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CHAPTER I

INTRODUCTION

Obiective
?he objective of this study was to develop a method to obtain‘a
mathematically optimum sclutien to the.problgm of the location of facil-
ities within a given area.
Purpose - a
The purpose of this study is to provide-spme oﬁjective basis by

-which a layout may be evaluated and which will also generate a layout

that will be optimum with respect to some criterion.

Definition of Fgc%lities_Planning
Facilities planning is more 6ften.defined in the framework of
one Qf its subdivisions, known generaliy as plant layout, than as an
entity unto itself. There are as many definitions of plant layout as
there are writers on the subject, but they are generally similar in
most respects. One of the better ones is that given by Reed (1):
Plant layout is the most effective arrangement and coordination
of the physical plant facilities to allow greatest efficiency

in the combination of:men, materials, and machines necessary
for operation of any unit of a plant or business.

‘Seleétion of Criterion

If one chooses to use the term facilities planning, then the

limitation of this area to manufacturing enterprises alone is lost,



as it should be, Plant layout is only a subtopic of the larger area.
which includes the planning of any structure in which facilities must

be provided for some functienal purpose.  The design of steres, churches,
airports, schools, and in fact every building that must satisfy some
criterion of funection, rather thénlprimarily aesthetic conéiderations,
rightly belongs.in the field of facilities planning.

There is only one criterion that can be used to judge the effec~
tiveness 6f any functional facilityy and that is that it must provide
the maximum usefulness for the least amount of human expenditure. Nor-
mally, a facility is planned with .a pre~defined purpose: it must accom-
modate a certain number of people, or it must produce so many units, or
in other words, it must fulfill its purpose, and this can be said to be
its maximum usefulness.

Given that the facility accomplishes this task (for if it does
not, its reason for existence disappears), then the human expenditure
must be kept as low as possible. Human expeﬁditure is difficult to
measufeg_the only objective method is to equate it to money, through
the medium of time. Thus fhé primary COnsideiatiom in‘minimizing human
expenditure is to minimize cost, in money, Thisris not meant to imply
that human considerations that cannot be equated to money must be ig-
nored; however, objectivify ig lost in the pfocéss'of téking these con-~
siderations into account. There are some means of avolding this pitfall,
and they will be mentioned later.

Therefore, the priﬁary objective in designing any functional

enterprise is to insure that it accomplishes its intended purpose, and



the secondary objective is to accomplish it at minimum cost. The first
phase of plant layout concerns itself with the“primary objectiye;_in
this phase the number and types of eqﬁipment that can best fulfill the
primary function are selected. The seéoﬁd phase is concerned with the
location of this equipmentrin order fo‘minimize cost.

This study concerns itself with the second phase only. The
assumption is made that the first phase has been satisfactorily accom-
plished and no further mention will be ﬁade of it.

It is now necéssary to select criteria by which a layout may be
evaluated. Given that monetary cost must be minimized, it is necessary
to find a measure of a layout that can be expressed as a monetary cost.
Fortunately, Freeman (2) has shown that one of the most importaqt costs
which is a function of the layout is that of material handling;tand the
units of weight; or volume-distance per unit time are a reliable measure
of this cost (Moore) (3). This is the sole criterion that is used in
this study. However, a method will be introduced later by which criteria
that cannot be expressed directly in weight- ¢r volume-distance relation-
ships can be intreduced into the problem.

In more complete termé, the objective of this study will be to
find a method by which facilities may be located in order to minimize

this weight- or volume-distance criterion.



CHAPTER 1II
BACKGROUND AND SURVEY OF LITERATURE

In this chapter a background of the fleld of facilities planning
will be presented in order to acquaint the reader with the state of the
technique at the present time. A survey of the literature will then be
presented in order to acduaint him with the work of g quantitative nature

that is being done in this field.

Background

The problem of.facilities location is one that has existed for
a long time, but until the last century it has not been recognized as
a separate problem areas The historical method of facilities location
has been the trial-and-error method, and indeed, even today this method
is by far the most prevalent. Onelmight'say that most plants designed
prior to 1940 were laid out by trial and in many of these cases the
error has not vyet been discovered,

However, since about 1940, the cost of error has been drastically
reduced by the use of scale layouts and scale models, 'By using these
tools, trial layouts may be made, the errors discovered and corrected.
and a new layout designed., Unfortunately, there is nb way to know
whether the resulting design is the best one.

Many “rules-of thumb™ have been devised, forms have been designed,

and elaborate procedures have been developed to take as much guesswork



as possible out of the layout problem, but none of them suggests any
way to truly "optimize" a laybut‘desién; For discuésions of these
techniques, the reader's attention is ihﬁited to Reed (1}, Apple (4);
and Muther (5}. All three of these books give very excellent presenta-

tions of the field of plant layout.

Survey of Literature

The first work done on quantitative techniques of facilities
planning reviewed by Huffman (6), and a quantitative flow chart was
presented by de Villeneuve (7). In both of these works the only tech-
niques presented are those of deciding between alternative solutions.
However, the advantage is gained that the decision may be made on a
quantitative basis rather fhan by judgment.

A large gap then exists before any further work is done in this
area. In 1958 Wimmert (8) presented a method by which an optimum solu-
tion could bé obtained to the equipment location problem, but with a very
limited application.

.In essence, Wimmert first formulates the problem in the saﬁe man-
ner as is presented in this study. In his problem, he inserts new ma-
chines into already existing'layouts,land limits the problem to assigning
the new machines to a limited number of available locations. The cri-
terion used is that of weight- or volume-distance. He devises a speclal
square matrix in which the row headingS“represent the amount of material
that moves between each pair of machines to be located, and the column

headings represent the distance between each pair of availakle locations.



The values in each cell are the product of the row heading and the col-
umn headings, and represent weight- or volume-distance that would be moved

between the two machines if_they were located in that pair of locations.

In this preblem there are n machinesj taken two at a time there would
result é square matrix with n!/2!(n - é)! ‘rows and colums.

Wifhout going into further detail, he solves this matrix by
eliminating the nenoptimum solutions suécessively until only the opti-
mum one is left. The matrix he uses allows him to do this by virtue of
the locafion of the cells, rather than by the values contained therein.

As the number of machines, n, increases, the n!/21(n - 2)!
square matrix increases rapidly in size, until its practicality is much
in doubt. A necessary condition 1s that it be square, which implies
the same number of machines and available locations. If there are more
machines than available locations, then of course there are no feasible
solutions.: However, if there are more available locationg than machines,
then the model cannot handle the.situation without modifications.

A serious limitation is that the model recognizes ho relation-
ships between the new machihes and the exisfing ones. This is roughly
equivalent to establishing a new and independént production line in the
middle of an already existing layout. This writer believes this diffi-
culty can be overcome, and more will-be said of this later.

Summed up, this method is merely that of choosing among alterna-
tives. However, by virtue of using discrete locafiohs, all the alterna-
tives may be tabulated, and thé technique simply gives a feasible method

of picking out the best one.



Wimmert is the first writer on the subject to specifically

formulate the problem mathematically as

n
Z = Z: f. d. = minimum
i~i
=1
where
fi = amount of material flow between machines
di = distance between machinesu

This equatiﬁn is the basis for this thesis, and its development
will be taken up'in detail in the next chapter.

The next work'of‘majbr importance that has been donhe in this
field 1s that of Mdore (9). His method is similar in appearance to
Wimmert*s, but its application is the reverse.. In this ¢ase, discrete
"candidate areas" are specified for the locations of n new machines,

A matrix is formulated with the existing machines as column headings and
the new machines és row headings, with the cells representing the flow
of materials, in weight or volume per unit time, between the rows and
columns. Another matrix is then made up with the existing machines as
COlumn_headings and the candidate areas as row headings. The cells
reﬁ;esent distance between the_column'headings and the row headings.

By matrix multiplication, these.two matrices are combined into a single
one, with the new machines as column headings and the candidate areas

as row headings. Each cell.contains a vaiue, in weight- or volume-dis-
tance units, that fépresents tBe effeéiﬁveness of assigning a‘particular

machines to a given area.



The following is, a short example to clarify this procedure.
Assume that the flow between the new machines and the existing machines

is known and“can be tabulated as follows:

+

Existihg Machines

1 2 -3

New 1 5 2 1
Machines

2 4 6 3

The distance between each candidate area 'and the existing machines
can be tabulated as

To Existing Machines

1 2 3
From Candi- 1| 10 7 10
date Areas ;
2 8 6 6
Multiplying these two matrices results in: ©
5 4
10 7 lO) 5 6 _ 74 112)
8 6 6 38 86

1 3

~ *This operation is performed as follows:

/b b
11 1
811 215 834 2 C11  ©1p
AB = b21 b22 = =
‘ 851 85 8gg N a1 Ca2
31 3

where

¢,. = a, bi.+a b  +a b ..
i 11 1) iz 2] is 3j



The resulting matrix may easily be solved by a technique of
linear programming'known as the "assignment method," a good explana-
tion of which appears in Churchmah (10). This is again merely a method
used to choose between alternatives, although all the alternatives are
considered. The matrix uséd must be square, but this presents nc great
problem,

The beauty of this method is that it yields an optimum solution
very easily. Unfortunatély, it has two rather serigus limitaticns:
first, specific "candidate‘areas" must be selepted, and second, no re-
lationships can exist between the machines to be located.

Moore suggests that the second limitation may be overcome by the
use of general simplex formulation of the problem, but this writer, after
considerable research, does not agree. In the general formulation of
this problem the relationships are not linear, and therefore linear pro-
gramming, at its present state of development, is incapable of dealing
with it.‘

- However, as a suggestion for further research, 1t appears that
some combination‘pf Wimmert's and Moore's methods might yield promising
results.

