related areas, a search of the internet for biotechnology-related CVs, and a 

collection of CVs from the Microelectronics Research Center (MIRC) at the Georgia Institute of 

Technology and its major inter-university collaborative research program, the Interconnect Focus 

Center (IFC) (these latter two centers were retained in the data analysis for this study).   

 The pilot study was completed in March 2000 and, even though not fully used in this 

analysis, it is perhaps useful to review what was learned from this study. For the NSF, industry, and 

research center collections, an email message was sent directly to potential respondents who were 

asked to submit a full CV via email.  In contrast, for the Internet search, various search engines and 

search phrases were tested to identify a subgroup of web-posted CVs.  Of the sample group, 50 

CVs were solicited from industry scientists and engineers, 200 from NSF-funded academic 

researchers, 100 from the web, and all faculty and graduate students affiliated with the multi-

institutional research center and its primary research program (n=210).  

To develop a preliminary coding protocol, a subset of the CVs was reviewed from each of 

the four respondent groups to identify problems and potential solutions.  We identified over 30 

potentially useful variable “sets.”  However, many of these variable sets included multiple (i.e., up 

to 10) degrees received, multiple (i.e., up to 600) publications, and so forth.  The number of 

variables for each respondent depends, unlike a questionnaire, on the length of the CV.  Junior 

researchers could have as few as 25 variables per CV; seasoned veterans could have as many as 

3,000.  Several practice coding exercises were conducted to obtain information on intercoder 
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reliability, to improve the coding protocol and process, and to minimize coding time.   After these 

preliminary steps, we revised the coding protocol, retrained the coders, and proceeded to code the 

281 CVs collected from the four respondent groups.  The goal was to design the coding process so 

that an undergraduate student could be trained to code the typical CV with minimal reliability 

problems in 30 minutes or less.  

To test intercoder reliability, the work of five coders on a subset of 37 variables from two 

sets of 10 CVs was examined.  We used Crittenden and Hill’s (1971) measure of intercoder 

reliability (Rs) to test for intercoder reliability.  Tables 2 and 3 summarize the results from the first 

preliminary coding tests.  Overall, the average reliability coefficient value of .766 on the first round 

of coding suggested that further refinement of the protocol and coding scheme was needed.  While 

there is no widely accepted “threshold level” of intercoder reliability, a coefficient below .850 should 

be considered problematic; a coefficient below .600 is regarded as unacceptable.  Only 16 out of 

37 items satisfied the .850 requirement.  Moreover, 7 out of 37 items fell below .600.  The principal 

coding problems stemmed from the limited standardization in CV formats, missing information, and 

coder error or the misinterpretation of data.   

 A closer inspection of the errors, however, demonstrated that many of them were due to 

coders coding information out of order (e.g., coding the second publication in the third publication 

variable spot), which caused a succession of errors compounding the problem and depressing 

intercoder reliability (even if the coding was technically accurate after the initial error occurred).  

This problem in effect served to artificially lower the intercoder reliability rates because coding 

problems such as these are not errors per se and do not affect data quality if the data are 

reordered after the fact.  In addition, coders had significant problems with the original codebook, 

which was revised and resubmitted to a second test (which is labeled coding trial 2 in Tables 2 and 

3) using the same coders but new CVs.   We expected there would be improvements due to the 

enhanced codebook as well as learning effects, and we were correct.  Tables 2 and 3 show that 

the mean intercoder reliability rate increased to .805.  There were 15 items that scored above the 

.850 level and three that scored below .600.  While, in general, these intercoder reliability rates 

may be viewed as on the low side, we expected rates lower than those achieved in more typical 
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questionnaire coding due to the complex nature of the coding task.  In addition, the actual 

intercoder reliability is quite a bit higher because the rates reported include errors of chronological 

ordering of data elements.  But to address the problem directly, a more elaborate coder training 

program was put in place and coders were more closely supervised than originally expected.  

Finally, to ensure high quality data, one of the senior doctoral students was put in charge of 

periodic data checking and ongoing retraining of the coders when errors were detected.   

 

3.1.3 Data Cleaning 
 

 Because of the complexity of the coding task, I undertook an extensive project of cleaning 

the data.  For any case where there was extensive missing information or anomalous data (data 

out of range), the CV was retrieved and reexamined.  The dataset was corrected when problems 

were discovered.  I also analyzed records for each coder who was discovered to have made 

frequent errors and made appropriate corrections to the dataset.  In many cases where there were 

extensive missing data or where the CV appeared to be abbreviated, I searched the relevant 

website for a more complete and fully annotated CV.  The records were updated appropriately.  

Variables where high coding errors (due to task complexity) were detected (e.g., job type variables) 

were rechecked for accuracy.   Finally, I resorted all records to correct for chronological coding 

errors detected in the pilot study.  The final dataset contains approximately 3400 variables. 

 

3.1.4 Patent Data Collection 
 

 I collected data from the US Patent and Trademark Office (USPTO) online database 

containing information about patents from 1976 to the present.  Patents granted prior to 1976 were 

retrieved from the CV (although it is acknowledged that this is a less reliable source).  These data 

contain information about other patents that are cited in the applications as well as scientific and 

technical publications that are cited.  The data provide a description of the patent and its claims, 

the inventor(s) and assignee(s).   For each of the 956 scientists and engineers, the database was 

searched for patent information.  I tried several variations on each researcher’s name (e.g., John 
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Doe, John S. Doe, John Scott Doe, J. Doe, J.S. Doe, and Doe) until the correct records were 

located.  The year of the patent application and the institutional assignee were matched to the 

respondent’s CV job record to ensure the correct person was identified. 

 The resulting dataset, which includes the CV data as well as patent data, is referred to as 

the RVM dataset in this dissertation study. 

 

3.1.5 Project Support and Background 
  

 This research is supported through National Science Foundation and the US Department 

of Energy grants awarded to Barry Bozeman and Juan Rogers under the Research Value Mapping 

(RVM) Program within the School of Public Policy at the Georgia Institute of Technology.  The RVM 

Program began in 1996 (Kingsley, Bozeman, and Coker, 1996) using 30 intensive case studies of 

research projects as sources of both qualitative and quantitative information about the nature and 

intensity of the projects’ scientific and socioeconomic impacts.  The Phase I8 work, sponsored by 

the US Department of Energy’s (DOE) Office of Science, focused entirely on DOE-sponsored 

projects in government and university labs.  Phase II is based on continued funding from DOE with 

new funding from the National Science Foundation (NSF) and focused on knowledge impacts using 

the curriculum vitae of scientists and engineers primarily affiliated with NSF-funded centers.  The 

Phase II population is made up of researchers affiliated with NSF science and technology centers, 

engineering research centers, and industry-university cooperative research centers and several 

Department of Energy and Department of Defense centers.  This dissertation research is part of 

Phase II.  

  

                                                 
8 For more information on RVM Phase I, see Bozeman, et al. (1997; 1998; 1999). 
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3.2 Description of Data 

 

3.2.1 Sample 
 

 The RVM Program data collection was designed to represent projects funded by NSF and 

DOE and primarily reflects their need to understand the projects they fund.  The population is made 

up of scientists and engineers working at federally funded research centers when the data were 

collected in 2000.   

 However, because many of the research centers included in this study are purposively 

interdisciplinary and problem driven in mission, it is expected that the data more heavily represent 

researchers working in interdisciplinary fields of science and engineering.   It is also plausible to 

suspect that the researchers are also more likely to have had industrial jobs than other academic 

researchers (due to the focus of the NSF and DOD centers in particular on building bridges to 

industry) and with more overall external grant support (again because they are part of government 

funded centers) than the academic population in general.  Finally, many of the centers (although by 

no means all) are located at elite research universities.  So, although the data cannot be 

generalized to all scientists and engineers in all fields, they may be more relevant to policymakers 

at these important funding agencies. 

   

3.2.2 Demographic Information 
 

 Approximately 12 percent of the respondents in the RVM dataset are women and 87 

percent are men (see Table 4 for descriptive statistics on all major variables included in this study).  

This indicates that men are somewhat overrepresented in the RVM dataset.  According to NSF, 

approximately 20 percent of all doctoral natural9 scientists and engineers in 2001 were women 

(NSF 2001, Appendix Table 5).   

                                                 
9 This figure excludes social and behavioral scientists since there are few in the RVM dataset and 
were not the focus of the RVM study. 
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 Year of birth was indicated on 34 percent of the CVs.  For the CVs that did contain this 

information, the range was 1923 to 1974 and the mean was 1950.  Race and ethnicity information 

is typically not recorded on CVs and was not collected for this study.  In terms of international 

scientists and engineers, approximately, 13 percent of recipients received their doctorates from 

foreign institutions and 27 percent received their bachelor’s degree from a foreign institution.  To 

put this in perspective, NSF reports that in 1999 approximately 20 percent of academic tenure or 

non-tenure track faculty scientists and engineers (in all fields) were non-native born (SESTAT, 

1999).  In engineering, the proportion was 34 percent (NSF, 1999).  

 

3.2.3 Educational Background 
 

 In terms of disciplinary field differences, approximately 45 percent of the respondents in the 

RVM dataset earned their doctorates in engineering, 28 percent in the physical and mathematical 

sciences, 11 percent in the biological and agricultural sciences, 5 percent in the social and 

behavioral sciences, 5 percent in computer and information science, and 2 percent in the medical 

or health sciences (including medical doctor degrees (M.D.s)).  For approximately 5 percent, the 

field of doctorate was missing.   

 In contrast, according to the National Science Foundation Survey of Earned Doctorates 

1999, of all doctorate scientists and engineers working in academic institutions in the U.S., 

approximately 11 percent in earned their doctorates in engineering, 22 percent in the physical and 

mathematical sciences, 30 percent in the biological and agricultural sciences, 32 percent earned 

their doctorates in the social and behavioral sciences, 2 percent in computer and information 

science, and 2 percent in the medical or health sciences (NSF 2002, Appendix Table 19).  Thus, 

the RVM dataset has a substantially higher proportion of engineers and physical and mathematical 

scientists and a lower proportion of biological and social and behavioral scientists than the overall 

US doctoral scientist and engineering academic workforce.   
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3.2.4 Career Age and Cohorts 
  

 The length of the respondents’ careers (measured in years since doctorate or equivalent 

(e.g. M.D.)) ranged from 1 to 58 with a mean of 18 years (standard deviation 11.5).  To test for 

effects of institutional or other educational changes over time, the respondents were divided into 

quintiles.  Roughly one-fifth received their doctorate before 1972, one-fifth between 1972 and 1980, 

one-fifth between 1981-1987, one-fifth between 1988 and 1993, and one-fifth between 1994 and 

2000. 

 

3.2.5 Publications and Patents 
 

 The total number of publications per respondent ranged from 0 to 628 with a mean of 75 

(standard deviation 92) and a median of 44.  The average number of publications per year ranged 

from 0 to 34.  Figure 1 shows that by seven years after the doctorate, the average publication rate 

was 2.8 per year.  The distribution of publications across scientist and engineers is skewed 

(skewness10 value of 2.59 for the total number of publications; 2.49 for the number of publications 

as adjusted by career length in years), suggesting that there are important extreme cases that 

make the right tail of the distribution of publications longer than is the case with the normal 

distribution.   

 

                                                 
10 Skewness is a measure of the symmetry or asymmetry of a distribution.  It takes on a value of 
zero when the distribution is normal. A high positive value indicates a long right tail, which is the 
case with the publications variable.  
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Figure 1.  Average Number of Publications Per Year by Career Age, All Respondents 
 

 The total number of patents per respondent ranged from 0 to 141 with a mean of 2.7 

patents per respondent (standard deviation 8.2) and a median of zero.  Approximately 41 percent 

of respondents had been granted one or more patent.  As Figure 2 shows, the distribution of 

patents among scientists and engineers is highly skewed. 11  Again this suggests non-normality and 

a long right tail in the distribution of patents among scientists and engineers. 

 
 

                                                 
11 Skewness value of 9.02 for total number of patents; and a value of 6.68 for number of patents 
granted as a function of career length (i.e., patent rate). 
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Figure 2.  Frequency of Total Number of Patents per Respondent 
 
 

3.2.6 Jobs Positions and Institutions 
  

 The total number of jobs held by any given individual ranged from 0 to 26.  This includes all 

positions and jobs whether or not they were held concurrently.  In some cases, for example, a 

respondent was a full professor, department chair, director of a research center, and an industry 

consultant simultaneously.  This counted as four separate job positions12.  The mean number of job 

positions held over the career at the time the data were collected was 6.7 (standard deviation 3.7).  

The mean number of job institutions was 3.3.  As seen in Figure 3, the total number of jobs is 

skewed right.  The average numbers of job positions by job sector were 5.0 academic jobs, 1.2 

industry jobs, and .4 government jobs.   
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Figure 3.  Frequency of Total Number of Jobs Held 
 

3.2.7 Job Transformations 13 
 

In the RVM dataset as a whole, academic to academic job position transformations (i.e., 

either a singular or concurrent job position change) accounted for 62.5 percent of all job 

transformations.  Academic to industry job transformations accounted for 4.8 percent of all job 

transformations.  Academic to government transformations represented 2.9 percent of all 

transformations.  For any given researcher in an academic position, the likelihood that the following 

position will be in academia is .85, that it will be in industry is .07, and that the position will be in 

government is .04.  The remaining .04 represents the frequency of following an academic position 

within a consulting position (see Table 5). 

Industry to industry job transformations accounted for 4.5 percent of all job transformations.  

Industry to academic job transformations accounted for 8.1 percent of all job transformations.  

Industry to government transformations represented 1 percent of all transformations.  For any given 

researcher in an industry position, the likelihood that the following position will be in industry is .33, 

the likelihood that it will be in academia is .59, and the likelihood that it will be in government is .05.  

                                                 
13 The word “transformations” has been used here rather than “changes” in order to remind the 
reader that some jobs are held concurrently.  The word “changes” suggests that one has left a 
present position to take on a new position.  Transformations means a new job either held singularly 
or concurrently with other jobs. 
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The remaining 3 percent represents the frequency of following an academic position within a 

consulting position (see Table 5). 

Government to government job transformations accounted for 1.6 percent of all job 

transformations.  Government to academic job transformations accounted for 3.8 percent of all job 

transformations.  Government to industry transformations represented just 1 percent of all 

transformations (see Table 5).  For any given researcher in a government position, the likelihood 

that the following position will also be in government is .24, the likelihood it will be in academia is 

.58, and the likelihood it will be in industry is .15.  The remaining 3 percent represents the 

frequency of following a government position within a consulting position. 

 

3.2.8 Grants 
 

 The total number of grants awarded (see Figure 4) to respondents as either principal or co-

principal investigator ranged from 0 to 130 with a mean of 17.7 (standard deviation 16.2; skewness 

of 3.33).  Approximately 60 percent had listed no grants on their CVs.  For those who had grants, 

an average of 53 percent of the total were awarded by the federal government compared with 24 

percent from industry, and 23 from other sources such as private foundations or state and local 

entities.  
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Figure 4.  Frequency of Total Number of Grants per Respondent (includes only those with one or 
more grants) 
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CHAPTER 4 

 

RESEARCH QUESTIONS AND CONJECTURES 

 

 

4.1 Research Questions and Analyses 

 

The central research question of this dissertation is “what effects do intrasectoral and 

intersectoral  career patterns have on productivity (as measured in publication and patent counts) 

over the career life cycle?”  The central hypothesis to be tested—the “diversity” hypothesis—is 

derived from human and social capital theory: 

 

Diversity Hypothesis:  “Inter and intrasectoral changes in jobs throughout the career 

will result in higher research productivity (due to the opportunity provided to build 

human and social capital).” 

 

The main rival to the diversity hypothesis is the “homogeny”14 hypothesis: 

 

Homogeny Hypothesis: “Following the ‘traditional’ career path will yield higher 

productivity.  Scientists and engineers who exhibit a career pattern of relatively 

uninterrupted job sequences in academia will have higher publication productivity than 

those who do not.  Likewise, those with higher levels of career time in industrial jobs 

will have higher patent productivity (due to the differences in job incentives between 

academia, industry, and government).”    

 

                                                 
14 A term borrowed from biology meaning “correspondence in form or structure” (Random House 
College Dictionary, 1984) 
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Independent of the diversity and homogeny are two additional hypotheses—the  “education 

and training” hypothesis and the “precocity” hypothesis which state: 

 

Education and Training Hypothesis: “Early career experiences through postdoctoral 

research experiences will result in higher productivity (because they provide 

educational and human resources (i.e., human capital) building opportunities).” 

 

Precocity Hypothesis:  “Scientists and engineers who demonstrate early productivity by 

publishing before the doctorate will exhibit higher career productivity overall (due either 

to innate talent, working with highly productive scholars, higher quality graduate 

training, or other factors).”   

 

The analyses in this dissertation include an examination of (a) basic descriptive statistics, 

(b) Tobit models of publication and patent productivity, (c) a Poisson model of patent productivity, 

(d) an analysis of publication and patent productivity “stars” and how they differ from non-stars and 

from each other, (e) an examination of productivity changes in job transformations to and from 

industry, and (f) two preliminary Neural Network models. 

 

4.2 Constructs and Conjectures 

 

4.2.1 Diversity of Career Pattern 
  

 The effect of the diversity of career pattern on productivity will be measured by variables 

such as the number of job positions held over the course of a researcher’s career as adjusted by 

career length15, the proportion of the scholar’s career spent in industry and governmental jobs, the 

first job (industry or government) after the doctorate, and a dummy variable for those who have had 

                                                 
15 The square of this variable will also be included in the models to detect the possibility of a 
quadratic relationship between jobs and productivity.  That is, the possibility that too many jobs 
may be detrimental to one’s career. 
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at least one job in all three sectors (named the triple helix).  Under the diversity hypothesis it is 

expected that those with at least some non-zero proportion of the career spent working in industrial 

and governmental jobs will have higher overall productivity than those with relatively little or no time 

in industry and government.  Likewise, it is expected that the productivity of those who have 

worked in all three sectors will be higher than those who have not. 

 

4.2.2 Homogeny of the Career Pattern 
 

 A variable job “homogeny” was created to index the extent to which a career pattern more 

or less “conforms” to the norm.  All 5,490 job transformations were examined and conditional 

probabilities were constructed for all possible job transformations.  For example, of all respondents 

who held job type A, what are the relative frequencies with which they proceeded to job type B or C 

or D, etc.?  For each respondent a string of career conditional probabilities was constructed, 

summed, and divided by the total number of jobs that respondent had held over the career.   The 

result is a variable that measures how far from the norm a respondents career pattern is.  The 

variable has a possible range of 0 to 100.  In practice, the range of this variable was .35 to 72.47 

with a mean of 14.47 and a standard deviation of 18.10.  Individuals with higher values indicate 

more “typical” the career patterns. 

 Under the diversity hypothesis it is expected that homogeny will correlate negatively with 

productivity.  The inverse will be true if the homogeny rival hypothesis is true. 

 
4.2.3 Education and Training and Precocity 

 

 The education and training and precocity hypotheses are relatively straight forward in 

terms of variables and measurement.   Under the education and training hypothesis those 

individuals who have had a postdoctoral position16 are expected to have higher overall career 

                                                 
16 Initially, graduate assistantships were included in this hypothesis but were deleted from the 
model when little variance across cases was detected. 
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productivity than those who have not.  Likewise, those who publish the year of the doctorate or 

earlier are also expected to have higher overall career productivity. 
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CHAPTER 5 

 
 

DATA ANALYSIS 
 

 

In this chapter I analyze the data using quantitative approaches at multiple levels of 

analysis.  A relatively large number of approaches are used, in part, to contribute to the knowledge 

base about the strengths and weaknesses of these approaches for modeling career data collected 

from CVs.   

In 5.1, I present Tobit models where the dependent variable is the publication or patent 

rate and the independent variables are those used to test the hypotheses outlined previously.  The 

Tobit approach was chosen to address the censoring problem with career data.  In 5.2, a Poisson 

model (often used with count data) is examined as another approach to assessing patent 

productivity.  Both of these modeling approaches have their benefits and limitations.  In 5.3, I 

examine differences in means on career variables for those classified as publication and patent 

“stars.”  These are individuals whose productivity places them in the top ten percent of the 

distribution in terms of their publication and patent rates. In section 5.4, I examine the productivity 

effects of making job transformations to and from industry in order to test the diversity hypothesis 

from another perspective.  Finally, in section 5.5, I examine productivity rates by using a non-

parametric set of Neural Network models—which are useful when parametric approaches are of 

questionable value and when data are “noisy.” 

 
 
5.1 Tobit Models of Publication and Patent Productivity 

 

5.1.1 The Basic Tobit Model 
 

Tobit (Tobin, 1958) models are appropriate in cases where data are censored either from 

“below” (such as observing purchases of durable goods only when respondents having incomes 

exceeding an arbitrary level are included) or “above” (such as when test scores at the very high 
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end actually do not measure student knowledge appropriately for those for whom the test may be 

too simple).  When samples are censored, ordinary least squares (OLS) regression is not 

appropriate because they will yield biased and inconsistent estimates—the error term, a function of 

the explanatory variables, will be non-zero in sum and correlated with the explanatory variables. 

In the RVM data set there are several forms of censored data. The primary one is where 

respondents either do not list the number of publications or list only the most recent.  When an item 

is not specified on the CV, it is difficult or impossible to determine the difference between zero and 

missing data.   

Mathematically, the Tobit model can be expressed as: 

 

if Yi > T,  Yi = ß 1 + ß2X2i + u2i  

otherwise,       = T  

 Where T is a threshold value. 

 

 Tobit models use maximum likelihood methods for estimation of model parameters, which 

yield asymptotically consistent and efficient estimates, given correct model specification (Arminger, 

1995).  For each non-censored observation, the estimate is simply the height of the density 

function, representing the probability of getting that particular observation.  The probability for each 

censored observation is the integral above the appropriate density function for threshold level (T) 

(Kennedy, 1998).  Coefficients on the estimated parameters are interpreted much the same as 

OLS coefficients17.   

The log-likelihood function for the Tobit model is: 

 

L =  Syt>T  -½[ln(2π) + ln(σ2) + (1/ σYt –X'tα)2] + S yt=T  ln [1-F(X'tα)]    

                                                 
17 The coefficients are interpreted as estimates of the change in the latent dependent variable.  
That is, the dependent variable as predicted accounting for the censored cases. 
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Where the first part of the equation (Syt>T  -½[ln(2π) + ln(σ2) + (1/ σYt –X'tα)2]) is the 

standard likelihood function to be maximized, the second part (S yt=T  ln [1-F(X'tα)]) corresponds to 

the estimates of the censored cases, and where F is the cumulative normal distribution function. 

Several sets of career variables are used to test the hypotheses outlined previously.  

These include: 

1. The Education Set 

§ Field of doctorate 

§ Did the respondent hold a postdoctoral research position? 

2. The Precocity Set 

§ How many publications did the respondent have by the year the doctorate 

was earned? 

3. The Job Set 

§ Diversity through career start:  Did the respondent begin his or her career 

in industry or government? 

§ Triple helix:  Did the respondent hold a job in all three sectors (i.e., 

academia, industry, and government)? 

§ Diversity through proportionality:  What proportion of the respondents’ total 

jobs years were spent in industry and government jobs (respectively)? 

§ Total job institutions:  How many organizations was the respondent 

employed at over his or her career as a function of the number of years of 

career length? 
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§ Homogeny:  Did the respondent exhibit a career pattern that is “typical” or 

“atypical”? 

4. The Research Grant Set 

§ Resource intensity:  How many research grants has the respondent 

received per career year? 

§ Resource diversity:  What proportion of the grants were awarded by 

industry or federal sources (respectively)? 

5. The Control Set 

§ Ph.D. age cohorts:  Does it matter, even after adjusting for career length in 

the above delineated variables, when the respondent received his or her 

doctorate? 

§ Research center affiliation:  Does working in specific research centers 

make a difference in the productivity of the center’s scientists and 

engineers? 

 

Thus, the basic statistical models18 to be estimated are as follows: 

 
Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 + β9X9 + β10X10 + β11X11 + 
β12X12 + β13X13 + β14X14 + β15X15 + β16X16 + β17X17 + β18X18 + β19X19 + β20X20 + β21X21 + βVXV + 
ε  

 
Where, 

X1  = Career homogeny (index of career pattern conformity)  
X2  = Precocity (cumulative number of publications at the doctorate year)  
X3  = Held postdoctoral position (1=Yes, 0=No) 
X4  = Triple helix (had one or more jobs in all three sectors) 
X5  = First job was industry job? (1=Yes, 0=No) 
X6  = First job was government job 
X7  = Years in industry jobs/total job years 

                                                 
18 The econometrics software Shazam was used to fit the Tobit and Poisson models described in this 
chapter. 
 



46 

X8  = Years in government jobs/total job years 
X9  = Total number of job institutions/career length 
X10 = Square of above job variable 
X11 = Total grants/career length 
X12 = Industry grants/total grants 
X13 = Federal grants/total grants 
X14 = Doctorate granted before 1972? (1=Yes, 0=No) 
X15 = Doctorate granted 1972-1980 
X16 = Doctorate granted 1981-1987 
X17 = Doctorate granted 1988-1993 
X18 = Doctorate in biological science? (1=Yes, 0=No) 
X19 = Doctorate in computer science 
X20 = Doctorate in engineering 
X21 = Doctorate in physical sciences 
XV  = A vector of dummy variables for each research center  

 

And where, 

  Y  = either the patent rate (number of patents per career year) or the publication rate 
(number of publications per career year starting the year after the doctorate). 
 

5.1.2 Publication Productivity 
 

 Education Variables:  Physical and mathematical scientists and engineers were more 

productive than researchers in other fields.  Being a physical or mathematical scientist, is 

associated19 with approximately 1.4 additional publications on average per year than researchers 

from from the reference fields holding all other variables constant.  Likewise, engineers had 

approximately 1.0 more publications per career year than researchers from the reference fileds 

(see Table 6 for summary statistics discussed in this section).   

 There was no statistically significant difference in publication productivity between those 

researchers who have held a postdoctoral research position compared to those who have not, 

although the coefficient on this term is moderate and negative.  For thos e scientists and engineers 

in the RVM data set who had a postdoctoral position at some point in their careers, the productivity 

rate was .31 lower than those who did not, holding all other variables constant. 

 The coefficient estimate on precocity was statistically significant although the magnitude of 

its effect was low to moderate.  For each paper published by the year of the doctorate, the 

publication rate after the doctorate increased by .12, holding all else constant.   