A third method, by Bindschedler and Moore (11) describes a method
of formulating "iéo-cost“ lines to determine locations for new machines
in existing layouts. This method assumes that there is a material hand-
ling éost associated with every point in a layout with respect to an
existing machine or machines., By'connecting all points with equal cost,

a series of lines representing fixed material handling costs are
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geneiated. These lines are similar te contour lines on maps. Tﬁen by
| simply locating the new machine as closely as possible to the line with
the smallest value; the new layout is optimized.,

Unfortunately, when more than one new machine 1is to bé located,
or new machiries have relationships among themsglves, or the material
moves between the machines in unequal a;ounts (all‘gf these being the
usual situation), the solution becomes so complex as to be utterly un-
manageable by this method.

Miehle (12), while not working on the specific facilities plan-
ning problem, has presented some valuable information on the solution of
the plant layout problem. His specific problem was that of locating
variable centers with respect to already fixed'cenfers s0 as to minimize
the distances between them. The work ﬁaé done on a geographic basis

rrather than at any-local.area. He obtains his solution by an iteration
procedure, but.thé-actual method is nof presented in the article. An
iteration procedure, probably the same type,'is to be used in this
thesise

Probably the most advanced and promising work done in this field
is that of McHose (13)., This work is deserving of close examination
here.

In this paper, the work of Yaseen {14) is cited to show a common
fallacy.in'location of economic aétivities. This stems from the use of
the physical principle of the center of moments to optimize facility
location. This is perhaps best illustrated by a simple examﬁle. Con-

sider in Figure 1 that 30 weight units of material must flow from pecint
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A to an unknown point B. From point B 20 weight units must flow to
point C. The problem is to locate point B so as to minimize the total

- flow in units of weight-distance,

A B ' C

X 0 x=4 Xx = 10

Figure 1. Illustration of Center of Moments Sclution

The principle of. the center of moments stafes that the distance frgm A
toc B “times its associated weight must equal the distance from B to C
times its associ;ted weight. The s&lution of the preblem in Figure 1 by
this method gives a value for point B of x = 4, and the total flow

for this system is
4(30) + 6(20) = 120 + 120 = 240 weight-distance units.
However, assume that B 1is located at x = 2. Then

2(30) + 8(20) = 60 + 160 = 220 weight-distance units

which is clearly less than the first case. The actual optimum solution

to this problem is to locate point B at x = Q, which gives the value
0(30) + 10(20) = O + 200 = 200 weight-distance units,

but this is obviously an absurd solution.
However, this clearly illustrates the fallacy inherent in using

.the system of the center of moments as a solution to the problem.
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As a general statement of the problem that he solves, McHose

derives the equation

n
z = Z Vi oY
i=1
where
m = power of the equation
n = numbgr of fixed centers
V, = weighted facﬁbr associated with the i'" variable center
and eachffi¥éd center

Di = distance between variable center 1 and each fixed center.
The location of both the fixed and variable centers are expressed 1n
Cartesian coordingtes, and this leads to Di’ which is expressed as the
square root of the hypotenuse of a righf triangle. This expression
exists in implicit form only, and no direct solution is possible in this
form, except by an itegfation procedure,

McHose then removes the radical by letting m = 2 in the above
equation, and this makes it possible to solve it for explicit solutions.
This is only an approximate-soiution; but the author shows that in his
examples the error is very s@alla Unfortunately, he gives . no method by
which the érror méy be determined, other than by comparison with the
exact solutipng This, of course, defeats the purposé of thé entire
method.

McHose's work deals almost entirely with the location of only one

variable center. A method is suggested for locating more than-one center,

but it is merely the repeated application of his method for one center,
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and it becomes very tedious for as few aé‘three variable centers. This
difficulty will be removed in this thesis.

Ancther limitation made in his work is that no restrictions are
placed on the variables. It is entirely possible that his procedure
will cause points to coincide, or to be located so close to each other
that while a matheﬁatical optimum is attained, its application to a
practical Situatiqn would be impossible. LThere is not even a guarantee
that the points will fall within any given area.

One interesting cqnclusion he reaches is that the more symmet-
rical the fixed centers are, and the more symmetrical the assoclated
weight distributions ére, the mere closely the second-order soluticn
will approach the first-order solution. This is a very interesting
point, and more research should be done on it to see whether a quanti-
tative measure of this error could be determined. If this could be done,
then one could predict how close the second-crder solution would be to
the true optimum, and the validity of this sclution would be known.

In presenting his final method, McHose states that the second-
order selution should be taken as a first approximation, and then a
search conducted in the area of the solution for better solutidnsa
While this method works well for only one variable center, the problem
is complicated enormously for more than oﬁe center, It 1s apparent
fhat for even as few as three or four variable centers, the metﬁod is
not feasibles

| _As a last reference to work in this field, the work of Reis and

Andersen (15) is citeds While their work does not contribute to the
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actual process of attaining an optimum, it can be incorporated.into the
process to make it more meaningful.
A term introduced in this work is cailed the ™importance factor”

and is defined as | |

«~eos any factor other than volume of product or distance to be

moved that is to be considered in determining a good plant layout

from a materials handling point of view ...
This factor is used by assuming that all materials handling moves are
assigned a factor that represents its importance. As an example, a move
that is made with a highly delicate piece of equipment, or with corro-
sive acids, should be made as short as possibie, even {hough some moves
handling a mucﬁ:greater volume of materiai might be longer. The wisdom
of such a procedure.should be ob&ious,,although this does introduce a
subjective quantity into an otherwise entirgly objective approach. The
actual approach used in this article was to assume an.impdrtance factor
of 1,0 to represent no adjustment; and a scale upwards from this point
to represent increasing impoitance. The:factor so determined 1s then
used to multiply thé amount of material being moved, which has the
mathematical effect of Increasing. the weighting factor. |

Some work on this point is ﬁecessary to establish bounds on the

magnitude of this factor, but this is beyénd the scope of this thesis.

In order to appreciate the usefulness of a techmnigue such as this,

the reader is referred to Muther (16).



CHAPTER II1I
AN OPTIMUM SOLUTION TO THE FACILITIES LOCATION PROBLEM

The following assumptions are made in order to limit the practical
considerations of the facilities location problem to dimensions that can

conveniently be expressed mathematically.

Assumptions and Limitations

la . All distances between points afe measured in a straight
line. This actually is & very unrealistic situation, and one that even-
tually must be removed. However, this is beyond the scope of this study,

2s All facilities are symmetrical. This assumption is made so
that a point méy be located and considered to be the center of the facil-
ity. For the partly graphical soclution that will be preéented, this as-
sumption is not necessaiy,-but is necessary?atrthis;point for the mathe-
matical fermulation.

3. All infofmétion“pé}taining to fhe'amount of flow between
facilities is'known and deterministiec ih nature,

| 4e Waste, or scrap material, is not to be considered in the

solution. This restriction is not necessary, but is made for the sake
of simplicitye

5. The problem of location will be considered in two dimen-
sions only. The extension to three dimensions 1s obvious and is omitted

for simplicity.
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Incorporation of Points with

No Materigl Handling Contact

This section will indicate‘a method to be used to incorporate
into the solution facilities that have no material han&ling contact.with
other facilities. Such would be the case for all offiee ' spaces, tool
rotamé, rest rooms, and other such nonproductive facilities,

The actual process that can be used is to assign hdummy" flows
between these points, and simply consider them as real flows for the
purposes of the solution. A certain ambunt of‘subjectivity will neces-
arily enter‘at this point, but several methods are available to reduce
it as much as possible.- Sée Mather (18) for an example of such a
method,
ﬁefinifion of Imgortéﬁce Unitg

In order to clarify the conéept of dummy flows, a unit of measure-
ment is introduced that is referred to as an "importance™ unit. An im-
portance unit is a unit that measures the relative importance of .the de-
gree of closeness of two facilities. Such a unit has no absolute vélue,
but varies infinitely'from one situation to another. 1In order to give
it magnitude, ene importance unit will be defined as equal to the minimum
flow, in units of weight or volume, Bétween two facilities in the layout
under consideration. -

For éxample, if the flow from point one to point two is 100
pounds per hour, and no twe other points in the layout have less flow

per unit time, then one importance unit would equal 100 pounds per hour.
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If the flow between points three and four is 150 pounds per hour, then
it would be assigned 1.5 importance units.

The purpose of the introduction of importance units is twofolds
(1) it eliminates the necessity for dealing with large numbers in the
mathematical solution of the problem, and {2) it makes the incorporation
of points with no material handling contact more meaningful.
| Consider, for example, the following simple example. A layout
is proposed that containsrfive points with material handling contact,.

A tabulation is made as shown in Table l.

Table 1. Assignment of Importance Units

. flow , pounds importance
from to ' _ . per hour units
-Pl P, 300 3,00
P, P 250 2.50
Pg P, | 175 1,75
P, P, ' 100 . 1,00

In addition to these five points, there are two other points,

P and P&, that are to be located, and one point; P ‘that is al-

8 8’

ready fixed. These points have no material handling with each other,
or with any of the other points.
Some type of chart {a good example is that previously cited by

Muther (18) ) is then constructed im which the relative importance of
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the c¢loseness is determined in nonquantitative terms. Assume thaf point
P6 is a support %ptivity fo peint P, has no relationship to any
other point, and it.is considered very important to ha?e it as close as
péssible to Pg»

Here some subjectivity enters into the problem, but it cannot be
avoided. Suppose the decision is made that the importance of locating
Py close to‘ P, 1is roughly egual to the importance of having P; close

to on Ther 3.00 importance units would be agsigned to the relationship
of Py and P,. Since the location of P, with respect to any other
point is of neo importance, these relationéhips are assigned a value of
zero importance units. |

In a similar manner, importance values are éssigned to the rela-
tionship of point P% and the other points. Although point Pe_ is
fixed, 1its rélative importance to the other points can be determined and
assigned, and in this manner the location of the variable points will be
influenced by the location-and relative importance of PE,
Personnel Fiow Considerations |

In addition to the foregeing considerations, it is often neces-
sary to make allowances for the numbef of peopie that move between
facilities. Such cases cén beAvisualized as drinking fountains an&
rest rooms, where traffic will be considerable, if not strictly pro-
ductives, | |

In such cases, a method could be deveioped to equate the move-
ment of a person with the movement of a certain amount of material. In

this way, one person going to a drinking fountain could be said tc be
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equivalent to 50 pounds of material moving through .the same
distances |

This obens up an entire new area for research, but it will not
be pursued further inrthis study., Suffice it to.say fﬁat the problem
is a formidable one, as it must take into account variables such as the
"value™ (as manifested by the wage rate) of each employee that is con-
sidered.

Rather than assume any measure of eqguivalence, which would neces~
sarily be a Roor guesﬁ, this factor will not be included in the example
that followss In a real problem it must, of course, be included, and

the reader can see {conceptually, at least) how this may be done.

The Use of Relative Importance Factors

At this point it is appropriate to reexamine Table l» The flow
between facilities is given in units of weight ber unit time, but no
measure of their relative importance is given. It is at this point that
the methed of Rels and Andérsen becomes useful. Assume for illustrative
purposes that the flows between all.facilities except P3 and P4 are
of a simple, easy-to-handle, inexpensive, neninflammable, nontoxic mate-
rials, but that of the 175 pounds that flow between P, and P,, 75
pounds of it are a highly corrosive‘acida It would then be appropriate
to reduﬁe the disfance this material flowé in order to decrease the
probability of an accident occurring during framsit. Obviously, fhe
move is of greatei importance than the other moves., Since the importance
units are assigned proportionally to the amount of material being moved,

increasing this value of 75 pounds will increase its value in



importance units., In order to do this,

factor,

20

it is multiplied by some

No justification is giveh‘fof ‘the choice of this factor, as this

is beyond the scope of this study. Research should be done on this

point to establish the magnitude of this factor. One approach to the

problem that seems promising to this author is to use the expected loss

resulting from an aceident as some sort of index for calculating the

magnitude of this factor.

However, it is assumed that through some procedure a factor.is

arrived at for this particular move, and it has a value of laD. Then

the importance units assoclated with the move from Py

be calculated as shown in Table 2,

- Table 2, Calculation of Importance Units

to

4 would

flow pounds :imp0rtance adjusted importance
from| to per hour factor pounds/hour units
Py Py 100 1,00 100.0
73 1.50 112.5
212.5 2,125

Combination of Relative Importance Factor and Importance Units Copcepts

The two preceding concepts can now be consolidated. From an

operations process chart, or its'equivalent, the number and types of
facilities necessary for an operation are found, In addition, the amounts

and types of materials moving between successive operations are tabulated.
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Assume that such a chart has been made, the following information
has been obtained from it, and it is now desired to design a lavout for
this process.

It is found that from Pl, which is already fixed, 100 pounds of
material flow to point P,, which.is'unkndwnn This move is assigned a
relative importance factor of 3.5 From Pg, which is fixed, 125
pounds flow to Pao A rglative importancé factor of 1.0 is assigred to
three-fifths of the flow, and a relative imﬁortance factor of 1.5 ié
assigned to the other two-fifths° From P,, 100 pounds of material

flow to P which is fixed, and 100 pounds go to Py, which is a

43
variable cénter, Both are assighéd a relatiVeIimportance factor of 1.0,
From Psg .lOO pounds of material move to Py and a relative importance
factor of 1.0 is assigned to this move; and 100 b0unds of material cbme
to P5 from P;, this with a relative importance facfor of 2.0. This
is dombined with the 100 pounds that came from P2 and is moved to Pe.
A relative importance factor of'lgO is assigned to this last move.

A point, P has no material handling contact with any other

7’

points, and isunknow:. It is decided that P, must be close to P,

and P,. Its relationship to P, is about as important as the rela-
tionship between P2 and P,, and its relationship to P4 is a little
more important than the relationship between P, and P,, but less
than that between Py, and Pg. This is tabulated as shown in Table 3,
It will be notedifrdm this table that the combihation of P7 and

Py, as well as some others, is not included. While it could be included

as a possible combination, the flow is zero, and therefore the importance
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Table 3. Assignment of Importance Units

flow . pounds | imbbrtance adjusted pounds importancJ
from | to per hour . factor per- hour units
P, | P, 100 - 3.5 350 3.5
Pg Pg 75 Lo 75 |
50 1.5 75

150 1.5
Po | Py 10 | 1.0 ' 100 Lo
Py | Ps . '100 | 1.0 | 100 1.0
Pg P6 300 1.0 SOO 3.0
Psl P 100, 1.0, | 100 1.0
P, | Pg 100 2.0 | : 200 2,0
P4 .Pv | 2.0
Fe _P7 - ‘ | 1.5

units assigned will be zero, Likewise, the relationship of P, and all
points exéep{ P6 ‘andl P4 is considered unimportant and was aésigned
the value zero, therefore resulting in the assignment of zero i@portance
units.

Development of a Model

Consider a rectangular area, of dimensions b con-
onsi g ’ max Y Ynax

taining fixed facilities A, B, C, «asy ®» The centers of these fixed

facilities are denoted by the letters. Superimpose this area on a



23

coordinate axis, with the origin at the lower left corner; as in Fig-
ure 2, The coordiﬁates of the fixed pointé Ay B, Gy sus @ are

knowna

e -

0
*max

Figure 2. General Area for Consideration

Now suppose n new facilities must be assigned to locations
within this area. Each new facility will be assumed to have materials
handling contact with each of the fixed centers and with each of the
other (n - 1) new facilities.

Each of these n new facilities will be assigned at points Pi
(i =1, 2, 3, se=, n), each of which has the coordinates X;5 Y3+ The
distance from the il facility to the 1 + 10 facility will be the
distance from Pi to P;4i+ Represented algebraically, this distance
is

di,i—l-l = I:(3'::]."1'1 ~ xi)z + (Yi+1 - yi)“?]% a (l)

The distance from facility i to any other facility J is the distance

from Pi to Pj and is represented as

dj 5= Llxy - %)% + (y; - yi)'?]% . (2)
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This formulation allows the distance between ;ny two fadilities, in any
order, to be expressed solely as a function of 1ts coordinates. Intui—
tively, the optimum solution is to make all of these distances as short
as possible. HoWevér, these facilities obviously cannot occupy the same
space at the same time, nor for practical reasons, can they even approach
thiss Therefore, constraints must be put on the distances, in_order to
provide a lower limit for the value that any di,j may assume. This
distance represents the area the facility itself will occupy, space for

o

the operator, a share of aisle space, a place for stock containers, and

so forth. This constraint is written as

d. . > K, . 3
1,7 % Tiyi . , : ()

This, with two other restrictions, makes up a complete set of constraints
for the problem, These are simply that the facilities must be located

within the original area, and are expressed as

0 = *3 < xmax ‘ (4)

0 £ v. £ . (5)

1= Ymax

This confines the solution to nonnégative values of the variables within
the.predetermined area of solution.

In order to formulate an objective function, consider the follow-
ings The total distance (dt) that material must travel through the
system is equal to the sum of its component distances. Expressed mathe-

matically, this is’
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o= ) 9y - (o)
1,]=1

The amount of material, in units of weight or volume, that flows between
any two points Pi and Pj ig represented by Fi i Therefore the
‘ _ s
product f, . d, . represents the flow between points P, and: P, in
1] 1s3 ' 1 J
units of amount-distance (i.e., foot-pounds). For the complete system,
the symbol that represents the total flow from Pl._to Pn will be 2Z,
which i1s equal to the sum of the flows between each pair of Pgs and
is expressed as .
n

Z, = E: F. .d, . = minimum " {(7)

. 1,0 1,1 ’ :

i,j=1

Rewriting this equation and the three equations

.. o2 Koo :

1,3 — KlsJ ‘3)

0 < x, £ x (4)
i max

0 £ v; £ Yy, (5)

in terms of the variables x and vy yields the following set of equa-

tions, which make up the general statement of the problem;

*The subscript en the Z indicates the power to which each sep-
arate factor of the equation is raised, in this case, the first power.
This corresponds tq McHose's notation
z =) viol.

m . i71
i=1
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Minimize
n
. ) 5 ) -
| Z: Fi,j[(xj xi) + (yj yi) ] (8)
i,3=1 .
subject to .
- 2 - 2
LGy - %)% + (yy - v)2TF 2 K, | (9)
0 < Xy < ‘xmax (10)
0 < vy £ Ypax ® (12)

A few comments on this system of equations are now in order.

As McHose points out, these equations do not present an explicit solu-
tion for the variables x and vy. Although the distances are linear,
~the distance expressed as a function of the variables x and y 1is
neither a linear nor a quadratic function, and the methods of linear
and quadratic programming cannot cope with this problem,

Lagrange's method of undetermined multiplieré may be used to
solve this system, but unfortunately the problem rapidly becomes so
complex as to make thils procedure totally impractical.