                                                 
19 Unless specified, all results discussed yielded variable coefficients with p-values of .05 or below 
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Job Variables:  The effect of career homogeny on publication rate is low (i.e., the 

coefficient is .05).  This suggests that there may be some mild positive association between career 

pattern homogeny and publication productivity.   

The number of jobs held in different job institutions over the career was included in the 

model in the form of two variables.  The first is the number of job institutions in total divided by the 

career length as measured in years.  The second is the square of the first variable.  Under the 

diversity hypothesis, the number of job positions held was hypothesized to have a positive effect on 

productivity (due to the human and social capital building opportunities each position may provide).  

However, the squared term was added to test if having many jobs might actually depress 

productivity (either due to inability to hold a steady job or due to the time pressures of holding 

multiple jobs simultaneously).  The coefficient on the first order term was negative but not 

statistically significant 20.  The second order term was also not statistically significant but perhaps 

not important since the coefficient was low (.05).  On the whole this suggests job changes across 

institutions (of any type) may be associated with lower publication rates, at least for this sample of 

scientists and engineers.   

 There seems to be no plausible difference in publication rates, statistically speaking, 

between scientists and engineers who began their careers in academia versus industry or 

government.  However, for those who began their careers in government, the coefficient estimate 

on the term was negative and moderate in size (-.54).  For those who began their careers in 

industry, the coefficient estimate on the term was negative but small (-.04).  The coefficient for the 

triple helix career (those who had jobs in all three sectors) was positive (.28) but not plausibly 

different from zero in a statistical sense. 

 With regard to job years spent in industry and government, the proportion spent in industry 

had a moderate negative (-.64) effect on publication productivity, whereas the proportion spent in 

government had a positive and strong effect (1.15) on publication productivity.  However, neither 

coefficient was statistically significant.  

                                                 
20 The coefficient estimate was –1.33 (P -value = .08). 
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   Grant Resources:  Scientists and engineers who averaged more grants per year appear to 

have slightly higher publication productivity rates.  For each additional grant per year, the number 

of publications per year increased by .14, although the coefficient estimate was not statistically 

significant.  Although the source of the grant has no statistically significant association with 

publication rates, for scientists and engineers in the RVM data set, it appears that as the proportion 

of total grants awarded by industry sources increased by one percentage point, the number of 

publications per year increased by .17.  On the other hand, as the proportion of total grants 

awarded by the federal government increased by one percent, the average yearly number of 

publications increases by .66. 

 

 Control Variables:  The coefficient estimates of all of the Ph.D. cohorts were statistically 

significant, suggesting that they have higher publication rates than the most recent cohort (Ph.D. 

earned after 1994), holding all else constant.  The normalized coefficient estimates suggests that 

productivity rates are essentially progressively higher for scientists and engineers in earlier cohorts.  

Scientists and engineers who earned their doctorate before 1972, for example, published on 

average .78 more publications per year than researchers in the reference group.  This may be due 

to the likelihood that the dataset may capture a larger proportion of the earlier cohorts’ peak 

productivity years compared to more recent cohorts. 

 There were six centers 21 where the researchers had higher publication productivity.  These 

are the Biotechnology Process Engineering Center at the Massachusetts Institute of Technology 

(ERC), the Center for Quantized Electronic Structures at University of California—Santa Barbara 

(STC), the Center for Dielectric Studies at the Pennsylvania State University (IUCRC), the Center 

for Ultra-High Speed Integrated Circuits and Systems at University of California, San Diego 

(IUCRC), the Center for Low Cost Electronic Packaging at the Georgia Institute of Technology 

(ERC), and the Center for Biological Timing at the University of Virginia (STC).  One center had an 

                                                 
21 It should be noted that although these centers are located at the universities cited, they are often 
a multi-institutional collaboration representing scientists and engineers at several university 
campuses. 
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overall productivity rate that was lower than the others, the Computational Field Simulation at 

Mississippi State University (ERC).   

 In summary, among the variables that had statistically significant coefficient estimates, the 

strongest effects were field differences 22 (with physical and mathematical scientists and engineers 

having higher publication productivity), cohort differences (where earlier Ph.D. age cohorts 

exhibited higher productivity), and center affiliation differences (where the scientists and engineers 

in some centers tended to be more productive than in other centers).  Precocity and homogeny 

both had a weak, positive, relationship with publication rates.   

The coefficients on the education variables were not statistically significant, nor were the 

coefficients on the variables associated with diversity of job patterns or grant patterns.   Finally, the 

overall model was statistically significant (Wald Chi-Square statistic of 179 and P-value of 0.000).  

The squared correlation between the observed and expected values of the dependent variable was 

.26. 

 

5.1.3 Patent Productivity 
 

 Education Variables:  Physical and mathematical scientists, engineers, computer 

scientists, biologists were all more likely to patent than researchers in other fields (such as social 

and behavioral scientists and medical scientists) (see Table 8 for summary statistics discussed in 

this section).  The model estimates that physical and mathematical scientists had .53 more patents 

per year than reference group researchers (holding all else constant), followed by engineers (.53), 

computer scientists (.46), and biologists (.31).  Having had posdoctoral position did not seem to 

have an effect on patent productivity; the coefficient was small and negative (-.05) but not 

statistically significant. 

 The coefficient estimate on precocity was positive but small.  For each paper published by 

the year of the doctorate, the patent rate increased by .02, holding all else constant.   

                                                 
22 For a summary of publication and patent rates by disaggregated disciplinary fields, see Table 7.  
In general, chemists, physicists, electrical engineers, and chemical engineers had among the 
highest publication rates.  Among engineers, it appears that civil and mechanical engineers had 
lower publication rates.  Among scientists, it appears that general biologists had lower publication 
rates. 
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Job Variables:  Unlike the model of publication rate, career homogeny did not have a 

statistically significant relationship with patent productivity and the coefficient is zero.  Like the 

model of publication rate, the coefficient on the number of jobs held in different institutions over the 

career was negative and moderate.  For the scientists and engineers in the RVM dataset, for each 

job institution change throughout the career, the patent rate decreases by .18.  The squared term 

had a positive but small coefficient (.05), although the coefficient on neither term was statistically 

significant.   

 There seems to be no plausible difference, statistically speaking, among scientists’ and 

engineers’ patent rate and the job sector where they began their careers (academia, industry, or 

government).  However, those scientists and engineers in the RVM dataset who began their 

careers in government had a lower patent rate (-.10) than those who did not, all else constant.  For 

those who began their careers in industry, the coefficient estimate on the term was also negative 

but small (-.01).  The triple helix career (those who had jobs in all three sectors) was positive (.05) 

but not plausibly different from zero in terms of statistically significance. 

 With regard to the proportion of job years spent in industry and government, the proportion 

spent in industry had a strong positive relationship to patent productivity, whereas the proportion 

spent in government had a negative moderate effect (-.24) on productivity, although this latter 

coefficient was not statistically significant.   As the number of years a researcher spends in industry 

as a proportion of his or her total career years increases by one percent, the model estimates that 

the average number of patents per year increases by .83, holding all else constant.  

   

 Grant Resources:  Unlike the model of publication productivity, scientists and engineers 

who averaged more grants per year did not have higher patent rates.  The coefficient was not 

statistically or substantively significant.  However, the source of grant award does seem to be 

related to patent productivity.  As the number of grants awarded by industry sources (as a 

proportion of all grants) increases by one percent, the patent rate increases by .4123.  In 
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comparison, as the proportion from federal sources increases, the patent rate decreases by .06 

(although these coefficients were not statistically significant, they nonetheless hold for the scientists 

and engineers in this sample).   

 

 Control Variables:  The coefficient estimates of all of the age cohorts were positive, 

suggesting that they have higher patent rates than the more recent cohort (Ph.D. earned after 

1994), holding all else constant.  Like publication rate, this may be due to the likelihood that 

scientists and engineers in earlier Ph.D. cohorts have experienced their prime productivity years 

whereas those in more recent cohorts may not yet have reached their productivity peak. 

 There were two centers that a statistically significant higher overall patent rate—The 

Center for Sensors and Actuators at the University of California-Berkeley (IUCRC) and the Center 

for the Biotechnology Process Engineering Center at the Massachusetts Institute of Technology 

(ERC).  Researchers at this latter center had on average 1.3 than researchers affiliated with other 

centers.  This effect may be due to the presence of one extreme outlying case, the researcher with 

the highest number of career patents (141) is affiliated with this center. 

 There were three centers that exhibited statistically significant lower overall patenting rates.  

These are the Center for Materials Handling/Logistics Institute at the Georgia Institute of 

Technology (ERC), the Pacific Earthquake Engineering Research Center at the University of 

California-Berkeley (ERC), and the Center for Particle Astrophysics also located at the University of 

California-Berkeley (STC). 

In summary, among the variables that had statistically significant coefficient estimates, the 

strongest effects were field differences 24 (in particular, physical and mathematical scientists and 

engineers had higher patent rates), cohort differences (where earlier Ph.D. age cohorts exhibited 

higher productivity), and center affiliation differences (where the scientists and engineers in some 

centers tended to be more or less productive than in other centers).  Unlike publication productivity, 

patent productivity seems to be positively related to the proportion of total job years spent in 
                                                                                                                                                    
23 P-value = .07 
24 In general, it appears that chemists, electrical engineers, chemical engineers, and physicist had 
among the highest patent rates.  Among engineers, civil engineers seem to have lower patent 
rates.  Among scientists, biologists appear to have lower patent rates.  See Table 7. 
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industry jobs and perhaps to the proportion of all research grants that are awarded by industry 

sources.  Higher overall participation in industry jobs and funding from industry sources tended to 

have a strong positive association with higher overall patent rate. 

Like the model of publication rate, precocity had weak positive effects on patent rates.  

However, unlike publication rate, the coefficient on career homogeny was not statistically 

significant.  The coefficient on the postdoctoral research position variable was small, negative, and 

not statistically significant.    

Finally, the overall model was statistically significant (Wald Chi-Square statistic of 110 and 

P-value of 0.000).  The squared correlation between the observed and expected values of the 

dependent variable was .20.  See Appendix B for a discussion of model assumptions and 

diagnostics. 

 

5.2 Poisson Model of Patent Count 

 

5.2.1 The Basic Poisson Model 
 

The problem of censoring may not be as large for patent data as it is for publication data.  

Patent data were collected from the USPTO for this analysis.  The USPTO maintains an online 

database, which contains data for all patents granted from 1976 to the present.  As a result, there 

may be some left censoring for those scientists and engineers in the RVM dataset who received 

their Ph.D. before 197625.   Of all the researchers in the RVM dataset, 26 percent earned their 

doctorates prior to 1976, which suggests that their patent counts may be censored from below.  

However, just 15 percent of these scientists and engineers had any patents at all making them 

unlikely cases for censoring.  In addition, when the data were cleaned the CV was retrieved for 

those respondents who were granted patents around the time of the USPTO database cut off year 

of 1976.  Previous patents (prior to 1976) were retrieved from the CVs in these cases.  Finally, 

                                                 
 
25 There are very few cases of patent precocity in the RVM dataset.  Scientists and engineers 
almost never patent before their Ph.D. 
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Poisson models are thought to be less sensitive to censored samples than ordinary least squares 

regression.  In sum, patent data may not face as many cases of censoring as the publication data. 

Poisson models are more appropriate than ordinary least squares regression for estimating 

models where the dependent variable is measured in counts.  First, regression models may 

produce case estimates below zero (negative values), which is conceptually intractable when 

working with count data.  Second, distributions of count data are often skewed, include many 

observations of zero count values, and relatively few high value counts.  A high number of zero 

values 26 makes transformation of the dependent variable less likely to produce normally distributed 

error terms and than when working with continuous data. Unlike the Tobit model, the Poisson 

model is less sensitive to skewed data and may be more appropriate as a result in the modeling of 

patent data.  In fact, patent data are often used as a case example of the appropriate use of 

Poisson models (Kennedy, 1998; Arminger, 1995).    

The Poisson model assumes that the mean of the dependent variable and its variance are 

equal, which is advantageous for the modeling of data where the distribution is skewed-right (such 

as is the case with the patent data).  As shown previously, patent data are distributed non-normally 

with a long right tail.  And because the variance is fixed to the mean, as the mean increases 

because of the presence of highly productive outliers, the variance will also increase.   

   

The basic Poisson model is given by: 

 

 Pr (Yi = y) = e-??y/y! where ? = exp(Xß) 

 

 There are two implications of the structural form of the Poisson model.  First, it ensures 

non-negativity in the response variable.  And, second it assumes that the errors follow a Poisson 

distribution (i.e., that error variance increases as a function of its expectation).  

                                                 
 
26 Approximately 58.5 percent of the scientists and engineers in the RVM dataset had zero patents. 
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 Despite its utility with count data, Poisson models can be used with count data that has 

been scaled by some variable of interest, such as time periods.  In this case, the rate can be 

interpreted as the expected number of times an event occurs within a specified time period.   

Scaling has some advantages in working with Poisson models.  With pure count data, 

models are often “overdispersed.”  That is, the variance is often several times larger than the 

mean27.   This problem can be ameliorated, to some extent, by creating a ratio28 variable from the 

count variable. 

 In interpreting the coefficient estimates in Poisson models, the sign of the coefficient is and 

indication of the effect on the expected number of counts.  Coefficients with positive signs indicate 

more counts; negative signs indicate fewer counts, holding all other variables constant.  Like 

logistic regression, to calculate the relative change in rate at which the event occurs for a one-unit 

change in an independent variable, the coefficient estimate is exponentiated. 

  

5.2.2 The Poisson Model of Patent Rate 
 

As seen in Table 929, there were seven variables for which the coefficient estimates were 

statistically significant—precocity, the number of years working in industry jobs as a proportion of 

total job years, the number of industry grants as a proportion of total grants, a doctorate granted 

between 1972 and 1980, a doctorate in the physical and mathematical sciences30, a doctorate in 

                                                 
 
27 In these cases a model based on the negative binomial distribution is appropriate.  The negative 
binomial assumes that the variance exceeds the mean (Kennedy, 1998). 
 
28 It should be noted that count data in ratio form preserves the essence of working with count data 
in that zero values remain the same.  Thus, creating a ratio variable from a count variable is 
appropriate when using the Poisson model. The mean for patent rate was .143 and the variance 
was .150. 
 
29 The model was significant at the .001 level.  The R-squared statistic was .10 and the adjusted R-
squared was .08.  This means that the model does not explain a large fraction of the variation in 
the dependent variable.  The G-squared statistic, a measure of overdispersion, was 337.85, which 
suggests moderate to low overdispersion. 
 
30 Because field differences are similar to the results of the Tobit model of patent rate, they will not 
be discussed here.  See Table 9 for the estimates on these variables.  In addition, the large 
numbers of centers dummy variables were not used in this analysis for pragmatic reasons—the 
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engineering, and a doctorate in computer science.  All signs on these variable coefficients are 

positive; each is associated with higher patent rates.   

 Among the strongest statistically significant relationships to patent productivity rate is the 

number of job years the researcher worked in industry as a proportion of total job years.  The 

model estimates that increasing this proportion by one percent, increases the patent rate by a 

factor of 5.8, holding all else constant.  Similarly, increasing the number of industry grants as a 

proportion of all grants by one percent, increases the patent rate by a factor of 3.7. 

 There were several variables coefficients that were not statistically significant but are of 

interest to this analysis.  Researchers who had a postdoctoral position were less likely to have 

higher patent rates than those who did not.  In addition, the homogeny index had a small negative 

coefficient, suggesting no effect or a slight negative effect on publication rate for the scientists and 

engineers in the RVM dataset, holding all else constant.   

Scientists and engineers in the RVM dataset who started their careers in an industry or 

government job position had lower patent rates than those who began in academia.  In fact, their 

patent rate was only about 91 percent and 85 percent that of their academic counterparts, holding 

all other variables constant.  Those researchers who had at least one job in all three sectors were 

had patent rates only 82 percent of those who did not.  In addition, researchers who spent more of 

their career years working in government jobs had a lower patent rate than those who did not. 

 In terms of grant resources, the number of grants that researchers in the RVM dataset 

were awarded as a proportion of their career length seems to have no effect on their patent 

productivity.  And as the number of grants funded by federal government sources as a proportion of 

all grants increases by one percent, the patent rate decreases by half. 

 In summary, the model demonstrates a strong statistically significant relationship between 

the proportion of total job years spent working in industry jobs and the patent rate, although it 

appears that starting one’s career in industry or government may be detrimental to patent 

productivity (although these coefficient estimates were not statistically significant). 

                                                                                                                                                    
model failed to run and exceeded the memory partition allowable in the Shazam econometrics 
software.  
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 The percentage of total grant awards from industry funding sources also was positively 

associated with patent rate.  And it may be possible that scientists and engineers with high 

proportions of their funding from the federal government have lower patent rates, specific to those 

in the RVM sample. 

 There were strong field differences detected for physical scientists, engineers, and 

computer scientists—all being more likely to patent than their counterparts in other disciplines.  

Among these physical scientists and engineers had a patent rate more than 5 times that of 

researchers in other fields. 

 

5.3 Analysis of Publication and Patent Productivity Stars 

 

This section examines the similarities and differences in the careers of the most highly 

productive scientists and engineers—publication and patent “stars.”  Publication and patent stars 

are compared with each other as well as with non-stars.  Stars are defined as scientists and 

engineers who are in the top ten percent of the distribution in terms of their publication and patent 

rates (i.e., their total number of publications or patents divided by their career length as measured 

in years).  In terms of the scientists and engineers whose career records are included in the RVM 

dataset, those with a publication rate over 8.2 publications per year are labeled stars for the 

purpose of this analysis.  Likewise, patent stars have .38 patents or more per year of career length.  

“Combination stars” are those who meet both those criteria. Those who do not qualify in either of 

these categories are labeled non-stars (see Figure 5).  Because of the large number of pair-wise 

comparisons, I will keep the discussion of findings brief, however, Tables 10-15 show all 

comparisons. 
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Top 10 Percent in Publication 

Rate? 
    Yes No 

Yes 
Combination 
star Patent Star Top 10 

Percent in 
Patent Rate? No 

Publication 
star Non-star 

Figure 5.  Classification of Stars 
 

5.3.1 Publication Stars Compared with Non-stars 31 
 

In making a general characterization between publication stars and non-stars in the RVM 

dataset, it may be said that publication stars had more predoctoral publications, a higher grant rate, 

a higher degree of career homogeny, and more job positions over the course of their careers than 

non-stars.  They were more likely to have had at least one industry job than non-stars.  They were 

also more likely to be physical scientists and less likely to have had a postdoctoral research 

position (see Table 10). 

 In terms of job pattern differences, the career homogeny index for publication stars was 

15.3 compared to 14.7 for non-stars, suggesting that publication stars may have more “typical” job 

patterns, although this difference was not found to be statistically significant.  However, publication 

stars had 1.24 more jobs over the course of their careers on average than did non-stars and more 

total job years as adjusted for career length than non-stars (3.3 compared with 2.4 for non-stars).  

This latter difference suggests that publication stars are more likely to have held jobs concurrently.  

Approximately 24 percent of publication stars had a postdoctoral research position compared with 

32 percent of non-stars.   

 Aside from having approximately 9 more publications per year on average, publication 

stars also held more patents.  They averaged .35 patents per year compared to .05 for non-stars.  

Finally, in terms of external research grants, publications stars received 1 more grant per year on 

average per year than non-stars. 

                                                 
31 Statistical significance of differences in means for all variables can be found in Tables 10-15.  A 
summary of statistically significant differences across all groups can be found in Table 19. 
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No differences between the two groups were detected in the proportion of job years spent 

in academia, industry, and government.  In addition, publication stars and non-stars were about 

equally likely to have had at least one job in government.  There was also no significant difference 

in the frequency with which publication stars and non-stars started (i.e., first job) their careers in 

either industry or government.   

   

5.3.2 Patent Stars Compared with Non-stars 
 

In general, patent stars can be characterized as having had more predoctoral publications, 

a higher grant rate, a higher proportion of grants from industry, and more industry job positions and 

job years over the course of their careers than non-stars.  They were also more likely to be 

engineers or physical scientists than non-stars.  Patent stars were less likely to have had a 

postdoctoral research position, had fewer government job positions, proportionately fewer grants 

from the federal government, and a lower career homogeny rate than non-stars (see Table 11). 

In regard to job pattern differences, patent stars were less likely to exhibit patterns of high 

career homogeny than non-stars.  This indicates that patent stars were more likely to make atypical 

career job transformations than non-stars.  The mean of the career homogeny index for patent 

stars was 12.3 compared with 14.7 on non-stars (14.5 is the overall mean for the RVM population).   

 Fifty-two percent of patent stars started their careers in an industry position compared to 

about 30 percent of non-stars, and 72 percent of patent stars had at least one job in industry over 

the course of their career, compared with 48 percent of non-stars.  Patent stars spent about 24 

percent of their career years in industry jobs compared to 11 percent for non-stars.  

 On the other hand, patent stars were less likely to have spent time in government jobs.  

About 16 percent of patent stars had at least one governmental job compared to 27 percent of non-

stars.   

In addition to having on average .9 more patents per year than non-stars, patent stars 

averaged approximately 3 more publication per year than non-stars.  Patent stars averaged 1.7 

grants per year compared to 1.0 for non-stars.  Thirty-three percent of their total career grants were 

awarded by industry sources compared to 23 percent for non-stars.  Conversely, 45 percent of 
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patent stars’ grants were from federal sources as compared with 55 percent for non-stars.   About 

22 percent of patent stars had a postdoctoral research position compared to 32 percent of non-

stars. 

 
 

5.3.3 Publication Stars Compared with Patent Stars 
 

In general, publication stars had higher levels of job homogeny than patent stars, more 

predoctoral publications, spent a higher proportion of their career years in academic jobs, were 

more likely to have held at least one job in government, and seem to have more grants per year on 

average.  They also seem to have a higher proportion of the total grant awards from federal 

sources compared to patent stars.  Publication stars spent fewer of their total job years in industry 

jobs and received fewer of their grants from industry as a proportion of their total number of grants 

(see Table 12). 

 In terms of job pattern differences, publication stars tended to exhibit higher career 

homogeny rates than patent stars.  The mean on the career homogeny index for publications stars 

was 15.3 compared with 12.3 for patent stars. This suggests that publication stars have made job 

transformations over the career that are more conditionally probable—they are more likely to have 

followed “typical” career job transformation patterns over time.  The mean of the career homogeny 

index for all scientists and engineers is 14.5, suggesting that publication stars exhibit more career 

homogeneity than the average.  Patent stars, on the other hand, not only have a lower career 

homogeny index than publication stars but are below the average for all RVM scientists and 

engineers.   

 Publication stars were much less likely to have started their career in industry than patent 

stars.  About 29 percent of publication stars’ first job was in industry compared to 52 percent of 

patent stars.  Overall, however, this suggests that academic scientists and engineers may more 

often start their jobs in industry than is commonly thought.   

Publications stars were more likely to have had at least one government position during the 

course of their careers (30 percent had a government job) compared with 16 percent of patent 
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stars. Both groups were about equally likely to have had a postdoctoral research position.  

Publication stars averaged 7.2 predoctoral publications compared with 4.8 for patent stars. 

 

5.3.4 Combination Stars  
 

In general, it appears that combination stars can be characterized as something of a hybrid 

of publication and patent stars with just a few differences of note (see Tables 13-15).   Combination 

stars (16.8) appear to have a higher career homogeny index than publication stars (15.3), who 

have a higher index than non-stars (14.7), who have a higher index than patent stars (12.3).  

Combination stars (8.4) also appear to have a higher number of predoctoral publications than 

publication stars (7.2), patent stars (4.8), and non-stars (3.2).  Combination stars are less likely to 

have held government jobs than publication stars and non-stars but less likely than patent stars to 

have held an industry job. 

 

5.4 Productivity Changes in Job Transformations to and from Industry 

 

 To test the assertion that intersectoral changes in jobs affects overall productivity, all of the 

transformations from academic jobs to industrial jobs and vice versa were identified and the mean 

number of publications was calculated for the five years before and after the transformation.  These 

means were then summed and averaged over all job transformations made by all scientists and 

engineers between academia to industry.  As seen in Table 16, the mean number of publications 

for the five-year period preceding a job transformation from industry to academia (for all scientists 

and engineers who made this transition) was 1.5 publications per year.   For the five-year period 

after the transformational move to academia, the mean was 2.6 publications—a 1.1 increase in the 

mean number (and a statistically significant difference at the .05 level).  Thus, the average 

productivity of scientists and engineers increased after a job transformation from industry to 

academia. 

 A similar analysis was performed for all job transformations made by the scientists and 

engineers from academia to industry.  For the five-year period preceding the move, the mean 
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number of publications overall was 1.8; for the five-year time interval following the transformational 

move to industry, the mean was 2.6—an increase of .8 publications per year (also a statistically 

significant difference.  Thus, the mean number of publications for the five-year period of time 

following a move from academia to industry also increased. 

 These results may suggest that making a job transformation has important effects on 

productivity.  However, an alternative interpretation is that making a job change is correlated when 

productivity rates are naturally increasing.  For example, it may be the case that researchers in the 

early stages of their careers are more likely to make job transformations than those in later stages 

and that this is precisely the same time period when researchers’ productivity is on the rise. 

  

5.5 Neural Network Analysis 

 

 In this section, I present two “preliminary” Neural Network models of publication and patent 

productivity.  This work is deemed preliminary because it is an initial investigation into these 

methods and the subject of future work and refinement 32.  I include it in this dissertation as a 

contribution to the potentially useful methodological approaches to analyze career patterns and 

productivity.  

 

5.5.1 The Basic Feedforward Backpropagation Neural Network Model 
 

Neural Network models view the independent variables as “inputs” and dependent 

variables as “outputs.”  Between the inputs and outputs are one or more hidden layers of 

processing entities known as “neurons” that receive input weights and generate transfer weights.  

By comparing these weights with the output target values, through massive computer processing 

cycles, the weights are adjusted until they come close to their target output values.  There is no 

underlying assumption of the distribution of data, nor are variables “held constant” during weighting 

                                                 
32 Because the preliminary character of this work, discussion of the data analysis will be kept 
intentionally brief. 
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iterations or cycles—the goal is to minimize global error through a process known as 

backpropagation.  As weights are changed through iterative cycles so too are the modeled 

interrelationship among inputs and outputs.    

 In Neural Network models, outputs depend on patterns of inputs and are thus robust 

toward outlying or extreme cases.  The processing entity (discussed below) usually employs a 

“squashing” function.  In the case of feed-forward backpropagation models, such as used in this 

research, the squashing function is most often sigmoidal in shape where extreme values are 

confined within the limits of zero and one.  Neural Network models are known to be robust toward 

coding errors, and missing or noisy data (Garson, 1998, p. 9). 

 Because there are no assumptions about the underlying form of distribution of data (i.e., a 

non-parametric method), Neural Network models are particularly useful in modeling data that are 

nonlinear and where assumptions of normality cannot be met (Garson, 1998).  As argued 

previously, Neural Networks may be a useful way to examine and model publication and patent 

rates due to the non-normal, skewed distributions of these data. 

A Neural Network is based on multiple neurons, also called processing entities or nodes, 

arrayed in one or more layers, which pass data among each other and adjust a set of weights 

according to a specified mathematical (squashing) function.  The neurons are interconnected and 

store information based on the weights assigned to the interconnections.  These weights are 

adjusted to refine the predictive or classificatory precision of the model.  Links between nodes in 

the input layer, the hidden layer(s), and the output layer cannot be reduced to a simple equation 

such as in regression modeling, since inputs and hidden nodes are linearly or nonlinearly 

interdependent.   

 The input weights are measures of the relative importance of the connection between the 

input neurons and the neurons in the hidden layer (these will be displayed below).  Weights are 

initialized to random values in the training process but become more meaningful as they are 

adjusted in the learning process (i.e., the cyclical adjustment of weights).  Positive weights denote 

the connection is excitatory; they are negative if the connection is inhibitory. 
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A summation function adds the weights and computes a net input to each neuron.  For the 

target (output) neuron, the net input is the sum of the path weights from all of the input neurons 

times the outputs of these neurons: 

 

  Net input j = bj + SwjiOi, where bj is a bias weight. 

 

The summed weights are fed forward to the next layer of neurons by a transfer function 

(also called activation function), which invokes a mathematical expression33 to convert the summed 

weighted inputs into a transfer weight (also called activation value).  If this transfer weight meets or 

exceeds a threshold level (i.e. the learning rule set by the researcher), the neuron passes a signal 

forward in the form of an output weight.     

Backpropagation is the process by which error is reduced through the use of an error 

gradient, which updates the weights.  The new weight for the connection between an input neuron 

and a hidden layer neuron is previous weight plus the learning rate times the transfer weight times 

the error term for neuron (the difference between the output value and its target value).  This new 

weight can also be adjusted by changing the momentum rate (which is the degree to which 

information in the previous cycle is retained).  This process proceeds until the adjustments are 

smaller than some criterion established by the researcher34. 

 

 

                                                 
33 The transfer function usually introduces nonlinearity into the neural network model, such as the 
sigmoidal logistic function (1/e(-net input )). 
 
34 In the case of this research, the criterion was an average overall error (the difference between 
the target and output values) below two percent.  Approximately one-third of the data was used in 
training; the rest used in validation.  Through optimization, the learning rate was set at 1.0 and 
momentum at .8.   
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5.5.2 Neural Network Model of Publication Rate35 
  

Among the influential inputs in modeling publication rate (as a single output) are: (1) 

precocity, (2) number of years in government jobs as a proportion of total job years, (3) number of 

years in industry jobs as a proportion of total job years, and (4) career homogeny (see Figure 6 and 

Table 17).  Each of these is described below. 

 

                                                 
35 In the case of this model, the criterion to terminate learning was set to an average overall error 
(the difference between the target and output values) below two percent, which was reached after 
1,680 learning cycles.  Approximately one-third of the data was used in training; the rest used in 
validation.  The learning rate was optimized at 1.0 and momentum at .80.   
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Figure 6.  Neural Network Model:  Relative Influence of Inputs in Modeling Publication Rate 
 
 
 First, the relationship between precocity and publication rate appears to be non-linear but 

strongly positive.  The estimated effect of precocity on the (after-doctorate) publication rate seems 

to be moderate through up to approximately 15 predoctoral publications but then increases at a 

strong rate, especially between 15 and 20 publications (where the slope is steepest) (see Figure 7).   
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Figure 7.  Estimated Relationship Between Precocity and Publication Rate 
 
 
 Second, the model estimates a negative relationship between the number of years a 

researcher worked in government jobs as a proportion of total job years.  The negative relationship 

seems to bottom out at around 80 percent but is sharply negative until that point (see Figure 8). 
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Figure 8.  Estimated Relationship Between the Number of Years in Government Jobs as a 
Proportion of Career Length 
 

 Third, the model estimates a negative relationship between the number of career years 

spent in industry as a proportion of total career years and the publication rate.  The effect is large 

for those who spent between zero and approximately 50 percent of their job years in industry and 

then begins to decrease (see Figure 9).  
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Figure 9.  Estimated Relationship Between Industry Years as a Proportion of All Job Years and 
Publication Rate 

 
 
 

Fourth, career homogeny is estimated to be positively related to publication rate, but highly 

non-linear and “S” shaped in form.  For those with career homogeny indexes up to approximately 

30, the relationship is essentially flat (the overall mean for homogeny is 14.5).  Between 

approximately 30 and 50, the relationship with publication rate is strongly positive and then flattens 

out again (see Figure 10).  So those researchers with extremely high levels of career homogeny 

are associated with extremely high publication rates.  



69 

0

5

10

15

20

25

0 20 40 60

Career homogeny

P
ub

lic
at

io
n 

ra
te

 
Figure 10.  Estimated Relationship Between Career Homogeny and Publication Rate 
 
 
 
 Finally, the model estimates that those who have had postdoctoral research positions have 

much lower publication productivity rates (approximately 10 publications per year) than those who 

did not have postdoctoral positions (20 per year), holding no other variables constant, however. 

 
 

5.5.4 Neural Network Model of Patent Rate36 
 
 

In brief, the patent model indicates that (1) affiliation with Biotechnology Process 

Engineering Center at the Massachusetts Institute of Technology, (2) career homogeny, (3) a 

doctorate awarded between 1988 and 1993, (3) an earned doctorate in engineering, (4) a 

postdoctoral research position, and (5) held one or more industry job positions are among the most 

influential inputs (see Figure 11).  Each of these relationships is addressed below. 

 

                                                 
36 In the case of this model, the criterion to terminate learning was set to an average overall error 
(the difference between the target and output values) below two percent, which was reached after 
880 learning cycles.  Approximately one-third of the data was used in training; the rest used in 
validation.  The learning rate was optimized at 1.0 and momentum at .80.   
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Figure 11.  Neural Network Model:  Relative Influence of Inputs in Modeling Patent Rate 
 
 
 First, the relationship between career homogeny and patent productivity is estimated to be 

positive but in a highly curvilinear fashion.  That is, for researchers who had a career homogeny 

index up to 35 or 40 (where the mean is approximately 14.5) the model estimates that the average 

number of patents per year hovers close to zero.  However, researchers that exhibited extremely 

high career homogeny index values are estimated to also have extremely high patent rates (see 

Figure 12).  
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Figure 12.  Estimated Relationship Between Career Homogeny and Patent Rate 
 
 
 Second, the model estimates that those at the ERC located at MIT averaged about 1.4 

patents per year compared to .10 per year for those researchers affiliated with other centers.  

Third, engineers averaged about .56 patents per year compared to .24 for those in other fields (see 

Table 15), holding no variables constant. 

Fourth, the model estimates that those who have held postdoctoral positions averaged 

about .14 patents per year compared to .77 for those who did not.   

Finally, the model estimates that those who have had at least one industry job have higher 

patent rates than those who did not.  For those with one or more industry jobs, the model predicts a 

patent rate .86 of as compared to .16 for those who had no industry jobs.  However, there is a 

positive, curvilinear relationship between the number of years spent working in industry jobs as a 

proportion of total job years.  The effect is moderate until about 50 to 60 percent and then rises 

sharply (see Figure 13). 
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Figure 13.  Estimated Relationship Between Years in Industry Jobs as a Proportion of Total Job 
Years 
 
 
 Finally, the model estimates that the relationship between precocity and patent rate is also 

highly nonlinear and positive.  This relationship does not seem to be substantially different for 

researchers with relatively high numbers of predoctoral publications (e.g., 5-30) than it is for 

researchers who with few or no predoctoral publications.  In contrast, for those with roughly 30 or 

more predoctoral publications, the patent rate begins to increase sharply (see Figure 14).   
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Figure 14.  Estimated Relationship Between Precocity and Patent Rate 

 
 
 

5.5.5 Summary of Neural Network Analysis 
 

Neural Network analysis has been employed to demonstrate its usefulness in modeling 

interactive, nonlinear, and nonparametric data such as productivity data.   The curvilinear 

relationship between variables such as career homogeny and precocity and productivity are 

consistent with the small coefficient estimates found in the Tobit and Poisson models—the Neural 

Network model has helped to identify why.   In general, career homogeny was among the most 

influential inputs in each of the models, but in each case (and particularly for patent productivity) 

only extremely high values of homogeny were associated with high productivity rates.  In both 

models, having had a postdoctoral position was negatively related to productivity rates.  Finally, 

precocity was positively associated with productivity in both models, but seemed to be less 

influential in the modeling of patent productivity.  In both models, however, only relatively high 

numbers of predoctoral publications were associated with high levels of productivity.  
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CHAPTER 6 

 
 

DISCUSSION OF FINDINGS 

 

 

In this chapter, I interpret the results of the analyses reported in the previous chapter and 

discuss their implications for the hypotheses as posed in Chapter 5.  Because several statistical 

models have been used, with different model assumptions, the results differ and sometimes conflict 

across models.  These will be noted and discussed.  Section 6.1 focuses on publication productivity 

while section 6.2 addresses patent productivity.  Section 6.3 summarizes the differences and 

similarities in findings for publication and patent productivity.  Finally, section 6.4 interprets the 

evidence for and against the hypotheses as originally posed.   

 

6.1 Publication Productivity 

 

 Publication productivity was modeled in a Tobit model and a Neural Network model.  In 

addition, I examined differences in means on a host of variables between publication stars and 

non-stars and analyzed the relationship of job transformations to and from industry with publication 

productivity. 

  

6.1.1 Education and Human Resource Variables 
 

Field of Doctorate:  From the Tobit model (see Table 7 for coefficient estimates and Table 

16 for a summary of the effects of variables across all models) being an engineer or a physical or 

mathematical scientist was related to higher publication productivity.  This is consistent with the 

findings from the Neural Network models (see Table 17) that estimate that these two fields are 

associated with higher publication rates than other fields.  A higher proportion of physical and 

mathematical scientists were publication stars than was true to patent stars and non-stars 
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(although they were about equally likely to be engineers) (See Table 19 for a summary of 

differences between publication stars, patent stars, and non-stars).   

  

Postdoctoral Position:  Across all of the models, the effect of having had a postdoctoral 

research position appears to be negative.  The coefficient on this variable in the Tobit model was 

negative and moderate although not statistically significant; the Neural Network model estimated a 

strong negative effect.  In addition, publication stars were slightly less likely to have had a 

postdoctoral position than non-stars (24 percent versus 32 percent).   

This finding suggests that postdoctoral positions may be ineffective in terms of helping 

researchers to establish productive research careers over the long term.   It is possible that they 

have shorter term impacts on productivity or that they have other positive effects such as providing 

financial access to scientific and technical education and careers.  It is also possible that these are 

crude proxy measures of what ultimately may matter—the quality of the experience, working with a 

productive mentor and the culture of the work environment as a place of learning and human 

resources development.  Postdoctoral positions may be highly variant in terms of these qualities, 

which may explain this counterintuitive result.  Yet both of these findings are policy relevant due to 

the large public expenditures on supporting such positions.  As a result, this finding deserves 

further exploration and may require a more thorough study involving the use of theories from the 

science of learning and better empirical measures.  

 

Publication Precocity:  Precocity (or predoctoral publications) showed only a slightly 

positive effect on future publication productivity in the Tobit model.  For every additional predoctoral 

publication, future publications increased by an average of .12 per year.  This is consistent with the 

Neural Network model finding that precocity seems to have no substantial association with future 

publication productivity except for high values of precocity (i.e., when a researcher had 15 or more 

predoctoral publications).  Moreover, publication stars averaged approximately 7.2 predoctoral 

publications compared with 3.2 for non-stars.  This suggests two things.  First, predoctoral 

publication is not as rare as may be commonly believed and, second, extremely high productivity in 
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the predoctoral years may indicate higher overall career productivity, but otherwise may not have 

much effect. 

Perhaps precocity is a better measure of retention in the profession, quality of future work, 

likelihood of making tenure, or short-term productivity.  But consistent with Reskin’s (1977) finding, 

there is little evidence to suggest that precocity is associated with long-term (or career) productivity 

rates.  This may also be consistent Long’s and McGinnis’ (1985) finding that the principal 

predoctoral effect on long-term productivity is tutelage with a productive scholar. 

 

6.1.2 Job and Career Variables  
 

Starting Position:  It appears that starting one’s career in government is associated with 

lower overall publication productivity across the career cycle, at least for those researchers in the 

RVM dataset.  All models indicate that, in general, researchers who began their careers in 

government had lower publication rates, although none of these estimates was statistically 

significant.  Starting one’s career in industry seems also to be negatively related to future 

publication productivity.  The Tobit model showed a slight negative relationship and the neural 

model estimated substantially lower publication rates for those who started their careers in industry 

jobs.     

However, although not substantively different, approximately 29 percent of publication 

stars’ and 30 percent of non-stars’ first job was in industry.  This suggests a higher rate of early 

career mobility between industry and academia than may be commonly believed. 37  It may be the 

case that these proportions are higher than in the overall population of scientists and engineers 

due to the industrially oriented mission of the centers in this study and the relative 

overrepresentation of engineers and physical scientists in this data set.  Yet the finding is 

noteworthy, particularly in understanding the “academic” career.  The extant literature on academic 

careers has taken little note of this and has examined academic job changes, which may have 

solidified assumptions of little mobility between sectors.  

                                                 
37 At least this is the case for this sample of researchers. 
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Proportion of Career in Industry and Government:  It appears that the proportion of a 

researcher’s career spent in industry is slightly negatively related to publication productivity and the 

proportion spent in government jobs is slightly positively related (although the coefficients 

estimates in the Tobit model were not statistically significant).  The Tobit model estimates that as 

the proportion of the career spent in industry increases by one percent, the estimated publication 

rate decreases by .64.  Conversely, as the proportion in government jobs increases by one 

percent, the estimated publication rate increases by .15.  These findings are not consistent with the 

Neural Network model where the model estimated a negative relationship between years in 

industry and government and publication productivity.   

  

Job Transformations To and From Industry:  In examining the effect of job transformations 

to and from industry on productivity, it appears that productivity increases both after a move to 

industry as well as after a move from industry.  For the five years before a job position move from 

industry, researchers averaged 1.5 publications per year compared to 2.6 for the five-year period 

following the move.  Similarly, in job transformations to industry, researchers averaged 1.8 

publications per year as compared to 2.6 for the five-year period following the move.  There are two 

possible interpretations of this finding.  One possibility is that such job transformations (or changing 

or adding a job position) truly do boost productivity because of access to new forms or human and 

social capital as originally hypothesized (or for other reasons).  The second possible explanation is 

that job transformations tend to occur in the period of the career when productivity is on the rise in 

general, regardless of job location. 

However, even if the latter interpretation is correct or partially correct, it is still notable that 

publication rates increase despite commonly observed industrial disincentives (or the lack of 

incentive) to publish. 

 

 Triple Helix:  Across all analyses there appears to be mixed evidence of the relationship 

between having had at least one job in all three sectors (academia, industry, and government) and 
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publication productivity.  I argued that these three job sectors may provide diverse and 

complementary forms of human and social capital, which would motivate productivity.  However, 

the coefficient on this variable in the Tobit model was small and not statistically significant.  The 

neural model yielded fairly high positive estimates.  The stars analysis shows that about an equal 

proportion (16 percent versus 12 percent) of publication stars and non-stars have had jobs in all 

three sectors.  Most of the evidence here suggests no effect on productivity thus making the 

original argument difficult to support. 

 

Career Homogeny:  The Tobit model estimates no substantive relationship between career 

homogeny and publication rate.  In the Neural Network model, homogeny has a strong positive 

relationship with publication rate, but only for high values of homogeny.  Publication stars had 

slightly higher career homogeny indexes than non-stars, which is consistent with the Tobit result.   

So overall it appears that following a more typical (or more highly conditionally probable) 

set of job transformations does affects career publication productivi ty, but only in the case of 

extremely homogenous career patterns.  This does not seem to be due to low variance in the 

data—the mean on the career homogeny index was approximately 14.5 and the standard deviation 

was 8.   The career homogeny variable does not take into account the sequence of jobs per se, it is 

a chain of conditional probabilities of job transformations divided by the number of jobs for each 

researcher.  It may be the case that sequence is more important than pure probability, although 

they are not unrelated in that odd sequences would yield low values on the career homogeny 

index.  Perhaps this finding will be explored more thoroughly in future research using Hidden 

Markov Models (as discussed in Chapter 8) that predict the likelihood of a certain outcome based 

on a chain of event statuses.  

 

Holding Jobs in Multiple Job Institutions:  There appears to be a negative relationship 

between the number of job institutions of the researcher and publication productivity.  The Tobit 

model estimates a fairly strong relationship.  For each additional job institution, holding all else 

constant, the career publication rate decreases by 1.3.  Yet, this coefficient estimate was not found 



79 

to be statistically significant.   The Neural Network model is consistent with the Tobit finding.  The 

analysis of stars suggests that publication stars averaged about the same number (3.6) of job 

institutions as non-stars (3.3).   

 

6.1.3 Grant Resources  
 

 Grant Rate:  The Tobit model estimates a slight positive relationship between the number 

of grants a researcher has received as a function of his or her career length.  As the number of 

grants per year increase by one, the estimated average publications per year increases by .14.   

This is consistent with the analysis of publication stars.  Publication stars averaged about two 

grants per year compared with one for non-stars.  This is also consistent with the Neural Network 

model. 

 

 Proportion of Grants from Industry and Government:  Under the diversity hypothesis it was 

assumed that research support from both industry and government motivates scholars in different 

ways due the differences in mission, funding requirements, and incentives across the two sectors.  

For example, industry may be more likely to support work that seeks answers to use-driven 

questions where the findings have some potential for short-term application, whereas federal 

support may be directed toward longer-term, curiosity-driven problems or mission oriented 

problems.   The homogeny hypothesis suggests that federal support (being historically the largest 

source of academic research support) may yield higher publication productivity.  

 Again, the findings conflict across statistical analyses of the source of grant support.  The 

Tobit model suggests that that there is a slight positive association between the proportion of total 

grant support that was awarded by industry sources and publication productivity and a moderately 

positive association between the proportion awarded by federal sources and publication 

productivity (although neither finding is statistically significant).  The analyses of publication stars 

and non-stars show no meaningful differences.   

The Neural Network analysis suggests that the publication rate has perhaps a bimodal 

relationship with industry grant support.  Researchers with a relatively small proportion and 
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researchers with a relatively high proportion of their support from industry are estimated to have 

higher publication rates than researchers with between approximately 30 and 70 percent of their 

research grant support from industry (see Figure 15).   

 

0

5

10

15

20

25

0.00 0.20 0.40 0.60 0.80 1.00

Industry grants/total grants

P
ub

lic
at

io
n 

ra
te

 
Figure 15.  Estimated Relationship Between Industry Grants as a Proportion of Total Grants and 
Patent Rate 

 

The model estimates a positive, approximately linear relationship between the proportion of 

support from the federal government and publication rate, although the effect appears to be 

moderate.   

 Thus overall it appears that grant support does relate positively to publication productivity 

but it does not appear to have a strong effect.  There appears to be conflicting evidence about the 

relationship between the source of support and publication productivity—the stars analysis 

suggests no difference, the Tobit analysis in general support of the homogeny hypothesis, and the 

Neural Network analyses perhaps suggest some benefit from mixed sector support.  
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6.2 Patent Productivity 

 

 Patent productivity was modeled in a Tobit model, a Poisson model, and a Neural Network 

model.  In addition, I examined differences in means between patent stars and non-stars across 

the variables of interest to this analysis. 

  

6.2.1 Education and Human Resource Variables 
 

Field of Doctorate:  From the Tobit model (see Table 8 for coefficient estimates and Table 

18 for a summary of the effects of variables across all models) being a physical or mathematical 

scientist, an engineer, a computer scientist, or a biological scientist were all related to higher patent 

productivity than the reference group, although the largest coefficient estimates were for physical 

and mathematical scientists and engineers.  This is generally consistent with the estimates from 

the Poisson model (see Table 9) and findings from the Neural Network models (see Table 17) 

where physical and mathematical scientists and engineers were estimated to have higher patent 

rates and computer scientists and engineers to have lower patent rates.  A higher proportion of 

engineers and physical and mathematical scientists were patent stars than was true of non-stars 

(although the difference between patent stars and non-stars was not statistically significant for 

physical and mathematical scientists).  A substantially lower proportion of patent stars (2 percent) 

were biological scientists compared with non-stars (12 percent) (see Table 11 and Table 18 for a 

summary of differences between patent stars and the other groups).   

 

Postdoctoral Positions:  The evidence regarding the effect of having had a postdoctoral 

research position is consistent across models.  The coefficient on this variable in the Tobit and 

Poisson models was negative and moderate in size (but not statistically significant).  This was also 

true of the estimates from the Neural Network models and is consistent with the comparison of 

patent stars and non-stars.  Just 22 percent of patent stars had a postdoctoral research experience 

as compared with 32 percent of non-stars (a statistically significant difference).  There may be 

several explanations for this finding.  First, it may be the case that postdoctoral positions are often 
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located in the academic sector where patent productivity is not rewarded like publication 

productivity.  Second, although less likely, it may be the case that postdoctoral associates are 

viewed as research “labor” and are not credited with break through discoveries because their work 

is dominating by so called “mopping up” duties.  Third, postdoctoral positions may be more 

common in fields where patenting is less common.  Finally, postdoctoral positions may have a form 

of career “holding pattern” effects where top graduates are sought after for assistant professorships 

and others are left waiting in the career queue. 

 

Publication Precocity:  Precocity (or predoctoral publications) showed only a slightly 

positive effect on patent productivity in the Tobit and Poisson models.  In the Tobit estimate, for 

every additional predoctoral publication, patents increased by an average of .03 per year; the 

Poisson model estimates a similar result.  This is also consistent with the Neural Network models—

precocity seems to have a weak positive association with patent productivity except for extremely 

high values of precocity (i.e., when a researcher had 20 or 30 or more predoctoral publications).  

Moreover, patent stars averaged approximately 7 predoctoral publications compared with 10 for 

publication stars, and 3 for non-stars.   

 

6.2.2 Job and Career Variables  
 

Starting Position:  It appears that starting one’s career in government is associated with 

lower overall patent productivity across the career cycle, at least for those researchers in the RVM 

dataset.  All models showed that researchers who began their careers in government had lower 

patent rates, although none of these estimates was statistically significant.  Among the stars—just 

9 percent of patent stars began their careers in a government job compared to approximately 15 

percent for publication stars and non-stars. 

There is some evidence that starting one’s career in industry may be detrimental to long-

term patent productivity.  The Tobit model showed a zero relationship, while the Poisson model 

yielded a small to moderate negative estimate, although neither estimate was statistically 

significant.  The neural models showed slightly higher estimates of patent rate for industry starters.   



83 

Yet, in contrast, the stars analysis shows that patent stars were much more likely to have 

started their careers in industry.  Approximately 52 percent of patent stars’ first job was in industry 

compared to about 29 percent for publication stars and 30 percent for non-stars (all of these 

differences were statistically significant).  These findings taken together suggest two observations 

of interest.  First, at least in the early career years, there is substantial job mobility between 

industry and academia.  Second, starting one’s career in industry may be related to productivity 

spuriously through the disciplinary field of the researcher. 

  

Proportion of Career in Industry and Government:  Across all of the analyses, the 

proportion of one’s career spent working in industrial jobs appears to have an enormously positive 

effect on patent productivity.  This is the strongest single predictor of patent productivity in the Tobit 

and Poisson models.  The Tobit model, for example, estimates that increasing the proportion of 

one’s career by one percentage point increases the patent rate by .83, holding all else constant.  

The stars analysis is consistent with this finding.  Patent stars spent approximately 24 percent of 

their career years in industrial jobs compared to approximately 9 and 11 percent for publication 

stars and non-stars, respectively.  

Conversely, a higher proportion of years in government jobs is associated with a lower 

patent rate, although these coefficient estimates were not statistically significant.  These findings 

are consistent with the Neural Network models.  The stars analysis demonstrates that patent stars 

averaged approximately the same percentage of their total job years in government jobs as 

publication stars and non-stars.  

 

 Triple Helix:  The effect of having had a least one job in each of the three sectors 

(academia, industry, and government) differs across models.  The Tobit model estimates no 

substantive relationship, while the Neural Network model and the Poisson model the estimate is 

moderate and negative, suggesting that the triple helix career is negatively related to patent 

productivity (although the Tobit and Poisson coefficient estimates were not statistically significant).  
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This is consistent with the analysis of patent stars who were less likely to have had a job in all three 

job sectors (10 percent) compared to non-stars (15 percent). 

 

 Career Homogeny:  There is some conflicting evidence about the relationship between 

career homogeny and patent productivity.  Both the Tobit and Poisson models yielded near zero 

coefficient estimates (the latter was not statistically significant).  However, the neural models 

yielded estimates of a positive relationship between homogeny and patent productivity but only for 

extremely high levels of career homogeny.  In contrast, the analysis of stars suggests that patent 

stars exhibited lower career homogeny indexes (12.3) than non-stars (14.7) and still lower than 

publications stars (15.3) (all of these differences with patent stars were statistically significant).      

  

 Holding Jobs in Multiple Job Institutions:  There appears to be a negative relationship 

between the number of job institutions of the researcher and patent productivity.  The Tobit model 

estimates a fairly strong relationship.  For each additional job institution, holding all else constant, 

the career publication rate decreases by .18.  Yet, this coefficient estimate was not found to be 

statistically significant.   This is inconsistent with the Poisson model which estimates that with each 

additional job institution, the patent rate increases by 30 percent.  The Neural Network model is 

consistent with the Tobit finding.  The analysis of stars suggests that patent stars averaged about 

the same number (3.2) of job institutions as non-stars (3.3).   