The gradient method as presented by Hansel; (17) appears to
offer a solution to this problem, but because of the implicit nature
of the function, fails to do so.

The general categery into which this problem falls is known in

mathematical literature as maximization-minimization theory, and

indeed there is no general method of golution known at this time.
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It is therefore necessary to approach the problem by a rather
indirect method, However, this proccedure is simpler than any other type
of approach and can be shown to give results very close to the true op-

timum.

AIllustration of a Method of Solution

A hypothetical problem will now be formulated in order to show
the difficulties encountered in the Lagrangian solutioh, and to illus-
trate an alternative method of solution.- The data given in Table 3
will be used, It is assumed that an area 100 by 120 feet is available
for location of the facilities.' Points P,, P, P,, and P, will

be assumed fixed as shown in Figure 3,

10 S S SRR

. i

1

E‘, .Pe i

3 (100,90) i

{30,70) g

[}

o '

o . '

= ]

Py ' P, I
(10,10) (70,40) ' x

120
Figure 3. Layout for a
Hypothetical Problem
Since these pointé actually rebresent centers of areas, it is
necessary to rep;ésent the areas surrounding these peints that are

occupied by the facility itself., It is assumed in order to simplify
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the mathematical formulation that these areas are circles, ‘The areas
occupied by each facility are given in Table 4, in terms of the radius
of the circle that represents the area occupied by the facility.

Table 4. .Areas Occupled by Facllities, Expressed
as the Radii of Circles

Facilit& . Radius (feet)
Py 2
P2 3
‘Pa 3
P, 2
P, 4
Pe 2
Pq 6

Therefore, the closest that any point can come to another point
will be theg sum of the radii of their:corresponding circles, This al-
lows the development of a set of constraints for this problem. These

are arrived at as follows:

d, ., > radius P, + radius P, ., (12)
1, ™ 1 3

Since Py, Pg P and PG' are fixed, it is necessary to

4°?

limit the distance between each of these points and each of the variable

points to a minimum as in Equation (12). It is also necessary to limit



the distance between any two of the three

expressed as followss

and
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- Since each"Pi may be expressed in terms of its coordinates,
the distance can be written as shown in Equation (9).
The formulation of the objective functien is as follows: Equa-

tion (7) is used as the objective function and is

LA F ‘E: Fi,5 94,5 | (7)
i,j=1 '
Since distance may be measured between any two points, the number of

d, .'s is
1,]

which ylelds

21(7 - 2)1

or 21 terms in Equation (7). However, each term that has a weighting
factor of zero will drop out, and since flows between fixed centers

need nof be considered, this leaves only the distances between the vari-
able centers and the fixed centers, and between variable centers. These
are found from Table 3, This allows the expansion of Equation (7) as

followss:

Z, = F, ,dy , +F

2 a,z 9g,2% F 5 rd + F d + F d (13)

2,5 5,6 °5,8 72,1 97,1

tFypdynt Fy5dys Fo g s,y tFy gy yo
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Taking the values of Fi j from Table 3, writing each di 3 in terms
L) 2

of xi, yi, and substituting each known value of xi, yi results in

the following equationt

z, = 3.5[(x, - 10)% + ('y; - -';0)215 + 1.8l(x, - 30) + (y, - 70)21% (14)

+1l(xp - 70)% + (y5 - 400278 + 1 [ (5 - x5)2 + (yg - y5)21%

+10(x, - 30)2 + (yg - 700278 + 2 [ (x, - 70)2 + (y, - 40)27¢

70)2 + (y, - 40)2]’3

+ 3l(x, - 100)2 + (v, 90)21% + 2 [ (x,
+ 1.50(x, - 100)® + (y, - 90)2]%,

which must be minimized subject to:

[(x, -10)% + (y, - 10)2]% 25 ' (15)
[(x, - 10}2 + (y, - 1028 > 6 (16)
[(x, - 1002+ (y_ - 1027 > 8 (17)
E'(xz - 30)% 4 (y, - 102 > 6 (18) -
[(x, - 3002 + (y, - -70)2]%' > 7 (19)
[(x, - 30)% + (y, - 70)2TF | > 9 (20)
[(x, - 70)% + (y, - 40)2TF  2p5 (21)
[(xs - T0)% + (ys - 42T > 6 (22)



[(x, - 70)% +
[(xz--loo)2 +
[(xg - 100)2 +
[(x, - 100)2 +
- x)2 4
Llx, - x,)? s

E(xg - X,)% +

This system of equations has six unknowns, X,

and Yoe
In order to set this up for
one proceeds as follows: Takeé the

respect to each of the variables.

(y, - 40)21F
(v, - 90)21*
(v, - 90)27

(y, - 90)278
(y, - ys)zlé
(Ya = lY';)z]é-

(Y5'— Yq)zjé

2’
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> 8 (23)'
> 5 (24)
> 6 \ (25)
> 8 o (26)
> 7 (27)
2 9 (28)
210, (29)

Yz, x53 Y5’ xl? 2

a Lagrangian multiplier solution,

partial derivatives of Z, with

This yields

FﬂxiJYi)

F(KiﬁYi)

F(xi’yi)

F(xiﬁ Yi)

(30)

(31)

(32)

(33)
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L. F( ) | (34)
Bx, o TVEYy 34

Representing Equations 135 through 29 by G,, G;, Ggy esas Gls" the
partial derivatives are taken of each equation with respect to each of

its variables. This yields

3G,

o = Flxpyy) (36)
=2

3G,

. F(x;5v;) (37)
2 . :

8G,

sl F(x;5y,) (38)
5

aG1.5

ayv;v = F(xi;Yi) s (71)

Each partial derivative 36 through 71 is multiplied by ki with the
subscript of A corresponding te the subscript of G. Each partial
derivative of Gi with respedét to Xy or Y. is then added to the

corresponding partial of Zl. and equated to zero., In other words,
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8Z 3G, 86, _ 8G,,
= tA LR vt LA B Y = 0 (72)
Gxa 1 E')x2 4 axz 14 ax2
azl aGB aGS aGlS
Bx, P reBxg Treax, T T sy - O (74)
8z 3G, aG | a6, _ -

1 a3 6 . 1S
—_— 4+ ) + }\ + soe 4 = O ° T7
By, *s By, T Me By, Ms 3y, (77)

The above set of six equations with 21 unknowns is then solved
simultanequﬂy‘wﬁh'thé 15_equations.(l5 through 29)‘ to produce an opti-

mum solution for x Yor Xgr Vg and Yos Xpe ‘Unfortunately, be-

2’
cause of the implicit nature of these equations, a direct solution is
not feasible. Therefore, it is necessary to find some way in which the

task presented above can be circumnavigated. Again consider Equation

(7)

15

z .=t F. . d. . (7)

The most difficult part of the solution to this equation occurs
because of the square-root expression of di 30 The differentiation
»

of this one term yields a radical in the denominator that 1s very dif-

ficult te handle. For example, Equation (30) expanded 1is
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azl XB - lO .. - 205){2 - 75
% T T ot o T
2 [lxy - 10)® + (y, - 10)2]2  [x, - 30)2 + (y, - 70)3]°%
“2x2 - 2Xg
o+

(g - xg)% + (y, - Ya)zjé

for this problem.
In order to overcome this difficulty, McHose suggests changing

Equation (7) to

n _ .

z. = z FR.dR,.., 78

2 . 1,7 1] ( )
i:jzjg

Indeed, this does simplify the differentiation process and the subse-
quent coperations drastically. Unfortunately, the sclution of the Z,
function is not the solution of the Z1 function. There exists, how-
ever, a method by which this approximate solution may be suqcessively
improved until it approaches the exact solution. This methoﬁ is called
the gradient method, and an outline of it can be found in Hansell (17).

Briefly, thig¢ method consists of finding an approximate solution
and then by an iteration procedure finding better solutions until some
termination criterion is satisfied. Although Hansell works with a con-
strained problem, the method works equally well with an unconstrained
problem., |

It caﬁ be stated as follews: given a function . Z = f(xi, yi),
find the values of Xs and Yy that minimizé Z. Aésume that an

initial approximation is known to the values of X, and Vs and use
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. n n - . - . s '
the notation Xis Yy to denote successive approximations to Xgs Yso

In this case the superscripts denote the successive number of each

approximation, the first approkimation»being denoted by x;, y; .

A theorem then states that a better solution may be determined by the

equations
aF(XsY) n
N (79
‘ i
and
n
‘1 _ n : Efffilfiz
yi - yl - u ax. 3 (80)
1

the supersc¢ript on the partial derivatives denoting that it is evaluated
at that point. The partial derivatives, when evaluated, give the direc-
tion the values of X5 aﬁd Yy must move in order to approach the mini-
mum of 21’ while the factor u gives the distance in this direction
that it will! move. The determination of u 1is npt a simple process, as
too small a value of u will make the‘convergence too slow, while too
large a value of u  makes the process miss the optimum value altogether.
Numerous ways are available for calculation of u, none of which are
easy; one method is presented by Crockett and Chernoff (19). |

However, in this particular presentation, a rather pragmatic
approach can*be taken to this problem; the determination of u will
be covered in detail during the solution of the problem. .

Equation (14) is now changed to the form of Equation (78) by

squaring each term in the equation, and it becomes
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z, = 12.25[(x, - 10)% + (y, - 10)3] + 2.25[(x, - 30)% + (y5-70)%]
(81)
2 2 2 2

+ 10(x, - 70)% + (y, - 40)%1 + 10(x, - x5)® + (v, - y)?]