 

6.2.3 Grant Resources  
 

 Grant Rate:  The Tobit and Poisson and Neural Network models estimate no relationship 

between the number of grants a researcher has received as a function of his or her career length 

and patent rate.  This is not consistent with the analysis of stars, which showed that patents stars 

averaged approximately 1.7 grants per year compared to 1.0 for non-stars, and with the Neural 

Network models.   
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 Proportion of Grants from Industry and Government:  The Tobit and Poisson models 

suggests that that there is a large positive association between the proportion of total grant support 

that was awarded by industry sources and patent productivity and a moderate negative association 

between the proportion awarded by federal sources and patent productivity (although the only the 

Poisson estimate on industry funding is statistically significant).  The analysis of patent stars is 

consistent with this finding.  About 33 percent of patent stars’ grants were funded by industry 

compared with about 23 percent for non-stars.  Similarly, about 45 percent of patent star’s support 

was awarded by federal sources as compared to 54 percent for non-stars.   Yet the Neural Network 

analyses suggests that the patent rate remains relatively consistent for researchers with relatively 

low proportions of industry support but increases at an increasing rate.  The Neural Network model 

estimates slightly increasing patent rates as the proportion of support from the federal government 

increases.   

 Thus overall it appears that numbers of grants per year may be unrelated to patent 

productivity.  However, it seems that the weight of the evidence across models suggests that the 

source of support does matter—where industrial support is associated with higher overall patent 

rates than federal support.   

 

6.3 Similarities and Differences in Publication and Patent Productivity Analyses 

 

6.3.1 Similarities in Publication and Patent Productivity Findings 
 

 Taken as a whole, the analyses of publication and patent productivity reveal some 

consistent findings.  First, physical and mathematical scientists and engineers have higher 

productivity rates than researchers in other fields.   

Second, publication precocity also seems to have little effect except in cases of extremely 

high levels of precocity.  All of these education and human resource variables taken together 

suggest long-term, or career, productivity rates are not affected by these variables as measured.  

Again, it is possible that effects of education and early career variables on productivity could have 

been detected had more precise variables been available.  But in order to do proper justice to the 
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topic, this would need to be the subject of an entire study.  Alternatively, it may be that education 

and early career experiences have important career effects in areas other than productivity. 

Third, there is a consistent finding across models that having had a postdoctoral research 

position is negatively related to career productivity rates. 

 Forth, across all models there was a consistent finding that researchers who started their 

careers in government had lower overall productivity.  And there seems to be no effect of having 

had a job in each of the three job sectors examined—academia, industry, and government. 

 Fifth, there is some evidence that researchers who made relatively high numbers of 

institutional job changes have lower productivity than those with fewer.   

 

6.3.2 Differences in Publication and Patent Productivity Findings 
 

 The major differences in publication and patent productivity involve job and grant related 

variables.   First, there is some evidence that patent productivi ty is positively related to closer 

connections to industry and negatively related to closer connections with government.  Higher 

proportions of the career spent in industrial settings and higher proportions of research funding 

from industry sources seem to be related to higher patent productivity.  In contrast, higher 

proportions of the career spent in government jobs and a higher proportion of federal support seem 

to be negatively related to patent productivity or have no substantial effect. 

 In contrast, a higher proportion of the career spent in industry seems to be negatively 

related to publication productivity, while more career years in government jobs seems to be 

positively related to publication productivity.   

 Second, a higher number of grants per year is related to higher publication productivity but 

not to patent productivity. 

 Third, the source of the support (industry or federal) is unrelated to publication productivity, 

while a higher proportional level of industry support is positively related to patent productivity. 

 Fourth, at least within the community of scholars deemed productivity stars in this 

dissertation, it seems that publication stars exhibited higher career homogeny than patent stars 
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who exhibited lower career homogeny than non-stars38.   Combination stars had the highest career 

homogeny indexes.  Thus, it seems that following typical career trajectories is related more to 

publication productivity than to patent productivity.   Moreover, publication stars are more likely to 

hold more job positions per career year than non-stars and possibly patent stars.  Finally, patent 

stars tended to start their careers in industrial positions at much higher rates than publication stars 

and non-stars and less often in government positions. 

 

6.4 Evidence in Support or Opposition to Hypotheses 

 

6.4.1 Precocity Hypothesis 
 

This hypothesis states: “Scientists and engineers who demonstrate early productivity by 

publishing before the doctorate will exhibit higher career productivity overall (due either to innate 

talent, working with highly productive scholars, higher quality graduate training, or other factors).”   

There is evidence to support this hypothesis, although the relationship between precocity and 

future productivity appears to be weak and perhaps influenced by several cases of extreme 

precocity outliers. 

The Tobit models estimate that for each additional predoctoral publication, the publication 

and patent rate increase by .12 and .02, respectively, holding all else constant.  To put this in 

context, the mean publication rate was approximately 4 (publications per year) and the mean 

patent rate was .14 for all scientists and engineers in the RVM dataset.  Proportionate to their 

means then, the effect of precocity on patent rate was actually estimated to be higher. The Poisson 

model provides consistent results.   

The analysis of stars demonstrates that publication stars averaged approximately 10.2 

predoctoral publications, compared with 7.3 for patent stars and 3.1 for non-stars 39.   However, the 

                                                 
 
38 Although in the analyses of the complete sample career homogeny seems to have a slight 
positive effect on both forms of productivity overall, mostly due to those with extremely high levels 
of homogeny. 
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Neural Network analyses suggest that the effect was essentially zero for those with relatively low to 

moderately high numbers of predoctoral publications.  The relationship was strongly positive for 

those with more than approximately 20 or more predoctoral publications.   In sum, this hypothesis 

is supported given the above caveats.  

 

6.4.2 Education and Training Hypothesis 
 

This hypothesis states: “Early career experiences through postdoctoral research 

experiences will result in higher productivity (because they provide educational and human 

resources (i.e., human capital) building opportunities).” Across all models—Tobit, Poisson, Neural 

Network, and the stars analysis—there is evidence to support the notion that postdoctoral research 

positions may inhibit longer-term productivity.  The Tobit and Poisson model coefficient estimates 

were negative and moderate in size.  And, publication stars and patent stars were less likely to 

have held postdoctoral appointments than non-stars.  The Neural Network models estimate that 

publication and patent rates are lower for those who have had a postdoctoral position than they are 

for those who have not.  In sum, this hypothesis is not supported. 

 

6.4.3 Homogeny Hypothesis 
 

This was the main rival hypothesis to the diversity hypothesis discussed in the next 

section.  It states:  “Following the ‘traditional’ career path will yield higher productivity.  Scientists 

and engineers who exhibit a career pattern of relatively uninterrupted job sequences in academia 

will have higher publication productivity than those who do not.  Likewise, those with higher levels 

of career time in industrial jobs will have higher patent productivity (due to the differences in job 

incentives between academia, industry, and government).”    

There is evidence for and against this hypothesis.  I will discuss the evidence for this 

hypothesis in this section and will discuss the evidence against this hypothesis in the context of the 

                                                                                                                                                    
39 All of the coefficient estimates on the Tobit and Poisson models were statistically significant at 
the .05 level or below. The stars analysis shows that the difference in means between publication 
stars and non-stars was statistically significant.  
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diversity hypothesis (in the next section) since they are essentially complements.   First, the Tobit 

model of publication rate estimates that the coefficient of the career homogeny index40 is positive 

and statistically significant, although small in size (.05).  This means that as the homogeny index 

increases one point, holding all else constant, the estimated publication rate increases by .05.  In 

contrast, for patent rate, the Tobit and Poisson models estimate a coefficient of zero (not 

statistically significant).  The Neural Network models suggest steadily a relatively flat relationship 

between homogeny and publication and patent rates until the homogeny index reaches 

approximately 40.  So based on the career homogeny variable, there seems to be some evidence 

for a weak positive relationship between homogeny and productivity except for researchers who 

have had a career of highly probably job sequences, and then the relationship is strongly positive. 

Second, all three models estimate a negative relationship between starting one’s career in 

industry or government and productivity (both for publication and patent rate).   Third, for 

publication rate, the Tobit model estimates a negative relationship with the proportion of career 

years worked in industry jobs, which suggests a more traditional academic career path results in 

higher publication rates 41.   Likewise, all models showed a strong positive relationship between 

proportion of career spent in industry jobs and patent rates, which would be expected under the 

homogeny hypothesis.  Finally, publication productivity is associated with more grants in general, 

although the source of the grant (federal versus industry) does not seem to matter.  Again, this is 

expected in environments where publication productivity is prized.  Overall, there is sufficient 

evidence to suggest that the homogeny hypothesis is plausibly supported by the data. 

Third, all models estimate a negative relationship between the number of job institutions 

and productivity rates.  That is, the more job institution changes a researcher seems to make is 

related to lower overall productivity. 

   

                                                 
 
40 The range on this variable was from .4 to 72.5 
 
41 It should be noted that the coefficient on the proportion of the career spent working in 
government was positive and of moderate size although not statistically significant. 
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6.4.4 Diversity Hypothesis 
 
 

The diversity hypothesis—the central hypothesis of this dissertation—states: “Inter and 

intrasectoral changes in jobs throughout the career will result in higher research productivity (due to 

the opportunity provided to build human and social capital).”  The primary evidence for this 

hypothesis (and thus against the homogeny hypothesis) is from the descriptive statistics and 

comparisons of means from the analysis of stars.  First, about 29 percent of publication stars 

began their career in industry and averaged about 10 percent of their job years in industry and 5 

percent in government.  This about the same proportion as was true of non-stars but suggests 

some intersectoral career diversity is common.  In addition, publication stars were more likely (56 

percent) to have had at least one industry job than non-stars (48 percent), although this difference 

is not statistically significant.   

Second, higher patent rates were associated with careers proportionally higher in industry 

jobs and job years in industry.  But even among patent stars the proportion was still relatively 

modest—24 percent of career years in industry.  Thus both publication and patent productivity are 

associated with some degree of career diversity. 

Third, the patent rate was also associated with proportionally higher levels of funding from 

industry.  However, even among patent stars, the proportion of grants awarded by industry sources 

was roughly 33 percent compared to 45 percent of the awards from federal sources.  Incidentally, 

of publication stars’s grants support approximately 28 percent came from industry, compared with 

40 percent of combination stars and 23 percent of non-stars.  

Fourth, there is evidence from the stars analysis to suggest that homogeny may be related 

more highly with publication productivity than patent productivity.  Career homogeny was highest 

among publication stars and combination stars.  Patent stars had lower homogeny than both these 

groups and lower than non-stars as well.  So there may be reason to conclude that career 

homogeny is a more important factor in publication productivity than in patent productivity.  Thus, 

the diversity hypothesis may be more relevant in explaining patent productivity as compared to 

publication productivity. 
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 Finally, researchers in the RVM data set averaged 17 percent of their total jobs in the 

industrial sector and 12 percent of their career years in industry jobs.  Approximately 51 percent 

had one or more jobs in industry; 26 percent had one or more jobs in government.  Nearly half 

began their careers in non-academic jobs—for 33 percent the first job was in industry and for 15 

percent the first job was government.  An average of 24 percent of the grants awarded to 

researchers in the RVM dataset came from industry.  These latter statistics suggest that there is 

perhaps substantially more intersectoral linkages than may be commonly perceived (at least for 

this dataset of researchers working in academic research centers).   

Although the career homogeny hypothesis may be better supported by the data analysis 

two important findings are drawn from examining the data through the lens of the diversity 

hypothesis.  First, there seems to be substantial intersectoral diversity among researchers in the 

RVM dataset, perhaps more than would typically be expected.  And, second, the diversity 

hypothesis is more plausible in explaining patent productivity than it is in explaining publication 

productivity. 
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CHAPTER 7 

 
 

LIMITATIONS AND BENEFITS OF USING THE CV FOR CAREER RESEARCH 
 
 
 
 

Few studies have employed CVs as data sources about trends in job patterns and 

productivity.  Typically, when CVs are used in career studies, they are used as a supplemental 

source of information that serves to fill in gaps left from other research modalities (Long et al., 

1993; Gomez -Mejia and Balkin, 1992).  Even when CVs42 are used as the primary or only data 

source (Bonzi, 1992), their advantages or disadvantages are rarely discussed.  The utility of CVs 

as a data source is dependent upon their quality and completeness.   This chapter is designed to 

address some practical issues when using the CV the approach.   

 Section 7.1 focuses on the general limitations of using the CV as a data source for career 

research studies.  Section 7.2 focuses on specific issues related to “problem” variables set 

commonly included on the CV, while section 7.3 addresses the benefits of this unusual method.    

 

7.1 General Issues in Using the CV as a Source of Career Data 

 

7.1.1 Semi-standardized Formatting 
 

Although CVs tend to conform in academia toward a semi-standardized format, there are 

many differences in the presentation and ordering of information, making data entry difficult, as 

coders must flip back and forth among the pages of the CV in search of the next variable sets that 

are demanded of the coding protocol.  Generally speaking, name and institutional affiliations are 

placed first, followed education and degree information, job degree histories, and lists of 

publications.  After that, information tends to come in any order including, lists of affiliations with 

                                                 
 
42 Methodologically, CVs have been found to closely match information from other secondary 
sources such as the American Psychological Association’s directory.  Nevertheless, these other 
secondary sources have been shown to undercount the number of published journal articles as 
compared to CVs (Heinsler and Rosenfeld, 1987). 
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professional societies, grant information, patent information, information on student advisees, 

courses taught, honors and distinctions, service work to the field, and service work within the 

university.   

Even within these broad categories there are a number of formatting challenges, in some 

CVs publications are ordered by date (with no specification of the type of publication), some are 

ordered by type in a number of ways (e.g., refereed journal publications, edited volumes, 

monographs, peer reviewed conference papers, conference papers, books, book chapters, 

monographs, etc.), and some ordered chronologically within type.    

 Another formatting challenge is that some CVs are ordered chronologically (from earliest 

job or publication, for example) to most recent but some are in reverse chronological order.  Within 

the topic of time sequencing, some CVs order jobs by the year in which they began (straight 

sequential ordering), while others nest this information within job category types (see hypothetical 

examples 1 and 2 for a comparison). 

 

Example 1.  Straight sequential ordering  

Professional Positions: 

1970-present  Professor, MIT 
1970  Visiting Professor, Max Plank Institute 
1966-1979 Director of Materials Research Laboratory 
1966  Consultant, General Motors Corporation 

1965-1970 Associate Professor, MIT 
1964-1972 Adjunct Professor, Tokyo University, Japan 
1960-1965 Assistant Professor, MIT 

 

Example 2.  Sequential ordering within type 

Academic Professional Positions: 
 

1970-present  Professor, MIT 
1970  Visiting Professor, Max Plank Institute 
1965-1970 Associate Professor, MIT 
1960-1966 Assistant Professor, MIT 

 
Other Positions Held: 

 
1966-1979 Director of Materials Research Laboratory 
1966  Consultant, General Motors Corporation 
1964-1972 Adjunct Professor, Tokyo University, Japan 
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Both career examples contain identical data although the formatting of the information is different.  

This is not an insurmountable coding problem but it makes for higher item complexity in the coding 

task. 

 

7.1.2 Missing Information 
 

 Missing information poses one of the greatest challenges to the use of the CV as a data 

source for career studies.  The primary difficulty is in ascertaining if the information is missing as 

opposed to zero in value.  So if, for example, a scientist or engineer has listed no research grants, 

does this mean that the information is missing or that the person has truly not been awarded a 

grant?   This is the principal problem that makes models such as Tobit analyses and event history 

analyses well suited to career research as derived from CV data.   

 Usually, one can develop an informed “hunch” about whether a particular CV contains 

missing information versus data values of zero by examining the career age of the respondent.  If a 

respondent is a full professor but has no publications, it is likely that this is a case of missing data.  

However, there is no reliable way to detect the difference between missing and zero data on the 

CV.   One way to address this is to classify the CV as “suspect” when counterintuitive missing 

information is identified.  Then one can choose to include or not include these cases depending on 

the objective of the research and analysis planned via the use of CV data. 

 

7.1.3 CVs of Varying Length 
 

 Related to the issue of missing data is the problem of variance in length of the career and 

thus the length of the CV.  Depending on the career age and accomplishments of the scientist or 

engineer it is not uncommon for the CV to be as short as one or two pages or as long as 200 pages 

or more.  As a result the number of variables can range from as few as 10 to 3,000 or more.  Most 

standard statistical analysis packages will view these empty variables as missing data when they 

are, in reality, null data.  For the scientist with a career history of only 10 variables there may 
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actually be no missing data at all although modeling software may treat the 26th job type variable 

as missing for this case. 

 

7.1.4 Truncated CVs 

 

 Closely related to missing information is the problem of “truncated” CVs.   Most commonly 

when truncation it is a problem is truncation from below.  In these cases, the CV may list only 

recent information, such as “publications since 1990,” or may list only significant information, such 

as “most significant publications.”  However, truncated CVs come in other forms such as the 

narrative from (e.g., biosketch) where information must be extracted from text.  In addition, often 

academic scientists and engineers will have a short and a long form of their CV and it is not always 

simple to detect if the CV in hand is the more complete one. 

Truncation from above comes in two forms.  The most common is that the CV has not 

been kept up to date, so recent information is unavailable.   The other form is where the CV does 

not itemize publications, for example, stating only “over 40 publications.” 

 

7.2 Specific Problems with Certain Variables Included on CVs. 

 

7.2.1 Educational Data 
 

 Generally, educational data are easy to extract from the CV.  However, the most frequent 

problems include:  missing year in which degree was earned and missing field of study.  The field 

in which the bachelor’s degree was earned was missing on approximately 10 percent of all CVs in 

the RVM dataset and the year in which it was earned was missing on 7 percent.  Disciplinary field 

of doctorate was missing on 12 percent of the CVs and the year in which the degree was earned 

was missing in 5 percent. 
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7.2.2 Job Data 
 

 The most common problems with job data include difficulty in identifying and classifying the 

job type and missing information in beginning and end dates of job durations.  As for difficulty in 

discerning job type position, there are two problems—difficulty in determining the nature of the 

position and difficulty in classifying and coding them as a result.   

Most academic jobs are relatively easy to identify particularly the typical ones such as 

assistant, associate, and full professor, or department chair, or dean.  Yet others are more difficult, 

some graduate assistantship positions are difficult to classify as such in that they may be disguised 

under titles like research associate.  This is a specific example of the case of “embellishment” of 

the CV for job marketing purposes.  Or it may be the case that the CV does not distinguish 

between research assistantships and teaching assistantships, which in theory should be classified 

differently because of the different skill building tasks they address.   

Visiting positions are often difficult to classify correctly.  Some are taken as research 

sabbaticals and are more similar to full professor positions, for example, while others are “soft 

money” positions where the respondent has no permanent job and may be more closely related to 

adjunct faculty positions or lecturer positions.  Research scientists in some institutions may be 

tenured research “faculty” and in other institutions they may be also in soft money positions.   

Finally, there are a number of academic administrative positions that are difficult to distinguish from 

each other in a human capital or theoretical sense depending on how the title is presented, such as 

the array of assistant and associate directors, deans, vice presidents, and provosts.   

 In industry, problems include difficulty in classifying and coding various junior to senior 

research scientist and engineering positions across firms and within categories.   Some job 

positions in industry distinguish between research scientist or engineer, senior research scientists 

or engineer, project or program director, and group leader.  From a classification point of view, 

those differences may seem meaningful, but what should be the correct coding classifications, 

which distinctions are meaningful, and where does one draw those distinctions?  

Another difficulty comes in the form of distinguishing between research and administrative 

positions.   Frequently, titles such as group leader, project chief, research director, vice president 
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for research (versus vice president for other matters) are difficult to classify appropriately.  Should 

these be coded as administrative positions or research positions?  At what point in the continuum 

between pure researcher and pure administrator should the line be drawn? 

 The major problem with consulting jobs is two-fold; they are either underspecified or 

overspecified.  I suspect that some researchers simply do not list consulting work on their 

academic CVs.  When the CV does list consulting jobs it is often difficult to know how to code or 

“weight” these variables.  Does consulting at a company for one day, one week, two months, or 

three years make a difference to a researcher’s career?  At the extremes, the answer is likely to be 

yes in the social and human capital formation opportunities that consulting work carries.  The 

difficulty is in determining what is worth coding when myriad consultancies are listed and coding 

time is finite. 

 

7.2.3 Publication Data 
 

 Publication data from CV records exhibit several data quality problems.  First, it can be 

difficult to determine if a publication has been peer reviewed.  Although many scholarly journals are 

peer reviewed, some are not.  In addition, some CVs do not make this information clear and it can 

be difficult to identify a publication as a peer reviewed journal article compared to some other form 

of publication, especially when the task includes coding hundreds of CVs, some of which contain 

hundreds of publications, in just about every field of science and engineering.  

 Second, there are differences in the quality of the journals so it may not be the case that 

publications should be counted as equal.  Publication counts can be thought of as a relatively crude 

measure of scientific contribution.  Perhaps a better measure of publication quality (or usefulness 

of the scientific contribution) is to examine citation counts.  However, the task of collecting and 

matching this data can be onerous. 

Third, there are a host of disciplinary field differences that interact with publication data 

problems.  In some fields, it is standard practice to have the lead author listed first, in others the 

ordering is alphabetical, and in still others the senior member of the team is listed first or last.  In 

some fields refereed conference papers such as those embodied in variance proceedings (e.g., 
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IEEE) are highly rewarded, whereas in other fields conference papers are regarded as relatively 

unimportant and are not peer reviewed.  At times it is difficult to determine which is the case.    

 

7.2.4 Patent Data 
 

 The most common problem with patent data is that they are frequently not included in the 

CV.  Just 21 percent of the CVs in the initial coding (i.e., pre-data cleaning) contained information 

about patents, which was found to be an underestimate.   By using the USPTO database, and 

through careful matching of records against the CV job institution at the time the patent was applied 

for, it was found that 41 percent of the scientists and engineers in the RVM data set had been 

granted one or more patents. 

 

7.2.5 Grant Data 
 

 Like patent data, it is suspected that CVs contain a lot of missing data for research grant 

awards.  Unfortunately, unlike patent data, there is no simple way to test this.  Approximately 40 

percent of the scientists and engineers in the RVM dataset listed one or more (external) research 

grant on their CV.   

The most challenging problem with grant data is that it is perhaps the least standardized 

element of the CV in terms of what information is presented and in what format.  Common 

problems include missing duration of the award, unclear identification (including the use of field 

specific acronyms) of the sponsoring organization, missing information about the dollar amount of 

the award (including some cases where the total amount is listed, others where direct costs are 

listed, and others where the “share” applicable to the respondent on a multi-investigator award is 

identified), and unclear identification of the respondent as principal or co-principal investigator. 
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7.3 Benefits of the CV Approach 

 

 The above litany of difficulties suggest that much more labor and time must be spent in 

coding, checking, cleaning, and reordering the data.  Sometimes this requires reexamining primary 

sources such as the CV and any relevant website the respondent may maintain.  Despite these 

challenges, the CV remains by far the most complete longitudinal record of scientists’ and 

engineers’ careers.   

There are several major benefits in working with CV data.  First, the method is relatively 

unobtrusive.  It is unlikely that respondents would be willing to provide the level of detail contained 

in the CV through a survey questionnaire or interview.   The enormous time required of the 

respondent would make that impossible, whereas with data collected via the CV, the time required 

for the respondent may be just a minute or two to read the email request and to reply with an 

attached CV file.   

 Second, the wealth of longitudinal career analyses that one could perform using CV data is 

enormous including studies such as this one, evaluative and comparative studies of research 

centers, potential social network studies on smaller samples, as well as studies of gender 

differences and differences in national origin.  The researcher can always return to the primary 

source (i.e., the CV) to collect supplemental data as necessary—for example, to code and analyze 

co-authorship patterns and to collect information that would permit further bibliometric analyses.  

Often with survey research methods this is impossible.   

 Third, while CVs can sometimes include missing data, they are often kept as a log of sorts 

and updated with some frequency.  This diminishes well known “telescoping” problems (incorrectly 

identifying the time period and sequence of past events) in survey research and interviewing 

(Sudman and Bradburn, 1982).  

 Finally, CV data can be viewed as complementary to more traditional forms of social 

science data collection and can serve to enhance methods such as site-visiting and face-to-face 

interviews.  Having the CV in hand prior to the interview could result in less respondent burden or 

may allow the interviewer to focus on richer topics.  In the RVM Program, site visits preceded the 
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collection of CVs, which were followed by and informed the construction of a survey questionnaire 

designed to address topics—such as opinion items, perceptual and behavioral items, and value 

expressions—not captured by the CV or site visit.  
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CHAPTER 8 

 
 

LIMITATIONS OF STUDY AND FUTURE RESEARCH DIRECTIONS 
 
 
 
 

Aside from those delineated in Chapter 8 on the method of CV collection, coding, and 

analysis, there a number of limitations of this study.  In addition, there are a number of avenues for 

productive future research.  Both are discussed in this chapter.  In sections 8.1 through 8.4 the 

limitations of this research are addressed.  In section 8.5 possible areas for future research are 

discussed. 

 

8.1 Sample Limitation 

 

 As noted in Chapter 4, the sample framework for this study was non-random.  Individuals 

were chosen because of their affiliation with research centers funded by the agencies that 

supported the RVM Program.  As a result, the findings pertain only to this population of scientists 

and engineers.  In addition, despite best efforts, the response rate was low (36.5 percent) and 

there may be problems with non-response bias as a result.  For example, it might be the case that 

the most productive scholars receive many email messages that they cannot or choose not to 

respond because of other time-use priorities.   

In contrast, the reported response rate was based on a sample framework that included 

undergraduate and graduate students as well as some administrative support personnel (neither 

the former nor the latter were used in this study).  These individuals may not yet have a CV or may 

have believed that they were incorrectly identified as intended respondents due to the language 

used in the recruitment email.  So it may be that the response rate for career scientists and 

engineers was somewhat higher than 36.5 percent.  Although the response rate does not appear to 

be out of range with similar studies of this type, there are likely to be some forms of non-response 

bias.  In short, it is acknowledged that there are generalizability and external validity limitations of 

this research. 
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8.2 Limitations of Modeling and Model Assumptions 

 

8.2.1 Model Assumptions 
 

Basic model assumptions—such as relative conformance with normality, zero mean value 

and constant variance of the disturbance term, the lack of correlation between the explanatory 

variables and the disturbance, and correct model specification—are problematic when attempting 

to model a phenomenon (i.e., productivity) that is highly skewed by nature.   There are strong 

outlying cases in the data that are not due to data quality problems but are due to the existence of 

a minority of the scientific and engineering population that is very different from the majority.   