+ 1[(x5 - 30)° + (yq - 70)%] + 4[(x5 - 70)% + (y, - 40)2]

+ 9L(x, -100)% + (yg - 90)%] + 4l(x, - 70)% + (y, - 40)%]

+ 2.25[(x7'- 100)% + (y_ - 90)%] .
Taking the partial derivatives with respect to each of the variables
and equating to zerpo ylelds
8z, _
—= = 24.5x, - 245 + 4.5x, - 135 + 2x, - 140 + 2x, - 25 = O (82)
6x2
8z, - .
5;; = 24,5y, - 245 + 4.3y, - 315+ 2y, - 80 ¥ 2y, - 2y = O - (83)
8z, .
e 2% - 2x, + 2xg - 60 + Bx_ - 560 + 18x - 1800 = O (84)
8z,
5;; = 2yg- 2y, + 2y - 140 +8y - 320+ 18y - 1620 = O (85)
622 .
— — - + R - -
v 8x, - 560 + 4.5x, - 450 0 (86)
622 : ' '
—= = By -320+ 4.5y, - 405 = 0. : 87
8y Yo Y7 .( )

The solution of these equations yields
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20.75 Xz = 82.50 x4

i - —
xt = L = 81.00
ys = 23.70 v = 71.00 ys = 58.00

and these points are plotted in Figure 4,

Assuming that these points are a good approxihaticn to the mini-
mum, the iterative procedure described above will be used to converge
to the true optimum.

Expanding Equations 30 through 36 and incorporating them in Equa-

tions 79 and 80 yields the following set of equations:

r 3.5)(2 - 35 1.5}{2_ - 45
A | T+ Py (88)
[(x, -10)2+ (y, -10)21%  [{x, - 30)%+ (y, - 70)*]
xg - 70 “ Xa - Xs .
+ <+ -
[(x; - 7002+ (- 40)2T2  [(x, - x )%+ (yz-Ys)alzJ
nta n 3.5y, - 35 1.5y, - 109
Y, = Y, —u[ ' . T + T (89)
[(x, ~10)2+ (y, - 10)2]Z  [(x, - 30)2 + (y, - 70)?]
+ yz - 40 + | Y2 - Y5 ]
R
(xg - 7002+ (g 4002T% [l = %52+ (y - y5) T2
- 30
x — 5 2 5 (90)

; X, - X b
g 1 xg-uﬁ o + - o
- < - i - _ 2
(x5 = %)%+ (y, - y4)%] [(xg-30)% +(y - 70)"]

2xg - 140 3xg - 300
+
%}

. : +
[(x5- 70)2 + (yq - 40)2]% [(x5-"100)2 + (y5 - 90)%]
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n+.1 _ n . Y5 - y2 Y5 - 70 ' (91)
Y5 - y5-u %_ + é_
[{xg - x5)2+(ys -ys)®]%  [(x5-30)2 +(yg-70)%]
2yg - 80 - 3yg - 270
' 37 | %]
[(x5-70)%+ (y5-40)21%  [{x5-100)%+ (y5-90)%]
“n+1 n 2%, - 140 1.9x, - 150
X, = x?-u[[ % + — — %} (92)
(x,-70)% +(y, - 40)%] [(x, -100)% + (y, - 90)%]
n+t on 2y, - 80 1.5y, - 135
vy =y7w& 1+ : 4 (53)
(x,-70)2+(y,- 40)2T%  [(x, -100)%+ (y, -90)?]
Inspection of Equations B8 through 93 shows that the variables
Xq and Y, are independent of the other variables, and the location

of Xos Vg5 Xg» and Ys will not influence the location of P7 in
any way. Applying the follpwing iteration procedure to P7 will find
the optimum location for it, but the process is long and tedious.

It will be noted that P7 has contact with two points only,
ahd;therefdre it can be shown that it will be located on the line join-
, Ing the two points, as‘close as possible to the point having the greater
associated weight., This is:représented-by thelinterseétion of the line
Jjoining the two points-énd fhe:coﬁstraiht boundary of the point with the
larger weight.

This location may be found by solving

[(x, = 70)% + (y, - 40)2]F = &
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simultanecusly with

"3y = 5x - 230

which gives the results: x, = 74,00 and vy, = 46.67. A diagrammatical
view of this operation is shown in Figure 5.

It is now possible to eliminate point P, from further considera-
tion and work only with the remaining poinfs P, and P_.

Sﬁbstituting the values previously calculated for the Z, func-

tion in Equations 88 through 91 results in:

2 37625 - 13,87
= 20.75 - u 2L — :
*2 © u[(ll5.56 + 187.69)F  (85.56 + 2143.69)%
- 61:75 1]
(3813.06 + 2237,29)%
_ ‘37,63 =18.87 49425  61.75
= D75 - Y741 T T47.22 T B1.88 T 77.79
= 20,75 - u[2,1614 - 0.2937 - 0.9493 - 0.7938]
= 20.75 - u(0,1246)
2 — 23 7 - u 47!95 - 699‘45 '_ 1603 - 47.3
Y T % 17.41 ~ 47,22 ~-51.88 ~ 77.79

= 23,7 - ul2.754 - 1.4708 - 0,3142 - 0,608]

= 23,7 - u(o.361)
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[(x,- 70)%+ (y, _40)3]% - g



K2 = 82,5 - y0.7938 + —2=3 25, - 52.5 ]

° (2756.25+1)  (156.25+961) (306,25 +361)

. 52.5 . 25 52,5
= 82,5 - 40,7938 + 2222 + =E2- - 25.85.

= 82,5 - u[0.7938 + 1 + 0.7481 - 2.0333]

= 82,5 - u(0.5086) .

P | 62 _57

s = 71 - ul0.608 + g + 5 - 5555
= 71 - u[0.608 + 0,019 + 1.8552 - 2.2076]
= 71 - u(0.2746) .

The questicn now arises as to how to determine a magnitude for u.
The same value of u must be uéed in all calculations for any particular
set of values of X:3Y¥ss but may be changed between iterations. Return- .
ing to the original concept of the problem, it can be seen that for:val—
ues of u less than 2.0, the chgnge in the variables will he less
than one foots Any change this small, in a layout measuring 120 feet
by‘lOO feet, can be seen to be verf smalls Indeed, actual measuring
difficulties may arise. If u 1is taken to be some védlue up tb lO,
then the resulting changes in ﬁ will be measured in feet, with a maxi-
mum of = five feet resulting for xge For values of u greater than 10,
the resulting change will be even greater. In order to avoid the possi-
bility of 6verstepping the optimum value, a small value should be selected,

A good trial value for u in this case appears to be two.
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I+ must now be decided in which direction the variables s and
vy must move in order to optimize the solution, as this is determined

by the s¢ign of wu. The original equation,
n .
z, = Z: F. . d. . | (7)
J

can now be evaluated at x;, y; toc determine a value of Zi; values

for ‘xf; y? can also be used to calculate a value for Zﬁo Two trial
values of u are used: +2 and -2. The one that causes 21 to de-

crease will be the one to be used in the succeeding iterations. Thera=-

fore Equation {7} is evaluated at x;, y; as follows:

zi = 3,5{(17.41) + 1.5(47.22) + 1(51.88) + 1(77.79)

+ 1(52.5) + 2(33.42) + 3(25.82)
= 60,94+ 70,83+ 51,88 77.79 452,50 + 66,84+ 77 .46
= 458,24 ,

The new values for the-.variables X5 and y; are next calculated and
tabulated as follows:

Table 5., Tabulation of Triai Values of the Variable

Xy i  vi
v v o= 42 Uz =2
XB 20.75 20,5008 20,9992
yg - 23,70 22.9780 24,4220
X 82,50 | 81,4828 83,5172
y5 71,00 70,4508 71,5492
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Using the values in Table 5, Z1 is evaluated again for the varlable
determined by u'=+2 and u = -2. The dctual calculations are found

in the Appendik, the results of which are that fer u = +2, the corre-

2

sponding value of Z?* is 457,36, while for wu = -2, the value of 21

is 459,37. ‘Since using the values obtained by sétting u = +2 causes
Z1 to decrease, these values are used as tHe secend approximation to
the solution. _Thése are plotted in Figure 4.

The iteration'proceQUre is then continued until some termination
criterion is satisfied.

It is convenient at this time to reexamine the original statement
of the problem. The criterion used to judge the effectiveness of a layout
is that of cost of handling_material; the use of the criterion of weight-
or volume-distance per unit time implies a direct relationship to cost, ad

while such a relationship can be determined in the case of "real" layouts

by empirical means, in the case of this example, a simple relationship

must be assumed.

Suppose that the cost of moving cne pound of material through a

- distance of one f60£ is $0.01. Assume thét COmpéteht authority has speci-
fied that the material handlingréost must be as low as possible, and that
it must be accurate to less than two dollars per year. In other words,
the layout must be repeatedly improved until further improvements cannot
reduce the total material handling cost more than twe dellars per year.

This is admittedly an absurd requirement, but it serves to show the ac-

curacy obtainable with this method.

o *The superscript on the Z indicates that it is evaluated at
X9 ¥/ » ‘
i i



46

Assume that the unit time associated with Z1 is one houra
Now if the change in .Z1 is 0,09 foot-pounds per hour, then AZ,

for one day (8 hours) is

0.09 foot-pounds/hour x 8 hours/day = 0,72 foot-pounds/day
and assuming 300 working days per year, AZl for one year is

0.72 foot-pounds/day x 300‘days/year = 216 foot-pounds/year;

Since the cost of moving one pound one foot is $0.01, then a AZ1 of

216 foot-pounds pér year représents_a change in total cost 6f_
216 foot-pounds/year x $0,0l/foot-pound "= $2.16/year

which exceeds the limit of $2.00 per year;

~Using the same procedure with ; AZ, of 0,084 pounds per hour
produces a change in the total.yearly cost of $1.992, which is very
Iclose to the specificatlion which must be met.