Tobit models, while useful in dealing with censored data, are sensitive to model 

misspecification.  There is surely model misspecification in this study (as there is in many studies) 

due to the limitation of available data and the difficulty in measuring, operationalizing, and 

controlling for variables such as innate motivation, human capital, and social capital.   

In addition, Tobit models assume specific forms of censoring such as censoring from below 

at zero or above at some other threshold value.  In this study, there is likely to be both forms of 

censoring.  While the major censoring is censoring from below at the threshold level of zero, the 

Tobit analysis cannot correct for multiple forms of censoring when the threshold values are not 

know or are variant across observations (i.e., cases). 

Poisson models are appropriate for modeling count data where there are a non-trivial 

number of zeros among the counts and where large counts are relatively rare.  However, Poisson 

models assume that the mean of the distribution is equal to its variance.  In cases, where the 

variance exceeds the mean, so called over dispersion, standard errors are biased toward zero and 

significance tests and p-values cannot be relied upon.  There may be some overdispersion in this 

dataset.  One solution is to model count data as a negative binomial distribution via maximum 

likelihood estimation, which will remain as an opportunity for future research. 

One possible solution to the above parametric modeling assumptions is to employ non-

parametric methods to avoid the above problems.  Neural Network models are non-parametric in 

form and are believed to benign to parametric assumptions and “noisy” (e.g., missing values or 
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measurement error) data.   Because input neurons are weighted and adjust through iteration in an 

attempt to approximate their targets with minimum error, the weights on the hidden neuron layers 

can be used to approximate the effects of various inputs on the target.   Neural Network analyses 

can be trained and validated on subsamples of the data, which has been done in this study, to 

avoid the problem of over-training (i.e., over valuing the observed data at the cost of minimizing 

generalization).  Despite their advantages, Neural Network models do have problems in 

generalizability unless they are tested against samples of new data.  In addition, because they are 

highly dynamic, model interpretation and coefficient interpretation are not as straight forward as is 

the case in parametric models. 

 

8.2.2 Appropriate Modeling Techniques 
 

 None of the available non-Bayesian, parametric models, which are designed to test the 

effect of explanatory variables on a dependent variable, truly capture the essence of measurement 

and analysis of dynamic career and productivity patterns.  In this study several variables (e.g., the 

homogeny index, first job sector, proportion of career years in industry jobs) that summarize these 

patterns into a single number have been included.  Yet, it seems to me that this does not do justice 

to the problem as posed.  The career homogeny index is based on the logic of Hidden Markov 

models—which use strings of conditional probabilities of observed states and an unobserved 

“hidden” chain to classify patterns (discussed in Section 8.5)—may hold promise for future 

research in this area. 

 

8.3 Validity of Measures 

 

8.3.1 Diversity of Job Pattern 
 

 The diversity of the job pattern in terms of the homogeny index and intersectoral career 

changes is limited (in its construct validity) as a measure or proxy for the social and human capital 

building experiences these environmental changes may embody.  So it may not be the number or 
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type of these career transformations that matter but the actual quality and character of the 

experience provided through these job transformations.  The human and social capital building 

opportunities that these job changes may or may not represent is likely to be a better and more 

sensitive indicator, but one that is fraught with measurement difficulties and cannot easily be 

extracted from the CV.  As a result, these variables are proxy variables in this respect. 

 

8.3.2 Publication and Patent Rates as a Measure of Productivity 
 

 Likewise, publication and patent counts and rates are relatively crude measures of 

productivity.  Citations to publications may be a better overall measure of the contribution that a 

scientist or engineer has made to the knowledge base.  While publication counts are a measure of 

“work” productivity (units of output over time) as opposed to the perhaps more relevant concept of 

“knowledge productivity,” which would be better measured by citation counts.  

While citation analysis scholars have thoroughly inventoried the shortcomings of citations 

as measures of quality and peer recognition of scientific work (see, for example, Narin and 

Hamilton, 1996; Narin, 1994; Narin, Olivastro, and Stevens, 1994; Cozzens, 1989; MacRoberts and 

MacRoberts, 1986;  Narin, 1976), citation counts generally serve as a good measure of 

“usefulness” of the scientific and engineering research.  The Cole brothers found, in a 1971 paper 

that reviewed empirical studies of citations as a measure of quality, that they generally correlate 

quite highly with peer assessments of quality and just about every other measure they tested (Cole 

and Cole, 1971). 

The use of citation analysis was explored for this study but due to the enormous financial 

cost of purchasing these data and the enormously labor intensive process of matching such data to 

career records, such analysis was impossible.   Even use of the so called Journal Impact Factor, 

the mean number of citations to articles in a given journal in a given year, would have required the 

recoding of the 65,320 publications of the scientists and engineers in the RVM dataset.  Moreover, 

the variance in the impact factor over time tends to be high in some journals versus others.  Such a 

proof-of-concept study where the impact factor is used as a weight on a subsample of the cases 

may be possible in future research.  
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 8.4 Limitation of Findings 

  

The above limitations in the research design and methodology, affect the limitations of the 

findings.  However, there are several other limitations.  First, the nature of the association among 

explanatory and dependent variables (i.e., internal validity) may be questioned like all statistical 

models based on correlation.  There is likely to be some form of reciprocal correlation between 

productivity and other variables.  For example, grant awards may boost productivity, while 

productivity may increase the likelihood of receiving grant awards.  Likewise, job changes may 

affect productivity or vice versa, although the extant research findings discussed in Chapter 2 and 

those discussed in Chapter 5 (Section 5.4) suggest that productivity is affected positively by the job 

move. 

Finally, it may be the case that holding multiple jobs concurrently (such as Department 

Chair, Endowed Chair, or Director of a research center) positively affects productivity.  On the other 

hand, these concurrently held jobs provide affordances not available to other researchers, such as 

a greater number of graduate students, postdoctoral research associates, and research scientists, 

who may do much of the paper authoring.  However, much of the research related to this topic (as 

discussed in Chapter 2) suggests that productivity only weakly affects prestige of next job and that 

productivity increases after the attainment of the next job post.  Likewise in examining job 

transformations to and from industry, as part of this study, productivity increased after the job move 

(regardless of job sector).  However, this may be an artifact of the fact that job moves between 

academia and industry may be more likely to occur at the career stage when productivity (in 

general) is on the increase.  Nonetheless, there may be some cause for concern about non-

recursive relationships such as endogeneity within the explanatory variables. 

 

8.5 Opportunities for Future Research 

 

 There are several possible avenues for productive future research using the RVM dataset 

and through the collection of supplementary data from the CVs and other sources.   
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8.5.1 Social Network Analyses 
 
 
One of the limitations of this research is the difficulty in measuring human and social 

capital.  While human capital may be especially difficult to measure, it is possible to do a better job 

in measuring social capital, at least as it is embodied through social networks.  Social network 

analyses (Wasserman and Faust, 1994; Scott, 2000) could be constructed for some subsample of 

the RVM dataset, perhaps for scientists and engineers affiliated with a few related centers, through 

coauthorship patterns.  With social network analyses, the centrality of key researchers can be 

identified as can the relative density, sparseness, and diversity of publication collaboration for all 

researchers.  Measures of these concepts can be constructed to examine the effects of sustained 

or diverse collaborative publishing on productivity.  Although it would be relatively simple to do this 

for several of the research centers and their affiliated researchers in the RVM dataset, social 

networks can become intractable and labor intensive as the sample size increases.  

 

8.5.2 Hidden Markov Models 
 

Hidden Markov Models (HMMs) are used in pattern recognition problems of various sorts 

but were first (and remain most commonly) used in artificial speech recognition models and related 

software development.  In this context, HMMs could be used to identify and classify job patterns, 

which could then be examined for productivity differences.   

The HMM is a multi-state conditional probabilistic model.  Each state-transition generates a 

set of probabilities (i.e., the transition matrix).  In conditional HMMs43 the probability that any 

specific state (e.g., job position) will follow the current state can be estimated using forward and 

backward algorithms.  HMM usually assumes that the probability of the next state is dependent on 

the prior state at time t-1.   This is called a first order HMM.  A second order HMM depends upon 

the two previous states and so forth (Bengio, 1999).   
                                                 
 
43 In homogenous HMMs the transition matrix is assumed to be static for any given state-transition 
at any stage of the chain.  In conditional HMMs, the transition matrix is allowed to vary depending 
on location in the chain. 



107 

One problem with Markov Chains of higher order is that they tend to become 

computationally intensive as the order becomes arbitrarily large.  The hidden component in HMM is 

thus added as a continually adjusting term that summarizes the effect of previous states.   

The joint probability distribution of any given chain is determined by three sets of 

probabilities—the initial state probability (which is given for each state value (P(q1))), the 

transitional probability (which is P (qt | qt-1), and the emission probability (P(yt | qt)).  What is 

estimated is the probability of observing a particular sequence given any specific emission value 

(yt) (Bengio, 1999). 

 HMMs may prove effective in modeling productivity as a function of career states and 

sequences, where the states are defined as a researcher’s job positions over time.  One important 

and attractive benefit of using HMMs to model job patterns and productivity is that they are robust 

to chains of differing length.  This is not the case with most parametric models used in the social 

sciences where a job variable (say the 10th) job is treated as missing data for all cases where fewer 

than 10 jobs are observed.   The possible analyses could suggest various patterns of job 

sequences that are more or less associated with higher levels of productivity than others.  

Unfortunately, currently, most HMM software are written with a specific (usually speech 

recognition) application in mind.  Yet the method holds promise in embodying the entire career 

pattern—not just a job or a summary measure of job types—as the unit of analysis as discussed in 

Chapter 1. 

 

8.5.3 Further Refinement and Validation of Neural Network Models 

  

Another possible future research project would involve further investigation of the Neural 

Network approach.  Although I presented several preliminary models in this dissertation, further 

refinement and validation using new data may be warranted.   It would be possible to make use of 

new data (currently being collected in RVM Phase III) to test the cross sample validity of the 

models and to assess the differences in findings generated under the new data. 
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 Moreover, there are other types of Neural Network models, which may hold promise for 

future research.  One such model, the Kohonen Self-Organizing Maps, is particularly useful in 

pattern recognition because inputs are searched for patterns, which are then associated into 

clusters.   There are also several models, such as Adaptive Time-Delay Neural Networks, that 

might hold promise in modeling time-dependent, chronological data such as is the case in career 

patterns (Garson, 1998).  

 
 

8.5.4 The Use of Qualitative Methods 
 

 
In addition to its value as a stand-alone source of data, a great advantage of CV data is 

that it can be used in conjunction with other sources of data.  Now that much of the CV data has 

been analyzed and the findings in this study have been presented, it may be possible to conduct 

several qualitative studies that further refine and expand on the findings of this study.  One such 

research project would include indepth interviewing of the publication and productivity stars 

compared with others in order to improve understanding of what makes them different from each 

other and from the non-stars.  In addition, the finding of no relationship between productivity and 

having had a postdoctoral position deservers further exploration in a qualitative, indepth way. 
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CHAPTER 9 

 

CONCLUSIONS 

 

 

In this concluding chapter, I will first summarize the main findings in section 9.1.  Then, in 

section 9.2, I will revisit the findings briefly and discuss the knowledge implications of this study in 

reference to the literature on this topic.  Next, I will discuss the implications this work has for policy 

and to research evaluation methodology (section 9.3) as promised in Chapter 1. 

In short, the key findings are as follows: 

 

1. There is substantial intersectoral career pattern diversity, research funding, and 

commercially oriented output (such as patents) among researchers in the RVM 

dataset.  The extant literature base on academic careers has not adequately 

recognized this.  As research centers continue to become an important component 

of the “academic” context, understanding the contemporary academic career 

becomes more important to research evaluation and science and technology 

policymaking (see discussion in section 9.1.1). 

 

2. The extant literature that relates prestige factors to productivity enhancement may 

be misattributing cause and effect.  This research demonstrates that publication 

rates increase after job changes from industry to academia as well as from 

academia to industry.  It is possible that this is due to human and social capital 

factors or due to a correlation between periods when job changing is likely to occur 

with periods where productivity is naturally on the rise (see discussion in section 

9.1.2).      
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3. There is evidence that having had a postdoctoral research position is negatively 

related to overall career productivity rates.  This may be due to several factors  

(see discussion in section 9.1.3), direct or spurious.  In either case, there is a 

substantial public investment in these positions and further investigation is thus 

warranted. 

 

4. There is reason to believe that publication and patent stars exhibit different career 

patterns, the latter focused more on relationships with industry.  But, there is also 

reason to believe that publication productivity is related to higher degrees of career 

homogeny (making more typical career choices) than patent productivity.  This 

suggests an important policy question worthy of further investigation.  The NSF 

approach to guiding centers toward commercial outputs is to encourage them to 

seek industry representation on their advisory boards.  If NSF desires a greater 

commercial orientation of these centers, further qualitative and quantitative 

research and evaluation may consider these human capital and career factors in 

understanding the role these centers play in the triple helix.  (see section 9.1.4 and 

section 9.2). 

 

9.1 Summary of Main Findings 

 

9.1.1 There is More Career Diversity in Academia Than the Literature May Imply 
 

The literature base on the academic workforce has looked narrowly at academic job 

changes.  The result may leave a misleading picture of the career patterns of productive scientists 

and engineers.  As research centers become a substantial and recognized component of federal 

science policy structures, this research reveals a picture of an important component of the 

academic research community that is different from that portrayed in the literature. 

First, researchers in the RVM data set had substantial experience working in industry and 

government.  On average, nearly one in six of their total jobs positions were industry jobs and one 
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in eight of their career years were spent in industry jobs.  Approximately half had one or more jobs 

in industry.  One-quarter had worked for government.  And, nearly half began their careers in non-

academic jobs—for 33 percent the first job was in industry and for 15 percent the first job was 

government.  An average of 24 percent of the grants awarded to researchers in the RVM dataset 

came from industry.   

Second, it is commonly thought that it is hard to enter academia later in a researcher’s 

career.  Nearly one in ten took their first academic job 10 or more years into their career, and more 

than one in five of the RVM researchers took their first academic job 5 or more years into their 

career.  

These latter statistics suggest that there is perhaps substantially more intersectoral 

linkages than may be commonly perceived (at least for this dataset of researchers working in 

academic research centers).  And, generally speaking, these findings hold even among publication 

stars. 

Third, more than 40 percent of RVM researchers had one or more patents and it is clear 

that the career patterns associated with patent productivity are different than those associated with 

publication productivity—namely more industry jobs and funding and less homogenous career 

patterns.  So clearly patent rate is an important measure of research productivity but has been 

largely ignored in the extant literature. 

These three findings when taken together suggest that the bulk of the literature on 

academic productivity is missing important communities within the academic workforce and may be 

improperly, and perhaps inadvertently, painting a picture of the academic career that is more or 

less monolithically academic in nature, sequence, and pattern. 

 

9.1.2 Productivity and Prestige  
 

To test the assertion that intersectoral changes in jobs affects overall productivity, all of the 

transformations from academic jobs to industrial jobs and vice versa were identified and the mean 

number of publications was calculated for the five years before and after the transformation.  These 

means were then summed and averaged over all job transformations made by all scientists and 
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engineers between academia and industry.  As seen in Table 16, the mean number of publications 

for the five-year period preceding a job transformation from industry to academia (for all scientists 

and engineers who made this transition) was 1.5 publications per year compared with a mean of  

2.6 publications after the move—a 1.1 increase in the mean number (and a statistically significant 

difference at the .05 level).  Thus, the average productivity of scientists and engineers increased 

after a job transformation from industry to academia. 

 A similar analysis was performed for all job transformations made by the scientists and 

engineers from academia to industry.  For the five-year period preceding the move, the mean 

number of publications overall was 1.8; for the five-year time interval following the transformational 

move to industry, the mean was 2.6—an increase of .8 publications per year (also a statistically 

significant difference).  Thus, the mean number of publications for the five-year period of time 

following a move from academia to industry also increased. 

 However, the prestige literature (and parts of the accumulative advantages literature) 

suggests that productivity increases after a job change to a more prestigious institution or 

department.  This served as a basis for the accumulative advantages hypothesis.  However, my 

analysis demonstrates that job changes between academia and industry also result in higher post-

job-move productivity—even when the move is to industry where publication productivity is less 

highly rewarded.    

This suggests that prestige may have nothing to do with the productivity boost.  Although 

making a job change may have important effects on productivity, perhaps due to new social and 

human capital endowments, an alternative interpretation is likely.  Making a job change may be 

correlated with the career stage when productivity rates are naturally increasing.  For example, it 

may be the case that researchers in the early stages of their careers are more likely to make job 

changes than those in later stages and that this is precisely the same time period when 

researchers’ productivity is on the rise.  Finally, the fact that job moves to industry also resulted in 

higher publication productivity, suggests that better measures of human and social capital as 

applied to intersectoral job changes may indeed reveal further insight into this finding. 
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9.1.3 Do Postdoctoral Researchers Have Lower Career Productivity Rates?  
 

Across all of the models, the effect of having had a postdoctoral research position appears 

to be negative (see Figure 16).   

 
Statistical 
Modeling 
Technique Finding 
Tobit  The coefficient on the postdoctoral variable was negative but not 

statistically significant.  -0.31 for publication rate; -0.06 for patent rate  
Poisson  The coefficient on the postdoctoral variable was negative and large but 

not statistically significant (-0.16) 
Stars  32 percent of non-stars compared with 22 percent of patent stars held 

postdoctoral positions, compared with 24 percent for publication and 
combination stars 

Neural Networks The model estimated researchers without postdoctoral positions had a 
publication rate more than twice that of those who had held a 
postdoctoral job.  Those with no postdoctoral job had a patent rate 
more than 5 times those who had postdoctoral jobs. 

Descriptive 
Statistics—
Publications 

Those who had no postdoctoral job averaged 3.6 publications per year, 
those with one postdoctoral job averaged 3.2 publications per year, and 
those with more than one postdoctoral job averaged 2.7 publications 
per year. 

Descriptive 
Statistics—
Patents 

Those who had no postdoctoral job averaged 0.16 patents per year, 
those with one postdoctoral job averaged 0.10 patents per year, and 
those with more than one postdoctoral job averaged 0.02 patents per 
year. 

Figure 16.  Summary of Findings on Postdoctoral Researchers Across All Models and Analyses  
 

This finding, if corroborated by studies on this topic, suggests that postdoctoral positions 

may be ineffective in terms of helping researchers to establish productive research careers over 

the long term.  First, it is possible that they have shorter term impacts on productivity or that they 

have other positive effects such as providing financial access to scientific and technical education 

and careers.  Moreover, postdoctoral positions are often located in the academic sector where 

patent productivity is not rewarded as highly as publication productivity.   

Second, it may be the case that postdoctoral associates are vi ewed as research “labor” 

and are not credited with break through discoveries because their work is dominated by so called 

intellectual “mopping up” duties.   

Third, it may be the case that postdoctoral research positions have become more common 

over time so this finding may be spuriously correlated with age cohort.  However, this explanation 
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does not seem to be borne out in an analysis of the frequency of postdoctoral research positions by 

age cohort.  There also seems to be no substantial difference in this finding by disciplinary field. 

Finally, postdoctoral positions may have a form of career “holding pattern” effect where top 

graduates are sought after for assistant professorships and others are left waiting in the career 

queue.  Yet all of these possibilities are policy relevant due to the large public expenditures on 

supporting such positions.  As a result, this finding deserves further exploration and may require a 

more thorough study involving the use of theories from the science of learning and better empirical 

measures. 

 

9.1.4 What Is the Relationship Between Job Sequences and Productivity? 
 

 One approach I took to examining the sequences of jobs and their relationship to 

productivity was to examine each job change as a conditional probability (e.g., what is the 

likelihood given a research is in job A that he or she proceeds to job B).  All 5,490 job 

transformations in the RVM dataset were used to build these relative frequencies.  For each 

researcher, the chain of job transformation probabilities was summed and divided by the total 

number of jobs for that researcher.  The result was a variable (career homogeny) that gives a 

relative perspective on whether a researcher has had a relatively typical or atypical career 

sequence.    

 Among the productivity stars, it appears that combination stars (the most highly productive 

researchers) had the highest career homogeny (i.e., more typical career paths), followed by 

publication stars, followed by non-stars.  Patent stars had the lowest career homogeny indexes 

(see Figure 17).    
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   Means   

Variable 
Publication 
star Patent star 

Combination 
star Non-star 

Career homogeny 
index  *15.3 §12.3 +16.8 14.7

Notes:  * Indicates a statistically significant difference in means between publication star and patent 
star. § Indicates a statistically significant difference in means with non-star.  +Indicates a statistically 
significant difference between patent star and combination star.  
 
Figure 17.  Summary of Career Homogeny Indexes Among Productivity Stars  
 
  

This suggests two observations.  First, it appears that typical career patterns are more 

strongly associated with high publication rates than is true for patent rates.  Second, at least as 

estimated in the Neural Network models (see Figures 18 and 19), it appears that the strongest 

productivity benefits of career homogeny are not realized except for a relatively elite group whose 

career homogeny rates are well above those achieved by the mean values of the productivity stars.   
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Figure 18.  Estimated Relationship Between Career Homogeny and Publication Rate 
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Figure 19.  Estimated Relationship Between Career Homogeny and Publication Rate 

 

Finally, an examination across researchers with relatively homogenous and inhomogenous 

career patterns reveals that those with the highest career homogeny indexes often contain an 

unbroken or relatively unbroken direct sequence of assistant professor, associate professor, full 

professor.  Often it does not seem important what job or jobs precede or follow this particular 

sequence, it is more important that the sequence is there and relatively self contained from job 

patterns before or after. 

  

9.2 Other Findings Relevant to Policy and Theory 

 

First, one of the main conclusions of this study in terms of its contribution to the literature 

on academic career paths is its focus on the use of patents as a knowledge productivity indicator.  

Through the focus on both publication and patent productivity, I believe that this research has 

contributed to our understanding of productivity and how it may manifest itself differently in terms of 

career paths.  This conclusion is justified through the findings that demonstrate different variables 

are associated with publication and patent productivity, respectively.  So by ignoring patent 

productivity previous studies may have ignored important aspects of academic career paths and 

important measures of knowledge productivity. 
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If NSF wishes to increase the commercial orientation of its centers and their relevance to 

industry, it should consider further qualitative and quantitative research and evaluation to examine 

these human capital and career factors in understanding the role these centers play in the triple 

helix (of academia, industry, and government).   

Second, although there are conflicting results across models, generally speaking, 

publication productivity seems to be characterized by less employment in industry and relatively 

greater involvement in government jobs, greater career homogeny (at least for the publication 

stars), more job appointments per career year, and a higher level of grants per year.  Patent 

productivity, on the other hand, seems to be characterized by greater involvement with industry in 

terms of jobs and grant support and less involvement with government jobs, and lower levels of 

career homogeny (at least among the patent stars), and perhaps fewer job appointments per 

career year (although this latter difference is not statistically significant).   

Third, this research provides an opportunity to reflect on the prestige and accumulative 

advantages hypothesis well rehearsed in the literature.  It may be that the emphasis is misplaced.  

It may well be that a progression of career “advantages” are at work, along with the prestige and 

recognition that goes with them, but it is also possibly the case that these are human and social 

capital advantages not just visibility and prestige advantages.  These individuals seemed to have 

worked and progressed in their careers to become center directors, members of advisory 

committees of importance, visiting professors, editorial boards members—all of these can be 

considered human and social capital building opportunities.   

Fourth, in terms of the actual hypotheses, there is little evidence to support the education 

and human resources hypothesis.  Precocity is only weakly related to productivity and seems only 

to matter in the extremes as evidenced in the neural models.  So highly precocious graduate 

students may indicate high future productivity but precocity at low to moderate values seems not to 

make a difference.  As mentioned above, postdoctoral positions were negatively related to overall 

career productivity. 

As for the diversity hypothesis and the homogeny hypothesis, the evidence suggests that 

the homogeny hypothesis is better supported.  However, there is quite a bit of intersectoral 
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diversity in the academic careers of scientists and engineers in the dataset, perhaps more than I 

would have originally predicted.  The evidence in support of the diversity hypothesis is generally 

weak with the exception of the finding that lesser degrees of career homogeny is associated with 

patent stars as compared to the other groups.  As a result, it may be better to ask at what point or 

in what way do industrial and governmental experiences help or hinder academic productivity.  

Perhaps, again, this is the subject of qualitative work and better measures of social and human 

capital.   

 

9.3 Policy Implications of This Work 

 

First, the formation of S&T human capital theory (Bozeman, Dietz, and Gaughan, 2001) 

has important policy implications for how knowledge is created and how research may be 

evaluated.  This theory led to the conceptualization of the career as an important unit of analysis 

and the CV as an appropriate and useful source of data.  This, in turn, led to early work on the 

methods of coding and analyzing CV data (Dietz, et al., 2000).  The use of CVs, although not 

without shortcomings, holds a wealth of possibilities in assessing research evaluation and science 

policies.  As government accountability demands continue to grow (Bozeman and Melkers, 1993; 

Government Performance and Results Act of 1993), the technology of research evaluation must 

grow accordingly.  The detailed treatment of methodology is an advance in the knowledge base on 

this topic.  This advance is not only methodological, it has led to important insights into the diversity 

of the scientific and engineering careers discussed above, which are not well addressed in the 

academic career literature. 

In addition, I have shown that the statistical models presented in this dissertation—

including Tobit and Poisson models and Neural Network models—each have advantages based on 

modeling assumptions for the analysis of CV data and productivity data.  So the goal of proof-of-

concept evidence for the method and the statistical methodologies to support it has been met.  

Thus, theory has led to new forms of data collection, which have led to new forms of data analysis, 

and a reconceptualization of the academic career. 
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Second, there are several policy implications deserving of further research.  More research 

into the effects of postdoctoral appointments is warranted.  From a human resource point of view, 

one would expect these experiences to be crucial in shaping a scientist’s or engineer’s research 

identity, frame of reference and theoretical perspectives, “nose” for interesting problems, and 

cognitive and craft skills.  However, they did not appear to be associated with higher productivity.  If 

further investigation should corroborate this finding, there are a number of interesting policy 

questions about why this is the case, and it may appropriate to explore more productive 

alternatives for early career development.   

Third, if government policy chooses to focus on the commercial productivity of academic 

institutions as seems to be the policy trend then there is reason to believe that the solution may be 

human capital in nature.  The hiring of researchers with industrial job experience and, perhaps, 

visiting positions and exchanges with industry may be a productive means of boosting the 

commercially-relevant innovation of universities.  NSF’s GOALI program may be one prototype 

worthy of evaluation using methods such as those used in this dissertation.  In fact, an interesting 

study would be to examine this in the context of countries in the developing world that seek to 

boost the economic payoff of investments in academic institutions44.  