It may then be concluded that any change in the layout that
produces atreduction in Z1 iess than 0,084 ié unnecessary, and no
further improvements are needed.

The assignment of ;mporténce.units has previéusly reduced the
value of Z, by a factor of 107%, aﬁd‘if is therefore necessary to
réduce the value for; AZl accordingly. This éivés the fina; termina—

tion criterion, and it is

Az = 0.084 x 107% = 0,00084 .
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The econtinuation of the iteration procedure outlined above gives
a final seélution in l5,stepém The results for each iteration are tabu-

lated in Table 6,

Table 6. Results of Iteration Procedure

nouox v, % Vs z, Az, T.C.
1 - 20,75 23,70 82,50  71.00  458.24 - 0.00084
2 2 20.50 22,98 81,48  70.45 457,36  -0.88
3 2 20,09 22,28  80.62  69.82 456,50  -0.86
4 2 19.716 21.715 79.867 69,18 455,73  -0,77
5 5 18,723 20,379 78.172 67.48 454,13  -1.60
6 5 17.708 19.177 76.851 65,827 452,58  -1.55
7 5 164619 17.548 75.608 64,125 451,606 -0,974
8 5 15,468 16,831 74,750 62.840 480,822 -Q,784
9 5 15,061 15,424 74,040 61,760 450,558 -0.264
10 5  13.578 14,977 73.540 60.818 449.995 -0.563
11 5 14,050 13.018 73,075 60.067 449.625 -0.370
12 5 72,810 59.341  449.486 -0.139
13 5 72.547 59,032 449,367 -0.119
14 5 72,394 58,500 449,362  -0.005  0,00084
15 5 72.225 58,096 449.3615 ~-0,0005 0.00084

Inspection of Table 6 shows that the iﬁitial choice of u=+42 is
too sméll, and while this will eventually cause conVergence, it is in-
cregsed to +5 in the fifth iteration in order to-speed the convergeﬁce.
At the end of the elevenfh iteration the distance from point Pa to
point P1 is found to be 5.05 feet, which verf closely approaches the

limit of five feet previously set, Therefore, it is held constant at
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'this point and the procedure is continued for point Ps. At the end of
the fifteenth iteration, the value of 4Z, 1is 0.0005, which is less
than the termination criterion of ©.,00084, and the process is stopped.

The final values of the variables are as shown in Table 7.

Table 7. Final Solutien

Variable  Value
x, . 14,059
Yo _ ‘ 13.018
Xg 72,225
ys o ' 58.096
Xo T 74,000
Y, 46,670

The value of Z1 at these points is 449,3615, and represents
a minimum fer this problem.

A diagrammatical view of the iteration process is shown in Fig-
ure 6, It can be seen how each point moves toward its optimum location;
point P, stopping on the boundary of peint P,, and point _Pg being
terminated by convérgence.-

Figure 7 shows the final layout, with the weighted flows indicated

by lines connecting the points.
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CHAPTER IV
SUMMARY AND CONCLUSIONS

The problem defiﬁed in fhis study is to develop a method to obtain
a mathematically optimum sclution to the problem of the location of facil~
ities within a given area.
' Sﬁmmarx
It has been shown that this problem may be formulated as a non;
linear mathematical program of the form
minimize
n
z, = - Z 1-‘i,j|:(xi - x)0% + (yg --yj)"‘“-':l%r
i,F=1
subject to
[(x, - xj)2'+ (y, - yj)zlé 2 Ki 3

0 < x:’L"S xmax

0 S ¥; £ Vpay

and that at the present state of the art no satisfactory method of solu-

tion for this model exists,

In addition, a method has been developed to obtain values for

the weighting factor Fi .- iIn order to incorporate material handling
k]

flow and the relative importance of that flow. Also, a semi-objective

method is established.for determining Fi 3 when no material handlihg
3

flow existss.



52

:For an actual selution to be problem, the equation

- .
= Tl - 2 _ 2
Z, Y Fisllxg - %2 % (y; - v)7]
i,j=1
is used to determine a first approximation to the unconstrained problem.

An iteration technique is then used to cbtain successive approximations

by the équations

. 1n
n+i n azi
Xi = Xi - U a—'
i
o n
mi q 9Z,
Yi - Yi u ayi .

It is not necessary to coritinue this iteration process to its
conclusion in all cases. When.an unknown point has relationships with
enly two other points, for insténce, it can be shown that it will be on
the line COnnécting the points and will be as close as the constraints
permit to the peint that has the larger assopiated weighting factor.

By successively plotting each iteration on a layout of the area
under censlideration, it can easily be seen when any point violates a
constraint, When this occurs, the intersection of the constraint bound-
ary with the line connecting the last point outside the constraint area
with the first point inside the area can be found and used as the loca-
tion of that point, which is held fixed in further iterations. The
justification for this is that since the gradient is the direction that

causes the most rapid decrease in the objective, each point must move
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along the gradient until it is halted either by a boundary or by con-
vergence. On the preceding example,'oné pqint was located so close to
the'constraint boundary that this procedure was not followed. It was
simply allowed to remain where it fell.

The actual monetary cost represented by the solution to the
example, using the relationship of $O.Ql per foot-pound, is $107,846,76O
per Year“ This is, of course, totally unrealistic, except perhaps for
the United States Post Offices, However, since it is known that this is
" within $2.00 per year of the lowest possible cost, it represents a
maximum error of only 0.,0000019 per cent. This effectively demonstrates

the extreme accuracy that is obtainable with this method.

Conclusions

Due to the lack of an explicit sclution for the model presented
here, an iteration prbceduré has been presented. While:in theory it is
not diffiéult to use, In practice it is rather_tedious. The iteration
process becomes sensitive to rounding-off-errors near the optimum solu-
tion, making close approximation very difficult. However, due to the
nature of the variables being considered, the process can be terminated
before this haﬁpens.

As the number of variables and fixed points increases, the length
of the resulting equations incfeases rapidly, making each iteration
" longer. However, as is pointed out in McHose, as the number of points
increases, and as they become more symmetrical, the closer fhe' Z,

approximation is to the true optimum. This has the effect of increasing
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the length of each individual iteratioh, but of decreasing the number
of iterations necessary.
In the example in the preceding section, an interesting situation

arises by allowing an éxchange of material between points P_ and Ps'

7
In this case the iteration must be performed on equations containing 10
‘terms rather than 7, but convergence occurs on the first iteration.
This obviously would eliminate a great deal of work, but unfortunately.
would eliminate the example also, and for this reason this relationship
was omitted in order to give a clear picture of the entire proceduré.
One limitation not previously discussed occurslwhen one éonsiders
the effect bf placing a facility directly between two others. Naturally,
this obstructs flow and then the mathematically shortest path c¢an no
longer be used. This matter is deserving of further attention, but it
is not attemptéd in this thesis;
It is not meant that this method be used immediately to design
a reai layouts; rafher, this is but one more step in approaghiﬁg a
feasible all-inclusive method of quantifying the area of facilities

planning. However, it is hoped that this method could find some appli-

cation on a small scale.
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I. Splutiens to Equations 82 Through 87

12.5%,: = 1010

1010

2.5 — 81

(V4]
[y
>
il

520 + 2x5

520 + 2%,
2 - 33

®
Y

2420 + 2x

30x5 a

i}

30x. = 2420 + 2(

. 920 + 2xg ) :

3 -

30x

n

5 = 2420+—.-—+_.

30x5 = 2420 + 31.515 + 0.1212x¢

29.8788x, = 2451.515

x5 = 8?.5

" 520 + 2(82.5)
2 33

k3
il

X, = 20.75

12,5y, = 725
725
Y7 5 12,5
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640 + 2y,
Yo T 33

30y

)

2080 + 2y,

2080 + 2(Ef9§%—ng)

30y5

' 1280 -fzg _
2080 + <52% + 43 |

1

3Oy5

2116

29.88 y,

20,75 X, = 82,5 x, = 81

b
I

Yy, = 23.7 ys = 71 Y, = .58

I11. Evaluation of Z; to Determine u

Case I: u - +2

22 = 3.5(110.25 + 168.43)%'+1l.5(90.23-+221l.07)%'+ 1(24%0.17 + 289,75)Jﬁ
oy 3 3
+ 1{2718.8 + 2253,67)<+ 1(2650.48 + .20)% + 2(131.85 + 927.25)

+ 3(342.89 + 382.17)%

3.5{(16.70) + 1.5(47.95) + 1(52.34) + 1(77.28) + 1(51.47)

+ 2(32.55) + 3(26.93)



58.45 + 71.93 + 52,34 + 77,28 + 51,47 + 65.1 + 80.79

457.36

Case IT: u = -2

™
W
1l

3.5(121+ 208)%-+ 1.5(81+-2077.35)% + 1(2401.08 + 242.67)%
+ 1(3908.5 + 2220.97)5¥+1(2864,o9 + 2.4)él+2(182.71+-995.35f%

+ 3(271.68 + 340.,4:3)‘5

1l

3,5(18.5) + 1;5(46.46) + 1(51.42) + 1(78.3) + 1(53.52)
+ 2(34.33) + 3(24,75)