Fourth, of the scores of centers involved in this research, only a few seem to stand out as 

places of higher productivity and it is not clear what role the center plays in that, although this may 

be due to relatively lower response rates in some centers.   An interesting study would be to focus 

on these centers and do some comparative analyses to get a richer and better understanding of 

the internal validity of the variables used in this research.   

Finally, among the most important policy-relevant future research directions would be to 

develop a better measure of social capital and also to work from psychological theory to formulate 

better measures of innate motivation and human capital.  In the context of richer work within the 

                                                 
 
44 It is acknowledged that the relationship between patenting activity and economic growth is 
complex.  But it is an indicator of potential economic value of a discovery. 
 



120 

centers, this would enable the researcher to make claims about the relative importance of social, 

organizational, or environmental, and personality and psychological factors on productivity. 
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 APPENDIX A:  Tables 

 
 
Table 1.  Center Titles and Response Rates 

Center 
code # Center 

CVs 
requested 

CVs 
obtained  

Bad 
address 

Response 
Rate 

1 
Membrane Applied Science and 
Technology (University of Colorado) 8 3   0.375

2 
Neuromorphic Systems Engineering, 
California Institute of Technology (ERC) 206 53 13 0.275

4 

Biotechnology Process Engineering 
Center, Massachusetts Institute of 
Technology (ERC) 8 6   0.750

5 
Engineered Biomaterials, University of 
Washington (ERC) 36 14 7 0.483

6 

Environmentally Benign Semiconductor 
Manufacturing, University of Arizona 
(ERC) 97 30 3 0.319

7 

Innovation In Product Development, 
Massachusetts Institute of Technology 
(ERC) 141 27 18 0.220

8 
Reconfigurable Machining Systems, 
University of Michigan (ERC) 31 14 3 0.500

9 
Computational Field Simulation, 
Mississippi State University (ERC) 57 12 2 0.218

10 
Data Storage Systems Center, Carnegie 
Mellon University (ERC) 28 17 1 0.630

11 
Telecommunications Research, 
Columbia University (ERC) 44 10 2 0.238

12 
Low Cost Electronic Packaging, Georgia 
Institute of Technology (ERC) 47 17 3 0.386

13 

Compound Semiconductor 
Microelectronics, University of Illinois 
(ERC) 92 5 29 0.079

14 
Integrated Media Systems Center, 
University of Southern California (ERC) 25 17 1 0.708

15 

Advanced Technology for Large 
Structural Systems, Lehigh University 
(ERC) 7 2   0.286

16 
Particle Science and Technology, 
University of Florida (ERC) 39 23 4 0.657

18 
Advanced Engineering Fibers and Films, 
Clemson University (ERC) 25 9 1 0.375

19 

Advanced Combustion Engineering 
Research Center, Brigham Young 
University (ERC) 15 10   0.667

20 
Pacific Earthquake Engineering 
Research (PEER) Center (ERC) 119 42 6 0.372

21 
Mid-America Earthquake (MAE) Center 
(ERC) 31 13   0.419

22 Glass Research (Alfred University) 21 10 3 0.556
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Table 1 (cont’d). 

24 

Advanced Steel Processing and 
Products Research (Colorado School of 
Mines) 8 4   0.500

25 
Coatings Research (Eastern Michigan 
University) 8 4 1 0.571

27 
Micro-engineered Ceramics (University 
of New Mexico) 12 6 2 0.600

29 
Engineering Tribology (Northwestern 
University) 15 9   0.600

31 
Advanced Polymer and Composite 
Engineering (Ohio State University) 14 8   0.571

32 
Particulate Materials (Pennsylvania 
State University) 12 6   0.500

33 
Dielectrics (Pennsylvania State 
University) 36 13 2 0.382

34 

Biological Surface Science (SUNY at 
Buffalo/Alfred University/University of 
Memphis/University of Miami 5 3   0.600

36 
Advanced Control of Energy and Power 
Systems (Arizona State University) 53 19 3 0.380

37 
The Built Environment (University of 
California, Berkeley) 21 14   0.667

38 
Material Handling Logistics Institute 
(Georgia Institute of Technology) 41 23 5 0.639

40 
Nondestructive Evaluation (Iowa State 
University) 25 8   0.320

42 
Quality and Reliability Engineering 
(Rutgers University) 10 6   0.600

43 
Measurement and Control Engineering 
(University of Tennessee) 12 7   0.583

45 
Integrated Pest Management (North 
Carolina State University) 4 1   0.250

46 
Management Information (University of 
Arizona) 33 5 2 0.161

49 

Research of Information Technology and 
Organizations (University of California, 
Irvine) 43 15 2 0.366

50 

Ultra-High Speed Integrated Circuits and 
Systems (University of California, San 
Diego) 21 9   0.429

51 
Sensors and Actuators (University of 
California, Berkeley) 136 27 13 0.220

53 
Wireless Information Networks (Rutgers 
University) 43 14   0.326

54 

Advanced Electronic Materials, Devices 
and Systems (University of Texas at 
Arlington) 55 9 6 0.184

55 

Design of Analog/Digital Integrated 
Circuits (Washington State 
University/University of 
Washington/Oregon State 
University/SUNY Stony Brook) 15 7 1 0.500
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Table 1 (cont’d). 

 
56 

Software Engineering (University of 
Florida/Purdue University/University of 
Oregon/West Virginia University) 29 13 1 0.464

57 

Advanced Computing and 
Communication (North Carolina State 
University /Duke University) 22 8 1 0.381

58 

Advanced Air Conditioning and 
Refrigeration (University of Illinois, 
Urbana) 72 24 12 0.400

59 
Process Analytical Chemistry (University 
of Washington) 51 20 2 0.408

60 Behavioral Neuroscience (Emory) 79 46 5 0.622
61 Microbial Ecology (Michigan State) 45 19 3 0.452

62 
Graphics and Visualization Center – 
(Brown) 31 15 1 0.500

63 Nanobiotechnology Center (Cornell) 24 10 2 0.455

64 
Analysis and Prediction of Storms 
(Oklahoma) 32 10 9 0.435

66 
Advanced Liquid Crystalline Optical 
Materials (Case Western Reserve U.) 29 18 1 0.643

67 
Environmentally Responsible Solvents 
and Processes 119 50 3 0.431

68 

High-Performance Polymeric Adhesives 
and Composites (Virginia Polytechnic 
Institute and State University) 19 6 2 0.353

69 Particle Astrophysics 131 24 40 0.264
70 Photoinduced Charge Transfer 75 11 32 0.256
71 Quantized Electronic Structures 65 12 20 0.267
73 Electronic Imaging Systems (CEIS) 27 11 3 0.458

76 
Optoelectronic Computing Systems 
Center (ERC)(Uni. Of Colorado-Boulder) 6 4   0.667

76 
Optoelectronic Computing Systems 
Center (ERC)(Uni. Of Colorado-Boulder) 69 28   0.406

78 
Plant Sensory Systems Network 
(ERC)(Ohio State Univ.) 13 12   0.923

81 
Institute for Research in Cognitive 
Science (STC)(U.Penn) 7 7   1.000

82 
Biofilm Engineering (ERC)(Montana 
State University) 54 14   0.259

83 
Computation and Neural Systems (ERC) 
(Caltech) 91 13   0.143

84 
Light Microscope Imaging and 
Biotechnology (STC)(Carnegie Mellon)  66 13 3 0.206

85 
Ultrafast Optical Science (U. Michigan) 
(STC) 94 45   0.479

86 
Clouds Chemistry and Climate (UCSD) 
(STC)  2 2   1.000

87 Biological Timing (U. VA) (STC) 74 32   0.432

89 
Synthesis, Growth, and Analysis of 
Electronic Materials (U.Texas) (STC) 72 28   0.389

90 
James R. Macdonald Laboratory 
(Kansas State University) (DOE) 22 2   0.091

92 Interconnect Focus Center 64 48   0.750
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Table 1 (cont’d). 

3/ctrref 
Emerging Cardiovascular Technologies, 
Duke University (ERC) 2 2   1.000

17/ctrref 

Advanced Electronic Materials 
Processing, North Carolina State 
University  50 2 16 0.059

23/ctrref 
Steel Making Research (Carnegie 
Mellon University) 5 2 1 0.500

26/ctrref 
Polymer Biodegradation (University of 
Massachusetts) 4 1 2 0.500

28/ctrref 
Energetic Materials (New Mexico 
Institute of Mining and Technology) 7 2 1 0.333

30/ctrref 
Corrosion in Multiphase Systems (Ohio 
University) 15 3   0.200

35/ctrref Ergonomics (Texas A & M University) 33 5 17 0.313

39/ctrref 
Machine-Tool Systems (University of 
Illinois) 5 1 1 0.250

41/ctrref 

Silicon Wafer Engineering and Defect 
Science (North Carolina State 
University) 5 1   0.200

44/ctrref 

Hazardous and Toxic Management (New 
Jersey Institute of Technology/Tufts 
University) 8 1 3 0.200

52/ctrref 
Study of Wireless Electromagnetic 
(University of Oklahoma) 3 2   0.667

65/ctrref 
High Pressure Research (SUNY- Stony 
Brook) 13 2 4 0.222

72/ctrref Intelligent Information Retrieval(CIIR) 7 2   0.286
74/ctrref Low Power Electronics 5 2   0.400
75/ctrref Advanced Friction Studies 6 2   0.333

79/ctrref 
Engineering Design Research Center 
(ERC) (Carnegie Mellon)  5 4   0.800

80/ctrref 
Institute for Systems Research (Uni. Of 
Maryland) 15 2   0.133

91/ctrref 
Microelectronics Research Center - 
Spring 2000 183 64   0.350

* 
Engineering of Living Tissues, Georgia 
Tech/Emory University (ERC) 5 1   0.200

* 
Collaborative Manufacturing, Purdue 
University (ERC) 2 0   0.000

* 
Pharmaceutical Processing Research 
(Purdue University) 2 0   0.000

* 
Web Handling (Oklahoma State 
University) 1 0   0.000

* 
Aseptic Processing and Packaging 
Studies (North Carolina State University) 1 0   0.000

* 
Optoelectronic Devices, Interconnects, 
and Packaging (University Maryland) 7 1 1 0.167

* 
Sustainability of Semi-Arid Hydrology 
and Riparian Areas 1 0 1   

Total  3573 1198 320 0.37
* indicates no response or CV was eliminated because of status as 
student or administrative support staff   
Response Rate = Number of obtained CVs / (Number of CVs requested - Unreachable) 
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Table 2.  Intercoder Reliability and Time of Coding for 10 CVs  (Pilot Study) 
Curriculum Vita Rs(i) for  

Coding  
Experiment 1 

Coding Time 
(in minutes) 

Experiment 1 

Rs(i) for 
Coding 

Experiment 2† 

Coding Time 
(in minutes) 

Experiment 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
Mean 
Std. Dev 

.897 

.797 

.651 

.839 

.868 

.608 

.756 

.800 

.728 

.714 

.766 

.090   

23.0 
31.0 
27.8 
23.4 
24.0 
15.0 
30.4 
19.4 
19.8 
22.2 
23.6 
5.02 

.938 

.765 

.881 

.709 

.792 

.830 

.830 

.630 

.832 

.849 

.805 

.088 

18.0 
21.0 
18.4 
14.4 
15.6 
16.0 
13.8 
21.8 
18.0 
10.0 
16.7 
3.51 

Note:  Rs(i) stands for resume intercoder reliability. 
            †  Coding experiment 2 used the same coders with different CVs and an improved coding 

  protocol. 
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Table 3.  Intercoder Reliability for Coding 37 Items (Pilot Study) 
Item  

# 
Rs(i) 

Coding Trial 1 
Rs(i)  

Coding Trial 2† 
Item Name 

 
1 .933  .682 CV version is full or partial 
2 .933 1.000 Sex of respondent 
3 .960 1.000 Year of birth 
4 .920 .800 National origin 
5 .920 .780 Citizenship 
6 .880 1.000 Degree type of first degree 
7  .690 .840 Degree field of first degree 
8 .860 .880 Degree type of second degree 
9 .880  .670 Degree field of second degree 
10 .960 .960 Degree type of third degree 
11 .810 .800 Degree field of third degree 
12 1.000 1.000 Degree type of fourth degree 
13 1.000 1.000 Degree field of fourth degree 
14 1.000 1.000 Degree type of fifth degree 
15 1.000 1.000 Degree field of fifth degree 
16  * .560 * .570 Job title of first job 
17 * .490 * .490 Job title of second job 
18   .610 .770 Job title of third job 
19   .680  .680 Job title of fourth job 
20  .600  .410 Job title of fifth job 
21 .740 1.000 Publication type of most recent pub. 
22 .790 .960 Publication type of second most recent pub. 
23  .630 .860 Publication type of third most recent pub. 
24 * .550 .860 Publication type of fourth most recent pub. 
25 .880 .760 Publication type of fifth most recent pub. 
26  .620 .780 Dollar amount of first grant or contract 
27 * .570 * .520 Funding source of first grant or contract 
28  .630 .760 Dollar amount of second grant or contract 
29 * .580  .680 Funding source of second grant or contract 
30 .690 .760 Dollar amount of third grant or contract 
31 * .560 .710 Funding source of third grant or contract 
32  .690 .760 Dollar amount of fourth grant or contract 
33  .660  .620 Funding source of fourth grant or contract 
34  .660 .780 Dollar amount of fifth grant or contract 
35 * .580  .690 Funding source of fifth grant or contract 
36 .893 .960 Year of first patent 
37 .933 1.000 Was first patent licensed or sold? 

Mean .766 .805  
Std. Dev.  .164 .163  
Notes:  Rs(i) stands for item intercoder reliability. 
        † Coding experiment 2 used the same coders with different CVs and an improved coding 
   protocol. 
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Table 4.  Descriptive Statistics 

Variable group and name N Minimum Maximum Mean 
Std. 
Dev. 

Demographics           
 Sex 950 0.00 1.00 0.878 0.328
 Year of birth 328 1923 1974 1950 10.728
Education           
 Year of bachelor's degree 891 1940 1997 1976 10.984
 Year of master's degree 668 1942 1999 1979 10.979
 Year of doctoral degree 913 1943 2000 1982 11.467
 Year of other degree 130 1952 1999 1982 11.445
 Doctorate field in biological 
 sciences? (1=Yes, 0=No) 956 0.00 1.00 0.105 0.306
 Doctoral field in computer 
 Science 956 0.00 1.00 0.046 0.210
 Doctoral field in engineering 956 0.00 1.00 0.452 0.498
 Doctorate field in physical 
 sciences 956 0.00 1.00 0.283 0.451
 Doctorate in other field  956 0.00 1.00 0.114 0.318
Career age and age cohort           
 Career length (years since 
 doctorate) 951 1.00 58.00 18.145 11.492
 Doctorate granted before 
 1972? (1=Yes, 0=No) 951 0.00 1.00 0.196 0.397
 Doctorate granted 1972-1980 951 0.00 1.00 0.187 0.390
 Doctorate granted 1981-1987 951 0.00 1.00 0.162 0.369
 Doctorate granted 1988-1993 951 0.00 1.00 0.218 0.413
 Doctorate granted 1994-2000 951 0.00 1.00 0.201 0.401
Publications           
 Total number of publications 933 0.00 628.00 75.290 92.190
 Total publications/career 
 Length 929 0.00 34.00 3.986 3.530
  Precocity (see notes) 956 0.00 17.00 3.160 3.454
Patents           
 Total number of patents 956 0.00 141.00 2.704 8.272
 Total patents/career length 953 0.00 5.22 0.143 0.387
Jobs           
 Number of job positions, total 
 [total jobs] 956 0.00 26.00 6.712 3.740
 Number of job institutions 956 1.00 11.00 3.288 1.873
 Number of academic jobs 956 0.00 18.00 5.041 2.978
 Number of industry jobs 956 0.00 17.00 1.172 1.785
 Number of government jobs 956 0.00 7.00 0.431 0.934
 Number of medical jobs 956 0.00 6.00 0.066 0.452
 Number of consulting jobs 956 0.00 13.00 0.320 1.185
 Number of industry jobs/total 
 Jobs 952 0.00 1.00 0.167 0.218
 Number of government 
jobs/total jobs  952 0.00 1.00 0.059 0.124
 Total job years (including 
 jobs held concurrently) 956 0.00 183.00 36.052 24.987
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Table 4 (cont’d). 
 Number of job 
 institutions/career length 951 0.02 4.00 .305 .397
 Years in academic jobs 956 0.00 160.00 28.394 21.962
 Years in industry jobs 956 0.00 41.00 3.892 6.811
 Years in government jobs 956 0.00 53.00 2.022 5.696
 Years in consulting jobs 956 0.00 48.00 1.514 5.586
 Years in medical jobs 956 0.00 20.00 0.230 1.537
 Years in industry jobs/total job 
 Years 943 0.00 1.00 0.120 0.197
 Years in academic jobs/total job 
 Years 943 0.00 1.00 0.791 0.241
 Years in government jobs/total 
 job years 943 0.00 1.00 0.054 0.134
 Years in medical jobs/total job 
 Years 943 0.00 0.75 0.006 0.045
 Years in consulting jobs/total 
 job years 943 0.00 0.82 0.029 0.093
 Ever held industry job? (1=Yes, 
 0=No) 956 0.00 1.00 0.512 0.500
 Ever held government job  956 0.00 1.00 0.264 0.441
 First job was industry job? 
 (1=Yes, 0=No) 936 0.00 1.00 0.325 0.469
 First job was government job 936 0.00 1.00 0.146 0.354
 Career homogeny index (see 
 notes) 937 0.35 72.47 14.470 8.093
Grants           
 Number of grants, total [total 
 grants] 381 1.00 130.00 17.688 16.214
 Total grants/career length 381 0.03 20.00 1.137 1.313
 Number of federal grants 352 1.00 81.00 8.477 8.336
 Number of industry grants 193 1.00 74.00 6.021 7.921
 Number of grants from other 
 Sources 254 1.00 27.00 4.236 4.182
 Federal grants/total grants 352 0.05 1.00 0.530 0.264
 Industry grants/total grants 193 0.03 1.00 0.243 0.179
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. 
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Table 5.  Job Transformations Across and Within Sectors (Frequency and Relative Frequency) 
From Job     To Job       
Job Sector Academic Industry Government Consulting Medical Totals 
Academic 3429 265 158 163 14 4029
Industry 447 249 39 26 2 763
Government 211 53 86 10 1 361
Consulting 150 16 5 105 0 276
Medical 28 3 2 0 28 61
Totals 4265 586 290 304 45  5490
       
From Job     To Job       
Job Sector Academic Industry Government Consulting Medical Totals 
Academic 0.85 0.07 0.04 0.04 0.00 1.00
Industry 0.59 0.33 0.05 0.03 0.00 1.00
Government 0.58 0.15 0.24 0.03 0.00 1.00
Consulting 0.54 0.06 0.02 0.38 0.00 1.00
Medical 0.46 0.05 0.03 0.00 0.46 1.00
Totals 3.02 0.65 0.38 0.48 0.47   
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Table 6.  Tobit Model of Publication Rate (Number of Publications After the Year of the Doctorate 
as a Proportion of Career Length in Years) 
Variable Regression 

Coefficient 
Standard 
Error 

Asymptotic 
T-Ratio 

P-
Value 

Normalized 
Coefficient 

Career homogeny index (see 
notes)  0.049 0.005 3.522 *0.000 0.017
Precocity (see notes)  0.120 0.008 5.270 *0.000 0.042
Held postdoctoral position 
(1=Yes, 0=No)  -0.309 0.085 -1.265 0.206 -0.107
Triple helix (see notes)  0.277 0.109 0.877 0.380 0.096
First job was industry job? 
(1=Yes, 0=No) -0.038 0.097 -0.134 0.894 -0.013
First job was government job  -0.548 0.130 -1.464 0.143 -0.190
Years in industry jobs/total job 
years  -0.640 0.231 -0.960 0.337 -0.222
Years in government jobs/total 
job years  1.154 0.328 1.220 0.222 0.400
Number of job 
institutions/career length  -1.333 0.265 -1.747 0.081 -0.462
Square of above job variable  0.051 0.088 0.200 0.842 0.018
Total grants/career length 0.138 0.043 1.110 0.267 0.048
Industry grants/total grants 0.170 0.304 0.194 0.846 0.059
Federal grants/total grants  0.664 0.130 1.776 0.076 0.230
Doctorate granted before 
1972? (1=Yes, 0=No) 1.842 0.135 4.723 *0.000 0.638
Doctorate granted 1972-1980 2.096 0.131 5.559 *0.000 0.727
Doctorate granted 1981-1987  1.537 0.127 4.182 *0.000 0.533
Doctorate granted 1988-1993  0.909 0.109 2.885 *0.004 0.315
Doctorate in biology? (1=Yes, 
0=No) 0.013 0.164 0.027 0.979 0.004
Doctorate in computer science 0.543 0.213 0.886 0.376 0.188
Doctorate in engineering 1.037 0.134 2.681 *0.007 0.359
Doctorate in physical sciences 1.380 0.143 3.336 *0.001 0.478
Center 01 (see notes) -0.801 0.604 -0.460 0.558 -0.278
Center 02 0.086 0.203 0.147 0.989 0.030
Center 04 4.161 0.434 3.323 *0.001 1.442
Center 05  0.600 0.318 0.653 0.566 0.208
Center 06  0.196 0.288 0.236 0.773 0.068
Center 07 -0.439 0.315 -0.483 0.491 -0.152
Center 08  0.211 0.338 0.216 0.875 0.073
Center 09  -2.603 0.399 -2.264 *0.038 -0.902
Center 10  0.954 0.287 1.155 0.249 0.331
Center 11  -0.295 0.664 -0.154 0.760 -0.102
Center 12 1.675 0.276 2.106 *0.024 0.581
Center 13 -1.078 0.538 -0.694 0.569 -0.374
Center 14 0.070 0.289 0.084 0.793 0.024
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Table 6 (cont’d). 
Center 16 1.085 0.265 1.422 0.143 0.376
Center 18  -0.379 0.365 -0.360 0.731 -0.131
Center 19 0.436 0.363 0.417 0.677 0.151
Center 20 -0.597 0.231 -0.898 0.264 -0.207
Center 21 -0.745 0.313 -0.826 0.338 -0.258
Center 22 -1.223 0.366 -1.159 0.273 -0.424
Center 24 1.318 0.523 0.874 0.337 0.457
Center 25  -2.571 0.535 -1.666 0.174 -0.891
Center 27  1.735 0.435 1.382 0.199 0.601
Center 29  -0.248 0.381 -0.226 0.817 -0.086
Center 31  -0.154 0.381 -0.140 0.797 -0.053
Center 32  1.981 0.408 1.684 0.072 0.687
Center 33 2.799 0.333 2.910 *0.010 0.970
Center 36 0.013 0.269 0.017 0.924 0.005
Center 37 -0.879 0.298 -1.023 0.447 -0.305
Center 38 -0.899 0.277 -1.123 0.246 -0.312
Center 40 -0.617 0.408 -0.525 0.384 -0.214
Center 42 -0.374 0.435 -0.298 0.790 -0.130
Center 43 -1.012 0.408 -0.860 0.458 -0.351
Center 46 0.986 0.669 0.511 0.137 0.342
Center 49 -0.004 0.359 -0.004 0.872 -0.002
Center 50 2.244 0.363 2.145 *0.029 0.778
Center 51  1.329 0.260 1.771 0.081 0.461
Center 53  0.092 0.599 0.053 0.500 0.032
Center 54  -0.259 0.496 -0.181 0.712 -0.090
Center 55  -0.368 0.387 -0.329 0.677 -0.127
Center 56  0.549 0.351 0.542 0.690 0.190
Center 57  0.171 0.391 0.152 0.846 0.059
Center 58  -1.142 0.316 -1.253 0.211 -0.396
Center 59  1.122 0.307 1.268 0.248 0.389
Center 60  0.862 0.220 1.357 0.201 0.299
Center 61  -0.221 0.284 -0.270 0.743 -0.077
Center 62  -0.823 0.374 -0.763 0.491 -0.285
Center 63  0.114 0.368 0.107 0.953 0.040
Center 64 -0.640 0.394 -0.564 0.626 -0.222
Center 66  0.402 0.280 0.498 0.435 0.139
Center 67  0.379 0.225 0.585 0.705 0.131
Center 68  1.728 0.444 1.349 0.137 0.599
Center 69  -0.035 0.259 -0.047 0.914 -0.012
Center 70  -0.125 0.381 -0.113 0.596 -0.043
Center 71  3.459 0.338 3.549 *0.001 1.199
Center 73  -0.314 0.377 -0.289 0.609 -0.109
Center 76  -0.354 0.233 -0.528 0.234 -0.123
Center 81  -1.684 0.418 -1.398 0.213 -0.584
Center 82  -0.029 0.314 -0.032 0.980 -0.010
Center 83  1.376 0.356 1.341 0.164 0.477
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Table 6 (cont’d). 
Center 84  0.164 0.338 0.169 0.734 0.057
Center 85  1.140 0.232 1.700 0.120 0.395
Center 87  1.555 0.251 2.151 *0.030 0.539
Center 89  0.569 0.273 0.722 0.454 0.197
Center 92  1.192 0.199 2.081 0.074 0.413
CONSTANT  0.038 0.225 0.059 0.100 0.013
ADJPBP       0.008 42.465  0.347

WALD CHI-SQUARE 
STATISTIC = 179.37816 WITH 
21 D.F.  P-VALUE = 0.00000      
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1. 
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Table 7.  Mean Publication and Patent Rate, by Disciplinary Fields 

Disciplinary Field 
Number of 
Respondents 

Mean 
Publication 
Rate 

Mean 
Patent Rate 

Agricultural sciences 11 2.913 0.040
Biology       
  Physiology/pharmacology 13 4.153 0.024
  General biology 50 2.859 0.023
  Cell/molecular biology 5 4.082 0.020
  Genetics 3 3.522 0.033
Business 9 1.848 0.000
Social sciences/humanities 24 3.063 0.002
Computer sciences 44 3.999 0.121
Engineering        
  Aerospace engineering 9 2.088 0.030
  Bioengineering 7 4.592 0.252
  Chemical engineering 68 4.387 0.195
  Civil engineering 38 2.964 0.019
  Electrical/Electrical 
  engineering and computer 
  science 153 4.197 0.267
  General engineering 9 3.547 0.035
  Environmental engineering 9 2.591 0.021
  Industrial engineering 23 2.441 0.006
  Materials engineering 38 5.135 0.170
  Mechanical engineering 54 3.840 0.137
  Engineering, other 40 2.756 0.116
Medicine/health sciences 22 5.497 0.041
Mathematical sciences 18 2.714 0.008
Physical sciences      
  Physics 101 4.590 0.180
  Geosciences 10 1.965 0.000
  Astronomy/Astrophysics 6 6.458 0.013
  Chemistry 85 4.793 0.278
  Physical sciences, other 43 5.099 0.118
Psychology 21 3.946 0.016
 
 



134 

Table 8.  Tobit Model of Patent Rate (Number of Patents as a Proportion of Career Length in 
Years) 
Variable Regression 

Coefficient 
Standard 
Error 

Asymptotic 
T-Ratio 

P-Value Normalized 
Coefficient 

Career homogeny index (see 
notes)  -0.001 0.006 -0.270 0.787 -0.002
Precocity (see notes)  0.016 0.009 2.917 *0.004 0.027
Held postdoctoral position 
(1=Yes, 0=No)  -0.056 0.104 -0.900 0.368 -0.094
Triple helix (see notes)  0.055 0.131 0.704 0.482 0.092
First job was industry job? 
(1=Yes, 0=No) -0.011 0.115 -0.165 0.869 -0.019
First job was government job  -0.104 0.163 -1.079 0.281 -0.175
Years in industry jobs/total job 
years  0.828 0.268 5.188 *0.000 1.390
Years in government jobs/total 
job years  -0.242 0.439 -0.924 0.356 -0.406
Number of job 
institutions/career length  -0.184 0.350 -0.883 0.378 -0.309
Square of above job variable  0.043 0.118 0.609 0.543 0.072
Total grants/career length -0.006 0.072 -0.140 0.889 -0.010
Industry grants/total grants 0.415 0.379 1.837 0.066 0.696
Federal grants/total grants  -0.060 0.173 -0.585 0.559 -0.101
Doctorate granted before 
1972? (1=Yes, 0=No) 0.306 0.168 3.068 *0.002 0.514
Doctorate granted 1972-1980 0.327 0.163 3.362 *0.001 0.549
Doctorate granted 1981-1987  0.166 0.158 1.757 0.079 0.278
Doctorate granted 1988-1993  0.037 0.143 0.431 0.667 0.061
Doctorate in biology? (1=Yes, 
0=No) 0.305 0.230 2.229 *0.026 0.512
Doctorate in computer science 0.457 0.283 2.712 *0.007 0.767
Doctorate in engineering 0.525 0.192 4.581 *0.000 0.881
Doctorate in physical sciences 0.527 0.201 4.405 *0.000 0.885
Center 01 (see notes) 0.288 0.615 0.785 0.424 0.483
Center 02 0.258 0.239 1.808 0.116 0.433
Center 04 1.291 0.446 4.862 *0.000 2.167
Center 05  0.031 0.373 0.138 0.931 0.051
Center 06  0.002 0.340 0.010 0.987 0.003
Center 07 0.080 0.393 0.341 0.739 0.134
Center 08  -0.059 0.390 -0.252 0.762 -0.098
Center 09  -3.719 798.110 -0.008 0.984 -6.241
Center 10  0.188 0.313 1.007 0.315 0.315
Center 11  -0.091 0.702 -0.217 0.688 -0.152
Center 12 0.093 0.314 0.495 0.657 0.156
Center 13 0.357 0.551 1.087 0.294 0.599
Center 14 -0.113 0.353 -0.535 0.553 -0.189
Center 16 0.067 0.296 0.378 0.682 0.112
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Table 8 (cont’d). 
Center 18 -0.310 0.473 -1.102 0.278 -0.521
Center 19 -0.314 0.438 -1.203 0.208 -0.527
Center 20 -0.609 0.368 -2.775 *0.004 -1.022
Center 21 -3.336 641.970 -0.009 0.983 -5.598
Center 22 -0.258 0.444 -0.972 0.316 -0.432
Center 24 0.075 0.531 0.236 0.814 0.125
Center 25  -0.249 0.563 -0.741 0.493 -0.417
Center 27  0.393 0.456 1.446 0.145 0.659
Center 29  0.169 0.408 0.696 0.513 0.284
Center 31  0.099 0.421 0.393 0.770 0.166
Center 32  0.131 0.460 0.477 0.584 0.219
Center 33 0.190 0.364 0.874 0.377 0.318
Center 36 -0.013 0.316 -0.071 0.876 -0.022
Center 37 0.143 0.364 0.661 0.496 0.240
Center 38 -1.031 0.619 -2.795 *0.005 -1.729
Center 40 -0.067 0.472 -0.239 0.840 -0.113
Center 42 -3.391 943.420 -0.006 0.988 -5.691
Center 43 -0.258 0.491 -0.881 0.349 -0.432
Center 46 -2.728 1336.900 -0.003 0.993 -4.578
Center 49 -0.273 0.633 -0.723 0.464 -0.458
Center 50 0.292 0.386 1.271 0.185 0.490
Center 51  0.526 0.276 3.191 *0.002 0.882
Center 53  -0.339 0.779 -0.730 0.493 -0.569
Center 54  0.021 0.510 0.068 0.986 0.035
Center 55  0.427 0.425 1.686 0.106 0.717
Center 56  -0.261 0.447 -0.979 0.342 -0.438
Center 57  -0.123 0.477 -0.431 0.736 -0.206
Center 58  -0.396 0.425 -1.563 0.103 -0.664
Center 59  0.132 0.328 0.675 0.491 0.221
Center 60  -0.279 0.310 -1.512 0.118 -0.468
Center 61  0.034 0.336 0.168 0.895 0.057
Center 62  -0.604 0.637 -1.591 0.109 -1.013
Center 63  -0.040 0.436 -0.153 0.788 -0.067
Center 64 0.063 0.509 0.208 0.867 0.106
Center 66  0.223 0.304 1.231 0.173 0.374
Center 67  0.042 0.265 0.268 0.870 0.071
Center 68  0.360 0.476 1.270 0.137 0.604
Center 69  -0.426 0.354 -2.022 *0.041 -0.715
Center 70  -0.033 0.448 -0.125 0.813 -0.056
Center 71  -0.274 0.391 -1.177 0.220 -0.460
Center 73  0.150 0.421 0.599 0.518 0.252
Center 76  0.198 0.262 1.271 0.251 0.332
Center 81  -0.194 0.513 -0.634 0.491 -0.325
Center 82  -0.571 0.544 -1.762 0.070 -0.958
Center 83  0.146 0.477 0.515 0.683 0.246
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Table 8 (cont’d). 
Center 84  -0.072 0.441 -0.273 0.870 -0.121
Center 85  0.043 0.273 0.263 0.738 0.072
Center 87  0.119 0.318 0.626 0.499 0.199
Center 89  -0.201 0.329 -1.024 0.286 -0.337
Center 92  0.138 0.224 1.033 0.316 0.231
CONSTANT  -0.900 0.302 -4.996 *0.000 -1.511
ADJPBP       0.064 26.420  1.678

WALD CHI-SQUARE 
STATISTIC = 110.99115 WITH 
21 D.F. P-VALUE= 0.00000      
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1. 
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Table 9.  Poisson Model of Patent Rate (Patent Count Divided by Career Length in Years) 
Variable Regression 

Coefficient 
Standard 
Error 

T-Ratio P-Value Standardized 
Coefficient 

EXP 
Coeff 

Career homogeny index (see 
notes)  -0.002 0.013 -0.144 0.886 -0.038 0.998
Precocity (see notes)  0.037 0.015 2.448 *0.014 0.447 1.038
Held postdoctoral position 
(1=Yes, 0=No)  -0.160 0.228 -0.704 0.481 -0.190 0.852
Triple helix (see notes)  -0.199 0.293 -0.680 0.496 -0.182 0.819
First job was industry job? 
(1=Yes, 0=No) -0.093 0.236 -0.395 0.693 -0.112 0.911
First job was government job  -0.167 0.372 -0.449 0.653 -0.152 0.846
Years in industry jobs/total job 
years  1.759 0.433 4.066 *0.000 0.893 5.808
Years in government jobs/total 
job years  -0.679 1.110 -0.612 0.541 -0.234 0.507
Number of job 
institutions/career length  0.259 0.694 0.373 0.709 0.266 1.295
Square of above job variable  -0.066 0.241 -0.273 0.785 -0.188 0.936
Total grants/career length 0.003 0.126 0.023 0.982 0.007 1.003
Industry grants/total grants 1.311 0.593 2.211 *0.027 0.429 3.708
Federal grants/total grants  -0.702 0.442 -1.587 0.113 -0.548 0.496
Doctorate granted before 
1972? (1=Yes, 0=No) 0.318 0.363 0.877 0.380 0.326 1.374
Doctorate granted 1972-1980 0.677 0.344 1.970 *0.049 0.682 1.968
Doctorate granted 1981-1987  0.271 0.350 0.775 0.438 0.258 1.312
Doctorate granted 1988-1993  0.133 0.311 0.428 0.669 0.142 1.142
Doctorate in biology? (1=Yes, 
0=No) 0.852 0.742 1.148 0.251 0.675 2.344
Doctorate in computer science 1.514 0.736 2.057 *0.040 0.821 4.546
Doctorate in engineering 1.768 0.603 2.933 *0.003 2.277 5.860
Doctorate in physical sciences 1.758 0.608 2.893 *0.004 2.050 5.800
CONSTANT  -4.118 0.715 -5.756 *0.000 0.000 0.016
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1. 
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Table 10.  Differences in Means on Select Variables Between Publication “Stars” and Those Who 
Are Not Stars 

 Variable 
Pubstar 
Mean 

Nonstar 
Mean 

Pubstar 
Stdv 

Nonstar 
Stdv 

Difference 
In Means T-Ratio 

Career homogeny index (see 
notes) 15.32 14.71 7.39 8.22 0.61 0.76
Career length (years since 
doctorate) 20.44 17.86 11.99 11.42 2.58 *2.02
Doctorate in biological 
sciences? (1=Yes, 0=No) 0.06 0.12 0.24 0.32 -0.06 *-2.08
Doctorate in computer science 0.03 0.05 0.17 0.21 -0.02 -0.93
Doctorate in engineering 0.45 0.44 0.50 0.50 0.01 0.19
Doctorate in physical sciences 0.41 0.26 0.49 0.44 0.14 *2.75
Doctorate in other field 0.05 0.13 0.22 0.34 -0.08 *-3.16
Total number of publications 236.86 54.83 157.31 54.88 182.03 *11.37
Total number of patents 7.08 0.95 16.42 1.96 6.13 *3.69
Total publications/career length 11.83 2.99 4.25 1.89 8.84 *20.35
Total patents/career length 0.35 0.05 0.75 0.09 0.30 *4.00
Number of job positions, total 
[total jobs]  7.85 6.61 4.36 3.64 1.24 *2.70
Number of industry jobs 1.18 1.08 1.58 1.72 0.10 0.59
Number of government jobs 0.50 0.44 1.02 0.95 0.06 0.55
Number of industry jobs/total 
jobs 0.15 0.15 0.17 0.21 -0.01 -0.37
Number of government 
jobs/total jobs 0.06 0.06 0.11 0.13 0.00 -0.39
Number of job institutions 3.64 3.26 2.21 1.84 0.38 1.64
Total job years (including jobs 
held concurrently) 43.63 35.34 26.34 25.19 8.29 *2.95
Total job years/career length 3.26 2.39 4.35 1.79 0.87 *1.96
Job institutions/career length 0.37 0.29 0.57 0.35 0.07 1.26
Years in industry jobs 3.89 3.45 6.45 6.42 0.44 0.64
Years in academic jobs 35.47 28.18 22.53 22.14 7.29 *3.03
Years in government jobs 2.59 2.00 7.39 5.61 0.59 0.76
Years in consulting jobs 1.52 1.45 5.84 5.48 0.07 0.11
Years in medical jobs 0.16 0.26 1.01 1.66 -0.10 -0.81
Years in industry jobs/total job 
years 0.09 0.11 0.15 0.18 -0.02 -0.97
Years in academic jobs/total 
job years 0.82 0.80 0.19 0.24 0.02 1.02
Years in government jobs/total 
job years 0.05 0.06 0.13 0.14 0.00 -0.20
Years in medical jobs/total job 
years 0.01 0.01 0.05 0.05 0.00 -0.03
Years in consulting jobs/total 
job years 0.02 0.03 0.08 0.09 0.00 -0.33
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Table 10 (cont’d). 

Ever held industry job? (1=Yes, 
0=No) 0.56 0.48 0.50 0.50 0.08 1.50
Ever held government job  0.30 0.27 0.46 0.44 0.03 0.57
Triple helix (1=Yes, 0=No) (see 
notes)  0.16 0.15 0.37 0.35 0.02 0.42
First job was industry job 0.29 0.30 0.46 0.46 -0.02 -0.31
First job was government job 0.14 0.15 0.35 0.36 -0.01 -0.15
Held postdoctoral position 
(1=Yes, 0=No)  0.24 0.32 0.43 0.47 -0.07 -1.53
Number of grants, total [total 
grants] 27.76 16.73 35.59 14.14 11.02 1.66
Total grants/career length 2.10 1.04 3.72 0.81 1.06 1.50
Number of federal grants 12.00 8.26 13.71 8.15 3.74 1.35
Number of industry grants 16.31 5.09 26.97 5.29 11.22 1.66
Number of grants from other 
sources 5.68 4.15 4.87 4.18 1.53 1.33
Federal grants/total grants 0.52 0.54 0.28 0.27 -0.02 -0.33
Industry grants/total grants 0.28 0.23 0.22 0.18 0.05 0.87
Precocity 7.17 3.17 7.36 4.09 4.01 *5.29
Sex 0.94 0.86 0.24 0.34 0.08 *2.80
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1. (5) Publication star (pubstar) is defined to be 
respondents who are in the top ten percent of the distribution of the total number of publication 
adjusted for career length (years since doctorate). Non-stars are defined as those respondents who 
are not publication or patent stars. 
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Table 11.  Differences in Means on Selected Variables Between Patent “Stars” and Those Who Are 
Not Stars 

Variable 
Patstar 
Mean 

Nonstar 
Mean 

Patstar 
Stdv 

Nonstar 
Stdv 

Difference 
In Means T-Ratio 

Career homogeny index (see 
notes) 12.30 14.71 7.67 8.22 -2.41 *-2.90
Career length (years since 
doctorate) 18.40 17.86 11.47 11.42 0.55 0.45
Doctorate in biological 
sciences? (1=Yes, 0=No) 0.02 0.12 0.14 0.32 -0.10 *-5.31
Doctorate in computer science 0.04 0.05 0.20 0.21 -0.01 -0.38
Doctorate in engineering 0.56 0.44 0.50 0.50 0.12 *2.19
Doctorate in physical sciences 0.36 0.26 0.48 0.44 0.10 1.95
Doctorate in other field 0.02 0.13 0.14 0.34 -0.11 *-5.96
Total number of publications 112.66 54.83 123.34 54.88 57.83 *4.56
Total number of patents 16.73 0.95 20.13 1.96 15.78 *7.80
Total publications/career 
length 6.08 2.99 5.39 1.89 3.08 *5.58
Total patents/career length 0.94 0.05 0.82 0.09 0.89 *10.82
Number of job positions, total 
[total jobs]  6.61 6.61 3.81 3.64 0.00 0.00
Number of industry jobs 1.90 1.08 2.20 1.72 0.82 *3.55
Number of government jobs 0.27 0.44 0.81 0.95 -0.17 -1.91
Number of industry jobs/total 
jobs 0.30 0.15 0.26 0.21 0.15 *5.33
Number of government 
jobs/total jobs 0.03 0.06 0.08 0.13 -0.03 *-3.41
Number of job institutions 3.19 3.26 1.74 1.84 -0.07 -0.37
Total job years (including jobs 
held concurrently) 35.89 35.34 22.12 25.19 0.55 0.23
Total job years/career length 2.77 2.39 2.86 1.79 0.38 1.29
Job institutions/career length 0.34 0.29 0.50 0.35 0.05 0.88
Years in industry jobs 7.76 3.45 8.97 6.42 4.31 *4.63
Years in academic jobs 24.40 28.18 18.98 22.14 -3.78 -1.83
Years in government jobs 1.71 2.00 6.13 5.61 -0.30 -0.46
Years in consulting jobs 1.94 1.45 6.13 5.48 0.49 0.76
Years in medical jobs 0.08 0.26 0.71 1.66 -0.18 -1.92
Years in industry jobs/total job 
years 0.24 0.11 0.27 0.18 0.14 *4.85
Years in academic jobs/total 
job years 0.67 0.80 0.29 0.24 -0.13 *-4.45
Years in government jobs/total 
job years 0.04 0.06 0.10 0.14 -0.02 -1.62
Years in medical jobs/total job 
years 0.00 0.01 0.01 0.05 -0.01 *-3.06
Years in consulting jobs/total 
job years 0.05 0.03 0.13 0.09 0.02 1.55
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Table 11 (cont’d). 

Ever held industry job? 
(1=Yes, 0=No) 0.72 0.48 0.45 0.50 0.24 *4.84
Ever held government job  0.16 0.27 0.37 0.44 -0.11 *-2.63
Triple helix (1=Yes, 0=No) (see 
notes)  0.10 0.15 0.30 0.35 -0.05 -1.39
First job was industry job 0.52 0.30 0.50 0.46 0.21 *3.95
First job was government job 0.09 0.15 0.29 0.36 -0.06 -1.77
Held postdoctoral position 
(1=Yes, 0=No)  0.22 0.32 0.42 0.47 -0.09 *-2.08
Number of grants, total [total 
grants] 30.19 16.73 36.62 14.14 13.45 1.90
Total grants/career length 1.65 1.04 1.55 0.81 0.61 *2.02
Number of federal grants 12.75 8.26 14.57 8.15 4.49 1.49
Number of industry grants 14.55 5.09 24.49 5.29 9.46 1.72
Number of grants from other 
sources 3.95 4.15 3.81 4.18 -0.20 -0.22
Federal grants/total grants 0.45 0.54 0.21 0.27 -0.09 -1.94
Industry grants/total grants 0.33 0.23 0.18 0.18 0.09 *2.24
Precocity 4.76 3.17 5.70 4.09 1.59 *2.69
Sex 0.97 0.86 0.17 0.34 0.11 *5.04
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1. (5) Patent star (patstar) is defined to be respondents 
who are in the top ten percent of the distribution of the total number of patents adjusted for career 
length (years since doctorate). Non-stars are defined as those respondents who are not publication 
or patent stars. 
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Table 12.  Differences in Means on Selected Variables Between Publication and Patent “Stars” 

Variable 
Pubstar 
Mean 

Patstar 
Mean 

Pubstar 
Stdv 

Patstar 
Stdv 

Difference 
In Means T-Ratio 

Career homogeny index (see 
notes) 15.32 12.30 7.39 7.67 3.02 *2.80
Career length (years since 
doctorate) 20.44 18.40 11.99 11.47 2.03 1.22
Doctorate in biological 
sciences? (1=Yes, 0=No) 0.06 0.02 0.24 0.14 0.04 1.46
Doctorate in computer science 0.03 0.04 0.17 0.20 -0.01 -0.37
Doctorate in engineering 0.45 0.56 0.50 0.50 -0.11 -1.50
Doctorate in physical sciences 0.41 0.36 0.49 0.48 0.04 0.64
Doctorate in other field 0.05 0.02 0.22 0.14 0.03 1.16
Total number of publications 236.86 112.66 157.31 123.34 124.20 6.14
Total number of patents 7.08 16.73 16.42 20.13 -9.65 *-3.69
Total publications/career 
length 11.83 6.08 4.25 5.39 5.76 *8.28
Total patents/career length 0.35 0.94 0.75 0.82 -0.59 *-5.28
Number of job positions, total 
[total jobs]  7.85 6.61 4.36 3.81 1.24 *2.12
Number of industry jobs 1.18 1.90 1.58 2.20 -0.72 *-2.62
Number of government jobs 0.50 0.27 1.02 0.81 0.23 1.74
Number of industry jobs/total 
jobs 0.15 0.30 0.17 0.26 -0.15 *-4.86
Number of government 
jobs/total jobs 0.06 0.03 0.11 0.08 0.03 1.93
Number of job institutions 3.64 3.19 2.21 1.74 0.45 1.59
Total job years (including jobs 
held concurrently) 43.63 35.89 26.34 22.12 7.74 *2.23
Total job years/career length 3.26 2.77 4.35 2.86 0.49 0.93
Job institutions/career length 0.37 0.34 0.57 0.50 0.03 0.39
Years in industry jobs 3.89 7.76 6.45 8.97 -3.87 *-3.48
Years in academic jobs 35.47 24.40 22.53 18.98 11.07 *3.73
Years in government jobs 2.59 1.71 7.39 6.13 0.88 0.91
Years in consulting jobs 1.52 1.94 5.84 6.13 -0.42 -0.49
Years in medical jobs 0.16 0.08 1.01 0.71 0.08 0.66
Years in industry jobs/total job 
years 0.09 0.24 0.15 0.27 -0.15 *-4.90
Years in academic jobs/total 
job years 0.82 0.67 0.19 0.29 0.16 *4.48
Years in government jobs/total 
job years 0.05 0.04 0.13 0.10 0.02 0.96
Years in medical jobs/total job 
years 0.01 0.00 0.05 0.01 0.01 0.99
Years in consulting jobs/total 
job years 0.02 0.05 0.08 0.13 -0.02 -1.53
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Table 12 (cont’d). 

Ever held industry job? 
(1=Yes, 0=No) 0.56 0.72 0.50 0.45 -0.16 *-2.30
Ever held government job  0.30 0.16 0.46 0.37 0.13 *2.26
Triple helix (1=Yes, 0=No) (see 
notes)  0.16 0.10 0.37 0.30 0.06 1.29
First job was industry job 0.29 0.52 0.46 0.50 -0.23 *-3.29
First job was government job 0.14 0.09 0.35 0.29 0.05 1.11
Held postdoctoral position 
(1=Yes, 0=No)  0.24 0.22 0.43 0.42 0.02 0.37
Number of grants, total [total 
grants] 27.76 30.19 35.59 36.62 -2.43 -0.25
Total grants/career length 2.10 1.65 3.72 1.55 0.45 0.59
Number of federal grants 12.00 12.75 13.71 14.57 -0.75 -0.19
Number of industry grants 16.31 14.55 26.97 24.49 1.76 0.20
Number of grants from other 
sources 5.68 3.95 4.87 3.81 1.74 1.23
Federal grants/total grants 0.52 0.45 0.28 0.21 0.07 0.96
Industry grants/total grants 0.28 0.33 0.22 0.18 -0.05 -0.68
Precocity 7.17 4.76 7.36 5.70 2.42 *2.57
Sex 0.94 0.97 0.24 0.17 -0.03 -1.04
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1.  (5) Publication star (pubstar) is defined to be 
respondents who are in the top ten percent of the distribution of the total number of publications 
adjusted for career length (years since doctorate). Likewise patent star (patstar) is defined to be 
respondents who are in the top ten percent of the distribution of the total number of patents adjusted 
for career length (years since doctorate). 
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Table 13.  Differences in Means on Selected Variables Between Publication “Stars” and Those 
Who are Both Publication and Patent Stars 

Variable 
Pubstar 
Mean 

Combstar 
Mean 

Pubstar 
Stdv 

Combstar 
Stdv 

Difference 
In Means T-Ratio 

Career homogeny index (see 
notes) 15.32 16.79 7.39 8.86 -1.47 -0.76
Career length (years since 
doctorate) 20.44 19.16 11.99 11.85 1.28 0.48
Doctorate in biological 
sciences? (1=Yes, 0=No) 0.06 0.00 0.24 0.00 0.06 *2.52
Doctorate in computer science 0.03 0.04 0.17 0.20 -0.01 -0.22
Doctorate in engineering 0.45 0.44 0.50 0.51 0.01 0.08
Doctorate in physical sciences 0.41 0.48 0.49 0.51 -0.07 -0.63
Doctorate in other field 0.05 0.04 0.22 0.20 0.01 0.24
Total number of publications 236.86 229.04 157.31 165.46 7.82 0.21
Total number of patents 7.08 20.32 16.42 28.52 -13.24 *-2.23
Total publications/career 
length 11.83 12.78 4.25 6.35 -0.95 -0.71
Total patents/career length 0.35 1.08 0.75 1.21 -0.73 *-2.88
Number of job positions, total 
[total jobs]  7.85 7.44 4.36 4.11 0.41 0.44
Number of industry jobs 1.18 1.32 1.58 1.55 -0.14 -0.39
Number of government jobs 0.50 0.36 1.02 1.25 0.14 0.52
Number of industry jobs/total 
jobs 0.15 0.19 0.17 0.21 -0.05 -1.02
Number of government 
jobs/total jobs 0.06 0.02 0.11 0.07 0.03 1.88
Number of job institutions 3.64 3.44 2.21 1.78 0.20 0.48
Total job years (including jobs 
held concurrently) 43.63 42.80 26.34 29.27 0.83 0.13
Total job years/career length 3.26 2.67 4.35 1.61 0.59 1.07
Job institutions/career length 0.37 0.33 0.57 0.41 0.04 0.37
Years in industry jobs 3.89 5.24 6.45 7.85 -1.35 -0.80
Years in academic jobs 35.47 33.64 22.53 23.87 1.83 0.35
Years in government jobs 2.59 2.44 7.39 10.58 0.15 0.07
Years in consulting jobs 1.52 1.20 5.84 5.60 0.32 0.25
Years in medical jobs 0.16 0.28 1.01 1.40 -0.12 -0.39
Years in industry jobs/total job 
years 0.09 0.13 0.15 0.19 -0.04 -0.93
Years in academic jobs/total 
job years 0.82 0.81 0.19 0.23 0.01 0.24
Years in government jobs/total 
job years 0.05 0.03 0.13 0.09 0.02 1.00
Years in medical jobs/total job 
years 0.01 0.00 0.05 0.02 0.00 0.54
Years in consulting jobs/total 
job years 0.02 0.02 0.08 0.10 0.00 0.00
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Table 13 (cont’d). 