63.53 + 69.69 + 5l.42 + 78.3 + 53.52 + 68.66 + 74.25

1

459.37

111, Calculations for Remainder of Iteration Procedure

= w0 - IR - LB - 5 S
= 20,50 - 2[2.,234 - 0.2972 - 0.9456 - 0;78913‘
= 20.50 - 2[6.2021] = 20,09

ve = 2298 - A - T8 “Shas roe
= 22,98 - 2[2,7617 - 1.4709 - 0.3251 - 0,6143]
= 02,98 - 2[@3514] = 22,2772
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2[0.7891 + 51.48 + 22,96 55,56

x2 = B8l.48 - 51.48 ' 32,55 ~ 26.93
= 81,48 - 2[0.7891 + 1 + 0.7054 - 2.0631]
= B81.48 - 2[0.4314] = 80.6172
5 = 70w - o143 + 5 + 5 - B3
= 70.45 - 2[0.6143 +lo.0027 + 1.871 - 2.1779]
= 70.45 - 2(0.3161) = 69.8178

3.5(101.81 + 150.8)%-!; 1.5(98.21 + 2277.2)% + 1(2491.01 + 314)%
+ 1(3663.88.+ 2260.05)%'+ 1{50.62) + 2(112.78 + 889.23)%

+ 3(375.58 + 407.23)é

3.5(15.9)+ 1.5(48.75) + 1(52.95) + 1(76.97).+ 1{50.62)

+ 2(31.69) + 3(27.95)

55.64 + 73.12 + 52.94 + 76.96 + 50,62 + 63,37 + 83.85

456,50

35,315 _ 14.865 _ 49,91 _ 60.53
15.9 ~ 48.75 ~ 52.95  76.97

20.09 -

1

N

20.09 - 2[2.22106 - 0,30492 - 0.94258 - 0,78641]

20,09 - 2[0.18715] = 19.7157



y: = 22.28
= 22,28
= 22,28
x¥ = 80.62
= B0.62
= B0.62
yg = 69.82
= 69.82

= 69.82

42,98  71.58 _ 17.72  47.54°
15.9  48.75 ~ 52.45 ~ 76,94

2[2.,70314 - 1.46830 - 0.33465 - 0.61764]

2[0.28255] = 21,7149

50.62 , 21.24 _ 58, 14]
2[0 78641 + 5os t 31,60 T 27.95

2[0.78641 + 1 + 0.67024 - 2.08014]

2[0.37651] = 79.86698

. +18 59,64 60.54
2[0’61764 " 50.62 T 31.69  27.95

2{0.61764 - .00355 + 1.88198 - 2.16601]

2[0.33] = 69.16

60

3.5(94.39+ 137.24)% + 1.5(105.774—2328.16)%’+ l(2528.5l-f334.34)%

1 1
+ 1(3618.18 + 2252.94)% + 1(2486.72 + 0.67)% + 2(97.36 + 851,47)%2

+ 3(405,34 + 433.47)%

3.5(15.21) + 1.5(49.35} + 1(53.5) + 1(76.65) + 1(49.87)

+ 2(30.8) + 3(28.95

53,235 + 74.025 + 53.500 + 76.650 + 49.870 + 61.600 + 86.85

455.73
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_[34,005 15.4265 50,28 60,151
5 - - - - .
X, 19.7157 = 975,21 %38 " 555 766
= 19.7157 - 5[2.2357 - 0.31259 - 0,93981 - 0.78474]
= 19,7157 - 5[19856] = 18.7229

v5 = 21,7149 - 5| 4L.002 _72.428 18.285] 47.465J

2 15,21 49.35 T 53.5  76.65
= 21.7149 - 5[2.69572 - 1,46763 - 0.34177 - 0.61924]
= 21,7149 - 5[0.26708] = 20.3795"
s _ o L o A9.867 . 19.734 _ 60,399
xS = 79,867 5[0.78474 § 400l 4 T3 S

= 79.867 - 5[0.78474 - 0.99993 + 0.64071 - 2.08632]

= 79,867 - 5[.33906] = 78.1717

0.82 , 58.36  62.467
. i ) 8.36 _
vS = 69.18 5[@-61924 495.87 T 30.8 ~ 28.95.

= 69.18 - 5[0.61924 - 0.01644 - 1.8948 - 2.15751]

= 69.18 - 5[0.34] = 67.48
3.5(76.09-h107,73)%'+,1.5(127.17+-2462.19)%'+ 1(2629.34 + 384.96)%
}-1(3534.16 + 2218.46)% + 1(2320,51 + 6.35)%'+ 2(66.78 + 755.15)%
+ 3(476.47 + 507.15)*
3.5(13.55) + 1.5(5of9) + 1(54.9) + 1(75.85 + 1(48.21)

+ 2(28.67) + 3(31.35)
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47.425 + 76.35 + 54,9 + 75.85.+ 48,21 + 57.34 + 94,05

= 454,125
_ | [30.53 _ 16,916 _ 51.277 _ 59.449
X2 = 18.7229 - 5 {35 - 550 54,9 ~ 75.85

= 18,7229 - 5[2.25313 - 0.33233 - 0.934 - 0.78377]

= 18,7229 - 5[0.20303] = 17,7078
YZ = 20.3795 - 5[36 .328 74 43 19.62 _ 47.1

13,55 ~ 50.9  54.9 75.85

= 20,3795 - 5[2.68103 - 1.46227 - 0.35737 - 0.62096]

= 20.3795 - 5[0,24043] = 19,1772

48.1717 . 16,3434 _ 65.485
48,21 © 28.67 ~.31.35

X = 78.1717 - 5[0.78377 +
= 78,1717 - 5[0.78377 + 0.99921 + 0.57003 - 2,08883]

= 78,1717 - 5[0.26418] = 76,8508

2,52 , 54,96 54,96 67,56

. ) _
y8 = 67.48 5[0.62096 .01 F 28.67 T L.

= 67.48 - 5[0.67096 - 0.05227 + 1.91698 - 2.1550#]
= 67.48 - 5[0.33065] = 65,8267
z% = 3;5(59.41-+84.22)%+ l.5(151.098i—2582.96)% + 1(2734.474-433.59)%
+ 1 (3497.89 + 2;76.18)§'+ 1(2195 + 17.42)% + 2(46.93 + 755.15)%

+ 3 (535.89 + 584.35)%
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3.5(11,985) + 1.5(52.288) + 1{56.286) + 1(74.326) + 1{46.037)

+ 2(28.271) + 3(33.47)

ALo94TD + 78,432 + 56.286 + 74.326 + 47.037 + 56.542 + 100.41

452,58

H

n

]

17,7078
17.7078
17,7078
19,1772
19.1772
19,1772

76.8508

76,8508

76.8508 -

65,8267

65.8267

65.8267

5[26 (42535 18.67485 52,4499 _ 59.134
11,718 ~ 52,534 ~ 56.511 ~ 75.296

5[2.26532 - 0,36559 - 0.93835 - 0,78137)

5(0.21764] = 16,6196

31,367 _ 76557  21.038  46.6112
11,718 ~ 52.534 ~ 56,511  75.296 .

5
5[2,67682 - 1,45729 - 0,37228 - 0.61904]

5[0.32584] = 17.54795

46.6842 . 13,3684 69,0474
5] 0.78536 + 26.904 ' 06.432  33.768

5[0.78536 + 0.99553 + 0.50577 - 2.07141]

5[0424857] = 75.60795

4,4268 . 51.1464 73,2804
5[0.61904 - ZE LA+ eass " 33,768

5[0,61904 - 0.0944 + 1,93502 - 2,17012

5[0.3403] = 64,1252
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| 3 . 1
3.5(43.8194—56.972)2451;5(179io354<2751.212)5+ 1(2849.467 + 504.092)2

+ 1(3479.631 +2169,436)F + 1(2080,089 + 34,513)F + 2(31 .45 + 562,025

+ 3(594.97 + 669,505)%

3.5(10,04) + 1.5(54.132) + 1(57.91) + 1{75.16) + 1(45,985)

+ 2(24,768) + 3(35.559)

35,14 + 81,4198 + 57,91 + 75,16 + 45,985 + 49,536 + 106,677

451.606

8
xa

23.1686 20,0706 53,3804 58,9884
16,6196 - 5[10 04 " 54,132 57.91 75.16 ]

16,6196 - 5[2,30763 - 0437077 - 0.92178 - 0.78484]

16.6196 - 5[0.23024] = 15,4684
26,418 78,678 22,452 46,5772
17548 - 51654 - Bat1s0 " 5vior T 716
17.548 - 5[2.63127 - 1.45344 - 0,41476 - 0.61971]
17.548 - 5[0.14336] = 16,8312
45,608 | 11.216 73.176
75.608 - 5[ 0.78484 + 55055 + 5u%Tes ~ 35-559
75,608 - 5[0.78484 + 0.9918 + 0.45284 - 2,05786]
75.608 - 5[0.17162] = 74.7499
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o 5,8748 , 48.2504 77.6244
64.1252 - 5[0.61971 - 25755 + 5r%75s" ~ 555

e
(<)}
"

1l

64.1252 - 5[0,61971.- 0.12775 + 1.94809 - 2.18297]

64,1252 - 5[0.25708] = 62.8398

3.5(29.903-+46.665)%4-1.5(2i1.167-+2826.921)53+1(2973.695-&536.793)%

4 1(3514.296 + 2116.791)%'+ 1(2002.554 + 51.268)%

gl

+ 2(22.562 + 521.656)% + 3(637.568 + 737.676)5

3.5(8.75) + 1.5(55.119) + 1(99.249) + 1(75.04) + 1(45.319)