Ever held industry job? 
(1=Yes, 0=No) 0.56 0.56 0.50 0.51 0.00 0.01
Ever held government job  0.30 0.12 0.46 0.33 0.18 *2.17
Triple helix (1=Yes, 0=No) (see 
notes)  0.16 0.04 0.37 0.20 0.12 *2.25
First job was industry job 0.29 0.28 0.46 0.46 0.01 0.08
First job was government job 0.14 0.04 0.35 0.20 0.10 1.94
Held postdoctoral position 
(1=Yes, 0=No)  0.24 0.24 0.43 0.44 0.00 0.05
Number of grants, total [total 
grants] 27.76 65.00 35.59 59.92 -37.24 -1.47
Total grants/career length 2.10 2.40 3.72 1.72 -0.30 -0.31
Number of federal grants 12.00 24.50 13.71 21.81 -12.50 -1.34
Number of industry grants 16.31 43.50 26.97 45.51 -27.19 -1.15
Number of grants from other 
sources 5.68 5.50 4.87 6.14 0.18 0.06
Federal grants/total grants 0.52 0.50 0.28 0.28 0.02 0.13
Industry grants/total grants 0.28 0.40 0.22 0.19 -0.12 -1.13
Precocity 7.17 8.40 7.36 8.99 -1.23 -0.63
Sex 0.94 1.00 0.24 0.00 -0.06 *-2.52
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1.  (5) Publication star (pubstar) is defined to be 
respondents who are in the top ten percent of the distribution of the total number of publications 
adjusted for career length (years since doctorate). Combination star (combstar) is defined to be 
respondents who are in the top ten percent of the distribution of the total number of publications and 
patents adjusted for career length (years since doctorate). 
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Table 14.  Differences in Means on Selected Variables Between Patent “Stars” and Those Who are 
Both Publication and Patent Stars 

Variable 
Patstar 
Mean 

Combstar 
Mean 

Patstar 
Stdv 

Combstar 
Stdv 

Difference 
In Means T-Ratio 

Career homogeny index (see 
notes) 12.30 16.79 7.67 8.86 -4.49 *-2.32
Career length (years since 
doctorate) 18.40 19.16 11.47 11.85 -0.76 -0.29
Doctorate in biological 
sciences? (1=Yes, 0=No) 0.02 0.00 0.14 0.00 0.02 1.42
Doctorate in computer science 0.04 0.04 0.20 0.20 0.00 0.01
Doctorate in engineering 0.56 0.44 0.50 0.51 0.12 1.02
Doctorate in physical sciences 0.36 0.48 0.48 0.51 -0.12 -1.03
Doctorate in other field 0.02 0.04 0.14 0.20 -0.02 -0.47
Total number of publications 112.66 229.04 123.34 165.46 -116.38 *-3.29
Total number of patents 16.73 20.32 20.13 28.52 -3.59 -0.59
Total publications/career 
length 6.08 12.78 5.39 6.35 -6.71 *-4.85
Total patents/career length 0.94 1.08 0.82 1.21 -0.14 -0.56
Number of job positions, total 
[total jobs]  6.61 7.44 3.81 4.11 -0.83 -0.92
Number of industry jobs 1.90 1.32 2.20 1.55 0.58 1.52
Number of government jobs 0.27 0.36 0.81 1.25 -0.09 -0.33
Number of industry jobs/total 
jobs 0.30 0.19 0.26 0.21 0.11 *2.12
Number of government 
jobs/total jobs 0.03 0.02 0.08 0.07 0.01 0.46
Number of job institutions 3.19 3.44 1.74 1.78 -0.25 -0.62
Total job years (including jobs 
held concurrently) 35.89 42.80 22.12 29.27 -6.91 -1.10
Total job years/career length 2.77 2.67 2.86 1.61 0.10 0.23
Job institutions/career length 0.34 0.33 0.50 0.41 0.01 0.07
Years in industry jobs 7.76 5.24 8.97 7.85 2.52 1.39
Years in academic jobs 24.40 33.64 18.98 23.87 -9.24 -1.80
Years in government jobs 1.71 2.44 6.13 10.58 -0.73 -0.33
Years in consulting jobs 1.94 1.20 6.13 5.60 0.74 0.58
Years in medical jobs 0.08 0.28 0.71 1.40 -0.20 -0.69
Years in industry jobs/total job 
years 0.24 0.13 0.27 0.19 0.11 *2.45
Years in academic jobs/total 
job years 0.67 0.81 0.29 0.23 -0.14 *-2.67
Years in government jobs/total 
job years 0.04 0.03 0.10 0.09 0.01 0.32
Years in medical jobs/total job 
years 0.00 0.00 0.01 0.02 0.00 -0.64
Years in consulting jobs/total 
job years 0.05 0.02 0.13 0.10 0.02 0.98
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Table 14 (cont’d). 

Ever held industry job? 
(1=Yes, 0=No) 0.72 0.56 0.45 0.51 0.16 1.42
Ever held government job  0.16 0.12 0.37 0.33 0.04 0.55
Triple helix (1=Yes, 0=No) (see 
notes)  0.10 0.04 0.30 0.20 0.06 1.21
First job was industry job 0.52 0.28 0.50 0.46 0.24 *2.24
First job was government job 0.09 0.04 0.29 0.20 0.05 1.06
Held postdoctoral position 
(1=Yes, 0=No)  0.22 0.24 0.42 0.44 -0.02 -0.18
Number of grants, total [total 
grants] 30.19 65.00 36.62 59.92 -34.81 -1.37
Total grants/career length 1.65 2.40 1.55 1.72 -0.75 -0.98
Number of federal grants 12.75 24.50 14.57 21.81 -11.75 -1.25
Number of industry grants 14.55 43.50 24.49 45.51 -28.95 -1.24
Number of grants from other 
sources 3.95 5.50 3.81 6.14 -1.55 -0.49
Federal grants/total grants 0.45 0.50 0.21 0.28 -0.05 -0.43
Industry grants/total grants 0.33 0.40 0.18 0.19 -0.08 -0.75
Precocity 4.76 8.40 5.70 8.99 -3.64 -1.93
Sex 0.97 1.00 0.17 0.00 -0.03 -1.75
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1.  (5) Patent star (patstar) is defined to be respondents 
who are in the top ten percent of the distribution of the total number of patents adjusted for career 
length (years since doctorate). Combination star (combstar) is defined to be respondents who are in 
the top ten percent of the distribution of the total number of publications and patents adjusted for 
career length (years since doctorate). 
 



148 

Table 15.  Differences in Means on Selected Variables Between Those Who are Both Publication 
and Patent “Stars” and those who are not stars. 

Variable 
Combstar 
Mean 

Nonstar 
Mean 

Combstar 
Stdv 

Nonstar 
Stdv 

Difference 
In Means T-Ratio 

Career homogeny index (see 
notes) 16.79 14.71 7.67 8.22 2.08 1.16
Career length (years since 
doctorate) 19.16 17.86 11.47 11.42 1.30 0.54
Doctorate in biological 
sciences? (1=Yes, 0=No) 0.00 0.12 0.14 0.32 -0.12 *-10.20
Doctorate in computer science 0.04 0.05 0.20 0.21 -0.01 -0.21
Doctorate in engineering 0.44 0.44 0.50 0.50 0.00 0.01
Doctorate in physical sciences 0.48 0.26 0.48 0.44 0.22 *2.09
Doctorate in other field 0.04 0.13 0.14 0.34 -0.09 *-2.19
Total number of publications 229.04 54.83 123.34 54.88 174.21 *5.26
Total number of patents 20.32 0.95 20.13 1.96 19.37 *3.40
Total publications/career 
length 12.78 2.99 5.39 1.89 9.79 *7.69
Total patents/career length 1.08 0.05 0.82 0.09 1.04 *4.26
Number of job positions, total 
[total jobs]  7.44 6.61 3.81 3.64 0.83 1.00
Number of industry jobs 1.32 1.08 2.20 1.72 0.24 0.75
Number of government jobs 0.36 0.44 0.81 0.95 -0.08 -0.32
Number of industry jobs/total 
jobs 0.19 0.15 0.26 0.21 0.04 0.92
Number of government 
jobs/total jobs 0.02 0.06 0.08 0.13 -0.04 *-2.59
Number of job institutions 3.44 3.26 1.74 1.84 0.18 0.49
Total job years (including jobs 
held concurrently) 42.80 35.34 22.12 25.19 7.46 1.26
Total job years/career length 2.67 2.39 2.86 1.79 0.28 0.86
Job institutions/career length 0.33 0.29 0.50 0.35 0.04 0.46
Years in industry jobs 5.24 3.45 8.97 6.42 1.79 1.13
Years in academic jobs 33.64 28.18 18.98 22.14 5.46 1.13
Years in government jobs 2.44 2.00 6.13 5.61 0.44 0.21
Years in consulting jobs 1.20 1.45 6.13 5.48 -0.25 -0.22
Years in medical jobs 0.28 0.26 0.71 1.66 0.02 0.07
Years in industry jobs/total job 
years 0.13 0.11 0.27 0.18 0.02 0.58
Years in academic jobs/total 
job years 0.81 0.80 0.29 0.24 0.01 0.21
Years in government jobs/total 
job years 0.03 0.06 0.10 0.14 -0.03 -1.33
Years in medical jobs/total job 
years 0.00 0.01 0.01 0.05 0.00 -1.01
Years in consulting jobs/total 
job years 0.02 0.03 0.13 0.09 0.00 -0.14
 



149 

Table 15 (cont’d). 

Ever held industry job? 
(1=Yes, 0=No) 0.56 0.48 0.45 0.50 0.08 0.77
Ever held government job  0.12 0.27 0.37 0.44 -0.15 *-2.17
Triple helix (1=Yes, 0=No) (see 
notes)  0.04 0.15 0.30 0.35 -0.11 *-2.54
First job was industry job 0.28 0.30 0.50 0.46 -0.02 -0.26
First job was government job 0.04 0.15 0.29 0.36 -0.11 *-2.62
Held postdoctoral position 
(1=Yes, 0=No)  0.24 0.32 0.42 0.47 -0.08 -0.86
Number of grants, total [total 
grants] 65.00 16.73 36.62 14.14 48.27 *1.97
Total grants/career length 2.40 1.04 1.55 0.81 1.36 1.93
Number of federal grants 24.50 8.26 14.57 8.15 16.24 1.82
Number of industry grants 43.50 5.09 24.49 5.29 38.41 1.69
Number of grants from other 
sources 5.50 4.15 3.81 4.18 1.35 0.44
Federal grants/total grants 0.50 0.54 0.21 0.27 -0.04 -0.31
Industry grants/total grants 0.40 0.23 0.18 0.18 0.17 1.81
Precocity 8.40 3.17 5.70 4.09 5.23 *2.90
Sex 1.00 0.86 0.17 0.34 0.14 *11.13
* Indicates P-Value < .05 
 
Notes:  (1) Homogeny is an index of career patterns over time.  It is the sum of conditional job 
probabilities of moving from one job to another corrected for total number of jobs.  A high value 
means the career path is tending toward a common one.  A low value means that few others in the 
data set made such job transformations.  (2) Precocity is the number of publications during or before 
the year the doctorate was granted. (3) Triple Helix is a dummy variable taking on the value of 1 
when the respondent has had at least one job in all three sectors (academia, industry, and 
government) otherwise the value is 0. (4) Center variables are dummy variables taking on a value of 
1 when the researchers is affiliated with that particular NSF, DOE, or DOD center otherwise the value 
is 0. For a list of center names, see Table 1.  (5) Combination star (combstar) is defined to be 
respondents who are in the top ten percent of the distribution of the total number of publications and 
patents adjusted for career length (years since doctorate).  Non-stars are defined as those 
respondents who are not publication or patent stars. 
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Table 16.  Mean Number of Publications For Five Years Before and After a Job Transformation 
from and to Industry (Standard Deviation, 95% Confidence Intervals) 

 
From 
Industry    

 Mean Std. Dev Lower bound CI Upper bound CI 
Mean before 1.50 2.84 1.23 1.77
Mean after 2.60 3.55 2.27 2.93
     
 To Industry    
 Mean Std. Dev Lower bound CI Upper bound CI 
Mean before 1.81 3.01 1.44 2.18
Mean after 2.57 3.12 2.19 2.95
Note:  CI stands for confidence interval. 
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Table 17. Neural Network Models, Estimated Output Values for Selected Input Values  

Variable 
Variable 
Value 

Publication 
Rate 
Estimate 

Patent Rate 
Estimate 

Industry grants/total grants 0.00 20.204 0.164
  0.05 20.058 0.171
  0.10 19.827 0.179
  0.15 19.464 0.188
  0.20 18.908 0.197
  0.25 18.095 0.208
  0.30 16.990 0.220
  0.35 15.643 0.233
  0.40 14.218 0.247
  0.45 12.938 0.262
  0.50 11.969 0.280
  0.55 11.372 0.299
  0.60 11.134 0.320
  0.65 11.217 0.344
  0.70 11.593 0.370
  0.75 12.253 0.398
  0.80 13.201 0.430
  0.85 14.440 0.465
  0.90 15.948 0.503
  0.95 17.654 0.545
  1.00 19.429 0.591
Federal grants/total grants 0.00 9.010 0.235
  0.05 9.219 0.238
  0.10 9.442 0.242
  0.15 9.679 0.246
  0.20 9.933 0.250
  0.25 10.206 0.254
  0.30 10.502 0.258
  0.35 10.822 0.263
  0.40 11.171 0.269
  0.45 11.552 0.274
  0.50 11.969 0.280
  0.55 12.426 0.286
  0.60 12.929 0.293
  0.65 13.481 0.299
  0.70 14.087 0.307
  0.75 14.750 0.314
  0.80 15.472 0.322
  0.85 16.251 0.331
  0.90 17.085 0.340
  0.95 17.965 0.349
  1.00 18.876 0.359
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Table 17 (cont’d). 
Total grants/career length  0 11.786 0.275
  5 11.945 0.278
  10 11.969 0.280
  15 11.808 0.281
  20 11.403 0.283
Years in government jobs/total job years 0.00 21.749 0.276
  0.05 21.213 0.277
  0.10 20.563 0.277
  0.15 19.777 0.278
  0.20 18.845 0.278
  0.25 17.773 0.278
  0.30 16.596 0.279
  0.35 15.367 0.279
  0.40 14.151 0.279
  0.45 13.006 0.280
  0.50 11.969 0.280
  0.55 11.054 0.280
  0.60 10.262 0.280
  0.65 9.587 0.280
  0.70 9.021 0.281
  0.75 8.566 0.281
  0.80 8.232 0.281
  0.85 8.033 0.281
  0.90 7.987 0.281
  0.95 8.100 0.281
  1.00 8.361 0.281
Years in industry jobs/total job years  0.00 23.934 0.130
  0.05 22.986 0.139
  0.10 21.806 0.148
  0.15 20.445 0.158
  0.20 18.981 0.170
  0.25 17.503 0.183
  0.30 16.092 0.197
  0.35 14.809 0.214
  0.40 13.689 0.233
  0.45 12.744 0.255
  0.50 11.969 0.280
  0.55 11.345 0.309
  0.60 10.850 0.342
  0.65 10.458 0.380
  0.70 10.145 0.424
  0.75 9.888 0.474
  0.80 9.669 0.531
  0.85 9.471 0.596
  0.90 9.280 0.669
  0.95 9.086 0.750
  1.00 8.876 0.840
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Table 17 (cont’d). 
Total job institutions/career length 0.0 20.046 0.587
  0.1 19.763 0.564
  0.2 19.461 0.541
  0.3 19.141 0.520
  0.4 18.801 0.499
  0.5 18.443 0.480
  0.6 18.067 0.461
  0.7 17.674 0.444
  0.8 17.267 0.427
  0.9 16.847 0.411
  1.0 16.417 0.395
  1.1 15.978 0.381
  1.2 15.534 0.367
  1.3 15.086 0.354
  1.4 14.636 0.342
  1.5 14.187 0.330
  1.6 13.739 0.319
  1.7 13.293 0.308
  1.8 12.850 0.298
  1.9 12.408 0.289
  2.0 11.969 0.280
  2.1 11.529 0.271
  2.2 11.089 0.263
  2.3 10.646 0.256
  2.4 10.199 0.248
  2.5 9.746 0.241
  2.6 9.287 0.235
  2.7 8.820 0.229
  2.8 8.347 0.223
  2.9 7.866 0.217
  3.0 7.381 0.212
  3.1 6.893 0.207
  3.2 6.405 0.202
  3.3 5.923 0.198
  3.4 5.449 0.194
  3.5 4.989 0.190
  3.6 4.549 0.186
  3.7 4.131 0.182
  3.8 3.739 0.179
  3.9 3.377 0.175
  4.0 3.045 0.172
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Table 17 (cont’d). 
Career homogeny index 0 8.902 0.155
  5 9.008 0.158
  10 9.129 0.163
  15 9.273 0.171
  20 9.471 0.184
  25 9.799 0.202
  30 10.410 0.229
  35 11.566 0.268
  40 13.502 0.323
  45 15.983 0.400
  50 18.178 0.507
  55 19.565 0.651
  60 20.271 0.838
  65 20.587 1.067
  72 20.729 1.473
Center 87 Yes 6.312 0.461
  No 11.333 0.196
Center 71 Yes 14.038 0.299
  No 9.843 0.264
Center 69 Yes 10.281 0.245
  No 17.526 0.323
Center 51 Yes 9.204 0.246
  No 13.998 0.324
Center 50 Yes 14.492 0.431
  No 13.798 0.222
Center 38 Yes 13.397 0.175
  No 11.052 0.468
Center 33 Yes 19.135 0.314
  No 8.625 0.260
Center 20 Yes 10.744 0.221
  No 12.740 0.356
Center 12 Yes 11.754 0.333
  No 13.278 0.237
Center 04 Yes 20.555 1.398
  No 10.345 0.096
Precocity 0 1.596 0.180
  5 1.463 0.196
  10 1.576 0.216
  15 3.905 0.240
  20 10.797 0.270
  25 13.396 0.306
  30 15.263 0.352
  35 18.606 0.407
  40 22.635 0.475
  43 24.324 0.523
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Table 17 (cont’d). 
First job was government job  Yes 4.808 0.184
  No 18.949 0.493
First job was industry job Yes 8.775 0.294
  No 17.034 0.258
Triple Helix Yes 18.161 0.208
  No 9.756 0.392
Held postdoctoral position Yes 9.801 0.139
  No 20.566 0.766
Held government job Yes 13.502 0.224
  No 12.011 0.395
Held industry job Yes 11.173 0.829
  No 15.285 0.161
Doctorate in physical sciences Yes 20.276 0.909
  No 9.411 0.207
Doctorate in engineering Yes 12.772  0.242
 No 11.960 0.555
Doctorate in computer science Yes 8.923 0.214
  No 17.130 0.380
Doctorate in biological science Yes 10.865 0.154
  No 18.167 0.590
Doctorate granted 1988-1993  Yes 6.218 0.282
  No 11.878 0.239
Doctorate granted 1981-1987  Yes 12.492 0.181
  No 12.051 0.513
Doctorate granted 1972-1980 Yes 15.693 0.831
  No 5.848 0.151
Doctorate granted before 1972 Yes 14.993 0.239
  No 14.556 0.333
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Table 18.  Summary of Tobit, Poisson, and Neural Network Models—Relationship Between 
Selected Independent Variables (Inputs) and Dependent Variables (Outputs) 

Variable 

Tobit 
Model--
Publication 
Rate 

Tobit 
Model--
Patent Rate 

Poisson 
Model--
Patent Rate 

Neural 
Network 
Model--
Publication 
Rate 

Neural 
Network 
Model--
Patent Rate 

Career homogeny index  0* 0 0 0>+ 0>+ 
Precocity  0* 0* 0* 0>+ 0>+ 
Held postdoctoral position 
(1=Yes, 0=No)  - - - - - 
Triple Helix  + 0 - + - 
First job was industry job? 
(1=Yes, 0=No) 0 - - - 0 
First job was government job  - - - - - 
Years in industry jobs/total job 
years  - +* +* - + 
Years in government 
jobs/total job years  + - - - 0 
Total grants/career length  0 0 0 0 0 
Industry grants/total grants 0 + +* - + 
Federal grants/total grants + + - + + 
Number of job 
institutions/career length - - + - - 
Doctorate granted before 
1972? (1=Yes, 0=No) +* +* + 0 0 
Doctorate granted 1972-1980 +* +* +* + + 
Doctorate granted 1981-1987  +* + + + - 
Doctorate granted 1988-1993  +* 0 + - 0 
Doctorate in biological 
science (1=Yes, 0=No) 0 +* + - - 
Doctorate in computer 
science + +* +* - - 
Doctorate in engineering +* +* +* + + 
Doctorate in physical 
sciences +* +* +* + + 
Notes:  + Indicates variable had positive relationship with dependent variable, - indicates a 
negative relationship, and 0 indicates no relationship of substantive significance. For the neural 
models judgment was made based on output queries for inputs of various levels). 0>+ Indicates 
that the relationship was manifest only for extreme positive values of the input. * Indicates 
statistical significance at the level of .05 or below (not applicable to neural models). 
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Table 19.  Summary of Differences in Means in Selected Variables Between Publication “Stars,” 
Patent “Stars,” Those Who are Both Publication and Patent Stars, and Those Who are Not Stars 
(Nonstars) 
   Means    
Variable Pubstar Patstar Combstar Nonstar 
Career homogeny index  *15.32 §12.30 +16.79 14.71
Precocity  *§7.17 §4.76 §8.40 3.17
Held postdoctoral position (1=Yes, 0=No)  0.24 §0.22 0.24 0.32
Triple helix  0.16 0.10 o§0.04 0.15
First job was industry job? (1=Yes, 0=No) *0.29 §0.52 +0.28 0.30
First job was government job  0.14 0.09 §0.04 0.15
Held industry job (1=Yes, 0=No) *0.56 §0.72 0.56 0.48
Held government job *0.30 §0.16 o§0.12 0.27
Years in industry jobs/total job years  *0.09 §0.24 +0.13 0.11
Years in government jobs/total job years  0.05 0.04 0.03 0.06
Job institutions/career length 0.37 0.34 0.33 0.29
Total grants/career length  2.10 1.65 2.40 1.04
Industry grants/total grants 0.28 §0.33 0.40 0.23
Federal grants/total grants 0.52 0.45 0.50 0.54
Doctorate in biological science (1=Yes, 
0=No) §0.06 §0.02 o§0.00 0.12
Doctorate in computer science 0.03 0.04 0.04 0.05
Doctorate in engineering 0.45 §0.56 0.44 0.44
Doctorate in physical sciences §0.41 0.36 §0.48 0.26
Notes:  * Indicates a statistically significant difference in means between publication star and patent 
star. + Indicates a statistically significant difference between patent star and combination star. o 
Indicates a statistically significant difference between publication star and combination star.  § 
Indicates a statistically significant difference in means with non-star.   
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APPENDIX B: Tobit Model Diagnostics 

 

 

One problem with limited dependent variable models, including the Tobit model, is that 

they are sensitive to model misspecification, heteroscedasticity, and non-normal error distributions 

(Kennedy, 1998).  It is likely the models present here will suffer from one or more of these 

problems due to the highly skewed nature of productivity and appropriate diagnostics are 

discussed below.  In the presence of non-constant variance of the errors terms 

(heteroscedasticity), maximum likelihood estimators remain consistent although they are no longer 

efficient.  As a result, confidence intervals and P-values for estimators may be larger than should 

be the case. 

To test for heteroscedasticity residual plots were examined and a Modified- Levene test 

was constructed.  As shown in Figures 20 and 21 the residuals plotted against the predicted 

dependent variables appear to exhibit non-constant variance due to the presence of outliers.  It 

also appears, not surprisingly, that there is possibly increasing variance as the value of the 

predicted dependent variable increases.  However, this is difficult to judge given the distorting 

effects of the outliers on the Y axis of the graphs.   

In Figures 22 and 23 outliers above three standard deviations from the mean have been 

removed in order to examine more closely the relationship between the residuals and the 

dependent variable for the majority of the cases.  There does seem to be a V or funnel shape to the 

distribution, which again indicates the presence of heteroscedasticity.  However, there does not 

appear to be a relationship45 other than increasing variance, so it may be the case that important 

variables have not been omitted from the models.   

 

                                                 
45 Other scatter plots were run on the independent variables that are not shown here. 
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Figure 20.  Scatter Plot of Predicted Publication Rate by Error Squared (all cases) 
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Figure 21.  Scatter Plot of Predicted Patent Rate by Error Squared (all cases) 
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Figure 22.  Scatter Plot of Predicted Publication Rate by Error Squared (outliers above three 
standard deviations of the mean removed) 
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Figure 23.  Scatter Plot of Predicted Publication Rate by Error Squared (outliers above three 
standard deviations of the mean removed) 
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For this reason, a Modified Levene test was run on each model.   The results46 confirm that 

there is increasing variance in the errors as the predicted value of publication and patent rates 

increase.  

Departures from the normality assumption are often thought to be less critical than the 

presence of heteroscedasticity because point estimation remains unbiased and, as sample size 

increases, estimators will generally tend to be distributed normally despite the violation of the 

normality assumption (Gujarati, 1995).  Nonetheless, as shown in Figures 24 and 25, the error 

terms appear to be distributed non-normally47.  The error term distribution on the publication rate 

model had a skewness statistic of 2.34 where normal distributions hover around 0 and where a 

positive skewness value indicates a distribution with a long right tail (this also confirms 

heteroscedasticity).  The kurtosis value of 9.94 indicates that the distribution of errors cluster 

around the central point more than is the case with the normal distribution and has longer tails.  

The distribution of error terms for patent rate was even more skewed (5.90) and kurtotic (55.79). 

 

                                                 
 
46 The Modified Levene statistic for publication rate was –5.88 and –6.49 for patent rate. 
 
47 One possible remedy to the presence of heteroscedasticity and non-normality is to transform the 
dependent variable (and possibly the independent variables).  However, this complicates model 
interpretation and is unlikely to restore homoscedasticity when the dependent variable contains 
large numbers of zero values.  
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Figure 24.  Publication Rate Normality Diagnostic—Number of Observations 1, 2, 3, and More 
Than 3 Standard Deviations Above or Below the Mean Error 
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Figure 25.  Patent Rate Normality Diagnostic—Number of Observations 1, 2, 3, and More Than 3 
Standard Deviations Above or Below the Mean Error 
 

Finally, to test for multicollinearity the Variance Inflation Factors for each of the variables 

was examined.  As a rule of thumb factors above 10 indicate collinearity; high factors in general 

suggest that standard errors of the estimates will be inflated.  For most variables in these models 
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the factors were quite low (e.g., below 3.0).  However, for engineering (8.6), physical science (6.5), 

and computer science (5.1) the factors are approaching the high levels, indicating that these 

variables are at least moderately correlated with other variables in the model. 
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