+ 2(23,329 + 3(37.084)

n

30,625 + 82,6785 + 59.249 + 75,04 + 45.319 + 46.658 + 111.252

450,822
© = 15.4684 - 5[A2:1394 _ 21.7974  54.5316 55,2817
2 . 8,75 55,119 59,249 75,04
= 15.4684 - 5[2.18736 - 0.39546 - 0.92038 - 0.79]
= 15,4684 - 5[.08152] = 15.0608
o _ _ A[23.9092 79,7532 _ 23.1688 _ 46.0086
y, = 16.8312 - 375758 55.119 ~ 59.249 75.04 |
= 16.8312 - 5[2.73248 - 1.44693 - 0.39104 - 0.61312]
= 16,8312 - 5[0.28139] = 15.4243
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| 44,7499 . 9,4998 . 75.7503
9 -
Xg = T4.7499 5[0‘79 * 5.3 T 23.320 T 37.084
= 74.7499 - 5[0.79 + 0.98744 + 0.40721 - 2.04267]
= 74,7499 - 5[0.14196] = 74,04

v = 62.8398 - 5[0.61312 - 7.1602 45,6796 _ 81.4806

145,319 ' 23.329 ~ 37.084

= '_62.8398

5[0,61312 - 0,158 + 1.95806 - 2.,19719]

= 62,8398 - 5[0,21599] = 61,7599

z‘i = 3,5(25.612+ 29.:423)‘54 1.5_(2‘2:_3.18+_ 2978.507)%-# 1{3017.525 + 603.965)’5'

+ 1{3537.525 + 2146.988fk+ 1(1939.522 + 67.982)%

+ 2(16.322 + 473.493)%'+ 3(673.,922 + 797.503)%

3,5(7.418) + 1.5(56.583) + 1(60.178) + 1(75.396) + 1(44.805)
+ 2(22,132) + 3(38.359)

05.963 + 84,8745 + 60,178 + 75.396 + 44,805 + 44,264 + 115,077

= 450,5575
10 _ | o[l7.7128  22.4088° 54,9392  58.9792
Xz = 19.0608 - 577 418 " 56.583 ~ 60.178 ~ 75.396 ]

15,0608 - 5[2.38781 - 0.39603 - 0.91294 - 0.78226]

15,0608 - 5[0.29658] = 13,5779
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10 4 <[18:98505  81.86355  24.5757 _ 46,3356
Yo = 19.4243 - 373 u1e 56.583 ~ €0.178 ~ 75.396

= 15.4243 - 5[2,55932 - 1.44679 - 0.40838 - 0.61450]

= 15.4243 - 5[0.089%9] = 14.9766

44.04 . 8,08 _ 77.88
44,805 © 22,132 ~ 38.359]

x1® = 74.04 - 5[0,78226 +
= 74,04 - 5[0,78226 + 0.98293 + 0.36508 - 2,03029]

= 74,04 - 5[.09998] = 73.5401

10 = _ _ 8.2401 . 43.5198  84.72037
y 61.7599 - 5[0.61456 s * s T 356

= 61.759955[0.61456 - 0.18391 + 1.96637 - 2,20862]
= 61.7599 - 5[0.1884] = 60.8179
' : 1
zi°==3,5(12.801+-24.767)%4.1.5(269.685-+3027.57$é4-1(3183.453+-626.171)2
+ 1(3695.465 + 210L;425y§ + 1(1895}74 + 84,3llf%
+ 2(12.532 + 433.385)%.+ 3(?00.1#6 +'851.595)%
= 3,5(6.129) + 1;5(57.522) +'1(61.722) +.1(75.478) + 1(44.5)
+ 2(21.157+ 3(39.442)f
= 21.4515 + 86.283 + 61722 + 75.478 + 44,5 + 42,334 + 1189325

= 449.9945
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12.52265  24.63315  56.4221  59.9622
6.129 57.422 ~ 61,722  75.478

x1l = 13,5779 - 5
= 13.5779 ~ 5[2.04317 - 0.42898 - 0.91413 -0.79444]

= 13.5779 + 5[.09438] = 14,0498

yll = 14.9766 - 5[17.4181 82.5351 25,0234 45,8413

6.129  57.422 ~ 61.722  75.478

= 14,9766 ~ 5[2.84192 - 1.43734 - 0,40542 - 0,60735]

= 14,9766 - 5[.39181] = 13,0176
11 _ - 43,5401 | 7.0802 _ 79.3797
Xg© = 73,5401 5[0’79444 Y Taa5 T 21,117 T 39,392 ]

= 73.5401 - 5[0.79444 + 0.97843 + 0,33528 - 2.0l5l2]

= 73,5401 - 5[.09303] = 73.0749

9.1821 | 41,6358  £7.5463
44,5 T 21,117 T 39.392

vl = 60.8179 - 5[0.60735 -

= 60.8179 - 5[0.60735 = 0.20634 + 1.97167 - 2.22244]

= 60,8179 5[@.15024]' = 60,0667
zil-= 3.5(16.401-+9;106)%4 1.5(254.409+-3246.994)%4-1(3130.425+—728.05)%
+ 1(3433.962 +.2213.618)é'+_1(1855g447 + é8.67)%
+ 2(9.455 + 402.672)'§L + 3(724.961 + 896.002)%
= 3.5(5.08) + 1.5(59.173 + 1(62.117) + 1(75.482) + 1(44,206)

+ 2(20.301) + 3(40.261)



212
1

[}

449,6245 <

xi2 = 14,0498
= 14,0498
= 14,0498

yi® = 13,0176

= 13,0176

= 13.0176"

x2 = 73,0749
= 73,0749

= 73,0749

]

= 60.0667

= 60,0667

1
= 168.5515 + 1(3452,738 + 2145.885)2 + 1(1832.679 + 113n608)%

60 00667 !

17,675 + 88.7595 + 62,117 + 75.482 + 44,206 + 40,602 +

N
i

5[14 21743 23;9253'_ 93,9902  59.025]
5,05 99,173 62.117 75.482

5[2,80679 - 0.,40433 - 0.895 - 0.78198]

n

5[0.72548] 10,4706

o[40: (5616 _ 85,4736 26,9824  47.0491
5.06 =~ 59.173 62,117  75.482

5[2,09141 - 1,44447 - 0.43438 - 0,62332]

il

5[0.41076] 15,0714

. 43.0749 , 6:1498 _ 80,7753
s[o.78198 + Z*%e + 20,301 ~ 40,261 J

5[0.78198 + 0.97441 + 0,30293 - 2.00629]

5[ .05303] = 72.8098

A s L 99333 . 40,1334 89,7999
5[0962332H 44,206 © 20,301 40.261

5[0.62332 - 0.22471 + 1,97692 - 2.23044]

5[0.14509] = 59,34125

+ 2(7.895 + 374,086)% + 3(739.307 + 939,956)%

€9

120,783
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168.5515 + 1(74.824) + 1(44.117) + 2(19.514) +3(40.979)

449,486

i3

1

]

72,8098

72.8098

59.3413 -

59.3413

59.3413

58,76, 42.8098 . 5.6196 _ 81.5706

74,824 ° 44,117 19.544 ~ 40.979

5

1

5[0.785309 + 0.970369 + 0.287535 - 1,990546]

5L052667] = 72.5465

46,3237  10.6587 . 38.6826 _ 91.9761
74.824 ~ 44.117 © 19.544 ~ 40.979 ]

5

500.619102 = 02416 + 1.979257 - 2.29487]

5[0,061889] = 59.0319

168.5515 + 1{3421.864 + 2117.316)%' + 1(1810.20% + 120,299)%

+ 2(6.485 + 362.213)F + 3(753.695 + 959,023)%

168,5515 + 1(74.426) + 1{43.936) + 2{19.149) + 3(41.385)

449.3665

xgt = 62,5465 -
= 72,5465
= 72.5465

g1 = 59,0819 -

5 58,4967 + 42,5465 + 9,093 _ 82236051
74,426 43,936 19,199  41.385

5[0.786071 + 0.968374 + 0.265274 - 1.990105]

500.030514] = 72,3939

5[46,0143 _ 10.9681 38,0638 _ 92.9043]
174,426 ~ 43,936 © 19.199 ~ 41,385
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1

59.0319 - 5[0.618255 - 0.249638 + 1,982592 - 2,244878]

1l

59,0319 - 5[0.106331] = 58,5002

71

168.5515 + 1(3404.034 -+2068.667)% + 1(1797.243 + 132.245)5

+ 2(5,731 + 342.257Y§ + 3(762.097 + 992.237)&

168,515 + 73,524 + 43.926 + 2(18.653 + 3(41,885)

449,362
15 _ 58 3441 §2 3939 4.7878 82.8183
X3 72,3939 5[73 924 23,926 * 18.653 ~ 41.885
= 72.3939 - 5[0.789244 + 0.96512 + 0.256677 - 1.977278]
=" 72.3939 - 5[0,033763] = 7%.2251
5 |  [45.4826  11.4998 | 37.0004  94.49947
ys~ = 98.5002 5[73 924 " 43.926 T 18.653 ~ 41.885 J
= 58,5002 - 5[0.615261 - 0.261799 + 1.983616 - 2.256163)
58,5002 - 5[0.080915] = 58,0956

-

| - L, 1
168.5515 + 1(3384.366 + 2032.026)° + 1(1782.959 + 141.715)%2

o | e
+ 2(4.951 + 327.451)%+ 3(771.445 + 1017.89)%
168.5515 + 1(73.595) + 1(43.871) + 2(18.222) + 3(42.30)

449,3615
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